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From computer vision to protein fold prediction, Language Models (LMs) have proven successful in 
transferring their representation of sequential data to a broad spectrum of tasks beyond the domain 
of natural language processing. Whole Slide Image (WSI) analysis in digital pathology naturally 
fits to transformer-based architectures. In a pre-processing step analogous to text tokenization, 
large microscopy images are tessellated into smaller image patches. However, due to the massive 
size of WSIs comprising thousands of such patches, the problem of WSI classification has not been 
addressed via deep transformer architectures, let alone via available text-pre-trained deep transformer 
language models. We introduce SeqShort, a multi-head attention-based sequence shortening 
layer that summarizes a large WSI into a fixed- and short-sized sequence of feature vectors by 
removing redundant visual information. Our sequence shortening mechanism not only reduces the 
computational costs of self-attention on large inputs, it also allows to include standard positional 
encodings to the previously unordered bag of patches that compose a WSI. We use SeqShort to 
effectively classify WSIs in different digital pathology tasks using a deep, text pre-trained transformer 
model while fine-tuning less than 0.1% of its parameters, demonstrating that their knowledge about 
natural language transfers well to this domain.

Tranformers1 have brought several breakthroughs to the disciplines of natural language processing (NLP) and 
computer vision (CV). Their capacity to link information across sequences of vector embeddings, representing 
either visual features or vectorized words, allowed to capture the structure and meaning necessary for machine 
translation2–5, question-answering6–9, image classification10–12 and segmentation11,13, and even multi-modal 
tasks such as text-to-image generation14,15.

Concurrently in the field of digital pathology, the popularization of Multiple Instance Learning (MIL)16,17 
approaches for Whole Slide Image (WSI) analysis allowed for the fast adoption of transformer models in this 
domain. By considering each WSI as a set of feature vectors of smaller tissue patches, this type of data is a 
natural input to transformer architectures. However, although transformer-based, these methods are typically 
modified and adapted to the idiosyncrasies of MIL and histopathology. Given gigapixel image size, out-of-the-
box Vision Transformers (ViTs)10 are excessively memory-demanding. Diverse shapes of WSIs and removal of 
patches consisting of background, artifacts, such as pen marker lines, require tailored implementation of local or 
windowed attention18,19. Novel positional encoding methods have been proposed to replace fixed and learnable 
positional embeddings commonly found in NLP transformers or ViTs20–25. To overcome the challenges of WSI 
processing, we base our work on the two observations below.

•	  The redundancy of information present in full-sequence self-attention operations can be exploited to reduce the 
computational cost of large inputs in deep transformer models. Wang et al.26 base their Linformer model on 
the observation that an attention matrix can be approximated with a matrix of lower rank. The works of Liu 
et al.11 and Dai et al.27 propose to construct hierarchical representations instead of maintaining full-length, 
token-level resolution. The observations made by Clark et al.28 about the importance of the [SEP] token and 
neighboring tokens have inspired several methods of local and sparse attention29–32. Comprising thousands 
of image patches, a WSI representation in a MIL approach is a prohibitively long sequence of vector embed-
dings. We hypothesise that such findings in the transformer literature are valid to histopathology data as well, 
and techniques for attention matrix reduction are necessary to allow for processing of massive in size WSIs 
with the use of transfomers.
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•	 Text pre-trained transformers have been proven successful in non-language related tasks. Recent works have 
shown that language models pre-trained on large unstructured text corpora not only perform strongly in 
various downstream NLP tasks, but in several tasks outside of this domain, ranging from solving math prob-
lems33, to lossless image and audio compression34. We refer to35 for an extensive enumeration of such works. 
In the context of CV, Ilarco et al.36 showed that text representations of frozen language models are predic-
tive of visual representations of their corresponding object. More recently, Lu et al.37 demonstrated that pre-
trained language models show high performance in image classification, numerical computation, and pro-
tein fold prediction when less than 0.1% of their parameters are fine-tuned. Language-based pre-training can 
therefore be leveraged to perform different, out-of-domain tasks, which however has never been demonstrated 
in WSI classification.

In this work we use deep transformer architectures to classify WSI data. To allow for processing of thousands 
of image patches from a single slide, we propose SeqShort, a multi-head attention (MHA) input layer that 
reduces long input sequence to a fixed-size short sequence that can be processed by any transformer model. 
Furthermore, we show that classification performance is increased when the transformer classifier is pre-trained 
with a language modeling task compared to training it from scratch, and that only fine-tuning less than 0.1% of 
its weights is necessary. This way, we construct a deep, yet computationally inexpensive model that requires a 
reduced set of trainable parameters, and performs well in digital pathology tasks.

Results
We compress the visual information of WSIs with our sequence reduction technique and use transformer models 
trained from scratch or pre-trained on text data to solve several WSI classification tasks. We train multiple 
transformer architectures and find that text pre-training improves classification performance in deep transformer 
models. In our approach the input is in a form of an ordered sequence, instead of an unordered collection of 
image patches as commonly done in other MIL algorithms. We further show that positional information that 
we add to the ordered sequences is taken into account by the transformer classifier and improves its prediction 
accuracy.

We then examine how our SeqShort layer works to better understand how visual information in the WSIs is 
aggregated. We find that only a small subset of image patches per WSI is relevant to produce their compressed 
sequence representations, corroborating our hypothesis about information redundancy in WSIs. Although 
these representations act as potentially lossy summaries of the WSIs, an extension of the attention rollout 
algorithm38 can trace the output of the transformer classifiers back to each individual image patch, providing an 
interpretability mechanism for the classification outcome.

WSI classification
We measure the performance of our method on three different classification tasks: Lymph Node Metastases 
(LNM) classification (Normal vs Metastases); Invasive Breast Carcinoma (IBC) subtype classification (Invasive 
Ductal Carcinoma vs Invasive Lobular Carcinoma); and Renal Cell Carcinoma (RCC) subtype classification 
(Papillary Cell Carcinoma vs Chromophobe Cell Carcinoma vs Clear Cell Carcinoma). For the LNM classification 
task we use the dataset provided by the CAMELYON16 grand challenge ​(​h​t​t​p​s​:​/​/​c​a​m​e​l​y​o​n​1​6​.​g​r​a​n​d​-​c​h​a​l​l​e​n​g​e​.​o​
r​g​/​)​, keeping 10% of the training samples as a validation set, and evaluating on the grand challenge test set. For 
the cancer subtyping tasks, we use WSIs collected from The Cancer Genome Atlas (TCGA) ​(​h​t​t​p​s​:​/​/​w​w​w​.​c​a​n​c​e​
r​.​g​o​v​/​t​c​g​a​)​, and follow the same stratified 10-fold cross-validation as40,44.

We use 256×256 image patches cropped from the WSIs both at ×10 and ×20 magnification. As a data 
scarcity ablation, we train the models using the complete datasets or just 25% of the samples. Area under ROC 
curve (AUROC) is used as classification performance metric. We compare our method against several state-
of-art weakly supervised architectures. All networks are compared using a single magnification at a time, and 
are agnostic of how their input features vectors were produced. We use an EfficientNetV2-L43 pre-trained on 
ImageNet45 as patch-level feature extraction network in this work. As our best performing model we use a frozen 
RoBERTa-base8 model as MIL classifier, and only fine-tune its normalization layers. Results of this experiment 
are shown in Table 1, and additional results of LNM and IBC classification using a CTransPath46 feature extractor 
are shown in the Supplementary Table 1.

Although 99.9% of the parameters in our model were trained solely on text data, it surpasses WSI-specific 
methods in most LNM and IBC experiments, while demonstrating competitive AUROC in RCC classification. 
The experiments utilizing the CTransPath feature extractor generally enhance the performance of all models, 
with a slight performance decline for our model only in the LNM task when using 25% of the data.

Pre-training on text improves WSI classification
We explore the use of popular NLP transformer architectures that can be trained in a single GPU for sequence 
classification in the WSI classification task. Such architectures have not been applied before in weakly-supervised 
histopathology tasks given the computational cost of handling thousands of instances in a single WSI. The 
sequence shortening method that we introduce in this study allows us to overcome the computational cost 
problem.

Inspired by the success of pre-trained language models in different tasks outside the NLP, we propose the use 
of a frozen, language-modeling pre-trained transformer as MIL classifier. This is motivated by the hypothesis 
that the multi-head self-attention (MHSA) layers of a transformer language model learn to capture the 
interdependencies among the elements of sequences, independent of the original data modality or domain. We 
follow37 and only fine-tune the normalization layers of the model, reducing the amount of trainable parameters 
in our transformer encoder from 85M to 36K (only 0.04% of the total amount).
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An important question is if text pre-training does play a role in classification performance. We compare 
the performance of a baseline transformer encoder trained from scratch with different frozen text-pre-trained 
transformers. Given our GPU memory constrains, the SeqShort layer was required in order to train these 
models. All the tested models have 12 layers of 12 attention heads and 768 hidden units, resulting in comparable 
transformer size across all models, except for Llama3-8B49. Llama3-8B is a larger, 8 billion parameter model 
comprising 32 layers of 32 attention heads and 4096 hidden units. The model was fine-tuned with 8-bit model 
weights to fit it in our hardware. The baseline model, BERT-base, and RoBERTa-base have identical architecture 
and only differ in text-pre-training dataset and language modeling task.

This experiment was done at ×20 magnification, using the IBC dataset. Except for ALBERT-base7, every 
model outperforms the baseline (Table 2) indicating that pre-training on large corpus of text data does influence 
model performance in other domains including digital pathology.

The role of positional information
In our approach, we consider a WSI to be an unordered bag of image patches, and SeqShort provides positional 
information for free by reducing it to an ordered, fixed-length sequence of feature vectors. This enables the 
adding of the fixed-size set of learnable positional embeddings which is common practice in transformer 
architectures of CV and NLP tasks to the output of SeqShort.

Different positional encodings based on patch location have been proposed to address the problem of varying 
WSI shapes and sizes20–25, and their inclusion is compatible with our method. In this section, we repeat the IBC 
subtyping experiment to investigate the effect of positional information on classification performance. In this 

Language Model AUROC

Baseline 0.784 ± 0.082

XLNet-base47 0.819 ± 0.090

GPT2-small48 0.827 ± 0.079

BERT-base6 0.849 ± 0.058

ALBERT-base7 0.747 ± 0.118

Llama3-8B49 0.810 ± 0.070

RoBERTa-base8 0.863 ± 0.047

Table 2.  Performance of different Language Models in IBC subtype classification, at ×20 magnification.

 

Method

x10 magnification x20 magnification

25% train set 100% train set 25% train set 100% train set

 Lymph Node Metastases classification

 ABMIL39 0.501 0.664 0.516 0.616

 CLAM40 0.511 0.692 0.516 0.673

 DS-MIL41 0.468 0.695 0.441 0.640

 TransMIL20 0.529 0.629 0.470 0.723

 Wagner et al.42 0.465 0.778 0.501 0.778

 Ours 0.627 0.772 0.642 0.865

Invasive Breast Carcinoma subtype classification

 ABMIL39 0.542 ± 0.107 0.571 ± 0.088 0.551 ± 0.103 0.554 ± 0.107

 CLAM40 0.811 ± 0.055 0.850 ± 0.039 0.697 ± 0.056 0.791 ± 0.082

 DS-MIL41 0.779 ± 0.075 0.892 ± 0.045 0.711 ± 0.084 0.819 ± 0.082

 TransMIL20 0.864 ± 0.063 0.896 ± 0.048 0.782 ± 0.094 0.856 ± 0.064

 Wagner et al.42 0.687 ± 0.202 0.854 ± 0.069 0.739 ± 0.099 0.824 ± 0.077

 Ours 0.874 ± 0.052 0.901 ± 0.049 0.765 ± 0.099 0.863 ± 0.047

 Renal Cell Carcinoma subtype classification

 ABMIL39 0.724 ± 0.077 0.795 ± 0.040 0.697 ± 0.077 0.758 ± 0.044

 CLAM40 0.965 ± 0.013 0.969 ± 0.025 0.961 ± 0.013 0.974 ± 0.010

 DS-MIL41 0.941 ± 0.047 0.971 ± 0.001 0.926 ± 0.025 0.963 ± 0.001

 TransMIL20 0.962 ± 0.015 0.980 ± 0.001 0.971 ± 0.010 0.980 ± 0.001

 Wagner et al.42 0.960 ± 0.020 0.979 ± 0.009 0.971 ± 0.011 0.984 ± 0.007

 Ours 0.942 ± 0.019 0.974 ± 0.011 0.952 ± 0.017 0.977 ± 0.013

Table 1.  Performance of different MIL algorithms in the different slide-level classification tasks using 
EfficientNet features43. Best and the second best classification results are in bold and italics, respectively.
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experiment, we enhance our classifier with the patch location positional encoding used in23 previous to the 
SeqShort input, in addition to the standard BERT positional embedding used before the transformer classifier.

The results of the experiment are shown in Table 3. In the unordered bag of patches formulation, the ordered 
output sequence of SeqShort carries positional information that can be exploited by adding positional encoding, 
increasing AUROC by 0.017 at ×10 magnification and by 0.038 at ×20 magnification. Positional encoding of 
the patches based on their 2D spatial location also improves performance, and the best results are achieved when 
both types of positional encoding are employed.

Insights into sequence summarization
We probe the SeqShort layer to examine how a WSI is summarized. We calculate the Kullback-Leibler (KL) 
divergence between the attention distributions produced by the different learned query vectors in SeqShort and 
a uniform attention distribution. Values close to zero indicate that such queries pay overall the same amount 
of attention to all the input patches, whereas higher KL divergence values suggest that such queries pay more 
attention to a reduced subset of image patches. We do this measurement with every sample of one of the IBC test 
sets at ×20 magnification, and average the results.

The KL divergence values are shown in Fig. 2, as well as an example WSI and the attention heatmaps produced 
by three different learned query vectors. The individual heatmaps demonstrate that indeed some patches receive 
more attention than the others. However across the three heatmaps, even though the attention distributions are 
spread over various-sized image areas, the same patches receive high-attention.

We confirm this visual insight by calculating the Spearman’s rank correlation coefficients between pairs of 
different learned query vectors’ ranking of patches (within a single WSI). For the WSI in Fig. 2 and the three 
examined query vectors, the correlation coefficients are above 0.96, and when considering the complete set of 
256 query vectors, the mean rank correlation coefficient value is 0.99 (with a minimum value of 0.76). Among all 
the WSIs in the test set, 99.7% of the total pairs of rankings show a correlation coefficient > 0.7.

Explanation of classification outcome
Attention heatmaps from the previous experiment illustrate the functioning of the SeqShort layer of our model: 
they provide insights into how the individual patches of a WSI are weighed to synthesize the intermediate output 
of our method.

Given how the model aggregates the patch representations throughout its forward pass, we apply attention 
rollout38 to generate heatmaps that provide insights into the overall attention the model assigns to each patch 
in its decision process. We modify the base case of the recursive definition of attention rollout to take into 
consideration that SeqShort is the first layer of the complete model. Our modified attention rollout is then 
defined as:

	
Ãi =

{
Ai · Ãi−1 if i > 0[ 0
Ai

]
if i = 0,

� (1)

where Ai is the attention matrix of layer i, and 0 is the zero vector in row space, to take into account that 
the [CLS] token was not present in the MHA operation of SeqShort. Example heatmaps are shown in Fig. 3. 
Hence, while allowing to process large WSIs, the SeqShort mechanism does not limit the interpretability of the 
predictive model.

Discussion
In this work we use a text pre-trained transformer model for WSI classification. Such pre-training has been 
shown to transfer to other modalities, and we corroborate this finding in three digital pathology tasks. To do so, 
we use a standalone layer for sequence reduction aimed to overcome common challenges in WSI classification 
with transformer architectures, and to reduce the compute budget required for processing large inputs with deep 
self-attention-based architectures.

Magnification

Pos. embedding AUROC

WSI Seq.

×20

No No 0.825 ± 0.052

No Yes 0.863 ± 0.047

Yes No 0.865 ± 0.044

Yes Yes 0.866 ± 0.064

×10

No No 0.884 ± 0.062

No Yes 0.901 ± 0.049

Yes No 0.916 ± 0.046

Yes Yes 0.917 ± 0.035

Table 3.  Effect of including positional information on classification performance of IBC subtyping.
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Our SeqShort layer was developed with the hypothesis that there is redundant visual information in the 
full sequence of patches of a WSI, similar to the redundancy in text sequences previously explored in the 
NLP literature26–32. Our results in section 2.4 show that high-attention patches are preserved throughout the 
different learned queries, indicating their importance for the prediction. Indeed 99.7% of the pairs of patch 
rankings based on different query vectors show correlation coefficient > 0.7. These results suggest that there is 
redundancy in the full sequence of patches, as certain patches are consistently more important than others, and 
that classification is possible by aggregating them into a shorter sequence. Moreover, in section 2.3, we show that 
classification performance is increased between 0.017 and 0.038 when the downstream classifier is augmented 
with positional embeddings that encodes the sequential order in the output generated by the SeqShort layer. For 
the sake of simplicity, most of our experiments are done considering a WSI to be an unordered bag of image 
patches. However, including patch location positional encoding is compatible with our approach, producing a 
further performance boost.

Text pre-trained transformers have been proven successful in non-language related tasks33,35–37. In section 
2.2 we show that classification performance can be increased by up to 0.079 AUROC points just by fine-tuning 
less than 0.1% of the parameters of a deep transformer that was pre-trained on a large text dataset, compared to 
the same model trained from scratch. The best performing model in our experiments is RoBERTa-base, which 
outperformed BERT-base in the WSI classification, reflecting these models’ performance difference in several 
NLP tasks. Notably, these models have the same architecture but differ in the pre-training objective and dataset 
size. Only the ALBERT-base LM was outperformed by the model trained from scratch. In contrast to the rest of 
the models in this experiment, ALBERT-base contains a single fully trainable layer whose parameters are reused 
in the subsequent layers, which might explain its lower capacity of transferring to other domains. These results 
suggest that both the transformer size and text corpus volume play a role in the model performance in a WSI 
classification task.

Our primary goal is not to design a novel MIL algorithm that surpasses state-of-the-art, but rather to 
demonstrate that out-of-the-box LMs can transfer their representations of sequential data to the field of digital 
pathology. Models designed for this discipline are very performant, have a parameter count orders of magnitude 
smaller than LMs, and inference time considerably faster. We consider it a reasonable decision to employ WSI 
MIL classifiers instead of models that were designed and trained for NLP. In section 2.1 our LM-based approach 
outperforms the WSI-dedicated methods in most LNM and IBC experiments, and showing competitive 
AUROC in RCC classification. The experiments using the CTransPath feature extractor show a general increase 
of performance for all models, and is only detrimental for our model when using 25% of the data in the LNM 
task. These results show that LMs are competitive WSI classifiers, outperforming MIL models in some of the 
tasks, and suggesting that this direction of research in digital pathology is worth exploring further.

The scope of this work is limited to “base” LMs that comprise 80 million parameters, and are possible to fit 
in a single GPU. We included an experiment with Llama3-8B49 in table 2. With 8 billion parameters, we could 
only fine-tune it using 8-bit quantized model weights, making this experiment not directly comparable to the 
rest of the models in the comparison. A natural extension of our study is to do further experiments with Large 
Language Models such as OPT-175B, with 175 billion parameters50, or the rest of the Llama family of models 
that comprise up to 405 billion parameters49.

Methods
Sequence shortening
Existing methods11,27,51 for sequence reduction are not suitable for MIL WSI problems. Since there is no spatial 
information about instances in an unordered bag, concatenating neighboring feature vectors or taking their 
strided average is meaningless, as the order of the patches in a bag is arbitrary. Methods that employ a linear 
projection for dimensionality reduction after instance concatenation or sequence reshaping are not applicable to 
WSIs either, as they require a fixed and known input shape.

Here we propose using MHA for sequence shortening. Similar ideas have been explored in text-vision 
multi-modal understanding tasks52–54, and is reminiscent of how object queries are used in transformer object 
detection55, with the advantage of not requiring object-level annotations.

Given X ∈ RM×d the sequence of M  d-dimensional feature vectors of non-overlapping WSI tiles, we 
introduce our SeqShort input layer that generates a new sequence XS ∈ RS×h with an MHA layer:

	

XS = MHA (Q = Ql, K = X, V = X) + Ql

= Concat (head1, ..., headk)W O + Ql,
� (2)

with

	

headi = Attention
(
Q = QlW

Q
i , K = XW K

i , V = XW V
i

)
,

Attention (Q, K, V ) = softmax (QKT /
√

dh)V,
� (3)

where Ql ∈ RS×h is a learnable sequence of S h-dimensional query vectors, the matrices W  are learnable 
linear projections, dh is a scaling factor commonly set as the layer’s hidden dimension, and k is the number of 
attention heads of the layer. Both S and h are hyperparameters independent of the shape of the original sequence 
X , and it is S which defines the output sequence length of the MHA operation in SeqShort.
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This MHA operation has a sorting effect: independent of the arrangement of the patch feature vectors in X , the 
first row of XS  aggregates the instances that the first query vector in Ql agrees with the most; the second row 
of XS  aggregates the instances that the second query vector in Ql agrees with the most, and so on. This enables 
to incorporate positional information in our model based on a new interpretation: instead of thinking of the 
original arrangement of instances in the WSI 2D space, we consider the order of the rows of XS  as the available 
positional information possible to encode.

The resulting time complexity of the MHA operation performed by our input layer is O(n) because of 
the fixed-size Ql, and since SeqShort is a single layer, the main compute load lies in the subsequent deeper 
transformer model in our pipeline. Although our method does not change the computational complexity 
of the MHSA layers of the transformer itself, by performing sequence reduction, the amount of FLOPs and 
memory it requires becomes constant with respect to the original number of WSI patches. The result is an overall 
considerable reduction of computational cost. Fig. 1c visualizes how the required FLOPs per forward pass scale 
better when using the SeqShort layer. For example, the average WSI in the IBC dataset comprises 7690 patches, 
which takes 734ms to be processed with a BERT-base encoder using our hardware. This time is reduced to 14ms 
when SeqShort is used as input layer.

Fig. 1.  Proposed method. (a) From bottom upwards: after a typical MIL pre-processing step (tiling, feature 
extraction), our SeqShort layer using a pre-defined number of query vectors (colored circles) summarises the 
long list of patches into a small, ordered sequence of feature vectors (colored squares) which are then classified 
by a deep transformer model that was pre-trained on an extensive text corpus. Different patches are in varying 
proportion part of the resulting feature vectors which is symbolically represented by their color intensity. 
(b) Detailed view of the SeqShort layer, where a set of learnable vectors (colored squares) query the relevant 
information in the WSI patches via a multi-head attention operation. (c) The computational cost of a forward 
pass of a deep transformer classifier is considerably reduced when our SeqShort layer is used (measured with 
the fvcore library by FAIR1).
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Transformer models
In our experiments we find that a BERT-base encoder6 pre-trained with the masked language modeling task of 
Robustly optimized BERT pre-training Approach (RoBERTa)8 on a corpora of more than 160GB of uncompressed 
text comprised by BookCorpus56, CC-News57, OpenWebText58 and Stories59 yields the best results. We discard 
the vocabulary embeddings lookup table of RoBERTa-base as it is not needed for weakly supervised image 
classification.

Complete pipeline
Our pipeline is illustrated in Fig. 1. As a pre-processing step, we extract non-overlapping tissue tiles of 
256 × 256 pixels from each WSI. Tissue segmentation is done as in60. We use ×20 and ×10 magnification in 
different experiments. We generate the instance-level feature vectors using an EfficientNetV2-L43 pre-trained on 
ImageNet45.

The complete weakly supervised architecture that performs classification on the bag of instance vectors is 
composed of the SeqShort layer and a transformer language model. We set the vector embedding dimension 
of SeqShort to h = 768 (the hidden dimension of the used transformers), and k = 4 attention heads. For the 
lymph node classification task we set the output length of SeqShort to S = 511, and for the cancer subtyping 
tasks, to S = 256. A learnable [CLS] token is concatenated to the output of SeqShort, and added a sequence of 
learnable positional embeddings. The last hidden representation of [CLS] is the input of a multilayer perceptron 
(MLP) classification head. Altogether, our model comprises a total of 3.3M trainable parameters.

Fig. 2.  WSI summarization. A WSI, and attention heatmaps (A–C) produced by three different query vectors 
in SeqShort are shown. Although different queries show attention distributed over a broader or narrower set 
of patches, the most important instances agree among the heatmaps. The bottom left plot shows the Kullback-
Leibler divergence from the attention distributions of the learned queries to uniform attention, and the values 
that correspond to the heatmaps are indicated with dashed lines. Values are sorted for ease of visualization, 
higher values correspond to uneven distribution of attention among patches.
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Implementation and training
The method was implemented in Python, using PyTorch61 as deep learning back-end. The pre-trained weights of 
EfficientNetV2-L and RoBERTa were downloaded from Torchvision62 and HuggingFace63, respectively. Training 
of our models was done with the aid of PyTorch-Lightning64, on a single NVIDIA Tesla V100 GPU. The code of 
this project is available at https://github.com/bozeklab/lmagp/.

All our models were trained for 200 epochs. For the lymph node classification task the first 5 epochs were 
used as learning rate warm-up stage, followed by one cycle of a cosine schedule, with a maximum learning rate 
of 1 × 10−4, and batch size of 16. For the cancer subtyping tasks, the warm-up stage lasted 10 epochs, followed 
by two cycles of a cosine schedule, with a maximum learning rate of 5 × 10−5, and batch size of 32. Adam65 was 
used as optimization algorithm.

Datasets
Lymph node metastases classification
For this task we used the dataset provided by the CAMELYON16 grand challenge ​(​h​t​t​p​s​:​/​/​c​a​m​e​l​y​o​n​1​6​.​g​r​a​n​d​-​c​
h​a​l​l​e​n​g​e​.​o​r​g​/​) which comprises 400 Hematoxylin and Eosin (H&E) stained WSIs of sentinel lymph nodes of 
breast cancer patients, scanned by 3DHISTECH and Hamamatsu scanners at ×40 at the Radboud University 
Medical Center and the University Medical Center Utrecht, Netherlands. The grand challenge dataset is divided 
in a train set of 270 WSIs (160 normal slides, and 110 slides containing metastases), and a test set of 129 WSIs 
(80 normal slides, 49 slides containing metastases). In our experiments, we divided the provided train set in 
90%/10% stratified splits for training and validation, respectively.

Fig. 3.  Attention rollout heatmaps. Left: original WSIs. Right: their corresponding attention rollout heatmaps. 
Although the SeqShort layer reduces the number of feature vectors that the downstream transformer has to 
process, it is still possible to backtrack the contribution of each individual image patch to the classification 
decision using this most common transformer explainability method.
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Invasive breast carcinoma subtype classification
We use a subset of 1,038 H&E stained WSIs from the TCGA-BRCA project within The Cancer Genome Atlas 
repository (https://www.cancer.gov/tcga). Out of the 1,038 slides, 889 were of patients with Invasive Ductal 
Carcinoma, and 149 were of patients with Invasive Lobular Carcinoma. We follow the study design in40,44 and 
evaluate the models using stratified 10-fold cross-validation on patient level.

Renal cell carcinoma subtype classification
We use 918 H&E stained WSIs of Renal Cell Carcinoma cases from the TCGA repository. Out of these samples, 
289 were of Chromophobe Cell Carcinoma patients, 118 were of Papillary Cell Carcinoma patients, and 498 
were of Clear Cell Carcinoma patients, coming from the TCGA-KICH, TCGA-KIRP and TCGA-KIRC projects, 
respectively. We follow the same study design as in the IBC subtype classification task, and evaluate the models 
using stratified 10-fold cross-validation on patient level.

Data availibility
Data used in this article comes from The Cancer Genome Atlas (https://portal.gdc.cancer.gov/) and the ​C​A​M​E​L​
Y​O​N​1​6 Grand Challenge (https://camelyon16.grand-challenge.org/).
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