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Abstract

Background Pathology departments generate large volumes of unstructured data as free-
text diagnostic reports. Converting these reports into structured formats for analytics or
artificial intelligence projects requires substantial manual effort by specialized personnel.
While recent studies show promise in using advanced language models for structuring
pathology data, they primarily rely on proprietarymodels, raising cost andprivacy concerns.
Additionally, important aspects such as prompt engineering and model quantization for
deployment on consumer-grade hardware remain unaddressed.
MethodsWe created a dataset of 579 annotated pathology reports in German and English
versions. Six languagemodels (proprietary: GPT-4; open-source: Llama2 13B, Llama2 70B,
Llama3 8B, Llama3 70B, and Qwen2.5 7B) were evaluated for their ability to extract eleven
keyparameters from these reports. Additionally, we investigatedmodel performance across
different prompt engineering strategies and model quantization techniques to assess
practical deployment scenarios.
Results Here we show that open-source language models extract structured data from
pathology reports with high precision, matching the accuracy of proprietary GPT-4 model.
The precision varies significantly across different models and configurations. These
variations depend on specific prompt engineering strategies and quantization methods
used during model deployment.
Conclusions Open-source language models demonstrate comparable performance to
proprietary solutions in structuring pathology report data. This finding has significant
implications for healthcare institutions seeking cost-effective, privacy-preserving data
structuring solutions. The variations in model performance across different configurations
provide valuable insights for practical deployment in pathology departments. Our publicly
available bilingual dataset serves as both a benchmark and a resource for future research.

Pathology departments store a lot of valuable data in their archives. Thus,
small and large pathology departments can process between 20,000 and
200,000 cases peryear, respectively.Given that the cases (paraffinblocks and
histological slides) are archived for at least 10 years, a large pathology
institute might possess up to several million unique cases. Depending on
specialization, at least 50% of these cases might stem from the oncology
domain and represent highly valuable data for the development of pathol-
ogy AI tools, both diagnostic and advanced (prognostic, predictive), and

gaining new insights into different aspects of patient care1–3. System-
atization, selection, and labeling of these cases for training purposes are
possible based on the pathology reports; however, in most departments (at
least in Europe), these reports contain free text descriptions and diagnoses4.
This substantially limits the ability to query the pathology archives for
necessary categories of cases and to use these cases for training AI tools that
require highly accurate labeling of input data5,6 (Fig. 1a). Automated data
extraction frompathology reports as using rule-based systems or traditional
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Plain language summary

Pathology departments produce many
diagnostic reports as free text, which is hard
to analyze or use in research and computer
projects. Converting this free text into more
standard organized information like test
results or diagnoses, makes it easier to use.
This task often requires human experts and
takes time. Large language models (LLMs),
which are advanced computer systems
designed to understand and generate
human-like text, might simplify this process.
Here, we tested six LLMs, including freely
available models and the commercial GPT-4
model, using579pathology reports inEnglish
and German. Our results show that freely
available models can perform as well as
commercial, providing a cheaper solution
while avoiding privacy concerns. The shared
dataset will support future research in
pathology data processing.
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machine learning approaches previously performed possess limitations in
generalizability and high-quality performance7,8. These methods often
require extensive adaptation for each new application, a time-consuming
process that hinders scalability and broad applicability.

Large language models (LLMs) are powerful tools for many applica-
tions, including question answering, analyzing and processing texts,

reasoning, providing summaries, and insights in the medical domain9.
Several initial studies investigated the possibility of structured information
extraction from both radiology10–12 and pathology13–15 reports, however,
mostly using small datasets, English language reports, and advanced pro-
prietary models (GPT-4, ChatGPT-3.5). The latter are costly, cannot be
implemented locally, and are associated with privacy preservation
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concerns16. Many different aspects remain unstudied to date, such as using
open-sourcemodels, prompt engineering techniques like few-shot or chain-
of-thought prompting17–20, and quantization of model weights, allowing the
models to run locally on consumer-grade hardware (e.g., laptops).

In our study, we create a dataset containing 579 surgical pathology
reports, in two versions (English and German languages), with manually
obtained high-quality ground truth data for relevant parameters. We study
the extraction capabilities of six different models, both proprietary and
open-source (GPT4, Llama3 70B, Llama3 8B, Llama2 70B, Llama2 13B, and
Qwen2.5 7B) and investigate the influence of prompt engineering and
weight quantization on model performance. We show that all relevant
parameters can be extracted with high accuracy by both proprietary and
open-sourcemodels in fully structured forms that can be used for analytical/
statistical purposes and downstream AI tool development projects, albeit
with substantial differences between the models and setups. This informa-
tion can be highly valuable for the implementation of LLMs in pathology
departments. Moreover, we publicly release the English and German ver-
sions of our dataset, which can be used as a research benchmark for further
LLMs tests.

Methods
Study materials
The study analyzed 579 pathology reports from 340 patients with prostate
adenocarcinoma who underwent radical prostatectomy between 2020 and
2022. The reports were retrieved in anonymized plain text format from our
institute’s local database. Ground truth data, used to evaluate the model
outputs, were manually extracted by a trained doctoral student (human
medicine background) from the reports under the supervision of an
attending pathologist. Annotation was based on TNM Classification of
Malignant Tumors (TNM), Residual tumor (R) classification, Gleason
grading system, and WHO tumor classification. Eleven parameters were
chosen for the extraction based on their clinical and prognostic relevance:
WHO (ISUP) Grade Group, T-Stage, N-Stage, Number of lymph nodes
examined, Lymph nodes with metastasis, Resection margins, Histologic
subtype, Primary/Secondary/Tertiary Gleason pattern, Percentage of sec-
ondary Gleason pattern. These parameters are essential in the staging and
characterization of prostate adenocarcinoma as they guide therapeutic
decisions and influence patient prognosis.

The pathology reports were translated from German to English
(Fig. 1b) using the DeepL API in September 2023 (www.deepl.com). The
reports underwent no additional modifications prior to data extraction
rather than anonymization.

All study steps were performed in accordance with the Declaration of
Helsinki. This study was approved by the Ethical Committee of the Uni-
versity of Cologne (20-1583). The pathological reports used in this study
were obtained from patients who signed a broad informed consent (Bio-
MaSOTA consent form), which is routinely collected from patients
undergoing therapies at the University Hospital Cologne. This consent
allows the use of patient data and biomaterials for academic research and
development of commercial products, including data transfer within
“Germany, European Union, and outside of European Union (so-called
third countries)” (§4 of the consent form). The need for additional patient
consent was waived as only anonymized, retrospective materials were used.

When transmitting data via API to OpenAI, special attention was paid to
ensure full anonymization. The transmitted data was limited exclusively to
the pathological-anatomical report with macroscopic and microscopic
description, individual summarized results of molecular pathological
examinations, and final assessment including TNMclassification,making it
impossible to trace back to individual patients. Data protection aspects and
risks of using cloud-based tools were extensively discussed within authors’
collective.

Language model hardware, structured data extraction, and
analysis workflow
Standard model evaluation. Evaluation of GPT-4 and Llama2/Llama3
16-bit precisionmodels (further referred to as full-weight models) ability
to extract structured data frompathological reports was performed under
various conditions (Fig. 1c) using a dataset of 579 radical prostatectomy
pathology reports with English and German versions (see above).
Experiments involving GPT-4 utilized the OpenAI API (https://
platform.openai.com/). For implementation of Llama2 and Llama3
full-weight models, we used Nvidia A100 80 GB GPUs (CUDA version
117) hosted on our institute’s local infrastructure. The weights for these
models were obtained through the Hugging Face API, utilizing the
Transformers library in Python21 (https://github.com/meta-llama/
llama3). Model versions and the access periods are listed in Table 1.
We allocated one A100 GPU for the Llama2 13B and Llama3 8B models
and four A100 GPUs for the Llama2 70B and Llama3 70B models.

Interactions with the language models were performed one report at a
time using a zero-shot prompting approach (Supplementary Table S1). The
modelswere tasked to extract eleven keyparameters frompathology reports
and provide their answers in a structured JSON format (Fig. 1a). The
responses generated by the models were automatically evaluated at the case
level. 239 patient cases had two or more reports: initial with preliminary
data, including preliminary TNM classification, and final that usually
incorporated additional investigations such as immunohistochemistry and
the information from parallel submissions to the department, e.g., lym-
phadenectomy specimens, resulting in the final TNMclassification. In these
cases, priority was given to the most recent report for analysis. If certain
parameters were not addressed in the most recent report, subsequent
reports were consulted sequentially until the earliest available report. If
parameters remained specified as “Not mentioned” in the earliest report,
this was considered as the final answer. To evaluate model performance
accuracy, precision, recall, and F1-Score were calculated. Accuracy was
determined as the ratio of correctly predicted instances to the total number
of instances. Precisionwas calculated as the ratio of true positive predictions
to the sum of true positive and false positive predictions. Recall was mea-
sured as the ratio of true positive predictions to the sum of true positive and
false negatives. F1-Score was computed as the harmonic mean of precision
and recall. True positives are the correctly extracted parameters. False
positives refer to incorrectly extracted parameters where themodel’s output
does not match any of the ground truth categories for that parameter (e.g.,
“pN1” instead of “Pn1”). False negatives refer to incorrectly extracted
parameters where the model’s output does exist in the ground truth cate-
gories but does not match the specific expected value (e.g., “pN1” instead
of “pN3”).

Fig. 1 | Project overview. a Pathology institute archives are valuable data sources for
training AI algorithms and gaining insights into disease aspects, especially in
oncology. Typically, such archives contain thousands of cases spanning at least the
previous 10 years. Pathology reports are crucial for extracting ground truth infor-
mation for training AI, but only a few departments use structured reporting; most
use unstructured, “free text” reports. An example of a pathology report from a
patient who underwent radical prostatectomy for prostate cancer is provided,
illustrating how data should be structured for AI development. b Automated report
translation extended the evaluation scope to two languages. 579 radical prosta-
tectomy reports were collected from the institute’s database and translated from
German to English using DeepL via API access. c First part of the study involved a

comparative evaluation of full-weight GPT-4 and 16-bit Llama2/Llama3. Structured
data extraction from pathology reports in both German and English was performed
for five different LLMs. GPT-4 reports were anonymized and sent to an external
OpenAI server via API, while Llama2 and Llama3 were executed on internal
infrastructure. The outcomes, structured as JSON files, were analyzed against
ground truth data. d Second part of the study implemented quantized LLMs and
prompting strategies. Since full-weight models require dedicated server hardware,
4-bit quantization allows LLMs to be used directly by end users on consumer-grade
laptops, such as MacBook Pro M1 with 16GB RAM. Prompting strategies are
essential, user-friendly tools to improve model output. Three different LLMs were
tested: Llama2, Llama3, and Qwen2.5.
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Advanced analysis. For detailed error analysis of the full-weight model
output, incorrect responses weremanually reviewed to identify recurrent
error sources.

The frequency of hallucinations was determined by tasking themodels
with extracting structured data from ten randomly selected, non-malignant,
German-language reports using the same zero-shot procedure described
above. Since none of these reports contained information on the queried
parameters, the only correct answer was “Not mentioned.”

To assess the text complexity within the pathology reports, several
metrics were calculated: the number of tokens, type-token ratio (TTR), and
measure of textual lexical diversity (MTLD)22,23. These calculations were
performed using the koRpus package in R. To increase the precision of the
complexity measurements, we removed URLs, punctuation, numbers,
English stopwords, and whitespaces, and transformed all letters to lower-
case. Then, the parameters were evaluated for each individual report. Sub-
sequently, the average values were computed at the patient level. To explore
the relationship between text complexity and data extraction accuracy, the
average values were correlated with the percentage of correct answers per
patient. Correlation coefficients were calculated using Pearson’s r.

Quantized models and prompt strategies. For employing the 4-bit
quantized versions of Llama2 13B, Llama3 8B and Qwen2.5 7B24 models,
we used theOllama platform, executed on aMacBook ProM1with 16GB
RAM (https://github.com/ollama). Model versions and the access peri-
ods are listed in Table 1. Performance evaluationwas conducted as for the
full-weight models. Additionally, five most popular and easy to imple-
ment alternative prompting strategies (n = 5) were selected as most
promising from general language domain and explored during the ana-
lysis of quantized versions of the LLMs. To increase the proportion of
correctly structured JSON files, we used the built-in JSON mode of the
OpenAI API within Ollama. Again, all interactions with the language
models were conducted one report at a time.

The zero-shot strategy (Supplementary Table S1) included the
pathology report to be analyzed, the parameters to be extracted, the answer
options and the output format (JSON file). The few-shot strategy (Supple-
mentary Table S2) is an extension of the zero-shot approach, in which a
pathology report and the corresponding JSON output are included as an
example to improve performance. For the ‘Rephrase’ strategy (Supple-
mentary Table S3), we tasked GPT-4 to improve the zero-shot prompt we
used in previous analyses. In addition, we included several report/JSON
examples forGPT-4. Following this, we refinedGPT-4’s output bymaking a
single modification before incorporating it into subsequent analyses (see
Supplementary Table S3). In the case of the chain-of-thought strategy
(Supplementary Table S4), the models were prompted to first break down
their response into constituent steps and then summarize them in JSON
format. For this purpose, we added the following section at the end of the
zero-shot prompt:Walkme through your answer step by step, summarizing

and analyzing each category as we go. Then summarize your answer in
JSON format at the end. The chain-of-verification strategy (Supplementary
Table S5) was a two-step approach to reduce hallucinations by the models.
First the models where tasked to extract the structured data using the zero-
shot strategy. Then, in a second prompt, they were tasked to compare the
output containing the JSON object from the first prompt with the original
pathology report again to verify the answers given. The possible response
categories were also listed again for this purpose.

Statistical analysis and graphical visualization
The data processing and statistical analyses were conducted using the R (R
Foundation for Statistical Computing, Vienna, Austria) and Python3 pro-
gramming languages. R was used for the graphical visualization of the
results. For further graphical illustrations, Flaticon was used additionally
(https://www.flaticon.com).

Disclosure of artificial intelligence assistance
GPT-4 (Open AI, https://chatgpt.com) was used via the paid chatGPT
online platform for language refinements as well as spelling and grammar
corrections of the manuscript.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
Open-source LLM Llama3 achieves comparable accuracy to
GPT-4 in extracting structured data from pathology reports
First, we conducted an evaluation of state-of-the-art full-weight pro-
prietary and open- source LLMs focusing on their ability to extract eleven
parameters as structured data from pathological reports under various
conditions (Fig. 1a, c and methods). GPT-4 and Llama3 70B showed
comparable high performance, achieving over 97% overall accuracy (over
all parameters) in both languages (Fig. 2a). Notably, good results were
also achieved with the much smaller Llama3 8B model (91% and 83%
overall accuracy for English and Germany languages, respectively).
Conversely, performance of Llama2, previous generation of Llama
models, was substantially lower independent on model parameter
number (Fig. 2a). Similar trends could be seen, when accuracy was
analyzed at the level of single parameters (Fig. 2b). The highest accuracies
were observed in parameters related to tumor staging and surgical out-
comes, while lower accuracies were in general observed in categories with
quantitative parameters (especially for Llama2). GPT-4 and Llama3 70B
achieved accuracy rates of at least 88% for each parameter in both lan-
guages. Further statistical metrics (Recall, Precision, F1-Score) confirm
the trends observed using overall accuracy metric and can be found in

Table 1 | Large language models specifications and access periods

Model Version Access period Access method Hardware

GPT-4 gpt-4-1106-preview January/February 2024 OpenAI API OpenAI Server

Llama2 13B Llama-2-13b-chat-hf January/February 2024 Hugging Face API 1x Nvidia A100 80 GB

Llama2 70B Llama-2-70b-chat-hf January/February 2024 Hugging Face API 4x Nvidia A100 80 GB

Llama2 13B 4-bit llama2:13b Nov 24 Ollama MacBook Pro M1 16 GB RAM

Llama3 8B Meta-Llama-3-8B-Instruct Apr 24 Hugging Face API 1x Nvidia A100 80 GB

Llama3 70B Meta-Llama-3-70B-Instruct Apr 24 Hugging Face API 4x Nvidia A100 80 GB

Llama3 8B 4-bit llama3:8b Nov 24 Ollama MacBook Pro M1 16 GB RAM

Qwen2.5 7B 4-bit qwen2.5:7b Nov 24 Ollama MacBook Pro M1 16 GB RAM

The table lists themodel name, version, hardware used, and the period of access. Models include GPT-4, Llama2 variants (13B, 70B, 13B 4-bit), Llama3 variants (8B, 70B, 8B 4-bit), and Qwen2.5 7B 4-bit.
GPT-4 was accessed via the OpenAI API. Llama2 and Llama3 full-weight models were hosted on our institute’s local infrastructure using different numbers of Nvidia A100 80 GB GPUs. 4-bit quantized
versions of Llama2, Llama3 and Qwen2.5 were hosted on a MacBook Pro M1 with 16 GB RAM using Ollama platform.
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Fig. 2 | Evaluation of full-weight models. In all figure parts, the evaluation is
presented separately for English and German. a Overall accuracy by model type:
Open-source LLM Llama3 70B achieves accuracy levels equal tonGPT-4. GPT-4
and Llama3 substantially surpass Llama2 in overall accuracy. There are no sub-
stantial differences in performance regarding language. Overall accuracy includes
all report parameters. b Performance evaluation of single report parameters
(n = 11) extracted in a structured way: Llama3 and GPT-4 achieve consistently
robust results with accuracy rates above 90% across all parameters. For Llama2,
extracting “Percentage of the secondary Gleason pattern” (Secondary GP (%)) is
particularly challenging. GPT-4 exhibits its weakest performance in this category
too. In contrast, Llama3 models demonstrate lowest performance for WHO Grade
Group parameter. c In all tasks, we requested structured data extraction in JSON

format, which can be easily used in downstream projects. Percentage of correctly
formatted JSON files is presented. Llama2 exhibited shortcomings in generating
accurate JSON files for both languages. Llama3 generated incorrectly structured
JSON files very rarely. GPT-4 achieved completely error-free formatting. d If
thousands of reports need processing, runtime is important. Runtime distribution
per report is presented for all models. Llama2’s 70B model (local implementation)
experienced extended processing times, occasionally exceeding 100 seconds. Pro-
cessing times for Llama2 13B, GPT-4, and Llama3 models are at a comparable level
and appeared competitive. Comment: 21 outliers from Llama2 70B with run times
over 100 seconds are not shown. Abbreviations: GP – Gleason Pattern, LN - lymph
node, Mts – metastasis, WHO – World Health Organization.
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Supplementary Table S6 (global level) and Supplementary Data 1
(parameter level).

Importantly, ability to produce a correctly formatted JSONfile is a pre-
requisite for task completion.We classified the output as a valid JSON file if
it was in correct JSON format or if only minimal, automated preprocessing
(removing plain text around the brackets) was necessary to achieve it.

Invalid JSON outputs commonly included answers given in plain text for-
mat without a JSON structure, incorrect usage of brackets, or improperly
nested JSON structures. For GPT-4, we observed highly accurate perfor-
mance by generating entirely valid JSON outputs for all reports and both
languages (Fig. 2c). The performance of the Llama3modelswas only slightly
worse, with nearly flawless results, while Llama2 models experienced
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difficulties. Given that LLM output is non-deterministic, we repeated the
analyses for the open-source models under the same conditions observing
almost identical results. Interestingly, a substantial proportion of the invalid
JSON files (29% - 100%depending onmodel and language) in the retest did
not match those of the initial run, indicating an intrinsic problem in gen-
erating JSON files rather than input-specific issues.

In addition to model task-specific accuracy, the time required for data
extraction substantially impacts practical applicability (Fig. 2d). GPT-4
required on average approximately 12 (9) seconds / report for English
(German) reports. Notably, Llama3 8B showed the fastest processing times
(5-6 seconds/report, both languages). In contrast, Llama2 70B exhibited
substantially longer processing times on our hardware, taking an average of
51 (41) seconds for English/German versions. This corrects to 22 (24)
seconds for Llama3 70B.

Concluding, we achieved almost error-free data extraction with the
GPT-4 and Llama3 70B models. Additionally, we observed a substantial
improvement in performance from the Llama2 to the Llama3 model
generations.

Advanced analysis elucidates recurrent sources of error in LLM
outputs
After completing the analysis of model performance, we turned to a more
detailed analysis of errors found in the LLM output finding some common
patterns (Fig. 3a, b) such as confusion between reporting percentages for
secondary Gleason patterns and providing the complete Gleason score
when only the primary or secondary pattern was requested. Similarly, the
models often confused lymph node status (pN) with perineural invasion
(Pn) status, especially giving pN1 as an output in cases where pN was not
provided at all while perineural invasion (Pn1) was present. Furthermore,
we found that the Llama2 models often provided semantically correct
responses that did not conform to the pre-specified answer categories
(partially incorrect answers, for details see Fig. 3b).

Hallucinations (providing non-existent information) are a common
problem of LLMs. In a separate test, we instructed the models to extract
structured data from10 random, non-malignant, German-language reports
(Fig. 3c). Since none of these reports contained relevant information, “Not
mentioned” was the only correct response. Hallucinations were not
observed in GPT-4 responses, which occurred in 2% of responses from
Llama3 70B, and in 6% fromLlama3 8B. The rates were substantially higher
in Llama2 models (Fig. 3c).

Lastly, we analyzed the influence of the text complexity on the
extraction result. The following metrics were correlated with extraction
accuracy: number of tokens, TTR, andMTLD.Accuracy decreasedwith the
increasing number of tokens for Llama2 (Fig. 3d). Conversely, TTR
increases correlated with improved performance, suggesting that higher
lexical variety might benefit these models. However, the MTLD, which
provides a more accurate measure of lexical diversity, did not exhibit a
substantial correlation with model performance. Given the dependency of
TTR on token count, we concluded that the variations in model accuracy
were primarily influenced by the number of tokens rather than the intrinsic
text complexity.

Quantized LLMs combined with prompting strategies yield
heterogeneous results in structured data extraction
Using state-of-the-art open-source models (e.g., Llama2/3) requires high-
performance hardware infrastructure, not available to most end users.
Quantization (reducing model weight dimensions) is a popular technique
allowing LLM deployment on consumer-grade devices (e.g., laptop). In the
subsequent section of the study, we explored the efficacy of structured data
extraction using quantized open-source LLMs on consumer-grade hard-
ware. Using a typical laptop with GPU support (MacBook Pro M1 with
16GB of RAM) we studied the performance of three open-source LLMs
(Llama2 13B, Llama3 8B, Qwen2.5 7B) at 4-bit model weight quantization
(Figs. 4–6). In addition to various advancements in Llama model family,
several new open-source LLMs independent of Llama technology24–26 have
been developed. Notably, the Qwen2.5 model has outperformed Llama3 in
numerous benchmarks, which is why we included the Qwen2.5 7B 4-bit
model in this analysis. Five most popular prompting strategies from the
general domain were used to enhance the performance (Fig. 4a). Addi-
tionally, to increase the proportion of correctly structured JSON files, we
used the built-in JSON mode of the OpenAI API within Ollama. The per-
formance of all three models was substantially reduced (zero-shot imple-
mentation) compared to the 16-bit version LLMs tested initially (Figs. 4b,
5a, 6a for Llama3 8B, Llama2 13B,Qwen2.5 7B: zero-shot implementation).
Additionally, the accuracy of the different prompting strategies varied
considerably. For Llama3 and Llama2, the chain-of-verification strategy
yielded thebest results (Llama3:English73%,German60%;Llama2:English
40%, German 31%). The least effective results within the models were
observed using the chain-of-thought (English) or few-shot (German)
strategy for Llama3 and the few-shot strategy for Llama2. Qwen2.5 pro-
duced the best and most consistent results among the 4-bit models using
a chain-of-verification or zero-shot strategy. The general trends in
performance for individual report parameters (Figs. 4c, 5b, 6b) aligned
closely with those observed in earlier analyses (Fig. 2b, Fig. 5b). Further
statistical metrics (Recall, Precision, F1-Score) confirm the evaluation
results using overall accuracy metric and can be found in Supplementary
Table S7 (global level) and Supplementary Data 2 (parameter level). The
analysis concerning percentage of correctly formatted JSON and time per
report analysis for comparison with initial results is provided in Figs. 4d, e,
5c, d, and 6c, d.

So far, our findings on structured data extraction using 4-bit quantized
models imply that even using state-of-the-art prompting strategies these
models do not reach consistent robustness in their outputs. Their perfor-
mance is by a large margin inferior to that of state-of-the-art LLMs in our
analysis (GPT4, Llama3 70B 16 bit).

Discussion
Our work provides a comprehensive test of how LLMs can be used to fully
structure the data from surgical pathology reports in the context of onco-
logical diseases (Fig. 1). Firstly, we create a dataset for resection cases of one
type (radical prostatectomy for prostate cancer) with high-quality ground
truth information (all relevant tumor parameters manually extracted from
all reports in the form of a database; Fig. 1a). This represents a use case

Fig. 3 | Detailed analysis of the patterns of incorrect responses. a Frequently
observed fully incorrect model responses and summary of patterns (problem).
b Partially incorrect model answers: Here, while the general meaning of the answer
aligns with the question, adherence to predefined response categories was not
maintained. Notably, attempts particularly by Llama2 models to replicate German
umlauts (e.g., “azinär” becoming “azin√§r”) introduced additional inaccuracies.
(*Translation: Bilobar acinar adenocarcinoma) (c) Hallucinations (providing non-
existant information) is a common problem in LLMs. Frequency of hallucinations
for tested LLM is provided. An additional analysis was conducted whereby the
models were instructed to extract structured data from 10 random, non-malignant
reports using the same prompt as before. The reports lacked any of the specified
parameters, therefore, “Not mentioned” was the correct response. Instances of

invalid JSON outputs were subjected to manual examination. A substantial inci-
dence of hallucinatory responses was observed for Llama2 models. GPT4 responses
lacked hallucinations with only few reports affected by the problem for Llama3
models. d Complexity of the report text can influence the extraction result. We
provide case-level accuracy analysis dependent on metrics of lexical diversity
(n = 340): Correlation (Pearson’s r) between model accuracies, number of tokens
(Tokens), Type-Token Ratio (TTR), and Measure of textual lexical diversity
(MTLD). Notably, in some constellations, the Llama2 models exhibit a slight
improvement in performance as complexity of the texts increases. In contrast, in case
of Llama2 13B, accuracy appears to decrease with an increasing number of tokens,
which should be considered in real-world LLM implementation.
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generalizable to resection specimens formalignant tumors of other locations
as the reports have identical textual structure. Since these reports stem from
a German institution, we performed supervised controlled translation into
theEnglish language, creating anEnglish copyof thedataset andperforming
all tests independently for both languages.

Our results show the feasibility of accurately extracting relevant
information in a systematized form, independent of the report language. In
the best setup, we achieved an impressive overall accuracy of 98% and 97%
for English and German languages, respectively (Fig. 2a). For individual
parameters (n = 11), the range of accuracies was 94-100% for both English
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and German (Fig. 2b). However, several aspects should be considered to
achieve such adequate results.

The type of LLMs used was of utmost importance in our study. We
tested six different LLMs: proprietary (GPT4) and open source (Llama3 8B,
Llama3 70B, Llama2 13B, Llama2 70B, Qwen2.5 7B), including newly
released (April 2024) third generation of Llama models (Llama3). In the
classical zero-shot experiment (no special textual prompting of the model
and no examples) of the full LLMs, GPT4, Llama3 70B, Llama3 8B, Llama2
70B, Llama2 13B showed overall accuracy of 98%, 97%, 91%, 59%, and 48%
(97%, 97%, 83%, 65%, and 31%) for English (German) language (Fig. 2a).
There was a clear trend toward lower performance with a lower number of
model parameters (a trend known from general applications). Llama2 full-
weight models failed to accurately complete the task of generating a JSON
file in up to 54% of cases. In contrast, GPT-4, Llama3 70B, and Llama3 7B
successfully produced correct JSON files in 100%, 99.8%, and 98% of cases,
respectively, even without using a strategy for guaranteed JSON-structured
output. We substantially improved Llama2’s performance on this issue for
the 4-bitmodel by leveraging the built-in JSONmode of theOpenAIAPI in
Ollama. Depending on the prompting strategy, the error rate when gen-
erating JSON files dropped to a range between 3% to 26%.

Llama3, Llama2, and Qwen2.5 are open-source LLMs, which can be
downloaded and used for free on one’s own infrastructure, while GPT4 can
only be used via API and is associated with costs (as of January 2024,
approximately 0.02 USD/report). Additionally, privacy issues might be a
concernwhenusingGPT, as the reports are not anonymized (not the case in
our study)16. In our work, we showed that open-source LLMs, specifically
Llama3, completed the study task with high precision at the same accuracy
level as GPT-4, all within a reasonable timeframe suitable for typical clinical
applications, even without employing techniques such as batched proces-
sing to enhance inference speed. We provide an appealing evidence of how
evolution of Llamamodels extends their capabilities in themedical domain.

Nevertheless, we observed certain patterns of misclassification as
summarized in Fig. 3a-d. At least some of the outputs can be treated as
partially correct (e.g., pN-Stage: “pN0 (0/4)” instead of “pN0”) andmight be
addressed through additional post-processing with LLMs; however, they
should be acknowledged as mistakes if strict criteria are applied.

Furthermore, we investigated two important aspects intended to
democratize the usage of LLMs: prompt engineering and quantization.
Prompt engineering (crafting the inquiry to the LLM in a certain way) was
shown to substantially improve the accuracy of outputs in general and
medical knowledge domain27. Numerous well-defined prompting strategies
were established28. Moreover, quantization of LLM weights (reducing the
parameter weight dimensionality, e.g., from 16-bit to 4-bit precision)
reduces the size of the model and allows it to run on a consumer-grade
laptop. Importantly,we didnot studyprompt engineering forGPT4as zero-
shot prompting achieved nearly perfect results. Using 4-bit quantized ver-
sions of Llama3 8B and Llama2 13B, even with additionally applying JSON
mode in Ollama designed to enforce JSON-formatted outputs, overall
accuracy substantially declined. For the English (German) dataset, accuracy
dropped from 91% and 48% (83% and 31%) with the original 16-bit model
versions to 69% and 39% (59% and 29%). Importantly, the application of
different prompting strategiesmainly led to a decline in accuracy. However,
chain-of-verification prompting produced a slight increase in performance.

For the Qwen2.5model, results showedminor improvements over the
Llama3 7B 4-bit model. Similar to the Llama2/Llama3 4-bit model,
employing additional prompting strategies did not yield substantial further
enhancements. The best accuracy was achieved using zero-shot and chain-
of-verification prompting, both demonstrating comparable performance
(English: 76% and 78%; German: 67% and 66%)

In conclusion, there is evidence that prompting strategies can sub-
stantially influence theperformance of evenquantized (4Bit) and small (7B)
models.Nevertheless, the performancewas, in general, not comparablewith
GPT4 and Llama3 70B, which provide nearly perfect structuring.

Several studies investigated LLMs for the structuring of pathology
report data13. Truhn et al.13 used GPT4 to process 100 randomly scanned
pathology reports in English from The Cancer Genome Atlas colorectal
cancer cohort (translated to textual form using optical character recogni-
tion), with ground truth manually created. The overall accuracy is com-
parable to our results. The authors provided limited validation in the
German language (report n = 21), also achieving 99.4% accuracy for the
extraction of parameters. The advantage of our study is a larger dataset
(reports n = 579) and extensive validation in both English and German
languages, generally confirming the high accuracy of GPT4 by Truhn
et al. 13. Choi et al.14 used a dataset of 340 pathology reports from breast
cancer merged with ultrasound reports containing text in both Korean
and English. For the extraction of single pathological parameters, the
authors utilized ChatGPT3.5 (gpt-3.5-turbo) via the GPT for Sheets and
Docs tool, achieving an accuracy range of 86.7-96.3%. At that, the
extraction accuracy of the “pathological T stage”parameter (one of themost
importantparameters)was comparably lowat 86.7%.However, it provides a
good accuracy estimate for theChatGPT3.5-basedpipeline compared toour
own and Truhn et al.13 results (GPT4-based). Sushil et al.15 compared
GPT4 and ChatGPT3.5 to supervised methods for 769 breast cancer
pathology reports (13 parameters, no TNM-stage; 91.3% in English).
The GPT4 model (zero-shot) performed the best with an average macro
F1 scoreof 0.83 compared to0.75 for thebest-supervisedmodel (long-short-
term memory with attention) and 0.53 for ChatGPT3.5 (zero-shot). Tra-
ditional machine learningmethods (e.g., support vector machines, decision
trees, gradient boosting) were implemented for extraction of the structured
data frompathology reports, however, showing substantially lower accuracy
(at least 10%) compared to LLMs7,8. This applies to our result achieved by
top-performing LLMs when compared to the analysis of Lenain et al.8.
Moreover, traditional machine learning methods confer several important
limitations, such as the necessity of training (difficult or impossible for
typical end users), low generalizability to new domains, sensitivity to out-
liers, and dependence on language and specifically prepared datasets. All
these limitations are not applicable to LLMs.

Our study substantially extends beyond the published evidence by
evaluating several popular open-source LLMs (Llama3, Llama2, Qwen2.5),
which are preferable to GPT4 due to their cost-free nature, substantially
mitigated security and privacy concerns resulting from the local running
of LLMs on one’s infrastructure, and the ability to run them on consumer-
grade laptops in a quantized form. Another study29 investigated a very
small open-source model, FastChat-T5 (3B parameters), on local infra-
structure to process 84 thyroid cancer surgical pathology reports. A
substantial limitation of the model is its small context size, which

Fig. 4 | Analysis of accuracy for quantized Llama3 8B 4-bit model with different
prompting strategies. Quantization of the model (from 16 bit version to 4-bit
version) allows to implement it directly on the consumer-grade laptop. Otherwise,
most of the end users will not be able to use the LLMs for report structuring due to the
restricted access to specialized AI hardware. As quantization per-definition reduces
model performance to some extent, prompting strategies is a logical way to boost the
accuracy. a Five prompting strategies used in the analysis. Most common and
promising prompting strategies from the general domain were selected for imple-
mentation in extraction of structured data with 4-bit quantized models. The com-
parative results are provided for both languages. b Overall accuracy for different
prompt strategies: Chain-of-verification strategy slightly outperforms all other

strategies. c Performance evaluation at the level of single report parameters (n = 11).
d Percentage correctly formatted JSON: All prompt strategies produced a high
proportion of correct JSON files, with only a few errors, slightlymore in the few-shot
prompt. Overall, the results for German reports are inferior to those for English
reports. e Runtime distribution per report: For CoV, only the duration of the sec-
ondary analysis (result verification) is accounted for; thus, the initial analysis (zero-
shot) time must be additionally considered. One outlier with a run time of over
100 seconds is not shown. Abbreviations: GP Gleason pattern, LN lymph node, Mts
metastasis, WHO World Health Organisation), CoT Chain-of-Thought, CoV
Chain-of-Verification.
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necessitated the conversion of longer text reports to embeddings and
measuring similarity between segment embeddings (resulting in two
additional analytical steps). Compared to two reviewers for 12 parameters,
the average overall accuracy of the model was 89.21%. However, this
accuracy pertains to free text formulations and model-generated answers,
not to formatting into discrete predefined categories, where the accuracy
might be substantially lower.

In this context, the results of our study show that open-source LLMs
can also complete this more advanced task with a high degree of precision.

Nevertheless, despite the excellent results for some open-source models,
especially in the case of the quantized versions, the performance may be
further improved by additional fine-tuning (which was out of the scope of
this study). Interestingly, in a recent work, Lu et al.30 investigated the role of
specific medical pretraining for LLMs. The authors show that such medi-
cally pretrained models perform better only on tasks where the medical
knowledge domain is necessary (e.g., current procedural terminology code
classification) but not on more generic tasks, e.g., data extraction (investi-
gated in our study).

Fig. 5 | Analysis of accuracy for quantized Llama2 13B 4-bit model with different
prompting strategies. aOverall accuracy for different prompting strategies: Chain-
of-verification prompting consistently outperforms other strategies. b Performance
evaluation at the level of single report parameters (n = 11): Proportion of correct
answers averaged for each parameter requested. Heterogeneous results can be
observed for the different parameters. c Percentage correctly formatted JSON: The
results for the few-shot prompting strategy are substantially worse compared to the

other strategies. The results of the other strategies are slightly worse or comparable to
those of the other two models. d Runtime distribution per report: For CoV, only the
duration of the secondary analysis (result verification) is accounted for, thus the
initial analysis (zero-shot) timemust be additionally considered. 75 outliers with run
times of over 100 seconds are not shown. Abbreviations: GP Gleason Pattern, LN
lymph node, Mts metastasis, WHO World Health Organisation), CoT Chain-of-
Thought, CoV Chain-of-Verification.
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Our study is not devoid of limitations.We investigate the performance
of LLMs on a large dataset of surgical pathology reports from radical
prostatectomies in patients with prostate cancer. Even if the resultsmight be
generalizable to other resection specimens of malignant tumors given the
high similarity of report structure, this was not explicitly studied in our
work. Although we select several of the most popular LLMs (Llama3,
Llama2, Qwen2.5), we do show the differences in performance between

single open-source models, obviously related to the principles of training
(e.g., dataset, fine-tuning, etc.) and the model size. In terms of training-
related performance differences, itmay also be of interest for future research
to use LLMs such asMeditron orMed-PaLM that have been pre-trained on
medical data, which we did not investigate in our work. We release English
and German versions of our dataset in a fully anonymized form that can be
used by research groups for benchmarking other models.

Fig. 6 | Analysis of accuracy for quantizedQwen2.5 7B 4-bit model with different
prompting strategies. a Overall accuracy for the different prompting strategies:
Zero-shot and chain-of-varification prompts outperform other strategies as well as
Llama3 8B 4-bit and Llama2 results. In contrast, few-shot performs substantially
worse. b Performance evaluation at the level of single report parameters (n = 11):
Qwen2.5 demonstrates increased performance for most parameters using the CoV
or zero-shot prompts. c Percentage correctly formatted JSON: In line with previous
analyses using the Llama 4-bit model versions, Qwen2.5 encounters some minor

challenges when generating JSON files, especially if the few-shot prompt is used.
d Runtime Distribution per Report: For CoV, only the duration of the secondary
analysis (result verification) is accounted for; thus, the initial analysis (zero-shot)
time must be additionally considered. Four outliers with run times of over 100 s are
not shown. Abbreviations: GP Gleason Pattern, LN lymph node, Mts metastasis,
WHO World Health Organisation), CoT Chain-of-Thought, CoV Chain-of-
Verification.
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Conclusions
Our study provides a comprehensive test of LLMs (including common open-
source models and the newly released Llama3 family of models) for large-
scale extraction of structured information from pathology reports that can be
further used for AI algorithm development in the medical domain. We study
in detail the prompt engineering and quantization effects on model perfor-
mance that allow privacy-preserving implementation of the model on a
consumer-grade laptop. Our results show that, in addition to multiple
advantages (privacy preservation, no processing costs, very low computa-
tional profile), open-source models can achieve nearly perfect accuracy levels
equal to those of GPT-4 and can be used without any additional supervision,
however, not yet in an end user-friendly setup as the performance of quan-
tized model versions is not yet satisfactory. We open-source the large dataset
of reports (English and German language) with full ground truth information
that can be used as a benchmark for further studies.

Data availability
Thewhole dataset is open-sourced for academic research only on Zenodo31.
Results data underlying the figures in this publication can be found in
Supplementary Data 3. All other data are available from the corresponding
authors.

Code availability
The code underlying this study is available publicly on Zenodo31.
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