Mathematische Annalen (2025) 391:6451-6465

https://doi.org/10.1007/500208-024-03079-1 Mathematische Annalen
)]

Check for
updates

Volumes of components of Lelong upper level sets ||

Shuang Su '® - Duc-Viet Vu'

Received: 3 May 2024 / Revised: 10 December 2024 / Accepted: 17 December 2024 /
Published online: 13 January 2025
© The Author(s) 2025

Abstract

Let X be a compact Kéhler manifold of dimension 7, and let T be a closed positive
(1, 1)-current in a nef cohomology class on X. We establish an optimal upper bound
for the volume of components of Lelong upper level sets of T in terms of cohomology
classes of non-pluripolar self-products of 7.

Mathematics Subject Classification 32U15 - 32Q15

1 Introduction

The aim of this paper is to investigate the singularities of closed positive currents on
compact Kéhler manifolds. Let X be a compact Kéhler manifold of dimension n, and
let T be a closed positive (1, 1)-current on X. We are interested in understanding the
set of points where T has a strictly positive Lelong numbers. By the celebrated upper
semi-continuity of Lelong numbers by Siu [13], we know that this set is a countable
union of proper analytic subsets on X. Our goal is to estimate the size of this upper
level set. The problem was first studied by Demailly in [5, 6]. In this paper, we provide
in some sense a generalization of Demailly’s estimate. To delve into details, let us first
introduce some necessary notions.

Let w be a fixed smooth Kéhler form on X. We equip X with the Riemannian metric
induced by w. Let S be a closed positive (p, p)-current for some 0 < p < n. We define
the mass || S|| of S to be equal to f x SA@"™P. For an analytic set V of pure dimension
[ in X, we recall that

1 [
vol(V) = i ',
- J RegV
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where RegV is the regular locus of V. Given a closed positive (p, p)-current R, we
denote by {R} € HP'P(X, R) the cohomology class of R. We say « € HP"P(X,R)
is pseudoeffective if « = {R} for some closed positive (p, p)-current R. Let «, B €
HPP(X,R). Wesay « > §if o — B is a pseudoeffective class.

For every x € X, let v(T, x) denote the Lelong number of T at x. For every
irreducible analytic subset V in X, we recall that the generic Lelong number v(T', V') of
T along V is defined as inf,cy {v(T, x)}. The Lelong number is a notion measuring the
singularities of T'. We refer to [4] for the basics of Lelong numbers. For every constant
¢ > 0,wedenote E.(T) :={x € X|v(T,x) >c}and E4(T) :={x € X|v(T,x) >
0}. By [13], E.(T) is a proper analytic subsetin X, and E4 (T') = Uyen+ E1/,m (T) is
a countable union of analytic sets.

Let W be an irreducible analytic subset of dimension m in X. We denote by
E_,V_V(T) = {x € W(T,x) > v(T, W)} the Lelong upper level set of T on W,
which is also a countable union of proper analytic subsets in W. Let V C EY(T) be
an irreducible analytic set. We say that V is maximal if there is no irreducible analytic
subset V' of EY (T') such that V is a proper subset of V'. We call V a component of the
Lelong upper level set of T along W, and let 77 w be the set of such components V.
Observe that 77 has at most countably many elements. For 0 </ < m, we denote
by ¥.r.w the set of V € 7 w such thatdim V = [.

Write T = ddu locally, where u is a plurisubharmonic (psh in short) function. We
define T'| Regw tobe dd® (u| regw) if u # —ocoon RegW,and T'| Regw := 0 otherwise.
One sees that this definition is independent of the choice of u. Thus, T'| regw is a current
on RegW. Here is our main result in the paper.

Theorem 1.1 Let « be a nef (1, 1)-class and let W be an irreducible analytic subset
of dimension m in X. Let T be a closed positive current in o such that v(T, W) = 0.

Let 1 < m’ < m be an integer. Then, we have
Y. T V)" vol(V) < (" = ((T| regw)™)) A",
Ve/y/mfm’,T,W

1
(m —m’)! /RegW
(1.1)

where in the integral, we identify o with a smooth closed form in .

We have some comments on (1.1). To see why the term
I:f (e — (T Regw)™)) A ™™
RegW

is non-negative, one can consider the case where W is smooth. Then, by a monotonicity
of non-pluripolar products (see Theorem 3.3 below), the cohomology class (x| W)™ —
{((T| W)’"/) } is pseudoeffective. Hence the integral in the right-hand side of (1.1) is non-
negative. In the general case where W is singular, one can use either a desingularisation
of W or interpret / as the mass of some non-pluripolar product relative to [W] (the
current of integration along W); see Lemma 3.2 below. We underline however that in
order to prove Theorem 1.1, it is not possible to use desingularisation of W to reduce
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to the case where W is smooth. The reason is that in the process of desingularisation,
one has to blow up submanifolds of W which in general could be some components
of the Lelong upper level sets of 7 on W.

In [9], a less precise upper bound of volume of components of the Lelong upper
level set was given in terms of the volume of W and the mass of T'; see also Theorem
3.7 for a more general statement. If we consider W = X, then the generic Lelong
number of 7 along W is zero. Thus, by Theorem 1.1, we have the following result.

Corollary 1.2 Let « be a nef (1, 1)-class, and T be a closed positive current in . For
0 <[ <n,let V| 1 be the set of V € V7 _x such that dimV = [.
Let 1 < m' < n be an integer. Then, we have

> v(T,V)”“vol(VB;/ (@™ = (T ) Ae™™ . (12)
X

n—m')!
vefy/n—m’,T ( )

Corollary 1.2 generalizes [6, Corollary 7.6] by Demailly in which it was assumed
additionally that the components of the upper Lelong level set of T are only of dimen-
sion 0 (hence the cohomology class of T is necessarily nef, see [6, Lemma 6.3]). The
feature of Corollary 1.2 is that it holds for any current in a nef class. The estimate
(1.2) is optimal in the case where all of components of the Lelong upper level set
of T have the same dimension. For example, we consider X = P*, z € C* C P"

and T = %dd“ log 1JHrz\|sz||2 + wrs, where wry is the Fubini-Study form on IP". In this
case, we see that O is the only point at which the Lelong number of T is positive and
v(T,0) = 1, and (1.2) (for m = m' = n) becomes an equality.

In general, if we consider the relative setting as in Theorem 1.1 (when W is not
necessarily equal to X), then our main result (Theorem 1.1) is not satisfactory because
it requires that v(7T', W) = 0, hence, we can not apply it to the case where T is the
current of integration along a curve C in a complex Kahler surface and W = C). In
Theorem 3.7 below, we are able to treat the case where v(7', W) > 0 but the estimate is
not explicit due to the presence of a constant ¢ in the right-hand side. In this regard, the
estimate in [6, Theorem 1.7] is stronger than ours for dimension 2 (see the discussion
after [6, Theorem 1.7] in [6]). On the other hand, as explained in [9], the feature of
Theorem 1.1 is that it gives bounds for volumes of all of components of Lelong upper
level sets whereas [6, Theorem 1.7] does not allow us to treat all of components in
general.

This paper refines and substitutes [17]. The proof of Theorem 1.1 requires both the
theory of density currents in [8] and relative non-pluripolar products in [18] (see also
[1, 2]). One of the keys is Theorem 3.6 below following from a general comparison
of Lelong numbers for density currents, as stated below.

Corollary 1.3 (Corollary 2.6 in Sect. 2) Let T; be a closed positive current on X for

1 < j < m. Then, for every x € X and for every density current S associated to
Ty, ..., Ty, we have

U(S7 xm) > \)(T], x) e V(Tm’ x)7
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XM= (x,...,x) € Ay, C E, where Ay, is the diagonal of X" and E is the normal
bundle over A,,.

The above corollary generalizes the well-known comparison of Lelong numbers
of intersection of (1, 1)-currents due to Demailly [4, Chapter III, Corollary 7.9] in
the compact setting. It is probably the first result dealing with comparison of Lelong
numbers for intersection of currents of arbitrary bi-degree. As we will see, this corollary
is more or less a direct consequence of [8, Proposition 4.13].

The organization of this paper is as follows. In Sect.2, we recall basic properties
of density currents from [8]. In Sect. 3, we discuss the connection between the non-
pluripolar product and density currents, and prove Theorem 1.1.

2 Density currents

We first recall some basic properties of density currents introduced by Dinh—Sibony
in [8].

Let X be a complex Kihler manifold of dimension n, and V' a smooth complex
submanifold of X of dimension /. Let T be a closed positive (p, p)-current on X,
where 0 < p < n. Denote by m : E — V the normal bundle of V in X and
E := P(E & C) the projective compactification of E. We recall that E = T X |y /TV,
where T X and T'V are the holomorphic tangent bundles of X and V respectively (this
shows E is a holomorphic vector bundle). By abuse of notation, we also use m to
denote the canonical projection from E to V.

Let U be an open subset of X with U NV # &. Let t be a smooth diffeomorphism
from U to an open neighborhood of U N V in E which is the identity on U N V
such that the induced map of the differential dt to E|yny is the identity (because
for every x € U NV, dt at x is the identity map on 7T Vy, it induces a linear map
fromTX,/TVy = Exto TE,/TV, = E,). Such a map is called an admissible map.
Note that in [8], to define an admissible map, it is required furthermore that dt is
C-linear at every point of V. This difference doesn’t affect what follows. When U is
a small enough tubular neighborhood of V, there always exists an admissible map t
by [8, Lemma 4.2]. In general, t is not holomorphic. When U is a small enough local
chart, we can choose a holomorphic admissible map by using suitable holomorphic
coordinates on U. For & € C*, let (A,) : E — E be the multiplication by A on fibers
of E, which can be extended to (4,) : E — E. A (p, p)-current on E is said to be
V-conic if it is invariant under the action of (A, ). Here is the first fundamental result
for density currents.

Theorem 2.1 ([8, Theorem 4.6]) Let T be an admissible map defined on a tubular
neighborhood of V. Then, the family (A,) T T is of mass uniformly bounded in ) on
compact subsets in E, and if S is a limit current of the last family as .. — oo, then
S is a closed positive current on E which can be extended trivially through E\E to
be a V-conic closed positive current on E such that the cohomology class {S} of S in
E is independent of the choice of S, and {S}|y = {T}|v, and ||S|| < C||T || for some
constant C independent of S and T, where {S}|y denotes the pull-back of {S} under
the canonical inclusion map from V to E.

@ Springer



Volumes of components of Lelong upper level sets Il 6455

The current S in the above theorem is called a tangent current to T along V. Its
cohomology class is called the rotal tangent class of T along V and is denoted by
«V(T). Tangent currents are not unique in general. By [8, Theorem 4.6] again, if

S = lim (Ay)s7sT
k— 00

for some sequence (Ax); converging to 0o, then for every open subset U’ of X and
every admissible map t’ : U’ — E, we also have

S = lim (Ay,)s7.T.
k— 00

This is equivalent to saying that tangent currents are independent of the choice of the
admissible map t.

Definition 2.2 ([8, Definition 3.1]) Let F be a complex manifold and np : F — V
a holomorphic submersion. Let S be a positive current of bi-degree (p, p) on F. The
h-dimension of S with respect to r is the biggest integer ¢ such that S A w67 # 0
for some Hermitian metric 6 on V.

By abi-degree reason, the h-dimension of S is in [max{/— p, 0}, min{dim F — p, [}].
We have the following description of currents with minimal A-dimension.

Lemma 2.3 ([8, Lemma 3.4]) Let np : F — V be a holomorphic submersion. Let
S be a closed positive current of bi-degree (p, p) on F of h-dimension (I — p) with
respect to wp. Then S = *S’ for some closed positive current S’ on V.

By [8, Lemma 3.8], the h-dimensions of tangent currents to T along V are the same
and this number is called the rangential h-dimension of T along V.

Let m > 2 be an integer. Let T be a closed positive current of bi-degree (p;, p;)
forl < j<monXandletT| ® ---® T, be the tensor current of 71, ..., T,,, which
is a current on X™. A density current associated to T1, ..., T,, is a tangent current
to ®’;’: ,T; along the diagonal A, of X"™. Let m,, : E;, — A be the normal bundle
of A, in X", Denote by [V] the current of integration along V. When m = 2 and
T» = [V], the density currents of 77 and T are naturally identified with the tangent
currents to 77 along V (see [15, Lemma 2.3]).

The unique cohomology class of density currents associated to Ty, . .., T,, is called
the total density class of Ty, ..., T,. We denote the last class by « (71, ..., T,;). The
tangential h-dimension of T\ ® - - - ® T,,, along A,, is called the density h-dimension
of Ty, ... Tpy.

Lemma 2.4 ([8, Section 5]) Let T; be a closed positive current of bi-degree (p;, p;)
on X for 1 < j < m such that Z'}Ll pj < n. Assume that the density h-dimension

of T, ..., Ty is minimal, i.e, equals ton — Z;’Ll pj. Then the total density class of
Ti, ..., T, is equal to JT,’Z(/\'}‘ZI{TJ-}).
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Let hg be the Chern class of the dual of the tautological line bundle of E. By [8,
Page 535], we have

min{l,n—p—1}
—(—i
=Y n*(K}/(T))/\h%("), 2.1)
j=max{0,/—p}

where 7 : E — V is the canonical projection and K}/(T) € H2l_2j(V, R). The
tangential i#-dimension of 7' along V is exactly equal to the maximal j such that
K;/(T) # 0, and it was known that the class K}/(T) is pseudoeffective ([8, Lemma
3.15)).

Theorem 2.5 ([8, Proposition 4.13]) Let V' be a submanifold of V and let T be a
closed positive current on X. Let T, be a tangent current to T along V. Let s be the

tangential h-dimension of Ty along V'. Then, the tangential h-dimension of T along
V' is at most s, and we have

/' (T) < kY (Too).

As a consequence, we obtain the following result.

Corollary 2.6 Let T; be a closed positive current on X for 1 < j < m. Then, for every

x € X and for every density current S associated to Ty, . . ., T,,, we have
v(S, x™) = v(T1, x) -+ - (T, x), (2.2)
X" =(x,...,x) € Ay C E, where Ay, is the diagonal of X™ and E is the normal

bundle over A,,.
Proof Let x € X. Letw : E — A, be the canonical projection from the normal
bundle of the diagonal A, of X" in X™. Put T := ®;”:] T; and V' = {x™}. By [12,

Lemma 2.4], we have v(T', x™) > v(T1, x) - - - v(T,,, x). By [8, Proposition 5.6], we
have

i) (S) = v(S, x™)8m, 1y (T) = (T, x")8m,

where 8, is the Dirac measure on x” (notice here dim V' = 0). This combined with
Theorem 2.5 applied to X", T := ®;.”:1 T;, Ay, the diagonal of X" and V' := {x™}
implies

(S, x™) > (T, x™) > v(T1,x) - v(Tp, x).

Hence, the desired inequality follows. The proof is finished.

@ Springer



Volumes of components of Lelong upper level sets Il 6457

3 Relative non-pluripolar products

We first recall basic facts about the relative non-pluripolar product of currents and
discuss its connection with the density current.

Non-pluripolar product were introduced in [1, 2], and we follow [18], where the
second author extended the construction to the case of higher bi-degree, known as the
relative non-pluripolar product. For reader’s convenience, we explain briefly how to
do it.

Let X be a compact Kéhler manifold of dimension n. Let 71, ..., T, be closed
positive (1, 1)-currents on X, and T be a closed positive (p, p)-current. Write T; =
ddu;j + 6, where 6 is a smooth form and u ; is a ;-psh function. Put

Rk = lﬂ';;l{llj>—k} /\;(121 (ddc HlaX{l/tj, —k} + 91) ANT

for k € N. By the strong quasi-continuity of bounded psh functions ([18, Theorems
2.4 and 2.9]), we have

Rk_lmm =k A ' dd°max{u;, =1} +0;)) AT

for every I > k > 1. One can check that Ry is positive (see [18, Lemma 3.2]).

By [18, Lemma 3.4], the current Ry is of mass bounded uniformly in k& and (Ry)x
converges to aclosed positive currentas k — oo. This limitis denoted by (A""_, T; AT),
and is called the relative non-pluripolar product relative to T of 71, ..., Tm.

For every closed positive (1, 1)-current P, we denote by /p the set of x € X so
that local potentials of P are equal to —oo at x. Note that /p is a complete pluripolar
set. The following is deduced from [18, Proposition 3.5].

Proposition 3.1 (i) For R ::(A’]’?:l+1

(ii) For every complete pluripolar set A, we have

TjAT), we have (NT_ TjAT) = (ALﬂnARy

I a(Ti ATa A= AT AT) =Ty ATy A+ AT A\ aT)).
In particular, the equality
(/\;f‘lej/'\T) = (A’}’lej/\T’)

holds, where T' := 1X\u7’ . T.

=1 Tj

By [18, Lemma 3.1], it follows that (A"'_, T} AT) has no mass on U’" IT Fur-
thermore, by Proposition 3.1 (ii), we get that 1f T has no mass on A, then so does
(N T AT).

Let V be an irreducible analytic set in X. For the case T = [V], we have the
following lemma.

Lemma3.2 ([19, Lemma 2.3]) Let Ty, ..., T,y be closed positive (1, 1)-currents on
X. Then the following properties hold:
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(1) IfV is contained in U;."ZIIT/., then (Ty A- - -AT,, A[V]) = Oand thereis1 < jo <m
so that V C [Tjo'
(ii) IfV is not contained in U;"lerj, then

(NIZITAIVY) = ialTiy A A Ty,

where i: Reg(V) — X is the natural inclusion, and T;y := dd®(uj| reg(v)) if
dduj = Tj locally.

Let T, T’ be closed positive (1, 1)-currents in the same cohomology class on X.
T’ is said to be less singular than T if for every local potentials u of T and u’ of T”,
u < u’ 4+ O(1). Here is a crucial property of relative non-pluripolar products.

Theorem 3.3 ([18, Theorem 1.1]) Ler T]f be closed positive (1, 1)-current in the coho-

mology class of Tj on X such that ij is less singular than T for 1 < j < m. Then
we have

{(Ty A~ ATWAT)} < {(T{ A--- AT, AT)}.

Weaker versions of the above result were proved in [2, 3, 20]. Let oy, ..., «;, be
big (1, 1)-classed of X. A current T min € «; is said to have minimal singularities if
it is less singular than any closed positive current in o;.

By Theorem 3.3, the class {{(Tmin A+ A TuminAT)} is a well-defined pseu-
doeffective class which is independent of the choice of T'j min. We denote the last
class by {{a1 A+ A @y AT)}. When T = 1, we simply write (@] A--+ A @) for
{{a1 A-+- A AT)}. In this case, the product (o] A- - - A ) was introduced in [2].

Regarding the relation between relative non-pluripolar products and density cur-
rents, the following fact was proved in [16, Theorem 3.5], see also [10, 11].

Theorem 3.4 Let Ry, be a density current associated to Ty, . . ., Ty, T. Then we have
Tt ANTZ THAT) < Roo, 3.1)

where 1,41 is the canonical projection from the normal bundle of the diagonal A of
X"t 1o A, and as usual we identified A with X.

We will need the following to estimate the density h-dimension of currents, which
is a special case of [16, Proposition 3.6].

Proposition 3.5 Let P and T be closed positive currents of bi-degree (1, 1) and (p, p)
respectively on X, 1 < p < n. Assume that T has no mass on Ip. Then, for every
density current S associated to P, T, the h-dimension of S is equalton — p — 1.

For every pseudoeffective (p, p)-class y on X, we put ||y || := f ¥ OAe" P, where
® is any closed smooth form in y. This definition is independent of the choice of ®
and is nonnegative because of the pseudoeffectivity of y.
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Theorem 3.6 Let P and T be closed positive currents of bi-degree (1, 1) and (p, p)
respectively on X, where 1 < p < n — 1. Assume that T has no mass on Ip. Then,
the cohomology class

y :={P}A (T} = ({(PAT)}
is pseudoeffective and we have

vyl = ZU(P, V)u(T, V)ny!vol(V), 3.2)
Vv

where the sum is taken over every irreducible subset V of dimension at leastn — p — 1
inX,andny :=dimV.

We note that by the proof below, we see that any irreducible subset V such that
dmV >n—p—1landv(T,V) > 0,v(P,V) > OmustsatisfydimV =n—p — 1.

Proof Let ¥ be the set of irreducible analytic subsets V of dimension at leastn — p — 1
in X such that v(7, V) > 0 and v(P, V) > 0. We note that in (3.2), it is enough to
consider V € ¥". We will see below that 7" has at most countable elements.

Observe thatif v(P, x) > 0, then x € Ip. Hence, by hypothesis, the trace measure
of T has no mass on the set {x € X : v(P, x) > 0}. This allows us to apply Propo-
sition 3.5 to P and T to obtain that the density h-dimension of P and T is minimal.
Using this and Lemma 2.4 gives

k(P,T) =7*({P}A{T}), 3.3)

where 77 is the canonical projection from the normal bundle of the diagonal A of X2
to A.

Let S be a density current associated to P and T'. Since the h-dimension of S
is minimal, using Lemma 2.3, we get that there exists a current S’ on X such that
S = 7*§’ (recall A is identified with X). Since the relative non-pluripolar product is
dominated by density currents (Theorem 3.4), the current S — (PAT) is closed and
positive. Moreover, by (3.3), the cohomology class of the last current is equal to y. It
follows that y is pseudoeffective.

It remains to prove (3.2). Let V € 7. By definition, the generic Lelong number
of T along V is positive. Since T is of bi-degree (p, p), the dimension of V must
be at most n — p. Hence, we have two possibilities: either dimV =n — p — 1 or
dimV = n — p. Indeed, the latter case cannot occur. Suppose that such a V exists.
Then, we consider two cases: whether 7 has mass on V or not. If 7 has no mass on
V, then v(T, V) = 0, which leads to a contradiction. If 7 has mass on V, which is
contained in /p (for v(P, V) > 0), then this contradicts the hypothesis that 7" has no
mass on Ip.

Let V € 7. Since the Lelong numbers are preserved by submersion maps ([12,
Proposition 2.3]), by applying Corollary 2.6 to P, T and generic x € V, we obtain

(S, V) =v(S, V)= v, V)v(T,V).
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This combined with the fact thatdim V = n— p—1implies S’ > v(P, V)u(T, V) [V].
We deduce that

S' > (PAT)+ 1,8

> (PAT)+ Y (P, V)u(T, V)[V].
vey

The second inequality comes from Siu’s decomposition theorem ([7, 2.18]), and
this also shows that 7" has at most countable elements. The desired assertion follows
and the proof is finished. O

We now prove Theorem 1.1.

Proof of Theorem 1.1 1Tt suffices to consider the case where « is Kéhler by using o +
€{w}, T + €w instead of «, T and letting € — 0. Hence we assume from now on that
« is Kéhler. By abuse of notation, we also denote by « a smooth Kihler form in . By
Lemma 3.2, the right hand-hand side of (1.1) can be written as

1

(m —m’)!

’

/R ; (@™ = ((T] Regw)™ ) A" (@™ Atw1y — (7 ATW) .
eg

= (m —m’)!

Step 1. We first focus on the case that 7 has analytic singularities. Set § =
(T™ ~YA[W1). Since « is Kiihler, by the monotonicity of non-pluripolar product (The-
orem 3.3) and Proposition 3.1 (i), we get

(@™ ALWT) — (T AIWD | = (e A T™ TAIWD) — (T AIWD | (3.4
= lla A S —(TAS)|

We now show that S has no mass on I7. For m’ > 1, this directly follows from the
definition of non-pluripolar product. For m" = 1, the current S is just [W]. Since we
assume that 7' has analytic singularities, the polar locus /7 is an analytic subset and
it doesn’t contain W. Hence, [W] also has no mass on /7. Therefore, we can apply
Theorem 3.6 to 7', S, and get

lo A S} — {{TAS)}|| = (m — m")! Z v(T,V)v(S,V)vol(V) (3.5)

VEni/m—m’,T.W

Let V € ¥, 7.w and let Sing(I7 N W) be the singular locus of the analytic
set It N W. Since T has analytic singularities, the Lelong number v(T, x) is strictly
positive if and only if x belongs to I7. This coupled with the maximality of V implies
that V is contained in /T NW, and is one of the irreducible components. Let K, . .., K;
be the irreducible components of /7 N W. Observe that the set Sing(/7 N'W) consists of
singular points of irreducible components and their intersection points. By rearranging
the index, we may assume V = K. Set

U := X\ Sing(K1) UK3---UKj.
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Now, we prove that the intersection T =1 A [W]is well-defined on U, in the sense in
[4, Chapter III, Theorem 4.5]. Notice that V'\ Sing(I/7 N W)is contained in Reg(V),
and is of dimension m — m’. Consequently, for0 < j' <m’ — 1,

Fom—2j 1 (L(T)[y N W) = 565, 21 (Ir N WNU)
= 2y +1(V\ Sing(IT N W))
=0,

where L(T) is the set of x € X such that the local potential of T is unbounded on any
neighborhood of x. This allows us to apply [4, Chapter III, Theorem 4.5] and get the
well-definedness of 7' ~1 A [W]lonU.

By the continuity theorem of classical intersection ([4, Chapter III, Corollary 4.3]),
we can apply [18, Proposition 3.6] to (T™ =1 A[W1), and obtain

S = (T 'AIW]) = 1y, T 7V A W, (3.6)

Actually, the equality also holds on U N Ir. To show this, we need to check that
Tm' =1 A[W1hasnomasson UNIr.Since dim(UNI7NW) = m—m’ and Tm' -1 A[W]
is of bi-dimension (m —m’+1, m —m’+1), the current Tm' =1 [ W] must have no mass
on U N I N W. Also, by the fact Supp(T’"/_1 A [W]) C W, the current Tm' =1 A [W]
also has no mass on (U N IT)\W. Therefore, the equality (3.6) extends to U. This
implies that the Lelong number v(S, V) equals v(Tm/_l A [W], V\ Sing(IT N W))
(remember that we consider the current Tm=1 A [W]lon U, and V\ Sing(I7 N W) is
an analytic subset in U), and we then have

V(S, V) = v(T™ ' A [W], V\ Sing(Iy N W)
w(T, V\ Sing(Ir N W)™ ~Lu(W], V\ Sing(I7 N W))
(T, V)" 1, (3.7

v

\%

where the first inequality comes from [4, Chapter III, Corollary 7.9] (see also Corol-
lary 2.6 for a more general version). By (3.4), (3.5) and (3.7), the desired inequality
follows in the case where T has analytic singularities.

Step 2. Now, we remove the assumption that 7" has analytic singularities. The argument
we use is standard and is based on the work of Demailly in [6]. First, we write 7 =
dd‘u + 6, where 0 is a closed smooth (1, 1)-form and u € PSH(X, 6). Demailly’s
analytic approximation theorem (see [7, Corollary 14.13]) allows us to construct a
sequence ukD € PSH(X, 0 + €;w), where ¢, decreases to 0, such that

@) u,? > u and u,? converges to u in L.
2) u ,? has analytic singularities.

(3) v(Tk, x) converges to v(T, x) uniformly on X, where Ty = ddcu,? + (0 + €rw).
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By the monotonicity property of non-pluripolar product (Theorem 3.3), we have

[t AWl = (1™ AW | = lim (@ + )™ AIWD) = (T + )™ ALW)|

> lim sup [[{(@ + ex@)™ A[W1) — (T;" AIWD)||

k— 00

(3.8)

For every constant r > 0, set A, :={V € ¥,_,.7.wlv(T, V) > r}. Observe that
A, increases to ¥, 7.w as r — 0. Since v (T, x) converges to v(7', x) uniformly
and T is less singular than 7', for every fixed r > 0 we have

Ar C qi/m—m/,Tk,W
when k is large enough. By Step 1, we therefore have

[(@ + k)™ AIWD) = (T AIWD | = m —m)! D" w(Ti, V)™ vol(V)

Ve/y/mfm/,Tk,W

> (m—m) Y v(Ti., V)™ vol(V).
VeA,

Letting k — oo and using (3.8) give

[ @™ AIW1) = (T™ AIWD) | = (m — m)limsup Y v(Tr, V)™ vol(V)

k—00 VeA,

= (m—m) Y (T, V)" vol(V),

VeA,

for every constant r > 0. Letting r — 0, we obtain the desired estimate. O

For the general case where v(T, W) > 0. We couldn’t directly compare the volume
of Lelong upper level sets of T on W and the mass of {(oz'”//'\[W])} — {(T’"//'\[W])}}.
In this case, we have the following modified inequality which is stronger than [9,
Theorem 1.1].

Theorem 3.7 Let a be a nef (1, 1)-class. Let W be an irreducible analytic subset in
X. Let T be a closed positive current in o. Let 1 < m’ < m be an integer. Then we
have

m—m)t 3 (T V) = u(T, W)™ vol(V)

Ve/y/mfm/,T,W

< @+ clo)™ AIWT} = ((T + ca)™ AIWD)} | (3.9)
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wherec = c1-v(T, W) and c¢1 > 0is a constant independent of o, T, W. In particular,
there is a constant ¢y > 0 independent of a, T, W such that

Z (v(T, V) — (T, W))’"/ vol(V) < ez vol (W) T|I™ . (3.10)

Velym—m/,T,W

Proof The desired inequality (3.10) follows directly from (3.9). The proof of (3.9) is
similar to Step 2. of Theorem 1.1, which is again based on Demailly’s regularization
theorem ([6]). For convenience, set ¢3 := v(T, W) > 0. The regularization theorem
of currents introduced in [6] allows us to cut down the Lelong upper level set {x €
X|v(T, V) > c3} from T. More precisely, by [6, Theorem 1.1], there exists a sequence
of almost positive closed (1, 1)-currents 7¢, x in o such that

(1) Teyx = —(c1 - 3 + €x)w, where limg_, oo, = 0 and ¢; > 0 is a constant
independent of o, 7 and W.

(2) The global potentials of T¢, x decreases to the global potential of T'.

(3) v(Tes k. x) = max{v(T, x) — c3,0}.

Set i;,k = Tek + (c1 - c3 + €)w, which is a closed positive (1, 1)-current. By
Theorem 3.3, we have

@+ e - e3{o)™ AIWI = (T + ¢ - c30)™ AW
> limsup || (o + (c1 - ¢3 + elo})” AW — (T2 AW .

k— o0

Since v(ﬁS’ k» W) = 0, we can apply Theorem 1.1 to the right-hand side of the above
inequality and get

(e + (e - e3 + e (@)™ AW — (T AIWD)|

> (m —m')! > V(Tes 1, V)™ vol(V), (3.11)

VeVt .
mfm’,T(.,j’k,W

By the above properties of T, x, we have
- oW = Pon—m! T W-
Therefore, the right-hand side of (3.11) is equal to

m—mht > (T, VY™ vol(V)

Vel _w 1w

—m-m)t Y (T V) = (T W))" vol(V).

Vey/m—m’,T‘ w

This completes the proof. O
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Remark 3.8 We note that by [14], for every closed positive (p, p)-current R on X,
there always exists a closed positive (1, 1)-current 7 whose Lelong numbers coincide
with those of R. However, if we apply directly our result to current 7', we will get an
estimate of the Lelong upper level set for the current R. But there will be a constant
appear in the right hand side of (1.1) in Theorem 1.1, since the mass of 7" is bounded
by a universal constant times the mass of R.
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