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Zusammenfassung

Diese Dissertation befasst sich mit der Analyse der Singularitäten geschlosse-
ner positiver Ströme auf kompakten komplexen Mannigfaltigkeiten und besteht
aus sechs Kapiteln.

Im zweiten Kapitel werden Grundlagen zur Pluripotentialtheorie und zur
komplexen Geometrie dargestellt. Im dritten Kapitel führen wir im Hermite-
schen Kontext das Konzept der relativen nicht-pluripolaren Produkte ein, eine
Methode zur Definition von Keilprodukten geschlossener positiver (1, 1)-Ströme
mit einem geschlossenen positiven (p, p)-Strom auf einer Hermiteschen Mannig-
faltigkeit. Wir besprechen die Konstruktion dieses Produkts, die Monotonieeigen-
schaft sowie den Zusammenhang mit Dichteströmen, welche eine allgemeinere
Methode zur Definition von Keilprodukten höherer Bi-Grad-Ströme darstellen.

Das vierte Kapitel konzentriert sich auf die Abschätzung der Größe der Sin-
gularitätsmenge eines gegebenen geschlossenen positiven Stroms T, wobei die
Singularitätsmenge die Menge der Punkte ist, an denen T positive Lelong-Zahlen
besitzt. Genauer gesagt, leiten wir obere Schranken für das Volumen beliebi-
ger maximal irreduzibler analytischer Mengen innerhalb der oberen Lelong-
Niveaumengen von geschlossenen positiven Strömen her. Darüber hinaus zeigen
wir im Fall des Bi-Grads (1, 1), dass diese Schranken optimal sind.

Im fünften Kapitel vergleichen wir die Lelong-Zahlen geschlossener positiver
(1, 1)-Ströme innerhalb derselben großen Klasse. Genauer gesagt: Seien T, T′

zwei geschlossene positive (1, 1)-Ströme in derselben Klasse, wobei T′ weniger
singulär als T ist. Wir geben eine obere Schranke für die Differenz der Lelong-
Zahlen von T und T′ an, ausgedrückt durch die Differenz der nicht-pluripolaren
Massen von T′ und T.

Abschließend stellen wir im sechsten Kapitel eine Methode zur Definition
der Lelong-Zahl nicht-pluripolarer (m, m)-Kohomologieklassen auf einer kom-
pakten Kähler-Mannigfaltigkeit vor. Wir vergleichen die Cup-Produkte und die
relativen nicht-pluripolaren Produkte. Es stellt sich heraus, dass zwei Produkte
stets verschieden sind, falls die Lelong-Zahl der nicht-pluripolaren Kohomo-
logieklasse von null verschieden ist. Als Anwendung präsentieren wir eine
höherdimensionale Version der Zariski-Zerlegung.



Abstract

This thesis focus on analyzing the singularities of closed positive currents on
compact complex manifolds, it consists of six chapters.

In the second chapter, some crucial background in pluripotential theory
and complex geometry is reviewed. In the third chapter, we introduce the
relative non-pluripolar products in Hermitian setting, which is a way defining
the wedge products of closed positive (1, 1)-currents and a closed positive (p, p)-
current on Hermitian manifolds. We discuss the construction of this product, the
monotonicity property, and its relation with density currents, which is a general
way defining wedge products of higher bi-degree currents.

The fourth chapter focuses on estimating the size of the singular locus of a
given closed positive current T, where the singular locus is the set of points at
which T has positive Lelong numbers. Specifically, we established upper bounds
for the volumes of arbitrary maximal irreducible analytic sets contained in the
Lelong upper level sets of closed positive currents. Moreover, in the bi-degree
(1, 1) case, we proved that these bounds are optimal.

In the fifth chapter, we compare the Lelong numbers of closed positive (1, 1)-
currents in the same big class. More precisely, let T, T′ be two closed positive
(1, 1)-currents in the same class such that T is less singular than T′. We provide
an upper bound of the difference of the Lelong numbers of T and T′, in terms of
the difference of the non-pluripolar masses of T and T′ respectively.

Finally, in the sixth chapter, we provide a method for defining the Lelong num-
ber of non-pluripolar cohomology (m, m)-classes on compact Kähler manifolds.
We compare the cup products and the relative non-pluripolar products. It turns
out that the Lelong number of non-pluripolar cohomology classes obstructs the
equality of these two classes. As an application, we present a higher-dimensional
version of the Zariski decomposition.
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Finally, I would like to thank my parents, who have always supported me on
my path in mathematics and have given me the courage to pursue my dreams. I
am also grateful to my brother, who has always cared about what I think and
has brought many different experiences into my life.

This thesis was carried out at the Department of Mathematics and Computer
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CHAPTER 1

Introduction

Currents, which generalize differential forms in the sense of distributions,
play a fundamental role in complex geometry and pluripotential theory. Under-
standing the singularities of currents is crucial and has numerous applications
in both complex geometry and complex dynamics. This thesis is devoted to the
study of singularities of currents on complex manifolds. It is organized into six
chapters and is based on my four articles [43, 42, 33, 38].

1.0.1. Relative non-pluripolar product on Hermitian manifolds. The first
part of my thesis aims to study the wedge products of currents on Hermitian
manifolds, and it is based on the article [33]. Currents, as a generalization of
differential forms, are not necessarily smooth, and providing a suitable way
to define their wedge products on manifolds has been a crucial problem in
pluripotential theory.

This problem was first studied by Bedford and Taylor in [1], where they
considered closed positive currents T and P on a complex manifold, with T =

ddcu of bi-degree (1, 1) and u a locally bounded potential. In this setting, they
defined

T ∧ P := ddc(uP).

The boundedness condition on u was slightly relaxed in [16], where Demailly
imposes assumptions on the singularities of T.

The non-pluripolar product was introduced and studied in [2, 8], provided a
way defining products of closed positive (1, 1)-currents on complex manifolds.
Later, in [51], this was generalized to the relative setting, where one could
consider the product of closed positive (1, 1)-currents T1, . . . , Tm and a closed
positive (p, p)-current T. The first step of the construction is to reduce to the
bounded potential cases. By cutting down the potential function uj of Tj by −k,
we set

Rk = ddc max{u1,−k} ∧· · · ∧ ddc max{um,−k} ∧ T.
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When the ambient manifold is Kähler, one could obtain the uniformly bounded-
ness condition on the sequence of currents {1∩m

j=1{uj>−k}Rk}, which implies the
existence of the limit

⟨T1 ∧· · · ∧ Tm ∧̇ T⟩ := lim
k→∞

1∩m
j=1{uj>−k}Rk,

and it is called the non-pluripolar product of T1, . . . , Tm relative to T.
In [33], we show that the relative non-pluripolar product is also well-defined

on compact Hermitian manifolds, with some restriction on the Hermitian form.

THEOREM 1.1. (Theorem 3.4) Let X be a compact complex manifold of dimension n
endowed with a Hermitian form ω satisfying

ddcω = ddc(ω2) = 0.

Let Tj be a closed positive (1, 1)-current on X for 1 ≤ j ≤ m, and let T be a closed
positive (p, p)-current on X such that p + m ≤ n. Then the relative non-pluripolar
product ⟨T1 ∧ · · · ∧ Tm ∧̇ T⟩ is well defined.

The monotonicity property [8, 55, 11, 51], which captures the mass loss in
the non-pluripolar product, asserts that on a compact Kähler manifold, if closed
positive (1, 1)-currents Tj and T′

j lie in the same Dolbeault cohomology class and
T′

j is less singular than Tj, which means that the potential of T′
j is greater than or

equal to that of Tj up to a constant, for all 1 ≤ j ≤ m. Then, the non-pluripolar
products of Tj and T′

j satisfy the inequality:

(1.0.1) {⟨T1 ∧ · · · ∧ Tm⟩} ≤ {⟨T′
1 ∧ · · · ∧ T′

m⟩},

where {R} denotes the Dolbeault cohomology class of the current R. In [33], we
prove that on a Hermitian manifold with the assumption on the Hermitian form
given in Theorem 1.1, the monotonicity property in the relative setting holds.

THEOREM 1.2. (Theorem 3.13) Let X be a compact Hermitian manifold of dimension
n, endowed with a Hermitian form ω satisfying

ddcω = ddc(ω2) = 0.

Let {θ1}∂∂̄, . . . , {θm}∂∂̄ be Bott–Chern pseudoeffective classes on X. For each 1 ≤ j ≤ m,
let Tj, T′

j ∈ {θj}∂∂̄ be closed positive (1, 1)-currents, and let T be a closed positive (p, p)-
current such that m + p ≤ n. Assume that T′

j is less singular than Tj for all 1 ≤ j ≤ m.
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Then, we have∫
X
⟨T1 ∧ · · · ∧ Tm ∧̇ T⟩ ∧ ωn−m−p ≤

∫
X

〈
T′

1 ∧ · · · ∧ T′
m ∧̇ T

〉
∧ ωn−m−p.

1.0.2. Volumes of Components of Lelong Upper Level Sets. The second
part of my thesis is based on [43], and focuses on analyzing the singular loci
(Lelong upper level set) of a closed positive current T on a compact Kähler
manifold. That is, the set of points where T has positive Lelong numbers.

The motivation for this study is inspired by algebraic geometry. For example,
let C be an algebraic curve in P2 of degree d. Estimating the singularities of C is
a classical problem. By Bézout’s theorem, C has at most 1

2(d − 1)(d − 2) singular
points. Closed positive currents are far-reaching generalizations of analytic sets,
and we aim to investigate the size of their singular loci. More precisely, the
volumes of their Lelong upper level sets.

This problem was first studied by Demailly [18] in the case of closed posi-
tive (1, 1)-currents, where he provided volume estimates for certain maximal
irreducible analytic subsets contained in the Lelong upper level sets, using
the regularization theorem for closed positive (1, 1)-currents. This result was
later extended to currents of higher bi-degree in [36, 46] via the Lelong–Skoda
transformation. However, neither result could handle analytic sets of arbitrary
dimension contained in the Lelong upper level set.

Let T be a closed positive (p, p)-current on a compact Kähler manifold X,
and let W be an irreducible analytic subset of dimension m. In [22], the authors
established upper bounds for the volumes of maximal irreducible analytic sub-
sets V ⊆ W that are contained in the Lelong upper level sets of closed positive
currents on W. We denote the set of such analytic subsets of dimension ℓ by
Vℓ,T,W .

The upper bound in [22] depends on vol(W) and ∥T∥, where

vol(W) :=
1

m!

∫
Reg(W)

ωm, and ∥T∥ :=
∫

X
T ∧ ωn−p.

Here, Reg(W) denotes the regular locus of W.
In joint work with Duc-Viet Vu [43], we established a finer upper bound in

terms of the cohomology classes of the non-pluripolar self-products of T.
Before stating our main theorem, we first recall the notion of Lelong number.

Let T be a closed positive (p, p)-current on X. We denote by ν(T, x) the Lelong
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number of T at a point x ∈ X (see Section 2.1.4 for more details). Let V ⊆ X be
an irreducible analytic subset. We denote by ν(T, V) the generic Lelong number of
T along V, defined by

ν(T, V) = inf
x′∈V

ν(T, x′).

THEOREM 1.3. (Theorem 4.1) Let α be a nef (1, 1)-class on a compact Kähler
manifold X, and let W ⊆ X be an irreducible analytic subset of dimension m. Let T ∈ α

be a closed positive current such that ν(T, W) = 0. Let 1 ≤ m′ ≤ m be an integer.
Then, we have

∑
V∈Vm−m′ ,T,W

ν(T, V)m′
vol(V) ≤ 1

(m − m′)!

∫
RegW

(
αm′ − ⟨(T|RegW)m′⟩

)
∧ ωm−m′

,

where in the integral, we identify α with a smooth closed form in α.

Our approach relies on the relative non-pluripolar product and its connection
with density currents, a concept for defining the intersection of higher-degree
currents.

1.0.3. Lelong numbers of currents with full mass intersection. The third
part of my thesis, based on [42], investigates the difference in singularities
between two closed positive (1, 1)-currents T and T′ in the same cohomology
class. Assuming T is less singular than T′, we compare their Lelong numbers
and derive bounds in terms of their non-pluripolar masses.

This problem is motivated by a fundamental question in pluripotential theory.
Specifically, the phenomenon of mass loss in non-pluripolar products ([3, 8, 51]).
In general, non-pluripolar products of cohomologous currents T and T′ may fail
to remain in the same cohomology class. Nevertheless, we have the monotonicity
property (1.0.1), which captures the mass loss of non-pluripolar product. When
the equality in (1.0.1) holds, T1, . . . , Tm is said to have full mass intersection with
respect to T′

1, . . . , T′
m. Understanding obstructions to full mass intersection is an

important problem, where the singularities of T and T′ play a key role.
For the self-intersection case, a characterization of currents with full mass in-

tersection was provided in [11] via the singularity types of associated envelopes.
Vu [53] later studied this problem in the mixed setting, assuming T = Tmin has
minimal singularities. In my recent work [42], I extended Vu’s results to the
setting of prescribed singularities. We first recall the definition of an I-model
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(see [14] for further details). Let T = ddcu + θ be a closed positive (1, 1)-current.
We say that T is I-model if

u = Pθ[u]I ,

where

Pθ[u]I := (sup {w ∈ PSH(X, θ) | w ≤ 0, I(tw) ⊆ I(tu), ∀t ≥ 0})∗

is the I-envelope of u, and I(tu) denotes the multiplier ideal sheaf, locally gener-
ated by holomorphic functions f such that | f |2e−tu is integrable.

The following is our first main result.

THEOREM 1.4. (Theorem 5.1) Let X be a compact Kähler manifold of dimension n.
Let {θ1}, . . . , {θm} be big classes and let T′

j , Tj ∈ {θj} be closed positive (1, 1)-currents
such that for 1 ≤ j ≤ m,

(1)
∫

X⟨T
n
j ⟩ > 0.

(2) Tj is I-model.
(3) Tj is less singular than T′

j .

Let V be a proper irreducible analytic subset such that dim(V) ≥ n − m. If T′
1, . . . , T′

m

are of full mass intersection with respect to T1, . . . , Tm, that is,

{⟨∧m
j=1Tj⟩} = {⟨∧m

j=1T′
j ⟩}.

Then there exists 1 ≤ j ≤ m such that ν(T′
j , V) = ν(Tj, V).

For the case m = n, we have the following quantitative result:

THEOREM 1.5. (Theorem 5.2) Let X be a compact Kähler manifold, and let B be a
closed cone in the cone of big classes. There exists a constant C > 0 only dependent on
the manifold X and the cone B such that for every x0 ∈ X, {θj} ∈ B and T′

j , Tj ∈ {θj},
1 ≤ j ≤ n, satisfying the conditions in Theorem 5.1. The following inequality holds.

(1.0.2)
∫

X

(〈
∧n

j=1 Tj
〉
−
〈
∧n

j=1 T′
j
〉)

≥ C
n

∏
j=1

(
ν(T′

j , x0)− ν(Tj, x0)
)
.

My approach refines Vu’s argument in [53] by using relative non-pluripolar
products and introducing the notion of difference envelopes of currents.

1.0.4. Singularities of (n − 1, n − 1)-classes. The fourth part of my thesis
is based on the article [38] and focuses on understanding the singularities of
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non-pluripolar cohomology (m, m)-classes on compact Kähler manifolds. More
precisely, let α be a big (1, 1)-class, and let ⟨αm⟩ := {⟨Tm

α,min⟩} denote the self
non-pluripolar product of α, where Tα,min is a current with minimal singularities
in the class α. We define the Lelong number of ⟨αm⟩ at a point x ∈ X to be the
Lelong number of ⟨Tm

α,min⟩ at x. We first prove that this definition is independent
of the choice of Tα,min (Theorem 6.1).

The main result of this chapter is a comparison between the cup products
and the relative non-pluripolar products.

THEOREM 1.6. (Theorem 6.2) Let X be a compact Kähler manifold of dimension n.
Let T1, . . . , Tn−1, T be closed positive (1, 1)-current on X. Put

β := {⟨∧n−1
j=1 Tj⟩}, γ := {⟨∧n−1

j=1 Tj ∧̇ T⟩}.

Then we have β ∧ {T} ≥ γ, where β ∧ {T} is the cup product of β and {T}. Moreover,
if β ∧ {T} = γ, then

ν(⟨∧n−1
j=1 Tj⟩, x) · ν(T, x) = 0,

for every x ∈ X.

As an application of Theorem 1.6, we have the following vanishing theorem
for Lelong numbers.

THEOREM 1.7. (Theorem 6.3) Let X be a projective manifold, and let α be a big
(1, 1)-class on X. Then, we have

ν(⟨αn−1⟩, x) = 0 for every x ∈ X.

When X is a compact Kähler surface and α is a big class, the non-pluripolar
part ⟨α⟩ coincides with the nef part in the Zariski decomposition. In [6], it was
shown that for a pseudoeffective class α on a compact Kähler manifold, the non-
pluripolar part ⟨α⟩ is nef if and only if its Lelong number vanishes everywhere.
Theorem 1.6 can thus be viewed as a higher-dimensional analogue of the Zariski
decomposition, in the sense that the non-pluripolar product ⟨αn−1⟩ has vanishing
Lelong number at every point.
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CHAPTER 2

Preliminary

2.1. Notations and definitions

Let N denote the set of natural numbers, and set N0 = {0} ∪ N. Let n ∈ N.
For any multi-index α = (α1, . . . , αn) ∈ Nn

0 , we define |α| := ∑n
j=1 αj.

Let Ω ⊆ Cn be an open set, and let (z1, . . . , zn) be the holomorphic coordi-
nates on Ω, where

zj = x2j−1 + ix2j, 1 ≤ j ≤ n.

Let α1 = (α1
1, . . . , α1

n), α2 = (α2
1, . . . , α2

n) ∈ Nn
0 be two multi-indices. We define

the following:

∂zj :=
∂

∂zj
=

1
2

(
∂

∂x2j−1
− i

∂

∂x2j

)
, ∂zj :=

∂

∂zj
=

1
2

(
∂

∂x2j−1
+ i

∂

∂x2j

)
,

∂α1

z := ∂
α1

1
z1 · · · ∂

α1
n

zn , ∂
α2

z := ∂
α2

1
z1
· · · ∂

α2
n

zn ,

∂ :=
n

∑
j=1

∂

∂zj
, ∂ :=

n

∑
j=1

∂

∂zj
,

dzj := dx2j−1 + idx2j, dzj := dx2j−1 − idx2j.

Let I, J ⊆ {1, . . . , n}, with I = {i1, . . . , is} and J = {j1, . . . , jk}. We put

dzI := dzi1 ∧ · · · ∧ dzis , dzJ := dzj1 ∧ · · · ∧ dzjk .

We also define the differential operators

d := ∂ + ∂, dc :=
1

2πi
(∂ − ∂),

so that ddc = 1
πi ∂∂.

2.1.1. Differential forms and Currents. We recall some standard definitions
and notations, following [16, 19].
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Let p, q ≤ n, and let

u = ∑
|I|=p,|J|=q

uI JdzI ∧ dzJ

be a differential (p, q)-form on Ω. We denote by

ps
K(u) := sup

x∈K
max

|I|=p, |J|=q
|α1|+|α2|≤s

∣∣∣∂α1

z ∂α2

z uI J(x)
∣∣∣

the seminorm associated with the compact set K ⊆ Ω and s ∈ N. We denote by
εp,q(Ω) be the space of differential (p,q)-forms on Ω with the topology induced
by the seminorms ps

K, where K ⊆ Ω and s ∈ N. Let D p,q(Ω) be the space
of differential (p, q)-forms with compact support induced with the restriction
topology.

A current T on Ω of bi-degree (p, q) (or bi-dimension (n − p, n − q)) is a
continuous linear functional

T : Dn−p,n−q(Ω) → C,

and we denote by ⟨T, α⟩ ∈ C the action of the current T on a test form α ∈
Dn−p,n−q(Ω). We denote by D ′n−p,n−q(Ω) the space of currents of bi-degree
(p, q) on Ω, which is the topological dual of Dn−p,n−q(Ω). Currents can be
viewed as a generalization of differential forms in the sense of distributions.
Specifically, any current T can be written as

T = ∑
|I|=p, |J|=q

TI J dzI ∧ dzJ ,

where each coefficient TI J is a distribution on Ω.
Let T ∈ D ′p,q(Ω). The support of T is denoted by supp(T), which is the

smallest closed set B ⊆ Ω such that the restriction of T to Dn−p,n−q(Ω\B) is zero.
Let T ∈ D ′p,q(Ω), ∂T and ∂T are currents of bi-degree (p + 1, q) and (p, q + 1)

respectively, defined by

⟨∂T, α⟩ := (−1)p+q+1⟨T, ∂α⟩, ⟨∂T, β⟩ := (−1)p+q+1⟨T, ∂β⟩,

for any α ∈ Dn−p−1,n−q(Ω), β ∈ Dn−p,n−q−1(Ω). We say that T is ∂-closed
(respectively, ∂-closed) if ∂T = 0 (respectively, ∂T = 0). We say that T is closed if
dT := ∂T + ∂T = 0 on Ω.
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Let {Tj}j∈N be a sequence of (p, q)-currents on Ω. We say that Tj converges
weakly to T ∈ D ′p,q(Ω) if

⟨Tj, α⟩ → ⟨T, α⟩,
for any α ∈ Dn−p,n−q(Ω).

A differential (p, p)-form α on Ω is said to be positive if, at each point, it can
be written as a finite linear combination of forms of the type

iγ1 ∧ γ1 ∧ · · · ∧ iγp ∧ γp,

where each γj is a (1, 0)-form. A (p, p)-form β is said to be weakly positive if β ∧ α

is positive for every positive (n − p, n − p)-form α on Ω.
Let T ∈ D ′p,p(Ω). We say that T is positive (respectively, weakly positive) if

⟨T, α⟩ ≥ 0 for every weakly positive (respectively, positive) (n − p, n − p)-form
α. Any positive (p, p)-current

T = ∑
|I|=p, |J|=p

TI JdzI ∧ dzJ

has real coefficients; that is, TI J = TJ I . Let T1, T2 ∈ D ′p,p(Ω). We write T1 ≥ T2 if
T1 − T2 is a positive (p, p)-current.

REMARK 2.1. Let X be a complex manifold of dimension n. By choosing
holomorphic coordinate charts that cover X, one can extend the definitions of
currents and the associated differential operators to the global setting.

Let X be a compact complex manifold of dimension n, and let ω be a Hermit-
ian form on X. Let T be a closed positive (p, p)-current, p ≤ n. We define the
mass of T by

∥T∥ :=
∫

X
T ∧ ωn−p.

Here, we give some examples of positive currents.

EXAMPLE 2.2.

(1) Let γ be a positive (p, p)-form on Ω. By the definition of weakly positive
forms, we get

γ ∧ β ≥ 0,

for any weakly positive (n − 1, n − p)-form β. Hence α is also a positive
(p, p)-current on Ω.
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(2) Let X be a compact complex manifold of dimension n, and let V ⊆ X be
an analytic subset of dimension m. We denote by [V] the (n − m, n − m)-
current of integration along V, defined by

⟨[V], α⟩ :=
∫

Reg(V)
α, for all α ∈ Dm,m(X).

Since the integral of a weakly positive form over V is non-negative, the
current [V] is positive. Moreover, by Stokes’ theorem, [V] is closed.

An upper semi-continuous function u : Ω → R ∪ {−∞} is said to be plurisub-
harmonic (psh for short) if it satisfies

u(x) ≤ 1
2π

∫ 2π

0
u(x + eiθξ) dθ,

for all x ∈ Ω and ξ ∈ Cn with |ξ| sufficiently small.
Plurisubharmonic functions are central to pluripotential theory, which is

closely linked to the theory of currents. Indeed, any closed positive (1, 1)-current
T on Ω can be locally written as T = ddcu for some psh function u. Conversely,
given any psh function u on Ω, the current ddcu defines a closed positive (1, 1)-
current on Ω.

Let T = ddcu be a closed positive (1, 1)-current on Ω, where u is a psh
function on Ω. The singular locus of T is denoted and defined as

IT := {x ∈ U|u(x) = −∞}.

2.1.2. Cohomology classes of currents. Let X be a compact complex mani-
fold of dimension n. Let p, q ≤ n. The Dolbeault and Bott–Chern cohomology groups
of currents on X are defined as follows:

Hp,q(X, C) = {T ∈ D ′p,q(X) | ∂T = 0}
/
{∂T′ | T′ ∈ D ′p,q−1(X)},

Hp,q
BC(X, C) = {T ∈ D ′p,q(X) | dT = 0}

/
{∂∂T′ | T′ ∈ D ′p−1,q−1(X)}.

Let T be a ∂-closed current on X. We denote by {T} the Dolbeault cohomology
class of T. Similarly, for a d-closed current T′′, we denote by {T′′}∂∂ its Bott–Chern
cohomology class.

Note that {∂∂T′|T′ ∈ D ′p−1,q−1(X)} ⊆ {∂T′|T′ ∈ D ′p,q−1(X)}. Hence, we
have the nature inclusion

i : Hp,q
BC(X, C) → Hp,q(X, C).
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If X is furthermore a compact Kähler manifold, then by the ∂∂-lemma, the
inclusion map i is an isomorphism.

We now assume that X is a compact Kähler manifold. Let H1,1(X, R) de-
note the space of real (1, 1)-Dolbeault cohomology classes on X, and let α ∈
H1,1(X, R). In the following, we recall several positivity notions for (1, 1)-classes.
We say

(1) α is Kähler if there exists a Kähler form in α.
(2) α is nef if for any ϵ > 0, the class α + {ϵω} is Kähler.
(3) We say that α is big if there exists a closed positive (1, 1)-current T ∈ α

such that T ≥ ϵω for some ϵ > 0. Such a current T is called a Kähler
current.

(4) α is pseudoeffective if there exists a closed positive (1, 1)-current T ∈ α.

DEFINITION 2.3.

(1) Let K ⊆ H1,1(X, R) be the set of Kähler classes. K is an open open
convex cone, and is called the Kähler cone.

(2) We denote by K ⊆ H1,1(X, R) the set of nef classes, which is the closure
of K .

(3) Let E ⊆ H1,1(X, R) be the set of cohomology classes of closed positive
(1, 1)-currents. It is a closed convex cone, and is called the pseudoeffective
cone.

(4) E 0 ⊆ H1,1(X, R) is the set of big classes, which is the interior of E , and
is called the cone of big (1, 1)-classes.

Let α, β be two pseudoeffective classes. We write α ≥ β if α − β is a pseudoef-
fective class; that is, there exists a closed positive (1, 1)-current T ∈ α − β.

Note that if α ≥ β and β ≥ α, then there exist closed positive currents
Tα−β ∈ α − β and Tβ−α ∈ β − α. Hence, the current Tα−β + Tβ−α ∈ {0} is closed
and positive. Since the zero cohomology class {0} contains only the zero closed
positive current, it follows that Tα−β = Tβ−α = 0. This shows that α = β.

2.1.3. Classical intersection of (1, 1)-currents. Let X be a complex manifold
of dimension n. Let P be a closed positive (1, 1)-current, and let T be a closed
positive (p, p)-current with p < n. In general, defining the wedge product
P ∧ T on X is not easy when P and T are not smooth. However, under certain
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regularity conditions on P, Bedford and Taylor introduced a natural way to
define the product in [1]. This construction is known as the classical product. We
review the definition here.

Since P is a closed positive (1, 1)-current, it can be locally written as P = ddcu
for some psh function u. If we further assume that u is locally bounded, then the
product uT is a well-defined Borel measure, and we define

ddcu ∧ T := ddc(uT).

When P and T are smooth differential forms, this definition agrees with the
classical wedge product, as ensured by Stokes’ theorem. The current ddcu ∧ T is
closed, and it can be shown to be positive by applying a smooth regularization
to the psh function u.

The products defined above were generalized by Demailly in [16, Chapter
III, Section 4], under the assumption that X can be covered by Stein open sets Ω
satisfying

∂Ω ∩ L(u) ∩ supp(T) = ∅,

where L(u) denotes the unbounded locus of u, that is, the set of points x ∈ X
such that u is unbounded in every neighborhood of x. Under this assumption, it
can be ensured that uT is a well-defined measure, and consequently, the wedge
product ddcu ∧ T = ddc(uT) also makes sense.

Now, consider closed positive (1, 1)-currents T1, . . . , Tm and a closed positive
(p, p)-current T with m + p ≤ n. Locally, we write Tj = ddcuj for some psh
function uj. The product of T1, . . . , Tm and T is locally defined by

ddcu1 ∧ · · · ∧ ddcum ∧ T = ddc (u1 ddcu2 ∧ · · · ∧ ddcum ∧ T)

= ddc (ddc (u2 ddcu3 ∧ · · · ∧ ddcum ∧ T))
...

= ddc (· · · ddc (umT) · · · ) .

In [23], Fornæss and Sibony gave a concrete way to check the well-definedness
of ddcu1 ∧ · · · ∧ ddcum ∧ T in terms of the calculation of the Hausdorff dimensions
of the bounded locus of potential functions uj.

THEOREM 2.4. ([23, Corollary 3.6] or [16, Chapter III, Theorem 4.5]) Let u1, . . . ,
um be psh functions on some local chart of X, and let T be a closed positive (p, p)-current
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on X such that m + p ≤ n. Then, the current

ddcu1 ∧· · · ∧ ddcum ∧ T

is well-defined if the Hausdorff measure

H2(n−p)−2k+1(L(uj1) ∩· · · ∩ L(ujk) ∩ supp T) = 0,

for any indices {j1, . . . , jk} ⊆ {1, . . . , m}.

Currents can be regarded as generalizations of analytic sets (see Example 2.2,
(2)). The following proposition illustrates how the classical product can be
interpreted as an intersection of analytic sets.

PROPOSITION 2.5. ([16, Chapter III, Proposition 4.12]) Let Z1, . . . , Zq be hyper-
surfaces on X. Let {Ck}k∈N be the irreducible components of ∩q

j=1Zj. If hypersurfaces
{Zj} satisfy

dim(Zj1 ∩· · · ∩ Zjm) = n − m,

for any index {j1, . . . , jm} ⊆ {1, . . . , q}. Then, there exist integers mk > 0 such that

[Z1] ∩· · · ∩ [Zq] = ∑
k

mk[Ck].

Now, let’s recall an important property of the classical product.

THEOREM 2.6. ([51, Theorem 2.9]) Let Ω ⊆ Cn be an open set. Let m, l ≤ n. Let
T be a closed positive current on X on Ω, and uj, u′

j be locally bounded psh functions on
Ω, 1 ≤ j ≤ m. Let vk, v′k be locally bounded psh functions on Ω, 1 ≤ k ≤ l. Assume
that uj = u′

j on W := ∩l
k=1{vk > v′k} for j = 1, . . . , m. Then we have

1Wddcu1 ∧ · · · ∧ ddcum ∧ T = 1Wddcu′
1 ∧ · · · ∧ ddcu′

m ∧ T.

We note that the above theorem also works when we replace the locally
bounded psh function by the locally bounded quasi-plurisubharmonic func-
tion, where we will recall the definition of quasi-plurisubharmonic function in
Section 2.2.

2.1.4. Lelong numbers of currents. The Lelong number, introduced in [32],
is a notion that measures the singularities of closed positive currents. Closed
positive currents can be viewed as a generalization of analytic sets, and the
Lelong number serves as the analytic analogue of the multiplicity of an analytic
set. Let’s review the definition now.
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Let X be a complex manifold of dimension n, and let T be a closed positive
(p, p)-current on X. Let x ∈ X, and let Ω be a coordinate chart centered at x. The
Lelong number of T at the point x is denoted and defined by

ν(T, x) := lim
r→0+

ν(T, x, r), where ν(T, x, r) =
1

r2(n−p)

∫
B(x,r)

T(z) ∧ ddc∥z∥2.

In [32], Lelong showed that ν(T, x, r) is non-negative and monotonically
increasing in r. Hence, the limit defining the Lelong number exists. Later, Siu
proved in [41] that the definition is independent of the choice of the coordinate
chart Ω.

When T = [V] is the current of integration along an analytic set V ⊆ X, Thie
showed in [44] that the Lelong number of T at x coincides with the multiplicity
of V at x.

In the case where T is of bi-degree (1, 1), it can be locally written as T = ddcu
on Ω for some psh function u. In this setting, Lelong showed in [32] that

ν(T, x) = sup
{

γ ∈ R+
∣∣ u(z) ≤ γ log |z − x|+O(1) at x

}
.

We review a key property concerning the Lelong number of intersections of
closed positive (1, 1)-currents. Let T1, . . . , Tm be closed positive (1, 1)-currents,
and let T be a closed positive (p, p)-current on X such that m + p ≤ n. Locally,
we can write Tj = ddcuj for some psh function uj. We have the following
proposition.

PROPOSITION 2.7. ([16, Chapter III, Corollary 7.9]) Let Ω be a local coordinate
chart on X. For each 1 ≤ j ≤ m, we write Tj = ddcuj, where uj is a psh function on Ω.
If the product

ddcu1 ∧· · · ∧ ddcum ∧ T

is well-defined. Then, we have

ν(ddcu1 ∧· · · ∧ ddcum ∧ T, x) ≥ ν(ddcu1, x)· · · ν(ddcum, x)ν(T, x),

for every x ∈ Ω.

Next, we review the upper level set and some of its properties.
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COROLLARY 2.8. ([41]) Let T be a closed positive (p, p) current in X, and let
c > 0. Then, the upper level set

Ec(T) := {x|ν(T, x) ≥ c}

is an analytic set of dimension less than or equal to n − p.

We now recall the generic Lelong number.

LEMMA 2.9. ([41]) Let T be a closed positive (p, p)-current on X, and let V ⊆ X
be an irreducible analytic subset. Then, there exists a countable family of proper analytic
subsets {Vj} of V such that

ν(T, x) = inf
x′∈V

{ν(T, x′)},

for x ∈ V\ ∪ Vj. The right-hand side of the above equation is called the generic Lelong
number of T along V and is denoted by ν(T, V).

We conclude this section by recalling Siu’s celebrated decomposition theorem.

THEOREM 2.10. ([41]) Let T be a closed positive (p, p)-current. Then T can be
written as the convergent series as follows:

T =
∞

∑
k=1

ν(T, Vk)[Vk] + R,

where Vk is an irreducible analytic set of dimension n − p, and R is a residual current
such that

dim Ec(R) < n − p

for every c > 0.

2.2. Quasi-plurisubharmonic functions, singularity types and envelopes

Let X be a compact Kähler manifold of dimension n. By the maximum prin-
ciple, any psh function on X must be constant. Therefore, to develop the global
pluripotential theory on X, we introduce the notion of quasi-plurisubharmonic
functions.

We say that an upper semi-continuous function u : X → R ∪ {−∞} is quasi-
plurisubharmonic (quasi-psh for short) if it can be locally written as the sum of a
plurisubharmonic (psh) function and a smooth function.
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Let θ be a closed real (1, 1)-form on X. A quasi-psh function u is said to be
θ-plurisubharmonic (θ-psh for short) if

ddcu + θ ≥ 0.

We denote by PSH(X, θ) the set of θ-psh functions on X.
Quasi-psh functions play a central role in the theory of currents on X. For

instance, given any closed positive (1, 1)-current T on X, and any closed real
(1, 1)-form θ cohomologous to T, the current T can be written as

T = ddcu + θ,

for some u ∈ PSH(X, θ). We also use θu to represent the current T.
Let u, v ∈ PSH(X, θ). We say that u is less singular (more singular) than v

if v ≤ u + O(1) (u ≤ v + O(1)), and we denote this by v ⪯ u (v ⪰ u). The
equivalence relation of the above ordering is denoted by ≃, and we denote by
[u] the singularity type of u, that is, the equivalence class containing u.

For u, v ∈ PSH(X, θ), we say u is less I-singular (more I-singular) than v if
I(λv) ⊆ I(λu) (I(λv) ⊇ I(λu)) for all constant λ > 0. Here, I(λu) denotes the
multiplier ideal sheaf of λu, which is locally generated by holomorphic function
f such that | f |2e−λu is locally integrable. We denote this relation by v ⪯I u
(v ⪰I u), and denote the corresponding equivalence relation by ≃I . The I
singularity type of u is denoted by [u]I . Understanding the singularity type plays
an important role in pluripotential theory; see [11, 13, 14].

DEFINITION 2.11. Let θ be a closed real (1, 1)-form on X, and let u be a θ-psh
function. We define the upper envelope and the I-envelope of u as

Pθ[u] := (sup{w ∈ PSH(X, θ)|w ≤ 0, w ⪯ u})∗ ∈ PSH(X, θ) and

Pθ[u]I := (sup{w ∈ PSH(X, θ)|w ≤ 0, tw ⪯I tu, t ≥ 0})∗ ∈ PSH(X, θ),

respectively. Here ( · )∗ means the upper semi-continuous envelope.

For u ∈ PSH(X, θ), note that

u ≤ Pθ[u] ≤ Pθ[u]I .

If u satisfies u = Pθ[u] (respectively, u = Pθ[u]I ), then we say that u is model
(respectively, I-model).
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EXAMPLE 2.12.

(1) Set Vθ := sup{v ∈ PSH(X, θ)|v ≤ 0}, which is of minimal singularities
in PSH(X, θ). Since Vθ is less singular than all θ-psh functions, it is
model and I-model.

(2) Let u ∈ PSH(X, θ). By [14, Proposition 2.18], we have

Pθ[Pθ[u]I ]I = Pθ[u]I .

Therefore, Pθ[u]I is I-model.

Let T1 = ddcu1 + θ and T2 = ddcu2 + θ be two closed positive (1, 1)-currents
in the same cohomology class. We say that T1 is less singular than T2 if u1 ⪰ u2,
and we denote this by T1 ⪰ T2.

Let T = θu = ddcu + θ be a closed positive (1, 1)-current. The upper envelope
and I-envelope of T are defined as

P[T] := θPθ [u] = ddcPθ[u] + θ and

P[T]I := θPθ [u]I = ddcPθ[u]I + θ,

respectively.

LEMMA 2.13. The envelopes P[T] and P[T]I are well-defined.

PROOF. We first note that for u, v ∈ PSH(X, θ) having the same singularity
type, the envelopes satisfy Pθ[u] = Pθ[v] and Pθ[u]I = Pθ[v]I .

Let θ′ be a smooth closed real (1, 1)-form cohomologous to θ. Write T =

ddcu′ + θ′, where u′ ∈ PSH(X, θ′).
By the ∂∂̄-lemma, there exists a smooth function f ≤ 0 on X such that

ddc f = θ − θ′. Now, note that

T = ddcu + θ

= ddc(u + f ) + θ′,

which shows that [u + f ] = [u′], and we get

ddcPθ[u] + θ = ddc(Pθ[u] + f ) + θ′

= ddcPθ′ [u + f ] + θ′

= ddcPθ′ [u′] + θ′.
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Therefore, we get the well-definedness of P[T]. For the well-definedness of P[T]I ,
the proof is similar. □

Let f : X → [−∞, ∞] be a function on X. The envelope with respect to f is
defined as

Pθ( f ) := (sup{v ∈ PSH(X, θ)|v ≤ f })∗.

For convenience, we set sup∅ = −∞. Note that Pθ( f ) ∈ PSH(X, θ) if and only
if there exists v ∈ PSH(X, θ) with v ≤ f . This notation was introduced in [39]
and has subsequently appeared in several articles (see [12, 13, 14]).

Now, we introduce the difference envelope of currents.

DEFINITION 2.14. Let T1 = ddcu1 + θ1, T2 = ddcu2 + θ2 be closed positive
(1, 1)-currents, where u1 ∈ PSH(X, θ1), u2 ∈ PSH(X, θ2). If there exists u3 ∈
PSH(X, θ1 − θ2) such that u3 + u2 ⪯ u1. Then, we define the difference envelope of
T1 and T2 as

P(T1 − T2) := ddcPθ1−θ2(u1 − u2) + (θ1 − θ2).

Here, we note that if u1(x) = u2(x) = −∞ for x ∈ X, then we define (u1 −
u2)(x) = ∞.

Similar to Remark 2.13, one can check that P(T1 − T2) is independent of the
choices of θj and uj for j = 1, 2.

Here, we review some important results regarding the Monge-Ampère mass
of envelopes of currents, where the notation ⟨ · ⟩ denotes the non-pluripolar
product, which will be introduced in Chapter 3.

PROPOSITION 2.15. ([11, Proposition 3.1]) Let {θ1}, . . . , {θn} be pseudoeffective
classes. Let uj ∈ PSH(X, θj), 1 ≤ j ≤ n. Then∫

X
⟨(θ1)u1 ∧· · · ∧ (θn)un⟩ =

∫
X
⟨(θ1)Pθ1 [u1]

∧· · · ∧ (θn)Pθn [un]
⟩.

In the case of self-intersection, the following result characterizes the full mass
intersection problem.

THEOREM 2.16. ([11, Theorem 3.14]) Let {θ} be a pseudoeffective class, and let
u ∈ PSH(X, θ) such that

∫
X⟨θ

n
u⟩ > 0. Let v ∈ PSH(X, θ) such that v ⪯ u. Then, the

following is equivalent.

(1)
∫

X⟨θ
n
v ⟩ =

∫
X⟨θ

n
u⟩.

(2) Pθ[u] = Pθ[v].
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2.3. Density currents

In this section, we recall some basic properties of density currents introduced
by Dinh-Sibony in [21].

Let X be a complex Kähler manifold of dimension n, and V a smooth complex
submanifold of X of dimension l. Let T be a closed positive (p, p)-current on
X, where 0 ≤ p ≤ n. Denote by π : E → V the normal bundle of V in X and
E := P(E⊕C) the projective compactification of E. We recall that E = TX|V/TV,
where TX and TV are the holomorphic tangent bundles of X and V respectively
(this shows E is a holomorphic vector bundle). By abuse of notation, we also use
π to denote the canonical projection from E to V.

Let U be an open subset of X with U ∩ V ̸= ∅. Let τ be a smooth diffeomor-
phism from U to an open neighborhood of U ∩ V in E which is the identity on
U ∩ V such that the induced map of the differential dτ to E|V∩U is the identity
(because for every x ∈ U ∩ V, dτ at x is the identity map on TVx, it induces a
linear map from TXx/TVx = Ex to TEx/TVx = Ex). Such a map is called an
admissible map. Note that in [21], to define an admissible map, it is required
furthermore that dτ is C-linear at every point of V. This difference doesn’t affect
what follows. When U is a small enough tubular neighborhood of V, there
always exists an admissible map τ by [21, Lemma 4.2]. In general, τ is not holo-
morphic. When U is a small enough local chart, we can choose a holomorphic
admissible map by using suitable holomorphic coordinates on U. For λ ∈ C∗, let
Aλ : E → E be the multiplication by λ on fibers of E, which can be extended to
Aλ : E → E. A (p, p)-current on E is said to be V-conic if it is invariant under the
action of {Aλ}. Here, we state an important result of density currents.

THEOREM 2.17. ([21, Theorem 4.6]) Let X be a compact Kähler manifold, and
V ⊆ X be a smooth complex submanifold. Let T be a closed positive (p, p)-current on
X, and let τ be an admissible map defined on a tubular neighborhood of V. Then, the
family (Aλ)∗τ∗T is of mass uniformly bounded in λ on compact subsets in E, and if S
is a limit current of the last family as λ → ∞, then S is a closed positive current on E
which can be extended trivially through E\E to be a V-conic closed positive current on
E such that the cohomology class {S} of S in E is independent of the choice of S, and
{S}|V = {T}|V , and ∥S∥ ≤ C∥T∥ for some constant C independent of S and T, where
{S}|V denotes the pull back of {S} under the canonical inclusion map from V to E.
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The current S in the above theorem is called a tangent current to T along V. Its
cohomology class is called the total tangent class of T along V and is denoted by
κV(T). Tangent currents are not unique in general. By [21, Theorem 4.6] again, if

S = lim
k→∞

(Aλk)∗τ∗T

for some sequence (λk)k converging to ∞, then for every open subset U′ of X
and every admissible map τ′ : U′ → E , we also have

S = lim
k→∞

(Aλk)∗τ′
∗T.

This is equivalent to saying that tangent currents are independent of the choice
of the admissible map τ.

DEFINITION 2.18. ([21, Definition 3.1]) Let F be a complex manifold and
πF : F → V a holomorphic submersion. Let S be a positive current of bi-degree
(p, p) on F. The h-dimension of S with respect to πF is the largest integer q such
that S ∧ π∗

Fθq ̸= 0 for some Hermitian metric θ on V.

By a bi-degree reason, the h-dimension of S is in [max{l − p, 0}, min{dim F −
p, l}]. We have the following description of currents with minimal h-dimension.

LEMMA 2.19. ([21, Lemma 3.4]) Let πF : F → V be a holomorphic submersion.
Let S be a closed positive current of bidegree (p, p) on F, with p < l, and of h-dimension
l − p with respect to πF. Then there exists a closed positive current S′ on V such that

S = π∗
FS′.

By [21, Lemma 3.8], the h-dimensions of tangent currents to T along V are the
same and this number is called the tangential h-dimension of T along V.

Let m ≥ 2 be an integer. Let Tj be a closed positive current of bi-degree (pj, pj)

for 1 ≤ j ≤ m on X and let T1 ⊗ · · · ⊗ Tm be the tensor current of T1, . . . , Tm which
is a current on Xm. A density current associated to T1, . . . , Tm is a tangent current
to ⊗m

j=1Tj along the diagonal ∆m of Xm. Let πm : Em → ∆m be the normal bundle
of ∆m in Xm. Denote by [V] the current of integration along V. When m = 2
and T2 = [V], the density currents of T1 and T2 are naturally identified with the
tangent currents to T1 along V (see [48, Lemma 2.3]).

The unique cohomology class of density currents associated to T1, . . . , Tm is
called the total density class of T1, . . . , Tm. We denote the last class by κ(T1, . . . , Tm).
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The tangential h-dimension of ⊗m
j=1Tj along ∆m is called the density h-dimension of

T1, . . . Tm.

DEFINITION 2.20. ([21, Definition 5.9]) Let Tj be a closed positive current
of bi-degree (pj, pj) on X, 1 ≤ j ≤ m, with ∑m

j=1 pj ≤ n. Assume that density
h-dimension of T1, . . . , Tm is equal to n − ∑m

j=1 pj, which is minimal. We say that
the Dinh–Sibony product

T1 ⋏ · · ·⋏ Tm

exists if there is a unique density current R associated to T1, . . . , Tm which is the
pull back of a current S on the diagonal ∆m ⊂ Xm by πm : Xm → ∆m. In this
case, we define

T1 ⋏ · · ·⋏ Tm := S.

The following lemma describes the relationship between the total density
class and the wedge products of the cohomology classes of the given currents.

LEMMA 2.21. ([21, Section 5]) Let Tj be a closed positive current of bi-degree
(pj, pj) on X for 1 ≤ j ≤ m such that ∑m

j=1 pj ≤ n. Assume that the density h-
dimension of T1, . . . , Tm is minimal, i.e, equals to n − ∑m

j=1 pj. Then the total density
class of T1, . . . , Tm is equal to π∗

m(∧m
j=1{Tj}), where πm : E → ∆m is the normal bundle

of ∆m.

Let hE be the Chern class of the dual of the tautological line bundle of E. By
[21, Page 535], we have

κV(T) =
min{l,n−p−1}

∑
j=max{0,l−p}

π∗(κV
j (T)

)
∧ hp−(l−j)

E
,(2.3.1)

where π : E → V is the canonical projection and κV
j (T) ∈ H2l−2j(V, R). The

tangential h-dimension of T along V is exactly equal to the maximal j such that
κV

j (T) ̸= 0, and it was known that the class κV
j (T) is pseudoeffective ([21, Lemma

3.15]).

THEOREM 2.22. ([21, Proposition 4.13]) Let V′ be a submanifold of V and let T
be a closed positive current on X. Let T∞ be a tangent current to T along V. Let s be the
tangential h-dimension of T∞ along V′. Then, the tangential h-dimension of T along V′

is at most s, and we have
κV′

s (T) ≤ κV′
s (T∞).
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As a consequence, we obtain the following result.

COROLLARY 2.23. ([43, Corollary 2.6]) Let Tj be a closed positive current on X
for 1 ≤ j ≤ m. Then, for every x ∈ X and for every density current S associated to
T1, . . . , Tm, we have

ν(S, xm) ≥ ν(T1, x) · · · ν(Tm, x),(2.3.2)

xm = (x, . . . , x) ∈ ∆m ⊂ E, where ∆m is the diagonal of Xm and E is the normal
bundle over ∆m.

PROOF. Let x ∈ X. Let π : E → ∆m be the canonical projection from the
normal bundle of the diagonal ∆m of Xm in Xm. Put T := ⊗m

j=1Tj and V′ := {xm}.
By [36, Lemma 2.4], we have ν(T, xm) ≥ ν(T1, x) · · · ν(Tm, x). By [21, Proposition
5.6], we have

κV′
0 (S) = ν(S, xm)δxm , κV′

0 (T) = ν(T, xm)δxm ,

where δxm is the Dirac measure on xm (notice here dim V′ = 0). This combined
with Theorem 2.22 applied to Xm, T := ⊗m

j=1Tj, ∆m the diagonal of Xm and
V′ := {xm} implies

ν(S, xm) ≥ ν(T, xm) ≥ ν(T1, x) · · · ν(Tm, x).

Hence, the desired inequality follows. The proof is finished. □

The above corollary generalizes the well-known comparison of Lelong num-
bers of intersection of (1, 1)-currents due to Demailly [16, Chapter III, Corollary
7.9] in the compact setting. It is probably the first result dealing with comparison
of Lelong numbers for intersection of currents of arbitrary bi-degree.
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CHAPTER 3

Relative non-pluripolar products on Hermitian manifold

3.1. Construction and some properties

The non-pluripolar product is a notion of wedge product for closed positive
(1, 1)-currents. It was introduced and studied in [3, 8, 24], and later generalized
to the relative setting on Kähler manifolds in [51]. In [33], we consider a more
general setting and show that, under certain assumptions on the Hermitian
metric ω of a complex manifold X, the relative non-pluripolar product remains
well-defined on X.

This section is based on the article [33]. We review the construction of the
relative non-pluripolar product in the Hermitian setting and discuss some of its
properties.

Let X be a compact complex manifold of dimension n. Let T1, . . . , Tm be closed
positive (1, 1)-currents and let T be a closed positive (p, p)-current such that
m + p ≤ n. Let Ω be a local coordinate chart of X, and for 1 ≤ j ≤ m, we write
Tj = ddcuj for some psh function uj on Ω. Let k ∈ N, and set uj,k = max{uj,−k},
which is a bounded psh function on Ω. Set

Rk := ddcu1,k ∧· · · ∧ ddcum,k ∧ T

to be the classical product of ddcu1, . . . , ddcum, and T introduced in 2.1.3.
Note that by Theorem 2.6, we have the following.

1∩m
j=1{uj>−k}Rk = 1∩m

j=1{uj>−k}Rk′

for k ≤ k′.
Under the assumption that the mass of 1∩m

j=1{uj>−k}Rk is uniformly bounded,
it follows that the limit

lim
k→∞

1∩m
j=1{uj>−k}Rk

exists. This is established in the following lemma.
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LEMMA 3.1. ([51, Lemma 3.1] or [33, Lemma 2.3]) If

(3.1.1) sup
k∈N

{∥∥∥1∩m
j=1{uj>−k}Rk

∥∥∥
K

}
< +∞,

for every compact set K ⊆ Ω, then the limit current

lim
k→∞

1∩m
j=1{uj>−k}Rk =: R

exists. Moreover, for any Borel form Φ supported in an open subset U ⊆ Ω with
bounded coefficients on U, we have

(3.1.2) lim
k→∞

〈
1∩m

j=1{uj>−k}Rk, Φ
〉
= ⟨R, Φ⟩ .

PROOF. Let K be a compact set in X. For ℓ ∈ N, set

Bℓ = ∩m
j=1{uj > −(ℓ+ 1)} − ∩m

j=1{uj > −ℓ}.

We have

1∩m
j=1{uj>−k}Rk = 1∩m

j=1{uj>0}Rk +
k−1

∑
ℓ=0

1Bℓ
Rk

= 1∩m
j=1{uj>0}R0 +

k−1

∑
ℓ=0

1Bℓ
Rℓ+1.

By the assumption (3.1.1). One sees that

k−1

∑
ℓ=ℓ′

1Bℓ
Rℓ+1

converges to 0 as k − 1 > ℓ′ and k, ℓ′ → ∞. This shows that the limit

lim
k→∞

1∩m
j=1{uj>−∞}Rk

exists.
We now prove (3.1.2). Let Φ be an (n − p − m, n − p − m)-form supported in

U, whose coefficients are bounded Borel functions. Let ϵ > 0. Fix k0 ∈ N such
that

|⟨1∩m
j=1{uj>−k}Rk, Φ′⟩ − ⟨R, Φ′⟩| ≤ ϵ, for k > k0.

By Lusin’s theorem, there exists a (n − p − m, n − p − m)-form Φ′ with continu-
ous coefficients and compact support such that

∥R∥{x∈Ω|Φ(x) ̸=Φ′(x)} ≤ ϵ.
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Since 1∩m
j=1{uj>−k}Rk ≤ R for k ∈ N, we also get

∥1∩m
j=1{uj>−k}Rk∥{x∈Ω|Φ(x) ̸=Φ′(x)} ≤ ϵ, for k ∈ N.

For k ≥ k0, we have

|⟨1∩m
j=1{uj>−k}Rk, Φ⟩ − ⟨R, Φ⟩|

≤|⟨1∩m
j=1{uj>−k}Rk, Φ⟩ − ⟨1∩m

j=1{uj>−k}Rk, Φ′⟩|+ |⟨1∩m
j=1{uj>−k}Rk, Φ′⟩ − ⟨R, Φ′⟩|

+ |⟨R, Φ′⟩ − ⟨R, Φ⟩|

≤3ϵ.

This shows limk→∞

〈
1∩m

j=1{uj>−k}Rk, Φ
〉
= ⟨R, Φ⟩, and the proof is completed.

□

By applying (3.1.2) from Lemma 3.1, we immediately obtain the following
remark.

REMARK 3.2.

1∩m
j=1{uj>−k}Rk = 1∩m

j=1{uj>−k}R, 1∪m
j=1{uj=−∞}R = 0.

Now, let us move on to the global setting. First, express each current Tj as

Tj = ddcũj + θj,

where ũj ∈ PSH(X, θj) for 1 ≤ j ≤ m. For each k ∈ N, define

ũj,k := max{ũj,−k},

and set
R̃k := (ddcũ1,k + θ1) ∧ · · · ∧ (ddcũm,k + θm) ∧ T.

By Theorem 2.6 and the fact that {ũj > −k} = {ũj,k > −k}, we have

(3.1.3) 1∩m
j=1{ũj>−k}R̃k = 1∩m

j=1{ũj>−k}R̃l

for every l ≥ k.
Note that, in general, R̃k is not necessarily a positive current. However, the

current
1⋂m

j=1{ũj>−∞}R̃k

is positive (see Lemma 3.3).
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Analogously to Lemma 3.1, with the uniformly bounded mass condition on
1⋂m

j=1{ũj>−k}R̃k, the sequence {
1⋂m

j=1{ũj>−k}R̃k

}
converges weakly to some closed positive current.

LEMMA 3.3. ([51, Lemma 3.2]) The current 1∩m
j=1{ũj>−k}R̃k is positive on X.

Furthermore, if we assume

(3.1.4) sup
k∈N

{∥∥∥1∩m
j=1{ũj>−k}R̃k

∥∥∥
K

}
< +∞,

for every compact set K ⊆ X. Then 1∩m
j=1{ũj>−k}R̃k weakly converges to a positive

current R̃ as k → ∞.

PROOF. For every point x in X, let U be an open neighborhood of x such
that Tj = ddcuj for j = 1, . . . , m, where uj is a psh function on U. By the local
∂∂-lemma, we could shrink U and then find a smooth function τj on U such that
uj = ũj + τj on U with ddcτj = θj. We could assume that τj is bounded on U by
shrinking U again. Choose c0 ∈ N with

c0 >
m

∑
j=1

sup
U

|τj|.

On the subset {ũj > −k} = {uj > −k + τj} of U, we have

ũj,k+c0 + τj = ũj + τj = uj = uj,k+c0 .

Combining this with (3.1.3), we have

1∩m
j=1{ũj>−k}R̃k = 1∩m

j=1{ũj>−k}R̃k+c0 = 1∩m
j=1{ũj>−k}Rk+c0

on U. We deduce that 1∩m
j=1{ũj>−k}R̃k is positive on U, hence on X.

Now, we claim that with the assumption (3.1.4), the limit current R̃ exists.
Since

{uj > −k} ⊆ {ũj > −(k + c0)} ⊆ {uj > −(k + 2c0)}
on U for every k, we have

1∩m
j=1{ũj>−k}R̃k = 1∩m

j=1{ũj>−k}Rk+c0 ≤ 1∩m
j=1{uj>−(k+c0)}Rk+c0
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and

1∩m
j=1{uj>−k}Rk = 1∩m

j=1{uj>−k}Rk+2c0

≤ 1∩m
j=1{ũj>−(k+c0)}Rk+2c0 = 1∩m

j=1{ũj>−(k+c0)}R̃k+c0

on U for every k. In other words, we have

(3.1.5) 1∩m
j=1{uj>−k}Rk ≤ 1∩m

j=1{ũj>−(k+c0)}R̃k+c0 ≤ 1∩m
j=1{uj>−(k+2c0)}Rk+2c0

on U for every k. Combined with Lemma 3.1, we deduce that 1∩m
j=1{ũj>−k}R̃k

weakly converges to the positive current R on U as k → ∞. Also, by (3.1.5), we
see that R is independent of the local potential uj. Hence, 1∩m

j=1{ũj>−k}R̃k weakly

converges to a positive current R̃ on X as k → ∞, and R̃ = R on U. □

When the limit of {1∩m
j=1{ũj>−k}R̃k} exists, we denote it by

⟨T1 ∧· · · ∧ Tm ∧̇ T⟩ := lim
k→∞

1∩m
j=1{ũj>−k}R̃k,

which is called the non-pluripolar product relative to T of T1, . . . , Tm. One can see
from Lemma 3.1 and Lemma 3.3, that the limit always exists if condition (3.1.4)
holds, or condition (3.1.1) holds for any local coordinate chart Ω.

When T is the current of integration along X, we observe that the relative
non-pluripolar product ⟨T1 ∧ · · · ∧ Tm ∧̇ T⟩ coincides with the non-pluripolar
product, which is denoted by ⟨T1 ∧ · · · ∧ Tm⟩.

When X is a compact Kähler manifold, condition (3.1.4)) always holds (see
[51, Lemma 3.4] or [8, Proposition 1.4]), which implies the well-definedness of
the relative non-pluripolar product. The following theorem considers a more
general setting: a compact complex manifold X equipped with a Hermitian form
ω satisfying

(3.1.6) ddcω = ddc(ω2) = 0.

One can see that the above condition is equivalence to

(3.1.7) ddc(ω)k = 0, 1 ≤ k ≤ n.

THEOREM 3.4. Let X be a compact complex manifold of dimension n endowed with
a Hermitian form ω satisfying (3.1.6). Let T1, . . . , Tm be closed positive (1, 1)-currents
and let T be a closed positive (p, p)-current on X such that p + m ≤ n. Then the
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relative non-pluripolar product

⟨T1 ∧· · · ∧ Tm ∧̇ T⟩

is well-defined.

PROOF. First, recall that we write Tj = ddcũj + θj, ũj ∈ PSH(X, θj), 1 ≤ j ≤ m.
For k ∈ N, we set

ũj,k := max{ũj,−k}, R̃k := (ddcũ1,k + θ1) ∧ · · · ∧ (ddcũm,k + θm) ∧ T.

Let C > 0 be a constant such that Cω + θj > 0 for 1 ≤ j ≤ m. Note that we have

1∩m
j=1{ũj>−k}R̃k

≤1∩m
j=1{ũj>−k}(ddcũ1,k + θ1 + Cω) ∧ · · · ∧ (ddcũm,k + θm + Cω) ∧ T.

By the assumption on ω (3.1.7) and integrating by part, we obtain

∥1∩m
j=1{ũj>−k}R̃k∥

≤∥(ddcũ1,k + θ1 + Cω) ∧ · · · ∧ (ddcũm,k + θm + Cω) ∧ T∥

=
∫

X
(ddcũ1,k + θ1 + Cω) ∧ · · · ∧ (ddcũm,k + θm + Cω) ∧ T ∧ ωn−m−p

=
∫

X
(θ1 + Cω) ∧ · · · ∧ (θm + Cω) ∧ T ∧ ωn−m−p,

which is independent of k. Hence, condition (3.1.4) holds, and the relative
non-pluripolar product

⟨T1 ∧· · · ∧ Tm ∧̇ T⟩
is well-defined. □

The following example, inspired by [45], shows that there exist many n-
dimensional non-Kähler compact complex manifolds which can be endowed
with a Hermitian form ω satisfying condition (3.1.6).

EXAMPLE 3.5. A Gauduchon form ω on a n-dimensional complex manifold,
is a Hermitian form satisfying ∂∂ωn−1 = 0. Every compact complex manifold
has a Gauduchon form. Let Y be a Hopf surface, which is a 2-dimensional non-
Kähler compact complex manifold, there is a Gauduchon form ωY on Y satisfied
∂∂ωY = 0.
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Let Z be an n-dimensional compact Kähler manifold endowed with a Kähler
form ωZ. Let X := Y × Z. Let pY : X → Y and pZ : X → Z be the natural
projections. Then X is an (n + 2)-dimensional non-Kähler compact complex
manifold, with a Hermitian form ωX := p∗Y ωY + p∗Z ωZ satisfied ∂∂ωX =

∂ωX ∧ ∂ωX = 0.

A set A ⊆ X is a complete pluripolar set if A = {x|u(x) = −∞}, for some
quasi-psh function u on X. Here, we state some important properties of relative
non-pluripolar product.

PROPOSITION 3.6. ([51, Proposition 3.5]) Let X be a complex manifold of dimen-
sion n. Let T1, . . . , Tm be closed positive (1, 1)-current, and let T be a closed positive
(p, p)-current on X such that m + p ≤ n. Assume the non-pluripolar product

⟨T1 ∧· · · ∧ Tm ∧̇ T⟩

is well-defined on X. Then, the following hold.

(1) ⟨T1 ∧ · · · ∧ Tm ∧̇ T⟩ is symmetric with respect to T1, . . . , Tm.
(2) Let λ > 0, then ⟨(λT1) ∧· · · ∧ Tm ∧̇ T⟩ = λ⟨T1 ∧· · · ∧ Tm ∧̇ T⟩.
(3) Let A be a complete pluripolar set such that T has no mass on A, then

⟨T1 ∧· · · ∧ Tm ∧̇ T⟩

also has no mass on A.
(4) Let T′

1 be a closed positive (1, 1)-currents on X. Assume that ⟨T′
1 ∧ T2 ∧ · · · ∧

Tm ∧̇ T⟩ is well-defined. Then ⟨(T1 + T′
1)∧ T2 ∧ · · · ∧ Tm ∧̇ T⟩ is well-defined

and satisfies

⟨(T1 + T′
1) ∧ T2 ∧ · · · ∧ Tm ∧̇ T⟩

≤⟨T1 ∧ T2 ∧ · · · ∧ Tm ∧̇ T⟩+ ⟨T′
1 ∧ T2 ∧ · · · ∧ Tm ∧̇ T⟩.

The equality occurs if T has non mass on IT1 ∪ IT′
1
.

(5) Let 1 ≤ l ≤ m be an integer. Let T′′
j be a closed positive (1, 1)-current on X for

j = 1, . . . , l. Assume Tj ≤ T′′
j for every j and T has no mass on ∪l

j=1 IT′′
j −Tj

.
Then we have

⟨T1 ∧ · · · ∧ Tm ∧̇ T⟩ ≤ ⟨T′′
1 ∧ · · · ∧ T′′

l ∧ Tl+1 ∧ · · · ∧ Tm ∧̇ T⟩.
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(6) Let 1 ≤ l ≤ m − 1 be an integer. Assume R := ⟨Tl+1 ∧ · · · ∧ Tm ∧̇ T⟩ and
⟨T1 ∧ · · · ∧ Tl ∧̇ T⟩ are well-defined. Then we have

⟨T1 ∧ · · · ∧ Tm ∧̇ T⟩ = ⟨T1 ∧ · · · ∧ Tl ∧̇ R⟩.

(7) Let A be a complete pluripolar set. Then we have

1X\A⟨T1 ∧ · · · ∧ Tm ∧̇ T⟩ =
〈

T1 ∧ · · · ∧ Tm ∧̇ (1X\AT)
〉
.

In particular, the equality

⟨T1 ∧ · · · ∧ Tm ∧̇ T⟩ = ⟨T1 ∧ · · · ∧ Tm ∧̇ T′⟩

holds, where T′ := 1X\∪m
j=1 ITj

T.

REMARK 3.7. In the case of the non-pluripolar product (T = [X]), the no-mass
condition in Proposition 3.6 (4) and (5) is automatically satisfied. Consequently,
the inequality in (5) generalized the case of the non-pluripolar product, while
the inequality in (4) becomes an equality, which reflects the multi-linearity of the
non-pluripolar product.

The following proposition describes the relationship between relative non-
pluripolar products and classical products introduced in Section 2.1.3.

PROPOSITION 3.8. ([51, Proposition 3.6]) Let T1, . . . , Tm be closed positive (1, 1)-
current, and let T be a closed positive (p, p) current on X such that m + p ≤ n.

(1) If T is of bi-degree (1, 1), then

⟨T1 ∧· · · ∧ Tm ∧̇ T⟩ = 1X\IT
⟨T1 ∧· · · ∧ Tm ∧ T⟩.

(2) If the product T1 ∧· · · ∧ Tm ∧ T is well-defined in the sense in section 2.1.3.
Then,

⟨T1 ∧· · · ∧ Tm ∧̇ T⟩ = 1X\∪m
j=1 ITj

T1 ∧· · · ∧ Tm ∧ T.

When the current T = [V], the current of integration along some analytic
subset V, we have the following.

LEMMA 3.9. ([52, Lemma 2.3]) Let T1, . . . , Tm be closed positive (1, 1)-currents
on X. Then the following properties hold:

(1) If V is contained in ∪m
j=1 ITj , then ⟨T1 ∧· · · ∧ Tm ∧̇ [V]⟩ = 0 and there is

1 ≤ j0 ≤ m so that V ⊆ ITj0
.
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(2) If V is not contained in ∪m
j=1 ITj , then

⟨∧m
j=1Tj ∧̇ [V]⟩ = i∗⟨T1,V ∧· · · ∧ Tm,V⟩,

where i : Reg(V) → X is the natural inclusion, and Tj,V := ddc(uj|Reg(V)) if
ddcuj = Tj locally.

THEOREM 3.10. ([51, Theorem 3.7]) Let Tj be closed positive (1, 1)-currents,
1 ≤ j ≤ m. Let T be a closed positive (p, p)-current such that m + p ≤ n. If

⟨T1 ∧· · · ∧ Tm ∧̇ T⟩

is well-defined, then it is closed.

PROOF. For convenience, we set ⟨T1 ∧ · · · ∧ Tm ∧̇ T⟩ = R. Let U be a local
chart, and write Tj = ddcuj, where uj ≤ 0 is a plurisubharmonic function on
U, for 1 ≤ j ≤ m. Let ρ be a positive (n − m − p − 1, n − m − p − 1)-form with
constant coefficients on U. To prove that R is closed, it suffices to show that

d(ρ ∧ R) = 0 on U.

For each k ∈ N, set

ψk :=
1
k

max

{
m

∑
j=1

uj,−k

}
+ 1,

which defines a plurisubharmonic function on U satisfying 0 ≤ ψk ≤ 1. More-
over, ψk increases pointwise to 1∩m

j=1{uj>−∞}.

Let g : R → R be a smooth function such that g(0) = 0, g(1) = 1, and
g′(0) = g′(1) = 0.

Since R has no mass on the set ∪m
j=1{uj = −∞}, it follows that g(ψk)R → R

as k → ∞. Thus, to prove the theorem, it suffices to show that

d(ρ ∧ R) = lim
k→∞

d
(

g(ψk) ρ ∧ R
)
= 0.

Since g(ψk) = 0 on ∪m
j=1{uj ≤ −k}, we have

d(g(ψk) ρ ∧ R) = d(g(ψk) ρ ∧ Rk) = −g′(ψk) ρ ∧ dψk ∧ Rk

for each k ∈ N.
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Let η be a smooth 1-form with compact support in U, and let U1 ⋐ U2 ⋐ U
be relatively compact open subsets. By the Cauchy–Schwarz inequality, we have

(3.1.8)

∣∣∣∣∫U1

g′(ψk) dψk ∧ η ∧ ρ ∧ Rk

∣∣∣∣2
≤
(∫

U1

τ dψk ∧ dcψk ∧ ρ ∧ Rk

)(∫
U1

(g′(ψk))
2 η ∧ η ∧ ρ ∧ Rk

)
where τ is a smooth cutoff function with τ ≡ 1 on the support of η.

Now, by the Chern–Levine–Nirenberg inequality and the identity

dψk ∧ dcψk = ddc(ψ2
k)− ψkddcψk,

we obtain

(3.1.9) ∥τ dψk ∧ dcψk ∧ ρ ∧ Rk∥U1 ≲ ∥ψk ρ ∧ Rk∥U2 ,

where the norm on the right-hand side is uniformly bounded in k.
On the other hand, since g′(ψk) = 0 on ∪m

j=1{uj ≤ −k}, we have

(g′(ψk))
2Rk = (g′(ψk))

2R.

Using the fact that g′(ψk) → 0 pointwise on ∩m
j=1{uj > −∞}, and that R has no

mass on ∪m
j=1{uj = −∞}, it follows that

(g′(ψk))
2Rk → 0 as k → ∞.

Hence, ∫
U1

(g′(ψk))
2η ∧ η ∧ ρ ∧ Rk → 0.

This, combined with (3.1.8) and (3.1.9), completes the proof. □

The following lemmas will be used in the Chapter 5. We assume X to be a
compact Kähler manifold in the rest of this section.

LEMMA 3.11. ([42, Lemma 2.7]) Let {θ1}, . . . , {θm} be pseudoeffective classes,
1 ≤ m ≤ n. For 1 ≤ j ≤ m, let T′

j , Tj ∈ {θj} be closed positive (1, 1)-currents such
that supp(T′

j ) ⊆ Wj for some complete pluripolar set Wj. Then, the following equality
holds.

⟨∧m
j=1(Tj + T′

j )⟩ = ⟨∧m
j=1Tj⟩.
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PROOF. By the multi-linearity of non-pluripolar product (Proposition 3.6 (4)),
we have

⟨∧m
j=1(Tj + T′

j )⟩ = ⟨∧m
j=1Tj⟩+

m

∑
s=1

Rs,

where Rs = cj⟨∧s
j=1T′

j ∧ ∧m
ℓ=s+1Tℓ⟩, cj ∈ N+.

By the construction of the non-pluripolar product, we see that Rs is supported
in W = ∪n

j=1Wj, where W is a complete pluripolar set. On the other hand, the
non-pluripolar product of currents does not charge mass on complete pluripolar
set. Therefore, we get Rs = 0 for 1 ≤ s ≤ m, which completes the proof. □

LEMMA 3.12. ([42, Lemma 2.8]) Let {θ1}, . . . , {θm} be pseudoeffective (1, 1)-
classes, 1 ≤ m ≤ n. Let T′

j , Tj ∈ {θj} be closed positive (1, 1)-currents such that Tj

is less singular than T′
j , 1 ≤ j ≤ m. Set Tp

j := 1ITj
Tj. If there exists a Kähler current

Pj ∈ {θj} with analytic singularities that is more singular than Tj. Then, 1IT′j
T′

j ≥ Tp
j

for 1 ≤ j ≤ m, and the following holds.

⟨∧m
j=1T′

j ⟩ = ⟨∧m
j=1(T

′
j − Tp

j )⟩.(3.1.10)

PROOF. The proof strategy follows [53]. First, by applying Lemma 3.11, we
immediately obtain (3.1.10). We now show that 1IT′j

T′
j ≥ Tp

j holds for 1 ≤ j ≤ m.

Since Tj is less singular than Pj, we get supp(Tp
j ) ⊆ IPj = Vj, where Vj is an

analytic subset. By the first support theorem ([16, Chapter III, Theorem 2.10]),
the analytic subset Vj is of dimension n − 1. Furthermore, the second support
theorem ([16, Chapter III, Theorem 2.13]) implies that

Tp
j = ∑

Vj,k

λj,k[Vj,k],

where {Vj,k} are the irreducible components of Vj. Since Tj is less singular than
T′

j , we get

ν(T′
j , Vj,k) ≥ ν(Tj, Vj,k) ≥ ν(Tp

j , Vj,k) = λj,k

for each irreducible component Vj,k. This shows that T′
j ≥ Tp

j , and we get

1IT′j
T′

j ≥ Tp
j . This completes the proof. □
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3.2. Monotonicity property

Let X be a compact Hermitian manifold of dimension n, and let θ be a closed
(1, 1)-form on X. Recall that in Section (2.1.2), we denote by {θ}∂∂̄ the Bott-
Chern cohomology class of θ. We say {θ}∂∂̄ is pseudoeffective if there exists a
closed positive (1, 1)-current T ∈ {θ}∂∂̄. Let T1, T2 ∈ {θ}∂∂̄ be closed positive
(1, 1)-currents. We write T1 = ddcu1 + θ and T2 = ddcu2 + θ respectively, where
u1, u2 ∈ PSH(X, θ). Recall that T1 is said to be less singular (more singular) than
T2 if u1 ≥ u2 +O(1) (u1 ≤ u2 +O(1)).

We now aim to prove the monotonicity property of relative non-pluripolar
products on certain compact Hermitian manifolds, stated below.

THEOREM 3.13. ([33, Theorem 3.4]) Let X be a compact Hermitian manifold
of dimension n, endowed with a Hermitian form ω satisfying condition (3.1.6). Let
{θ1}∂∂̄, . . . , {θm}∂∂̄ be pseudoeffective classes on X, where m ≤ n. For 1 ≤ j ≤ m, let
Tj, T′

j ∈ {θj}∂∂̄ be closed positive (1, 1)-currents, and let T be a closed positive (p, p)-
current such that m + p ≤ n. Assume that T′

j is less singular than Tj, for 1 ≤ j ≤ m.
Then, we have

∥⟨T1 ∧· · · ∧ Tm ∧̇ T⟩∥ ≤ ∥⟨T′
1 ∧· · · ∧ T′

m ∧̇ T⟩∥.

Before we go into the proof of Theorem 3.13, we first introduce the concept
of capacity. Let U ⊆ Cn be an open set, and let K ⊆ U be a Borel set. Let T be a
closed positive (p, p)-current on U. We define

capT(K, U) = sup
{∫

K
(ddcu)n−p ∧ T

∣∣∣∣−1 ≤ u ≤ 0 and u is psh on U
}

Now, we review some important results in [51]. For the reader’s convenience,
we include the proofs.

LEMMA 3.14. ([51, Lemma 4.1]) Let U ⊆ Cn be an open set. For 1 ≤ j ≤ m,
let uj be a psh function, and let uℓ

j be a sequence of psh functions on U such that
uℓ

j ≥ uj and uℓ
j → uj in L1

loc, as ℓ → ∞. Let T be a closed positive (p, p)-current on
U such that m + p ≤ n. Assume that the non-pluripolar products ⟨∧m

j=1ddcuj ∧̇ T⟩,
⟨∧m

j=1ddcuℓ
j ∧̇ T⟩ are well-defined. Then,

lim inf
ℓ→∞

∫
U
⟨∧m

j=1ddcuℓ
j ∧̇ T⟩ ∧ Φ ≥

∫
U
⟨∧m

j=1ddcuj ∧̇ T⟩ ∧ Φ,
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for every positive (n − m − p, n − m − p)-form Φ with compact support in U.

PROOF. Let k ∈ N, and let uj,k = max{uj,−k}, uℓ
j,k = max{uℓ

j ,−k}. Set

R = ⟨∧m
j=1ddcuj ∧̇ T⟩, Rℓ = ⟨∧m

j=1ddcuℓ
j ∧̇ T⟩,

Rk = ∧m
j=1ddcuj,k ∧ T, Rℓ

k = ∧m
j=1ddcuℓ

j,k ∧ T.

Let Φ be a positive (n − m − p, n − m − p)-form with compact support in U. By
Lemma 3.1 and the fact that uℓ

j > uj, we get∫
U

Rℓ ∧ Φ ≥
∫

U
1∩m

j=1{uℓ
j>−k}Rℓ ∧ Φ(3.2.1)

=
∫

U
1∩m

j=1{uℓ
j>−k}Rℓ

k ∧ Φ

≥
∫

U
1∩m

j=1{uj>−k}Rℓ
k ∧ Φ.

Let ϵ > 0, by [51, Theorem 2.4], there exists an open set U′ ⊆ U such that the
restriction of uj on U\U′ is continuous and capT(U, U′) ≤ ϵ. By [40, Theorem
20.4], the uj|U\U′ can be continuously extended to ũj on U.

Since uℓ
j → uj in L1

loc, we have uℓ
j,k → uj,k in L1

loc, as ℓ → ∞, for each k ∈ N.

Hence, by [51, Theorem 2.6], Rℓ
k → Rk weakly, as ℓ → ∞ for each k ∈ N.

Therefore, we have

(3.2.2) lim inf
ℓ→∞

∫
U
1∩m

j=1{ũj>−k}Rℓ
k ∧ Φ ≥

∫
U
1∩m

j=1{ũj>−k}Rk ∧ Φ.

By the facts that uℓ
j,k is uniformly bounded in ℓ and capT(U, U′) < ϵ, we get

(3.2.3)

∣∣∣ ∫
U
1∩m

j=1{ũj>−k}Rℓ
k ∧ Φ −

∫
U
1∩m

j=1{uj>−k}Rℓ
k ∧ Φ

∣∣∣ < cϵ,∣∣∣ ∫
U
1∩m

j=1{ũj>−k}Rk ∧ Φ −
∫

U
1∩m

j=1{uj>−k}Rk ∧ Φ
∣∣∣ < cϵ

for some c > 0 only depends on k. By (3.2.1), (3.2.2) and (3.2.3), we have

lim inf
ℓ→∞

∫
U

Rℓ ∧ Φ ≥
∫

U
1∩m

j=1{uj>−k}Rk ∧ Φ =
∫

U
1∩m

j=1{uj>−k}R ∧ Φ.

Finally, letting k → ∞, we get the desired inequality. □

When Tj and T′
j have the same type of singularity, we have the following

proposition.
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PROPOSITION 3.15. ([51, Proposition 4.2]) Let X be a compact complex manifold.
For 1 ≤ j ≤ m, let Tj, T′

j be two closed positive (1, 1)-currents in the same cohomology
class and the same singularity type. Let T be a close positive (p, p)-current such that
m + p ≤ n. Assume that for J, J′ ⊆ {1, . . . , m} such that J ∩ J′ = ∅, the non-
pluripolar product

⟨∧j∈JTj ∧ ∧j′∈J′T′
j′ ∧̇ T⟩

is well-defined. Then, for every ddc-closed (n − m − p, n − m − p)-form Φ on X, we
have ∫

X
⟨∧m

j=1Tj ∧̇ T⟩ ∧ Φ =
∫

X
⟨∧m

j=1T′
j ∧̇ T⟩ ∧ Φ.

PROOF. First, we write Tj = ddcuj + θj and T′
j = ddcu′

j + θj, where uj, u′
j ∈

PSH(X, θj). Set uj,k = max{uj,−k} and u′
j,k = max{u′

j,−k}, and let Tj,k =

ddcuj,k + θj, T′
j,k = ddcu′

j + θj. Set wj,k = uj,k − u′
j,k. Since Tj, T′

j are of the same
singularity type. We may further assume that |wj,k| ≤ 1 for 1 ≤ j ≤ m, and
k ∈ N. Set

ψk = k−1 max{(uj + u′
j),−k}+ 1.

Note that ψk is a quasi-psh function which increases to 1X\∪m
j=1{uj=−∞} as k →

∞, and ψk = 0 on {uj ≤ −k} ∪ {u′
j ≤ −k}. Now, set S = ⟨∧m

j=1Tj ∧̇ T⟩ −
⟨∧m

j=1T′
j ∧̇ T⟩. Since ψkS → S weakly as k → ∞, to prove the desired equality,

we need to claim the following.

(3.2.4)
∫

X
ψkS ∧ Φ → 0, k → ∞,

for any ddc-closed (n − m − p, n − m − p)-form on X. By the construction of ψk,
one sees that

ψkS = ψk ∧m
j=1 Tj,k ∧ T − ψk ∧m

j=1 T′
j,k ∧ T

=
m

∑
s=1

ψk ∧s−1
j′=1 T′

j′,k ∧ ddcws,k ∧ ∧m
j=s+1Tj,k ∧ T.

Let J, J′ ⊆ {1, . . . , m} be such that J ∩ J′ = ∅. We set

RJ J′ = ⟨∧j∈JTj ∧ ∧j∈J′T′
j ∧̇ T⟩, RJ J′,k = ∧j∈JTj ∧ ∧j′∈J′Tj′ ∧ T.

To prove (3.2.4), we show∫
X

ψkddcws,k ∧ RJ J′,k ∧ Φ → 0, k → ∞,
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for s ̸∈ J ∪ J′. Note that the current RJ J′,k is not necessarily positive in general.
Hence, we could not estimate its mass directly, and we need to modify it slightly.
Set Bk = ∩j∈J{uj > −k} ∩ ∩j′∈J′{u′

j > −k} and let A = ∪m
j=1{uj = −∞}.

Set R̃J J′ = 1X\ARJ J′ . It is not difficult to see that R̃J J′ is closed and positive.
Furthermore, R̃J J′ and RJ J′,k satisfy the following relation:

ψkR̃J J′ = ψkRJ J′ = ψkRJ J′,k.

By integration by parts, we have∫
X

ψkddcws.k ∧ RJ J′,k ∧ Φ =
∫

X
ws,kddc(ψkRJ J′,k ∧ Φ)

=
∫

X
ws,kddc(ψkR̃J J′ ∧ Φ).

Since ddc(ψkR̃J J′ ∧ Φ) is a top-degree current and R̃J J′ is closed,

ddc(ψkR̃J J′ ∧ Φ) = ddcψk ∧ R̃J J′ ∧ Φ + 2dψk ∧ dcΦ ∧ R̃J J′ .

We can write dcΦ as a linear combination of a (1, 0)-form wedged with a (n−m−
p, n−m− p)-form and a (0, 1)-form wedged with a (n−m− p, n−m− p)-form.
For convenience, we express dcΦ = τ1 ∧ Φ1 + τ2 ∧ Φ2, where τ1 is a (1, 0)-form
and τ2 is a (0, 1)-form. By the Cauchy-Schwarz inequality, we have∫

X
ws,kdψk ∧ dcΦ ∧ R̃J J′

≤
( ∫

X
|ws,k|2∂ψk ∧ ∂ψk ∧ R̃J J′ ∧ Φ2

) 1
2
( ∫

X
τ2 ∧ τ2 ∧ R̃J J′ ∧ Φ2

) 1
2

+
( ∫

X
|ws,k|2∂ψk ∧ ∂ψk ∧ R̃J J′ ∧ Φ1

) 1
2
( ∫

X
τ1 ∧ τ1 ∧ R̃J J′ ∧ Φ1

) 1
2

≲
( ∫

X
dψk ∧ dcψk ∧ R̃J J′ ∧ Φ0

) 1
2∥RJ J′∥

1
2 ,

where Φ0 = cωn−|J|−|J′|−1 is a positive form, and c is a constant such that
Φ1, Φ2 ≤ Φ0. Now, note that {limk→∞ ψk < 1} equals the complete pluripolar
set A. By [51, Remark 2.7] and the fact that R̃J J′ has no mass on A, we get

lim
k→∞

dψk ∧ dcψk ∧ R̃J J′ = lim
k→∞

(ddcψ2
k − ψkddcψk) ∧ R̃J J′ = 0.
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Therefore, we have

lim
k→∞

∫
X

ws,kdψk ∧ dcΦ ∧ R̃J J′ = 0.

Using a similar argument, one also obtains

lim
k→∞

∫
X

ws,kddcψk ∧ R̃J J′ ∧ Φ = 0.

This completes the proof. □

We now begin the proof of Theorem 3.13, following the strategy introduced
in [51].

PROOF OF THEOREM 3.13. First, we write Tj = ddcuj + θj and T′
j = ddcu′

j +

θj, where uj, u′
j ∈ PSH(X, θj). Set u′

j,ℓ = max{u′
j − ℓ, uj} ∈ PSH(X, θj), which

decreases to uj as ℓ → ∞. Note that u′
j,ℓ and u′

j are of the same singularity type.
Set T′

j,ℓ = ddcu′
j,ℓ + θj. By Proposition 3.15, we get

(3.2.5) ∥⟨T′
1,ℓ ∧· · · ∧ T′

m,ℓ ∧̇ T⟩∥ = ∥⟨T′
1 ∧· · · ∧ T′

m ∧̇ T⟩∥,

for any ℓ ∈ N. Let S be a limit current of ⟨T′
1ℓ ∧· · · ∧ T′

mℓ ∧̇ T⟩. By Lemma 3.14,
we have

S ≥ ⟨T1 ∧· · · ∧ Tm ∧̇ T⟩.
Combining this with (3.2.5), we obtain

∥⟨T1 ∧· · · ∧ Tm ∧̇ T⟩∥ ≤ ∥⟨T′
1 ∧· · · ∧ T′

m ∧̇ T⟩∥.

□

REMARK 3.16. In Theorem 3.13, when T is also a closed positive (1, 1)-current,
and T′ ∈ {T} is another closed positive (1, 1)-current that is less singular than T.
Then, we further obtain the following.

∥⟨T1 ∧· · · Tm ∧̇ T⟩∥ ≤ ∥⟨T′
1 ∧· · · T′

m ∧̇ T′⟩∥.

REMARK 3.17. We note that in [51, Theorem 4.4], the monotonicity holds
in the sense of cohomology classes. More precisely, if X is a compact Kähler
manifold, then

{⟨T1 ∧ · · · ∧ Tm ∧̇ T⟩} ≤ {⟨T′
1 ∧ · · · ∧ T′

m ∧̇ T⟩},
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where Tj, T′
j are closed positive (1, 1)-currents in the same pseudoeffective Dol-

beault cohomology class {θj}. This inequality holds because the Poincaré duality
applies to Dolbeault cohomology groups on Kähler manifolds. However, the
duality does not generally hold for the Bott–Chern cohomology on Hermitian
manifolds in general. Therefore, the statement of monotonicity in Theorem 3.13
is formulated only in terms of masses.

3.3. Demailly’s analytic approximation

In this section, we recall Demailly’s analytic approximation theorem, intro-
duced in [18, 19]. We also discuss the convergence of the Monge–Ampère masses
associated with the currents in Demailly’s approximation sequence.

Let θ be a closed real (1, 1)-form, and let u ∈ PSH(X, θ). We say u is of
analytic singularities if it can be expressed locally as

c log
N

∑
j=1

| f j|2 + g,

where c > 0, f1, . . . , fN are some holomorphic functions, and g is a bounded func-
tion. Let T be a closed positive (1, 1)-current. We say T is of analytic singularities
if its global potential function is of analytic singularities.

THEOREM 3.18. ([19, Corollary 14.13]) Let {θ} be a pseudoeffective class, and
u ∈ PSH(X, θ). Then, there exists a sequence uD

k ∈ PSH(X, θ + ϵkω), where ϵk

decreases to 0, such that

(1) The sequence (uD
k ) satisfies uD

k ≥ u and uD
k → u in L1.

(2) uD
k has analytic singularities.

(3) ν(Tk, x) converges to ν(T, x) uniformly on X, where

T := ddcu + θ, Tk := ddcuD
k + (θ + ϵkω).

The analytic approximation theorem preserves the ordering of the singularity
types, as stated below.

LEMMA 3.19. ([42, Lemma 2.11]) Let {θ} be a pseudoeffective class, and let u, v ∈
PSH(X, θ) be such that v ⪯ u. Let uD

k , vD
k ∈ PSH(X, θ + ϵkω) be the approximation

sequences of u and v given by Theorem 3.18. Then, we have vD
k ⪯ uD

k for each k.
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The Monge-Ampère masses of the sequence {uD
k } have the following conver-

gence property.

PROPOSITION 3.20. ([15, Proposition 3.4]) Let {θ} be a big class, and let u ∈
PSH(X, θ). Let uD

k ∈ PSH(X, θ + ϵkω) be the approximation sequences of u given by
Theorem 3.18. Then∫

X

〈
(θ + ϵkω)n

uD
k

〉
↘
∫

X

〈
(θ)n

Pθ [u]I

〉
, as k → ∞.

The convergence property above can be generalized to the mixed setting as
follows. The result is similar to [57, Theorem 4.2]. We present a proof for the
reader’s convenience.

LEMMA 3.21. ([42, Lemma 2.13]) Let {θ1}, . . . , {θn} be big classes. Let uj ∈
PSH(X, θj) be such that

∫
X⟨(θj)

n
uj
⟩ > 0 for 1 ≤ j ≤ n. Then, we have∫

X

〈
∧n

j=1 (θj + ϵkω)uD
j,k

〉
↘
∫

X

〈
∧n

j=1 (θj)Pθj [uj]I

〉
, as k → ∞,

where uD
j,k is the approximation sequence of uj given by Theorem 3.18.

PROOF. Since uD
j,k is of analytic singularities, we get [uD

j,k] = [Pθj+ϵkω[uD
j,k]I ]

([29, Theorem 4.3]). By [15, Proposition 3.3], we have Pθj+ϵkω[uD
j,k]I ↘ Pθj [uj]I

as k → ∞. Hence,

lim
k→∞

∫
X
⟨∧n

j=1(θj + ϵkω)uD
j,k
⟩

= lim
k→∞

∫
X
⟨∧n

j=1(θj + ϵkω)
Pθj+ϵkω

[uD
j,k]I

⟩

≥
∫

X
⟨∧n

j=1(θj)Pθj [uj]I
⟩.

We now prove

(3.3.1) lim
k→∞

∫
X
⟨∧n

j=1(θj + ϵkω)uD
j,k
⟩ ≤

∫
X
⟨∧n

j=1(θj)Pθj [uj]I
⟩.

By [13, Lemma 4.3] and Proposition 3.20, we can choose

bj,k ∈
(

1,
( ∫

X⟨(θj + ϵkω)n
uD

j,k
⟩∫

X⟨(θj + ϵkω)n
uD

j,k
⟩ −

∫
X⟨(θj + ϵkω)n

Pθj [uj]I
⟩

) 1
n
)

,



41

which increases to ∞ as k → ∞, and φj,k ∈ PSH(X, θj + ϵkω) such that

b−1
j,k φj,k + (1 − b−1

j,k )u
D
j,k ≤ Pθj [uj]I .

By the monotonicity theorem of non-pluripolar product (see Theorem 3.13), we
then have

n

∏
j=1

(1 − b−1
j,k )

∫
X
⟨∧n

j=1(θj + ϵkω)uD
j,k
⟩ ≤

∫
X
⟨∧n

j=1(θj + ϵkω)
Pθj [uj]I

⟩.

Let k → ∞, then we get (3.3.1). This completes the proof. □

REMARK 3.22. The result of Proposition 3.20 extends to the case where θ is
merely pseudoeffective. This follows from the continuity of the volume function
on the cone of pseudoeffective (1, 1)-classes in H1,1(X, R) (see [5]). However, it
is not clear whether the same extension holds in the mixed setting of Lemma 3.21,
where the proof relies on [13, Lemma 4.3], and the non-collapsing condition for
the masses of (1, 1)-currents plays an important role.

3.4. Relation between density currents and relative non-pluripolar products

In this section, we discuss the relationship between density currents and
relative non-pluripolar products, which will have applications in Chapter 4.
We assume X to be a compact Kähler manifold in this section. We begin by
introducing the following lemma in the case where each Tj has a bounded
potential.

LEMMA 3.23. ([49, Lemma 3.4]) Let ψ be a locally bounded quasi-psh function
on Xm+1. Let T1, . . . Tm be closed positive (1, 1)-currents with bounded potentials. Let
R := ⊗m

j=1Tj ⊗ T. Then the unique tangent current to ψR along ∆m+1 os π∗
m+1 is

π∗
m+1((ψ|∆m+1) ∧m

j=1 Tj ∧ T)

Now, let us turn to setting of the relative non-pluripolar product.

THEOREM 3.24. ([49, Theorem 3.5]) Let R∞ be a density current associated to
T1, . . . , Tm, T. Then we have

π∗
m+1⟨∧m

j=1Tj ∧̇ T⟩ ≤ R∞,(3.4.1)

where πm+1 is the canonical projection from the normal bundle of the diagonal ∆m+1 of
Xm+1 to ∆m+1, and as usual we identify ∆m+1 with X.
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PROOF. Since the problem is local, we could choose a local coordinate chart
Ω, and write Tj = ddcuj, for some psh function uj < 0 on Ω. For k ∈ N, set

uj,k := max{uj,−k} and Tj,k := ddcuj,k

We set
Rk := ⊗m

j=1Tj,k ⊗ T and R := ⊗m
j=1Tj ⊗ T.

For 1 ≤ j ≤ m, let pj : Xm+1 → X be the projection from Xm+1 to the jth-
component. Set

ψ :=
m

∑
j=1

p∗j uj, and ψk := k−1 max{ψ,−k}.

Note that ψk + 1 = 0 on ∪m
j=1p∗j {uj ≤ −k}.

Let ϵ > 0, by [51, Theorem 2.4] and [40, Theorem 20.4], there exists a continu-
ous function vj,k on Ω such that

capTj
({uj,k ̸= vj,k}, Ω) ≤ ϵ, capTj,r

({uj,k ̸= vj,k}, Ω) ≤ ϵ,

for any r ∈ N. Set

ψ̃k := k−1 max
{ m

∑
j=1

p∗j uj,−k
}

,

which is continuous on Ω. Since

{ψ̃k ̸= ψk} ⊆ ∪m
j=1p∗j {vj,k ̸= uj,k},

we get ∫
|ψk − ψ̃k|Rr ∧ ωm(n−1)+n−p ≲

∫
∪m

j=1 p∗j {vj,k ̸=uj,k}
Rr ∧ ωm(n−1)+n−p

≲
m

∑
j=1

∥Tj,r∥{uj,k ̸=vj,k} ≤ mϵ.(3.4.2)

On the other hand, one can show that∫
|ψk − ψ̃k|R ∧ ωm(n−1)+n−p ≲ mϵ,(3.4.3)

by the same strategy. Since ψ̃k is continuous, we get

ψ̃kRr → ψ̃kR
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weakly, when r → ∞. This, combined with (3.4.2) and (3.4.3), then we get

ψkRr → ψkR

weakly, when r → ∞. This implies

−ψkR = −(ψk + 1)R + R

= − lim
r→∞

(ψk + 1)Rr + R

= − lim
r→∞

(ψk + 1)Rk + R

= −(ψk + 1)Rk + R,(3.4.4)

Let Tk,∞, R∞ be tangent currents of −ψkR, R along ∆m+1 ⊂ Xm+1 respectively.
By Lemma 3.23, we get that the tangent current of (ψk + 1)Rk equals π∗((ρk +

1)∧m
j=1 Tjk ∧ T), where π : E → ∆m+1 is the normal bundle of ∆m+1 in Xm+1, and

ρk is the restriction of ψk on ∆m+1. Now, by taking the tangent current of both
sides of (3.4.4), we get

(3.4.5) Rk,∞ = R∞ − π∗((ρk + 1) ∧m
j=1 Tjk ∧ T).

Since ρk + 1 = 0 on ∪m
j=1{uj ≤ −k}, we then have

(ρk + 1) ∧m
j=1 Tjk ∧ T = (ρk + 1)⟨∧m

j=1Tj ∧̇ T⟩,

which converges to ⟨∧m
j=1Tj ∧̇ T⟩ as k → ∞. This combines with (3.4.5) implies

π∗(⟨∧m
j=1Tj ∧̇ T⟩) ≤ R∞.

This completes the proof. □

We will need the following to estimate the density h-dimension of currents,
which is a special case of [49, Proposition 3.6].

PROPOSITION 3.25. ([43, Proposition 3.5]) Let P and T be closed positive currents
of bi-degree (1, 1) and (p, p) respectively on X, 1 ≤ p ≤ n. Assume that T has no mass
on IP. Then, for every density current S associated to P, T, the h-dimension of S is equal
to n − p − 1.

For every pseudoeffective (p, p)-class γ on X, we put ∥γ∥ :=
∫

X Θ ∧ ωn−p,
where Θ is any closed smooth form in γ. This definition is independent of the
choice of Θ and is non-negative due to the pseudoeffectivity of γ. The following
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theorem describes the relationship between the cup product of cohomology
classes and the class of the relative non-pluripolar product.

THEOREM 3.26. ([43, Theorem 3.6]) Let P and T be closed positive currents of
bi-degree (1, 1) and (p, p) respectively on X, where 1 ≤ p ≤ n − 1. Assume that T has
no mass on IP. Then, the cohomology class

γ := {P} ∧ {T} − {⟨P ∧̇ T⟩}

is pseudoeffective and we have

∥γ∥ ≥ ∑
V

ν(P, V)ν(T, V)nV ! vol(V),(3.4.6)

where the sum is taken over every irreducible subset V of dimension at least n − p − 1
in X, and nV := dim V.

We note that by the proof below, we see that any irreducible subset V such that
dim V ≥ n − p − 1 and ν(T, V) > 0, ν(P, V) > 0 must satisfy dim V = n − p − 1.

PROOF. Let V be the set of irreducible analytic subsets V of dimension at
least n − p − 1 in X such that ν(T, V) > 0 and ν(P, V) > 0. We note that in
(3.4.6), it is enough to consider V ∈ V . We will see below that V has at most
countable elements.

Observe that if ν(P, x) > 0, then x ∈ IP. Hence, by hypothesis, the trace
measure of T has no mass on the set {x ∈ X : ν(P, x) > 0}. This allows us to
apply Proposition 3.25 to P and T to obtain that the density h-dimension of P and
T is minimal. Using this and Lemma 2.21 gives

κ(P, T) = π∗({P} ∧ {T}),(3.4.7)

where π is the canonical projection from the normal bundle of the diagonal ∆ of
X2 to ∆.

Let S be a density current associated to P and T. Since the h-dimension of S is
minimal, using Lemma 2.19, we get that there exists a current S′ on X such that
S = π∗S′ (recall ∆ is identified with X). Since the relative non-pluripolar product
is dominated by density currents (Theorem 3.24), the current S′ − ⟨P ∧̇ T⟩ is
closed and positive. Moreover, by (3.4.7), the cohomology class of the last current
is equal to γ. It follows that γ is pseudoeffective.
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It remains to prove (3.4.6). Let V ∈ V . By definition, the generic Lelong
number of T along V is positive. Since T is of bi-degree (p, p), the dimension of V
must be at most n− p. Hence, we have two possibilities: either dim V = n− p− 1
or dim V = n − p. Indeed, the latter case cannot occur. Suppose that such a V
exists. Then, we consider two cases: whether T has mass on V or not. If T has no
mass on V, then ν(T, V) = 0, which leads to a contradiction. If T has mass on V,
which is contained in IP (for ν(P, V) > 0), then this contradicts the hypothesis
that T has no mass on IP.

Let V ∈ V . Since the Lelong numbers are preserved by submersion maps
([36, Proposition 2.3]), by applying Corollary 2.23 to P, T and generic x ∈ V, we
obtain

ν(S′, V) = ν(S, V) ≥ ν(P, V)ν(T, V).

This combined with the fact that dim V = n − p − 1 implies

S′ ≥ ν(P, V)ν(T, V) [V].

We deduce that

S′ ≥ ⟨P ∧̇ T⟩+ 1IP S′

≥ ⟨P ∧̇ T⟩+ ∑
V∈V

ν(P, V)ν(T, V) [V].

The second inequality comes from Siu’s decomposition theorem (Theorem 2.10),
and this also shows that V has at most countable elements. The desired assertion
follows and the proof is finished. □
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CHAPTER 4

Volumes of components of Lelong upper level sets

4.1. Introduction

This chapter is based on the article [43] and aims to investigate the singulari-
ties of closed positive currents on compact Kähler manifolds. Let X be a compact
Kähler manifold of dimension n, and let T be a closed positive (1, 1)-current
on X. We are interested in understanding the set of points where T has strictly
positive Lelong numbers. By the celebrated upper semi-continuity of Lelong
numbers by Siu [41], we know that this set is a countable union of proper analytic
subsets on X. Our goal is to estimate the size of this upper level set. The problem
was first studied by Demailly in [17, 18]. In this chapter, we provide in some
sense a generalization of Demailly’s estimate. To delve into details, let us first
introduce some necessary notions.

Let ω be a fixed smooth Kähler form on X. We equip X with the Riemannian
metric induced by ω. For an analytic set V of dimension l in X, the volume of V
is denoted and defined as follows.

vol(V) :=
1
l!

∫
RegV

ωl,

where RegV is the regular locus of V.
Let T be a closed positive (1, 1)-current, we recall that the Lelong number of

T at x ∈ X is denoted and defined by

ν(T, x) = sup
{

γ ∈ R+
∣∣ u(z) ≤ γ log |z − x|+O(1) at x

}
.

We recall that the generic Lelong number ν(T, V) of T along V is defined as
infx∈V{ν(T, x)}. For every constant c > 0, we recall that

Ec(T) := {x ∈ X|ν(T, x) ≥ c} and E+(T) := {x ∈ X|ν(T, x) > 0}.

By Corollary 2.8, Ec(T) is a proper analytic subset in X, and

E+(T) = ∪m∈N∗E1/m(T)
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is a countable union of analytic sets.
Let W be an irreducible analytic subset of dimension m in X. We denote by

EW
+ (T) := {x ∈ W|ν(T, x) > ν(T, W)}

the Lelong upper level set of T on W, which is also a countable union of proper
analytic subsets in W. Let V ⊆ EW

+ (T) be an irreducible analytic set. We say that
V is maximal if there is no irreducible analytic subset V′ of EW

+ (T) such that V
is a proper subset of V′. We call V a component of the Lelong upper level set of T
along W, and let VT,W be the set of such components V. Observe that VT,W has at
most countably many elements. For 0 ≤ l ≤ m, we denote by Vl,T,W the set of
V ∈ VT,W such that dim V = l.

Write T = ddcu locally, where u is a psh function. We define T|RegW as
ddc(u|RegW) if u ̸≡ −∞ on RegW, and T|RegW := 0 otherwise. One sees that this
definition is independent of the choice of u. Thus, T|RegW is a current on RegW.
Here is our main result.

THEOREM 4.1. ([43, Theorem 1.1]) Let α be a nef (1, 1)-class and let W be an
irreducible analytic subset of dimension m in X. Let T be a closed positive current in α

such that ν(T, W) = 0. Let 1 ≤ m′ ≤ m be an integer. Then, we have

∑
V∈Vm−m′ ,T,W

ν(T, V)m′
vol(V) ≤ 1

(m − m′)!

∫
RegW

(
αm′ − ⟨(T|RegW)m′⟩

)
∧ ωm−m′

,

(4.1.1)

where in the integral, we identify α with a smooth closed form in α.

We have some comments on (4.1.1). To see why the term

I :=
∫

RegW

(
αm′ − ⟨(T|RegW)m′⟩

)
∧ ωm−m′

is non-negative, one can consider the case where W is smooth. Then, by the
monotonicity of non-pluripolar products (see Remark 3.17), the cohomology
class (α|W)m′ − {⟨(T|W)m′⟩} is pseudoeffective. Hence, the integral on the right-
hand side of (4.1.1) is non-negative. In the general case where W is singular, one
can use a desingularisation of W or interpret I as the mass of some non-pluripolar
product relative to [W] (the current of integration along W); see Lemma 3.9 below.
We underline however that in order to prove Theorem 4.1, it is not possible to
use desingularisation of W to reduce to the case where W is smooth. The reason
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is that in the desingularisation process, one has to blow up submanifolds of W
which in general could be some components of the Lelong upper level sets of T
on W.

In [22], a less precise upper bound of volume of components of the Lelong
upper level set was given in terms of the volume of W and the mass of T; see
also Theorem 4.3 for a more general statement. If we consider W = X, then the
generic Lelong number of T along W is zero. Thus, by Theorem 4.1, we have the
following result.

COROLLARY 4.2. ([43, Corollary 1.2]) Let α be a nef (1, 1)-class, and let T be a
closed positive current in α. For 0 ≤ l ≤ n, let Vl,T be the set of V ∈ VT,X such that
dim V = l. Let 1 ≤ m′ ≤ n be an integer. Then, we have

∑
V∈Vn−m′ ,T

ν(T, V)m′
vol(V) ≤ 1

(n − m′)!

∫
X

(
αm′ − {⟨Tm′⟩}

)
∧ ωn−m′

.(4.1.2)

Corollary 4.2 generalizes [18, Corollary 7.6] by Demailly, in which it was
assumed additionally that the components of the upper Lelong level set of T
are only of dimension 0 (hence the cohomology class of T is necessarily nef, see
[18, Lemma 6.3]). The feature of Corollary 4.2 is that it holds for any current in
a nef class. The estimate (4.1.2) is optimal in the case where all of components
of the Lelong upper level sets of T have the same dimension. For example, we

consider X = Pn, z ∈ Cn ⊂ Pn, and T = 1
2 ddc log ∥z∥2

1+∥z∥2 + ωFS, where ωFS is the
Fubini-Study form on Pn. In this case, we see that 0 is the only point at which
the Lelong number of T is positive and ν(T, 0) = 1, and (4.1.2) (for m = m′ = n)
becomes an equality.

In general, if we consider the relative setting as in Theorem 4.1 (when W is
not necessarily equal to X), then our main result (Theorem 4.1) is not satisfactory
because it requires that ν(T, W) = 0, hence, we can not apply it to the case where
T is the current of integration along a curve C in a complex Kähler surface and
W = C). In Theorem 4.3 below, we are able to treat the case where ν(T, W) > 0
but the estimate is not explicit due to the presence of a constant c in the right-
hand side. In this regard, the estimates in [18, Theorem 1.7] are stronger than
ours for dimension 2 (see the discussion after [18, Theorem 1.7] in [18]). On
the other hand, as explained in [22], the feature of Theorem 4.1 is that it gives
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bounds for volumes of all components of Lelong upper level sets whereas [18,
Theorem 1.7] does not allow us to treat all components in general.

This chapter refines and substitutes [50]. The proof of Theorem 4.1 requires
both the theory of density currents in [21] and relative non-pluripolar products
in [51] (see also [3, 8]). One of the keys is Theorem 3.26 following from a general
comparison of Lelong numbers for density currents.

4.2. Proof of Theorem 4.1

PROOF OF THEOREM 4.1. It suffices to consider the case where α is Kähler by
using α + ϵ{ω}, T + ϵω instead of α, T and letting ϵ → 0. Hence, from now on
we assume that α is Kähler. By abuse of notation, we also denote by α a smooth
Kähler form in α. By Lemma 3.9, the right-hand side of (4.1.1) can be written as

1
(m − m′)!

∫
RegW

(
αm′ − ⟨(T|RegW)m′⟩

)
∧ ωm−m′

=
1

(m − m′)!

∥∥⟨αm′ ∧̇ [W]⟩ − ⟨Tm′ ∧̇ [W]⟩
∥∥.

Step 1. First, we focus on the case where T has analytic singularities. Set
S = ⟨Tm′−1 ∧̇ [W]⟩. Since α is Kähler, by the monotonicity of non-pluripolar
product (Theorem 3.13) and Proposition 3.6 (6), we get∥∥⟨αm′ ∧̇ [W]⟩ − ⟨Tm′ ∧̇ [W]⟩

∥∥ ≥
∥∥⟨α ∧ Tm′−1 ∧̇ [W]⟩ − ⟨Tm′ ∧̇ [W]⟩

∥∥(4.2.1)

= ∥α ∧ S − ⟨T ∧̇ S⟩∥

We now show that S has no mass on IT. For m′ > 1, this directly follows
from the definition of non-pluripolar product. For m′ = 1, the current S is just
[W]. Since we assume that T has analytic singularities, the polar locus IT is an
analytic subset and it does not contain W. Hence, [W] also has no mass on IT.
Therefore, we can apply Theorem 3.26 to T, S, and get

∥α ∧ {S} − {⟨T ∧̇ S⟩}∥ ≥ (m − m′)! ∑
V∈Vm−m′ ,T,W

ν(T, V)ν(S, V) vol(V)(4.2.2)

Let V ∈ Vm−m′,T,W and let Sing(IT ∩ W) be the singular locus of the analytic set
IT ∩ W. Since T has analytic singularities, the Lelong number ν(T, x) is strictly
positive if and only if x belongs to IT. This coupled with the maximality of V
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implies that V is contained in IT ∩ W, and is one of the irreducible components.
Let K1, . . . , Ks be the irreducible components of IT ∩ W. Observe that the set
Sing(IT ∩ W) consists of singular points of irreducible components and their
intersection points. By rearranging the index, we may assume V = K1. Set

U := X\Sing(K1) ∪ K2· · · ∪ Ks.

Now, we prove that the intersection Tm′−1 ∧ [W] is well-defined on U, in the
sense in Section 2.1.3. Notice that V\Sing(IT ∩ W)is contained in Reg(V), and is
of dimension m − m′. Consequently, for 0 ≤ j′ ≤ m′ − 1,

H2m−2j′+1(L(T)|U ∩ W) = H2m−2j′+1(IT ∩ W ∩ U)

= H2m−2j′+1(V\Sing(IT ∩ W))

= 0,

where L(T) is the set of x ∈ X such that the local potential of T is unbounded on
any neighborhood of x. This allows us to apply Theorem 2.4 and get the well-
definedness of Tm′−1 ∧ [W] on U. By applying Proposition 3.8 to ⟨Tm′−1 ∧̇ [W]⟩ ,
we obtain

S = ⟨Tm′−1 ∧̇ [W]⟩ = 1U\IT
Tm′−1 ∧ [W].(4.2.3)

Actually, the equality also holds on U ∩ IT. To show this, we need to check
that Tm′−1 ∧ [W] has no mass on U ∩ IT. Since dim(U ∩ IT ∩ W) = m − m′ and
Tm′−1 ∧ [W] is of bi-dimension (m − m′ + 1, m − m′ + 1), the current Tm′−1 ∧ [W]

must have no mass on U ∩ IT ∩ W. Also, by the fact supp(Tm′−1 ∧ [W]) ⊆
W, the current Tm′−1 ∧ [W] also has no mass on (U ∩ IT)\W. Therefore, the
equality (4.2.3) extends to U. This implies that the Lelong number ν(S, V) equals
ν(Tm′−1 ∧ [W], V\Sing(IT ∩W)) (remember that we consider the current Tm′−1 ∧
[W] on U, and V\Sing(IT ∩ W) is an analytic subset in U), and then we have

ν(S, V) = ν(Tm′−1 ∧ [W], V\Sing(IT ∩ W))

≥ ν(T, V\Sing(IT ∩ W))m′−1 · ν([W], V\Sing(IT ∩ W))

≥ ν(T, V)m′−1,(4.2.4)
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where the first inequality comes from Proposition 2.7 (see also Corollary 2.23
for a more general version). By (4.2.1), (4.2.2) and (4.2.4), the desired inequality
follows in the case where T has analytic singularities.

Step 2. Now, we remove the assumption that T has analytic singularities. The
argument we use is standard and is based on the work of Demailly in [18], see
Section 3.3 for more detail. First, we write T = ddcu + θ, where θ is a closed
smooth (1, 1)-form, and u ∈ PSH(X, θ). Demailly’s analytic approximation
theorem (Theorem 3.18) allows us to construct a sequence uD

k ∈ PSH(X, θ + ϵkω),
where ϵk decreases to 0, such that

(1) uD
k ≥ u and uD

k converges to u in L1.
(2) uD

k has analytic singularities.
(3) ν(Tk, x) converges to ν(T, x) uniformly on X, where

Tk = ddcuD
k + (θ + ϵkω).

By the monotonicity property of non-pluripolar product (Theorem 3.13), we
have

(4.2.5)

∥∥⟨αm′ ∧̇ [W]⟩ − ⟨Tm′ ∧̇ [W]⟩
∥∥

= lim
k→∞

∥∥⟨(α + ϵkω)m′ ∧̇ [W]⟩ − ⟨(T + ϵkω)m′ ∧̇ [W]⟩
∥∥

≥ lim sup
k→∞

∥∥⟨(α + ϵkω)m′ ∧̇ [W]⟩ − ⟨Tm′
k ∧̇ [W]⟩

∥∥
For every constant r > 0, set Ar := {V ∈ Vm−m′,T,W |ν(T, V) ≥ r}. Observe

that Ar increases to Vm−m′,T,W as r → 0. Since ν(Tk, x) converges to ν(T, x)
uniformly and Tk is less singular than T, for every fixed r > 0 we have

Ar ⊆ Vm−m′,Tk,W

when k is large enough. By Step 1, we therefore have∥∥⟨(α + ϵkω)m′ ∧̇ [W]⟩ − ⟨Tm′
k ∧̇ [W]⟩

∥∥ ≥ (m − m′)! ∑
V∈Vm−m′ ,Tk ,W

ν(Tk, V)m′
vol(V)

≥ (m − m′)! ∑
V∈Ar

ν(Tk, V)m′
vol(V).
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Letting k → ∞ and using (4.2.5) give∥∥⟨αm′ ∧̇ [W]⟩ − ⟨Tm′ ∧̇ [W]⟩
∥∥ ≥ (m − m′)! lim sup

k→∞
∑

V∈Ar

ν(Tk, V)m′
vol(V)

= (m − m′)! ∑
V∈Ar

ν(T, V)m′
vol(V),

for every constant r > 0. Letting r → 0, we obtain the desired estimate. □

For the general case where ν(T, W) > 0. We could not directly compare the
volume of Lelong upper level sets of T on W and the mass of {⟨αm′ ∧̇ [W]⟩} −
{⟨Tm′ ∧̇ [W]⟩}}. In this case, we have the following modified inequality which
is stronger than [22, Theorem 1.1].

THEOREM 4.3. ([43, Theorem 3.7]) Let α be a nef (1, 1)-class. Let W be an
irreducible analytic subset in X. Let T be a closed positive current in α. Let 1 ≤ m′ ≤ m
be an integer. Then we have

(4.2.6) (m − m′)! ∑
V∈Vm−m′ ,T,W

(
ν(T, V)− ν(T, W)

)m′
vol(V) ≤

∥∥(α + c{ω})m′ ∧ {[W]} − {⟨(T + cω)m′ ∧̇ [W]⟩}
∥∥,

where c = c1 · ν(T, W) and c1 > 0 is a constant independent of α, T, W. In particular,
there is a constant c2 > 0 independent of α, T, W such that

∑
V∈Vm−m′ ,T,W

(
ν(T, V)− ν(T, W)

)m′
vol(V) ≤ c2 vol(W)∥T∥m′

.(4.2.7)

We will use the regularization theorem introduced in [18], which we state
below.

THEOREM 4.4. ([18, Theorem 1.1]) Let X be a compact complex manifold. Let
T = ddcu + θ be a closed almost positive (1, 1)-current, u ∈ PSH(X, θ), such that
T ≥ γ for some continuous real (1, 1)-form γ. Let πX : P(T∗X) → X be the projection.
Suppose that OTX(1) is equipped with a smooth Hermitian metric such that

c(OTX(1)) + π∗
Xu ≥ 0

for some non-negative smooth (1, 1)-form u on X. Let ω be a Hermitian metric on X.
Then, for c > 0, there exists a sequence of closed almost positive (1, 1)-currents Tc,k in
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the class {θ}, which converges weakly to T, and

Tc,k ≥ γ − min{λk, c}u − ϵkω,

where

(1) λk is a decreasing sequence of continuous functions such that

lim
k→∞

λk(x) = ν(T, x), x ∈ X.

(2) ϵk ↘ 0, as k → ∞.
(3) ν(Tc,k, x) = max{ν(T, x)− c, 0}, for x ∈ X.

REMARK 4.5. When (X, ω) is a compact Kähler manifold, one can choose
u = c1ω for some sufficiently large constant c1 > 0 in the above theorem, so that
the required condition is always satisfied.

PROOF OF THEOREM 4.3. The inequality (4.2.7) follows directly from (4.2.6).
The proof of (4.2.6) is similar to Step 2 of Theorem 4.1, which is based on
Demailly’s regularization theorem (Theorem 4.4). For convenience, set c3 :=
ν(T, W) > 0. Theorem 4.4 allows us to cut down the Lelong upper level set
{x ∈ X|ν(T, V) ≥ c3} from T. More precisely, there exists a sequence of almost
positive closed (1, 1)-currents Tc3,k in α such that

(1) Tc3,k ≥ −(c1 · c3 + ϵk)ω, where limk→∞ ϵk = 0 and c1 > 0 is a constant
independent of α, T and W.

(2) The sequence of global potentials of Tc3,k decreases to the global potential
of T.

(3) ν(Tc3,k, x) = max{ν(T, x)− c3, 0}.

Set T̃c3,k = Tc3,k + (c1 · c3 + ϵk)ω, which is a closed positive (1, 1)-current. By
Theorem 3.13, we have∥∥(α + c1 · c3{ω})m′ ∧ {[W]} − ⟨(T + c1 · c3ω)m′ ∧̇ [W]⟩

∥∥
≥ lim sup

k→∞

∥∥(α + (c1 · c3 + ϵk){ω}
)m′

∧ {[W]} − ⟨T̃m′
c3,k ∧̇[W] ⟩

∥∥.
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Since ν(T̃c3,k, W) = 0, we can apply Theorem 4.1 to the right-hand side of the
above inequality and get∥∥(α + (c1 · c3 + ϵk){ω}

)m′
∧ {[W]} − ⟨T̃m′

c3,k ∧̇ [W]⟩
∥∥

≥ (m − m′)! ∑
V∈Vm−m′ ,T̃c3,k ,W

ν(T̃c3,k, V)m′
vol(V),(4.2.8)

By the above properties of Tc3,k, we have

Vm−m′,T̃c3,k,W = Vm−m′,T,W .

Therefore, the right-hand side of (4.2.8) is equal to

(m − m′)! ∑
V∈Vm−m′ ,T,W

ν(T̃c2,k, V)m′
vol(V)

= (m − m′)! ∑
V∈Vm−m′ ,T,W

(
ν(T, V)− ν(T, W)

)m′
vol(V).

This completes the proof. □

REMARK 4.6. We note that by [46], for every closed positive (p, p)-current
R on X, there always exists a closed positive (1, 1)-current T whose Lelong
numbers coincide with those of R. However, if we apply directly our result to
current T, we will get an estimate of the Lelong upper level set for the current R.
But there will be a constant appear in the right-hand side of (4.1.1) in Theorem 4.1,
since the mass of T is bounded by a universal constant times the mass of R.
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CHAPTER 5

Singularities of currents of full mass intersection

5.1. Introduction

This chapter is based on the article [42]. Let X be a compact Kähler manifold
of dimension n. Let {θ1}, . . . , {θm} be pseudoeffective classes on X, 1 ≤ m ≤ n.
Let Tj, T′

j ∈ {θj} be closed positive (1, 1)-current, 1 ≤ j ≤ m, such that Tj is less
singular than T′

j , meaning that the potential of Tj is greater than the potential
of T′

j , modulo an additive constant. The monotonicity property of the non-
pluripolar product (Remark 3.17) plays a crucial role in pluripotential theory:{〈

∧m
j=1 T′

j
〉}

≤
{〈

∧m
j=1 Tj

〉}
,

When the equality holds, we say T′
1, . . . , T′

m have full mass intersection with
respect to T1, . . . , Tm. The aim of this chapter is to investigate the singularities of
Tj and T′

j when T′
1, . . . , T′

m have full mass intersection with respect to T1, . . . , Tm.
Let {θ} be a big class, we say that a closed positive current T ∈ {θ} is big if∫

X⟨T
n⟩ > 0. A characterization of the bigness of T is provided in [15, Proposition

3.6], which states that there exists a Kähler current P ∈ {θ} that is more singular
than T. Let u ∈ PSH(X, θ). Recall that the I-model envelope Pθ[u]I ∈ PSH(X, θ)

is defined as

Pθ[u]I := (sup{w ∈ PSH(X, θ)|w ≤ 0, I(tw) ⊆ I(tu)), t ≥ 0})∗.

A closed positive (1, 1)-current T = ddcu + θ is I-model if u = Pθ[u]I . The
following is our main result. We consider the case where T1, . . . , Tm are big and
I-model (this condition can be slightly relaxed, see Remark 5.8), and we compare
the Lelong numbers of Tj and T′

j under the full mass intersection assumption.
Here is the main result.

THEOREM 5.1. Let {θ1}, . . . , {θm} be big classes, and let T′
j , Tj ∈ {θj} be closed

positive (1, 1)-currents such that

(1) Tj is big and is I-model.
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(2) Tj is less singular than T′
j .

Let V be a proper irreducible analytic subset such that dim(V) ≥ n − m. If T′
1, . . . , T′

m

are of full mass intersection with respect to T1, . . . , Tm. Then, there exists 1 ≤ j ≤ m
such that ν(T′

j , V) = ν(Tj, V).

Theorem 5.1 was proved in [24] for the case where θ1 = · · · = θn = ω is a
Kähler form, T′

1 = · · · = T′
n and T1 = · · · = Tn ∈ {ω} is of minimal singularities.

This result was later generalized in [53] to the setting where {θ1}, . . . , {θm} are
big classes, and each Tj ∈ θj is of minimal singularities. For the self-intersection
case (T′

1 = · · · = T′
n, T1 = · · · = Tn), a characterization of currents having

full mass intersection was given in [11] in terms of the singularity types of the
envelopes of the given currents.

When m = n, we have the following more general quantitative result.

THEOREM 5.2. Let B be a closed cone in the cone of big classes. There exists
a constant C > 0, depending only on the manifold X and the cone B such that for
every x0 ∈ X, {θj} ∈ B and T′

j , Tj ∈ {θj}, 1 ≤ j ≤ n, satisfying the conditions in
Theorem 5.1. The following inequality holds.

(5.1.1)
∫

X

(〈
∧n

j=1 Tj
〉
−
〈
∧n

j=1 T′
j
〉)

≥ C
n

∏
j=1

(
ν(T′

j , x0)− ν(Tj, x0)
)
.

We note that our proof strategy is based on [53], where we generalize Theo-
rems 1.1 and 1.2 from that paper.

5.2. Proof of Theorem 5.1

Step 1. First, we focus on the case where Tj has analytic singularities and there
exists a Kähler current Pj ∈ {θj} with analytic singularities that is more singular
than Tj for each j. We also assume that V is a smooth submanifold of dimension
greater than n − m.

Let ϵ > 0 be such that Pj ≥ ϵω for 1 ≤ j ≤ m. We recall that Tp
j := 1ITj

Tj.

Our first step is to reduce the problem to the case where Tp
j = 0 for 1 ≤ j ≤ m.

To achieve this, we replace Tj, T′
j and Pj with Tj − Tp

j , T′
j − Tp

j and Pj − Tp
j ,
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respectively. By Lemma 3.12, we obtain

∥⟨∧m
j=1Tj⟩∥ = ∥⟨∧m

j=1(Tj − Tp
j )⟩∥,

∥⟨∧m
j=1T′

j ⟩∥ = ∥⟨∧m
j=1(T

′
j − Tp

j )⟩∥,(5.2.1)

∥⟨∧m
j=1Pj⟩∥ = ∥⟨∧m

j=1(Pj − Tp
j )⟩∥.

Note that the new currents Tj − Tp
j , T′

j − Tp
j , and Pj − Tp

j satisfy the following
properties.

PROPOSITION 5.3. For 1 ≤ j ≤ m, the following holds.

(1) Tj − Tp
j is less singular than T′

j − Tp
j and Pj − Tp

j .
(2) 1I

Tj−Tp
j
(Tj − Tp

j ) = 0.

PROOF. First, observe from the proof of Lemma 3.12 that

Tp
j = ∑

Vj,k

λj,k[Vj,k],

where {Vj,k} denote the irreducible components of Vj = IPj . Since Tj is less sin-
gular than both T′

j and Pj, the Lelong number of Tj along each hypersurface Vj,k

must be less than the corresponding Lelong numbers of T′
j and Pj, we therefore

obtain that Tj − Tp
j is less singular than both T′

j − Tp
j and Pj − Tp

j . This completes
the first part of the proposition.

The second part is relatively straightforward and follows from the inequality

0 ≤ 1I
Tj−Tp

j
(Tj − Tp

j ) ≤ 1ITj
(Tj − Tp

j ) = 0.

□

The equalities (5.2.1) and Proposition 5.3 explain why it suffices to prove the
theorem with the currents Tj − Tp

j , T′
j − Tp

j and Pj − Tp
j . For convenience, from

now on we will continue to use Tj, T′
j and Pj to represent the currents Tj − Tp

j ,

T′
j − Tp

j and Pj − Tp
j , respectively.

Let σ : X̂ → X be the blow-up of X along V. We denote by V̂ = σ−1(V) the
exceptional divisor. In general, the pull back of the Kähler form ω by σ is not
necessarily a Kähler form. However, we can construct a Kähler form on X̂ as
follows. By [47, Lemma 3.25], there exists a closed smooth (1, 1)-form ωh that is
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cohomologous to −[V̂], and a constant cV > 0 depends on V such that

(5.2.2) ω̂ := cVσ∗ω + ωh > 0,

which is a Kähler form on X̂.
For δ ∈ (0, 1), set Pδ

j := (1 − δ)Tj + δPj. Note that Pδ
j ≥ δϵω is a Kähler

current on X. Now, we decompose the pull back of Tj, T′
j and Pδ

j by σ as follows.

σ∗Tj = λj[V̂] + ηj,

σ∗T′
j = λ′

j[V̂] + η′
j,

σ∗Pδ
j = λδ

j [V̂] + ηδ
j .

Since the Lelong numbers are preserved by the blow-up map ([4, Corollary
1.1.8]), we get

λj = ν(σ∗Tj, V̂) = ν(Tj, V),

λ′
j = ν(σ∗T′

j , V̂) = ν(T′
j , V),

λδ
j = ν(σ∗Pδ

j , V̂) = ν(Pδ
j , V).

We note that for any closed (n − m, n − m)-form Φ, we have∫
X
⟨∧m

j=1Tj⟩ ∧ Φ =
∫

X̂
⟨∧m

j=1ηj⟩ ∧ σ∗Φ and
∫

X
⟨∧m

j=1T′
j ⟩ ∧ Φ =

∫
X̂
⟨∧m

j=1η′
j⟩ ∧ σ∗Φ

LEMMA 5.4. Let ηm be the (1, 1)-current defined as above. Let τ1, . . . , τm−1 be
closed positive (1, 1)-currents on X̂. Then, we have

⟨∧m−1
j=1 τj ∧ ηm⟩ = ⟨∧m−1

j=1 τj ∧̇ ηm⟩.

PROOF. By Proposition 3.8, it suffices to show that 1Iηm
ηm = 0. Note that

1Iηm
ηm = 1Iηm\V̂ηm

≤ σ∗(1σ(Iηm )Tm)

≤ σ∗(1ITm
Tm).

Since we assume Tp
m = 1ITm

Tm = 0, it follows that 1Iηm
ηm = 0, which completes

the proof. □

Note that Tj is less singular than Pδ
j , hence

σ∗Pδ
j = ηδ

j + λδ
j [V̂] ⪯ σ∗Tj.
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This implies

(5.2.3) ηδ
j ⪯ P((σ∗Tj)− λδ

j [V̂]).

Set

Qδ
j := ηδ

j +
δϵ

2cV
ωh ≥ δϵ

2cV
ω̂, η̃δ

j := P(P(σ∗Tj − λδ
j [V̂])− δϵ

2cV
[V̂]).

LEMMA 5.5. The currents Qδ
j is more singular than η̃δ

j .

PROOF. First, we write

ηj = ddcuηj + σ∗θj + λjωh, uηj ∈ PSH(X̂, σ∗θj + λjωh),

ηδ
j = ddcuδ

j + σ∗θj + λδ
j ωh, uδ

j ∈ PSH(X̂, σ∗θj + λδ
j ωh),

P(σ∗Tj − λδ
j [V̂]) = ddcup

j + σ∗θj + λδ
j ωh, up

j ∈ PSH(X̂, σ∗θj + λδ
j ωh),

[V̂] = ddcuV̂ − ωh, uV̂ ∈ PSH(X̂,−ωh).

We normalize the potential function uV̂ so that uV̂ ≤ 0. Note that uδ
j can also

represent the potential of Qδ
j . In other words, uδ

j ∈ PSH(X, σ∗θj + (λδ
j +

δϵ
2cV

)ωh)

such that
Qδ

j = ddcuδ
j + σ∗θj + (λδ

j +
δϵ

2cV
)ωh.

By (5.2.3) and the fact that uV̂ ≤ 0, we obtain

[uδ
j +

δϵ

2cV
uV̂ ] ⪯ [uδ

j ] ⪯ [up
j ],

which implies Qδ
j ⪯ P(P(σ∗Tj − λδ

j [V̂])− δϵ
2cV

[V̂]) = η̃δ
j . □

We prove Theorem 5.1 by contradiction. Suppose λ′
j = ν(T′

j , V) > ν(Tj, V) =

λj for 1 ≤ j ≤ m. For each j, take δj > 0 small enough so that λ′
j − λ

δj
j − δjϵ

2cV
> 0.

Here, we provide a precise method for choosing δj. First, note that

λ′
j − λ

δj
j −

δjϵ

2cV
= (λ′

j − λj)− δj
(
(λPj − λj)−

ϵ

2cV

)
,

where λPj := ν(σ∗Pj, V̂) = ν(Pj, V). Since Pj is a current in {θj}, we get λPj ≤
c∥{θj}∥ for some constant c independent of the class {θj}. Combining this with
the equality above, we can choose

(5.2.4) δj = (c∥{θj}∥+
ϵ

2cV
)−1

λ′
j − λj

2
.
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LEMMA 5.6. σ∗T′
j − (λ

δj
j +

δjϵ

2cV
)[V̂] is a closed positive current and is more singular

than η̃
δj
j .

PROOF. Since Tj is less singular than T′
j , we get

σ∗T′
j − λ

δj
j [V̂] ⪯ P(σ∗Tj − λ

δj
j [V̂]).

Note that σ∗T′
j − λ

δj
j [V̂] = η′

j + (λ′
j − λ

δj
j )[V̂] is a closed positive current. This is

because λ′
j − λ

δj
j > λ′

j − λ
δj
j − δjϵ

2cV
> 0. By a similar process as above, we see that

σ∗T′
j − (λ

δj
j +

δjϵ

2cV
)[V̂] = η′

j + (λ′
j − λ

δj
j − δjϵ

2cV
)[V̂] is a closed positive current, and

satisfied

σ∗T′
j − (λ

δj
j +

δjϵ

2c
)[V̂] ⪯ P(P(σ∗Tj − λ

δj
j [V̂])−

δjϵ

2cV
[V̂]) = η̃

δj
j .

□

LEMMA 5.7. We have the following inequality.

{⟨∧m
j=1η′

j⟩}+ {(λ′
m − λm)⟨∧m−1

j=1 η̃
δj
j ∧̇ [V̂]⟩} ≤ {⟨∧m

j=1P[σ∗Tj]⟩}.

PROOF. By the multi-linearity (taking T to be the current of integration along
X in Proposition 3.6 (4)) and the monotonicity of non-pluripolar product (Theo-
rem 3.13), we obtain

{⟨∧m
j=1η′

j⟩}+ {(λ′
m − λm)⟨∧m−1

j=1 η̃
δj
j ∧̇ [V̂]⟩}

≤{⟨∧m−1
j=1 (η′

j + (λ′
j − λ

δj
j −

δjϵ

2cV
)[V̂]) ∧̇ η′

m⟩}+ {(λ′
m − λm)⟨∧m−1

j=1 η̃
δj
j ∧̇ [V̂]⟩}

≤{⟨∧m−1
j=1 η̃

δj
j ∧̇ η′

m⟩}+ {(λ′
m − λm)⟨∧m−1

j=1 η̃
δj
j ∧̇ [V̂]⟩} (by Lemma 5.6)

={⟨∧m−1
j=1 η̃

δj
j ∧̇ (η′

m + (λ′
m − λm)[V̂])⟩}

≤{⟨∧m−1
j=1 η̃

δj
j ∧̇ ηm⟩}

={⟨∧m−1
j=1 η̃

δj
j ∧ ηm⟩} (by Lemma 5.4)

Now, we show that {⟨∧m−1
j=1 η̃

δj
j ∧ ηm⟩} ≤ {⟨∧m

j=1P[σ∗Tj]⟩}. Let

θ̃
δj
j := σ∗θj + (λ

δj
j +

δjϵ

2cV
)ωh.
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We write η̃
δj
j = ddcũ

δj
j + θ̃

δj
j , ũ

δj
j ∈ PSH(X̂, θ̃

δj
j ), and recall that

P(σ∗Tj − λ
δj
j [V̂]) = ddcup

j + (θ̃
δj
j −

δjϵ

2cV
ωh),

where

ũ
δj
j =

(
sup{v ∈ PSH(X̂, θ̃

δj
j )|v +

δjϵ

2cV
uV̂ ≤ up

j }
)∗,

up
j = (sup{v ∈ PSH(X̂, θ̃

δj
j −

δjϵ

2cV
ωh)|v + λ

δj
j uV̂ ≤ σ∗uj})∗.

We observe that [ũ
δj
j +

δjϵ

2cV
uV̂ ] ⪯ [P[up

j ]] and [up
j + λ

δj
j uV̂ ] ⪯ [P[σ∗uj]]. This

implies

(5.2.5)
[ũ

δj
j + (

δjϵ

2cV
+ λ

δj
j )uV̂ ] ⪯ [P[up

j ] + λ
δj
j uV̂ ] ⪯ [P[up

j + λ
δj
j uV̂ ]]

⪯ [P[P[σ∗uj]]] = [P[σ∗uj]].

In other words, η̃
δj
j + (

δjϵ

2cV
+ λ

δj
j )[V̂] ⪯ P[σ∗Tj]. By the multi-linearity and the

monotonicity of non-pluripolar product again, we get

{⟨∧m−1
j=1 η̃

δj
j ∧ ηm⟩} ≤ {⟨∧m−1

j=1 (η̃
δj
j + (

δjϵ

2cV
+ λ

δj
j )[V̂]) ∧ ηm⟩}

≤ {⟨∧m
j=1P[σ∗Tj]⟩}

□

By Lemma 5.7, Lemma 5.5 and Proposition 2.15, we now have∫
X
⟨∧m

j=1T′
j ⟩ ∧ ωn−m

=
∫

X̂
⟨∧m

j=1η′
j⟩ ∧ (σ∗ω)n−m

≤
∫

X̂
⟨∧m

j=1P[σ∗Tj]⟩ ∧ (σ∗ω)n−m − (λ′
m − λm)

∫
X̂
⟨∧m−1

j=1 η̃
δj
j ∧̇ [V̂]⟩ ∧ (σ∗ω)n−m

=
∫

X̂
⟨∧m

j=1σ∗Tj⟩ ∧ (σ∗ω)n−m − (λ′
m − λm)

∫
X̂
⟨∧m−1

j=1 η̃
δj
j ∧̇ [V̂]⟩ ∧ (σ∗ω)n−m

≤
∫

X
⟨∧m

j=1Tj⟩ ∧ ωn−m − (λ′
m − λm)

∫
X̂
⟨∧m−1

j=1 Q
δj
j ∧̇ [V̂]⟩ ∧ (σ∗ω)n−m

(5.2.6)
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Recall that Q
δj
j = η

δj
j +

δjϵ

2cV
ωh ≥ δjϵ

2cV
ω̂ and σ∗P

δj
j = λ

δj
j [V̂] + η

δj
j . Since P

δj
j

is of analytic singularities, so do η
δj
j and Q

δj
j . This combines with the fact that

[V̂] ̸⊆ I
η

δj
j

, induces that [V̂] has no mass on I
Q

δj
j

. Therefore, we can apply

Proposition 3.6 and get∫
X̂
⟨∧m−1

j=1 Q
δj
j ∧̇ [V̂]⟩ ∧ (σ∗ω)n−m ≥

m−1

∏
j=1

( δjϵ

2cV

) ∫
X̂
⟨ω̂m−1 ∧̇ [V̂]⟩ ∧ (σ∗ω)n−m

=
m−1

∏
j=1

( δjϵ

2cV

) ∫
X̂
[V̂] ∧ (σ∗ω)n−m ∧ ω̂m−1 ̸= 0(5.2.7)

Combining (5.2.6) and (5.2.7), we get

∫
X
⟨∧m

j=1T′
j ⟩ ∧ ωn−m

≤
∫

X
⟨∧m

j=1Tj⟩ ∧ ωn−m − (λ′
m − λm)

m−1

∏
j=1

( δjϵ

2cV

) ∫
X̂
[V̂] ∧ (σ∗ω)n−m ∧ ω̂m−1.

(5.2.8)

Step 2. Now, we remove the analytic singularities assumption of Tj and Pj.
Here, we note that the existence of the Kähler current Pj ⪯ Tj follows from [15,
Proposition 3.6]. We apply Demailly’s approximation theorem (Theorem 3.18)
on the potentials of Tj, T′

j and Pj (uj, u′
j and pj), and get sequences uD

j,k, u′D
j,k , pD

j,k ∈
PSH(X, θj + ϵkω), where ϵk decreases to 0 such that

(1) uD
j,k ↘ uj, u′D

j,k ↘ u′
j, and pD

j,k ↘ pj.
(2) uD

j,k, u′D
j,k , and pD

j,k have analytic singularities.
(3) ν(TD

j,k, x) → ν(Tj, x), ν(T′D
j,k , x) → ν(T′

j , x) and ν(PD
j,k, x) → ν(Pj, x) uni-

formly on X, where

TD
j,k = ddcuD

j,k + (θj + ϵkω)

T′D
j,k = ddcu′D

j,k + (θj + ϵkω)

PD
j,k = ddc pD

j,k + (θj + ϵkω)

By Lemma 3.19, the ordering of the singularity types is preserved after
applying Demailly’s approximation theorem. To be more precise, for each k ∈ N,
we have [uD

j,k] ⪰ [u′D
j,k ], [p

D
j,k]. Since Pj is a Kähler current for each j, there exists
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ϵ > 0 such that Pj ≥ ϵω for all j. By the construction of PD
j,k, one sees that PD

j,k is
also a Kähler current and satisfied PD

j,k ≥ (ϵ − ϵk)ω.
For 1 ≤ j ≤ m, set λj,k := ν(TD

j,k, V), λ′
j,k := ν(T′D

j,k , V), and let

δj,k = (c∥{θj + ϵkω}∥+ ϵ

2cV
)−1

λ′
j,k − λj,k

2
,

where cV , c are constants in (5.2.4). Now, we apply (5.2.8) in step 1, then we
obtain the following.

(5.2.9)

∫
X
⟨∧m

j=1T′D
j,k ⟩ ∧ ωn−m

≤
∫

X
⟨∧m

j=1TD
j,k⟩ ∧ ωn−m

− (λ′
m,k − λm,k)

m−1

∏
j=1

(δj,k(ϵ − ϵk)

2cV

) ∫
X̂
[V̂] ∧ (σ∗ω)n−m ∧ ω̂m−1.

By the monotonicity property of non-pluripolar product (Theorem 3.13), we
have

(5.2.10)
∫

X
⟨∧m

j=1T′
j ⟩ ∧ ωn−m ≤

∫
X
⟨∧m

j=1T′D
j,k ⟩ ∧ ωn−m.

Since we assume that Tj is I-model for 1 ≤ j ≤ m, Lemma 3.21 induces∫
X
⟨∧m

j=1TD
j,k⟩ ∧ ωn−m =

∫
X
⟨∧m

j=1(θj + ϵkω)uD
j,k
⟩ ∧ ωn−m

↘
∫

X
⟨∧m

j=1(θj)P[uj]I ⟩ ∧ ωn−m

=
∫

X
⟨∧m

j=1Tj⟩ ∧ ωn−m, k → ∞.

(5.2.11)

Combining (5.2.9), (5.2.10), (5.2.11) and let k → ∞. Then, we get (5.2.8)∫
X
⟨∧m

j=1T′
j ⟩ ∧ ωn−m

≤
∫

X
⟨∧m

j=1Tj⟩ ∧ ωn−m − (λ′
m − λm)

m−1

∏
j=1

(δjϵ

2c
)m−1

∫
X̂
[V̂] ∧ (σ∗ω)n−m ∧ ω̂m−1

for the general case. Finally, since we assume that T′
1, . . . , T′

m is of relative full
mass intersection with respect to T1, . . . , Tm, the inequality above does not hold,
and this makes a contradiction. Therefore, λ′

j − λj = ν(T′
j , V)− ν(Tj, V) = 0 for

some j = 1, . . . , m.
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Step 3. We get rid of the assumption that V is smooth. By using Hironaka’s
desingularization method (see [25] or [34, Theorem 2.1.13]), we get σ′ : X′ → X,
which is a composition of finite many blow-ups along smooth centers, such that
V′ = σ′−1(V) is smooth.

Let Rj = (σ′)∗Tj and R′
j = (σ′)∗T′

j . In general, R′
1, . . . , R′

m do not necessarily
have full mass intersection with respect to R1, . . . , Rm. However, we have∫

X′
⟨∧m

j=1R′
j⟩ ∧ ((σ′)∗ω)n−m =

∫
X
⟨∧m

j=1T′
j ⟩ ∧ ωn−m

=
∫

X
⟨∧m

j=1Tj⟩ ∧ ωn−m

=
∫

X′
⟨∧m

j=1Rj⟩ ∧ ((σ′)∗ω)n−m.

Since [V] ∧ ωn−m ̸= 0, it follows that [V′] ∧ (σ′∗(ω))n−m ̸= 0. Hence, we can
apply step 1. and step 2. in this setting, and get

ν(T′
j , V) = ν(R′

j, V′) = ν(Rj, V′) = ν(Tj, V)

for some j. This completes the proof of Theorem 5.1.

5.3. Proof of Theorem 5.2

Let B be a closed cone in the cone of big classes, and let V = {x0} be a
point in X. First, note that to prove inequality (5.1.1), it suffices to consider
{θj} ∈ S ∩B for j = 1, . . . , m, where S is the unit sphere in H1,1(X, R). Recall
that in (5.2.8), we choose

δj = (c∥{θj}∥+
ϵ

2cV
)−1

λ′
j − λj

2
,

for j = 1, . . . , m. Here, ϵ is derived from the Kähler currents Pj ∈ {θj} such
that Pj ≥ ϵω. Since S ∩ B is compact, we can choose ϵ to be independent
of {θj} ∈ S ∩ B. Also, by the construction of X̂, the constant cV in (5.2.2) is
independent of V = {x0}. Therefore, (5.2.8) become∫

X
⟨∧n

j=1Tj⟩ − ⟨∧n
j=1T′

j ⟩ ≥ C
n

∏
j=1

(ν(Tj, x0)− ν(T, x0)),

where C = ∏n−1
j=1 (2c∥θj∥+ ϵ

cV
)−1 vol(V̂) is a constant that depends only on the

cone B and X. This completes the proof.
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REMARK 5.8. Note that in Theorem 5.1 and Theorem 5.2, the assumption that
Tj is I-model for j = 1, . . . , m is too strong. Instead, we only need to assume that∫

X
⟨∧m

j=1(θj)Pθj [uj]I
⟩ ∧ ωn−m =

∫
X
⟨∧m

j=1(θj)uj⟩ ∧ ωn−m =
∫

X
⟨∧m

j=1Tj⟩ ∧ ωn−m.

5.4. Further discussion

Let T and T′ be closed positive (1, 1)-currents in the same cohomology class,
with T′ being less singular than T. In this section, we discuss some results
concerning the case where T has full mass intersection with respect to T′.

THEOREM 5.9. Let X be a compact Kähler manifold of dimension n. Let {θ1}, . . . ,
{θm} be big classes, and let Tj, T′

j ∈ {θj} be closed positive (1, 1)-currents such that T′
j

is less singular than Tj, and Tj is big, that is
∫

X⟨T
n
j ⟩ > 0, for 1 ≤ j ≤ m. Let V ⊆ X

be an analytic subset of dimension p with m ≤ p, and assume that V is not contained in⋃m
j=1 ITj . Assume that Tj has full mass intersection with respect to T′

j for each j, that is,∥∥∥〈Tn
j

〉∥∥∥ =
∥∥∥〈T′n

j

〉∥∥∥ , for 1 ≤ j ≤ m.

Then, we have∫
X
⟨T1 ∧· · · ∧ Tm ∧̇ [V]⟩ ∧ ωp−m =

∫
X
⟨T′

1 ∧· · · ∧ T′
m ∧̇ [V]⟩ ∧ ωp−m.

PROOF. By Theorem 3.13, we have∫
X
⟨T1 ∧ · · · ∧ Tm ∧̇ [V]⟩ ∧ ωp−m ≤

∫
X
⟨T′

1 ∧ · · · ∧ T′
m ∧̇ [V]⟩ ∧ ωp−m.

We now show that the above inequality is actually an equality. First, we write

Tj = ddcuj + θj, T′
j = ddcu′

j + θj,

for 1 ≤ j ≤ m, where uj, u′
j ∈ PSH(X, θj). By Lemma 3.9, we have

⟨T1 ∧· · · ∧ Tm ∧̇ [V]⟩ = (i)∗⟨T1|Reg(V) ∧· · · ∧ Tm|Reg(V)⟩,

⟨T′
1 ∧· · · ∧ T′

m ∧̇ [V]⟩ = (i)∗⟨T′
1|Reg(V) ∧· · · ∧ T′

m|Reg(V)⟩,

here i : V → X is the inclusion map, and

Tj|Reg(V) = ddcuj|Reg(V) + θj|Reg(V), T′
j |Reg(V) = ddcu′

j|Reg(V) + θj|Reg(V),
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1 ≤ j ≤ m. By [13, Lemma 4.3], for any bj ∈ (1, ∞), there exists vj ∈ PSH(X, θj)

such that
b−1

j vj + (1 − b−1
j )u′

j ≤ uj.

By the multi-linearity and monotonicity of the non-pluripolar product (Proposi-
tion 3.6 (4) and Theorem 3.13), we get∥∥∥∥∥ m

∏
j=1

(
1 − b−1

j

) 〈
∧m

j=1

(
ddcu′

j|Reg(V) + θj|Reg(V)

)〉∥∥∥∥∥
≤
∥∥∥〈∧m

j=1

(
ddcuj|Reg(V) + θj|Reg(V)

)〉∥∥∥ .

Let bj → ∞. Then we obtain the desired result. □
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CHAPTER 6

Singularities of (n − 1, n − 1)-classes

6.1. Introduction

This chapter is based on the article [38], using a method that is slightly
different from the one presented there. Let X be a compact Kähler manifold
of dimension n. In this chapter, we study the singularities of non-pluripolar
(m, m)-class, m ≤ n, where we say that a (m, m)-class β is non-pluripolar if

β = {⟨T1 ∧· · · ∧ Tm⟩},

for some closed positive (1, 1)-currents T1, . . . , Tm. In particular, we denote and
define

⟨α1 ∧· · · ∧ αm⟩ := ⟨Tmin,1 ∧· · · ∧ Tmin,m⟩,
where Tmin,j is a current with minimal singularities in the pseudoeffective class αj.
Note that the definition does not depend on the choice of current with minimal
singularities, thanks to Remark 3.17. We refer the reader to [8, 51] for more
details.

The following is our first result.

THEOREM 6.1. ([38, Theorem 3.2]) Let X be a compact Kähler manifold of dimen-
sion n. Let m ≤ n be a positive integer. For 1 ≤ j ≤ m, let Tj, T′

j be closed positive
(1, 1)-currents on X such that: Tj, T′

j are in the same cohomology class and in the same
singularity type. Then

ν(⟨T1 ∧ · · · ∧ Tm⟩, x) = ν(⟨T′
1 ∧ · · · ∧ T′

m⟩, x)

for every x ∈ X.

The above Theorem allows us to define the Lelong number of non-pluripolar
cohomology class. Let T1, . . . , Tm be closed positive (1, 1)-currents on X, and set
β := ⟨T1 ∧· · · ∧ Tm⟩. We define

ν(β, x) := ν(⟨T1 ∧· · · ∧ Tm⟩, x).
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Let α1, . . . , αm be pseudoeffective (1, 1)-classes. We define

ν(⟨∧m
j=1αj⟩, x) := ν(⟨∧m

j=1Tm
min,j⟩, x).

The second main result of this chapter is a comparison between the cup
products and the relative non-pluripolar products. For a related result, we refer
the reader to Theorem 3.26. We show that the Lelong number of a non-pluripolar
cohomology class serves as the obstruction to the equality of these two products.

THEOREM 6.2. ([38, Theorem 1.1]) Let X be a compact Kähler manifold of dimen-
sion n. Let T1, . . . , Tn−1, and T be closed positive (1, 1)-currents on X. Put

β := {⟨∧n−1
j=1 Tj⟩}, γ := {⟨∧n−1

j=1 Tj ∧̇ T⟩}.

Then we have β ∧ {T} ≥ γ, where ∧ denotes the cup product. Moreover, if

β ∧ {T} = γ,

then ν(β, x) · ν(T, x) = 0 for every x ∈ X.

Consider a compact Kähler surface Y and β a big cohomology class on Y.
Let Tmin,β be a current of minimal singularities in β. It is well-known that
we can decompose Tmin,β = T1 + T2, where T1 is an effective divisor and T2

is a closed positive current in a nef class. Correspondingly we obtain β =

{T1}+ {T2}. Such a formula is called Zariski’s decomposition; see [59]. Observe
that {T2} is equal to ⟨β⟩. In the higher dimensional setting, an analogue of this
decomposition also holds but the class {T2} is only nef in codimension 1, see [6]
and also [58] for more information. An exact higher dimensional generalization
of Zariski’s decomposition is not true; i.e, {T2} is not nef in general; see [6, A.2]
or [37]. We refer to [35] for an equivalence between the existence of Zariski’s
decomposition and properties of restricted volumes, and to [31] for a version of
Zariski’s decomposition for (n − 1, n − 1)-classes.

Let α be a pseudoeffective (1, 1)-class. It is well-known that ⟨α⟩ is nef if and
only if ν(⟨α⟩, x) = 0 for every x ∈ X; see [6]. As an application of the comparison
theorem (Theorem 6.2), we get the following generalized Zariski decomposition
for the higher-dimensional case.
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THEOREM 6.3. ([38, Corollary 1.2]) Let X be a projective manifold. Let α be a big
cohomology. Then we have the following.

(6.1.1) ν(⟨αn−1⟩, x) = 0 for every x ∈ X.

6.2. Lelong number of (m, m)-class

In this section, our aim is to prove Theorem 6.1. First, we recall the definition
of pull back of closed positive (1, 1)-currents. Let T be a closed positive (1, 1)-
current on a complex manifold Y. Let π : X → Y be a holomorphic map.
Suppose that π(X) is not contained in the singular set of T. Let φ be a local
potential of T. Then we can define the pull back π∗T locally by ddc(π ◦ φ). This
defines a closed positive (1, 1)-current on X and we have {π∗T} = π∗{T}.

Let x ∈ X, and let σ : X̂ → X be the blow-up of X at x. Let T be a closed
positive (p, p)-current on X. Let T1 be the pull back of T to X\σ−1(x), which
can be extended by 0 through the hypersurface σ−1(x) ≃ Pn−1. This is called
the strict transform of T, and is denoted by σ⋄(T), which is a closed positive
(p, p)-current on X̂. In general, {σ⋄(T)} is not equal to σ∗{T}. By using Siu’s
description of Lelong numbers ([41]), we get that

(6.2.1) σ∗{T} − {σ⋄(T)} = ν(T, x){[H]},

where H is a (n − p)-dimensional linear subspace of the exceptional divisor
σ−1(x) ≃ P

n−1.

PROOF OF THEOREM 6.1. Let x ∈ X and σ : X̂ → X be the blow-up of X at
x. Let T = ⟨T1 ∧ · · · ∧ Tm⟩ and T′ = ⟨T′

1 ∧ · · · ∧ T′
m⟩.

By (6.2.1), one remains to show that {T} = {T′} and {π⋄(T)} = {π⋄(T′)}.
By Remark 3.17, it is clear that {T} = {T′}. We consider the non-pluripolar
product ⟨σ∗T1 ∧ · · · ∧ σ∗Tm⟩. Since σ−1(x) is an analytic set, ⟨σ∗T1 ∧ · · · ∧ σ∗Tm⟩
puts no mass on π−1(x). Moreover, since σ is a bi-holomorphic map outside
σ−1(x), ⟨σ∗T1 ∧ · · · ∧ σ∗Tm⟩ = σ∗T on X̂ \ σ−1(x). Thus, we get ⟨σ∗T1 ∧ · · · ∧
σ∗Tm⟩ = π⋄(T). Similarly, ⟨σ∗T′

1 ∧ · · · ∧ σ∗T′
m⟩ = σ⋄(T′). For j = 1, . . . , m,

we have {σ∗Tj} = σ∗{Tj} = π∗{T′
j} = {σ∗T′

j}. By construction, we also
have σ∗Tj and σ∗T′

j are in the same singularity type. Thus, by Remark 3.17,
{σ⋄(T)} = {σ⋄(T′)}. We complete the proof. □
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In the self-intersection case, the following more general result holds, which
shows that only the full mass intersection condition is needed.

THEOREM 6.4. Let α be a big class. Let T, T′ ∈ α be closed positive (1, 1)-current
such that T′ is less singular than T. If

∫
X⟨T

n⟩ =
∫

X⟨T
′n⟩ > 0. Then, we get

ν(⟨Tm⟩, x) = ν(⟨T′m⟩, x) for any m ≤ n, and x ∈ X.

PROOF. Let P[T] be the envelope of T. We first claim that

ν(⟨Tm⟩, x) = ν(⟨P[T]m⟩, x).

Let σ : X̂ → X be the blow-up of X at x. Similarly to the proof of Theorem 6.1, we
only need to show that {⟨Tm⟩} = {⟨P[T]m⟩} and {⟨σ∗Tm⟩} = {⟨σ∗P[T]m⟩}. By
Proposition 2.15 , we have {⟨Tm⟩} = {⟨P[T]m⟩}. On the other hand, by the facts
that σ∗P[T] is less singular than σ∗T, P[σ∗T] is less singular than σ∗P[T], and
{⟨σ∗Tm⟩} = {⟨P[σ∗T]m⟩}, we get {⟨σ∗Tm⟩} = {⟨σ∗P[T]m⟩}. Hence, we now
have ν(⟨Tm⟩, x) = ν(⟨P[T]m⟩, x). Since P[T] and P[T′] are in the same singularity
type (Theorem 2.16), by Theorem 6.1, the following holds.

ν(⟨Tm⟩, x) = ν(⟨P[T]m⟩, x) = ν(⟨P[T′]m⟩, x) = ν(⟨T′m⟩, x).

□

6.3. Volume of cohomology classes

In this section, we recall some regularity properties of the volume function of
big cohomology classes.

Let X be a compact Kähler manifold of dimension n. Let α ∈ H1,1(X, R) be a
big cohomology class. We define the volume of α to be

∫
X⟨α

n⟩, and denoted by
vol(α). If α is the first Chern class of a line bundle L → X, then

vol(α) = lim sup
k→∞

n!
kn dim H0(X, Lk) = lim

k→∞

n!
kn dim H0(X, Lk).

See [5, 20]. The study of the regularity of volume function plays an important
role in complex geometry reference, see [9, 10, 54]. Here, we recall the following
important result due to Witt Nyström [54].
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THEOREM 6.5. ([54]) Let X be a projective manifold of dimension n. Let α, γ ∈
H1,1(X, R) such that α is big. Then we have

d
dt

∣∣∣∣
t=0

vol(α + tγ) = n⟨αn−1⟩ ∧ γ.

We refer to similar statements [9, 30] for the case where α is integral (and
X is projective), and also to [7] for the case where X is Hyperkähler. It was
conjectured in [7] that Theorem 6.5 is true for every compact Kähler manifold
X. In this general setting, only partial derivatives along divisors of the volume
functions were known. Let us recall this result in what follows.

Let V be a smooth submanifold of dimension k in X such that V is not
contained in the non-Kähler locus of α. The restricted volume volX|V(α) of a big
class α to V is defined as

∫
V⟨(Tmin,α|V)k⟩, where Tmin,α is a current with minimal

singularities in α. Since V is not contained in the non-Kähler locus of α, one sees
that volX|V(α) is equal to the supremum of the integrals

∫
V⟨(T|V)

k⟩ for all Kähler
currents T ∈ α with analytic singularities; see [56, 35, 26]. We have the following
formula for the partial derivative of the volume function along divisors also due
to Witt Nyström.

THEOREM 6.6. ([56, Theorem C]) Let X be a compact Kähler manifold of dimension
n. For every big class α ∈ H1,1(X, R), for every smooth hypersurface D which is
not contained in the non-Kähler locus of α, and γ := {D} (where {D} denotes the
cohomology class of [D]), there holds

d
dt

∣∣∣∣
t=0

vol(α + tγ) = n volX|D(α).(6.3.1)

We refer to ([52]) for a more general statement where a formula similar to
(6.3.1) is proved for any hypersurface D on X. However, for what follows,
Theorem 6.6 is sufficient. By [10, (8.5)], we have

volX|D(α) ≤ ⟨αn−1⟩ ∧ γ,

for γ = {D}. It is still not known whether we have the equality in the general
case (where X is only compact Kähler manifold). On the other hand, when X is
projective, by Theorems 6.5 and 6.6, it is necessarily true that

volX|D(α) = ⟨αn−1⟩ ∧ γ,(6.3.2)
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for γ = {D}. Note that by Lemma 3.9, we have

volX|D(α) =
∫

X
⟨Tn−1

min,α ∧̇ [D]⟩.

By this and (6.3.2), we obtain the following.∫
X
⟨Tn−1

min,α ∧̇ [D]⟩ = ⟨αn−1⟩ ∧ γ,(6.3.3)

This is exactly one of the main points that we exploit in the proof of Theorem 6.3

6.4. Proof of Theorem 6.2 and 6.3

For the proof of Theorem 6.2, we first need the following comparison theorem
between the density currents and the relative non-pluripolar products.

THEOREM 6.7. ([38, Theorem 4.5]) Let X be a compact Kähler manifold of dimen-
sion n. Let T1,· · · , Tm, and T be closed positive (1, 1)-currents with m + 1 ≤ n. Then
every density current of ⟨∧m

j=1Tj⟩, T has minimal h-dimension. Moreover, let R∞ be a
density current of T, ⟨∧m

j=1Tj⟩, we have R∞ = π∗(R′
∞) for some closed positive current

R′
∞ on X, with

⟨∧m
j=1Tj ∧̇ T⟩ ≤ R′

∞,

where π : E → ∆2 is the projection of the normal bundle of the diagonal ∆2 ⊆ X2.

Before we start the proof of Theorem 6.7, we first review the following result,
which is a special case of [27, Theorem 3.1].

THEOREM 6.8. ([27, Theorem 3.1]) Let P, T be closed positive currents on some
open domain Ω ⊆ Cn of bi-degree (1, 1) and (m, m), respectively, where m + 1 ≤ n.
We write P = ddcu, where u is a psh function on Ω. Suppose that there exists a closed
positive (m + 1, m + 1)-current R on Ω such that, for any sequence of smooth psh
functions uℓ decreasing to u. we have

ddcuℓ ∧ T → R.

Then, we define ddcu ∧ T := R. In this case, the Dinh-Sibony product of P and T is
well-defined, and we have the following.

P ⋏ T = P ∧ T.

Now, let us start by considering the case of bounded potential.
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Let T1, . . . Tm, T be closed positive (1, 1)-currents on X, where each Tj is of
bounded potential, and m + 1 ≤ n. Let Ω ⊆ X be a holomorphic coordinate, we
write

Tj = ddcuj, T = ddcu,

where uj is bounded on Ω.
Since uj is bounded for 1 ≤ j ≤ m, we see that u is locally integrable with

respect to
∧m

j=1 Tj. Hence, the product T ∧
(∧m

j=1 Tj

)
is well-defined in the

classical sense. Moreover, the currents T and
∧m

j=1 Tj satisfy the assumptions of
Theorem 6.8.

Let ψ be a bounded positive psh function on Ω. Set

T = T ⊗

ψ
m∧

j=1

Tj

 .

Consider the local admissible map

τ : Ω → Cn × Ω,(6.4.1)

(x1, x2) 7−→ (x1 − x2, x2).

We set (y1, y2) = (x1 − x2, x2). Let π : Cn × Ω → Ω be the projective map. For
1 ≤ j ≤ m, set ũj(y1, y2) = π∗uj = uj(y2), and set ũ(y1, y2) = u(y1 + y2). Let
ψ̃(y1, y2) = π∗ψ. Note that we have

τ∗(T) = τ∗

T ⊗

ψ
m∧

j=1

Tj

 = ψ̃ ddcũ ∧

 m∧
j=1

ddcũj

 .

Let λ ∈ C∗. By using the regularizations of ψ and u, one sees that

(Aλ)∗

ψ̃ ddcũ ∧
m∧

j=1

ddcũj

 = ψ(y2) ddcu(λ−1y1 + y2) ∧

 m∧
j=1

ddcuj(y2)

 .

The following lemma is similar to [28, Lemma 2.2]. We include a proof here
for the reader’s convenience.

LEMMA 6.9. Let R be a limit current of the sequence

(Aλ)∗

ψ̃ddcũ ∧

 m∧
j=1

ddcũj

 .
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Then we have

0 ≤ R ≤ π∗

ψddcu ∧

 m∧
j=1

ddcuj

 .

PROOF. Since ψ̃ is positive, the limit current R is also positive. Let ψℓ be
a sequence of smooth psh functions decreasing to ψ, and define ψ̃ℓ(y1, y2) =

ψℓ(y2). We fix ℓ ∈ N. By Theorem 6.8, we have

lim
λ→∞

(Aλ)∗

ψ̃ℓddcũ ∧

 m∧
j=1

ddcũj


= lim

λ→∞
ψℓ(y2)(Aλ)∗

ddcũ ∧

 m∧
j=1

ddcũj


=π∗

ψℓddcu ∧

 m∧
j=1

ddcuj

 .

Since ψℓ ≥ ψ, it follows that

(Aλ)∗

ψ̃ℓddcũ ∧

 m∧
j=1

ddcũj

 ≥ (Aλ)∗

ψ̃ddcũ ∧

 m∧
j=1

ddcũj

 ,

for λ ∈ C∗. Letting λ → ∞, we obtain

π∗

ψℓddcu ∧

 m∧
j=1

ddcuj

 ≥ R, for any ℓ ∈ N.

Finally, letting ℓ → ∞, we conclude that

π∗

ψddcu ∧

 m∧
j=1

ddcuj

 ≥ R.

This completes the proof. □

Now, we show that the inequality in Lemma 6.9 is actually equality.

LEMMA 6.10. Under the assumptions above, the limit of

(Aλ)∗

ψ̃ ddcũ ∧
m∧

j=1

ddcũj


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is unique, and

(6.4.2) lim
λ→∞

(Aλ)∗

ψ̃ ddcũ ∧
m∧

j=1

ddcũj

 = π∗

ψ ddcu ∧
m∧

j=1

ddcuj

 .

PROOF. Consider the test form with compact support of the type Φ(y1, y2) =

Φ1(y1) ∧ Φ2(y2). Since these forms generate the space of test forms, it suffices to
prove (6.4.2) against Φ1(y1) ∧ Φ2(y2). By Lemma 6.9, we only need to consider
the case where Φ1(y1) is of full bi-degree. We can further ask Φ1(y1) to be a
radial form with unit volume, that is, Φ1(y1) = χ(∥y1∥2)indy1 ∧ dȳ1 such that∫

Φ1(y1) = 1.
Set

uλ(y2) :=
∫

y1
ũ(λ−1y1, y2) ∧ Φ1(y1) =

∫
y1

u(λ−1y1 + y2) ∧ Φ1(y1),

which is the convolution of u(y2), and it decreases to u(y2), as λ → ∞. Set

Rλ := ψddcuλ ∧

 m∧
j=1

ddcuj

 .

Using the regularizations of ψ and u, and applying Fubini’s theorem, we
obtain〈

(Aλ)∗

ψ̃ ddcũ ∧

 m∧
j=1

ddcũj

 , Φ1(y1) ∧ Φ2(y2)

〉
=
〈

Rλ, Φ2(y2)
〉

.

Since uλ decreases to u as λ → ∞, we get

lim
λ→∞

〈
Rλ, Φ2(y2)

〉
=

〈
ψddcu ∧

 m∧
j=1

ddcuj

 , Φ2(y2)

〉

=

〈
ψddcu ∧

 m∧
j=1

ddcuj

 , π∗(Φ)

〉

=

〈
π∗

ψ
m∧

j=1

ddcuj ∧ ddcu

 , Φ

〉
.

This completes the proof. □



76

We note that Lemma 6.10 also applies when T is a closed positive (p, p)-
current with p + m ≤ n (see [38, Theorem 4.1]). However, the method used in
the proof above cannot be applied in this case. Instead, we follow the approach
from [49].

PROOF OF THEOREM 6.7. Since
〈
∧m

j=1Tj

〉
is a non-pluripolar current, it puts

no mass on {x : ν(T, x) > 0} (which is a pluripolar set). Thus, by Proposi-
tion 3.26, any density current of

〈
∧m

j=1Tj

〉
, T must has minimal h-dimension.

We now prove the second statement. Since this is a local problem, we only
need to work on a holomorphic coordinate chart Ω. First, we write Tj = ddcuj,
where uj ≤ 0 is psh function on Ω. For k ∈ N,

set
uj,k := max{uj,−k} and Tj,k := ddcuj,k.

Since Tj,k is of bounded potential, the classical product ∧m
j=1Tj,k is well-defined.

We set
Rk := T ⊗∧m

j=1Tj,k and R := T ⊗
〈
∧m

j=1Tj

〉
.

For 1 ≤ j ≤ 2, let pj : Ω2 → Ω be the projection from Ω2 to the jth-component.
Set

ρ :=
m

∑
j=1

uj and ρk := k−1 max{ρ,−k},

ψ := p∗2ρ and ψk := p∗2ρk.

Note that ψk + 1 = 0 on ∪m
j=1p−1

2 {uj ≤ −k}. Hence, we get

−ψkR = −(ψk + 1)R + R

= −(ψk + 1)Rk + R,(6.4.3)

We choose the admissible map τ as in (6.4.1). By Lemma 6.10, we get that the
tangent current of

(ψk + 1)Rk = T ⊗
(
(ρk + 1)1∩m

j=1{uj>−k}

〈
∧m

j=1Tj

〉)
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equals π∗((ρk + 1) ∧m
j=1 Tj,k ∧ T), where π : E → ∆2 is the normal bundle of ∆2.

Now, by taking the tangent current of both sides of (6.4.3), we get

(6.4.4) Rk,∞ = R∞ − π∗

(ρk + 1)T ∧

 m∧
j=1

Tj,k

 ,

where Tk,∞ and R∞ are tangent currents of −ψkR and R along ∆2, respectively.
Since ρk + 1 = 0 on ∪m

j=1{uj ≤ −k}, we then have

(ρk + 1)T ∧

 m∧
j=1

Tj,k

 = (ρk + 1)
〈
∧m

j=1Tj ∧̇ T
〉

,

which converges to
〈
∧m

j=1Tj ∧̇ T
〉

as k → ∞. This combines with (6.4.4) implies

π∗
(〈

∧m
j=1Tj ∧̇ T

〉)
≤ R∞.

This completes the proof. □

PROOF OF THEOREM 6.2. Let x ∈ X. Let S be the density current associated
to ⟨∧n−1

j=1 Tj⟩ and T. By Theorem 6.7, we have

S ≥
〈
∧n−1

j=1 Tj ∧̇ T
〉

.

By comparison of Lelong numbers (Corollary 2.23),

ν(S, x) ≥ ν
(〈

∧m
j=1Tj

〉
, x
)

ν (T, x) .

It follows that

S ≥
〈
∧n−1

j=1 Tj ∧̇ T
〉
+ ν

(〈
∧n−1

j=1 Tj

〉
, x
)

ν(T, x)δx.

Since {S} =
{〈

∧n−1
j=1 Tj

〉}
∧ {T}, the desired conclusion follows. □

PROOF OF THEOREM 6.3. Assume that X is projective. Let x ∈ X. Choose a
smooth hypersurface D passing through x. By (6.3.3), we see that

⟨αn−1⟩ ∧ {D} = ⟨αn−1 ∧̇ [D]⟩.

Since ν([D], x) = 1, by Theorem 6.2, we then get ν(⟨αn−1⟩, x) = 0. This completes
the proof.

□
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In the end of this section, we show that if T is not of minimal singularities in
α, then ν

(〈
Tn−1〉 , x

)
could be strictly positive.

EXAMPLE 6.11. Let X = Pn and [x0 : · · · : xn] be the homogeneous coordinate.
Let ω be the Fubini-Study form on Pn and x = [0 : · · · : 0 : 1]. Set

T := ddc log
(
|x0|2 +· · ·+ |xn−1|2
|x0|2 +· · ·+ |xn|2

)
+ ω,

which is a closed positive (1, 1)-current in the Kähler class {ω}. By [16, Corollary
4.11], S = Tn−1 is classically well-defined. Since S has no mass on the point x,
we get S =

〈
Tn−1〉. Hence,

ν(⟨Tn−1⟩, x) = ν(S, x) ≥ ν(T, x)n−1.

By the construction of T, we can see that ν(T, x) > 0. Therefore,

ν
(〈

Tn−1
〉

, x
)
> 0.
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[55] , Monotonicity of non-pluripolar Monge-Ampère masses, Indiana Univ. Math. J., 68 (2019),

pp. 579–591.
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