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Abstract

This thesis presents the Behavioral Architecture - Dynamic Energy Budget (BA-DEB)
framework, a holistic computational approach to behavioral modeling grounded in four
core commitments: (i) agent-centered modeling, where the organism is treated as an inter-
nally structured and environmentally embedded unit; (ii) comprehensive behavioral scope,
instantiated in a modular, hierarchical BA that spans from motor primitives to experience-
shaped adaptivity; (iii) cross-timescale integration of neural, behavioral, and metabolic
processes; and (iv) homeostatic regulation, achieved through the coupling of the BA with
a DEB model that simulates internal energetics and shapes behavior through metabolic
feedback. These principles are exempli�ed in a case study of foraging behavior in the
Drosophila melanogaster larva � a model organism with a tractable nervous system, rich
behavioral repertoire and readily recordable 2D posture � engaged in a well-characterized,
structured behavior during a normatively narrow life stage focused on growth and survival.

Standalone mechanistic models form a second core contribution of this thesis. These
include a stochastic network model of behavioral intermittency and a coupled-oscillator
model that captures the biomechanical interference of crawling on lateral bending. These
models formalize biologically plausible mechanistic hypotheses and can be integrated into
the BA as modular components, re�ecting the framework's capacity to accommodate
diverse behavioral mechanisms within a uni�ed control structure.

The BA-DEB framework is implemented in Larvaworld, an open-source simulation
and analysis platform that generates realistic behavior by combining mechanistic mod-
eling with data-driven �tting. It facilitates exploratory modeling via unbiased empirical
validation, and interdisciplinary collaboration through standardized behavioral modules
and �exible experimental con�gurations. Together, the framework and software platform
provide a robust and extensible, conceptual and methodological foundation for building,
testing, and comparing models of behavior grounded in biological detail and organized in
a behavior-based modular logic.
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1 Integrative perspectives on the study of behavior

Part I

Introduction

Modeling behavior as a hierarchically organized, temporally sequenced, adaptive process
poses a unique challenge: it requires integrating diverse levels of biological organization �
from neural dynamics to ecological context � while preserving the coherence of the individ-
ual agent. Traditional modeling approaches often segment this complexity, focusing either
on internal mechanisms or environmental interactions. Yet behavior emerges precisely at
their interface. This thesis addresses the need for a uni�ed modeling framework that is both
holistic and mechanistic: one that treats the behaving organism as an autonomous agent,
and behavioral structure as a computationally tractable anchor for integrating currently
standalone models. The Drosophila larva, with its well-characterized nervous system and
rich behavioral repertoire, provides an ideal model system for developing and testing such
a framework.

Chapter 1 provides the theoretical and interdisciplinary context for the modeling ap-
proach. It examines how systems neuroscience and behavioral ecology, traditionally sepa-
rate, are converging on the behaving organism as a shared modeling unit. The chapter then
introduces architectural perspectives relevant to modeling, focusing on survival circuits,
hierarchical control, and behavioral repertoires as key structural principles that support a
modular and mechanistic view of behavior.

Chapter 2 establishes the conceptual foundation of the thesis. It articulates the com-
mitments to holism, behavior as a modeling anchor, and mechanistic explanation, framing
them as mutually reinforcing strategies for studying purposive biological systems. The
chapter then motivates the choice of the Drosophila larva and foraging behavior as the
empirical focus, and outlines the modeling objectives and design rationale that guide the
development of the computational framework.

1 Integrative perspectives on the study of behavior

The study of behavior spans a wide range of scienti�c disciplines, each o�ering distinct
theoretical insights and methodological traditions, and addressing scienti�c questions that
pertain to di�erent levels of biological organization. To map this interdisciplinary land-
scape, this chapter provides a structured overview of the main scienti�c �elds contribut-
ing to modern behavioral science. Importantly, this overview explicitly aims to provide
theoretical grounding for the modeling perspective and methodological choices adopted
throughout this thesis.

The chapter is organized into two primary sections. The �rst part (section 1.1) ex-
amines how two traditionally separate traditions � systems neuroscience and behavioral
ecology � are increasingly converging toward a uni�ed understanding of behavior cen-
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1 Integrative perspectives on the study of behavior

tered on the single behaving organism. The second part (section 1.2) draws from diverse
�elds of behavioral study to highlight key aspects of living systems that directly support
a behavior-based modeling approach. Speci�cally, it highlights how the behaving agent
is organized into parallel homeostatically-driven survival circuits, and how its behavioral
repertoire is governed by a hierarchically structured control architecture. Figure 1 pro-
vides a visual overview of the behavioral research �elds discussed in this chapter � those
converging at the level of the individual (such as systems neuroscience and ecology), and
those that support the modeling perspective centered on the single behaving agent adopted
in this thesis.

Single 
Behaving 
Organism

Behavioral 
Ecology

Artificial Life

Agent-based 
Modeling

Behavior-
based 

Robotics

Systems 
Neuroscience

Comparative 
Neuroscience 
& Behavioral 

Evolution

Behavioral 
Ontologies & 
Taxonomies

Computational
Neuroethology

Figure 1: Interdisciplinary landscape around holistic behavioral modeling. At the

center lies the individual behaving organism, conceptualized as the interface where

subindividual (neuroscienti�c) and supraindividual (ecological) perspectives con-

verge. Surrounding this focal point are �elds that contribute to this convergence

by providing theoretical background, scienti�c insights or methodological tools.

1.1 Convergence between neuroscience and ecology

Despite long-standing methodological and conceptual di�erences, systems neuroscience
and behavioral ecology are increasingly addressing overlapping questions about how or-
ganisms generate behavior in response to internal and external conditions. Neuroscience
typically approaches this problem by examining subindividual mechanisms � neural cir-
cuits, sensory processing, and motor control � under controlled experimental settings.
Ecology, by contrast, has focused on behavioral adaptation at the population level, often
abstracting away from internal structure.

2



1 Integrative perspectives on the study of behavior

Recent developments in both �elds, however, re�ect a growing interest in bridging
these perspectives. This convergence is not driven by a uni�ed theoretical framework,
but by a shared recognition that understanding behavior requires models that integrate
internal dynamics with environmental interaction. This section traces that convergence
across three analytical levels: the subindividual (neural architectures), the supraindividual
(population dynamics and agent-based models1 (ABM)), and the individual organism as
the interface where these perspectives meet.

1.1.1 The subindividual level: From neural circuits to modular cognitive ar-

chitectures

The subindividual level refers to modeling approaches that focus on parts of the organism
rather than its total behavioral pro�le. This can be interpreted anatomically, as the study
of speci�c neural substrates (e.g., circuits, neuropiles) in isolation from the entire nervous
system, let alone the entire body, or functionally, as the analysis of particular behavioral
domains (e.g., foraging, re�exes) in isolation from the full behavioral repertoire. Such
decompositions are central to systems neuroscience, which aims to generate mechanistic
explanations grounded in neural structure and function.

This level of analysis allows researchers to isolate neural circuits and study how speci�c
components contribute to observable behavior across varying degrees of biological com-
plexity. In organisms with simple nervous systems, such as C. elegans � the only organism
for which the entire whole-body connectome (302 neurons) has been fully mapped (Cook et
al., 2019) � this decomposition can be approached with considerable anatomical precision.
Computational modeling can begin from a noisy and biologically grounded connectome
and incrementally superimpose behaviorally relevant constraints. This process does not
merely reproduce observed behavior, but rather helps formulate plausible explanations of
how anatomical structure can support function (Izquierdo and Beer, 2013). These models
often focus on speci�c behaviors, treating them as entry points into larger questions about
circuit organization and multifunctionality. As new behavioral tasks are superimposed
on the same neural substrate, the constraints on plausible internal models increase, thus
re�ning both their explanatory and predictive scope.

In more complex organisms, such as insects or mammals, complete mapping of behavior
onto neural structure is considerably more di�cult. Neuroscienti�c models in these cases
typically proceed by identifying correlations between neural activity and behavior, and
then testing hypotheses of necessity and su�ciency for speci�c structures. This process
allows tentative functional attributions � for instance, to neuropiles involved in memory,
decision-making, or emotional appraisal � hopefully without implying direct one-to-one

1A computational modeling paradigm that simulates the actions and interactions of autonomous agents
to understand the behavior of complex systems. Agents � each with its own internal structure, goals and
capabilities � interact with each other and have only local knowledge of their environment, giving rise to
emergent system-level dynamics. ABM is particularly suited for modeling heterogeneous, decentralized,
and spatially structured systems (Grimm, 2005).
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1 Integrative perspectives on the study of behavior

mappings (Rolls, 2015; Wang, 2008). Increasingly, such attributions are implemented
in computational models, which may range from di�erential-equation-based models of
motor control (Daun-Gruhn and Büschges, 2011), local circuit-level simulations (Haenicke
et al., 2018) to more ambitious whole-brain constructs (Eliasmith et al., 2012). The
latter frequently incorporate optimization methods to account for adaptive behavior under
varying task constraints, and re�ect a trend towards integrative, multifunctional modeling
at various levels of biological realism.

The e�ort to build models spanning multiple functional domains has led to the devel-
opment of cognitive architectures � domain-general computational systems that formal-
ize perception, memory, decision-making, and motor control within uni�ed frameworks
(Franklin et al., 2016; R. Sun, 2007). While originally rooted in psychology and arti�cial
intelligence (AI), such architectures have been extended to incorporate elements inspired
by neurobiological principles, including learning rules and attention dynamics (Verschure,
2012).

These modular constructions are often guided by functionalist assumptions: that cog-
nition consists of separable operations mapping sensory input to appropriate output. How-
ever, this view has come under criticism from enactivist2 perspectives, which challenge the
legitimacy of strict modular decomposition (Di Paolo et al., 2017). Nevertheless, modu-
larity remains central to hybrid architectures that aim for both tractability and biological
plausibility, supported by empirical research on modular motor control (Büschges and
Borgmann, 2013). In this context, explicit assumptions about how low-level sensorimotor
modules interface with higher-order processes become crucial � especially when behavioral
modeling aspires to be mechanistically explanatory.

1.1.2 The supraindividual level: From population patterns to behavioral ABMs

Whereas systems neuroscience typically dissects behavior by focusing on its subindividual
underpinnings, ecological modeling proceeds from the opposite direction: from populations
of organisms embedded in dynamic environments. Classical ecological approaches abstract
away internal structure, emphasizing population-level dynamics and statistical regularities
over individual-level mechanisms. These models operate at the supraindividual level,
privileging emergent behavioral patterns over the speci�c inner workings that give rise to
them.

A pivotal transition toward integrating individual-level agency into ecological simula-
tions occurred within the �eld of Arti�cial Life3 (ALife). In many early ALife systems,

2For a comprehensive introduction to enactivism and its relevance to behavioral and cognitive modeling,
see (Ward et al., 2017).

3Arti�cial Life (ALife) explores �life-as-it-might-be� (Langton, 1992). By abstracting away from speci�c
real-world constraints, it focuses on behavioral patterns and underlying drives that emerge across diverse
living systems and subsystems. As a sub�eld of Arti�cial Intelligence (AI), AL has pioneered e�orts to
bridge the nested organizational levels of life � from populations and individuals, to internal functional
modules, cells, and genes.
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1 Integrative perspectives on the study of behavior

agents were endowed with arti�cial neural controllers or rule-based systems that mapped
sensory input to action. These controllers could evolve under selection pressure, producing
adaptive behaviors within dynamic environments (Sims, 1994; Yaeger, 1997). Later mod-
els introduced increasingly structured representations of internal states � such as fuzzy
cognitive maps � which enabled agents to express emotions, memory, and motivational
attitudes, and even to jointly model behavioral evolution and speciation (Gras et al.,
2009).

These innovations laid the groundwork for the widespread adoption of agent-based
modeling in computational ecology. A key methodological advance was pattern-oriented
modeling, which uses observed ecological patterns as criteria for the design and evaluation
of models (Grimm, 2005). The ABM paradigm has since developed formalized standards,
such as the ODD (Overview, Design Concepts and Details) and ODD+D (which includes
decision-making) protocols, to promote transparency, replicability, and biological realism
(Grimm et al., 2010; Müller et al., 2013).

Crucially, ABMs o�er more than population-level pattern reproduction. They allow
researchers to encode intra-individual structure, including morphological traits, internal
drives, and decision-making architectures. In evolutionary ABMs, behavioral traits are
treated as heritable parameters subject to mutation and selection, a practice known as
the phenotypic gambit4, enabling researchers to link behavioral evolution to population
dynamics, now in real-world ecological settings.

Thus, the ABM paradigm has paved the way for a shift in ecological modeling: from a
focus on population-level abstraction, increasingly to the internal complexity of individual
agents. This methodological shift complements the upward trend in neuroscience toward
ecologically valid modeling. The next section explores this convergence explicitly.

1.1.3 The individual as interface between neuroscience and ecology

The separation between neuroscience and ecological traditions, as outlined above, was
marked by distinct conceptual frameworks and modeling practices, limiting interdisci-
plinary integration and a uni�ed understanding of behavior across explanatory levels and
timescales. Early attempts to bridge this methodological divide emerged from ecologi-
cal modeling e�orts that sought to embed internal structure within their agents. One
early example introduced neural network-based decision-making combined with genetic
algorithms into individual-based ecological models (Huse et al., 1999). In this study, neu-
ral networks were merely used as computational tools providing agents with internally
structured decision-making capabilities, eventually leading to the emergence of survival-
maximizing behavioral strategies in dynamic environments. Although the introduction of
neural networks does not justify any claim for biological realism, it marks an important

4The phenotypic gambit is the assumption that we can model evolutionary outcomes by assuming that
natural selection acts directly on phenotypes, treating them as if they were optimally designed, without
detailed knowledge of the underlying genetic architecture (Grafen, 1986).
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1 Integrative perspectives on the study of behavior

step toward richer models of individual agency within ecological simulations.
More recently, ecological modeling has explicitly incorporated fast homeostatically-

driven behavioral mechanisms inspired by neuroscienti�c and ethological �ndings. A
prominent example is the AHA (Autonomic-Homeostatic-Adaptive) architecture, a frame-
work that embeds �proximate� behavioral mechanisms5 � such as perception, motivation,
decision-making, and attention � into ecological agents (Budaev et al., 2018). By endowing
agents with detailed internal structure, the AHA approach captures essential behavioral
constraints and dynamics identi�ed through empirical neuroscience (Eliassen et al., 2016).
This richer agent design enables not only more plausible simulations of individual behavior
but also more powerful ecological models at scale. For instance, in marine computational
ecology, AHA-based agents have been employed in large-scale AMBs to simulate and pre-
dict the growth, movement, and distribution of millions of �sh in oceanic environments,
dynamically responding to environmental cues, internal state, and conspeci�c interactions
(Budaev et al., 2018). This integration of neuroethological realism into ecological mod-
eling enhances both explanatory depth and predictive capacity, moving beyond abstract
rules toward biologically grounded individual agency.

The shift toward computational agents enriched with neuroscienti�cally informed in-
ternal structures underscores a deeper theoretical convergence: the focal point becomes
the single behaving organism, where the fast subindividual mechanisms studied by neuro-
science and the slow supraindividual adaptive phenomena investigated by ecology natu-
rally intersect. In this integrative perspective, the behaving individual is recognized as the
appropriate locus for computational frameworks that can simultaneously accommodate
neural, behavioral, and ecological complexity. By explicitly embedding neural-inspired
architectures into ecological models, these computational frameworks represent a promis-
ing avenue toward bridging the disciplinary gap that has historically separated systems
neuroscience from behavioral ecology. Figure 2 highlights the progressive overlap between
previously distinct traditions, ultimately converging at the scale of a single behaving or-
ganism.

1.2 Modeling the behaving organism: Architectural perspectives

Understanding behavior as an integrated phenomenon requires characterizing its under-
lying functional structure. This section draws on diverse �elds of behavioral research to
identify organizational features of living systems that are especially relevant for behavioral
modeling. Rather than attempting to reproduce the full complexity of an organism, the
approach adopted here focuses on how internal regulation and overt action can be jointly

5Here, �proximate mechanisms� refer speci�cally to the internal processes that directly in�uence the
immediate control of behavior, grounding ecological simulations in biologically plausible principles derived
from neuroscience. The word-choice aims to contrast fast, �exible behavioral reactions typically studied by
neuroscience, with the slow adaptive behavioral patterns � e.g., migration or fecundity changes � typically
at the focus of ecology.

6



1 Integrative perspectives on the study of behavior
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Figure 2: Disciplinary silos in behavioral science. Behavior is studied across a

wide range of timescales (logarithmic axis) and at multiple organizational levels

� from cellular processes to individual organisms and populations. Traditionally,

neuroscience and ecology have focused on distinct, non-overlapping temporal

scales, limiting interdisciplinary exchange. However, both �elds are increasingly

expanding their temporal scope � neuroscience toward longer scales and ecology

toward shorter ones � leading to a convergence around the lifespan of the

individual behaving organism.

represented through computational architectures. In particular, three interrelated aspects
of behaving organisms are examined that provide strategic entry points for modeling.

The �rst concerns survival circuits � functional subsystems that may diverge struc-
turally across taxa but preserve a core functional role in supporting organismal survival.
Each such circuit is a functional unit comprising both homeostatic/metabolic and neu-
ral/behavioral components. These circuits operate in parallel to control and regulate
behavior according to distinct survival imperatives. Crucially, they do not govern be-
havior in a top-down manner but are instead expressed through and served by speci�c
behaviors adapted to internal priorities and environmental contingencies.

The second aspect is the hierarchical organization of the neurobehavioral components
of a survival circuit. Drawing on both neuroanatomical �ndings and principles from neu-
rorobotics, layered control architectures are presented as a suitable modeling paradigm
to capture the selection, inhibition, and coordination of behavior across nested levels of
increasingly complex sensorimotor coupling between agent and environment.

The third involves the extraction and formalization of structured behavioral reper-
toires, emphasizing their role in populating the layers of the behavioral control architec-

7



1 Integrative perspectives on the study of behavior

ture. Approaches from computational neuroethology and formal ontology allow for the
identi�cation and classi�cation of discrete behavioral units, o�ering the necessary building
blocks for modeling plausible modular behavior-based agents.

Together, these three modeling dimensions re�ect a central methodological tension:
how to maintain a holistic view of behavior while embracing the necessary simpli�cations
of modeling. One way to address this is by focusing on key organizational nodes � such
as a single survival circuit � around which a behavior-based control architecture can be
constructed and systematically populated, as will be described in Subsection 2.1.4.

1.2.1 Survival circuits as parallel functional subsystems

Understanding how an individual agent maintains biological viability requires linking inter-
nal regulation with context-appropriate behavior. A central concept in this regard is that
of survival circuits � evolutionarily conserved neurobehavioral systems that link metabolic
priorities to species-typical behavioral strategies. Originally proposed by LeDoux, survival
circuits are not anatomically encapsulated modules, but functional subsystems that span
slow homeostatic processes (e.g., hunger, thermoregulation) and fast behavioral control
loops (e.g., foraging, �eeing) (LeDoux, 2012; Ledoux and Daw, 2018).

Each subsystem consists an autonomous agent-environment feedback loop � sensory
appraisal, motivation, decision making and motor competences � anchored to a distinct
homeostatic imperative such as energy balance, reproduction, or defense. This combi-
nation of internally de�ned needs and self-deployed behavioral means � an organizing
principle for dissecting behavior into biologically grounded units of control � renders them
particularly suitable for modeling. Figure 3 provides a schematic illustration of basic sur-
vival circuits and their associated behaviors in Drosophila, emphasizing the regulatory
autonomy of each system, and the nested interaction between slow homeostatic drives and
fast sensorimotor control.

Comparative analyses suggest that all evolved nervous systems � from radially orga-
nized cnidarians to bilaterally symmetric vertebrates and arthropods � incorporate parallel
subsystems dedicated to distinct survival imperatives (Arendt et al., 2016). These subsys-
tems, though anatomically diverse, perform analogous roles: coupling internal homeostatic
states to sensorimotor routines that resolve functionally discrete biological challenges. For
instance, structures as di�erent as the insect central complex and the vertebrate basal
ganglia have been argued to implement similar functions of action selection and spatial
coordination, suggesting functional convergence6 across phyla (Arendt et al., 2016; Cisek,
2021). Similarly the insect mushroom body and the vertebrate hippocampus have both
been implicated in spatial navigation and associative learning relevant to foraging contexts

6The term �functional convergence� is used here in the sense of analogous � not homologous � traits.
Homologous structures share a common evolutionary origin, while analogous ones arise independently but
serve similar functions.
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1 Integrative perspectives on the study of behavior

Figure 3: Survival circuits in Drosophila. Each functional subsystem enjoys

regulatory autonomy by means of nested coordination between slow homeo-

static processes and fast sensorimotor control, making them an ideal target for

homeostatically-regulated behavioral models. Fast and slow control processes

extend to coordination and con�ict resolution across circuits.

(Farris, 2011; Xia and Tully, 2007). Bilateral nerve cords and central tracts appear to have
evolved independently in multiple lineages, yet serve comparable behavioral control func-
tions. In fact, peripheral motor control circuits across the animal kingdom exhibit common
features in terms of sensory feedback and descending input from the brain (Büschges, 2005;
Büschges and Ache, 2025; Büschges and Gorostiza, 2023; Mantziaris et al., 2020). This
functional alignment across disparate implementations exempli�es how survival circuits
can be identi�ed not solely by anatomy, but mainly by their role in resolving core biolog-
ical imperatives, as fundamental as locomotion.

Survival circuits can be grounded in shared functional roles of behavioral patterns
across species. Foraging is a prime example: despite anatomical di�erences, the core logic
� linking energy de�cits to exploratory behavior � remains identical. This aligns with
Dynamic Energy Budget (DEB) theory, which identi�es food acquisition as a universal
mechanism for energy assimilation, independent of morphology or phylogeny (Kooijman,
2010). Another paradigmatic case is sleep/quiescence � a behavioral oscillation regulated
jointly by circadian and homeostatic drives, and observed across phylogenetically distant
species. Despite anatomical di�erences, core mechanisms such as sleep pressure accumula-
tion and arousal thresholds remain broadly similar (Brown et al., 2012; Fuller et al., 2006;
Holland, 2018).

The existence of such analogously organized, evolutionarily converging functional mod-
ules supports the view that survival circuits are not idiosyncratic to speci�c species or
brains, but form core constituents of living systems at large and are suitable for modeling
behavior across biological taxa. As Klein and Barron (Klein and Barron, 2024) observe,

9



1 Integrative perspectives on the study of behavior

each such subsystem corresponds to a distinct computational architecture with su�cient
autonomy to de�ne a lineage's behavioral repertoire.

From a modeling perspective, the dissection of behavior into parallel survival circuits
o�ers a tractable yet holistic approach. Each such circuit constitutes a teleologically closed
unit: it interprets its own de�cits, sets its own goals, and recruits its own means of resolu-
tion. This autonomy renders it both functionally coherent and normatively self-regulated,
allowing researchers to model rich, biologically grounded behavior without reconstructing
the entire organismal repertoire.

Moreover, this framework provides a way to reconceptualize composite behavioral cat-
egories. Instead of treating terms like �aggression� or �attention� as unitary constructs,
one can parse them by the survival circuit in which they operate (Hommel et al., 2019).
For example, aggression toward prey, mates, or predators corresponds to distinct moti-
vational and a�ective regimes � energy acquisition, reproduction, or defense, respectively
� and likely recruits di�erent neural substrates although expressed similarly in terms of
behavior (Ledoux and Daw, 2018).

In conclusion, the coexistence of multiple survival circuits entails a horizontal modu-
larity in behavioral control: distinct subsystems operate in parallel, each with its intrinsic
homeostatically-grounded motivation, regulatory loop and behavioral footprint. Although
they may interact or compete for bodily resources and behavioral expression, each retains
functional and motivational autonomy. This horizontal structure complements the vertical
layering of control described in the next section, which governs prioritization, suppression,
and integration of the neural and behavioral components within and across these circuits.

1.2.2 Neurorobotics and hierarchical control architectures

A central feature of biological control is its layered organization � a functional hierarchy
that emerges through both evolution and development. Rather than being composed of
�at, centralized processors, nervous systems appear to be strati�ed into interacting levels,
where newer structures modulate, override, or subsume the activity of more primitive
ones7.

An in�uential formulation of this idea in robotics was Brooks' subsumption architec-
ture, which challenged classical cognitivist models8 by showing that complex behavior can
emerge from the hierarchical coordination of simple behavioral modules (Brooks, 1986).
In this architecture, higher-order processes inhibit or modulate lower ones to produce
adaptive responses without relying on internal world models. Control structures emerge

7This idea, often referred to as �Jacksonian dissolution� was �rst proposed by John Hughlings Jackson
in the late 19th century. He argued that higher nervous functions evolved by building upon more basic
ones, and that neurological damage reveals this hierarchy through the sequential unmasking of lower
re�exes (Jackson, 1884).

8Cognitivist models in classical Arti�cial Intelligence and psychology typically posit that perception,
planning, and action occur in sequential stages mediated by symbolic representations of the world. Brooks'
approach rejected this representational bottleneck in favor of direct perception � action coupling.
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through constraint closure : early-developing substrates constrain the space in which later
layers self-organize, while higher cortical systems in turn re�ne and modulate lower ones
(Wilson and Prescott, 2022). This mutual constraint, observed in both phylogeny and on-
togeny, accounts for the robust and adaptive nature of layered control. Building on these
ideas, Prescott et al. (Prescott et al., 1999) developed biologically grounded control archi-
tectures that mirror the strati�ed organization of the vertebrate nervous system. These
insights laid the foundation for behavior-based robotics, where layered control enables
situated agents to respond �exibly and robustly to their environment.

Developmental and evolutionary accounts further support the idea that functional hi-
erarchy re�ects neuroanatomy. Vertebrate nervous systems exhibit a similar strati�cation:
spinal circuits govern re�exive withdrawal, hindbrain structures mediate startle responses,
midbrain and hypothalamus orchestrate species-speci�c defensive reactions, and cortical
areas modulate or suppress these outputs depending on context and internal state. A well-
studied case is mammalian defensive behavior, schematized in Figure 4, where behavioral
control spans from sensory input to motor and hormonal output, with progressively more
abstract or deliberative mediation at higher levels (Prescott et al., 1999).

Figure 4: Subsumption architecture of mammalian defensive behaviors. Behavioral

control is hierarchically layered in nested sensorimotor loops, involving increasingly

complex neural structures and governing progressively more abstract or context-

sensitive responses. Reproduced from Prescott et al., 1999.

Beyond descriptive similarity, such hierarchies have been formalized as functional ar-
chitectures. The Distributed Adaptive Control (DAC) framework, for example, posits
three core levels � reactive, adaptive, and contextual � that mirror both neuroanatomical
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substrates and computational roles (Verschure, 2012). It has been implemented in neuro-
robotic agents, enabling integration of low-level perception�action loops with higher-order
planning and internal modeling.

These frameworks can be further uni�ed by aligning them with developmental and
evolutionary taxonomies. As discussed in Table 1, Dennett's evolutionary classi�cation of
minds, LeDoux's taxonomy of defensive behavior, and Verschure's control layers converge
on a shared hierarchy of increasing abstraction. Each layer builds upon those below,
adding representational depth and temporal foresight � a hierarchy that is re�ected in the
anatomical layering of the brain and recapitulated in ontogeny.

Cognitive Evolution

(D. Dennett)

Behavioral Taxonomy

(J. LeDoux)

Cognitive Hierarchy

(P. Verschure)

2*Darwinian Re�exive Soma

Reactive Reactive

2*Skinnerian Habitual 2*Adaptive

Action�Outcome

contingencies

Popperian Subconsciously

deliberative

2*Contextual

Gregorian Consciously

deliberative

Table 1: The cognitive�behavioral hierarchy. Cognitive evolutionary grades by D.

Dennett. A behavioral taxonomy of defensive behaviors by J. LeDoux. The layers of a

general cognitive architecture by P. Verschure.

Importantly, emotion functions as a modulatory process spanning the control hierarchy,
shaping behavior selection across levels by integrating immediate sensorimotor inputs with
long-term motivational priorities. This modulation helps resolve competing drives and
enables context-sensitive action (Maselli et al., 2023; Ziemke, 2008).

In summary, vertical functional hierarchies � from re�exive to deliberative � are not
just modeling conveniences but biological realities. Their layered logic enables integration
of behavior across levels of abstraction, while remaining grounded in neuroanatomical
structure. This vertical organization complements the horizontal modularity of survival
circuits operating in parallel, discussed in the previous section. Together, these dimensions
de�ne a dual-axis framework of control: one that is structurally grounded, functionally
distinct , and computationally tractable.
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1.2.3 Repertoires, patterns, and taxonomies of behavior

To populate the hierarchical control architectures outlined above with behavior-based
modules, one must specify how structured behavioral repertoires are extracted, formalized,
and integrated into models. This section traces two complementary research programs
that pursue this aim from di�erent angles: one grounded in experimental ethology and
large-scale behavioral data, the other grounded in theoretical classi�cations and formal
ontology9.

Recent advances in imaging, recording, and data processing, such as pose-tracking and
automated annotation tools (see subsection 2.2.1), have enabled the high-throughput cap-
ture of behavior in freely moving organisms in naturalistic or lab conditions. In Drosophila,
for instance, long-term recordings combined with dimensionality reduction techniques have
revealed modular subunits of locomotor behavior � interpreted as stereotyped behavioral
building blocks � whose transitions can be modeled using probabilistic and dynamical sys-
tems frameworks (Berman et al., 2014, 2016; Katsov et al., 2017). Unsupervised clustering
methods have been central in extracting these motifs, bypassing experimenter bias and
enabling the construction of state-transition diagrams that uncover latent organizational
principles.

This data-driven methodology, increasingly formalized under the label of computa-
tional neuroethology, aims to dissect and annotate behavior from time-series data using
tools such as unsupervised learning, manifold embedding, and dynamical systems anal-
ysis (Datta et al., 2019; Mobbs et al., 2021; Robson and Li, 2022). These approaches
provide behavioral decompositions that are not only reproducible but also amenable to
cross-modal alignment with neural activity, thereby serving as a bridge between observed
action and underlying neural substrate. In this way, behavioral microstructure becomes
experimentally tractable, o�ering a bottom-up route for populating modular control ar-
chitectures.

Parallel to these empirical e�orts, conceptual taxonomies have been proposed that
classify behavior based on internal structure, action-outcome dependencies, and degree
of �exibility. In particular, taxonomies rooted in theoretical neuroscience and psychology
distinguish re�exive, reactive, goal-directed, and habitual behaviors, often framed in terms
of the innate-learned spectrum and the nature of stimulus-response coupling (Ledoux and
Daw, 2018). These categories serve not only classi�catory roles but also inform compu-
tational architectures by suggesting distinct layers or modules associated with di�erent
levels of control abstraction.

A further line of formalization stems from ontological work aimed at codifying be-
havioral phenotypes across species. Ontologies such as the Worm Phenotype Ontology,
the Drosophila Phenotype Ontology, and the Neurobehavior Ontology de�ne standardized

9An ontology speci�ed by logical axioms in a formal language. It aims to provide an unbiased foun-
dation for representing reality, guide the development of domain- and application-speci�c ontologies and
avoid conceptual errors in large-scale modeling.
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vocabularies and relationships between behavioral terms, enabling computational queries
and inter-species comparisons (Gkoutos et al., 2012; Osumi-Sutherland et al., 2013; Schin-
delman et al., 2011). These ontologies link behavioral descriptions to genetic, cellular, and
neural substrates, o�ering a conceptual infrastructure for unifying behavior with other bi-
ological data types. While their integration into mechanistic modeling is still limited, they
represent a promising sca�old for cross-disciplinary interoperability.

Despite these advances, challenges remain in capturing temporal organization, inten-
tional binding, and the sequential nature of behavior. Concepts from theoretical biology,
such as operational closure10, have been proposed as tools for de�ning the initiation and
termination conditions of behavioral units � though these require further formalization and
are best treated with caution in empirical contexts. Overall, the convergence of empirical
and formal approaches o�ers a promising pathway for modeling behavioral repertoires in
a biologically grounded yet computationally tractable manner.

10Operational closure refers to a process being de�ned and maintained through its own internal opera-
tions, such that its continuation depends on, and recursively reinforces, its own structure and function.
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2 Holistic behavioral modeling

2 Holistic behavioral modeling

Building on the interdisciplinary landscape outlined in Chapter 1, this chapter shifts focus
from the broader context of behavioral research to the speci�c orientation adopted in
this thesis. It �rst outlines the commitments that motivate a holistic and mechanistic
approach centered on behavior, then it justi�es the choice of the model organism and
behavioral domain as a tractable and illustrative case study, and �nally sets out the
concrete objectives pursued.

2.1 Conceptual commitments

The title Holistic Behavioral Modeling re�ects the convergence of three conceptual com-
mitments. �Holistic� marks a perspective that centers the organism not as a bundle of
parts or isolated mechanisms, but as a uni�ed, situated, and self-regulating system whose
viability is continually at stake. �Behavioral� sets the target of inquiry : normatively
regulated sensorimotor processes at the interface of internal needs and environmental de-
mands. �Modeling� re�ects mechanistic thinking, not simply as a technical method, but
as an epistemological strategy.

This section dives into the philosophical foundation and methodological motivation of
these commitments. First, it outlines what is meant by a holistic view of the organism,
and why such a view is necessary for modeling purposive biological systems. Second, it
frames behavior as a modular, �exible and empirically accessible modeling target. Third,
it motivates the use of mechanistic models as a means of generating explanations: formal
constructs that aim to capture how observed patterns emerge from organized activity
under normative constraints. These commitments shape both the scope and the internal
logic of the modeling work that follows.

2.1.1 What does it mean to think holistically?

Holistic thinking in the life sciences arises from the tradition of holism, which opposes
reductionism not through a vague appeal to �complexity�, but by emphasizing integration,
dynamic organization, and context-dependence over part-based decomposition.

This perspective has gained renewed prominence in what's called the return of the

organism � not as nostalgic metaphor, but as recognition of the organism's central role
in explaining biological agency, purposiveness and reciprocal organism-environment causa-
tion (Baedke et al., 2021; Fábregas-Tejeda et al., 2024). It marks a shift from explanations
rooted solely in genes or networks toward those that treat the organism as a unit of ac-
tion, constraint, and sense-making. This shift is driven by the growing realization that
reductionist methods often overlook the interplay between metabolic, behavioral, and en-
vironmental dynamics. A holistic approach views organisms not as passive carriers of
genetic information, but as autonomous, self-regulating systems that respond adaptively
to their environments.
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This epistemic reframing of the organism also has implications for how scienti�c mod-
els are structured. Whole-organism approaches resist the fragmentation of knowledge
into disciplinary silos � a condition often lamented in contemporary biological research
(Baedke, 2018). Instead of treating molecular biology, neuroscience, and ethology as dis-
crete domains, holistic frameworks seek integrative models that bridge across these levels.

Figure 5: Life processes can be cate-

gorized along internal and interactive

dimensions, forming a nested hierar-

chy from self-maintaining processes to

those that are active, agential, and

adaptive. Behavior is de�ned as a

speci�c class of processes that are me-

chanically articulated and reversible

interactions with the environment.

Reproduced from X. Barandiaran and

Moreno, 2008.

This is not merely a methodological ambition, but
an ontological claim: that the organism itself is the
proper locus of integration. In this light, the idea
of starting from the middle � that is, using the or-
ganism as the conceptual midpoint for organizing
explanation � becomes a principled alternative to
reductive decomposition.

Ultimately, to think holistically is to adopt the
organism as the primary unit of explanation � not
simply because it is complex, but because it anchors
the interplay between functional integration, adap-
tive regulation, and environmental coupling.

2.1.2 Behavior as a modeling anchor

Behavior constitutes a privileged modeling anchor
for biological and arti�cial agents alike. It connects
internal regulation with external engagement and
serves as a tractable unit of analysis across levels �
from sensorimotor control to systemic viability. This
section reframes behavior not as an externally trig-
gered output, but as a temporally extended, adap-
tively modulated, sensorimotor process embedded in
the organizational logic of the system.

Behavior as a process Process-oriented philo-
sophical accounts have attempted to de�ne behavior
as a speci�c kind of process.
Figure 5 summarizes one such proposal, where be-
havior is situated within a nested hierarchy of life
processes, spanning internal and interactive domains
(on further distinction within the behavioral set see
subsection 1.2.3). Behavioral processes di�er from
other adaptive processes (e.g., metabolic regulation) in that they involve the articulation
of a body in direct interaction with the environment. This makes them especially suit-
able for modeling in interaction-focused frameworks, due to their selective deployment
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and functional �exibility. Furthermore they are internally generated and normatively con-
strained: they occur under the pressure of maintaining the system's identity and viability
(X. E. Barandiaran and Egbert, 2014).

Sensorimotor coupling The primary characteristic of behavior is the dynamic coupling
of sensory and motor modalities. From the perspective of enactivist cognitive science, the
brain does not process representations of the world but participates in cycles of percep-
tion and action that stabilize the organism's relation to its surroundings (Di Paolo et
al., 2017). Sensorimotor contingencies emerge through the continuous interplay between
neural dynamics, bodily structure, and environmental features (Buhrmann et al., 2013).
Sensorimotor coupling is thus the operational layer through which internal state regulation
is enacted in real time. Rather than mediating between stimulus and response, it con�g-
ures the system's mode of interaction with the world. Habits, as stabilized sensorimotor
routines, illustrate how repeated interactions shape the topology of the agent's behavioral
landscape (X. E. Barandiaran, 2017).

Temporal structure and operational closure Behavior unfolds as a sequence of
functionally distinct phases, each de�ned by its degree of exclusivity, temporal coupling,
and interruptibility. For example, walking and standing are mutually exclusive, while
chewing can overlap with either. In goal-directed sequences like foraging, transitions
from searching to approaching to feeding are marked by cues indicating phase completion
or disruption. These transitions re�ect a structure of intermediate and �nal closures
� functional endpoints that delimit each interruptible and goal-sensitive subroutine and
guide the progression toward goal satisfaction (X. Barandiaran and Moreno, 2008).

Behavior-based robotics These insights align with the modeling tradition of behavior-
based robotics (see subsection 1.2.2), where behavior is used as the primary unit of simula-
tion and control. In this paradigm, agents perform modular behaviors, each implemented
as a sensorimotor routine with local control logic (X. E. Barandiaran and Chemero, 2009).
Instead of representing goals abstractly, such architectures express functionality through
the emergent organization of low-level behaviors.

This perspective legitimizes behavior as a modeling anchor, not only because it is
empirically accessible, but because it expresses the recursive and embodied nature of au-
tonomous systems. Behavior, in this sense, functions as a modeling pivot between embodi-
ment and normativity, between mechanism and function, supporting both the explanatory
and exploratory roles of theory building.

2.1.3 Modeling as mechanistic explanation

In contemporary behavioral science, computational models serve not only predictive or
classi�catory purposes but increasingly contribute to mechanistic explanation. This shift
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re�ects a broader epistemological orientation: from forecasting outcomes to understanding
the organized structure of the systems that generate them.

Mechanistic models are designed to explain a phenomenon by identifying the relevant
entities, their activities, and the organizational structure that produces the target behav-
ior. According to a widely cited formulation, �a mechanism is a structure performing a
function in virtue of its component parts, component operations, and their organization�
(Bechtel and Abrahamsen, 2005). The explanandum is accounted for by the orchestrated
functioning of these components, which may stand in causal or constitutive relation to
the phenomenon (Craver, 2006). Mechanistic models thus aim to answer �how� ques-
tions by decomposing the system and localizing explanatory responsibility in its internal
architecture.

In this sense, explanation is not equated with empirical adequacy or statistical corre-
lation. It is tied to ontological commitments about what exists and how it interacts. For
a model to be explanatory, it must map its structural assumptions onto plausible mecha-
nisms in the world. This includes specifying component parts, delineating their activities,
and making explicit how their con�guration gives rise to the phenomenon under investi-
gation. Scienti�c explanation, then, is not merely a narrative or summary of observations,
but a structured mapping between explanandum and explanans, grounded in the internal
logic of the modeled mechanism (Kaiser and Krickel, 2017).

This modeling philosophy supports and requires continuous interaction with experi-
mentation. Empirical �ndings inform the speci�cation of mechanistic models, which in
turn generate new testable claims and help re�ne experimental design. This iterative loop
allows modeling and experimentation to act as mutually corrective and generative pro-
cesses. A model that fails to reproduce empirical data may reveal gaps in its assumptions
or point to overlooked causal pathways. Conversely, a model that generates unexpected
behavior may guide researchers toward new observational targets or experimental pertur-
bations.

In addition to their explanatory power, mechanistic models play a crucial hypothesis-
generating role. Unlike statistical models that merely describe or interpolate data, mecha-
nistic models open a structured design space. They allow researchers to explore counterfac-
tual con�gurations � what would happen if certain interactions were removed, modi�ed, or
introduced � and to simulate the consequences of perturbations before these are physically
tested. This capacity makes them indispensable tools for theoretical exploration, particu-
larly in domains where direct experimental access is limited or where system complexity
hinders exhaustive empirical coverage.

To summarize, mechanistic modeling is not a supplement to experimentation but a
distinct and complementary epistemic strategy. It enables explanation by revealing how
phenomena emerge from the organized activity of parts, generates hypotheses by exploring
structural alternatives, and structures scienti�c discourse by making mechanistic assump-
tions explicit and testable. The explanatory strength of such models is not a by-product of
�t-to-data but a function of their internal coherence, plausibility, and capacity to support
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inference about the system's organization.

2.1.4 Grounding the modeling scope

The scope of this modeling approach is de�ned by four principles that operationalize
the preceding commitments and establish the methodological foundation on established
modeling paradigms :

(i) Agent-centered modeling : A holistic approach requires centering the organism as
an integrated unit � internally structured, environmentally embedded, and behaviorally
autonomous. This aligns with ABM, where agents possess internal dynamics and interact
locally to produce system-level patterns.

(ii) Comprehensive behavioral scope : Behavior is modeled across its full hierarchy and
range, from motor primitives to adaptive action sequences. In line with behavior-based
modeling, this repertoire is implemented as a modular, hierarchical control system.

(iii) Cross-timescale integration : Temporally embedded processes � neural, behavioral,
and metabolic � levels are jointly modeled. This supports mechanistic explanation and
re�ects the convergence of neuroscience and ecology around lifespan-level modeling.

(iv) Homeostatic regulation : Behavior is framed as serving the organism's precarious
metabolic organization, enabling it to satisfy normative demands, sustain viability and
advance through developmental stages.

These principles jointly specify a modeling stance focused on the behaving organism
as an embodied, embedded, self-regulated agent.

2.2 Model system and target behavior

This section grounds the modeling approach in a concrete biological context. Rather
than operating with abstract agents, the focus is placed on an organism where behavioral
complexity, internal structure, and experimental access are su�ciently aligned to support
explanatory modeling.

The focus is not only on which organism is modeled, but also on which behavioral
domain. The aim is to capture a process that is structured, state-dependent, and eco-
logically meaningful, while remaining tractable for formalization. What follows is a brief
justi�cation for both the model system and the target behavior chosen.

2.2.1 Why choose the Drosophila larva?

The Drosophila melanogaster larva has emerged as an indispensable model organism at
the intersection of developmental biology, behavioral neuroscience, and computational
modeling. Its utility stems not from simplicity alone, but from a set of properties that
enable an unusually direct mapping between neural circuits, behavior, and physiology.

From a genetic perspective, the larva inherits the powerful molecular toolkit of adult
Drosophila, but with developmental and anatomical properties that simplify experimen-
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tal targeting. Techniques such as the GAL4/UAS binary system (Du�y, 2002) allow for
spatially and temporally precise control of gene expression, enabling circuit-level manipu-
lations including activation, silencing, and ablation of selected neuronal populations (Wu
et al., 2003). These tools are especially e�ective in larvae due to their transparent cu-
ticle, facilitating optical access for imaging and optogenetics. This tractability supports
causal experimentation on the neural basis of behavior at a resolution rarely attainable in
vertebrate models.

A range of specialized tools support the high-resolution tracking and annotation of
Drosophila larval behavior. FTIR-based imaging platforms such as FIM and its multi-
color extension FIM2c enable high-contrast visualization of body-substrate contact (Risse,
Berh, et al., 2017, Risse, Otto, et al., 2017). Multi-modal systems like i2Bot (X. Sun
et al., 2025) and the modular Ethoscope (Geissmann et al., 2017) allow environmental
manipulation and high-throughput recording. Behavioral segmentation and classi�cation
can be performed using machine learning pipelines such as JAABA (Kabra et al., 2013)
and DeepLabCut (Nath et al., 2019). Additional tools focus on developmental annotation,
such as PEDtracker (Schumann and Triphan, 2020) which enables automatic larval staging
along with locomotor pro�ling across instars, or closed-loop experimentation (Tadres and
Louis, 2020). Together, these platforms provide a cohesive infrastructure for quantifying
behavior and validating computational models, forming a critical empirical interface for
computational neuroethology (see subsection 1.2.3).

Perhaps most signi�cantly, the Drosophila larva is one of the very few model organ-
isms for which a near-complete connectome at synaptic resolution has been reconstructed
across the entire central nervous system (Ohyama et al., 2015, Schneider-Mizell et al.,
2016, Winding et al., 2023). This allows for an exceptional level of continuity between
structural connectivity and behavioral modeling. Feeding-related circuits have been par-
ticularly well mapped, revealing how both monosynaptic and polysynaptic sensory inputs
converge onto shared sets of motor and neuroendocrine outputs (Miroschnikow et al., 2018,
Hückesfeld et al., 2021). These include neuromodulatory components such as serotonergic
and peptidergic neurons, making it possible to dissect sensorimotor transformations un-
derlying value-based behaviors at circuit level. Such completeness supports mechanistic
models that integrate sensory topography, circuit motifs, and behavioral function � an
opportunity rarely available in more complex nervous systems.

In comparative context, the larva occupies a productive middle ground. Unlike C.

elegans, which has a fully mapped but minimal neural architecture of around 300 neurons
(Cook et al., 2019), the Drosophila larva possesses approximately 10,000 neurons � enough
to support distributed control, sensory integration, and internal state modulation, yet
still manageable for connectomic reconstruction and functional mapping. Compared to
vertebrates, its short generation time, optical accessibility, and the absence of strict animal
handling regulations � such as those mandated for vertebrate care � make it a more scalable
and accessible system for behavioral experimentation.

This convergence of experimental tractability, behavioral richness, and structural com-
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pleteness a�ords an exceptional continuity between structure and function, experiment
and simulation � making the Drosophila larva an ideal anchor for integrative studies that
span from neural circuits to embodied behavior.

2.2.2 Foraging as a structured behavioral process

The Drosophila larva exhibits a compact yet functionally rich behavioral repertoire that
enables it to adaptively navigate complex, semi-structured environments. Core behaviors
include chemotaxis, thermotaxis, phototaxis, anemotaxis, mechanosensory avoidance, and
local exploration, all orchestrated through a small number of identi�able sensorimotor
primitives, such as intermittent crawling and lateral bending in a head casting or weath-
ervaning mode (Humberg et al., 2018, Jovanic et al., 2019, Hernandez-Nunez et al., 2021).

Foraging behavior in particular involves the interplay of navigational strategies with ex-
ploitative feeding behavior. Larvae switch between di�erent exploration modes depending
on stimulus reliability and internal state: local or expanded exploration, substrate sam-
pling, or gradient detection and following � strategies that echo gradient-based navigation
in �ies and bees, and short-range trail tracking as seen in ants. (Tastekin et al., 2018, X.
Sun et al., 2020, Paisios et al., 2017). These actions are not mere re�exes but components
of a temporally extended decision-making process, shaped by recent experience, metabolic
state and structured spatial dynamics.

Recent work has shown that internal states such as satiety, arousal, or developmental
stage con�gure both stimulus sensitivity and motor output (Vogt et al., 2021,Zhu et al.,
2021). For example, hungry larvae increase turning frequency and extend search duration
in odor-sparse conditions, a pattern that has been reproduced in embodied computational
models of foraging (Ma�ei et al., 2015, Adden et al., 2022).

The ethological richness and algorithmic structure of larval foraging make it particu-
larly well-suited for generative modeling. Unlike stereotyped behaviors, foraging reveals
the larva's capacity for adaptive sequencing, contextual switching, and sensory-driven ac-
tion selection. This makes it an ideal target for studying how embodied agents can operate
in dynamic environments while balancing exploration and exploitation according to their
metabolic needs.

Crucially foraging will not be treated here as a behavior optimized in evolutionary
time, along the lines of optimal foraging theory11. Rather it will be regarded as a process
under normative homeostatic control that has to be �good enough� to promote viability
in precarious conditions.

11Optimal foraging theory is a behavioral ecology model that helps predict how an animal behaves
when searching for food. It posits that animals adopt foraging strategies that maximize net energy gain
by optimizing the trade-o� between energy obtained and the time and energy spent obtaining it, within
environmental constraints.
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2.3 Objectives of the thesis

The overall thesis scope unfolds across three objectives:

(i) Design of the Behavioral Architecture - Dynamic Energy Budget (BA-DEB) framework
for Drosophila larva foraging

(ii) Implementation of BA-DEB in Larvaworld, a simulation and analysis platform

(iii) Development of standalone mechanistic models of Drosophila larva behavioral domains

In what follows each of these objectives will be brie�y described.

Framework design At the conceptual level the thesis proposes a structured compu-
tational architecture that captures the hierarchical organization of behavior in a behav-
ing organism. This BA formalizes behavior as the output of nested sensorimotor loops,
from low-level motor primitives to mid-level reactive behaviors and high-level adaptive
modulation. It provides a modular, extensible framework for simulating complex, state-
dependent behavior in closed-loop environments. The architecture supports integration of
diverse models � neural, statistical, or rule-based � into a coherent whole-organism sys-
tem. To anchor behavioral control in physiological constraint, the BA is coupled with a
DEB model that supplies an internal hunger/satiety signal derived from simulated energy
dynamics. This bidirectional coupling enables the study of behavior as a homeostatically
regulated process. The resulting BA-DEB framework serves as a concrete, generative plat-
form for embedding and comparing mechanistic hypotheses across levels of organization
and timescales.

Software implementation The BA-DEB framework is implemented in Larvaworld,
an open-source simulation and analysis platform designed to foster collaboration between
experimentalists and modelers. Larvaworld supports agent-based simulations in closed-
loop settings, where virtual larvae � as BA-DEB agents � interact dynamically with their
environment. The platform includes standardized pipelines for data analysis and mod-
ular modeling components that can be adapted across organisms. It allows for direct
comparisons between real and simulated behavior, thereby enabling empirical validation
and model re�nement. Designed with usability and educational value in mind, it aims to
minimize technical barriers and promote methodological convergence across disciplinary
boundaries, o�ering a shared workspace for developing, testing, and communicating be-
havioral models.

Standalone mechanistic models The thesis also presents some standalone mechanis-
tic models targeting distinct, previously overlooked domains of Drosophila larva behavior.
Two of them are presented in detail, each advancing a novel mechanistic hypotheses, while
additional contributions are brie�y summarized in the context of collaborative research
e�orts. First, a stochastic network model capturing the alternation between activity and
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rest observed in freely moving larvae. This model reproduces key statistical regularities
and suggests a mechanistic hypothesis for behavioral intermittency. Second, a coupled-
oscillator model addressing the interaction between forward crawling and lateral bending.
Based on kinematic analysis showing that these motor primitives are not independent, it
attributes their interference to biomechanical constraints. These two components are ulti-
mately brought together in the intermittent coupled-oscillator model for larva locomotion.
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Part II

Original research

This part of the thesis presents original research conducted during the doctoral project.
The core of this work is presented in the form of three �rst-author studies, which are
attached in their original format and constitute Chapters 3, 4 and 5. These chapters
correspond to the following papers:

� A plausible mechanism for Drosophila larva intermittent behavior, (Sakagiannis et
al., 2020) (Chapter 3),

� A behavioral architecture for realistic simulations of Drosophila larva locomotion
and foraging, (Sakagiannis, Jürgensen, and Nawrot, 2025) (Chapter 4),

� Larvaworld : A behavioral simulation and analysis platform for Drosophila larva,
(Sakagiannis, Rapp, et al., 2025) (Chapter 5).

In addition, selected co-authored studies are summarized in Chapter 6. These collaborative
works correspond to the following papers:

� Prediction error drives associative learning and conditioned behavior in a spiking
model of Drosophila larva, (Jürgensen et al., 2024) (section 6.1),

� Evolution of temperature preference behaviour among Drosophila larvae, (Ka�e et
al., 2025) (section 6.2),

� Feeding-state dependent neuropeptidergic modulation of reciprocally interconnected
inhibitory neurons biases sensorimotor decisions in Drosophila, (de Tredern et al.,
2024) (section 6.3).

The chapter and section titles are identical to the original titles of the corresponding stud-
ies. Each study � attached or summarized � is preceded by a page containing bibliographic
metadata and a statement of author contributions. For the collaborative works, a brief
note of the author's personal involvement is included. Note that since the full papers are
attached in their original format, the reader will observe di�erences in typesetting, section
structure, and page numbering between these chapters and the rest of the thesis, as well
as reference link malfunctioning. Also, the bibliography of these papers is separate and
not included in the thesis' bibliography.
The three papers, presented in full, constitute the core research work of the thesis, forming
a coherent progression from mechanistic hypothesis generation to architectural design and
software implementation. The contributions to collaborative works re�ect the interdisci-
plinary outreach of the thesis and embody its broader orientation toward integration and
collaboration across scienti�c domains. Collectively, the research presented in this part
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will be revisited and contextualized in Part III with respect to the overarching objectives
outlined in section 2.3 and integrated into a uni�ed discussion of modeling principles,
explanatory strategies, and future directions.
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Abstract. The behavior of many living organisms is not continuous.
Rather, activity emerges in bouts that are separated by epochs of rest,
a phenomenon known as intermittent behavior. Although intermittency
is ubiquitous across phyla, empirical studies are scarce and the under-
lying neural mechanisms remain unknown. Here we reproduce empiri-
cal evidence of intermittency during Drosophila larva free exploration.
Our findings are in line with previously reported power-law distributed
rest-bout durations while we report log-normal distributed activity-bout
durations. We show that a simple conceptual stochastic model can tran-
sition between power-law and non-power-law distributed states and we
suggest a plausible neural mechanism for the alternating rest and ac-
tivity in the larva. Finally, we discuss possible implementations in be-
havioral simulations extending spatial Levy-walk or coupled-oscillator
models with temporal intermittency.

Keywords: larva crawling · Levy-walks · neuronal avalanches.

1 Introduction

The search for statistical regularities in animal movement is a predominant fo-
cus of motion ecology. Random walks form a broad range of models that assume
discrete steps of displacement obeying defined statistical rules and acute reori-
entations. A Levy walk is a random walk where the displacement lengths and
the respective displacement durations are drawn from a heavy-tailed, most often
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a power-law distribution. When considered in a 2D space reorientation angles
are drawn from a uniform distribution. This initial basic Levy walk has been
extended to encompass distinct behavioral modes bearing different go/turn pa-
rameters, thus termed composite Levy walk. Levy walks have been extensively
studied in the context of optimal foraging theory. A Levy walk with a power-law
exponent between the limit of ballistic (α = 1) and brownian motion (α = 3)
yields higher search efficiency for foragers with an optimum around α = 2 when
search targets are patchily or scarcely distributed and detection of a target halts
displacement (truncated Levy walk) [5].

Nevertheless, the underlying assumption of non-intermittent movement flow
of Levy walk models complicates the identification of the underlying genera-
tive mechanisms as they focus predominantly on reproducing the observed tra-
jectories, neglecting the temporal dynamics of locomotory behavior. Therefore,
Bartumeus (2009) stressed the need for a further extension termed intermittent
random walk, emphasizing the integration of behavioral intermittency in the
theoretical study of animal movement [2]. Here we aim to contribute to this goal
by studying the temporal patterns of intermittency during Drosophila larva free
exploration in experimental data and conceptual models, bearing in mind that
power-law like phenomena can arise from a wide range of mechanisms, possibly
involving processes of different timescales [5]. While our study remains agnostic
towards whether foragers really perform Levy walks - a claim still disputed [5]
- we suggest that intrinsic motion intermittency should be taken into account
and the assumption of no pauses and acute reorientations should be dropped in
favor of integrative models encompassing both activity and inactivity.

Drosophila larva is a suitable organism for the study of animal exploration
patterns and the underlying neural mechanisms. A rich repertoire of available
genetic tools allows acute activation, inhibition or even induced death of specific
neural components. Crawling in 2D facilitates tracking of unconstrained behav-
ior. Also, fruit flies during this life stage are nearly exclusively concerned with
foraging. Therefore a food/odor-deprived environment can be largely considered
stimulus-free, devoid of reorientation or pause sensory triggers, while target-
detection on contact can be considered certain. Truncated spatial Levy-walk
patterns of exploration with exponents ranging from 1.5 to near-optimal 1.96
that hold over at least two orders of magnitude have been previously reported
for the Drosophila larva. The turning-angle distribution, however, was skewed
in favor of small angles and a quasi-uniform distribution was observed only for
reorientation events ≥ 50◦ [9,8]. Moreover, it has been shown that these pat-
terns arise from low-level neural circuitry even in the absence of sensory input
or brain-lobe function and have therefore been termed ‘null movement patterns’
[9,8].

Previous studies on larva intermittent locomotory behavior have concluded
that the distribution of durations of rest bouts is power-law while that of activity
bouts has been reported to be exponential [12] or power-law [8]. Genetic inter-
vention has revealed that dopamine neuron activation affects the activity/rest
ratio via modulation of the power-law exponent of the rest bouts, while the dis-
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tribution of activity bouts remains unaffected. This observation hints towards a
neural mechanism that generates the alternating switches between activity and
rest where tonic modulatory input from the brain regulates the activity/rest
balance according to environmental conditions and possibly homeostatic state.

Here we analyze intermittency in a large experimental dataset and present a
conceptual model that generates alternation between rest and activity, capturing
the empirically observed power-law and non-power-law distributions. We discuss
a plausible neural mechanism for the alternation between rest and activity and
the regulation of the animal’s activity/rest ratio via modulation of the rest-
bout power-law exponent by top-down modulatory input. Our approach seeks
to elaborate on the currently prevailing view that these patterns result from
intrinsic neural noise [8].

2 Materials and Methods

2.1 Experimental dataset

We use a larva-tracking dataset available at the DRYAD repository, previously
used for spatial Levy-walk pattern detection [9]. The dataset consists of up to one
hour long recordings of freely moving larvae tracked as a single point (centroid)
in 2D space. We consider three temperature-sensitive shibirets fly mutants allow-
ing for inhibition of mushroom-body (MB247),brain-lobe/SOG (BL) or brain-
lobe/SOG/somatosensory (BLsens) neurons and an rpr/hid mutant line inducing
temperature-sensitive neuronal death of brain-lobe/SOG/somatosensory (BLsens)
neurons. Each mutant expresses a different behavioral phenotype when activated
by 32◦-33◦ C temperature. We compare phenotypic behavior to control behav-
ior in non-activated control groups. A reference control group has been formed
consisting of all individuals of the four 32◦-33◦ C control groups (Tab. 1).

Table 1. Dataset description and empirical results for rest/activity bout analyses.

For the present study recordings longer than 1024 seconds have been selected.
Instances where larvae contacted the arena borders were excluded. The raw
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time series of x,y coordinates have been forward-backward filtered with a first-
order butterworth low-pass filter of cutoff frequency 0.1 Hz before computing the
velocity. The cutoff frequency was selected as to preserve the plateaus of brief
stationary periods while suppressing the signal oscillation due to peristaltic-
stride cycles. Velocity values ≥ 2.5 mm/sec have been discarded to account for
observed jumps in single-larva trajectories that are probably due to technical
issues during tracking. This arbitrary threshold was selected as an upper limit
for larvae of length up to 5mm, crawling at a speed of up to 2 strides/sec with
a scaled displacement per stride of up to 0.25.

2.2 Bout annotation and distribution

In order to designate periods of rest and activity we need to define a suitable
threshold Vθ in the velocity distribution as in [12]. We used the density estima-
tion algorithm to locate the first minimum Vθ = 0.085mm/sec in the velocity
histogram of the reference control group. A rest bout is then defined as a period
during which velocity does not exceed Vθ. Rest bouts necessarily alternate with
periods termed activity bouts. The bout annotation method is exemplified for a
single larva track in Fig. 2.

To quantify the duration distribution of the rest and activity bouts we used
the maximum likelihood estimation (MLE) method to fit a power-law, an expo-
nential and a log-normal distribution for each group as well as for the reference
control group. Given the tracking framerate of 2 Hz and the minimal tracking
time of 1024 seconds, we limited our analysis to bouts of duration 21 to 210 sec-
onds. The Kolmogorov-Smirnov distance DKS for each candidate distribution
was then computed over 64 logarithmic bins covering this range. Findings are
summarized in Tab. 2 for the rest bouts and in Tab. 3 for the activity bouts.

3 Results

The results section is organized as follows. Initially we present a simple concep-
tual two-state model transitioning autonomously between power-law and non-
power-law regimes. Next we attempt to reproduce existing findings [12] by study-
ing intermittency during larva free exploration in a different dataset [9]. Finally
we compare mutant and control larva phenotypes in the context of intermittency.

3.1 Network model of binary units reproduces larval statistics of
intermittent behavior

Previous work on Drosophila larva intermittent behavior reported that rest-bout
durations are power-law distributed while activity-bout durations are exponen-
tially distributed [12]. Our first contribution is to define a simple model display-
ing how this dual regime might emerge.

We define a kinetic Ising model with N = 1000 binary neurons, with homo-
geneous all-to-all connectivity (Fig. 1A). Each neuron i is a stochastic variable
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with value si(t) at time t that can be either 1 or 0 (active or inactive). We as-
sume that this neuron population inhibits behaviour, so that when

∑
i si(t) > 0

the larva is in the rest phase, and otherwise the larva remains active .

A si

σ
Rest, if Σsi >0{Active, otherwise

B
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Fig. 1. Probability distribution of the duration d of rest and activity phases in a branch-
ing process model of σ = 1, simulated over 105 occurrences of each phase. Duration is
measured as the number of updates until a phase is ended. Unit activation si(t) prop-
agates to neighbouring units creating self-limiting avalanches. In the rest phase, when∑

i
si(t) > 0, the system yields a power law distribution with exponent α ≈ 2. In the

activity phase, when
∑

i
si(t) = 0, one unit of the system is activated with probability

µ = 0.01, yielding an exponential distribution with coefficient λ = 0.1.

At time t + 1, each neuron’s activation rate is proportional to the sum of
activities at time t, and will be activated with a linear probability function
pi(t+1) = σ

N

∑
j sj(t)+ µ

N . Here, σ is the propagation rate, which indicates that
when a node is active at time t, it propagates its activation at time t+1 on average
to σ other neurons. When one neuron is activated, this model behaves like a
branching process [10], with σ as the branching parameter. If σ < 1, activity
tends to decrease rapidly until all units are inactive while, if σ > 1, activity
tends to be amplified until saturation. At the critical point, σ = 1, activity is
propagated in scale-free avalanches, in which duration d of an avalanche once
initiated follows a power-law distribution P (d) ∼ d−α (Fig. 1B, left), governed
by a critical exponent (α = 2 at the N → ∞ limit) describing how avalanches
at many different scales are generated.

When an avalanche is extinguished, the system returns to quiescence which
is only broken by the initiation of a new avalanche. With a residual rate µ = 0.01
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the system becomes active by firing one unit and initiating a new avalanche. In
this case the duration of quiescence bouts (the interval between two consecutive
avalanches) follows an exponential distribution (Fig. 1B, right).

This simple conceptual model alternates autonomously between avalanches
of power-law distributed durations and quiescence intervals of exponentially
distributed durations. This alternation between power-law and non-power-law
regimes can serve as a basic qualitative model of the transition between rest and
activity bouts in the larva (cf. Discussion).

3.2 Parameterization of larval intermittent behavior

We analyzed intermittent behavior during larval crawling in a stimulus-free en-
vironment (cf. Materials and Methods for dataset description). Each individual
larva was video-tracked in space (Fig. 2A). From the time series of spatial coordi-
nates we computed the instantaneous velocity and determined a threshold value
(Fig. 2B) that separates plateaus of continued activity (activity bouts) from
epochs of inactivity (rest bouts, Fig. 2C-D) following the analyses suggested in
[12].

A

B

C

D

Fig. 2. Bout annotation methodology. A. Individual larva trajectory. Spatial scale and
recording duration are noted. B. Velocity distribution for the single larva. The threshold
obtained from the reference group, used for rest vs activity bout annotation is denoted
by the arrow. C. The entire velocity time series of the larva. Rest and activity bouts are
indicated by different background colors. D. Magnification of the velocity time series.

We start out with the analysis of experimental control groups that were not
subjected to genetic intervention. As a first step we computed the number of
occurrences of rest and activity bouts and the activity ratio, which quantifies
the accumulated activity time as fraction of the total time (Tab. 1). For the
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reference control group we obtain an activity ratio of 0.83 albeit with a fairly
large variance across individuals.

For the duration distribution of rest bouts we find that it is best approxi-
mated by a power-law distribution in all six control groups (Tab. 2) confirming
previous results on independent datasets [12,8]. The empirical duration distribu-
tion of rest-bouts across the reference control group is depicted in Fig. 3 A (red
dots). Again, the power law provides the best distribution fit. The exponent α
of the power law ranges from 1.514 to 1.938 with α = 1.598 for the reference
control group.
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Fig. 3. Probability density of rest and activity bout durations for the reference control
group. Dots stand for probability densities over logarithmic bins. Lines are the best
fitting power-law, exponential and log-normal distributions. The thick line denotes the
distribution having the minimum Kolmogorov-Smirnov distance DKS (Tab. 2 - 3).

When analyzing the durations of activity bouts we found that these are best
approximated by a log-normal distribution in all groups (Tab. 3). This result is
surprising as previous work suggested the mode of an exponential distribution
[12]. For the reference control group Fig. 3 B compares the empirical duration
distribution of activity bouts with the fits of the three distribution functions.

3.3 Modification of rest and activity bout durations in mutant flies

Behavioral phenotypes in genetic mutants could help identify brain neuropiles
in the nervous system of Drosophila larva that are involved in the generation of
intermittent behavior, or that have an effect on its modulation. To this end we an-
alyzed 4 experimental groups where genetic intervention was controlled by tem-
perature either via the temperature-sensitive shibire protocol or via temperature-
induced neuronal death (rpr/hid genotype).

Interestingly, genetic intervention can have a large effect on the activity ra-
tio. When inactivating sensory neurons and to a lesser extend the mushroom
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body the activity ratio is decreased (cf. BLsens > rpr/hid, MB247 > shits and
BLsens > shits in Tab. 1). Inspection of the empirical duration distribution of
rest bouts in Fig. 4 (first and third columns) shows that while the power-law fit
is superior for all control groups, the log-normal fit approximates best the re-
spective mutant distribution in 3 out of 4 cases (cf. MB247 > shits, BL > shits

and BLsens > shits in Tab. 2. This might hint impairment of the power-law
generating processes due to neural dysfunction. In the fourth case of BLsens
> rpr/hid the power-law is preserved but shifted to higher values. Regard-
ing activity, the empirical distributions indicate that overall the activity epochs
are severely shortened in time for both the BLsens > rpr/hid and the BLsens
> shits mutants in comparison to the respective control groups (second and
fourth columns).

Table 2. Distribution parameter fits of empirical rest bout duration. The relevant
parameters for the best fitting distribution are indicated in bold text.

Table 3. Distribution parameter fits of empirical activity bout duration. The relevant
parameters for the best fitting distribution are indicated in bold text.
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Fig. 4. Probability density of rest and activity bout durations for control and activated
mutant genotypes. In the first two diagram pairs mutants are plotted against their
single respective controls. In the fourth pair the rest two mutants are plotted with their
4 control groups shown in the third diagram pair. Dots stand for probability densities
over logarithmic bins. Lines indicate the distribution with the lowest Kolmogorov-
Smirnov distance DKS among the best fitting power-law, exponential and log-normal
distributions for each group (Tab. 2 - 3).

4 Discussion

As most neuroscientific research focuses either on static network connectivity or
on neural activation/inhibition - behavior correlations, an integrative account
of how temporal behavioral statistical patterns arise from unperturbed neural
dynamics is still lacking. In this context, we hope to contribute to scientific dis-
covery in a dual way. Firstly by extending existing mechanistic hypothesis for
larva intermittent behavior and secondly by promoting the integration of inter-
mittency in functional models of larval behavior. In what follows we elaborate
on these goals and finally describe certain limitations of our study.

4.1 Self-limiting inhibitory waves might underlie intermittent
crawling and its modulation

The neural mechanisms underlying intermittency in larva behavior remain partly
unknown. Displacement runs are intrinsically discretized, comprised of repeti-
tive, stereotypical peristaltic strides. These stem from segmental central pattern
generator circuits (CPG) located in the ventral nerve chord, involving both exci-
tatory and inhibitory premotor neurons and oscillating independently of sensory
feedback [7]. A ‘visceral pistoning’ mechanism involving head and tail-segment
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synchronous contraction underlies stride initiation [4]. Speed is mainly controlled
via stride frequency [4].Crawling is intermittently stopped during both stimulus-
free exploratory behavior and chemotaxis, giving rise to non-stereotypical sta-
tionary bouts during which reorientation might occur. During the former they
are intrinsically generated without need for sensory feedback or brain input
[9], while during the latter an olfactory-driven sensorimotor pathway facilitates
cessation of runs when navigating down-gradient. Specifically, inhibition of a
posterior-segment premotor network by a sub-esophageal zone descending neu-
ron deterministically terminates runs allowing easier reorientation [11].

It is reasonable to assume that this intermittent crawling inhibition is under-
lying both free exploration and chemotaxis, potentially in the form of transient
inhibitory bursts. A neural network controlling the CPG through generation of
self-limiting inhibitory waves is well suited for such a role. In the simplest case,
during stimulus-free exploration, the durations of the generated inhibitory waves
should follow a power-law distribution, behaviorally observed as rest bouts. In
contrast, non-power-law distributed quiescent periods of the network would dis-
inhibit locomotion allowing the CPG to generate repetitive peristaltic strides
resulting in behaviorally observed runs.

The model we presented (cf. 3.1) alternates autonomously between avalanches
of power-law distributed durations and quiescence intervals of exponentially dis-
tributed durations without need for external input. Therefore it can serve as
a theoretical basis for the development of both generative models that repro-
duce the intermittent behavior of individual larvae and of the above mechanis-
tic hypothesis for the initiation and cessation of peristaltic locomotion in the
larva through disinhibition and inhibition of the crawling CPG respectively. To
uncover the underlying neural mechanism and confirm/reject our hypothesis,
inhibitory input to the crawling CPG should be sought and correlated to behav-
iorally observed stride and stride-free bouts during stimulus-free exploration.

Intermittent behavior in the Drosophila larva is subject to two modes of mod-
ulation, neither of which affects the distribution of the activity bouts. Firstly,
high ambient temperature and daylight raise the activity ratio over long timescales
by raising the number of activity bouts [12]. This is achieved by lowering the
probability of the extremely long rest bouts, without affecting the power-law
exponent of the distribution, which coincides with fewer sleep events (> 5 min-
utes) observed during the day. This modulation is long-lasting and could result
from a different constant tonic activation of the system. Secondly, dopamine
neuron activation raises the activity ratio acutely by modulation of the power-
law exponent upwards [12] skewing locomotion towards the brownian limit. This
modulation could be transient in the context of salient phasic stimulation by the
environment. As mentioned above, during chemotaxis larvae perform more and
sharpest reorientations, terminating runs when navigating down-gradient. A hy-
pothesis integrating both experimental findings could be then that this behavior
stems from transient olfactory-driven dopaminergically-modulated inhibition of
the crawling CPG. Our conceptual model can be extended to address the above
claims by adding tonic and/or phasic input.
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4.2 Intermittency can extend functional models of larva locomotion

Traditional random walk models fail to capture the temporal dynamics of ani-
mal exploration [5]. Even when time is taken into account in terms of movement
speed, reorientations are assumed to occur acutely. Integrating intermittency
can address this limitation allowing for more accurate functional models of au-
tonomous behaving agents. Such virtual agents can then be used in simulations of
behavioral experiments promoting neuroscientifically informed hypothesis that
advance over current knowledge and generate predictions that can stimulate
further empirical work [1].

It is widely assumed that Drosophila larva exploration can be descibed as
a random walk of discrete non-overlapping runs and reorientations/head-casts
[9] or alternatively that it is generated by the concurrent combined activity of
a crawler and a turner module generating repetitive oscillatory forward peri-
staltic strides and lateral bending motions respectively and possibly involving
energy transfer between the two mechanical modes [3,13,6]. Both models can
easily be upgraded by adding crawling intermittency which might or might not
be independent of the lateral bending mechanism. In the discrete-mode case,
intermittency can simply control the duration and transitions between runs and
head-casts or introduce a third mode of immobile pauses resulting in a temporally
unfolding random walk. In the overlapping-mode case the two modules are com-
plemented by a controlling intermittency module forming an interacting triplet.
Depending on the crawler-turner interaction and the effect of intermittency on
the turner module, multiple locomotory patterns emerge including straight runs,
curved runs, stationary head-casts and immobile pauses. This simple extension
would allow temporal fitting of generative models to experimental observations
in addition to the primarily pursued spatial-trajectory fitting, facilitating the
use of calibrated virtual larvae in simulations of behavioral experiments.

4.3 Limitations

A limitation of our study is that due to the single-spinepoint tracking, it is im-
possible to determine whether micro-movements happen during the designated
inactivity periods, an issue also unclear in [12]. It follows that in both the anal-
ysed dataset and in [12], immobile pauses, feeding motions and stationary head
casts are indistinguishable. Therefore, what we define as rest bouts should be
considered as periods lacking at least peristaltic strides, not any locomotory
activity whatsoever. Our relatively low velocity threshold Vθ = 0.085mm/sec
though allows stricter detection of rest bouts as it is evident from the higher ac-
tivity ratio (higher than 0.7 in most control groups in comparison to lower than
0.25 in [12]). To tackle this, trackings of higher spatial resolution with more
spinepoints tracked per larva are needed, despite the computational challenge of
the essentially long recording duration.

Also, our results show that an exponential distribution of activity bouts
[12] might not always be the case, as we detected lognormal long-tails in all
cases. Still, the exponential-power-law duality in our model illustrates switching
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between independent and coupled modes of neural activity. Substituting the
exponential regime by other long-tailed distribution such as log-normal might
require assuming more complex interactions between the switching regimes and
will be pursued in the future so that generative models of the data can be fit.
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Abstract

The Drosophila larva is extensively used as model organism in neuroethological studies
where precise behavioral tracking enables the statistical analysis of individual and
population-level behavioral metrics that can inform mathematical models of larval behavior.
Here, we propose a hierarchical model architecture comprising three layers to facilitate
modular model construction, closed-loop simulations, and direct comparisons between
empirical and simulated data. At the basic layer, the autonomous locomotory model is
capable of performing exploration. Based on novel kinematic analyses our model features
intermittent forward crawling that is phasically coupled to lateral bending. At the second
layer, navigation is achieved via active sensing in a simulated environment and top-down
modulation of locomotion. At the top layer, behavioral adaptation entails associative
learning. We evaluate virtual larval behavior across agent-based simulations of autonomous
free exploration, chemotaxis, and odor preference testing. Our behavioral architecture is
ideally suited for the modular combination of neuromechanical, neural or mere statistical
model components, facilitating their evaluation, comparison, extension and integration into
multifunctional control architectures.
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Introduction

Drosophila larvae express a fairly tractable behavioral repertoire that is consistent across the 4-5
days of the larval life stage (Almeida-Carvalho et al., 2017     ). Most of the larval lifetime is
dedicated to foraging for suitable nutrients while avoiding threats via stereotyped evasive
behaviors. Behavioral control is achieved via neural circuits conserved throughout development
(Gerhard et al., 2017     ), that span the entire tripartite CNS consisting of the brain, the
subesophageal zone (SEZ) and the ventral nerve cord (VNC), making the larva a formidable system
for studying control, execution and adaptation of behavior (Zarin et al., 2019     ; Jovanic, 2020     ;
Eschbach and Zlatic, 2020     ; Imambocus et al., 2022     ). After reaching critical mass for pupation,
homeostatic signals switch behavior towards food aversion, hypermobility and collaborative
burrowing (Wu et al., 2003     ), terminating the feeding state and leading to pupation and
metamorphosis.

High resolution methods for behavioral tracking (Ohyama et al., 2013     ; Risse et al., 2017     ;
Schumann and Triphan, 2020     ; Tadres and Louis, 2020     ; Thane et al., 2023     ; Laurent et al.,
2024     ), now routinely used in neuroethological experiments, have revealed detailed insight in
the organisation of larval foraging behavior. In the absence of food resources, larvae engage in
free exploration to locate food patches (Sims et al., 2019     ) with a characteristic alternation of
locomotory activity and brief pauses (Sakagiannis et al., 2020     ), a property also reported for adult
fly behavior (Ueno et al., 2012     ; Reynolds et al., 2015     ). Food consumption involves repetitive
feeding motion and digging into the substrate (Kim et al., 2017     ). Statistical regularities that
govern foraging behavior have been un-veiled by analysis at the microscale of body kinematics
and at the macroscale of larva trajectories (Denisov et al., 2013     ; Risse et al., 2017     ; Karagyozov
et al., 2018     ). Locomotion combines the basic sensorimotor primitives of crawling and turning,
and has been in the main focus of recent studies (Heckscher et al., 2012     ; Wystrach et al., 2016     ;
Sims et al., 2019     ), whereas studies of feeding behavior remain scarce (Ruiz-Dubreuil et al.,
1996     ). Both, crawling and feeding consist of recurring sensorimotor cycles controlled by central
pattern generating circuits (Heckscher et al., 2012     ; Mantziaris et al., 2020     ; Miroschnikow et al.,
2018a     ).

Salient olfactory cues can trigger appetitive or aversive chemotaxis, during which larvae navigate
up or down a chemical gradient (Gomez-Marin et al., 2011     ; Slater et al., 2015     ; Schleyer et al.,
2015a     ; Klein et al., 2017     ). During appetitive chemotaxis, the detection of minor concentration
changes during lateral bending causes a directional bias in the turning movement, establishing a
mechanism of active sensing (Gomez-Marin and Louis, 2012     ; Wystrach et al., 2016     ; Thane et
al., 2019     ). Encounters with novel odorants in the presence of a food reward or a negative
reinforcement such as the bitter taste substance quinine can induce olfactory learning, enabling
short- and long-term behavioral adaptations (Schleyer et al., 2011     ; Schleyer et al., 2015b     ;
Gerber and Stocker, 2007     ; Diegelmann et al., 2013     ; Widmann et al., 2018     ; Weiglein et al.,
2019     ; Jürgensen et al., 2024     ). For quantification of choice behavior, widely-used standard
group assays for behavioral preference testing have been established (Gerber and Stocker, 2007     ;
Gerber et al., 2014     ; Schleyer et al., 2015a     ; Schleyer et al., 2015b     ; Schleyer et al., 2011     ).

The routine access to detailed behavioral data, and the broad approaches to neuroethological
experiments makes the Drosophila larva an ideal model system for computational modeling
studies on behavioral control principles. Existing generative models typically aim at specific
aspects of larval behavior and can vary widely in model type and abstraction level, ranging from
basic neuromechanics to the abstract mathematical description. We therefore propose the concept
of the behavioral architecture, a three-layered hierarchical and modular framework, nested from
behavioral primitives to high-level function, to integrate models of diverse types and different
levels of abstraction (Figure 1A     ). At the basic layer we establish a refined coupled-oscillator
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model for larval locomotion capable of autonomous exploratory behavior. To this end we provide
a detailed analysis of larval tracking data from experiments of free exploration. Introducing
sensory modulation at the second layer allows us to reproduce several experimental findings of
appetitive chemotaxis. The combination with a biologically realistic spiking neural network model
for associative learning at the adaptive layer reproduces empirical population-level learning
scores across a multiple trial training protocol. The architecture allows for agent-based, potentially
closed-loop, simulations of virtual larvae in virtual environments and generates simulated data at
the level of the experimentally observed behavior facilitating model calibration and evaluation.

Model

Behavioral architecture
Larval behavior is hierarchically structured, i.e. sensorimotor primitives such as crawling,
bending and feeding can be integrated into more complex behaviors such as exploration, taxis or
exploitation. It has been proposed that the hierarchy of animal behavior is reflected by the
underlying neuroanatomy as a hierarchy of nested sensorimotor loops (Prescott et al., 1999     ;
Wilson and Prescott, 2022     ; Prescott and Wilson, 2023     ). A functional modeling paradigm that
exploits this idea regards the neural system as a layered control architecture (or subsumption
architecture) (Brooks, 1986     ) where low-level stereotyped reflexive and repetitive behaviors are
autonomously generated by localized peripheral motor circuitries, while multisynaptic loops
involving more centralized neural circuits act as descending modulators on the local circuits in
order to coordinate global and complex behavior. The central idea is that energy-efficient
decentralized neural control is the rule, while higher centers are recruited only when more
extensive integration is needed e.g. in order to react suitably to unexpected sensory stimulation.
Furthermore, there are only limited degrees of freedom by which higher layers can influence local
sensorimotor loops via descending pathways e.g. by starting or stopping, or by accelerating,
decelerating or inverting their autonomous function (Sen et al., 2017     ; Feng et al., 2020     ; Bidaye
et al., 2020     ). The complexity of inter-layer top-down modulation is thus predicted to be
considerably lower than the complexity of signal integration within layers. Layered control
architectures have been used mainly in behavior-based robotics (Bicho, 1999     ), allowing
sequential calibration and modular integration of partial neuroscientific models under a common
framework (Brooks, 1986     ; Prescott et al., 1999     ).

We here propose a three-layered behavioral architecture for Drosophila larva foraging as
illustrated in Figure 1A     . The bottom layer consists of three basic behaviors: crawling, turning
and feeding. Each is realized by a low-level local sensorimotor loop between motor effectors and
sensory feedback. For exploration this involves proprioception and mechanoreception, for feeding
it additionally involves gustatory input. Integration of these basic behaviors within the layer gives
rise to composite behaviors. For example while exploration in stimulus-free conditions only
entails crawling and turning, differences in the temporal microstructure between these two yield
a spectrum from localized search to remote dispersal. The peripheral ventral nerve cord (VNC)
circuits mediating exploration have been shown to be capable of autonomous, decentralised
function without the need for any top-down regulation (Sims et al., 2019     ).

The intermediate layer introduces salient sensory stimulation of different modalities and
therefore allows for reactive behavior in the face of presented risks and opportunities. Following
the subsumption architecture paradigm, we only assume a single modulatory input from the
intermediate to the bottom layer. This assumption is in line with the idea of pre-motor integration
of signals from different sensory modalities into a final integrated descending modulatory
pathway, which eventually affects behavior (Wystrach et al., 2016     ; Eschbach and Zlatic, 2020     ).
Modulation of exploratory behavior in the presence of salient stimulation enables coherent
navigation along sensory gradients. In the present study we consider odor-driven chemotaxis as a
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Figure 1.

Behavioral architecture for larva foraging.

A: In the trilayer architecture the bottom layer consists of three basic sensorimotor effectors that constitute the locomotory
model. The intermediate layer features innate reactive behavior in response to sensory input that reflects changes in the
environment. The top layer allows for behavioral adaptation through experience. Framed areas denote more complex
behaviors that require subsumption of subordinate behaviors. B: Suggested implementation of basic behavioral modules at
the bottom layer. Initiation or cessation of a behavior is controlled by the intermittency module. The turner and crawler
module are phasically coupled during forward locomotion, while crawling and feeding are implemented as mutually exclusive
sensorimotor primitives.
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process of active sensing in which the larva constantly samples the odor concentration during
lateral bending motions, enabling odorscape navigation and odor source discovery. In an
alternative application, we recently simulated larval behavior during active sensing in
thermotaxis experiments across different Drosophila species (Kafle et al., 2024     ).

Finally, at the top layer, associative learning biases the evaluation of recurring sensory stimuli and
can modulate the innate valence of odors to allow for experience-dependent adaptation of
navigation. Again, the modulatory top-down signal to the underlying layers is limited to the
modulation of approach versus avoidance behavior, in line with the research on the mushroom
body output signal in Drosophila (Gerber and Stocker, 2007     ; Gerber et al., 2014     ; Schleyer et al.,
2015a     ; Schleyer et al., 2015b     ; Schleyer et al., 2011     ; Owald and Waddell, 2015     ).

The proposed behavioral architecture is naive to the level of model abstraction of the underlying
neural mechanisms. Its role is to create a modular framework where diverse and potentially
competing models can be positioned, integrated and tested in behavioral simulations. It is
therefore justified to use simple generative models to bridge the gaps that have not yet been
studied in detail until they can be substituted by more elaborate future versions. To ensure
flexibility and compatibility, every module has a defined basic input and output regardless of the
internal structure, complexity, level of abstraction and spatiotemporal scale of its possible
instantiations. For the purpose of modeling under the behavioral architecture framework we
provide the larvaworld python package available at https://pypi.org/project/larvaworld/     .

Locomotory model
We propose a model for locomotion in the two-dimensional plane that defines the momentary
body state by the instantaneous forward velocity v and angular velocity ω as generated through
crawling and bending, respectively. Extending on previous models (see Discussion) we incorporate
two new features based on our kinematic analysis of larval locomotion: (i) the peristaltic cycle
phase dependent attenuation of angular motion, and (ii) the intermittent crawling as transitions
between runs and pauses. We briefly describe the modular components of our model. A detailed
mathematical description is provided in the Materials and Methods section. The complete pipeline
for model calibration is described in Appendix 2     .

We choose to simplify the larva to a two-segment body (Figure 2F     ). This abstraction allows to
describe the body state at any point in time by only three variables: (i) position of a selected spine
midpoint (Appendix 1-Figure 1     ), (ii) absolute orientation of the front segment θ, and (iii)
bending angle θb between the front and rear segments. This approach is in line with the common
practice of quantifying larva bending via a single angle between one anterior and one posterior
vector (Gomez-Marin et al., 2011     ; Lahiri et al., 2011     ; Paisios et al., 2017     ).

Locomotion is achieved via forward crawling and lateral body bending. Crawling moves the
midpoint along the orientation vector. Bending reorients the front segment by rotation around the
midpoint. Forward displacement restores θb back to zero by gradually aligning the rear segment to
the orientation axis. A demonstration of the bisegmental model simplification is shown in Video 4.

Based on our empirical results (Figure 2      and Figure 3     ), we propose a coupled oscillator
model of locomotion that generates both, weathervaning and headcasts. To this end we implement
an oscillatory process (crawler) that generates the forward-velocity v during subsequent stride
cycles (Figure 1B     ) where a tonic input IC modulates crawling frequency fC . A second oscillator
(turner) generates alternating left-right bending as previously proposed by (Wystrach et al.,
2016     ) with oscillatory amplitude AT . To incorporate the empirically observed crawl-bend
interference, we couple the two oscillators by imposing a crawler-phase dependent suppression on
AT where the phase-dependent modulation is modelled as Gaussian function and fitted to the
empirical data (red profile in Figure 3C     ).
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Figure 2.

Kinematic analysis of a single Drosophila larva in locomotion.

A: Individual larva trajectory tracking a posterior point along the midline of the animal . Trajectory color denotes the forward
velocity v from 0 (red) to maximum (green). Inset focuses on a shorter track epoch analyzed in C and G. The full-length
trajectory and the epoch in the inset are shown in Figure 2—video 1 and Figure 2—video 2 respectively. Dark green rectangle
denotes the single stride described in B. B: Sketch of the single crawling stride indicated in A. The larva first stretches its head
forward, anchors it to the substrate and then drags its body forward via peristaltic contraction. Scaled stride displacement

 is defined as the resulting displacement d divided by the body-length l. C: Scaled forward velocity v during the 40 s track
epoch selected in A (inset). Green and red markers denote the local maxima and minima used for stride annotation.
Individual strides are tiled by vertical dashed lines. Successive strides constitute uninterrupted stridechains (white). Epochs
that do not show any strides are annotated as crawl-pauses (gray). D: Scaled forward velocity v of head, midpoint and tail as a
function of the stride cycle phase Φ. All detected strides have been interpolated to a stride oscillation cycle of period 2π. Solid
lines denote the median, shaded areas the lower and upper quartiles across strides. E: Same trajectory as in (A) now tracking
the head segment. Color denotes the absolute orientation angular velocity ω from 0 (red) to maximum (green). The full-
length trajectory and the epoch in the inset are shown in Figure 2—video 1 and Figure 2—video 2 respectively. F: Definition of
bending angle θb and orientation angle θ for the original 12-segment (blue) and the simplified 2-segment (red) larvae. G:
Three angular parameters during the same track epoch shown in (C). Bending angle θb, bend and orientation angular
velocities ωb, ω are shown. Background shadings denote left and right turning bouts. For illustration purposes only turns
resulting in a change of orientation angle Δθ > 20° are shown. H: Absolute orientation angular velocity ω during the stride
cycle, as shown for v in (D).
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Figure 3.

Population-level analysis.

A: Fourier analysis of the forward v (red) and angular ω (blue) velocity across 100 larvae. Inset shows the respective dominant
frequencies within suitable ranges 1 ⩽ fC ⩽ 2.5 and 0.1 ⩽ fT ⩽ 0.8 for v and ω, respectively. Crawling exhibits a dominant
frequency of around 1.4 while lateral bending has a slower more variable rhythm of around 0.4. B: Epoch-duration
distribution. Dots describe the cumulative probability density over logarithmic bins for the length of stridechains and the
duration of crawl-pauses pooled across the larva population. Lines indicate the distribution with the lowest Kolmogorov-
Smirnov distance among the best-fitting power-law, exponential, log-normal and Levy distributions. Stridechain length and
pause duration are best approximated by log-normal distributions. C-D: Crawl-bend interference. The stride cycle kinematics
are depicted for a single individual. All detected strides have been interpolated into a 64-bin oscillation cycle of period 2π. C:
Forward velocity of 5 points along the larva midline. Velocity is scaled to the larva body-length. D: Absolute angular velocity ω
(blue) normalized by the average value  computed during the pause epochs. Fitted Gaussian function (red) describes
well the phase-dependent attenuation imposed on ω and is used for the implementation of the coupled-oscillator locomotory
model. Solid lines denote the median, shaded areas the lower and upper quartiles. Vertical dashed lines denote the cycle
phase where the respective velocity reaches its maximum value. Inset : Phase offset ΔΦ between the peak phase of each
midline point’s forward velocity  and the peak phase of angular velocity  across a dataset of 100 tracked larvae.
Notably, ω reaches its maximum just before the head forward velocity reaches its maximum.
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To accommodate the intermittent behavior with alternating crawling runs and crawling pauses,
we chose to implement a stochastic model approach where the number of strides per stridechain
and the pause durations each follows a log-normal distribution fitted to the empirical data (Figure
3B     ). For a demonstration of the locomotory model in different configurations see Video 1.

Under the constraints of the subsumption architecture paradigm the crawler and turner can be
influenced by higher-order circuits in a limited number of ways. In the case of the crawler,
frequency modulation and the initiation or cessation of the oscillation-cycle are the two available
top-down modulations. Likewise for the turner, top-down modulation of the tonic input affects
both, the frequency and the amplitude of oscillation.

Results

Kinematic analysis of larva locomotion
We start out with the kinematic analysis of experimental larva trajectories and body postures in
order to infer and parameterize several aspects of larva locomotion that will inform our modeling
approach. Using diverse metrics that capture spatial and temporal dynamics we specifically assess
the oscillation of forward velocity during consecutive peristaltic strides and its influence on lateral
bending, the less pronounced oscillation of angular velocity, the intermittent nature of crawling,
and the inter-individual variability of a number of locomotion-related parameters across different
larvae.

We analyzed the trajectory of each single larva by tracking the forward velocity v of a posterior
midline point (Figure 2A     ) and the head orientation angular velocity ω (Figure 2E     ). The
former illustrates that forward locomotion indeed consists of consecutive steps (strides) that are
characterized by the alternation of increased (green) and decreased (red) values of v. The latter
confirms that lateral bending occurs both, during crawl-runs (weathervaning) and during
stationary crawl-pauses (headcasts). The individual trajectory depicted in Figure 2      can be seen
in full length in Figure 2—video 1, while the short epoch depicted in the inset is shown in Figure 2
—video 2.

To characterize both types of oscillations we first perform a Fourier analysis of v and ω on each of
100 larva tracks (Figure 3A     ). Across larvae we observe a robust peristaltic rhythm with a
crawling frequency fC normally distributed around 1.4 Hz in line with earlier results (Heckscher et
al., 2012     ; Mantziaris et al., 2020     ; Thane et al., 2023     ). We also confirm previous reports that
lateral bending manifests a slower, more variable rhythm fT around 0.4 Hz (Wystrach et al.,
2016     ). Then we detect all strides performed by an individual animal and verify their
stereotypical structure in terms of stride duration, resulting body displacement, and the phase-
dependence of v (Figure 2D     ).

In order to quantify the phase-dependence of angular motion we interpolate each detected stride
into a 64-bin oscillation cycle of period 2π. The progression of forward velocity from head to tail
during the peristaltic cycle is illustrated in Figure 3C      (top). To analyze the angular metrics
during the peristaltic cycle we consider the absolute angular change ignoring the left or right
direction of a turn. This analysis reveals a robust phase dependence of the angular velocity ω and
acceleration , and of the bend angle θb (Appendix 2-Figure 1A     ). Specifically, the angular

velocity ω exhibits a smooth unimodal dependency on the stride period peaking during the early
stride phase and just before the head forward velocity reaches its maximum (Figure 3C     ).
Nevertheless, ω during crawling is lower than during pauses as shown when we normalize it by
dividing with the average  computed during the pause epochs (Figure 3C     , bottom). This
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implies a phasic attenuating interference of the peristaltic cycle on the lateral bending mechanism
(Figure 1B     ). A plausible mechanistic explanation featuring bodily interference of crawling and
bending is suggested in the Discussion.

Larvae intermittently pause crawling before re-assuming it. This results in sequences of
concatenated strides (runs or stridechains) that alternate with brief crawl-pauses (Figure 2C     ).
We analyzed the stridechain length with respect to the number of strides and the pause duration
in the experimental dataset. To this end we pooled both measures across 100 larvae to obtain the
empirical distributions. Testing power-law, exponential, log-normal and Levy distributions
revealed the highest quality of fit for the log-normal distribution for both parameters (Figure
3B     ).

Simulation of behavioral experiments
In this section we simulate increasingly complex behavioral experiments. Starting from stimulus-
free exploration we advance to chemotactic navigation and finally to adaptive odor preference
experiments. We simulate individual larvae using the model as calibrated in Appendix 2      and all
model parameters are shown in Appendix 2-Figure 1A     . Larval populations are constructed by
pooling individual virtual larvae that behave independently as they move through the spatial
arena and odorscape (Niewalda et al., 2014     ).

Exploration
In the first virtual experiment, we consider free exploration (Figure 4     ) and evaluate our
simulation results against an empirical data set (see Materials and Methods). To this end we
simulate a population of 200 virtual larvae during three minutes while exploring a stimulus-free
environment on a non-nutritious substrate in a Petri-dish, mimicking the experimental lab
conditions (Figure 4     ). Due to the absence of sensory input and food, the proposed intermittent
coupled-oscillator locomotory model at the basic layer is sufficient to autonomously generate
exploratory movement.

Larvae are initially placed at the center of the dish, each with a random body orientation. Over the
course of the experiment, both the simulated and the real larval population disperses in space
(Figure 4A     , Figure 4—video 1).

The quantitative comparison shows a good agreement between simulated and empirical data with
respect to the radial dispersal from the initial position (Figure 4B     ). Importantly, the variability
across individual animals is well captured by the variability between individual model instances
as shown for the number of strides, the crawling time, and the total distance travelled by each
larva (Figure 4C     ).

Chemotaxis

Chemotaxis describes the process of exploiting an odor gradient in space to locate an attractive or
avoid a repelling odor source. An olfactory sensor (olfactor) placed at the front end of the virtual
body enables active sensing during body bending and allows detection of concentration changes
that modulate turning behavior accordingly. Sensory-driven behavior is enabled via modulation of
the frequency and amplitude of the lateral oscillator (turner) by sensory feedback, while the
peristaltic oscillator is not affected, as proposed in (Wystrach et al., 2016     ).

To assess the chemotactic efficiency of our coupled-oscillator model we reconstruct the arena and
odor landscape (odorscape) of two behavioral experiments described in (Gomez-Marin et al.,
2011     ). In the first, larvae are placed on the left side of the arena facing to the right. An appetitive
odor source is placed on the right side. The virtual larvae navigate up the odor gradient
approaching the source (Figure 5A,C,E     ), reproducing the experimental observation in Fig.1 C in
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Figure 4.

Free exploration in simulation and experiment.

A: Dispersal of 200 larvae in experiment (left) and simulation (right) during 40 seconds. Individual tracks have been
transposed to originate from the center of the arena. The entire temporal course shown in Figure 4—video 1. B: Dispersal
from origin. Line indicates the group median while shaded area denotes first and third quartiles. C: Histograms for total
number of strides, time ratio allocated to crawling and pathlength. (arena dimensions = 500×500mm, N = 200 larvae,
experiment duration = 3 minutes, simulation timestep =1/16).



Panagiotis Sakagiannis et al., 2025 eLife. https://doi.org/10.7554/eLife.104262.1 11

(Gomez-Marin et al., 2011     ). In the second, both the odor source and the virtual larvae are placed
at the center of the arena. The larvae perform localized exploration, generating trajectories across
and around the odor source. (Figure 5B,D,F     ), again replicating the observation in Fig.1 D      in
(Gomez-Marin et al., 2011     ). Two sample simulations can be seen in Figure 5—video 1.

Odor preference test

We simulate the odor preference paradigm as described in the Maggot Learning Manual (Michels
et al., 2017     ). Larvae are placed at the center of a dish containing two odor sources in opposite
sides and left to freely explore. The odor concentrations are Gaussian-shaped and overlapping,
resulting in an odorscape of appetitive and/or aversive opposing gradients. After 3 minutes the
final situation is evaluated. The established population-level metric used is the olfactory
preference index (PI), computed for the left odor as  where Nl and Nr is the number of

larvae on the left and right side of the dish while N is the total number of larvae.

The extend of olfactory modulation on the turning behavior is determined by the odor-specific
gain G. As this is measured in arbitrary units, we first need to define a realistic value range that
correlates with the behaviorally measured PI. We perform a parameter-space search
independently varying the gain for left and right odors and measuring the resulting PI in
simulations of 30 larvae. The results for a total of 252 gain combinations within a suitable range of
G ∈ [−100, 100] are illustrated in Figure 6A     . Simulation examples for one appetitive and one
aversive odor are shown in Figure 6—video 1.

In order to simulate larval group behavior in response to an associative learning paradigm we
interface our behavioral simulation with the spiking mushroom body (MB) model introduced in
(Jürgensen et al., 2024     ) (Figure 6C     ). It implements a biologically realistic neural network
model of the olfactory pathway according to detailed anatomical data using leaky integrate-and-
fire neurons (Jürgensen et al., 2021     ). The MB network undergoes associative plasticity at the
synapses between the Kenyon cells and two MB output neurons as a result of concurrent
stimulation with an odor and a reward signal. Both, odor and reward is simulated as spike train
input to the receptor neurons and the reinforcement signalling dopaminergic neuron,
respectively. The model employs two output neurons (MB+, MB−), representing a larger number of
MB compartments associated with approach/avoidance learning respectively (Saumweber et al.,
2018     ). The initially balanced firing rates between MB+ and MB− are skewed after learning and
encode the acquired odor valence (Owald et al., 2015     ; Owald and Waddell, 2015     ) here defined
as:

We first trained the MB model via a classical conditioning experiment where, in each conditioning
trial, it experiences an odor (conditioned stimulus, CS+) in combination with a sugar reward
during 5 min, following the standard training protocol in (Michels et al., 2017     ). 5 groups of 30
MB models undergo between 1 and 5 sequential conditioning trials (Weiglein et al., 2019     ). The
resulting odor valence MBout from each MB model was converted to an odor gain G via a simple
linear transformation and used to generate a virtual larva (Figure 6B     ). Each population of 30
larvae was then tested in an odor preference simulation. The larvae were placed on a dish in
presence of the previously rewarded odor (CS+) and a neutral odor in opposite sides of the dish
(Figure 6—video 1), again following standard experimental procedures (Michels et al., 2017     ). To
obtain robust results we replicated the experiment 100 times per population with a different
random seed for a total of 600 simulations. The obtained preference indexes (PI) are illustrated in
Figure 6D     . The PI increase with increasing number of trials as well as its saturation resembles
empirical observations (Weiglein et al., 2019     ). Note that the variability of the PI across the 100
simulations per condition is introduced solely by the behavioral simulation and resembles that
seen across real experiments.
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Figure 5.

Simulation of chemotaxis.

A: Experiment 1: A single odor source of 8.9μM peak concentration is placed on the right side of the rectangular arena
creating a chemical gradient as indicated by the color scale. Larvae are placed on the left side facing to the right. Larvae are
expected to navigate up the gradient approaching the source. A single larva trajectory is shown. This setup mimics the first
experiment in (Gomez-Marin et al., 2011     ). B: Experiment 2: A single odor source of 2.0μM peak concentration is placed at
the center of the rectangular arena. Larvae are placed in close proximity to the odor source. Larvae are expected to locally
explore generating trajectories around and across the source. A single larva trajectory is shown. This setup mimics the
second experiment in (Gomez-Marin et al., 2011     ). C,D: The trajectories of 25 virtual larvae during the two experiments. E,F:
The odor concentration encountered by the virtual larvae as a function of time. Red curves refer to the single larva in A and B.
Gray denotes the mean and quartiles of all 25 larvae in C and D. The simulation results fit well to the experimental estimates
of concentration sensing during larval chemotaxis in (Gomez-Marin et al., 2011     ). (arena dimensions = 100×60mm, N = 30
larvae, experiment duration = 3 and 5 minutes respectively, simulation timestep =1/16).
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Figure 6.

Simulation of innate and learned odor preference.

A: A total of 252 simulations are shown with the resulting Preference Index for different gains of the left and right odor. On
the top left the initial state is shown with the larvae randomly generated at the center of the dish. The final state of three
additional simulations is depicted on the top right and bottom left and right. See Figure 6—video 1 for videos of two sample
simulations. B: The pipeline used for coupling the Mushroom Body (MB) model with the behavioral simulation. First a MB
model is trained via a classical conditioning experiment where olfactory input is combined with reward. The resulting odor
valence MBout is then converted to odor gain G via a simple linear transformation and used to generate a virtual larva. Finally
the odor preference of a virtual larva population is evaluated in a behavioral simulation. C: The spiking neural network
comprising the MB model. The number of neurons comprising each layer is indicated. D: The resulting PIs for 100 simulations
per number of training trials. In each of the 100 simulations per condition a population of 30 virtual larvae was generated and
evaluated using a different random seed, always bearing the exact same 30 odor gains derived from the respective group of
30 trained MB models (arena dimensions = 100x100mm, N = 30 larvae, experiment duration = 3 minutes, simulation timestep
=0.1.
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The current implementation only sequentially couples a trained MB model to be tested in a
behavioral simulation. In the discussion we further elaborate on a possible extension featuring
their closed-loop integration allowing for full behavioral simulations of both the training and the
testing phase of the associative learning paradigm in a virtual environment.

Discussion

Experimental evidence for layered behavioral architecture
The proposed behavioral architecture is based on two underlying principles that justify our
modular, hierarchically layered approach. Firstly, we attempt to horizontally structure it into
behaviorally functional modules, each generating a well-defined behavior. Secondly, we vertically
parse it into semi-independent layers, each under top-down modulation from the ones above but
still capable of generating behavior independently of them. We summarize the neuroanatomical
observations and behavioral experiments that support this approach.

The neural mechanisms underlying the three basic larval behaviors (Figure 1A     , basic layer)
have been extensively studied. Crawling is characterized by fairly stereotypical repetitive strides.
Initial contraction of the head and tail segments driven by a ‘visceral piston’ mechanism is
followed by a laterally symmetric peristaltic wave traversing neighboring segments longitudinally
from back to front (Heckscher et al., 2012     ) (Figure 2B     ). Segmental central pattern generators
(CPGs) coupled via intersegmental short- and long-range connectivity motifs involving also
premotor neurons constitute the underlying neural circuitry (Kohsaka et al., 2019     ; Zarin et al.,
2019     ; Mantziaris et al., 2020     ). Lateral bending results from asymmetric contraction of body
musculature initiated at the thoracic segments (Berni, 2015     ). Feeding is generated via a network
of mono- and multi-synaptic sensorimotor loops from enteric, pharyngeal and external sensory
organs to motor neurons controlling mouth-hook movement, head-tilt and pharyngeal pumping
(Miroschnikow et al., 2018b     ; Schoofs et al., 2024     ). A noteworthy facet of these behaviors is
their autonomous generation with-out the need for descending control. This has been
demonstrated by continued exploration even after brain ablation (Sims et al., 2019     ).
Exploitation of a nutritious substrate requires all three basic behaviors as the larva constantly
consumes food and re-positions its body. According to the layer-independence principle, we
postulate that peripheral consummatory circuits at the sub-esophageal zone (SEZ) are also capable
of autonomous exploitation.

Higher brain centers play a pivotal role in behavior modulation, with neurotransmitters like
dopamine, serotonin, acetylcholine, and octopamine being key players in this intricate process
(Berni et al., 2012     ; Zhang et al., 2013     ; Miroschnikow et al., 2018b     ; Malloy et al., 2019     ;
Eschbach et al., 2020     ; Vogt et al., 2021     ). It has been suggested that the transition between
exploration and exploitation (feeding) is acutely induced via dopaminergic signaling (Schleyer et
al., 2020     ) while their long-term balance is regulated via hugin-mediated homeostatic
neuromodulation (Schoofs et al., 2014     ). Identification of sensory pathways towards motor
effector neuropiles further elucidates the role of interoception in behavioral modulation (Qian et
al., 2018     ).

The neural mechanisms that underlie olfactory modulation of the basic locomotory behavior are
also under intense investigation. Chemotactic approach and avoidance to innately valenced odors
has been attributed to a predominantly innate pathway involving the antennal lobe (AL) and its
direct projection to the lateral horn (LH), both in the larva (Schulze et al., 2015     ; Vogt et al.,
2021     ) and in the adult fly (de Belle and Heisenberg, 1994     ; Strutz et al., 2014     ; Dolan et al.,
2018     ). Modulation of behavior by learned odors strongly involves descending control by the MB
in juvenile (Saumweber et al., 2018     ; Eschbach et al., 2020     ) and adult (Slater et al., 2015     )
stages. Both pathways have similar modulating effects on foraging behavior and are likely
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integrated in a premotor network downstream of the AL (Schleyer et al., 2015a     ; Eschbach et al.,
2020     ). In the sensorimotor loop, descending pathways involving the LH control cessation of
crawling, possibly triggering sharper re-orientation when navigating down-gradient, facilitating
chemotaxis (Tastekin et al., 2018     ). Finally, the internal homeostatic state (e.g. starvation vs.
satiation) is implicated in behavioral regulation via neurotransmitter release at multiple levels,
including AL, LH and MB and neuropeptide expression (Vogt et al., 2021     ; de Tredern et al.,
2024     ).

Previous computational models of larva locomotion
Larva locomotion has been modeled extensively. Generative models of peristaltic crawling feature
neural and/or neuromuscular dynamics. Sequential neural activity patterns across the segmental
body can be generated by longitudinally repeated CPGs of paired excitatory and inhibitory
population rate units, possibly involving proprioceptive feedback (Gjorgjieva et al., 2013     ;
Pehlevan et al., 2016     ). This relatively abstract CPG model has been elaborated into a
connectome-based circuitry of premotor and motor neurons. Under tonic activation the model
exhibits two functionally distinct, though structurally overlapping, recurring patterns of
neuromuscular activity, responsible for forward and backward peristalsis respectively (Zarin et al.,
2019     ). At the other end of the modeling spectrum the contribution of the visceral-piston
mechanism to the peristaltic cycle has been assessed in a biomechanical model (Ross et al.,
2015     ). A more elaborate neuromechanical model, based on segmental localized reflexes and
substrate frictional forces and assuming empirically informed axial and transverse oscillatory
frequencies, has been shown to generate forward and backward crawling without the need for
any neural activation pattern (Loveless et al., 2019     ).

Lateral bending has also been captured in statistical (Davies et al., 2015     ) or generative models
(Wystrach et al., 2016     ; Loveless et al., 2019     ; Loveless and Webb, 2018     ). In the context of free-
exploration it has been shown to be a byproduct of chaotic body neuromechanics underlying
peristalsis (Loveless et al., 2019     ). In the context of chemotaxis it has been attributed to a distinct
oscillatory process, autonomous (Wystrach et al., 2016     ) or semi-autonomous to crawling (Davies
et al., 2015     ). In the former case oscillation is driven by mutual inhibition between excitatory-
inhibitory circuits. In the latter, bending behavior is dissected into low-amplitude weathervaning
while crawling and high-amplitude headcasting during crawl-pauses, an approach essentially
equivalent to an attenuation of the lateral oscillation amplitude due to crawling. Autonomous
exploration and chemotaxis can be generated by an integration of the neuromechanical and the
independent lateral oscillator models (Loveless and Webb, 2018     ).

Apart from the rare occasion where such models implement mutually exclusive mechanistic
hypotheses and are indubitably incompatible to each other, in most cases they are indeed
complementary, overlapping, nested or disconnected in terms of the generative mechanisms they
aim to capture and could potentially coexist under a broader control system. In this context our
unifying architecture for larval behavior in which any partial model can be positioned can be
valuable for modelers and roboticists, interested in a behavior-based synthetic approach.

Intermittent coupled-oscillator model for realistic locomotion
Each of the above models could be adjusted so that at minimum it generates the 2D translational
and angular motion of a virtual body and could therefore populate the basic locomotory layer of
the behavioral architecture. In this study we propose such a model, assembled in a synthetic
approach by distinct modules, which either extend previously proposed locomotory models or
integrate novel findings derived from our analysis of kinematic parameters. Given a simplified
bisegmental body, a simple oscillator under frequency-regulating tonic activation is adequate for
generating recurrent strides, efficiently summarizing the complex underlying neural and
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neuromechanical dynamics (Heckscher et al., 2012     ; Mantziaris et al., 2020     ). Concerning
angular motion, the previously introduced lateral oscillator model (Wystrach et al., 2016     ) meets
the requirements and can therefore be coupled to the forward oscillator.

Our proposed model contributes two novel features. First, the intermittent nature of crawling as
transitions between runs and pauses (Figure 3B     ). And, second, the peristaltic cycle-phase
dependent attenuation of angular motion (Figure 3D     ). By combining these two features, the two
bending behavioral modes termed weathervaning and head-casting are naturally generated via a
phasic coupling between the two oscillators.

Behavioral intermittency

Larval locomotion is intermittent meaning that crawling runs are transiently intermitted by brief
pauses. Transitions between these two behavioral states occur autonomously in stimulus-free
conditions as during free exploration. Traditionally, in the context of movement ecology,
intermittency has been studied in the spatial regime by characterizing the distributions of run
distances and turn amplitudes occurring during brief stationary reorientation events (pauses).
Power-law distributed runs in line with Levy-walk theoretical models (Günther et al., 2016     ; Sims
et al., 2019     ) and diffusion-like kinematics have been reported (Klein et al., 2017     ). On the other
hand, the turn amplitude distribution diverges from the original Levy-walk-predicted uniform
distribution, as it is highly skewed towards small amplitudes, even if only significant reorientation
events are taken into account (Sims et al., 2019     ). Moreover, the speed-curvature power-law
relationship has been disputed (Zago et al., 2016     ; Marken and Shaffer, 2017     ; Zago et al.,
2017     ; Marken and Shaffer, 2018     ). Regarding the temporal dynamics of intermittency, the
duration distribution of these pauses is commonly neglected in traditional Levy-walk literature as
they are usually characterised via the amplitude distribution of their resulting turning events. A
recent analysis of larval tracks reported that the duration of pauses follows a power-law while
that of activity bouts a log-normal distribution (Sakagiannis et al., 2020     ), partly in line with
findings in adult-fly studies (Ueno et al., 2012     ; Reynolds et al., 2015     ). In our current study we
found log-normal best fits for both pause duration and stridechain length. The disagreement over
the pause duration might be attributed to the different timescale assessed in the two studies.
Contrary to the high-resolution 180-sec tracks in this study, those analyzed previously lasted at
minimum 1024 sec and up to 1 hour, allowing for the detection of longer pauses and imposing the
necessity to fit over 4 orders of magnitude bypassing the apparent drop around 10 sec, also seen in
Fig.3 of (Sakagiannis et al., 2020     ).

Concerning computational modeling, the contribution of behavioral intermittency to locomotion
has not been adequately appreciated. Candidate generative models can either simply sample
statistical distributions (Sims et al., 2019     ) or feature a generative mechanism that yields state
transitions. Stochastic state-transitions have been included in a model of larva exploration
yielding exponentially distributed epochs of both runs and stationary headcasts (Davies et al.,
2015     ). At a mechanistic level, a recent study presented a simple binary-neuron model exhibiting
state transitions between power-law and non power-law regimes via self-limiting neuronal
avalanches and proposed a plausible underlying mechanism that explains initiation/cessation of
crawling (Sakagiannis et al., 2020     ). All these attempts can be considered instantiations of a
behavioral intermittency module (Figure 1B     ) controlling cessation and re-initiation of crawling,
central for generating epoch transitions. In the present study, we chose stochastic sampling from
the empirically fitted parametric distribution models.

Crawl-bend interference

Crawling includes mouth hook motion. Specifically, the first phase of a crawling stride consists of
concurrent forward motion of head and tail segments, aided by a ‘visceral pistoning’ mechanism
that generates forward displacement of the gut. Subsequently, the mouth hooks anchor the head to
the substrate so that the second phase of peristaltic motion can drag all other segments forward as
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well, completing the stride (Heckscher et al., 2012     ). With respect to turning, it is still debated
whether individual turns should be considered as discrete reorientation events that are
temporally non-overlapping with crawling bouts (Sims et al., 2019     ), or whether lateral bending
occurs in an oscillatory fashion generating turns both during crawling (weathervaning) and
during pauses (headcasts) (Wystrach et al., 2016     ; Thane et al., 2019     ). The latter is supported by
detailed eigenshape analysis confirming that larvae rarely crawl straight, rather forward
locomotion is always accompanied by continuous small amplitude lateral bending (Szigeti et al.,
2015     ). It follows that crawling does not exclude bending, rather the two strictly co-occur.

Crawling and bending partially recruit the same effector neural circuitry and body musculature at
least at the level of the thorax. Peristaltic motion during crawling includes sequential symmetric
bilateral contraction of all segments while bending occurs due to asymmetric unilateral
contraction of the thoracic segments. This partial effector overlap could result in interference
between the two processes. Indeed here we report a phase-dependent attenuation of angular
velocity (Figure 3C     ). Attenuation reaches a minimum at a specific phase of the cycle, closely
preceding the increase of head forward velocity (Figure 3     C:inset). This coincides with the stride
phase when the head stops being anchored to the substrate and is therefore free to move laterally.
When applying a phase-dependent Gaussian attenuation kernel on angular velocity we managed
to accurately reproduce the empirical relation (Appendix 2-Figure 1C     ).

A reasonable hypothesis would then be that the asymmetric thoracic contraction generating
lateral bending becomes easier when the head is not anchored to the substrate therefore during a
specific phase interval of the stride cycle. We propose that crawling phasically interferes with
lateral bending because of these bodily constraints. A consequence of this hypothesis is that the
amplitude of turns generated during crawl-pauses (headcasts) is larger in comparison to those
generated during crawling (weathervaning) because during pauses the crawling interference to
lateral bending is lifted. It is this phenomenon that dominates the description of larva exploration
as a Levy-walk with non-overlapping straight runs and reorientation events, where
weathervaning is neglected (Günther et al., 2016     ; Sims et al., 2019     ). Nevertheless, it has been
included in a previous stochastic model of larva exploration, where it has been treated as entirely
distinct to headcasts, occurring during crawl-pauses, via the application of differential constraints
on both the angular velocity and the resulting turn amplitude (Davies et al., 2015     ). By
implementing a coupled-oscillator locomotory model we avoid such dual treatment of headcasts
and weathervaning.

Olfactory learning in closed loop behavioral simulations
We have reproduced the results of a basic associative learning experiment in the fruit fly larva
(Schleyer et al., 2018     ; Jürgensen et al., 2024     ) by the open-loop simulation of classical
conditioning trials and subsequent closed-loop behavioral simulation during the memory
retention test for individual virtual larvae (Figure 6     B-D). This modeling approach can be
extended in multiple ways. First, the larva demonstrates a number of additional learning
capabilities such as differential conditioning (Schleyer et al., 2011     ; Schleyer et al., 2015b     ;
Schleyer et al., 2018     ), extinction learning (Felsenberg and Waddell, 2019     ; Lesar et al., 2021     ),
and relief learning (Saumweber et al., 2018     ; Weiglein et al., 2019     ; Gerber et al., 2014     ; König
et al., 2018     ). Interfacing neural network simulations with candidate circuit and synaptic
mechanisms of plasticity with our behavioral model allows to directly compare virtual and
empirical behavioral experiments, both at the level of individual and group assays. Second, while
information about odor concentration is provided through active sensing, simultaneous input
from a feeder module could activate the dopaminergic reward pathway required for synaptic
plasticity in the mushroom body. At the same time, simulation of food uptake and energy
expenditure will regulate the agent’s energy homeostasis. This would further allow realistic
foraging scenarios with food depletion and competition among animals.
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Closing the loop from active sensing to associative memory formation and behavioral control
requires to synchronize a (spiking) neural network at the adaptive layer with the sensory module
(reactive layer), and the locomotory and feeding modules at the basic layer (Figure 1A     ). This
will enable the simulation of virtual larvae experiencing spatial and temporal dynamics in a
virtual environment or on a robotic platform (Helgadottir et al., 2013     ), and it will allow to test
model hypotheses on sensory-motor integration and to infer predictions for experimental
interventions such as optogenetic stimulation (Saumweber et al., 2018     ) or genetic manipulation
(Saumweber et al., 2011     ; Michels et al., 2011     ; Widmann et al., 2016     ; Springer and Nawrot,
2021     ).

Materials and Methods

We first describe the experimental dataset and the software package used in this study. Then we
explicitly describe each of the computational modules that comprise the proposed behavioral
architecture. The metrics used throughout the analyses of both real and simulated datasets are
described in Appendix 1     .

Dataset description
The larva-tracking dataset was obtained by M.Schleyer and J. Thoener at the Leipzig Institute of
Neurobiology. It consists of 31 experimental groups. Each group of ∼ 30 third-instar larvae
(Canton S) was placed on agarose-filled Petri dishes of 15 cm diameter with no particular stimuli
and video-filmed from above at a framerate of 16 Hz for 3 minutes. During video-tracking, 12
points are detected along the longitudinal axis of each larva. For the present study groups were
pooled together in a single population and timepoints of detected collisions have been excluded. A
subset consisting of the 200 most complete, uninterrupted tracks was selected. The x-y coordinate
timeseries have been filtered with a first-order butterworth low-pass filter with a cutoff frequency
of 2 Hz in order to decrease tracking-related noise but retain the behaviorally relevant crawling
frequency of fC ≃ 1.4 Hz. The effect of inadequate and excessive filtering is illustrated in Video 3.

Software package and code availability
All data processing, data analyses and model simulations were performed using our freely
available python package Larvaworld (https://pypi.org/project/larvaworld/     ), a behavioral analysis
and simulation platform for Drosophila larva. In Larvaworld simulated and empirical data are
treated indistinguishably, meaning that the exact same analysis pipeline and behavioral metrics
are applied to both. Concerning modeling, the behavioral architecture we propose here comprises
the backbone for the construction, extension, configuration and fitting of behavioral models in
Larvaworld. Moreover, the intermittent coupled-oscillator model as introduced in the present
manuscript is available for simulations alongside other preconfigured models. Extensive
documentation can be found at https://larvaworld.readthedocs.io     .

Inter-individual variability in virtual populations
The dominant methodological approach in animal behavioral modeling yields generative models
that capture the average behavior of a group of animals. Each model therefore strives to generate
behavior resembling that of an idealized average animal, neglecting inter-individual variability. To
challenge this, we contrast it with a group-level modeling approach that preserves individuality
within the population. Here, the generative model is instantiated by a group of non-identical
animats, with parameter combinations drawn from a fitted multivariate normal distribution,
preserving their pairwise correlations. We first measured a number of endpoint parameters
across a population of 200 larvae and fitted a multivariate Gaussian distribution. A subset of three
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of these parameters, body-length l, crawling frequency fC, and scaled stride displacement  is

shown in Figure 7     . The univariate and bivariate empirical distributions are illustrated in blue,
while the bivariate projections are shown in red.

Module definition
The building blocks comprising the behavioral architecture are described as separate modules of
defined input and output. The modular architecture only specifies the required placeholders and
remains agnostic to the specific module implementations. Nevertheless, in what follows, the
specific modular implementation for the proposed coupled-oscillator locomotory model will be
described alongside the general module-placeholder definition. Calibration of each module on the
empirical dataset and parameter specification is described in detail in Appendix 2     . The
parameters of the final model configuration are shown in Table 1     .

Bisegmental body

The virtual body is the architecture’s interface with the simulated environment. It moves through
space under the control of the motor effectors comprising the basic locomotory layer of the
architecture, and thereby repositions the sensors introduced in the intermediate reactive layer.
For the simplest case of 2D locomotion it is therefore imperative to define at least the forward
velocity v and the angular orientation velocity ω. Any locomotory model dynamically generating
these two parameters is adequate for an abstract point-body or a single-segment body
implementation.

For the proposed coupled-oscillator model we choose a bisegmental body implementation,
additionally featuring the bending angle (posture) θb between the front and rear segment.
Following (Wystrach et al., 2016     ), the body is modeled as a torsional analog of the mass-spring
damper model. Torque angularly accelerates an inertia I against angular damping that resists
motion and viscoelastic forces that resist deformation (lateral bending). The original mass-spring
damper model and its torsional analogue are defined by the equations:

We introduce simplified coefficients for angular damping z = Z/I in sec−1 and bend deformation
resistance k = K/I in sec−2 as the dimensions of inertia ML2 cancel out. Similarly, the external
torque-per-unit-of-inertia is now in angular acceleration units  This drive is

generated by the turner module and will be described below. Additionally we introduce a crawl-
phase dependent suppression of angular motion during crawling described by the coefficient cCT
(t) = cCT (ΦC), which will also be described below.

In its original implementation (Wystrach et al., 2016     ) the torsional body model deliberately
neglects two aspects of the real turning behavior of the larva. First, there is no distinction between
bending ωb and orientation ω angular velocities. Second, there is no correction of the bending
angle θb due to forward motion. We tackle the first via the bisegmental body so that ωb between
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Figure 7.

Individuality: empirical (blue) and fitted (red) parameter distributions.

Diagonal: Histogram and kernel density estimates (KDE) for body-length l, crawling frequency fC and mean scaled
displacement per stride  across a population of 200 larvae in the experimental dataset. Below: Bivariate projection of 3-
dim. KDE outlined contours for each parameter pair. Above: Red ellipses represent the bivariate projections of the 3-dim.
fitted Gaussian distributions at 0.5, 1, 2 and 3 standard deviations. In our model this Gaussian is used to sample a parameter
set for each individual larva. The blue dots denote the empirically measured parameters.
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Table 1.

Locomotory model configuration.

The parameters of the calibrated average locomotory model, organized per module.
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the front and rear vector is distinct from the front vector’s ω. Regarding the second, we introduce
a simple linear bending-angle correction as the rear vector is aligned to the front vector’s
orientation during forward motion, according to the equation:

where d is the linear displacement during a timestep,  and θb is the bending angle before and

after correction, l is the body length and cb = 1 is the bend correction coefficient.

Concerning the forward motion, the simple kinematic implementation of the crawler module
directly generates forward velocity v without taking into account any biomechanical dynamics.

Crawler module

The crawler module generates forward velocity v, under a continuous (tonic) activation signal IC
and an additional intermittent initiation/cessation signal generated by the intermittency module.
Velocity generation involves three parameters : the larval body-length l, the scaled displacement
per stride  and the crawling frequency fC. The latter linearly reflects the tonic input IC, which is

kept constant during the short-duration simulations. For an individual virtual larva  and fC
are set during initialization, where  are the mean and standard deviation of .

In the present study crawling behavior is modeled as an oscillatory process. Each oscillation
generates a cycle of forward velocity v increase-decrease resulting in displacement  of the

larva along the axis of its front-segment, simplistically modeling the result of exactly one
peristaltic stride. After termination of a stride a new  is sampled. An analytically tractable curve

is fitted to the average empirical velocity curve measured during strides by setting all 5 crawler-
related parameters to the median empirically measured value (Appendix 2-Figure 1B     ):

where ΦC is the instantaneous phase of the crawler oscillation iterating from 0 to 2π during an
oscillatory cycle,  is the maximum scaled velocity during the cycle and  is the phase where

the maximum velocity occurs.

Turner module

The turner module is defined as the generative model of a torque-like output AT (t) under a
continuous activation signal IT (t). The (considered non-dimensional) output is scaled to angular
acceleration by a coefficient cT in sec−2 and applied to the body as external bending drive
(Equation 1     ):

which is then applied to the body yielding the instantaneous angular velocity ω(t) and angular
acceleration  bending the virtual body laterally. It has been previously suggested that an

underlying oscillatory process drives alternating bending to the left and right side (Wystrach et al.,
2016     ). We empirically confirmed this by detecting a slow,variable rhythm fT ≈ 0.4 on the angular
velocity timeseries of individual larvae. Based on this observation we adopt an oscillatory
approach for the alternating lateral bending and extend the lateral oscillator model described in
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(Wystrach et al., 2016     ). It consists of two mutually inhibiting components each having an
excitatory and inhibitory neuron (EL&CL vs ER&CR). The spike-response of a neuron to a
cumulative input x is given by R(x, h) where h is the half-response threshold. The
neuromodulatory activation IT (t) excites both components but also affects the gain g(IT) and time
constant τH (IT) of an additional adaptation component Hx of each neuron. The left and right
components quickly settle in antiphase, while adaptation ensures that periodic transitions occur.
Under the baseline activation  the oscillations occur at a dominant frequency fT . Perturbations

of this external drive cause transient changes in both amplitude and frequency because both, up
to transient loss of oscillation. This feature is exploited during olfactory modulation. The resulting
oscillator activity is defined as the instantaneous difference in the firing rates AT = (EL − ER).

Calibration of the turner module parameters in order to achieve a resulting angular motion that is
in agreement to the empirical observations requires concurrent specification of the
angularmotion related angular damping z, bend deformation resistance k and torque scaling
coefficient cT . The calibration process is described in detail in Appendix 2     .

Crawler-turner coupling

We couple the crawler and turner oscillators by imposing a crawler-phase dependent attenuation
cCT (ΦC) on the angular velocity ω (Equation 1     ). During the entire stride-cycle ω is scaled by a
baseline suppression coefficient . Our kinematic analysis revealed that this baseline

attenuation is partially lifted during a phase interval of the stride-cycle. The maximum additional
relief is defined by the relief coefficient . Concerning the mode of transition from  to

 and back to , we study two implementations, each defined by an additional

parameter. In the “square” mode there is an acute transition to maximum relief and back to
baseline for a specific interval of the cycle . In the “phase” mode the transition is
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described as a Gaussian kernel reaching maximum relief at phase  when crawl-induced

angular attenuation is minimum and the anterior body is maximally free to bend laterally, as
shown in the equation:

The parameter set is optimized to match the average empirically measured angular motion
observed during the stride cycle. The optimization process used is described in Appendix 2     . The
optimal Gaussian kernel is shown in Figure 3     .

Intermittency module

We define the intermittency module as a placeholder for any model capable of generating
transitions between runs and pauses (or equivalently runs and headcasts) (Figure 1B     ). During
pauses, the input to the crawler module IC = 0 and therefore forward velocity v = 0 while during
runs this is unaffected. For the specific study we implement a statistical model where the duration
for both the run and pause states is sampled at each initiation from a distribution that has been
fitted to the experimental data. In the case of pauses the duration is normally measured in time
units. For runs we employ an equivalent metric and therefore measure them as number of
consecutive crawling strides (stridechains). The fitted distributions are shown in Table 1     .

Olfactory sensor

Olfaction is introduced in the intermediate layer of the behavioral architecture allowing
chemotactic behavior. The olfactory sensor is located at the front end of the virtual larva therefore
any reorientation and/or displacement influences sensory input. As in (Gomez-Marin et al.,
2011     ) we assume that olfactory perception AO relates to changes in odor concentration C
according to the Weber-Fechner law, meaning that ΔAO ∼ ln ΔC. We further add a decay term that
slowly resets AO back to 0. The rate of change is given in Equation 8      where cO = 1 is the olfactory
decay coefficient, Gi is the gain for odor i and Ci the respective odor concentration:

Concerning how the perceived olfactory stimulation AO modulates exploratory behavior we adopt
the mechanism proposed in (Wystrach et al., 2016     ) (Figure 5     ). According to this model, the
turner activation I is perturbed from its baseline value  within a suitable range

:
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Mushroom body module

The underlying spiking network model of the Drosophila larva olfactory pathway and mushroom
body (MB) implements the model published by (Jürgensen et al., 2024     ). It consists of
conductance-based leaky integrate-and-fire neurons. It encompasses 21 olfactory receptor neurons
(ORNs) and the same number of projection neurons (PNs) and local interneurons (LNs) that
receive input from the ORNs in a one-to-one manner (Figure 6C     ). LNs form inhibitory
connections with the PNs. In the MB, each of the 72 Kenyon cells (KC) receive excitatory input from
2-6 random PNs. Feedback inhibition to the KCs is provided via the single GABAergic anterior
paired lateral neuron (APL). All KC provide excitatory input to two MB output neurons (MBONs).
The two MBONs represent two different types of output neurons that exist in the larval MB and
either represent approach or avoidance behavior. Plasticity at the KC :: MBON synapses facilitates
the association of odors with reward or punishment (associative learning). KC :: MBON synapses
employ a two factor learning rule: Pre-synaptic activation by an odor stimulus (action potential of
the KC) triggers an exponentially decaying eligibility trace e(t), which determines the window of
opportunity for synaptic change. Additional neuromodulatory input r(t) from one of the two DANs
will lead to a reduction in synaptic strength (Figure 6C     ) proportional to e(t) · r(t). The acquired
imbalance between the outputs of the two MBONs (behavioral bias) represents the association of
odors with rewards/punishments. An initially balanced interaction of excitatory and inhibitory
feedback components from MBONs onto both DANs encodes the models’ learning history in form
of a prediction error. The concept of prediction error suggests that associative learning about
stimulus A is proportional to the difference between the reinforcement currently received with
stimulus A minus the reinforcement predicted by stimulus A (previously learned association)
(Rescorla, 1972     ). In vertebrates an implementation of this error signal has been demonstrated in
dopaminergic neurons (Schultz, 2015     , 2016     ) and a similar mechanism is proposed for
learning in the insect MB (Riemensperger et al., 2005     ; Springer and Nawrot, 2021     ; Bennett et
al., 2021     ; Jürgensen et al., 2024     ). The time-resolved behavioral bias is used to compute gains
for odors, which bias motor output of the virtual larvae.

Videos

Here we provide the videos cited in the text. All videos are derived from real or simulated
experiments as visualized via the Larvaworld      software package, after some additional editing.
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Additional files

Video 1. Locomotory model for Drosophila larva. The function of the locomotory model in Figure 1B is
illustrated by gradually integrating its 4 modules (crawler, turner, oscillator-coupling, crawling-
intermittency). In each of the 6 videos the implemented modules are shown in the inset.     

Video 2. Free exploration simulation. A population of 25 real (left) or virtual (right) larvae is placed on a
dish and left to freely explore. The body of the real larvae has been simplified into 2 segments as
described in Video 4.     

Video 3. Filter selection. The effect of inadequate or excessive filtering of the empirical larva recordings is
illustrated. The left video shows the jittery original recording while the effect of lowpass filtering at cut-off
frequencies of 4 Hz, 2 Hz and 0.5 Hz is shown on the rest. Selection of an intermediate 2 Hz cut-off
frequency eliminates the unrealistic jitter while preserving the behaviorally relevant crawling
frequency.     

Video 4. Bisegmental larva-body simplification. The first video shows the original larva body as recorded
by the tracker. 12 points are tracked along its longitudinal axis defining 11 segments while 22 points
constitute the body contour. In the second video the body contour is dropped. In the third video an
artificial rectangular contour is added for each body segment. In the last video the body-midline is
segmented into 2 segments. The absolute head orientation angle θ is preserved while the single bending

angle between the 2 segments is defined as . 

Figure 2—video 1. The full-length trajectory (A, E) colored according to angular and forward velocity. 

Figure 2—video 2. The short track epoch depicted in the insets (A, E) colored according to forward and
angular velocity.     

Figure 4—video 1. The temporal course of dispersal for real (left) and virtual (right) larvae shown in
(A).     

Figure 5—video 1. Time course of the two simulated chemotaxis experiments. 

Figure 6—video 1. Two odor preference simulations, one with an appetitive and one with an aversive
odor source placed on the left side of the dish. A non-valenced odor source is placed on the right side. 

Appendix 1

Metric definition

Body length

The instantaneous body-length of an individual larva fluctuates during crawling due to sub-
sequent stretching and contraction. Its histogram is well fitted by a Gaussian distribution (data not
shown). Therefore individual larva length l is defined as the median of the midline length across
time (total length of the line connecting all 12 midline points). All spatial parameters including
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displacement and velocity can be scaled to this body-length, converting spatial units m or mm to
dimensionless body-length units. Scaled spatial metrics are denoted by an additional° over the
metric symbol.

Segmentation and angular metrics

To specify the body segmentation providing the most suitable contact/rotation point for the
definition of the bending ωb and orientation ω angular velocities we analyse their relationship in a
subset of 40 larvae. Tracking of 12 midline points allows computation of the absolute orientation
of 11 body-segments and the respective 10 angles θ1−10 between successive body segments (Figure
2F     ). We define θ as the head-segment absolute orientation in reference to the x-axis because this
defines the movement orientation of the animal. We ask how ω results from the bending of the
body as this is captured by the 10 angular velocities ω1−10. The regression analysis depicted in
Figure 1B      shows as expected that ω depends primarily on the front angular velocities while this
dependence decays as we move towards the rear segments, in line with previous studies (Lahiri et
al., 2011     ). Timeshift analysis also shows that the front 3 angles change concurrently while
angles further down the midline are increasingly lagging behind (data not shown). The correlation
analysis depicted in Figure 1C      shows that the sum of the front 5 angular velocities best
correlates to ω. In other words the cumulative body bend of the front 5 segments best predicts
head reorientation. Therefore we define the reorientation-relevant bending angle as 

(Figure 2F     ). The remaining 5 angles between the rear body-segments can safely be neglected as
they do not contribute to reorientation. This analysis results in a segmentation of the body in a
front and a rear segments of length ratio 5 : 6. The segmentation process is demonstrated in Video
4.

Forward velocity

To define forward velocity we need to choose which midline-point is most suitable to track and
which velocity metric to use for defining the start and end of a stride. To this end we perform
stride annotation of 3-minute tracks of a population of 20 larvae using each of 24 candidate
instantaneous velocity metrics, namely the velocities of the 12 points, the component velocities of
the rearest 11 points parallel to their front segment’s absolute orientation and finally the centroid
velocity. To compare the candidate metrics we compute the spatial cvs and temporal cvt coefficient
of variation of the annotated strides for each larva to assess how variant their time duration and
displacement is. We finally compute the mean  and  across individuals. In Figure 1A      the

spatiotemporal stride variance is shown for each candidate metric. We choose the metric that
provides the minimal spatial and temporal stride variance, assuming that strides of an individual
larva are more or less stereotypical in both duration and displacement (Heckscher et al., 2012     ).
Our study reveals that the centroid velocity is the most suitable metric for stride annotation. All
spatial metrics are therefore computed via this point’s displacement.

Track tortuosity

Track tortuosity is quantified by the straightness index (S.I), a metric previously used in larva-
track analysis (Sims et al., 2019     ), computed by advancing a fixed time window along the track
and calculating at each point the ratio of the straight line distance to the actual distance travelled.
This index, which varies from 0 (no movement) to 1 (straight line movement), can capture very
well the complexity of the movement at various scales (set by the window time frame) throughout
the track. As the time window decreases the smoothing effect is also reduced revealing increasing
track details. Different window sizes have been used ranging from 2 to 20 seconds in order to
capture both large-scale spatial trajectories and small-scale local movements. Tortuosity was
computed for each larva through time and revealed changes in movement as larva alternated
between straight line relocation, changes of direction and different degrees of tortuosity. Hence, a
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Appendix 1—figure 1.

Segmentation and velocity definition.

A: Forward velocity definition. 13 candidate velocity metrics are compared for use in stride annotation of 3-minute tracks of a
population of 30 larvae. For each candidate the mean coefficient of variation of temporal duration  and spatial
displacement  of the annotated strides is shown. Midline point 9 velocity provides the most temporally and spatially
stereotypical strides, therefore it is selected as the reference forward velocity for stride annotation and model fitting. vcen :
centroid velocity, v1 − v12 : 1st-12th point’s velocity. B: Regression analysis of individual and cumulative angular velocities
ωi=1−10 to orientation angular velocity ω. When considered individually, ω2 best predicts reorientation with the ω3 and ω1
following. When considered cumulatively the anterior 4 ωi allow optimal prediction of reorientation velocity. C: Correlation
analysis of the sum of all possible ωi combinations to ω. The sum  shows the highest correlation therefore we define

 as shown in A. For illustration purposes only the 5 highest correlations are shown.



Panagiotis Sakagiannis et al., 2025 eLife. https://doi.org/10.7554/eLife.104262.1 29

change in the S.I. along a larva’s track captures the magnitude of the change in movement pattern
from intensive, area-restricted searching movements (higher tortuosity) to extensive, straighter
line movements (lower tortuosity), and vice versa, across a wide range of spatial scales.

Epoch annotation

Strides (S) are annotated using the scaled forward velocity  First we apply fourier analysis to

detect the dominant crawling frequency within a suitable range 1 ⩽ fC ⩽ 2.5 (Figure 3A     ). From
this we derive the reference stride duration  Then epochs are annotated under a number

of constraints (Figure 2C     ):

Each stride is contained between two  local minima.

The  local maxima contained in the epoch needs to exceed a threshold .

The duration of the epoch t needs to range within . This allows individual

strides to temporally vary without overlapping so that adjacent strides can be concatenated
in stridechains.

After stride annotation the displacement due to each individual stride is computed for each larva
and divided by the larva’s body-length (Figure 2     A-C). The individual distributions are well fitted
by Gaussians (data not shown). Therefore  are defined as the average and standard deviation

of the scaled displacement per stride for each larva.

Crawling runs (R) are defined as uninterrupted sequences of successive strides, also termed
stridechains (Figure 2C     ). Stridechain length is the number of concatenated strides in a run and
is a discrete metric equivalent to the continuous crawling run duration. If the locomotory model
under evaluation does not generate v oscillations and therefore strides can not be detected, runs
are annotated using the plain forward velocity v timeseries as in a previous study (Sakagiannis et
al., 2020     ). We first define a suitable threshold vthr by detecting the minima of the pooled v
bimodal distribution. Then we define runs as epochs where constantly v ⩾ vthr. Pauses are then
defined as epochs containing no strides (or equivalently not overlapping with runs) and during
which  (or v ≤ vthr).

Turn epochs (T) are contained between pairs of successive sign changes of orientation angular
velocity ω. Annotated epochs of left (TL) and right (TR) turns yield the respective turn angle
amplitudes  and  as the absolute total change of orientation angle θ (Figure 2G     ), which

can then be pooled into the overall absolute turn-angle amplitudes θT . Notably by this definition
turns include both headcasts (H) occurring during crawl-pauses and weathervaning (W) occurring
during runs. Turns happening exclusively during runs and pauses yield the turn-angle amplitudes
of weathervaning θW and headcasts θH respectively.

Appendix 2

Model calibration
Here we describe in detail the calibration procedure for a locomotory model of an average
idealized individual based on a reference dataset of 150 larvae tracked while freely exploring a
Petri-dish over 3 minutes. The pipeline consists of 3 initial steps, which can be performed
independently of each other and set the configuration parameters of the crawler, intermittency
and turner modules respectively. In a final step that builds upon the results of the initial three, the
parameters of the crawl-bend phase-locked interference are set. The first two steps are directly
defined by the kinematic analysis results. The third and the final steps involve an optimization
process to reach the parameter set best fitting the empirical data. Notably, along with the intrinsic
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parameters of a module, a number of additional module-related parameters might need to be
defined, such as the body-length for the crawler module and the angular-motion relevant physical
parameters for the turner module.

For the hereby described average-larva model no noise is introduced to any module input or
output and no parameter variability is allowed across the population of the generated virtual
larvae. The sole source of stochasticity then is due to the random distribution sampling processes
operated during the behavioral simulations. For the analysis of the generated datasets the exact
same pipeline is used as for the empirical dataset. The configuration of the final locomotory model
is illustrated in Table 1     .

Forward motion

For the Crawler module a set of 5 parameters need to be defined, along with a default body-length.
This parameter-set is adequate to dynamically generate realistic forward velocity v oscillations as
defined in Equation 3     . All parameters are set to the median value across the empirical larva
group. In Figure 1A      the empirical distributions of the 5 crawler-module parameters are shown
along with the median value selected for the average module.

Crawl intermittency

For the Intermittency module the sampling distributions for the run and pause epochs need to be
defined. For both a continuous time-duration distribution is define while for the former an
additional discrete distribution of number of concatenated strides per stridechain (run) is
computed. In all cases, the pooled distribution of the given epoch across the entire dataset is
approximated by power-law, exponential, Levy, log-normal and combined log-normal/power-law
distributions. All distributions are truncated within an empirically observed range and are fully
defined by their usual arguments. The best-fitting candidates from each class are sorted according
to their Kolmogorov-Smirnov distance DKS from the empirical distribution and the one exhibiting
the minimum DKS is selected for use in the model’s intermittency module (Table 1     ). A validation
is shown in Figure 1D      where the distributions of the generated epochs (blue) match the
empirical ones (red).

Angular motion

Realistically calibrating the locomotory model in the angular domain is more demanding. The
Turner module only generates a torque-equivalent output while the torsional-spring body model
applies both angular damping and restorative force due to the body-bend angle (Equation 1     ).
We need to calibrate the 3 involved physics parameters, namely the angular damping z in sec−1,
the bend deformation resistance k in sec−2 and the torque coefficient cT in sec−2. Additionally the
parameters of the turner module itself need to be specified. Here we study two implementations.
The first is the above described neural oscillator, for which we need to define the baseline tonic
input , the spike-response steepness coefficient nT and the time constant τT . The second is a

simple sinusoidal oscillator, for which we need to define the baseline amplitude  and

frequency fT . In order to have an empirical reference for isolated angular-only motion while
avoiding the effect of crawling on the angular motion and we select the detected pause epochs
exceeding 3 seconds and derive the pooled distributions for 3 angular metrics, namely the bending
angle θb, the angular velocity ω and the angular acceleration  We run an optimization algorithm
aiming to minimize the Kolmogorov-Smirnov distance between the simulated and empirical
distributions for these 3 angular metrics. In each iteration a Turner module of a given
configuration is simulated for 3 minutes while Equation 1      is applied to derive θb and ω. The
obtained optimal turner and physics parameters are shown in Table 1     .
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Appendix 2—figure 1.

Average locomotory model summary.

A: Distribution of stride-cycle related parameters over the empirical dataset. Red dotted line denotes the median value used
in the Crawler module of the average locomotory model. B: Normalized average curves of angular metrics during the stride
cycle for each individual larva. Red line denotes the group median. C: Pooled distribution of runs and pauses over the entire
dataset (blue). Runs are detected as chains of concatenated strides (stridechains). Stridechains and pauses generated by the
fitted distributions are shown in red. These distributions are used in the Intermitter module of the average locomotory
model. D: Sample simulation of the model with all modules active. The model features additionally bend correction due to
forward motion and crawling phase-coupled suppression of angular motion.
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Crawl-bend interference

For the crawl-phase dependent attenuation of angular motion we study two implementations,
each having three parameters that define the attenuation coefficient cCT (ΦC) during the stride-
cycle (Equation 6     ). To achieve this we use a genetic algorithm (GA) optimization process to
reach a best-fitting parameter-set for this module. Although optimization is only allowed to search
the parameter space for these three parameters, each configuration is evaluated using a complete
virtual larva model, combined with the optimal configurations of all other modules defined in the
previous three calibration steps. During each iteration of the GA process a group of 30 model
configurations is simulated for 3 minutes in free exploration conditions. The best 6 configurations
are then mutated and/or combined in a novel generation. The evaluation function minimized is
two-fold.Firstly the distributions of the three angular metrics derived from the simulated track,
namely the bending angle θb, the angular velocity ω and the angular acceleration  are compared
to the empirically measured target distributions via the Kolmogorov-Smirnov distance as
described above for the angular motion. Secondly, stride-cycle analysis is carried out for each
simulated larva. Detected strides are interpolated in over n = 64 bins in a 2π cycle and direction-
normalized by inverting the right-turning strides. The average stride-cycle curve  is then

computed for each of the three metrics and compared to the average empirically measured curve
x via the evaluation metric defined below. The metric has been selected so that the different scales
of angles, angular velocities and accelerations are normalized before being summed. The final
evaluation metric to be minimized is defined as the cumulative error across the three angular
metrics for both the distributions and the average stride-cycle curves.

Here we study two configurations for the crawl phase-dependent suppression of the angular
motion, namely a smooth gaussian relief curve and an acute square transition as described in
Equation 6     .The target empirical and optimal model’s average curve for the angular velocity ω
are shown in Figure 1B     .

A sample simulation of the complete model is shown in Figure 1D     . The Crawler-generated
forward velocity oscillations (1st row) attenuate the angular motion in a phase-locked manner
(2nd row) resulting in low angular velocity during runs and acute headcasts during pauses (3rd
row). The bending angle is additionally restored to 0 during forward motion (4th row).
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Abstract

Behavioral modeling supports theory building and evaluation across disciplines. Leverag-
ing advances in motion-tracking and computational tools, we present a virtual laboratory
for Drosophila larvae that integrates agent-based modeling with multiscale neural control
and supports analysis of both simulated and experimental data. Virtual larvae are
implemented as 2D agents capable of realistic locomotion, guided by multimodal sensory
input and constrained by a dynamic energy-budget model that balances exploration and
exploitation. Each agent is organized as a hierarchical, behavior-based control system
comprising three layers: low-level locomotion, optionally incorporating neuromechanical
models; mid-level sensory processing; and high-level behavioral adaptation. Neural con-
trol models can range from simple linear transfer models to rate-based or spiking neural
network models, e.g. to accomodate associative learning. Simulations operate across
sub-millisecond neuronal dynamics, sub-second closed-loop behavior, and circadian-scale
metabolic regulation. Users can configure both larval models and virtual environments,
including sensory landscapes, nutrient sources, and physical arenas. Real-time visu-
alization is integrated into the simulation and analysis pipeline, which also allows for
standardized processing of motion-tracking data from real experiments. Distributed as
an open-source Python package, the platform includes tutorial experiments to support
accessibility, customization, and use in both research and education.

Author summary

Larvaworld was developed to address two key challenges in behavioral neuroscience
and computational modeling. First, it responds to the growing call for closer collabora-
tion between experimentalists and modelers by providing a shared platform -a virtual
laboratory- where experimental data analysis and behavioral modeling can be seamlessly
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integrated. By standardizing dataset formats and ensuring identical, unbiased analysis
pipelines for experimental and simulated data, Larvaworld facilitates methodological
consistency and enables rigorous model evaluation.

Second, it aims to bridge a long-standing gap in theory building and computational
modeling at the level of the individual behaving organism. Historically, neuroscience has
focused on sub-individual processes, while ecology has concentrated on supra-individual
dynamics, resulting in discontinuities among the respective modeling approaches. Recent
advances, however, have begun to align these fields, with neuroscience incorporating
slower homeostatic processes and ecology integrating faster neurally-mediated mech-
anisms. Larvaworld boosts this convergence by adopting a nested, multi-timescale
modeling approach, thus achieving behavioral regulation within the normative homeo-
static constraints as these dynamically unfold during larval development. By combining
established modeling paradigms from neuroscience and ecology, it provides a novel and
flexible platform for studying behavior at the level of the individual organism, promoting
cross-disciplinary insights and advancing computational neuroethology [1].

Introduction

Drosophila is a widely studied model organism in neuroscience, alongside lamprey,
zebrafish, mouse, rat, and monkey, listed in order of increasing nervous system complexity.
Researchers working with mammals are acutely aware of the scarcity and high cost of
experimental animals, making computational modeling a valuable alternative to real-
life experiments. Insects, on the contrary, are more abundant, affordable, and easier
to rear, and their use is subject to fewer ethical restrictions. Nevertheless, growing
concerns about animal welfare have recently fueled support for alternative research and
educational tools aimed at reducing reliance on live animal experiments. Behavioral
studies, in particular, often require far larger sample sizes than neurophysiological
experiments, further highlighting the need for computational approaches. In this context,
virtual laboratories and simulation platforms are emerging as indispensable tools for
both scientific research and education [1,2]. Many academic institutions have already
developed and integrated such tools into their curricula, with notable applications in
fields like Mendelian genetics and beyond.

Not all scientific fields readily translate to the virtual domain, and behavioral science
is particularly challenging in this regard. The widespread use of arbitrary behavioral
metrics across different laboratories further complicates experiment replication. Despite
significant advances in experimental setups, genetic manipulations, and behavioral
recordings, tools for behavioral modeling remain limited, often lacking key functionalities.
In particular, tools that support direct comparisons between simulated and experimental
datasets are still underdeveloped.

A recent perspective paper, authored by pioneering researchers in AI introduced the
concept of the embodied Turing test as a potential goal for computational modeling of
animal behavior [3]. This approach seeks to bridge neuroscience and AI by generating
robotic or virtual animats, whose embodied behavior is indistinguishable from that of
real animals. Achieving this goal requires a platform that facilitates continuous and
unbiased comparisons between experimental and simulated datasets to more effectively
construct, calibrate, and evaluate models.

Here we propose one such tool for Drosophila larvae. The core concept is to create and
simulate virtual larvae whose behavior can be analyzed using the exact same pipelines
applied to real animals. From the platform’s perspective, experimental and simulated
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datasets are indistinguishable. Experimental data can be imported and automatically
converted into a standardized format identical to that produced by the simulations.

To enhance replicability and accommodate variability in behavioral metrics, the platform
relies solely on the originally tracked x-y coordinate time series. All additional behavioral
metrics are transparently defined and consistently derived from these coordinates for
both experimental and simulated datasets. Virtual larvae are modeled with a simplified
2D body structure that mirrors key features of the real animal. Their movements are
tracked during simulations as if observed by a virtual tracker, navigating a detailed
virtual replica of the real experimental arena.

Once a trackable body is established, behavioral control can be implemented through
computational modeling. To maximize flexibility and support integration and expan-
sion, Larvaworld adopts a hybrid, modular, and hierarchical control architecture [4].
Its hierarchical design follows the layered behavioral control paradigm [5], in which
successive control layers are stacked according to two key principles: decentralization
and subsumption. Decentralization ensures that each layer can operate autonomously,
independent of top-down input-consistent with evidence of decentralized neural circuits
capable of generating simple behavioral primitives even when isolated from higher-order
control [6]. Subsumption, on the other hand, allows top-down modulation to influence
only a few key parameters, reflecting subtle adjustments by higher neural centers.

Each control layer is composed of interconnected modules, specialized for processing
specific sensory and modulatory inputs, motor outputs, or sensorimotor integration. This
toolkit-like, modular design has been already adopted in some studies of larva behavioral
neuroscience because it offers a high degree of configurability, enabling researchers
to compare models by adding, removing, or replacing modules [7]. It also facilitates
expansion through the seamless integration of new modules.

The hybrid nature of the framework imposes minimal constraints on the modeling detail
within individual modules. Whether deterministic, stochastic, rule-based, rate-coded
neural models, or neuron-level spiking models, modules can be combined, replaced, and
compared, provided they conform to standardized input-output formats. Once a modular
larva model has been assembled, it can undergo a genetic algorithm optimization process
prior to its use in evaluation studies.

The following sections elaborate on the implementation, usage, and accessibility of the
platform in greater detail. Section Design and Implementation describes the architecture
and implementation of the Larvaworld platform, including its modeling principles,
simulation modes, configuration options, and analysis tools. Section Results presents
a range of scientific applications, demonstrating how Larvaworld has been used for
behavioral modeling, data-driven analysis, and model evaluation in various settings.
Section Code availability provides information on code availability and installation. A
schematic of the main components is shown in Figure 1 and a summary of preconfigured
virtual experiments is included in Table 2, offering quick-start examples for further
exploration.

Design and Implementation

Modeling principles

The design of the Larvaworld platform addresses four aims:

• Integration of established theoretical and modeling principles from distinct fields
across behavioral sciences
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Experimental locomotory datalarvaworld

Genetic Algorithm Optimization

Fig 1. Larvaworld architecture. A schematic of the main components and
functionalities of Larvaworld.

• User-friendly interface for both behavioral modeling and analysis purposes

• Modularity and extendability

• Computational efficiency and storage management

In the following sections the motivation behind each developer decision will be articulated
along with the specific implementation choices.

Agent-based modeling (ABM)

The platform is designed to integrate established computational paradigms from diverse
research fields, with a primary focus on the agent-based modeling (ABM) approach,
which has been extensively used in computational ecology [8,9]. This choice is motivated
by theoretical and practical considerations. ABM provides a powerful framework for
simulating complex, dynamic systems where individual agents -representing organisms,
behavior, or components- interact with each other and with their environment, making
it particularly well-suited for modeling the behavior of Drosophila larvae in a virtual
space.

The core simulation and agent classes in Larvaworld are built upon the agentpy package,
a Python-based ABM framework and a key dependency of the platform [10]. Agentpy ’s
basicModel, Space and Object classes are adjusted to meet the specific needs of Larvaworld
especially the nested-dictionary implementation of agent parametrization, ensuring that
the platform can accommodate the unique requirements of simulating complex modular
biological systems. ABM provides a flexible and efficient structure for the creation and
management of agents, including the ordering of their actions, simulation setup, and
workflow, and turn-based data retrieval.
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The Dynamic Energy Budget (DEB) theory

To bridge the gap between the neuroscientific and homeostatic timescales of behavioral
modeling, Larvaworld can place fast neural control of behavior under the regulation of a
slower energetics model which addresses energy allocation according to the metabolic
needs of the virtual animal as these develop during the larval life stage. The energetics
simulation is formulated as a dynamic energy budget (DEB) model following the estab-
lished literature [11].

The DEB model takes into account the post-hatch age of the larva and the rearing
conditions including nutritious substates and starvation or partial food-deprivation
periods. It enables the introduction of discrete foraging phenotypes, such as rovers and
sitters [12], by differentially configuring the nutrient absorption rate during feeding,
eventually regulating the behaviorally expressed exploration-exploitation balance via
a dynamic energy-reserve dependent hunger drive. The energetics model runs in the
background of the behavioral simulation at an adjusted circadian timescale achieving
realistic growth curves for virtual larvae.

Parametrization

All classes in Larvaworld are parameterized using the param Python library, a member
of the holoviz ecosystem, developed to enhance transparent subclassing, interactive
visualization through dynamic widgets (see Fig 4), and intuitive real-time display of
their parameters within Jupyter notebooks, as demonstrated in the tutorials available
on the documentation page (see Figures 6, 7, 5).

These interactive features are illustrated in a number of browser-based applications
(see Fig 8) that can later be integrated into a comprehensive Graphical User Interface
(GUI) to enhance the accessibility of the virtual laboratory, making it easier to use for
researchers and educators without extensive coding experience.

Visualization

Larvaworld uses the pygame Python library to support visualization of behavioral
simulations as well as replays of previously stored simulations and real-world experiments
reconstructed from imported data. These can be run at real-time, slower or faster up to
the device’s computational limits. If visualization is enabled for a simulation, a pop-up
screen shows the larvae and the environment objects (odor/food sources, impassable
borders) on a 2D arena with a realistic spatial scale and timer. Keyboard shortcuts
and mouse clicks allow real-time interaction with the visualization screen. Zooming in
and out is allowed as well as selecting and locking the screen on specific individuals.
Larva unique IDs as well as the screen scale and timer can be toggled on and off.
Additionally, larva midline and contour can be toggled, and their head or centroid can
be pointed out. Larva trajectories can be shown and their duration can be adjusted.
Larvae can be colored with default or random colors or dynamically according to their
instantaneous behavior. The arena color can be changed and the distribution of specific
odors (odorscape) dynamically visualized. Larvae, sources and borders can be added or
deleted instantly. Finally videos of the simulations and replays can be stored, arena or
odorscape snapshots captured and videos collapsed on a single image file comprised of
all video frames overlaid. A number of snapshots illustrating the real-time visualization
of both reconstructed experiments and simulations are shown in Fig 2. A summary of
the available online controls is shown in Table 1.
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(a) (b)

(c) (d)

Fig 2. Real-time visualization of reconstructed real-animal experiments and agent
simulations. Snapshots from the experimental arena illustrate: (a) real-animal behavior
displayed on a black background with visible larval IDs and reconstructed locomotion
trajectories [13]; (b) a close-up showing the 12-point midline tracking of individual
larvae [13]; (c) a simulated odor preference experiment: A group of larvae is randomly
placed at the centre of the dish with an appetitive odor source placed on the left (red)
and a non-valenced odor on the right (blue). The larvae are gradually attracted to the
side of the appetitive odor; and (d) a capture-the-flag mini-game: Two larva groups
(blue on the left VS red on the right) compete to capture a highly-valenced
centrally-placed odor source (green) and carry it back to their base (low-valenced odor
source of the respective color). The simulated olfactory sensory landscape ("odorscape")
emanating from the green odor source is shown in black over a blue background.
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Screen Drawing Color Interaction Simulation/Storage

Scale s midline m random r select L* snapshot i

Timer t contour c behavior b lock

screen

f odorscape o

IDs tab head h background g delete del pause p

Zoom in/out M* centroid e odorscape 0-9 add L*

Screen Motion ↕↔ trail p inspect R*

trail

duration

+/- dynamic

graph

g

Table 1. Visualization default keyboard/mouse controls. L*, R*, M* stand for mouse
left, right, and center buttons respectively

Replays of simulated or imported experimental datasets allow additional configuration.
Inclusion of specific individuals and time range can be defined. Replays can be run
on arenas different than their original one as long as all tracks remain within their
boundaries. To this end, larva x-y coordinates can be transposed to the arena center.
Additionally all tracks can be aligned to start from the same origin at the arena center,
a mode favoring inspection of larva dispersion over time. Larva trails can be colored
according to the instantaneous forward or reorientation angular velocity. For closely
inspecting single-larva replays, the screen center can be locked to a specific midline point
or segment and a background hue can be enabled to easily assess body movement in
space. Finally when replaying imported experiments, larva bodies can be reconstructed
as segmented virtual bodies of a given number of segments in order to make them visually
comparable to virtual larvae.

Simulation modes

Several simulation modes are available, each serving a distinct purpose and featuring its
own set of configurable parameters. Such a mode-specific parameter set fully configures
a simulation and can be stored as a nested Python dictionary under a unique ID for
future usage. A rich repertoire of preconfigured parameter sets is already available upon
installation consisting of several simulation examples for each mode.

The Command Line Interface (CLI) can be summoned directly from the terminal using
the larvaworld command. This has to be followed by an essential argument that
defines the desired simulation mode by its respective shortcut. In some modes, a
second argument is needed to retrieve an existing, stored configuration by its unique ID.
Additional arguments can be used to overwrite some basic parameters of the predefined
configuration. The available simulation modes are shown in Fig 3 while their usage via
CLI commands is showcased separately.

Single experiment

This is the basic simulation mode which runs a single virtual experiment once, based
on a detailed configuration of the virtual environment, involved larva groups, temporal
simulation features and subsequent analysis pipeline. Such a configuration might aim to
enable the detailed, standardized, realistic, in silico replication of a real-world experiment,
in which case its setup and analysis is drawn from published behavioral studies or

June 18, 2025 7/31



Fig 3. CLI simulation modes. The simulation modes available in Larvaworld along
with the respective argument to launch them via the command-line interface.

established behavioral protocols. Such examples can be found among the multiple
preconfigured experiments listed below (Table 2). Alternatively, it might define a
difficult-to-implement or entirely fictitious experiment for model-testing, visualization
or proof-of-concept purposes. As a distinct simulation mode, an experiment launched
individually supports a complete pipeline to analyze the results, generate the respective
plots and store the simulated datasets for future access. In contrast, the single run
forms the core simulation unit, the building block for more complex simulation modes
described below.

Each of these lines runs a dish simulation (30 larvae, 3 minutes) without analysis:

l a rvawor ld Exp di sh −N 30 −durat ion 3 .0 −vis mode video
larvawor ld Exp patch gr id −N 30 −durat ion 3 .0 −vis mode video

This line runs a dispersion simulation and compares the results to the existing reference
dataset. We choose to only produce a final image of the simulation.

l a rvawor ld Exp d i s p e r s i o n −N 30 −durat ion 3 .0 −vis mode image −a

Genetic Algorithm for model optimization

As explained above, the behavioral architecture applying neural control over an agent’s
behavior is hierarchically layered and modular. The latter implies that diverse mutually
exclusive models can compete for each module defined within the architecture. The
nature of these competing module-specific models is not constrained apart from the need
to adhere to the input/output specification of the module. In other words each of these
candidate models might entail an intrinsic set of configuration parameters, not shared
among other candidate models. An issue that surfaces when comparing across them, is
that each model should be represented by the best possible parameter configuration, so
that the comparative simulation study indeed selects between optimal model instances.
It follows that an optimization process for each candidate model that will yield its
optimal representative, must precede the comparative study. This need has motivated
the integration of a genetic algorithm (GA) optimization process into Larvaworld.

The GA simulation mode accepts three sets of parameters as illustrated in Fig 4 :
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Type/Behavior Experiment Description Literature source

exploration

close-view
Single larva closely inspected in a

tiny arena
-

dish
Exploration of a non-nutritious

Petri-dish
-

dispersion
Larva dispersion from the arena

center
-

chemotaxis
navigation Navigation up an odor gradient

Gomez-Marin et al.

(2012) [14]

local search
Exploration in the vicinity of an

odor source

Gomez-Marin et al.

(2012) [14]

odor

preference

train & test
Olfactory associative learning

(train & test phase)

The Maggot Learning

Manual

test on/off food
Test in the presence/absence of

nutritious substrate

The Maggot Learning

Manual

foraging
patchy food

Foraging in arena with

one/two/multiple food patches
-

uniform food
Foraging in uniformly distributed

nutritious substrate
-

growth
rearing

Larva rearing in ad-libitum

conditions
-

rovers VS sitters
Foraging phenotypes compared in

diverse conditions
Kaun et al. (2007) [12]

imitation
realistic bodies

Multisegment larvae in Box2D

physics engine
-

dataset imitation Experimental dataset imitation -

games
maze

Navigation in a maze towards an

odor source
-

capture/keep the flag
Larva teams competing for a

portable nutritious object
-

Table 2. Summary of preconfigured behavioral experiments
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Fig 4. GA configuration panel

• Selection algorithm : Here we define the number of generations to run and the
number of agents per generation. Additionally, the criteria to select and optionally
mutate agent configurations to generate the next generation.

• Parameter space : A basic model configuration needs to be provided along with
the specification of the parameters that will be optimized. Each of the parameters-
to-be optimized is part of an existing module of the agent’s behavioral architecture
and the allowed range of the space search is predefined.

• Performance evaluation : Parameters that ultimately define a fitness function
that quantifies the perfomance of each agent in each generation. In the simplest case
the fitness function is defined externally and provided as an argument. Alternatively,
it may be constructed by the GA engine based on provided parameters. For example
when the agents are evaluated against an experimental reference dataset.

This line optimizes a model for kinematic realism against a reference experimental
dataset :

l a rvawor ld Ga rea l i sm −re f ID exp l o r a t i on .30 c on t r o l s −N 20 −durat ion 0 .5
↪→ −mID1 GA test loco −in i t mode model

Model evaluation - comparison with real data

Sometimes we focus on evaluating our agent models against some reference experimental
dataset. The model evaluation mode does exactly that. As shown in Fig 5, it requires
defining :

• Reference dataset, designated via ID or directory

• Larva models retrieved via ID and the size and IDs of the respective larvagroups

• Evaluation metrics and configuration

• Simulation experiment and its setup
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Fig 5. Model Evaluation configuration parameters

Illustrative examples of model evaluation simulations are presented in the Results section.
This mode is available via CLI as well. The following line evaluates two models against
a reference experimental dataset :

l a rvawor ld Eval −re f ID exp l o r a t i on .30 c on t r o l s −mIDs RE NEU PHI DEF
↪→ RE SIN PHI DEF −N 3

Experiment replay

Replay a real-world experiment. This line replays a reference experimental dataset :

l a rvawor ld Replay −re f ID exp l o r a t i on .30 c on t r o l s −vis mode video
larvawor ld Replay −r e fD i r SchleyerGroup/ proces sed / exp l o r a t i on /30 c on t r o l s

↪→ −vis mode video

Simulation configuration

Environment setup

The simulation environment in Larvaworld is designed as a spatial arena with config-
urable shape and dimensions. Within this arena, single or grouped odor/food sources
and impassable borders can be placed at specified locations. A key feature of the
environment is its customizable sensory landscape, which includes gradients of various
sensory modalities such as olfactory (odorscape) emanating from odor sources placed
inside the arena, thermal (thermoscape), and wind (windscape). The parameters of
the respective class are shown in Fig 6. Mini videos of windscape and odorscape are
available online [15–19].

To facilitate diverse experimental setups, multiple predefined environmental configu-
rations are available, each of which can be adjusted to suit specific research needs.
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Fig 6. Virtual environment configuration parameters

Researchers can modify attributes such as the position and intensity of sensory sources,
the spatial distribution of sensory gradients, and the boundaries of the arena. This
flexibility enables precise control over the simulation environment, allowing for the design
of experiments that replicate real-world conditions or explore novel scenarios.

Substrate

Larva rearing and behavioral lab experiments are carried out on diverse nutritious or
non-nutritious substrates. Several substrate types have been established in terms of their
nutrient compound composition. Some of these have been implemented in Larvaworld
with their characteristic composition. Virtual larvae can be grown, starved or tested on
such substrates (Table 3). Any food source in the arena is characterized by a substrate
of specific type, nutritional quality and available amount of food. Alternatively, the
substrate can be placed locally as patches in a grid that covers the entire arena as a
grid where each cell can independently hold a certain amount of food. This food can be
detected and consumed until depleted.

Larva groups

In Larvaworld, virtual larvae are generated in groups, with members of each group
sharing specific traits that distinguish them from individuals in other groups. These
traits include not only the configuration of the larva model itself but also elements such
as a shared life history, a spatial distribution that defines their initial pose (Table 4), a
group-specific color for easy visualization and a distinct odor signature (Fig 7).
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Substrate
Compound density (µg/ml) Literature

source
glucose dextrose saccharose yeast agar cornmeal

standard-
medium

100 - - 50 16 -
Kaun et al.

(2007) [12]

PED-
tracker

- - 10 187.5 5000 -
Schumann et

al (2020) [20]

cornmeal - 70.3 - 14.1 6.6 65.6
Wosniack et al.

(2021) [21]

sucrose 17.1 - - - 4 -
Wosniack et al.

(2021) [21]

Table 3. Compound composition of established nutritious arena substrates

Parameter Description

N Number of virtual larvae in the group

location Centre of the spatial distribution in the arena

scale Spatial extent of the distribution

shape Shape of the distribution (circular/rectangular/oval)

placement Placement within the distribution’s shape (uniform/normal/periphery)

orientation Range of initial spatial body orientations

Table 4. Larva group initial spatial placement parameters

Virtual larvae can have their own life history at the moment they enter the experimental
arena. To simulate that, a Drosophila-specific dynamic energy budget (DEB) model
simulates larva growth up to a specific age post-hatch, on a predefined rearing substrate
(Table 3) of specified quality so that the behavioral simulation can be subsequently
initiated. Periods of food deprivation or complete starvation during rearing or during
the actual behavioral simulation can also be defined.

Groups can be assigned a linked reference dataset from which parameters are sampled.
The sampling mode is highly configurable, offering three main options: optimizing for
an average individual, preserving interindividual variability, or replicating the reference
dataset on an individual-by-individual basis for specified parameters. For a detailed
comparative evaluation of these group-generation modes, see Individuality and Variability
in the Results section.

This functionality provides researchers with the flexibility to design experiments featuring
multiple, distinguishable groups of virtual larvae. By enabling group-specific traits
and parameter configurations, Larvaworld supports a broad spectrum of experimental
scenarios, ranging from comparative analyses to simulations that emulate the diversity
and dynamics observed in real-world populations.

Web-based applications

A number of web-based Larvaworld applications are available to facilitate inspection,
configuration and real-time visualization of various elements. The panel showing the
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Fig 7. Virtual larva group parameters

Application Description

Experiment Viewer Inspect/launch preconfigured experiments

Larva Models Inspect/visualize modular larva-models

Locomotory Modules Inspect/test behavioral modules

Track Viewer Visualize stored datasets

Table 5. Web-based applications

available applications can be launched via the CLI command larvaworld-app. Some of
the available applications are listed in Table 5 and a snapshot is shown in Fig 8.

Data management and analysis

Standardized format for both experimental and simulated datasets

Larvaworld is set up primarily to analyze and simulate Drosophila larva motion-tracking
experiments. In such studies recorded data are usually collected per trial and per
animal group. Datasets are then comprised of a number of (identical) trials for each of
a number of animal groups (for example different genotypes, satiation states, rearing
conditions) and their control counterparts. Furthermore it is common to perform the
same behavioral experiment under a number of different environmental conditions or
even to compile an essay of diverse behavioral experiments across animal groups. To
make the importation of such experimental datasets straightforward to the user, the
platform’s data organization builds on such a LarvaDataset as a core class. Crucially
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Fig 8. Web-based Larvaworld application to inspect the modular composition of any
preconfigured locomotory larva-model. This can be selected by its unique ID from a
drop-down list of all available models. The configuration of all 4 basic modules
comprising the locomotory layer of the model is available on the left sidebar. Real-time
simulation variables (e.g. input/output) are dynamically plotted in the middle.

this class is common for both simulated and experimental data in order to facilitate
comparison and model fitting. The basic elements of a LarvaDataset instance are :

• Timeseries data computed at every timestep for every larva are stored as a double-
indexed Pandas dataframe where the index defines the timestep and the unique
ID of the larva, while the values of each parameter are stored in a separate
column. Initially the dataframe contains only the primary tracked parameters
(x-y coordinates of at least the centroid, often a number of points along the larva
midline and optionally the contour of the larva body). The dataframe is enriched
with derived parameters during data-processing as described in the section below.

• Endpoint metrics computed once for every larva at the end of the simulation are
also stored as a Pandas dataframe indexed by the agent’s unique ID. This is also
enriched during data-processing with summary measurements of the timeseries
data.

• Metadata about experimental conditions, tracking parameters, animal groups etc
are structured as a nested dictionary. Storage paths are also stored there for easy
access during analysis.

To facilitate efficient data storage, retrieval, and analysis the dataframes are stored in
an HDF file under different keys (e.g. midline, contour, trajectory) for easy access. The
metadata dictionary is stored as a configuration text file alongside the data. The dataset
can optionally be registered as a reference dataset, by providing a unique ID as key, a
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Function Description
P

re
p

ro
ce

ss
in

g Scaling x-y scaling by a scalar

Transposition x-y transposition

Alignment Trajectory alignment e.g. to common origin

Interpolation Missing data interpolation

Exclusion Data exclusion on condition

Filtering Low-pass filtering at a cut-off frequency

P
ro

ce
ss

in
g

Angular analysis Bend/orientation angle, angular velocity/acceleration

Spatial analysis Spatial distance/velocity/acceleration

Forward components Spatial metric components along orientation axis

Dispersal Larva spatial dispersal during time ranges

Tortuosity Trajectory tortuosity for sliding temporal windows

Odor preference Olfactory preference index

Odor concentration Absolute and perceived odor concentration along trajectory

A
n

n
o
ta

ti
o
n Strides/Crawl-runs Individual strides and uninterrupted chains of concatenated strides

Crawl-pauses Immobility epochs without peristaltic strides

Turns Turning events based on reorientation amplitude or angular velocity

Bout analysis Spatial/angular metric change during bouts

Bout distribution Distribution fitting for bout duration/length

Table 6. Data processing methods

functionality often used to easily access real experimental data during model evaluation
and optimization but also for quickly visualizing comparative plots of simulated and
experimental data. Additional files are created during data-processing.

Unbiased parameter computation and data analysis from primary 2D time-
series

In Larvaworld, data processing methods are identical for both simulated and imported
experimental data, ensuring consistency and unbiased analysis. The platform supports
three sequential, configurable pipelines that can be applied to any dataset containing at
least the x-y coordinates of a single point per larva (Table 6):

During preprocessing the dataset x-y series can be rescaled by a scalar (e.g. to con-
vert datasets stored in millimeters to the default Larvaworld space unit of meters) or
transposed to align with the arena center. Datasets can also be aligned to a common
origin, facilitating visualization of dispersal patterns. Noise from tracking artifacts can
be reduced using low-pass filtering at a configurable cut-off frequency. Additionally,
missing data points can be interpolated, or specific data slices can be excluded based on
predefined conditions (e.g. instances of larva collisions).

In the main processing stage, secondary parameters are derived from the primary x-y
time series:

• Angular analysis: Bending angles and absolute orientation in 2D space are computed
for individual larval segments. Instantaneous orientation and bend can be defined
either directly from these angles or via front/rear body vectors.

• Spatial analysis: Key metrics such as distance, velocity, and acceleration (including
their components along the larva’s forward orientation axis) are calculated.

• Dispersal patterns over specified time intervals
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• Trajectory tortuosity using sliding windows of configurable durations

• Odorscape Navigation: Metrics such as instantaneous odor concentration and
perceived concentration changes along the larva’s trajectory are available. Addi-
tionally it is possible to track the instantaneous distance and bearing to odor or
food sources.

• Preference index calculations for olfactory preference experiments.

Finally the bout annotation pipeline identifies discrete behavioral events, including:

• Strides: Individual locomotor steps.

• Crawl-Runs: Continuous sequences of strides.

• Crawl-Pauses: Periods of immobility.

• Turns: Defined either by reorientation amplitude or changes in orientation/bending
angular velocity sign.

A fitting algorithm determines optimal distributions for the temporal durations or
spatial lengths of bouts, selecting from options such as power-law, exponential, and
log-normal distributions. Additional metrics include distance, orientation change, and
bending angle change during individual bouts, as well as crawling frequency estimates.
For virtual larvae, the platform enables tracking of a broad range of model-specific,
simulation-derived metrics, offering flexibility for detailed behavioral analysis and model
evaluation.

Importing experimental datasets from diverse tracker setups

Experimental laboratories employ a wide range of tracking software to accurately capture
2D larval locomotion. Typically, primary data consist of coordinates for multiple points
along the body midline and around the body contour, tracked at either fixed or variable
frame rates. These raw data are exported in tracker-specific formats and subsequently
processed to derive secondary parameters for analysis. Larvaworld supports the direct
import of tracked datasets from a variety of tracker-specific formats (Table 7). For each
supported format, the platform defines key parameters such as the tracking frame rate and
the number of midline or contour points, along with a format-specific conversion function
to transform the raw data into the standardized LarvaDataset format. Users can specify
which tracks to include using a set of import arguments, such as track duration, start or
termination time, and the option to limit the dataset size by defining a maximum number
of animals. The imported datasets are standardized, making them directly comparable
both to each other and to simulated data. Importantly, to promote reproducibility,
only primary parameters are imported, ensuring that all subsequent derived metrics are
transparently calculated within the platform. This approach facilitates consistent and
unbiased comparisons across experimental and simulated datasets while maintaining a
high degree of accessibility and flexibility for data analysis.

Results

Scientific applications

The Larvaworld package has already been successfully used in several scientific studies.
These will be briefly described here, focusing on the way each of them used Larvaworld.
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Lab Framerate (Hz) Midline (#) Contour (#) Source

Schleyer 16 12 22 Paisios et al.
(2017) [22]

Jovanic 11.27∗ 11 30∗∗ de Tredern et al.
(2024) [23]

Berni 2 1 0 Sims et al.
(2019) [6]

Arguello 10 5 0 Kafle et al.
(2025) [24]

∗ variable, average framerate used instead

∗∗ variable, convex hull of defined size used instead

Table 7. Lab-specific experimental data-formats

As a whole, these studies illustrate the spectrum of functionalities supported by the
package, both as a data analysis and a behavioral modeling tool.

The simplest and most straightforward case is usage of Larvaworld as a data analysis
tool. A study of feeding-state dependent aversive behavioral responses of Drosophila
larvae to mechanosensory stimulation aimed to elucidate neuropeptidergic modulation
of reciprocally interconnected inhibitory neurons [23]. The tracker-specific datasets of
recorded larva locomotion across all experimental groups were successfully imported into
Larvaworld. Using the platform’s comparative analysis methods, differences in several
key kinematic locomotory parameters were identified among fed, starved, and sucrose
only fed groups. The analysis was further extended to examine locomotory differences in
dehydrated (sucrose only fed) and rehydrated, as well as food-deprived and refed animals,
across multiple genetically distinct strains. This comprehensive approach allowed for
a detailed assessment of how nutritional and hydration states influence locomotory
behavior.

The behavioral architecture framework that forms the backbone of the modular modeling
functionality in Larvaworld has been presented in [4]. In this study both data analysis
and modeling is done via Larvaworld. Novel insights derived from the analysis of
experimental datasets are utilized in order to extend a previously published locomotory
model of the larva [25] with two novel features, namely crawl-bend interference and
behavioral intermittency, the latter also based on a previous modeling study [26]. The
resulting intermittent coupled-oscillator model of larva locomotion is the default model
in Larvaworld for performing behavioral simulations in stimulus free or sensory-rich
environments, in the latter case augmenting the locomotory model with sensors to detect
e.g. odor or food sources.

The modular approach to behavioral modeling featured in Larvaworld is showcased in a
study of associative learning and conditioned behavior of the Drosophila larva [27]. The
study features a spiking model of the larva’s mushroom body (MB), a neuropile that
has been implicated in memory and learning. In order to evaluate the MB model in
realistic odor-preference simulations, and to compare the results to lab experiments, it
has been plugged in as a memory module. This highlights how the modular architecture
of Larvaworld contributes to answering relevant research questions across domains.

Notably the resulting modular larva model was a hybrid also in the sense that its
comprising modules operated in nested timescales, namely the spiking MB module at
a 0.1 msec timestep whereas the behavioral locomotory simulation at the default 0.1
sec timestep. This is an illustration of the capability of the behavioral architecture to
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integrate disparate computational modules regardless of their level of detail or temporal
resolution.

Moreover the modular modeling approach facilitates extendability. In a comparative
evolutionary study of thermotaxis across drosophilids, larvae from 8 distinct species have
been tested in a suitably configured thermal-gradient arena (thermoscape) in order to
quantify and compare their preferred temperatures [24]. Simulations were used to evaluate
competing hypotheses about the neural underpinnings of the observed temperature
preferences across species. In order to couple real animals to their virtual counterparts,
species-specific models were fitted. A virtual thermoscape arena was configured and the
default locomotory model was extended with an additional thermosensation modality.
The performed temperature-preference simulations closely resembled the experiments in
their spatiotemporal configuration, larva groups and behavioral results, while additionally
allowing the evaluation of competing circuitries of thermotaxis models.

Import and analysis of experimental datasets

This example illustrates the process of importing datasets of Drosophila larva locomotion.
The goal is to compare the locomotion patterns of larvae subjected to different diets
over 5 hours : normally fed, fed only with sucrose (therefore protein-deprived), and
completely starved. The distinct metabolic states of the larva groups might have an
impact on their locomotion. We specifically focus on the temporal evolution of their
dispersal in space.

The import process involves converting the raw tracker-specific data format into the
Larvaworld format. This conversion is performed only once, and the processed data is
stored for future use without the need for repeated conversions.

Once the datasets are imported, various visualizations can be generated to analyze the
locomotion patterns of the larvae. The trajectories of the larvae are plotted, showing their
movement over time. Boxplots of endpoint metrics such as mean, final, and maximum
dispersal during the first 60 seconds are generated to provide a statistical comparison
of the groups. In addition, the dispersal of larvae from their starting point is plotted
over time, capturing the mean and variance of their movement (see Fig 9). Replay
simulations are run to visualize the trajectories of the larvae aligned at the origin, and
videos of these simulations are generated and combined into a single video.

The combined video output from the replay simulations provides a visual comparison of
the locomotion patterns of the three larva groups, showcasing the impact of different
metabolic states on larval locomotion. The complete tutorial notebook, including the
code and detailed steps, is available in the software’s documentation.

Demonstration of a chemotaxis essay

To illustrate the usability of the virtual lab, we present a demonstration of a chemotaxis
assay, replicating two well-established experimental paradigms [14]. In the first exper-
iment, both the odor source and the larvae are positioned at the center of the arena,
where the larvae are expected to exhibit zigzagging or orbiting trajectories around the
source, remaining in its vicinity. In the second experiment, the larvae and the odor
source are placed on opposite sides of the arena, prompting the larvae to approach the
source.

We focus on two distinct chemotaxis algorithms that have been proposed in the literature.
The first, as described in [25], suggests that lateral bending is driven by continuous
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(a)

(b)

(c)

Fig 9. Impact of metabolic state on spatial dispersal analyzed in lab experiments.
Three larva groups subjected to different dietary conditions are compared in terms of
their spatial dispersal in a quadratic arena during the first minute of the experiment:
(a) The trajectories of the larvae, aligned to start from the center of the arena. (b)
Temporal course of the larva spatial dispersal. Line indicates the group median while
shaded area denotes first and third quartiles. (c) Boxplots of average and maximum
dispersal.
Video: The temporal course of dispersal for the three groups shown in (a) [28].
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Model configurations Tastekin

(log)

Tastekin

(lin)

Wystrach

(log)

Wystrach

(lin)

controls

olfaction sensory

transduction mode

logarithmic linear logarithmic linear logarithmic

ability to interrupt

locomotion

True True False False False

appetitive odor

valence

True True True True False

Table 8. Chemotaxis essay. Five locomotory models are tested in a chemotaxis essay.
The two basic models employ different algorithms for turning behavior, namely
“Tastekin” is a stochastic Levy-walker with the ability to interrupt locomotion when
navigating down-gradient , while “Wystrach” features a lateral oscillator generating
continuous lateral bending, modulated by the incoming olfactory stimulation. The
models are tested using either a logarithmic or a linear function of instantaneous
concentration change for sensory transduction. An olfactory-blind model is used as
control.

oscillations, which are dynamically modulated by incoming olfactory stimuli. This
model lacks behavioral intermittency, resulting in uninterrupted crawling along curved
trajectories. In contrast, an alternative model proposes that larvae interrupt their
crawling when navigating down an odor gradient to reorient themselves toward the
appetitive odor source [29]. This finding can be integrated as an extension of the Lévy
walk model, adjusting turning probabilities based on incoming sensory stimulation, as
acknowledged in previous studies [30]. The model configurations are summarized in
Tab 8.

In Larvaworld simulations, multiple models can be evaluated simultaneously, with each
model represented by a dedicated group of virtual larvae. Utilizing this functionality,
we implemented two variations of each chemotaxis model by modifying the sensory
transduction algorithm, which translates changes in odor concentration into olfactory
stimulation. Additionally, we included an odor-blind control group to serve as a baseline
for comparison.

The results of the chemotaxis assay are presented in Fig 10-11. Analysis of the simulated
trajectories and corresponding absolute concentration time plots indicates that the
intermittent Lévy walk model demonstrates superior performance in both experiments.
Meanwhile, the lateral oscillator model performs better than chance in the approach
experiment. It is important to note that this demonstration does not incorporate any
model optimization step (see Genetic Algorithm Optimization in Simulation Modes),
and thus, further parameter adjustments could potentially improve model performance.

Model evaluation

Evaluation of a model configuration is performed by comparing the dataset derived
from the simulation of the respective virtual larva group to the empirical dataset of
real larva recordings. Given that the analysis pipeline is exactly the same in both cases,
the empirical and simulated datasets have exactly the same shape and format and are
therefore directly comparable. As there is no established methodological framework for
evaluating behavioral similarity to the real animals, we use a broad array of metrics and
refrain from defining a unique global error score per model.
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Fig 10. Chemotaxis around the odor source. (a) Time plots of the absolute odor
concentration (top) and perceived odor concentration change (bottom) encountered by
larvae during the experiments, along with (b) the larva trajectories around the odor
source.
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Fig 11. Chemotaxis towards the odor source. (a) Time plots of the absolute odor
concentration (top) and perceived odor concentration change (bottom) encountered by
larvae during the experiments, along with (b) the larva trajectories towards the odor
source.
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Metric PHI→NEU PHI→SIN SQ→NEU SQ→SIN

mean angular velocity during runs 0.693 0.9 0.9 0.967

mean angular velocity during pauses 0.14 0.633 0.767 0.47

total pathlength 0.51 0.46 0.467 0.517

mean velocity 0.373 0.33 0.347 0.38

mean velocity during pauses 0.993 1 0.993 1

mean velocity during runs 0.553 0.553 0.513 0.54

# strides 0.46 0.39 0.45 0.463

dominant crawling frequency 0.427 0.407 0.447 0.44

dominant bending frequency 0.667 0.693 0.467 0.693

% time crawling 0.507 0.43 0.387 0.46

% time pausing 0.527 0.457 0.46 0.507

Table 9. Locomotory model evaluation. Exact KSD values for all endpoint-based
evaluation metrics presented in Fig 12. Each row corresponds to a specific metric, and
each column to one of the four evaluated model configurations. For each metric the best
fitting model is highlighted in bold.

The evaluation metrics used are of two kinds. First, endpoint metrics where a single
measurement is performed per larva, useful to summarize observations as a sum, average,
variance, extrema, dominant frequency etc. Second, the timeseries of a continuous
metric derived by the step-by-step simulations of individual animats, equal in shape
to the number of simulation timesteps (3’ duration at 16 Hz framerate yields 2880
timesteps). In both cases the values are pooled together across the group and the error
is computed as the Kolmogorov-Smyrnov distance DKS between the pooled real and
simulated distributions.

A summary of the evaluation process is illustrated in Fig 12. Four different model
configurations have been calibrated through the pipeline described above. Specifically
the models are combinations of the two turner module implementations ("NEU" for
the neural oscillator, "SIN" for the sinusoidal oscillator) and the two oscillator-coupling
modes ("PHI" for a continuous gaussian cCT (ϕC), "SQ" for a step-change of the angular
suppression during a stride-cycle phase interval) The evaluation metrics are grouped
into angular, spatial and temporal domains with distinct color coding for visualization
purposes. The error scores of the various parameters for each of the 4 cases are min-max
normalized before visualization. Exact values used for plotting are provided in Tab 9
and Tab 10.

Individuality and variability

To test the effect of inter-individual variability in simulations, we first measured a
number of endpoint parameters across a population of 200 larvae and fitted a multivariate
Gaussian distribution. We select the five crawler-related parameters described in the
crawler calibration section. A generated set of these parameters is adequate to completely
define the crawler module. We run an evaluation simulation to compare the above-
described average model to the group-level variability method. The former is therefore
represented by a group of 50 identical animats while the latter by a group of 50
non-identical animats each with a parameter-set sampled from the fitted multivariate
Gaussian. The results are shown in Fig 13 and Tab 11-12.
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Metric PHI→NEU PHI→SIN SQ→NEU SQ→SIN

bending angle 0.079 0.109 0.112 0.14

angular velocity 0.031 0.067 0.082 0.102

angular acceleration 0.181 0.166 0.217 0.181

rear angular velocity 0.089 0.142 0.145 0.167

rear angular acceleration 0.143 0.201 0.201 0.209

turn-angle amplitude 0.267 0.291 0.151 0.288

run distance 0.358 0.318 0.354 0.33

# strides per run (stridechain) 0.317 0.3 0.328 0.287

velocity 0.159 0.158 0.159 0.157

acceleration 0.086 0.085 0.086 0.085

tortuosity over 5” 0.241 0.649 0.303 0.678

tortuosity over 20” 0.224 0.336 0.351 0.389

run duration 0.346 0.318 0.358 0.318

pause duration 0.1 0.096 0.087 0.105

Table 10. Locomotory model evaluation. Exact KSD values for all timeseries-derived
metrics presented in Fig 12. Each row corresponds to a specific metric, and each column
to one of the four evaluated model configurations. For each metric the best fitting
model is highlighted in bold.

Metric NEU mean NEU var SIN mean SIN var

mean angular velocity during runs 0.63 0.64 0.907 0.92

mean angular velocity during pauses 0.147 0.243 0.393 0.193

total pathlength 0.443 0.187 0.433 0.163

mean velocity 0.297 0.097 0.283 0.187

mean velocity during pauses 0.987 0.717 0.983 0.8

mean velocity during runs 0.51 0.337 0.51 0.36

maximum dispersal in 40” 0.713 0.653 0.713 0.697

maximum dispersal in 60” 0.713 0.653 0.713 0.697

# strides 0.303 0.093 0.283 0.117

dominant crawling frequency 0.427 0.057 0.437 0.067

dominant bending frequency 0.667 0.667 0.693 0.693

% time crawling 0.27 0.217 0.283 0.257

% time pausing 0.383 0.18 0.357 0.183

Table 11. Average vs group-variability model. Exact KSD values for all
endpoint-based evaluation metrics presented in Fig 13. Each row corresponds to a
specific metric, and each column to one of the four evaluated model configurations. For
each metric the best fitting model is highlighted in bold.
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Fig 12. Locomotory model evaluation. Four locomotory models are evaluated against
an empirical dataset of 150 larvae freely exploring a stimulus-free Petri-dish for 3
minutes. Two turner-oscillator implementations ("NEU" : neural, "SIN" : sinusoidal)
are combined with two crawler-turner coupling modes ("PHI": smooth gaussian
suppression relief, "SQ" : acute step-wise suppression relief). For each model
configuration 150 identical animats are placed at the exact same initial positions and
with the same initial orientations as the real larvae and are simulated with the same
time step as the tracked dataset over the duration of the experiment. Model evaluation
is carried out over two sets of metrics: (a) single-valued endpoint measurements such as
sums, averages, counts or dominant frequencies and (b) step-by-step timeseries spanning
the entire experiment duration. In both cases data is pooled across the entire group and
the resulting distribution’s Kolmogorov-Smyrnov distance KSD to the empirical one is
computed. For visualization purposes the metrics are grouped into angular, spatial and
temporal domains with distinct color coding.
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Fig 13. Average vs group-variability model. Two methods of generating virtual
populations are compared and contrasted over each of two locomotory models already
calibrated to optimally fit the average individual of the empirical dataset. A group of 50
identical animats is generated for each average model and another group of 50
non-identical animats is generated by sampling the five crawler-related parameters from
a multivariate Gaussian distribution. All groups are evaluated against an empirical
dataset of 150 larvae freely exploring a stimulus-free Petri-dish for 3 minutes. Model
evaluation is carried out over two sets of metrics: (a) single-valued endpoint
measurements such as sums, averages, counts or dominant frequencies and (b)
step-by-step timeseries spanning the entire experiment duration. In both cases, data is
pooled across the entire group and the resulting distribution’s Kolmogorov-Smyrnov
distance KSD to the empirical one is computed. For visualization purposes, the metrics
are grouped into angular, spatial and temporal domains with distinct color coding.
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Metric NEU mean NEU var SIN mean SIN var

bending angle 0.071 0.067 0.128 0.117

angular velocity 0.027 0.029 0.067 0.066

angular acceleration 0.178 0.181 0.163 0.161

rear angular velocity 0.089 0.088 0.156 0.157

rear angular acceleration 0.143 0.153 0.205 0.21

turn-angle amplitude 0.278 0.279 0.299 0.282

run distance 0.365 0.143 0.38 0.121

# strides per run (stridechain) 0.343 0.092 0.357 0.082

velocity 0.166 0.156 0.166 0.167

acceleration 0.089 0.078 0.089 0.084

tortuosity over 5” 0.239 0.238 0.657 0.604

tortuosity over 20” 0.22 0.248 0.358 0.339

run duration 0.364 0.111 0.378 0.094

pause duration 0.209 0.066 0.211 0.043

Table 12. Average vs group-variability model. Exact KSD values for all
timeseries-derived metrics presented in Fig 13. Each row corresponds to a specific
metric, and each column to one of the four evaluated model configurations. For each
metric the best fitting model is highlighted in bold.

Code availability

Larvaworld is available as a python package, freely distributed under the GNU General
Public License 3.0. The latest version can be found at https://pypi.org/project/larvaworld/
and can be installed easily using the pip Python Installer. Code development, new
features,reported issues and contributions to the project are hosted at the respective
github repository (https://github.com/nawrotlab/larvaworld). Extensive documentation
can be found at https://larvaworld.readthedocs.io
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6 Applications in collaborative studies

Beyond the core studies presented in the main chapters of this thesis, additional scienti�c
contributions were made to several international collaborative research projects. These
interdisciplinary e�orts explored a range of topics � including the neural mechanisms of
associative learning, the evolution of thermotactic behavior, and the in�uence of internal
physiological states on behavioral decisions � using approaches that combined behavioral
data analysis with computational modeling and agent-based simulations.

The nature of these contributions varied across projects and included diverse combina-
tions of modeling, simulation, data processing, code development, and scienti�c writing.
Collectively, they underscore two key points: �rst, how the Behavioral Architecture can
incorporate additional neuroscienti�c models as modular components or extend into new
sensory modalities and their respective behavioral domains; and second, how Larvaworld

serves as a versatile tool, supporting both modelers in simulation-based work and experi-
mentalists in behavioral data analysis.

The following sections brie�y present each collaborative project, highlighting its sci-
enti�c context and the speci�c contributions made. Each section is titled after the cor-
responding scienti�c publication and includes its metadata, a description of the personal
contribution, and a summary of the study � since the full papers are not included here as
in previous chapters. The broader relevance of these projects and their place within the
thesis framework are discussed in Part III.
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6.1 Prediction error drives associative learning and conditioned

behavior in a spiking model of Drosophila larva

Authors: Anna-Maria Jürgensen, Panagiotis Sakagiannis, Michael Schleyer, Bertram
Gerber, Martin Paul Nawrot

Journal: iScience
Date: December 23, 2023
DOI: 10.1016/j.isci.2023.108640

Author Contributions

Conceptualization was carried out by A.-M.J. and M.P.N.; computational experiments
and data analyses were performed by A.-M.J. and P.S.; animal data were provided by
M.S. and B.G.; the original draft was written by A.-M.J., P.S., and M.P.N.; review and
editing were carried out by A.-M.J., P.S., M.S., B.G., and M.P.N.; funding acquisition
was provided by M.P.N. and B.G.; and supervision was conducted by M.P.N.

Personal involvement In this project, contributions were made to computational mod-
eling, simulation and data analysis, alongside manuscript preparation, review and editing.
Regarding the former, agent-based odor preference simulations were designed, conducted
and analyzed using the Larvaworld platform, by interfacing the mushroom body model to
the larva chemotaxis model.

Figure 6: A mechanistic model of the Drosophila larva mushroom body including

sensory input from olfactory receptor neurons (ORNs), lateral and feedback inhibition

via local interneurons and the APL neuron, and dopaminergic neuromodulation

by reward- and punishment-associated DANs. Learned odor associations modulate

the activity of approach- or avoidance-mediating MBONs that feedback to DANs.

Reproduced from Jürgensen et al., 2024.
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Summary

This study presents a biologically grounded, spiking neural network model of theDrosophila
larva mushroom body (MB) that elucidates how prediction error (PE) drives associative
learning and conditioned behavior. Anchored in the principles of classical conditioning and
inspired by the Rescorla-Wagner (RW) model, the research advances our understanding
of how reinforcement learning is mechanistically implemented in the insect brain, partic-
ularly through dopaminergic neuron (DAN) activity and synaptic plasticity in the MB
circuitry.

The authors model a circuit where DANs receive both external reinforcement signals
and feedback from MB output neurons (MBONs), allowing them to compute a PE de-
�ned as the di�erence between received and expected reinforcement. This is achieved via
an anatomically plausible feedback loop in which excitatory and inhibitory inputs from
MBONs to DANs encode the animal's reinforcement expectations. Synaptic plasticity at
the Kenyon cell (KC) to MBON synapses is governed by a two-factor rule: the eligibility
trace from KC spiking and the DAN-mediated reward signal. A third component, home-
ostatic synaptic regulation, is introduced to account for memory decay in the absence of
reinforcement, enabling the model to reproduce extinction phenomena (Figure 6).

The model simulates odor-reward associative learning, demonstrating key properties
of PE-driven learning: saturating acquisition curves, dependence on reward intensity and
timing, and extinction through omission of the unconditioned stimulus (US). Importantly,
when feedback from MBONs to DANs is disabled, learning curves fail to saturate, under-
scoring the necessity of feedback for accurate PE computation. Additionally, the model
reproduces behavioral generalization to similar odors and time-dependent learning in trace
conditioning paradigms, where the conditioned stimulus (CS) precedes the US by varying
intervals. The presence of an odor-evoked eligibility trace enables e�ective learning even
when CS and US are not temporally overlapping, consistent with larval behavioral data.

To validate the model against empirical data, paired and unpaired odor-reward condi-
tioning protocols are simulated, paralleling behavioral experiments in real larvae. In paired
conditions, the model shows robust odor preference that saturates with training duration,
while unpaired conditions result in a decay of initial preference � a pattern also observed
in biological counterparts. When pre-training is included to re�ect innate or previously
learned odor preferences, the model accurately reproduces the decline in preference during
unpaired trials, likely due to violation of reward expectations.

Crucially, the model is integrated with a realistic simulation of larval locomotion,
enabling direct comparison between computational outputs and group-level behavioral
metrics such as preference and performance indices. The behavioral simulations align
closely with experimental data, demonstrating that the modeled PE mechanism accounts
for observed learning dynamics in larval Drosophila (Figure 7).

Compared to prior rate-based models and non-PE models of insect learning, this is
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(a) (b)

Figure 7: Replicating odor preference experiments with paired and unpaired training.

(a) Experimental preference indices for real animal groups each for paired and unpaired

experiments with randomized order of odor and reward. (b) Simulated preference

indices based on the protocol in (a). Reproduced from Jürgensen et al., 2024.

the �rst spiking neural network model to implement PE coding in the MB. It supports a
mechanistic instantiation of the RW model using biophysically plausible dynamics, where
DAN spikes act as modulatory signals for learning and extinction. The model also accom-
modates individual variability via randomized PN-KC connectivity and stochastic sensory
inputs, capturing the diversity in larval learning behavior.

In summary, the study proposes and validates a spiking circuit model in which PE,
computed via MBON>DAN feedback, underlies associative learning in Drosophila larvae.
This model not only reproduces a wide range of experimental �ndings but also o�ers
testable predictions about circuit mechanisms and learning dynamics, providing a robust
computational framework for studying reward-driven learning in compact neural systems.
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6.2 Evolution of temperature preference behaviour amongDrosophila

larvae

Authors: Tane Ka�e, Manuel Grub, Panagiotis Sakagiannis, Martin Paul Nawrot, J.
Roman Arguello

Journal: iScience
Date: May 31, 2025
DOI: 10.1016/j.isci.2025.112809

Author Contributions

Conceptualization was carried out by T.K. and J.R.A.; methodology was developed by
T.K., P.S., and J.R.A.; software was implemented by T.K. and P.S.; formal analysis was
conducted by T.K. and J.R.A.; investigation was performed by T.K., M.G., and J.R.A.;
data curation was carried out by T.K. and J.R.A.; the original draft was written by T.K.;
funding acquisition was provided by J.R.A.; and review and editing were carried out by
T.K., P.S., M.P.N., and J.R.A.

Personal involvement This project involved the design and implementation of agent-
based thermotaxis simulations within the Larvaworld platform, alongside participation
to methodological planning and manuscript preparation. Software development included
extending the default locomotory model to accomodate thermosensory input, �tting of
species-speci�c larval models, and designing a virtual thermoscape arena.

Figure 8: Thermo-related behavioral evolution. Left: Variation in latitude and altitude

distribution correlates with temperature preference across Drosophila species. Right:

Schematic of the behavioral arena and the overlaid thermal gradient. Adapted from

Ka�e et al., 2025.
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Summary

The study investigates the evolution of temperature preference behavior among larvae of
eight closely related Drosophila species from ecologically diverse habitats. Using a con-
trolled thermal gradient assay and high-resolution behavioral tracking, the researchers
quanti�ed species-speci�c thermotactic behaviors, identifying both coarse and �ne-scale
interspeci�c di�erences (Figure 8). The results show that temperature preference traits �
namely the optimal temperature (Topt) and the breadth of preferred temperatures (Tbreadth)
� have evolved recurrently and rapidly across the Drosophila phylogeny, re�ecting adap-
tation to local climatic conditions.

Species from the Oriental subgroup, including D. lutescens, D. takahashii, D. pseu-

dotakahashii, and D. suzukii, consistently displayed a stronger preference for cooler tem-
peratures compared to species from the D. melanogaster subgroup. Within both clades,
species pairs occupying di�erent thermal habitats exhibited signi�cant divergence in ther-
motactic behavior. For example, D. lutescens and D. santomea, both native to cooler
environments, showed signi�cantly lower Topt values than their respective sister species,
D. takahashii and D. yakuba. These behavioral di�erences are consistent with previously
documented thermotolerance disparities and support the hypothesis of adaptive divergence
in thermal preference.

In addition to aggregate temperature occupancy, the study analyzed �ne-scale navi-
gational metrics � velocity, tortuosity, and head sweep size � which provide mechanistic
insight into larval thermotaxis. Larvae from cooler-preferring species not only preferred
lower temperature zones but also altered their movement dynamics accordingly: they
exhibited increased linearity and velocity in preferred (cooler) zones and more tortuous,
exploratory movements in warmer ones. These di�erences were especially pronounced in
D. lutescens and D. santomea, further reinforcing the interpretation of behavioral special-
ization to local thermal environments.

To explore the underlying neural mechanisms of these behaviors, the study used agent-
based simulations parameterized by empirical data. These simulations were based on a
cross-inhibition model of the larval thermotaxis circuit involving distinct cooling- and
warming-responsive neurons (CCs and WCs) (Figure 9). By �tting model parameters �
speci�cally, homeostatic set point and slope (which re�ects sensitivity) � to each species'
behavioral data, the analysis revealed that species di�erences in thermal preference are
primarily driven by shifts in the balance between CC and WC circuit outputs rather
than changes in overall thermosensitivity. This suggests that the evolutionary changes
observed are not due to heightened detection thresholds but to altered central processing
or weighting of thermal signals.

Overall, the study demonstrates that temperature preference behaviors in Drosophila

larvae evolve rapidly and repeatedly across short evolutionary timescales. These shifts
are accompanied by changes in navigational strategies and are mechanistically linked to
alterations in the neural circuitry governing thermotaxis. The results o�er a detailed

118



6 Applications in collaborative studies

picture of how behavioral thermoregulation can evolve in small ectotherms and highlight
the utility of combining behavioral assays, phylogenetic comparisons, and neural modeling
to dissect the evolutionary dynamics of complex behaviors.

Figure 9: Modeling parameters of larval cooling and warming circuits. (A) Simpli�ed

schematic of three CCs and two WCs in the dorsal organ: warming activates WCs

and inhibits CCs; cooling does the reverse. Mutual inhibition shapes outputs to

brain centers guiding temperature preference. (B) The slope parameter controls

temperature sensitivity: steeper slopes produce stronger avoidance responses to

smaller temperature changes. This may re�ect peripheral factors like cell number (as

illustrated) or di�erences in thermosensor function. Graphically, slope determines

how strongly behavior deviates from the dashed line representing circuit balance. (C)

The homeostatic set point is where cool- and warm-avoidance circuits are balanced �

marked by the intersection of the response curve and the dashed line. Shifting this

balance alters the larva's preferred temperature. Reproduced from Ka�e et al., 2025.
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6.3 Feeding-state dependent neuropeptidergic modulation of re-

ciprocally interconnected inhibitory neurons biases sensori-

motor decisions in Drosophila

Authors: Eloïse de Tredern, Dylan Manceau, Alexandre Blanc, Panagiotis
Sakagiannis, Chloe Barre, Victoria Sus, Francesca Viscido, Md Amit Hasan,
Sandra Autran, Martin Nawrot, Jean-Baptiste Masson, Tihana Jovanic

Journal: Nature Communications (in press)
Date: 27 June, 2025 (accepted)
DOI: 10.21203/rs.3.rs-4018128/v1 (preprint in bioRxiv)

Author Contributions

Contributions to the publication were as follows: Behavioral and physiology exper-
iments, including calcium imaging, were performed by E.d.T. and D.M.; immunohisto-
chemistry was carried out by M.A.H. and S.A.; modeling was conducted by A.B.; data
analysis was performed by P.S.; behavioral classi�cation and statistical analysis were
conducted by C.B.; the original draft was written by D.M.; �gures, edits, and revisions
were contributed by E.d.T., D.M., J.-B.M., and T.J.; methodology and supervision were
provided by J.-B.M.; funding acquisition was secured by J.-B.M., M.P.N., and T.J.; and
conceptualization, supervision, and project administration were led by T.J.

Personal involvement For this project, behavioral tracking data of larval locomotion
were analyzed using the Larvaworld platform. The analysis enabled extraction of kine-
matic features and revealed locomotory di�erences between nutritional states and hydra-
tion conditions across genetically distinct strains, as shown in Figure 10.

Figure 10: Impact of nutritional state on locomotion. After 90 min of sucrose feeding or

complete starvation, larval dispersion, time spent crawling and speed are signi�cantly

increased, while the tortuosity of the trajectory is decreased compared to larvae fed on

a standard diet. Reproduced from de Tredern et al., 2024.
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Summary

This study investigates how the internal physiological state � speci�cally short-term al-
terations in feeding condition � modulates sensorimotor decision-making in Drosophila

melanogaster larvae in response to non-feeding-related stimuli. Focusing on the behavioral
responses to an aversive mechanical cue (air-pu�), the research uncovers how competing
actions � protective hunching versus exploratory head casting � are dynamically biased by
the feeding state via neuropeptidergic modulation of reciprocally inhibitory neural circuits.

A 90-minute feeding manipulation was su�cient to shift locomotor behavior and stimulus-
driven decisions. Both sucrose-fed and starved larvae displayed increased locomotion and
decreased tortuosity, consistent with an elevated exploratory drive (Figure 10). These
changes reversed upon brief refeeding or rehydration, demonstrating the �exibility of the
motivational feedback. Importantly, sucrose-fed larvae reduced their consumption of su-
crose in subsequent assays, implicating nutrient sensing over taste aversion in behavioral
modulation.

Behavioral responses to the air-pu� included �ve mutually exclusive actions, with
hunching and head casting being the primary ones studied. Under normal conditions, a
balance exists between these responses. However, larvae subjected to starvation or sucrose-
only diets showed a shift towards head casting, indicating a preference for exploratory
behavior. This behavioral bias emerged without signi�cant changes in the calcium re-
sponses of the mechanosensory chordotonal neurons, suggesting that modulation occurs
downstream in the circuit.

Calcium imaging and modeling revealed that the activity of two reciprocally inhibitory
interneurons, Griddle-2 (promoting hunching) and Handle-b (promoting bending/head
casting), is di�erentially modulated by feeding state. Sucrose-fed and starved larvae exhib-
ited reduced Griddle-2 activity and enhanced Handle-b responses, thereby biasing circuit
output toward head casting. These interneurons are not only reciprocally connected but
also in�uence the activity of downstream projection neurons (Basin-1 and Basin-2), which
gate the behavioral outcome. Speci�cally, Basin-2 activity � associated with bending �
was increased in sucrose-fed larvae in a manner dependent on the activity of Handle-b
(Figure 11).

The study identi�ed neuromodulatory inputs that mediate this feeding state-dependent
tuning. One descending neuron expressing neuropeptide F (NPF), the �y homolog of
vertebrate NPY, synapses directly onto Handle-b and increases its activity in sucrose-fed
and starved larvae. Silencing this NPF neuron or knocking down its receptor NPFR1
in Handle-b abolished the feeding-state-induced bias, con�rming its functional role. In
contrast, Griddle-2 did not receive direct NPF input or express NPFR1.

Instead, both Griddle-2 and Handle-b express the receptor for short Neuropeptide F
(sNPF), another NPY homolog. Knockdown of the sNPF receptor sNPFR1 in either neu-
ron mimicked the sucrose-induced behavioral phenotype: reduced hunching and increased
head casting. Functional imaging revealed that sNPF has an excitatory e�ect on Griddle-2
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Figure 11: Schematic of the reconstructed Basin mechanosensory circuit. Edge width

increases with number of synapses. Sharp arrowheads are excitatory, squared in-

hibitory. Reproduced from de Tredern et al., 2024.

and an inhibitory e�ect on Handle-b, further supporting a role for sNPF in the observed
bidirectional modulation.

This work elucidates a dual neuromodulatory mechanism � mediated by NPF and
sNPF � that enables state-dependent recon�guration of behavioral circuits through tar-
geted modulation of inhibitory neurons. The modulation does not alter sensory neuron
responsiveness but instead biases the competition between motor programs downstream,
providing a mechanistic basis for �exible action selection under varying internal condi-
tions. The identi�ed motifs � reciprocal inhibition and feedback disinhibition � allow for
context-sensitive control of escape behavior, illustrating how internal state signals like
hunger or protein de�ciency can reshape decision-making even in non-feeding contexts.
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Part III

Discussion

This �nal part of the thesis re�ects on the research contributions presented in Part II and
situates them within a broader conceptual and methodological context. As a �rst step
in this discussion, we revisit the three objectives outlined in section 2.3, synthesizing the
�ndings from individual studies and connecting them to the overarching aim of developing
a holistic, mechanistic framework for behavioral modeling.

The �rst objective is the design of a framework for behavioral modeling that can
accommodate partial models and integrate neurobehavioral and metabolic components.
To set the stage, Figure 12 o�ers a synthetic view of this framework. It brings together
two key components: a layered behavioral architecture (BA), introduced in Chapter 4,
and brie�y revisited below in section 7.2, and a Dynamic Energy Budget (DEB) model of
metabolic regulation, which will be presented in Chapter 8 as the main future direction
of the thesis. Although these components are developed separately, their integration here
adheres to a synthetic agent design capable of reconciling behavior and physiology within
a uni�ed control scheme.

The second objective calls for a software implementation of the BA-DEB framework,
as the backbone of a virtual agent's internal structure. Indeed Chapter 5 introduces
Larvaworld, an open-source behavioral modeling and analysis platform, along with its
functionalities � agent-based modeling and simulations, hypothesis testing, data analysis,
model evaluation and optimization � and applications in scienti�c studies. Chapter 9
complements this discussion by focusing on core principles prioritized in its design that
highlight its potential as a tool for behavioral research.

The third objective concerns the generation and validation of plausible mechanistic
hypotheses on distinct domains of Drosophila larval behavior by analyzing empirical data
and formalizing observations into computational models. These studies were presented in
full or in summary in Chapters 3, 4 and 6. Chapter 7 will brie�y revisit them under a
mechanistic lens and situate them within the broader framework.

To avoid redundancy, this part will revisit previous material selectively, adopting an in-
tegrative perspective on the overall thesis. Notably, pending projects and future directions
of this work will not be assembled in a dedicated section but rather be referenced in context
where deemed appropriate. The concluding Chapter 10 adopts a re�ective Q&A format,
addressing questions about the scienti�c, methodological, and broader implications of the
thesis.
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Figure 12: . The BA-DEB framework interfaces a layered behavioral control architecture (BA) with a

Dynamic Energy Budget (DEB) metabolic model. Behavioral Architecture (BA): The left portion

of the diagram depicts a layered control architecture comprising motor, reactive, and adaptive layers.

At the motor layer, the larval body is represented along with its translational velocity v and angular

velocity ω in red. Circular arrows denote embodied sensorimotor couplings of oscillatory nature. Run�

pause intermittency is illustrated as an alternation between activity and inactivity states. Interference

between crawling and bending is indicated by the intersection of the corresponding behavioral modules.

An arrow-shaped pendulum symbolizes the dynamic balance between exploration and exploitation modes

(EEB). In the reactive layer, multimodal sensory inputs converge into a common modulation pathway

(
∑

), guiding navigational responses to sensory landscapes. The adaptive layer incorporates a coincidence

detection module, recurrently connected to the reactive layer, which supports associative learning. Col-

ored arrows indicate pathways for sensation (green), locomotion (red), modulation (purple), and learning

(blue). Behavioral modes are shown in black, enclosed in nested rectangles, re�ecting their hierarchical

organization. Dynamic Energy Budget (DEB): The right portion of the diagram depicts a DEB

model : consumed food is converted into energy, which is then allocated to growth, maintenance, and

maturation. Rectangular frames delineate the four interconnected energy �uxes de�ned in DEB theory:

ingestion and assimilation, reserve mobilization, biomass construction and maintenance, and matura-

tion. The assimilation process, catalyzed by gut enzymes, transforms food into energy, stored as reserve.

Mobilized reserve fuels both growth and maturation, where growth entails biomass construction and its

metabolic upkeep, and maturation governs developmental transitions across life stages. BA↔DEB: A

hunger/satiety signal bridges the metabolic and behavioral domains, linking energy reserve to behavioral

decision-making. This coupling modulates the EEB pendulum and also a�ects sensory responsiveness and

memory processes. The architecture thus enables bidirectional interactions between physiological state

and behavioral control, supporting context-sensitive, energy-aware behavior.
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7 Placing mechanisms within a uni�ed framework

This chapter brings into focus the concrete scienti�c contributions of the thesis by exam-
ining the standalone mechanistic models developed throughout. Initially treating them
in isolation, it then situates each model in relation to the overarching BA introduced in
Chapter 4. The goal is to show how speci�c hypotheses about larval behavior, informed by
empirical observations and implemented through computational modeling, can be framed
as modular components that both draw from and inform the architecture as a whole. In
doing so, the chapter highlights the interplay between mechanism-speci�c insight and the
broader challenge of building integrative models of behavior.

Initially, the individual studies are presented in a homogeneous format, each framed
as a standalone instance of the scienti�c method with emphasis on the proposed mech-
anisms themselves. This is followed by brie�y revisiting the BA, considering how these
mechanisms can be positioned on its layers.

7.1 Generating and validating mechanistic hypotheses

Scienti�c understanding advances through the formulation and validation of mechanis-
tic hypotheses that link observed behavior to underlying processes. In the case of larval
behavior, these mechanisms may span multiple substrates and timescales, from neural dy-
namics and body biomechanics to state-dependent modulation. The studies presented in
this section follow a common pathway to scienti�c discovery: observations derived from
detailed behavioral data give rise to mechanistic hypotheses informed by neuroscienti�c
insight; these are then formalized into computational models, tested against experimental
evidence, and iteratively re�ned to enhance their explanatory and predictive power. While
di�ering in modeling approaches and degree of supportive empirical evidence, all contri-
butions adhere to the same scienti�c pipeline and converge on a shared goal: to identify
and validate plausible mechanisms underlying larval behavior.

In what follows, we brie�y review each study, focusing on the mechanistic hypothesis
it proposes�how it emerges, how it is modeled and supported through simulations, and
how it might ultimately be tested empirically.

Behavioral intermittency as emergent avalanche dynamics (Chapter 3)

Freely moving larvae exhibit a spontaneous alternation between activity and quiescence.
This intermittency displays statistical signatures such as heavy-tailed duration distribu-
tions for both behavioral states, prompting the hypothesis that it may originate from
internal network dynamics. Drawing inspiration from avalanche12 phenomena in neural

12Neural avalanches refer to cascades of neural activity that follow a power-law distribution in size and
duration, indicating that the system operates near a critical state between order and disorder. They are
typically observed in spontaneous activity across cortical and subcortical networks and are thought to
re�ect optimal conditions for information processing and network adaptability (Beggs and Plenz, 2003).
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systems, the proposed model implements a minimal stochastic binary-neuron network in
which activity propagates and self-terminates through threshold-bounded interactions, re-
sulting in self-limiting cascades.

This simple network architecture reproduces salient temporal features of larval behav-
ioral transitions, notably the asymmetric distribution of activity and pause durations. The
model, although it does not claim to replicate any empirical circuit anatomy, points to a
testable mechanistic hypothesis : autonomous critical-like neural activity as a potential
driver of behavioral transitions. This hypothesis draws deeper justi�cation from known
features of larval neurobiology. Larval crawling is driven by central pattern generators
(CPGs) in the ventral nerve cord, involving both excitatory and inhibitory premotor neu-
rons and oscillating independently of sensory feedback (Mantziaris et al., 2020; Pulver
et al., 2015). The model posits that transient self-limiting bursts of inhibitory activity
a�ecting these CPGs may underlie the observed behavioral pauses, naturally giving rise
to power-law distributed pause durations. Conversely, the cessation of inhibitory input �
akin to quiescent periods in the model � enables the reactivation of the CPGs and results
in activity bouts � uninterrupted chains of crawling strides (runs) � which are empirically
found to follow log-normal distributions. To con�rm or reject this hypothesis, inhibitory
activity a�ecting the crawling CPGs should be sought and correlated to behaviorally ob-
served runs and pauses during free exploration.

Crawl�bend interference as biomechanical constraint(Chapter 4)

Kinematic analysis of recorded larval locomotion revealed that the lateral bending am-
plitude (turns) is systematically reduced during particular phases of the crawling stride
cycle. This pointed to the mechanistic proposal that this phenomenon does not depend
on neural coordination but on bodily interference: the posterior-to-anterior push phase
imposes a biomechanical constraint that limits head bending. Speci�cally, lateral bending
is attenuated during the stride phase interval that the head is anchored to the substrate,
and facilitated when the head is lifted, a pattern con�rmed by phase-dependent angular
velocity attenuation in empirical data.

To test this, a coupled-oscillator model was developed in which oscillatory angular
motion is under interference by the peristaltic crawling oscillation. The resulting motion
patterns match those seen in experimental trajectories and reproduce the smaller ampli-
tude of weathervaning turns during crawling compared to larger head casts during pauses.
The model o�ers a uni�ed generative account that avoids ad hoc distinctions between turn
events, instead attributing them to a shared underlying mechanism modulated by embod-
ied constraints � an example of how embodiment can structure behavior independently of
central control.
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Thermotaxis evolution through circuit rebalancing (section 6.2)

Behavioral assays across eight Drosophila species revealed pronounced di�erences in larval
temperature preferences. Phylogenetic analysis suggested that these preferences evolved
recurrently, including a notable �cool shift� in the ancestor of theD. melanogaster subgroup
and Oriental clade. These patterns point to repeated evolutionary tuning of thermotac-
tic behavior � raising the question: how might thermotaxis evolve through changes in
underlying neural mechanisms?

Two mechanistic hypotheses were proposed: divergence driven by altered sensitivity
of �rst-order Cooling Cell (CC) and Warming Cell (WC) receptors, or by reweighting of
their antagonistic downstream circuits. Agent-based simulations supported the latter�
modulating circuit weights alone reproduced species-speci�c thermotactic patterns, imply-
ing that changes in circuit balance, not receptor sensitivity, underlie behavioral evolution.

This mechanistic hypothesis o�ers a parsimonious explanation: adaptive shifts in ther-
motaxis can arise from rebalancing existing pathways. It predicts that species with dif-
ferent thermal preferences will show corresponding di�erences in CC and WC pathway
in�uence on motor output. Future studies should test this by linking behavioral variation
to physiological measures of circuit balance, using tools like calcium imaging or targeted
perturbations.

Feedback loops in expectation-driven associative learning (section 6.1)

The mushroom body (MB) has long been established as the neuropile mediating associative
learning in insects. Behavioral observations � saturating learning curves when across
increasing training durations and intensities of reinforcement � favored the hypothesis
that feedback from MB output neurons (MBONs) to reinforcement-signaling dopaminergic
neurons (DANs) may implement a form of prediction error13 coding. It was tested in
a spiking MB model incorporating MBON�DAN feedback which reproduced learning
dynamics consistent with experimental data, both at its output level and when interfaced
with virtual larva odor preference simulations.

Positioning the MB as a site of prediction error computation reframes it as more
than an associative relay, aligning with theoretical models of reward learning. The model
predicts that disrupting MBON�DAN feedback should impair learning or its sensitivity
to reinforcement timing. Targeted manipulations � e.g., optogenetics or silencing � could
empirically test this mechanism and re�ne our understanding of learning in compact neural
circuits.

13De�ned as the di�erence between expected and received reinforcement, prediction error serves as a
central learning signal in both theoretical and empirical accounts of associative learning. See (Schultz
et al., 1997) for a foundational neurobiological perspective.
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Behavioral modulation via neuropeptidergic feedback (section 6.3)

Larvae exhibit feeding-state dependent changes in locomotory patterns and defensive re-
actions to aversive mechanical stimuli. This was attributed to a mechanism of di�erential
neuropeptide-mediated (NPF and sNPF) modulation of a set of inhibitory interneurons
within the decision-making circuit and evidenced via calcium imaging, neuronal manipu-
lations, behavioral analysis and computational modeling.

Regarding the latter, a previously established model of hunch-bend action selection
was extended by incorporating feeding state modulation of the activity of feedforward
and feedback inhibitory neurons. Simulated reweighting of these pathways reproduced
the state-dependent behavioral shift � reduced hunching and increased head casting �
demonstrating how internal states reshape behavior through targeted circuit-level changes.

Each of the mechanisms hypothesized here is implicated in a distinct aspect of be-
havioral control and can be formulated in a way that supports computational modeling.
Beyond capturing each in a standalone model, they collectively lend themselves to in-
tegration as modular components within a uni�ed architecture. Their behavior-based
classi�cation enables a synthetic approach, allowing interactions across control layers such
as motor execution, sensory modulation, internal state regulation, and learning. Together,
they provide a coherent basis for constructing a layered behavioral system grounded in
mechanistic insight.

7.2 The Behavioral Architecture in a nutshell

In the BA-DEB framework behavior arises from the BA, a layered, modular system de-
signed to explain how organized behavior can emerge from the interaction of structurally
distinct but relatively simple subsystems. It follows the subsumption principle from
behavior-based robotics, wherein each control layer functions autonomously of higher lay-
ers. This preserves decentralized control and allows for simulation-based ablation or lesion
experiments by selectively disabling layers to assess functional dependencies.

We brie�y describe the BA here to illustrate how it serves as a conceptual canvas for
situating the mechanisms discussed in the previous section.

Embodied agent The BA operates on a minimal embodied agent. In this case study,
the agent is a bisegmental larval body model (Chapter 4) comprising two interacting seg-
ments that generate motion. This abstraction supports kinematic-level control�forward
crawling and lateral bending�serving as the structural foundation for motor-level behav-
iors.

Motor layer The motor layer generates stereotyped behavioral primitives � crawling,
bending, and feeding � via distinct, potentially concurrent or exclusive modules. Two ad-
ditional functionalities enhance its generative capacity, namely behavioral intermittency
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(Chapter 3), � rest�activity transitions producing realistic pause�run cycles � and inter-
modular interference (Chapter 4), capturing the stride cycle's phasic suppression of bend-
ing and accounting for headcasts during crawl-pauses and weathervaning during sustained
runs. Together, these mechanisms form the intermittent coupled oscillator model, enabling
the motor layer to autonomously produce realistic exploratory behavior.

Reactive layer The reactive layer modulates motor output based on sensory input,
enabling navigation behaviors such as chemotaxis (Chapter 4), thermotaxis (section 6.2),
anemotaxis. These second-order sensorimotor couplings build upon the motor layer's prim-
itives but function independently of the adaptive layer. Sensory modalities � olfaction,
thermo-, and mechanosensation � are processed by dedicated transduction modules and
integrated into a uni�ed behavior-modulating pathway (Eschbach and Zlatic, 2020; Wys-
trach et al., 2016). Sensors are spatially distributed along the 2D body contour, providing
localized input. The mechanosensory circuit engaged in Hunch-Bend action selection (Fig-
ure 11) could be positioned here and act as target of the neuropeptidergic state-dependent
modulation studied in section 6.3.

Adaptive layer The adaptive layer enables associative learning via a coincidence de-
tection mechanism, allowing behavior to be shaped by prior experience. In section 6.1
this is implemented through a spiking model of the mushroom body (MB), capable of
learning odor�reinforcement associations and modulating downstream reactive outputs.
Its recurrent interaction with the reactive layer supports the acquisition of sensory-guided
behaviors.

The next chapter will introduce the DEB model of metabolism coupled recursively
to the BA and bringing it under homeostatic regulation. The behavior-modulating neu-
ropeptidergic feedback mechanism proposed in section 6.3 could be integrated exactly as
such a regulatory signal, targeting distinct loci across all BA layers.
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8 Energetically-regulated behavior

Individuals persist in time by dynamically regulating behavior throughout life according to
both current and future homeostatic needs. From the perspective of metabolism, foraging
behavior can be viewed as a fast-responding, though not always reliable, means of energy
gain to be used for self-maintenance, growth and reserve build-up. From the behaving
agent's perspective homeostatic regulation imposes slowly-adjusting normative constrains
that induce goal-directed behavior in order to allow the individual to advance along its
predetermined life-history stages. It follows that models of energetics can help bridge the
neuroscienti�cally and ecologically relevant timescales. DEB theory is the most prominent
formal theory of homeostasis and energy utilization capturing the energy state and �uxes
of organisms across subsequent life stages (Kooijman, 2010). Although it has already
been integrated into ABMs of computational ecology (Martin et al., 2012), its integration
within neuroscience is limited.

This chapter completes the previously outlined computational framework by linking a
DEB model with the BA as shown in Figure 12. The goal is to enable reciprocal coupling
between internal metabolic state and overt foraging behavior. In short the interoceptively
accessible level of energy reserve regulates, among others, the exploration�exploitation
balance (EEB), while feeding behavior determines nutrient intake and assimilation.

We �rst explain how behavior is treated in standard DEB theory drawing motiva-
tion for establishing the aforementioned feedback loop. We then describe the EEB and
the implementation of both the DEB model and feeding behavior, before turning to the
BA↔DEB feedback loop. We then outline the remaining steps toward a species-calibrated,
metabolically-informed agent and suggest a suitable implementation to showcase its sci-
enti�c value.

8.1 Why integrate behavior into DEB?

The standard formulation of DEB theory provides a quantitative framework for track-
ing energy assimilation, allocation, and usage across the life stages of an organism. It
describes how assimilated energy is divided into reserves and subsequently mobilized for
growth, maintenance, and maturation, assuming a continuous �ux-based system governed
by ordinary di�erential equations. However, DEB models do not incorporate explicit
mechanisms for behavioral modulation. The processes of food search, ingestion, and han-
dling are treated as an undi�erentiated contribution to assimilation, subsumed under the
single variable f , the scaled functional response.

In DEB theory, the scaled functional response is de�ned by the relation f = X/(K+X),
where X denotes the substrate (food) density and K is the half-saturation constant. The
variable f determines the proportion of the maximum assimilation rate that is realized
at a given substrate density. Crucially, this formulation treats f as a static function of
environmental availability, without modeling how behavioral strategies may dynamically
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adjust the actual ingestion rate or energy expenditure associated with foraging.
As a result, conditions of reduced substrate quality (f < 1) are not associated with

compensatory changes in behavior. There is no mechanism for increasing exploratory
e�ort, extending feeding duration, or reallocating time between competing behavioral
modes. The absence of behavioral feedback in standard DEB implies that the organism's
interaction with its energetic environment is one-directional and passive: assimilation is
simply reduced in suboptimal conditions, and the consequences propagate through the
system without modulation at the behavioral level.

The integration of a behavioral controller into the DEB framework enables the recov-
ery of this missing loop. By embedding a foraging mechanism that alternates between
exploratory and exploitative modes � each with distinct energy costs and payo�s � it be-
comes possible to simulate how an agent might actively adjust its behavior in response
to internal metabolic signals. A hunger�satiety signal, derived from reserve density, can
modulate the agent's state along the EEB, thus restoring a degree of reactivity and control.

This behavioral�metabolic feedback loop not only enables a more realistic simulation
of foraging behavior, but also introduces a minimal form of normativity. Rather than
executing �xed action sequences, the agent becomes capable of regulating its own behav-
ioral allocation in order to sustain metabolic viability. The target of this regulation is an
ontogenetically speci�ed developmental trajectory � such as completing the larval stage
and initiating pupation � which places constraints on growth rates and reserve dynamics.
In this view, behavioral norms are not externally imposed but emerge from the organism's
ongoing attempt to remain within viable energetic bounds under �uctuating environmental
conditions. This stands in sharp contrast to optimal foraging theory, where normativity
is e�ectively reduced to optimality and divorced from the internal regulatory dynamics of
the organism.

8.2 The exploration�exploitation balance

Larva foraging consists, at minimum, of an exploratory and a consummatory behavioral
mode. The temporal microstructure of feeding behavior has been studied predominantly
for the adult �y (Itskov et al., 2014). Single reccurent motions, termed sips in the adult, are
organized in uninterrupted sequences (bursts or meals) much like single peristaltic waves
are concatenated into runs. Meals are interspersed by non-consummatory locomotion
intervals. These behavioral modes are mutually exclusive as they partially recruit the
same neuromuscular machinery (head segment and mouth-hooks). The larva therefore
alternates constantly between the two while exploiting a nutritious substrate.

In the absence of food, all available time and energy are allocated to exploration. Star-
vation modulates this behavior, inducing straighter trajectories and increased crawling
frequency, which enhances dispersal and the likelihood of encountering new food sources
(de Tredern et al., 2024). Previous encounters with food bias exploration toward local
search, in a manner dependent on starvation state. In this context, idiothetic cues appear
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su�cient to guide recurrent visits to previously rewarding locations, suggesting an under-
lying path integration mechanism that operates independently of visual or olfactory input
(Kim and Dickinson, 2017).

In the presence of food, the mutually exclusive modes of consumption (exploitation)
and local search (exploration) are dynamically balanced according to the larva's homeo-
static state. Starvation induces a transient phase of increased consumption (hyperphagia)
before returning to a baseline EEB (Kaun et al., 2008). Under ad libitum feeding condi-
tions, this baseline EEB is normatively imposed: from hatching through the end of the
third-instar feeding stage, the larva consumes precisely the amount of food required to
reach a critical body mass after a highly predictable developmental interval. This mile-
stone marks the onset of a non-feeding exploratory phase that culminates in pupation.

8.3 Implementation of feeding behavior

Feeding behavior is implemented in Larvaworld as a distinct oscillatory process generat-
ing repetitive feeding motions, analogous to crawling strides but occurring at a higher
frequency. During a feeding motion the larva remains stationary but consumes food if
any is present within a radius � proportional to its body length � around its head. The
amount of food ingested per motion is proportional to the larva's volume, following the as-
sumptions of V1-morphy14. Feeding behavior is activated only when the agent is located
on edible substrate. To determine this, a probabilistic sampling mechanism evaluates
substrate properties at the agent's position. Feeding is initiated only if the substrate
is identi�ed as ingestible, ensuring that consummatory behavior is contingent on local
environmental a�ordances rather than being hardcoded into the behavioral cycle.

In scenarios where sensory-driven chemotaxis is active, the model supports a sequential
organization of navigation and ingestion. The agent follows odor gradients toward nutri-
ent sources, and upon arrival, transitions into feeding behavior. This modular chaining
enables the simulation of context-sensitive foraging sequences in which distal sensory cues
guide exploration, while local substrate detection triggers exploitation. This mechanism
reproduces characteristic patterns of larval foraging under spatially structured nutrient
distributions, as shown in Figure 13.

8.4 DEB model

An implementation of the DEB model has been developed to simulate the entire larval
stage of Drosophila melanogaster under prede�ned or dynamically changing nutritional
conditions. The parameterization shown in Table 2 was manually derived and anticipates

14In DEB theory, a V1-morph is an organism whose surface area scales linearly with its volume, typically
due to one-dimensional growth (e.g., �lamentous or sheet-like organisms). This implies that feeding
and maintenance costs both scale with volume rather than surface area, simplifying energetic dynamics.
Despite morphological deviations, such scaling often approximates real organisms well in narrow size
ranges (Kooijman, 2010).
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Figure 13: Empirical and simulated foraging on substrates with spatially localized,

odor-emitting nutrient sources. Left: Trajectory of a real larva navigating and

feeding on a food blob atop an agar dish. The zoomed view centers on the blob,

with the larva's body reconstructed as a 12-segment contour for visualization. Right:

Simulated trajectories of virtual larvae in a nutrient-poor arena containing a 3Ö3 grid

of food blobs. The agents combine chemotactic navigation with feeding behavior upon

detecting edible substrate.

a more formal �tting procedure (see section 8.6). The model tracks all core DEB state vari-
ables � energy reserve, structural biomass, and maturity � and derives secondary metrics
such as wet mass and body length.

To support integration within an agent-based modeling framework, the original DEB
formulation � di�erential equations solved analytically � was reformulated as a stepwise
simulation. This temporal discretization allows the organism's state to be updated incre-
mentally at each simulation tick, enabling synchronization with the behavioral timescale,
which typically operates at subsecond resolution (notably the default time unit in DEB
is a day, see subsection 9.2.1). Coarser update intervals (e.g., minute-level integration)
can also be con�gured to improve computational e�ciency in scenarios where behavioral
detail is not critical.

The DEB model can be run in an o�ine mode, meaning it operates independently of
any behavioral control loop. In this mode, food intake is modeled implicitly: the larva is
assumed to continuously assimilate nutrients from a substrate of �xed quality, represented
as a scalar between 0 and 1. No explicit ingestion or feeding decisions are simulated. The
assimilation rate is calculated as if the larva were feeding constantly on a substrate of
the speci�ed quality. Under optimal-quality conditions, the model yields growth curves
consistent with empirical ad libitum feeding scenarios, capturing stage-speci�c changes in
size, biomass, and energetic state over time. When starvation periods are introduced, the
model tracks the depletion of energy reserve, delayed developmental timing, and reduction

133



8 Energetically-regulated behavior

Parameter Description Value Units

EG volume-speci�c cost of structure 13022 J/cm3

[ṗM ] volume-speci�c somatic maintenance rate 97.1 J/cm3d

v̇ energy conductance 0.018 cm/d
κ fraction of mobilized reserve allocated to soma 0.456 -
k̇J maturity maintenance rate coe�cient 0.002 d−1

EH
b maturity threshold for hatching 0.032 J

ER
p threshold for the onset of pupation 1.1 J

z zoom factor 96 -
∆M shape (morph) coe�cient 6.4 -
dW density of wet mass 0.75 g/cm3

Table 2: DEB parameter values for Drosophila melanogaster. Note that this parameter

set is preliminary, as �tting is still ongoing and includes only values relevant up to

pupation.

in mass and length while prolonged starvation induces death when the reserve can not
support biomass maintenance (Figure 14).

This o�ine implementation serves as both a baseline for validating closed-loop BA↔DEB
simulations and as a testbed for exploring the energetic dynamics of the larval stage under
controlled conditions. The corresponding online implementation should be calibrated to
yield equivalent growth trajectories when virtual larvae are simulated foraging freely on
non-depletable edible substrate from hatching through pupation.

8.5 The BA↔DEB feedback loop

The integration of behavior and metabolism is illustrated in Figure 12 as a composite
architecture combining the BA (left) with a DEB model (right). The diagram captures
the bidirectional coupling between these two domains: behavior in�uences metabolism via
ingestion (bottom), while metabolic state regulates behavior through a homeostatic signal
(top).

This feedback loop comprises two functional arcs. The �rst arc (BA�DEB) involves a
dedicated oscillatory feeding module, added to the BA's motor layer and mutually exclu-
sive with crawling. When active, this consummatory behavior suspends exploration and
initiates ingestion, increasing input to the DEB model's assimilation �ux.

The second arc (DEB�BA) introduces a hunger/satiety signal, sensitive to �uctuations
of the scaled reserve density15. The choice of the latter as an interoceptively accessible,
metabolic state variable is justi�ed both conceptually � it remains constant during growth

15In DEB theory the dimensionless scaled reserve density is de�ned as e = [E]/[Em] where [E] is the
reserve density � reserve per unit of structural volume � and [Em] = {ṗAm}/υ̇ is the reserve density
capacity � a species-speci�c parameter that scales with maximum structural length (Kooijman, 2010).
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(a) (b)

Figure 14: O�ine simulation of the Drosophila DEB model for the larval stage. Green

and red lines represent development under ad libitum feeding and transient starvation

conditions, respectively (with starvation periods indicated by red shading). (a): A

one-day starvation episode impacts energy reserves, delays pupation, and extends

developmental time. (b): Prolonged starvation results in death once energy reserves

are fully depleted.

in constant food availability conditions, according to the weak homeostasis assumption16

� and computationally � it is a scalar ranging from 0 (death) to 1 (ad libitum feeding).
This signal biases the EEB toward exploitation in conditions of food scarcity and also
modulates responsiveness to stimuli and memory processes. Through this slow, interocep-
tive regulation, the DEB model shapes behavioral priorities to maintain homeostasis and
unobstructed development.

Together, these mechanisms enable simulation of foraging sequences that adapt to
internal energetic demands. By coupling fast-timescale behavioral control with slower
metabolic regulation, the architecture captures the reciprocal relationship between action
and physiological state throughout the larval life stage.

16The weak homeostasis assumption posits that if food density does not change reserve density, i.e. the
ratio between the amounts of reserve and structure, the latter remains constant even when growth con-
tinues; reserve and structure grow in harmony and biomass no longer changes in composition (Kooijman,
2010).
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8.6 Steps toward project completion

While the behavioral and metabolic components of the model have been integrated and
tested in various con�gurations, several essential steps remain in order to ful�ll the project's
goals.

First, a proper species-speci�c parameterization of the DEB model for Drosophila

melanogaster is still underway. The necessary empirical observations have been assembled
in Table 3 but the optimization process using the DEBtool software package has yet to be
concluded. This step is expected to result in an entry for Drosophila in the Add-my-Pet
database. The process initiates from the nearest available entry � Aedes aegypti � and pro-
ceeds by parameter �tting for the hex type DEB model, appropriate for holometabolous
insects (Llandres et al., 2015). Once complete, the o�ine simulations should replicate the
full growth trajectory of the organism across all developmental stages.

Symbol Description Data Units Source

ab age at birth 0.7 d Schumann and Triphan, 2020
aj time since birth at pupation 7.8 d Schumann and Triphan, 2020
t1 duration of instar 1 1.9 d Schumann and Triphan, 2020
t2 duration of instar 2 1.6 d Schumann and Triphan, 2020
t3 duration of instar 3 4.3 d Schumann and Triphan, 2020
am life span as imago 27.1 d Oxenkrug et al., 2011
L1 length of instar 1 1.8 mm Schumann and Triphan, 2020
L2 length of instar 2 2.5 mm Schumann and Triphan, 2020
L3 length of instar 3 3.8 mm Schumann and Triphan, 2020
Wj wet weight of pupa 15 mg Ormerod et al., 2017
We wet weight of imago 9.3 mg Ormerod et al., 2017
E0 initial energy content 10 mJ Song et al., 2019

Table 3: Empirical observations for �tting the Drosophila DEB model.

Second, further work is needed to calibrate the coupling from metabolism to behavior,
speci�cally the mapping from reserve density to hunger drive and, ultimately, to the EEB.
Although the qualitative e�ect has been demonstrated in simulation � where declining
reserves lead to more persistent feeding behavior � this arc of the feedback loop requires
quantitative tuning to ensure that behavioral adaptations match ecologically plausible
survival strategies under varying environmental conditions.

8.7 Application to a naturalistic scenario

An illustrative application of the BA↔DEB framework involves modeling a well-documented
case of natural behavioral variation in Drosophila larvae. Wild-type populations exhibit
distinct foraging phenotypes, most notably categorized as rovers and sitters, a di�erence
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attributed to allelic variants of the foraging (for) gene, which encodes a cGMP-dependent
protein kinase (PKG) (Kaun et al., 2007).

When reared under nutrient-rich conditions, rovers (for r,70%) ingest less food and
engage more in exploratory locomotion, while sitters (for s, 30%) spend more time feeding
and exhibit reduced movement. Despite these behavioral di�erences, both phenotypes
grow to similar sizes and display comparable metabolic rates. The key distinguishing
factor lies in food absorption e�ciency: rovers reportedly absorb approximately 50% of
ingested glucose, compared to only 15% in sitters (Kaun et al. (2007)).

Under poor food conditions, both phenotypes increase food intake to a shared maxi-
mum, yet rovers maintain their superior absorption e�ciency. This divergence is re�ected
in survival outcomes: rovers show enhanced survivorship under chronic food scarcity,
whereas sitters are more resilient in crowded highly-competitive conditions and during
short food-deprivation periods (Fitzpatrick et al., 2007; Kaun et al., 2008).

The challenge lies in mapping this interindividual variability in foraging strategy onto
the metabolic model. Preliminary simulations have explored parameter variations re�ect-
ing di�erential feeding dynamics and absorption e�ciencies. However, a formal identi�-
cation of the speci�c DEB parameters that best capture the energetic pro�les of rovers
and sitters remains an open modeling task. Establishing this mapping would enable com-
parative simulations under both ad libitum and restricted feeding conditions, with results
testable against existing experimental data.
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9 Design principles in Larvaworld

This chapter addresses core design principles and implemented functionalities of Larva-
world, presenting both as expressions of a broader modeling perspective. While the focus is
on the software infrastructure and its components, the underlying priorities and conceptual
commitments apply more generally to the BA-DEB framework it instantiates. Through-
out, the distinction between implementation and framework is maintained only for clarity;
methodologically, they are treated as two aspects of the same modeling approach.

In what follows, we �rst examine two complementary strategies for constructing re-
alistic models of behavior. One emphasizes black-box �tting of observed behavior; the
other targets biological plausibility based on modular mechanisms. Rather than treating
these approaches as mutually exclusive, it is shown how Larvaworld is built to support
and integrate both. The next section turns to the methodological choices that structure
the platform � including its multiscale temporal logic, modular architecture, and support
for closed-loop dynamics.

9.1 A word on realism: Behavioral �delity vs mechanistic plausi-

bility

In behavioral modeling the term �realism� can be understood in at least two comple-
mentary senses. One refers to the external similarity between simulated and biological
behavior, often evaluated in terms of indistinguishability by human observers or standard-
ized analytical procedures. The other concerns the internal structure of the model � to
what degree its mechanisms re�ect known biological organization and function.

Larvaworld is designed to accommodate both perspectives. It supports model opti-
mization to �t observable behavior without presupposing internal structure, and at the
same time enables the construction of modular, mechanistically grounded architectures.
What follows is a detailed account of how each of these modeling strategies is pursued,
and how they are combined to enable gradual, evidence-driven development of increasingly
interpretable models.

9.1.1 Realistic behavior: Fitting animats to animals

The �rst sense of realism emphasizes the capacity of a model to generate behavior that
closely resembles that of a real organism. This includes not only its locomotor trajectories
but also broader patterns such as responsiveness to stimuli, spatial movement patterns,
or temporal organization of activity. A model is considered realistic in this sense if its
behavior cannot be distinguished from that of its biological counterpart when assessed
under equivalent experimental conditions. This perspective aligns with the notion of an
�embodied Turing test� proposed in AI and robotics, where the aim is to generate agents
whose behavior appears natural and integrated within their environment (Zador et al.,
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2023).
Achieving such realistic behavior does not require that the model re�ect the biolog-

ical system's internal structure, as long as the behavior matches. This approach favors
�exibility and context-speci�c calibration, treating the model as a black-box that maps
inputs to outputs without explicit assumptions about internal mechanisms. Behavioral
�t is obtained through parameter tuning, typically using iterative procedures guided by
empirical data.

Larvaworld accommodates this approach by providing a standardized format for both
simulated and experimental data. Trajectories from virtual agents are exported in the
same x�y coordinate format as those obtained through motion tracking of real larvae.
Behavioral metrics are derived using identical pipelines, allowing for direct comparison.
Model parameters may be tuned using optimization techniques (e.g., genetic algorithms)
with realism assessed at the level of output similarity.

9.1.2 Mechanistic realism: Constraining internal structure

A second perspective on realism focuses on the internal organization of the model. Here,
a model is considered realistic not primarily if it reproduces observed behavior, but if it
does so through mechanisms consistent with known anatomical, physiological, or compu-
tational principles of the modeled biological system. This view aligns with mechanistic
explanation in neuroscience, where explanation requires identifying the parts, interactions,
and organization responsible for a phenomenon (Craver, 2006).

In this context, breaking down a behavioral model into smaller, interconnected modules
based on neuroscienti�c insights (anatomical connectivity, functional specialization, or
known biophysical properties) imposes internal constraints on the mapping from input
to output. Unlike a monolithic black-box that can �exibly �t any behavioral data, a
modular architecture must satisfy the constraints imposed by each component and their
interconnections.

Larvaworld supports such modular decomposition through its hierarchical control ar-
chitecture. The platform allows users to implement novel or extend existing modules,
provided they conform to de�ned input-output interfaces. This modularity permits re-
searchers to explicitly embed mechanistic assumptions within any partial module and to
study their behavioral consequences at the agent's level. Constraints imposed at the mod-
ule level shape system-wide dynamics, narrowing the solution space in favor of biologically
plausible mechanisms.

9.1.3 Combining approaches: From �tting to explaining

Both notions of realism � behavioral �delity and mechanistic plausibility � are supported
within the present framework, and their integration provides a practical path for model de-
velopment. Models that prioritize empirical �t may begin as black-box systems, optimized
to reproduce behavioral observations across experimental conditions. This allows rapid
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prototyping and benchmarking against data when internal mechanisms remain unknown
or are too complex to include in early stages.

Conversely, models grounded in mechanistic realism aim to explain behavior through
biologically meaningful processes. These rely on modular decomposition informed by
anatomical and physiological evidence, enabling targeted hypotheses about internal orga-
nization and control. As empirical knowledge increases, modular black-box components
can be progressively replaced with structured, mechanism-driven modules, facilitating a
smooth transition from behavioral matching to biological explanation.

Larvaworld 's architecture enables this dual-track strategy by supporting both output-
driven parameter tuning and modular internal design. Models can thus evolve �exibly,
incorporating detail where evidence allows, while preserving the capacity to replicate be-
havior at the whole-organism level. This balance between generality and speci�city helps
accommodate evolving biological insight without sacri�cing empirical grounding.

9.2 Methodological priorities

The computational framework presented in this thesis has been implemented in the Larva-
world software package, with the aim of supporting modeling at the interface of behavior,
neural control, and physiology. Its design re�ects a set of methodological priorities aimed
at balancing biological relevance with computational �exibility. Rather than prescribing
a �xed modeling approach, the framework is designed to accommodate multiple levels of
abstraction and timescales, enabling researchers to build and test models suited to a range
of experimental and theoretical contexts.

This section outlines three core methodological trends prioritized in Larvaworld : (i)
the use of nested timescales to capture dynamics at neural, behavioral, and metabolic
levels; (ii) a commitment to modularity and extensibility, enabling the �exible composi-
tion, replacement, and reuse of model components; and (iii) the emphasis on closed-loop
modeling, supporting real-time interactions within the agent and between the agent and
its environment. Together, these trends re�ect a broader commitment to �exible, trans-
parent, and biologically grounded modeling across multiple organizational levels. Each is
elaborated in the subsections below.

9.2.1 Nested temporal dynamics

A central feature of the framework is its ability to accommodate and coordinate processes
operating across multiple timescales, re�ecting the temporal strati�cation observed in
biological systems. This nested multiscale structure, illustrated in Figure 15, underpins
both the framework's �exibility and its biological relevance.

At the core is the behavioral timescale, which governs the main control loop in Larva-

world. Its simulation timestep defaults to 0.1 seconds, matching the 10 Hz framerate at
which larval locomotion is typically recorded. This choice is warranted since these datasets
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form the empirical testbed for evaluating simulated locomotion. Since all simulated be-
havior � locomotion, taxis, feeding etc � operates at this timescale, it sets the rhythm of
agent-environment interaction.

Faster dynamics are captured at the neural timescale, invoked when modules of the BA
are implemented as neuronal circuits in a neural simulator interfacing with Larvaworld.
For example, the spiking MB model (Chapter 6) operates at a 0.1 millisecond timestep,
allowing precise representation of spike timing and synaptic plasticity. This neural ac-
tivity is embedded within the slower behavioral control loop, enabling mechanisms such
as reward-driven learning to modulate behavior in real time. The result is a coherent
integration of fast neural dynamics within slower behavioral ones.

At the opposite end of the hierarchy lies the metabolic timescale, introduced through
coupling of the BA with the DEB model (Chapter 8). Here, the behavioral loop operates
within a slower cycle in which variables like energy reserve, growth, and maturity evolve
over minutes to hours of simulated time. These internal states in�uence behavior via
homeostatic feedback, linking long-term physiological change to short-term behavioral
expression. Notably, the DEB formalism itself is grounded in circadian-scale dynamics,
abstracting away faster �uctuations to model developmental and energetic trends.

By supporting tightly coupled processes across milliseconds to hours, the framework
enables simulations that are both mechanistically rich and biologically grounded. It also
provides a platform for exploring how dynamics at one timescale constrain, regulate, or
enable those at another. Importantly, the modular structure allows these multiscale inter-
actions to be selectively activated or omitted, depending on the aims of a given modeling
scenario.

Behavioral
Layered control Architecture

Neural
Mushroom Body model

Homeostatic
Dynamic Energy Budget model

𝛰 10−4 s 𝛰 10−1 s 𝛰 103 s

Figure 15: Nested temporal processes across agent components. Neural dynamics (e.g.,

mushroom body model) unfold at the sub-millisecond scale. Behavioral control (BA)

operates at the default timescale of 0.1 seconds. Metabolic processes (DEB model)

evolve over minutes to hours (∼103 s). Arrows denote the hierarchical nesting of faster
processes within slower ones within a uni�ed simulation environment.
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9.2.2 Modularity and extensibility

One of the foundational design principles of the framework developed in this thesis is
modularity. From both a conceptual and implementational standpoint, the architecture
favors a separation of concerns: distinct behavioral functions are assigned to separate
control modules, each of which can be modi�ed, replaced, or omitted independently of
the others. This re�ects a biologically inspired commitment to distributed control and
facilitates the iterative development of more complex behavioral models.

In practical terms, this modular structure is realized in the Larvaworld software pack-
age (Chapter 5). Each layer of the BA � motor, reactive, and adaptive � consists of
discrete, interconnected software modules with well-de�ned interfaces. These modules can
be run independently, con�gured, or extended with minimal changes to the rest of the
codebase, as long as they adhere to the input/output interface speci�cations. For in-
stance, the reactive layer's sensory transduction mechanisms can be replaced or extended
without interfering with motor control, and new learning mechanisms can be plugged into
the adaptive layer seamlessly. In fact for each of the modules several alternative implemen-
tations are available, mirroring the di�erent mechanistic models that have been proposed
for a given behavioral mode. Importantly, individual modules can di�er substantially
in their level of abstraction � from simple rule-based action selection or algebraic equa-
tions to complex systems of di�erential equations or spiking neural networks � or target
timescale as described in the previous section. This heterogeneity is supported natively
by the framework and re�ects the framework's emphasis on functional encapsulation over
algorithmic uniformity.

Extensibility is not limited to behavioral modules. The platform also allows users to
con�gure new environmental designs and data analysis pipelines. This �exibility enables
researchers to tailor the framework to diverse experimental paradigms, while maintaining
consistency in agent structure and behavioral control. Moreover, the compatibility with
third-party libraries and simulation backends ensures that Larvaworld can evolve alongside
external advances in computational neuroscience and behavioral modeling.

Crucially, this modular design supports both top-down and bottom-up work�ows. Re-
searchers may start with a high-level behavioral objective and gradually introduce biologi-
cal detail using increasingly sophisticated modules. Conversely, detailed but partial neuro-
scienti�c models can be plugged into precon�gured control architectures, enabling investi-
gation of their behavioral implications. This bidirectional �exibility makes the framework
well-suited both for abstract coarse-grained and for focused, neuroanatomically informed
approaches.

9.2.3 Domains of closed-loop modeling

Closed-loop modeling is a central objective of this thesis, referring to simulations in which
distinct processes interact dynamically with each other, in real time, through feedback
loops. These loops may occur within the agent or extend to its interactions with the
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environment. This section outlines four domains of closed-loop processes as modeling
targets, spanning sensory, motor, physiological, and neural dimensions.

One domain involves active sensing during taxis behaviors, such as chemotaxis and
thermotaxis, where the larva's movement alters its sensory input. As the agent navigates
an odor or temperature gradient, its displacement modulates the stimulus it perceives,
which in turn in�uences its motor output. This feedback loop � from sensor to motor
to environment and back � engages the reactive and motor layers of the BA and enables
successful navigation in multimodal sensory landscapes.

A second domain links foraging behavior and metabolic state through coupling of
the BA with the DEB model. In this loop, food ingestion updates the internal energy
reserve via assimilation. The interoceptively accessible level of reserve then feeds back
into behavior through a hunger/satiety signal, modulating the balance between exploratory
and exploitative actions. Thus, physiological state and behavioral decisions are linked in a
recurrent feedback loop, establishing an internal closed-loop pathway between metabolism
and action selection.

A third domain concerns sensorimotor interaction between the body and the environ-
ment, speci�cally in the context of neuromechanical feedback. While the current motor
layer does not incorporate proprioception or explicit physics-based modeling of body�
substrate interaction, the Larvaworld platform includes a validated interface to the Box2D
physics engine. This engine simulates the physical dynamics of segmented larval motion
and provides a foundation for integrating biomechanical feedback into future locomotory
models.

Finally, a fourth domain is real-time interfacing with neural simulation engines, such as
NENGO (Bekolay et al., 2014) and BRIAN2 (Stimberg et al., 2019). Larvaworld includes
communication pipelines allowing spiking or rate-coded neural circuits to be integrated as
modules within the BA. While the technical infrastructure is in place, applying these in-
terfaces in closed-loop neural-behavioral experiments remains a future research direction.
A particularly promising application would be to extend the integration of the MB model
within the BA, as presented in section 6.1, which so far has operated in an o�ine man-
ner. The goal is to enable both odor concentration information, acquired through active
sensing, and feeding-dependent reward or punishment signals to feed back into the MB
circuit in real time, serving as input and modulatory cues respectively. Together, these
signals would shape synaptic plasticity and establish a fully closed-loop, experience-driven
learning process.

Together, these domains re�ect a broader commitment to integrating neural, behav-
ioral, environmental, and physiological processes into uni�ed, biologically grounded simu-
lations. Of the four domains described, the �rst two have already been implemented and
tested in this thesis, while the latter two are currently under development and represent
key targets for future work, as discussed in Chapter 10.
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10 Questions answered, questions raised

This �nal chapter adopts a dialogical format to address critical questions that arose during
the development and presentation of this work. Rather than summarizing results, it
clari�es assumptions, justi�es modeling choices, and re�ects on the framework's scope,
applicability, limitations, and future directions.

The questions derive from interdisciplinary discussions, conceptual challenges in inte-
grative modeling, and anticipated objections from readers across �elds such as computa-
tional neuroscience, behavioral ecology, and robotics.

Framing these re�ections as a Q&A serves two goals: it disambiguates key concep-
tual and methodological choices, and it highlights opportunities for future extension by
confronting unresolved challenges. Each set of questions is thematically grouped and ad-
dressed with conceptual and technical precision. This chapter is not a supplement, but a
critical re�ection on the modeling philosophy, inviting deeper engagement with the frame-
work.

10.1 Beyond the case study

While this thesis centers on the modeling of Drosophila larva foraging behavior, its aim is
not to remain limited to this case study. Rather, it seeks to develop a modeling framework
that is both mechanistically grounded and generative � one that can be adapted to a
broader class of organisms and behavioral domains. From this perspective, questions
naturally arise:

Why use ABM at all, since larva foraging does not include interaction among

conspeci�cs?

The Drosophila larva is not a solitary organism in ecological terms, rather it exhibits a
rich array of social behaviors modulated by environmental context, developmental stage,
and internal neuromodulation. Larvae aggregate via chemical cues deposited by con-
speci�cs, promoting shared exploitation of resources and visually mediated cooperative
digging (Dombrovski et al., 2017, 2019; Louis and de Polavieja, 2017) but also age-related,
competitive adaptive shifts in foraging and locomotion (Ruiz-Dubreuil et al., 1996; Sarangi
et al., 2016; Wu et al., 2003). Under starvation or crowding, they display predatory canni-
balism � young instars attacking larger conspeci�cs � driven by chemical cues from injured
victims and enhanced by nutritional deprivation; this behavior can evolve rapidly under
selection and supports full development on a cannibalistic diet (Vijendravarma et al.,
2013).

Larvae are implemented as fully embodied agents, and the simulation environment sup-
ports direct and indirect inter-larva interactions. Currently implemented scenarios include
indirect competition for scarce food resources and direct collision-induced freezing (Otto
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et al., 2016). By adopting an ABM framework from the outset, the platform developed
here remains structurally open to extensions toward more elaborate social behaviors.

Are there con�icting needs/urgencies? How are they resolved?

The current study focuses exclusively on the behavioral and metabolic components of
energy and matter regulation, with a particular emphasis on homeostatically driven for-
aging behavior. As only a single survival circuit is modeled, homeostatic normativity is
expressed in a unidimensional manner � as a hunger/satiety drive � and does not give rise
to norm-based con�icts between goals such as feeding, threat avoidance, or reproduction.

Nevertheless, two forms of internal tension are observed within the present framework.
First, sensory con�icts may arise, for instance when an appetitive and an aversive odor
coincide spatially. These are resolved reactively, through di�erential activation of sensory
channels, without any higher-order arbitration across competing goals � the resolution lies
entirely in the sensorimotor output. Second, a dynamic balance is maintained between
exploration and exploitation, two behaviors are governed by distinct controllers that com-
pete for motor output, giving rise to stochastic behavioral transitions. Rather than being
treated as antagonistic drives, balance between these modes emerges as context-dependent
allocation of time and energy, modulated by metabolic state and food availability (section
8.2).

Properly con�icting needs would only emerge with the inclusion of additional survival
circuits � such as those related to defense or reproduction. The latter is particularly
tractable � although irrelevant for the larval stage � as it introduces its own metabolic
demands and constraints, which are already formalized within the DEB theory (Kooijman,
2010) .

How would your framework be adapted for modeling other organisms?

The computational framework has been designed at a su�ciently abstract level to allow its
adaptation to organisms beyond the Drosophila larva. Implementing it for a species with
a richer behavioral repertoire or more complex motivational landscape requires a minimal
set of species-speci�c adjustments, which nonetheless preserve the general architectural
principles. These include:

1. A 2D simpli�cation of the body and environment, identifying the degrees of freedom
relevant for locomotion, orientation, and sensory access in the target organism. Anatomical
details are abstracted unless they bear behavioral or energetic signi�cance.

2. A modular decomposition of the behavioral repertoire into discrete, possibly nested
components. Each module corresponds to a behavioral mode � from low-level primitives
to higher-level routines � ideally linked to speci�c sensory inputs, internal states, and
motor outputs. This structure supports behavioral switching, mutual inhibition, and
state-dependent modulation.
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3. The integration or development of computational models for each behavioral mod-
ule. These may draw from existing work on the target species and may be implemented
using diverse paradigms (e.g. dynamical systems, spiking or rate-based networks, or rule-
based systems). The modular design allows for their coherent integration into a uni�ed
control architecture.

4. A DEB model tailored to the species and developmental stage, parameterized via
the Add-my-Pet database procedure. Since DEB theory provides a formal structure for en-
ergy acquisition, allocation, and trade-o�s, it enables principled modeling of physiological
constraints and life-history dynamics (Kooijman, 2010).

These requirements de�ne the minimal basis for modeling a single behavioral domain,
as exempli�ed in the present thesis through foraging. Extending the framework to capture
richer behavioral repertoires and con�icting drives entails incorporating additional survival
circuits and expanding the control architecture to accommodate multi-dimensional moti-
vational dynamics.

10.2 Deeper into neuroscience

The BA presented in this thesis is grounded in neuroscience, but it does not claim to
be a neuroscienti�c model in the narrow sense. The focus lies in modeling behavior as
an emergent outcome of interconnected behavior-based modules that ultimately stand for
increasingly nested sensorimotor loops, modulated by internal states and energy dynamics.
Nevertheless, questions arise about the neuroscienti�c detail of the framework and the
relation between its current level of abstraction and its extensibility in terms of biological,
mechanistic realism:

Can the framework integrate more elaborate, even connectome-informed, neu-

ral circuits?

It is true that the modeling framework developed in this thesis primarily operates at the
level of functional modules rather than detailed neuronal circuitry. However, this choice
is not due to lack of concern for neuroanatomy, connectomics or neural plausibility, but
rather re�ects a deliberate abstraction aimed at capturing behaviorally relevant dynamics
with minimal computational overhead.

That said, one of the collaborative studies does make use of a spiking neuronal model
of the MB, with explicit sensory input and dopaminergic modulation (section 6.1). This
showcases that the Larvaworld software package supports interfacing with dedicated neu-
ral simulators, such as BRIAN2 and NENGO, enabling future integration of connectome-
informed neural circuits, biologically grounded plasticity rules and neural dynamics. More-
over, support for nested simulations at neural and behavioral timescales has been one of
the technical goals already achieved (section 9.2)

More broadly, the entire framework is designed with modularity in mind: each func-
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tional component � whether sensory, modulatory or motor � can be replaced or extended
by more detailed neuronal models provided that the appropriate interface to the rest of
the architecture is de�ned. In that sense, the current level of abstraction should be seen
not as a �xed commitment, but as a practical instantiation within a �exible and extensible
architecture.

Does the framework support advanced neuromechanics, realistic body�substrate

dynamics and environment physics?

This is a valid concern. The use of a simpli�ed locomotory model � a 2D, bisegmental
body � is not meant to dismiss the value of detailed neuromechanical models involving
multisegment bodies, CPGs, or intersegmental coordination Bidaye et al., 2018; Büschges,
2005; Mantziaris et al., 2020. Rather, it re�ects a deliberate modeling trade-o� in which
the goal is to implement and test high-level control architectures under minimal embodi-
ment constraints. That said, since the framework's implementation is modular, individual
components � including the behavior-based modules of the motor layer, body dynamics,
and environmental physics � can be replaced or extended as needed.

Notably, Larvaworld interfaces with the Box2D physics engine, allowing the creation of
multisegment larval bodies composed of interconnected rigid segments. Unlike the default
kinematic approach, motion here is governed by physical forces, with the physics engine
handling the computational load of simulating torques, friction, and dynamics. However,
such models require careful calibration and validation, therefore higher neuromechanical
realism remains an open direction for future development.

On the environmental side, some basic physical processes have already been imple-
mented to support dynamic sensory landscapes. These include an odor di�usion algorithm
for simulating the odor gradients emitted by localized odor sources, combination of such
odorscapes with wind-based advection of odor plumes, and spatiotemporal evolution of
environmental traits such as expansion or depletion of localized substrate nutrients. To-
gether, these features allow for nontrivial agent�environment interactions, even within the
currently simpli�ed 2D setting.

10.3 Scienti�c usability beyond modeling

The development of Larvaworld is primarily motivated by modeling needs, but its design
favors possible uses beyond simulation. This section re�ects on how the platform might
intersect with experimental work�ows and educational settings. These perspectives have
gradually emerged during interdisciplinary collaboration and community engagement and
are included here as plausible directions worth exploring further.
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Can Larvaworld also bene�t experimentalists, not just modelers?

Yes, Larvaworld is explicitly designed to bridge the gap between computational model-
ing and experimental behavioral research. For experimentalists, it functions as a tool for
importing, standardizing, and analyzing motion-tracking data from real Drosophila lar-
vae. Datasets from various tracking systems can be converted to a standardized format,
allowing for consistent analysis across experiments and laboratories. This helps reduce
methodological variability and facilitates reproducible data processing pipelines.

Importantly, experimental datasets and simulation outputs are treated identically
within the platform. This enables direct, unbiased comparisons between real and sim-
ulated behavior using the same quantitative metrics and visualization tools. Experimen-
talists can explore how speci�c behavioral features vary across genotypes, feeding condi-
tions, or environmental manipulations, and test how well computational models reproduce
their �ndings. A fruitful future direction would be to interface it with PiVR � a tool for
closed-loop experimentation � with which it shares multiple features (Tadres and Louis,
2020). In short, Larvaworld helps establish a tight feedback loop between empirical �nd-
ings and mechanistic hypotheses, a valuable tool not only for model development but also
for hypothesis generation and testing in experimental behavioral neuroscience.

How can Larvaworld be used in scienti�c education?

While Larvaworld was originally developed for research, its design makes it suitable as a
virtual laboratory in educational contexts, particularly where access to live animal exper-
imentation is limited. It o�ers interactive tutorial notebooks, browser-based tools, and
precon�gured simulations that allow students to explore core concepts in behavioral mod-
eling through direct engagement. Its modular architecture enables users to build synthetic
agents step-by-step by combining functional components � such as locomotory, sensory or
learning modules � and watch increasingly complex behaviors unfold. Or they can con-
struct and modify virtual arenas, con�gure multimodal sensory landscapes, and observe
how environmental features in�uence behavior, gaining insight into behavioral control in
stimulus-rich environments.

To broaden its accessibility in educational settings, several directions are being con-
sidered. These include the development of a graphical interface that would allow users
to con�gure and run experiments without writing code, making the platform accessible
to non-programmers. Integration into open online courses and the creation of student-
oriented project modules could further support its use in digital education settings. Al-
though these applications are still under development, they suggest that Larvaworld has
the potential to serve not only as a research toolkit but also as a �exible platform for
interactive and model-driven scienti�c education.
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