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ABSTRACT

Mitochondria are cellular organelles regulating key processes, including metabolism, calcium signaling and cell death. They form an intricate tubular network in cells
whose shape is tightly associated with function and that can be readily visualized with fluorescence microscopy. However, accurately quantifying mitochondrial
morphology from light microscopy images remains a complex task, which underscores the need for an efficient and user-friendly tool for automatically detecting and
analyzing the organelles morphology. Here, we introduce a novel artificial intelligence-based system for automatic mitochondria segmentation and quantification
called MitoSkel. MitoSkel utilizes a new architecture of U-Net that we call GAU-Net, which integrates a trainable Gabor filter layer and a Thresholding Attention
Mechanism (TAM). We trained GAU-Net on a comprehensive dataset of fluorescence microscopy images to perform pixel-level segmentation of mitochondria under
various conditions. Following segmentation, MitoSkel applies skeletonization to extract the morphological features of individual mitochondria, facilitating the
quantification of parameters such as length, branching points, and connectivity. Thorough evaluation across diverse cell lines imaged using different microscopy
methods demonstrates the proficiency of MitoSkel in handling varying mitochondrial shapes, sizes, and densities. Compared to existing methods, our approach
achieved improved segmentation accuracy and efficiency. MitoSkel promises to be a valuable tool for the study of mitochondrial shape and its connection with

organelle dynamics, function and related diseases.

1. Introduction

Mitochondria are organelles in eukaryotic cells that play a central
role not only in energy production, but also in cellular metabolism,
calcium signaling, cell death regulation and immunity [1]. They form a
tubular network in the cell, whose shape responds to mitochondrial
function and fitness through still poorly understood mechanisms.
Furthermore, alterations in mitochondrial shape have been associated
with diseases [1,2]. For these reasons, mitochondrial research often
requires analysis of the network morphology [3]. This is routinely done
with fluorescence microscopy, which offers real-time imaging capabil-
ities, ease of use, versatility, and suitability for live-cell studies [4].
Analysis of mitochondria using accurate segmentation of the images is of
interest for the research community because it can provide essential
insights into cellular functions and contribute significantly to our un-
derstanding of diseases related to mitochondria and potential thera-
peutic intervention [5,6]. However, an accurate quantitative analysis of
mitochondrial shape remains a time-consuming and often biased process
due to the lack of user-friendly tools for efficient and automatic detec-
tion of the organelles from microscopy images. The primary difficulty
lies in the highly variable shapes and sizes of mitochondria, which range
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from elongated tubules to fragmented structures [7]. This variability
complicates the development of a standardized segmentation approach.
Adding to the complexity, issues like noise, variable illumination, and
image artifacts can interfere with accurate segmentation. Batch effects
are also issuing in microscopy data, due to systematic variations
resulting from factors like temperature fluctuations or differences in
microscopy lighting conditions during an experiment. These variations
lead to alterations in image intensities and features across different
batches [8]. Another challenge is the dense packing of mitochondria
within cells, often resulting in overlapping structures that make it hard
to distinguish individual mitochondria.

In response to these challenges, researchers in the field of bioimage
analysis have developed a range of computational approaches. These
methods typically involve a combination of edge detection, region-based
algorithms, and machine learning models to segment mitochondria
accurately [6,9]. Advanced image pre-processing techniques and 3D
imaging also play a crucial role in enhancing segmentation performance
[7,10]. Early investigations into mitochondria segmentation and quan-
tification relied on traditional image processing [11-13], limited by
noise, the requirement of manual threshold selection and varying image
conditions, which resulted in unsatisfactory results [14]. The
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introduction of convolutional neural networks (CNNs), characterized by
their unique architecture capable of automatically and adaptively
learning spatial hierarchies of features, has revolutionized image
recognition and analysis tasks [15]. The U-Net architecture, introduced
by Ronneberger et al [16,37], specifically for biomedical image seg-
mentation, features a symmetric expanding path that enabled precise
localization, providing enhanced capabilities in capturing the intricate
details and variabilities in biological images. U-Net was used in Mito-
SegNet to accurately capture the intricate features of mitochondrial
shape with a pretrained deep learning (DL) segmentation model [17].
More recently, Ilastik workflows, a collection of machine-learning-based
image processing tasks, facilitated semantic segmentation of images
with user-defined class labels and improved the separation of fore-
ground from background, allowing further object-level analysis [18].

Here, we leveraged DL, particularly the U-Net architecture [36], to
address these challenges and improve automatic mitochondria seg-
mentation from light microscopy images. To enhance the U-net model’s
ability to capture intricate details, we integrated a trainable Gabor Layer
into the base architecture, which allowed the model to detect nuanced
patterns and features within the input data. Additionally, we used a
Thresholding Attention Mechanism (TAM) to guide the system in
prioritizing specific regions of interest within the images. This stream-
lined the segmentation process and improved the quality of the results
by emphasizing relevant areas, thereby significantly enhancing the
model’s performance. We tested our model on a comprehensive dataset
comprising images from four different cell lines acquired through
various microscopy techniques and compared it with MitoSegNet and
Ilastik. The resulting tool, MitoSkel offers improved performance and
can effectively adapt to different cell lines and microscope setups,
including both low-resolution and high-resolution configurations, while
accommodating diverse experimental conditions.

2. Proposed model

Considering the key role of high-quality datasets in the learning
process, we decided to first create a robust and comprehensive dataset
aimed at enhancing the generalizability of our system for mitochondria
segmentation across a spectrum of diverse shapes and resolutions. To
achieve this, we acquired images of cultured U20S and HeLa cells using
confocal, Airy-scan and structured illumination microscopies, each
providing images rich in mitochondrial structure and morphology de-
tails (see Materials and Methods section). We standardized the sizes of
all images to guarantee uniformity and consistency across the dataset
Fig. 1A.

We then used these data to train a DL model based on the U-Net
architecture. To enhance the accuracy, robustness, and adaptability of
the segmentation process, we modified the U-Net model by introducing
novel components into the basic architecture. This resulted in a new
framework that we called “GAU-Net”, which adds two key elements to
the basic architecture: Gabor filters [19,20] and a Thresholding Atten-
tion Mechanism (TAM). These enhancements tackle the complexities of
mitochondria images, where textures, fine details, and the inherent
imbalance in information distribution challenge conventional segmen-
tation methods. In the proposed architecture, the Gabor layer is inte-
grated into the network as part of the convolutional blocks, allowing it
to learn filter parameters during training. Additionally, a TAM is applied
to the output of each convolutional block, enhancing the model’s ability
to focus on relevant image regions. The encoder part of the GAU-Net
architecture comprises four sequential convolutional blocks. Each
block consists of a Gabor layer and two convolutional layers, with a
ReLu activation function in between, followed by the attention mecha-
nism. This design allows the network to progressively extract hierar-
chical features from the input data while incorporating Gabor-based
feature extraction and attention mechanisms to enhance the model’s
ability to capture complex patterns and structures in the input images.
The decoder portion mirrors this structure, with four corresponding up-

Biomedical Signal Processing and Control 106 (2025) 107762

sampling blocks that progressively increase the spatial dimensions of the
feature maps. Skip connections are established between corresponding
encoder and decoder blocks to facilitate the flow of high-resolution
features during up-sampling. However, unlike the encoder, which in-
cludes the Gabor layer, the decoder focuses on reconstructing the orig-
inal input from the encoded features with deconvolution. The model is
described in Fig. 1B.

The Gabor filters, known for their efficacy in capturing spatial fre-
quencies and orientations and their ability to capture texture and fine
details in images [21,22], were carefully parameterized to optimize
texture and edge detection across various scales and directions. The
mathematical formulation of a Gabor filter can be expressed as:

Gabor(1,0..1)(x030) = exp =25 230 ) (i 2014 )

202 i
(€]

Where xo and Yy, are defined as xyp = xcosd+ysind and
Yo = —xsinf +ycosf, in which 0 defines the orientation of the filter, ¢
controls the filter’s size, A specifies the wavelength of the sinusoidal
component, y adjusts the spatial aspect ratio and ¢ is phase offset
[20-22]. Incorporating Gabor filters into our neural network architec-
ture via an extra trainable layer introduced a mechanism for enriching
feature representations. After several tests and iterations, we identified
an ideal set of parameters: a sigma (o) of 2.0 to balance feature breadth
and detail, theta (0) values spaced evenly from O to n to ensure
comprehensive orientation coverage, a lambda (A) of 5.0 for effective
medium-to-high frequency pattern extraction, a gamma (y) of 0.2 to
highlight elongated structures, and a phase offset (¢) of 0, enhancing
edge detection. This configuration allowed the model to extract textural
and structural information, facilitating precise segmentation. The pro-
posed trainable Gabor layer was used to extract multi-orientation and
multi-scale features Fig. 1B. By integrating a trainable Gabor layer into
the UNet architecture, our proposed GAU-Net model exhibits improved
segmentation performance.

Unlike previous studies [22-24], in which Gabor filters were used
primarily for feature extraction, our model integrates Gabor as trainable
layer within the architecture. This allows for end-to-end training and
adaptive feature learning, enhancing texture feature extraction and
segmentation accuracy.

The Gabor filter parameters were initially chosen based on theoret-
ical insights into their roles in capturing image textures and orientations.
However, during the training process, these parameters were fine-tuned
through a gradient-based optimization process. Specifically, the pa-
rameters were set as trainable within the model. This allowed the GAU-
Net architecture to adapt these parameters dynamically to best fit the
features of the input data, thereby optimizing the segmentation task.
The optimization process was guided by the network’s loss function,
which adjusted the Gabor filter parameters in each training iteration to
improve feature extraction capabilities.

The Gabor layer enhances feature extraction by adaptively learning
texture and edge features, performs multi-scale analysis for accurate
mitochondria delineation, and demonstrates robustness to noise and
variations in illumination. Its adaptability allows for fine-tuning filter
parameters during training, optimizing responses for the segmentation
task at hand. Furthermore, the complementary nature of Gabor features
with convolutional features enriches the model’s representation of the
input data, resulting in more effective segmentation outcomes. In DL,
attention mechanisms enable models to focus on specific parts of the
input data that are deemed most relevant. These mechanisms dynami-
cally weight the importance of different input features, allowing the
model to selectively pay attention to salient information while ignoring
irrelevant or noisy inputs[25-27]. The incorporation of attention
mechanisms has led to significant improvements in tasks such as natural
language processing and image recognition [28,29].

To mitigate the challenges due to noise during the acquisition of
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Fig. 1. Pipeline of the proposed model MitoSkel. A. Data Preparation: Ground truths were generated using LabelKit, an Al tool. Subsequently, the images were

cropped into 512x512 patches, and the data was split into 70% for training, 10% for validation, and 20% for testing. B. Architecture of GAU-Net: The first block
consists of a trainable Gabor layer followed by a ReLU function. The second block comprises a convolutional layer, followed by ReLU and a TAM.
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microscopy images, we used a TAM. This mechanism enhances the
quality of the acquired images and minimizes noise interference,
resulting in cleaner and more accurate data for subsequent analysis and
segmentation tasks Fig. 2. The TAM consists of two main components:

Sigmoid Activation: After convolutional processing, the output is
passed through a sigmoid activation function to produce an attention
map. While sigmoid activation is common, its role in our TAM is to
generate a continuous attention map reflecting the relevance of different
regions in the image. The input tensor x undergoes convolutional pro-
cessing represented as:

conv(x) = W*x+b ()

where W is the convolutional weight, x denotes the input tensor, and b
represents the bias. Subsequently, the output of this convolution is
passed through the sigmoid activation function:

1

attention,,,q, = o(conv(x)) = =)

3
The sigmoid activation maps the output to values in the range of 0 to 1,
producing an attention map that reflects the network’s internal
perception of image relevance.

Thresholding Operation: A predefined threshold is applied to this
attention map to create a binary mask. This mask highlights the regions
with attention values above the threshold, effectively filtering out less
relevant parts of the image. This step allows the model to focus on
informative areas while suppressing irrelevant or noisy regions.

The binary attention mask is generated by applying a defined
threshold to the attention map:

1, ifattention,q, (i, j) > threshold
0, otherwise

mask(i,j) = { 4

The TAM helps to alleviate noise by reducing the influence of non-
relevant areas in the image. By focusing on regions with higher atten-
tion values, the TAM ensures that noise or irrelevant details are less
likely to interfere with the segmentation process. This selective focus
improves the model’s ability to segment mitochondria accurately, even
in challenging imaging conditions. Once we achieve clear and accurate
segmentation of mitochondria, our system can then delineate a contour
line around each detected mitochondrion. This sets the basis for accurate
quantification of the mitochondrial network. By generating these con-
tours, the system provides insights into various parameters such as area,
perimeter, circularity, and thickness, offering a comprehensive and
quantitative description of mitochondrial morphology. Furthermore, the
system incorporates a skeletonization feature that is applied to the
detected mitochondria. This skeletonization process provides additional
information about the mitochondrial network, including mitochondrial
length, branch connectivity, types of branches, and distances between
branches. This dual approach of contouring and skeletonization gives
rise to a robust tool for a thorough analysis of mitochondrial structures,
facilitating the study of mitochondrial dynamics and their implications
in cellular functions.

1D convolution Attention map
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3. Results
3.1. Segmentation performance

To validate the effectiveness of our approach, we compared our
segmentation model, GAU-Net, with other state-of-the-art algorithms U-
Net+-+[30], FCNN[31], SegNet[32], and U-Net[33] and evaluated its
performance using a variety of segmentation metrics. These metrics
range from O to 1, with 1 indicating optimal performance (see Methods
and Materials). The benchmarking results highlight the superior per-
formance of GAU-Net relative to other methods across multiple datasets,
as shown in Tables 1, 2, and 3. On our custom dataset Table 1, GAU-Net
achieved the highest F1 score (0.9689), accuracy (0.9946), IoU
(0.9397), precision (0.9796), and specificity (0.9965), outperforming U-
Net++, FCNN, SegNet, and U-Net. These results demonstrate GAU-Net’s
capability to perform domain-specific segmentation tasks with remark-
able precision. On the ISIC2018 dataset (Table 2), GAU-Net achieved the
highest F1 score (0.8809) and IoU (0.8057), showing improvements
over other models. These differences, while small, underline GAU-Net’s
consistent performance across most metrics and its adaptability to
diverse medical imaging challenges. On the Kvasir-SEG dataset
(Table 3), GAU-Net achieved F1 score (0.7453) and IoU (0.6040),
showcasing its ability to capture fine-grained details. While SegNet
(specificity 0.9773) and U-Net (specificity 0.9837) achieved higher
specificity, GAU-Net led in F1 score and IoU, metrics critical for overall
segmentation performance. These results highlight GAU-Net’s ability to
outperform existing methods on our custom dataset, where intricate
mitochondrial patterns demand advanced edge detection and spatial
feature extraction. However, its performance on the ISIC2018 and
Kvasir-SEG datasets shows slight variations in certain metrics. This
difference can be attributed to the distinct characteristics of the datasets.
GAU-Net was primarily designed to focus on patterns with complex and
overlapping shapes, where edge and border details are critical for ac-
curate segmentation. This is particularly true for our custom dataset,
where mitochondrial structures are intricate, densely packed, and often
exhibit significant overlap. The Gabor Layer and TAM in GAU-Net are
specifically tailored to enhance segmentation in such challenging sce-
narios. In contrast, the ISIC2018 and Kvasir-SEG datasets do not share
these characteristics. The patterns in these datasets are generally less
complex, with clearer boundaries and minimal overlap between struc-
tures. Additionally, these datasets feature high-resolution images with

Table 1
Benchmarking GAU-Net: Quantitative Comparison with State-of-the-Art Seg-
mentation Methods on Our Dataset.

Model F1Score Accuracy ToU Precision Specificity
UNet-+-+ 0.8311 0.9718 0.7110 0.8199 0.9834
FCNN 0.8008 0.9321 0.7056 0.8100 0.9822
SegNet 0.9187 0.9820 0.8616 0.9331 0.9910
U-Net 0.8571 0.9729 0.8603 0.8729 0.9832
GAU-Net 0.9689 0.9946 0,9397 0.9796 0.9965
Feature map
Thresholded map Output feature

Fig. 2. Diagram of the proposed Thresholding Attention Mechanism (TAM).
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Table 2
Benchmarking GAU-Net: Quantitative Comparison with State-of-the-Art Seg-
mentation Methods on (ISIC2018 dataset).
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Table 5
Comparison of Segmentation results with and without Gabor Layer and
Thresholding Attention Mechanism (TAM) (ISIC2018).

Model F1Score Accuracy ToU Precision Specificity Model F1Score Accuracy ToU Precision Specificity

Unet++ 0.8796 0.9149 0.7843 0.8747 0.9534 —Gabor/-TAM 0.8618 0.9007 0.7728 0.8660 0.9301

FCNN 0.7801 0.8837 0.6509 0.7413 0.8920 +Gabor/-TAM 0.8757 0.9089 0.7862 0.8692 0.9370

SegNet 0.8681 0.9141 0.7332 0.8801 0.9509 —Gabor/+TAM 0.8626 0.9024 0.7750 0.8800 0.9389

U-net 0.8339 0.9101 0.8000 0.8177 0.9458

GAU-Net 0.8809 0.9091 0.8057 0.8848 0.9383 +Gabor/+TAM 0.8809 0.9091 0.8057 0.8848 0.9383
Table 3 Table 6

Benchmarking GAU-Net: Quantitative Comparison with State-of-the-Art Seg-
mentation Methods on Kvasir-SEG dataset.

Comparison of Segmentation results with and without Gabor Layer and
Thresholding Attention Mechanism (TAM) (Kvasir-SEG).

Model F1Score Accuracy ToU Precision Specificity Model F1Score Accuracy IoU Precision Specificity
Unet++ 0.7377 0.9201 0.5934 0.7754 0.9214 —Gabor/-TAM 0.7426 0.9189 0.5905 0.7498 0.9555
FCNN 0.5352 0.7959 0.3654 0.4218 0.8080 +Gabor/-TAM 0.7513 0.9230 0.6017 0.7545 0.9511
SegNet 0.7280 0.8782 0.5703 0.6921 0.9773 —Gabor/+TAM 0.7432 0.9158 0.5865 0.6912 0.9501
U-net 0.7395 0.8819 0.5867 0.8819 0.9837 +Gabor/+TAM 0.7453 0.9925 0.6040 0.7888 0.9638
GAU-Net 0.7453 0.9225 0.6040 0.7888 0.9638

minimal acquisition noise, which naturally reduces the need for
advanced edge detection or attention mechanisms.

The results in Tables 4, 5, and 6 highlight the impact of incorporating
the Gabor Layer and (TAM) on segmentation performance across three
datasets: our custom dataset, ISIC2018, and Kvasir-SEG. On our custom
dataset (Table 4), the model without the Gabor Layer and TAM
(—Gabor/-TAM) achieved an F1 score of (0.9527), accuracy of (0.9927),
and IoU of (0.9189). Adding the Gabor Layer (+Gabor/-TAN) resulted in
improvements across all metrics, with an F1 score of (0.9615), IoU of
(0.9260), and precision of (0.9756). Incorporating TAM without the
Gabor Layer (—Gabor/+TAM) achieved slightly better results, with an
F1 score of 0(.9626) and IoU of (0.9280). However, the combination of
both the Gabor Layer and TAM (+Gabor/+TAN) demonstrated the best
performance, with an F1 score of (0.9689), accuracy of (0.9946), IoU of
(0.9397), and precision of (0.9796). On the ISIC2018 dataset (Table 5),
the baseline model (—Gabor/-TAM) achieved an F1 score of (0.8618),
accuracy of (0.9007), and IoU of (0.7728). Adding the Gabor Layer
(+Gabor/-TAM) provided improvements, with an F1 score of (0.8757),
IoU of (0.7862), and precision of (0.8692). Incorporating TAM without
the Gabor Layer (—Gabor/+TAM) resulted in slightly lower IoU
(0.7750) and F1 score (0.8626) but improved precision to (0.8800). The
full model (+Gabor/+TAN) achieved the best performance, with an F1
score of (0.8809), accuracy of (0.9091), IoU of (0.8057), and precision
of (0.8848). On the Kvasir-SEG dataset (Table 6), the baseline model
(—Gabor/-TAN) achieved an F1 score of (0.7426), accuracy of (0.9189),
and IoU of (0.5905). Adding the Gabor Layer (+Gabor/-TAM) improved
segmentation performance, achieving an F1 score of (0.7513), IoU of
(0.6017), and precision of (0.7545). Using TAM alone (—Gabor/+TAM)
resulted in similar metrics to the baseline, with an F1 score of (0.7432)
and IoU of (0.5865). The combination of both the Gabor Layer and TAM
(+Gabor/+TAM) achieved the best performance, with an F1 score of
(0.7453), accuracy of (0.9925), IoU of (0.6040), and the highest preci-
sion of (0.7888). Overall, these results demonstrate that both the Gabor
Layer and TAM contribute to improved segmentation performance.
While each component individually enhances certain metrics, the

Table 4
Comparison of Segmentation results with and without Gabor Layer and
Thresholding Attention Mechanism (TAM) (our dataset).

Model F1Score Accuracy IoU Precision Specificity
—Gabor/-TAM 0.9527 0.9927 0.9189 0.9713 0.9973
+Gabor/-TAM 0.9615 0.9934 0.9260 0.9756 0.9977
—Gabor/+TAM 0.9626 0.9935 0.9280 0.9729 0.9974
+Gabor/+TAM 0.9689 0.9946 0.9397 0.9796 0.9965

combination of both consistently provides the best outcomes across all
datasets. The GAU-Net architecture demonstrates its strength in
handling segmentation tasks where edge and orientation details are
critical, such as in mitochondria segmentation using light microscopy
(custom dataset) and gastrointestinal polyp segmentation (Kvasir-SEG
dataset). These datasets feature intricate and irregular structures, where
the inclusion of the Gabor Layer and TAM enhances the model’s ability
to capture fine-grained details and spatial features.

The evaluation of the Thresholded Attention Mechanism across
different threshold values revealed that a threshold of 0.1 provided the
best overall performance. At this threshold, the model achieved the
highest F1 score of 0.9615, indicating a superior balance between pre-
cision (0.9756) and recall. Additionally, it delivered the highest accu-
racy of 0.9934, confirming that the model correctly classified the
majority of instances. The IoU at this threshold was also the highest
(0.9260), reflecting the model’s ability to capture significant overlap
between predicted and ground truth segmentation (Table 7). Based on
these results, the threshold value of 0.1 was consistently applied across
all datasets, including our custom dataset, ISIC2018, and Kvasir-SEG, to
ensure uniformity in the evaluation and to maximize the model’s per-
formance under diverse conditions.

The inclusion of the Gabor Layer and Thresholded Attention Mech-
anism (TAM) in the GAU-Net architecture enhances segmentation per-
formance with minimal impact on model complexity. The baseline
model, without the Gabor Layer and TAM, comprises 12,517,889 pa-
rameters, while the combined model (with both components) has
12,647,592 parameters, reflecting a 1.04 % increase in the total
parameter count. The Gabor Layer contributes 4 trainable parameters
(sigma, theta, lambd, and gamma) and is responsible for edge- and
orientation-specific feature extraction, while the TAM adds 129,699
parameters through attention gates, enabling the model to focus on
relevant regions and suppress irrelevant features. From a computational
efficiency perspective, the combined model increases training and
inference time by ~ 6-8 % compared to the baseline. This is due to the
additional operations introduced by the Gabor Layer and TAM.

Table 7
Segmentation results with different threshold values (our dataset).

Threshold F1Score Accuracy ToU Precision Specificity
0.05 0.9518 0.9848 0.9159 0.9677 0.9927
0.15 0.9590 0.9009 0.9223 0.9716 0.9988
0.1 0.9615 0,9934 0,9260 0,9756 0.9977
0.2 0.9413 0.9054 0.9200 0.9423 0.9941
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However, this trade-off is justified by the substantial gains in key seg-
mentation metrics, including IoU and F1 score, where the combined
model consistently outperforms the baseline across multiple datasets.

3.2. Comparative analysis of mitochondria segmentation systems

Next, we evaluated and compared the performance of our mito-
chondria segmentation system, MitoSkel, with two other established
tools for mitochondria segmentation and analysis: Ilastik and MitoSeg-
Net [17,18]. We assessed effectiveness and accuracy in segmenting
mitochondria across different cell lines and different microscopes, using
a comprehensive range of metrics. Our test dataset included a total of
270 images of the mitochondrial network of individual cells, captured
from SIM, Airyscan, and confocal microscopes from different cell lines
(see Materials and Methods section). This diverse range of imaging
modalities allowed us to assess the robustness and adaptability of the
segmentation systems under varying imaging conditions. To achieve
this, we refrained from performing any preprocessing on the raw image
data. This approach ensured that all systems were evaluated based solely
on their intrinsic segmentation capabilities, without any external en-
hancements or modifications to the original image quality. Furthermore,
it is important to note that all images used in our testing were resized to
a resolution of 512x512 pixels. This specific image dimension was
required by MitoSegNet. Adhering to this uniform image size across all
tested systems ensured that the results were directly comparable. For
Ilastik, we followed the guidelines of images segmentation and we an-
notated 10 images from different cell lines and imaging conditions to
train the model before using it for the testing phase. In terms of accu-
racy, MitoSkel achieved a mean accuracy of approximately (0.951),
indicative of its effectiveness in delineating mitochondria within mi-
croscopy images. MitoSegNet closely followed with a mean accuracy of
approximately (0.926), while Ilastik exhibited a mean accuracy of about

Raw Data

Ground Truth
-

MitoSkel
-
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(0.922). Regarding the F1 score, MitoSkel demonstrated the highest
mean F1 score, approximately (0.762), which assesses balance between
precision and recall. Ilastik provided a mean F1 score of about (0. 696),
while MitoSegNet obtained a lower mean F1 score of approximately
(0.620). Analysis of IoU, which measures the ability to capture the
spatial extension of mitochondria, provided the highest mean IoU for
MitoSkel, at (0.633). Ilastik obtained a mean IoU of about (0.553), while
again MitoSegNet exhibited the lowest mean IoU, approximately
(0.459). The specificity analysis revealed that our system achieved a
mean specificity of approximately (0.974), demonstrating its capability
to accurately identify true negative cases. MitoSegNet also demon-
strated strong performance with a competitive mean specificity of
around (0.971). In contrast, Ilastik showed a slightly lower mean spec-
ificity of approximately (0.932). Precision measurements further sup-
ported these findings, with MitoSkel exhibiting the highest mean
precision at approximately (0.774), in line with its effectiveness in
minimizing false positive outcomes. MitoSegNet closely followed with a
mean precision of about (0.758). While Ilastik presented respectable
precision, it reported a lower mean precision of approximately (0.621).
Additionally, the analysis of Mean Absolute Error (MAE) showcased
MitoSkel’s performance with the lowest mean MAE of about 0.049,
indicating strong alignment with ground truth annotations. In contrast,
both MitoSegNet and Ilastik reported slightly higher mean MAE values,

Table 8
Evaluation of the segmentation efficacy of MitoSkel is conducted alongside two
other tools for mitochondria segmentation based on DL: Ilastik and MitoSegNet.

Model F1Score Accuracy IoU Precision Specificity
MitoSkel 0.762 0. 951 0. 633 0.774 0.974
Tlastik 0.696 0.922 0.552 0.620 0.932
MitoSegNet 0.619 0.926 0. 458 0.758 0.971

llastik MitoSegNet
™

FN TP

Fig. 3. Example of images showing qualitative comparison of segmentation between MitoSkel, Ilastik and MitoSegNet. The first two columns display the
original images and their corresponding GT masks. The subsequent three columns illustrate the overlay between the ground truth mask and the generated seg-
mentation masks for MitoSkel, Ilastik, and MitoSegNet, respectively. The color scheme used for the overlay depicts different segmentation outcomes: black represents
true negatives (TN), green indicates false positives (FP), orange corresponds to false negatives (FN), and white true positives(TP). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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approximately (0.073) and (0.077), respectively Fig. 3 and Table 8.
Collectively, these results show the effectiveness and reliability of
MitoSkel for mitochondria segmentation in microscopy imaging
applications.

3.3. Assessing segmentation performance on multiple cell lines

To assess the general applicability of MitoSkel, we conducted tests
using four cell lines commonly used in mitochondria research: HelLa,
HCT, U20S and COS7. We manually annotated 8 images from each of
the selected cell lines and applied data augmentation techniques to
expand our dataset, resulting in 40 test images after five different geo-
metric modifications. We then analysed the images with MitoSkel,
Ilastik and MitoSegNet. In the context of Hela cells, MitoSkel achieved
an accuracy of (0.947), closely trailing behind Ilastik at (0.951) but
outperforming MitoSegNet (0.934). Furthermore, MitoSkel provided a
F1 score of (0.787) slightly behind Ilastik (0.821), but above MitoSegNet
(0.7099). The IoU of MitoSkel (0.650) illustrated a moderate overlap
between the segmented regions and the ground truth while Ilastik
attained a slightly higher IoU (0.698). With U20S cells, MitoSkel’s ac-
curacy (0.954) was better than that of Ilastik (0.944) and on par with
MitoSegNet (0.955). MitoSkel’s F1 score reached (0.675), exceeding
both Ilastik (0.644) and MitoSegNet (0.618). The IoU score of (0.556)
also outperformed Ilastik (0.514) and MitoSegNet (0.486). In the case of
HCT cells, MitoSkel provided the highest accuracy at (0.956), compared
to Ilastik (0.937) and MitoSegNet (0.941). Its F1 score of (0.623) sur-
passed both Ilastik (0.527) and MitoSegNet (0.508). Moreover, the IoU
of (0.458) depicted a robust alignment between MitoSkel’s segmented
regions and the ground truth, improving the performance of Ilastik
(0.364) and MitoSegNet (0.342). Regarding COS7 cells, MitoSkel ob-
tained better scores than the other two systems, with an accuracy of

Ground Truth

Raw Data

U205

Hela HCT

COS7

MitoSkel
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0.965, followed by Ilastik (0.944) and MitoSegNet (0.923), a mean F1
score of 0.815, surpassing Ilastik (0.743) and MitoSegNet (0.526) and an
improved IoU of (0.688), compared to Ilastik (0.592) and MitoSegNet
(0.425) Fig. 4 and Table 9. In summary, MitoSkel consistently demon-
strated significant performance in mitochondria segmentation across a
diverse array of cell lines. While MitoSkel performed consistently well
across most cell lines, its accuracy in HeLa cells was slightly lower than
that of Ilastik. This difference can be attributed to the unique challenges
posed by HeLa cells, which are characterized by a relatively high density
of mitochondria and significant overlap between mitochondrial struc-
tures. These factors make precise segmentation more difficult, especially
in distinguishing individual mitochondria. Ilastik, which incorporates
manual feature-based classification, may have an advantage in handling
such datasets by leveraging user-defined features tailored to the specific
imaging conditions. In contrast, MitoSkel relies on automated feature
learning, which, while offering a general and robust solution, may be
less effective in specific challenging scenarios like dense mitochondrial
networks in HeLa cells.

3.4. Assessing MitoSkel performance across diverse microscopy
techniques

We also tested our MitoSkel segmentation tool across different mi-
croscopy techniques, namely Airyscan, SIM (Structured Illumination
Microscopy), and confocal microscopy, and compared it with MitoSeg-
Net and Ilastik. For Airyscan microscopy, MitoSkel achieved an accuracy
of approximately 0. 971, better than MitoSegNet, (0.934), and Ilastik,
(0.951). The F1 score for MitoSkel was 0.767, exceeding MitoSegNet
(0.709) and Ilastik (0.746) and the IoU was (0.627), again improved
compared to MitoSegNet (0.552) and Ilastik (0.5806). In the context of
SIM microscopy, MitoSkel provided an accuracy score of 0.973,

Net

llastik

MitoSeg

FN TP |

Fig. 4. Example of images showing qualitative comparison of segmentation results between MitoSkel, Ilastik and MitoSegNet across four different cell
lines (U208, HCT, HeLa and COS?7). The first two columns display the original images and their corresponding ground truth masks. The subsequent three columns
illustrate the overlay between the ground truth mask and the generated segmentation masks for MitoSkel, Ilastik, and MitoSegNet, respectively. The color scheme
used for the overlay depicts different segmentation outcomes: black represents true negatives (TN), green indicates false positives (FP), orange corresponds to false
negatives (FN), and white signifies true positives (TP). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of

this article.)
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Table 9
Quantitative comparison of segmentation result across multiple cell lines: evaluation of the performance of our mitochondria segmentation system, MitoSkel, across
various cell lines, comparing it with two established segmentation systems, Ilastik and MitoSegNet.

Cells System F1 Accuracy IoU Precision Specificity
MitoSkel 0.675 0.954 0.556 0.629 0.970
U208 Tlastik 0.644 0.944 0.513 0.554 0.955
MitoSegNet 0.618 0.955 0.486 0.712 0.984
MitoSkel 0.787 0.947 0.650 0.954 0.994
Hela Tlastik 0.821 0.951 0.698 0.865 0.979
MitoSegNet 0.709 0.934 0.552 0.964 0.996
MitoSkel 0.623 0.956 0.458 0.495 0.958
HCT Tlastik 0.527 0.937 0.364 0.379 0.939
MitoSegNet 0.508 0.941 0.342 0.387 0.950
MitoSkel 0.8155 0.965 0.688 0.752 0.972
COs7 Tlastik 0.743 0.944 0.592 0.605 0.942
MitoSegNet 0.526 0.923 0.425 0.548 0.961

exceeding both MitoSegNet, (0.946), and Ilastik (0.946). The F1 score
for MitoSkel was 0.889, whereas MitoSegNet (0.795) and Ilastik (0.714)
lagged behind. However, the IoU score for MitoSkel was comparatively
lower (0.494) compared to MitoSegNet (0.5368) and Ilastik (0.565).
This suggests that while MitoSkel excels in terms of accuracy, there may
be slight challenges in delineating mitochondrial structures accurately
according to the IoU metric when using SIM microscopy. With Confocal
microscopy, MitoSkel’s accuracy (0.951) was comparable to Ilastik
(0.951), followed by MitoSegNet (0.941). The F1 score for MitoSkel was
(0.761), surpassing MitoSegNet (0.706) but slightly below Ilastik
(0.785). The IoU score was moderate at (0.534), while Ilastik (0.650)

microscopy techniques.

The performance of MitoSkel under different microscopy techniques
is influenced by the inherent noise and data variance present in each
method. Airyscan and SIM microscopy, which offers high-resolution
images with minimal noise, supports MitoSkel’s strong performance.
For confocal microscopy, the moderate resolution and higher noise
levels may contribute to the observed lower F1 and IoU scores compared
to Airyscan and SIM. These findings illustrate that variations in resolu-
tion, contrast, and noise across microscopy techniques have a tangible
impact on segmentation performance. Future refinements to MitoSkel
could focus on improving robustness to structured illumination artifacts

demonstrated a slightly higher IoU score Fig. 5 and Table 10. In
conclusion, MitoSkel demonstrated high level of accuracy in Airyscan
microscopy, while maintaining robust performance in SIM and confocal
microscopy as well. Our evaluation shows that MitoSkel is a versatile
and effective system for mitochondria segmentation across various

and noise through advanced preprocessing or model training strategies.

3.5. Methodology for Calculating mitochondrial structural metrics

To comprehensively understand mitochondrial dynamics and their

Ground Truth

Raw Data MitoSkel llastik MitoSegNet

Confocal

SIM

Airyscan

Fig. 5. Mitochondria Segmentation in Varied Microscopic Environments: the result is showing qualitative comparison of segmentation results between
MitoSkel, Ilastik and MitoSegNet across different microscopes: Confocal, SIM and Airyscan. The first two columns display the original images and their cor-
responding ground truth masks. The subsequent three columns illustrate the overlay between the ground truth mask and the generated segmentation masks for
MitoSkel, Ilastik, and MitoSegNet, respectively.
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Table 10
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Quantitative Evaluation of Segmentation Metrics Across Different Microscopy Systems:a comparison between our proposed system MitoSkel and mitochondria DL

based segmentation systems: Ilastik and MitoSegNet.

Microscope System F1 Accuracy IoU Precision Specificity
MitoSkel 0.761 0.951 0.629 0.866 0.987
Confocal Tlastik 0.775 0.951 0.650 0.783 0.973
MitoSegNet 0.686 0.941 0.534 0.890 0.991
MitoSkel 0.889 0.973 0.802 0.892 0.985
SIM Tlastik 0.795 0.946 0.661 0.720 0.953
MitoSegNet 0.656 0.940 0.494 0.972 0.997
MitoSkel 0.776 0.973 0.635 0.810 0.988
Airyscan Tlastik 0.722 0.961 0.568 0.628 0.967
MitoSegNet 0.763 0.974 0.619 0.880 0.994

role in cellular function, accurately quantifying morphological charac-
teristics is essential. To quantify key parameters of mitochondria, we
developed an image analysis approach to extract and measure perim-
eter, area, thickness, circularity, and total branch length from
segmented images.

Perimeter and Area: The perimeter was measured as the total dis-
tance around the boundary of each mitochondrial structure, while the
area represented the total number of pixels within the contour. These
metrics provide insight into the size and boundary complexity of the
mitochondria. The perimeter P can be calculated using:

P

-

Il
-

d; (5)

i

Where d; is the distance between consecutive points along the contour of
the object, and N is the total number of the points on the contour.

The area A can be defined as the sum of all pixels enclosed by the
contour:

o1

(x.y)eContour

A= (6)

Where (x,y) are the coordinates of pixels within the boundary of the
mitochondrial structure.
Circularity: Circularity was calculated to assess the shape of the

mitochondria, with a value closer to 1 indicating a more circular

structure. Circularity C is calculated by:
4rA
=0 @

This equation provides a measure of how close the shape is to a perfect
circle, with C = 1 indicating a perfect circle.

Thickness: The thickness of each mitochondrial branch was evalu-
ated by analyzing the skeletonized representation of the structure. The
mean thickness was determined by averaging the width across the
branches, providing a measure of the overall diameter of mitochondrial
segments. The average thickness T of mitochondrial branches can be
estimated using:

T:2 xS ¢

i (8

where t; represents the local thickness at each skeleton pixel and M is the
total number of pixels along the skeleton.

Total Branch Length: The total branch length was calculated by
summing the lengths of all individual branches within each mitochon-
drial structure, allowing for the evaluation of network complexity and
connectivity. More details on how we calculated the parameters are
shown in Fig. 6.

D

&

» Total branches length/mito

5

Distance between Mito edge and skeleton

Fig. 6. Schematic Representation of Morphometric Parameter Calculation.
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3.6. Benchmarking the skeletonization performance of MitoSkel

Skeletonization is a useful approach towards the quantification of
mitochondrial properties. It transforms the complex network of mito-
chondria into a simplified, skeleton-like framework from which infor-
mation about branching patterns, interconnections, and spatial
organization of mitochondria within cells can be extracted [5,34]. To
this end, we incorporated a skeletonization tool in MitoSkel, which we
also benchmarked against those of MitoSegNet and Ilastik. We used a
diverse dataset comprising 40 images sourced from various cell lines and
microscopes (see Methods and materials). Images underwent segmen-
tation processing, resulting in binary masks that were subsequently
skeletonized with the different tools. Our comparison also included a
comparison with MINA [5], a recognized system for mitochondria
skeletonization. We considered several metrics, including total numbers
of branches, total lengths, and mean branch lengths.

The average branch length for the ground truth stood at 3.515 um,
closely aligned with MitoSkel average branch length of 3.219 pym. In
contrast, Ilastik and MitoSegNet provided average branch lengths of
2.507 ym and 2.002 pum respectively, both farther from the ground truth

A

5000 o

4000

w
o
o
o

2000

Total Length (um)

1000

X

GT Mitoskel Mitosegnet llastik

*kk
3500

kokk

3000 .
2500
2000 °
1500

1000

Total Branches (count)

500

é!-ﬁ-éﬁ

Mitoskel Mitosegnet llastik

Biomedical Signal Processing and Control 106 (2025) 107762

Fig. 7B. Interpreting the average total branches provides insights into
the performance of each segmentation system in representing the
branching structure of mitochondria on average across the dataset. The
ground truth average of 238.809 branches serves as the reference point
for our data sate. MitoSkel’s average total branches number of 207.261
suggests a slightly lower count compared to the ground truth average. In
contrast, Ilastik’s average total branches number of 416.952 indicates a
tendency to overestimate the branching structure on average. Mito-
SegNet’s average total branches number of 720.023 substantially de-
viates from the ground truth average Fig. 7C. The analysis of the total
length of mitochondrial branches also provides a valuable measure of
the performance of each segmentation system. The ground truth of the
testing data exhibited a total length of branches of 758.200 um. MitoSkel
achieved remarkable accuracy, with a total length of branches of
620.485 um. In contrast, MitoSegNet exhibits a substantial over-
estimation, recording a total length of branches of 1285.660 pym. Simi-
larly, Ilastik shows a moderate overestimation with a total length of
branches of 959.256 pm, indicating that both systems tend to capture
more of the branching structure’s length than actually present in the
images Fig. 7A. In conclusion, the close alignment of MitoSkel analysis
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Fig. 7. MitoSkel skeletonization results and a skeletons comparison with MINA, Ilastik and MitoSegNet: A. show a comparison between MitoSkel, Ilastik and
MitoSegNet in term of total length of the mitochondria network. B. shows a comparison between MitoSkel, Ilastik and MitoSegNet in terms of the mean branch length
of mitochondria, C. shows a comparison between MitoSkel, Ilastik and MitoSegNet in terms of total number of branches and D. shows comparison between our
proposed system MitoSkel and MINA skeletonization system in terms of mean branch lengths. 40 images were used in all the conditions.
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with the ground truth in total branches number and total length of
branches as well as the average length of mitochondria underscores its
reliability and precision. Conversely, MitoSegNet tends to overestimate,
while Ilastik demonstrates a moderate tendency to overestimate. The
visual comparison between the overlapped areas of the skeleton and the
binary mask revealed a high degree of accuracy and alignment Fig. 8A.
This indicates that MitoSkel effectively captures the essential structure
of the original image while maintaining its topological integrity, as
shown by the substantial overlap observed in our analyses. When
comparing the mitochondrial skeletonization results with those from the
MINA system, a workflow for analyzing mitochondrial morphology
using fluorescence images or 3D stacks, we observed notable differences
in low and high-resolution images. In cases of low-resolution imaging,
the skeletons by MitoSkel mapped accurately onto the mitochondrial
structures, indicating a high level of precision in segmentation Fig. 8B
and C. Conversely, the skeletonization produced by MINA failed to align
accurately with the underlying raw images, suggesting that the system
may not be adequately equipped to handle lower-resolution data. Under
conditions of high-resolution, MINA showed an improvement in the
skeletonization results close to Mitoskel high performance of accuracy
and alignment Fig. 8D and E. However, the comparison of the mean
branch length between MitoSkel, MINA, and the ground truth revealed
significant variations Fig. 7D. For a ground truth mean branch length of
3.515 um, Mina reported a considerably higher mean branch length of
16.722 um, suggesting a substantial overestimation. This is in contrast
with MitoSkel, which with 3.219 pm was closer to the ground truth,

MINA

MitoSkel
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indicating a relatively accurate representation of the mean branch
length.

3.7. MitoSkel Graphical user interface

In addition to its robust segmentation capabilities, MitoSkel offers a
user-friendly interface designed to streamline the process of mitochon-
drial analysis for researchers. Its intuitive design and user-friendly fea-
tures simplify the segmentation and quantification process, making it
accessible to users with varying levels of expertise in image analysis.
MitoSkel is versatile, handling different image sizes effectively. Users
can select an image size closest to their input images for optimal con-
venience or opt for a larger size to potentially enhance segmentation
results. A screenshot of the graphical user interface is shown in Figs. 9
and 10. Furthermore, MitoSkel provides a wide range of data outputs,
catering to diverse research needs. Researchers can obtain comprehen-
sive metrics such as branch lengths, thickness, circularity, area, and
perimeter, which offer valuable insights into mitochondrial morphology
and structure.

Additionally, detailed skeletonization results including branch
number, lengths, and connectivity are provided, enabling researchers to
dissect the spatial organization and complexity of mitochondrial net-
works. More details are provided in the screenshots in Figs. 11 and 12 To
facilitate data management and subsequent analysis, all these parame-
ters are collated into an Excel file, ensuring ease of access and
compatibility with common analysis tools. This comprehensive suite of

Skeletonization

MINA

MitoSkel

Fig. 8. Visual comparison of skeletonization result between our proposed system MitoSkel and Mitochondria skeletonization system MINA. A. Presents
MitoSkel skeletonization result: the first column presents the initial image, then the segmentation contours followed by the skeletonization result and finally the
overlay between the original data and the skeleton. B. illustrate the skeleton result of MINA tool in low resolution imaging. C. present the skeleton result of MitoSkel
in low resolution. D. shows the MINA skeletonization result in high resolution. E. displays the MitoSkel result in high resolution condition.
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Fig. 9. MitoSkel Graphical User Interface: A user-friendly interface is used to analyse mitochondria morphology. The interface provides buttons to analyse in-
dividual as well as batches of images. Background subtraction, contrast enhancement, and Gaussian filters can be applied to the original image to enhance the quality

of the segmentation results. A checkbox is provided to select the adequate image size.
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Fig. 10. Output of MitoSkel Graphical User Interface. Examples of segmentation and skeletonization result are shown. Buttons for saving the histograms, seg-

mentation data, and the generated skeletons excels files are available.
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Fig. 11. Excel file for Connectivity and Structural Parameters of Skeletonized Networks.

features makes MitoSkel an efficient tool for mitochondrial analysis,
allowing researchers to uncover new insights into mitochondrial
biology.

3.8. Assessing mitochondrial morphology Changes in HeLa cells upon
DRP1 depletion and CCCP Exposure

Next, we evaluated the segmentation and quantification of the
properties of the mitochondrial network using samples under different
morphological states, concretely, normal, fragmented, and elongated.
As example of elongated mitochondria, we used HeLa cells with a
knockout (KO) of Dynamin-related protein 1 (Drpl) Fig. 13C. Drp1 is an
essential regulator of mitochondrial fission and its absence leads to
elongation of mitochondria [35-37]. We used treatment of wild type
HelLa cells with carbonyl cyanide m-chlorophenyl hydrazone (CCCP) to
generate samples with fragmented mitochondria Fig. 13A. CCCP is a
mitochondrial uncoupling agent that disrupts mitochondrial membrane
potential and promotes fragmentation [38]. Untreated wild type HeLa
cells were used as a reference sample for a “normal” mitochondrial
network Fig. 13B.

Importantly, analysis of the images acquired for the three mito-
chondrial reference states with MitoSkel allowed us to identify and
quantify distinct morphological changes. The average branch length
from the skeletonization results post-segmentation revealed significant
elongation in Drpl-depleted cells with 5.952 pm, compared to 2.54 pm
in CCCP-treated cells and 3.216 pm in the wild-type. In terms of average
thickness, Drpl KO cells exhibited a value of 0.1116 pm, indicative of
slender mitochondrial profiles when compared to CCCP-treated cells at
0.0730 pm and wild-type at 0.0920 pm. In line with this, the average
percentage of circularity measure inversely related to the elongation of

13

mitochondrion was lowest in Drpl-depleted cells (52.13 %) and wild-
type cells (61.56 %). In contrast, CCCP-treated cells exhibited the
highest circularity (69.43 %), reflecting a more fragmented phenotype.
Fig. 14A-D. These quantitative results by MitoSkel accurately reflect the
expected morphological characteristics, thereby validating the system’s
efficacy in distinguishing and quantifying variations in mitochondrial
structure under varying physiological states.

4. Discussion

In our study, we addressed current challenges in mitochondrial
segmentation in the analysis of 2D images, characterized by complex
issues such as mitochondrial overlap, variability in image acquisition,
and the diverse morphologies exhibited by mitochondria across
different cell lines. Prior work in mitochondrial segmentation and
quantification has often been hampered, especially when dealing with
the dual challenges of image noise and low resolution, by the varied
mitochondrial morphologies observed across cell types. MitoSkel rep-
resents a significant improvement in overcoming these barriers.

A cornerstone of our approach is the diversity of the image data used
for training, which encompasses a wide range of microscopy modes and
cell lines. This diverse dataset has been instrumental in enhancing the
generalizability of our mode, enabling it to adeptly segment mitochon-
dria across a multitude of imaging conditions and cell types.

In addition, the adoption of an advanced deep learning model, GAU-
Net, a version of U-Net augmented with an attention thresholding
mechanism and the integration of a Gabor layer into the original model,
has proven critical. The Gabor filter’s effectiveness in feature detection
across multiple scales stems from its unique ability to capture both fine
details and broader patterns simultaneously. This property is
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Fig. 13. Mitochondrial Morphology Changes in HeLa Cells DRP1 KO and upon CCCP Exposure. A. An example of a HeLa cell treated with CCCP, displaying
fragmented morphology. B. An example image of a wild-type cell with normal morphology. C. HeLa DRP1 KO cell exhibiting elongated mitochondrial morphology.
Each row presents, respectively, the initial image, segmentation result, detected mask, skeleton result, and overlay of the skeleton with the initial image.

particularly advantageous when dealing with the diverse shapes and
structures of mitochondria, which can vary significantly in size and
morphology across different cellular contexts. By leveraging the Gabor
filter’s adaptability, our model can efficiently extract relevant features
from mitochondria at various scales, enabling it to discern subtle nu-
ances in mitochondrial morphology. Moreover, the integration of the
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attention thresholding mechanism adds another layer of sophistication
to our approach. By selectively focusing the model’s attention on regions
of interest within the image, such as mitochondria, while minimizing
distractions from background noise, we can effectively guide the
learning process towards key features of biological significance. We
expect GAU-Net to prove a valuable innovation for the improvement of a
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Fig. 14. Mitochondrial Morphology Changes quantification in HeLa Cells DRP1 KO and CCCP Exposure: A. presents the Mean branch length of mitochondria
skeletons in the three conditions: wt, cccp and drpl. B. comparison of the total length of the mitochondria network. C. displays a comparison of the circularity ratio of
mitochondria. D. presents the thickness of mitochondria in the same condition.
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Fig. 15. Mitochondrial Segmentation in High-Noise Environments: the first-row data show the initial noisy images, the three following rows present the seg-
mentation result of MitoSkel, Ilastik and MitoSegNet in noisy conditions.
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diverse range of segmentation tasks from complex fluorescence micro-
scopy images.

MitoSkel proficiently identifies mitochondrial areas, even in images
that are significantly affected by noise or exhibit high levels of
complexity. A comparative analysis with established systems such as
MitoSegNet and Ilastik shows the improved performance of our system
Fig. 15. This was particularly evident not only in the segmentation of
lower quality images, but also in the skeletonization of the identified
mitochondria, a key step in the quantitative parametrization of the
mitochondrial network. MitoSkel does not necessitate human interven-
tion or annotation prior to segmentation such as Ilastik. Moreover, our
system not only provides segmentation results but also offers quantifi-
cation of morphological shapes, reducing the time and resources
required by biologists when analyzing mitochondrial shapes. Our system
also addresses and resolves common constraints encountered in other
segmentation tools, such as stringent requirements regarding image
format or size. By enabling segmentation that conforms to the original
dimensions of the images, our system assures enhanced accuracy and
reliability in the results.

Evaluation of MitoSkel across different cell lines revealed subtle
variations in performance. While MitoSkel performed equally with
Ilastik in HeLa and U20S cells, it was most effective in COS7 and HCT
cells. These variations could be due to differences in staining quality,
mitochondrial density, and cell morphology across cell lines. Specif-
ically, the slightly lower accuracy observed in HeLa cells is likely due to
the unique challenges posed by this cell line, including high mitochon-
drial density and significant structural overlap. These characteristics
make distinguishing individual mitochondria particularly difficult for
fully automated methods like MitoSkel. By contrast, Ilastik benefits from
manual feature-based classification, allowing for tailored adjustments
that improve segmentation in such challenging conditions. Despite this,
MitoSkel’s performance remains robust across a wide range of imaging
conditions, achieving comparable results to Ilastik in confocal imaging,
matching MitoSegNet in SIM images, and exceeding both in Airyscan
conditions.

However, we recognize that our system is not without its limitations.
A significant hurdle we encounter is the precise delineation of over-
lapping mitochondria, especially evident in low-resolution images
where distinguishing individual mitochondria becomes notably chal-
lenging, even for the human eye. The complexity of their shapes further
exacerbates this difficulty, leading to instances where users may struggle
to annotate images accurately. Another limitation of our model is its
slower training speed compared to the original U-Net. This decrease in
performance speed is due to the integration of an additional Gabor layer
and TAM. The Gabor layer, while beneficial for feature extraction, adds
computational complexity which results in longer training times.

Furthermore, while our dataset includes images from multiple cell
lines and microscopy techniques, it may not cover the full spectrum of
experimental conditions, potentially limiting the generalizability of
MitoSkel. Variations in staining protocols, imaging resolution, and
mitochondrial morphology in other cell types or microscopy methods
could impact performance. Lastly, our evaluation relied on manually
annotated datasets, which may introduce variability in the ground truth.
Future improvements could address these challenges by incorporating
automated annotation methods, expanding the diversity of the training
dataset, and optimizing the computational efficiency of MitoSkel to
make it more accessible to researchers with limited computational
resources.

In conclusion, we report here MitoSkel, a new Al-based platform
with a user-friendly interface for the automatic segmentation of indi-
vidual mitochondria and the quantification of their features from 2D
fluorescence microscopy images. Our system can be applied to images
obtained from different cell types and microscopy modes. Importantly,
we show that MitoSkel can identify quantitative differences in the
properties of distinct mitochondrial morphologies. By offering flexi-
bility, precision, and user accessibility, MitoSkel system offers a useful
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tool for researchers in cell biology and related disciplines, driving for-
ward our understanding of mitochondrial dynamics and functionality.

5. Materials and methods
5.1. Dataset preparation and pre-processing

The ground truth annotations were created by a collaborative team
comprising a biologist and two informaticians, employing the “Labelkit”
Al tool for image annotation. This process involved manually annotating
a portion of the image, followed by using Labelkit to generate the initial
mask, with subsequent manual corrections to address any missing or
inaccurate annotations. The training dataset for the GAU-Net model
comprised 102 images, including 12 U20S images captured with SIM,
67 U20S confocal images, and 23 confocal images of HeLa cells. These
images were divided into 512x512 patches and augmented using five
modifications, resulting in a total of 1470 images. For the testing phase,
we utilized 30 U20S (confocal and SIM) images and 6 HeLa (confocal)
images, which were also cropped into 512x512 patches and augmented
similarly to the training dataset.

Cell-lines testing dataset: To assess the system’s efficiency across
different cell lines, we employed 8 images from each cell lines: U20S,
HCT, COS7, and HelLa cells, augmenting them accordingly to have 40
images per cell condition.

Microscopy testing dataset: To evaluate the proposed system under
different microscopy imaging conditions, we utilized 8 images of U20S
cells (SIM), 8 images of primary LF cells (Airyscan), and 8 images of
HelLa cells (confocal). All the images were augmented.

Skeleton testing dataset: To test the skeletonization performance, we
used 40 images from different cell lines and conditions.

The ground truth of all the training and testing dataset were manu-
ally labelled using LabelKit as describing previously.

All data augmentation applied included rotations, horizontal and
vertical flips, as well as scaling transformations to enhance variability
and improve the model’s generalization capabilities.

5.2. Cell culture

HeLa cells stably expressing Tom20-mEGFP, COS-7, and LF cells
were cultured in DMEM[39] (4.5 g/L D-Glucose, Sodium Pyruvate,
GlutaMAX; Gibco, Cat# 10569010). HCT cells were cultured in modified
McCoy‘s 5A (GlutaMAX; Gibco, Cat# 36600021). U20S cells were
cultured in DMEM (1 g/L D-Glucose, Sodium Pyruvate, GlutaMAX;
Gibco, Cat# 10567014). Media for all cell lines were supplemented with
10 % (vol/vol) heat-inactivated FBS (Bio&SELL, FBS Superior stabil) and
1 % antibiotics (penicillin-streptomycin, Bio&SELL). Cells were
cultured at 37 °C, and 5 % CO2 under humidified conditions. Generally,
cells were passaged at subconfluency every two to three days. Only cells
under passage 20 were used for experiments. Monthly mycoplasma tests
were conducted to rule out contamination.

5.3. Fluorescent Labelling of mitochondria for microscopy

For COS7 and U20S cells, 35 mm p-dishes (Ibidi) were coated
overnight at 4 °C using 400 pL poly-l-lysine solution (0.1 mg/mL, Cul-
trex). On the following morning, dishes were washed three times with
sterile, double-distilled water (Milli-Q), and allowed to dry at room
temperature (RT). Cells were seeded at a density of 2e5 cells per dish in
complete culture medium (CCM). After 18 h of incubation at 37 °C, 5 %
CO2 under humidifed conditions, media was replaced with fresh CCM
and MitoTracker Deep Red FM (Invitrogen) was added to a final con-
centration of 100 nM. Following 25 min of staining at 37 °C, cells were
washed two times with pre-warmed CCM, and, finally, incubated for one
hour in fresh CCM to allow diffusion of the dye. HCT cells were seeded
into a removable 8-well chamber (Ibidi, Cat#80841) on a custom made
25 x 75 mm2 no. 1.5H cover slip (knittelGLASSS, Cat#CG000001) with
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a density of 2e4 cells per well. After two days, cells were stained with
100 nM MitoTracker Deep Red FM in fresh CCM for 10 min at 37 °C.
Subsequently, cells were washed with CCM three times for 5 min at
37 °C.

LF cells were seeded, one day prior to staining, at a density of 1e5
cells per well onto coverslips of 15 mm diameter in a 12-well plate.
Mitochondria were labelled using 100 nM MitoTracker Orange for 20
min at 37 °C. Afterwards, cells were washed twice with pre-warmed
CCM. To allow diffusion of the dye, cells were incubated for one hour
at 37 °C, 5 % CO2, under humidified conditions in fresh CCM. Finally,
cells were fixed using 4 % para-formaldehyde (PFA), washed three times
in PBS, and mounted on a glass slide using ProLong Gold Antifade
mounting medium (Invitrogen).

HeLa Tom20-mEGFP cells were seeded at a density of 5e4 cells per
well into a 8-well chambe p-slide. Mitochondria were labelled using 150
nM MitoTracker Deep Red FM for 25 min at 37 °C. After washing three
times with pre-warmed CCM, cells were incubated with fresh CCM for
30 min at 37 °C. To induce mitochondrial fragmentation, cells were
treated with CCCP at a final concentration of 10 pM for 20 min at 37 °C.
Following this incubation period, the CCCP-containing medium is
aspirated, and the cells were fixed with 3.7 % PFA in CCM for 8 min at
RT. Finally, cells were washed three times with PBS.

5.4. Microscopes and imaging parameters

COS7 live cell imaging was performed at 37 °C and 5 % CO2 on a
Leica TCS SP8 gSTED 3x microscope (Leica Microsystems) equipped
with a HC PL APO CS2 63x/1.40 OIL objective (Leica Microsystems).
MitoTracker Deep Red FM was excited using the 633 nm white light
laser line. Fluorescence emission light was collected using the HyD de-
tector with filters passing light between 648 nm and 689 nm. Images
were bidirectionally scanned at 600 Hz speed. Pixel size was set to 0.015
um. Lines were averaged a total of eight times. HCT and HeLa Tom20-
mEGFP imaging was performed on the Abberior INFINITY Line
employing an IX83 inverse microscope (Olympus) equipped with a
UplanXApo 60x/1.42 Oil «0/0.17/0FN26.5 objective (Olympus). De-
tector wavelength window was set to 600 nm to 750 nm, 633 nm laser
line, dwell time to 5 p s and pixel size to 500 nm.

LF cells were acquired using a LSM 980 Airyscan 2 (ZEISS) inverse
confocal laserscanning microscope equipped with a Plan-Apochromat
63x/1.40 Oil DIC M27 (ZEISS) objective. The 561 nm laser line was
used for excitation, a 488/561 beam splitter employed, and emitted light
detected using the GaAsP-PMT with the wavelength window set to 300
nm — 735 nm. Scanned lines were averaged four times. Acquired images
were processed using the superresolution processing module in Zen Blue
3.5).

U20S cells were acquired using a ZEISS Elyra 7 microscope equipped
with a Plan-Apochromat 63x/1.4 Oil DIC M27 (ZEISS) objective. The
following parameters were used: 647 nm laser, camera exposure time of
50 ms, an LBF 405/488/561/742 beam splitter, and a 640 longpass
filter. SIM reconstruction was performed with Zeiss Zen Black software.

5.5. Training and inference

To train our GAU-Net model, we employed the Adam optimizer with
a learning rate of 0.0001, ensuring stable convergence while preventing
gradient explosion. The training process was limited to 200 epochs, with
early stopping implemented to mitigate overfitting. We utilized binary
cross-entropy as the loss function, which effectively optimizes pixel-wise
segmentation tasks. A batch size of 16 was chosen to balance compu-
tational efficiency and model generalization. To further enhance sta-
bility and learning efficiency, batch normalization was applied after
each convolutional layer, which helps normalize activations and accel-
erate convergence. Additionally, model checkpointing was used to save
the best-performing model based on validation loss, ensuring optimal
model selection for inference. These training strategies contributed to
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the robustness and effectiveness of GAU-Net in handling complex seg-
mentation tasks across diverse imaging conditions.

5.6. Evaluation metrics

The quality and performance of the segmentation results obtained
from the MitoSkel neural network architecture were evaluated with
segmentation metrics, such as F1 Score, Accuracy, Dice coefficient,
Precision, Specificity, and Jaccard Index (Intersection over Union).
These metrics provide quantitative measures to assess the accuracy,
precision, and overall effectiveness of the segmentation process, thus
allowing a comprehensive analysis of the model performance[16-18].

Accuracy: This measures the proportion of correctly identified pixels
(both true positives and true negatives) in the image.

TP + TN

- v 9
TP + TN + FP + FN ©

Accuracy =
Where TP = True Positives, TN = True Negatives, FP = False Positives,
FN = False Negatives.

F1 Score: This is the harmonic mean of precision and recall,
providing a balance between them.
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IoU (Intersection over Union) Score: Also known as the Jaccard
Index, this metric measures the overlap between the predicted seg-
mentation and the ground truth.
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Specificity: This measures the proportion of actual negatives that are
correctly identified (i.e., the ability of the model to identify true nega-
tives).
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Precision: Also known as Positive Predictive Value, this assesses the
proportion of positive identifications that were actually correct.

TP
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Mean Absolute Error (MAE): In the context of image segmentation, MAE
measures the average magnitude of errors between the segmented image
and the ground truth, pixel by pixel.
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-
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Where y; is the true value, y; is the predicted value, and N is the total
number of pixels.
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