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Blockchain-based emerging technologies such as decentralized finance (DeFi), crypto-
currencies, tokens, and smart contracts have introduced innovative frameworks for resource
allocation and economic interactions. Ethereum, as the major technical network foundation of
DeFi and tokenized assets, is becoming increasingly pivotal in facilitating an extension and
alternative to traditional finance for many stakeholders, including those who are “unbanked".
Moreover, the recent transition of Ethereum from a proof-of-work (PoW) mechanism to a
proof-of-stake (PoS) consensus mechanism and the Shanghai upgrade may significantly
impact Ether (ETH) distribution. However, the status quo and dynamics of wealth distribu-
tion, especially after these changes in governance structure, remain unclear. By utilizing a rich
dataset spanning the entire Ethereum history from July 2015 to December 2024, we analyze
the balances across address groups of different sizes and the role of key economic activities
and infrastructure components within Ethereum, such as exchanges, DeFi platforms, and
staking. To provide detailed insights into ETH's distributional equality, our approach com-
bines descriptive, longitudinal, and causal inference analyses; a complete enumeration of
more than 98 million unique wallet addresses; and novel on-chain analysis. Our findings show
a substantial concentration of ETH within a small fraction of addresses, with approximately
0.3% of wallets holding nearly 95% of the total supply, despite the majority of wallets holding
less than 0.1% ETH. However, the ETH distribution broadly resembles wealth distributions in
traditional economies, with a log-normal body and Pareto-like tails. We assert that previous
studies have overstated the concentration of ETH. Additionally, our dynamic analysis reveals
a nuanced trend toward less concentration over time, driven by market cycles, increasing
staking participation, and reinvestment in DeFi. These results challenge the notion of per-
vasive centralization. This study contributes to a deeper understanding of the current ETH
distribution and its evolution over time. Therefore, this work provides an objective, data-
driven basis for the ongoing discussion on wealth (in)equality in blockchain-based ecosys-
tems, particularly in DeFi.
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Introduction

n an era of relentless technological advancement, the impact of

emerging technologies on the distribution of wealth is

becoming increasingly significant, as digital platforms, auto-
mation, and decentralized financial systems reshape labor mar-
kets, influence resource allocation, and redefine pathways to
economic opportunity (Autor 2015, Brynjolfsson and McAfee
2014, Xiao et al. 2024). As blockchain technology is maturing and
increasingly permeating various economic sectors, wealth dis-
tribution within blockchains has emerged as a critical area of
study (Cong et al. 2024). The decentralized nature of blockchain
systems presents unique challenges and opportunities for wealth
accumulation and distribution. These networks, which are
designed to operate without centralized control, have the poten-
tial to reshape traditional economic structures and power
dynamics. The distribution of tokens, which often represent both
economic value and governance rights within these systems, plays
a crucial role in determining the overall health, security, and
fairness of the network (Rosu and Saleh 2021). Blockchain-based
technologies play an ambiguous role as both a potential solution
to unequal distributions of wealth by offering opportunities for
more inclusive, decentralized financial structures (Abdulhakeem
and Hu 2021, Adegbite 2024) and a catalyst for wealth disparities
by enabling the concentration of assets among those best posi-
tioned to leverage such innovations.

Despite the growing importance of blockchain technology in
the global financial landscape, our understanding of wealth dis-
tribution in these networks remains limited. While some studies
have explored inequality in blockchain (see the next section),
more comprehensive analyses using more advanced statistical
methods, a dynamic perspective, and more elaborate methodo-
logical approaches addressing those challenges typical of block-
chain are scarce. We focus on Ethereum, the primary blockchain
infrastructure for decentralized finance (DeFi) and tokenized
assets, which offers a significant alternative to traditional financial
systems and expands access to financial services, particularly for
the “unbanked” population. Within the Ethereum ecosystem, we
focus on Ether (ETH), the native cryptocurrency of the Ethereum
network, which plays multiple roles. ETH facilitates transactions
and smart contract executions, rewards network participants for
validation and staking, can act as a store of value for investors,
provides trading opportunities for speculators, and functions as a
payment method for goods and services at participating busi-
nesses. Additionally, ETH is used to pay “gas fees” for network
operations, making it essential for the overall functionality of
Ethereum. ETH is the world’s second-largest cryptocurrency by
market capitalization, second only to Bitcoin (BTC) according to
the market cap as of January 2025. The recent transition of
Ethereum from a proof-of-work (PoW) mechanism to a proof-of-
stake (PoS) consensus mechanism has introduced new dynamics
that may significantly impact ETH distribution. This transition
started with the Beacon Chain in December 2020, ran parallel
with the PoW chain until “the Merge” in September 2022 (which
formally united both chains under the PoS concept), and was
followed by the Shanghai upgrade on April 12, 2023, allowing, for
the first time, withdrawals of staked ETH locked since the
inception of the Beacon Chain. Cong et al. (2023) emphasize the
need for future research to explore the mechanisms driving on-
chain wealth concentration and the effects of major protocol
changes, such as Ethereum’s “Merge”. Consequently, there is a
gap in the current literature regarding the study of the DeFi-
related distribution of wealth within blockchains utilizing meth-
ods and metrics that allow for a detailed analysis of the state and
dynamics of this distribution. Against this backdrop, we pose the
following research question: How is ETH distributed within
Ethereum, and how does this distribution evolve under the recent
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changes in consensus mechanisms, changed token governance, and
varying market regimes?

This study seeks to address this question empirically by uti-
lizing a rich dataset spanning the entire history of Ethereum from
July 2015 to December 2024. We analyze the balances across
address groups of different sizes and the role of key economic
activities and infrastructure components within Ethereum’s eco-
system, such as centralized exchanges (CEXs), decentralized
exchanges (DEXs), DeFi platforms, and staking. Our approach
combines descriptive, longitudinal, and large-scale causal infer-
ence data analyses, covering a complete enumeration of more
than 98 million unique wallet addresses, and a novel on-chain
analysis to provide detailed insights into the distributional
equality of ETH.

This study contributes to the literature in three ways. First, this
work provides a comprehensive and detailed account of the
current state of ETH distribution by testing for parametric dis-
tributions, namely, Pareto, log-normal, and Weibull distributions,
and offers a nuanced assessment of wealth concentration through
various concentration measures. Second, our analysis reveals how
ETH distribution has evolved during Ethereum’s substantial
transition from PoW to PoS, known as “the Merge”, and the
Shanghai upgrade, allowing for more flexible token dispositions
(staking and unstaking of tokens), illustrating the impact of
protocol shifts, staking, and market cycles on overall ETH dis-
tribution patterns. These findings have direct practical implica-
tions for developers of blockchain protocols, especially because
these developers design mechanisms intended to foster broader
participation and reduce the degree of concentration risk. Third,
we make a methodological contribution by leveraging the unique
advantages of blockchain technology. Rather than relying on
sampling techniques, we conduct a complete enumeration of over
98 million unique Ethereum addresses. This approach circum-
vents the challenges commonly associated with sampling, such as
issues of representativeness and stratification, while offering an
unprecedented level of granularity for studying wealth distribu-
tion at scale. Our integration of descriptive, longitudinal, and
causal inference data analyses provides a blueprint that can be
applied to other blockchains and digital asset ecosystems.

We do not advocate for or against an equal distribution of
wealth within blockchain networks but rather analyze the status
quo. By providing a clear and comprehensive understanding of
distribution patterns, our contributions lay the groundwork for
the empirical-based assessment of the role of blockchain-based
emerging technologies for wealth (in)equality and, beyond that,
inform discourses on the governance, regulatory, financial and
societal implications of DeFi.

The remainder of this paper is structured as follows. In Section
“Theoretical background and hypothesis development”, we
introduce the theoretical perspective adopted in this study and
develop hypotheses accordingly. In Section “Data and methods”,
we describe both the methods and data used for testing the
previously developed hypotheses. In Section “Results”, we present
the results, describing the distribution and development of ETH.
Finally, we critically discuss the findings in the context of the
current literature in Section “Discussion and conclusions”.

Theoretical background and hypothesis development

Economic inequality. The Oxford English Dictionary defines
inequality as the state of being unequal, particularly with respect
to rights, class, and opportunities. This study focuses on eco-
nomic inequality to describe disparities in wealth. We use the
term wealth (in)equality to refer to the degree of disparity in
the distribution of wealth. In this context, wealth distribution is
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the overarching concept that encompasses how economic
resources are spread across a population. While the issue of wealth
and income inequality has been a topic of discussion for decades,
it has recently reemerged prominently in contemporary economic
discourse due to factors such as rising globalization, technological
advances, and their impacts on labor and wealth distribution.

The rich body of academic literature uses parametric distribu-
tions to examine wealth and income across populations. These
distributions are typically right skewed, with heavy upper tails
representing disproportionately large and slowly diminishing top
wealth shares (Benhabib et al. 2011, Clementi and Gallegati
2005). These statistical properties are foundational in defining
wealth inequality and are remarkably consistent across a broad
range of countries and historical periods. Pareto distribution,
which has been widely used to model wealth inequality, captures
this consistency (Wold and Whittle 1957). This distribution dates
back to Vilfredo Pareto’s seminal work, Cours d’Economie
Politique (Pareto 1964), which Samuelson (1972) later encapsu-
lated as “Pareto’s law”. Moreover, Piketty’s influential work,
Capital in the Twenty-First Century (Piketty and Goldhammer
2014), revitalized scholarly attention to the historical evolution of
wealth distribution. Piketty posits that when the rate of return on
capital (r) surpasses the rate of economic growth (g), wealth
accumulates faster than does income, leading to heightened
inequality. Several scholars concur that in the absence of
significant disruptions or progressive policy interventions, wealth
concentration intensifies over time (Atkinson 2016, Milanovic
2016, Scheidel 2017, Stiglitz, forthcoming 2025). Economic
inequality has profound implications for economic sustainability
(Piketty and Goldhammer 2014, Stiglitz 2012), political equality
(Gilens and Page 2014), social cohesion (Wilkinson and Pickett
2009), physical and mental health outcomes (Pickett and
Wilkinson 2014), social mobility and access to opportunities
(Chetty et al. 2014).

Empirical evidence supports the resurgence of wealth and
income disparities in many advanced economies. Studies have
documented that the share of income and wealth held by the top
percentiles has increased markedly since the late 20th century
(Alfani 2024, Chancel et al. 2021).

Blockchain technology and wealth distribution. Technological
advancements play an ambivalent role in this context, as they
contribute to wealth inequality on the one hand (Autor et al.
2008) and hold potential for tackling economic disparities on the
other hand (Demirgii¢-Kunt et al. 2018). Blockchain technology,
which describes a decentralized ledger system that facilitates
secure and transparent transactions without the dependence on
intermediaries (Iansiti and Lakhani 2017), embodies this ambi-
guity. Tokens are digital assets existing on a blockchain that
represent value, rights, or access to specific functionalities within
a particular ecosystem, serving as unique, programmable units
that can represent anything from digital currencies and invest-
ment securities to ownership rights and utility functions.

In this study, we use the term “wealth inequality” to refer to the
degree of inequality in the distribution of tokens (as economic
resources) among wallets to explore this concept in the
blockchain context. Blockchain technology offers unique features
that can reshape traditional financial systems and wealth
distribution mechanisms, especially through tokenization and
DeFi. These innovations allow for the fractional ownership of
assets and more democratic participation in financial markets,
potentially broadening wealth accumulation opportunities.

One key aspect of blockchain is its ability to enable greater
financial inclusion by providing unbanked populations with
access to financial services (Prisco and Strangio 2021). By

reducing the need for intermediaries and lowering transaction
costs, blockchain-based systems can make financial services more
accessible and affordable for a greater number of people.

However, blockchain may also be conducive to the increase of
wealth inequality. The concentration of profits among early
adopters and dominant players has the potential to increase
existing inequalities or to substitute old wealthy groups with new
ones. Studies investigating wealth distribution on blockchains
have found extremely high Gini coefficients, indicating significant
inequality within these digital ecosystems (Sai et al. 2021b, Victor
et al. 2021).

Wealth distribution in Ethereum. In this study, we investigate
the status quo and development of wealth distribution in Ether-
eum. Ethereum is an open-source blockchain platform that has
gained prominence in the blockchain world owing to its smart
contract capabilities (Calvo 2024, Cong and He 2019). Smart
contracts are self-executing programs with predefined rules that
are stored on the blockchain, enabling the creation of decen-
tralized applications and facilitating complex financial operations
without intermediaries. This functionality has positioned Ether-
eum as the leading DeFi platform (DefiLlama 2024). Ethereum’s
native cryptocurrency ETH is the second largest by market
capitalization and is used to pay for computational services and
execute smart contracts. In line with our definition of wealth
inequality in blockchain, we investigate the degree of inequality in
the distribution of ETH across addresses and how this distribu-
tion has evolved over time, particularly in response to significant
network events such as the transition from the PoW to the PoS
consensus mechanism, the Shanghai upgrade, and varying market
conditions.

Several studies have investigated various aspects of Ethereum
and other cryptocurrencies, including mining power concentra-
tion, wealth distribution, centralization risks, and financial
inclusion. Cong et al. (2021) examine the impact of centralized
mining pools on the decentralization of blockchains, arguing that
while centralized mining pools facilitate risk sharing among
miners, they do not necessarily undermine decentralization.
Instead, these pools increase the energy consumption of PoW-
based blockchains. Empirical evidence from BTC mining
supports the predictions of the abovementioned model, high-
lighting the implications for other consensus protocols and
sectors with similar characteristics. Similarly, Rosu and Saleh
(2021) explore the dynamics of wealth distribution in PoS
cryptocurrencies and find that contrary to the common belief that
“the rich get richer,” investor shares in PoS cryptocurrencies are
martingales that converge to a stable distribution over time. This
stability is robust, even when allowing for trading among risk-
neutral investors, indicating that investors do not have a
significant incentive to excessively accumulate coins. To address
the issue of centralization, Capponi et al. (2023) develop a game
theoretical model to analyze the decentralization of PoW
cryptocurrencies, demonstrating that while centralization
increases with heterogeneity in mining costs, hardware capacity
constraints prevent the most efficient miners from monopolizing
the mining process. Their findings suggest that investment in
hardware leads to a more decentralized network unless larger
miners have a significant comparative advantage over smaller
miners. Additionally, Urquhart (2022) provide an overview of the
Ethereum blockchain, examining addresses, transactions, fees,
and user holding patterns. In the context of Ethereum’s transition
from PoW to PoS, Grandjean et al. (2023) conduct a longitudinal
study of the PoS consensus layer and discover that network
upgrades and issues with major consensus clients cause dips in
network participation. Their analysis reveals that Ethereum’s PoS
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decentralization is comparable to that of its PoOW counterpart.
The above study also highlights the increased security concerns
due to the monopolization of custodial staking services.

Another research stream investigates the relationship between
ETH distribution and financial inclusion. Cong et al. (2023)
investigate the potential for financial inclusion through Web3 and
DeFi, focusing on Ethereum; they describe the concentration of
mining income and ETH ownership, noting that exchanges and a
few individual nodes hold the majority of assets. The above study
highlights challenges such as high transaction fees and high-level
volatility, which disproportionately affect smaller participants. Sai
et al. (2021b) analyze wealth distribution across several major
cryptocurrencies, including BTC, Ethereum, and Litecoin. Their
study reports on the Gini coefficient and Nakamoto index,
highlighting the significant wealth concentration within these
cryptocurrencies. The above authors draw parallels between
crypto economies and real-world economies, suggesting that the
free-market implementation of cryptocurrencies may lead to
worse wealth inequalities.

Hypothesis development. This study aims to contribute to
research on the concentration of wealth in blockchain networks
by analyzing the status quo of the distribution of ETH holdings
(H1) and its evolution (H2).

For the first part of our analysis, which focuses on the status
quo, we hypothesize the following.

HI: The distribution of ETH is similar to that of wealth
distributions found in traditional economies.

As outlined, wealth distributions in traditional economies are
well documented as being highly skewed, often following Pareto
or power-law distributions (Clementi and Gallegati 2005). These
distributions reflect the principle that a small fraction of
participants control a disproportionate share of total wealth.
This phenomenon is also prevalent in cryptocurrencies, where
research has identified extreme concentrations of ETH holdings
(Sai et al. 2021b). Early ETH distribution mechanisms, such as
premining and initial coin offerings, disproportionately allocate
ETH to insiders, developers, and early investors, resulting in a
highly unequal initial distribution.

We expect the distribution of ETH to be consistent with the
wealth distribution patterns found in traditional economies. This
hypothesis is motivated by the high-level token concentration
observed in blockchains, where a small subset of addresses
controls the majority of the token supply. Our analysis tests this
hypothesis by fitting Pareto and alternative parametric distribu-
tions to the data and evaluating their fit to the observed
distribution of ETH holdings.

For the second part of our analysis, which focuses on the
dynamics of the ETH distribution, we hypothesize the following.
H2: ETH holdings become more concentrated over time.

Economic theory posits that wealth concentration often
intensifies in unregulated environments without redistribution
policies (Boghosian 2019, Piketty and Goldhammer 2014,
Scheidel 2017, Stiglitz 2012). As Ethereum was a fairly
unregulated environment in the early years of its development,
with a high concentration of wealth, it thus presents a natural
setting in which to test this hypothesis. Previous research has
revealed increasing wealth concentration in PoW systems, where
mining rewards and high barriers to entry exacerbate disparities
(Cong et al. 2023). However, Ethereum’s transition to PoS and the
Shanghai upgrade have introduced several factors that can
counteract these trends.

First, as Cong et al. (2023) argue, the barrier to entry for
staking is significantly lower than that for mining. PoS reduces
the degree of reliance on specialized hardware and energy-
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intensive operations, enabling broader participation and poten-
tially reducing wealth concentration. Additionally, the increase in
DeFi activity, as evidenced by the increase in total value locked
(TVL) across decentralized platforms (DefiLlama 2024), may
contribute to the redistribution of ETH. ETH previously held on
CEXs can flow into the DeFi infrastructure, thus increasing the
degree of decentralization.

Market cycles also play a pivotal role in shaping wealth
dynamics. Economic theory suggests that price fluctuations create
natural incentives for market participants, particularly those with
varying resources, degrees of investor sophistication and levels of
risk tolerance (Chiarella et al. 2006). This behavior aligns with
lifecycle investment theories, which posit that participants with
longer time horizons capitalize more on long-term price growth,
whereas short-term participants react more strongly to volatility
(Merton 1971). Similarly, wealth distribution dynamics suggest
that significant price changes amplify or reduce inequality
depending on how gains and losses are distributed (Chiarella
et al. 2006, Saez and Zucman 2016). Examining market regimes
reveals how bull markets can reduce wealth concentration
through profit taking, mirroring the realization effect (Campbell
2006). Conversely, bear markets and price bubbles intensify
concentration due to accumulation by larger entities (Caballero
and Krishnamurthy 2008, Chiarella et al. 2006).

Finally, major protocol changes, such as the “Merge” and
Shanghai upgrade, introduce additional dynamics. By enabling
staking withdrawals and increasing staking participation, these
changes can influence the distribution of ETH holdings in
complex ways. The net effect of these opposing forces
decentralizing influences from staking and DeFi and concentrat-
ing forces from market cycles raises an important empirical
question about the evolution of the wealth distribution of ETH.

Overall, the current arguments on whether ETH distribution is
becoming more or less concentrated remain inconclusive.
However, if we assume that ETH is distributed like wealth in
traditional economies, where traditional theories posit that wealth
tends to concentrate at the top over time, then we expect a similar
trend of an increasing concentration of ETH holdings (H2).

Data and methods

This study employs a hypothesis-driven approach to empirically
analyze the distribution and dynamics of ETH holdings. The
analysis is divided into two parts. First, the status quo is analyzed
by examining the current state of ETH distributions. Second, a
dynamic analysis investigates the evolution of ETH distribution
over time, including market regime behavior and changes after
“the Merge” and Shanghai upgrade.

Data collection and preparation. In this study, we use a multi-
source approach to gather comprehensive data on ETH supply
distribution, relying on the below three data sources.

Temporal data (Santiment, Dune). We collect historical data on
ETH supply distribution using Santiment, a network intelligence
platform for cryptocurrency markets. This dataset spans the
entire history of the Ethereum blockchain from July 2015 until
December 2024, is recorded at daily intervals, and includes
aggregated wallet data, such as balances and the number of
addresses, along with price data.

The data are categorized into progressively larger intervals,
starting from very small amounts and increasing by a factor of
ten. These intervals range from 0-0.001 coins to one billion coins,
covering various balance sizes. For each of these balance intervals,
the metric shows the percentage of the total number of coins held.
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Table 1 Frequencies of label types. This table presents the

relative percentage of labeled wallets.

Label Type Percentage (%) Description

deposit_wallet 97189030 Deposit addresses for CEXs

hot_wallet 1.486237 Active exchange wallets

general_contract 1145160 Smart contracts (miscellaneous)

token_contract 0.064374 Contracts for tokens

nf_token_contract 0.053859 Addresses linked to nonfungible
tokens (NFTs)

contract_deployer 0.036617 Wallets deploying contracts

toxic 0.007877 Scams or illicit activities

pool 0.006296 DeFi liquidity pools

cold_wallet 0.003529 Secure offline storage

distributor_cex 0.003097 CEX distribution addresses

treasury 0.000717 Organizational funds

bridge 0.000607 Cross-chain transaction wallets

staking_contract ~ 0.000386 ETH staking contracts

mining_pool 0.000322 Mining operation wallets

donation_address  0.000294 Charity or donation wallets

We aggregate the lowest and highest balance intervals into groups
of balances according to Urquhart (2022) (see Fig. 4).

Additionally, we query daily ETH holdings for the following
wallet categories: wrapped ETH (WETH) smart contracts, CEXs,
DEXs, bridges and lending protocols. As ETH in its native form
cannot interact directly with smart contracts, it necessitates
conversion into the ERC-20 standard, commonly referred to as
“wrapping”. This process effectively locks ETH into the WETH
contract, facilitating its use in the DeFi ecosystem. Bridges are
applications that lock ETH on the source network (Ethereum in
this case) and mint equivalent tokens on the destination network,
enabling cross-chain interoperability and seamless asset transfer
within the DeFi ecosystem. From Dune Analytics, a chain analysis
platform, we query data on the amount of ETH staked and
withdrawn from the Beacon Chain.

Account-level data (Google BigQuery). To obtain detailed insights
into ETH holdings, we utilize Google BigQuery, which provides
access to various datasets of the Ethereum blockchain. We use
these data to compute wallet balances for all Ethereum addresses,
including over 98 million unique addresses. With this high-level
granularity, we can gain a detailed understanding of the dis-
tribution of ETH among holders and analyze the overall supply
distribution. In our approach, we access the “crypto_ethereum”
dataset within Google BigQuery, which includes detailed tables
for traces, blocks, and transactions. We design a Structured Query
Language (SQL) query to extract and process these data in several
stages. First, we prepare the raw data by selecting the necessary
fields from the trace, block, and transaction tables, ensuring that
we capture all relevant transactional information. We filter the
data to include only confirmed transactions. The next step
involves constructing a double-entry bookkeeping model to track
the flow of ETH into and out of each address. We consider all
transactions where addresses either sent or received ETH, and we
also account for transaction fees by integrating data from the
block and transaction tables. With the double-entry bookkeeping
framework in place, we aggregate the transaction values to
compute the net balance for each address in monthly intervals
until February 2024. For all further analyses, we filter for wallets
with a balance over 0.0001 ETH to focus on active wallets. Such a
cutoff is necessary because, on the blockchain, wallets can only be
created and not deleted, meaning that including all wallets does
not provide an accurate representation, as the majority are either
inactive or empty. This situation results in a dataset comprising

92 million wallets, which account for approximately 99.99% of
all ETH.

Entity labels (WalletLabels, Etherscan). We use labels from Wal-
letLabels.xyz and Etherscan.io to differentiate between various
entities within the Ethereum network. These labels enable the
precise categorization of addresses by assigning them to types
such as “smart contracts” and “exchange wallets” and identifying
specific entities such as “Binance” when possible. This situation
results in a total of more than 42 million labeled addresses.

Data integration and analysis: The subsequent stage in the pro-
cess is the integration of the preprocessed data from the various
sources to create a final dataset.

We incorporate the entity labels (c) into the account-level
dataset (b) to provide additional context and depth to our
analysis. This step enables us to differentiate between various
types of addresses and their relationships with entities such as
exchanges. Out of our 92 million addresses, we attribute 10.88
million to a label. Table 1 presents the frequencies of the top 15
label types.

Analysis framework

Status quo analysis. For the statistical distribution analysis, we
excluded all wallets with labels. As Table 1 shows, labeled wallets
represent entities or mechanisms (such as contracts, exchanges,
or pools) rather than individual holders. By analyzing only
unlabeled wallets, we increased the proportion of wallets owned
by ordinary users, providing a more accurate representation of
ETH distribution among individual holders. Owing to the pseu-
donymous nature of blockchain systems, it is not possible to map
wallets definitively to individual users; as such, all distribution
analyses in this study refer to the distribution of ETH across
wallets rather than across users. However, it is likely that the true
distribution of ETH ownership is more decentralized than that
observed, as smaller retail investors often rely on centralized
services and exchanges, where their funds are pooled into large
deposit wallets. Conversely, wealthier users, prioritizing security,
are more inclined to use self-hosted and hardware wallets, sug-
gesting that many large wallets may represent the aggregated
holdings of multiple individuals rather than of a single entity
(Nadler and Schir 2020).

We performed a statistical analysis on Ethereum wallet
balances, which were divided into the following two segments:
the bottom 99% of wallets and the top 1% of wallets. The
segmentation of wallets into the bottom 99% and top 1% follows
the well-established practice in wealth distribution studies, which
often separately analyze the bulk and tail of the data to account
for the distinct statistical properties of these regions (Clementi
and Gallegati 2005). Wealth distributions typically exhibit heavy
tails, as characterized by the Pareto principle, making it crucial to
evaluate the body and tail segments independently.

The dataset was sorted in ascending order on the basis of wallet
balances and divided into two groups—the top 1% of wallets,
representing the wealthiest wallets with the highest balances, and
the bottom 99% of wallets, which include all wallets except those
in the top 1%.

We applied all analyses to both groups, the top 1% and the
bottom 99%, independently. First, we fitted three distributions—
Pareto, log-normal and Weibull minimum—to the sorted data.
The choice of these distributions was motivated by their
prevalence in modeling income and wealth data (Hlasny 2021).

The parameters for each distribution were estimated using the
maximum likelihood estimation (MLE) method, and fit was
evaluated via log likelihood, the Akaike information criterion
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(AIC), and the Kolmogorov-Smirnov (KS) test (Goldstein et al.
2004). The best-fitting distribution for each segment was visually
inspected by plotting the empirical cumulative distribution
function (CDF) overlaid with the CDFs of the fitted distributions
and quantile-quantile (QQ) plots comparing the quantiles of the
data to the theoretical quantiles of the fitted distributions.

These plots allowed for a qualitative evaluation of how well the
distributions captured the characteristics of the data. Visual
inspection is commonly recommended, as it provides insights
into areas where statistical metrics may fall short, especially since
empirical data rarely perfectly follow parametric distributions
(Hlasny 2021).

Dynamic analysis. This section explores the changes in ETH
distributions by conducting a visual analysis of wallet clustering
and divergence trends during both bull and bear markets and
how the stacking mechanism of the Shanghai upgrade is related
to these patterns.

We conducted exploratory data analysis to examine the raw
blockchain data and uncover underlying patterns, anomalies, and
relationships. This process involved visualizing trends over time,
identifying significant events, and summarizing the data to
provide both a visual and quantitative foundation for further
analysis. To reveal the distribution and dynamics of ETH
holdings across different wallet types, we utilized a variety of
graphical and statistical tools.

Numerous measures are used to quantify concentrations.
While the Gini coefficient is a widely used measure of inequality,
its sensitivity to changes at the lower end of the distribution
makes it less suitable for evaluating risks in blockchain
ecosystems. In traditional wealth distributions, the Gini coeffi-
cient provides valuable insights, as it accounts for the entire
spectrum of holdings, including both extreme poverty and
extreme wealth. However, in blockchain ecosystems, where the
concentration of funds at the top is the primary concern, the Gini
coefficient’s focus on minor holdings dilutes its relevance. This
issue is compounded by the unbounded growth in the number of
blockchain addresses, as new addresses, many of which hold
negligible amounts or serve only as intermediaries for transac-
tions, can be created freely. These factors artificially skew the Gini
coefficient and overemphasize inequality at the lower end of the
distribution.

Furthermore, there are additional issues associated with using the
single-parameter inequality measure Gini, calling for more
comprehensive measures, which may help resolve extant tensions
in the field of inequality distribution measurement (Blesch et al.
2022, Shen and Dai 2024). To retain comparability with similar
studies, we continue to use the Gini index where applicable;
however, we also extend our analysis via the Herfindahl-Hirschman
index (HHI). Unlike the Gini coefficient, the HHI focuses on the
squared shares of the largest entities, thereby emphasizing top-
heavy distributions. This property makes this index less sensitive to
the number of negligible addresses and allows it to better reflect the
risks associated with large concentrations of funds in a small
number of wallets. The HHI has a long history of use in measuring
market concentration in economics and is endorsed by antitrust
authorities due to its ability to gauge the potential for monopolistic
or oligopolistic control (Carlton 2010).

To evaluate how the concentration of ETH holdings evolves
over time, we computed the HHI for all unlabeled Ethereum
wallets holding more than 0.0001 ETH. This threshold helped us
filter out empty or near-empty addresses that did not affect
concentration. In the context of decentralization and wealth
distribution, the HHI highlights the risk of power becoming too
centralized, a critical issue in PoS systems, where a small number
of large stakeholders can exert a disproportionate influence or

6

threaten network security. We define the HHI as follows:
N
HHI = Y &2, (1
i=1

where s; represents the share of the i-th wallet relative to total
ETH holdings. In the context of blockchain networks, a higher
HHI indicates a greater concentration of tokens among a small
number of wallets, which can undermine the security and fairness
of the PoS mechanism; conversely, a lower HHI denotes a more
even distribution.

The proper accounting of specific addresses is essential for
accurate analysis. For example, in the Beacon Chain contract,
simply measuring the total amount of ETH would be misleading
because the Beacon deposit contract functions as a one-way
bridge; ETH deposited into the contract remains there, but when
withdrawals occur, the withdrawn ETH is credited directly to the
user’s account, without generating an outgoing transaction from
the deposit contract. Therefore, failing to subtract withdrawn
ETH from the balance of the deposit contract can lead to a
significant misinterpretation of inequality trends.

In addition to longitudinal measures of concentration, we
analyzed market phases and distributions, recognizing that
market regimes significantly influence wealth dynamics (Chiarella
et al. 2006).

We also employed causal inference analysis via the state-of-
the-art Peter and Clark momentary conditional independence
(PCMCI) method to examine ETH flows between different wallet
groups. PCMCI allowed us to uncover temporal dependencies
and directional relationships, providing insights into how ETH
moves between DEXs, CEXs, staked ETH, and other wallet
categories. Specifically, we analyzed changes in ETH holdings
around key protocol events, such as the transition to PoS and the
Shanghai upgrade.

Finally, we focused on concentration at the consensus layer,
which represents the most critical risk factor for Ethereum, as
high-level token concentration can allow a single entity to control
a critical threshold of stake, potentially compromising the
network. To this end, we measured the Gini coefficient over
time with respect to staked ETH for each major staking entity.
Unlike wallet-level analysis, the consensus layer did not
encounter the issue of address inflation, as the entities involved
in staking were well defined and limited in number. Each staking
entity’s holdings were fully accounted for, providing a complete
and accurate representation of the staking distribution. This
situation confirmed the appropriateness of the Gini coefficient as
a measure for assessing inequality in this context.

We computed the Gini index G (Dorfman 1979) as follows:

G— Y Z;l:l x; — x;] ©)
2n%u

where 7 is the number of entities; x; and x; are the balances of the
i-th and j-th entities, respectively; and y is the mean balance.

The value of the Gini index varies between 0, that is, perfect
equality (each household or individual (here, the staking entity)
has the same income or wealth), and 1, that is, perfect inequality
(one household or individual (here, the staking entity) earns or
owns everything). Tracking this measure over time highlights the
extent to which staking power is concentrated among a few
dominant entities.

Finally, we interpreted these statistical results within the
broader context of Ethereum. Beyond analyzing the balances of
differently sized wallet clusters during various market cycles and
key events, we incorporated contextual insights from develop-
ments in the Ethereum protocol, relevant news articles, and
expert opinions from long-term DeFi contributors. This
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expanded approach offered a comprehensive view of the patterns
and dynamics within Ethereum.

Causal inference analysis using PCMCI: To analyze ETH flows
among key wallet clusters in Ethereum, we conducted a causal
inference analysis using a flow matrix and the PCMCI algorithm
for causal discovery. This method is well suited for high-
dimensional time-series data and identifies causal links by testing
conditional independencies (Runge et al. 2019).

The mean flow matrix was employed to examine the
directional flows of ETH between DeFi (consisting of Lending
Protocols, DEXs, Bridges, and WETH), staked ETH, CEXs,
remaining wallets with <100 ETH, and wallets with >100
ETH. This method quantified ETH movement dynamics,
highlighting which categories dominated flows and how these
dynamics evolved across distinct periods—(1) before the
Beacon Chain launch, (2) after the Beacon Chain launch but
before the Shanghai upgrade, and (3) after the Shanghai
upgrade.

The ETH balance time-series data were segmented into three
periods using key dates—the Beacon Chain launch on December
1, 2020, and the Shanghai upgrade on April 12, 2023.

The weekly net changes in balances for each category were
computed as follows:

AB; =B — B/, 3)

where B! is the balance of category i at time ¢. These net changes
were used to reconstruct the flow matrix for each week by solving
the below optimization problem.
Let us minimize the total sum of flows as follows:
n n
Minimize Zl Zl Fy, 4)

i=1j=
where F;; represents the flow from category i to category j and n is
the total number of categories.

The inflows and outflows for each category must satisfy the
observed net change as follows:

n n
2 F;— > F;=AB;, Vie{l,...,n} (5)
=1 j=1

The flows are constrained to be nonnegative as follows:
F,;20, Vi,j. (6)

i 2
The optimization problem was solved using linear programming.

The reconstructed flow matrices for each week were averaged
across each period to compute the mean flow matrix as follows:

- 1L ¢

=740 7
where T is the total number of weeks in the period. The resulting
mean flow matrix provided a concise representation of the ETH
movement dynamics for each phase.

The PCMCI analysis included the same time series as those
used in the prior flow matrix analysis. Data were made stationary
by differencing. Stationarity was confirmed via an augmented
Dickey-Fuller (ADF) test. Since we hypothesized that the
Shanghai upgrade was a significant event, we tested the data for
structural breaks at that date using the Chow test. Next, we
divided the dataset into two periods, before and after the
Shanghai upgrade on April 12, 2023, to evaluate changes in causal
structures.

PCMCI operates via the following two main steps:

1. The PC algorithm identifies candidate causal parents by
iteratively testing conditional independencies among

variables with lagged dependencies up to a user-defined
maximum lag.

2. The momentary conditional independence (MCI) algo-
rithm refines these relationships by estimating partial
correlations and p values, providing robust measures of
causal strength and significance.

We employed the generalized ParCorr (GPDC) test for
conditional independence, which is particularly effective in
handling nonlinear dependencies (Runge 2018). We chose a
maximum lag of 7 for the PCMCI algorithm because we observed
a correlation decay beyond that point. The analysis was
conducted with an alpha level of 0.01.

The causal relationships identified by PCMCI were visualized
as directed graphs. Each node represents a variable, and edges
indicate significant causal links. Edge weights correspond to the
strength of the causal effect, as measured by the MCI algorithm.

Contextual interpretation: We interpret the findings within the
broader Ethereum ecosystem, considering market trends, actor
behaviors and protocol-level changes, such as the transition to
PoS and the Shanghai upgrade. This contextual layer integrates
external insights, including relevant literature and expert opi-
nions, to provide a holistic understanding of ETH distribution
and dynamics.

Results

Static analysis of ETH supply. Raw data reveal disparities in the
distribution of assets within the network. The vast majority, 95%,
of Ethereum addresses hold less than 0.1 ETH. This finding may
be interpreted as a sign of widespread ETH adoption and dis-
tribution among many participants. However, a closer analysis of
the relative supply held by these addresses reveals a contrasting
picture of concentration; approximately 0.3% of addresses hold
nearly 95% of the total supply (holding over 10 ETH).

The discrepancy between the number of addresses and the
concentration of funds raises important questions about the true
nature of ETH’s (current) distribution. Although Ethereum seems
decentralized in terms of address count, high-balance addresses
demonstrate high-level wealth concentration, as noted by Sai et al.
(2021a). CEX wallets, bridges, the Beacon Chain contract, and the
WETH contract consolidate the distribution of many individual
investors’ funds, creating the impression of centralization.
However, even after excluding CEXs, smart contract wallets,
and other nonindividual wallets by considering only unlabeled
wallets, the Gini coefficient remains high, between 0.9 and 0.95,
depending on the inclusion criteria. If we filter out those wallets
holding less than 0.1 ETH, then it is closer to 0.9, and if we
consider all wallets, then it is closer to 0.95.

Figure 1 displays wallets holding over 100,000 ETH, compris-
ing approximately half of ETH holdings as of December 2023.
The Beacon Chain deposit contract holds 29% of all ETH,
accounting for 55.6% of the supply held by 100,000+ ETH
addresses. The rest of the supply is held in unlabeled addresses,
exchange wallets, WETH, and bridges.

In the following section, only the results for the best-fitting
distributions are reported. The extreme numbers from the
statistical tests result from the large number of samples.

Body of distribution (bottom 99%). For the bottom 99%, the log-
normal distribution provides the best fit across all the metrics,
achieving the highest log-likelihood (369,776,507), the lowest AIC
(-739,553,009), and the lowest KS statistic (0.0355), out-
performing both the Pareto and Weibull distributions. However,
the KS test results indicated significant deviations from all the
fitted distributions (p value = 0.0), suggesting that none perfectly
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Fig. 1 Supply distribution within addresses over 100,000 ETH. This chart
displays the distribution of ETH holdings among all addresses with more
than 100,000 ETH (102 addresses as of February 2024). The percentages
represent the relative amounts of ETH held by each category. The Beacon
Chain holds the largest share, at 55.6%, followed by other categories,
including CEX (15.3%), Other (17.7%), WETH (5.2%), Bridges (4.3%),
DeFi, and the Ethereum Foundation.

Log-normal QQ-Plot

capture the underlying distribution. Visual inspection of the QQ
and CDF plots (Fig. 2) reveals that the log-normal distribution
deviates in the higher quantiles, where it slightly underestimates
the observed data.

The calculated mean and median of the log-normal distribu-
tion are approximately 0.0399 ETH and 0.001667 ETH, respec-
tively, and the observed mean and median are 0.0392 ETH and
0.00157 ETH. These values reflect the dominance of small
balances in the bottom 99%, aligning not only with the long-
tailed nature of wealth distributions but also with the fact that in
the empirical data, we have fewer addresses at the upper part of
the distribution than one would expect from the parametric
distribution.

Distribution tail (top 1%). The Pareto distribution exhibits the
best fit for the top 1% of wallets, achieving the highest log-
likelihood (-3,227,396), the lowest AIC (6,454,799), and the
lowest KS statistic (0.0144), outperforming both the log-normal
and Weibull distributions. Like with the body of the distribution,
the KS statistic exhibits a significant deviation (p value = 0.0).
The QQ and CDF plots (Fig. 3) further confirm that the Pareto

Empirical vs Log-normal CDF
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Fig. 2 QQ and CDF plots for body ETH holdings. This figure displays the QQ and CDF plots for the bottom 99% of wallets in terms of their ETH holding

distribution, fitted to a log-normal distribution.

Pareto QQ-Plot
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Fig. 3 QQ and CDF plots for tail ETH holdings. This figure displays the QQ and CDF plots for the top 1% of wallets in terms of their ETH holding

distribution, fitted to a Pareto distribution.
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Fig. 4 Supply by balance. Each line represents the percentage of total ETH
held by different wallet groups. For example, one line shows the percentage
held by all wallets with balances between O and 0.1 ETH. The vertical dotted
line indicates the moment of the Shanghai upgrade, which allowed for the
withdrawal of staked ETH. Following this upgrade, the percentage of ETH
held by the largest group, which includes the Beacon Chain, increases
significantly compared with all other groups. This finding suggests that
users staked more ETH after the Shanghai upgrade, gaining confidence in
their ability to withdraw their ETH at any time, than they did before the
Shanghai upgrade.

distribution captures the extreme concentration of wealth in the
tail well for the majority of the data while not aligning perfectly at
the higher range of the distribution.

While the log-normal distribution underestimates the upper
quantiles, the Pareto distribution aligns closer with the observed
data, particularly at the highest wallet balances. Fitting a power-
law distribution to the tail yields an alpha value of 1.79 and an
Xmin of 3.021, which is consistent with the heavy-tailed
characteristics of wealth distributions in economies.

The power-law alpha represents the rate at which the probability
of observing extreme values decreases as the value increases;
smaller alpha values indicate “heavier” tails. Empirical studies have
shown that the distribution of individual wealth in different
countries during various periods in the 20th century follows a
power-law distribution with 1 < & <2 (Malcai et al. 2002).

Dynamic analysis

General observations. Figure 4 illustrates the distribution of ETH’s
total supply across wallets of varying sizes on the basis of the
classification proposed by Urquhart (2022). This classification
includes eight wallet groups, ranging from small wallets holding
less than 0.1 ETH to the largest wallets, which exceed 100,000
ETH. The figure shows that large wallets have held the majority of
the ETH supply throughout Ethereum’s entire history.

Figure 5 depicts the share of total ETH supply held by different
aggregated categories over time.

There is a significant shift in wallet dominance during the
2017-2018 bull market. All wallet groups holding less than
100,000 ETH experience an increase in relative supply, whereas
those holding more than 100,000 ETH experience a continuous
decrease.

From approximately 2020 onward, the data show a slow
reversion of the trend—an uptick in supply held by the 100,000+
ETH addresses and a corresponding decline in smaller wallet
groups. This phase coincides with the surge in DeFi applications
and the associated use of WETH, as shown in Fig. 5.

Furthermore, in late 2020, the Beacon Chain was launched in
parallel with the Ethereum mainnet to transition Ethereum’s
consensus mechanism from PoW to PoS (Foundation 2023,
Kapengut and Mizrach 2023). Users could lock their ETH for

Supply shares held by categories over time
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Fig. 5 Supply share held by categories over time. This figure displays the
normalized share of ETH held by five disjoint wallet categories from 2016 to
2024. The x-axis represents time, and the y-axis represents the normalized
share amount (0-1). The “DeFi" group includes lending protocols, WETH
supply, and supply on bridges; the “Exchange” group includes CEX-related
wallets; and the “Staked” group includes all staked ETH. The “ >100 ETH"
group includes all remaining wallets holding more than 100 ETH. The “
<100 ETH" group includes all remaining wallets whose holdings are less
than 100 ETH.

staking in the Beacon deposit contract, which quickly reached a
balance of more than 2 million ETH by January 2021, which
explains the gradual redistribution of ETH from smaller groups to
the 100,000+ ETH group at that time, as is also visible in Fig. 5.

The decline in the relative holdings of the largest wallet group
is particularly evident following a series of black swan events in
mid-to-late 2022. These events include the collapse of Terra Luna
(Liu et al. 2023), the bankruptcy of Celsius (Knauth 2023) shortly
thereafter, and the bankruptcy of FIX (Davis 2023) in
November 2022.

In April 2023 (see the vertical dashed line in Fig. 4), the largest
wallet group begins to accumulate ETH from other groups. In line
with the Ethereum Shanghai upgrade (Nijkerk 2023), stakers can
now withdraw ETH for the first time. Moreover, the Shanghai
upgrade completes Ethereum’s PoW-to-PoS transition. Staking
significantly increases after this completion, despite the Ethereum
community’s prediction that stakers will liquidate their ETH.
Instead, investors know that they can withdraw their stakes if
needed, thus improving the safety and flexibility of staking. To
evaluate the impact of the events in the Shanghai upgrade, we
performed a Chow test to identify potential structural breaks in
staking flows. The results strongly support the presence of a
structural break at the time of the upgrade. The test produced a
Chow test statistic of 92.42, far exceeding the critical value of 3.00
at a 95% confidence level, with a p-value of 1.1 x 10710,

When examining the HHI over Ethereum’s history, as shown
in Fig. 6, we observe a significant decrease, indicating less
concentration, from 2017 to 2018. This decrease is followed by a
rise in concentration until mid-2020, after which the HHI
decreases again. The gray highlighted areas represent bull markets
from January 2017 to January 2018 and April 2020 to November
2021, both of which are closely associated with BTC and ETH
price bubbles (Nafiez Alonso et al. 2024). Notably, PoS protocol
updates appear to have had a minimal effect on HHI trends, with
market phases playing a more significant role. Bull markets tend
to coincide with lower HHI values, reflecting greater decentra-
lization, whereas bear markets coincide with an increase in
concentration.
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Fig. 6 HHI over time. This figure tracks the HHI for Ethereum wallets
holding over 0.001 ETH, illustrating changes in the concentration of
holdings. The gray shaded areas highlight Ethereum bull markets with rapid
price increases, whereas the vertical lines mark key milestones in
Ethereum'’s transition to PoS. The Beacon Chain launch in December 2020
introduced the PoS consensus mechanism, enabling ETH staking and laying
the groundwork for future upgrades. “The Merge" in September 2022
unified the Beacon Chain with Ethereum’s mainnet, completing the
network’s shift from energy-intensive PoW to PoS and drastically reducing
energy usage. The Shanghai upgrade in April 2023 allowed stakers to
withdraw their staked ETH and rewards for the first time, improving
liquidity while maintaining network security. A lower HHI value in the chart
reflects decreasing concentration and a more decentralized distribution of
ETH holdings over time.

Supply by balance and market regimes
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Fig. 7 Supply by balance and market regimes. This figure displays the
normalized supply share of various wallet groups holding fewer than
100,000 ETH over time. The x-axis represents the period from 2016 to
2024, whereas the y-axis represents the normalized share of total supply
held by these groups relative to all wallets holding less than 100,000 ETH.
The gray shaded areas highlight the Ethereum bull markets, characterized
by drastic price increases. The figure reveals the dynamics of ETH
distribution among wallet groups across different market cycles.

Figure 7 is a visual representation of the normalized ([0;1])
relative supply balance changes for the following five wallet
groups: 0-1 ETH, 1-100 ETH, 100-1,000 ETH, 1,000-10,000
ETH, and 10,000-100,000 ETH. By setting the threshold to
100,000 ETH, an estimated valuation of US$230 million at
December 2023 prices, this study deliberately focuses on a
segment that excludes the balances of large protocols and
exchange wallets that make up a significant portion of Ethereum’s
total supply; the plotted data consider only the relative supply
share of all wallets with fewer than 100,000 ETH.

Until 2020, all wallet groups holding 1000 ETH or less exhibit
similar relative supply curves, with a drastic increase during the
2017 bull market. Moreover, wallets holding more than 1000
ETH exhibit a sharper decrease in supply share than do other
wallets.

10

Table 2 Mean flow matrices (From = rows, To = columns).
DeFi Staked Exchanges <100 >100
ETH ETH
Mean Flow Matrix Pre-Beacon Chain Launch
DeFi 0.0000 0.0000 0.0044 0.0014  0.0067
Staked 0.0000 0.0000 0.0000 0.0000 0.0000
Exchanges 0.0188 0.0000 0.0000 0.0229 0.1000
<100 ETH 0.0018 0.0000 0.0023 0.0000 0.0014
>100 ETH 0.0351 0.0000 0.1133 0.0192 0.0000
Mean Flow Matrix Post-Beacon Chain Launch but Pre-Shanghai
Upgrade
DeFi 0.0000 0.0350 0.0208 0.0056 0.0285
Staked 0.0000 0.0000 0.0002 0.0000 0.0000
Exchanges 0.0403 0.0295 0.0000 0.0115 0.0428
<100 ETH 0.0008 0.0057 0.0023 0.0000 0.0000
>100 ETH 0.0586 0.0445 0.0484 0.0124 0.0000
Mean Flow Matrix Post-Shanghai Upgrade
DeFi 0.0000 0.0267 0.0087 0.0000 0.0100
Staked 0.0014 0.0000 0.0063 0.0000 0.0068
Exchanges 0.0091 0.0325 0.0000 0.0000 0.0089
<100 ETH 0.0028 0.0195 0.0062 0.0000 0.0019
>100 ETH 0.0056 0.0841 0.0175 0.0004 0.0000
Each entry represents the average weekly percentage of the total ETH supply flowing from one
category (rows) to another category (columns) during the specified period. Non-zero values are
bold.

Between the two bull market periods, there is a noticeable
adjustment in the supply distribution. All three wallet groups
holding fewer than 1000 ETH exhibit a reduction in growth and
show signs of only slight accumulation. Wallets holding 1000 to
10,000 ETH even increase their share in the first half of 2018 but
continue their reduction from that point onward. The share of the
10,000-100,000 ETH group continues to decrease until 2019 but
then remains constant until late 2020.

From late 2020 onward, as the price of ETH increases, the data
indicate a negative trend in the holdings of larger wallets, except
for those wallets holding more than 10,000 ETH. Simultaneously,
smaller wallet holdings are increasing dramatically in proportion,
equivalent to the 2017 bull cycle. This finding suggests that there
is an increase in retail participation or investment during periods
of market optimism.

Causal inference analysis. The flow matrix (Table 2) prior to the
Beacon Chain launch highlights the dominance of CEXs and large
holders (>100 ETH) in the redistribution of ETH. Each entry in
the flow matrix represents the average weekly percentage of the
total ETH supply flowing from one category (rows) to another
category (columns) during the specified period. Sizable flows
emerge from > 100 ETH toward CEXs and DeFi (0.1133% and
0.0351%, respectively), indicating the early engagement of large
holders with both custodial and decentralized platforms. Con-
versely, smaller holders (<100 ETH) show minimal interaction,
with only small flows to CEXs and DeFi (both under 0.003%).
This period thus reflects the prestaking environment where ETH
remains predominantly in larger wallets or centralized custodial
services.

Following the Beacon Chain launch, the introduction of
staking significantly alters the redistribution dynamics. Flows
into the “Staked” category become prominent, with the majority
originating from the > 100 ETH group. Notably, flows from >100
ETH into Staked rise from effectively zero to 0.0445% per week
and then further to 0.0841% (+89%) after the Shanghai upgrade.
CEXs begin offering custodial staking services and thereby
directing flows to Staked, a figure that increases by more than
10% (to 0.0325%) after the Shanghai upgrade. Moreover, smaller
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Fig. 8 PCMCI DAG before and after the Shanghai upgrade. This figure illustrates the structural relationships among Ethereum wallet categories derived
using PCMCI analysis. Each graph represents the state before and after the Shanghai upgrade, with node colors corresponding to Auto-MCI values
(indicating the importance of self-dependencies within categories) and edge colors representing Cross-MCI values (indicating the strength of relationships

between categories). The left graph, labeled “Pre-Shanghai,”
Shanghai,”
signifying stronger relationships.

holders (<100 ETH) clearly increase their degree of staking
participation, with flows to Staked jumping more than threefold
(from 0.0057% to 0.0195% weekly). Flows from >100 ETH to
DeFi also grow considerably (e.g., from 0.0351% to 0.0586%),
highlighting increased DeFi participation among large holders.
This redistribution is also evident in the area plot of holdings
across categories (Fig. 5), where a steady rise in staked ETH
corresponds to decreases in exchange holdings and large wallet
balances.

The PCMCI results during this period, visualized in the
directed acyclic graph (DAG) for pre-Shanghai upgrade (Fig. 8),
provide critical insights into the associated causal relationships.
Strong negative correlations are observed between >100 ETH and
CEXs (val=—0.597) and between >100 ETH and DeFi (val =
—0.625), indicating redistribution away from large wallets and
toward CEXs and DEXs. A significant causal link from CEXs to
DeFi (val=—0.231) highlights that ETH flows from CEXs to
DeFi protocols. The self-reinforcing link in Staked (val = 0.326)
highlights the persistence of staking inflows, suggesting that the
introduction of staking creates a stable mechanism for ETH
redistribution, concentrating a significant portion of the supply in
validator nodes.

After the Shanghai upgrade, the ability to withdraw staked
ETH introduces new dynamics. The flow matrix reveals
substantial outflows from the “Staked” category to > 100 ETH
and DeFji, indicative of large holders reclaiming their staked ETH
and possibly reinvesting it in decentralized protocols. Flows from
Exchanges to Staked (val=—0.175) and from Staked to
Exchanges (val=—0.175) suggest an increased number of
interactions between staking and exchange platforms. The flows
to DeFi from Staked and >100 ETH align with increased activity
in DeFj, suggesting that DeFi absorbs a portion of the withdrawn

highlights connections before the Ethereum Shanghai upgrade, whereas the right graph, “Post-
captures relationships after the upgrade. The thickness of the edges represents the magnitude of the Cross-MCl values, with darker edges

ETH. Smaller holders (<100 ETH) continue to exhibit limited
direct interaction with Staked but show marginal increases in
flows to DeFi, reflecting their preference for custodial or
intermediary staking solutions. These trends are mirrored in
the area plot (Fig. 5), which shows a stabilization in staked ETH
balances post-Shanghai upgrade, as withdrawn funds are
redistributed.

The DAG for the post-Shanghai upgrade (Fig. 8) reveals
significant causal links that underline these findings. Staked ETH
exhibits stronger negative correlations with > 100 ETH (val=
—0.670) and DeFi (val = —0.670), confirming the hypothesis that
ETH withdrawn from staking is actively reinvested or redis-
tributed. Self-reinforcing trends within Staked (val=0.246)
persist, suggesting that while withdrawals occur, staking remains
a key mechanism for securing the network and redistributing
supply. Furthermore, the stronger link from DeFi to <100 ETH
(val=—0.160) implies that smaller holders are engaging more
actively in decentralized ecosystems, likely through intermediary
staking services or liquid staking derivatives.

Staking decentralization trends. The dynamics of ETH staking
reveal significant trends in decentralization over time. Using
cumulative data on staked ETH by entity and the corresponding
Gini coefficient for staking distribution (Figs. 9, 10), we observe
an increasing diversification of entities participating in staking,
accompanied by a gradual decrease in the Gini coefficient. These
findings suggest that while staking remains partially concentrated
among major players, new entities contribute to a more decen-
tralized staking landscape.

The stacked area plot (Fig. 9) shows a steady rise in total staked
ETH since the Beacon Chain launch, with a dominance of Lido,
Coinbase, Kraken, and Binance. Lido’s staking dominance is
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Fig. 9 Cumulative deposited ETH over time by entity. This stacked area chart represents the cumulative amount of ETH deposited by various staking
entities from 2021 to 2025. The x-axis denotes the time, whereas the y-axis represents the total amount of ETH deposited. Different colored areas
correspond to specific depositor entities, such as Lido, Coinbase, Binance, Rocket Pool, and others, along with categories for solo stakers and unidentified
contributors. This figure highlights growth trends across entities, with notable increases in cumulative deposits over time, especially after major Ethereum
events such as the Shanghai upgrade in April 2023. This figure underscores the dominance of certain entities, such as Lido, Coinbase, and Binance, while
also exhibiting diversification in staking activity through smaller providers and solo stakers.
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Fig. 10 Gini coefficient of staked ETH. This line chart depicts the Gini
coefficient for staked ETH among entities from 2021 to 2025. The x-axis
represents the time, whereas the y-axis shows the Gini coefficient values,
which measure inequality in ETH staking distribution across entities. This
figure reveals a decreasing trend in the Gini coefficient over time, indicating
a reduction in the concentration of staked ETH. Significant decreases are
observed around key Ethereum events, such as the Shanghai upgrade,
suggesting an increase in the degree of staking decentralization.

particularly noteworthy, as its cumulative share approaches a
critical threshold of one-third of the total staked ETH, a point
that can pose risks to Ethereum’s network decentralization and
security. Nevertheless, the presence of newer and smaller staking
entities has steadily increased, as evidenced by the broadening of
the lower segments in the stacked plot. These smaller entities play
a vital role in mitigating the overconcentration of staking power.

The Gini coefficient for staked ETH (Fig. 10) further under-
scores this trend. The coefficient decreases consistently over time,
reflecting less concentration of staked ETH across a growing
number of entities. The downward trajectory suggests that
Ethereum’s staking mechanism is becoming less centralized, with
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more participants contributing to the network’s security. How-
ever, the data also highlight that a substantial portion of staked
ETH remains managed by dominant players, including Lido and
CEXs, which collectively control a significant share of the
staked ETH.

Several factors contribute to this observed concentration.
Staking services such as Lido simplify the staking process by
offering immediate activation and liquid staking derivatives,
making them attractive options for participants who are unwilling
or unable to meet the operational requirements of solo staking.
Additionally, large entities benefit from economies of scale, as
they can amortize hardware costs across multiple validators,
creating an inherent advantage over smaller participants.
Congestion in the validator activation queue exacerbates this
disparity, as solo stakers often face significant delays, whereas
staking services enable near-instant participation (Grandjean
et al. 2023).

Despite these challenges, the growth of smaller staking entities
represents positive development for Ethereum decentralization.
Incentivizing solo staking, as noted by Grandjean et al. (2023),
and promoting competition among staking providers remain
critical for countering the potential risks posed by the dominance
of major players. While the observed trends indicate progress
toward more decentralization, further measures to ensure a
balanced and decentralized staking ecosystem will be crucial as
Ethereum continues to evolve.

Discussion and conclusions

In our static analysis, in line with prior studies (Sai et al. 2021b),
we find a high concentration of ETH, with approximately 0.3% of
the addresses holding nearly 95% of the total supply (holding over
10 ETH). An inverse relationship is also evident; smaller wallets,
despite comprising the majority of addresses, hold only a small
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fraction of the total ETH supply. As the CEX wallets, bridges,
Beacon Chain contracts, and WETH contracts consolidate the
distribution of many individual investors’ funds, this may add to
the impression of high degrees of concentration. However, even
after excluding CEXs, smart contract wallets, and other non-
individual wallets by considering only unlabeled wallets, the Gini
coefficient remains high, between 0.9 and 0.95, depending on the
inclusion criteria used. The log-normal distribution provides the
best fit across all the metrics for the bottom 99% of wallets ranked
by ETH balance. The Pareto distribution exhibits the best fit for
the top 1% of wallets. While the log-normal distribution under-
estimates the upper quantiles, the Pareto distribution closely
aligns with the observed data, particularly at the highest wallet
balances. Fitting a power-law distribution to the tail yields an
alpha value of 1.79, which is consistent with the heavy-tailed
characteristics of wealth distributions in economies (Chancel
et al. 2021).

Our findings reveal fewer observations in the upper tails than
suggested by parametric models, yet the distribution of ETH
holdings broadly resembles that of wealth and income studies in
developed economies typically seen in the literature (Clementi
and Gallegati 2005, Hlasny 2021, Rodriguez Palenzuela et al.
2016). Specifically, we observe a log-normal body with Pareto-like
tails. The power-law exponent of « = 1.7 aligns with the heavy-
tailed behavior commonly reported for wealth distributions in
traditional economies (Sinha 2006). These patterns reflect
broader debates on economic inequality, where a small fraction of
participants tend to control a disproportionate share of total
wealth (Autor et al. 2008, Piketty and Goldhammer 2014).

The log-normal nature of ETH holdings can be explained by
the log-normally distributed income of investors, who channel a
portion of their earnings into cryptocurrency (Rodriguez Palen-
zuela et al. 2016). Over time, early adopters benefit dis-
proportionately from price appreciation, widening the gap
between first movers and later entrants. This phenomenon
resonates with Piketty’s fundamental inequality that wealth (or
assets) can accumulate faster than can broader economic growth
(Piketty and Goldhammer 2014). Furthermore, multiplicative
processes such as staking or liquidity provision amplify existing
holdings and converge to a log-normal pattern under Gibrat’s
law, akin to the growth processes observed in firm size (Sutton
1997). Fixed gas costs within Ethereum may additionally dis-
advantage smaller holders, a factor that can exacerbate distribu-
tional disparities (Cong et al. 2023). Overall, despite concerns
raised by extremely high Gini coefficients in blockchains (Sai et al.
2021b), our results indicate that ETH distribution does not
markedly deviate from traditional wealth distributions in
advanced economies; thus, H1 is not rejected.

The results of our dynamic analysis indicate a nuanced but
overall decentralizing trajectory in ETH distribution. This evo-
lution unfolds alongside recurrent periods of wealth redistribu-
tion that frequently coincide with market phases, reflecting the
cyclical nature of economic systems (Campbell 2006, Merton
1971). Bull markets, often accompanied by newcomers purchas-
ing ETH and larger holders realizing profits, tend to amplify
decentralization. In contrast, bear markets see larger entities
consolidating their positions, mirroring real-world cycles, where
long-term participants accumulate assets during downturns
(Caballero and Krishnamurthy 2008). Such cyclical patterns
suggest that Ethereum’s broader distributional trends align with
well-documented phenomena in traditional economies (Gilens
and Page 2014, Piketty and Goldhammer 2014).

A notable factor in the redistribution of ETH is the increasing
importance of staking. Initially dominated by CEXs and large
wallets, staking has diversified as more participants have entered
the network, particularly through liquid staking derivatives and

pooled services. Despite concerns that staking may further cen-
tralize ETH holdings (Grandjean et al. 2023, Urquhart 2022),
ongoing declines in the Gini coefficient highlight a gradual
broadening of validator participation. Major custodians and
liquid staking providers still command a substantial share of
staked ETH, but the simultaneous rise of smaller entities
demonstrates that the consensus layer is moving toward a more
distributed security model.

The interplay between DeFi and staking also bolsters this
decentralizing effect. After the Shanghai upgrade, flows from
staked ETH to DeFi became more pronounced. Smaller holders
often participate indirectly, leveraging intermediary or pooled
staking solutions, thereby gaining access to network rewards
without the operational burden of running their own validators.
This reinvestment in decentralized protocols underscores how
technological advancements can mitigate at least some of the
centralizing forces inherent to capital accumulation.

Ultimately, while ETH’s distribution still exhibits bursts of
concentration, particularly during market downturns and within
prominent staking service providers, our analysis reveals a slight
alleviation of concentration over time. In particular, the average
rising price of ETH appears to incentivize the redistribution of
ETH from large wallets to smaller wallets. Therefore, our study
rejects H2. Rather, our results reaffirm that Ethereum’s transition
to PoS, along with recent changes in token governance for the
Ethereum blockchain, provide evidence of a decentralizing effect
in Ethereum and correct the general notion of extreme wealth
concentration in Ethereum (in terms of the Gini coefficient).

This study provides a comprehensive analysis of ETH wealth
concentration trends, emphasizing the complex interplay among
market cycles, protocol upgrades, and DeFi activities. While the
findings support the hypothesis that ETH holdings are becoming
less concentrated over time, the results also reveal significant cen-
tralization that warrants further investigation. In light of broader
economic theory, Ethereum offers a unique lens through which to
observe how emerging financial technologies can simultaneously
disrupt and mirror traditional wealth distribution patterns.

Data availability

The Etherscan labels used in this study can be obtained from a
publicly accessible repository at the following link: https://github.
com/brianleect/etherscan-labels?tab=readme-ov-file. Data from
walletslabels.xyz can be made available upon request. Google Big-
Query data can be queried directly at https://bigquery.cloud.google.
com/dataset/bigquery-public-data  (paid query, dataset ID:
bigquery-public-data.crypto_ethereum). Santiment data can be fet-
ched via API from https://santiment.net/; however, a paid sub-
scription is necessary for access. Dune Analytics data can be fetched
via API from https://dune.com/ or made available upon request.
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