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Abstract

Understanding spatio-temporal dynamics is essential for predicting how populations fluctuate over time and space. Theoretical models
have highlighted the ecological complexity of spatio-temporal dynamics, which can lead to the emergence of complex patterns,
including nonlinear dynamics and chaotic behavior, important mechanisms for maintaining of biodiversity. However, these dynamics
are difficult to observe experimentally due to a lack of temporal and spatial resolution. Here, we show that even a single-species
system exhibits complex spatio-temporal patterns without external forcing where order and chaos coexist (edge of chaos). Automated
analyses of experimental dynamics of cells of a ciliate on a microfluidic chip environment with 50 interconnected patches documented
pattern formation, including chaos-like dynamics, using several analytical methods. Different initial conditions caused changes in
patterns, revealing the complexity and principal unpredictability of self-organized pattern formation. A model containing the stochastic
fluctuations of the experiment verified the deterministic nature of patterns. The results show the intrinsic complexity of ecological
systems, challenging predictions in nature conservation. Our results bridge the gap between theoretical models and experimental
observations, offering new insights into the fundamental nature of living systems and their spatio-temporal organization.

Keywords: self-organization; spatio-temporal pattern formation; microfluidic chip; Tetrahymena pyriformis; chaotic dynamics; ecological
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Introduction
The process of spatio-temporal dynamics is inherently complex,
driven by multiple interactions and nonlinear dynamics. Spatial
heterogeneity is often attributed to differences in abiotic
environmental factors, exemplified by the Moran effect—
a synchrony caused by spatially correlated environmental
influences observed in nature and in the lab [1–4]. However, major
challenges in predicting spatial structures arises from individual
behavior rather than spatial structures [5]. Also, self-organized
spatial heterogeneity, driven by interactions between organisms,
is rarely considered and has mostly been demonstrated in
models [6, 7]. Accounting for these processes is important as
they can enhance local diversity in metacommunities [7] and
create spatial niches that further promote biodiversity [8]. Exam-
ples from literature include self-organized patterns in vegetation
[9], plant-parasite interactions [10] and plankton–fish systems [11]
and have been modeled in networks of discrete spatial patches
[7, 12]. Self-organized pattern formation in ecological systems
can be attributed to several mechanisms [13]. These include
density-dependent movement, where individuals alter their
behavior based on local population density [14, 15], and scale-
dependent feedbacks, involving positive and negative interactions
at different spatial scales [7, 9, 16]. These mechanisms provide
a foundation for understanding self-organized patterns, but
requirements and processes involved in their formation remain
an active area of research.

Time-series analyses of distribution patterns can offer insights
into the process of pattern formation as it unfolds over time
[17]. Here, complex nonlinear dynamics can be observed, ranging
from damped oscillations to stable limit cycles and deterministic
chaotic dynamics [18, 19]. Deterministic chaotic dynamics are
defined by aperiodic fluctuations sensitive to initial conditions.
In experimental systems, it is difficult to distinguish chaotic from
stochastic fluctuations [18, 20, 21] and few studies have con-
sidered chaotic dynamics under controlled environmental condi-
tions [2, 22–26]. Even within individual species, complex behaviors
without external forcing have been shown in models [19, 22,
27] and some experimental studies [22, 28], but chaos was still
often expected to be an exception. After extensive simulation
tests, a recent review showed that >30% of time-series data in a
global database exhibited chaotic dynamics [20]. Methodological
limitations have often led to misclassifications in the past [20].
As the causes of dynamics in biological systems are often not
well understood [29, 30], detection of chaos relies heavily on
mathematical models, which alone are insufficient to demon-
strate the occurrence of chaos within the system itself. Due
to inherent complexity of biological systems, theories suggest
that dynamics often operate at a mixture of chaos and order,
referred to the “edge of chaos” where complex systems can adapt
and evolve most effectively [31–33]. Confirming whether chaotic
and self-organized dynamics influence natural pattern forma-
tion could have fundamental consequences for understanding
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Figure 1. Hypotheses on the spatio-temporal distribution of single species within a network of equally resourced discrete spatial patches.
(A) Stochastic hypothesis: Organisms are primarily randomly distributed and movement is density independent, characterized by insensitive initial
conditions, lack of structure and correlations. This scenario was simulated using the same stochastic model as for the experiments (Material and
Methods). (B) Complex deterministic hypothesis: Organisms follow a complex distribution process and movement is density dependent, which is
mainly shaped by the initial conditions, characterized by a visible structure, partial correlation and possible complex dynamical behavior. For this
scenario, a model was developed where the movement between chambers is governed by a nonlinear function of cumulative population differences,
introducing density-dependent behavior. Both scenarios were simulated (supplementary text) using the same initial conditions exemplified by a
theoretical network of 25 connected habitat patches, as visible in the spatial analysis. The temporal analysis (column 1) shows the abundance for each
of the 25 chambers in different colors over time. The spatial analysis (columns 2 & 3) shows the distribution at two selected time points (spotted lines
in corresponding graph of column 1). Structural analysis (NMDS with Bray Curtis; column 4) shows the structural distribution over time (first time
point t(0)). Correlation analysis (columns 5 and 6) includes the pairwise spearman correlation coefficients among the 25 patches (column 5) and a plot
of these coefficients against the minimum distance between patches (column 6).

the enormous biodiversity, as these complex nonlinear dynamics
can contribute to the stable coexistence of species and different
genotypes [7, 8, 34]. To address this issue, a real-world system
would be required in which extrinsic environmental factors are
excluded, and all dynamics are based on intrinsic processes.
Here, we show the complexity of spatio-temporal dynamics of a
single species based on an experimental microfluidic chip in a
controlled environmental system.

For the spatio-temporal distribution of a single species in a net-
work of different habitats with uniformly distributed resources,
we hypothesize the existence of two possible ways of pattern
generation: (i) Stochastic distribution: Density-independent dis-
tribution with stochastic fluctuations. (ii) Complex deterministic
distribution: Density-dependent movement rates between patches
(transition rates) leading to pattern formation. This would result
in a complex distribution behavior of organisms such as chaos
with changing variations and different visible patterns (see Fig. 1).

Because spatial distribution is not only a feature of movement
but also a central life history trait [35], the high proportion of
nonlinear interactions in nature [36, 37] could lead to complex
distribution patterns even without external influences. Although
the single-species system appears to be very simple, the complex-
ity of the spatio-temporal dynamics reveals a system on the edge
of chaos, highlighting the complexity of intrinsic mechanisms
already present at the level of single-species.

Materials and methods
Microfluidic Chip
The microfluidic chip contains 50 interconnected patches, each
2 mm in diameter and 500 μm in height, making it suitable for
studying a variety of unicellular organisms. With the exception
of the patches far left and right each patch interfaces with three
neighboring patches, ensuring a uniform connectivity across the
chip. Constructed from Plexiglas, the chip is both reusable and
easy to clean. The microfluidic chip is milled into a 3.5 mm thick
PMMA (Plexiglas) plate, allowing for detailed inspection using
an inverted microscope equipped with a video camera and an

automated X-Y positioning system that allows to scan cells in
each patch (Fig. 2B, C).

Experiments
An axenic culture of the ciliate T. pyriformis (CCAP 1630/1 W)
was obtained from the Culture Collection of Algae and Protozoa
(Scotland, United Kingdom). The ciliates had an average size of
approximately 85 μm × 22 μm. Prior to the experiment, cultures
were adapted to the experimental temperature (15◦C) for 24 hours.
All 14 experiments were performed under constant conditions.
The culture and PPY (Proteose Peptone Yeast Extract) medium
were mixed until the respective abundance was reached and then
used to fill the chip (120 μl). The chip was covered and sealed
with grease (Borer glisseal N, Carl Roth, Karlsruhe, Germany) to
minimize evaporation. After filling and sealing the chip, the exper-
iment was immediately started. The abundance of each patch
was determined sequentially, with the microscope table move-
ment automated by three stepper motors (ST2818S1006-B, NEMA
11, Nanotec, Feldkirchen, Germany) and controlled with a self-
programmed application running in the Python script language.
This setup allowed the abundance of each patch to be measured
every 6:20 minutes. For each patch, five seconds of video (with a
resolution of 2048 × 2048 pixels and 35 frames per second) were
recorded for abundance determination using a MikroLive 5MPplus
camera (Microlive, Schifferstadt, Germany) with a Sony IMX264
sensor. A recorded timestep symbolizes a complete measurement
cycle covering all 50 patches sequentially. For all experiments, 105
timesteps (12 hours of experimental time) were recorded. Differ-
ent initial conditions between experiments were realized through
a combination of varying inoculation densities (ranging from 1159
to 5869 cells) and stochastic deviations between patches.

Measurement of abundance
The entire measurement and analysis process was fully auto-
mated. Over the course of 14 experiments, more than 100 hours
of video footage were recorded, containing over 12 million
frames. After capture, the videos were transferred to the High
Performance Computing (HPC) system CHEOPS of the University
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Figure 2. Experimental design of the microfluidic chip. (A) Microscopic image of ciliates from the interstitial region of a sandy beach (Helgoland Island,
North Sea, Germany), serving as an ecological reference for distinct environmental patches, analogous to those in our microfluidic chip. (B) The
microfluidic chip with all chambers numbered as used later in the presentation of results. (C) Video-view of a microfluidic chip habitat patch,
highlighting ciliate cells with squares and their movement trajectories. For further details, see Methods section.

of Cologne and analyzed with a custom-trained neural network
based on the Ultralytics Yolov8 algorithm [38] (v. 8.0.227)
algorithm and implemented with the PyTorch framework [39](v.
2.2.0.dev20230914 + cu121). As an additional step to reduce the
number of false positive detections, the positions of all detections
were stored and analyzed for movements. If a detected cell did
not move during the 5-second video recording, it was excluded
from the analysis. This was ensured by tracking the position of
every detection. If a detection did not move beyond its initial
position ±4 μm (approximately 5% of the average cell length), it
was discarded. This led to a reliable analysis of the abundance
data (P = .982, R = 0.974, mAP50 = 0.989, mAP50–95 = 0.879).

Analysis of experimental data
Data analysis was performed using R (v.4.1.1, Vienna, Austria) (R
Core Team 2021) and MATLAB version R2023b (MathWorks, Inc.,
MATLAB, Natick, 2023). All experimental data were analyzed (i) for
their temporal dynamics (time series analysis) and (ii) for their
spatial distribution using the timesteps.

The temporal dynamics of the system were analyzed by exam-
ining the abundance of each patch over time. One of the most
commonly used indices for detecting chaotic dynamics is the
Lyapunov exponent (LE), which measures the average rate of
divergence between nearby points in the phase space [20, 21,
40]. Positive LE values indicate chaotic dynamics. The LE was
estimated using two methods, the direct method after Rosenstein
[21] and the indirect Jacobian matrix method [40]. The LE esti-
mations, including estimates of the hyperparameters (embedding
dimension and time lag), were done according to a previously
published study [20]. Their findings demonstrated that the Jaco-
bian LE method provides the most conservative estimates and
performs best on shorter time series. As a further buffer against
false positives, we followed their procedure that the minimum
lower bound for LE had to be >0.01 for the time series to be
classified as chaotic. Additionally, a sliding window approach
using 50-timepoint-long time series was employed to determine
local LE, capturing stationary data and obtaining information on
whether the local stability changed throughout the experiment.
This approach resulted in 55 measurements for each time series.
Furthermore, the hyperparameter (θ) of the optimized model for
the Jacobian LE was examined to verify that positive LE were
not solely a reflection of non-stationary exponential growth [41].
When this parameter was non-zero, it indicated that a non-linear
model performed best for prediction in the S-map framework. In
such cases, we considered a positive LE as a reliable indicator of
chaos. Positive LE alone (with θ = 0) were classified as a mixture of
chaotic dynamics and exponential growth and were not included
in the discussion.

For spatial analysis, each timepoint was analyzed regarding the
autocorrelation using Moran’s I statistic, implemented with the
R package “spdep” (v.1.3–1) [42]. P values were calculated through
Monte-Carlo permutation simulations using the moran.mc()
function, with 12 000 permutations to ensure reliable P values
after correction. The algorithm utilized the network of connected
patches to determine spatial relationships in abundance patterns.

Spatial correlations were calculated through pairwise Spear-
man rank tests on the time series data for each patch. In complex,
nonlinear systems, correlations can fluctuate rapidly, causing
problems in causal analysis [37]. To accurately determine the
correlations, all abundance values were normalized by the total
abundance at each timestep, thereby offsetting the influence of
overall growth and minimize non-stationary effects. To control for
false discovery rates (FDR), P values from the autocorrelation and
correlation tests were adjusted using Holm’s method [43].

Using the Bray–Curtis dissimilarity index [44] on the abun-
dance data across different time points, a PERMANOVA (permuta-
tional multivariate ANOVA) was performed to determine whether
and how much of the variance could be attributed to time in the
model. Additionally, a second dissimilarity matrix after Dynamic
Time Warping (DTW), using the R package “dtw” [45, 46] was
created. This matrix was used to perform a separate PERMANOVA
to evaluate how much variance the position of each patch on the
chip explained in the model. DTW, a robust distance measure for
time series data, is commonly utilized for classification tasks [42,
46]. The R2 value was used to quantify the proportion of variance
explained by time and position, respectively. Both the Bray–Curtis
dissimilarity index and the PERMANOVA analyses were carried
out using the R package “vegan” (v.2.6–6.1) [47].

To ensure the robustness of the findings, all analysis methods
were also applied to a mathematical “null” model to determine
whether the observed patterns were deterministic or could be
explained by stochastic variation.

Model
To test for deterministic aspects of the experimental data, a
mathematical null model was developed based on experimental
parameters but containing only random fluctuations. To deter-
mine the model’s movement (transitions) between patches, three
separate experiments were conducted using cells of T. pyriformis
under the same conditions as the main experiment. In each exper-
iment, one patch was monitored with over 500 time points, with
cell counts taken every two minutes via automated abundance
measurement (see above). By tracking the movement of cells,
the influx, and efflux rates for the patch were quantified. The
analysis showed a significant flux of cells between patches, with
a transition rate of 60% ± 15% (mean ± SD) per minute, with the
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distribution of transitions between patches following an approx-
imately normal distribution (Fig. S7). These findings were consis-
tent across all three calibration experiments, each using different
patches.

Alongside the growth rate (g) obtained from the experiments,
the model’s framework for the stochastic fluctuations could be
determined. This model consists of 50 coupled ordinary differen-
tial equations (ODEs), where each equation describes the abun-
dance within a patch (measured in cells per patch). Transition
rates were randomly selected from a set of values following a
normal distribution with μ as the expected value of 60% and σ as
the standard deviation (15%). Transition rates between connected
patches were stored for each timestep in a 50x50 matrix, denoted
as matrix At. In this matrix, each element ai,k represents the
transition from patch i to patch k. The mathematical ODE system
was therefore described as follows:

At =

⎛
⎜⎜⎝

a11 · · · ak1

...
. . .

...
ai1 · · · aik

⎞
⎟⎟⎠|aik normal distributed after μ and σ for all t

dyi

dt
= g ∗ yi − yi ∗

50∑
k=1

(aik) +
50∑

k=1

(
aki ∗ yk

)

For the growth rate, values following normal distribution with
g = 4.51 ± 0.76 d−1 were used (see Source Data Model). The calcula-
tions were performed using MATLAB version R2023b (MathWorks,
Inc., MATLAB, Natick, 2023).

To compare the stochastic model with the experimental data,
1000 model outputs were generated using the 14 different initial
conditions from the experiment. Statistical analysis was per-
formed to compare the model and the experiment using the
Wilcoxon rank-sum test, which is robust against unequal sample
sizes (n = 14 for the experiment and n = 1000 for the model). To
account for multiple comparisons and reduce the FDR, P values
were adjusted using Holm’s method [43].

Results
Experimental spatio-temporal dynamics on a
microfluidic chip
The automated setup in the well-controlled laboratory system
reliably measured the abundance of organisms in each patch at
intervals of a few minutes. The monotonic trend in total growth
(Figs. 3A, 4H), combined with the high precision and recall values
of our model (see Methods section), indicated low observational
errors and minimal noise. Despite equal and constant exter-
nal conditions in each patch, experiments showed a complex
and diverse dispersal of cells and distribution patterns. Cells
of Tetrahymena were able to spread throughout the microflu-
idic chip and all experiments showed a positive growth rate
(4.51 ± 0.76 d−1). Due to the positive growth, all-time series were
non-stationary. Although the total abundance increased mono-
tonically in the experiments (Figs. 3A, 4H), the abundances within
the patches were highly variable. All experiments were inoculated
with different starting cell concentrations from 1159 to 5869
cells (9.658–48.908 cells/ml, a range of protist abundances we
found in the interstitial of North Sea sediments) to obtain a
range of different conditions. Based on the normalized variance
of abundances, the 14 independent experiments were classified
into three significantly different categories with high-variance
(HV), medium-variance (MV), and low-variance (LV) (Figs. 3, 4A).
HV experiments had significantly higher starting abundances
than MV and LV experiments (P = .030 and P = .039 respectively,

Tukey-HSD). In addition, these three categories showed visibly dif-
ferent distribution phenomena, as the high-variation experiments
showed clear peaks in patch abundances, the medium-variation
experiments showed global patterns, and the low-variation exper-
iments showed no clear pattern (Fig. 3A, Fig. S1). The continuous
growth of cells indicates that they were not subject to any limiting
conditions (Fig. 4H).

Spatio-temporal patterns at the edge of chaos
Positive spatial autocorrelation, a hallmark of patchy distribution
[1], was at least temporarily detected in all experiments (Moran’s
I) (Fig. 3B–C, Figs. S1 and S2). HV and MV experiments showed
the highest rate of positive autocorrelation (Fig. 4G). Negative
autocorrelation was not observed in any of the experiments.

The pairwise Spearman correlations showed distinct patterns
of correlation clusters, with no single pattern being fully repli-
cated (Fig. 3D, Fig. S3). These patterns included a mixture of
positive and negative correlations. The HV experiments showed
particularly complex correlation patterns with the highest num-
ber of correlations (Figs. 3D, 4B). Correlations across distances
provide information about the size of clusters and connectivity.
With one exception, all experiments showed on average positive
correlations between immediate neighbors (distance = 1), whereby
this correlation generally decreasing up to a distance of 5. Beyond
this range (distances 6–13), the correlation coefficients exhibited
different trends, including increases, decreases, or constancy. LV
experiments displayed the least variation in correlation with dis-
tance (Fig. 3E, Fig. S4).

Chaotic dynamics were analyzed using two distinct detection
methods across the series of experiments. Changes of the abun-
dance in individual patches over time (time series) were inves-
tigated. The Jacobian LE method detected at least one positive
LE in 11 out of 14 experiments, with an average classification
rate of 5.9 ± 7.7% (Fig. 3G, Fig. S6), indicating a mixture of chaotic
dynamics and exponential growth. Excluding time series classi-
fied as linear reduced the percentage of positive LE to 1.2 ± 1.7% of
the time series classified as chaotic. The direct LE determination
using the Rosenstein method classified an average of 90.7 ± 7.3%
of the cases with a positive LE exponent. No significant difference
was found between the three categories for both chaos detec-
tions methods (Fig. 4C–D). The local LE (sliding-window approach)
revealed a localized stability measurement, with all experiments
exhibiting positive LE at some timepoints. Overall, 8.1 ± 6.7% of
the time series exhibited a positive LE. Under nonlinear condi-
tions, this proportion decreased to 4.8 ± 1.6% (Fig. 5C, D). Even
under nonlinear conditions, HV experiments showed a signifi-
cantly higher proportion of positive LE values compared to MV
and LV experiments (P = .002 and P < 0.001, respectively, Tukey-
HSD), with 6.2 ± 0.1% of time series classified as locally instable.
In both methods the Jacobian LE were on average slightly negative,
whereas the localized exponents were exhibiting a larger range of
exponents (Table S1).The experiments revealed intricate spatio-
temporal patterns that can be characterized as a mixture of chaos
and order, often referred to as the edge of chaos [31].

Unpredictability of distribution patterns
The PERMANOVA results indicated that, on average, 38.6 ± 23.1%
of the variance was attributable to the patch position, with the
chip length explaining more variance than the width (Fig. 2)
(P = .031, Welch’s t-test). The second PERMANOVA analysis,
focusing on the distribution patterns over time, revealed that
24.9 ± 14.3% of the variance was explained by time-related
factors. In both models, the experimental category did not
significantly influence the proportion of explained variance
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Figure 3. Analysis of spatio-temporal dynamics of cells of Tetrahymena across experimental and model data. (A) Temporal abundance trajectories
across all 50 patches in a single experiment. Colours represent the different patch positions, ranging from patch 1 to patch 50 (the sequence of
labelling follows the rainbow colours). The patch numbers correspond to those shown in Fig. 2. Among the 14 independent experiments, three
significantly different categories with HV (n = 3), MV (n = 8) and LV (n = 3) were separated. for each category one example is shown. The number in the
right lower corner of the graphs resemble the number of the experiment as indicated in Figs. S1–S7. For the model simulations different initial
abundances were used, here one of the experiments LV (L2) is shown. (B) Autocorrelation analysis for each time step based on Moran’s I. Positive
autocorrelation is indicated in turquoise, whereas red indicates the absence of autocorrelation. Statistical significance was assessed using Monte
Carlo permutation simulations, with an FDR adjusted; P < 0.05 considered significant. (C) Spatial distribution of cell abundance after 8 hours,
represented schematically on the experimental chip. Abundance is displayed using a grayscale gradient, with white indicating low abundance and
black indicating high abundance. (D) Pairwise spearman rank correlation coefficients for the abundances across all 50 patches. The coefficients are
color-coded as visible in the legend. (E) Spearman correlation coefficients plotted against the minimum distance between chambers, with direct
neighbours having a distance of 1. The smoothed line represents the mean ± s.e.m. (F) Non-metric multidimensional scaling (NMDS) plot based on
Bray–Curtis dissimilarity, using abundance data from all patches. Points are connected sequentially according to their time points. The stress value
and PERMANOVA R2 for the time factor are provided. (G) Chaos classification based on the Jacobian LE method. The schematic representation of the
chip highlights time series classified as chaotic (red) and non-chaotic (black).
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Figure 4. Comparative analysis of Tetrahymena spatio-temporal dynamics. (A-G) Comparative analysis of HV (n = 3), MV (n = 8), and LV (n = 3)
experimental categories. Statistical significance was assessed using one-way ANOVA followed by Tukey’s post-hoc test, with P < 0.05 considered
significant. Additionally, experimental data (n = 14) were compared with the stochastic model (n = 1000) using a two-sided Wilcoxon rank-sum test,
with significance determined by FDR-adjusted P < 0.05. (A) Normalized variance (variance divided by total abundance per timestep). (B) Percentage of
significant correlations. (C) Percentage positive Jacobian LE. (D) Percentage of positive Rosenstein LE. (E) Percentage of explained variance in
PERMANOVA for the factor time. (F) Percentage of explained variance in PERMANOVA for the factor position. (G) Percentage of positive
autocorrelations. (H) Mean abundance of the different experiments (n = 14), with colours representing HV, MV, and LV classification
(mean ± s.e.m.). All experiments were monotonically increasing (FDR-adjusted P < 0.001, Spearman’s rho).

(Fig. 4E, F). Non-metric multidimensional scaling (NMDS) plots
of Bray-Curtis distances (Fig. 3F, Fig. S5) visually represented the
distributional changes over time, with points in close proximity
indicating high similarity. For LV and MV experiments, the highest
spatial changes occurred within the first 10–20 timepoints,
highlighting a transient phase during which cells established
their distribution patterns. In contrast, HV experiments exhibited
more continuous spatial changes.

Deterministic nature of distribution patterns
Statistical comparisons revealed no significant differences
between the model and the experimental values in terms of total
variance (FDR-adjusted P = .248, two-sided Wilcoxon rank-sum
test), mean values and total abundances (FDR-adjusted P = .749,
two-sided Wilcoxon rank-sum test) and normalized variance
(Fig. 4A). These findings indicate that the basic framework of
the model fits to our experiment. The model had significantly
lower distribution parameters for the number of positive autocor-
relations, explained variance by time and position and significant
correlations (Fig. 3D–F, Fig. 4B, E–G). Additionally, chaos detection
methods, including the Jacobian LE (0.8 ± 0.01%) and the direct
Rosenstein LE (82.0 ± 5.4%), indicated significantly less positive LE
in the model compared to the experiment (Fig. 4C, D). Even under
nonlinear conditions, the proportion of positive Jacobian LE in the
experiments was significantly higher than in the model (Fig. 5B),
with the model showing falsely positive chaos in 0.2 ± 0.7%.
Overall, the model did not exhibit the huge variability which was
observed in the experiment (Fig. 3).

Discussion
The experimental findings are in line with the discourse on
the edge of chaos, which suggests that biological systems often

operate near a critical regime where order and chaos coexist
next to each other [31–33], which we were able to show here
in a controlled experimental system with a protist population.
Our study demonstrates this by revealing both chaotic dynamics
(indicated by nonlinear positive Lyapunov exponents) and ordered
patterns (shown by spatial self-organized patterns indicated by
positive autocorrelation, PERMANOVA and correlations). Self-
organized patterns, as observed in our experiments, may be a
key mechanism driving living systems toward this edge of chaos
[48].

The observed self-organized patterns were generated by
active cell movement between patches, as no other factors
were altered throughout the experiments. Understanding the
individual behavior of individual specimens is highly important,
as it might explain the spatial distribution on large scales better
than the spatial structure of the landscape [5]. There are several
mechanisms known which can induce spatial pattern formation
[13], however self-organization in a constant environment
was frequently attributed to scale-dependent feedback [7, 9]
or density-dependent movement [14, 15]. Self-organization
due to scale-dependent feedback could arise from different
various processes. Potential contributors to pattern formation
include pheromone production [49], net inflow of nutrients from
proximate patches [7], accumulation of metabolic byproducts
[50], and minor variations in oxygen concentrations [51]. The
high abundances in certain patches in high variance experiments
(Figs. 3, S1) could be additionally explained by density-dependent
movement. High abundances connected with lower movement
rates could lead to a cascade of increasing abundances. However,
the subsequent decline in abundance after reaching a peak value
indicates the involvement of additional regulatory mechanisms.
These inherently nonlinear processes likely contribute to the
complex dynamics observed. For example, nutrient depletion
in densely populated patches might trigger dispersal, whereas
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Figure 5. Comparison of linear and nonlinear Jacobian chaos and local stability classifications in Tetrahymena spatio-temporal dynamics. Chaotic
classifications were based on the Jacobian LE method and nonlinearity estimates based on local weighting parameter θ [41]. Only when both
parameters were positive, the dynamics were considered chaotic. (A–B) Comparative analysis of HV (n = 3), MV (n = 8), and LV (n = 3) experimental
categories. Statistical significance was assessed using one-way ANOVA followed by Tukey’s post-hoc test, with P < 0.05 considered significant.
Additionally, all experimental data (n = 14) were compared with the stochastic model (n = 1000) using a two-sided Wilcoxon rank-sum test, with
significance determined by FDR-adjusted P < 0.05. (A) Percentage of time series with positive Jacobian LE. (B) Percentage of time series with positive
Jacobian LE and positive θ values classified as nonlinear chaotic. C-D, Heatmaps showing the proportion of local instability estimates based on an
analysis of each experiment using a sliding window approach with a length of 50 timepoints. With H1-H3 high-variance, M1-M7 medium-variance and
L1-L3 LV experiments. The experiments in each category are ordered from top (high) to bottom (low) in their starting abundance. The color represents
the percentage of chaos classifications either by the Jacobian LE (C) or by both Jacobian LE and θ (D), ranging from low to high.

nutrient-rich patches could attract more cells. Maybe future
studies could experimentally verify these mechanisms through
targeted manipulations of nutrient gradients or by tracking
labelled cells to observe individual movement patterns in
response to local density changes.

The 14 repeated experiments exhibited significant differences
in patterns and dynamics (Figs. 3, 4). The three categories distin-
guished in low, medium, and high variance illustrate the observed
diversity. In the LV experiments, the differences from the random
model were minimal (Figs. 3, 4), suggesting that the observed
patterns could be partly attributed to stochastic fluctuations. In
contrast, the MV and HV experiments demonstrated clear and
distinct pattern formation (Fig. 3). The starting abundance could
play an important role here, as HV experiments had significantly
higher starting values and exhibited significantly higher local
instability under the sliding-window approach (Fig. 5C, D). Also,
the stochastic initial distribution of cells across patches may
have influenced the pattern formation, further highlighting the
sensitivity of the system to initial conditions. By comparing the

results to the random model, which exhibited significantly lower
spatial autocorrelation, visible pattern formation, and overall
correlation (Figs. 3, 4), we ruled out stochastic processes as the
primary driver of pattern formation. Even with a high speed of
movement of Tetrahymena cells of about 500 μm/s [52] which could
result in a crossing time of the complete chamber in about 65 sec-
onds, HV experiments showed clear peaks in specific patches and
MV experiments showed patterns on a larger spatial scale and
continuous wave-like distribution patterns (Fig. 3, Fig. S1). How-
ever, still over 60% of the variance remains unexplained in both
PERMANOVA models, indicating substantial unknown effects and
interactions, as well as poor predictability.

The dynamics observed in our experiments are transient and
non-stationary over the observation period. This non-stationarity
could potentially affect the interpretation of our chaos detection
methods, which typically assume stationary dynamics [18, 20,
53]. To reduce this effect, local instability measurements with
partially stationary data and nonlinear classifications (hyperpa-
rameter θ, [41]) were performed. Together with the nonlinear
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determination, the Jacobian LE method proves to be effective for
classifying our data. Even when assuming significant observa-
tional errors, this method does not artificially inflate the fre-
quency of detected chaos [20]. Whereas precise estimates of the
LE require longer time series of 104 timepoints or more, the sign
of the exponent can be calculated with fewer timepoints [20].
This is the reason why we focused only on the qualitative clas-
sification of chaotic dynamics. The comparison with the stochas-
tic model confirms our findings as the model had significantly
lower chaotic classifications (Figs. 4, 5). In contrast, the direct LE
method proposed by Rosenstein is unable to distinguish between
divergence caused by chaos and that caused by noise [20]. As
a result, this method likely overestimates the classification of
chaotic dynamics, despite the low noise levels suggested by the
highly controlled environment and accurate automatic detection.
The chaos decision tree [53] offers a straightforward approach to
classifying chaotic dynamics without requiring model parameter
calibration or selection. However, this method was validated on
time series with a minimum length of 1000 points for which it
showed a very high accuracy but showed a reduced accuracy
in detecting chaotic dynamics in shorter time series [20, 53, 54].
Consequently, the chaos decision tree was not suitable to estimate
the presence of chaotic dynamics in our studies. Also, additional
methods used in other studies [20] such as permutation entropy,
recurrence quantification analysis and horizontal visibility graph
require case-specific calibrations, which are not possible with the
limited number of independent experimental time series. If a
system is at the edge of chaos, not all processes need to be chaotic
to generate unpredictability of the system [32, 33]. The local
instability measurement (Fig. 5) visualizes the change of stability
classifications over time, indicating that even if complete time
series are not classified as chaotic, local dynamics can be instable.
This is a typical characteristic for systems at the edge of chaos
[55]. If individual time series within an experiment are chaotic,
they will also influence the neighboring patches. Therefore, it
has to be assumed that the whole system shows some degree of
chaotic behavior, with the exception of individual patches. The
exact strength or amount of chaotic dynamics is not necessary
for this classification.

Our findings may have important implications for understand-
ing biodiversity and ecosystem functioning. Previous studies
have shown that spatio-temporal dynamics and fluctuating
abundances contribute to stable species coexistence [7, 8],
particularly in the presence of chaotic dynamics [23, 34, 56].
Chaotic dynamics have been observed in experimental multi-
species systems without external triggers, suggesting that
interactions between species could act as a main driver of
chaos [23–25]. However, experimental evidence for single-species
chaotic dynamics without external triggers are poorly studied
[22, 28]. A mixture of chaotic and ordered dynamics has been
observed only in a few field studies, such as voles in northern
Fennoscandia [57], measles epidemics of large cities [58] and a
cyclic rock colonization by barnacles and crustose algae [55]. But
here we report this phenomenon for a constant environment and
in a single-species system. It is therefore important to understand
how systems at the edge of chaos function and what conditions
are necessary for their emergence. Our experiment demonstrates
that neither external triggers nor interspecies interactions are
necessary to observe dynamics at the edge of chaos, as these
complex behaviors are present even at the single-species level.
The observed complexity in a seemingly simple system suggests
that these behaviors may be more widespread than currently

thought, potentially occurring across various scales of biological
systems.

Our results confirm the hypothesis that populations of
individual species exhibit complex nonlinear dynamics in time
and space, leading to unforeseeable patterns (Fig. 1C). As our
experimental system was well controlled, extrinsic factors were
excluded, and still complex dynamics were visible. The system
of different habitat patches can be applied to a variety of
different ecosystems (Fig. 2A), e.g. ponds or lakes interconnected
by dispersal [59, 60], soil pore spaces forming a complex network
of small interconnected spaces [61], or marine snow in the oceans
[62].

The diversity of patterns observed in our study (Figs. 3, 4, S1–
S7) exemplifies the intricate complexity of the system, demon-
strating how the complex dynamics of individual species vary
across distinct habitat patches. These complex spatio-temporal
dynamics may not be identifiable in non-spatial analyses.
Furthermore, the order and self-organization demonstrates the
system’s characteristics as one operating at the edge of chaos.
Starting from approximately the same initial conditions, the
experiments demonstrate the potential for chaotic dynamics
in simple ecological systems. Identifying chaotic processes
and differentiating them from stochasticity is important as it
increases the predictability of systems, as chaotic processes are
deterministic. This study provides insights into the complexity of
single-species spatial dynamics, nevertheless further research
is needed to determine the prevalence of such dynamics in
natural ecosystems. This study not only bridges the gap between
theoretical models and experimental observations but also
provides new insights into the fundamental nature of living
systems and their spatio-temporal organization.
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