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Zusammenfassung

Diese Dissertation befasst sich mit der Analyse der Singularitdten geschlosse-
ner positiver Strome auf kompakten komplexen Mannigfaltigkeiten und besteht
aus sechs Kapiteln.

Im zweiten Kapitel werden Grundlagen zur Pluripotentialtheorie und zur
komplexen Geometrie dargestellt. Im dritten Kapitel fithren wir im Hermite-
schen Kontext das Konzept der relativen nicht-pluripolaren Produkte ein, eine
Methode zur Definition von Keilprodukten geschlossener positiver (1, 1)-Strome
mit einem geschlossenen positiven (p, p)-Strom auf einer Hermiteschen Mannig-
faltigkeit. Wir besprechen die Konstruktion dieses Produkts, die Monotonieeigen-
schaft sowie den Zusammenhang mit Dichtestromen, welche eine allgemeinere
Methode zur Definition von Keilprodukten hoherer Bi-Grad-Strome darstellen.

Das vierte Kapitel konzentriert sich auf die Abschédtzung der Grofie der Sin-
gularititsmenge eines gegebenen geschlossenen positiven Stroms T, wobei die
Singularitdtsmenge die Menge der Punkte ist, an denen T positive Lelong-Zahlen
besitzt. Genauer gesagt, leiten wir obere Schranken fiir das Volumen beliebi-
ger maximal irreduzibler analytischer Mengen innerhalb der oberen Lelong-
Niveaumengen von geschlossenen positiven Stromen her. Dartiber hinaus zeigen
wir im Fall des Bi-Grads (1,1), dass diese Schranken optimal sind.

Im fiinften Kapitel vergleichen wir die Lelong-Zahlen geschlossener positiver
(1,1)-Stréme innerhalb derselben groen Klasse. Genauer gesagt: Seien T, T
zwei geschlossene positive (1,1)-Strome in derselben Klasse, wobei T” weniger
singuldr als T ist. Wir geben eine obere Schranke fiir die Differenz der Lelong-
Zahlen von T und T’ an, ausgedriickt durch die Differenz der nicht-pluripolaren
Massen von T" und T.

AbschliefSend stellen wir im sechsten Kapitel eine Methode zur Definition
der Lelong-Zahl nicht-pluripolarer (m, m)-Kohomologieklassen auf einer kom-
pakten Kidhler-Mannigfaltigkeit vor. Wir vergleichen die Cup-Produkte und die
relativen nicht-pluripolaren Produkte. Es stellt sich heraus, dass zwei Produkte
stets verschieden sind, falls die Lelong-Zahl der nicht-pluripolaren Kohomo-
logieklasse von null verschieden ist. Als Anwendung prasentieren wir eine
hoherdimensionale Version der Zariski-Zerlegung.



Abstract

This thesis focus on analyzing the singularities of closed positive currents on
compact complex manifolds, it consists of six chapters.

In the second chapter, some crucial background in pluripotential theory
and complex geometry is reviewed. In the third chapter, we introduce the
relative non-pluripolar products in Hermitian setting, which is a way defining
the wedge products of closed positive (1,1)-currents and a closed positive (p, p)-
current on Hermitian manifolds. We discuss the construction of this product, the
monotonicity property, and its relation with density currents, which is a general
way defining wedge products of higher bi-degree currents.

The fourth chapter focuses on estimating the size of the singular locus of a
given closed positive current T, where the singular locus is the set of points at
which T has positive Lelong numbers. Specifically, we established upper bounds
for the volumes of arbitrary maximal irreducible analytic sets contained in the
Lelong upper level sets of closed positive currents. Moreover, in the bi-degree
(1,1) case, we proved that these bounds are optimal.

In the fifth chapter, we compare the Lelong numbers of closed positive (1,1)-
currents in the same big class. More precisely, let T, T' be two closed positive
(1,1)-currents in the same class such that T is less singular than T’. We provide
an upper bound of the difference of the Lelong numbers of T and T' in terms of
the difference of the non-pluripolar masses of T and T’ respectively.

Finally, in the sixth chapter, we provide a method for defining the Lelong num-
ber of non-pluripolar cohomology (m, m)-classes on compact Kdhler manifolds.
We compare the cup products and the relative non-pluripolar products. It turns
out that the Lelong number of non-pluripolar cohomology classes obstructs the
equality of these two classes. As an application, we present a higher-dimensional
version of the Zariski decomposition.
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CHAPTER 1

Introduction

Currents, which generalize differential forms in the sense of distributions,
play a fundamental role in complex geometry and pluripotential theory. Under-
standing the singularities of currents is crucial and has numerous applications
in both complex geometry and complex dynamics. This thesis is devoted to the
study of singularities of currents on complex manifolds. It is organized into six
chapters and is based on my four articles [43, 42, 33, 38].

1.0.1. Relative non-pluripolar product on Hermitian manifolds. The first
part of my thesis aims to study the wedge products of currents on Hermitian
manifolds, and it is based on the article [33]. Currents, as a generalization of
differential forms, are not necessarily smooth, and providing a suitable way
to define their wedge products on manifolds has been a crucial problem in
pluripotential theory.

This problem was first studied by Bedford and Taylor in [1], where they
considered closed positive currents T and P on a complex manifold, with T =
dd‘u of bi-degree (1,1) and u a locally bounded potential. In this setting, they
defined

T AP :=dd"(uP).
The boundedness condition on u was slightly relaxed in [16], where Demailly
imposes assumptions on the singularities of T.

The non-pluripolar product was introduced and studied in [2, 8], provided a
way defining products of closed positive (1, 1)-currents on complex manifolds.
Later, in [51], this was generalized to the relative setting, where one could
consider the product of closed positive (1,1)-currents T, ..., T;, and a closed
positive (p, p)-current T. The first step of the construction is to reduce to the
bounded potential cases. By cutting down the potential function u; of T; by —k,
we set

Ry = dd° max{uy, =k} A--- ANdd° max{u,, —k} A T.
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When the ambient manifold is Kéhler, one could obtain the uniformly bounded-
ness condition on the sequence of currents {]lﬂ;nzl {u>—k} Ry}, which implies the
existence of the limit
<T1 A ANTy A T> = khﬁn;lo lﬁ}":l{u]->—k}Rk/
and it is called the non-pluripolar product of Ty, ..., Ty, relative to T.
In [33], we show that the relative non-pluripolar product is also well-defined
on compact Hermitian manifolds, with some restriction on the Hermitian form.

THEOREM 1.1. (Theorem 3.4) Let X be a compact complex manifold of dimension n
endowed with a Hermitian form w satisfying

dd°w = dd°(w?) = 0.

Let T] be a closed positive (1,1)-current on X for 1 < j < m, and let T be a closed
positive (p, p)-current on X such that p +m < n. Then the relative non-pluripolar
product (Ty A - - - A Ty A T) is well defined.

The monotonicity property [8, 55, 11, 51], which captures the mass loss in
the non-pluripolar product, asserts that on a compact Kdhler manifold, if closed
positive (1,1)-currents T; and T]’ lie in the same Dolbeault cohomology class and
T]-’ is less singular than T;, which means that the potential of T].’ is greater than or
equal to that of T; up to a constant, for all 1 < j < m. Then, the non-pluripolar
products of T; and T]’ satisfy the inequality:

(1.0.1) AN ATu)} < TN~ AT},

where {R} denotes the Dolbeault cohomology class of the current R. In [33], we
prove that on a Hermitian manifold with the assumption on the Hermitian form
given in Theorem 1.1, the monotonicity property in the relative setting holds.

THEOREM 1.2. (Theorem 3.13) Let X be a compact Hermitian manifold of dimension
n, endowed with a Hermitian form w satisfying

dd‘w = dd°(w?) = 0.

Let {61}55, - - -, {6m } 53 be Bott—Chern pseudoeffective classes on X. Foreach1 < j < m,

let T;, T]’ € {6, },3 be closed positive (1,1)-currents, and let T be a closed positive (p, p)-

current such that m 4+ p < n. Assume that Tj’ is less singular than Tj forall 1 < j < m.



Then, we have
/X<T1/\-../\Tm/'\T>/\wn—m—P S/X<T{/\/\T1;1/\T>/\wn—m—p

1.0.2. Volumes of Components of Lelong Upper Level Sets. The second
part of my thesis is based on [43], and focuses on analyzing the singular loci
(Lelong upper level set) of a closed positive current T on a compact Kéhler
manifold. That is, the set of points where T has positive Lelong numbers.

The motivation for this study is inspired by algebraic geometry. For example,
let C be an algebraic curve in IP? of degree d. Estimating the singularities of C is
a classical problem. By Bézout’s theorem, C has at most 3(d — 1) (d — 2) singular
points. Closed positive currents are far-reaching generalizations of analytic sets,
and we aim to investigate the size of their singular loci. More precisely, the
volumes of their Lelong upper level sets.

This problem was first studied by Demailly [18] in the case of closed posi-
tive (1, 1)-currents, where he provided volume estimates for certain maximal
irreducible analytic subsets contained in the Lelong upper level sets, using
the regularization theorem for closed positive (1,1)-currents. This result was
later extended to currents of higher bi-degree in [36, 46] via the Lelong—Skoda
transformation. However, neither result could handle analytic sets of arbitrary
dimension contained in the Lelong upper level set.

Let T be a closed positive (p, p)-current on a compact Kdhler manifold X,
and let W be an irreducible analytic subset of dimension m. In [22], the authors
established upper bounds for the volumes of maximal irreducible analytic sub-
sets V C W that are contained in the Lelong upper level sets of closed positive
currents on W. We denote the set of such analytic subsets of dimension ¢ by

YT w-
The upper bound in [22] depends on vol(W) and || T'||, where
1
vol(W) := —/ w™, and ||T] ::/ TAwW"P.
m! JReg(W) X

Here, Reg(W) denotes the regular locus of W.
In joint work with Duc-Viet Vu [43], we established a finer upper bound in
terms of the cohomology classes of the non-pluripolar self-products of T.
Before stating our main theorem, we first recall the notion of Lelong number.
Let T be a closed positive (p, p)-current on X. We denote by v(T, x) the Lelong
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number of T at a point x € X (see Section 2.1.4 for more details). Let V C X be
an irreducible analytic subset. We denote by v(T, V) the generic Lelong number of
T along V, defined by

v(T,V) = xi/rg/v(T,x’).

THEOREM 1.3. (Theorem 4.1) Let « be a nef (1,1)-class on a compact Kiihler
manifold X, and let W C X be an irreducible analytic subset of dimension m. Let T € «
be a closed positive current such that v(T,W) = 0. Let 1 < m’ < m be an integer.
Then, we have

!/ !/

/ 1 l
v(T, V)" vol(V g—/ 2 — (Tl ™) A ™
VG"//E”//T/W ( ) ( ) (m_m/)! RegW( <( | eg ) >)

where in the integral, we identify « with a smooth closed form in «.

Our approach relies on the relative non-pluripolar product and its connection
with density currents, a concept for defining the intersection of higher-degree
currents.

1.0.3. Lelong numbers of currents with full mass intersection. The third
part of my thesis, based on [42], investigates the difference in singularities
between two closed positive (1,1)-currents T and T’ in the same cohomology
class. Assuming T is less singular than T’, we compare their Lelong numbers
and derive bounds in terms of their non-pluripolar masses.

This problem is motivated by a fundamental question in pluripotential theory.
Specifically, the phenomenon of mass loss in non-pluripolar products ([3, 8, 51]).
In general, non-pluripolar products of cohomologous currents T and T’ may fail
to remain in the same cohomology class. Nevertheless, we have the monotonicity
property (1.0.1), which captures the mass loss of non-pluripolar product. When
the equality in (1.0.1) holds, T3, . .., T); is said to have full mass intersection with
respect to T,..., T}, Understanding obstructions to full mass intersection is an
important problem, where the singularities of T and T’ play a key role.

For the self-intersection case, a characterization of currents with full mass in-
tersection was provided in [11] via the singularity types of associated envelopes.
Vu [53] later studied this problem in the mixed setting, assuming T = Tyin has
minimal singularities. In my recent work [42], I extended Vu’s results to the
setting of prescribed singularities. We first recall the definition of an Z-model
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(see [14] for further details). Let T = dd“u + 0 be a closed positive (1, 1)-current.
We say that T is Z-model if
u=p° [u]7,

where
PP[u]7 := (sup {w € PSH(X,0) | w <0, Z(tw) C T(tu), ¥Vt > 0})*

is the Z-envelope of u, and Z(tu) denotes the multiplier ideal sheaf, locally gener-
ated by holomorphic functions f such that | f|?e~* is integrable.
The following is our first main result.

THEOREM 1.4. (Theorem 5.1) Let X be a compact Kihler manifold of dimension n.
Let {61}, ...,{0m} be big classes and let T]-’, T; € {0} be closed positive (1,1)-currents
such that for1 < j <m,
(1) fX<T]”> > 0.
(2) Tjis Z-model.
(3) Tj is less singular than Tj’ )
Let V be a proper irreducible analytic subset such that dim(V) > n —m. If T{,..., T,

m
are of full mass intersection with respect to Ty, . .., Ty, that is,

{INLT)} = LA T
Then there exists 1 < j < m such that 1/(T]-’, V) =v(T;, V).
For the case m = n, we have the following quantitative result:

THEOREM 1.5. (Theorem 5.2) Let X be a compact Kihler manifold, and let 9 be a
closed cone in the cone of big classes. There exists a constant C > 0 only dependent on
the manifold X and the cone 9 such that for every xo € X, {6;} € Zand T}, Tj € {0;},
1 <j < n, satisfying the conditions in Theorem 5.1. The following inequality holds.

(1.02) /X (A Ty = (N, T ) > CTT (T, x0) — v(T; x0)).
j=1

My approach refines Vu’s argument in [53] by using relative non-pluripolar
products and introducing the notion of difference envelopes of currents.

1.0.4. Singularities of (n — 1,n — 1)-classes. The fourth part of my thesis
is based on the article [38] and focuses on understanding the singularities of
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non-pluripolar cohomology (1, m)-classes on compact Kdhler manifolds. More
precisely, let a be a big (1,1)-class, and let (a™) := {(T}",;,)} denote the self
non-pluripolar product of , where Ty min is a current with minimal singularities
in the class a. We define the Lelong number of (™) at a point x € X to be the
Lelong number of (T} ;) at x. We first prove that this definition is independent
of the choice of T, min (Theorem 6.1).

The main result of this chapter is a comparison between the cup products
and the relative non-pluripolar products.

THEOREM 1.6. (Theorem 6.2) Let X be a compact Kihler manifold of dimension n.
Let Ty, ..., T,_1, T be closed positive (1,1)-current on X. Put

Bi={(NZ T}y = {(NL T AT}
Then we have B N {T} > vy, where B N {T} is the cup product of p and {T}. Moreover,
if BA{T} =y, then
v((/\;?;fT]'),x) -v(T,x) =0,
for every x € X.

As an application of Theorem 1.6, we have the following vanishing theorem
for Lelong numbers.

THEOREM 1.7. (Theorem 6.3) Let X be a projective manifold, and let « be a big
(1,1)-class on X. Then, we have

v({(a"™1), x) = 0 for every x € X.

When X is a compact Kédhler surface and « is a big class, the non-pluripolar
part (a) coincides with the nef part in the Zariski decomposition. In [6], it was
shown that for a pseudoeffective class « on a compact Kdhler manifold, the non-
pluripolar part («) is nef if and only if its Lelong number vanishes everywhere.
Theorem 1.6 can thus be viewed as a higher-dimensional analogue of the Zariski
decomposition, in the sense that the non-pluripolar product (a"~!) has vanishing
Lelong number at every point.



CHAPTER 2

Preliminary

2.1. Notations and definitions

Let IN denote the set of natural numbers, and set Ny = {0} UIN. Let n € IN.
For any multi-index a = (a1, ..., an) € NG, we define [a| := Y 1", a;.
Let 3 C C" be an open set, and let (zy, . ..,z,) be the holomorphic coordi-
nates on (), where
zj = Xpj1+ixy, 1<j<n

Leta! = (af,...,al), a®> = (a3,...,a2) € N be two multi-indices. We define

the following:

9, =2 -1 9 ;9 .= L1 9 ;9
5o aZ]'_z 8x2]~_1 aij ’ 5o aZ_]'_Z axZ]'_l aij ’

1 1 — _42
98 =%l al, 9 =3
nog B ng
0:=) —, Z —,
ft 0z; pst 0Z;
dZ]' = de]'_1 + idx2]', dZ] = dx2]'_1 — idej.

Let,] C{1,...,n},withl = {iy,...,is}and | = {j1,...,jx}. We put
dzp:=dzj N---Ndz, dzp:=dzj \--- Ndzj,.
We also define the differential operators
d:=0+9, d°:=-—(0—09),

so that dd¢ = %85.

2.1.1. Differential forms and Currents. We recall some standard definitions
and notations, following [16, 19].



Let p,g < n, and let
U= Z M[]dZ[ AN dZ]
[I=p.|]|=q
be a differential (p, g)-form on Q). We denote by
px(u) :=sup max

xek l=p, |]l=4
[ +]a? <s

%' 0% up(x) ‘

the seminorm associated with the compact set K C (2 and s € IN. We denote by
eP1()) be the space of differential (p,q)-forms on Q) with the topology induced
by the seminorms p}, where K C () and s € IN. Let 2P4(Q)) be the space
of differential (p, q)-forms with compact support induced with the restriction
topology.

A current T on Q) of bi-degree (p,q) (or bi-dimension (n — p,n —q)) is a

continuous linear functional
T: 9" P () — C,

and we denote by (T,a) € C the action of the current T on a test form a €
" P"=1(Q)). We denote by 2" F"~1(Q)) the space of currents of bi-degree
(p,q9) on Q, which is the topological dual of 2" P"~1(Q)). Currents can be
viewed as a generalization of differential forms in the sense of distributions.
Specifically, any current T can be written as
T= ).  TydzAdz,
11|=p. IT|=q

where each coefficient Tj; is a distribution on Q).

Let T € 2'P1(Q)). The support of T is denoted by supp(T), which is the
smallest closed set B C () such that the restriction of T to 2" P"~1(Q)\B) is zero.

Let T € 2'P4(Q), dT and 9T are currents of bi-degree (p +1,4) and (p,q + 1)
respectively, defined by

(0T, a) := (—=1)PTT,90), (3T, B) := (—1)PT1TYT,ap),

for any a € 2" P-L70(Q)), B € 2" P"171(Q)). We say that T is d-closed
(respectively, o-closed) if 0T = 0 (respectively, oT = 0). We say that T is closed if
dT := 0T + 9T =0 on Q.
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Let {T;},en be a sequence of (p, g)-currents on Q). We say that T; converges
weakly to T € 2'P1(Q)) if
(Tj, ) = (T, ),
forany a € 2"7P"71(Q)).
A differential (p, p)-form a on Q) is said to be positive if, at each point, it can
be written as a finite linear combination of forms of the type

i1 /\71/\---/\i’yp/\7p,

where each v;is a (1,0)-form. A (p, p)-form B is said to be weakly positive if B N «
is positive for every positive (n — p,n — p)-form a on Q).

Let T € 2'PF(Q)). We say that T is positive (respectively, weakly positive) if
(T,a) > 0 for every weakly positive (respectively, positive) (n — p,n — p)-form
a. Any positive (p, p)-current

T = Z T[]dzl A dZ]
[|=p, l]l=p
has real coefficients; that is, Tj = T_II Let Ty, T, € 2'PP(Q)). We write Ty > T, if
T; — T, is a positive (p, p)-current.

REMARK 2.1. Let X be a complex manifold of dimension n. By choosing
holomorphic coordinate charts that cover X, one can extend the definitions of
currents and the associated differential operators to the global setting.

Let X be a compact complex manifold of dimension 7, and let w be a Hermit-
ian form on X. Let T be a closed positive (p, p)-current, p < n. We define the
mass of T by

IT| ;:/ T AW P,
X

Here, we give some examples of positive currents.

EXAMPLE 2.2.

(1) Let 7y be a positive (p, p)-form on Q). By the definition of weakly positive
forms, we get
TAB 20,

for any weakly positive (n — 1,1 — p)-form B. Hence « is also a positive
(p, p)-current on Q).
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(2) Let X be a compact complex manifold of dimension 7, and let V C X be
an analytic subset of dimension m. We denote by [V] the (n — m, n — m)-
current of integration along V, defined by

. m,m
([V], &) := /Reg(v) a, foralla € 2""(X).
Since the integral of a weakly positive form over V is non-negative, the
current [V] is positive. Moreover, by Stokes’ theorem, [V] is closed.

An upper semi-continuous function u: Q) — R U {—o0} is said to be plurisub-
harmonic (psh for short) if it satisfies
L2 i0
u(x) < gy /0 u(x+€v¢)de,
forall x € Q) and ¢ € C" with || sufficiently small.

Plurisubharmonic functions are central to pluripotential theory, which is
closely linked to the theory of currents. Indeed, any closed positive (1,1)-current
T on Q) can be locally written as T = ddu for some psh function u. Conversely,
given any psh function u on (), the current dd“u defines a closed positive (1,1)-
current on ().

Let T = dd‘u be a closed positive (1,1)-current on ), where u is a psh
function on Q). The singular locus of T is denoted and defined as

It := {x € Ulu(x) = —oo}.

2.1.2. Cohomology classes of currents. Let X be a compact complex mani-
fold of dimension n. Let p,q < n. The Dolbeault and Bott—Chern cohomology groups
of currents on X are defined as follows:

HPA(X,C) ={T € 2'"(X) | dT =0} / {oT' | T' € 2’1~ 1(X)},
HEA(X,C) ={T € 2'"1(X) | dT =0} / {00T' | T' € 2'P 117 1(X)}.

Let T be a 0-closed current on X. We denote by {T} the Dolbeault cohomology
class of T. Similarly, for a d-closed current T”, we denote by {T"} 5 its Bott—Chern
cohomology class.

Note that {99T'|T" € 2'P~11-1(X)} C {9T'|T' € 2'P1~1(X)}. Hence, we
have the nature inclusion

i: Hil(X,C) — HPA(X,C).
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If X is furthermore a compact Kéhler manifold, then by the d0-lemma, the
inclusion map i is an isomorphism.

We now assume that X is a compact Kéhler manifold. Let H'!(X,R) de-
note the space of real (1,1)-Dolbeault cohomology classes on X, and let a &
H(X,R). In the following, we recall several positivity notions for (1,1)-classes.
We say

(1) ais Kihler if there exists a Kdhler form in a.

(2) ais nef if for any € > 0, the class « + {ew} is Kdhler.

(3) We say that « is big if there exists a closed positive (1,1)-current T € «
such that T > ew for some € > 0. Such a current T is called a Kiihler
current.

(4) a is pseudoeffective if there exists a closed positive (1,1)-current T € a.

DEFINITION 2.3.

(1) Let 2 C HY'(X,R) be the set of Kihler classes. ¥ is an open open
convex cone, and is called the Kihler cone.

(2) We denote by .7~ C H'1(X,R) the set of nef classes, which is the closure
of .

(3) Let & C H"'(X,R) be the set of cohomology classes of closed positive
(1,1)-currents. It is a closed convex cone, and is called the pseudoeffective
cone.

4) &% C HY1(X,R) is the set of big classes, which is the interior of &, and
is called the cone of big (1,1)-classes.

Let «, B be two pseudoeffective classes. We write « > B if & —  is a pseudoef-
fective class; that is, there exists a closed positive (1,1)-current T € a — B.

Note that if « > B and B > a, then there exist closed positive currents
T,—p €« —Band Tg_, € B — a. Hence, the current T,_g + Tg_, € {0} is closed
and positive. Since the zero cohomology class {0} contains only the zero closed
positive current, it follows that T, g = Tg_, = 0. This shows that « = B.

2.1.3. Classical intersection of (1,1)-currents. Let X be a complex manifold
of dimension n. Let P be a closed positive (1, 1)-current, and let T be a closed
positive (p, p)-current with p < n. In general, defining the wedge product
P AT on X is not easy when P and T are not smooth. However, under certain
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regularity conditions on P, Bedford and Taylor introduced a natural way to
define the product in [1]. This construction is known as the classical product. We
review the definition here.

Since P is a closed positive (1,1)-current, it can be locally written as P = dd‘u
for some psh function u. If we further assume that u is locally bounded, then the
product uT is a well-defined Borel measure, and we define

Ad‘u AT := dd“(uT).

When P and T are smooth differential forms, this definition agrees with the
classical wedge product, as ensured by Stokes’” theorem. The current ddu A T is
closed, and it can be shown to be positive by applying a smooth regularization
to the psh function u.

The products defined above were generalized by Demailly in [16, Chapter
III, Section 4], under the assumption that X can be covered by Stein open sets ()
satisfying

00N L(u) Nsupp(T) =Q,

where L(u) denotes the unbounded locus of u, that is, the set of points x € X
such that u is unbounded in every neighborhood of x. Under this assumption, it
can be ensured that uT is a well-defined measure, and consequently, the wedge
product dd°u A T = dd°(uT) also makes sense.

Now, consider closed positive (1,1)-currents Ty, ..., T, and a closed positive
(p,p)-current T with m + p < n. Locally, we write T; = ddu; for some psh
function u;. The product of Ty, ..., Ty, and T is locally defined by

dd‘uy A+ Ndduy, AT = dd® (uy dduy A\ -+~ Ndduy, AN'T)
=dd® (dd® (updduz N\ - - Ndduy, NT))

= dd® (- dd° (uyT) - ).

In [23], Forneess and Sibony gave a concrete way to check the well-definedness
of dd°ui N - - - Nddu,, N\ T in terms of the calculation of the Hausdorff dimensions
of the bounded locus of potential functions u;.

THEOREM 2.4. ([23, Corollary 3.6] or [16, Chapter III, Theorem 4.5]) Let uy, . . .,
U be psh functions on some local chart of X, and let T be a closed positive (p, p)-current
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on X such that m + p < n. Then, the current
dduy A-- - Ndduy, AT
is well-defined if the Hausdorff measure
H(n—p)—2k+1(L(uj) O~ N L(wj) Nsupp T) =0,
for any indices {jy,...,jx} € {1,...,m}.

Currents can be regarded as generalizations of analytic sets (see Example 2.2,
(2)). The following proposition illustrates how the classical product can be
interpreted as an intersection of analytic sets.

PROPOSITION 2.5. ([16, Chapter III, Proposition 4.12]) Let Zy, ..., Z, be hyper-
surfaces on X. Let {Cy }ren be the irreducible components of m;?zlzj. If hypersurfaces
{Z;} satisfy

dim(Z]‘ NN ij) =n-—m,
for any index {j1,...,jm} C {1,...,q}. Then, there exist integers my > 0 such that

[Za] - [Zy] = ;mk[ck]'

Now, let’s recall an important property of the classical product.

THEOREM 2.6. ([51, Theorem 2.9]) Let (3 C C" be an open set. Let m,l < n. Let
T be a closed positive current on X on Q), and u;, u;. be locally bounded psh functions on
0,1 <j<m. Let v, v,’( be locally bounded psh functions on 3, 1 < k < I. Assume
that u; = u;- on W:=nt_ {vp > 0}} for j=1,...,m. Then we have

Iwdduy A -+~ ANddupy AT = Tydduy A -+ ANddu;, AT.

We note that the above theorem also works when we replace the locally
bounded psh function by the locally bounded quasi-plurisubharmonic func-
tion, where we will recall the definition of quasi-plurisubharmonic function in
Section 2.2.

2.1.4. Lelong numbers of currents. The Lelong number, introduced in [32],
is a notion that measures the singularities of closed positive currents. Closed
positive currents can be viewed as a generalization of analytic sets, and the
Lelong number serves as the analytic analogue of the multiplicity of an analytic
set. Let’s review the definition now.



14

Let X be a complex manifold of dimension 7, and let T be a closed positive
(p, p)-current on X. Let x € X, and let Q) be a coordinate chart centered at x. The
Lelong number of T at the point x is denoted and defined by

v(T,x) := lim v(T,x,r), where v(T,x,r)= ! /( )T(z) Adde|z|)?.
B(x,r

r—0+ rZ(n——p)

In [32], Lelong showed that v(T, x,r) is non-negative and monotonically
increasing in r. Hence, the limit defining the Lelong number exists. Later, Siu
proved in [41] that the definition is independent of the choice of the coordinate
chart Q).

When T = [V] is the current of integration along an analytic set V C X, Thie
showed in [44] that the Lelong number of T at x coincides with the multiplicity
of V at x.

In the case where T is of bi-degree (1,1), it can be locally written as T = dd‘u
on () for some psh function u. In this setting, Lelong showed in [32] that

v(T,x) =sup {7y € R" |u(z) < ylog|z — x|+ O(1) atx} .

We review a key property concerning the Lelong number of intersections of
closed positive (1,1)-currents. Let T, . .., T, be closed positive (1,1)-currents,
and let T be a closed positive (p, p)-current on X such that m + p < n. Locally,
we can write T; = dd‘u; for some psh function u;. We have the following
proposition.

PROPOSITION 2.7. ([16, Chapter III, Corollary 7.9]) Let () be a local coordinate
chart on X. For each 1 < j < m, we write T] = ddcu]', where 7 is a psh function on ().
If the product

ddu; N+ - Nddu, AT

is well-defined. Then, we have
v(dduy A+ Ndduy AT, x) > v(dduqg, x)- - - v(ddum, x)v(T, x),

for every x € Q).

Next, we review the upper level set and some of its properties.
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COROLLARY 2.8. ([41]) Let T be a closed positive (p,p) current in X, and let
¢ > 0. Then, the upper level set

E/(T) := {x|v(T,x) > c}
is an analytic set of dimension less than or equal to n — p.

We now recall the generic Lelong number.

LEMMA 2.9. ([41]) Let T be a closed positive (p, p)-current on X, and let V. C X
be an irreducible analytic subset. Then, there exists a countable family of proper analytic
subsets {V;} of V such that

v(T,x) = inf {v(T,x")},
x'eV
for x € V\ U V. The right-hand side of the above equation is called the generic Lelong
number of T along V and is denoted by v(T, V).

We conclude this section by recalling Siu’s celebrated decomposition theorem.

THEOREM 2.10. ([41]) Let T be a closed positive (p, p)-current. Then T can be
written as the convergent series as follows:

T= 3 u(T, Vo Vi] +R,
k=1

where Vy is an irreducible analytic set of dimension n — p, and R is a residual current
such that
dimE.(R) <n—p

for every ¢ > 0.

2.2. Quasi-plurisubharmonic functions, singularity types and envelopes

Let X be a compact Kdhler manifold of dimension 7. By the maximum prin-
ciple, any psh function on X must be constant. Therefore, to develop the global
pluripotential theory on X, we introduce the notion of quasi-plurisubharmonic
functions.

We say that an upper semi-continuous function u: X — R U {—oo} is quasi-
plurisubharmonic (quasi-psh for short) if it can be locally written as the sum of a
plurisubharmonic (psh) function and a smooth function.
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Let 0 be a closed real (1,1)-form on X. A quasi-psh function u is said to be
0-plurisubharmonic (6-psh for short) if

dd‘u+6 > 0.

We denote by PSH(X, 0) the set of 6-psh functions on X.

Quasi-psh functions play a central role in the theory of currents on X. For
instance, given any closed positive (1,1)-current T on X, and any closed real
(1,1)-form 6 cohomologous to T, the current T can be written as

T =ddu-+9,

for some u € PSH(X, 0). We also use 6, to represent the current T.

Let u,v € PSH(X,0). We say that u is less singular (more singular) than v
ifv <u+0(1) (u < v+ 0(1)), and we denote this by v < u (v = u). The
equivalence relation of the above ordering is denoted by ~, and we denote by
[u] the singularity type of u, that is, the equivalence class containing u.

For u,v € PSH(X,0), we say u is less Z-singular (more Z-singular) than v if
Z(Av) C Z(Au) (Z(Av) O Z(Au)) for all constant A > 0. Here, Z(Au) denotes the
multiplier ideal sheaf of Au, which is locally generated by holomorphic function
f such that |f|?e~** is locally integrable. We denote this relation by v <7 u
(v =71 u), and denote the corresponding equivalence relation by ~7. The Z
singularity type of u is denoted by [u]7. Understanding the singularity type plays
an important role in pluripotential theory; see [11, 13, 14].

DEFINITION 2.11. Let 0 be a closed real (1, 1)-form on X, and let u be a 6-psh
function. We define the upper envelope and the Z-envelope of u as
P?[u] := (sup{w € PSH(X,0)|w <0, w <u})* € PSH(X,0) and
P°[u]7 := (sup{w € PSH(X,8)|w <0, tw <7tu, t>0})* € PSH(X,H),

respectively. Here (- )* means the upper semi-continuous envelope.

For u € PSH(X, 6), note that
u < PP[u] < P°[u]7.

If u satisfies u = P%[u] (respectively, u = P?[u]7), then we say that u is model
(respectively, Z-model).
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EXAMPLE 2.12.

(1) Set Vp := sup{v € PSH(X, 0)|v < 0}, which is of minimal singularities
in PSH(X,0). Since Vj is less singular than all 6-psh functions, it is
model and Z-model.

(2) Let u € PSH(X, 6). By [14, Proposition 2.18], we have

PP[P°lulz)z = P°[ulz.
Therefore, P?[u]7 is Z-model.

Let Ty = dd“u; + 6 and T, = dd“u; + 0 be two closed positive (1, 1)-currents
in the same cohomology class. We say that T is less singular than T; if u; > uy,
and we denote this by T; = T;.

Let T = 0, = dd“u + 6 be a closed positive (1,1)-current. The upper envelope
and Z-envelope of T are defined as

P[T] := Opay,) = dd“P°[u] 4 6 and
P[T]I = QPBMI = dchg[u]z +6,
respectively.

LEMMA 2.13. The envelopes P[T) and P[T|z are well-defined.

PROOF. We first note that for u, v € PSH(X, #) having the same singularity
type, the envelopes satisfy P?[u] = P?[v] and P%[u]; = P%[v]7.

Let 6/ be a smooth closed real (1,1)-form cohomologous to . Write T =
dd‘u’ 4+ 6', where u’ € PSH(X, 6").

By the 00-lemma, there exists a smooth function f < 0 on X such that
dd‘f = 6 — 60'. Now, note that

T=ddu+6
=dd(u+f)+9,
which shows that [u + f] = [1/], and we get
dd°P(u) 4 6 = dd®(PP[u] + f) + ¢’
= ddP [u+ f] + 6’
= dd°PY[u'] + 6.
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Therefore, we get the well-definedness of P[T]. For the well-definedness of P[T]z,
the proof is similar. ]

Let f: X — [—o0,00] be a function on X. The envelope with respect to f is
defined as
P(f) := (sup{v € PSH(X,0)|v < f})*.
For convenience, we set sup & = —oo. Note that P?(f) € PSH(X, ) if and only
if there exists v € PSH(X, 6) with v < f. This notation was introduced in [39]
and has subsequently appeared in several articles (see [12, 13, 14]).
Now, we introduce the difference envelope of currents.

DEFINITION 2.14. Let T} = dd“uq + 61, T, = dduy + 6, be closed positive
(1,1)-currents, where u; € PSH(X,0;), uy € PSH(X,6,). If there exists us €
PSH(X, 61 — 6) such that uz + uy = uy. Then, we define the difference envelope of
T1 and T as

P(T; — T») := dd°PO =% (u; — up) + (61 — 6,).
Here, we note that if u1(x) = up(x) = —oo for x € X, then we define (17 —
up)(x) = oo.

Similar to Remark 2.13, one can check that P(T; — T) is independent of the
choices of 6; and u; for j =1, 2.

Here, we review some important results regarding the Monge-Ampere mass
of envelopes of currents, where the notation ( - ) denotes the non-pluripolar
product, which will be introduced in Chapter 3.

PROPOSITION 2.15. ([11, Proposition 3.1]) Let {61}, ...,{6,} be pseudoeffective
classes. Let u;j € PSH(X, 9]-), 1<j<n. Then

/}(((91)%/\..-/\(9,1)””) :/X<(91)P91[u1} A-v+ A (Bu)pinfa)-

In the case of self-intersection, the following result characterizes the full mass
intersection problem.

THEOREM 2.16. ([11, Theorem 3.14]) Let {6} be a pseudoeffective class, and let
u € PSH(X, 0) such that [, (6;}) > 0. Let v € PSH(X, 0) such that v < u. Then, the
following is equivalent.

(1) fx<93> = fX<GZ>
(2) PP[u] = P%[0)].
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2.3. Density currents

In this section, we recall some basic properties of density currents introduced
by Dinh-Sibony in [21].

Let X be a complex Kédhler manifold of dimension 7, and V' a smooth complex
submanifold of X of dimension . Let T be a closed positive (p, p)-current on
X, where 0 < p < n. Denote by 7w : E — V the normal bundle of V in X and
E := IP(E & C) the projective compactification of E. We recall that E = TX|y /TV,
where TX and TV are the holomorphic tangent bundles of X and V respectively
(this shows E is a holomorphic vector bundle). By abuse of notation, we also use
7 to denote the canonical projection from E to V.

Let U be an open subset of X with U NV # &. Let T be a smooth diffeomor-
phism from U to an open neighborhood of U N V in E which is the identity on
U NV such that the induced map of the differential d7 to E|yny is the identity
(because for every x € UNV, dt at x is the identity map on TV, it induces a
linear map from TX,/TVy = Ey to TE,/TVy = Ex). Such a map is called an
admissible map. Note that in [21], to define an admissible map, it is required
furthermore that d7 is C-linear at every point of V. This difference doesn’t affect
what follows. When U is a small enough tubular neighborhood of V, there
always exists an admissible map 7 by [21, Lemma 4.2]. In general, T is not holo-
morphic. When U is a small enough local chart, we can choose a holomorphic
admissible map by using suitable holomorphic coordinates on U. For A € C¥, let
A, : E — E be the multiplication by A on fibers of E, which can be extended to
Ay :E — E. A (p, p)-current on E is said to be V-conic if it is invariant under the
action of { A, }. Here, we state an important result of density currents.

THEOREM 2.17. ([21, Theorem 4.6]) Let X be a compact Kihler manifold, and
V C X be a smooth complex submanifold. Let T be a closed positive (p, p)-current on
X, and let T be an admissible map defined on a tubular neighborhood of V. Then, the
family (Ap)«T.T is of mass uniformly bounded in A on compact subsets in E, and if S
is a limit current of the last family as A — oo, then S is a closed positive current on E
which can be extended trivially through E\E to be a V-conic closed positive current on
E such that the cohomology class {S} of S in E is independent of the choice of S, and
{S}v =AT}|v, and ||S|| < C||T|| for some constant C independent of S and T, where
{S}|v denotes the pull back of {S} under the canonical inclusion map from V to E.
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The current S in the above theorem is called a tangent current to T along V. Its
cohomology class is called the total tangent class of T along V and is denoted by
V' (T). Tangent currents are not unique in general. By [21, Theorem 4.6] again, if

S = lim (AAk)*T*T

k—o0

for some sequence (Ay)y converging to oo, then for every open subset U’ of X
and every admissible map 7' : U’ — E , we also have
S = lim (A/\k)*TiT.
k—o0
This is equivalent to saying that tangent currents are independent of the choice
of the admissible map 7.

DEFINITION 2.18. ([21, Definition 3.1]) Let F be a complex manifold and
ntp ¢ F — V a holomorphic submersion. Let S be a positive current of bi-degree
(p, p) on F. The h-dimension of S with respect to 7tr is the largest integer g such
that S A ;09 # 0 for some Hermitian metric 6 on V.

By a bi-degree reason, the h-dimension of S is in [max{l — p,0}, min{dim F —
p,1}]. We have the following description of currents with minimal h-dimension.

LEMMA 2.19. ([21, Lemma 3.4]) Let 7ty : F — V be a holomorphic submersion.
Let S be a closed positive current of bidegree (p, p) on F, with p < 1, and of h-dimension
I — p with respect to rtp. Then there exists a closed positive current S’ on V such that

S = npS'.

By [21, Lemma 3.8], the h-dimensions of tangent currents to T along V are the
same and this number is called the tangential h-dimension of T along V.

Let m > 2be an integer. Let T; be a closed positive current of bi-degree (p;, p;)
forl1 <j<monXandletT; ®---® Ty, be the tensor current of T1, . .., T;;, which
is a current on X". A density current associated to Ty, ..., Tj, is a tangent current
to ®7’:1Tj along the diagonal A, of X". Let 7y, : E;; — Ay be the normal bundle
of Ay, in X™. Denote by [V] the current of integration along V. When m = 2
and T, = [V], the density currents of T; and T, are naturally identified with the
tangent currents to 17 along V (see [48, Lemma 2.3]).

The unique cohomology class of density currents associated to Ty, ..., Ty, is
called the total density class of Ty, . . ., Tyn. We denote the last class by x(Ty, ..., Ti).
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The tangential h-dimension of ®}“:1Tj along Ay, is called the density h-dimension of
Tl, . e Tm.

DEFINITION 2.20. ([21, Definition 5.9]) Let T; be a closed positive current
of bi-degree (pj, p]-) on X,1 < j < m, with 2;”:1 pj < n. Assume that density
h-dimension of Ty, ..., Ty, is equal to n — 2}”:1 pj, which is minimal. We say that
the Dinh—Sibony product

Ti A ATy
exists if there is a unique density current R associated to T7, ..., T;;, which is the
pull back of a current S on the diagonal A, C X" by 7, : X™ — Ay In this

case, we define

The following lemma describes the relationship between the total density
class and the wedge products of the cohomology classes of the given currents.

LEMMA 2.21. ([21, Section 5]) Let T; be a closed positive current of bi-degree
(pj,pj) on X for 1 < j < m such that 3y p; < n. Assume that the density h-
dimension of Ty, . .., Ty, is minimal, i.e, equals ton — ;-”:1 pj- Then the total density
class of Ty, . .., Ty is equal to 77}, (/\;”:1{"[]}), where Ty : E — Ay, is the normal bundle
of Ap.

Let hz be the Chern class of the dual of the tautological line bundle of E. By
[21, Page 535], we have

min{l,n—p—1} ‘
sy M= T m) A,
j=max{0,l—p}

where 77 : E — V is the canonical projection and «}(T) € H*~%(V,R). The
tangential s1-dimension of T along V is exactly equal to the maximal j such that
K]V(T) # 0, and it was known that the class K]V(T) is pseudoeffective ([21, Lemma
3.15)).

THEOREM 2.22. ([21, Proposition 4.13]) Let V' be a submanifold of V and let T
be a closed positive current on X. Let T, be a tangent current to T along V. Let s be the
tangential h-dimension of Tes along V'. Then, the tangential h-dimension of T along V'
is at most s, and we have

) (T) < &Y (Te).



22

As a consequence, we obtain the following result.

COROLLARY 2.23. ([43, Corollary 2.6]) Let T; be a closed positive current on X
for1 < j < m. Then, for every x € X and for every density current S associated to
Ty, ..., Ty, we have

(2.3.2) v(S,x™) > v(Ty, x) - v(Tw, x),

X" = (x,...,x) € Ay, C E, where Ny, is the diagonal of X™ and E is the normal
bundle over A,.

PROOF. Let x € X. Let m : E — Ay, be the canonical projection from the
normal bundle of the diagonal A, of X™ in X™. Put T := @7, Tj and V= {x™m}.
By [36, Lemma 2.4], we have v(T, x™) > v(T, x) - - - v(Ty, x). By [21, Proposition
5.6], we have

Ky (S) = v(S,x™ 8, xy (T) = v(T,x"™)bxm,

where 6, is the Dirac measure on x™ (notice here dim V' = 0). This combined
with Theorem 2.22 applied to X", T := ®;71:1T]-, A the diagonal of X" and
V' = {x™} implies

v(S,x™) > v(T,x™) > v(Ty, x) - - - v(Tp, x).
Hence, the desired inequality follows. The proof is finished. [

The above corollary generalizes the well-known comparison of Lelong num-
bers of intersection of (1, 1)-currents due to Demailly [16, Chapter III, Corollary
7.9] in the compact setting. It is probably the first result dealing with comparison
of Lelong numbers for intersection of currents of arbitrary bi-degree.
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CHAPTER 3

Relative non-pluripolar products on Hermitian manifold

3.1. Construction and some properties

The non-pluripolar product is a notion of wedge product for closed positive
(1,1)-currents. It was introduced and studied in [3, 8, 24], and later generalized
to the relative setting on Kdhler manifolds in [51]. In [33], we consider a more
general setting and show that, under certain assumptions on the Hermitian
metric w of a complex manifold X, the relative non-pluripolar product remains
well-defined on X.

This section is based on the article [33]. We review the construction of the
relative non-pluripolar product in the Hermitian setting and discuss some of its
properties.

Let X be a compact complex manifold of dimension n. Let Ty, . . ., T;;, be closed
positive (1,1)-currents and let T be a closed positive (p, p)-current such that
m+ p < n. Let Q) be a local coordinate chart of X, and for 1 < j < m, we write
T; = dd‘u; for some psh function u; on Q). Letk € IN, and set Ujp = max{u]-, —k},
which is a bounded psh function on (). Set

Ry = ddcullk ARIERAN ddcum,k AT

to be the classical product of dd“uy, ...,ddu,;, and T introduced in 2.1.3.
Note that by Theorem 2.6, we have the following.

Lo fu>—Re = Lem o> -k Ree
for k <k’
Under the assumption that the mass of lm}ﬂ:l {u>—k} R 18 uniformly bounded,
it follows that the limit

Bm Lo -y Re

exists. This is established in the following lemma.
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LEMMA 3.1. ([51, Lemma 3.1] or [33, Lemma 2.3]) If
(3.1.1) 21]1}\)[ { H]lm}il{”P*k}RkHK} < Ho0,
for every compact set K C (), then the limit current
Hm Lo (s -k Re =2 R

exists. Moreover, for any Borel form ® supported in an open subset U C Q) with
bounded coefficients on U, we have
(3.1.2) lim (Lo o R ®) = (R, ®).

PROOF. Let K be a compact set in X. For £ € IN, set

By = Nili{u; > —(0+ 1)} =Ny {u; > L}

We have
k=1
Lo fup> -k Rie = Lem fu;>0y Rie + EO Lp, Ry

k—1
(=0

By the assumption (3.1.1). One sees that

k—1

Y 1Rt
(=0

converges to0as k —1 > ¢’ and k, ¢/ — co. This shows that the limit
Bm Doy (o0} Re
exists.
We now prove (3.1.2). Let ® be an (n — p — m,n — p — m)-form supported in
U, whose coefficients are bounded Borel functions. Let € > 0. Fix kg € IN such
that
[T > -6y Reo ') — (R, @) <e¢, fork > ko.

By Lusin’s theorem, there exists a (n — p — m,n — p — m)-form @’ with continu-
ous coefficients and compact support such that

IR[ (xeqi@m) £o/(x)} < €
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Since ﬂﬂ;"zl{uj>—k}Rk < Rfor k € N, we also get

12 >k Rellreqio) 2o (xy < € fork € N.

For k > ky, we have
|<ﬂﬂ7’:1{uj>fk}ercD> — (R, D)

<I (T fuy> -k R @) = (T fus -y Rio )+ [y g1 Rey @) = (R, )|
+[(R, @) — (R, D)

<3e.

This shows limy_«, <]1ﬁ]m:1 {u;>—k} Ris q>> = (R, ®), and the proof is completed.

O]
By applying (3.1.2) from Lemma 3.1, we immediately obtain the following
remark.
REMARK 3.2.

Lo >k Rie = Lo sy Ry Lum (uj=— o) R = 0.
Now, let us move on to the global setting. First, express each current T; as
T; = dd“i; + 0,
where ii; € PSH(X, 6;) for 1 < j < m. For each k € IN, define
iy = max{i;, —k},
and set
Rk = (ddcﬁllk +O0)A- A (ddcflmlk +6,)AT.
By Theorem 2.6 and the fact that {#; > —k} = {#;; > —k}, we have
(3.1.3) lm;”:l{ﬂp—k}ﬁk = ﬂmy;l{aj>—k}Rl

for every I > k.
Note that, in general, Ry is not necessarily a positive current. However, the
current

Ly (>0} Re

is positive (see Lemma 3.3).
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Analogously to Lemma 3.1, with the uniformly bounded mass condition on
I, {ﬁj>_k}Rk, the sequence

{]]'ﬂjzl{ﬁj>_k}Rk}

converges weakly to some closed positive current.

LEMMA 3.3. ([51, Lemma 3.2]) The current 1m 1{aj>—k}Rk is positive on X.
=
Furthermore, if we assume
(3.1.4) ]11]5 { H]lm]mzl{ﬁj>_k}RkHK} < +o0,
for every compact set K C X. Then 1qm >k} Ry weakly converges to a positive
]:

current R as k — oo.

PROOF. For every point x in X, let U be an open neighborhood of x such
that T; = dd“u; for j = 1,...,m, where u; is a psh function on U. By the local
do-lemma, we could shrink U and then find a smooth function TjonU such that
u; =i+ 7 on U with dd°t; = 0;. We could assume that 7; is bounded on U by
shrinking U again. Choose ¢y € IN with

m
co > ) sup|Tjl.
=

On the subset {il; > —k} = {u; > —k + 7;} of U, we have
Tjjrey + T =+ T = Uj = Ujkic-
Combining this with (3.1.3), we have
ﬂﬂ]’.”:l{ﬁj>—k}Rk = lﬁ;”zl{ﬁj>—k}Rk+co = Lo (> k) Rieteq

on U. We deduce that 1 >k} Ry is positive on U, hence on X.
]:

Now, we claim that with the assumption (3.1.4), the limit current R exists.
Since
{u > —k} {8 > —(k+ o)} € {w; > —(k+2c0)}

on U for every k, we have

Lo fa>—0Re = Lem 2>k Rirey < T fuy>— (ko) Rieo
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and
ﬂﬁ}”:l{uj>fk}Rk = ﬂﬁ}”:l{uj>fk}Rk+ZCo

< Loy (>~ e} Riea = T (>~ (ko)) Recseg

on U for every k. In other words, we have
315 I fuj>—kRe = ﬂmy;l{a,>—(k+co)}ﬁk+co S T (>~ (k+200) } Rie+2¢

on U for every k. Combined with Lemma 3.1, we deduce that 1 >k} Ry
T

weakly converges to the positive current R on U as k — . Also, by (3.1.5), we

see that R is independent of the local potential #;. Hence, ]10}11:1 {i>—k} Ry weakly

converges to a positive current R on X as k — c0,and R = R on U. O

When the limit of {ﬂm}n:l (>~ k}Rk} exists, we denote it by
(Ty A+~ ANTy AT) := ]}Lr?o 110}11{5,?_,(}1?,{,

which is called the non-pluripolar product relative to T of Ty, ..., Tj;. One can see
from Lemma 3.1 and Lemma 3.3, that the limit always exists if condition (3.1.4)
holds, or condition (3.1.1) holds for any local coordinate chart ().

When T is the current of integration along X, we observe that the relative
non-pluripolar product (T; A --- A Ty, A T) coincides with the non-pluripolar
product, which is denoted by (Ty A - - - A Tyy).

When X is a compact Kdhler manifold, condition (3.1.4)) always holds (see
[51, Lemma 3.4] or [8, Proposition 1.4]), which implies the well-definedness of
the relative non-pluripolar product. The following theorem considers a more
general setting: a compact complex manifold X equipped with a Hermitian form
w satisfying

(3.1.6) dd°w = dd°(w?) = 0.
One can see that the above condition is equivalence to
(3.1.7) dd°(w)* =0, 1<k<n.
THEOREM 3.4. Let X be a compact complex manifold of dimension n endowed with

a Hermitian form w satisfying (3.1.6). Let Ty, . .., Ty, be closed positive (1,1)-currents
and let T be a closed positive (p, p)-current on X such that p +m < n. Then the
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relative non-pluripolar product
(Ty A+ AT A T)
is well-defined.

PROOF. First, recall that we write T; = dd‘il; + 0;, #i; € PSH(X,0;),1 < j < m.
For k € IN, we set

ﬁ]',k = max{ﬂj, —k}, Rk = (ddcﬁl,k —+ 91) FANRIEIRIVAN (ddcﬁm,k —+ Qm) ANT.
Let C > 0 be a constant such that Cw + 6]- > 0 for 1 <j < m. Note that we have

ﬂﬂ;”:l{ﬁpfk}ﬁk
Sﬂmy«zl{aj>_k}(ddcﬁ1,k +0;+Cw) A N(ddiy ;o +60m + Cw) AN T.

By the assumption on w (3.1.7) and integrating by part, we obtain

Hﬂﬂ}”:l{ﬁp—k}f{k”

<||(dd%tiy . + 61 + Cew) A~ -+ A (ddiLy g + O + Caw) AT||

- / (ddity  + 61 + Cw) A~ - A (dd<Tny g + Oy + Cew) AT AP
X

:/ (61 + CwW) A~ A (B + Cw) AT AP,
X

which is independent of k. Hence, condition (3.1.4) holds, and the relative
non-pluripolar product

(Ty N+ ANTyy AT)
is well-defined. O

The following example, inspired by [45], shows that there exist many n-
dimensional non-Kédhler compact complex manifolds which can be endowed
with a Hermitian form w satisfying condition (3.1.6).

EXAMPLE 3.5. A Gauduchon form w on a n-dimensional complex manifold,
is a Hermitian form satisfying ddw" ! = 0. Every compact complex manifold
has a Gauduchon form. Let Y be a Hopf surface, which is a 2-dimensional non-

Ké&hler compact complex manifold, there is a Gauduchon form wy on Y satisfied
8§wy =0.
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Let Z be an n-dimensional compact Kéhler manifold endowed with a Kéhler
form wyz. Let X := Y x Z. Letpy : X = Y and pz : X — Z be the natural
projections. Then X is an (n + 2)-dimensional non-Kéhler compact complex
manifold, with a Hermitian form wx := pj wy + p, wyz satisfied dwyx =
dwx A dwx = 0.

Aset A C X is a complete pluripolar set if A = {x|u(x) = —oo}, for some
quasi-psh function u on X. Here, we state some important properties of relative
non-pluripolar product.

PROPOSITION 3.6. ([51, Proposition 3.5]) Let X be a complex manifold of dimen-
sion n. Let Ty, ..., Ty be closed positive (1,1)-current, and let T be a closed positive
(p, p)-current on X such that m + p < n. Assume the non-pluripolar product

(TyA--- ATy AT)
is well-defined on X. Then, the following hold.
(1) (Ty A -+ ATy A T) is symmetric with respect to Ty, ..., Ty
(2) Let A > 0, then (AT)) A--- ATy AT) = A(Ty A= - AT A T).
(3) Let A be a complete pluripolar set such that T has no mass on A, then
(TyA--- AT,y AT)

also has no mass on A.

(4) Let T] be a closed positive (1,1)-currents on X. Assume that (T{ NTo A -+ A
Ty A T) is well-defined. Then ((Ty +T;{) NTo A -+ - A Ty A T) is well-defined
and satisfies

(+T)AToA--- ATy AT)
<(TWATOA - ATy AT) +{(T{ ATo A+ ATy AT).
The equality occurs if T has non mass on Ir, U Igy.

(5) Let 1 <1 < m be an integer. Let T].” be a closed positive (1,1)-current on X for
j=1,...,1. Assume T; < T} for every j and T has no mass on U§:1IT]!’—T]~
Then we have

(YN ATy AT) < (T Ao+ AT/ ATjjq A+ ATy A T).
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(6) Let 1 <1 < m —1 be an integer. Assume R := (Tj; 1 A+ ANTyy A T) and
(Ty A -+ ANT; A T) are well-defined. Then we have

(oA ATy AT) =(Ty A--- ATy AR).
(7) Let A be a complete pluripolar set. Then we have
In particular, the equality
(VAN ATy ATY = (Ty AN+ ATy AT
holds, where T' := 1 xX\un, Iy T.
REMARK 3.7. In the case of the non-pluripolar product (T = [X]), the no-mass
condition in Proposition 3.6 (4) and (5) is automatically satisfied. Consequently,
the inequality in (5) generalized the case of the non-pluripolar product, while

the inequality in (4) becomes an equality, which reflects the multi-linearity of the
non-pluripolar product.

The following proposition describes the relationship between relative non-
pluripolar products and classical products introduced in Section 2.1.3.

PROPOSITION 3.8. ([51, Proposition 3.6]) Let T, ..., Ty, be closed positive (1,1)-
current, and let T be a closed positive (p, p) current on X such that m + p < n.

(1) If T is of bi-degree (1,1), then
(TN AT AT) =TI\ {Ta A - AT A T).

(2) If the product Ty A+ - - N Ty N T is well-defined in the sense in section 2.1.3.
Then,

(Ty Ao+~ ATy AT) :lX\U;ﬁlIT.Tl/\"'/\Tm/\T-
=

When the current T = [V], the current of integration along some analytic
subset V, we have the following.

LEMMA 3.9. ([52, Lemma 2.3]) Let Ty, ..., Ty, be closed positive (1,1)-currents
on X. Then the following properties hold:
(1) If V is contained in U}, It then (Ty A\-+- ATy A [V]) = 0 and there is
1 <jo<msothat V C ITfo'
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(2) If V is not contained in U}": IT],, then
< ;’ﬂlej A [V]> = Z'*<T1,V JAICIIAN Tm,v>,

where i: Reg(V') — X is the natural inclusion, and Tjy := dd(uj|reg(v)) if
dd“u; = T; locally.

THEOREM 3.10. ([51, Theorem 3.7]) Let T; be closed positive (1,1)-currents,
1 <j < m. Let T be a closed positive (p, p)-current such that m + p < n. If

(Ty A--- ATy AT)

is well-defined, then it is closed.

PROOF. For convenience, we set (T1 A --- ATy, A T) = R. Let U be a local
chart, and write T, = ddcu]-, where uj<0isa plurisubharmonic function on
U, for1 < j < m. Let p be a positive (n —m —p —1,n —m — p — 1)-form with
constant coefficients on U. To prove that R is closed, it suffices to show that

d(oAR)=0 onU.

For each k € IN, set

1 m
Py = %max Zu]-, —ky+1,
=1

which defines a plurisubharmonic function on U satistfying 0 < ¢ < 1. More-
over, J; increases pointwise to lm}":l {u>—oco}

Let g: R — R be a smooth function such that ¢(0) = 0, g(1) = 1, and
¢(0)=g'(1) =o.

Since R has no mass on the set U;”:l{u]- = —oo}, it follows that g(4)R — R
as k — co. Thus, to prove the theorem, it suffices to show that

d(o AR) = %Lr?od(g(lpk)p AR) =0.
Since ¢(¢x) = 0 on U;-“Zl{u]- < —k}, we have

d(g(pr) p AR) = d(g(yx) p A Ri) = =g (Yx) p Adipe A Ry
for each k € IN.
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Let 7 be a smooth 1-form with compact supportin U, and let U; € U, € U
be relatively compact open subsets. By the Cauchy-Schwarz inequality, we have
2

‘/ul g (Yx) dp A1 A p A Ry

= (/u1 Ty A d e A p A Rk) (/ul(g’(wk))zn ATTAPA Rk>

where T is a smooth cutoff function with T = 1 on the support of 7.

(3.1.8)

Now, by the Chern-Levine-Nirenberg inequality and the identity

dipye A d° Py = dd°(Y7) — Peddepy,

we obtain

(3.1.9) | Tde AdPe Ap A Relluy, S ¢k p A Ril|u,,

where the norm on the right-hand side is uniformly bounded in k.
On the other hand, since ¢’'(¢x) = 0 on U}ﬂzl{”j < —k}, we have

(8'($1))*Rec = (&' (¥w))*R.
Using the fact that ¢’(¢x) — 0 pointwise on ML1{uj > —co}, and that R has no
mass on U;-”:l{uj = —oo}, it follows that

(g/(lpk))sz —0 ask — oo.

Hence,
[, @) AT Ap AR, 0.
1
This, combined with (3.1.8) and (3.1.9), completes the proof. O

The following lemmas will be used in the Chapter 5. We assume X to be a
compact Kadhler manifold in the rest of this section.

LEMMA 3.11. ([42, Lemma 2.7]) Let {61}, ...,{0m} be pseudoeffective classes,
1<m<mn Forl<j<m,let T]-’, T; € {9]} be closed positive (1,1)-currents such
that supp(T]f) C W, for some complete pluripolar set W;. Then, the following equality
holds.

(NLU(T; + 1)) = (AL T)).
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PROOF. By the multi-linearity of non-pluripolar product (Proposition 3.6 (4)),
we have

m
(N (T4 T)) = (AL T) + Y Ry,
s=1

where R, = c]-(/\]fleT]-’ AN 1Te), c; € NT.

By the construction of the non-pluripolar product, we see that R is supported
inW = U;?lej, where W is a complete pluripolar set. On the other hand, the
non-pluripolar product of currents does not charge mass on complete pluripolar

set. Therefore, we get Ry = 0 for 1 < s < m, which completes the proof. ]

LEMMA 3.12. ([42, Lemma 2.8]) Let {61},...,{0m} be pseudoeffective (1,1)-
classes, 1 < m < n. Let T](, T; € {Gj} be closed positive (1,1)-currents such that T;
is less singular than T/,1< j < m. Set T].p =1 IT.Tj~ If there exists a Kihler current

)
P; € {0;} with analytic singularities that is more singular than T;. Then, 1 IT}% T].’ > ij
for1 < j < m,and the following holds.

(3.1.10) (N TS = (AL (T) = T7)).-

PROOF. The proof strategy follows [53]. First, by applying Lemma 3.11, we
immediately obtain (3.1.10). We now show that 1 IT,T]( > T]P holds for1 <j < m.
i

Since Tj is less singular than P;, we get supp(T].p ) C I P, = Vi, where Vjis an
analytic subset. By the first support theorem ([16, Chapter III, Theorem 2.10]),
the analytic subset V; is of dimension n — 1. Furthermore, the second support
theorem ([16, Chapter III, Theorem 2.13]) implies that

TV =) AiklVial,
Vik

where {V;} are the irreducible components of V. Since T is less singular than
T/, we get
(T}, Vix) 2 v(T;, Vig) > v(T], Vig) = Ajg
for each irreducible component V]k This shows that T].’ > T].p , and we get
/ p ;
1 IT]!T]' > T] . This completes the proof. O]
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3.2. Monotonicity property

Let X be a compact Hermitian manifold of dimension #, and let 6 be a closed
(1,1)-form on X. Recall that in Section (2.1.2), we denote by {6},5 the Bott-
Chern cohomology class of 6. We say {6},; is pseudoeffective if there exists a
closed positive (1,1)-current T € {6},5. Let Ty, T, € {6},5 be closed positive
(1,1)-currents. We write Ty = dduj + 0 and T, = dd“u, + 6 respectively, where
uq,uy € PSH(X, 0). Recall that T; is said to be less singular (more singular) than
Tyifuy = up + O(1) (1 < uz + O(1)).

We now aim to prove the monotonicity property of relative non-pluripolar
products on certain compact Hermitian manifolds, stated below.

THEOREM 3.13. ([33, Theorem 3.4]) Let X be a compact Hermitian manifold
of dimension n, endowed with a Hermitian form w satisfying condition (3.1.6). Let
{01}55, - - -, {0m } 55 be pseudoeffective classes on X, where m < n. For 1 < j < m, let
T;, T]-’ € {0, }53 be closed positive (1,1)-currents, and let T be a closed positive (p, p)-
current such that m + p < n. Assume that T]’ is less singular than Tj, for 1 < j < m.
Then, we have

KTy A AT AT < I(T{ A ATy ATH

Before we go into the proof of Theorem 3.13, we first introduce the concept
of capacity. Let U C C" be an open set, and let K C U be a Borel set. Let T be a
closed positive (p, p)-current on U. We define

cap(K,U) = sup {/ (dd“u)" P A T’ —1 <u < 0and uis psh on U}
K

Now, we review some important results in [51]. For the reader’s convenience,
we include the proofs.

LEMMA 3.14. ([51, Lemma 4.1]) Let U C C" be an open set. For1 < j < m,

let uj be a psh function, and let uf be a sequence of psh functions on U such that

1
loc’

U such that m + p < n. Assume that the non-pluripolar products </\7’:1ddcuj AT),
(/\}"Zlddcuf A T) are well-defined. Then,

u]e > ujand uf — ujin Ly, as £ — oo. Let T be a closed positive (p, p)-current on

liminf [ (AT ddul AT) A > / (NI ddu; A T) A O,
u u

{—0c0
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for every positive (n —m — p,n — m — p)-form ® with compact support in U.

PROOF. Let k € IN, and let u;; = max{uj, —k}, ufk = max{uf, —k}. Set
. é g .
R = NLydduj AT, R = NfLydduj, A T.

Let ® be a positive (n —m — p,n — m — p)-form with compact support in U. By
Lemma 3.1 and the fact that uf > uj, we get

14 l

(32.1) /UR AN > /uﬂﬂﬁl{uf>—k}R A D
— l

= /u]lﬂ;”l{uf>k}Rk/\q)

¢
> /ullm;nzl{uj>—k}Rk/\q’-

Let € > 0, by [51, Theorem 2.4], there exists an open set U’ C U such that the
restriction of u; on U\U’ is continuous and cap(U, U’) < e. By [40, Theorem
20.4], the ;|\ can be continuously extended to #; on U.

f — uj in Llloc' lloc, as ¢ — oo, for each k € IN.

Hence, by [51, Theorem 2.6], Rﬁ — Ry weakly, as { — oo for each k € IN.
Therefore, we have

(22)  liminf /u Lo (5 REA @ > /u Loy (75— Re A .

Since u we have uf p —> Ujxin L

By the facts that uf/k is uniformly bounded in ¢ and cap (U, U’) < €, we get
14 14
‘ /U ﬂﬁ}ﬂ:l{ifj>—k}Rk NP — /u ]lﬁ}”:l{uj>—k}Rk VAN CD‘ < C€,

‘/u]]_mjmzl{ﬁj>_k}Rk/\(D—/uﬂ_mjmzl{uj>_k}Rk/\q)‘ < C€e

for some ¢ > 0 only depends on k. By (3.2.1), (3.2.2) and (3.2.3), we have

(3.2.3)

. ¢ o
lim inf R /\qDZ/uﬂm;nl{uj>k}Rk/\q)—/u]lm]ml{uj>k}R/\q>.

{—oo JU

Finally, letting k — oo, we get the desired inequality. O

When T; and T]’ have the same type of singularity, we have the following
proposition.
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PROPOSITION 3.15. ([51, Proposition 4.2]) Let X be a compact complex manifold.
For1 <j<m,let T;, T]f be two closed positive (1,1)-currents in the same cohomology
class and the same singularity type. Let T be a close positive (p, p)-current such that
m—+p < n. Assume that for J,J' C {1,...,m} such that [N ] = @, the non-
pluripolar product

(Njer Ty A Ajrep Ty AT)
is well-defined. Then, for every dd“~closed (n —m — p,n — m — p)-form ® on X, we
have

/X< " j/'\T>/\<I>:/X(/\71_1T]-’/\T>/\<I>.

PROOF. First, we write T; = dd“u; + 0; and T]f = ddcu} + 0;, where u;, u} €
PSH(X, ;). Set u;r = max{uj, —k} and ”},k = max{u;, —k}, and let Tj; =
ddu;y + 0, T]-’,k = dd“u;- +0;. Set wi = ujy — u;',k' Since Tj, T]' are of the same
singularity type. We may further assume that |w;;[ < 1for 1 < j < m, and
k € IN. Set

P =k! max{ (u; + u;-), —k} + 1.
Note that ¢y is a quasi-psh function which increases to 1 X\U™ {uj=—co} A8 k —
0, and ¢ = 0 on {u; < —k} U {u; < —k}. Now, set S = (/\}”ZlTj AT)—
(/\7’le} A T). Since ;S — S weakly as k — oo, to prove the desired equality,
we need to claim the following.

(3.2.4) / YSAD =0, koo,
X

for any dd‘-closed (n —m — p,n —m — p)-form on X. By the construction of ¢,
one sees that

WS =k AL Tip AT = e AL T AT
= iltpk NZh Th g Add“wg g AN T AT
o=
Let],]' C{1,...,m} besuchthat JN] = @. We set
Ry = N[ ANep T AT) - Rk = Njeg TjAAjrey Ty AT
To prove (3.2.4), we show

/}(l[)kddcws’k A R]]’,k AN®—0, k— oo,
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for s ¢ JUJ'. Note that the current R;p i is not necessarily positive in general.
Hence, we could not estimate its mass directly, and we need to modify it slightly.
Set §k = ﬂjel{u]' > —k} N ﬂj/E]/{u} > —k} and 1~et A = U;-nzl{uj = —oo}.
Set Ry = 1x\aRjp. It is not difficult to see that R;y is closed and positive.
Furthermore, R 7y and Rjp . satisfy the following relation:

lPkR]]/ - lPkR]]/ - lka]]/,k'

By integration by parts, we have
/X lpkddcws_k A\ R]]’,k NP = /X ws,kddc(lkaU/,k AN CI))

:/st,kddc(lpkﬁ]]//\q)).

Since dd°( Ry A ®) is a top-degree current and R; is closed,

We can write d°® as a linear combination of a (1, 0)-form wedged with a (n —m —
p,n —m — p)-formand a (0, 1)-form wedged witha (n —m — p,n —m — p)-form.
For convenience, we express d°® = 11 A &1 + 1 A Dy, where 17 is a (1,0)-form
and 1, is a (0, 1)-form. By the Cauchy-Schwarz inequality, we have

/ w kdip A d°® A Ry
X
1

< </ |wslk|281/)k/\§z/]k/\ﬁn//\q>2>2</ T /\T_Z/\ﬁ]]//\¢2>
X X

NI—=

NI—

1
23 » H = AR
+ (/X|w5,k| azpk/\av,bkAR”//\d>1> (/XTl/\Tl/\R]]//\q)1>

1
~ 2 1
5 (/}(dlpk/\dclpk/\R]]//\q)()) HRH/HZ,

where ®y = cw" I=II'=1 is a positive form, and c is a constant such that
P, P, < Oy. Now, note that {limy_,, ¥, < 1} equals the complete pluripolar
set A. By [51, Remark 2.7] and the fact that R 7y has no mass on A, we get
lim dipy A d“Px A Ry = Jim (dd°yg — prdd yy) ARy = 0.

—00

k—o00
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Therefore, we have

lim / wslkdll}k A qu> A ﬁ]}/ =0.
X

k—o0

Using a similar argument, one also obtains

lim / wslkddclpk N ﬁ]]/ AP =0.
X

k—o0

This completes the proof. [

We now begin the proof of Theorem 3.13, following the strategy introduced
in [51].

PROOF OF THEOREM 3.13. First, we write T; = ddu; + 6; and T]’ = ddcu;- +
0;, where u;, u;. € PSH(X, 6;). Set u;j = max{u; — L, u;} € PSH(X,0;), which
decreases to u; as { — co. Note that u}, ,and u;- are of the same singularity type.
Set T{ , = dd‘u; , + 6;. By Proposition 3.15, we get
(3.25) (T, A AThy ATH = (T A+ ATy AT
for any ¢ € N. Let S be a limit current of (T], A--- AT, , A T). By Lemma 3.14,

we have
S>(ThN---ANTy AT).

Combining this with (3.2.5), we obtain
KT A AT ATY < [T A AT AT)].
O

REMARK 3.16. In Theorem 3.13, when T is also a closed positive (1, 1)-current,
and T’ € {T} is another closed positive (1, 1)-current that is less singular than T.
Then, we further obtain the following.

{Ti AT ATH| < IKTE A T AT
REMARK 3.17. We note that in [51, Theorem 4.4], the monotonicity holds

in the sense of cohomology classes. More precisely, if X is a compact Kahler
manifold, then

TN ATy AT)} <{{TyA---AT), AT)},
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where Tj, Tj’ are closed positive (1, 1)-currents in the same pseudoeffective Dol-
beault cohomology class {0;}. This inequality holds because the Poincaré duality
applies to Dolbeault cohomology groups on Kéhler manifolds. However, the
duality does not generally hold for the Bott-Chern cohomology on Hermitian
manifolds in general. Therefore, the statement of monotonicity in Theorem 3.13

is formulated only in terms of masses.

3.3. Demailly’s analytic approximation

In this section, we recall Demailly’s analytic approximation theorem, intro-
duced in [18, 19]. We also discuss the convergence of the Monge—Ampére masses
associated with the currents in Demailly’s approximation sequence.

Let 6 be a closed real (1,1)-form, and let u € PSH(X,6). We say u is of
analytic singularities if it can be expressed locally as

N
clog Y Ifil*+g
=1

wherec > 0, f1,. .., fny are some holomorphic functions, and g is a bounded func-

tion. Let T be a closed positive (1, 1)-current. We say T is of analytic singularities
if its global potential function is of analytic singularities.

THEOREM 3.18. ([19, Corollary 14.13]) Let {0} be a pseudoeffective class, and
u € PSH(X,0). Then, there exists a sequence uP € PSH(X, 0 + exw), where ¢
decreases to 0, such that
(1) The sequence (uP) satisfies u? > u and uP? — win L.
(2) uP has analytic singularities.
(3) v(Tk, x) converges to v(T, x) uniformly on X, where

T:=ddu+0, Ti:=ddul + (6+ew).

The analytic approximation theorem preserves the ordering of the singularity
types, as stated below.

LEMMA 3.19. ([42, Lemma 2.11]) Let {0} be a pseudoeffective class, and let u,v €
PSH(X, 0) be such that v < u. Let u?, 0P € PSH(X, 0 + €,w) be the approximation
sequences of u and v given by Theorem 3.18. Then, we have vP < up for each k.
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The Monge-Ampére masses of the sequence {up } have the following conver-
gence property.

PROPOSITION 3.20. ([15, Proposition 3.4]) Let {6} be a big class, and let u €
PSH(X, 0). Let uP € PSH(X, 6 + exw) be the approximation sequences of u given by
Theorem 3.18. Then

[ (0+ewip) N [ ((O)30,) a5k — o

The convergence property above can be generalized to the mixed setting as
follows. The result is similar to [57, Theorem 4.2]. We present a proof for the
reader’s convenience.

LEMMA 3.21. ([42, Lernma 2 13]) Let {61},...,{0n} be big classes. Let u; €
PSH(X, 6;) be such that [,((6;)}i.) > 0 for 1 < j < n. Then, we have

/X< 1 (0 + exw),p \/</\ P] ]]Z> as k — oo,

where u]?k is the approximation sequence of u; given by Theorem 3.18.

PROOF. Since u?, ik is of analytic singularities, we get [u ]k] [POiterw [u]?k] 7]
([29, Theorem 4.3]). By [15, Proposition 3.3], we have P%é<[y,D Wiy Wz N\ P J[uj]z
as k — oo. Hence,

lim </\;l:1(0]' + €ka))up >

k—o0 JX ik

1 n )
B klgrolo X</\f:1(9] + &) oy [qu,)k]Z>

> [ N,

We now prove

: n . n .
(33.1) lim [ (A 6+ ), ) < /X (N1 O)) g
By [13, Lemma 4.3] and Proposition 3.20, we can choose
fx<(9'+€kw)nD> 1
bir € (1, "),
ik ( <fX( 0 +exw)'s ) — [x((6; +ekw) >> )
Pl ujlz
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which increases to o0 as k — o0, and ¢;; € PSH(X, 0; + €xw) such that

_ — 0.
b],,kl Qi + (1-— bj,kl)”j?k <P J[uj]z.

By the monotonicity theorem of non-pluripolar product (see Theorem 3.13), we

then have
n
H(l b)) [ (N @ ew)p) < [ N6+ ), )
Let k — oo, then we get (3.3.1). This completes the proof. [

REMARK 3.22. The result of Proposition 3.20 extends to the case where 6 is
merely pseudoeffective. This follows from the continuity of the volume function
on the cone of pseudoeffective (1,1)-classes in H"}(X,R) (see [5]). However, it
is not clear whether the same extension holds in the mixed setting of Lemma 3.21,
where the proof relies on [13, Lemma 4.3], and the non-collapsing condition for
the masses of (1, 1)-currents plays an important role.

3.4. Relation between density currents and relative non-pluripolar products

In this section, we discuss the relationship between density currents and
relative non-pluripolar products, which will have applications in Chapter 4.
We assume X to be a compact Kdhler manifold in this section. We begin by
introducing the following lemma in the case where each T; has a bounded
potential.

LEMMA 3.23. ([49, Lemma 3.4]) Let ¢ be a locally bounded quasi-psh function
on X", Let Ty, ... Ty, be closed positive (1,1)-currents with bounded potentials. Let
R := ®]’.”:1T]~ ® T. Then the unique tangent current to PR along Ay, 11 0s 7T, ¢ is

o1 (Wla,0) ALy TiAT)

Now, let us turn to setting of the relative non-pluripolar product.

THEOREM 3.24. ([49, Theorem 3.5]) Let Ro be a density current associated to
Ti,...,Twm, T. Then we have

(3.4.1) T AL T A T) < Res,

where 71,41 is the canonical projection from the normal bundle of the diagonal A, 1 of
X" to Ay i1, and as usual we identify Ay, 1 with X,
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PROOF. Since the problem is local, we could choose a local coordinate chart
(), and write T = ddcu]-, for some psh function uj < 0on 0. For k € N, set

ujr := max{uj, —k} and Tjy := ddu;y
We set
Ry := ®}11le,{ ®Tand R := ®;”:1Tj ®T.

For 1 < j < m, let pj: X"*! — X be the projection from X"t to the jth-
component. Set

Pi=Y pjuj, and gy := k™t max{y, —k}.
=1

Note that ¥y +1 = 0 on U]’.”le;‘{uj < —k}.
Let € > 0, by [51, Theorem 2.4] and [40, Theorem 20.4], there exists a continu-
ous function v;x on () such that
capr,({#jx 7 vjx}, Q) <€, capr, ({#jx # vjx}, Q) <e,
for any r € IN. Set

m
T 1.—1 *
Pr =k max{ pjuj, —k},
j=1
which is continuous on (). Since

{d # ¥} C ULpi{vjp # ujid,

we get
/w’k _ EBk|Rr /\wm(n—l)+n—p 5 / R, /\wm(n—l)-l-n—p
UL pi{oj e ujnt
m
(3.4.2) S YTl {0y} < M.
j=1
On the other hand, one can show that
(3.4.3) / | — G| R A ™01 < gy

by the same strategy. Since ¥ is continuous, we get

lkar — lka
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weakly, when r — co. This, combined with (3.4.2) and (3.4.3), then we get
PRy — PR
weakly, when r — co. This implies
—R = (P +1)R+R
= — lim (¢ + R, + R
= — lim (¢ + 1)Re + R
(3.4.4) = —(Pr+ 1R +R,

Let T o, Reo be tangent currents of — R, R along A, 11 C X! respectively.
By Lemma 3.23, we get that the tangent current of (i, + 1)Ry equals 77*((pox +
1) /\;.”:1 Ty A T), where t: E — Ay, 11 is the normal bundle of A, 41 in X"+ and
Pk is the restriction of ¢, on A, 1. Now, by taking the tangent current of both
sides of (3.4.4), we get

(3.4.5) Rieo = Roo = 0" ((px + 1) ALy Tig A T).
Since px +1 =0 on U;.”:l{uj < —k}, we then have
(o + D) ALy T AT = (ok + DN T AT,
which converges to (/\;.”ZlTj A T) as k — oo. This combines with (3.4.5) implies
(AT A T)) < R
This completes the proof. [

We will need the following to estimate the density h-dimension of currents,
which is a special case of [49, Proposition 3.6].

PROPOSITION 3.25. ([43, Proposition 3.5]) Let P and T be closed positive currents
of bi-degree (1,1) and (p, p) respectively on X, 1 < p < n. Assume that T has no mass
on Ip. Then, for every density current S associated to P, T, the h-dimension of S is equal
ton—p—1.

For every pseudoeffective (p, p)-class v on X, we put ||| := [ @ Aw" P,
where O is any closed smooth form in v. This definition is independent of the
choice of ® and is non-negative due to the pseudoeffectivity of . The following
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theorem describes the relationship between the cup product of cohomology
classes and the class of the relative non-pluripolar product.

THEOREM 3.26. ([43, Theorem 3.6]) Let P and T be closed positive currents of
bi-degree (1,1) and (p, p) respectively on X, where 1 < p < n — 1. Assume that T has
no mass on Ip. Then, the cohomology class

7= AP} AT} = {(PAT)}
is pseudoeffective and we have

(3.4.6) 7]l = Y v(P,V)u(T,V)ny!vol(V),
|4

where the sum is taken over every irreducible subset V of dimension at leastn — p — 1
in X, and ny := dimV.

We note that by the proof below, we see that any irreducible subset V such that
dimV >n—p—Tandv(T,V) > 0,v(P,V) > O mustsatisfydimV =n —p — 1.

PROOF. Let 7 be the set of irreducible analytic subsets V' of dimension at
least n — p — 1 in X such that v(T,V) > 0 and v(P,V) > 0. We note that in
(3.4.6), it is enough to consider V € #". We will see below that 7 has at most
countable elements.

Observe that if v(P,x) > 0, then x € Ip. Hence, by hypothesis, the trace
measure of T has no mass on the set {x € X : v(P,x) > 0}. This allows us to
apply Proposition 3.25 to P and T to obtain that the density h-dimension of P and
T is minimal. Using this and Lemma 2.21 gives

(3.4.7) k(P,T) =" ({P} N{T}),

where 77 is the canonical projection from the normal bundle of the diagonal A of
X2 to A.

Let S be a density current associated to P and T. Since the h-dimension of S is
minimal, using Lemma 2.19, we get that there exists a current S’ on X such that
S = 7*S’ (recall A is identified with X). Since the relative non-pluripolar product
is dominated by density currents (Theorem 3.24), the current S’ — (P A T) is
closed and positive. Moreover, by (3.4.7), the cohomology class of the last current
is equal to . It follows that <y is pseudoeffective.
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It remains to prove (3.4.6). Let V € 7. By definition, the generic Lelong
number of T along V is positive. Since T is of bi-degree (p, p), the dimension of V
must be at most n — p. Hence, we have two possibilities: eitherdimV =n—p—1
or dimV = n — p. Indeed, the latter case cannot occur. Suppose that such a V
exists. Then, we consider two cases: whether T has mass on V or not. If T has no
mass on V, then v(T, V) = 0, which leads to a contradiction. If T has mass on V,
which is contained in Ip (for v(P, V) > 0), then this contradicts the hypothesis
that T has no mass on Ip.

Let V € 7. Since the Lelong numbers are preserved by submersion maps
([36, Proposition 2.3]), by applying Corollary 2.23 to P, T and generic x € V, we
obtain

v(S',V)=v(S,V)>v(P,V)u(T,V).
This combined with the fact that dim V = n — p — 1 implies
S">v(P,V)v(T,V)[V].
We deduce that
S>(PAT)+155
>(PAT)+ Y v(P,V)u(T,V)[V].
454

The second inequality comes from Siu’s decomposition theorem (Theorem 2.10),

and this also shows that ¥ has at most countable elements. The desired assertion
follows and the proof is finished. [
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CHAPTER 4

Volumes of components of Lelong upper level sets

4.1. Introduction

This chapter is based on the article [43] and aims to investigate the singulari-
ties of closed positive currents on compact Kdhler manifolds. Let X be a compact
Ké&hler manifold of dimension 7, and let T be a closed positive (1, 1)-current
on X. We are interested in understanding the set of points where T has strictly
positive Lelong numbers. By the celebrated upper semi-continuity of Lelong
numbers by Siu [41], we know that this set is a countable union of proper analytic
subsets on X. Our goal is to estimate the size of this upper level set. The problem
was first studied by Demailly in [17, 18]. In this chapter, we provide in some
sense a generalization of Demailly’s estimate. To delve into details, let us first
introduce some necessary notions.

Let w be a fixed smooth Kédhler form on X. We equip X with the Riemannian
metric induced by w. For an analytic set V of dimension / in X, the volume of V
is denoted and defined as follows.

1
vol(V) := il /RegV W',

where RegV is the regular locus of V.
Let T be a closed positive (1,1)-current, we recall that the Lelong number of
T at x € X is denoted and defined by

v(T,x) =sup {y € R" |u(z) < ylog|z — x|+ O(1) at x} .

We recall that the generic Lelong number v(T, V) of T along V is defined as
infycy{v(T,x)}. For every constant ¢ > 0, we recall that

E(T):={x € X|v(T,x) >c} and E4(T):={x € X|v(T,x) > 0}.
By Corollary 2.8, E.(T) is a proper analytic subset in X, and

E(T) = Unen+E1/m(T)
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is a countable union of analytic sets.
Let W be an irreducible analytic subset of dimension m in X. We denote by

EW(T) := {x € W|v(T,x) > v(T,W)}

the Lelong upper level set of T on W, which is also a countable union of proper
analytic subsets in W. Let V C E'Y(T) be an irreducible analytic set. We say that
V is maximal if there is no irreducible analytic subset V' of EV(T) such that V
is a proper subset of V. We call V a component of the Lelong upper level set of T
along W, and let 771  be the set of such components V. Observe that 77 1y has at
most countably many elements. For 0 < [ < m, we denote by 7] 1 1y the set of
V € Y7 w such thatdimV = [.

Write T = dd“u locally, where u is a psh function. We define T|RegW as
dd®(u|Regw) if u Z —o0 on RegW, and T [gegw := 0 otherwise. One sees that this
definition is independent of the choice of u. Thus, T|regw is a current on RegW.
Here is our main result.

THEOREM 4.1. ([43, Theorem 1.1]) Let « be a nef (1,1)-class and let W be an
irreducible analytic subset of dimension m in X. Let T be a closed positive current in a
such that v(T,W) = 0. Let 1 < m' < m be an integer. Then, we have

(4.1.1)

m' 1 " . o
VE“//Z,,T,WV(T' V)" vol(V) < W/Regw (oc — <(T|RegW) >) A w ’

m—m

where in the integral, we identify « with a smooth closed form in .

We have some comments on (4.1.1). To see why the term
I:= / (" = ((T|regw)™)) A ™™
RegW

is non-negative, one can consider the case where W is smooth. Then, by the
monotonicity of non-pluripolar products (see Remark 3.17), the cohomology
class (a|w)™ — {{(T|w)™ )} is pseudoeffective. Hence, the integral on the right-
hand side of (4.1.1) is non-negative. In the general case where W is singular, one
can use a desingularisation of W or interpret I as the mass of some non-pluripolar
product relative to [W] (the current of integration along W); see Lemma 3.9 below.
We underline however that in order to prove Theorem 4.1, it is not possible to
use desingularisation of W to reduce to the case where W is smooth. The reason
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is that in the desingularisation process, one has to blow up submanifolds of W
which in general could be some components of the Lelong upper level sets of T
on W.

In [22], a less precise upper bound of volume of components of the Lelong
upper level set was given in terms of the volume of W and the mass of T; see
also Theorem 4.3 for a more general statement. If we consider W = X, then the
generic Lelong number of T along W is zero. Thus, by Theorem 4.1, we have the
following result.

COROLLARY 4.2. ([43, Corollary 1.2]) Let « be a nef (1,1)-class, and let T be a
closed positive current in «. For 0 <1 < n, let ] 1 be the set of V € V71 x such that
dimV =1 Let 1 <m' < nbean integer. Then, we have

1 !/X(lxm’_{<Tm’>})/\wnm.

(4.1.2) Y u(T, V)" vol(V) < el

VE%—MCT

Corollary 4.2 generalizes [18, Corollary 7.6] by Demailly, in which it was
assumed additionally that the components of the upper Lelong level set of T
are only of dimension 0 (hence the cohomology class of T is necessarily nef, see
[18, Lemma 6.3]). The feature of Corollary 4.2 is that it holds for any current in
a nef class. The estimate (4.1.2) is optimal in the case where all of components
of the Lelong upper level sets of T have the same dimension. For example, we
consider X =P", ze C"CP",and T = %ddc log z]1*

1+]|z(12
Fubini-Study form on IP". In this case, we see that 0 is the only point at which

+ wrg, where wgg is the

the Lelong number of T is positive and v(T,0) = 1, and (4.1.2) (for m = m’' = n)
becomes an equality.

In general, if we consider the relative setting as in Theorem 4.1 (when W is
not necessarily equal to X), then our main result (Theorem 4.1) is not satisfactory
because it requires that v(T, W) = 0, hence, we can not apply it to the case where
T is the current of integration along a curve C in a complex Kdhler surface and
W = C). In Theorem 4.3 below, we are able to treat the case where v(T, W) > 0
but the estimate is not explicit due to the presence of a constant c in the right-
hand side. In this regard, the estimates in [18, Theorem 1.7] are stronger than
ours for dimension 2 (see the discussion after [18, Theorem 1.7] in [18]). On
the other hand, as explained in [22], the feature of Theorem 4.1 is that it gives
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bounds for volumes of all components of Lelong upper level sets whereas [18,
Theorem 1.7] does not allow us to treat all components in general.

This chapter refines and substitutes [50]. The proof of Theorem 4.1 requires
both the theory of density currents in [21] and relative non-pluripolar products
in [51] (see also [3, 8]). One of the keys is Theorem 3.26 following from a general
comparison of Lelong numbers for density currents.

4.2. Proof of Theorem 4.1

PROOF OF THEOREM 4.1. It suffices to consider the case where « is Kdhler by
using & + e{w}, T + ew instead of «, T and letting ¢ — 0. Hence, from now on
we assume that « is Kéhler. By abuse of notation, we also denote by & a smooth
Ké&hler form in «. By Lemma 3.9, the right-hand side of (4.1.1) can be written as

1 /Regw (am/ - <(T|RegW)m/>) A w" "

(m — m)
e A W) — (7 A (WD

Step 1. First, we focus on the case where T has analytic singularities. Set
S = (T™ =1 A [W]). Since « is Kihler, by the monotonicity of non-pluripolar
product (Theorem 3.13) and Proposition 3.6 (6), we get

@2.1)  [[(@™ A [W]) — (T A WD) > [[{a A T2 A [W]) —(T™ A W)
= llaAS—=(TAS)|

We now show that S has no mass on I7. For m’ > 1, this directly follows
from the definition of non-pluripolar product. For m’ = 1, the current S is just
[W]. Since we assume that T has analytic singularities, the polar locus It is an
analytic subset and it does not contain W. Hence, [W] also has no mass on Ir.
Therefore, we can apply Theorem 3.26 to T, S, and get
422) an{S}—={(TAS} =m—m") Y. v(T,V)v(S,V)vol(V)

VeV w w
Let V € ¥}, 7w and let Sing (It N W) be the singular locus of the analytic set
IT N W. Since T has analytic singularities, the Lelong number v(T, x) is strictly
positive if and only if x belongs to It. This coupled with the maximality of V
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implies that V is contained in It N W, and is one of the irreducible components.
Let Ky, ..., K; be the irreducible components of IT N1 W. Observe that the set
Sing (I N W) consists of singular points of irreducible components and their
intersection points. By rearranging the index, we may assume V = Kj. Set

U := X\Sing(K;) UKy - - UK.

Now, we prove that the intersection T~ A [W] is well-defined on U, in the
sense in Section 2.1.3. Notice that V\Sing(Ir N W)is contained in Reg(V), and is
of dimension m — m’. Consequently, for 0 < j' <m’ —1,

o2y 1 (L(T)[u NW) = S 2p 1 (ITNWNU)
= %mfzj/Jrl(V\Sing(IT N W))
=0,
where L(T) is the set of x € X such that the local potential of T is unbounded on
any neighborhood of x. This allows us to apply Theorem 2.4 and get the well-

definedness of T"' =1 A [W] on U. By applying Proposition 3.8 to (T~ A [W]) ,
we obtain

(4.2.3) S=(T""VA[W]) = Ly, T" 1 A [W].

Actually, the equality also holds on U N I7. To show this, we need to check
that T"' =1 A [W] has no mass on U N Ir. Since dim(U N It N W) = m — m’ and
T =1 A [W] is of bi-dimension (m — m’ +1,m — m' + 1), the current T" ~1 A [W]
must have no mass on U N Iy NW. Also, by the fact supp(T™ 1 A [W]) C
W, the current T ~1 A [W] also has no mass on (U N I7)\W. Therefore, the
equality (4.2.3) extends to U. This implies that the Lelong number v(S, V) equals
v(T™ =2 A [W], V\Sing(Ir N W)) (remember that we consider the current T ~1 A
[W] on U, and V\Sing(Ir N W) is an analytic subset in U), and then we have

v(S,V) = v(T" 1 A [W], V\Sing(Ir N W))
> v(T, V\Sing(Ir N W)™ 1. v([W], V\Sing(Ir N W))
(4.2.4) > y(T, V)" 1,
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where the first inequality comes from Proposition 2.7 (see also Corollary 2.23
for a more general version). By (4.2.1), (4.2.2) and (4.2.4), the desired inequality
follows in the case where T has analytic singularities.

Step 2. Now, we remove the assumption that T has analytic singularities. The
argument we use is standard and is based on the work of Demailly in [18], see
Section 3.3 for more detail. First, we write T = dd“u + 6, where 0 is a closed
smooth (1,1)-form, and u € PSH(X,0). Demailly’s analytic approximation
theorem (Theorem 3.18) allows us to construct a sequence u,? € PSH(X, 0 + €xw),
where € decreases to 0, such that

(1) u,’? > y and u,’? converges to u in Ll
(2) u,’? has analytic singularities.
(3) v(Tk, x) converges to v(T, x) uniformly on X, where

T, = clclcull{j + (60 4 €rw).

By the monotonicity property of non-pluripolar product (Theorem 3.13), we
have

(@™ A W) = (T A W)
425) = lim [|{(a+ €)™ A [W]) = (T +ex0)™ A W)
> limsup || ((a + exw)™ A [W]) = (T A W)

k—ro0

For every constant 7 > 0, set A, := {V € ¥, _,» rw|v(T,V) > r}. Observe
that A, increases to #;,_,»rw as + — 0. Since v(Tj, x) converges to v(T, x)
uniformly and Ty is less singular than T, for every fixed r > 0 we have

Al’ - nf/mfm’,Tk,W
when k is large enough. By Step 1, we therefore have

(2 + exew)™ A [W]) = (T AWD|| = (m—m')t Y v(Tp V)™ vol(V)

Veai/mfml,Tk,W

> (m—m')! Y. v(Ty, V)™ vol(V).
VeA,
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Letting k — oo and using (4.2.5) give
(@™ A [W]) —(T™ A [W])|| > (m —m")limsup Y v(Ty, V)™ vol(V)

k—oo  VeA,
=(m—m') Y v(T, V)" vol(V),
VEA,
for every constant r > 0. Letting » — 0, we obtain the desired estimate. [

For the general case where v(T, W) > 0. We could not directly compare the
volume of Lelong upper level sets of T on W and the mass of {(a" A [W])} —
{(T™ A [W])}}. In this case, we have the following modified inequality which
is stronger than [22, Theorem 1.1].

THEOREM 4.3. ([43, Theorem 3.7]) Let « be a nef (1,1)-class. Let W be an
irreducible analytic subset in X. Let T be a closed positive current in a.. Let 1 < m' < m
be an integer. Then we have

@26) (m—m) Y (W(T,V)—v(T,W))" vol(V) <

Ver _w tw
(& + e{a})™ A{[W]} = {((T +cw)™ A [W])}

where ¢ = ¢1 - v(T, W) and ¢1 > 0 is a constant independent of «, T, W. In particular,

7

there is a constant c; > 0 independent of x, T, W such that

(4.2.7) Y (u(T, V) = v(T, W)™ vol(V) < covol(W)||T||™"

Ve,j/mfm’,T,W

We will use the regularization theorem introduced in [18], which we state
below.

THEOREM 4.4. ([18, Theorem 1.1]) Let X be a compact complex manifold. Let
T = dd°u + 6 be a closed almost positive (1,1)-current, u € PSH(X,0), such that
T > < for some continuous real (1,1)-form «y. Let tx: P(T*X) — X be the projection.
Suppose that Orx(1) is equipped with a smooth Hermitian metric such that

c(Orx(1)) +mxu >0

for some non-negative smooth (1,1)-form u on X. Let w be a Hermitian metric on X.
Then, for ¢ > 0, there exists a sequence of closed almost positive (1,1)-currents T,y in
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the class {0}, which converges weakly to T, and
Tex > v —min{Ay, c}u — ew,

where

(1) Ay is a decreasing sequence of continuous functions such that

lim Ag(x) =v(T,x), xé€X.

k—o0
(2) e \(0,as k — oo.
(3) v(Tek, x) = max{v(T,x) —c,0}, for x € X.

REMARK 4.5. When (X, w) is a compact Kdhler manifold, one can choose
u = cijw for some sufficiently large constant c; > 0 in the above theorem, so that
the required condition is always satisfied.

PROOF OF THEOREM 4.3. The inequality (4.2.7) follows directly from (4.2.6).
The proof of (4.2.6) is similar to Step 2 of Theorem 4.1, which is based on
Demailly’s regularization theorem (Theorem 4.4). For convenience, set c3 :=
v(T,W) > 0. Theorem 4.4 allows us to cut down the Lelong upper level set
{x € X|v(T,V) > c3} from T. More precisely, there exists a sequence of almost
positive closed (1,1)-currents T, ; in & such that

(1) Toyx > —(c1 - 3 + €x)w, where limy_,, €, = 0 and ¢; > 0 is a constant
independent of , T and W.

(2) The sequence of global potentials of T, x decreases to the global potential
of T.

(3) v(T,k, x) = max{v(T,x) —c3,0}.

Set TC:},,k = Te, k + (c1 - c3 + € )w, which is a closed positive (1,1)-current. By
Theorem 3.13, we have
o+ 1~ eafo})™ AW} = (T + 1 - cs0)™ A (WD)

> limsup || (a + (e1 - c3 +ex) {w})"™ A {[W]} — (T2 AIW] ).

k—o0
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Since v(T,, x, W) = 0, we can apply Theorem 4.1 to the right-hand side of the
above inequality and get

(& + (c1 - c3 + e {w})™ AW} = (T2 A [WD)]]
(4.2.8) > (m—m')! Y. V(Tos ks V)" vol(V),

Vey /’TC3 oW

m—m

By the above properties of T, x, we have

,Vm—m’,TCS,k,W = a//m—m’,T,W-
Therefore, the right-hand side of (4.2.8) is equal to
(m—mt Y u(Top V)™ vol(V)

VG/V —m/,T,W

m

=(m-m) Y (W(T,V)—v(T,W)" vol(V).

VE”// 7}11/,T,W

m

This completes the proof. O]

REMARK 4.6. We note that by [46], for every closed positive (p, p)-current
R on X, there always exists a closed positive (1,1)-current T whose Lelong
numbers coincide with those of R. However, if we apply directly our result to
current T, we will get an estimate of the Lelong upper level set for the current R.
But there will be a constant appear in the right-hand side of (4.1.1) in Theorem 4.1,
since the mass of T is bounded by a universal constant times the mass of R.



55

CHAPTER 5

Singularities of currents of full mass intersection

5.1. Introduction

This chapter is based on the article [42]. Let X be a compact K&hler manifold
of dimension n. Let {61}, ..., {0} be pseudoeffective classeson X, 1 < m < n.
Let Tj, T]' € {6;} be closed positive (1,1)-current, 1 < j < m, such that T; is less
singular than T, meaning that the potential of T; is greater than the potential
of T](, modulo an additive constant. The monotonicity property of the non-

pluripolar product (Remark 3.17) plays a crucial role in pluripotential theory:

{(ANL T <{(ANLTH Y

When the equality holds, we say T, ..., T;, have full mass intersection with
respect to Ty, ..., T, The aim of this chapter is to investigate the singularities of
T; and T].’ when Tj, ..., T;, have full mass intersection with respect to Ty, ..., Ty.

Let {6} be a big class, we say that a closed positive current T € {0} is big if
Jx(T") > 0. A characterization of the bigness of T is provided in [15, Proposition
3.6], which states that there exists a Kdhler current P € {6} that is more singular
than T. Let u € PSH(X, 6). Recall that the Z-model envelope P?[u]7 € PSH(X, 6)
is defined as

PPlu)7 := (sup{w € PSH(X, 8)|w < 0,Z(tw) C Z(tu)),t > 0})*.

A closed positive (1,1)-current T = dd°u + 0 is Z-model if u = P?[u]7. The
following is our main result. We consider the case where Tj, ..., T), are big and
Z-model (this condition can be slightly relaxed, see Remark 5.8), and we compare
the Lelong numbers of T; and T]’ under the full mass intersection assumption.
Here is the main result.

THEOREM 5.1. Let {61},..., {0} be big classes, and let T;, T; € {6;} be closed
positive (1, 1)-currents such that

(1) T is big and is Z-model.
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(2) T; is less singular than Tj’ .

Let V be a proper irreducible analytic subset such that dim(V) > n —m. If T{,..., T,,
are of full mass intersection with respect to Ty, ..., Ty, Then, there exists 1 < j < m
such that v(T].’, V) =v(T;, V).

Theorem 5.1 was proved in [24] for the case where 0] =--- =0, = wisa
Kéhler form, T] =--- =T, and Ty =--- = T,; € {w} is of minimal singularities.
This result was later generalized in [53] to the setting where {61 },..., {0} are
big classes, and each T; € 6; is of minimal singularities. For the self-intersection
case (T{ =...=T,T1 = --- = T,), a characterization of currents having
tull mass intersection was given in [11] in terms of the singularity types of the
envelopes of the given currents.

When m = n, we have the following more general quantitative result.

THEOREM 5.2. Let % be a closed cone in the cone of big classes. There exists
a constant C > 0, depending only on the manifold X and the cone 9 such that for
every xo € X, {Qj} € B and Tj’, T; € {Gj}, 1 < j < n, satisfying the conditions in
Theorem 5.1. The following inequality holds.

61 [ (AT~ (A T)) 2 CTT (T x0) — (T, ).

j=1

We note that our proof strategy is based on [53], where we generalize Theo-
rems 1.1 and 1.2 from that paper.

5.2. Proof of Theorem 5.1

Step 1. First, we focus on the case where T; has analytic singularities and there
exists a Kdhler current P; € {6;} with analytic singularities that is more singular
than T; for each j. We also assume that V' is a smooth submanifold of dimension
greater than n — m.

Let € > 0 be such that P; > ew for1 < j < m. We recall that TJP = ]llTjTj.

Our first step is to reduce the problem to the case where T]P =0forl1 <j<m.
To achieve this, we replace T;, Tj’ and P; with T; — ij , T]’ — ij and P; — ij ,
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respectively. By Lemma 3.12, we obtain

WAL T | = I (T = T,
(5:21) AL T = A2 (T) = T,
AP = [T (B — TP

Note that the new currents T; — T]P , T]’ — T]F, and P; — T]P satisfy the following
properties.

PROPOSITION 5.3. For 1 < j < m, the following holds.

1) T — T]P is less singular than Tj’ — ij and P; — ij.
Py
(2) ILIijT]P (T] - T] ) =0.

PROOF. First, observe from the proof of Lemma 3.12 that
TV =) ArlVial,
Vik

where {V;} denote the irreducible components of V; = I p;- Since Tj is less sin-
gular than both Tj’ and P, the Lelong number of T; along each hypersurface V;
must be less than the corresponding Lelong numbers of T]f and P;, we therefore
obtain that T; — ij is less singular than both Tj’ — ij and P; — T].p. This completes
the first part of the proposition.

The second part is relatively straightforward and follows from the inequality

p Py _
0< anrT]p(:r]-—T]. ) < Ly, (Tj = T/) =0.
0

The equalities (5.2.1) and Proposition 5.3 explain why it suffices to prove the
theorem with the currents T; — ij, T]’ — ij and p; — ij . For convenience, from
now on we will continue to use T;, T]’ and P; to represent the currents T, — T]P ,
T — ij ani P — ij , respectively. R

Let o: X — X be the blow-up of X along V. We denote by V = ¢=1(V) the
exceptional divisor. In general, the pull back of the Kdhler form w by ¢ is not
necessarily a Kahler form. However, we can construct a Kzhler form on X as
follows. By [47, Lemma 3.25], there exists a closed smooth (1, 1)-form wy, that is
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cohomologous to —[V], and a constant ¢ > 0 depends on V such that

(5.2.2) @ :=cyow+wy >0,

which is a Kihler form on X.

For 6 € (0,1), set Pj& = (1-9)T; + 6P;. Note that Pj‘s > Jew is a Kéhler

current on X. Now, we decompose the pull back of T;, Tj’ and Pf by o as follows.
Ty = M[V] + 1
T = Aj[V] + 77,,
o P‘S /\5[V] + 17]

Since the Lelong numbers are preserved by the blow-up map ([4, Corollary
1.1.8]), we get

A =v(*T, V) =v(T;, V),
N =v(o*T}, V) = v(T}, V),
A;-S = V(O'*P;S, V)= v(P]{S, V).

We note that for any closed (n — m, n — m)-form ®, we have

/(]1T] Y AD = / ]117]>/\c761>and/ PTHAD = / ") A oD

LEMMA 5.4. Let 1, be the (1,1)-current defined as above. Let Ty, ..., Ty—1 be
closed positive (1,1)-currents on X. Then, we have

_ -1 ;
(NP1 A ) = (AP35 A 1.
PROOF. By Proposition 3.8, it suffices to show that 1, #, = 0. Note that
]llﬂm ﬂm = ]llnm\Vﬂm
< 0'*(10(1,7m)Tm)
< 0" (1g, Tin)-

Since we assume T,ﬁ =1y, T, = 0, it follows that 1 Ly MTm = 0, which completes
the proof. [

Note that T; is less singular than P]fs , hence

(7*P]fS — ;7]‘.5 + Af[?] = 0*T;.
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This implies
(5.2.3) n; < P((e"Tj) = A{[V)).
Set
- oe oe . ~5 . xm. A0[17 _(5_6/\
Qf =1 + 5w = 5@, 7 = P(P(e"T; = Aj[V]) = 5= [V]).

LEMMA 5.5. The currents Q? is more singular than 7j;.

PROOF. First, we write

nj = dduy, +070; + Ajwy,  uy; € PSH(X,070; + Ajwy),

(X

17](5 = ddcu;-s +070; + A;-Swh, u}s e PSH(X, o "0; + A iwn),

P(c*T; — A;S[V]) = ddcuj’-7 + 078, + )L}swh, u]r.J e PSH(X, o "0; + /\‘5wh)
V] = dd“uy — wy, up € PSH(X, —wy,).

We normalize the potential function u; so that u; < 0. Note that u can also

represent the potential of Q}s . In other words, u]- € PSH(X o*0; + (A;S + 2566\/) w)

such that
o€

Q) = dduf + o*6; + (A +
2CV

)wh.
By (5.2.3) and the fact that u; < 0, we obtain

o€ )
_ < [y
[+ 5tg] < [

which implies Q;-s = P(P(c*T; — )\J[V]) 2cV e ’7]5 -

We prove Theorem 5.1 by contradiction. Suppose /\} = V(T].', V)>v(T;, V)=
6; i€

Ajfor 1 < j < m. For each j, take §; > 0 small enough so that A} — A].] — T > 0.

Here, we provide a precise method for choosing §;. First, note that

. 0j€
/ 9j Ay, N s (AP Ay €
Y= A = 5 = (= A) = (A7 = Ap) = 5,
where AP/ = v(o*P;, V) = v(P;, V). Since P; is a current in {6;}, we get AP <
c[[{6;}|| for some constant c independent of the class {6;}. Combining this with
the equality above, we can choose
Py
_ , € 175 T
624 5= (el + ).
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LEMMA 5.6. 0* Tj’ (A ’ + ) (V] is a closed positive current and is more singular
i
than 1] i
PROOF. Since T] is less singular than T]-’ , we get

* 0155 * 155
T — AJ[V] < P(o"T; — A [V)).

Note that o* T’ A o V] = 17] ( /\(.Sj )[V] is a closed positive current. This is
because A’ A BN A’ A o 5—5 > 0. By a similar process as above, we see that
o] — (/\. + fci)[v] =17+ (A; — /\jj 25: )[V] is a closed positive current, and
satlsfled
* o/ ‘5 (5 % 15 5]€ i ~0j
oTj — (A + 5V 2 P(P("T; = A/ [V]) = S [V]) =77
j 2cy j

LEMMA 5.7. We have the following inequality.
10 o .
LA} AL = A (NS A VD)) < LA PLO T -

PROOF. By the multi-linearity (taking T to be the current of integration along
X in Proposition 3.6 (4)) and the monotonicity of non-pluripolar product (Theo-
rem 3.13), we obtain

LN} + LAy — Au) (AT A (7))}
s{m;?;l(n; (A =AY — %)Wb A} LA = A) (AP A [7])}
PN A} A {(A = Am) (AP A [V])} (by Lemma 5.6)
A;?:fﬁf (il + (A — A) [V1))}

NS

\‘§

—1 ’7] 'Atim)} (by Lemma 5.4)

Now, we show that {(/\ . 17] A} < {{(ALPlo"Tj]) }. Let

i€
5o )W

¥ . g, 5 | 9
0 := 070 + ()\]. + ey
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We write ﬁfj = ddcﬁfj + @fj, ﬁfj € PSH(}A(, 5?), and recall that
5]<—:

* o 17 i

where

oy > 79 oj€ Py *
i = (sup{v e PSH(X, 0;")|v + 20,0 < u; )

~ ~0; 5]-6 ¥
u;? = (sup{v € PSH(X, Gj] — Ewhﬂv + )‘j]“\? < otujb)’

We observe that [ﬁf] + %u‘;] < [P[u]p]] and [u]p + /\;.Sju‘;] = [P[c*u;]]. This
implies

525) )+ <§]—V + A0 ug) < [Plul] + AJug) < [Pluf + A7 ug))
< [P[Plo*u))] = [Plo"u;]).

In other words, 17](-% (2 &t /\ NV < P[g*T;]. By the multi-linearity and the
monotonicity of non-plurlpolar product again, we get

LN A} < LN + (G + A0 A

< {{ANL Pl T]) }

By Lemma 5.7, Lemma 5.5 and Proposition 2.15, we now have

/ (ALY A o
[
< /X<A7;1P[a*m>A<a*w>"—m—m:n—m SN AP A @y

= [N T) A (0" @)" ™ = Ay = A) (N1 A V1) A (0 0)"
(5.2.6)
< [ NST) A@™ = (= A [(NS1Q) ATV A (07 0)
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5 5 ) € 5 5~ 5 . 5
Recall that Q].’ = 17].’ + i—iwh > i—iw and U*Pj’ = )\j][V] + 17].’. Since P].]

. .. ‘e d; J; . . .
is of analytic singularities, so do 7 ].] and Q ]-’ . This combines with the fact that

V] € 1 57 induces that [V] has no mass on IQ{S]" Therefore, we can apply

]
Proposition 3.6 and get

L m-1 5. .
/\m—l 5'1 ATV A (0Fw) ™ > ] / Amfl/-\ VIV A (0F )t
Kl AT A = TT (517) fl@" A A ")
(5.2.7) = T ((5]—6) [17] A (o) AG™T £ 0
i1 2cy’ JX
Combining (5.2.6) and (5.2.7), we get

(5.2.8)
[T A

m—1 .
S/X< ]f”:lT.> A M — ()\;ﬂ —Am) 1—[ ((51_6) /A[V] A (U*w)n—m/\@m—l.

Step 2. Now, we remove the analytic singularities assumption of T; and P;.
Here, we note that the existence of the Kihler current P =X T; follows from [15,
Proposition 3.6]. We apply Demailly’s approximation theorem (Theorem 3.18)
on the potentials of T}, T]( and P; (1}, u; and p;), and get sequences ufk, u;-fi, p}?k €

PSH(X, 0; + €rw), where €; decreases to 0 such that

(1) u]?k N\ U, u;g N u;, and p]?k N\ P

(2) ufk, uﬁ , and pfk have analytic singularities.

(3) v(Tﬁ(,x) — v(Tj, x), v(Tj’,’,?C),x) — v(T},x) and v(P]-/Dk,x) — v(Pj, x) uni-
formly on X, where

T = dd‘uf) + (6 + exw)

TP = dd“u'} + (6) + gw)

pﬁ = ddcpfk + (0; + exw)
By Lemma 3.19, the ordering of the singularity types is preserved after
applying Demailly’s approximation theorem. To be more precise, for each k € IN,
we have [ufk] > [uﬁ ), [p]?k]. Since P; is a Kéhler current for each j, there exists
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€ > O such that P; > ew for all j. By the construction of P].D , one sees that P].Dk is
also a Kdhler current and satisfied Pﬁ( > (e —ep)w.
For1 <j<m,setAj := 1/(T].13(, V), )L;.,k = 1/(T]’1,3, V), and let

P
€ . 1Vik jik
5j,k=(cH{9]~+ekw}H+2CV) 1 ,

2

where cy, c are constants in (5.2.4). Now, we apply (5.2.8) in step 1, then we

obtain the following.

J N TR) At

(529 = / (AT ) A"

m—1 (5 €—¢€ .
— Ak mk H ]k k) /}?[V] (0’ w)n NP L 1
j=1

By the monotonicity property of non-pluripolar product (Theorem 3.13), we
have

(5.2.10) /X (NI T A @™ < /X (NI TIR) A",
Since we assume that T] is Z-model for 1 < j < m, Lemma 3.21 induces
/X (AL TR) A = /X (A8 + €4co) ) A"
(5.2.11) N /X (A (6)) pp ) A o™
— /X<A;?;1T]-> A",k = co.
Combining (5.2.9), (5.2.10), (5.2.11) and let k — oco. Then, we get (5.2.8)

T A

X

< m n—m ! -t (5]'6 m—1 i7 *, \n—m ~m—1
—/X< T A" = (A = Am) [T (57) /A[V]/\(U w)"MAD

for the general case. Finally, since we assume that T{, ..., T} is of relative full
mass intersection with respect to 17, . . ., Ty, the inequality above does not hold,
and this makes a contradiction. Therefore, A} — A= V(T].’ , V) —v(T;, V) =0 for
somej=1,...,m.
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Step 3. We get rid of the assumption that V' is smooth. By using Hironaka’s
desingularization method (see [25] or [34, Theorem 2.1.13]), we get 0’ : X' — X,
which is a composition of finite many blow-ups along smooth centers, such that
V' = ¢'~1(V) is smooth.

Let R; = (¢/)*T; and R;. = (a’)*T](. In general, R}, ..., R}, do not necessarily
have full mass intersection with respect to Ry, ..., R;,. However, we have

[ NLRY A (@ wy = [ (T Awt
—/Arl )
= [ (LR A (@) @)

Since [V] A w"™™ £ 0, it follows that [V’] A (0" (w))"~™ # 0. Hence, we can
apply step 1. and step 2. in this setting, and get

v(T;, V) =v(R;, V') =v(R;, V') = v(T}, V)
for some j. This completes the proof of Theorem 5.1.

5.3. Proof of Theorem 5.2

Let % be a closed cone in the cone of big classes, and let V = {x(} be a
point in X. First, note that to prove inequality (5.1.1), it suffices to consider
{6;} € N Bforj=1,...,m where.” is the unit sphere in H'!(X, R). Recall
that in (5.2.8), we choose

A=A

_ , € 177
= (ell{E I+ 50 5,

for j = 1,...,m. Here, € is derived from the Kéhler currents P; € {6,} such

that P] > ew. Since . N % is compact, we can choose € to be independent
of {0;} € N A. Also, by the construction of X, the constant cy in (5.2.2) is
independent of V = {x¢}. Therefore, (5.2.8) become

J T = ¢ ]1,>cr[ u(T, )

where C = H]’.’:_f (2¢]|6; ]| + %)_ vol(V) is a constant that depends only on the
cone # and X. This completes the proof.
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REMARK 5.8. Note that in Theorem 5.1 and Theorem 5.2, the assumption that
T]- is Z-model for j = 1,...,m is too strong. Instead, we only need to assume that

/X< 71—1(9]')139]‘[”],]1>/\wn_m:/x< 71—1(9j)u]->/\wn_m:/x< 71:1T'>/\wn_m.

5.4. Further discussion

Let T and T’ be closed positive (1,1)-currents in the same cohomology class,
with T’ being less singular than T. In this section, we discuss some results
concerning the case where T has full mass intersection with respect to T".

THEOREM 5.9. Let X be a compact Kihler manifold of dimension n. Let {61}, ...,
{0} be big classes, and let T;, T]’ € {6, } be closed positive (1,1)-currents such that T]’
is less singular than T;, and T; is big, that is fX(T]") >0,forl <j<m.LetVCX
be an analytic subset of dimension p with m < p, and assume that V is not contained in
U}”:l It,. Assume that T has full mass intersection with respect to T]’ for each j, that is,

€= 1¢7i7)

/X<T1A...ATMA[V]>AWPmz/X<T{A--.AT,;1A[V]>Ame.

, forl1<j<m.

Then, we have

PROOF. By Theorem 3.13, we have
/X<T1/\---/\Tm/\ [V]) AP < /X(T{/\---/\T,%/\ V]) A wP™.
We now show that the above inequality is actually an equality. First, we write
T;=dduj+06;, Tj=ddu+6,
for1 <j < m, where uj, u;. € PSH(X, Hj). By Lemma 3.9, we have

(Ti A+ - AT A [V]) = (0)+(TalReg(v) A+ * A TinlReg(v))
<T{ VARIIEIVAN Tr/n A [V]> = (i)*<T{|Reg(V) ASERNA T1;1|Reg(V)>l

herei: V — X is the inclusion map, and

Tjlreg(v) = ddUjlreg(v) + Ojlreg(v):  Tilreg(v) = dd°Ujlreg(v) + Ojlreg(v),
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1 <j < m. By [13, Lemma 4.3], for any b; € (1,0), there exists v; € PSH(X, 0;)
such that
-1 -1\, ,/
b vj + (1 — b Juj < uj.
By the multi-linearity and monotonicity of the non-pluripolar product (Proposi-
tion 3.6 (4) and Theorem 3.13), we get

I1 (1-8") (A (du ey + Oilresv) ) ) ||

j=1

< H</\}”:1 (ddcuj|Reg(V) + 9]'|Reg(V)>>H '

Let b]- — 0. Then we obtain the desired result. OJ
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CHAPTER 6
Singularities of (n — 1,n — 1)-classes

6.1. Introduction

This chapter is based on the article [38], using a method that is slightly
different from the one presented there. Let X be a compact Kidhler manifold
of dimension n. In this chapter, we study the singularities of non-pluripolar
(m, m)-class, m < n, where we say that a (m, m)-class p is non-pluripolar if

B={(TiA--ATu)},

for some closed positive (1,1)-currents Ty, ..., Tj,. In particular, we denote and
define
(Wr A- e ANay) = <Tmin,1 A+ A Tingm),
where Tpp j is a current with minimal singularities in the pseudoeffective class a;.
Note that the definition does not depend on the choice of current with minimal
singularities, thanks to Remark 3.17. We refer the reader to [8, 51] for more
details.
The following is our first result.

THEOREM 6.1. ([38, Theorem 3.2]) Let X be a compact Kihler manifold of dimen-
sion n. Let m < n be a positive integer. For 1 < j < m, let T}, T]’ be closed positive
(1,1)-currents on X such that: T;, T]’ are in the same cohomology class and in the same
singularity type. Then

V{(Ty A -~ ATy), x) =v((T| A--- AT), x)
for every x € X.

The above Theorem allows us to define the Lelong number of non-pluripolar
cohomology class. Let Ty, . .., T, be closed positive (1,1)-currents on X, and set
B:= (T1 A--- A Ty). We define

v(B,x) :==v((Ty A--- AN Ty), x).
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Let aq, ..., a, be pseudoeffective (1,1)-classes. We define

v({AZqap), x) i= V(AL Toin ), X)-

The second main result of this chapter is a comparison between the cup
products and the relative non-pluripolar products. For a related result, we refer
the reader to Theorem 3.26. We show that the Lelong number of a non-pluripolar
cohomology class serves as the obstruction to the equality of these two products.

THEOREM 6.2. ([38, Theorem 1.1]) Let X be a compact Kihler manifold of dimen-
sionn. Let Ty, ..., Ty_1, and T be closed positive (1,1)-currents on X. Put

Bi= (NI} 7 = (AT AT,

Then we have B A {T} > -y, where N\ denotes the cup product. Moreover, if

BA{TY =1,
then v(B, x) - v(T,x) = 0 for every x € X.

Consider a compact Kdhler surface Y and $ a big cohomology class on Y.
Let Tiinpg be a current of minimal singularities in B. It is well-known that
we can decompose Tinpg = T1 + Tz, where Tj is an effective divisor and T,
is a closed positive current in a nef class. Correspondingly we obtain g =
{T1} + {T»}. Such a formula is called Zariski’s decomposition; see [59]. Observe
that {T} is equal to (B). In the higher dimensional setting, an analogue of this
decomposition also holds but the class {T>} is only nef in codimension 1, see [6]
and also [58] for more information. An exact higher dimensional generalization
of Zariski’s decomposition is not true; i.e, { T» } is not nef in general; see [6, A.2]
or [37]. We refer to [35] for an equivalence between the existence of Zariski’s
decomposition and properties of restricted volumes, and to [31] for a version of
Zariski’s decomposition for (n — 1,n — 1)-classes.

Let a be a pseudoeffective (1,1)-class. It is well-known that («) is nef if and
only if v({a),x) = 0 for every x € X; see [6]. As an application of the comparison
theorem (Theorem 6.2), we get the following generalized Zariski decomposition
for the higher-dimensional case.
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THEOREM 6.3. ([38, Corollary 1.2]) Let X be a projective manifold. Let « be a big
cohomology. Then we have the following.

(6.1.1) v({a""1), x) = 0 for every x € X.

6.2. Lelong number of (m, m)-class

In this section, our aim is to prove Theorem 6.1. First, we recall the definition
of pull back of closed positive (1,1)-currents. Let T be a closed positive (1,1)-
current on a complex manifold Y. Let 7 : X — Y be a holomorphic map.
Suppose that 77(X) is not contained in the singular set of T. Let ¢ be a local
potential of T. Then we can define the pull back 7t*T locally by dd®(7t o ¢). This
defines a closed positive (1,1)-current on X and we have {t*T} = *{T}.

Let x € X, and let 0: X — X be the blow-up of X at x. Let T be a closed
positive (p, p)-current on X. Let T; be the pull back of T to X\c~!(x), which
can be extended by 0 through the hypersurface =1 (x) ~ IP"~!. This is called
the strict transform of T, and is denoted by ¢°(T), which is a closed positive
(p, p)-current on X. In general, {¢°(T)} is not equal to o*{T}. By using Siu’s
description of Lelong numbers ([41]), we get that

(6.2.1) o {T} —{o*(T)} = v(T, x){[H]},

where H is a (n — p)-dimensional linear subspace of the exceptional divisor
o x) ~ P L,

PROOF OF THEOREM 6.1. Let x € X and 0 : X — X be the blow-up of X at
x.Let T=(Ty A ATy)and T = (T A--- A Tj,).

By (6.2.1), one remains to show that {T} = {T'} and {7°(T)} = {7°(T")}.
By Remark 3.17, it is clear that {T} = {T’}. We consider the non-pluripolar
product (¢*Ty A - - - Ac*Ty,). Since 1 (x) is an analytic set, (c*Ty A -+ - A 0*Tpy)
puts no mass on 7~ !(x). Moreover, since ¢ is a bi-holomorphic map outside
o 1(x), (¢"Ty A - Ao*Ty) = *T on X \ 0 1(x). Thus, we get (¢*T) A - -- A
0*Ty) = 7°(T). Similarly, (¢*T; A--- Ao*T;,) = ¢°(T'). Forj =1,...,m,
we have {¢*T;} = oc*{T;} = 7r*{Tj’ } = {(T*T]-/}. By construction, we also
have ¢*T; and c* T]’ are in the same singularity type. Thus, by Remark 3.17,
{c®(T)} = {¢°(T’)}. We complete the proof. O
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In the self-intersection case, the following more general result holds, which
shows that only the full mass intersection condition is needed.

THEOREM 6.4. Let a be a big class. Let T, T' € w be closed positive (1,1)-current
such that T' is less singular than T. If [((T") = [((T"™) > 0. Then, we get
v((T™), x) = v({T"™), x) forany m < n,and x € X.

PROOF. Let P[T] be the envelope of T. We first claim that
v((T™), x) = v((P[T]™), x).

Leto: X — X be the blow-up of X at x. Similarly to the proof of Theorem 6.1, we
only need to show that {(T™)} = {(P[T]")} and {(¢c*T™)} = {(¢*P[T]™)}. By
Proposition 2.15 , we have {(T™)} = {(P[T]™)}. On the other hand, by the facts
that 0*P[T] is less singular than ¢*T, P[c*T] is less singular than ¢*P[T], and
{{c*T™)} = {(P[o*T]™)}, we get {(c*T™)} = {(c*P[T|™)}. Hence, we now
have v((T™),x) = v({P[T]™), x). Since P[T] and P[T’] are in the same singularity
type (Theorem 2.16), by Theorem 6.1, the following holds.

v((T™),x) = v({P[T]"), x) = v({P[T']"), x) = v({T™), x).

6.3. Volume of cohomology classes

In this section, we recall some regularity properties of the volume function of
big cohomology classes.

Let X be a compact Kihler manifold of dimension n. Let « € H!(X,R) be a
big cohomology class. We define the volume of « to be [, (a"), and denoted by
vol(a). If a is the first Chern class of a line bundle L — X, then

[ [

vol(a) = lim sup ™ dim H°(X, LK) = lim ™ dim HO(X, LK).
See [5, 20]. The study of the regularity of volume function plays an important
role in complex geometry reference, see [9, 10, 54]. Here, we recall the following

important result due to Witt Nystrom [54].
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THEOREM 6.5. ([54]) Let X be a projective manifold of dimension n. Let o,y €
HY' (X, R) such that « is big. Then we have

—| vol(a +ty) = n{a" ) Aq.
t=0

We refer to similar statements [9, 30] for the case where « is integral (and
X is projective), and also to [7] for the case where X is Hyperkéhler. It was
conjectured in [7] that Theorem 6.5 is true for every compact Kidhler manifold
X. In this general setting, only partial derivatives along divisors of the volume
functions were known. Let us recall this result in what follows.

Let V be a smooth submanifold of dimension k in X such that V is not
contained in the non-Kéhler locus of a. The restricted volume volxy («) of a big
class « to V is defined as fv<(Tmin,a|V)k>, where Tyin 4 is a current with minimal
singularities in «. Since V' is not contained in the non-Kéhler locus of &, one sees
that volyy («) is equal to the supremum of the integrals [}, {(T]| v)¥) for all Kihler
currents T € a with analytic singularities; see [56, 35, 26]. We have the following
tormula for the partial derivative of the volume function along divisors also due
to Witt Nystrom.

THEOREM 6.6. ([56, Theorem C]) Let X be a compact Kithler manifold of dimension
n. For every big class « € HY'(X,R), for every smooth hypersurface D which is
not contained in the non-Kihler locus of a, and vy := {D} (where {D} denotes the
cohomology class of D)), there holds
(6.3.1) 4 vol(a + ty) = nvolxp(a).
dt],_y
We refer to ([52]) for a more general statement where a formula similar to

(6.3.1) is proved for any hypersurface D on X. However, for what follows,
Theorem 6.6 is sufficient. By [10, (8.5)], we have

voly p(a) < (a"" 1) Ay,

for v = {D}. It is still not known whether we have the equality in the general
case (where X is only compact Kdhler manifold). On the other hand, when X is
projective, by Theorems 6.5 and 6.6, it is necessarily true that

(6.3.2) volyp(a) = (a1 A,
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for v = {D}. Note that by Lemma 3.9, we have

volyp(a) = [ (Tazly A [DI).

By this and (6.3.2), we obtain the following.

(6.3.3) / (T A [D]) = (1) Ay,

This is exactly one of the main points that we exploit in the proof of Theorem 6.3

6.4. Proof of Theorem 6.2 and 6.3

For the proof of Theorem 6.2, we first need the following comparison theorem
between the density currents and the relative non-pluripolar products.

THEOREM 6.7. ([38, Theorem 4.5]) Let X be a compact Kihler manifold of dimen-
sion n. Let Ty, - -, Tyy, and T be closed positive (1,1)-currents with m +1 < n. Then
every density current of (/\;” 1T3), T has minimal h-dimension. Moreover, let Re; be a
density current of T, (A7 Tj), we have Reo = 71 *(R%,) for some closed positive current
RL, on X, with

(NLTAT) < RL,
where 7t: E — Ny is the projection of the normal bundle of the diagonal Ay C X>.

Before we start the proof of Theorem 6.7, we first review the following result,
which is a special case of [27, Theorem 3.1].

THEOREM 6.8. ([27, Theorem 3.1]) Let P, T be closed positive currents on some
open domain Q) C C" of bi-degree (1,1) and (m, m), respectively, where m +1 < n.
We write P = dd“u, where u is a psh function on Q). Suppose that there exists a closed
positive (m + 1,m + 1)-current R on Q) such that, for any sequence of smooth psh
functions uy decreasing to u. we have

ddcug AT — R.

Then, we define dd°u \N'T := R. In this case, the Dinh-Sibony product of P and T is
well-defined, and we have the following.

PAXT=PAT.

Now, let us start by considering the case of bounded potential.



73

Let Ty,... Ty, T be closed positive (1,1)-currents on X, where each T] is of
bounded potential, and m + 1 < n. Let {3 C X be a holomorphic coordinate, we
write

T; =dduj, T =ddu,
where u; is bounded on ).

Since U is bounded for 1 < j < m, we see that u is locally integrable with
respect to Ay Tj. Hence, the product T A ( i1 T]> is well-defined in the
classical sense. Moreover, the currents T and AjZ; T; satisfy the assumptions of
Theorem 6.8.

Let 1 be a bounded positive psh function on (). Set

Tm(m).
j=1

Consider the local admissible map
(6.4.1) Q5 CxQ,
(xl, x%) — (2} — 22, x?).
We set (y!,y?) = (x! — x2,x?). Let r: C" x Q — Q be the projective map. For

1< j<msetij(y',y?) = m'u; = uj(y?), and set i(y', y?) = u(y' +y?). Let
iﬁ(yl,yz) = 7*1p. Note that we have

e (w (w A T].)) o o ( A ddcgj) |
j=1 j=1

Let A € C*. By using the regularizations of ¢ and u, one sees that
_ m m
(Ap)s | padan N ddi; | = py?) ddu(A "y +y?) A | N ddui(y®) |
j=1 j=1

The following lemma is similar to [28, Lemma 2.2]. We include a proof here
for the reader’s convenience.

LEMMA 6.9. Let R be a limit current of the sequence

(A« (lﬁddfim ( 7\ ddfig)) .
j=1
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Then we have

m
0<R<* <1pddcu A (/\ ddcuj)) .
=1

PROOF. Since ¢ is positive, the limit current R is also positive. Let 1, be
a sequence of smooth psh functions decreasing to ¢, and define @(yl, yz) =
e (y?). We fix £ € N. By Theorem 6.8, we have

/\IEIJO(A/\) ( pddcﬁA (/\ dd“u ))
= lim (%) (A4y)- (ddcﬁ/\ (7\ dd%@-))
j=1
=7 (decu A (7\ ddcu]-) ) .
j=1

Since ¢, > 1, it follows that

(A))+ (@ddfﬁA (7\ ddcﬁj) ) > (A))« (lﬁddcﬁ/\ (/m\ ddcﬁ,-) ) ,
j=1 j=1

for A € C*. Letting A — oo, we obtain
m
T | peddu | )\ ddu; >R, forany /e N.
j=1

Finally, letting ¢/ — oo, we conclude that

" (wddcu A (7\ ddcuj) ) > R.
j=1

This completes the proof. O
Now, we show that the inequality in Lemma 6.9 is actually equality.
LEMMA 6.10. Under the assumptions above, the limit of

(Ay). (lﬁddcm 7\ czd%?j)

j=1
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is unique, and

m m
(6.4.2) lim (A7), (¢ ddi A N\ ddCﬁ]-) = <¢ ddu A )\ ddcuj) .

j=1 j=1

PROOF. Consider the test form with compact support of the type ®(y!,y?) =
@1 (y') A @, (y?). Since these forms generate the space of test forms, it suffices to
prove (6.4.2) against @1 (y') A ®»(y?). By Lemma 6.9, we only need to consider
the case where ®;(y') is of full bi-degree. We can further ask ®;(y') to be a
radial form with unit volume, that is, ®;(y') = x(||y"||?)i"dy" A dij' such that

Joyh) =1
Set

ut(y?) = /y1 d(A YL ) ARy = /y1 u(A"y ) Ay,
which is the convolution of u(y?), and it decreases to u(y?), as A — co. Set
m
RY :=ypddu A |\ ddu; | .
j=1

Using the regularizations of i and u, and applying Fubini’s theorem, we
obtain

<(A/\)* (lﬁddcﬁ/\ (/\ ddCiZ])) , D1(y") /\CI>2(]/2)> = <RA,<I>2(]/2)>-
j=1
Since u” decreases to u as A — oo, we get

lim <R/\,<I>2(y2)> = <¢ddcu A /m\dd"uj) ,<I>z(y2)>
j=1

A—r00

= <¢ddcu A /m\ ddcu]) , n*(CI>)>

j=1

= <7‘[* (1[) 7\ddcuj/\ddcu) ,<I>>.
j=1

This completes the proof. [
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We note that Lemma 6.10 also applies when T is a closed positive (p, p)-
current with p +m < n (see [38, Theorem 4.1]). However, the method used in
the proof above cannot be applied in this case. Instead, we follow the approach
from [49].

PROOF OF THEOREM 6.7. Since </\]’”:1T]> is a non-pluripolar current, it puts
no mass on {x : v(T,x) > 0} (which is a pluripolar set). Thus, by Proposi-
tion 3.26, any density current of </\]T.”:1 T]> , T must has minimal h-dimension.

We now prove the second statement. Since this is a local problem, we only
need to work on a holomorphic coordinate chart Q). First, we write T; = ddu jr
where uj <0is psh function on Q). For k € N,

set

ujx = max{u;, —k} and Tjy := dd u;.
Since Tj is of bounded potential, the classical product /\}”:1 T}k is well-defined.
We set
Ri:=T&AL T and Ri=T® (ALT)).
For1 <j<2letp;: 0?2 — Q) be the projection from )? to the jth-component.
Set

m
p:=)Y uj and p:= k! max{p, —k},
=1

p:=pap and Py := papy.
Note that ¢y +1 =0 on U;.”lez_l{uj < —k}. Hence, we get
~PR = —(p + R+ R
(6.4.3) = — (¥ +1)R; + R,

We choose the admissible map 7 as in (6.4.1). By Lemma 6.10, we get that the
tangent current of

(Y + DR, =T® ((Pk + DT >k </\71:1T‘>>
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equals T ((ox + 1) Ny Tige A T), where 7t: E — A; is the normal bundle of A;.
Now, by taking the tangent current of both sides of (6.4.3), we get

where Tj , and R are tangent currents of —1,ka and R along A;, respectively.
Since px +1 =0 on U}”Zl{u]- < —k}, we then have

(ox+1)T A (/\ ) pk—i—1)< 1T]-/'\T>,
which converges to <A}”:17} A T> as k — co. This combines with (6.4.4) implies

7 ((NLTAT)) < Res

This completes the proof. [

PROOF OF THEOREM 6.2. Let x € X. Let S be the density current associated
to (/\7:_11Tj> and T. By Theorem 6.7, we have

§> (NI AT).
By comparison of Lelong numbers (Corollary 2.23),
v(S,x) >v <</\;”:1T]> ,x> v (T, x).
It follows that
S> </\;?;11T]- A T> +v <</\;7;11T]-> ,x) v(T, x)dy.
Since {S} = {</\;7:_11T]~> } N {T}, the desired conclusion follows. O

PROOF OF THEOREM 6.3. Assume that X is projective. Let x € X. Choose a
smooth hypersurface D passing through x. By (6.3.3), we see that

(") A{D} = ("7 A [D]).

Since v([D], x) = 1, by Theorem 6.2, we then get v({(a 1), x) = 0. This completes
the proof.
U
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In the end of this section, we show that if T is not of minimal singularities in
o, then v ((T"1), x) could be strictly positive.

EXAMPLE 6.11. Let X = P" and [x( : - - - : x,,] be the homogeneous coordinate.
Let w be the Fubini-Study form on P”" and x = [0:---: 0: 1]. Set
XQ|2 +--+ |xn1|2>
T :=ddlo | +w,
i ( xoP - +

which is a closed positive (1, 1)-current in the Kahler class {w}. By [16, Corollary
4.11], S = T" ! is classically well-defined. Since S has no mass on the point x,
we get S = (T"1). Hence,

v((T" 1), x) = v(S,x) > v(T,x)" L.

By the construction of T, we can see that v(T, x) > 0. Therefore,

V((171),2) »0
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