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1. German Summary

Diese Arbeit basiert auf Untersuchungen zu den Auswirkungen der Cannabinoide Cannabidiol
(CBD) und Anandamid (AEA) auf phanotypische Veranderungen in Cluster of Differentiation
4-positiven (CD4+) T-Zellen von Patienten, die an rheumatischen Autoimmunerkrankungen,
insbesondere rheumatoider Arthritis (RA), leiden. Cannabinoide wie CBD werden in der
Gesellschaft immer prasenter und oft pauschal zur Behandlung verschiedener Erkrankungen,
einschliefllich der RA, empfohlen. Dies wird durch das neue Cannabisgesetz (CanG)
unterstrichen, das zum 1. April 2024 den Umgang mit Cannabis in Deutschland neu regelte
und unter anderem den Zugang zu medizinischem Cannabis erleichterte. Hierdurch ist eine
weitere Zunahme der Akzeptanz und des Konsums von Cannabis und Cannabisderivaten
ohne medizinische Aufsicht zu erwarten. Zusatzlich haben die erhofften analgetischen
Eigenschaften von CBD zu einer vermehrten Nutzung unter RA-Patienten gefihrt, die nach
Alternativen oder Erganzungen zu ihrer bestehenden Schmerzmedikation suchen. Angesichts
dieser zunehmenden Verbreitung der CBD-Nutzung, oft ohne medizinische Aufsicht, ist es
klar, dass ein besseres Verstandnis des gesamten Spektrums der CBD-Effekte notwendig ist.
Nur so konnen Patienten ausreichend Uber die Vorteile und Risiken informiert werden, die mit

der Aufnahme von CBD in ihre bestehenden Medikationsplane einhergehen.

Neben der zunehmenden Verbreitung des Cannabinoidkonsums schreitet auch unser
Verstandnis der RA als Krankheit voran. Wahrend der Schwerpunkt der RA-Forschung
urspringlich auf T-Helfer 1 (Th1)-Zellen lag, gewinnen T-Helfer 17 (Th17)-Zellen und ihr
Zusammenspiel mit regulatorischen T (Treg)-Zellen als mdgliche zentrale Akteure in der
Pathogenese der RA an Bedeutung. Dies ermdglicht eine prazisere Untersuchung potenzieller
Therapeutika wie CBD und deren Auswirkungen auf RA-spezifische Pathomechanismen.
Unser Wissen Uber den Einfluss von CBD auf Th17-Zellen und dessen Bedeutung im Kontext
der RA ist noch unvollstdndig. Ziel dieser Arbeit ist es, ein tieferes Verstandnis der
Auswirkungen von den Cannabinoiden CBD und AEA auf die Th17-Differenzierung und
Interleukin-17A (IL-17A) Positivitat zu erlangen.

Mit diesem Ziel wurden umfassende in vitro Studien durchgefihrt, um direkte
Zusammenhange zwischen Cannabinoidexposition und CD4+ T-Zell-Eigenschaften
herzustellen. Die Analyse von Cannabinoid-Rezeptoren 1 und 2 (CB1, CB2) sowie des G-
Protein-gekoppelten Rezeptors 55 (GPR55) zeigte keine signifikanten Unterschiede
zwischen RA-Patienten und gesunden Kontrollen, obwohl eine bemerkenswerte Tendenz zu
erhohter GPR55 Expression bei RA- und Psoriasis-Arthritis-Patienten beobachtet wurde. Die
Ergebnisse zeigen, dass CBD die Lebensfahigkeit von CD4+ T-Zellen signifikant reduzierte,
wahrend paradoxerweise der Anteil IL-17A-positiver Zellen, insbesondere bei RA-
12



Patienten, erhoht wurde. Dieser Effekt blieb auch unter Th17-polarisierenden
Bedingungen bestehen. Die Genexpressionsanalyse zeigte, dass CBD bei RA-Patienten
Serum-Glucocorticoid-Kinase 1 (SGK1) signifikant hochregulierte und Kolonie-stimulierenden
Faktor 2 (CSF2) herunterregulierte, was auf eine komplexe Modulation
entziindungsbezogener Signalwege hindeutet. Trotz erhohter zelluldrer IL-17A-Positivitat
zeigte die ELISA-Analyse eine reduzierte Sekretion von IL-17A, Interferon-Gamma (IFN-y)
und Tumornekrosefaktor-alpha (TNF-a) im Zellkulturmedium, mdglicherweise aufgrund der
beobachteten erheblichen zytotoxischen Effekte. Vorlaufige klinische Beobachtungen von
Patienten, die Uber nicht-standardisierten eigenen CBD-Konsum berichteten, zeigten sowohl
einen Anstieg des Anteils IL-17A-positiver CD4+ T-Zellen als auch erhoéhte

Krankheitsaktivitatswerte, was mit unseren in vitro Ergebnissen Ubereinstimmt.

Obwohl CBD gleichzeitig den Anteil an TNF-a und IFN-y positiven CD4+ Zellen reduzieren
konnte, deutet unser erweitertes Verstandnis der RA als eine Uberwiegend von Th17-Zellen
vermittelte Erkrankung darauf hin, dass der Konsum von CBD bei RA-Patienten aus Sicht der
Autoimmunitat nachteilig sein kdnnte. Diese Vermutung ist hauptsachlich auf die Erkenntnis
zurtickzufiuhren, dass CBD zu einem erhéhten Anteil an IL-17A-positiver Zellen unter CD4+
T-Zellen gefuhrt hat, was bei der Empfehlung von CBD als Therapieerganzung bertcksichtigt
werden sollte. Allerdings sind weitere Studien erforderlich, um den Wirkmechanismus, der zu
den hier beobachteten Effekten fluhrt, zu verstehen. Zuséatzlich sollten In-vivo-Mausestudien
durchgefihrt werden, um die Auswirkungen des CBD-Konsums im Hinblick auf die
vielfaltigen und komplexen Wechselwirkungen im Korper besser zu verstehen. AuRerdem ist
es wichtig zu analysieren, inwieweit sich die hier dargestellten in vitro Ergebnisse direkt auf
Patienten Ubertragen lassen, da in diesen Experimenten hohe Dosen von CBD verwendet

wurden.

Bisher scheinen die Daten nicht ausreichend zu sein, um CBD uneingeschrankt als
Behandlungsansatz fur RA-Patienten zu empfehlen. In Zukunft sind weitere Studien
notwendig, um das Potenzial und die Risiken von Cannabinoiden in der RA-Therapie zu

bewerten und eine Empfehlung fur die RA-Therapie auszusprechen.
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2. English Summary

This work is based on investigations into the effects of cannabinoids such as cannabidiol (CBD)
and anandamide (AEA) on phenotypic changes in cluster of differentiation 4-positive (CD4+)
T cells from patients suffering from rheumatic autoimmune diseases, particularly rheumatoid
arthritis (RA). Cannabinoids such as CBD are becoming increasingly prevalent in society and
are often recommended for the treatment of various conditions, including RA. This is further
underscored by the new German Cannabis Act (CanG), which regulates the handling of
cannabis as of April 1, 2024, and, among other changes, eased access to medicinal cannabis.
This is expected to further increase public acceptance and unsupervised use of cannabis and
its derivatives. Additionally, the anticipated analgesic properties of CBD have led to increased
use among RA patients seeking alternatives or supplements to their existing pain management
plans. Given this growing prevalence of CBD use, often without medical supervision, it is clear
that a better understanding of the full spectrum of CBD effects is necessary. Only in this way
can patients be adequately informed about the benefits and risks associated with incorporating

CBBD into their existing medication plans.

Alongside the increasing prevalence of cannabinoid use, our understanding of RA as a disease
is also advancing. While the focus of RA research was initially on T helper 1 (Th1) cells, T
helper 17 (Th17) cells and their interplay with regulatory T (Treg) cells are gaining importance
as potential key players in the pathogenesis of RA. This enables a more precise investigation
of potential therapeutics like CBD and their effects on RA-specific pathomechanisms. Our
knowledge regarding the influence of CBD on Th17 cells and its significance in the context of
RA is still incomplete. The aim of this work is to gain a deeper understanding of the effects of

cannabinoids on Th17 differentiation and Interleukin-17A (IL-17A) positivity.

With this objective, comprehensive in vitro studies were conducted to establish direct
relationships between cannabinoid exposure and CD4+ T cell properties. Analysis of
cannabinoid receptors 1 and 2 (CB1, CB2) showed no significant differences between RA
patients and healthy controls, though a notable trend toward increased G-protein coupled
receptor 55 (GPR55) expression was observed in RA and psoriatic arthritis patients. The
results demonstrate that CBD significantly reduced CD4+ T cell viability while paradoxically
increasing the proportion of IL-17A-positive cells, particularly in RA patients. This effect
persisted even under Th17-polarizing conditions. Gene expression analysis revealed that
CBD significantly upregulated serum glucocorticoid-regulated kinase 1 (SGK7) while
downregulating colony stimulating factor 2 (CSF2) in RA patients, suggesting complex
modulation of inflammation-related pathways. Despite increased cellular IL-17A positivity,

ELISA analysis showed reduced secretion of IL-17A, interferon gamma (IFN-y), and tumor
14



necrosis factor alpha (TNF-a) in culture supernatants, potentially due to the substantial
cytotoxic effects observed. Importantly, preliminary observational data from patients self-
reporting non-standardized CBD use showed both increased IL-17A-positive CD4+ T cell

percentages and elevated disease activity scores, aligning with our in vitro findings.

Although CBD was able to reduce TNF-a- and IFN-y-positive CD4+ T cells, our understanding
of RA as an increasingly Th17 cell-mediated disease suggests that CBD use in RA patients
could be detrimental from an autoimmunity perspective. This is primarily due to the finding that
CBD led to an increased proportion of IL-17A-positive cells among CD4+ T cells, which should
be taken into account when considering recommending CBD as a therapy supplement.
However, further studies are required to understand the mechanism of action leading to the
effects observed here. In vivo mouse studies should also be conducted to better understand
the effects of CBD consumption in relation to the multiple and complex interactions within the
body. It is also essential to analyze the extent to which the in vitro results presented here can

be translated directly to patients given the high doses of CBD used in these experiments.

So far, the data is not sufficient to unreservedly recommend CBD as a treatment approach for
RA patients. Further studies are necessary to evaluate the potential and risks of cannabinoids

in RA therapy and to make a recommendation for RA therapy.
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3. Introduction

3.1. Overview of Rheumatoid Arthritis

3.1.1. Etiology and Genetic Predispositions

Rheumatoid Arthritis (RA) is a chronic, systemic autoimmune disease characterized by
persistent inflammation, synovial hyperplasia, and the progressive deterioration and
destruction of joints. Understanding the pathophysiology of RA is essential to applying
knowledge about disease onset, progression and exacerbation in enhancing preventative and
therapeutic measures. The complex etiology of RA remains partially undiscovered. However,
a large body of evidence points to a significant interplay among several factors in RA
development: genetic predisposition, environmental triggers, and intrinsic determinants such

as sex and age.”

The genetic component of RA susceptibility is pronounced. A family history of RA is associated
with a 3- to 5-fold increased disease risk and heritability estimates attribute roughly 40-60% of
disease susceptibility to genetic factors.>* The Human Leukocyte Antigen (HLA) region,

particularly alleles within the HLA-DRB1 locus, strongly correlates with RA development.58

Environmental variables also play a role in the risk of RA development. Among these, smoking
confers the highest risk, especially in genetically predisposed individuals.”'® Other
environmental risk factors such as viral or bacterial infections, hormonal transition states in
females, and even gut microbiota have also been investigated. However, there is insufficient

definitive evidence for determining the exact role environmental factors play in RA etiology.""
13

The autoimmune characteristic of RA is defined by the immune system targeting self-antigens,
leading to the chronic inflammation that is characteristic of this disease. RA often develops
within a wider range of autoimmune dysregulation. For example, it is not uncommon for RA
patients to also develop features characteristic of Systemic Lupus Erythematosus (SLE) or

suffer from Sjogren’s syndrome. ™15

Gender and age disparities are prevalent in the RA patient population. The disease
disproportionately affects females, with the female-to-male ratio being between 2:1 and 5:1
depending on the age group studied.' This indicates a potential role of age- and sex-related
hormonal factors in disease susceptibility.”” The median age at onset of RA symptoms is 45
years in females and 50 years in males. However, the disease is not age-bound and can in

theory appear at any time."®
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3.1.2. Pathophysiology of RA

RA's pathophysiology is marked by persistent inflammation in the synovial membrane of
affected joints. This inflammation drives several pathological processes. These include cellular
infiltration, excessive cytokine production, and tissue breakdown.’® The chronic inflammation
leads to the formation of hyperplastic, invasive tissue referred to as pannus. The pannus
becomes a focal point for destructive mechanisms. These mechanisms affect nearby cartilage,

subchondral bone, and soft tissue.?°

The pannus is made up of several cell types, each contributing to RA pathology. Fibroblast-
like synoviocytes (FLS) in the pannus become aggressive. They invade and degrade cartilage
by secreting matrix metalloproteinases (MMPs).2! Macrophages produce proinflammatory
cytokines like Tumor Necrosis Factor alpha (TNF-a) and Interleukin-1 (IL-1).2> T and B cells
contribute to local autoimmunity and cytokine production. Endothelial cells promote new blood
vessel growth and inflammatory cell migration.?>?* Chondrocytes and osteoclasts, activated by
signaling molecules like receptor activator of nuclear factor kappa-light-chain-enhancer of
activated B cells (NF-kB) ligand (RANKL) and TNF-q, play crucial roles in cartilage and bone

erosion, respectively.?526

The inflammatory milieu in RA is modulated by a diverse array of cytokines that are integral to
the initiation, perpetuation, and escalation of inflammation. TNF-a, primarily produced by
macrophages and T helper 1 (Th1) cells, is a fundamental cytokine in initiating the
inflammatory cascade.?’ It upregulates adhesion molecule expression on endothelial cells,
facilitating leukocyte infiltration into the synovium, and acts synergistically with other
cytokines to amplify their proinflammatory effects.?®3° Interleukin-6 (IL-6), secreted by various
cells including macrophages, T lymphocytes, and fibroblasts, exhibits pleiotropic actions
impacting both local joint and systemic physiology. It promotes neutrophil migration,
osteoclast maturation, plasma cell differentiation, and T helper 17 (Th17) differentiation.3'32
Additional cytokines such as IL-1, Interleukin-15 (IL-15), Interleukin-18 (IL-18), and
Interleukin-23 (IL-23) also contribute to the inflammatory landscape in RA, each with their

distinct roles and interactions within the complex cytokine network.

The cellular landscape in the RA synovium is a complex microenvironment comprising diverse
cells from both innate and adaptive immune systems.* Th1 cells, secreting Interferon-gamma
(IFN-y), activate macrophages and sustain the inflammatory environment.® Regulatory T cells
(Tregs), responsible for maintaining self-tolerance, exhibit compromised function in RA,
contributing to immune dysregulation.’® Macrophages and dendritic cells (DC) present

antigens to T cells and produce proinflammatory cytokines like TNF-a and IL-6.37-* Neutrophils
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release reactive oxygen species (ROS), proteolytic enzymes, and Neutrophil Extracellular

Traps (NET), further contributing to inflammation.3%4°

The inflamed synovial tissue is rich in non-physiologic molecular mediators and activated
signaling pathways, including NF-kB, Janus kinase/signal transducer and activator of
transcription (JAK-STAT), and Mitogen-activated protein kinase (MAPK). These orchestrate

cellular functions such as proliferation, survival, and cytokine production.*'

3.1.3. Autoimmunity and Joint Destruction in RA

Autoimmunity plays a central role in the pathogenesis of RA, with a critical point of failure in
immunological tolerance occurring both centrally in the thymus and peripherally. Compromised
function of Tregs and other immune checkpoints leads to the survival of autoreactive T cells
that escape thymic selection.*? Autoantibodies such as rheumatoid factor (RF) and anti-
citrullinated protein antibodies (ACPA) form immune complexes that deposit in joints, triggering

complement activation and subsequent inflammation. 4344

The systemic inflammation in RA, driven by elevated levels of proinflammatory cytokines such
as IL-6, not only contributes to joint destruction but also has relevance to various other organ
systems, leading to multiple comorbidities.®#® Cardiovascular complications, such as
accelerated atherosclerosis, myocardial infarction, heart failure, and arrhythmias, are
associated with the chronic inflammatory state and endothelial dysfunction experienced by RA
patients.*64% Metabolic disturbances, including increased fat mass, muscle wasting
(rheumatoid cachexia), impaired insulin signaling, and dysregulated lipid metabolism, further
contribute to the disease burden.%-52 Pulmonary complications, such as interstitial lung disease
and pleural effusions, as well as psychological comorbidities, potentially caused by cytokine-
mediated effects on neurotransmitter levels, are also prevalent in RA patients.53545% Other

comorbidities include osteoporosis and anemia of chronic disease.%%"

In RA, bone erosion contributes to the destruction of joints. This is a consequence of the
imbalance between bone formation and resorption, with the RANKL/osteoprotegerin (OPG)
ratio skewed towards RANKL, thereby promoting osteoclast differentiation and activation.°®
Proinflammatory cytokines, such as TNF-a and Interleukin-1 beta (IL-1B), act synergistically
with RANKL to enhance osteoclastogenesis.>*¢® Overexpression of Cathepsin K, an enzyme

produced by osteoclasts, further contributes to bone matrix degradation in RA patients.®':62

Cartilage degradation in RA is driven by phenotypic changes in FLS cells, driven by autocrine

loops involving cytokines and growth factors such as platelet-derived growth factor (PDGF).53
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Matrix-degrading enzymes, such as MMPs and A Disintegrin and Metalloproteinase with
Thrombospondin Motifs (ADAMTS), also play a significant role in cartilage breakdown.%*
Elevated levels of nitric oxide (NO) in the synovium induce cellular proliferation and synovial

opacity formation, exacerbating cartilage damage and bone destruction.®®

Increased levels of Interleukin-17A (IL-17A) in RA joints also contribute to matrix and cartilage
degradation with subsequent bone erosion. IL-17A is able to upregulate various MMPs such
as MMP-1, MMP-2, MMP-9 and MMP-13, which in conjunction with TNF-a and Oncostatin M
(OSM), shift the MMP:Tissue Inhibitor of Metalloproteinases-1 (TIMP-1) ratio in favor of MMPs,
leading to proteoglycan depletion, increased matrix turnover as well as cartilage and bone
degradation.®®57 |L-17A is also able to promote bone degradation twofold through the direct
induction of osteoclastogenesis from monocytes independent of exogenous RANKL, as well
as through the upregulation of RANKL production in RA FLS.% Another possible mechanism
by which Th17 cells are involved in bone destruction is through the upregulation of B cell
antibody production via Interleukin-21 (IL-21) and Interleukin-22 (IL-22) signaling. The
resulting antibody excess and immune complexes are involved in the promotion of

osteoclastogenesis.®®

Muscle atrophy, resulting from chronic inflammation and disease-related reduction in physical
activity, contributes to functional impairment in RA patients.>® Pain mechanisms often involve
a neuropathic component, attributed to the release of neuropeptides like substance P.”° The
combined effects of joint destruction, inflammation, and pain significantly impact the quality of

life of RA patients, limiting their ability to perform daily activities and maintain self-care.”

Despite advances in understanding the complex pathophysiology of RA and the development
of targeted therapeutics, substantial challenges remain in treating this disease effectively.
Current therapies often fail to achieve remission in approximately half of all patients, and many
treatments are associated with adverse effects that might limit their long-term use.”?™® This
therapeutic gap highlights the need to identify novel immunomodulatory compounds that target
specific pathological immune pathways in RA. While Th17 cells have emerged as significant
drivers of RA pathology, approaches to selectively modulate this pathway remain
understudied. Understanding how potential immunomodulatory compounds affect Th17 cell

function in the specific context of RA represents a critical research need.

3.2. Differentiation and Functioning of CD4+ T Cells

3.2.1. CD4+ T Cells: Overview and Role in Adaptive Inmunity

Cluster of Differentiation 4 positive (CD4+) T cells are central players in the adaptive immune
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system, and are characterized by the expression of the CD4 co-receptor. These cells recognize

antigens presented via major histocompatibility complex (MHC) class II molecules and
coordinate an array of immune responses, including the activation of other immune cells and

the regulation of antibody production.”™

Originating from hematopoietic stem cells, CD4+ T cells undergo maturation in the thymus,
where positive and negative selection refine their antigen recognition abilities, ensuring self-
tolerance while preserving responsiveness to foreign antigens.”* The remarkable diversity of
their T cell receptors (TCR), generated through somatic recombination, allows CD4+ T cells to
recognize an extensive array of antigens, equipping the adaptive immune system with

specificity and adaptability.”

The activation of CD4+ T cells is a two-step process initiated by the binding of the TCR to an
MHC class ll-antigen complex. The TCR-MHC interaction is reinforced by co-stimulatory
signals provided by molecules such as CD28. This interaction triggers intracellular signaling
cascades, including the MAPK and NF-kB pathways, leading to the activation of transcription
factors that regulate gene expression and facilitate T cell proliferation and differentiation. Co-

stimulatory signals are crucial for complete T cell activation and the prevention of anergy.’"®

Upon activation, naive CD4+ T cells differentiate into distinct subsets of effector cells, each
with unique cytokine profiles and functions. These cell subsets include Th1, T helper 2 (Th2),
Th17, and Tregs. The differentiation process is guided by transcription factors responsive to
environmental cues such as cytokines. T-box Expressed in T Cells (T-bet) governs Th1
differentiation, GATA Binding Protein 3 (GATAS3) is essential for the Th2 lineage, Retinoic Acid
Receptor-Related Orphan Receptor Gamma t (RORyt) directs Th17 differentiation, and

Forkhead-Box-Protein P3 (FoxP3) acts as the master regulator for Treg differentiation.”

The core principles of adaptive immunity—antigen specificity, immune memory, and self-
tolerance—are significantly influenced by the functional attributes of CD4+ T cells.”” Th1 cells,
which predominantly secrete IFN-y, are crucial for cell-mediated immunity against intracellular
pathogens. Th2 cells, characterized by the secretion of Interleukin-4 (IL-4), Interleukin-5 (IL-
5), and Interleukin-13 (IL-13), are vital for targeting extracellular pathogens and parasites and
play a key role in humoral immunity. Th17 cells, major producers of the Interleukin-17 (IL-17)
family of cytokines, are important for host defense against extracellular bacteria and fungi but

are also implicated in autoimmune and inflammatory diseases.’

Tregs play a pivotal role in maintaining immune homeostasis and self-tolerance. They secrete

20



immunosuppressive cytokines such as Interleukin-10 (IL-10) and transforming growth factor-
beta (TGF-B). Tregs also engage in direct cell-cell interactions to regulate the activity of other
immune cells. The regulatory function of Tregs is critical for preventing autoimmune disorders

and limiting chronic inflammation.’®

CD4+ T cells also interact with B cells, providing essential signals for B cell maturation and

antibody class switching, thereby shaping the humoral arm of the adaptive immune response.”

3.2.2. CD4+ T Cells: Activation and Co-Stimulatory Signals

The activation of CD4+ T cells is a tightly regulated process that requires two distinct signals:
antigen recognition through the TCR and co-stimulatory signals provided by antigen-
presenting cells (APCs). The primary activation signal is initiated when the TCR recognizes
and binds to a specific peptide-MHC class || complex on the surface of APCs, such as dendritic

cells, macrophages, and B cells.”8

APCs capture, process, and present antigens as peptides loaded onto MHC class |l molecules.
The processing of antigens occurs within endosomal compartments, and the resulting peptide-
MHC class Il complexes are then transported to the cell surface for recognition by the TCR of
CD4+ T cells.8

While the TCR-peptide-MHC class Il interaction ensures specificity, co-stimulatory signals are
essential for complete T cell activation and the prevention of anergy. The most well-
characterized co-stimulatory pathway is the CD28-B7 axis, which involves the interaction
between CD28 on T cells and its ligands B7-1 (CD80) and B7-2 (CD86) on APCs. This
interaction enhances T cell activation, promotes survival, and prevents anergy.®' Other co-
stimulatory molecules, such as Inducible T Cell Costimulator (ICOS) and OX40 (CD134), are
upregulated following initial activation and contribute to the sustained T cell response and

enhanced survival.”®

The engagement of the TCR and co-stimulatory receptors triggers intracellular signaling
cascades that lead to T cell activation, proliferation, and differentiation. These signaling
pathways involve the activation of tyrosine kinases, such as lymphocyte-specific protein
tyrosine kinase (Lck) and zeta-chain-associated protein kinase 70 (ZAP-70), which catalyze
the phosphorylation of downstream molecules.®2 The Phosphoinositide 3-Kinase
(PI3K)/Protein Kinase B (Akt) pathway, activated by co-stimulatory signals, promotes T cell
survival, growth, and differentiation by serving as a central node for transducing extracellular

signals into coordinated intracellular responses.®
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Transcription factors, including NF-kB, activator protein 1 (AP-1), and Nuclear Factor of
Activated T cells (NFAT), are activated downstream of these signaling cascades. Upon
activation, these transcription factors translocate to the nucleus, where they regulate the
expression of genes crucial for T cell functioning, such as those involved in cytokine

production, cell cycle progression, and effector functions.®

Co-stimulatory signals are directly involved in determining cytokine production behavior for
CD4+ T cells. CD28 has been shown to upregulate human IL-17A expression by promoting
the recruitment of REL-associated protein A (RelA)/NF-kB and signal transducer and
activator of transcription 3 (STAT3) on the proximal promoter.®” In addition to STAT3, the
cytokines TGF-B and IL-6 are activated, which in conjunction with STAT3 induce the
expression of RORyt, thus shifting the cell towards the Th17 lineage.®*" Interestingly, CD28
signaling is also vital for Treg homeostasis and functioning in the periphery, thereby possibly
contributing to immune homeostasis as a factor in the Th17/Treg balance.®? The co-
stimulatory molecule CD226 is able to promote IL-17A production through guanine nucleotide
exchange factor Vav Guanine Nucleotide Exchange Factor 1 (VAV1)-mediated signaling,
which is required for T cell activation.®® However, not all co-stimulatory signals lead to
increased IL-17A levels, with activation of OX40 leading to a methylation-based “closing” of
the chromatin structure at the locus required for IL-17A production thus inhibiting it.** Beyond
IL-17A, IFN-y production is also modulated through co-stimulation, with cross-linking of CD28
molecules resulting not only in enhanced T cell proliferation, but also a strong increase in
IFN-y, and Interleukin-2 (IL-2) RNA levels and secretion.®® Furthermore, a toll-like receptor
(TLR) 7/8 ligand has been shown to increase IFN-y production in yd T cells upon co-
stimulation with IL-2 and Interleukin-12 (IL-12).%¢ As is the case with IL-17A, not all co-
stimulatory signals result in increased IFN-y levels. CD46, another co-stimulatory receptor, is
able to promote the differentiation of Th1 cells into a Treg phenotype causing a reduction in
IFN-y production along with an increase in IL-10 production. In contrast, CD46 is a potent

driver of IFN-y production in CD8+ T cells.®’

Following activation, CD4+ T cells transition away from a quiescent state and re-enter the cell
cycle, a process driven by the upregulation of cyclins and cyclin-dependent kinases.®®
Activated T cells undergo metabolic reprogramming, shifting from oxidative phosphorylation to
aerobic glycolysis to meet the increased bioenergetic and biosynthetic demands resulting from

rapid proliferation.®®

In the context of autoimmune diseases like RA, co-stimulatory signals can contribute to the
activation of autoreactive T cells.'® Therapeutic interventions, such as abatacept, which

disrupt the CD28-B7 interaction, have been developed to modulate abnormal T cell activaéign



and have shown promising results in RA clinical trials.'"

3.2.3. Th17 Cell Differentiation: Overview and Molecular Mechanisms

The differentiation of naive CD4+ T cells into Th17 cells is a critical process in adaptive
immunity, particularly in the context of autoimmune diseases such as RA. Th17 cells are
characterized by the production of IL-17A and IL-17F. These cytokines play an essential role
in host defense against extracellular pathogens but can also contribute to autoimmune

pathology when dysregulated. 0219

The differentiation of Th17 cells is initiated by the engagement of the TCR with specific
antigenic peptides presented by MHC class Il molecules on APCs.® Following this initial
activation, the fate of a naive CD4+ T cell is largely determined by the surrounding cytokine
milieu. The presence of TGF-B, IL-23, IL-6, and IL-1 is crucial for driving the activated T cell
towards a Th17 phenotype.'® Interactions with other immune cells, such as Tregs, have been
shown to promote or inhibit Th17 differentiation, depending on the specific regulatory

molecules and cytokines involved.'*

The molecular mechanisms driving Th17 differentiation involve a network of transcription
factors and signaling pathways. The master regulator of Th17 differentiation is RORyt, which
binds to the promoter regions of Th17-specific genes and initiates the transcription of IL-17A
and IL-17F." A close relative, retinoic acid receptor-related orphan receptor alpha (RORa)
has been shown to induce the expression of genes that define Th17 cells.'® Another crucial
transcription factor is STAT3, which is activated by cytokines such as IL-6 and IL-21. Upon
activation, STAT3 dimerizes and translocates to the nucleus, where it enhances the expression
of RORyt and subsequently upregulates the production of IL-17A and other proinflammatory

cytokines characteristic of Th17 cells.'%®

The stability and maintenance of the Th17 phenotype as well as the pathogenicity are
dependent on the continued presence of IL-21 and IL-23, which provide essential autocrine
and paracrine signals, respectively.’%41% The expression of the IL-23 receptor (IL-23R) on
Th17 cells is regulated by serum glucocorticoid-regulated kinase 1 (SGK7), which inhibits the

transcription factor Foxo1, a direct repressor of IL-23R expression.'07:108

Several other genes and signaling pathways have been implicated in the regulation of Th17
differentiation and function. For example, colony stimulating factor 2 (CSF2), which encodes
granulocyte-macrophage colony-stimulating factor (GM-CSF), has been shown to enhance IL-
6 dependent Th17 development and survival.'® In addition, CSF2-deficient mice suffered from

less severe arthritis when compared to wild-type mice.'"® Another relevant gene is lkaros family
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zinc finger 3 (IKZF3), which encodes the zinc finger protein Aiolos, a hematopoietic-specific
transcription factor. Th17 cells express higher levels of IKZF3 compared to other CD4+ T cell
subsets, and Aiolos-deficient mice exhibit impaired Th17 differentiation, as evidenced by

reduced expression of IL-17A and other Th17-associated genes.'""

The Notch signaling pathway also plays a significant role in Th17 differentiation. This pathway
consists of four receptors (Notch1-4) and their corresponding ligands, such as Delta-like and
Jagged. Upon activation, Notch receptors undergo a series of proteolytic cleavages, releasing
the Notch intracellular domain (NICD). The NICD then translocates to the nucleus, where it
interacts with transcription factors like RORyt and STAT3 to modulate the expression of Th17-
specific genes.? Aberrant activation of Notch signaling has been linked to autoimmune
diseases, including RA, and the overactivation of this pathway contributes to the pathogenicity
of Th17 cells in RA.""® Preliminary evidence suggests that cannabinoids, such as cannabidiol
(CBD), may influence Notch signaling, although the specific mechanisms in the context of RA

require further investigation.''

The JAK-STAT pathway is another crucial signaling cascade involved in cytokine-driven Th17
differentiation. Dysregulation of this pathway in RA has been shown to favor the excessive
differentiation of pathogenic Th17 cells, contributing to the proinflammatory environment
characteristic of the disease.'>""® Cannabinoids, including anandamide (AEA) and CBD, have
demonstrated the potential to modulate these pathways. For instance, CBD has been found to

inhibit STAT3 activation, which may lead to the suppression of Th17 differentiation. "1
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Figure 1. Th17 cell differentiation pathway This diagram illustrates the key steps in the differentiation
of naive CD4+ T cells into Th17 cells. The process begins with antigen presentation by an antigen-
presenting cell (APC) to a naive CD4+ T cell. Specific cytokines (TGF-B, IL-23, IL-6, IL-1B) drive the
differentiation, activating transcription factors (RORyt, RORa, STAT3) that are crucial for Th17 cell

development.’04105 The mature Th17 cell is characterized by the expression of IL-23R and CCR6
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receptors, and produces signature cytokines IL-17A, IL-21, and |L-22.107.108,120.121 Thjs pathway plays a

significant role in the pathogenesis of RA and other autoimmune diseases.

3.2.4. Physiologic Functions and Interactions of Th17 Cells

Th17 cells play a crucial role in maintaining mucosal homeostasis and protecting against
extracellular pathogens, particularly at mucosal surfaces such as the gastrointestinal tract,
respiratory system, and integumentary system. Three of the cytokines produced by Th17 cells,
IL-17A, IL-17F, and IL-22, are essential for the recruitment of neutrophils and the induction of
antimicrobial peptide synthesis, providing a first line of defense against bacterial and fungal

infections.?!

IL-17A also exerts a significant influence on granulopoiesis by interacting with bone marrow
stromal cells to stimulate the production of granulocyte colony-stimulating factor (G-CSF). This
interaction promotes the differentiation and mobilization of neutrophils into circulation, further
enhancing the immune response against extracellular pathogens. In addition to their role in
host defense, Th17 cells contribute to the maintenance of epithelial barrier integrity. IL-22, in
particular, promotes the proliferation and regeneration of epithelial cells and enhances mucus
production, thereby reinforcing the barrier function and preventing the entry of potential

pathogens.'?!

Recent studies have also implicated Th17 cells in metabolic processes and adipose tissue
inflammation, although the precise mechanisms underlying these functions remain to be fully
uncovered. It has been suggested that Th17 cells may also affect systemic insulin sensitivity,

highlighting their potential involvement in metabolic disorders.?2

Th17 cells engage in complex interactions with various other cell types within the immune
system. They modulate macrophage functionality primarily through the secretion of IL-17A and
IL-22, influencing their activation status and cytokine production.'?® Dendritic cells also play a
pivotal role in the Th17 cellular network, as certain DC subsets produce cytokines such as IL-
6 and TGF-3, which are essential for driving Th17 cell differentiation. In turn, Th17 cells can
influence the maturation and antigen-presenting capabilities of DCs, creating a feedback loop

that perpetuates the inflammatory response.'?4125

The relationship between Th17 cells and Tregs is of particular importance, as these two cell
types often have opposing roles in immunological homeostasis. The balance between Th17
cells and Tregs is crucial for maintaining an appropriate level of immune response while
preventing excessive inflammation and autoimmunity. Disruption of this equilibrium has been
strongly implicated in the pathogenesis of autoimmune diseases like RA.'% Various factors

can skew the differentiation of Th17 cells towards a regulatory phenotype, highlightingztge



plasticity and dynamic nature of these T cell subsets. 27128

Th17 cells also interact with B cells and play a role in germinal center reactions. Through the
secretion of IL-17A and IL-21, Th17 cells facilitate antibody class switching and promote the
differentiation of B cells into plasma cells and memory B cells. This Th17 function contributes

to the humoral arm of the adaptive immune response.’?°
3.3. Th17 Cells and Rheumatoid Arthritis

The diversity of CD4+ T cell subsets and their complex regulatory mechanisms present both
challenges and opportunities for therapeutic intervention in autoimmune diseases. While the
general biology of these cells is well-characterized, how specific immunomodulatory
compounds affect CD4+ T cell differentiation and function in disease-specific contexts remains
incompletely understood. Particularly in RA, where Th17 cells play a prominent pathogenic
role, there is limited knowledge about how potential therapeutic agents might selectively
modulate this subset while preserving protective immune functions. This is especially relevant
when considering novel compounds with pleiotropic immunomodulatory effects, such as

cannabinoids, whose actions may vary depending on the specific inflammatory environment.

3.3.1. Th17 Cells in RA Inflammation and Autoimmunity

Th17 cells play a central role in the pathophysiology of RA, contributing to both inflammation
and autoimmunity. The imbalance between Th17 cells and Tregs is a key feature of RA, with
elevated Th17 activity and impaired Treg function exacerbating the inflammatory process.'?®
In the RA milieu, the differentiation of naive CD4+ T cells is skewed towards the Th17 lineage,

largely due to an aberrant cytokine environment characterized by high levels of IL-6."%°

In a clinical setting, RA patients frequently exhibit elevated levels of Th17 cells and IL-17A
positivity among peripheral blood mononuclear cells (PBMCs). Interestingly, the median
percentage of Th17 cells was higher in active RA when compared to inactive disease states.
The percentage of Th17 cells among PBMCs was also positively correlated with Disease
Activity Score of 28 joints with C-reactive Protein (DAS28-CRP), Erythrocyte Sedimentation
Rate (ESR) and C-reactive Protein (CRP) levels.”™' In addition to the peripheral blood, Th17
cells are abundant in the synovial fluid where the level of Th17 cells correlates with disease

severity.102

Th17 cell signature cytokines act as potent mediators of proinflammatory responses and are
closely linked to RA pathophysiology.'*? The IL-17 family of cytokines, collaborates with TNF-

a and IL-6 to potentiate the inflammatory response and directly contributes to bone erosion
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through osteoclast activation as well as neutrophil recruitment, thereby further perpetuating

inflammation. 133134

In the context of autoimmunity, aberrant activation of CD4+ T cells in RA often arises from
interactions with self-antigens presented by MHC class Il molecules. Citrullinated proteins are
a notable example of such self-antigens and are abundant in the inflamed synovial tissues of
RA patients.”®® Th17 cells play a crucial role in amplifying this autoimmune response by
promoting the recruitment of additional immune cells to the synovial fluid and tissue thereby

contributing to the inflammatory microenvironment.'3¢

Th17 cells contribute to the pathogenic neovascularization observed in RA by secreting
vascular endothelial growth factor (VEGF), which promotes angiogenesis and pannus
formation. Th17 cells also stimulate synovial fibroblasts to release proinflammatory cytokines
such as IL-6 and IL-8, as well as MMP-1 and MMP-3, which contribute to tissue destruction

and remodeling.'3¢

The chemokine CC-chemokine ligand 20 (CCL20), produced by Th17 cells, plays a pivotal role
in recruiting additional immune cells, including dendritic cells and more Th17 cells, to the
inflamed synovial regions. This chemokine-cytokine network sustains and escalates the

inflammatory cycle, contributing to the persistent autoimmunity characteristic of RA. 102136137

Advancements in the understanding of Th17 cells and their role in RA have informed the
development of targeted therapies. For example, secukinumab, a monoclonal antibody that
specifically inhibits IL-17A, has been developed as a targeted intervention for RA. By
neutralizing IL-17A, secukinumab aims to disrupt the inflammatory cascade driven by Th17

cells and alleviate the symptoms of RA."*®

3.3.2. Dysregulation of Th17 Cells and Th17/Treg Balance in RA

In RA, the differentiation and function of Th17 cells appear to be dysregulated, leading to an
excessive accumulation and activation of these cells within affected tissues. This dysregulation
is influenced by both intrinsic and extrinsic factors, resulting in a self-sustaining loop of

infammation and autoimmunity.

Intrinsic factors contributing to aberrant Th17 differentiation in RA include altered gene
expression and epigenetic modifications, which enhance the responsiveness of precursor cells
and other helper T cell phenotypes to Th17-polarizing cytokines.™%4? Genetic loci such as the
locus for C-C Motif Chemokine Receptor 6 (CCR6), which is involved in Th17 cell migration,

is associated with an increased risk
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for RA.12%141 Cell-intrinsic dysregulation of cytokine signaling pathways, particularly those

involving IL-2 and IL-3, have also been shown to directly promote Th17 differentiation. 42143

Extrinsic factors encompass the inflammatory milieu in RA, which is enriched with cytokines
such as IL-1B, IL-6, IL-23, and TGF-B. These cytokines not only promote Th17 cell
differentiation but also enhance their survival and pathogenicity. Transcriptional changes,
including altered expression and activation of critical transcription factors like RORyt and
STATS3, further skew differentiation towards the Th17 lineage.' 44145 Moreover, emerging
research suggests that gut microbiota may modulate Th17 differentiation, potentially

contributing to RA pathogenesis. !¢

RA is closely linked to the imbalance between Th17 cells and Tregs. In healthy individuals, the
Th17/Treg balance is tightly regulated to maintain immune homeostasis. However, in RA, this
balance is skewed towards Th17 cells, with patients displaying elevated Th17 cell levels and
simultaneous reductions in Tregs. Functional changes also occur, with Th17 cells adopting a

more pathogenic phenotype and Tregs exhibiting diminished suppressive abilities.'?®

Several mechanisms contribute to the altered Th17/Treg balance in RA. Th17 and Treg cells
originate from a shared differentiation pathway, which is modulated by the availability of
specific cytokines such as TGF-, IL-2 and IL-6. In the RA cytokine milieu, Th17 differentiation
is favored at the expense of Tregs. The transcription factors RORyt and FoxP3, which guide
the differentiation of Th17 and Treg cells, respectively, compete for binding sites and co-factors
which further exacerbates the imbalance. Proinflammatory cytokines secreted by Th17 cells
can also inhibit Treg differentiation and functionality, creating a feedback loop that amplifies

the disequilibrium.107.126.130,147

The consequences of elevated Th17 cell counts and reduced Treg function in RA are
significant. Increased production of proinflammatory cytokines, such as IL-17A and IL-22 by
Th17 cells intensifies synovial inflammation.’® Simultaneously, the decline in Tregs
compromises immune tolerance mechanisms, leading to sustained autoimmune

responses. 149150
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Influence of Cannabidiol on Drivers of
Th17/Treg Balance
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Figure 2. Cannabidiol's modulation of the Th17/Treg balance in autoimmune conditions This
figure illustrates the multifaceted effects of CBD on the drivers of Th17/Treg balance, crucial in
autoimmune pathologies. CBD inhibits NLR family pyrin domain-containing 3 (NLRP3) inflammasome
activation, which has been shown to restore the Treg/Th17 balance in RA.'%".152 |t suppresses IL-6
secretion, a key cytokine in Th17 differentiation, while enhancing IL-2 production, which is essential for
Treg development and function through signal transducer and activator of transcription 5 (STAT5) and
subsequent FoxP3 induction.8153-15% Beyond IL-2, CBD has also been shown to increase IL-10
production, which is vital for Treg generation.’®” The induction of TGF-f by CBD further supports Treg
development.’ CBD decreases STAT3 and Retinoic Acid Receptor-Related Orphan Receptor C
(RORC) expression, critical for Th17 differentiation.’®® These actions collectively shift the balance

toward a more immunoregulatory Treg phenotype, potentially alleviating autoimmune inflammation.

The complex dysregulation of Th17 cells in RA, influenced by both intrinsic and extrinsic
factors, presents a significant therapeutic target. However, current approaches to modulating
the Th17/Treg balance, such as IL-6 receptor blockade, often affect multiple immune pathways
with unintended consequences and may not selectively target pathological Th17 functions but
function via the Treg axis instead. '€ This highlights the need to identify compounds that can
normalize this imbalance with greater specificity. While cannabinoids have shown

immunomodulatory effects in other disease contexts, their specific impact on the Th17/Treg
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axis in RA remains largely unexplored. Addressing this knowledge gap is particularly important
given the increasing interest in cannabinoids as potential therapeutic agents for RA and other

inflammatory conditions.

3.4. Cannabinoids and the Inmune System

3.4.1. Cannabinoids: Definition, Classification and Types

Cannabinoids are a diverse class of chemical compounds that interact with the
endocannabinoid system (ECS), a cell-signaling network involved in various physiological
processes. The definition and our understanding of cannabinoids has evolved significantly
since the isolation of CBD as one of the first phytocannabinoids from the Cannabis sativa plant

in the early 20th century.'®!

Cannabinoids can be classified based on their origin into three primary types:
phytocannabinoids, endocannabinoids, and synthetic cannabinoids. Phytocannabinoids are
naturally occurring compounds found primarily in the Cannabis sativa and Cannabis indica
plants. The most well-known phytocannabinoids are A9-tetrahydrocannabinol (THC) and
CBD. THC serves as the primary psychoactive component of cannabis, interacting
predominantly with the cannabinoid receptor 1 (CB1) in the central nervous system to induce a
range of effects such as euphoria, altered perception, and increased appetite.'®? In contrast,
CBD is non-psychoactive and is noted for its diverse pharmacological activities, including
anti-inflammatory, neuroprotective, and anti-cancer effects.'®® Other phytocannabinoids, such
as cannabigerol (CBG), cannabichromene (CBC), and tetrahydrocannabivarin (THCV), are

also starting to gain scientific interest for their unique biological activities.'®*

Endocannabinoids are endogenous lipids synthesized on demand within various cell types,
including activated T and B cells. They are integral components of the ECS, which
encompasses the enzymes responsible for their synthesis and degradation, as well as the
CB1 receptor and cannabinoid receptor 2 (CB2). The two primary endocannabinoids are
AEA and 2-arachidonoylglycerol (2-AG). AEA and 2-AG serve as endogenous agonists for
both CB1 and CB2 receptors and are involved in a myriad of physiological processes, such

as mood regulation, immune function, neuroprotection, and immunomodulation. 61164165

Pharmacologically, cannabinoids exert a wide array of effects. Immunomodulatory
cannabinoids, such as CBD, have been shown to significantly regulate T cell function and
cytokine production.'® Neuromodulatory cannabinoids, exemplified by THC, are most notable

for their central nervous system effects, which include pain modulation and psychoactivity. 62
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Metabolic cannabinoids like THCV have demonstrated potential in modulating metabolic

processes and are gaining attention for their anti-obesity and anti-diabetic properties.'®’

3.4.2. Endogenous Cannabinoid System and Exogenous Cannabinoid
Interactions
The ECS consists of three core components: endocannabinoids, cannabinoid receptors, and
metabolic enzymes. Endocannabinoids, such as AEA and 2-AG, are endogenously produced
lipids that interact with cannabinoid receptors. The two primary cannabinoid receptors are CB1
and CB2, both of which are G-protein coupled receptors (GPCRs). CB1 receptors are
predominantly located in the central nervous system, while CB2 receptors are more abundant
in peripheral tissues and immune cells. Metabolic enzymes, including fatty acid amide
hydrolase (FAAH) and monoacylglycerol lipase (MAGL), are responsible for the synthesis and

degradation of endocannabinoids. 6168

CB1 receptors, encoded by the CNR17 gene, are primarily expressed in the brain, where they
modulate neurotransmitter release and are involved in various physiological processes such
as appetite regulation, pain perception, and synaptic plasticity. In contrast, CB2 receptors,
encoded by the CNRZ2 gene, are predominantly expressed in immune cells, including
macrophages, B cells, and T cells, where they play a vital role in regulating inflammation and
immune responses. Both CB1 and CB2 receptors couple with Gi/o proteins, and their activation
generally leads to the inhibition of adenylyl cyclase and a decrease in cyclic AMP (cAMP)
levels.'®%172 Cannabinoid receptor activation can modulate the functionality of ion channels

and activate MAPKSs, which are involved in gene expression and cellular proliferation.”?

In the context of neuroprotection, the ECS regulates neuronal excitability and guards against
oxidative stress. As an immunomodulator, the ECS affects cytokine production, cell migration,
and cellular proliferation, which are particularly relevant in autoimmune diseases such as RA.
Moreover, the ECS contributes to the regulation of appetite, sleep, and pain perception, helping

to maintain internal equilibrium."+177

Exogenous cannabinoids interact with the ECS by acting as agonists, antagonists, or allosteric
modulators at cannabinoid receptors. THC exhibits a high affinity for CB1 receptors and
mediates various effects, including analgesia, euphoria, and altered cognition.'2178 |n
contrast, CBD possesses low affinity for CB1 and CB2 receptors but can influence their activity
through indirect mechanisms, such as allosteric modulation. CBD also interacts with other
receptors, including Transient Receptor Potential Cation Channel Subfamily V. Member 1
(TRPV1), opioid receptors, and the serotonin receptor 1A (5-HT1A) and serotonin
receptor 2A (5-HT2A).178-181
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Cannabinoids can also exert indirect effects on the ECS, with CBD inhibiting FAAH and thereby
preventing the physiologic breakdown of the CB1 and CB2 receptor ligand AEA."®2

Research-focused synthetic cannabinoids, such as AM-1220, AM-2232, CP 55,940, and WIN
55,212-2 have been synthesized to investigate the structure and function of cannabinoid
receptors.'® These synthetic variants are often more potent and selective compared to their
natural counterparts making them more effective in research to investigate the specific
functions of cannabinoid receptors.’® Exogenous cannabinoids can modulate
endocannabinoid signaling by acting as agonists or antagonists at cannabinoid receptors or
by altering the conformation of these receptors through allosteric modulation, thereby changing

the binding affinity and efficacy of endogenous ligands.

In the context of RA, the ECS has been implicated in the pathophysiology of the disease.
Elevated expression of CB2 receptors has been observed in the synovial tissues of RA
patients, suggesting a potential role in the inflammatory process.'%'8 Activation of the ECS
has been shown to inhibit the production of proinflammatory cytokines involved in RA, and
modulation of the ECS may present novel opportunities for pain management in RA

patients.'87.188

The binding affinities of cannabinoids to their receptors and the subsequent downstream
signaling events are crucial factors in determining their pharmacological effects. THC exhibits
a high affinity for CB1 receptors, while AEA engages CB1 receptors with a lower affinity. CBD
and some synthetic cannabinoids display elevated affinity for CB2 over CB1 receptors, which
are principally located in immune cells.’® Cannabinoids can also interact with non-canonical
receptors, such as the G-protein coupled receptor 55 (GPR55), although with variable

affinities.8°

Upon activation, CB1 and CB2 receptors typically inhibit adenylyl cyclase, leading to a
decrease in cAMP levels. Cannabinoid receptor activation can also modulate the functionality
of ion channels, primarily calcium and inwardly-rectifying potassium channels, thereby
affecting cellular excitability. Activation of these receptors can also trigger the phosphorylation
and subsequent activation of MAPKs, which are involved in gene expression and cellular

proliferation.'”®

Some cannabinoids exhibit a phenomenon known as "biased agonism" or "ligand bias," where

they selectively activate one signaling pathway over another. For example, certain
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cannabinoids may preferentially activate the p-arrestin signaling pathway rather than G-protein

coupling, resulting in receptor internalization and desensitization.”3:1%

3.4.3. Anandamide: Biological Functions and Immunomodulatory Effects

AEA is an endogenous cannabinoid that exerts a wide range of biological functions through its
interactions with cannabinoid receptors and other signaling pathways. Through the CB1
receptor, AEA influences various neurotransmitter systems, impacting synaptic plasticity and
cognitive functions, including learning and memory.'®" AEA also engages in the regulation of
multiple cellular processes such as apoptosis, proliferation, and migration, demonstrating the
ability to inhibit cancer cell proliferation via CB1 receptors.'2'% |n the cardiovascular space,
AEA contributes to vasodilation and holds implications for metabolic processes, including

insulin resistance.94195

On the immunological front, AEA primarily exerts its effects through the CB2 receptor, which
is predominantly expressed on immune cells. Activation of CB2 receptors by AEA reduces
inflammation by inhibiting the release of cytokines and chemokines, and suppressing immune
cell proliferation and activation.'® AEA has been shown to inhibit cytokine secretion in Th17
cells of healthy individuals and thus holds potential significance in the pathogenesis and
treatment of RA.'% Extending beyond the canonical CB1 and CB2 receptors, AEA interacts
with a range of other receptors such as GPR55, Peroxisome Proliferator-Activated Receptors
(PPARs) and transient receptor potential (TRP) channels thereby broadening its functional
spectrum.'® For example, AEA-induced activation of PPAR-y leads to anti-inflammatory

effects, including the inhibition of NF-kB signaling, which is vital for Th17 functioning.'®®

AEA has a significant influence on the differentiation of naive T cells into specialized effector
and regulatory subsets, including the Th17 and Treg cell populations. In a mouse model of
neutrophilic asthma, selective activation of the CB2 receptor was able to regulate Th17/Treg

balance, indicating that AEA might serve as a potential angle for doing so in RA patients.'®

The impact of AEA extends to macrophage function. After initial AEA administration,
macrophages become immobile, whereas long-term administration not only mobilizes this cell
type, but also enhances endothelial adherence and transmigration. AEA is able to inhibit NO
release from lipopolysaccharide (LPS)-activated macrophages in a dose-dependent manner.
It has also been shown to induce apoptosis in dendritic cells. In terms of cytokine regulation,
AEA can alter the expression and release of key cytokines and chemokines like IFN-a, IL-6,
and IL-12, thereby fulfilling anti-inflammatory and immunosuppressive functions.?* Inhibitors
of FAAH, the enzyme responsible for AEA degradation, such as CBD have demonstrated

potential in ameliorating inflammation and autoimmune responses.?":202
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3.4.4. Anandamide’s Effects on T Cell Activation, Cytokines and Inflammation

AEA strongly suppresses anti-CD3/anti-CD28 induced CD4+ and CD8+ T cell proliferation in
a dose-dependent manner, an effect mediated through interaction with the CB2 receptor, as
demonstrated by the ability of a CB2 receptor inhibitor to counteract this effect, whereas a CB1

receptor inhibitor showed no effect.'®”

In addition to its direct effects on T cell proliferation, AEA has been shown to inhibit
keratinocyte-dependent induction of Th1 and Th17 responses via CB1 receptor interaction.
Naive T cells cultured with AEA showed a CB1-dependent 5-fold and 2-fold reduction in IFN-
y and IL-17A production, respectively, compared to those cultured without AEA.?°> AEA can
also directly modulate cytokine production, suppressing proinflammatory cytokines such as IL-

2, IFN-y, and TNF-a, while favoring the secretion of anti-inflammatory cytokines like IL-10.197:204

AEA exerts its anti-inflammatory effects through multiple signaling pathways. One of the most
well-characterized pathways is the NF-kB pathway, wherein AEA inhibits the activation of NF-
kB, consequently dampening the transcription of proinflammatory genes.?°> AEA also targets
the MAPK pathway, leading to increased phosphorylation and activation of arachidonate-
specific cytoplasmic phospholipase A2 (cPLA2). Interestingly, inhibition of cPLA2 has been
shown to ameliorate inflammation in experimental autoimmune encephalomyelitis (EAE) by
modulating Th1 and Th17 responses and by promoting Treg activation and cytokine signaling

in rats.206.207

3.4.5. Cannabidiol: Source and Classification

CBD is a phytocannabinoid found in its highest concentration in the indica variety of cannabis
plants. It is distinct from other cannabinoids such as THC due to its non-psychoactive
properties. CBD can be sourced from both marijuana and hemp variants of Cannabis indica
and Cannabis sativa. While marijuana-derived CBD extracts feature a mixture of
cannabinoids and may contain variable levels of THC, hemp-derived CBD extracts are

characterized by their minimal THC content, typically less than 0.3%.2982%°

Synthetically produced CBD is another source that offers the advantage of controlled purity
and concentration, circumventing the variability inherent in plant extracts. Study results
suggest that there is no pharmacological difference in vitro in the antiproliferative, anti-
inflammatory or permeability effects of synthetic CBD when compared to naturally occurring

CBD.2"° Of note, the terpenes contained within the cannabis plant can be responsible for an
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“entourage effect”, enhancing cannabinoid activity, which would be missing in the synthetically

produced variant.?"’

Molecularly, CBD is a 21-carbon terpenophenolic compound with the chemical formula
C21H3002. It shares structural similarities with other phytocannabinoids but features unique
functional groups that contribute to its distinct pharmacological profile. CBD exists in several
isomeric forms, with the most common being (-)-CBD, the naturally occurring isomer. Other
isomers like (+)-CBD and various diastereomers also exist, and their bioactivity can differ,

potentially leading to distinct pharmacological effects.?'?

3.4.6. Cannabidiol’s Inmunomodulatory Effects and Mechanisms

CBD plays a significant role in modulating immune responses through a complex network of
mechanisms, exerting both immunosuppressive and anti-inflammatory effects. Unlike its
psychoactive counterpart THC, CBD affects a broader spectrum of targets within the innate
and adaptive arms of the immune system.?'® Despite its low affinity for the canonical
cannabinoid receptors CB1 and CB2, CBD functions as a negative allosteric modulator of the
CB1 receptor and can still exert immunomodulatory effects via the CB2 receptor, which is
mainly expressed in immune cells such as macrophages, B lymphocytes, and T

lymphocytes.?'4-216

CBD also engages with a diverse set of receptors beyond the CB1 and CB2 receptors,
including serotonin receptors, TRPV1, the dopamine D2 receptor, and orphan GPCRs such as
GPR55."® Upon receptor engagement, CBD activates multiple intracellular signaling
cascades, such as the inhibition of adenylyl cyclase, modulation of calcium and sodium ion
channels, and regulation of transcription factors like NF-kB, AP-1, STAT1, STAT3, and STAT5

thereby influencing the expression of proinflammatory cytokines.?'7:218

The immunomodulatory effects of CBD extend to various immune cell types. It directly inhibits
the release of proinflammatory cytokines, such as TNF-a, IFN-y, IL-17, IL-6, and IL-1[3, from
macrophages and fibroblasts while inducing apoptosis in activated immune cells.931%8:219.220
CBD also modulates the balance between M1 and M2 macrophage phenotypes, although the
research in this regard has yielded inconsistent and conflicting results.??" In the context of T
cell-mediated immunity, CBD inhibits the proliferation of activated T cells, triggers their
apoptosis, and modulates the Th1/Th2 cytokine equilibrium by downregulating Th1-related
cytokines like IFN-y and upregulating Th2-related cytokines such as IL-4 and IL-10, albeit with

conflicting results regarding its role in IL-10 production.1%8218.222,223
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CBD has been shown to decrease the secretion of IL-17A in T cell/antigen-presenting cell co-
cultures while promoting the differentiation of Tregs, which is of particular interest given the
skewed Th17/Treg ratio in RA.154158.224 CBD also diminishes the cytotoxic activity of activated

CD8+ T cells, potentially mitigating tissue damage in autoimmune conditions.?2°

In addition to its effects on T cells, CBD influences B cell function by downregulating
immunoglobulin production, although the underlying mechanisms remain poorly understood.??
In addition, CBD causes an increase in the number of early apoptotic B cells at the expense
of viable cells while also reducing IL-10 and TNF production.??” CBD also modulates
chemotaxis by inhibiting the release of chemokines like CC-chemokine ligand 2 (CCL2) and
CC-chemokine ligand 5 (CCL5) and the expression of adhesion molecules such as Vascular
Cell Adhesion Molecule 1 (VCAM-1), potentially limiting the recruitment of inflammatory cells

to damaged tissues.??®

Beyond its direct effects on immune cells, CBD enhances epithelial barrier function by
increasing the expression of tight junction proteins, thus fortifying the initial defense against
pathogens.??® Moreover, CBD possesses anti-oxidative properties, attenuating oxidative

stress, which is a known inducer of inflammation.23°

A key aspect of CBD's immunomodulatory role is its ability to maintain immune homeostasis
by exerting a balancing influence, mitigating hyperactive immune responses, and enhancing
immunosuppressive mechanisms, making it particularly relevant for potential therapeutic
applications in autoimmune diseases like RA.23' CBD may also indirectly modulate immune
responses through feedback mechanisms by regulating endocannabinoid levels, such as
preventing AEA degradation, via FAAH inhibition.'® CBD's interactions with the nervous
system through serotonin and vanilloid receptors, may also be the source of secondary

immunomodulatory effects.?32:233
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Figure 3. A selection of cannabidiol's multifaceted effects on CD4+ T cell receptors in rheumatoid
arthritis This figure illustrates the complex interactions between CBD and various receptors on CD4+
T cells, with implications for RA pathology. CBD acts as a weak agonist and inverse agonist on the CB2
receptor, potentially reducing T cell proliferation, NF-kB activation, and promoting Treg differentiation
with an associated increase in the Treg/Th17 ratio—effects that could alleviate inflammation in
RA.180.199.215234 Ag an agonist of the 5-HT2A receptor, CBD may enhance Treg differentiation while
suppressing Th1/Th17 differentiation and reducing proinflammatory cytokines IL-17A and IFN-y,
potentially beneficial in managing RA's autoimmune response. 818 CBD's weak agonistic and inverse
agonistic effect on TRPV1 channels could modulate intracellular Ca2+ and influence cytokine
production, including IL-17A, which is crucial in RA pathogenesis.?33235-237 As an antagonist of GPR55,
CBD might reduce T cell activation and proinflammatory cytokine production, potentially beneficial in
managing RA inflammation.230.238.23% CBD's agonistic action on Adenosine A2A receptors (A2A) could
suppress Th1/Th17 differentiation and IFN-y production, processes typically overactive in RA.240-242
CBD's effects on PPARYy activation may further modulate Th17 differentiation and inflammatory

pathways, offering another avenue for potential therapeutic intervention in RA,243-246

3.4.7. Inhibition of Proinflammatory Mediators through Cannabidiol

Beyond cytokines, CBD also demonstrates potential in suppressing the activity of
proinflammatory enzymes including cyclooxygenase (COX) and lipoxygenase (LOX).247248
These enzymes are instrumental in synthesizing prostaglandins and leukotrienes, respectively,
which act as lipid mediators in the inflammatory cascade.?%2% The inhibition of these enzymes

offers an additional dimension to CBD's anti-inflammatory properties.

Another avenue of research focuses on CBD's role in attenuating inducible nitric oxide

synthase (iINOS) activity, thereby mitigating the production of NO. However, further research
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is needed regarding this effect in RA patients.?®' NO, a free radical, is implicated in both

inflammation and tissue damage associated with RA.?%2

The expansive inhibition of proinflammatory mediators by CBD also lays a foundation for
potential combination therapies. When co-administered with traditional disease-modifying anti-
rheumatic drugs (DMARDs), CBD may enhance their therapeutic efficacy and potentially

facilitate dose-reductions, thus minimizing adverse effects.

3.4.8. Cannabidiol’s Relevance in Th17 Differentiation

CBD's influence extends to the regulatory machinery governing Th17 differentiation. It has
been shown to interfere with the activity of STAT3 while increasing STAT5 phosphorylation in
Twmoc cells in a mouse EAE model of multiple sclerosis.'® This interference may lead to the
attenuation of Th17 cell development and a corresponding reduction in the production of
proinflammatory cytokines like IL-17. In addition to its effects on STAT3 activity, CBD

decreases RORC expression, which is critical for Th17 differentiation.'®®

NLRP3 inflammasome activation has been shown to regulate Th17 differentiation in RA. When
compared to healthy controls, CD4+ T cells from RA patients showed higher levels of NLRP3
activation. This activation of the NLRP3 inflammasome was correlated with RA disease activity
and IL-17A concentration in the sera of RA patients. The knockdown of NLRP3 has been
shown to inhibit Th17 differentiation.?%® This is interesting in the context of RA given the ability
of CBD to inhibit NLRP3 activation, thus potentially exerting favorable effects on the Th17

status of RA patients.'5?

Research on EAE, a model of multiple sclerosis, has demonstrated that CBD dose-
dependently suppresses the production and secretion of IL-17 from activated myelin
oligodendrocyte glycoprotein (MOG)35-55-specific encephalitogenic T cells.?* Gene
profiing in this model revealed that CBD treatment suppresses transcription of
numerous proinflammatory genes, with "IL-17 differentiation" and "IL-6 signaling" identified
among the top processes affected.?* However, whether these immunomodulatory effects
translate to Th17 cells in RA remains unknown, representing a critical knowledge gap given

the differences in pathophysiological mechanisms between these autoimmune conditions.

The modulatory capacity of CBD extends to the cytokine environment essential for Th17
differentiation. CBD has been found to downregulate proinflammatory cytokines such as IL-6
while upregulating the production of TGF-B. Although TGF- can support both Treg and Th17

differentiation, IL-6 is more adept at orienting naive CD4+ T cells towards the Th17
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lineage.™*2%52% This effect potentially establishes a less conducive milieu for Th17 cell

differentiation.

3.5. Potential Implications and Use-Cases of Cannabinoids in RA

3.5.1. Previous Studies on Cannabinoids in RA

Accumulating evidence suggests that cannabinoids, particularly CBD and THC, may modulate
inflammatory and immune pathways integral to RA pathogenesis.'®” However, the positive
effects that can be derived for RA patients from cannabinoid use always must be weighed
against the potential side effects and possible adverse events.?%"2% |n preclinical studies, CBD
has been shown to reduce joint pain, synovial inflammation, and the production of
proinflammatory cytokines.?®® Studies involving collagen-induced arthritis (CIA), the
prototypical RA animal model, in rats have also highlighted the beneficial disease-modifying
effects of THC.2%°

In animal experiments, using CIA mice, oral CBD administration has shown both an anti-
inflammatory effect as well as the inhibition of joint damage.?$"-262 Synthetic cannabinoids such

as JWH-133 and HU-320 have also shown efficacy in the treatment of CIA mice.85263

On the clinical front, trials and observational studies have presented a mixed picture. While
there is much anecdotal evidence for the efficacy of cannabinoids in alleviating pain associated
with RA, the evidence to substantiate this is lacking.%* Not only does the scarcity of robust and
reproducible evidence need to be taken into account when considering the viability of
cannabinoids in the treatment of RA, but also our ever expanding repertoire of classical
pharmacological interventions with improvements over time in both efficacy and safety,

reducing the necessity for alternative treatment modalities.

Safety profiles have generally been favorable for cannabinoids, with reported adverse events
being mostly mild to moderate, although long-term safety data still needs to be established.?¢®
In contrast to randomized controlled trials (RCTs), observational studies, often reliant on self-
reported data, present limitations including susceptibility to recall and self-selection biases but

potentially offer pragmatic insights into patient preferences and real-world applications.

3.5.2. Therapeutic Potential of Cannabinoids in RA
The immunomodulatory role of cannabinoids, especially their influence on T cell activation and
differentiation, also warrants consideration in the context of RA, where dysregulated T cell
responses contribute to the disease pathology.?*¢-2%8 Studies indicate that activation of CB2
receptors could inhibit osteoclast differentiation and function thereby offering protective effects
against bone erosion, a hallmark of advanced RA."®
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While cannabinoids demonstrate a range of therapeutic possibilities, the distinction between
symptomatic relief and disease modification remains an important evaluation criterion.
Symptomatic relief primarily focuses on the analgesic properties of compounds like CBD and
THC and can provide value to patients independent of actual disease modification. In contrast,
disease modification involves targeting the underlying pathophysiological mechanisms driving

RA such as a pathogenic expanded Th17 population and an elevated Th17/Treg ratio.

Further research is crucial to better understand a potential role of cannabinoids in RA
management. Not only do we need to better grasp the molecular mechanisms by which
cannabinoids influence RA-relevant aspects of the immune system, but also how these fare in

the broader context of clinical use beyond in vitro experimentation.

3.6. Aims of This Study

This study was designed to address critical knowledge gaps regarding cannabinoid effects on
CD4+ T cells in rheumatic autoimmune diseases. While cannabinoids have demonstrated
immunomodulatory effects in other autoimmune contexts, including suppression of IL-17
production in experimental models of multiple sclerosis, their effects specifically in the context
of RA remain largely unexplored.??42% This represents a significant knowledge gap for several
reasons. First, the distinct pathophysiology of RA may lead to disease-specific responses to
cannabinoid treatment. Additionally, the growing trend of patients with rheumatic diseases
self-administering cannabinoids highlights the need to wunderstand the potential
immunological consequences of such use. An example of this is Canada, where after
cannabis legalization, the percentage of RA patients engaging in cannabis use almost tripled
(4.3% to almost 12.6%), with only about 20% of consumed cannabis being obtained through
medicinal outlets.?®® Furthermore, given the central role of Th17 cells in the pathogenesis of
RA, it is crucial to determine whether cannabinoids influence this pathway in ways that could
impact disease activity. This necessity is further supplemented by the limitations of current
treatment approaches, both in terms of efficacy and side effect profiles.”2”® Identification of

compounds that could augment current treatment would drive significant value for patients.

Cannabis and its associated compounds are enjoying increased societal acceptance and less
regulatory scrutiny. Considering the increased prevalence of CBD use, oftentimes without
medical supervision, it is important to fully understand the effects these compounds can have
on the immunologic function and dysfunction in RA patients. While much research on
cannabinoids and their effect on our immune system has been conducted in the past, there is

still a lot to be uncovered. As our understanding of the RA pathophysiology continues to
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expand, so too does our ability to characterize compounds in terms of their potential benefits

and risks to patients.

This study sought to investigate whether patients with rheumatic autoimmune diseases exhibit
alterations in cannabinoid receptor expression on CD4+ T cells compared to healthy controls
under the hypothesis that an altered cannabinoid receptor profile might play a role in immune
dysregulation, especially given previous findings indicating an overexpression of CB2 in
synovial tissues from rheumatic joints compared to osteoarthritic joints.' The hypothesis was
that the overexpression of CB2 may extend to CD4+ T cells from RA patients and play a role
in altered immune regulation in the context of the disease. Understanding such differences
could provide insight into whether altered endocannabinoid signaling might contribute to

disease pathogenesis or influence responses to exogenous cannabinoids.

A central aim was to determine how CBD and AEA affect proinflammatory cytokine production
in CD4+ T cells from RA patients compared to healthy controls, focusing on key cytokines
implicated in RA pathogenesis: IL-17A, IFN-y, and TNF-a. Given the widely reported anti-
inflammatory properties of cannabinoids in other immune contexts, it was hypothesized that
both CBD and AEA treatment would suppress the production of the proinflammatory cytokines
IFN-y and TNF-a in activated CD4+ T cells from both RA patients and healthy controls.
Consistent with findings in other models and proposed mechanisms involving pathways like
STATS, it was further anticipated that CBD and AEA would exert similar suppressive effects

on IL-17A production.'s®

To identify potential mechanisms underlying these anticipated immunomodulatory actions, we
examined the effects of CBD and AEA on the expression of genes involved in T cell
differentiation and function. Specifically, it was hypothesized that the expected cannabinoid-
mediated cytokine suppression, particularly of IL-17A, would be reflected in the downregulation
of genes promoting Th17 pathogenicity, such as CSF2, and potentially involve modulation of
key regulators like SGK1, IKZF3, and the Aryl Hydrocarbon Receptor (AHR).

Finally, to bridge laboratory findings with clinical relevance, the research sought to determine
whether the immunomodulatory effects observed in vitro might correlate with clinical
parameters in RA patients using CBD therapeutically. This translational component was
assessed to provide preliminary insights, in full acknowledgment of the translational gap, into
how experimental observations might manifest in a clinical setting with the initial hypothesis
being that self-administration of CBD would lead to a reduction in IL-17A positivity and improve

disease activity as measured by the DAS28-CRP score.
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The intended overarching outcome of this study was to enable greater insight into the
immunomodulatory effects of both CBD and AEA as they relate to RA pathogenesis, primarily
through the assessment of their effects on cytokine production, CD4+ T cell differentiation, and
cell survival. By establishing these fundamental immunological responses to cannabinoids in
the context of RA, this research aimed to provide evidence-based guidance regarding the
potential benefits or risks associated with cannabinoid use in patients with rheumatic
autoimmune diseases, particularly given their increasing self-administration for symptom

management without medical supervision.
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4, Materials and Methods

4.1. Study Population

All patients included in the scope of this study were, at the time of selection, undergoing
treatment in the Department of Internal Medicine | at the University Hospital of Cologne. The
study population consisted of adult patients with RA who fulfilled the 2010 American College
of Rheumatology and European League Against Rheumatism (ACR/EULAR) classification
criteria. Additional cohorts of patients with SLE, Psoriatic Arthritis (PsA) were also included.
Additional test subjects without known autoimmune conditions were recruited to serve as a

control group. All patients provided written informed consent prior to inclusion.

A total of 114 participants were recruited for this study. The patient cohort included 74
individuals with RA, 16 patients with PsA, and 7 patients with SLE. Additionally, 17 individuals
without known autoimmune conditions were recruited as a healthy control (HC) group. The
number of samples reported for individual experiments varies due to factors including sample
availability and the technical requirements of the conducted experiment. At the time of blood
withdrawal, none of the subjects were known to be suffering from additional chronic
autoimmune diseases, nor were any experiencing unrelated acute onset diseases. Current

treatment regimen was not considered in patient selection.

All test subjects were educated about study participation and provided their informed consent.
Blood was drawn by the outpatient division of the department for immunology and
rheumatology at the university hospital of Cologne. For the purpose of the study, 15-18 mL of
blood was drawn from each patient into an ethylenediaminetetraacetic acid (EDTA) S-
Monovette®. After the blood was drawn it was stored in a dry, dark place at room temperature

and processed within 24 hours.

In order to maintain the anonymity of study participants, blood samples were assigned a

number to reference in the course of experiments and analysis.

4.2. Materials and Laboratory Equipment

4.2.1. Buffer

Hanks Salt Solution 1x, phosphate Biochrom AG Berlin, Germany
buffered saline (PBS)

autoMACS® Pro Running Buffer Miltenyi  Biotec GmbH, Bergisch

Gladbach, Germany
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autoMACS® Pro Washing Buffer

4.2.2. Medium
X-VIVO™ 15
Human Serum Albumin

Penicillin-Streptomycin

4.2.3. Chemicals and Reagents
Ethanol 96%, DAB, reinst.

B-Mercaptoethanol

lonomycin, Calcium Salt

Phorbol Myristate Acetate (PMA)

Brefeldin A (1000x Solution)

Pancoll®

TagMan® Fast Advanced Master Mix
RNase-free water

FlowClean Cleaning Agent, 500 mL

FlowCheck Pro Fluorospheres

Trypan Blue stain 0.4%

4.2.4. Antibodies

T Cell Stimulation
Recombinant Human IL-23

Recombinant Human IL-6

Recombinant Human TGF-3

Miltenyi  Biotec = GmbH, Bergisch
Gladbach, Germany

Lonza, Verviers, Belgium
Sigma-Aldrich, Saint Louis, USA
Sigma-Aldrich, Saint Louis, USA

Carl Roth, Karlsruhe, Germany
BioChemica, AppliChem
Darmstadt/Panreac = Quimica  SLU,
Barcelona, Spain

Cell Signaling Technology®, Denver,
USA

Cell Signaling Technology®, Denver,
USA

eBioscience, San Diego, USA
PAN™.Biotech GmbH, Aidenbach,
Germany

Applied Biosystems, ThermoFisher
Scientific, Carlsbad, USA

Qiagen, Hilden, Germany

Beckman Coulter, Krefeld, Germany

Beckman Coulter, Krefeld, Germany

Invitrogen, ThermoFisher  Scientific,
Carlsbad, USA

PeproTech, Rocky Hill, USA

Miltenyi Biotec, Bergisch Gladbach,
Germany

PAN™-Bjotech GmbH, Aidenbach,

Germany
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Recombinant Human IL-2

Flow Cytometry Antibodies

Species Target
Anti- IL-17A
human

Anti- IL-17A
human

Anti- IFN-y
human

Anti- TNF-a
human

Anti- CB1
human Receptor
Anti- CB2
human Receptor
Anti- GPR55
human

Anti- lgG1,
rabbit kappa

5.2.5. Cannabinoids

Anandamide (ethanol solution)

(-)-Cannabidiol

Miltenyi Biotec, Bergisch Gladbach,

Germany
Fluorophore Isotype Company
Brilliant-Violet Mouse BioLegend
421 IgG1, kappa
PE Mouse eBioScien
IgG1, kappa ce
APC Mouse BioLegend
IgG1, kappa
APC Mouse BioLegend
IgG1, kappa
unconjugated Rabbit IgG Abcam plc
unconjugated Rabbit IgG Abcam plc
unconjugated Rabbit IgG Abcam plc
Brilliant-Violet Donkey BioLegend
421 Polyclonal Ig
Abcam  pilc, Cambridge, United
Kingdom
Abcam  pilc, Cambridge, United

Kingdom

5.2.6. TagMan Quantitative PCR-Primer

Target

B-2-Microglobulin

AHR

CSF2

IKZF3

Company

Applied Biosystems, ThermoFisher Scientific, Carlsbad,
USA
Applied Biosystems, ThermoFisher Scientific, Carlsbad,
USA
Applied Biosystems, ThermoFisher Scientific, Carlsbad,
USA
Applied Biosystems, ThermoFisher Scientific, Carlsbad,
USA
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RORC

USA
SGK1

USA
TBX21

USA
5.2.7. Kits

CD4+ T Cell Isolation Kit

T cell Activation/Expansion Kit

LIVE/DEAD™ Fixable Green Dead Cell

Stain Kit

BD Cytofix/Cytoperm™
Fixation/Permeabilization Kit

RNeasy® Mini Kit

Quantitect Reverse Transcription Kit
ELISA MAX™ Deluxe Set Human IFN-y
ELISA MAX™ Deluxe Set Human TNF-a
ELISA MAX™ Deluxe Set Human IL-17A

5.2.8. Consumables

Autoclavable Bag 5 L

Classic Nitrile PowderFree Gloves

Reagent Tube 1,5 mL

SafeSeal MicroTubes

Sarstedt Serological Pipette

5mL, 10 mL, 25 mL

96 Biosphere Filter Tips, Biosphere®
Plus (0,1 yL- 10 L, 2 pL - 100 pL, 100
uL - 1000 L)
BD Falcon™

Conical Tubes

15 mL Polypropylen

Applied Biosystems, ThermoFisher Scientific, Carlsbad,

Applied Biosystems, ThermoFisher Scientific, Carlsbad,

Applied Biosystems, ThermoFisher Scientific, Carlsbad,

Miltenyi Biotec GmbH, Bergisch
Gladbach, Germany

Miltenyi Biotec GmbH, Bergisch
Gladbach, Germany

Invitrogen, ThermoFisher Scientific,
Carlsbad, USA

BD Bioscience, Heidelberg,
Germany

Qiagen®, Hilden, Germany
Qiagen®, Hilden, Germany
BioLegend, San Diego, USA
BioLegend, San Diego, USA
BioLegend, San Diego, USA

SARSTEDT Aktiengesellschaft & Co,
Numbrecht, Germany

ABENA® Aabenraa, Denmark
SARSTEDT Aktiengesellschaft & Co,
Numbrecht, Germany

SARSTEDT Aktiengesellschaft & Co,
Numbrecht, Germany

SARSTEDT Aktiengesellschaft & Co,
Numbrecht, Germany

SARSTEDT Aktiengesellschaft & Co,

Numbrecht, Germany

BD Bioscience, Heidelberg, Germany

46



BD Falcon™ 50 mL Polypropylen
Conical Tubes
Tubes

TC Plate 96 well, Standard

TC Plate 24 well, Standard

TC Plate 12 well, Standard

Micro Amp® Fast Optical 96 well
reaction plate with Barcode 0,1 mL
Countess™ cell counting chamber

slides

LS Columns

5.2.9. Laboratory Machines
Megafuge 1.0R

AutoMACS® Pro Separator
QuadroMACS Separator

MACS MultiStand

CO: Incubator

Nanodrop 1000 Spectrophotometer
7500 Fast Real Time PCR System
ZX3 Advanced Vortex Mixer

Mars Sterilbank Safety Class 2
Gallios™ Flow Cytometer

Countess Il FL Automated Cell Counter

Vi-CELL XR Cell Counter
ThermoStat™ 5320

BD Bioscience, Heidelberg, Germany

SARSTEDT Aktiengesellschaft & Co,
Numbrecht, Germany

SARSTEDT Aktiengesellschaft & Co,
Numbrecht, Germany

SARSTEDT Aktiengesellschaft & Co,
Numbrecht, Germany

SARSTEDT Aktiengesellschaft & Co,
Numbrecht, Germany

Applied Biosystems, ThermoFisher
Scientific, Carlsbad, USA

Applied Biosystems, ThermoFisher
Scientific, Carlsbad, USA

Miltenyi Biotec, Bergisch Gladbach,

Germany

Heraeus Instruments Dusseldorf,
Germany

Miltenyi Biotec, Bergisch Gladbach,
Germany

Miltenyi Biotec, Bergisch Gladbach,
Germany

Miltenyi Biotec, Bergisch Gladbach,
Germany

Binder GMBH, New York, USA
ThermoFisher Scientific, Carlsbad, USA
Applied Biosystems, ThermoFisher
Scientific, Carlsbad, USA

VELP Scientifica, Usmate Velate MB,
Italy

Labogene, Denmark

Beckman Coulter, Krefeld, Germany
Applied Biosystems, ThermoFisher
Scientific, Carlsbad, USA

Beckman Coulter, Krefeld, Germany
Eppendorf, Wesseling, Germany
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Temperature Controlled Waterbath
-80°C Freezer
-20°C Freezer

4°C Fridge

5.2.10. Software
GraphPad Prism

Adobe lllustrator CC
Microsoft® Excel®
Microsoft® Powerpoint®
Microsoft® Word®

FlowJo Software

Kaluza Analysis Software

Nanodrop 1000 Operating Software

GFL®, Burgwedel, Germany

Panasonic Corporation, Kadoma, Japan

Liebherr Premium, Bulle FR,
Switzerland
Liebherr Premium, Bulle FR,
Switzerland

GraphPad Software, San Diego, USA
Adobe, San José, USA

Microsoft, Redmond, USA

Microsoft, Redmond, USA

Microsoft, Redmond, USA

Tree Star Inc., Ashland, USA

Beckman Coulter, Krefeld, Germany
ThermoFisher Scientific, Carlsbad, USA

3.8.1

4.3. Methods
S1 Safety protocols were followed for all cell culture work performed in the scope of this study.

Cell culture work was performed under a “Sterilbank Mars Safety Class 2”

4.3.1. Cell Isolation
Separation of PBMCs from patient whole blood was performed by density gradient
centrifugation. The separation medium used for PBMC isolation was Ficoll-Hypaque, a high-

molecular-mass, neutral, highly branched, hydrophilic polysaccharide.

Whole blood was diluted with phosphate buffered saline (PBS) in a ratio of 1:1. The diluted
whole blood was then slowly layered over the Ficoll-Hypaque in a 50 mL conical tube in a ratio
of 2:1. The 50 mL conical tube was then placed in a centrifuge for 25 minutes at 460 rcf at

room temperature with disengaged brake.

The PBMC layer was collected with a 5 mL serological pipette and transferred into a 50 mL
conical tube. The cells were then washed with MACS Running Buffer and centrifuged at 460

rcf for 20 minutes after which the supernatant was discarded.

CD4+ T cells were isolated from PBMCs by means of negative selection magnetic-activated

cell sorting (MACS), both manual and automated separation methods were used.
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In the case of manual separation, LS Columns and the QuadroMACS Separator were used.
After incubation with the CD4+ T Cell Isolation Kit according to manufacturer’s instructions, the
PBMCs were suspended in autoMACS® Pro Running Buffer, and separated using the MACS
MultiStand and appropriate LS Columns according to the manufacturer’s instructions. The
CD4+ T cells were collected in a 15 mL conical tube, washed with autoMACS® Pro Running
Buffer at 460 rcf for 10 minutes after which the supernatant was discarded. CD4+ T cells were

then resuspended in X-Vivo 15 medium at 36.6°C.

Automatic cell separation was performed using the AutoMACS® Pro Separator. After
incubation with the CD4+ T Cell Isolation Kit, the PBMCs were suspended in AutoMACS® Pro
Running Buffer. CD4+ T Cell isolation was performed by means of negative selection
according to manufacturer’s instructions using the program setting “Depletes” in the
AutoMACS® Pro Separator. The CD4+ T cells were collected in a 15 mL conical tube, washed
with AutoMACS® Pro Running Buffer at 460 rcf for 10 minutes after which the supernatant was

discarded. CD4+ T cells were then resuspended in X-Vivo 15 medium at 36.6°C.

4.3.2. Viable Cell Count

The Vi-CELL XR cell counter and the Countess Il FL Automated cell counter were used to
determine the viable number of CD4+ T cells for each sample. The isolated CD4+ T cells
were diluted 1:1 with a trypan blue stain, and cell counts were determined according to the

manufacturer’s instructions.

4.3.3. Cell Culture
Upon cell count completion, isolated CD4+ T cells were cultured under different conditions

depending on the specific experimental set-up.

4.3.3.1 General Cell Culture Conditions

After completion of the cell count, 1 x 10° cells were placed in a total cell culture medium
volume of 800 uL in 24-well suspension plates for the purpose of cell culture. Culture medium
was composed of X-VIVO 15™ Medium + 1% Human Serum + 1% Penicillin/Streptomycin.
Cells were incubated at 37°C and 5% CO..

4.3.3.2 In Vitro Cannabinoid Stimulation
Isolated CD4+ T cells were cultured in 24-well suspension plates with 1 x 108 cells in 800 uL

of cell culture medium per well. In order to assess the effects of cannabinoids on these cells in
vitro, (-)-CBD or AEA were added to the culture medium in concentrations of 15 yM and 25
MM, respectively. As the cannabinoids were added in form of an ethanol solution, vehicle
control groups were established for both CBD and AEA. For vehicle controls, an equivalent
volume of ethanol was added to cell cultures to match the final ethanol concentration in the

cannabinoid-treated conditions. The final ethanol concentration in all
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cultures was maintained below 0.1% v/v to avoid non-specific effects on T cell function. Cells
were incubated at 37°C and 5% CO2 for 48 hours. After 48 hours, cells were removed from

the incubator for analysis.

4.3.3.3 In Vitro Th17 Polarization in the Presence of Cannabinoids

Isolated CD4+ T cells were cultured in 24-well suspension plates with 1 x 10° cells in 800 uL
of cell culture medium per well. The cytokines IL-13, TGF-f, IL-6 and IL-23 were added to the
cell culture medium in concentrations of 12.5 ng/mL, 5 ng/mL, 25 ng/mL, and 25 ng/mL
respectively, to induce the differentiation of CD4+ T cells to the Th17 phenotype. In order to
induce T Cell activation and expansion, the T Cell Activation/Expansion Kit was used according

to the manufacturer’s instructions.

In order to assess the effects of cannabinoids on the differentiation of CD4+ T cells under
Th17 polarizing conditions in vitro, (-)-CBD or AEA were added to the culture medium after 24
hours of culture in concentrations of 15 uM and 25 uM, respectively. After the addition of
either of the two cannabinoids and ethanol for vehicle controls, the cells were incubated at
37°C and 5% CO: for an additional 72 hours with the cell medium and cytokines being
refreshed after the first 48 hours. Cells were subsequently removed from the incubator for

analysis.

4.3.4. Flow Cytometry

Flow cytometric analyses were performed to assess cannabinoid receptor expression and
cytokine positivity in CD4+ T cells. Two distinct protocols were employed: (1) ex vivo
cannabinoid receptor staining and (2) intracellular cytokine staining with integrated viability

assessment.

4.3.4.1 Ex Vivo Cannabinoid Receptor Staining
Upon isolation of CD4+ T cells, the expression levels of CB1 and CB2 as well as GPR55 were
investigated. For each analysis, 5 x 10° cells were washed with PBS for 3 minutes at 460 rcf

prior to staining for the individual receptors.

Prior to antibody incubation, cells were fixed and permeabilized by means of the BD
Cytofix/Cytoperm Fixation/Permeabilization Kit. In order to achieve this, cells were incubated
with the fixation and permeabilization solution Cytofix/Cytoperm for 20 minutes at 4°C in the
dark.
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The Permeabilization buffer PermWash was diluted 1:10 with RNase-free water. Cells were
washed with 1 mL of PermWash 1:10 for 5 minutes at 240 rcf after the fixation step, the
supernatant was then discarded. All subsequent washes were performed in the same manner
with PermWash 1:10.

Cells were incubated with the primary antibody for 20 minutes at 4°C in the dark, after which
the cells were washed with PermWash 1:10. Cells were then incubated with a secondary
antibody bound to the fluorochrome Brilliant-Violet 421. This secondary antibody was specific
for the isotype of the primary antibody used. Incubation was performed again 20 minutes at
4°C in the dark, after which the cells were washed with PermWash 1:10. Cells were then

suspended in PermWash 1:10 for flow cytometric analysis using the Gallios Flow Cytometer.

4.3.4.2 Flow Cytometric Cell Viability Assessment and Intracellular Cytokine
Staining

For the assessment of cytokine positivity, both after standard and Th17 skewing cell culture
conditions, a sequential protocol was established that integrated viability assessment with
intracellular cytokine staining to ensure that analyses were performed exclusively on viable

cells.

Prior to processing the cells for flow cytometric cytokine analysis, Phorbol Myristate Acetate
(PMA; 100 ng/mL) and lonomycin (1.5 uM) were added to the cell culture medium for a total
of 3 hours. PMA and lonomycin are used to activate CD4+ T cells independent of T-cell
receptor complex-mediated activation. Brefeldin A was also added to the culture supernatant
in a concentration of 3 pg/mL to inhibit protein transport, leading to intracellular accumulation

of cytokines.

After the incubation period, cells and cell culture supernatant were separated by means of
centrifugation at 460 rcf for 5 minutes. Cell culture supernatant was frozen at -20°C for further
use in ELISA experiments. Cells were washed with PBS for 3 minutes at 460 rcf prior to further

use.

Prior to intracellular cytokine staining, cell viability was assessed using the LIVE/DEAD™
Fixable Green Dead Cell Stain Kit according to manufacturer's instructions. This step was
essential to ensure that subsequent cytokine analyses were performed only on viable cells.
Cells were incubated with the LIVE/DEAD™ Fixable Green Dead Cell Stain Kit for 30 minutes
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in the dark at room temperature. Cells were then washed twice with PBS for 3 minutes at 460

rcf, the supernatant was discarded after each washing step.

Untreated CBD CBD Veh.
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Figure 4. Flow cytometric gating strategy for viability assessment using LIVE/DEAD ™ Fixable
Green Dead Cell Stain Representative dot plots and histogram showing the sequential gating
approach. Initial gating on the dominant lymphocyte population based on forward scatter (FSC) and side
scatter (SSC) characteristics. Histogram of LIVE/DEAD ™ fluorescence intensity showing distinct peaks
for viable cells (left peak, lower fluorescence intensity) and non-viable cells (right peak, higher
fluorescence intensity). The clear separation between peaks allows for accurate quantification of cell

survival following cannabinoid treatment.

Following viability staining, cells were fixed and permeabilized by means of the BD
Cytofix/Cytoperm Fixation/Permeabilization kit according to the manufacturer's instructions. In
order to achieve this, cells were incubated with the fixation and permeabilization solution

Cytofix/Cytoperm for 20 minutes at 4°C in the dark.

The Permeabilization buffer PermWash was diluted 1:10 with RNase-free water. Cells were
washed with 1 mL of PermWash 1:10 for 5 minutes at 240 rcf after the fixation step, the
supernatant was discarded. All subsequent washes were performed in the same manner with
PermWash 1:10.

Cell samples were incubated with the appropriate cytokine-specific antibodies for 20 minutes
at 4°C in the dark, after which the cells were washed with PermWash 1:10. Cells were then
suspended in PermWash 1:10 for flow cytometric analysis using the Gallios Flow Cytometer.

For analysis, a sequential gating strategy was employed. First, cells were gated based on
forward scatter and side scatter properties to identify the dominant lymphocyte population.
Within this gate, viable cells were identified based on LIVE/DEAD fluorescence intensity. The
percentage of viable cells was determined by gating on the population with lower fluorescence

intensity up to the midpoint of the trough between the viable and non-viable cell population
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peaks. The LIVE/DEAD gate was used as a filter for the subsequent cytokine positivity
analysis. This methodology allowed for both the assessment of cannabinoid-induced

cytotoxicity and the measurement of cytokine positivity specifically in viable CD4+ T cells.
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Figure 5. Flow cytometric analysis of TNF-a production in viable CD4+ T cells following
cannabinoid treatment Representative dot plots showing TNF-a positivity in CD4+ T cells from patients
with rheumatic autoimmune diseases under different treatment conditions. The y-axis represents the
fluorescence intensity of the TNF-a-specific fluorophore (APC in channel 6), while the x-axis represents
an unrelated fluorescence channel used to optimize population visualization. Only viable cells (as
determined by prior LIVE/DEAD™ staining) are included in these plots. The quadrant gate (K1) was
established based on the untreated control sample and maintained in the identical position across all
treatment conditions for consistent analysis. The percentage values indicate the proportion of viable
CD4+ T cells positive for TNF-a. This gating approach was applied consistently for all cytokines

assessed.
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4.3.5. Molecular Biology
In order to investigate the effects of AEA and CBD on the gene expression in CD4+ T cells

from patients with RA, quantitative PCR (qPCR) was performed with synthesized cDNA.

4.3.5.1 RNA Isolation
Upon conclusion of cell culturing, cells were isolated from cell culture supernatant by means
of centrifugation for 5 minutes at 460 rcf. Cells were washed with PBS at 4°C for 5 minutes at

460 rcf and frozen at -80°C for a minimum of 30 minutes prior to RNA isolation.

RNA isolation was performed using the RNeasy Mini Kit (Qiagen, Hilden) according to the

manufacturer’s instructions.

Isolated RNA concentration was analyzed with the spectrophotometer Nanodrop 1000 at a

wavelength of 260nm. RNA was then stored at -80°C prior to further use.

4.3.5.2 cDNA Synthesis

For analysis by means of gPCR, the isolated RNA was converted to complementary DNA
(cDNA). This was achieved by using the QuantiTect Reverse Transcription Kit which was used
according to the manufacturer’s instructions. Due to variations among subjects, the previously
isolated RNA was present in varying concentrations which was accounted for in the cDNA

synthesis to ensure a consistent amount of cDNA in each well for each reaction.

4.3.6. Quantitative PCR

Identical Master mixes were created for all experimental conditions

Table 1. Quantitative PCR master mix For the amplification of the individual molecular

targets, identical master mixes were created.

Mastermix qPCR 1x Amount
TagMan Fast Advanced Master Mix 10 L
RNase-free water 8 uL
Oligonucleotide primer (Applied 1L

Biosystems)
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The master mix was pipetted into a 96-well Micro Amp® Fast Optical 96 well reaction plate and
1 yL of cDNA was added. The gPCR was then performed using a 7500 Fast Real Time PCR

System (Applied Biosystems, Carlsbad) using the reaction protocol as seen in Table 2.

Table 2. Reaction conditions for quantitative PCR Upon completion of a 20 second
initialization phase at 95°C to denature cDNA, 45 amplification cycles were run consisting of a

3 second denaturing phase at 95°C, and an annealing / extending phase at 60°C

Description Reaction Temp Time (mins) Cycles

Polymerase
Activation 95°C 00:20 1x

Activation

PCR Amplification Denaturing 95°C 00:03 45 x
Annealing /

2, 60°C 00:30 45 x
Extending

3. Cooling

After initialization of the cDNA amplification process through a 20 second polymerase
activation phase at 95°C, 45 amplification cycles were run, each starting with a 3 second

denaturing phase at 95°C followed by a 30 second annealing / extending phase at 60°C.

Analysis of the data obtained from the qPCR was performed using Microsoft Excel. Gene
expression was normalized to the housekeeping gene (3-2-microglobulin (B2M), which was
selected as the reference gene due to its stable expression across experimental conditions in
CD4+ T cells. Relative gene expression was calculated using the 222°t method, with untreated
controls normalized to 1.0. For each target gene, expression levels following cannabinoid

treatment were expressed as fold-change relative to the untreated control.

4.3.7. Sandwich-ELISA (Enzyme-Linked Immunosorbent Assay)
In order to assess the effects of cannabinoids on the release of cytokines from CD4+ T cells
into cell culture supernatant, Sandwich-ELISAs were performed for TNF-a, IFN-y and IL-17A.

Cell culture supernatant was stored at -20°C and thawed in the fridge at 4°C prior to use.

Samples were diluted 1:1 with 1X Assay Diluent A before performing the ELISA.
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The ELISAs for TNF-a, IFN-y, and IL-17A were performed using the ELISA MAX™ Deluxe
Sets according to manufacturer’s instructions. Analysis of the data obtained from the

Sandwich-ELISAs was performed using Microsoft Excel.

4.3.8. Statistical Analysis

Statistical Analysis and graphing were performed using the GraphPad Prism 5.0, 6.0, 7.0 and
10.0 software. For data where a normal distribution of the underlying population could be
assumed, parametric tests (paired or unpaired Student's t-test) were applied. For data where
normality could not be assumed, non-parametric alternatives (Mann-Whitney U test for
unpaired comparisons, Wilcoxon signed-rank test for paired comparisons) were used. A p-

value < 0.05 was considered statistically significant.

Correlation analysis between cannabinoid receptor expression and IL-17A induction in CD4+
T cells was performed using linear regression. The baseline expression of CB1, CB2, and
GPR55 was correlated with the percentage increase in IL-17A-positive CD4+ T cells following
cannabinoid treatment. Coefficient of determination (R?) values were calculated to assess the
strength of these relationships, with 95% confidence intervals of the slope to determine
statistical significance. A confidence interval not crossing zero was considered indicative of a

statistically significant correlation.
Data are presented as mean * standard deviation (SD) unless otherwise specified. Statistical

significance was defined as p < 0.05, with significance levels indicated as *p < 0.05, **p < 0.01,
***p < 0.001, and ****p < 0.0001.
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5. Results

5.1. Expression of Cannabinoid Receptors in CD4+ T Cells from Patients with
Rheumatic Autoimmune Diseases

Cannabinoid receptor expression in CD4+ T cells was investigated to determine potential
differences between healthy controls and patients with rheumatic autoimmune diseases. Flow
cytometry was used to measure the expression of CB1, CB2, and GPR55 receptors across

subject groups to establish baseline receptor profiles.
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Figure 6. Expression of cannabinoid receptors CB1, CB2, and GPR55 on CD4+ T cells Dot plots
depicting the percentage of CD4+ T cells expressing (left) CB1, (middle) CB2, and (right) GPR55, as
determined by flow cytometry. Each symbol represents an individual subject; horizontal lines indicate
mean * standard deviation. No statistically significant differences were observed between groups for

any receptor (p > 0.05). See Supplementary Table 1 for detailed statistics.

Flow cytometric analysis revealed no statistically significant differences in the expression of
CB1 in RA patients as compared to healthy controls. Similarly, SLE patients and PsA patients
showed no significant differences in CB1 expression when compared to healthy controls. For
CB2 receptor expression, no statistically significant differences between healthy controls and
patients with RA, PsA, or SLE were observed. While a trend towards higher expression of the
GPRS55 receptor in rheumatic autoimmune diseases was identified, especially in RA patients
(5.45 + 3.44%) and PsA patients (7.65 + 3.69%) compared to healthy controls (2.51 + 0.17%),

the results failed to reach statistical significance with p = 0.154 and p = 0.059, respectively.

5.2. Effects of CBD and AEA on CD4+ T Cell Survival in RA Patients and Healthy
Controls

Cell viability assays were conducted to evaluate the cytotoxic effects of cannabinoids on CD4+
T cells from RA patients. CD4+ T cells were exposed to CBD (15uM) or AEA (25uM) for 48
hours and 96 hours, under standard and Th17-polarizing conditions respectively, to assess

cannabinoid impact on cell survival.
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Figure 7. Cytotoxic effects of cannabinoids on CD4+ T cells from rheumatoid arthritis patients
Dot plot showing percent survival of primary CD4+ T cells isolated from RA patients following 48-hour
exposure to CBD (15 uM), CBD vehicle, AEA (25 uM), or AEA vehicle compared to untreated controls
under standard cell culture conditions. Each data point represents an individual patient sample. CBD
significantly reduced cell survival compared to untreated and vehicle treated control groups (****p <
0.0001). AEA also reduced cell survival compared to untreated and vehicle treated control groups, albeit
with weaker statistical significance than CBD (**p < 0.01, ***p < 0.001). Mean + SD: Untreated (71.97 +
11.21), CBD (15 puM) (48.34 + 14.47), CBD Veh. (75.05 + 10.14), AEA (25 uM) (66.67 £+ 18.26), AEA
Veh. (74.85 £ 9.99). n = 36.

As shown in Figure 7, CBD exposure significantly reduced CD4+ T cell survival compared to
untreated conditions (48.34 £ 14.47 % vs. 71.97 + 11.21 %, p < 0.0001). The CBD vehicle
control showed no significant effect on cell survival. AEA also demonstrated a modest but
statistically significant reduction in CD4+ T cell survival compared to untreated cells (66.67
18.26 % vs. 71.97 £ 11.21 %, p < 0.01), though this effect was less pronounced than that

observed with CBD. The AEA vehicle had no significant impact on cell survival.
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Figure 8. CBD reduces CD4+ T cell viability under Th17-polarizing conditions in RA patients Dot
plot depicting the percentage of live CD4+ T cells isolated from RA patients under standard culture
conditions (Control), Th17-polarizing conditions with CBD treatment (Th17 Skewing + CBD), or Th17-
polarizing conditions with vehicle (Th17 Skewing + Vehicle) after 96 hours of total culture time. Each
symbol represents an individual patient sample. CBD significantly reduced cell survival under Th17-
polarizing conditions as compared to untreated and vehicle treated control groups (*p < 0.05). Mean +
SD: Control (77.21 £ 10.28), Th17 Skewing + CBD (54.3 £ 9.5), Th17 Skewing + Vehicle (76.37 + 8.06).
n = 6.

To determine whether the cytotoxic effects of CBD persisted under Th17-polarizing
conditions, cell survival in CD4+ T cells from RA patients cultured with TGF-, IL-1p,

and IL-23 in the presence or absence of CBD was assessed. As shown in Figure 8,

CBD significantly reduced cell survival under Th17-skewing conditions compared to the
vehicle control and untreated control groups (54.3 £ 9.5 % vs. 76.37 + 8.06 %, p <

0.05). Notably, the Th17-skewing conditions themselves did not significantly affect cell
viability compared to standard culture conditions, as evidenced by the similar survival
rates between the control (77.21 + 10.28 %) and the Th17-skewing with vehicle
conditions (76.37 + 8.06 %).
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5.3. Effects of Cannabinoids on Proinflammatory Cytokine Production in CD4+
T Cells

Flow cytometric analysis was conducted to evaluate how CBD and AEA exposure influences

the positivity of key proinflammatory cytokines in CD4+ T cells across different patient

groups. Cells were treated with cannabinoids for 48 hours to determine disease-specific

effects on IL-17A, IFN-y, and TNF-a positivity, providing insights into their immunomodulatory

potential.

5.3.1. Impact of CBD and AEA on IL-17A Positivity among CD4+ T Cells
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Figure 9. Disease-specific effects of cannabinoids on IL-17A expression in CD4+ T cells Dot plots
showing the percentage of IL-17A-positive CD4+ T cells following 48-hour exposure to CBD (15 pM),
CBD vehicle, AEA (25 uM), or AEA vehicle compared to untreated controls across different patient
groups: HC (n = 13), RA (n = 36), SLE (n = 5), and PsA (n = 5). In healthy controls, CBD significantly
reduced IL-17A expression, while in RA patients, both CBD and AEA significantly increased IL-17A
expression. SLE patients showed significant increases in IL-17A expression with CBD treatment, but
not with AEA treatment. PsA patients demonstrated significant IL-17A positivity increases with CBD.
Each symbol represents an individual subject; horizontal lines indicate mean + standard deviation.
Significance levels: *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns = non-significant. See

Supplementary Table 2 for detailed statistics.

The effects of cannabinoids on IL-17A positivity in CD4+ T cells revealed differences between
healthy controls and patients with rheumatic autoimmune diseases. In healthy controls, CBD
treatment significantly reduced the percentage of IL-17A-positive CD4+ T cells compared to
untreated conditions (1.86 £ 0.89 % vs. 3.30 £ 1.03 %, p < 0.01).

Both CBD and AEA treatments significantly increased the percentage of IL-17A-positive CD4+
T cells in RA patients compared to untreated conditions. This effect was particularly
pronounced with CBD treatment, which showed a substantial and statistically significant
elevation in IL-17A positivity (6.54 + 3.12 % vs. 3.36 £ 1.46 %, p < 0.0001). The AEA-mediated
increase in IL-17A-positive cells in RA patients (4.53 + 2.50 % vs. 3.36 + 1.46 %, p < 0.01),
while less dramatic than the CBD effect, was still statistically significant when compared to

untreated and vehicle controls.

In SLE patients, both CBD and AEA treatments increased the percentage of IL-17A-positive
CD4+ T cells compared to the untreated group. CBD effects showed statistical significance
when compared to both untreated and vehicle-treated groups (7.89 £ 1.59 % vs. 3.77 £ 0.77
%, p < 0.01), while AEA failed to produce statistically significant results when compared to the
vehicle control group. For PsA patients, CBD treatment showed statistical significance in
comparison to untreated and vehicle-treated control groups (15.22 + 3.88 % vs. 6.83 + 1.62
%, p < 0.05). AEA did not produce statistically significant results in the PsA patient group,
though a trend toward higher IL-17 positivity was observed.
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5.3.2. Impact of CBD and AEA on IFN-y Positivity among CD4+ T Cells
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Figure 10. Disease-specific effects of cannabinoids on IFN-y expression in CD4+ T cells Dot plots
showing the percentage of IFN-y-positive CD4+ T cells following 48-hour exposure to CBD (15 pM),
CBD vehicle, AEA (25 pM), or AEA vehicle compared to untreated controls across different patient
groups: HC (n = 13), RA (n = 27), SLE (n = 5), and PsA (n = 3). Each symbol represents an individual
subject; horizontal lines indicate mean + standard deviation. Significance levels: *p < 0.05, **p < 0.01,

***p < 0.001, ****p <0.0001, ns = non-significant. See Supplementary Table 3 for detailed statistics.
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Treatment of CD4+ T cells with CBD significantly reduced the percentage of IFN-y-positive
cells in both healthy controls (untreated: 5.51 + 2.95 % vs. CBD: 2.25 + 1.12 %; p < 0.001)
and RA patients (untreated: 6.83 + 3.73 % vs. CBD: 2.79 £ 1.99 %; p < 0.0001) compared to
untreated conditions. This suppressive effect had the highest statistical significance in RA
patients followed by healthy controls. The suppressive effect was also present for SLE
patients (untreated: 6.43 £ 1.45 % vs. CBD: 3.49 £ 1.92 %; p < 0.05), however to a far lesser
degree of significance. While the trend in PsA patients is indicative of a similar suppressive
potential for CBD as was the case in RA patients, the low sample size does not allow for the

determination of statistical significance.

In contrast, AEA treatment demonstrated a more variable effect on IFN-y production. While
there was a significant reduction in IFN-y-positive cells in both HC (untreated: 5.51 + 2.95 %
vs. AEA: 2.72 + 1.75 %; p < 0.01) and RA groups (untreated: 6.83 + 3.73 % vs. AEA: 4.12
2.28 %; p < 0.001) compared to untreated controls, the effect was less pronounced than that
observed with CBD treatment. There was no statistical significance in reduction of IFN-y-
positive cells for SLE and PsA patients. In contrast to CBD treatment, there was a less
pronounced trend to reduction in these two patient groups, indicating that this may not be solely
an effect of the low sample size, but also possibly due to an overall less pronounced effect of

AEA in these two patient groups as compared to RA patients.
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5.3.3. Impact of CBD and AEA on TNF-a Positivity among CD4+ T Cells
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Figure 11. Disease-specific effects of cannabinoids on TNF-a expression in CD4+ T cells Dot plots

showing the percentage of TNF-a-positive CD4+ T cells following 48-hour exposure to CBD (15 yM),
CBD vehicle, AEA (25 uM), or AEA vehicle compared to untreated controls across different patient
groups: HC (n = 17), RA (n = 36), SLE (n = 5), and PsA (n = 5). Each symbol represents an individual

subject; horizontal lines indicate mean + standard deviation. Significance levels: *p < 0.05, **p < 0.01,

***p < 0.001, ****p < 0.0001, ns = non-significant. See Supplementary Table 4 for detailed statistical

data.
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CBD treatment suppressed TNF-a production in CD4+ T cells across all patient groups. The
statistical significance was strongest among healthy controls and RA patients. AEA treatment
also significantly reduced TNF-a production in RA patients, though to a lesser extent than CBD.
In the SLE group, AEA treatment showed a modest but statistically significant reduction in
TNF-a-positive cells when compared to the untreated group, but not when compared to the
vehicle control group. No significant effect was observed in HC or PsA patients following AEA

treatment.

5.4. Correlation Between Cannabinoid Receptor Expression and IL-17A
Induction in CD4+ T Cells
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Figure 12. Relationship between cannabinoid receptor expression and IL-17A induction in CD4+
T cells from RA patients after CBD treatment Scatter plots depicting the correlation between baseline
expression of cannabinoid receptors (A. CB1, B. CB2, and C. GPR55) and the percentage increase in
IL-17A-positive CD4+ T cells following 48 hours of CBD treatment. Solid lines represent linear
regression, with dotted lines indicating 95% confidence intervals. Each point represents an individual
patient sample. Despite weak positive trends observed across all three receptors (R? values: CB1 =
0.052, CB2 = 0.092, GPR55 = 0.086), the wide confidence intervals crossing zero (Slope values: CB1

=-4.754 to 18.60, CB2 = -1.347 to 12.70, GPR55 = -2.37 to 18.92) indicate the absence of statistically

significant correlations. N = 29.

To investigate whether the varying responses to CBD treatment might be influenced by the
baseline expression of cannabinoid receptors, correlation analyses were performed between
receptor expression as determined after initial cell isolation (CB1, CB2, and GPR55) and the
percentage increase in IL-17A-positive cells following 48 hours of cannabinoid treatment for
patient samples in which all data points were available.

As shown in Figure 12, linear regression analysis revealed weak positive trends between the
expression of each cannabinoid receptor and the increase in IL-17A positivity, although none
reached statistical significance. For CB1 receptor expression, the 95% confidence interval for
the slope ranged from -4.754 to 18.60, with an R? value of 0.052. Similarly, for CB2 receptor
expression, the 95% confidence interval for the slope was -1.347 to 12.70, with an R? value of
0.092. For GPR55 expression, the 95% confidence interval was -2.37 to 18.92, with an R?
value of 0.086.
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The low R? values indicate that only a small proportion of the variability in IL-17A induction
(approximately 5-9 %) could be explained by differences in receptor expression. Furthermore,
the fact that all confidence intervals for the slopes crossed zero suggests that a positive or
negative relationship between receptor expression and the cannabinoid-induced increase in

IL-17A positivity cannot definitively be established.

5.5. Impact of CBD on Th17 Differentiation Under Th17 Skewing Conditions
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Figure 13. CBD increases IL-17A expression in CD4+ T cells from RA patients under Th17-
polarizing conditions Scatter plot showing the percentage of IL-17A-positive CD4+ T cells isolated
from RA patients and cultured under Th17-skewing conditions for 24 hours (TGF-B, IL-1B, and IL-23)
followed by addition of CBD (15 uM) or a vehicle control for an additional 72 hours. Each symbol
represents an individual patient sample; horizontal lines indicate mean + standard deviation.
Significance levels: ***p < 0.001, ****p < 0.0001. n = 12.

To specifically examine the effect of CBD under Th17-skewing conditions, CD4+ T cells from
RA patients were cultured under Th17-skewing conditions (TGF-B, IL-1B, and IL-23) for 24
hours after which CBD was added to the cell culture for an additional 72 hours. CD4+ T cells
cultured under these Th17-polarizing conditions showed a statistically significant increase in
IL-17A positivity following CBD treatment compared to untreated controls (from 13.80 + 2.32

% t0 20.04 £ 3.98 %, p <0.0001). Importantly, the CBD vehicle control had no significant effect

on IL-17A positivity compared to untreated cells (13.87 + 2.62 % vs. 13.80 £ 2.32 %, ns).
66



5.6. Quantitative Analysis of Cytokine Secretion by CD4+ T Cells Following
Cannabinoid Treatment

ELISA assays were performed to quantify cytokine secretion in cell culture supernatants after

cannabinoid treatment. This complementary approach to flow cytometry measured secreted

IL-17A, IFN-y, and TNF-a levels to provide a more comprehensive understanding of the

functional impact of cannabinoids on CD4+ T cell cytokine production.

5.6.1.IL-17A Secretion
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Figure 14. CBD and AEA reduce IL-17A secretion in CD4+ T cell cultures from RA patients Dot
plot depicting ELISA quantification of IL-17A in cell culture supernatants of untreated samples incubated
for 48 hours and samples after 48-hour exposure to cannabinoids or vehicle controls. Data points
represent individual patient samples (n = 7). Both CBD (15 pyM) and AEA (25 uM) significantly decreased

IL-17A concentration compared to untreated and vehicle controls (*p < 0.05).
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Figure 15. IL-17A concentration in supernatants from CD4+ T cells cultured under Th17-
polarizing conditions Dot plot depicting ELISA quantification of IL-17A in cell culture supernatants of
samples after 48-hour exposure to CBD (15 pM) and vehicle controls under Th17 skewing conditions.
Individual data points represent separate patient samples (n = 6). CBD treatment significantly reduced

IL-17A secretion relative to the vehicle control group (*p < 0.05).

As shown in Figure 14, analysis of IL-17A concentration in culture supernatants from RA
patients revealed a significant reduction following cannabinoid treatment. Compared to the
untreated condition (37.72 £ 25.16 pg/mL), IL-17A concentration was significantly lower after
treatment with both CBD (16.67 £ 2.09 pg/mL; p < 0.05) and AEA (18.21 £ 3.66 pg/mL; p <
0.05). In contrast, the respective vehicle controls showed no significant effect on secretion
(CBD Veh.: 41.48 + 24.52 pg/mL; AEA Veh.: 31.35 + 22.36 pg/mL). This suppressive effect
was also observed under Th17-polarizing conditions (Figure 15), where CBD treatment
significantly reduced IL-17A concentration from 230.9 + 274.7 pg/mL in the vehicle control

group to 78.72 + 144.1 pg/mL (p < 0.05).
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5.6.2. IFN-y Secretion
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Figure 16. Cannabinoids suppress IFN-y secretion by CD4+ T cells from RA patients Dot plot
depicting ELISA quantification of IFN-y in cell culture supernatants of untreated samples and samples
after 48-hour exposure to cannabinoids or vehicle controls. Data points represent individual patient
samples (n = 11). Both CBD (15 yM) and AEA (25 uM) significantly decreased IFN-y concentration

compared to untreated and vehicle controls (***p < 0.001, **p < 0.01).

For IFN-y, both CBD and AEA treatments significantly reduced the concentration in CD4+ T
cell culture supernatant from RA patients. CBD treatment led to a profound decrease from
766.9 + 455.7 pg/mL to 30.33 £ 17.82 pg/mL (p < 0.001), while AEA reduced levels to 71.15 +
78.73 pg/mL (p < 0.01). Vehicle controls showed some reduction but remained significantly

higher than cannabinoid treatments (CBD Veh.: 518.9 + 451.8 pg/mL, AEA Veh.: 391.6 £ 461.0
pg/mL).
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5.6.3. TNF-a Secretion
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Figure 17. Strong suppression of TNF-a secretion in CD4+ T cells from RA patients by
cannabinoids Dot plot depicting ELISA quantification of TNF-a levels in cell culture supernatants of
untreated samples and samples after 48-hour exposure to cannabinoids or vehicle controls. Data points
represent individual patient samples (n = 13). Both CBD (15 uM) and AEA (25 pM) significantly

decreased TNF-a concentration compared to untreated and vehicle controls (***p < 0.001).

Similarly, the TNF-a concentration in supernatant was markedly decreased following both CBD
and AEA treatment (Figure 17), with reductions from 177.7 + 163.3 pg/mL (untreated) to 34.25
1 40.53 pg/mL (CBD) and 40.06 + 26.47 pg/mL (AEA) (both p < 0.001). Treated groups also
showed statistically significant decreases in TNF-a concentration when compared to their
respective vehicle controls (CBD Veh.: 163.4 + 192.1 pg/mL, AEA Veh.: 119.8 + 140.1 pg/mL),
confirming that the observed suppression was attributable to the cannabinoids themselves

rather than their delivery vehicles.

5.7. Cannabinoid Treatment Effect on Gene Expression in CD4+ T Cells
Reverse Transcription with subsequent gPCR was performed to examine how cannabinoids
affect the expression of genes involved in T cell function and inflammatory responses. CD4+
T cells from both healthy controls and RA patients were treated with CBD or AEA for 48 hours
to assess changes in SGK1, IKZF3, CSF2, and AHR expression, revealing differential effects

between patient populations.
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5.7.1.Impact of CBD and AEA on Gene Expression in Healthy Controls
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Figure 18. Effects of cannabinoids on gene expression in CD4+ T cells from healthy controls Bar
graphs with individual data points showing relative expression of SGK1 (n = 3), IKZF3 (n = 2), CSF2 (n
= 3), and AHR (n = 4) genes in CD4+ T cells from healthy controls following 48-hour exposure to CBD
(15 uM), CBD vehicle, AEA (25 pM), or AEA vehicle compared to untreated controls (normalized to 1.0
using 224Ct method). Each symbol represents an individual subject; bars indicate mean + standard

deviation. ns = non-significant (p > 0.05). See Supplementary Table 5 for detailed statistical data.
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Gene expression analysis in CD4+ T cells from healthy controls revealed no statistically
significant changes in any of the examined genes following cannabinoid treatment when
compared to their respective vehicle controls. As shown in Figure 18, where gene expression
was normalized to untreated controls (set to 1.0) using the 2"22°t method, neither CBD nor AEA
treatment resulted in significant alterations in the expression of SGK1, IKZF3, CSF2, or AHR
genes. While some trends toward increased expression were observed, particularly for SGK1
(3.24 £ 2.61 vs. 0.88 £ 0.33) and IKZF3 (3.01 £ 1.44 vs. 0.35 £ 0.29) following CBD treatment,

these changes did not reach statistical significance when compared to the CBD vehicle control.
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5.7.2.
Arthritis Patients
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Figure 19. Effects of cannabinoids on gene expression in CD4+ T cells from RA patients Bar
graphs with individual data points showing relative expression of SGK1, IKZF3, CSF2, and AHR genes
in CD4+ T cells from RA patients following 48-hour exposure to CBD (15 pM), CBD vehicle, AEA (25
uM), or AEA vehicle compared to untreated controls (normalized to 1.0 using 222Ct method). Each
symbol represents an individual RA patient; bars indicate mean + standard deviation. Significance
levels: **p < 0.01, ***p < 0.001, ns = non-significant (p > 0.05). See Supplementary Table 6 for detailed

statistical data.

In CD4+ T cells isolated from RA patients, CBD treatment induced significant changes in the
expression of specific genes when compared to CBD vehicle control, as illustrated in Figure

19. Using the 222t method with untreated controls normalized to 1.0, CBD significantly
upregulated SGK17 expression compared to CBD vehicle control (14.07 + 10.0 vs. 1.31 + 0.49,
p < 0.001), representing a substantial increase in relative expression levels. Conversely, CBD
treatment significantly downregulated CSF2 expression (0.05 £ 0.05 vs. 1.08 + 0.61, p < 0.01)

compared to CBD vehicle control.

The expression of IKZF3 and AHR genes showed no statistically significant changes following
CBD treatment compared to CBD vehicle, though a trend toward both increased IKZF3 and
AHR expression was observed (11.85 £ 9.09 vs. 1.26 + 1.05 and 2.59 + 2.25 vs. 0.88 £ 0.25).

In contrast to CBD, AEA treatment did not significantly alter the expression of any of the
examined genes in RA patients when compared to AEA vehicle control. No statistically
significant differences were observed for SGK1, IKZF3, CSF2, or AHR expression following

AEA treatment when compared to AEA vehicle controls.
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5.8. Observational Clinical Data on CBD Use in Rheumatoid Arthritis Patients
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Figure 20. Changes in IL-17A expression and disease activity following self-reported CBD use in
RA patients Line graphs showing paired measurements from individual RA patients (n = 5) before and
after a period of self-reported CBD use (4-8 weeks). (A) Percentage of IL-17A-positive CD4+ T cells
following CBD use. (B) Disease Activity Score 28 with C-Reactive Protein (DAS28-CRP). Each line

connects paired measurements from the same individual.

In addition to our in vitro experiments, observational data from a small cohort of RA patients
who self-reported voluntary CBD use over a period of 4-8 weeks was obtained. Blood samples
were collected prior to CBD treatment initiation (Pre-CBD) and after the reported consumption
period (post-CBD). The percentage of IL-17A-positive CD4+ T cells increased significantly in
all patients following the reported CBD use period, rising from 1.1 £ 0.73% (Pre-CBD) to 4.52
t+ 3.00% (post-CBD) (p < 0.05). This increase in IL-17A positivity was accompanied by a
concurrent significant elevation in DAS28-CRP scores, which increased from 3.77 + 1.09 (Pre-
CBD) to 5.02 + 0.94 (post-CBD) (p < 0.01), indicating a worsening of disease state. These
clinical observations align with our in vitro findings regarding CBD's effects on IL-17A

expression in CD4+ T cells from RA patients.
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6. Discussion

6.1. Cannabinoid Receptor Expression in Rheumatic Autoimmune Disease

In an attempt to better understand the endocannabinoid system under rheumatic conditions,
the expression of the classical endocannabinoid system receptors CB1 and CB2, along with
the putative third cannabinoid receptor GPR55 was assessed in healthy controls as well as

patients afflicted primarily by RA as well as PsA and SLE.

With the CB2 receptor being implicated in the modulation of immune function, the expression
of these receptors, in addition to the CB1 receptor, in CD4+ T cells was measured to better
understand possible differences in the healthy and diseased state that might affect the
observations when treating these cells with AEA and CBD. There was no statistically significant
difference in expression of the CB1 and CB2 receptors in healthy controls as compared to
patients suffering from the aforementioned diseases. In the context of this insight, it became
clear that any effects observed during in vitro experiments would not be the result of a
differing cannabinoid receptor expression in our target cells occurring as a result of disease

specific alterations to cannabinoid receptor expression.

Given that AEA via the CB2 receptor can cause a suppression of cellular proliferation as well
as a reduction in the production and release of IL-17A, TNF-a, and IFN-y, the possibility of
altered CB2 receptor expression being part of the pathophysiologic cascade in RA was
considered.'97.199.234270 The hypothesis that a possible reduction in CB2 expression and a
resulting inability of AEA to inhibit overarching immune function plays a role in RA pathology
was rejected on the basis of the aforementioned flow cytometric analysis of receptor
expression. While the CB1 receptor is less implicated in immune modulation, the observations
also enable a rejection of an altered CB1 receptor expression being implicated in RA
development given the lack of a statistically significant difference observable in RA patients

when compared to healthy controls.
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While the results bear no statistical significance, the expression profile of the putative third
cannabinoid receptor GPR55, proved to be interesting. While the collected data does not allow
for the conclusion that GPR55 is overexpressed in CD4+ T cells of RA patients (p = 0.154), it
was notable that a trend towards higher expression was observed. Furthermore, a similar trend
in PsA patients approached statistical significance (p = 0.059), with these patients showing the
highest mean expression at 7.65 + 3.69% compared to 2.51 £ 0.17% in healthy controls. This
near-significant difference and underlying expression trend suggests that with increased
sample sizes, a statistically significant difference might emerge. While the sample size is far
too small to draw definitive conclusions, it does raise the question of whether GPR55
expression may in fact be altered in rheumatic autoimmune diseases, especially those with a

strong Th17 pathology component like PsA, where the trend was most pronounced and RA.

Given the lack of broad research on the GPR55 receptor, these results need to be viewed
critically. Due to the observational nature of data collected, there is a possibility of confounding
variables leading to alterations in GPR55 expression and thus the observed trend that are
inherently not related to RA and PsA and their respective pathogenesis. Beyond an increased
sample size, further experiments in an attempt to derive conclusions regarding the causal
effect between RA affliction and GPR55 expression levels would be of significant value.
Considering that the expression and activation of this receptor have been linked to
pathologically overshooting immune responses, further exploration of its significance in RA is
warranted.?3®271272 The results obtained in this study provoke an initial suspicion that an
increased expression of the GPR55 receptor in CD4+ T cells from RA patients might contribute
to the immune dysregulation that underlies this disease. Further experiments aiming to isolate
GPR55 mediated effects on cytokine production, such as through use of a selective agonist or
antagonist and correlating treatment to changes in clinical severity in appropriate mouse

models, could be valuable in assessing the role of this receptor plays in RA.

The correlation analysis between cannabinoid receptor expression and IL-17A induction in
CD4+ T cells from RA patients provided additional insights into the relationship between
receptor positivity and functional outcomes. This analysis was conducted to determine whether
the variable responses to cannabinoid treatment observed across patients could be attributed
to differences in baseline receptor expression. Despite trends suggesting weak positive
correlations between the expression of cannabinoid receptors (CB1, CB2, and GPR55) and
the magnitude of IL-17A induction following cannabinoid treatment, none of these correlations
reached statistical significance. The relatively low R? values (ranging from 0.052 to 0.092)
indicated that only a small fraction of the variability in IL-17A induction could potentially be

explained by differences in receptor expression.
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This lack of significant correlation suggests that while receptor expression may contribute to
the response variability, other factors likely play more substantial roles in determining the
magnitude of IL-17A induction following cannabinoid treatment. These factors could include
variations in downstream signaling pathways, differences in receptor functionality rather than
mere expression levels, or patient-specific inflammatory environments that influence cellular
responsiveness to cannabinoids. The absence of a strong correlation between receptor
expression and functional outcomes reinforces the conclusion that the differential effects of
cannabinoids on CD4+ T cells from RA patients compared to healthy controls are unlikely to
be attributable to altered expression of cannabinoid receptors. Instead, these findings point
toward disease-specific alterations in post-receptor signaling mechanisms or inflammatory
contexts that modify cellular responses to cannabinoid stimulation. Further investigation into
these potential mechanisms, such as analysis of signaling pathway activation or receptor
functionality assays, would be valuable for uncovering the precise mechanisms underlying the
disease-specific effects of cannabinoids on IL-17A production in rheumatic autoimmune

diseases.

6.2. The Effect of Cannabidiol and Anandamide on CD4+ T Cell Survival
Assessment of cell survival following cannabinoid treatment was crucial to provide context for
interpreting the complex immunomodulatory effects observed in the conducted experiments.
This analysis was particularly important given the apparent paradox between increased IL-17A
positivity detected by flow cytometry and decreased IL-17A secretion measured by ELISA in

supernatants from CD4+ T cells of RA patients.

The findings demonstrated significant cannabinoid-induced cytotoxicity in CD4+ T cells from
RA patients, with CBD exerting more pronounced effects than AEA. This differential
cytotoxicity has substantial implications for interpreting the immunomodulatory effects of these
compounds. The reduction in cell viability following cannabinoid treatment suggests that the
overall immune response modulation observed may result from a combination of direct effects

on cytokine production and selective effects on cell survival.

The seemingly contradictory observations of increased IL-17A-positive cell percentages
despite decreased total IL-17A secretion might be explained by the significant reduction in total
viable cells. A possible explanation may be that while the proportion of IL-17A-positive cells
among surviving cells increases following cannabinoid treatment, the substantial decrease in
overall cell numbers could result in fewer IL-17A-producing cells in absolute terms, explaining
the reduced accumulation of IL-17A in supernatants. However, this remains a hypothesis that

requires experimental verification. Time-course experiments measuring both cell viability and
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IL-17A secretion at multiple time points would help establish whether the kinetics of cell death
correlate with the reduction in total secreted IL-17A, thereby testing this hypothesis directly.
This finding highlights the importance of assessing both relative cellular phenotypes and

absolute secreted cytokine levels when evaluating immunomodulatory compounds.

An intriguing possibility raised by these observations is that cannabinoids may exhibit
differential cytotoxicity across CD4+ T cell subsets. The increased proportion of IL-17A-positive
cells despite overall reduced viability suggests that Th17-committed cells might be more
resistant to cannabinoid-induced cell death compared to other CD4+ T cell subpopulations.
The survival rate in CBD-treated cultures dropped to 48.34 + 14.47% (compared to 71.97 +
11.21% in untreated conditions), yet the proportion of IL-17A-positive cells increased rather
than remaining constant. This strongly suggests subset-specific survival advantages among

Th17 cells under exposure to CBD.

The cytotoxicity data also provide important context for interpreting the gene expression
findings. Changes in expression profiles following cannabinoid treatment likely reflect both
direct transcriptional effects and the altered cellular composition resulting from differential
survival of specific CD4+ T cell subsets. Future experiments employing single-cell approaches
could help disentangle these confounding factors and provide clearer insights into

cannabinoid-mediated transcriptional regulation.

6.3. The Effect of Cannabidiol and Anandamide on Cytokine Production and
Secretion in CD4+ T Cells

To comprehensively understand how cannabinoids modulate immune function in the context

of rheumatic autoimmune diseases, the effects of AEA and CBD on both the intracellular

presence and extracellular secretion of key inflammatory cytokines in CD4+ T cells were

investigated.

Flow cytometric analysis revealed a complex pattern of cannabinoid effects on cytokine-
positive cell populations that varied markedly between healthy controls and patients with
rheumatic autoimmune diseases. Notably, both CBD and AEA consistently suppressed the
percentage of TNF-a and IFN-y positive CD4+ T cells across all groups, with CBD
demonstrating stronger suppressive effects. This anti-inflammatory action aligns with previous
reports documenting cannabinoid-mediated inhibition of cell activation and cytokine production

in various immune cell populations.1%8218:273.274
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However, a striking and unexpected finding emerged regarding IL-17A. While CBD reduced
the percentage of IL-17A-positive CD4+ T cells in healthy controls, consistent with its
traditionally understood anti-inflammatory properties and existing literature, it significantly
increased IL-17A positivity in RA patients against expectations derived from other work
showing a reduction in IL-17 production and secretion, albeit in non-RA settings.%8224 This
paradoxical effect was replicated under Th17-polarizing conditions, where CBD further
enhanced IL-17A positivity. Given the central role of the Th17/IL-17A axis in RA pathogenesis,
this observation raises important considerations regarding the therapeutic application of
cannabinoids in this disease context and is unexpected given CBD’s previously outlined
interference in STAT3 activity and suppressive effect on RORC expression, both critical for
Th17 differentiation.'®2"> Furthermore, CBD has been shown to reduce the production and
secretion of IL-17 in other autoimmune contexts such as multiple sclerosis.??* Taken together,
these insights may be indicative of disease specific alterations to cannabinoid functioning in
rheumatic autoimmune diseases that may override these expected immunomodulatory effects.
This observation is of particular relevance to RA patients given the growing role attributed to
the Th17/IL-17A axis in RA pathogenesis, which could be aggravated through therapeutic

application of cannabinoids such as CBD.

When extending the analysis to examine cytokine secretion via ELISA, a discrepancy that
warrants careful interpretation was observed. Despite the increased proportion of IL-17A-
positive cells detected by flow cytometry, both CBD and AEA significantly reduced the total
amount of IL-17A secreted into culture supernatants. A similar reduction was observed under
Th17-polarizing conditions. In contrast, the secretion patterns for IFN-y and TNF-a aligned with
the flow cytometry findings, with both cannabinoids significantly reducing their levels in culture

supernatants.

This apparent contradiction between increased IL-17A-positive cell percentages and
decreased IL-17A secretion could potentially be explained by considering the cytotoxicity
findings. The substantial reduction in cell viability following cannabinoid treatment, particularly
with CBD, might result in fewer total viable cells in culture. While the proportion of IL-17A-
positive cells may increase among surviving cells, the absolute number of IL-17A-producing
cells could be diminished, explaining the reduced accumulation of IL-17A in supernatants.
However, it must be emphasized that this hypothesis requires rigorous experimental
verification before acceptance. Alternative explanations that warrant equal consideration
include possible cannabinoid effects on secretory pathways as has been shown for other
cytokines such as IL-1, impaired cellular function in surviving cells, or post-transcriptional

regulation of IL-17A production.?’® Time-course experiments measuring both cell viability and
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IL-17A secretion at multiple time points, coupled with absolute cell counting, would be

necessary to test this hypothesis directly.

The differential effects of cannabinoids on cytokine production across healthy and diseased
states suggest disease-specific alterations in how CD4+ T cells respond to cannabinoid
signaling. This differential response is particularly noteworthy given the finding that
cannabinoid receptor expression remains largely unchanged between healthy controls and
patients with rheumatic autoimmune diseases. Notably, while RA patients demonstrated a
pronounced IL-17A increases in response to CBD, similar trends were observed in SLE and
PsA patients, albeit with varying magnitudes. The stronger effects observed in PsA patients
(with IL-17A increases reaching 15.22 + 3.88% compared to 6.54 + 3.12% in RA and 7.89
1.59% in SLE following CBD treatment) suggest potential disease-specific sensitivity patterns
that may correlate with the underlying pathophysiology of each condition, particularly given the
prominent role of Th17 cells in PsA pathogenesis. The mechanisms underlying these disease-
specific response patterns remain to be uncovered but may involve alterations in downstream
signaling pathways or the inflammatory milieu characteristic of each rheumatic autoimmune

condition.

A particularly noteworthy finding was the differential effect of CBD under Th17-polarizing
conditions. Even when CD4+ T cells were already receiving strong Th17-differentiation signals,
CBD treatment still significantly increased IL-17A positivity (from 13.80 £ 2.32% to 20.04 +
3.98%, p < 0.0001). Interestingly, the proportional increase under Th17-polarizing conditions
was less pronounced than under standard conditions, suggesting some context-dependency
in CBD's effects. This observation is particularly relevant when considering that inflammatory
environments in RA may already contain Th17-polarizing cytokines, and indicates that CBD's
pro-IL-17A effect persists even in contexts where Th17 differentiation is already being actively

promoted.

While these findings provide valuable insights into cannabinoid-mediated immunomodulation
in rheumatic autoimmune diseases, several limitations must be acknowledged. First, the in
vitro experimental model, while allowing for controlled administration of cannabinoids, cannot
fully replicate the complex in vivo environment where CD4+ T cells encounter varied and
continuous stimuli. Second, the cannabinoid concentrations used in the experimental setup
(15uM for CBD and 25uM for AEA) were relatively high for CBD and very high for AEA. These
concentrations were selected to ensure measurable effects guided by previous in vitro
work.1%4277.278 However, the translation to clinical contexts requires caution when considering

that Epidiolex®, a CBD-based therapeutic for treatment-resistant seizures typically leads to
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blood concentrations of ~1uM, indicating that the concentrations used in this work go beyond
what is likely achievable in vivo."™® Lower concentrations might yield different or even
opposing effects, as cannabinoids are known to exhibit biphasic dose-dependent responses

in various biological systems.?7®

To address these limitations, future studies should explore cannabinoid effects using more
physiologically relevant concentrations across a dose spectrum. Additionally, time-course
experiments measuring both cell viability and cytokine secretion at multiple time points, would
help establish the relationship between cannabinoid-induced cytotoxicity and changes in
cytokine production. Single-cell approaches could provide further insights as to whether
cannabinoids exhibit differential effects across CD4+ T cell subsets. Furthermore,
investigations should be extended to animal models of RA, with collagen-induced arthritis
mouse models being particularly valuable to evaluate the effects of cannabinoids on disease

progression, joint pathology, and systemic immune parameters in a controlled in vivo setting.

6.4. The Effect of Cannabidiol and Anandamide on Gene Expression in CD4+
T Cells

The genes selected for this analysis—SGK17, IKZF3, CSF2, and AHR—were chosen
strategically based on their established roles in T cell differentiation pathways and
inflammation as relevant to rheumatic autoimmune diseases. SGK17 was selected for its pivotal
role in the reciprocal regulation of Th17 and Treg development, with implications for
maintaining immunological balance. IKZF3 (Aiolos) was included due to its function in
lymphocyte development and autoimmunity. CSF2, encoding GM-CSF, was chosen for its
critical contribution to Th17 cell pathogenicity and its established role in arthritic disease
models. AHR was selected given its involvement in Th17/Treg balance and its potential as a

target for cannabinoid interaction.

Additionally, RORyt, the protein encoded by the RORC gene was targeted as the master
transcription factor for Th17 differentiation, though technical limitations hampered the
measurement of its expression.?’® A specific challenge was encountered with the CBD
treatment group, where difficulties were faced in isolating sufficient mMRNA, likely due to the
cytotoxic effects of CBD, to generate adequate cDNA for gPCR-based quantification of RORC
MRNA expression. RORC mRNA expression levels fell below reliable detection thresholds,
preventing conclusive assessment of cannabinoid effects on this critical Th17 regulator. This
limitation is particularly significant given the observed changes in IL-17A production, as RORC
directly regulates IL-17A transcription. The inability to quantify RORC expression leaves an

important gap in the mechanistic understanding of how cannabinoids influence Th17
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differentiation in rheumatic autoimmune diseases on a gene level. Future experiments
employing higher cell numbers per sample, alternative detection methods such as protein-level
assessment via Western blot, or single-cell approaches could help overcome this technical
limitation and provide crucial insights into cannabinoid effects on the master regulator of Th17

differentiation.

The paradoxical relationship between gene expression changes and observed cellular
phenotypes merits particular attention. The CBD-mediated upregulation of SGK7—a gene
involved in restraining Th17 cell development—stands in contrast to the increased IL-17A
positivity observed following treatment. This discrepancy suggests that cannabinoids may
simultaneously engage multiple, potentially opposing pathways. The concurrent
downregulation of CSF2 by CBD treatment would typically predict reduced Th17 differentiation,
yet the flow cytometry data indicates otherwise. These seemingly contradictory findings
highlight the complex, multifaceted nature of cannabinoid signaling in the immunological

context of RA.

The divergent effects between CBD and AEA on gene expression patterns, with CBD inducing
more pronounced changes than AEA, further suggests distinct signaling mechanisms. While
both compounds can interact with classical cannabinoid receptors, CBD's broader
pharmacological profile—including interactions with non-cannabinoid receptors and ion
channels—likely contributes to its more diverse transcriptional effects. Future mechanistic
studies employing receptor-specific antagonists or gene silencing approaches would help

delineate the specific pathways mediating these transcriptional changes.

These gene expression findings must be interpreted with consideration of the cytotoxicity data,
as the observed changes may reflect both direct transcriptional effects and altered cellular
composition due to differential survival of CD4+ T cell subsets. Single-cell transcriptomic
approaches would be valuable in distinguishing these possibilities and providing greater
resolution of cannabinoid effects across heterogeneous T cell populations in the context of

rheumatic autoimmune diseases.

6.5. The Impact of Treatment Heterogeneity on Study Interpretation

A significant consideration in interpreting the results of this study is the heterogeneity of
treatment regimens among the patient cohort. Patients with RA, PsA, and SLE included in this
investigation were undergoing various therapeutic interventions, including conventional
DMARDs such as methotrexate, as well as different biological agents targeting specific

immune pathways. These medications have distinct mechanisms of action that may
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differentially modulate immune cell function, potentially influencing the observed responses to
cannabinoid treatment in our experimental system.

The immunomodulatory effects of medications such as methotrexate, TNF-a inhibitors, IL-6
receptor antagonists, and other biologicals could potentially alter CD4+ T cell responses to
cannabinoids by affecting baseline cytokine production, receptor expression, or downstream
signaling pathways. This treatment heterogeneity represents a potential confounding variable
that might contribute to the variability observed in cellular responses across patient samples

and could partially explain some of the divergent effects observed between patient groups.

Future studies should ideally stratify patients according to treatment regimens or, where
ethically possible, include treatment-naive patients to more precisely delineate cannabinoid
effects in the absence of confounding pharmaceutical interventions. Alternatively, larger
sample sizes would permit subgroup analysis to evaluate whether specific treatment modalities

influence cannabinoid responsiveness.

6.6. Clinical Implications of Cannabinoid Use in Rheumatoid Arthritis

Given the complexity of translating in vitro findings to clinical relevance, observational clinical
data from a small cohort of RA patients who self-reported CBD use over a 4-8 week period
was included. This preliminary investigation into observational clinical data was undertaken to
assess whether the concerning proinflammatory effects of CBD observed in the cellular
experiments might manifest in a clinical context. The significant increase in IL-17A-positive
CD4+ T cells following the reported CBD use period, accompanied by concurrent elevation in
DAS28-CRP scores, suggests potential alignment between the laboratory observations and

clinical outcomes.

These findings, while preliminary and subject to significant limitations, contribute an important
translational dimension to the study. The concordance between the controlled in vitro
experiments demonstrating increased IL-17A positivity following CBD treatment and the
observed increase in IL-17A-positive cells in patients reporting CBD use warrants serious
consideration. This is particularly noteworthy given the established pathogenic role of the
Th17/1L-17A axis in RA and the corresponding worsening of disease activity as measured by
DAS28-CRP.

Several methodological limitations must be acknowledged when interpreting these clinical
observations. The self-reported nature of CBD consumption without standardization of dosage,
product composition, or administration protocol introduces considerable variability.
Additionally, the absence of a control group prevents definitive attribution of the observed

changes exclusively to CBD use, as they may reflect natural disease fluctuations,
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environmental factors, or changes in medication adherence. Furthermore, the small sample

size limits statistical power and generalizability.

Despite these limitations, these preliminary clinical findings raise legitimate concerns regarding
CBD use in RA patients that merit further investigation. The parallel increase in IL-17A positivity
and disease activity suggests that despite CBD's established anti-inflammatory properties in
other contexts, its effects in RA may be more complex and potentially detrimental. These
observations underscore the need for controlled animal studies using well-established mouse
models of arthritis. Mouse models would allow for systematic evaluation of dose-dependent
effects and comprehensive immunological profiling in a controlled in vivo environment. Such
preclinical research is essential to thoroughly characterize cannabinoid effects in inflammatory
arthritis before any further recommendations regarding cannabinoid use in RA can be

formulated.

The clinical implications of these findings extend beyond RA to potentially other Th17-mediated
autoimmune conditions. Given the increasing popularity and accessibility of CBD products,
coupled with perceptions of their anti-inflammatory benefits, the observations highlight the
importance of disease-specific research into cannabinoid effects rather than generalizing anti-
inflammatory properties across diverse pathological contexts. This cautionary perspective is
particularly relevant for patients with rheumatic autoimmune diseases who may consider

cannabinoid use for symptom management without medical supervision.
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8. Appendix

8.1. Expanded Results Statistics

Supplementary Table 1. Expression of cannabinoid receptors in CD4+ T cells across patient

groups.

Patient CB1 n CB2 n GPR55 n

Group (Mean (Mean % (Mean %
SD, %) SD, %) SD, %)

HC 10.80 10 945+5.39 | 9 251+017 |3
7.68

RA 8.69+8.06 | 74 790+8.78 | 73 545+3.44 | 36

SLE 15.47 |5 714+£445 |7 442+376 | 3
16.92

PsA 12.18 |16 12.45 + |14 765+3.69 | 5
6.72 6.29

HC: Healthy controls; RA: Rheumatoid arthritis; SLE: Systemic lupus erythematosus; PsA:

Psoriatic arthritis; SD: Standard deviation; n: Number of subjects.

Supplementary Table 2. Percentage of IL-17A-positive CD4+ T cells across treatment

conditions and patient groups

Group Untreated | CBD (15| CBD Veh. | AEA (25 | AEA Veh. | n
(Mean £ | yM) (Mean | (Mean % | pM) (Mean | (Mean %
SD %) + SD %) SD %) + SD %) SD %)
HC 3.30+1.03 | 1.86+0.89 | 3.62+1.15 | 2.96+1.62 | 3.51+1.29 | 13
RA 3.36+1.46 | 6.54+3.12 | 3.27+1.36 | 4.53+2.50 | 3.28+1.45 | 36
SLE 3.77+0.77 | 7.89+1.59 | 4.04+0.95 | 6.83+1.65|3.99+1.00 | 5
PsA 6.83+1.62 (1522 +|718+138|10.09 +|733+x152|5
3.88 2.51

HC: Healthy controls; RA: Rheumatoid arthritis; SLE:

Systemic lupus erythematosus; PsA:

Psoriatic arthritis; SD: Standard deviation; n: Number of subjects.
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Supplementary Table 3. Percentage

conditions and patient groups

of IFN-y-positive CD4+ T cells across treatment

Group Untreated | CBD (15| CBD Veh. | AEA (25| AEA Veh. | n
(Mean % | uyM) (Mean | (Mean % | uM) (Mean | (Mean
SD %) + SD %) SD %) + SD %) SD %)
HC 551+295 | 225+112 | 5.79+3.36 | 2.72+1.75 | 551+ 3.40 | 13
RA 6.83+3.73 | 279+£1.99 | 6.66+5.12 | 4.12+2.28 | 6.67 £4.48 | 27
SLE 6.43+1.45 | 349+£192 | 7.00+161 |525+249 |643+1.88 |5
PsA 10.94 +[3.25+0.99 | 11.82 +|7.64+£393 | 10.77 |3
3.62 412 4.33

HC: Healthy controls; RA: Rheumatoid arthritis; SLE: Systemic lupus erythematosus; PsA:

Psoriatic arthritis; SD: Standard deviation; n: Number of subjects.

Supplementary Table 4. Percentage of TNF-a-positive CD4+ T cells across treatment

conditions and patient groups

Group Untreated | CBD (15 | CBD Veh. | AEA (25 | AEA Veh. | n
(Mean £ | yM) (Mean | (Mean % | pM) (Mean | (Mean %
SD %) + SD %) SD %) + SD %) SD %)

HC 10.55 +|3.74+£3.53 | 11.78 +|7.80+4.24 | 11.15 (17
3.26 3.49 4.06

RA 12.38 +|3.67+234 | 11.70 +6.50+£3.27 | 11.14 +| 36
4.35 3.68 3.43

SLE 10.55 +|497+3.67 | 11.78 +|7.46+220 | 10.75 |5
1.89 2.38 1.91

PsA 15.32 +1.99+1.67 | 15.97 +6.85+£548 | 1548 |5
4.62 5.36 4.61

HC: Healthy controls; RA: Rheumatoid arthritis; SLE: Systemic lupus erythematosus; PsA:

Psoriatic arthritis; SD: Standard deviation; n: Number of subjects.
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Supplementary Table 5. Mean + SD values of relative gene expression in CD4+ T cells from

healthy controls following cannabinoid treatment

Treatment SGK1 (n=3) IKZF3 (n=2) CSF2 (n=3) AHR (n=4)
CBD (15 uM) | 3.24 + 2.61 3.01+ 144 0.36 + 0.55 11.48 £ 21.70
CBD Veh. 0.88 + 0.33 0.35 £ 0.29 0.53 + 0.47 2.19 £ 4.02
AEA (25 pM) | 2.34 + 2.89 0.93 £ 0.66 0.68 + 0.43 2.69+4.78
AEA Veh. 0.56 £ 0.05 0.410.33 0.44 £ 0.36 6.90 + 13.34

Supplementary Table 6. Mean + SD values of relative gene expression in CD4+ T cells from

RA patients following cannabinoid treatment

Treatment SGK1 (n=9) IKZF3 (n=4) CSF2 (n=5) AHR (n=6)
CBD (15 uM) 14.07 £ 10.0 11.85+9.09 0.05 £ 0.05 259+225
CBD Veh. 1.31 £ 0.49 1.26 + 1.05 1.08 £ 0.61 0.88+0.25
AEA (25 uM) 1.86 + 2.53 2.69 £ 2.00 0.51 £ 0.41 1.19+0.32
AEA Veh. 1.19 £ 0.60 1.14 £ 0.88 0.87 £ 0.50 0.93 £ 0.59
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The legalization of cannabinoids for medical use has reinforced
their emerging role as a treatment of chronic pain in patients with
cancer or rheumatic diseases.’? In addition to their role as pain
relievers, evidence obtained from animal models suggests that
cannabinoids have immunosuppressive properties.3 However, a
definite immunosuppressive function of cannabinoeids has not yet
been confirmed in clinical trials.* We therefore analyzed the
influence of the cannabis derivative cannabidiol (CBD) and the
endogenous cannabinoid anandamide (AEA) on T helper type 17
(Th17) cells from patients with rheumatoid arthritis (RA), systemic
lupus erythematosus (SLE), and psoriatic arthritis (PsA). Interest-
ingly, in vitro culture in the presence of CBD significantly
increased Th17 cell differentiation in CD4+ T cells from the
peripheral blood of patients with RA, SLE, or PsA, while Th17 cell
differentiation was suppressed in healthy individuals (Fig. 1a and
Supplementary Fig. STA). In RA patients, the median Th17 cell
frequency in CBD-treated cells was 6.54 £0.52 vs. 3.27+0.23 in
the vehicle control group (p < 0.0001), and in healthy controls, the
frequency was 1.86+0.25 in CBD-treated cells vs. 3.62 £0.32 in
the vehicle control group (p = 0.0002). AEA showed similar effects
on CD4+ T cells from patients but did not affect CD4+ T cells
from healthy controls (Fig. 1a). The addition of the Th17 skewing
cytokines transforming growth factor-f, interleukin (IL)-18, IL-6,
and IL-23 further increased the Th17-inducing properties of CBD
(Fig. 1b). As shown previously in experimental autoimmune
encephalomyelitis (EAE) mice, the production of interferon-y and
tumor necrosis factor-a was reduced in the presence of CBD in
patients with rheumatic diseases, as well as in healthy individuals
(Supplementary Fig. S1B, C). During our study, some of our RA
patients reported the use or planned use of CBD oil as a pain
reliever. In these cases, we compared Th17 cell frequencies before
and after treatment initialization and found that treatment with
CBD oil for 4-8 weeks drove Th17 cell expansion in vivo (1.10 £
0.32 before vs. 4.52 + 1.34 after CBD treatment; Fig. 1¢). Interest-
ingly, disease activity measured by Disease Activity Score 28-joint
count C reactive protein significantly increased during CBD
treatment (Fig. 1d). In accordance with previous reports, this
immunomodulatory effect of CBD was not mediated by the
receptors CB1, CB2, or GPR55 (Supplementary Fig. S2A)° To

further assess the characteristics of the CBD-induced Th17 cells,
we analyzed their gene expression profiles and discovered a CBD-
mediated increase in SGKT expression (Fig. 1e, Supplementary
Fig. 52Q). This is remarkable, as SGK1 is an important regulator of
the reciprocal development of proinflammatory Th17 cells.® In
addition, the expression of CSF2 was decreased and the
expression of AHR was increased by CBD (Fig. 1f-g and
Supplementary Fig. 528, C).

Th17 cells play a central role in the pathogenesis of PsA and
ankylosing spondylitis. In addition, they have been linked at
least partly to the pathogenesis of various other rheumatic
autoimmune diseases. We observed an increase in Th17 cell
frequencies induced by CBD in vitro, as well as in some patients
with RA receiving CBD treatment. These results are in contrast to
observations made in mice with EAE, in which cannabinoids
ameliorated disease activity.> However, CB2-selective agonists
are often used in these animal studies.® The CB2 receptor is
known to mediate immunosuppressive effects, while immune-
activating effects have been attributed to other receptors.® We
used cannabinoids that activate various receptors and pathways.
Variations in these receptors and pathways between patients
with rheumatic autoimmune diseases and healthy individuals
could explain differences between patients and healthy
subjects. Moreover, the variety of CBD receptors could be
responsible for the discrepancy between animal studies and
findings in humans, including our study. In conclusion, our data
show that cannabinoids increase Th17 cell frequencies and
suggest that they may therefore be used with caution in
patients with rheumatic autoimmune diseases.
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Fig. 1
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Cannabinoids induce Th17 cell differentiation in patients with rheumatic diseases. a Expression of IL-17A in CD4+ T cells from healthy

controls and patients was analyzed by flow cytometry (HC, n=13; RA, n=36; SLE, n=15, PsA, n="5). b CBD-mediated induction of IL-17A
expression in CD4+ T cells from RA patients in the presence of TGFp, IL-1p, IL-6, and IL-23 (n = 12). ¢ Increase in IL-17A-positive Th17 cells in patients
receiving cannabidiol oil for 4-8 weeks (n=5). d DAS28-CRP in patients receiving cannabidiol oil for 4-8 weeks (n = 5). e-g Heat maps showing
gene expression in RA patients treated with CBD or AEA. Gene expression was analyzed by RT-PCR. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001;
the data are presented as the mean + SEM; significant differences were determined using the unpaired Mann-Whitney test and Student’s t test
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Supplementary Methods

Study subjects. All patients with RA fulfilled the 2010 ACR/EULAR classification
criteria. Blood samples from age- and sex-matched healthy individuals were used as
controls. Blood was drawn after written informed consent was obtained in accordance
with the Declaration of Helsinki following a study protocol approved by the Ethics

Committee of the University of Cologne (4).

Human T cell isolation. Primary human lymphocytes were isolated from
peripheral blood from patients and healthy controls by Pancoll® density gradient
centrifugation (PAN™-Biotech GmbH, Aidenbach, Germany). CD4* T cells were
purified by negative selection using the CD4* T cell isolation Kit. The purity of the CD4+
T cell populations was verified by flow cytometry and was at least 96%. Viable cells
were counted using the Vi-CELL XR cell counter (Beckman Coulter, Krefeld, Germany)
or the automated cell counter CellCountess (Life Technologies GmbH, Darmstadt,

Germany).

Th17 polarization. CD45RA*RO™ naive CD4* T cells were cultured in X-Vivo 15
(Lonza, Cologne, Germany) media supplemented with 1% human serum and 1%
Penicillin-Streptomycin (both Sigma-Aldrich, Saint Louis, U.S.). Cells were cultured for
4 days with the T cell Activation/Expansion Kit (Miltenyi Biotec) and recombinant
human TGF-B (5 ng/ul; PAN™-Biotech GmbH, Aidenbach, Germany), IL-1B
(12.5 ng/pl), IL-6 (25 ng/ul; both Miltenyi Biotec) and IL-23 (25 ng/ul; PeproTech,

Rocky Hill, U.S.). Medium and cytokines were refreshed after 3 days.

Flow cytometry. CD4* T cells were stimulated with PMA (100 ng/ml) and
ionomycin (1.5 uM; both Cell Signaling Technology®, Danvers, U.S.) in the presence

of Brefeldin A (eBioscience, San Diego, U.S.) for 3 hours. To exclude dead cells, cells
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were stained by the LIVE/DEAD™ Fixable Dead Cell Stain Kit (Invitrogen,
ThermoFisher Scientific, Carlsbad, U.S.). For intracellular staining, cells were fixed and
made permeable by the BD Cytofix/Cytoperm Kit (BD Bioscience, Heidelberg,
Germany) according to the manufacturer’s instructions and stained with anti-IL17A,
anti-IFN-y (both affymetrix eBioscience). Data were acquired on the Gallios 10/3 flow

cytometer (Beckman Coulter, Krefeld, Germany).

Quantitative Real Time PCR. RNA was isolated from CD45RA+*RO" T cells using
the RNeasy Mini Kit and converted into cDNA using the QuantiTectReverse
Transcription Kit (both Qiagen, Hilden, Germany). All primers were purchased from
Applied Biosystems. All reactions were performed using the 7500 Fast Real-Time PCR
System (Applied Biosystems). The values are represented as the difference in Gt
values normalized to B2-microglobulin for each sample using the following formula:

relative RNA expression = (2-9¢t) x 103,

Statistics. Statistical analysis was performed using GraphPad Prism. Where
indicated, data were analyzed by non-parametric Mann-Whitney test or student’s t-test
and are presented as the mean + SEM. p <0.05 was considered as statistically

significant.
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Supplementary Table S1: Characteristics of patients with RA

Patient characteristics
Age (years)
Sex(f:m)

Time since disease onset (years)
Number of previous treatments
DAS-28(BSG)

DAS-28 (CRP)

CRP [mg/1]

BSG [mm/h]
Rheumatoid factor (% positive)
ACPA (% positive)

58
3.8:1
11.14
3.62
2.85
2.58
6.12

16

51

56

average range

31-84

0-39
1-10
1.11-6.05
0.96-6
06-62.7
2-71
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Supplementary Figure S1
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(A) Representative example of flow cytometry analysis of Th17 cells. (B) IFNg and (C) TNFa
expression in CD4+ T cells from the peripheral blood of healthy controls or from patients with
RA, SLE or PsA. *p<0.05, **p<0.01, ***p<0.001,****p<0.0001; data is presented as
meanSEM,; significant differences were determined using the unpaired Mann Whitney test.
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Supplementary Figure S2
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(A) Expression of the cannabinoid receptors CB1, CB2 and GPR55 on CD4+ T cells from the

peripheral blood of healthy controls or from patients with RA, SLE or PsA. (B) Gene expression

of specific genes in healthy controls and in patients with RA (C) was analyzed by RT-PCR.
*p<0.05, **p<0.01, ***p<0.001,****p<0.0001; data is presented as meantSEM; significant

differences were determined using the unpaired Mann Whitney test.
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