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Abstract

We present an extensive study on the Bergman kernel expansions and the random
zeros associated with the high tensor powers of a semipositive line bundle on a com-
plete punctured Riemann surface. We prove several results for the zeros of Gaussian
holomorphic sections in the semi-classical limit, including the equidistribution, large
deviation estimates, central limit theorem, and number variances.
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1 Introduction

This paper aims to give an extensive study on the Bergman kernel expansions and the
random zeros under the semi-classical limit associated to the high tensor powers of a
semi-positively curved (semipositive for short) line bundle on a complete punctured
Riemann surface.

The first half of this paper, including the results for the spectral gap and Bergman
kernel expansions, was done in the Ph.D. thesis of the second named author [51]. Then,
following the recent work of the first named author with Drewitz and Marinescu [24—
26], we applied these results to study the zeros of the Gaussian holomorphic sections
for the semipositive line bundles, including equidistribution, large deviation estimates,
the central limit theorem, and number variances.

An effective approach for Bergman kernel expansions is the method of analytic
localization as explained in detail by Ma and Marinescu in their book [31]. A key
ingredient in their method is the spectral gap of Kodaira Laplacians that holds for
the uniformly positive line bundles on complete Hermitian manifolds (the metrics are
always taken to be smooth unless we say otherwise). However, for semipositive line
bundles (the Chern curvature form is nonnegative), there are examples (see [23]) of
compact Hermitian manifolds with complex dimension > 2 such that the spectral gap
does not hold. For the semipositive line bundles on a compact Riemann surface, a
certain spectral gap always holds, provided that the Chern curvature admits at least a
strictly positive point.

Recently, Marinescu and Savale [32, 33] worked out precisely the spectral gap by
subelliptic estimates for this setting under the assumption that Chern curvature van-
ishes at most to finite order on the compact Riemann surface. Then they obtained
the asymptotic expansions of the Bergman kernel functions, that is, the on-diagonal
Bergman kernels. Their result shows that the expansion factors at the vanishing points
of the Chern curvature are different from the non-vanishing points. In this paper, we
extend further their work to the case of complete punctured Riemann surfaces and
provide the results for the near-diagonal expansions of Bergman kernels. It is impor-
tant to note that our focus is restricted to Riemann surfaces. In higher-dimensional
cases, it remains unclear whether the spectral gap for the Kodaira Laplacians, as in
[32, 33], would still hold when the line bundle is assumed to be semipositive with
finite vanishing orders. Moreover, Hsiao and Savale [28] obtained the Szeg6 kernel
expansions for circle-invariant, weakly pseudoconvex 3-dimensional CR manifolds,
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which corresponds to the Bergman kernel expansions for the semipositive line bun-
dles on the compact Riemann surfaces possibly with orbifold singularities (rather than
punctures). For semipositive or big line bundles with singular metrics on complex
manifolds of general dimension, there are also other approaches such as L2-estimates
for 2_)-0perat0r to study the Bergman kernels; see [8, 16, 20] (but without the full
expansion of the Bergman kernels).

The complete punctured Riemann surfaces that are the subject of this paper have
already been examined by Auvray, Ma and Marinescu [1-3], where they obtained
the expansions of Bergman kernels for the high tensor powers of a uniformly pos-
itive line bundle under the assumption of Poincaré metric near the punctures. The
important examples for this model of Riemann surfaces are arithmetic surfaces, on
which the holomorphic sections correspond to cusp forms (see [2] or [25, Section
4]). A remarkable idea presented in [1-3] involves comparing the Bergman kernels
near the punctures with the model Bergman kernels for the Poincaré punctured disc.
In particular, they proved that the quotients of these two Bergman kernel functions
converge to one uniformly near the punctures as the tensor powers tend to infinity (see
[3, Theorem 1.2]). Some of their results have been further generalized by Zhou [50]
to higher-dimensional Kéhler manifolds with complex hyperbolic cusps. Note that for
positive line bundles on punctured Riemann surfaces equipped with non-smooth met-
rics, Coman, Klevtsov and Marinescu [14] obtained the estimates and the leading term
of the Bergman kernel functions and then discussed several interesting applications.

In [25], the first named author with Drewitz and Marinescu applied the results from
[1, 2] to study the zeros of random holomorphic sections for a positive line bundle
on the complete punctured Riemann surface. In particular, estimates for large devia-
tions and hole probabilities were established following the seminal work of Shiffman,
Zelditch and Zrebiec [43]. In this paper, we investigate the above problems under the
semipositive condition; see Theorems 1.3.2, 1.4.2, and Proposition 1.4.3. Moreover,
we go further to work out the smooth statistics such as number variance and central
limit theorem for the random zeros; see Theorems 1.5.2 and 1.5.3. We will see that the
existence of vanishing points of the Chern curvature form requires more techniques in
the proofs, but eventually, they will not contribute to the principal behaviors of random
zeros. It remains interesting to study the subprincipal behaviors of random zeros to
identify the contribution of vanishing points.

The random zeros as point processes on Riemann surfaces provide a valuable model
for quantum chaotic dynamics as in [10, 35]. In [47, 49], Zeitouni and Zelditch studied
the large deviation principle for zeros for compact Riemann surfaces; we also refer to
[19, 34, 46] for recent breakthroughs on this topic, in particular, the hole probabilities
of random zeros on compact Riemann surfaces (cf. Proposition 1.4.3).

Shiffman and Zelditch [40] first established the general framework for the random
zeros of holomorphic sections in Kihler geometry, by using the Bergman kernel expan-
sions. Then in their series of work [39-43], the equidistribution, the large deviation,
the number variance, and the central limit theorem for random zeros were proven for
the positive line bundles on compact Kihler manifolds. The first named author with
Drewitz and Marinescu in their work [24-26] extended the aforementioned results
to the uniformly positive line bundles on non-compact Hermitian manifolds. In par-
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ticular, a probabilistic Berezin-Toeplitz quantization was introduced in [24, 26] by
considering square-integrable Gaussian holomorphic sections.

Note that Dinh and Sibony [22] gave a different approach for the equidistribution
of random zeros which also provides estimates for the speed of convergence, see [20,
21]. We also refer the reader to the survey [5] for more references on the topics of
random zeros in complex geometry.

Now, we give in detail the geometric setting and the main results of this paper.

1.1 Semipositive line bundles over punctured Riemann surfaces

Let ¥ be a compact Riemann surface, and let D = {aj,--- ,an} C Y be a finite
set of points. We consider the punctured Riemann surface ¥ = X\ D together with a
Hermitian form wy on ¥. We always fix an imaginary unit i = v/—1.

Let TX denote the real tangent bundle of X, and let / € End(T X) denote the
complex structure of X. Then we have the bidegree splitting

Tr@rC=T"2c 10Dy, (1.1.1)

Then wy is areal (1, 1)-form such that wy (-, J-) is a Riemannian metric gTE onTX.
Moreover, wy, is Kihler. Let VT % denote the Levi-Civita connection associated with
gT*, then it preserves the splitting (1.1.1), we write it as

Loy oy

vz = vyT o v’ (1.1.2)

In particular, vTT i exactly the Chern connection on the holomorphic line bundle
7195 associated with the Hermitian metric A7 "2 (-, -) = g7 (-, 7).

Let L be a holomorphic line bundle on S, and leth be a singular Hermitian metric
on L such that:

(o) hissmoothover ¥ andforall j € {1, ..., N}there exists a trivialization of L in
the neighborhood V; of a; in ¥ with associated coordinate z; (a; corresponds
to z; = 0) such that

|1|% (zj) = ‘10g|2j|2‘.

(8) The Chern curvature RY = (V£)? of h satisfies

(i) On £, we have iR > 0. )
(ii) Foreach j € {1,..., N}, we have iRY = wx, on Vi:=Vi\{a;}.
(i) RL vanishes at most to finite order at any point x € ¥, that is,

ord, (RY) := min {e e N: JYA2T*S) 5 jRE # 0} < oo,

where J¢(Z: A2T*X) denotes the ¢-th jet bundle over X (see Appendix).
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By assumptions (cr) and () - (ii), in the local coordinate z; on V;, we have wy =
wp+ 1s the Poincaré metric on punctured unit disc given as follows

idz A dz

T P log 2Py’ (-
Then (X, wy) is complete, and the volume of ¥ with respect to the Riemannian volume
form wy; is finite. Let dist(-, -) denote the Riemannian distance on .

One typical example of a semipositive line bundle as described above is from
branched coverings. If f : £ — %9 is a branched covering of a Riemann surface %°
with branch points {y1, ..., yy} C X, the Hermitian holomorphic line bundle on X,
that is defined as the pullback of a positive one on £°, becomes semipositive with
curvature vanishing at the branch points (see [32, Example 17]).

For x € X, we set

px =2 +ord, (R") € Nxs. (1.1.4)

The function x — py is upper semi-continuous on X, and the assumptions (8) - (ii)
and (iii) infer that

Py = max py < 00 (1.1.5)
xXex

The semi-positivity in assumption (8) - (i) implies that p, is even for all x € X, and
so is pyx. Moreover, we have a decomposition ¥ = U?iz Yj,with¥; :={x € ¥:

px = jheachXg; = U;,=2 X s is open. In particular, X is an open dense subset of

¥. Note that iR is strictly positive on X5, consequently, we have
i
deg(L) = [ —RE >0, (1.1.6)
) 2

so that L is ample, hence positive, over > (see also [37]).

From now on, we also fix a holomorphic line bundle £ over ¥ with a smooth
Hermitian metric #Z, and we assume that (E, h¥) is identical to the trivial complex
line bundle with the trivial Hermitian metric on each V; (in assumption (8)).

For p > 1, we denote by h), := h®P ® hE the metric induced by 4 on LP ® E :=
L®? ® Eon . Let H'(Z, L? ® E) be the space of holomorphic sections of L” ® E
on ¥ and let L2(2, L? ® E) be the space of £2-sections of L” ® E on ¥ with respect
to i and wy. Set

HY\(S.LP ® E) = H'(S, L? ® E) N L2(, L” ® E), (1.1.7)

which is equipped with the associated £2-metric. Then by the integrability near the
punctures, the sections in H(Oz) (2, L? ® E) extend to holomorphic sections of L? over

PN
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HY\(Z,L? ® E) ¢ H'(Z, L” ® E). (1.1.8)

Moreover, for p > 2, elements in H(Oz)(E, L? ® E) are exactly the sections in

H O(f, L? ® E) that vanish on ihe puncture divisor D (cf. [2, Remark 3.2] [3, Section
4]). Let g denote the genus of X. Then by the Riemann-Roch formula for p > 1, we
have

dy :=dim H) (2, L” ® E) = pdeg(L) + deg(E) + 1 —g— N (1.1.9)
Let
B, : L*(Z, L ® E) — H{), (. L” ® E) (1.1.10)

denote the orthogonal projection, which is known as Bergman projection. We will
denote its Schwartz kernel, the Bergman kernel, by B, (x, y) for x,y € X. If sP.

Jj € {1,...,dp} is an orthonormal basis of H(%)(Z, L? ® E) with respect to the
L?-inner product, then

dP
By(x,y) =) S ®S]"(y) € L’ ® E)x ® (L” ® E);, forx,y € L,
j=1
(1.1.11)

where the duality is defined by /. In particular, B, (x) := Bp(x, x) is a nonnegative
smooth function in x € ¥, which is called the Bergman kernel function.

1.2 Spectral gap and Bergman kernel expansion

With the geometric setting described in the previous section, one of the main objects of
investigation in this paper is the asymptotic expansion of the Bergman kernels B, (x, y)
as p — +o0. There are two ingredients in our approach: the first one extends the result
of Marinescu and Savale [32, 33] for a semipositive line bundle on a compact Riemann
surface to our punctured Riemann surface, from which we prove a spectral gap for the
Kodaira Laplacians; the second is the technique of analytic localization developed by
Dai-Liu—Ma [17] and Ma—Marinescu [31], which is inspired by the work of Bismut—
Lebeau [9] in local index theory. In order to deal with the Bergman kernel near the
punctures, we will follow the seminal work of Auvray, Ma, and Marinescu [1, 2].

Theorem 1.2.1 (Spectral gaps) Let ¥ be a punctured Riemann surface, and let L be a
holomorphic line bundle as above such that L carries a singular Hermitian metric h
satisfying conditions («) and (B). Let E be a holomorphic line bundle on ¥ equipped
with a smooth Hermitian metric hE such that (E, hE) on each chart V is exactly trivial
Hermitian line bundle. Consider the Dirac operator D, and Kodaira Laplacian (1,
as in Sect. 2.1. Then there exist constants C1, C2 € R independent of p, such that
foralls € 92’1(2, LP ® E),
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(i) the Dirac operators are bounded from below,
1Dpsl72 = 2(C1p*P* — Co)lIs| 72 (1.2.1)
(ii) for p € N, we have
Spec(0,) C {0} U [C1p¥P= — Ca, +o0]. (1.2.2)
In particular, we have the first L?-Dolbeault cohomology group (see Sect. 2.1)
H5 (2, LP ® E) =0

for p > 0.

The proof of the spectral gap will be given in Sect. 2.2. As a consequence, we have
the following pointwise expansions for the Bergman kernel functions, which extend
the result of Marinescu and Savale [32, Theorem 3] to our non-compact setting.

Theorem 1.2.2 (Asymptotic expansion of Bergman kernel functions) We assume the
same conditions on X, L and E as in Theorem 1.2.1. Fix py € {2,4, ..., px}, and
let W : [0,1] 5 s > W(s) € X be a smooth path such that W(s) € X, for all
s € [0, 1]. Then for everyr € N, there exists a smooth function b, (x) inx € W([0, 1])
such that for any k € N, we have the following asymptotic expansion of Bergman
kernel functions uniformly on W ([0, 1]),

k

By(x) = p*/” [Z br(x)p‘”/”"} +O(pTHm) (1.2.3)
r=0

where the expansion holds in any €*-norms on W ([0, 1) with £ € N. Moreover, for
x € W(O, 1]),

.p0—2
bo(x) = B R“(0,0) > 0, (1.2.4)

where ij_ZRL € ISP IRIQ AZ(R2)* is defined as the (pg—2)-degree homogeneous
part of the Taylor expansion of R™ in the geodesic normal coordinate centered at x,
and Bjxpo_2RL is the model Bergman projection that will be defined in Sect. 4.1.

Fort € 10,1[, y €10, %[ ,&,m € N, and V; described in assumption (a) with
coordinate zj (it is clear that p;; = 2), the following expansions hold uniformly in
€*-norm for points zj € D*(aj, %)\ID)*(aj, te P,

—1
By(zj) = pz—ﬂ +O0(p™). (1.2.5)
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Define the nonnegative bounded smooth function ¢ on X as follows,

iRL
c(x) = > (1.2.6)
wy(X)
Then for the points x € ¥, (thatis ¢(x) > 0), the function given in (1.2.4) is
bory = <X 1.2.7)
2

In particular, as in (1.2.5), bo(x) = % (or, equivalently, ¢(x) = 1) near the punctures.
Fort €10, 1[,y €10, 5[, set

N

Spry =\ JD*@j, e, (1.2.8)
j=1

where D*(a;, te~?") denote the punctured (open) disc of radius te~P" centered at a |
in the coordinate z; € V; described in assumption (cr). Then we have the convergence
of subsets

pﬂf}rloo Tpry = 2.

As a consequence of Theorem 1.2.2, we have the following uniform upper bound on
B, (x) when x staysin X, .

Corollary 1.2.3 Set

c(x) 1
Co:=sup — > —. (1.2.9)
xey 2 2

Then for any fixed t € 10, 1[, y € 10, %[, we have for p > 1,

sup Bp(x) < Co(1+o0(1))p, (1.2.10)

XEXp 1y

where the small o-term o(1) is uniform in x € X, , as p — —+o0.

In the pointwise expansion of B, (x), the leading term grows as PP (py > 2).
Corollary 1.2.3 describes this upper bound for the point x € X, ;,,, which still keeps
at least an exponentially small distance from the punctures. However, our assumptions
about punctures implies that a global supremum of B, (x) on X will behave like P2,
as p — —oo, following the work of Auvray-Ma—Marinescu [2] for the Poincaré
punctured disc.
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Proposition 1.2.4 We assume the same conditions on X, L and E as in Theorem 1.2.1
with the number of punctures N > 1. We have

3/2
sup B,(x) = (%) +OW). (12.11)

xex

The proofs of Theorem 1.2.2, Corollary 1.2.3, and Proposition 1.2.4 will be pre-
sented in Sect. 4.4. In Theorem 4.4.1 we also obtain the pointwise expansions of
the derivatives of Bj(x). Moreover, considering the Kodaira maps defined with
H<02)(X ,L? ® E), a version of Tian’s approximation theorem [45] will be given in
Sect. 5.2.

In [33, Section 3.1], on a compact Riemann surface equipped with a semipositive
line bundle, the uniform estimates of the upper and lower bounds for the Bergman
kernel functions were discussed (in this case, Proposition 1.2.4 does not apply), and the
analogous results can be smoothly extended to our setting. Here, we will not discuss
such uniform estimates, but we will focus on the near-diagonal expansions of B,
Theorems 4.3.1 and 4.3.2, and their consequences for the study of random zeros in
3. More precisely, we will be concerned with the semi-classical limit of the zeros of
the Gaussian holomorphic sections for the higher tensor powers of L but associated to
a semipositive Hermitian metric on L. The following three subsections are dedicated
to explain our results for random zeros, which lie in the framework of the smooth
statistics of random point processes on X.

Now, as an extension of [2, Proposition 5.3], we give off-diagonal estimates for
the Bergman kernels; see Sect. 3.1 for a proof. Fix 0 < r < e~ ! and fix a smooth
function n : ¥ — [1, oo[ such that n(z) = | log |z|?| for z € D¥ near each puncture.

Proposition 1.2.5 (Off-diagonal estimates on Bergman kernels) Fix a sufficiently small
e > 0. Givenm,L € N, y > 1/2, there exists C¢ ,,, > 0 such that for 7,7 € %,
dist(z, z') > €, we have

[n(2)7"n@) 7V By(z,2)

oy < Comyp™" (12.12)

where | - |gm ) is the €™ -norm induced by g"*, h p and the corresponding connec-
tions.

1.3 Equidistribution of zeros of Gaussian holomorphic sections

Recall that, with the assumptions described in Sect. 1.1, H(Oz)(E, L? ® E) equipped

with the £2-inner product is a Hermitian vector space of dimension d,, < oco.
For a non-trivial holomorphic section s, € H (02) (X, L? ® E), the zeros of 5, consist
of isolated points in . We consider the divisor

Div(sy) == Y my-x, (1.3.1)

X€X,sp(x)=0
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where m, denotes the multiplicity of x as a zero of s, (or vanishing order). Then we
define the following measure on X,

[Div(s))]:= Y myy, (13.2)

sp(x)=0

where §, denotes the Dirac mass at x.
Then the Poincaré-Lelong formula states an identity for the distributions on %,

[Div(s,)] = iaglog Isp ()5 + pei(L, h) + 1 (E, hF), (1.3.3)

At the same time, we introduce the following norm for the distributions on X: let T
be a distribution on X, for any open susbet U C ¥, define

1Ty, ~2 == sup (T, @), (1.3.4)
¢

where the supremum is taken over all the smooth test functions ¢ with support in U
and such that their €’>-norm satisfies lellg: < 1.

In the sequel, our main object is to study the asymptotic behaviours of [Div(s)]
for random sequences of s,’s as p — o0, which can be viewed as a random point
process on X. Let us start with the Gaussian holomorphic sections.

Definition 1.3.1 (Standard Gaussian holomorphic sections) On H(Oz)(E, LP ® E), we

define the standard Gaussian probability measure [P, associated to the L?-inner prod-
uct. Let $, be the random variable valued in H (02) (2, L? ® E) with the law P, which
is called the standard Gaussian holomorphic sections of (L” ® E, h,) over X. We
also set the product probability space

(Hoos Poc) i= [ [ (HQ, (5. L7 @ E), P, )
p

whose elements are the sequences {s,}, of holomorphic sections.
We have an equivalent definition. Let {Sj’" }jl”: , be an orthonormal basis of
H(%)(E, L? ® E) and let {775‘7 ‘JI": | be a vector of independent and identically dis-

tributed (i.i.d.) standard complex Gaussian variables (that is N¢ (0, 1)), then we can
also write

dp
Sp=Y nis’. (1.3.5)
j=1

Note that these random variables are taken independently for different p’s. We will
always use equally the above two models to state our results.
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Now we can give the equidistribution results for the random zeros [Div(S )], which
states that the measures defined from random zeros will asymptotically converge to
the semipositive smooth measure ¢ (L, h) on X. The proof will be given in Sect. 5.3,
and we refer to Definition 5.2.1 for the notion of convergence speed.

Theorem 1.3.2 (Equidistribution of [Div(S ,)]) We assume the same conditions on L,
L and E as in Theorem 1.2.1.

(i) The expectation E[[Div(S )]], as a measure on ¥, exists, and as p — —+00, we
have the weak convergence of measures

éE[[DiV(Sp)]] — c1(L, h), (1.3.6)

and for any relatively compact open subset U in X, the above convergence has
the convergence speed O(log p/p) on U, that is, there exists a constant Cy > 0
such that

1 .
” ;E [[Div(S,)]] — c1(L, h)

U,-2 p

(ii) ForPo-almost every sequence (s}, , we have the weak convergence of measures
on Y,

%[Div(sp)] —> c1(L, h). (1.3.7)

Moreover, given any relatively compact open subset U C X, for Pso-almost
every sequence {Sp},, the above convergence on U has convergence speed

O(log p/p).

In order to obtain the convergence speed in Theorem 1.3.2 - (ii), we need to use a
result - Theorem 5.3.1 - of Dinh, Marinescu, and Schmidt [21] (see also [20, Theorems
1.1 and 3.2]), motivated by the ideas of Dinh and Sibony [22].

1.4 Normalized Bergman kernel and large deviations of random zeros

Now we consider the normalized Bergman kernel, which will play the role of correla-
tion functions of §,, (in Definition 1.3.1), viewed as the holomorphic Gaussian fields
on X. The normalized Bergman kernel is defined as

|Bp(x, Wnp o,

N = e VB, 0

x,y €. (1.4.1)

Due to the positive of L on X, for any compact subset K of ¥ and all sufficiently large
p > 1, the function N, (x, y) is smooth on K x K with values in [0, 1].

Let injU denote the injectivity radius for asubset U C X (see (4.2.1)). Then we have
the following near-diagonal expansions of N, (x, y) only for the points x, y € X».
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At a vanishing pomt x of R, due to the lack of the explicit formula for the model
Bergman kernel Bx , such near-diagonal expansions remain unclear.
Theorem 1.4.1 Let U be a relatively compact open subset of ¥5 C X (hence iR™ is

strictly positive on U), and set

go := inf ¢(x) > 0,
xeU

where ¢(x) = iR)f Jwyx (x) is a strictly positive function on L. Then there exists
Sy €10,injY /4A[ such that we have the following uniform estimate on the normalized
Bergman kernel: fixk > 1 and b > \/12k/eq, then we have

(1) There exists C > 0 such that for all p with b \/log p/p <8y, andallx,y € U

with dist(x, y) > by/log p/p we have Ny (x,y) < Cp*
(ii) There exist functions

R,,:{(x,y)eUxU:dist(x,y)gb “’%}-ﬂ&

such that sup |Rp| — 0as p — oo, and such that for all sufficiently large p
and all x,y € U with dist(x, y) < by/log p/p,

c(x)p
4

Ny(x,y) = (1 + Ry(x, y))exp {— dist(x, y)2} ) (1.4.2)

(iii) Moreover, for any ¢ € 10, 1/2], there exists C = C(U, b, k, ) > 0 such that
for all sufficiently large p ,

sup|R,| < Cp~ /3¢, (1.4.3)

In the case of compact Kihler manifolds with positive line bundles, such results
were established in [41, Propositions 2.6 and 2.7] and in [43, Proposition 2.1]. In the
non-compact complete Hermitian manifolds with uniformly positive line bundles, by
applying the Bergman kernel expansion obtained by Ma and Marinescu [31, Theorems
4.2.1 and 6.1.1], such results are proven in [25, Theorems 1.8 and 5.1] (see also [24,
Theorem 3.13]). Note that, comparing with [25, Theorems 1.8], we have improved
some estimates in our Theorem 1.4.1. For normalized Berezin-Toeplitz kernels, the
analogous result was given in [26, Theorem 1.20 and Corollary 1.21].

Recall that the Gaussian holomorphic section S, is constructed in Definition 1.3.1.
For any open subset U C X, set

NY(Sp) :=/U[Div(s,,)]= > m (1.4.4)

xeU,8,(x)=0

Then A/’ IEJ (8p) is arandom variable valued in N.
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Note that c1 (L, h) defines a nonnegative smooth measure on X, for any open subset
U, we set

Areal (U) := /Ucl(L, h). (1.4.5)

As a consequence of Theorem 1.4.1, we obtain the following results for random
zeros, which generalize [43, Corollary 1.2 and Theorem 1.4] and [25, Theorem 1.5,
Corollary 1.6]. Their proof will be given in Sect. 5.4.

Theorem 1.4.2 (Large deviation estimates or concentration inequalities) We assume
the same conditions on X, L and E as in Theorem 1.2.1.

(1) If U is a relatively compact open subset in X, then for any § > 0, there exists a
constant Cs y > 0 such that for p > 0 the following holds:

1
P, (H SIDV(S,)] = ei(L.h)

> 5) <eCour®, (1.4.6)
U,-2

(i) IfU is an open set of ¥ with 90U having zero measure with respect to some given
smooth volume measure on ¥ (U might not be relatively compact in X), then for
any & > 0, there exists a constant Cé,U > 0 such that for p > 0 the following
holds:

P, (‘%N,’/(s,,) — Areal (U)

> a) < e Gl (1.4.7)
As a consequence, for Poo-almost every sequence {sp}, € Hoo , we have
1 v L
—Np (sp) — Area~(U). (1.4.8)
p

Proposition 1.4.3 (Hole probabilities) If U is a nonempty open set of ¥ with dU having
zero measure in X, then there exists a constant Cy > 0 such that for p > 0,

P, (N,ﬁ’(sp) - o) <eCur’, (1.4.9)

If U is a relatively compact open subset of ¥ such that 9U has zero measure in X,
and if there exists a section T € H(Oz)(Z, L) such that it does not vanish in U C %,

then there exists Cy, . > 0 such that for p > 0,

Py (N (Sp) =0) > e, (1.4.10)
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1.5 Number variance and central limit theorem

Under the geometric assumptions in Sect. 1.1, set

2*:=Uzj={ze2: RE =0} (1.5.1)
j>4

for the set of points in ¥ where the curvature vanishes. Then it is known that the
compact set X, has a measure zero with respect to wy, (see also Lemma 5.5.6).

Definition 1.5.1 Let ¢ be a real €-function on %, we define a ! -function .Z(¢) on
3, (we have to exclude the vanishing points of ¢1(L, h)) by the following identity

100 = Z(p)c1(L, h). (1.5.2)

In fact, up to a constant factor, .Z(¢) is exactly the action of the Laplacian operator
on ¢ where the Laplacian operator is associated with the Hermitian metric ¢ (L, h)
on Y.

To shorten our statements, we introduce the following class of test functions on X:

T3(L,h) = {(p € %3(2, R) : 3¢ = 0 in a tubular neighbourhood of E*} .
(1.5.3)

Then for ¢ € T3(L, h), the real function £ () is well-defined globally on X that is
identically zero near X,.

Recall that the definition of convergence in distribution is given as the pointwise con-
vergence of the distribution functions towards the distribution function of the limiting
random variable in all points of continuity. The following result shows the asymptotic
normality of the random zeros in ¥ under semi-classical limit, whose proof will be
given in Sect. 5.6.

Theorem 1.5.2 (Central limit theorem) We assume the same conditions on %, L and
E as in Theorem 1.2.1. Let ¢ € T3(L, h) be such that 39¢ # 0, set

Y, (9) := ([Div(Sp)], ¢), (1.5.4)

then as p — o9, the distribution of the random variables

Yy (p) —E[Y)(9)]

(1.5.5)
Var[Y, (¢)]

converges weakly to Ng(0, 1), standard real normal distribution.

Such kind of results as above were obtained by Sodin—Tsirelson [44, Main Theorem]
for Gaussian holomorphic functions and by Shiffman—Zelditch [42, Theorem 1.2]
for positive line bundles on compact Kihler manifolds. Moreover, as pointed out
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in [24, Remark 3.17], this result also holds for the standard Gaussian holomorphic
sections {S,}, on noncompact Hermitian manifolds. Then in [26, Theorem 1.17], the
first named author with Drewitz and Marinescu obtained a central limit theorem for
the zeros of square-integrable Gaussian holomorphic sections via Berezin-Toeplitz
quantization on complete Hermitian manifolds. All proofs of these results are based
on the seminal result of Sodin and Tsirelson in [44, Theorem 2.2] for the non-linear
functionals of the Gaussian process (see Theorem 5.6.1).

Note that in Theorem 1.5.2, we need to take the test function ¢ € 7 3 (L, h). Since ¢
does not necessarily vanish near ., such a kind of test function still allows variables
Y, (@) to contain the contributions of points in X,.

Shiffman and Zelditch [41, 42] established the framework to compute the asymp-
totics of Var[Y,(¢)] on a compact Kihler manifold, in particular, they obtained a
pluri-bipotential for it. Their method can be easily adapted to our setting, so that in
Sect. 5.5, we will prove the following theorem.

Theorem 1.5.3 (Number variance) We assume the same conditions on Z,_L and E as
in Theorem 1.2.1. Fix any ¢ € 10, 1/2]. Let ¢ € T>(L, h) be such that 3d¢ # 0, and
let Y, (p) be given as in (1.5.4), then we have the formula for p > 0,

Var[Y,(p)] =

3
f(z) / 1L @) @)1 c1(L, h)(2) + O(p>*),  (15.6)
T°p Jy

where

1

= = 1.202056903159594 . ..

2

) =

k=1

is the Apéry’s constant.

With the same assumptions in Theorem 1.5.2, by (1.3.6), we have

p'E[Y,(9)] —> (c1(L,hy), @) =/ pci(L, h)
b
as p — +oo. Therefore, as a consequence of Theorem 1.5.2 and (1.5.6) (also with
Khintchine’s theorem [30, Theorem 1.2.3]), we get the following result.

Corollary 1.5.4 Under the same geometric assumptions of Theorem 1.5.2, and take
@ € T3(L, h) with 3d¢ # 0, the distributions of the real random variables

VP (Div(S,)] — per(L, k), ¢), p €N, (1.5.7)
converge weakly to Ng(0, o (U, h, ¢)) as p — +00, where

¥

oU,h,p) = =

/E 1L (@) (2)*c1 (L, h)(z) > 0. (1.5.8)
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2 Semipositive line bundles and spectral gap of Kodaira Laplacian

In this section, we introduce the Dirac operators and Kodaira Laplacians on X.
Following the work of Ma—Marinescu [31], of Auvray-Ma—Marinescu [2], and of
Marinescu—Savale [32], we prove the spectral gaps stated in Theorem 1.2.1. Finally,
we combine this spectral gap with a result of Hsiao and Marinescu [27] to obtain the
leading term of the Bergman kernel functions B, (x) on X.

2.1 £?-Dolbeault cohomology and Kodaira Laplacian

Let 98"(2, L? ® E) denote the set of the smooth sections of A*(T*OVYQLPQE
on ¥ with compact support, and for s € 98*'(2, L? ® E), the £>-norm of s is given
by

Ay @1

Let Q(()é; (X, L ® E) be the Hilbert space defined as the completion of (22*(Z, LP ®

E). || - llz2). in particular, L2(, LP ® E) = Q3 (3, L ® E). As in (1.1.7), let
H<02)(X ,L? ® E) denote the space of Ez—holomorphic sections of L” @ E on X,
which, by (1.1.8), is a finite-dimensional vector space equipped with the £2-inner
product.

We consider the £2-Dolbeault complex,

3
0— Q4)(2, LF ® E) —— Q3(Z, LF ® E) — 0, 2.1.2)

where 517 is taken to be the maximal extension, that is, with the domain
Dom(@,) = {s € Q3 (Z. LP ® E) : 9,5 € Q3 (T, LY ® E)}.  (2.1.3)

Let 5; denote the maximal extension of the formal adjoint of 5[7 with respect to the
£2-metrics, then since (2, wy) is complete, 5; coincides with the Hilbert adjoint of

9p. Let Hé)(E, L?), q =0, 1, denote the £>-Dolbeault cohomology groups.

The Dirac operator D), and the Kodaira Laplacian operator L], are given by

Dy =23, +7,),
1 P (2.1.4)

O, := E(Dp) =0p0,+0,0).

Note that [, : Q*(S, LP @ E) — Q2*(S, LP ® E) is essentially self-adjoint, so

it has a unique self-adjoint extension which we still denote by [, the domain of this

extension is Dom(C],,) = {s c Q4N LP®E) : Oy(s) € Q%(E, L7 ® E)}.
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Note that D, interchanges and [1,, preserves the Z-grading of QS"(E, L? ® E).
Then

DO : P 0,0 4 5 5
: 00, re) o (2.1.5)
Uy 1’\901(2 LrgE) = 0P 8
Moreover, the completeness of (£, g7 *) infers that, for g = 0, 1,
ker0% = HL (X, L” ® E). (2.1.6)

(@)

Forx € ¥,v € T, X, by splitting (1.1.1), we write v = (1.0 4 5O.1) ¢ TX(I’O)E ®
TX(O’DE; we denote by pL.Ox ¢ T,C(O’l)*E the metric dual of v:9. The Clifford
multiplication endomorphism ¢ : 7, ¥ — End(A’(Tx*(O’l) %)) is then defined as

v c(v) i= V2000 A = 0), (2.1.7)

where ¢ is the contraction operator.
If {e1, e3} is a local orthonormal frame of (T X, gTE), then the Dirac operators in
(2.1.4) can then be written as follows:

2
0,e
D, = Zc(ej)VeAj BLIQE (2.1.8)
j=I

0,e p .. ..
where VA *®LY®E denote the Hermitian metric induced by V7> and the Chern con-

nections VL, VE,
Set w = %(61 — iep), it forms an orthonormal frame of TLOY Let &* denote

the metric dual of w. By [31, Theorem 1.4.7], let AAO’.@’LP@E denote the Bochner
Laplacian associated with VAO’.‘X’U’@E , we have the following formula for (I,

1

Dpz

. > 1
areLreE L T 2 o /\tw—i—p<R (0, ®) 0" A1y —ERL(CO CU))
1
+ (RE(w, D)D" ALy — 5RE(w, cb)) ,
2.1.9)

1,0 -\ -
where r= = 2RT™ )E(w, ) is the scalar curvature of (X, gTE). Note that r=
a bounded function on ¥ which is constant near punctures. In particular, near the
punctures,

1
RE(w,@)@*m@—ERE(w,@)=0, (2.1.10)

and we have more explicit formula for [, as given in [2, (4.15)].
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2.2 Spectral gap: proof of Theorem 1.2.1

Now we consider the action of [1, on 528*1 (X, L? ® E). Then since we assume that
iRL is nonnegative, i.e., RL (w, @) = 0, then, on (0, 1)-forms,

1 1
pP(RE (0, @) &* A1 — ERL(w, ) = EpRL(w, @) = 0. (2.2.1)

For the points such that RL does not vanish, the above term clearly admits a local
lower bound growing linearly in p.

Under the assumption that R’ is semipositive and vanishes up to a finite order, the
arguments from [32, sub-elliptic estimates (2.12) and Proof of Theorem 1] prove that
for a compact subset K C X, there exist constants C; > 0, C, > 0 such that for
p> landfors € QXN (Z, LP ® E) with supp (s) C K,

(C1pYP% = C) sl 2 < H—AAO"M"@ES‘ (222)

1
2

2
We will combine the above considerations to prove Theorem 1.2.1.

Proof of Theorem 1.2.1 Fors € Q(C)’] (¥,L? @ E) and a domain A C %, set

2. 2 .
Isll% .=/ s ws
A

observe that A C B implies || - [|4 < || - || . We fix a compact subset K of X such that
outside of K we have iRL > cxws, with some constant ck > 0. Then RL can only
vanish at the points in K. Let U C X be an open relatively compact neighbourhood
of K. Take smooth functions ¢, ¢ : ¥ — [0, 1] such that

supp (¢1) C U
supp (¢2) C X\K ,

with ¢; = 1 on K and ¢>12 + ¢>§ = | on X. Note that near the punctures, ¢, takes
the constant value 1, then ||5¢2||<2/;0 < 00, where ¢°-norm is taken with respect to
*(0,1
¢T*“"% for a (0, 1)-form on X.
The assumption on (E, h%) that it is the trivial line bundle near punctures implies
that there exists a constant c¢g > 0 such that for x € X, we have

1
RE(w, @) &% A 15— ERE(w, @) = —coldr-015g1reE- (2.2.3)

First, we apply (2.2.2) to the sections with support contained in U. Then by (2.1.9),
(2.2.1), (2.2.3) and using the same arguments as in [32, Proposition 14], we get that
there exist constant ¢y, ¢ € R. ¢ such that for s € 92’1(2, LP ® E),

(1P = ep)liguslf < 119, (19117 - 22.4)
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On the other hand, since iRL (w, @) > cxws on the support of ¢,, then by (2.2.3)
and [31, Theorem 6.1.1, (6.1.7)], there exists a constant ¢z > 0, such that for suffi-
ciently large p € N

C3P||¢25||22\K < ||5>;(¢23)||22\1<- (2.2.5)
Let VA"*®L"®E pe the connection on A*(T* D)@ LP ® E that is induced by the

holomorphic Hermitian connection v gnd vLOF ,andlet0 # w € THOY be
a local unit frame, defined on some open set V. Because X is Kéhler, by [31, Lemma

1.4.4], we have locally 5; =—ly Vgoﬁ@Lp@E for p € N. As a consequence,

19, (@113 < 13651120 - 151122 + 1610 ,511%2 .

_ z _ (2.2.6)
19, (@2) 15k < 13051150 - 15132 + 1628 55112 -
Combining (2.2.4) - (2.2.6), for sufficiently large p € N,
(min {e1p™P* — 2, e3p} — 11911150 — ||§¢2||?go) 5172 < 1DpsllZs
2.2.7)

Since px > 2, the above inequality infers that there exist constants C; > 0, C; > 0
such that for p € N,

IDpslI%; = 2(C1p*P= = Co) s )% (2.2.8)
This proves (1.2.1).
Observe that Spec(U,) = Spec(D?,) U Spec(D},) C Ryg. Fors € 98’1(2, L? ®
E)’
IDps )17 = 2(0ps, 5). (2.2.9)

Then we get Spec(J},) C [C1p*** —Cy, +ool,and H} (£, LP ®E) = 0for p > 0.

Now take s € QU7 (2, L? ® E), applying (1.2.1) to 9 s gives
ICs1IZ2 = (C1p¥P% — Co)(yps. s). (22.10)

As a consequence, Spec(D?,) C {0} U[C1p¥P= — Cy, +o0[, so that we get (1.2.2).
This completes the proof of our theorem. O

2.3 Leading term of Bergman kernel function: a result of Hsiao—Marinescu

For an arbitrary holomorphic line bundle on a Hermitian manifold, Hsiao and Mari-
nescu [27] studied the asymptotic expansions of kernel functions of the spectral
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projections for the low-energy forms. In particular, they refined and generalized the
local holomorphic Morse inequalities by Berman [7].

Generally speaking, fix kp > 3, Hsiao and Marinescu considered the spectral pro-
jection Py, pko] from £2(Z, L? ® E) onto the spectral space of the Kodaira Lapacian

0, associated with the interval [0, p~*0]. Similarly to the Bergman kernel function,
let Py, pko] (x) denote the corresponding spectral kernel function. In [27, Theorem 1.3
and Corollary 1.4], Hsiao and Marinescu obtained a local holomorphic Morse inequal-
ity for Py ,-ko;(x) as p — +o0. In particular, the leading term in the expansion was
computed.

In the present paper, the spectral gap (1.2.2) implies that for p > 1, we have

Py, p-to) = Bp. Pl p-t0)(X) = Bp(x). x € . 2.3.1)

Then [27, Theorem 1.3 and Corollary 1.4] applies to B, (x). Note that their results are
stated for the sections of L?, but by [27, Remark 1.11-(II)], these conclusions also
hold true for L” ® E in our case.

Theorem 2.3.1 (Hsiao and Marinescu [27, Corollary 1.4]) We assume the same con-
ditions on ¥, L and E as in Theorem 1.2.1. Recall that the function ¢(x) on X is
defined in (1.2.6). Then

(i) Let 1s, denote the characteristic function of the open subset ¥y C X. For any
x € X, we have

. 1 c(x)
Jim By = 1z, (x)%. (2.3.2)

(ii) Let K be a compact subset of ¥ and take ¢ > 0, then there exists py € N such
that for any p > po, we have for x € K,

B,(x) < (8 + lzz(x)%) p. (2.3.3)

It is clear that we can recover the pointwise convergence (2.3.2) from our Theorem
1.2.2. Moreover, the results stated in Corollary 1.2.3 and Proposition 1.2.4 extend the
upper bound in (2.3.3) for our punctured Riemann surface.

3 Bergman kernel near the punctures

In this section, we begin to explain the technique of analytic localization to compute the
Bergman kernel B),(z, z), where the spectral gap in Theorem 1.2.1 plays an essential
role. Subsequently, we obtain global off-diagonal estimates for B, (z, z'). Then we will
apply the work of Auvray, Ma, and Marinescu [1-3] to get the asymptotic expansion
of the Bergman kernel function B),(z) when z is near the punctures. The near-diagonal
expansion of B), and the proof of Theorem 1.2.2 will be given in the next section.
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We introduce the following notation. Form € Nands € €°°(X, L’ ® E),z € X,
set

Islim n,) (2) = (|s|hp + |V”’Es|hp,w2 +...+ I(V”’E)mslhp,wz) (), (3.0.1)

where VP-Z is the connection on (T Z)W ®LPQRE,forevery £ € Z>¢,induced by the
Levi-Civita connection associated to wy and the Chern connection that corresponds
to the metric /1, and | - |5, o5 denotes the Hermitian metric on (TT)®* QR LPQE
induced by g7 and hp. Then for any subset U C X, define the norm || - [lgmy p,)
on U as follows,

Isllgmw,n,) = sup [slgn ) (2)- (3.0.2)
zeU

If U = %, we write simply |Isllgnp,) = lsllgn (s p,). Similarly, we also define the
analogue norms for the sections on D*, ¥ x X, etc.

Fork > 1, let Hk(E, ws, L? ® E, hp) denote the Sobolev space of sections of
(L? ® E, hp) that are £2-integrable up to order k. For s € Hk(E, ws, L? @ E, hy),
set

2 2 = |? =k [?
sl o= [ (1, @+|vPEs| @t | (0B @) es@<.
P b p hp,wZ hpsw):

(3.0.3)

3.1 Localization of the problem and off-diagonal estimates

In this subsection, we explain how to localize the computations for the Bergman kernel
B, on X by the technique of analytic localization. For this method, we need two key
ingredients: the first one is the spectral gap, which is already given by Theorem 1.2.1
for our case; the second is the elliptic estimates for D(z)? as p grows (cf. [31, Lemma
1.6.2]), it is clear by the definition of Dg that they hold true on any compact subsets
of . Due to the seminal work of Auvray, Ma and Marinescu [1, 2], the necessary
elliptic estimates for D([), near the punctures were also established. Finally, using the
finite propagation speed for wave operators, we can localize the computations of
B (z, ) in our case to the problems well considered in [1, 2] (for computations near
punctures) and in [31], [32, 33] (for computations away from punctures).

Now we give more details. We start with an elliptic estimate proved in [2, Propo-
sition 4.2]. Note that in [2], they take (E, hE ) to be a trivial line bundle on X and
assume that (L, &) is uniformly (strictly) positive on X, but with the same model near
punctures on X, neither the twist by E nor the positivity of (L, #) away from punctures
play any role in the proof of this estimate, so that it extends easily to our case.
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Proposition 3.1.1 ([2, Proposition 4.2]) For any k € N¥, there exists C = C(k, h)
such that for p > 1 and all s € H2k(2, ws, LP ® E, hp),

k

Isllfe < € P PN@) 51, (3.1.1)
j=0

Fix asmall ¢ > 0. Let ¢ : R — [0, 1] be a smooth even function such that

1

vl <e/2
0 ,v>e

Y(v) = { , (3.1.2)

and define

00 —1 o
<p(a)=</ w(v)dv> / ey (v)dv

which is an even function with ¢(0) = 1 and lies in the Schwartz space S(R).

For p > 0, set ¢, (s) := 1[%mp1/pzﬁoo[ (IsDe(s), where C is the constant in the
spectral gap of Theorem 1.2.1.

Note that ¢ and ¢, are even functions. We consider the bounded linear operators
o(Dp), ¢p(Dp) acting on Eg’O(E, L? ® E) defined via the functional calculus of D(,),.
In particular, we have

! :
0(Dy) = 5 [ cos (&,/70) prerce. (3.13)

where ¢ denotes the Fourier transform of ¢ and is a multiple of the function v defined
in (3.1.2). Then for p > 0 with C1 p?/#* — C5 > § p?/*, we have

©(Dp) — Bp = ¢p(Dyp). (3.1.4)

Let ¢, (Dp)(z, 7’) denote the Schwartz integral kernel of ¢ p(D)p), which is clearly
smooth on ¥ x X. We have the following estimates as an extension of [2, Proposition
5.3]. Fix 0 < r < e~ !, recall that the smooth function n: X —> [1, ool is such that
n(z) = |log |z|?| for z € ¥ near each punctures.

Proposition3.1.2 For ¢, m > 0, y > %, there exists Cy ., > 0 such that for any
p > 1, we have

[n@ ") " p(Dp)(z,2)

—t
(gm(hp) < le,m,yp . (315)

Proof Note that ¢(s) when is a Schwartz function on R, then for any & € N, there
exists My > 0 such that fors € R,

Isfp(s)| < M. (3.1.6)
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Then

4 \ K2
lop(s)] < My <C_1) p_k/pz. (3.1.7)

Combining (3.1.7) with the estimate (3.1.1) and the definition of ¢, (D), we conclude
that for any k, £ € N, there exists Ci ¢ > 0 such that for s € Lg’O(Q, LP Q E),

lep(Dp)sllag < Crep™llsl z2- (3.1.8)

Using the above inequality, the proof of (3.1.5) follows from the same arguments
given in the proof of [2, Proposition 5.3], which also need the Sobolev embeddings
[2, Lemma 2.6] for the sections on X and X x X. O

Now Proposition 1.2.5 is a consequence of Proposition 3.1.2.

Proof of Proposition 1.2.5 We take ¢ in (3.1.2) the same as fixed one in Proposition
1.2.5. By (2.1.9), the second order term of Dg is %AAO’°®LP®E. Thus by the finite
propagation speed for the wave operators (cf. [31, Appendix Theorem D.2.1])in (3.1.3)
and our assumptions on v in (3.1.2), we get that for z € X, the support of ¢(D)(z, -)
is included in B> (z, %), and ¢(D))(z, -) depends only on the restriction of D(I), on

BE(z, \%). In particular, if z, 7/ € ¥ are such that d(z, ') > ¢, then

@¢(Dp)(z,7) =0, (3.1.9)

so that (1.2.12) follows from (3.1.4) and (3.1.5). This completes our proof. m]

3.2 Bergman kernel for Poincaré punctured unit disc

The Bergman kernel for Poincaré punctured unit disc is our model for the Bergman

kernel B, near the punctures of X, which is also a central object studied by Auvray—

Ma—Marinescu in [1, 2]. Now we recall the main results proved in [2, Section 3].
We consider the Poincaré punctured unit disc as follows,

(D*, wpx, C, hp+),
where hp+ = | 10g(|z|2) |hg with hg the flat Hermitian metric on the trivial line bundle
C — D*. Let z € D* denote the natural coordinate.
For p € N*, consider the Hermitian metric &, p+ := | log(|z|2)|phg on C. Define

HY (D) := HY, (D*, wpr, C, hyp o), (3.2.1)

to be the space of £2-integrable holomorphic functions on I* (with respect to the
Hermitian metric &, p+). We denote by BE)* the corresponding Bergman kernel.
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By [2, Lemma 3.1], for p > 2, a canonical orthonormal basis of H(’;) (D*) is given

as follows
or—1 1/2
{(m) 2t eeNtt. (3.2.2)

Then for p > 2, z, 7/ € D*, we have

2)|p > -0
Zﬂp_lzzz’ ) (3.2.3)

=1

* 10g(|2/|
BD , "y — ‘
p G = T

Then the Bergman kernel function has the formula as follows

|log(lz*)]” &

> o er iz (3.2.4)
2(p—2)! =

B, (z) =

More explicit evaluations are worked out in [2, Section 3] for the right-hand side
of (3.2.4). In [2, Proposition 3.3], they proved that forany 0 < a < 1 and any m > 0,
there exists ¢ = c(a) > 0 such that

p—1
2

= O(e"P), as p — +oo0. (3.2.5)

H B (2) -
¢ (fa<lzl<1},opx)

More generally, for 0 <a < land0 < y < %, there exists ¢ = c(a, y) > 0 such
that

p—1

: = O@""), asp — 00. (3.2.6)
T

H B, (2) -

Em({ae” |z|<1},wpx)

Another seminal result proved by Auvray, Ma and Marinescu is the supremum
value of BE)* (z). In [2, Corollary 3.6], they proved that

« p 3/2
sup B ()= (=—) " + 0. (3.2.7)
zeﬂg* P (271)

Their calculations also showed that the points z where B?* (z) approaches its supre-
mum have exponentially small norm |z| as p — oo.

3.3 Bergman kernel expansions near a puncture

Now we consider the chart V; described in our assumption (8). Fix 0 < r < e ! we

view IDF as a subset of V; with the local complex coordinate z; on V;. Then we have
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the identification of geometric data

where the right-hand side is the Poincaré punctured unit disc described in Sect. 3.2.
Let D%* » denote the Kodaira Laplacian operator for the Poincaré punctured unit

disc acting on Eg’o(]D*, wp+, C, hp p+). Then restricting to D, DI[O))*, » coincides with

operator D([),.

Note that by [2, Corollary 5.2], D?D* » has a spectral gap, i.e. there exists C' > 0
such that for p > 0,

Spec(Cp- ,) € {0} N [C’p, +ool. (3.3.2)

Then for D%* > We can proceed as in Sect. 3.1. More precisely, fix 0 < & < 5 to
define ¥ in (3.1.2) and the corresponding function ¢. Then for p > 1,

¢(Dp+ p) — BY = @, (Dp» p). (3.3.3)

By the finite propagation speed, as explained in the proof of Proposition 3.1.2, for
2,7 € D)5, we have

@(Dpx p)(z,2) = p(Dp)(z, 7). (3.3.4)

Therefore, on D R D /2> WE have

Bp(z.2) — BY (2.2)) = ¢p(Dp+ ) (2. 2) — 9p(Dp)(z. 7). (3.3.5)

Note that, in fact, both terms in the right-hand side of (3.3.5) satisfy the estimate (3.1.5)
on D* 1 X D* /2 Then we can proceed as in [2, Section 6] since the computations are
local, we see that the results of [2, Theorems 1.1 & 1.2] still holds in our setting.

Theorem 3.3.1 ([2, Theorems 1.1 & 1.2]) Fix any £, m € Nx. For any a > 0, there
exists a constant C = C(£, m, ) > 0 such that on ID);"/2 X Df/z

]:D)*
‘Bp(z,z’) —- B, (z,7)

< Cp~logzd] ™ logizZ® . 336
o < CpJogzP)| " oga | G36)

Moreover, for every § > 0, there exists a constant C' = C'(£, m, §) > 0, such that for
allpeZ-pandzj € ]D);‘ﬂ,

(B —BD*( (z-)<C’p_£‘10g(|Z'|2)‘78. (3.3.7)
p Pogm SIS J

The behavior of BE* has been described in Sect. 3.2, combining with the above
theorem, we get the asymptotic expansion of B, on ID* /288 p — F00.
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Remark 3.3.2 Due to the spectral gap (1.2.2) and the considerations outlined above,
the uniform convergence of the quotient B, (x)/ BE* (x) to one near the punctures (see
[3, Theorems 1.2 & 1.3]) follows directly from the same arguments as in [3].

4 Bergman kernel expansion on 2 for semipositive line bundles

In addition to the off-diagonal estimates in Proposition 1.2.5, we continue to study the
near-diagonal expansion of B, via the local models that will be described explicitly in
Sect. 4.1. Then we can proceed as in [31, Sections 4.1 & 4.2] to conclude the desired
expansions. Finally, we will give the proofs of Theorem 1.2.2, Corollary 1.2.3, and
Proposition 1.2.4.

4.1 Model Dirac and Kodaira Laplacian operators on C

Alongside the Kodaira Laplacians of our interest, we need to introduce certain model
operators which play an important role in our calculations. We always equip R? with
the standard Euclidean metric and the standard complex structure such that R? = C.

Let z = x +iy € C denote the usual complex coordinate, and let {e| := %, ey = a%}

be the standard Euclidean basis of R?. Now fix an even integer p’ > 2.
Let R be anon-trivial (1, 1)-form on R? whose coefficient with respect to the frame
dz A dz is given by a real nonnegative homogeneous polynomial of degree o' — 2.
We define a smooth 1-form a® € Q! (R?) by

1
af () = fo Ry, (v2, tvy)dt, 4.1.1)

where v; € R? and v € T, R?* = R?. Set
VR =d—aR, (4.1.2)

it is a unitary connection on the trivial Hermitian line bundle C over R In particular,
the curvature form of VR is exactly given by R. Let Ag denote the corresponding
Bochner Laplacian.

Take 9 to be the standard 9-operator on R? = C; then the (0, 1) part of the connec-
tion VR is 8¢ 1= 9 — (aR )O’ ' Let 5:& denote the formal adjoint of d¢ with respect to
the standard inner product on R

The following operators are called the model Dirac operator and model Kodaira
Laplacian on R?, corresponding to R:

_ s 1
Dy i=~2(3c +3¢), O = 5 (Dw)° . (4.13)
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This model Kodaira Laplacian [ is related to the model Bochner Laplacian by the
Lichnerowicz formula

1 1
Ok = 58k + 3¢ (R) (4.1.4)

with ¢ (R) = R(ey, e2)c(e1)c(ez). We always identify Ag and [r with their unique
self-adjoint extensions that act on the £2-sections over R?.

Recall that D% denotes the restriction of L1z on (0, 0)-sections. In [32, Proposition
18 in Appendix], it was proved that there exists a constant cg > 0 such that

Spec(00%) C {0} U [cg, +oo]. (4.1.5)

Consider the following first-order differential operators
0 1. N 0 1,
b=-2—+4 —iR(e1,e)7, b =2— + —iR(ey, e2)z. (4.1.6)
dz  p’ az  p’

Then we have

1
0% = zbb# 4.1.7)

Moreover, for s € Eg’O(Rz, ©), s € ker D% if and only if bTs = 0.
Consider the £2-orthogonal projection

BR: £9°R?, C) — ker (0% . (4.1.8)

Let BR(z, 7)), 2,7 € R? denote the Schwartz integral kernel of the above projection,
which is a smooth function on R? x RZ. We also set

BR () = BR(z,2). (4.1.9)

The following lemma was already known in [32, the text above Proposition 19],
which can also be viewed as a consequence of the lower bound for the Bergman kernel
proved by Catlin [12] by considering the local models. Here we also give a direct proof
to shed light on the space ker D%.

Lemma 4.1.1 For a nontrivial semipositive R as above, Bg is an even function, i.e.,
forz, 7 € R?> we have BR(z,7') = BR(—z, —z'). Moreover,

BR0) > 0, (4.1.10)

and the quantity BR(0) depends on R smoothly (with R having the coefficients as
above of a given degree p’ — 2).
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Proof Set w = — iep). Note that

\/Lz(el
Y(x,y) = R(w,w) =iR(e1, €2) (4.1.11)

is, by our assumption, a real homogeneous nonnegative polynomial in x, y of degree
o' — 2. In particular, it is an even function in (x, y) € R2. So that we get the even
parity for BR by our construction.

Let W(x, y) be a homogeneous polynomial in x, y of degree p’ such that

ow 1
F(x’ y) = =¥(x, y)z. (4.1.12)
z p

Note that for any fixed A € C, W + Az”" also satisfies the above equation. Moreover,
we have

1
- A"NW) =y, y) >0, (4.1.13)
where AR = ( pye: + ) The real part ¢ := R (W) is a subharmonic, non-harmonic

real homogeneous polynomlal in x, y of degree p’.
A straightforward observation is as follows: if g is an entire function on C such that
|g|>¢™¥ is integrable on C (with respect to the standard Lebesgue measure), then

ge 2Y € ker (0. (4.1.14)

This way, we change our problem to study the weighted Bergman kernel on C
associated to the real subharmonic function %go as in [13]. By [13, Proposition 1.10],

ker D% is an infinite dimensional subspace of ﬁg’O(Rz, ©). In particular, there exists a

nontrivial entire function g on C such that ge’%‘l’ € ker D%. If g(0) # 0, then ge’%‘y
does not vanish at z = 0. If g(0) = 0, we write g(z) = zkf(z), where k € N*, f
is also an entire function with f(0) # 0. Then the integrability of |g|>¢™% implies

1 . . .
that of | f|%¢%, so that fe 2% & ker D% and it does not vanish at point z = 0. As a
consequence, we have

BR(0) = BR(0,0) >0 (4.1.15)

by the variational characterization of the Bergman kernel.
Analogously to [31, (4.2.22)], by the spectral gap (4.1.5), for ¢ > 0, we have

exp(—tD%)—BRz/ 0% exp(—s%)ds. (4.1.16)

t

Then

BR(0,0) = exp(—1% #)(0,0) — / {DReXp( SD%)}(O, 0)ds. (4.1.17)
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Now we replace R by a smooth family of non-trivial (1, 1)-forms on R? whose coeffi-
cients with respect to dz A dz are given by nonnegative real homogeneous polynomials
in x, y of degree p’ — 2. Then locally in the parametrization space for this fam-
ily R, the spectral gaps cg in (4.1.5), as R varies, admit a uniform lower bound
¢ > 0 (see [32, Appendix: Proposition 18]). Combining with the smooth depen-
dence of the heat kernels of D% on R (see Duhamel’s formula [6, Theorem 2.48]),
ftoo{D(I)e exp(—sD%)}(O, 0)ds depends continuously on R for any given ¢ > 0. As a
consequence of (4.1.17), we conclude that BR(0, 0) depends smoothly on R. This
way, we complete our proof of the lemma. O

Example 4.1.2 We consider a simple but nontrivial example R(x, y) = y*dz A dz,
o' = 4, then we can rewrite it as

R(x,y) = —2iy*dx A dy. (4.1.18)

Then

! i
af = / t3(2iy2xdy - 2iy3dx)dt = Eyz(xdy — ydx), (4.1.19)
0
and
R\0,1 1o o
(@®); = —Zy zdz. (4.1.20)
An explicit computation shows that 5:5 = -2 L 3% + % y2Z L and that

1 1 9 _9d i
Ug :EARZ - zyz (Z— - Z—) + -xy
< (4.1.21)

+ %y“lzl2 —y? +2%dZ AL
Note that the differential operator
1 ,( 90 _0 i i, 0 0 i
—Ey (Za_ZB_Z)—FEXy: zy (ya—x5>+§xy (4.1.22)
is formally self-adjoint with respect to the standard £2-metric on the functions over

R2.
In this example, we have

9 1 a1
b=-2—+ =y’7, bt =2— + —y?z. 4.1.23
9 T 27F PRI .1.23)
Then
o _ L4
0% = —bb™. (4.1.24)
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Note that
RAlzl* — 121222 - lIzlzz2 pials Ly 1y“. (4.1.25)
3 2 24 6
Consider the following £2-function on C
F@ =expf—s (1l — 222 — 21eP2 + 224) | (4.1.26)
16 3 2

We have f(0) = 1, and f € ker D%. Moreover, we have

1

BR(0) > )
® 11l 2

(4.1.27)

4.2 Construction of local models

This subsection is a continuation of Sect. 3.1 on the technique of analytical localization,
and we will use the same notation as introduced in Sect. 3.1. In order to compute the
asymptotic expansion of B, (z) as p — +00, we need to construct a model Kodaira
Laplacian associated with the local geometry near z. The machinery of the construction
was explained in detail in [31, Sections 1.6 & 4.1], and for a compact Riemann surface
equipped with a semipositive line bundle, Marinescu and Savale already used this
construction in [32, 33]. In the sequel, we will give more details in order to work out
more explicitly the near-diagonal expansions of B),.

Note that (X, g7¥) is complete and hence by the Hopf-Rinow theorem geodesically
complete. Thus the exponential map

T,2>Zr> expZ(Z) € T

is well-defined for all z € X. For an open subset U C %, set

inj¥ := inf sup{e > 0 : expg is a diffeomorphism of
zeU “4.2.1)

B%=¥(0, &) onto its image in U},

which is called the injectivity radius of U. If U contains any punctures, we always
have inj¥ = 0 since the injective radius of a point z € U goes to 0 as z approaches
any puncture in U. If U is relatively compact in X, then inj¥ > 0.

Fix a point zp € X and fix an open neighborhood Uy C ¥ of zq that is relatively
compact in ¥. Hence inj’® > 0. Let {e1, e}, {¢}, and {f} be orthonormal bases for
T,,X, E;, and L, respectively, and let {w = \/ij(el — iep)} be an orthonormal basis

for Tz(ol’o) Y. Fix some ¢ < inj¥0 /4 such that the vanishing order of RY on B (z¢, 4¢)
is at most p,, — 2. Since € does not exceed the injectivity radius of Up, the exponential
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map
T, X D B> (0,4¢) 5 Z > exp’ (2) € B> (29, 4¢) C = (4.2.2)
is a diffeomorphism of open balls; it yields a local chart via
R% 5 (Z1,Z2) —> Ziey + Zarey € Ty, T, (4.2.3)

called the normal coordinate system (centered at z).

We always identify B2 ¥ (0, 4¢) with B (20, 4¢) via (4.2.2). For Z € B0 ¥ (0, 4¢)
weidentify Lz, Ez and A*(T; V) to L, E, and A*(TE" V'), respectively, by
parallel transport with respect to VX, V£ and AN T OlE) along yz : [0,1] > u —
exp?‘O (uZ). This way, we trivilize the bundles L, E, A*(T*(©- D £) near z¢. In particular,
we will still denote by {eq, e2}, {¢}, and {f} the respective orthonormal smooth frames
of the vector bundles on point Z, defined as the parallel transports as above of the
vectors {eq, ez}, {e}, and {f} from zp.

With the above local trivializations, we write the connection VAT QLI®E as follows

AT BLIGE _ g _ (aAO" + pat + aE> (4.2.4)

. . . 0,0 .
where d denotes the ordinary differential operator, and a® *, a®, a® are respectively

. 0,0 . . NP .
the local connection 1-forms of VA, VE, VL in this trivialization. Note that these
connection 1-forms are purely imaginary.
In coordinate (Z1, Z,), we write

2
=3 ataz;. (42.5)

Let RiLj denote the coefficients of the curvature form R with respect to the frame
dzZ; A dZj,i, j =1,2. We have

R =RL =0, R, = —RE,. (4.2.6)
Then we can write

RZ = R12 72dZy ANdZ,. “4.2.7)

Similarly, we define Rfj\oz' and Rib;’z. Moreover, we have the following relations for
Z € BT0%(0, ¢)

af, = Z/ tZ/Rf ,,d (4.2.8)
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The analogous identities also hold for aAO", ak.

On the other hand, in these normal coordinates, we find that the curvature RL of
VL has the following Taylor expansion at the origin

Ré - Z R1L2;azadzl AdZy + O(Z|Po™ 1) =: R(%,Z +0O(Z|P0 Y,
lo|=pzy—2
(4.2.9)

where the (dZ; A dZ»)-coefficient of R(I)‘ is the product of —i and a positive homoge-
neous even polynomial of order p,, — 2 in Z.

Now we construct the local model for B), at zo. Set Xg 1= T, X = R2, and let
Z = (Z1, Z») denote the natural coordinate on Z¢. Let (Lo, ko), (Eo, h£0) denote
the trivial line bundles on Xg given by (L, hz), (Ez,, hg) respectively. We equip
Yo with Jy the almost complex structure on X that coincides with the pullback of the
complex structure J on ¥ by the map (4.2.2) in B¥(z¢, 2¢), and is equal to J;, outside
BZ(z9, 4¢). Meanwhile, let gTEO be the Riemannian metric on ¥ that is compatible
with Jy and that coincides with the Riemannian metric gTZ onBZ (zo, 2¢), and equals
to gZTOE outside B (z9, 4¢). In fact, Jy is integrable, and the triplet (Xo, Jo, g7 >)
becomes a Riemann surface equipped with a complete Kéhler metric wy, induced by

T%o

Let T*O-Dxy denote the anti-holomorphic cotangent bundle of (X, Jy), and
let VA*" denote the Hermitian connection on A(T*O-D5) associated with
the Levi-Civita connection of (T X, gTEO). Note that on BTZOE(O, 2¢), the pair
(A*(T*OD50), VA™) coincides with (A*(T*O-D x), VA T2y yia the identifi-
cation (4.2.2), and outside IBSTZOE(O, 4¢), the connection VA% is given by the trivial
connection on the trivial bundle A‘(TZT)(O’DE). We can always trivialize 7*0-D %
by the parallel transport along the geodesic rays starting at 0, so that for Z € X,
7,05, = 17OV,

Fix an even smooth function x € C*°(R, [0, 1]) with x = 1 on [—2, 2] and
supp x C [—4, 4]. We defined a nonnegative curvature form as follows, for Z € X,

~ |Z] 4
RLo ;=X<T RE4+(1—x - RE . (4.2.10)

where Ré‘ is defined in (4.2.9). On X, define a 1-form

2 1
ato=%"afvdz;, a/°(2) ::/0 tZ/ R0, dt. 4.2.11)
i=1
Then we set
- Z
VE —d— g <u>aE,
£ (4.2.12)

vio =4 —atlo.
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They are Hermitian connections on the line bundle Lo, Ey respectively. Moreover, the
curvature form of V0 is exactly R0,
Asin (1.1.4), we define for Z € X,

b7 =2+ ordz(R). (4.2.13)

Since both the vanishing order of R on B (z¢, 4¢) and the vanishing order R} on
3o are at most p;, — 2, we get

Bz < - (4.2.14)

In particular, oo = pg,, and if ﬁLO(Z) # 0, we have pz = 2.

Under the above setting on ¥, we can define the corresponding Dirac and Kodaira
Laplacian operators. Note that we can use the formulae in (4.1.3), or equivalently we
use the connections %AO‘., %LO, VEo to define the Dirac operator D » by (2.1.8). Then
we have the operators

D, : @X*(0, L{ ® Eg) — Q*(So, L ® Eo) ,
~ 1 ~ (4.2.15)
0, := 5(Dp)z : Q2 (S0, LY ® Eg) —> Q¥*(Zo, LY ® E) .

They extend uniquely to self-adjoint operators acting on L?-sections over . By con-
struction, the differential operators D, and [, coincide with D, and [J,, respectively
on BT0>(0, 2¢) = BZ(z, 2¢).

Let AA**®L{®E0 be the Bochner Laplacian associated to the connection
VA*®LI®Ey, Analogous to (2.1.9), we have

z
Elp — %ZAO"®L5®EO + % CZ)* Al
~ 1~
+p (RLO(w, )" At — 3R, @)) (4.2.16)

~ 1~
+ <RE°(a), @) & Ay — EREO(w, a))) ,

where  denote a unit frame of 7' £, the function r>® is the scalar curvature of
(2o, gTZO), and RE0 is the curvature form of VE0, Furthermore, »=0, RE0 vanishes
identically outside B0 (0, 4¢).

By (4.2.16), 03, preserves the degree of A*(T*©-D'%). For j = 0, 1, let (), denote
the restriction of (J pon Q?ﬁ
in [32, (4.13)] for AANPTBLIBE) a6 an analogue of (2.2.2), we get that there exist
constants Cj, C; > 0, such that

(2o, Lg ® Ep). By the same sub-elliptic estimate proved

Spec(9) € {0} U [C1p*P0 — Ch, +oo ,

~ (4.2.17)
Spec(}) € [C]p*Po — C), 4o00] .
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Set
HY) (0. Ly ® Eo) := ker(3). (4.2.18)
Consider the orthogonal projection
Buyp: £5°(S0, L ® Eo) —> HY) (S0, Ly ® Eo). (4.2.19)

Let EZO, p(Z,Z") denote the Schwartz kernel of EZO, p Wwith respect to the volume
element induced by g7 >0. It is clearly smooth on g x .

Then we can proceed as in Sect. 3.1, in particular, by Proposition 3.1.2, we get that
for £, m > 0, there exists Cy , > 0 such that for any p > 1, we have

—¢
||B (Z Z) Z() ])(Z Z) (gm(EE(ZO 8)><IBE(Z() g), hp) = Cf m, yP (4220)
In a shorter notation, we will write for the above statement that
B, — By, = O(p~™), on BE(z0, &) x B (20, €). 4.2.21)

4.3 Near-diagonal expansion of Bergman kernel

The next step is to compute the asymptotic expansion of Ezo, p around zg as p —
~+o00, where we can apply the standard method via the rescaling technique as in [31,
Subsections 4.1.3—4.1.5]. One difference is that the curvature form R%0 has vanishing
order p,, — 2 at Z = 0, so that the rescaling factor will be

t=p Vro, (43.1)

Fix a unit vector ey, ;, of (L, hy,). This way, we always trivialize Lp as C. Simi-
larly for the line bundle Ey. Now, we consider the operator o, p € N* as a family
of differential operators acting on € (R?, C). Let (-, -) £2 denote the L£? - inner prod-
uct on ¢’ (R?, C) associated with the Riemannian metric g7 *° and 25, then Dg is
self-adjoint with respect to this £2-inner product.

Meanwhile, we can equip R? = T;, X with the flat Riemnnian metric gl0¥ et
dVy denote the corresponding volume form. Let x (Z) be the smooth positive function
on R? defined by the equation

ws,(Z) = k(Z) dVo(Z). 4.3.2)

Then «(0) = 1and for Z outside B(0, 4¢), k(Z) = 1. Let (-, ) r2 ( denote the standard
L>-inner product on €*°(R?, C).
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Fors € €®°(R2,C), Z € R2, fort = p~ /P | set
P

(S:5)(Z2) :==s(Z)1);
g, = Sl_lxl/ztzﬁglc_l/z&; (4.3.3)

Lo:=0°,,
Ry

where the operator [ RE is the model Kodaira Laplacian defined in (4.1.3) acting on
%> (R?, C) associated to the (1, 1)-form Ré given in (4.2.9) with p’ = p,,. Recall
that BRG (Z, Z") denotes the Bergman kernel associated to [ RL defined by (4.1.8).
Moreover, by (4.1.3), (4.2.9) and (4.3.2), both £;, £¢ are self-adjoint with respect to
the £2-metric (-, V2.0

By (4.2.17) and (4.3.3), we get that there exist constants ng > 0 and ¢y € ]0, 1]
such that for ¢ € 10, ty],

Spec(£,) C {0} U [0, +00]. 4.3.4)

As explained in Sect. 4.1, £¢ also admits a spectral gap with a constant ¢ RL > 0.

Define the orthogonal projection B ; ., : (ﬁg’O(Rz, C), (- ) £2,0) — ker £;,and
let Bo ;.z,(Z, Z') denote the smooth kernel of By ; ,, with respect to dVg. By (4.3.3)
witht = pfl/"lo < 19, we have

By p(Z.2)) = 1727 1(Z) B0 (Z /1. Z [)™2(Z)). (4.3.5)

The structure of the differential operator £; is exactly the same as the rescaled
operator defined in [31, (4.1.29)], so that the computations in the proof of [31, Theorem
4.1.7] still hold (with the vanishing order p;, — 2 of Rloat Z = 0). We can conclude
the analogue results in [31, Theorem 4.1.7] for our £;, as explained in [32, Subsection
4.1]. More precsiely, there exist polynomials A; ; », B -, C, (r e N, i, j € {1,2})in
Z = (Z1, Z») with the following properties:

— their coefficients are polynomials in R >, RL, RE and their derivatives at zo up
to order r + pz, — 2;
— A;,j,r is ahomogeneous polynomial in Z of degree deg, A; ; , = r, we also have

deg; Bi, <r+p; — 1, deg; Cr <17 +2p, — 2. 4.3.6)
Moreover,
deg, Bi , — (r — 1) =deg, C, —r = 0 mod 2; “4.3.7)
— denote
O, =A; ri + Bi,ri_ +C, (4.3.8)
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then

m
&=L+ ) 'O, + 0", (43.9)

r=1

The reminder term O(+"*!) is a differential operator up to order 2, and there
exists m’ € N such that for any k € N, ¢t < 1, the derivatives of order < k of the
coefficients of O(t"+1) are dominated by C, 4" t1(1 + |Z])™ . Note that since
£, £ are self-adjoint with respect to (-, -) £2,0» SO are £, and the remainder term
O™t in (4.3.9).

Theorem4.3.1 Fix pg € {2,..., px}. Let W : [0, 1] > s > W(s) € X be a smooth
path such that W(s) € Z,, for all s € [0,1]. For r € N, there exists a smooth
Sfunction §,,(Z,Z") on R? x R? which is also smooth in z € W([0, 1]) such that
forany k,m,m’ € N, g > 0, there exists C > O such thatif p > 1, Z,7' € T, %,
1Z1,1Z'| < q/p"™,

BB /
G B Z), z
Bl IBI<m HBZﬂBZ"ﬂ <p2/P0 p(ExXP:(2), exp:(Z0)
k
=Y S Pz P P )| L < epT
r=0
(4.3.10)

where 8, B’ € N2 are multi-indices, and the norm e (W ([0, 11)) is taken with respect
to the smooth path s — W (s) since all the objects inside the big bracket of the left-hand
side depend smoothly on zo € W ([0, 1]).

Moreover, we have the following results:

(1) forr =0,

L
F.0(Z,2)) = BN (z.2)), (4.3.11)

where Ré is the model curvature form on Lo = T; X given in (4.2.9) for the

point z, and BZR g (Z,Z") denotes the corresponding model Bergman kernel as
in (4.1.8);

(2) each §,,(Z,Z’) defines a linear operator §, , on Eg’O(RZ, E;), and §; , is
computable by a certain algorithm (cf. [31, Subsection 4.1.7]) in terms of £o ,
BR(%, and Oj, j <r;

(3) if r is odd, then §,,(Z,Z') is an odd function in (Z,Z'), in particular,
gz,r(ov 0)=0.

Proof Note that when we construct the local operators near each point z in the image
of the path W, that is W([0, 1]) C X,,, we need to choose small number ¢ > 0, as
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the explanation before (4.2.2), to be such that for z € W([0, 1]), the ball B¥(z, 4¢)
does not intersect with X; with j > pg.

Note that for each zg € W([0, 1]), we have p,, = pp. The structure of our operator
£ given in (4.3.9) are the same as in [31, Theorem 4.1.7] (except the different bounds
on the degrees in Z of 5; ,, C,), so that the Sobolev estimates for the resolvent (A —
£~ ! as well as the asymptotic expansions for By ;. o obtained in [31, Subsections
4.1.4 & 4.1.5] still hold true. In particular, the operators §;, -, 7 € N, are defined in the

same way with smooth Schwartz kernels §, -(Z, Z’) respectively, and §,, 0 = BRG .
Then (4.3.10) with m’ = 0 follows from [31, Theorem 4.1.18], (4.2.20) and (4.3.5)
with r = p~ /o,

For higher m’ > 1, we can see it as follows: if the path W is a constant point zg,
then it is clear that (4.3.10) holds with m’ > 1, if W is not a constant path, with gle
assumption that W ([0, 1]) C X Pz the spectral gaps of the modified operators [,
with zg € W([0, 1]) are given by the same power of p, so that we can always use the
same rescaling factor 1 = p~1/P%0 to construct our operators £, as a smooth family
parametrized by zo € W ([0, 1]). Then we can proceed as in [31, Proofs of Theorems
4.1.16 & 4.1.24] by considering the derivatives of (A — £)7* with respecttos € [0, 1]
via zg = W (s). Note that the smooth dependence of BRy on zg € W([O, 1]) is already
proved in Lemma 4.1.1. In this way, we conclude (4.3.10) with general m" € N.

Finally, we prove the parity of §,, .. Consider the symmetry S_; : R?2 5 Z
—Z < R2. Since the homogeneous polynomial Ré (w, @) is even, that is, it is invariant

by S_i, we get that §,,0 = B R is invariant under the S_1-conjugation. By the
structure of O, given in (4.3.6) - (4.3.8), we get that

S_19,5_1 = (=) O,. (4.3.12)

Then using the iterative formula for §, - in [31, (4.1.89), (4.1.91)], by induction from
r =0, we get

S*l%’ZO,rsfl = (_l)rS’ZO,r- (4313)

In this way, we complete our proof of the theorem. O

In fact, using the heat kernel approach to B, as in [31, Section 4.2], we can improve
the expansion (4.3.10) so that we get an analogue of [31, Theorem 4.2.1] as follows.

Theorem4.3.2 Fix pg € {2,...,px} and let W : [0,1] 2 s > W(s) € X be a
smooth path such that W (s) € X, for all s € [0, 1]. There exists C" > 0 such that
forany k,m,m’ € N, g > 0, there exists C > O such thatif p > 1, Z,7Z' € T,%,
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ze W(0, 1), 1Z],1Z'] < 2e,

SIBI+IB

1
g s Br(expe(2). 0.2

sup
IBI+IB/|<m

k
= B (pP0z, Pz 2z 2z pr )
r=0

cm' (W)
k—m+1 ,
<Cp p0+ (1 +pl/pom +p1/p0‘Z/|)Mk+l,m,m exp{ic//pl/po |Z _ Z/|} + O™,
4.3.14)
where
Mkt =20k +m' + po + 1) + m. (4.3.15)

Proof This is just a consequence of the results of [31, Section 4.2] together with the
spectral gap (4.3.4): applying (4.1.16) and (4.1.17) to £, then we can use the heat
kernel estimates to get suitable bounds on By ;,(Z, Z’). Note that since the vanishing
order of Ré at Z = 0is pg — 2, so that the power of (1 + |Z|+ |Z’|) in [31, Theorem
4.2.5] is replaced by 2(r + pg + m') + m, which gives (4.3.15). At last, we apply [31,
(4.2.32)] witht = p_l/ 20 to conclude this theorem. ]

Remark 4.3.3 For the case z € X (i.e. iRZL > 0) in (4.3.14), the results in [31,
Theorem 4.1.21] still hold. In particular, we have a formula

L
Sz,r(Zv Z/) = fz,r(z» Z/)BZRO (Z, Z/), (4316)

L
where F, ,(Z, Z') is a polynomial in Z, Z’' with degree < 3r, and BZR0 (Z,Z7Z') has
the property

185 (2,2 = %exp{-?lz—z’lz} (43.17)

iRL

with ¢(z) = Ffz)

Remark 4.3.4 Note that by our assumption on the small number ¢ > 0 taken in the
beginning of the proof of Theorem 4.3.1, we have

U B*G.20) € Z¢p.
zeW([0,1])

This means that all the points involved in the expansion (4.3.14) can only have the
vanishing order < pg for RE.

When fix a nonzero Z = Z' in (4.3.14), the term (1 + 2p]/p0|Z|)Mk+1vmvm’ is
large enough to cover the difference between O(p?/™) and O(p*/##) with possibly
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pz < po, so that the result (4.3.14) is not useful to obtain the accurate asymptotic
expansion of B, (exp,(Z), exp,(Z)) when pg > 2.

4.4 Proofs of Theorem 1.2.2, Corollary 1.2.3, and Proposition 1.2.4

Now we prove Theorem 1.2.2 as a consequence of Theorem 4.3.1.

Proof of Theorem 1.2.2 We take Z = Z' = 0, m = 0 in (4.3.10), note that
$20.2r+1(0,0) =0, 7 e N, zg € W([0, 1]), then we get (1.2.3) by setting

br(20) = §z,2r(0,0), zo € W([O, 1]). (4.4.1)

For the second part, on D*(a;, 1/4), the estimates (3.2.6) and (3.3.7) hold, from them
we conclude (1.2.5). This way, we complete our proof. O

Proof of Corollary 1.2.3 After fixing 7 and y as in the corollary, we consider suiffi-
ciently large p >> 1 and set

N
K1, =D, 1/6)\D(a;. te™"):;

= (4.4.2)

Ky =3\ | D 1/6)
j

Then X, ;, = K1, U K>.
By (1.2.5), we conclude that the following identity hold uniformly for x € K, as
p —> +00

1
B,(x) = E(l +o(1))p. (4.4.3)

Now we deal with the points in K> which is a compact subset of ¥ independent of
p. By Theorem 2.3.1-(ii), taking any sequence {&; > 0} jen with lim; ;0 6; = 0,
we have an increasing sequence of integers {p;}; with p; — o0 such that for any
P =D

sup Bp(x) < (Co+¢€;)p. (4.4.4)

xekKy

Then we conclude, as p — +o0,

sup Bp(x) < Co(1+o(1))p. “4.4.5)

xekK»r

Combining the above result with (4.4.3), we prove this corollary. O
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Proof of Proposition 1.2.4 Fix 0 < r < e~ !. For z; € V; C X near a puncture,
(3.3.7), together with (3.2.5) and (3.2.7)(see also [2, Corollary 3.6]) implies that

p 3/2
sup B,(z;) =(=— + O(p) as p — 00. (4.4.6)
I2j1<r e (271)

Away from the punctures, on the compact subset K := f\ U; D(aj, r) of X, we
apply (2.3.3) (from [27, Corollary 1.4]) or Corollary 1.2.3 to it, then there exists C > 0
such that

sup B, (x) < Cp. “4.4.7)
xekK
Combining (4.4.6) with (4.4.7), we get (1.2.11). O

We can describe the derivatives of the Bergman kernel in a coordinate-free fashion
by considering the associated jet-bundles (see Appendix). A pointwise asymptotic
expansion also exists for derivatives of the Bergman kernel functions.

Theorem 4.4.1 For all £ € Ny, the {-th jet of the on-diagonal Bergman kernel has a
pointwise asymptotic expansion

k
JBp@)/j By ey = pETIIe | Y o pTI P | 4 O(p IR

j=0
(4.4.8)

for all k € N with the coefficients cﬁ x) e C

The leading term is given by
¢ pRY -1 pRG

co(x) = j*B:" (0)/j* " B (0) (4.4.9)

in terms of the {-th jet of the model Bergman kernel on the tangent space at x € X
with respect to the geodesic coordinates Z = (Z1, Z») (see also Theorem 4.3.1). In
particular, if £ is odd, then cé(x) =0.

Proof This is a consequence of Theorem 4.3.1 via taking the Taylor expansion for
the Bergman kernel function B,(exp,(Z)) := B,(exp,(Z), exp,(Z)) in variable Z
at Z = 0. For the leading term, we have

. REL _ — REL _
Jso [Bx O (p"Px Z)ie 1(2)] izt [Bﬁ (PP Z)ic 1(Z)]
(4.4.10)
¢ ~RE /—1 ~RE _
= p"/P j*By" (0)/j* B (0) + Ox (p“~D/Pn).

In this way, we conclude (4.4.8) and the formula for cg(x). If ¢ is odd, using the fact
L
that Bfo (Z) is an even function (by Lemma 4.1.1) in Z, we get c(‘;(x) =0. ]

Theorem 4.4.1 extends [33, Theorem 3.1] for compact Riemann surfaces.
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4.5 Normalized Bergman kernel: proof of Theorem 1.4.1

Different from [25, Theorem 1.8], the line bundle (L, &) here is semipositive and hence
no longer uniformly positive in X, this is the reason we only make the statement for
asubset U C X, see also [26, Theorem 1.20] for an analogous result of normalized
Berezin-Toeplitz kernels.

Proof of Theorem 1.4.1 By Theorem 4.3.2, we see that, for the points where iRL is
strictly positive in U, the near-diagonal expansions of B, (x, y) behave the same as
in [31, Theorems 4.2.1 and 6.1.1]. Using analogous arguments as in [25, Subsection
2.3] and [26, Subsection 2.4] together with the off-diagonal estimate (1.2.12), we can
obtain the estimates in Theorem 1.4.1 - (i) and (ii). Note that instead of b > /16k/gq
in [25, Theorem 1.8], we improve the condition to b > +/12k/&g, and here we also
state a sharper estimate in Theorem 1.4.1 - (iii) for the remainder term R, than [25,
Theorem 1.8]. Therefore, we reproduce the proof in detail as follows.

First of all, since U C X5, by Theorem 1.2.2, there exists a constant ¢ > 0 such
that for all point x € U and for p > 1,

B,(x) = Bp(x,x) = cp. “4.5.1)

Now we start with a proof of 1.4.1 - (i). Note that U is relatively compact, so
Proposition 1.2.5 is applicable. Fix k > 1 and let ¢ > 0 be the sufficiently small
quantity stated in Proposition 1.2.5. Then for x, y € U with dist(x, y) > ¢, we have

1B (x, )| < Cre.x p*H1. (4.5.2)

Recall that ¢g := inf ey c(x) > 0. Now we fix b > /12k /e, and a large enough
po € N such that

logpy e

b <
Po

4.5.3)

[\

For p > po, if x, y € U is such that b/log p/p < dist(x, y) < &, since we work
on U C ¥, we take advantage of the expansion in (4.3.14) with the first 2k 4 1 terms
and with po =2, m =m’ =0, x9 = x, y = exp,(Z), and Z € T, X, in order to
obtain

2k

1
B0y = Y 8er 0, P2 2(2)pT

r=0
< Cp 121+ yplzp* o exp {-C'pIZI} + O(p~Fh.

(4.5.4)

There exists a constant Cx > 0 such that for any » > 0,

(14 r)¥* 0 exp(—C'r) < Cy. (4.5.5)
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Note that |Z] = dist(x, y). By Remark 4.3.3, we have the formula (4.3.16) for
Bx.r with the polynomial factor Fy (Z, Z'), and that the degree of Fx ,(Z, Z') is not
greater than 3r, and the fact that ¢ > |Z| > bi/log p/p, we getforr =0, ..., 2k,

132,00, /PZ)p ™" < Cp” exp {—?bz logp} : (4.5.6)

where the constant C = Cy > 0 does not depend on x € U.
Since we take b > /12k/eg, then forr =0, ..., 2k, we get

p’exp {—%bz long <ph (4.5.7)

Finally, combining (4.5.1)—(4.5.7), we get the desired estimate in Theorem 1.4.1 - (i).
Let us prove Theorem 1.4.1 - (ii). Fix b > /12k/¢¢, and we only consider p > 1.
Recall that the constant Cy is defined in (1.2.9), then set

My, = [nb*Cy] € N. (4.5.8)

Thenforx e U C 2zand Z € T; X with |Z| < by/log p/p,sety =exp,(Z) € U,
then dist(x, y) = |Z|. Then

exp { C(z)p dist(x, y)2} < 2, (@5.9)

Take the expansion (4.3.14) with pg =2 and k = Mp, m = m’ = 0, we get

My

1 _ _ _ Mp+1 _

;B,,(x,y)— > 3o 0. /P2 (2)pT P < CpTTT + O(pT™).
r=0

(4.5.10)

By Remark 4.3.3, we get forr > 1,

5or (0. /P2 V2(Z)p™" 2| < Cy flog p 2 pT 12

(4.5.11)

{C(x)p
exp

2 dist(x, y)z}
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Combining (4.5.9)—(4.5.11), we get

exp {% dist(x, y)Z] Bp(x, y) %K—I/Z(z) + O(p—1/2+8)
/B,)/B, () Lo/ + o
=1+0(Z|+p~ /2
=14+0(p ?**)as p > +o0.

(4.5.12)

The term O(p~'/2%¢) in the last line of (4.5.12) represents the function R ,, so Theorem
1.4.1 - (i1) and (iii) follow. m]

Analogously to [41, Proposition 2.8] and [26, Lemma 2.13], we have the following
results, and we refer to [26, Proof of Lemma 2.13] for a proof.

Lemma 4.5.1 With the same assumptions in Theorem 1.4.1, the term R, (x, y) satisfies
the following estimate: there exists C1 = Ci(g, U) > 0 such that for all sufficiently

large p, x, y € U with dist(x, y) < b/log p/p,
IR, (x, y)| < Cp'/** dist(x, y)*. (4.4.13)

For given k, £ € N, there exists a sufficiently large b > 0 such that there exists a
constant Co» > 0 such that for all x,y € U, dist(x,y) = b/log p/p, we have for
p>1

Vi Np(x )| < Cop7. (4.4.14)

5 Equidistribution and smooth statistics of random zeros

Marinescu and Savale [33, Theorem 1.4 and Section 6] proved a equidistribution result
for the zeros of Gaussian random holomorphic sections of the semipositive line bundles
over a compact Riemann surface. In this section, we apply our results of Sect.4 to
prove a refined equidistribution result for the random zeros of s, € H, (02) (X, LPQE).
Furthermore, we will follow the work of [41-43] and [24-26] to study the large
deviations and smooth statistics of these random zeros.

5.1 On £"-norm of logarithm of Bergman kernel function

An important ingredient to study the semi-classical limit of zeros of S, (see Definition
1.3.1) is to study the function log B, (x) as p — +00.
Fort €10,1[,y €10, %[ ,as in (1.2.8), we set

N
Spry =\ JD*@j, te7?). (.1.1)
j=1
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We have the following result for the £!-norm of log B, on X, ;..

Theorem 5.1.1 Let X be a punctured Riemann surface, and let L be a holomorphic
line bundle as above such that L carries a singular Hermitian metric hy satisfying
conditions (a) and (B). Let E be a holomorphic line bundle on ¥ equipped with a
smooth Hermitian metric ht such that (E, h®) on each chart V; is exactly a trivial
Hermitian line bundle. Then for the Bergman kernel functions B, (x) associated to
H(Oz)(E, L? ® E), there exists a constant C = C(t,y) > 0 such that for all p > 1

/ | log B (2)|wz (x) < Clog p. (5.1.2)
Xpry

Proof For a compact Riemann surface with a semipositive line bundle, this theorem
follows easily from the uniform two-sided bounds on B, in [33, Lemma 3.3], and
the analogous arguments, combining with (1.2.5), shall prove this theorem. But in
the sequel, we will sketch a different approach which is independent of the uniform
estimates as in [33, Subsection 3.1].

By Proposition 1.2.4, there exists a constant C > 0 such that

3
sup log B, < zlogp—i—C. (5.1.3)

xex

Thus, in order to prove (5.1.2), it remains to bound the negative part of log B,.
At first, we claim that there exists a smooth Hermitian metric 4 on L — X such
that for a small ¢ > 0 and on X, we have

h<h, iR:Y>ceows. (5.1.4)

In fact, since L is positive in ¥, we can always take a smooth Hermitian metric h
on L such thatiRL > 0 on = (see [37]). Foreach z € ¥, take ey (z) a nonzero element
of L, then set

ler (@)1

F(z) = — )
2 leL@)ln

(5.1.5)

Then F is a smooth real function on ¥ and tends to +00 at punctures. Then on X,
L —2i39F +iR" > 0. (5.1.6)

Now we modify F to a new function F such that F is a smooth function on ¥ with
the properties:

(1) max_ |F| My, where M >> 1 is some constant.

2) |88F = 0 on each local chart {0 < |z;| < ro} C V;, where 0 < rp < e lis
given, and V; is the local chart in the assumption (8).

3) F = Fon the subset ¥\ U; {0 < |z;]| < 2ro}.
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Hence there exists § > 1 such that

09 F(2)
w3 (2)

sup < 4. 5.1.7)

€D

Now we set a new smooth metric on L — X,
fl(,’ Dz = e(—f(z)-i—Mo)/Zah(_, e (5.1.8)

It is clear that & < fz, and we have
SL 1 == L
R" = %|88F + R", (5.1.9)

which implies that the metric h satisfies the second condition in (5.1.4).
Moreover, choosing properly ¢ > 0, and fix a large pp € N, we have for p > pg
and globally on %,

(p — po)iRE + poiRt > ppsws. (5.1.10)

Let x € ¥ and Uy C X be a small coordinate neighborhood of x on which there
exist holomorphic frames e; of L — Upandeg of E — Uy.Letyr, ¥, Yy € €°°(Up)
be the subharmonic weights of 7, h and hE , respectively, on Uy relative to ey, eg, that
is, |er, |i21 = ¢~ 2¥ and etc. A suitable scalar multiplication of the section e;, allows us
to assume that ¢ < 0. The condition that 2 < h implies 1} < .

Consider a pg (that will be chosen momentarily) and write LP = LP~P0 @ LPO,
Now for p > ppon L? ® E, recall that h, := h®P @ hE and we set a new metric

Hy, = h®P=r0) @ p®r @ pt (5.1.11)
Then by (5.1.10) (c1 (E, hE) on T can be properly bounded), for p > po,
ci(L? ® E, Hp) > poews , (5.1.12)
where ¢ > 0 is chosen sufficiently small. The local weight of the metric H, on Uy
with respect to the frame ef ®episV, = (p— po)¥ + pov + V.
Now as in the proof of [20, Theorem 4.3], we need to prove that there exist constants

C1 > 0, po > 1 such that for p > 2pg and all z € U), there is a section s, , €
H(OZ)(E, LP), such that s ,(z) # 0 and

/ |sz,p|%-[pw2 < C1|Sz,p(Z)|%.1p- (5.1.13)
z

The technical part is to prove the existence of s ,. Since (5.1.12) holds globally
on ¥ and (X, wy) is complete, we can proceed as in [16, Proof of Theorem 5.1] and
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[20, (4.23) - (4.31)]. More precisely, one can construct the local holomorphic sections
near x as in (5.1.13) by the Ohsawa-Takegoshi extension theorem [36], then applying
the L?-estimates for d-operator on complete Kihler manifold (see [20, Theorem 4.1
- (i1)] or [18, Théoreme 5.1]) to modify these local holomorphic sections to finally
obtain global ones as wanted for (5.1.13). We may and will choose s, such that

1
2 2
/E |sZ,p|Hpa)E =1 s |sZ,P(Z)|Hp = C_l . (5114)
Since i < h on X, the first property of (5.1.14) and the definition of H), imply that

/ Is2.plh, 0z < 1. (5.1.15)
)

Then the second property of (5.1.14) implies that

1 ~
ls2.p @, > Gre VOV (5.1.16)

Note that the quantity efPO(‘Z(Z)_‘/’(Z)), defined on Uy, actually is a global function
on X, by the definition of 4 in (5.1.8),

20T Q=Y @) — p®P0 BP0 _ ppo(F(@)=M0)/28, (5.1.17)
Recall the variational characterization of the Bergman kernel,
B,(z) = max {|sp(z)|ﬁp ts € HY(S,LP ® E), |Isyll 2 = 1} . (5.1.18)

Note that each time we work on a small local chart of a point x € X, then we can use
finitely many such local charts to cover the set £\ U; V;. As a consequence, we can
choose uniformly the constant Cy >> 0 for all points z € X\ U; V;, from (5.1.15) -
(5.1.18), we get

Po , ~
log B,(2) = log s: p(2);, > 25 (F(@ = Mo) —log C1 = H(2), (5.1.19)

where H < 0. For the point z € X, , N V;, we need use (3.2.6) and (3.3.7) to get
a lower bound for log B, (z). So that (5.1.19) holds uniformly for all z € X, ; , for
p>»1

Since F is smooth on T and fz wy < 00,then H € El(E, wy), so that we get the
inequality (5.1.2). O

Remark 5.1.2 As we saw from the above, Theorem 5.1.1 is closely related to the
situations solved in [16, Theorem 5.1] or in [20, Theorems 4.3 and 4.5]. If we regard
L as aholomorphic line bundle on ¥ with singular metric &, the results in [ 16, Theorem
5.1]orin [20, Theorem 4.3] can apply if we use a smooth Kihler metric on X. However,
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here wx on X becomes singular. If we work on the noncompact model ¥ with smooth
Kéhler metric wy, then [20, Theorem 4.5] applies only on the open subset away from
the vanishing points X, = {z € ¥ : RZL = 0} of RL. Therefore, we cannot apply [16,
Theorem 5.1] or [20, Theorems 4.3 and 4.5] directly to obtain our Theorem 5.1.1, but
the basic strategy of the proof remains the same.

5.2 OnTian’s approximation theorem

Tian’s approximation theorem and its analogues are the key step to obtain the equidis-
tribution result of random zeros for §,. Now, let us work out a version of Tian’s
approximation theorem in our setting. For each p >> 1, consider the Kodaira map,

@) % ---> P(HY (2, LP ® E)*). (5.2.1)

We will use wyg to denote the Fubini-Study metric on IP(H(%)(E, L? ® E)*) (see [31,
Subsection 5.1.1]). If U is a relatively compact open subset of X, then for sufficiently
large p, ®,|y is well-defined, and the pull-back @;a}FS |y is a smooth form on U. In
general, ®7 g defines a measure on X (which might be singular), that is called the
induced Fubini-Study current (or form) on X. It is well-known that

i
@;wFs = pci1(L, h) + c1(E, hEy + Eaa log B, (x). 5.2.2)

For any open subet U C %, recall that the norm || - ||, —» for the measures or
distributions on X was defined in (1.3.4).

Definition 5.2.1 (Convergence speed) Let {c,}, be a sequence of positive numbers
converging to 0 (as p — +o00), and let {T,}, and T be measures on ¥ with full
measures bounded by a fixed constant. We say that the sequence {7}, converges on U
to T with speed O(c),) if there exists a constant C > Osuchthat |7, — T |ly,—2 < Cc)p
for all sufficiently large p.

Theorem 5.2.2 (Tian’s approximation theorem) Let ¥ be a punctured Riemann sur-
face, and let L be a holomorphic line bundle as above such that L carries a singular
Hermitian metric hy satisfying conditions («) and (B). Let E be a holomorphic line
bundle on X equipped with a smooth Hermitian metric h® such that (E, h®) on each
chart V; is exactly the trivial Hermitian line bundle. We have the convergences of the
induced Fubini-Study forms as follows.

(1) For any relatively compact open subset U C X , we have the convergence

1
;qf;,wFs —s (L, h")

in the norm || - ||ly,—2 as p — oo, with speed O(log p/p) on U. In particular,
we have the weak convergence of measures on 2,

1
;@;a)Fs —> (L, hY).



38 Page48of61 B. Liu, D. Zielinski

(i1) For any relatively compact open subset U C Xj , for any £ € N, there exists
Co.u > 0 such that for p > 1,

1 C
H—CID’;a)FS —c1(L, hE) < LY (5.2.3)
p CLU) p
(iii) Fixx € X, there exists Cy > 0 such that for all p > 1, we have
‘l(fb* )(x) (L, h)(x)| < Cx (5.2.4)
— wp) (X)) — (L, h) ()| < —. 2.
p PP N/

Proof By (5.2.2), we have
I I 1 E [
;q)pa)Fs —ci(L,h") = ;Cl(E,h )—‘r%aalong(x).

Note that any compact setin X willliein X, ; ,, forall p > 1, then (i) follows directly
from Theorem 5.1.1 and the definition of || - ||, —2.

When the open subset U is relatively compact in X, then the asymptotic expansion
B (x) on U behaves the same as in [31, Theorems 4.1.1 and 6.1.1], so that (ii) follows
from the same arguments for [31, Theorem 5.1.4 and Corollary 6.1.2].

Now we consider (iii). If x € X5, then (5.2.4) follows from (ii). If x € X\ X», then
by Theorems 1.2.2 and 4.4.1, we conclude that

. C;
;(q>pw1:s)(x) —ci(L,h)(x)| < m, (5.2.5)
then by p, > 4, we get (5.2.4). In this way, we complete the proof. O

The original Tian’s approximation theorem, started with Tian [45] and further devel-
oped by Ruan [38], Catlin [11], and Zelditch [48], is for the case of positive line bundles
on compact Kéhler manifolds. Then Ma and Marinescu [31] extended it for the uni-
formly positive line bundles on complete Hermitian manifolds. For big or semipositive
line bundles equipped with possibly singular Hermitian metrics, the (1, 1)-current ver-
sions of Tian’s approximation theorem have been widely studied, such as by Coman
and Marinescu [15, 16], Dinh, Ma, and Marinescu [20].

5.3 Equidistribution of random zeros and convergence speed

In this subsection, we give a proof of Theorem 1.3.2. We only consider p >> 1. The
standard Gaussian holomorphic section S, is defined in Definition 1.3.1. By [31,
Subsection 5.3] (see also [24, Theorem 1.1]), we know that E[[Div(S)]] exists as a
positive distribution (hence a measure) on ¥, and we have the identity

E[[Div(S,)]] = ®hwps = pei(L, h) + 1 (E, h") + ﬁaglog B,(x). (53.1)
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Let V be a Hermitian vector space of complex dimension d + 1. On projective
space P(V*), let o,y denote the normalized Fubini-Study volume form on P(V*) so
that it defines a uniform probability measure on P(V*), that is,

Opg 1= . (5.3.2)

Meanwhile, for a non-zero £ € V*, let Hg = ker & be the hyperplane in V so that it
defines a positive (1, 1)-current [Hg] on P(V). Similar to (1.3.4), we can define the
norm || - ||y, -2 for (1, 1)-currents.

Theorem 5.3.1 ([21, Theorem 4]) Let (X, w) be a Hermitian complex manifold of
dimension n and let U be a relatively compact open subset of X. Let V be a Hermitian
vector space of complex dimension d + 1. There exists a constant C > 0 independent
of d such that for every y > 0 and every holomorphic map ® : X — P(V) of
generic rank n, we can find a subset E C P(V*) satisfying the following properties:

(1) o (E) < Cd?e7/C.
(2) If €] is outside E, the current ®*([He]) is well-defined and we have

| @*([HeD) — P*wps ||, < v (5.3.3)

Now we can give the proof of Theorem 1.3.2.

Proof of Theorem 1.3.2 At first, Theorem 1.3.2 - (i) follows from Theorem 5.2.2 - (i)
and (5.3.1).

Let us focus on the proof of Theorem 1.3.2 - (ii). Consider the probability space
(]P’(H(Oz)(E, L? ® E)), o), to each [s,] € IP’(H(Oz)(E, L? ® E)), we associated with
the measure defined by its zero divisor Div(s,); this way, we constructed a random
variable p , valued in the measures on . Then p , has the same probability distribution
as [Div(Sp)]. So, now we proceed with the proof for the sequence {p,}, using the
arguments as in [21, Proof of Theorem 2].

Let U’ be a relatively compact open subset in ¥ such that U C U’. For each
p> 1, take V = H(Oz)(E, L? ® E)* in Theorem 5.3.1 and map & is given by the
Kodaira map @, when we restrict the map to U’, so that 5.3.1 applies. Note that for
[spl € IE”(H(OZ)(E, L? ® E)), the positive (1, 1)-current (hence measure) CID;([HSP])
on U’ is exactly the measure [Div(sp)]ly:.

Since the constant C in Theorem 5.3.1 is independent of the choices of d or . We
take the sequence y, = 4C log p. We conclude that for all p > 1,

<= (5.3.4)

>
3
p

U,-2 p

/

4Clog p c’
p

1 I,
OFg ;M’p — — D wgg

with certain constant C’ > 0. Then by the equivalence between [Div(S p)land p p and
Theorem 5.2.2 - (i), we get for p > 1,

C/
< . (53.5)
p

1
P —[Div(S,)] —c1(L, h
p<HP[ WSl - el > =

alogp)
>
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Since ) » % < 00, we conclude exactly 1.3.2 - (ii). O
Remark 5.3.2 The probability inequality (5.3.5) has a similar nature as our large devi-
ation estimates (1.4.6) (whose proof is given in the next subsection). In fact, from
(1.4.6), one can also deduce the equidistribution result for S, on U but without the
convergence speed O(log p/ p). If we take the sequence A, = §pin(5.3.4)and (5.3.5),
then we get

1
P, (H;[Div(sp)] —ci1(L, h)

> 8| < C'p?e=ir, (5.3.6)
U,-2

For a given §, the above inequality is less sharp than (1.4.6).

5.4 Large deviation estimates and hole probability

In this subsection, we will prove Theorem 1.4.2 and Proposition 1.4.3, which consists
of the arguments in [25, Subsection 3.3-3.6] with small modifications. We always
assume the geometric conditions in Sect. 1.1. For an open subset U C X, s, €
H(Oz)(Z, L? ® E), set

MY (sp) = sup |sp(X)]n, - (5.4.1)
xeU

The following proposition is an extension of [25, Theorem 1.4 and Proposition 1.9] for
semipositive line bundles, as an application of Proposition 1.2.4 and Theorem 1.4.1.

Proposition 5.4.1 Let U be a relatively compact open subset in X. For any § > 0,
there exists Cy 5 > 0 such that for all p > 1,

P, ({s,, : ‘log./\/l[l{(sp)‘ > 5p}) < e~Cust’®, (54.2)

As a consequence, there exists C b s > O such that for all p > 1,

P <{s :/IIOglsl |w2>5p}><e%ﬁp2. (5.4.3)
p p v pln, z <

Proof At first, the proof of (5.4.3) follows from the same arguments as in [25, Sub-
section 3.4] and (5.4.2). So we now focus on proving (5.4.2).
As explained in [25, Subsection 3.3], the proof of (5.4.2) consists of two parts:

(1) Using the uniform upper bound on B, (x) from Proposition 1.2.4 and proceeding
as in [25, Subsection 3.1] (in particular, [25, Corollary 3.6]), then we get

P, ({sp : MY(sp) > 65‘"]) < e Cuar’,
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(2) Since X5 is an open dense subset of X, then for any (non-empty) open subset
U, we can always find a small open ball in B C U N X, such that the expansion

in Theorem 1.4.1 for N, (x, y) holds for x, y € B. Then we consider a sequence

of lattices I", in B with mesh ~ \/Lﬁ and proceed as in [25, Subsection 3.3], we

conclude
P, ({s[, : ./\/lg(Sp) < e_ap}> < e~Cusp®,

In this way, we get (5.4.2). The proposition is proved. O

Remark 5.4.2 Since Proposition 1.2.4 gives the global uniform upper bound for B, (x),
if U is an open subset but not relatively compact in X, (5.4.2) still holds.

Now we are ready to prove Theorem 1.4.2.

Proof of Theorem 1.4.2 Let us start with Theorem 1.4.2 - (i). Fix ¢ € €°(X) with
supp ¢ C U, by Poincaré-Lelong formula (1.3.3), we have

1 =1 — 1
<—[DiV(Sp)],<p>—/ wci(L, h) = —/ logISplh,,aagoJr—(C1(E,hE),¢)-
p = Pt Jx p
544

Since ¢ has a compact support in U, so has dd¢. Then

/—1 _
'—/ log[Spln, d0¢
P Jx

lpllg
< —=4 / log|S, ()1, | @5 (x).  (5.4.5)
pr U

We fix a sufficiently small ¢ > 0 such that
5 —2e>0.

Since the term %cl (E, h®) converges to 0 as p — oo, there exists an integer pg € N
(depending on (E, h%)) such that for all p > py,

ellglle2
< el |
4

1
‘—<c1<E,hE>,¢>‘ (5.4.6)
p

Applying (5.4.3) to the right-hand side of (5.4.5) with § — 2¢, we get, for p > 1,

]P’(l/ ‘log|Sp(x)|h ‘a));(x) > 6 —28) < e, (5.4.7)
pPJu p
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For p > po, except the event from (5.4.7) of probability < e~¢? 2, we have that, for
allp € €°(U),

1
’<;[D1V(Sp)] —ci(L, h), §0>‘

lellg2 1
< ¢/ [l0g 1S ()l | @3 (6) + |~ (1 (B, 1E), o)
pr U 14
1 —¢&
<;(||<p||<gz<u>(8—28>+e||<p||%zw>)<||<p||%z(y) —, (543

Equivalently, except the event in (5.4.7) of probability < e’sz, we have

d—e¢
< . 549

1
[Div(S,)] —c1(L, hr)
U,—2 4

5

Hence (1.4.6) follows.

Now we consider Theorem 1.4.2 - (ii). If U is still relatively compact in ¥, then
(1.4.7) follows from (1.4.6) and the arguments as in [25, Subsection 3.6]. However,
here we allow U to contain the punctures. Since the line bundle L is positive on X, the
arguments [25, Subsection 3.5] (to control the vanishing order at punctured points)
together with Proposition 5.4.1 show that [25, Theorem 1.10] still holds in our case.
As a consequence, the arguments as in [25, Subsection 3.6] still apply and we get
(1.4.7) in full generality. Finally, using Borel-Cantelli type arguments to (1.4.7), we
get (1.4.8). O

Proof of Proposition 1.4.3 The upper bound (1.4.9) follows directly from (1.4.7) with
8 = Areal (U). The lower bound (1.4.10) follows from the same arguments as in [43,
Subsection 4.2.4] (see also [25, Subsection 3.7]). ]

5.5 Smooth statistics: leading term of number variances
Following Shiffman and Zelditch [41, §3], we now introduce the variance current of
[Div(S,)]. Let Ty, mp : ¥ x ¥ — X denote the projections to the first and second
factors. Then if S and T are two distributions on X, then we define a distribution on
Y x X as follows

SRT :=na{SAn;T. 551

In particular, [Div(S )] X [Div(S )] defines a random distribution on ¥ x X. In the
same time, we introduce the following notation: for a current 7 on ¥ x X, we write

AT =T + T, (5.5.2)

where 91, 9, denote the corresponding d-operators on the first and second factors of
¥ x X. Similarly, we also write 7 = 01T + 927T.



Semipositive line bundles on punctured Riemann surfaces. .. Page 53 0f61 38

Definition 5.5.1 The variance current of [Div(S )], denoted as Var[S ], is a distribu-
tion on ¥ x X defined by

Var([S,] := E[[Div(S )] ¥ [Div(S,)]] — E [[Div(S,)]] K E [[Div(S)1]
(5.5.3)

Now we consider only the real test functions. For ¢ € €2°(X, R), we have
Var [([Div(S )], ¢)] = (Var[S,], ¢ K ). (5.5.4)

For ¢t € [0, 1], we set the function

~ 1 [ log(l —s) -

This is an analytic function with radius of convergence 1. Moreover, for z ~ 0, we
have G (1) = O(t?).
Recall that N, (z, w) is the normalized Bergman kernel defined in (1.4.1).

Definition 5.5.2 (cf. [41, Theorem 3.1]) For (z, w) € ¥ x X, define

~ | N og(l —
0p(z,w) i= G(Ny(z, w)) = —— og(l —s) ds.

5.5.6
472 0 N ( )

Following the calculations in [41, §3.1] and using Theorem 1.4.1 and Lemma 4.5.1,
we have the following results for Q ,(z, w) on the open set Xy x X.

Proposition 5.5.3 (cf. [41, Lemmas 3.4, 3.5 and 3.7]) Let U be a relatively compact
open subset of X such that U C X».

(i) Then there exists an integer pg € N such that for all p > po, Bp(z) never
vanishes on U. Moreover, for all p > po, the function Q p(z, w) is smooth in
the region U x U\Ay (Ay denotes the diagonal) and it is €' on U x U.

(i1) Fix b > 0 and € > 0, then for all sufficiently large p and forx e U, Z € T, X
with | Z| < by/Tog p, we have

0,(x, exp,(Z/y/P)) = G (exp {—e0|ZP/4}) + O(p71/2), (55.7)
where c¢(x) is defined in (1.2.6).
(iii) For given k, £ € N, there exist a sufficiently large b > 0 such that there exist a
constant C > 0 such that for all z, w € U, dist(z, w) > b/log p/p, we have

VL, 0,z w) < Cpt. (5.5.8)

The same proof of [41, Theorem 3.1] (see also [42, §3.1]) together with Proposition
5.5.3 - (i) shows the following result.
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Theorem 5.5.4 (cf. [41, Theorem 3.1]) We assume the same conditions on %, L and
E as in Theorem 1.2.1. Let U be a relatively compact open subset of X. Then for
sufficiently large p, we have the identity of distribution on U x U,

Var[S,lluxy = —910192020,(z, w)|uxv = (V—183),(v—188)1, Q »(z, w)|Uxv -
(5.5.9)

Recall that the operator .Z (¢) and the test function space 73 (L, ) are defined in
Definition 1.5.1. Now we give the proof of Theorem 1.5.3.

Proof of Theorem 1.5.3 Fix ¢ € T3(L, h) with 3¢ # 0, and let U be a relatively
compact open subset of ¥ such that suppg C U. Note that U may contain the
vanishing points of R .

Since .Z(¢) vanishes identically near X, then there exists a sufficiently small
S > 0, such that

$(¢)|V(RL,5) =0, (5.5.10)

where V(RL, 8) :={z € ¥ : dist(z, Xy) < 8} is the closed tubular neighbourhood
of X, in X. We write

U = U, (8) UUs(8), (5.5.11)
where U1(8) := U N V(RL,8), and U»(8) = U N (T\V(RL, 8)) is a relatively

compact open subset of X;.
Then by (5.5.9), (5.5.10) and (5.5.11), we have

Var[([Div(S)], ¢) ] = — fU U(B&o(z)) A (339 (w))G (N, (z, w))

- / (370(2)) A (TG (N (2, w))
Uz (8)x Uz (8)

(5.5.12)

Therefore, the calculation reduces for the subset U, (§). By construction of U (§),
Proposition 5.5.3 - (ii) and (iii) hold uniformly for z, w € U>(§). Then we can proceed
as in [42, §3.1] (see also [26, Proof of Theorem 6.4]), we conclude (1.5.6). O

Remark 5.5.5 Note that following the work of Shiffman [39], one can obtain the full
expansion of the variance Var[( [Div(Sp)], (p)] and calculate the subleading term.

For better understanding on the vanishing points of R and the space T3(L, h),
let us introduce an intuitive but nontrivial lemma; we refer to the short article [4] for
a proof.
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Lemma 5.5.6 Let o be a smooth (1, 1)-form on T such that it only vanishes on a com-
pact subset of X and with finite vanishing orders. Set V(a) := {z € £ : a(z) =0},
and for § > 0, set

Ve, 8) ={z e X: dist(z, V(@) <8} C .

Then there exist constants 8o € 10, 1[, Co > 0 such that for any 0 < § < 8y, we have

/ ws. < Cos. (5.5.13)
V(a,8)

As a consequence of the above lemma, there are always test functions ¢ in 73 (L, h)
such that the vanishing points of .Z (¢) near T, have arbitrarily small size. For example,
consider the set U;(8) given in (5.5.11), by Lemma 5.5.6, there exists a constant
Cy > 0 independent of § such that

/ wy < Cyl. (5.5.14)
Ui(9)

If  is an arbitrary real test function on ¥ with support in U, then we can modify
the values of ¢ on Uj(8) to construct a real test function s such that: it coincides
with ¥ outside U1 (8) and is locally constant on Uj(§/2); it satisfies

HW—%

(50(2) < ”‘(// “%’0(2)

This way, we get 1}5 e7T3 (L, h), and

Pso (hmsup 1Y, () = Y, (¥5)| < cwnwnwm)):l. (5.5.15)

p—>+

Since § is arbitrarily small, we can view %Yp(l%) as a §-approximation of %Yp(lﬂ).

5.6 Smooth statistics: central limit theorem for random zeros
Let us recall the main result of [44, §2.1]. Let (T, i) be a measure space with a finite

positive measure p (with (7)) > 0). We also fix a sequence of measurable functions
Ay : T —> C,k € Nsuchthaton T,

dlAmPF =1 (5.6.1)
k

We consider a complex-valued Gaussian process on T defined as

W) =) mAr(), (5.6.2)
k
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where {n;} is a sequence of i.i.d. standard complex Gaussian variables. Then for each
teT,W(t) ~ Nc(0, 1). The covariance function for W is py : T x T —> C given
by

ow(s, 1) i=E [W(s)W(z)] =Y A A, (5.6.3)
k

Let {W,} ,en be a sequence of independent Gaussian processes on T' described as

above, and let p, (s, t) (p € N) denote the corresponding covariance functions. We
.. . 2

also fix a non-trivial real function F € £L>(Ry, e™" /%

function v : T — R, set

r dr), and a bounded measurable

Zp = /T F([W,0)|) ¥ @)du@). (5.6.4)

Sodin and Tsirelson proved the following result.
Theorem 5.6.1 ([44, Theorem 2.2]) With the above construction suppose that
(i)

S S e O Y @Y 0 duts) dut)
p=-teo supyer [ |pp(s. 0] dp(r)

fora = 1if f is monotonically increasing, or for all « € N otherwise;

(ii)

lim sup/ |,op(s,t)| du(r) = 0.
TJT

p—>—+0o0 se

Then the distributions of the random variables

Z, —E[Z)]

V Var[Z,]

converge weakly to the (real) standard Gaussian distribution Ng (0, 1) as p —
+o0.

(5.6.5)

Now we are ready to present the proof of Theorem 1.5.2.
Proof of Theorem 1.5.2 Let us use the same notation as in the proof of Theorem 1.5.3.
Fix ¢ € T3(L, h) with 3d¢ # 0, and fix a sufficiently small § > 0 as desired.

By (1.3.3), (1.5.4) and (5.5.10) - (5.5.11), we have

1 —
V)= [ tog|s,00l,, (VET080) @0+ (per(Loh) + en(E.hE). ).
U2(9)
(5.6.6)
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Let f : Ua(8) — L, ¢ : Uy(§) —> E be the continuous sections such that
[f()|n = 1, [e(2)|,2 = 1 on U, (8). For each p, fix an orthonormal basis {S;’};l":] of
H(Oz)(E, L? ® E). Then on U (5), we write

§7(2) = a} () 1%P(2) ® e(2). (5.6.7)

Then we can set Af () = af (z)/+/Bp(z), which forms a sequence of measurable
functions on U3 (8) satisfying (5.6.1). Then we have the identity on U (8)

= W,(@) %7 (2) ® e(2), (5.6.8)

where W), is the Gaussian process on U, (8) constructed as in (5.6.2). The covariance
function pp(z, w) for W), is given by

lpp(z, w)| = Np(z, w). (5.6.9)

We take F(r) = logr, (T, 1) = (U2(8), c1(L, h)luys), ¥ (@) = 2 Z(@)()
which satisfies the conditions in Theorem 5.6.1. Then let Z , (¢) be the random variable
defined as in (5.6.4) for W), on U>(9).

Then (5.6.6) and (5.6.8) imply that

Yp(p) =Zy(p) +C)p, (5.6.10)

where C, is a deterministic constant. Thus the asymptotic normality of Y, (¢) is
equivalent to that of Z, ().

Therefore, the last step is to check the conditions (i) and (ii) in Theorem 5.6.1 for
Np(z, w) with z, w € Uz(8) and for (T, ) = (U2(8), c1(L, h)|y,(s))- Since U (8) is
a relatively compact open subset of >, Theorem 1.4.1 applies and we proceed as in
the last part of [42, §4 Proof of Theorem 1.2] to complete the proof. O

Appendix: Jet-bundles and the induced norms

In this appendix, we introduce the necessary notation and notions for the jet bundles
on X. Let (F, h') be a real (or complex) vector bundle on ¥ with a Euclidean (or
Hermitian) inner product 47,

For x € X, let G,(F) denote the germs of local sections of F at x. For £ € N,
s € Gy(F), the £-th jet of s at x, denoted by jfs, is the equivalence class of s in
G (F) under the equivalence relation: two germs are equivalent if on some open
coordinate chart containing x where the bundle F is trivialized, they have the same
Taylor expansions at x up to order £. Let J¢(F), denote the vector space of all £-th
jets jfs, s € G.(F). Then JY(F), is finite dimensional, and actually the fibration
]_[er JY(F), — T defines in a natural way a smooth vector bundle on X, which is
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denoted by JE(F) and called the £-th jet bundle of F on X. Note that JO(F) is just F
itself.

For an integer £ > 0, let nf_l s JE(F) — J*1(F) denote the obvious projection
of vector bundles. Observe that there exists a short exact sequence of vector bundles
over ¥ (cf. [29, pp.121])

incl

71’[

0 SIT*S®F JYF) — 5L s gl (Fy > 0, (A1)

where S¢T*¥ is the £-th symmetric tensor power of T*%. The map incl is defined
as follows: for x € X, we fix a local chart U around x where F is trivialized as Fy;
then one element & in (SZT*E ® F), canbe constructed as dfi Odfr O --Odfi Qv,
where © denotes the symmetric tensor product, v € Fy and fi, ..., f¢ are smooth
functions on U which vanish at x. Then we define incl(§) := jf (fifa:- - fe®v). As
a consequence, we have the identification of the vector bundles over X as follows,

SET*E®F§J€(F)/J (A2)

Z—I(F).

We equip the vector bundle S‘7*% ® F with the metric induced by g7 * and A ¥
Fors € G, (F),let jis/jtls € (S'T*X ® F), be the unique element determined by
isomorphism (A.2), and let | jfs / jf_1s| denote the corresponding norm. For x € X,
let (Z1, Z>) € R?2 = T, X denote the normal (geodesic) coordinate centred at x. Then
for any germ s € G, (F), we have

2 1 |alels

Y B -

JEs) i s =) 1322 ©) (A3)
aeN? hx
Ja]=¢

This way, we can define a norm on J t(F) as follows, for s € Gy (F),
5 ¢
| = D ks SR, (A4)
k=0

00 /:—1¢p .
where |j/s/j s = [s(0)l,F.
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