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Variations of the short-lived decay products **?W and '#?Nd that formed approximately during the first 60 and
500 million years after solar system formation are pivotal in our understanding of Hadean processes and ho-
mogenization of Earth’s mantle. For example, a coupling of 1*?Nd and '82W anomalies for the Deccan-La Réunion
DVP plume has been previously suggested to mirror a combined involvement of core-mantle interaction and Hadean
Recycled material silicate material, possibly stored in Large Low Shear Wave Velocity Provinces (LLSVPs). However, the limited
LLSVP availability of such short-lived isotope data for basalts from the Deccan Volcanic Province (DVP) made it difficult
to assess this model closely. In this study, we provide new combined p'#?Nd and p'®?W data for ten selected
samples of the DVP and one TTG from the Dharwar Craton basement, now covering different mantle end-
members of the DVP. Additionally, we provide new u'*>Nd data for six volcanic rocks from La Réunion that were
previously analyzed for 182y, We do not find evidence for a correlation between u'*>Nd and p®?W in contrast to
previous suggestions. Our data show that the involvement of mantle lithosphere and crustal components in-
fluences the u*®?W compositions of the DVP samples. Values of p'8?W (-4.2 + 3.0) of such contaminated DVP
samples overlap with the compositional field of volcanic rocks from La Réunion (-4.9 + 1.5). The asthenospheric
endmember of the DVP displays resolvable larger p'®2W deficits as low as -12.0 + 2.3. Additionally, the
asthenospheric DVP endmember also displays more unradiogenic 2°°Pb/2%*Pb ratios and low A207Pb/2°°Pb
compared to La Réunion lavas and DVP lavas that assimilated lithospheric material. With regards to the two
endmember models previously proposed for W isotope anomalies in mantle plumes, neither core-derived W nor
an ancient silicate component with anomalous *8?W can be completely ruled out at this stage. However, due to
the covariation of Pb and W isotopes and lower W/Th ratios in asthenosphere-derived DVP lavas, we currently
favour a recycled mafic restite component of Hadean age as a source for the ?W deficits in the Deccan-La
Réunion plume.

1. Introduction

Short-lived decay systems, especially 82Hf-182W (t;,, ~ 8.9 Ma;
Vockenhuber et al., 2004) and °Sm-14’Nd (t1/2 ~ 92 to 103 Ma; Chiera
et al., 2024; Friedman et al., 1966), provide important vestiges of pro-
cesses that occurred during the early formation of the solar system and
the Earth. As measurement protocols became more advanced, it is now
possible to resolve variations of 182W and *2Nd of around 3 to 4 ppm (e.
g., Bennett et al., 2007; Caro et al., 2006; Hasenstab-Diibeler et al., 2022;
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Mundl et al., 2017; Peters et al., 2018; Saji et al., 2016; Tusch et al.,
2022; Willbold et al., 2011).

While the majority of modern igneous rocks do not exhibit resolvable
82w or n!*2Nd anomalies (ppm deviations from a terrestrial reference
material; e.g., Andreasen et al., 2008; Cipriani et al., 2011; Jansen et al.,
2022; Peters et al., 2024; Willbold et al., 2011), some ocean island ba-
salts (OIBs) and continental flood basalts related to deep-rooted mantle
plumes exhibit negative u'®2W anomalies (e.g., Jansen et al., 2022;
Mundl et al., 2017; Mundl-Petermeier et al., 2019; Peters et al., 2021;
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Rizo et al., 2019). In the case of the Deccan-La Réunion and Samoa
plumes, resolvable p142Nd variations were also observed (Horan et al.,
2018; Peters et al., 2018, 2021). Global correlations of *He/*He with
u'82W and apparent local correlations with u!*?Nd such as in OIBs from
La Reunion were interpreted to either mirror core-mantle interaction
where the core displays '®?W deficits (e.g., Mundl et al., 2017;
Mundl-Petermeier et al., 2019; Rizo et al., 2019) or the incorporation of
material in the deep mantle that experienced Hadean silicate differen-
tiation within the first 60 to 500 Myrs after solar system formation (e.g.,
Peters et al., 2018, 2021; Tusch et al., 2022). Selective diffusion of W
from Earth’s core (e.g., Yoshino et al., 2020), metal-silicate equilibration
(e.g., Humayun, 2011), oxide exsolution (Deng and Du, 2023; Rizo et al.,
2019) or metal infiltration into Earth’s lowermost mantle (Otsuka and
Karato, 2012) are processes that were suggested to incorporate
core-derived '82W deficits in mantle plume source regions. However,
metal infiltration has been suggested to be the least likely due to the lack
of an expected general enrichment in highly siderophile elements (HSE)
in OIB that also display '®?W deficits (e.g., Mundl et al., 2017; Walker
et al., 2023).

Seismically anomalous structures named Large Low Shear Wave
Velocity Provinces (LLSVPs) and Ultra Low Velocity Zones (ULVZs) at
the core-mantle boundary have been suggested to be reservoirs
conserving primordial 3He/*He, u'82W, and p'#?Nd signatures (e.g.,
Labrosse et al., 2007; Mundl et al., 2017). Alternatively, it was also
suggested that primordial residual material from silicate differentiation
might survive in the lower to mid-mantle as streaks or “blobs” (e.g.,
Ballmer et al., 2017). Whether this primordial component is stored at the
core-mantle boundary or in the mid-mantle, is still an open question.
This issue might be resolved by investigating the spatio-temporal evo-
lution of u'®2W and p'#?Nd for single mantle plume systems that have
been suggested to potentially entrain such primordial materials at
different proportions through their lifetime (e.g., Jones et al., 2019;
Williams et al., 2015). Detailed investigation of a single mantle plume
throughout its eruptive stages (e.g., plume head to tail) might therefore
provide comprehensive information on how primordial components are
entrained into mantle plumes (e.g., Jones et al., 2019; Williams et al.,
2015), as well as the formation of the primordial components itself. Two
previous studies by Mundl-Petermeier et al. (2019) and Peters et al.
(2021) that investigated the Iceland plume and the Deccan-La Réunion
plume, respectively, indicated that a plume head and tail can tap the
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same primordial component (Peters et al., 2021), albeit that appears not
always to be the case (e.g., Jansen et al., 2022; Mundl-Petermeier et al.,
2019). In contrast, combining information from separate ocean island
basalt suites may distort interpretations on the origin of the u'82W and
n'*?Nd anomalies, since not all plume systems are necessarily affected
by the same primordial components (e.g., Jackson et al., 2020). As an
additional problem, voluminous melts from plume heads that can lead to
the eruption of Large Igneous Provinces are often affected by assimila-
tion of crustal and lithospheric mantle components (e.g., Basu et al.,
2020; Hoyer et al., 2023; Pakulla et al., 2023; Peng et al., 1994), thus
requiring a more detailed investigation of the effect of assimilation
concerning p'®2W and p'*?Nd compositions.

To assess the evolution of a mantle plume from head to tail, we
investigated basaltic samples from the ca. 66 Ma Deccan Volcanic
Province (DVP) for their u'®?W and p'*?Nd compositions. The DVP taps
the plume head of the well-studied La Réunion OIBs of Quaternary age
(e.g., Jansen et al., 2022; Peters et al., 2018, 2021; Rizo et al., 2019).
Additionally, we provide new p**?Nd and Pb isotope data for samples
from La Réunion that have been previously investigated for u'%2w
(Jansen et al., 2022). Using the newly acquired data we can provide new
information on the spatio-temporal evolution of the Deccan-La Réunion
plume and its primordial component in the deep mantle.

2. Geological Background

The Deccan Volcanic Province (DVP) is located in central-western
India and covers roughly 500,000 km? on a basement including four
Archean Cratons (Fig. 1). The volcanic eruption was most likely trig-
gered by the ascending La Réunion plume that connected with the In-
dian lithosphere possibly as early as 70 Ma (Srivastava et al., 2020). This
event caused delamination of the Indian lithospheric mantle (Paul and
Ghosh, 2021; Sharma et al., 2018) and dispersed lithospheric mantle
and plume material across the Indian upper mantle (Bredow et al., 2017;
Paul and Ghosh, 2021). While magmatic processes persisted until
approximately 63 Ma (Sheth and Pande, 2014), the major eruptive
phase of the DVP took only around one million years from 66.5 to 65.5
Ma (e.g., Schoene et al., 2019). The eruption might have taken place in
three to four magmatic pulses (e.g., Schoene et al., 2019), potentially via
a multi-magma chamber system (Mittal et al., 2021; Pakulla et al.,
2023). Trace element and isotope studies further stress the influence of
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Fig. 1. a) Map of the Indian Ocean showing the relative distance between La Réunion and the DVP. The suggested Hot Spot track, ocean floor plateaus, and ridges
were added for reference following White and McKenzie (1989). b) Map of India and La Réunion depicting the Archean cratons, the extent of the DVP, and the
approximate sample locations for this study (orange stars) and DVP samples from Peters et al. (2021) (blue stars). The figure was modified from Pakulla et al. (2023).
Abbreviations are DC & SGT: Dharwar Craton and Southern Granulite Terrane, BaC: Bastar Craton, AC: Aravalli Craton, BuC: Bundelkhand Craton, PDN: Piton de

Neige, PDLF: Piton de la Fournaise.
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the La Réunion plume in the generation of the DVP lavas and have ~
indicated a significant contribution of ascending lower mantle material ;
to the formation of the flood basalts (Basu et al., 2020; Pakulla et al., 21 e @ NG NG I ONMHe ok O
2023; Peng et al., 1994; Peters et al., 2021; Peters and Day, 2017). A ** MM mMAYR A=A ¥ A0V Y oad
primary DVP melt fed by significant amounts of such lower mantle @
. ; e S
material evolved to the chemical compositions of the lava flow forma- )
=
tions observed today by assimilation of crustal and lithospheric mantle E °
. o
materials (e.g., Basu et al., 2020; Cox and Hawkesworth, 1985; Peng Eloexr © mo wvwo v wvwalls 2o =
. . L. . . 870 86 @ |\ 6 SN S8 5 B~ N  ~ o _
et al., 1994). The resulting geochemical variations including °’Sr/®"Sr, =| 1 BT [ i R ror 5
143Nd/*Nd, and Pb isotopes, as well as major and trace element S =
s . . . L 2
abundances led to the distinction of 12 chemostratigraphic formations 2 Z
along the stratigraphy of the volcanic succession (e.g., Cox and Haw- HlRS IIE8 2% 3 OS2382 383 gg
kesworth, 1985; Suppl. fig. 2). In that sense, the Ambenali formation is = é
typically suggested to display the least contaminated endmember, while ) 8
the Bushe formation with radiogenic Sr and unradiogenic Nd isotope z ° o oo~ " 1 I
compositions was explained to have assimilated crustal and lithospheric 228 3 Si TR T2 % 27973 9938 in g
mantle material (Basu et al., 2020; Cox and Hawkesworth, 1985; Peng S = g‘”
et al., 1994). Chemical variations that are intermediate in composition 3\'; E’,g
between the Bushe and Ambenali formations typically characterize the 3 A2 QWY 28 2 2RI ogoni= §
other DVP formations indicating the admixture of variable amounts of = I8
distinct crustal and lithospheric mantle components (e.g., Basu et al., g § =
2020; Peng et al., 1994). It is speculated that the admixture of wall rock = N & -0 |3
. . s gl xR N¥h I B L T I B = =
material governs the chemical variations of the DVP lava flows and was ST ONYNY g9 q weogn 7725
inherited during the magma chamber stage (e.g., Cox and Hawkesworth, 5 EH?:
1985; Hoyer et al., 2023), whereas others suggest that the chemical 8 5 %
compositions might be rather explained by mixing prior to a magma 3} NS homen 9% 9 —weoan noo :;Z S
. . . ¥ T M o, N N o MmN M T AN N wn —
chamber stage either in the plume source or during melt ascent through - 5
the lithospheric mantle (e.g., Basu et al., 2020; Pakulla et al., 2023). g gz mg
~ - @
z =3
1 d hod £33 330a aox 2 H.vmz\.S z\.:\_S =
3. Samples and methods T TR AR G | Seede1 S ggg
— Z o
O N =
In total, 17 samples were investigated in this study for their i 3
182y /184y, 1421434 /144Nd, and partially for their Pb isotope compo- a QY FILN OI@ T AT ge o2aq|d %
-
sitions. Out of these, 6 samples from La Réunion were previously - § g
analyzed for 182w /184w and 17°Hf/V77HS (Jansen et al., 2022). Four g ‘f 2
samples from the Piton de La Fournaise volcano and two additional = + - o | %
=z A > 9 X
i i : e ; gy 2o QY @ Y= -ScY oo Z O
samples from the Piton de Neiges volcanic edifice were analyzed (Fig. 1). El9e ®8S9 SO 8 BSOS Soald
Most of the samples from the DVP were sampled in close spatial prox- 5 S g;
imity to the Western Ghats Escarpment, whereas sample MTi-18 origi- N 32 H_;L
nated from the Northern DVP south of Mhow (see Pakulla et al., 2023 for | NO MmN ONNOAIANNMNNOY| o 8
more information; Fig. 1). The studied samples belong to the Jawhar, H posaaaeseeoaoaeoaaeane sl g Q
Neral, Bushe, Poladpur, Ambenali, Mahabaleshwar, and Desur forma- < % ©
tions, respectively (Suppl. fig. 2). The investigated samples therefore g émg
cover almost the whole eruptive cycle of the DVP. Additionally, one F|love - N - ® o anal 87
. L. L. ) T |o-omcoaccmo oo nonNadNS| o
tonalite-trondhjemite-granodiorite (TTG) suite sample from the Dhar- sl s Tl Taddladldss =1 1 1|3%t
war Craton with an age of ~3.4 Ga (SG 34.1; Ravindran et al., 2023) was =} % §
. . . e X N
investigated for its plSZW, p142Nd, and '**Nd/!'**Nd compositions as n Z o
: . PlormyoomToNoVUONORN AT O[T
well as its trace element abundances. Moreover, previously reported HloodaddrdadadGdBdadT B NNy =
trace element, 87Sr/%Sr, 143Nd/144Nd, 176Hf/177Hf, and 206207, = d[\o" 3
208py, 204pp data for the DVP, La Réunion, and TTG samples by Jansen E 3 ] é
et al. (2022; and references therein), Ravindran et al. (2023), and Pak- ; ;2 © < M amn N § 3
ulla et al. (2023) were considered for this study. 'E L|2T9C238S882339829997789 72| ¢
According to Pakulla et al. (2023), the DVP samples can be assigned =g 3 '§
to three distinct magmatic differentiation trends namely, the Group 1 to 215 Na & AN mme me T ES
3 differentiation trends. Samples studied here correspond to the Group 2 -%'3 g ) E g §
and Group 3 trends which we will refer to throughout the manuscript E & & g E
« - T
(Table 1). The Group 2 differentiation trend (Table 1) was suggested to 5 . - . 8 g g g ol e % g
be derived from a La Réunion-like melt or upper mantle melt that ? ’§ 3 8 =z % £ g £ ‘E;_ g == i £ E ?,5 E 5
. . . . o S 38 S = SF 2
assimilated metasomatized lithospheric mantle and, to a lesser extent, 3| & e E o ELE S g _E‘G = E é‘- = % E ‘{: £ g =8 =
. . s b1 © 8 8 = =
crustal material (Pakulla et al., 2023). The Group 3 differentiation trend B E é é é é E E “é 2 § é i; g EE ’gv g _‘Dé’ g = E
w = b=
(Table 1) displays asthenosphere-like trace element and isotope com- S = 8 £
positions (Pakulla et al., 2023). For Group 3, the mixing of upper g g I8
mantle-derived melts and plume melts was previously suggested g é“ _§‘ a = o bt § ;
(Pakulla et al., 2023). Samples of Group 1, which were not studied for =~ & 2lazz2n I 'E e 28 § - g gz g g
- . . 5 R0 g B R o | S S
182y and '#?Nd due to lack of sufficient sample material, were explained = S; E é 5 &3’ é 5 E BEEEE E 3= E EEEdo| 3=
3 o
to have incorporated significant amounts of crustal and lithospheric S
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mantle components due to radiogenic Sr and Pb isotope compositions
and unradiogenic Nd and Hf compositions in combination with upper
crust-like trace element patterns (i.e. enrichment in incompatible ele-
ments and negative Nb-Ta anomalies; Pakulla et al., 2023).

Isotope measurements were conducted at the University of Cologne
using a Thermo Fisher® Neptune© Plus Multicollector ICP-MS (MC-ICP-
MS). More detailed information on digestion, chemical separation, and
measurement procedure can be found in Tusch et al. (2019; 2021; 2022)
for 182W, Hasenstab-Diibeler et al. (2022) for 142Nd and 143Nd, and
Schuth et al. (2011) for Pb isotopes, as well as in the supplements. For
u'*2Nd, we modified the previous protocol in obtaining very high Nd
yields of >99.5 % during the Eichrom© LN Spec resin step to prevent
any mass-dependent Nd isotope fractionation that could affect measured
;.1142Nd compositions (Garcon et al., 2018; Hasenstab-Diibeler et al.,
2022; Saji et al., 2016; Wang and Carlson, 2022). This modification,
however, also leads to a poorer Pr-Nd separation compared to that in the
original protocol of Hasenstab-Diibeler et al. (2022). To eliminate any
potential effects caused by *'PrH*, we therefore have additionally
doped individual JNdi-1 splits to match the Pr/Nd ratio of each sample
(Saji et al., 2016). For mass-bias correction of u142Nd and '**Nd/ 144Nd,
we used the exponential law and a *8Nd/***Nd ratio of 0.241578 and
for p'%2W we used the ®W/'¥*W ratio of 0.92767. Ratios of
1435Nd/'*‘Nd have been measured simultaneously during the
142Nd/M*Nd sessions and are given relative to a 1**Nd/**Nd value of
0.511859 for La Jolla (Lugmair and Carlson, 1978) which is equivalent
to a '*3Nd/!1**Nd of 0.512115 for the JNdi-1 (Tanaka et al., 2000).

4. Results

The results of our high-precision measurements are shown in Ta-
bles 1 and 2. More details on our u'®2W and u'*>Nd measurements can
also be found in the supplements. In short, measurements of ‘82w for
two in-house reference samples (160245 and AGC-351) are well within
the range of previously reported values (Tusch et al., 2022). We recal-
culated the external reproducibility with data for the AGC-351 from
Tusch et al. (2022) that were prepared on the same instrument using the
same analytical protocol, which now results in a long-term average of
82w of —0.6 + 2.1 (2 s.d., n = 30). For u*?>Nd measurements, our
in-house reference material LP-1 has been used and displays u'**Nd
values (p142Nd = 0.4 + 2.1 and —1.8 + 1.9) identical within error to
previously reported data (1'*?Nd = 0.4 + 1.4, 2 s.d., n = 23, Hasen-
stab-Diibeler et al., 2022). Additionally, the sample AGC-351 was also
measured repeatedly for its u!*>Nd composition and resulted in a
long-term value of —1.8 + 2.5 (2 s.d., n = 15). This sample is now well
characterized and can serve as an additional in-house reference material
in future studies.

In contrast to previous studies from Peters et al. (2018, 2021) we do
not find resolvable p'4?Nd anomalies in samples from the DVP (u!*>Nd =
0.1+ 0.8, 95 % CI, n = 13) as well as La Réunion (u!*>Nd = 0.5 + 0.8, 95
% CI, n = 8) (Fig. 2). The studied TTG sample SG-34.1 from the Dharwar
Craton also does not display a resolvable u*>Nd anomaly (Table 1). The
M3Nd/ANd compositions acquired during the measurement of p142Nd
are consistent with previously measured, *°Nd/!**Nd-normalized
values for the same samples by Pakulla et al. (2023). In contrast to
u'*2Nd, we find negative u'®2W anomalies as low as —12.0 + 2.3 (TG-1;
Desur fm.). These u'®2W values overlap with previously reported p'82w
values for volcanic rocks from La Réunion (—4.9 4+ 1.5, 95 % CL, n = 18;
Peters et al., 2021; Jansen et al., 2022), but expand the compositional
spectrum towards larger 82W deficits. Interestingly, samples from the
distinct DVP groups also display distinct p'®2W values, with
lithosphere-derived Group 2 having an average of —4.2 £ 3.0 (95 % CI,
n = 5) and asthenosphere-derived Group 3 having an average of —10.1
+ 2.6 (95 % CI, n = 5), the latter being distinctively lower than the La
Réunion average (—4.9 & 1.5, 95 % CI; n = 14; Fig. 2, Suppl. fig. 1). The
Archean TTG SG-34.1, however, does not display a resolvable u'%2w
anomaly (Table 1). We do not identify a correlation of plsZW with

Table 2

Long-lived radiogenic isotopes, W, and Th concentration data of samples investigated in this study. Tungsten, Th, and '”°Hf/'”Hf for La Réunion samples (Reu) from Jansen et al. (2022). Isotope data (except 1*>Nd/***Nd)
for the Archean TTG from the Dharwar Craton (SG 34-1) are from Ravindran et al. (2023). Isotope and trace element data (except **Nd/*4*Nd) for Deccan samples are from Pakulla et al. (2023). A27Pb/2°°Pb was

calculated after Hart (1984).

APb 7/6

207Pb/204pb

143Nd/144Nd 206Pb/204pb

176Hf/177Hf

W/Th

W [ug/g]
0.363
0.331

Th [ug/g]

2.56
2.57

Group

Stratigraphy

Sample

6.1

15.602 + 0.001
15.609 + 0.001

18.908 + 0.001
18.971 + 0.001

0.512858 + 0.000002
0.512866 + 0.000002
0.512867 + 0.000003
0.512865 + 0.000003
0.512852 + 0.000002
0.512859 + 0.000002
0.512867 + 0.000002
0.512868 + 0.000008
0.512634 + 0.000002
0.512432 + 0.000002
0.512432 + 0.000003
0.512263 + 0.000003
0.512263 + 0.000002
0.512680 + 0.000002
0.512703 + 0.000003
0.512797 + 0.000001
0.512867 + 0.000003
0.512775 + 0.000003
0.512775 + 0.000002
0.512694 + 0.000003
0.512816 + 0.000002
0.510492 + 0.000002

0.283041 + 0.000006
0.283048 + 0.000005

0.142
0.129

PDLF

Reu-1

PDLF 1961

Reu-11

Reu-11 dup
Reu-13

6.8

15.607 + 0.001
15.606 + 0.001
15.612 + 0.001
15.610 + 0.001

18.894 + 0.001
18.925 + 0.001
18.974 + 0.001
18.950 + 0.001

0.283040 + 0.000005
0.283038 £ 0.000005
0.283044 + 0.000006
0.283047 + 0.000004

0.133
0.116
0.112

0.281

2.11
2.65
2.01
1.30

PDLF 2002
PDLF

0.308
0.225
0.155

Reu-17

PDN, flow

Reu-18
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6.5

0.119

PDN dike

Reu-20

Reu-20 dup

DT-10

12.2

15.760 + 0.010
15.776 £+ 0.012

19.802 + 0.009
19.685 + 0.010

0.282935 + 0.000006
0.282765 + 0.000007

3.22 0.261 0.081

4.07

formation unassigned

Jawhar fm.

15.1

0.0669

0.272

DT-8

DT-8 dup
DT-11

18.9

15.826 + 0.011

19.794 + 0.010

0.282558 + 0.000007

0.0533

0.145

2.71

Neral fm.

DT-11 dup
KTF-3

15.581 + 0.001
15.674 + 0.012
15.398 + 0.013
15.478 + 0.002
15.400 + 0.010

18.519 + 0.001
19.200 + 0.009
17.701 + 0.010
18.085 + 0.002
17.637 + 0.008

0.282970 + 0.000005
0.282984 + 0.000007
0.283049 + 0.000008

0.0453
0.0904
0.113

0.0835
0.179
0.218

1.84
1.99
1.94
1.34
1.97

Bushe fm.

10.2

Poladpur fm.
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Table 3
Trace element and isotope compositions of the modeling endmembers for Fig. 3.

Indian crust LaRéunion melt  Deccan endmember

(TTG) melt
Nb [ug/gl 13.9 18.2 18.2
Th [ug/gl 10.3 1.90 1.90
Pb [pg/gl 8.70 1.27 1.27
Nd [ug/gl 28.1 22.2 22.2
W [ug/gl 0.270 0.220 0.220
Nb/Th 1.35 9.58 9.58
e13Nd -58 8.7 8.7
206pp,/204pp 20.662 18.921 16.5
207pp /204ph 18.331 15.585 15.25
A27pb/2%ph 260 4.35 -2.96
82w 2.2 —4.9 -11.0

p'42Nd in La Réunion samples in contrast to a previous study by Peters
et al. (2021) (Suppl. fig. 3).

Lead isotope data of La Réunion samples range in 2°°Pb/2%*Pb from
18.894 £ 0.001 to 18.974 + 0.001, in 2’Pb/?**Pb from 15.603 + 0.001
to 15.612 + 0.001, and in 2°®Pb/2°*Pb from 39.024 + 0.002 to 39.090
=+ 0.002 and overlap with previously reported values (cf. Bosch et al.,
2008).

5. Discussion
5.1. Deep mantle sources and involvement of lithospheric mantle
The combination of trace element and isotope systematics can

discriminate between source signatures from the asthenospheric mantle,
the lithospheric mantle, and crustal assimilation during ascent. In this

This study in blue

Deccan-Réunion Plume
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regard, canonical trace element ratios (e.g., Nb/Th, Nb/Ta, Ce/Pb; Nb/
Th ~ 15.5 £ 4.5 calculated from ridge basalts in Jenner and O’Neill,
2012) are particularly powerful, since these are not affected by the de-
gree of melting or fractional crystallization but only change due to the
involvement of lithospheric mantle and crust (e.g., Hofmann et al.,
1986, 2022; Jansen et al., 2024; Pakulla et al., 2023; Pfander et al.,
2007). In case of the DVP, where many volcanic rocks (but not all) fall
into the compositional fields of mantle-derived rocks based on
long-lived radiogenic isotopes (e.g., Basu et al., 2020; Hoyer et al., 2023;
Pakulla et al., 2023), their diagnostic trace element compositions (e.g.,
Nb/Th, Th/Ta, Nb/Zr) show strong differences (e.g., Basu et al., 2020;
Hoyer et al., 2023; Pakulla et al., 2023; Peng et al., 1994, 1998). In this
regard, Pakulla et al. (2023) distinguished the DVP lava flows based on
their diagnostic trace element compositions into three groups. Group 1
marks samples with low Nb/Th and enriched radiogenic isotope com-
positions, unlike groups 2 and 3 (Pakulla et al., 2023). Amongst these,
Group 2 samples display lower Nb/Th ratios than Group 3 samples that
display higher Nb/Th comparable to La Réunion samples (Fig. 3a). The
relative depletion of Nb in Group 1 and 2 samples suggest involvement
of crustal or lithospheric mantle components (e.g., Basu et al., 2020; Cox
and Hawkesworth, 1985; Hoyer et al., 2023; Pakulla et al., 2023),
whereas the Nb/Th compositions of Group 3 indicate an asthenospheric
mantle source comparable to the La Réunion mantle source (Pakulla
et al., 2023). The trace element variations are mirrored in their p182W
values, where Group 3 samples show resolvable larger 182W deficits than
Group 2 samples (Fig. 3a). Group 2 samples lie on a mixing array with
endmembers defined by Group 3-like trace element and p'®2W compo-
sitions and the composition of Archean crust as represented by an Indian
Archean TTG (Fig. 3a). As for Group 2 from the DVP, samples from La
Reunion also plot between these two endmembers. Likewise, these
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Fig. 2. Measured u'®>W and u'**Nd compositions of volcanic rocks from La Réunion and the DVP. Literature data for the DVP and La Réunion are from Andreasen
et al. (2008), Peters et al. (2018; 2021), Rizo et al. (2019), and Jansen et al. (2022). Additional, references for the OIB and Archean fields can be found in the
supplements. Different DVP chemical groups display unique u'®2W compositions that are resolvable from each other. Samples were grouped based on the charac-
terization of Pakulla et al. (2023). There is a resolvable difference in p'®2W between DVP Group 3 and La Réunion basalts. u'®2W was normalized to 8w /18w =
0.92767 and p'*>Nd to *®Nd/***Nd = 0.241578. Sample-standard bracketing was applied.
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simplified legend, for an explanation for each symbol, see Fig. 2 or Suppl. fig. 4. a) Nb/Th and b) e'**Ndgsma vs. u'®?W showing that Group 2 samples overlap with
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samples plot on a mixing array between La Réunion volcanics and an Archean TTG. Literature data is from Jansen et al. (2022) and Peters et al. (2021).

patterns can also be observed in p!®?W-¢!*3Nd space and
plsZW-206Pb/2°4Pb space (Fig. 3b, c). However, in the latter, Group 3
differs from La Réunion samples in their lower 2°°Pb/2%4Pb (Fig. 3c,
Suppl. fig. 4) and A27Pb/2%Pb (Fig. 4) which depicts the offset in
207pp,/206ph between a sample and the northern hemisphere reference
line (NHRL; Hart, 1984). In 207p, /204p.206pt, /204py, space, it becomes
evident that Group 3 samples partially display lower 2’Pb/2%4Pb com-
positions than La Réunion lavas, making a connection to a “modern” La
Réunion mantle source less likely (Suppl. fig. 4). Admixture of an end-
member with high 2°7Pb,/2%4Pb-206pb/2%4pb and with p'82wW ~ 0 values,
possibly represented by Archean crustal and lithospheric mantle mate-
rial, to the DVP Group 3 source could reproduce the Pb and W isotope
compositions of DVP Group 2 and La Réunion lavas (Suppl. fig. 4).

It was previously suggested that the low 2°°Pb/2%*Pb of the DVP
melts (e.g. Group 3) derived from larger amounts of Indian depleted
upper mantle material and minor amounts of lower crustal material
potentially amphibolitic or granulitic in compositions (e.g., Hoyer et al.,
2023; Pakulla et al., 2023). However, considering combined Pb, Nd, and

W isotope compositions, such a crustal component in the source of
Group 3 seems unlikely. Typical crustal rocks observed in the Dharwar
Craton basement that is covered by DVP lavas are TTGs and gneisses
which display high 2°7Pb/2%*Pb and 20°Pb/20pb, low &!**Nd, and
apparently no plsZW anomalies (Ravindran et al., 2023; Meen et al.,
1992; Fig. 3, Suppl. fig. 4). These characteristics, however, are not
observed in DVP Group 3 samples which display negative u'®2W values
and low 2°°Pb/2%4pb ratios (Fi g. 2, 4).

The Indian upper mantle, however, displays unradiogenic
206pp,/204ph ratios and slightly elevated A2%7Pb,/2%Pb values compared
to other upper mantle-derived rocks (Dupal anomaly; Dupré and Alle-
gre, 1983; Hart, 1984). While it might be possible that portions of the
upper mantle may have inherited anomalous '?W signatures, recent
studies rather indicate that the depleted upper mantle does not display
anomalous plSZW compositions (Jansen et al., 2022; Peters et al., 2024).
So far only one sample from the Indian upper mantle has been studied
for 182w and it does not display a resolvable anomaly (u!®2W = 3.5 +
3.5; Mundl et al., 2017). Thus, assuming p'82W ~ 0 for the depleted
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melts. Group 2 samples have higher A%27Pb/2%°Pb than Indian MORB consistent
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upper mantle, admixing upper mantle material to the La Réunion source
could explain the lower 2°°Pb/2%4Pb compositions of Group 3 melts, but
this cannot explain their more negative p*8?W. On the contrary, the
addition of upper mantle material to the Group 3 source could explain La
Réunion p'82W values but fails to explain the more radiogenic Pb isotope
compositions of La Réunion basalts compared to Group 3 and Indian
MORB (Suppl. fig. 4; cf. Bosch et al., 2008). Thus, considering that the
basalts from DVP and La Reunion tap a comparable mantle source, the
admixture of upper mantle material alone likely fails to explain the
composition of both groups.

5.2. Temporal evolution of 1*’Nd and 82w

Short-lived isotope anomalies in mantle plumes can mirror the
entrainment of primordial reservoirs like core material due to core-
mantle interaction (e.g., Mundl et al., 2017; Rizo et al., 2019), left-
overs from early silicate differentiation (e.g., Peters et al., 2018), and
ancient recycled crustal components (e.g. Peters et al., 2021; Tusch
et al., 2022). As plumes may tap different primordial reservoirs between
plume-head and -tail (e.g. Jones et al., 2019) or episodically different
reservoirs (Williams et al., 2015), it is possible to identify primordial
mantle domains as endmembers of compositional trends. In the case of
82w for the Deccan-La Réunion plume, we find resolvable deficits up
to —12.0 + 2.3 (95 % CI) for DVP Group 3 samples, marking one
compositional endmember. Interestingly, we also observe that the 82w
anomalies of DVP groups 2 and 3 are statistically resolvable from each
other (Fig. 2). In this regard, Group 2 samples display an average p'82w
value of —4.2 + 3.0 (95 % CI, n = 5) and Group 3 samples an average
p182W value of —10.1 + 2.6 (95 % CI, n = 5). We interpret this difference
as further evidence for distinct parental melts that fed the different
geochemical members of the DVP in good agreement with previous
suggestions (Melluso et al., 2006; Pakulla et al., 2023). The average
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u'82W value of DVP Group 3 is also distinguishable from the average
plsZW value of La Réunion lavas (—4.9 + 1.5, 95 % CI; Peters et al.,
2021; Jansen et al., 2022, Fig. 2, Suppl. fig. 1), but DVP Group 2 basalts
are indistinguishable from La Réunion basalts. It is important to note
that a previous study by Rizo et al. (2019) reported more negative u*82wW
anomalies of —15.7 + 3.2 and -20 + 5.1 for lapilli from the 2010 and
2014 eruptions on La Réunion. Such negative u'?W signatures, how-
ever, have so far not been identified by other studies for younger lavas
erupted in 2001, 2002, and 2007 (Jansen et al., 2022; Peters et al.,
2021). These more negative u'82W signatures may hint toward episodic
entrainment of even more primordial material, but this remains specu-
lative. The distinct u!32W groups are also supported by further statistical
modelling and evaluation such as student’s t-tests as well as Monte Carlo
Bootstrap simulations (see supplements), also when considering data by
Rizo et al. (2019). In summary, we propose that the lower u'82W values
of the asthenosphere-derived DVP Group 3 compared to the slightly
higher values of primitive La Réunion basalts provide evidence for a
change in the incorporation of primordial material into the Deccan-La
Réunion plume.

Previously reported n'*>Nd anomalies for basalts from the Deccan-La
Réunion plume were suggested to originate from tapping an isolated
source in the mantle that carries a signature of magma ocean differen-
tiation, as indicated by a correlation between p'*>Nd and *He/*He
(Peters et al., 2018). However, recently this view was modified and an
apparent trend between p'*>Nd and u'®?W for the same La Réunion
samples was taken as evidence for recycled crustal material in the source
of the Deccan-La Réunion plume, combined with entrainment of
core-derived material deficient in '®?W (Peters et al., 2021). In our
study, we could not identify resolvable u!*>Nd anomalies in the inves-
tigated La Réunion and DVP samples, even though the investigated
samples span a wide range in pllszW values (Fig. 2, Suppl. fig. 3).
Whether the discrepancy in p**?Nd between the different studies reflects
an analytical bias or whether lavas on La Reunion show a larger spread
in p*?Nd than DVP lavas still needs to be investigated. An argument in
favor of the latter view is that Nd isotope data in both studies were
reproduced on different sample aliquots.

5.3. The origin of '82W deficits in the Deccan-La Réunion plume — core
signature or ancient silicate reservoirs?

The origin of '®?W deficits identified in plume-derived OIBs is still
debated. A popular explanation is that core-derived material deficient in
182\ was admixed to the source of mantle plumes, which are suggested
to be rooted in ULVZs and LLSVPs (Mundl et al., 2017; Mundl-Pe-
termeier et al., 2020b; Rizo et al., 2019). Diffusion of W from Earth’s
core (Yoshino et al., 2020), metal-silicate equilibration (e.g., Humayun,
2011), and oxide exsolution (Deng and Du, 2023; Rizo et al., 2019) are
the favored mechanisms that may lead to '82W deficits in mantle
plumes. A silicate layer on top of Earth’s core or exsolved oxides in
isotopic equilibrium would also inherit the expected coupled enriched
18705/1880s and 1%60s/180s compositions from Earth’s core (e.g.,
Brandon and Walker, 2005). In fact, coupled enrichments in 1870s/18805
and %0s/1880s for Gorgona and Hawaii plume melts have been pre-
viously suggested to derive from the core (Brandon et al., 1998, 2003),
and these lavas also display '8?W deficits (Mundl et al., 2017; Walker
et al, 2023; Willhite et al., 2024). However, when assuming a
core-derived origin for Os and W, a correlation between the two isotope
systems is expected, but currently not observed (Mundl-Petermeier
et al., 2019; Walker et al., 2023; Willhite et al., 2024). Possible expla-
nations for this decoupling may be a more complex evolution of
18705/1880s due to additional recycled components (Ireland et al., 2011;
Walker et al., 2023) or a lack of core-derived Os (Lassiter, 2006; Luguet
et al., 2008). Selective diffusion of W into the lowermost mantle would
obviate the need for an Os-W correlation, which is currently used to
explain ®2W deficits in OIBs (e.g., Mundl-Petermeier et al., 2020b; Pe-
ters et al., 2021; Yoshino et al., 2020). However, the process of selective
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Fig. 5. a) W/U and W/Th compositions of La Réunion melts and DVP Group 3 (data from Pakulla et al., 2023). Bold La Réunion symbols in a) illustrate samples
studied in Peters et al. (2021), Jansen et al. (2022), and this study that were also studied for short-lived isotopes. DVP Group 3 melts typically display a slight
depletion in W relative to most La Réunion melts. Such systematics can be explained when a mafic proto-crust restite is being admixed to the mantle source (see blue
markers; percentage indicates the amount of proto-crust restite admixed to the mantle source). b, ¢) Mixing models illustrating the mixing of mafic proto-crust restite
with the La Réunion mantle source considering a primitive mantle-like trace element and La Réunion-like isotope composition. A 3-component mixing model be-
tween the La Réunion source mantle, a mafic restite, and a trapped TTG melt in the restite was added as well. We used the model from Tusch et al. (2022) to model
the compositions of the proto-crust formed at 4.35 Ga, the compositions of the restite and trapped TTG melts that formed at 3.55Ga and their respective modern-day
isotope compositions. The three different mafic restite endmembers (marked in blue; 20 % mixing steps) correspond to different degrees of melting (10, 15, and 20 %)
that produced the mafic proto-crust. We further include mixing calculations with diamicites from the Kaapvaal craton (Mundl et al., 2018 and references therein) as
an upper crustal analogue. Crosses along the mixing lines indicate the mixing proportions. Isotope and trace element compositions of DVP Group 3 melts are broadly
consistent with the addition of a mafic restite component. Upper crustal material alone as depicted by diamictites cannot reproduce the compositions of DVP Group 3
but are more consistent with DVP Group 2 compositions. Additional mixing plots can be found in the supplements. La Réunion and DVP literature data are from

Jansen et al., 2022 and Peters et al., 2021. Mixing endmember compositions are given in the supplements.

grain-boundary diffusion of W at core-mantle boundary conditions was
recently challenged by new ab initio calculations (Peng et al., 2024). In
that sense, coupled diffusion of primordial high 3He/*He from the core
into the lower mantle may indeed explain observed co-variations of
182w and *He/*He (e.g., Mundl et al., 2017). However, not all OIBs with
elevated 3He/*He display 182w deficits (e.g., Herret et al., 2023;
Mundl-Petermeier et al., 2020a) and the lack of very high *He/??Ne in
OIBs have been suggested to be inconsistent with a derivation of noble
gases from Earth’s core (Li et al., 2022). The absence of correlations
between lithophile elements and p'82W has further been used as evi-
dence for a core-derived origin of 182w deficits (Mundl-Petermeier et al.,
2019, 2020b; Walker et al., 2023). However, recently Willhite et al.
(2024) provided evidence for co-variations of p'®2W and lithophile el-
ements in the Hawaiian plume which may hint towards a Hadean sili-
cate component in its source. Previously, Tusch et al. (2022) suggested

that a residual mafic proto-crustal restite from the formation of Earth’s
early felsic crust may explain the ®2W deficits in mantle plumes, and
such recycled material could indeed produce correlations of lithophile
elements with 82W. Such mafic proto-crustal restites may have under-
gone extraction of felsic melts, leading to delamination and potential
storage in the deep mantle. Indeed, ULVZs that may store negative
plSZW anomalies (cf. Mundl-Petermeier et al., 2019), have been directly
connected to recycled material at the core mantle boundary (Su et al.,
2024; Wolf et al., 2024). Thus, an origin of 182w deficits from Hadean
silicate reservoirs seems highly plausible and needs to be further tested.

In the case of the Deccan-La Réunion plume, the addition of upper
crustal material that possesses *82W deficits is not suitable to reproduce
the short- and long-lived isotope compositions of Group 3. This is shown
by mixing models (Fig. 3, 5) with Dharwar Craton basement and glacial
diamictites from the Kaapvaal craton (Mundl et al., 2018) that may
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Fig. 6. Model sketch depicting the three possible scenarios discussed in Section 5.3. 1) DVP Group 3 and La Réunion melts originate from chemically distinct
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represent averaged crustal source materials in the region by the Creta-
ceous period. The addition of such a crustal material is rather consistent
with Group 2 melts which were previously suggested to have incorpo-
rated crustal and lithospheric mantle material (Pakulla et al., 2023).
Thus, an asthenospheric origin for the distinct 8?W deficits of DVP
Group 3 and La Réunion melts is more likely.

For the Deccan-La Réunion plume, both a core-derived and an early
silicate reservoir-derived origin for the '82W deficits are plausible. A
core-derived origin needs to explain why La Réunion melts with nearly
similar trace element and long-lived isotope compositions compared to
the most primitive Group 3 melts display resolvable larger 182W deficits.
A possible scenario is that two chemically similar reservoirs received
distinct amounts of core-derived W deficient in '82W via the diffusion of
W in the lowermost mantle (e.g., Yoshino et al., 2020). In this case, the
mantle source corresponding to Group 3 melts initially had less radio-
genic Pb-isotope compositions. Only minor amounts of core-diffused W
would be sufficient to affect the 82W of the Earth’s mantle and thus
cannot be identified by an increase in W concentration in the plume
melts. Furthermore, DVP melts display similar Os isotope compositions
to La Réunion melts but also extend to more radiogenic 870s/!880s
which have been attributed to the assimilation of crustal materials
(Peters and Day, 2017). Thus, Os is unfortunately not suitable for
assessing core contributions to DVP lavas. Concentrations of HSE in DVP
lavas are comparable to La Réunion melts and therefore rule out direct
assimilation of core metal into the sources of the Deccan-La Réunion
plume (Peters and Day, 2017). Helium isotope data are currently still
inconclusive, as melts from the DVP either display similar *He/*He
compositions as La Réunion melts or lower (Basu et al., 1993; Peters
et al., 2017). As of now, no SHe/*He isotope measurements have been
conducted for DVP samples that can be attributed to Group 3. Future

studies on He and potentially *#0s-1870s isotope compositions of pris-
tine DVP basalts may be helpful to test if a stronger core contribution in
DVP Group 3 relative to La Réunion melts is present. Collectively, a
core-derived origin of 18?W deficits in DVP lavas is possible but current
data of the most pristine DVP lavas do not show chemical differences
from La Réunion melts that could be ascribed to core-mantle interaction
except for u'82w.

Tusch et al. (2022) proposed that p'82w-1*3Nd /! *4Nd systematics of
a common low p'82W compositional endmember in OIBs can be repro-
duced by recycled Hadean mafic proto-crustal restites. Such restites
should be devoid of He and depleted in U and Th, and thus do not
produce *He in larger amounts by radioactive decay. If recycled into an
undegassed mantle source, such a reservoir would virtually not affect
the 3He/*He budget. However, as outlined in the original model of Tusch
etal. (2022) such a proto-crustal restite component may have undergone
felsic melt depletion and trapping of such melts could have supplied
U-Th and with time, some ingrowth of “He. If mixed into an undegassed
mantle portion, the *He/*He ratios may then have been lowered
compared to a reservoir unaffected by such a restite component. This
mixed component might not be resolved in a global compilation of 182w
and 3He/*He (Suppl. fig. 5), where distinct *He/*He-p'82W endmembers
were indicated (Jackson et al., 2020), but might be visible in detailed
investigations of individual mantle plumes. Indeed, if *He/*He ratios in
the pristine Group 3 DVP melts are lower than in La Réunion basalts, as
found in some DVP melts (e.g., Basu et al., 1993; Peters et al., 2017), the
addition of a recycled restite with somewhat elevated U and Th contents
might be a viable explanation.

Simple one-stage modeling of ancient silicate reservoirs forming
significantly early in Earth’s history always yields coupled ‘82w-142Nd
excess or deficits, due to higher incompatibility of both daughter



J.J. Pakulla et al.

elements during crustal melting. This led Tusch et al. (2022) to propose a
two-stage model, where mafic Hadean protocrust is later depleted by
extraction of felsic protocrust, after the decay of '32Hf has ceased.
Consequently, the short-lived Sm-Nd system may have been affected
after the extinction of the Hf-W system. Such complex isotope system-
atics are also indicated by rocks from some Archean cratons that display
deficits or modern mantle-like u*>Nd values although they have 182w
excesses, showing that the systems are susceptible to decoupling (e.g.,
Leitzke et al., 2024; Reimink et al., 2018; Tusch et al., 2019, 2022).
Thus, the observed decoupling of *2Nd-'82W deficits does not exclude
the presence of recycled silicate components. As for short-lived isotope
systems, long-lived isotope systems may also be susceptible to geological
processes anytime from the Hadean to the present. This will be further
evaluated with respect to 1**Nd/'**Nd systematics below.

Upon closer inspection, the Tusch et al. (2022) model can also ac-
count for the differences in £!**Nd between the pristine DVP and La
Réunion lavas. The mafic crustal restite in the original Tusch et al.
(2022) model should evolve towards radiogenic e143Nd compositions,
which is not found in Group 3 DVP lavas (lower ¢'*3Nd). However, the
modelled isotope composition of such restites is strongly affected by the
degree of mantle melting that produced the mafic proto-crust and by the
degree of melt depletion following the extraction of felsic melt pro-
ducing the proto-crust restite. As indicated by the results of the model of
Tusch et al. (2022), variations in the degree of mantle melting and felsic
melt depletion produce modelled restite compositions extending from
radiogenic to more unradiogenic e'**Nd values and would also display
lower W/Th and W/U ratios than the primitive mantle, matching the
chemical compositions of DVP Group 3 (Fig 5). Such low W/Th and W/U
would also be expected for a recycled mafic proto-crust, as W is expected
to be transported away from the recycled material via fluids (Konig
et al., 2008). Recycling of material that experienced Hadean silicate
differentiation might have led to a variety of long-lived radiogenic
isotope compositions, making these a less diagnostic test for the incor-
poration of proto-crustal restites on a global scale. In summary, such
models need to be tested carefully for individual plume systems, but in
our case can provide a viable explanation for the isotope compositions of
DVP and La Réunion lavas (Fig 5b,c; Suppl. fig. 6, 7).

Summarizing the previous discussion, three models may explain the
182y systematics in the Deccan-La Réunion plume (Fig. 6): 1) core-
derived W contributed to variable degrees to two chemically different
lower mantle sources that were then tapped by the mantle plume at
different timescales, 2) the La Réunion mantle source incorporated core-
derived W and an ancient restite reservoir was additionally added to the
DVP Group 3 source (see also Peters et al., 2021) or 3) the Deccan-La
Réunion source is dominated by a mafic restite reservoir best resem-
bled by DVP Group 3 that was then altered by admixture of an additional
mantle component or distinct lithospheric material producing La
Réunion-like melt compositions. In all three scenarios, the isotope
composition of DVP Group 2 is explained by the assimilation of crustal
and lithospheric mantle components in the plume source or during the
ascent through the Indian lithosphere. It is important to note that these
three scenarios may provide an explanation for the isotope systematics
of the Deccan-La Réunion plume but some of these scenarios may
perhaps fail to explain the chemical compositions of other plume sys-
tems. Thus, there is a need to investigate plume systems individually
from head to tail.

As mentioned by Willhite et al. (2024) for the Hawaiian plume where
also co-variations of W with lithophile elements and isotope systems
have been identified, neither a silicate component nor core-derived W
for the source of the 82W deficits can be fully excluded at this stage,
which also applies to the Deccan-La Réunion plume. Nevertheless, due
to the co-variation of W with Pb isotopes, and the trace element and
isotope compositions of DVP Group 3 that are consistent with the
incorporation of a proto-crustal restite component, we currently favor
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the latter two models in explaining the '82W deficits in the Deccan-La
Réunion plume instead of a pure core-derived origin. However, with
more data this view may change in the future.

6. Conclusion

New u'82W and p'*?Nd data for flood basalts from the Deccan Vol-
canic Province (DVP) combined with new p*#*?Nd and Pb isotope data for
lavas from La Réunion that have been previously measured for u'8?w
(Jansen et al., 2022) can shed new light on the geodynamic and chem-
ical evolution of the Deccan-La Reunion plume from head to tail.

The Deccan-La Réunion plume displays variable deficits in 182w, but
no resolvable p**?Nd anomalies were identified, in contrast to previous
studies (e.g., Peters et al., 2018, 2021). For the DVP we identified two
groups with resolvably distinct u*32W compositions which are consistent
with the previously suggested geochemical groups (Pakulla et al., 2023).
DVP Group 2 lavas (p182W: —4.2 + 3.0, 95 % CI) are unresolvable from
compositions of La Réunion basalts (plsZW: —4.9 £ 1.5, 95 % CI). DVP
Group 3 samples exhibit resolvably lower u'®2W values of —10.1 + 2.6
(95 % CI) and mark the plume-derived endmember. Mixing calculations
suggest that Group 2 samples can be explained by the admixture of
lithospheric mantle material and crust to a Group 3-like composition.
Contrarily, the DVP Group 3 endmember has low u'®2w, low
206pt,/204ph ratios, and lower A2°7Pb/2%°pb than the typical Indian
upper mantle and La Réunion melts, and we propose that these isotope
systematics can be explained by core-mantle interaction affecting
distinct reservoirs, by the involvement of a recycled Hadean mafic
component, or by a combination of a recycled Hadean component and
core-mantle interaction (Fig. 6). Due to coupled variations in Pb isotopes
and '®2W as well as somewhat lower W/Th ratios in DVP Group 3
samples, we currently favor models that involve the presence of a
recycled Hadean mafic component. Thus, future studies on combined
short- and long-lived isotope systematics as well as He isotopes inves-
tigating the long-term evolution of mantle plumes will be the key to
unravelling the origin of the anomalous u'®2W and p'*?Nd compositions
found in deep-rooted mantle plumes.
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