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Abstract
Let X be a compact Kähler manifold of dimension n, and let T be a closed positive
(1, 1)-current in a nef cohomology class on X . We establish an optimal upper bound
for the volume of components of Lelong upper level sets of T in terms of cohomology
classes of non-pluripolar self-products of T .

Mathematics Subject Classification 32U15 · 32Q15

1 Introduction

The aim of this paper is to investigate the singularities of closed positive currents on
compact Kähler manifolds. Let X be a compact Kähler manifold of dimension n, and
let T be a closed positive (1, 1)-current on X . We are interested in understanding the
set of points where T has a strictly positive Lelong numbers. By the celebrated upper
semi-continuity of Lelong numbers by Siu [13], we know that this set is a countable
union of proper analytic subsets on X . Our goal is to estimate the size of this upper
level set. The problemwas first studied by Demailly in [5, 6]. In this paper, we provide
in some sense a generalization of Demailly’s estimate. To delve into details, let us first
introduce some necessary notions.

Letω be a fixed smooth Kähler form on X . We equip X with the Riemannian metric
induced byω. Let S be a closed positive (p, p)-current for some 0 ≤ p ≤ n.We define
the mass ‖S‖ of S to be equal to

∫
X S∧ωn−p. For an analytic set V of pure dimension

l in X , we recall that

vol(V ) = 1

l!
∫

RegV
ωl ,
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where RegV is the regular locus of V . Given a closed positive (p, p)-current R, we
denote by {R} ∈ H p,p(X , R) the cohomology class of R. We say α ∈ H p,p(X , R)

is pseudoeffective if α = {R} for some closed positive (p, p)-current R. Let α, β ∈
H p,p(X , R). We say α ≥ β if α − β is a pseudoeffective class.

For every x ∈ X , let ν(T , x) denote the Lelong number of T at x . For every
irreducible analytic subset V in X , we recall that the generic Lelong number ν(T , V ) of
T along V is defined as infx∈V {ν(T , x)}. The Lelong number is a notionmeasuring the
singularities of T . We refer to [4] for the basics of Lelong numbers. For every constant
c > 0, we denote Ec(T ) := {x ∈ X |ν(T , x) ≥ c} and E+(T ) := {x ∈ X |ν(T , x) >

0}. By [13], Ec(T ) is a proper analytic subset in X , and E+(T ) = ∪m∈N∗E1/m(T ) is
a countable union of analytic sets.

Let W be an irreducible analytic subset of dimension m in X . We denote by
EW+ (T ) := {x ∈ W |ν(T , x) > ν(T ,W )} the Lelong upper level set of T on W ,
which is also a countable union of proper analytic subsets in W . Let V ⊂ EW+ (T ) be
an irreducible analytic set. We say that V ismaximal if there is no irreducible analytic
subset V ′ of EW+ (T ) such that V is a proper subset of V ′. We call V a component of the
Lelong upper level set of T along W , and let VT ,W be the set of such components V .
Observe that VT ,W has at most countably many elements. For 0 ≤ l ≤ m, we denote
by Vl,T ,W the set of V ∈ VT ,W such that dim V = l.

Write T = ddcu locally, where u is a plurisubharmonic (psh in short) function. We
define T | RegW to be ddc(u| RegW ) if u �≡ −∞ on RegW , and T | RegW := 0 otherwise.
One sees that this definition is independent of the choice of u. Thus, T | RegW is a current
on RegW . Here is our main result in the paper.

Theorem 1.1 Let α be a nef (1, 1)-class and let W be an irreducible analytic subset
of dimension m in X. Let T be a closed positive current in α such that ν(T ,W ) = 0.
Let 1 ≤ m′ ≤ m be an integer. Then, we have

∑

V∈Vm−m′,T ,W

ν(T , V )m
′
vol(V ) ≤ 1

(m − m′)!
∫

RegW

(
αm′ − 〈(T | RegW )m

′ 〉) ∧ ωm−m′
,

(1.1)

where in the integral, we identify α with a smooth closed form in α.

We have some comments on (1.1). To see why the term

I :=
∫

RegW

(
αm′ − 〈(T | RegW )m

′ 〉) ∧ ωm−m′

is non-negative, one can consider the casewhereW is smooth. Then, by amonotonicity
of non-pluripolar products (see Theorem 3.3 below), the cohomology class (α|W )m

′ −
{〈(T |W )m

′ 〉} is pseudoeffective.Hence the integral in the right-hand side of (1.1) is non-
negative. In the general casewhereW is singular, one can use either a desingularisation
of W or interpret I as the mass of some non-pluripolar product relative to [W ] (the
current of integration along W ); see Lemma 3.2 below. We underline however that in
order to prove Theorem 1.1, it is not possible to use desingularisation of W to reduce
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Volumes of components of Lelong upper level sets II 6453

to the case where W is smooth. The reason is that in the process of desingularisation,
one has to blow up submanifolds of W which in general could be some components
of the Lelong upper level sets of T on W .

In [9], a less precise upper bound of volume of components of the Lelong upper
level set was given in terms of the volume of W and the mass of T ; see also Theorem
3.7 for a more general statement. If we consider W = X , then the generic Lelong
number of T along W is zero. Thus, by Theorem 1.1, we have the following result.

Corollary 1.2 Let α be a nef (1, 1)-class, and T be a closed positive current in α. For
0 ≤ l ≤ n, let Vl,T be the set of V ∈ VT ,X such that dim V = l.

Let 1 ≤ m′ ≤ n be an integer. Then, we have

∑

V∈Vn−m′,T

ν(T , V )m
′
vol(V ) ≤ 1

(n − m′)!
∫

X

(
αm′ − {〈Tm′ 〉}) ∧ ωn−m′

. (1.2)

Corollary 1.2 generalizes [6, Corollary 7.6] by Demailly in which it was assumed
additionally that the components of the upper Lelong level set of T are only of dimen-
sion 0 (hence the cohomology class of T is necessarily nef, see [6, Lemma 6.3]). The
feature of Corollary 1.2 is that it holds for any current in a nef class. The estimate
(1.2) is optimal in the case where all of components of the Lelong upper level set
of T have the same dimension. For example, we consider X = P

n , z ∈ C
n ⊂ P

n

and T = 1
2dd

c log ‖z‖2
1+‖z‖2 + ωFS , where ωFS is the Fubini-Study form on P

n . In this
case, we see that 0 is the only point at which the Lelong number of T is positive and
ν(T , 0) = 1, and (1.2) (for m = m′ = n) becomes an equality.

In general, if we consider the relative setting as in Theorem 1.1 (when W is not
necessarily equal to X ), then our main result (Theorem 1.1) is not satisfactory because
it requires that ν(T ,W ) = 0, hence, we can not apply it to the case where T is the
current of integration along a curve C in a complex Kähler surface and W = C). In
Theorem 3.7 below, we are able to treat the case where ν(T ,W ) > 0 but the estimate is
not explicit due to the presence of a constant c in the right-hand side. In this regard, the
estimate in [6, Theorem 1.7] is stronger than ours for dimension 2 (see the discussion
after [6, Theorem 1.7] in [6]). On the other hand, as explained in [9], the feature of
Theorem 1.1 is that it gives bounds for volumes of all of components of Lelong upper
level sets whereas [6, Theorem 1.7] does not allow us to treat all of components in
general.

This paper refines and substitutes [17]. The proof of Theorem 1.1 requires both the
theory of density currents in [8] and relative non-pluripolar products in [18] (see also
[1, 2]). One of the keys is Theorem 3.6 below following from a general comparison
of Lelong numbers for density currents, as stated below.

Corollary 1.3 (Corollary 2.6 in Sect. 2) Let Tj be a closed positive current on X for
1 ≤ j ≤ m. Then, for every x ∈ X and for every density current S associated to
T1, . . . , Tm, we have

ν(S, xm) ≥ ν(T1, x) · · · ν(Tm, x),
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xm = (x, . . . , x) ∈ �m ⊂ E, where �m is the diagonal of Xm and E is the normal
bundle over �m.

The above corollary generalizes the well-known comparison of Lelong numbers
of intersection of (1, 1)-currents due to Demailly [4, Chapter III, Corollary 7.9] in
the compact setting. It is probably the first result dealing with comparison of Lelong
numbers for intersectionof currents of arbitrary bi-degree.Aswewill see, this corollary
is more or less a direct consequence of [8, Proposition 4.13].

The organization of this paper is as follows. In Sect. 2, we recall basic properties
of density currents from [8]. In Sect. 3, we discuss the connection between the non-
pluripolar product and density currents, and prove Theorem 1.1.

2 Density currents

We first recall some basic properties of density currents introduced by Dinh–Sibony
in [8].

Let X be a complex Kähler manifold of dimension n, and V a smooth complex
submanifold of X of dimension l. Let T be a closed positive (p, p)-current on X ,

where 0 ≤ p ≤ n. Denote by π : E → V the normal bundle of V in X and
E := P(E ⊕C) the projective compactification of E . We recall that E = T X |V /T V ,
where T X and T V are the holomorphic tangent bundles of X and V respectively (this
shows E is a holomorphic vector bundle). By abuse of notation, we also use π to
denote the canonical projection from E to V .

LetU be an open subset of X withU ∩V �= ∅. Let τ be a smooth diffeomorphism
from U to an open neighborhood of U ∩ V in E which is the identity on U ∩ V
such that the induced map of the differential dτ to E |V∩U is the identity (because
for every x ∈ U ∩ V , dτ at x is the identity map on T Vx , it induces a linear map
from T Xx/T Vx = Ex to T Ex/T Vx = Ex ). Such a map is called an admissible map.
Note that in [8], to define an admissible map, it is required furthermore that dτ is
C-linear at every point of V . This difference doesn’t affect what follows. When U is
a small enough tubular neighborhood of V , there always exists an admissible map τ

by [8, Lemma 4.2]. In general, τ is not holomorphic. WhenU is a small enough local
chart, we can choose a holomorphic admissible map by using suitable holomorphic
coordinates on U . For λ ∈ C

∗, let (Aλ) : E → E be the multiplication by λ on fibers
of E, which can be extended to (Aλ) : E → E . A (p, p)-current on E is said to be
V-conic if it is invariant under the action of (Aλ). Here is the first fundamental result
for density currents.

Theorem 2.1 ([8, Theorem 4.6]) Let τ be an admissible map defined on a tubular
neighborhood of V . Then, the family (Aλ)∗τ∗T is of mass uniformly bounded in λ on
compact subsets in E, and if S is a limit current of the last family as λ → ∞, then
S is a closed positive current on E which can be extended trivially through E\E to
be a V -conic closed positive current on E such that the cohomology class {S} of S in
E is independent of the choice of S, and {S}|V = {T }|V , and ‖S‖ ≤ C‖T ‖ for some
constant C independent of S and T , where {S}|V denotes the pull-back of {S} under
the canonical inclusion map from V to E.
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The current S in the above theorem is called a tangent current to T along V . Its
cohomology class is called the total tangent class of T along V and is denoted by
κV (T ). Tangent currents are not unique in general. By [8, Theorem 4.6] again, if

S = lim
k→∞(Aλk )∗τ∗T

for some sequence (λk)k converging to ∞, then for every open subset U ′ of X and
every admissible map τ ′ : U ′ → E , we also have

S = lim
k→∞(Aλk )∗τ ′∗T .

This is equivalent to saying that tangent currents are independent of the choice of the
admissible map τ .

Definition 2.2 ([8, Definition 3.1]) Let F be a complex manifold and πF : F → V
a holomorphic submersion. Let S be a positive current of bi-degree (p, p) on F . The
h-dimension of S with respect to πF is the biggest integer q such that S ∧ π∗

Fθq �= 0
for some Hermitian metric θ on V .

By a bi-degree reason, the h-dimension of S is in [max{l−p, 0},min{dim F−p, l}].
We have the following description of currents with minimal h-dimension.

Lemma 2.3 ([8, Lemma 3.4]) Let πF : F → V be a holomorphic submersion. Let
S be a closed positive current of bi-degree (p, p) on F of h-dimension (l − p) with
respect to πF . Then S = π∗S′ for some closed positive current S′ on V .

By [8, Lemma 3.8], the h-dimensions of tangent currents to T along V are the same
and this number is called the tangential h-dimension of T along V .

Let m ≥ 2 be an integer. Let Tj be a closed positive current of bi-degree (p j , p j )

for 1 ≤ j ≤ m on X and let T1 ⊗ · · · ⊗ Tm be the tensor current of T1, . . . , Tm which
is a current on Xm . A density current associated to T1, . . . , Tm is a tangent current
to ⊗m

j=1Tj along the diagonal �m of Xm . Let πm : Em → � be the normal bundle
of �m in Xm . Denote by [V ] the current of integration along V . When m = 2 and
T2 = [V ], the density currents of T1 and T2 are naturally identified with the tangent
currents to T1 along V (see [15, Lemma 2.3]).

The unique cohomology class of density currents associated to T1, . . . , Tm is called
the total density class of T1, . . . , Tm . We denote the last class by κ(T1, . . . , Tm). The
tangential h-dimension of T1 ⊗ · · · ⊗ Tm along �m is called the density h-dimension
of T1, . . . Tm .

Lemma 2.4 ([8, Section 5]) Let Tj be a closed positive current of bi-degree (p j , p j )

on X for 1 ≤ j ≤ m such that
∑m

j=1 p j ≤ n. Assume that the density h-dimension
of T1, . . . , Tm is minimal, i.e, equals to n − ∑m

j=1 p j . Then the total density class of
T1, . . . , Tm is equal to π∗

m(∧m
j=1{Tj }).
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Let hE be the Chern class of the dual of the tautological line bundle of E . By [8,
Page 535], we have

κV (T ) =
min{l,n−p−1}∑

j=max{0,l−p}
π∗(κV

j (T )
) ∧ h p−(l− j)

E
, (2.1)

where π : E → V is the canonical projection and κV
j (T ) ∈ H2l−2 j (V , R). The

tangential h-dimension of T along V is exactly equal to the maximal j such that
κV
j (T ) �= 0, and it was known that the class κV

j (T ) is pseudoeffective ([8, Lemma
3.15]).

Theorem 2.5 ([8, Proposition 4.13]) Let V ′ be a submanifold of V and let T be a
closed positive current on X. Let T∞ be a tangent current to T along V . Let s be the
tangential h-dimension of T∞ along V ′. Then, the tangential h-dimension of T along
V ′ is at most s, and we have

κV ′
s (T ) ≤ κV ′

s (T∞).

As a consequence, we obtain the following result.

Corollary 2.6 Let Tj be a closed positive current on X for 1 ≤ j ≤ m. Then, for every
x ∈ X and for every density current S associated to T1, . . . , Tm, we have

ν(S, xm) ≥ ν(T1, x) · · · ν(Tm, x), (2.2)

xm = (x, . . . , x) ∈ �m ⊂ E, where �m is the diagonal of Xm and E is the normal
bundle over �m.

Proof Let x ∈ X . Let π : E → �m be the canonical projection from the normal
bundle of the diagonal �m of Xm in Xm . Put T := ⊗m

j=1Tj and V ′ := {xm}. By [12,
Lemma 2.4], we have ν(T , xm) ≥ ν(T1, x) · · · ν(Tm, x). By [8, Proposition 5.6], we
have

κV ′
0 (S) = ν(S, xm)δxm , κV ′

0 (T ) = ν(T , xm)δxm ,

where δxm is the Dirac measure on xm (notice here dim V ′ = 0). This combined with
Theorem 2.5 applied to Xm , T := ⊗m

j=1Tj , �m the diagonal of Xm and V ′ := {xm}
implies

ν(S, xm) ≥ ν(T , xm) ≥ ν(T1, x) · · · ν(Tm, x).

Hence, the desired inequality follows. The proof is finished.
��
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3 Relative non-pluripolar products

We first recall basic facts about the relative non-pluripolar product of currents and
discuss its connection with the density current.

Non-pluripolar product were introduced in [1, 2], and we follow [18], where the
second author extended the construction to the case of higher bi-degree, known as the
relative non-pluripolar product. For reader’s convenience, we explain briefly how to
do it.

Let X be a compact Kähler manifold of dimension n. Let T1, . . . , Tm be closed
positive (1, 1)-currents on X , and T be a closed positive (p, p)-current. Write Tj =
ddcu j + θ j , where θ j is a smooth form and u j is a θ j -psh function. Put

Rk := 1∩m
j=1{u j>−k} ∧m

j=1 (ddc max{u j ,−k} + θ j ) ∧ T

for k ∈ N. By the strong quasi-continuity of bounded psh functions ([18, Theorems
2.4 and 2.9]), we have

Rk = 1∩m
j=1{u j>−k} ∧m

j=1 (ddc max{u j ,−l} + θ j ) ∧ T

for every l ≥ k ≥ 1. One can check that Rk is positive (see [18, Lemma 3.2]).
By [18, Lemma 3.4], the current Rk is of mass bounded uniformly in k and (Rk)k

converges to a closedpositive current as k → ∞. This limit is denotedby 〈∧m
j=1Tj ∧̇T 〉,

and is called the relative non-pluripolar product relative to T of T1, . . . , Tm .
For every closed positive (1, 1)-current P , we denote by IP the set of x ∈ X so

that local potentials of P are equal to −∞ at x . Note that IP is a complete pluripolar
set. The following is deduced from [18, Proposition 3.5].

Proposition 3.1 (i) For R :=〈∧m
j=l+1Tj ∧̇T 〉, we have 〈∧m

j=1Tj ∧̇T 〉 =〈∧l
j=1Tj ∧̇R〉.

(ii) For every complete pluripolar set A, we have

1X\A〈T1 ∧ T2 ∧ · · · ∧ Tm∧̇T 〉 = 〈
T1 ∧ T2 ∧ · · · ∧ Tm∧̇(1X\AT )

〉
.

In particular, the equality

〈∧m
j=1Tj ∧̇T 〉 = 〈∧m

j=1Tj ∧̇T ′〉

holds, where T ′ := 1X\∪m
j=1 IT j

T .

By [18, Lemma 3.1], it follows that 〈∧m
j=1Tj ∧̇T 〉 has no mass on ∪m

j=1 ITj . Fur-
thermore, by Proposition 3.1 (ii), we get that if T has no mass on A, then so does
〈∧m

j=1Tj ∧̇T 〉.
Let V be an irreducible analytic set in X . For the case T = [V ], we have the

following lemma.

Lemma 3.2 ([19, Lemma 2.3]) Let T1, . . . , Tm be closed positive (1, 1)-currents on
X. Then the following properties hold:
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(i) If V is contained in∪m
j=1 ITj , then 〈T1∧· · ·∧Tm∧̇[V ]〉 = 0 and there is 1 ≤ j0 ≤ m

so that V ⊂ ITj0
.

(ii) If V is not contained in ∪m
j=1 ITj , then

〈∧m
j=1Tj ∧̇[V ]〉 = i∗〈T1,V ∧· · · ∧ Tm,V 〉,

where i : Reg(V ) → X is the natural inclusion, and Tj,V := ddc(u j | Reg(V )) if
ddcu j = Tj locally.

Let T , T ′ be closed positive (1, 1)-currents in the same cohomology class on X .
T ′ is said to be less singular than T if for every local potentials u of T and u′ of T ′,
u ≤ u′ + O(1). Here is a crucial property of relative non-pluripolar products.

Theorem 3.3 ([18, Theorem 1.1]) Let T ′
j be closed positive (1, 1)-current in the coho-

mology class of Tj on X such that T ′
j is less singular than Tj for 1 ≤ j ≤ m. Then

we have

{〈T1 ∧ · · · ∧ Tm∧̇T 〉} ≤ {〈T ′
1 ∧ · · · ∧ T ′

m∧̇T 〉}.

Weaker versions of the above result were proved in [2, 3, 20]. Let α1, . . . , αm be
big (1, 1)-classed of X . A current Tj,min ∈ α j is said to have minimal singularities if
it is less singular than any closed positive current in α j .

By Theorem 3.3, the class {〈T1,min ∧· · · ∧ Tm,min∧̇T 〉} is a well-defined pseu-
doeffective class which is independent of the choice of Tj,min. We denote the last
class by {〈α1 ∧· · · ∧ αm∧̇T 〉}. When T ≡ 1, we simply write 〈α1 ∧· · · ∧ αm〉 for
{〈α1 ∧· · · ∧ αm∧̇T 〉}. In this case, the product 〈α1 ∧· · · ∧ αm〉 was introduced in [2].

Regarding the relation between relative non-pluripolar products and density cur-
rents, the following fact was proved in [16, Theorem 3.5], see also [10, 11].

Theorem 3.4 Let R∞ be a density current associated to T1, . . . , Tm, T . Then we have

π∗
m+1〈∧m

j=1Tj ∧̇T 〉 ≤ R∞, (3.1)

where πm+1 is the canonical projection from the normal bundle of the diagonal � of
Xm+1 to �, and as usual we identified � with X.

We will need the following to estimate the density h-dimension of currents, which
is a special case of [16, Proposition 3.6].

Proposition 3.5 Let P and T be closed positive currents of bi-degree (1, 1) and (p, p)
respectively on X, 1 ≤ p ≤ n. Assume that T has no mass on IP . Then, for every
density current S associated to P, T , the h-dimension of S is equal to n − p − 1.

For every pseudoeffective (p, p)-class γ on X , we put ‖γ ‖ := ∫
X �∧ωn−p, where

� is any closed smooth form in γ . This definition is independent of the choice of �

and is nonnegative because of the pseudoeffectivity of γ .
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Theorem 3.6 Let P and T be closed positive currents of bi-degree (1, 1) and (p, p)
respectively on X, where 1 ≤ p ≤ n − 1. Assume that T has no mass on IP . Then,
the cohomology class

γ := {P} ∧ {T } − {〈P∧̇T 〉}

is pseudoeffective and we have

‖γ ‖ ≥
∑

V

ν(P, V )ν(T , V )nV ! vol(V ), (3.2)

where the sum is taken over every irreducible subset V of dimension at least n− p−1
in X, and nV := dim V .

We note that by the proof below, we see that any irreducible subset V such that
dim V ≥ n − p − 1 and ν(T , V ) > 0, ν(P, V ) > 0 must satisfy dim V = n − p − 1.

Proof LetV be the set of irreducible analytic subsets V of dimension at least n− p−1
in X such that ν(T , V ) > 0 and ν(P, V ) > 0. We note that in (3.2), it is enough to
consider V ∈ V . We will see below that V has at most countable elements.

Observe that if ν(P, x) > 0, then x ∈ IP . Hence, by hypothesis, the trace measure
of T has no mass on the set {x ∈ X : ν(P, x) > 0}. This allows us to apply Propo-
sition 3.5 to P and T to obtain that the density h-dimension of P and T is minimal.
Using this and Lemma 2.4 gives

κ(P, T ) = π∗({P} ∧ {T }), (3.3)

where π is the canonical projection from the normal bundle of the diagonal � of X2

to �.
Let S be a density current associated to P and T . Since the h-dimension of S

is minimal, using Lemma 2.3, we get that there exists a current S′ on X such that
S = π∗S′ (recall � is identified with X ). Since the relative non-pluripolar product is
dominated by density currents (Theorem 3.4), the current S′ − 〈P∧̇T 〉 is closed and
positive. Moreover, by (3.3), the cohomology class of the last current is equal to γ . It
follows that γ is pseudoeffective.

It remains to prove (3.2). Let V ∈ V . By definition, the generic Lelong number
of T along V is positive. Since T is of bi-degree (p, p), the dimension of V must
be at most n − p. Hence, we have two possibilities: either dim V = n − p − 1 or
dim V = n − p. Indeed, the latter case cannot occur. Suppose that such a V exists.
Then, we consider two cases: whether T has mass on V or not. If T has no mass on
V , then ν(T , V ) = 0, which leads to a contradiction. If T has mass on V , which is
contained in IP (for ν(P, V ) > 0), then this contradicts the hypothesis that T has no
mass on IP .

Let V ∈ V . Since the Lelong numbers are preserved by submersion maps ([12,
Proposition 2.3]), by applying Corollary 2.6 to P, T and generic x ∈ V , we obtain

ν(S′, V ) = ν(S, V ) ≥ ν(P, V )ν(T , V ).
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This combinedwith the fact that dim V = n−p−1 implies S′ ≥ ν(P, V )ν(T , V ) [V ].
We deduce that

S′ ≥ 〈P∧̇T 〉 + 1IP S
′

≥ 〈P∧̇T 〉 +
∑

V∈V
ν(P, V )ν(T , V ) [V ].

The second inequality comes from Siu’s decomposition theorem ([7, 2.18]), and
this also shows that V has at most countable elements. The desired assertion follows
and the proof is finished. ��

We now prove Theorem 1.1.

Proof of Theorem 1.1 It suffices to consider the case where α is Kähler by using α +
ε{ω}, T + εω instead of α, T and letting ε → 0. Hence we assume from now on that
α is Kähler. By abuse of notation, we also denote by α a smooth Kähler form in α. By
Lemma 3.2, the right hand-hand side of (1.1) can be written as

1

(m − m′)!
∫

RegW

(
αm

′ − 〈(T | RegW )m
′ 〉) ∧ ωm−m′ = 1

(m − m′)!
∥
∥〈αm′ ∧̇[W ]〉 − 〈Tm′ ∧̇[W ]〉∥∥.

Step 1. We first focus on the case that T has analytic singularities. Set S =
〈Tm′−1∧̇[W ]〉. Since α is Kähler, by the monotonicity of non-pluripolar product (The-
orem 3.3) and Proposition 3.1 (i), we get

∥
∥〈αm′ ∧̇[W ]〉 − 〈Tm′ ∧̇[W ]〉∥∥ ≥ ∥

∥〈α ∧ Tm′−1∧̇[W ]〉 − 〈Tm′ ∧̇[W ]〉∥∥ (3.4)

= ‖α ∧ S − 〈T ∧̇S〉‖

We now show that S has no mass on IT . For m′ > 1, this directly follows from the
definition of non-pluripolar product. For m′ = 1, the current S is just [W ]. Since we
assume that T has analytic singularities, the polar locus IT is an analytic subset and
it doesn’t contain W . Hence, [W ] also has no mass on IT . Therefore, we can apply
Theorem 3.6 to T , S, and get

‖α ∧ {S} − {〈T ∧̇S〉}‖ ≥ (m − m′)!
∑

V∈Vm−m′,T ,W

ν(T , V )ν(S, V ) vol(V ) (3.5)

Let V ∈ Vm−m′,T ,W and let Sing(IT ∩ W ) be the singular locus of the analytic
set IT ∩ W . Since T has analytic singularities, the Lelong number ν(T , x) is strictly
positive if and only if x belongs to IT . This coupled with the maximality of V implies
that V is contained in IT ∩W , and is one of the irreducible components. Let K1, . . . , Ks

be the irreducible components of IT ∩W . Observe that the set Sing(IT ∩W ) consists of
singular points of irreducible components and their intersection points. By rearranging
the index, we may assume V = K1. Set

U := X\ Sing(K1) ∪ K2· · · ∪ Ks .
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Now, we prove that the intersection Tm′−1 ∧ [W ] is well-defined onU , in the sense in
[4, Chapter III, Theorem 4.5]. Notice that V \ Sing(IT ∩ W )is contained in Reg(V ),
and is of dimension m − m′. Consequently, for 0 ≤ j ′ ≤ m′ − 1,

H2m−2 j ′+1(L(T )|U ∩ W ) = H2m−2 j ′+1(IT ∩ W ∩U )

= H2m−2 j ′+1(V \ Sing(IT ∩ W ))

= 0,

where L(T ) is the set of x ∈ X such that the local potential of T is unbounded on any
neighborhood of x . This allows us to apply [4, Chapter III, Theorem 4.5] and get the
well-definedness of Tm′−1 ∧ [W ] on U .

By the continuity theorem of classical intersection ([4, Chapter III, Corollary 4.3]),
we can apply [18, Proposition 3.6] to 〈Tm′−1∧̇[W ]〉, and obtain

S = 〈Tm′−1∧̇[W ]〉 = 1U\IT T m′−1 ∧ [W ]. (3.6)

Actually, the equality also holds on U ∩ IT . To show this, we need to check that
Tm′−1∧[W ] has nomass onU∩ IT . Since dim(U∩ IT ∩W ) = m−m′ and Tm′−1∧[W ]
is of bi-dimension (m−m′+1,m−m′+1), the current Tm′−1∧[W ]must have nomass
onU ∩ IT ∩W . Also, by the fact Supp(Tm′−1 ∧ [W ]) ⊂ W , the current Tm′−1 ∧ [W ]
also has no mass on (U ∩ IT )\W . Therefore, the equality (3.6) extends to U . This
implies that the Lelong number ν(S, V ) equals ν(Tm′−1 ∧ [W ], V \ Sing(IT ∩ W ))

(remember that we consider the current Tm′−1 ∧ [W ] on U , and V \ Sing(IT ∩ W ) is
an analytic subset in U ), and we then have

ν(S, V ) = ν(Tm′−1 ∧ [W ], V \ Sing(IT ∩ W ))

≥ ν(T , V \ Sing(IT ∩ W ))m
′−1ν([W ], V \ Sing(IT ∩ W ))

≥ ν(T , V )m
′−1, (3.7)

where the first inequality comes from [4, Chapter III, Corollary 7.9] (see also Corol-
lary 2.6 for a more general version). By (3.4), (3.5) and (3.7), the desired inequality
follows in the case where T has analytic singularities.

Step 2.Now,we remove the assumption that T has analytic singularities. The argument
we use is standard and is based on the work of Demailly in [6]. First, we write T =
ddcu + θ , where θ is a closed smooth (1, 1)-form and u ∈ PSH(X , θ). Demailly’s
analytic approximation theorem (see [7, Corollary 14.13]) allows us to construct a
sequence uD

k ∈ PSH(X , θ + εkω), where εk decreases to 0, such that

(1) uD
k ≥ u and uD

k converges to u in L1.

(2) uD
k has analytic singularities.

(3) ν(Tk, x) converges to ν(T , x) uniformly on X , where Tk = ddcuD
k + (θ + εkω).
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By the monotonicity property of non-pluripolar product (Theorem 3.3), we have

∥
∥〈αm′ ∧̇[W ]〉 − 〈Tm′ ∧̇[W ]〉∥∥ = lim

k→∞
∥
∥〈(α + εkω)m

′ ∧̇[W ]〉 − 〈(T + εkω)m
′ ∧̇[W ]〉∥∥

≥ lim sup
k→∞

∥
∥〈(α + εkω)m

′ ∧̇[W ]〉 − 〈Tm′
k ∧̇[W ]〉∥∥

(3.8)

For every constant r > 0, set Ar := {V ∈ Vm−m′,T ,W |ν(T , V ) ≥ r}. Observe that
Ar increases to Vm−m′,T ,W as r → 0. Since ν(Tk, x) converges to ν(T , x) uniformly
and Tk is less singular than T , for every fixed r > 0 we have

Ar ⊂ Vm−m′,Tk ,W

when k is large enough. By Step 1, we therefore have

∥
∥〈(α + εkω)m

′ ∧̇[W ]〉 − 〈Tm′
k ∧̇[W ]〉∥∥ ≥ (m − m′)!

∑

V∈Vm−m′,Tk ,W

ν(Tk, V )m
′
vol(V )

≥ (m − m′)!
∑

V∈Ar

ν(Tk, V )m
′
vol(V ).

Letting k → ∞ and using (3.8) give

∥
∥〈αm′ ∧̇[W ]〉 − 〈Tm′ ∧̇[W ]〉∥∥ ≥ (m − m′)! lim sup

k→∞

∑

V∈Ar

ν(Tk, V )m
′
vol(V )

= (m − m′)!
∑

V∈Ar

ν(T , V )m
′
vol(V ),

for every constant r > 0. Letting r → 0, we obtain the desired estimate. ��
For the general case where ν(T ,W ) > 0.We couldn’t directly compare the volume

of Lelong upper level sets of T on W and the mass of {〈αm′ ∧̇[W ]〉} − {〈Tm′ ∧̇[W ]〉}}.
In this case, we have the following modified inequality which is stronger than [9,
Theorem 1.1].

Theorem 3.7 Let α be a nef (1, 1)-class. Let W be an irreducible analytic subset in
X. Let T be a closed positive current in α. Let 1 ≤ m′ ≤ m be an integer. Then we
have

(m − m′)!
∑

V∈Vm−m′,T ,W

(
ν(T , V ) − ν(T ,W )

)m′
vol(V )

≤ ∥
∥(α + c{ω})m′ ∧ {[W ]} − {〈(T + cω)m

′ ∧̇[W ]〉}∥∥ (3.9)
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where c = c1 ·ν(T ,W ) and c1 > 0 is a constant independent of α, T ,W. In particular,
there is a constant c2 > 0 independent of α, T ,W such that

∑

V∈Vm−m′,T ,W

(
ν(T , V ) − ν(T ,W )

)m′
vol(V ) ≤ c2 vol(W )‖T ‖m′

. (3.10)

Proof The desired inequality (3.10) follows directly from (3.9). The proof of (3.9) is
similar to Step 2. of Theorem 1.1, which is again based on Demailly’s regularization
theorem ([6]). For convenience, set c3 := ν(T ,W ) > 0. The regularization theorem
of currents introduced in [6] allows us to cut down the Lelong upper level set {x ∈
X |ν(T , V ) ≥ c3} from T . More precisely, by [6, Theorem 1.1], there exists a sequence
of almost positive closed (1, 1)-currents Tc3,k in α such that

(1) Tc3,k ≥ −(c1 · c3 + εk)ω, where limk→∞ εk = 0 and c1 > 0 is a constant
independent of α, T and W .

(2) The global potentials of Tc3,k decreases to the global potential of T .
(3) ν(Tc3,k, x) = max{ν(T , x) − c3, 0}.
Set T̃c3,k = Tc3,k + (c1 · c3 + εk)ω, which is a closed positive (1, 1)-current. By
Theorem 3.3, we have

∥
∥(α + c1 · c3{ω})m′ ∧ {[W ]} − 〈(T + c1 · c3ω)m

′ ∧̇[W ]〉∥∥
≥ lim sup

k→∞
∥
∥
(
α + (c1 · c3 + εk){ω})m′ ∧ {[W ]} − 〈T̃ m′

c3,k∧̇[W ]〉∥∥.

Since ν(T̃c3,k,W ) = 0, we can apply Theorem 1.1 to the right-hand side of the above
inequality and get

∥
∥(

α + (c1 · c3 + εk){ω})m′ ∧ {[W ]} − 〈T̃ m′
c3,k∧̇[W ]〉∥∥

≥ (m − m′)!
∑

V∈Vm−m′,T̃c3,k ,W

ν(T̃c3,k, V )m
′
vol(V ), (3.11)

By the above properties of Tc3,k , we have

Vm−m′,T̃c3,k ,W
= Vm−m′,T ,W .

Therefore, the right-hand side of (3.11) is equal to

(m − m′)!
∑

V∈Vm−m′,T ,W

ν(T̃c2,k, V )m
′
vol(V )

= (m − m′)!
∑

V∈Vm−m′,T ,W

(
ν(T , V ) − ν(T ,W )

)m′
vol(V ).

This completes the proof. ��
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Remark 3.8 We note that by [14], for every closed positive (p, p)-current R on X ,
there always exists a closed positive (1, 1)-current T whose Lelong numbers coincide
with those of R. However, if we apply directly our result to current T , we will get an
estimate of the Lelong upper level set for the current R. But there will be a constant
appear in the right hand side of (1.1) in Theorem 1.1, since the mass of T is bounded
by a universal constant times the mass of R.
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