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A B S T R A C T

Mitochondria are cellular organelles regulating key processes, including metabolism, calcium signaling and cell death. They form an intricate tubular network in cells 
whose shape is tightly associated with function and that can be readily visualized with fluorescence microscopy. However, accurately quantifying mitochondrial 
morphology from light microscopy images remains a complex task, which underscores the need for an efficient and user-friendly tool for automatically detecting and 
analyzing the organelles morphology. Here, we introduce a novel artificial intelligence-based system for automatic mitochondria segmentation and quantification 
called MitoSkel. MitoSkel utilizes a new architecture of U-Net that we call GAU-Net, which integrates a trainable Gabor filter layer and a Thresholding Attention 
Mechanism (TAM). We trained GAU-Net on a comprehensive dataset of fluorescence microscopy images to perform pixel-level segmentation of mitochondria under 
various conditions. Following segmentation, MitoSkel applies skeletonization to extract the morphological features of individual mitochondria, facilitating the 
quantification of parameters such as length, branching points, and connectivity. Thorough evaluation across diverse cell lines imaged using different microscopy 
methods demonstrates the proficiency of MitoSkel in handling varying mitochondrial shapes, sizes, and densities. Compared to existing methods, our approach 
achieved improved segmentation accuracy and efficiency. MitoSkel promises to be a valuable tool for the study of mitochondrial shape and its connection with 
organelle dynamics, function and related diseases.

1. Introduction

Mitochondria are organelles in eukaryotic cells that play a central 
role not only in energy production, but also in cellular metabolism, 
calcium signaling, cell death regulation and immunity [1]. They form a 
tubular network in the cell, whose shape responds to mitochondrial 
function and fitness through still poorly understood mechanisms. 
Furthermore, alterations in mitochondrial shape have been associated 
with diseases [1,2]. For these reasons, mitochondrial research often 
requires analysis of the network morphology [3]. This is routinely done 
with fluorescence microscopy, which offers real-time imaging capabil
ities, ease of use, versatility, and suitability for live-cell studies [4]. 
Analysis of mitochondria using accurate segmentation of the images is of 
interest for the research community because it can provide essential 
insights into cellular functions and contribute significantly to our un
derstanding of diseases related to mitochondria and potential thera
peutic intervention [5,6]. However, an accurate quantitative analysis of 
mitochondrial shape remains a time-consuming and often biased process 
due to the lack of user-friendly tools for efficient and automatic detec
tion of the organelles from microscopy images. The primary difficulty 
lies in the highly variable shapes and sizes of mitochondria, which range 

from elongated tubules to fragmented structures [7]. This variability 
complicates the development of a standardized segmentation approach. 
Adding to the complexity, issues like noise, variable illumination, and 
image artifacts can interfere with accurate segmentation. Batch effects 
are also issuing in microscopy data, due to systematic variations 
resulting from factors like temperature fluctuations or differences in 
microscopy lighting conditions during an experiment. These variations 
lead to alterations in image intensities and features across different 
batches [8]. Another challenge is the dense packing of mitochondria 
within cells, often resulting in overlapping structures that make it hard 
to distinguish individual mitochondria.

In response to these challenges, researchers in the field of bioimage 
analysis have developed a range of computational approaches. These 
methods typically involve a combination of edge detection, region-based 
algorithms, and machine learning models to segment mitochondria 
accurately [6,9]. Advanced image pre-processing techniques and 3D 
imaging also play a crucial role in enhancing segmentation performance 
[7,10]. Early investigations into mitochondria segmentation and quan
tification relied on traditional image processing [11–13], limited by 
noise, the requirement of manual threshold selection and varying image 
conditions, which resulted in unsatisfactory results [14]. The 
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introduction of convolutional neural networks (CNNs), characterized by 
their unique architecture capable of automatically and adaptively 
learning spatial hierarchies of features, has revolutionized image 
recognition and analysis tasks [15]. The U-Net architecture, introduced 
by Ronneberger et al [16,37], specifically for biomedical image seg
mentation, features a symmetric expanding path that enabled precise 
localization, providing enhanced capabilities in capturing the intricate 
details and variabilities in biological images. U-Net was used in Mito
SegNet to accurately capture the intricate features of mitochondrial 
shape with a pretrained deep learning (DL) segmentation model [17]. 
More recently, Ilastik workflows, a collection of machine-learning-based 
image processing tasks, facilitated semantic segmentation of images 
with user-defined class labels and improved the separation of fore
ground from background, allowing further object-level analysis [18].

Here, we leveraged DL, particularly the U-Net architecture [36], to 
address these challenges and improve automatic mitochondria seg
mentation from light microscopy images. To enhance the U-net model’s 
ability to capture intricate details, we integrated a trainable Gabor Layer 
into the base architecture, which allowed the model to detect nuanced 
patterns and features within the input data. Additionally, we used a 
Thresholding Attention Mechanism (TAM) to guide the system in 
prioritizing specific regions of interest within the images. This stream
lined the segmentation process and improved the quality of the results 
by emphasizing relevant areas, thereby significantly enhancing the 
model’s performance. We tested our model on a comprehensive dataset 
comprising images from four different cell lines acquired through 
various microscopy techniques and compared it with MitoSegNet and 
Ilastik. The resulting tool, MitoSkel offers improved performance and 
can effectively adapt to different cell lines and microscope setups, 
including both low-resolution and high-resolution configurations, while 
accommodating diverse experimental conditions.

2. Proposed model

Considering the key role of high-quality datasets in the learning 
process, we decided to first create a robust and comprehensive dataset 
aimed at enhancing the generalizability of our system for mitochondria 
segmentation across a spectrum of diverse shapes and resolutions. To 
achieve this, we acquired images of cultured U2OS and HeLa cells using 
confocal, Airy-scan and structured illumination microscopies, each 
providing images rich in mitochondrial structure and morphology de
tails (see Materials and Methods section). We standardized the sizes of 
all images to guarantee uniformity and consistency across the dataset 
Fig. 1A.

We then used these data to train a DL model based on the U-Net 
architecture. To enhance the accuracy, robustness, and adaptability of 
the segmentation process, we modified the U-Net model by introducing 
novel components into the basic architecture. This resulted in a new 
framework that we called “GAU-Net”, which adds two key elements to 
the basic architecture: Gabor filters [19,20] and a Thresholding Atten
tion Mechanism (TAM). These enhancements tackle the complexities of 
mitochondria images, where textures, fine details, and the inherent 
imbalance in information distribution challenge conventional segmen
tation methods. In the proposed architecture, the Gabor layer is inte
grated into the network as part of the convolutional blocks, allowing it 
to learn filter parameters during training. Additionally, a TAM is applied 
to the output of each convolutional block, enhancing the model’s ability 
to focus on relevant image regions. The encoder part of the GAU-Net 
architecture comprises four sequential convolutional blocks. Each 
block consists of a Gabor layer and two convolutional layers, with a 
ReLu activation function in between, followed by the attention mecha
nism. This design allows the network to progressively extract hierar
chical features from the input data while incorporating Gabor-based 
feature extraction and attention mechanisms to enhance the model’s 
ability to capture complex patterns and structures in the input images. 
The decoder portion mirrors this structure, with four corresponding up- 

sampling blocks that progressively increase the spatial dimensions of the 
feature maps. Skip connections are established between corresponding 
encoder and decoder blocks to facilitate the flow of high-resolution 
features during up-sampling. However, unlike the encoder, which in
cludes the Gabor layer, the decoder focuses on reconstructing the orig
inal input from the encoded features with deconvolution. The model is 
described in Fig. 1B.

The Gabor filters, known for their efficacy in capturing spatial fre
quencies and orientations and their ability to capture texture and fine 
details in images [21,22], were carefully parameterized to optimize 
texture and edge detection across various scales and directions. The 
mathematical formulation of a Gabor filter can be expressed as: 

Gabor(λ, θ,ϕ, σ, γ)
(
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Where x0 and y0 are defined as x0 = xcosθ+ysinθ and 
y0 = − xsinθ+ycosθ, in which θ defines the orientation of the filter, σ 
controls the filter’s size, λ specifies the wavelength of the sinusoidal 
component, γ adjusts the spatial aspect ratio and ϕ is phase offset 
[20–22]. Incorporating Gabor filters into our neural network architec
ture via an extra trainable layer introduced a mechanism for enriching 
feature representations. After several tests and iterations, we identified 
an ideal set of parameters: a sigma (σ) of 2.0 to balance feature breadth 
and detail, theta (θ) values spaced evenly from 0 to π to ensure 
comprehensive orientation coverage, a lambda (λ) of 5.0 for effective 
medium-to-high frequency pattern extraction, a gamma (γ) of 0.2 to 
highlight elongated structures, and a phase offset (ϕ) of 0, enhancing 
edge detection. This configuration allowed the model to extract textural 
and structural information, facilitating precise segmentation. The pro
posed trainable Gabor layer was used to extract multi-orientation and 
multi-scale features Fig. 1B. By integrating a trainable Gabor layer into 
the UNet architecture, our proposed GAU-Net model exhibits improved 
segmentation performance.

Unlike previous studies [22–24], in which Gabor filters were used 
primarily for feature extraction, our model integrates Gabor as trainable 
layer within the architecture. This allows for end-to-end training and 
adaptive feature learning, enhancing texture feature extraction and 
segmentation accuracy.

The Gabor filter parameters were initially chosen based on theoret
ical insights into their roles in capturing image textures and orientations. 
However, during the training process, these parameters were fine-tuned 
through a gradient-based optimization process. Specifically, the pa
rameters were set as trainable within the model. This allowed the GAU- 
Net architecture to adapt these parameters dynamically to best fit the 
features of the input data, thereby optimizing the segmentation task. 
The optimization process was guided by the network’s loss function, 
which adjusted the Gabor filter parameters in each training iteration to 
improve feature extraction capabilities.

The Gabor layer enhances feature extraction by adaptively learning 
texture and edge features, performs multi-scale analysis for accurate 
mitochondria delineation, and demonstrates robustness to noise and 
variations in illumination. Its adaptability allows for fine-tuning filter 
parameters during training, optimizing responses for the segmentation 
task at hand. Furthermore, the complementary nature of Gabor features 
with convolutional features enriches the model’s representation of the 
input data, resulting in more effective segmentation outcomes. In DL, 
attention mechanisms enable models to focus on specific parts of the 
input data that are deemed most relevant. These mechanisms dynami
cally weight the importance of different input features, allowing the 
model to selectively pay attention to salient information while ignoring 
irrelevant or noisy inputs[25–27]. The incorporation of attention 
mechanisms has led to significant improvements in tasks such as natural 
language processing and image recognition [28,29].

To mitigate the challenges due to noise during the acquisition of 
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Fig. 1. Pipeline of the proposed model MitoSkel. A. Data Preparation: Ground truths were generated using LabelKit, an AI tool. Subsequently, the images were 
cropped into 512x512 patches, and the data was split into 70% for training, 10% for validation, and 20% for testing. B. Architecture of GAU-Net: The first block 
consists of a trainable Gabor layer followed by a ReLU function. The second block comprises a convolutional layer, followed by ReLU and a TAM.

S. Zaghbani et al.                                                                                                                                                                                                                               Biomedical Signal Processing and Control 106 (2025) 107762 

3 



microscopy images, we used a TAM. This mechanism enhances the 
quality of the acquired images and minimizes noise interference, 
resulting in cleaner and more accurate data for subsequent analysis and 
segmentation tasks Fig. 2. The TAM consists of two main components:

Sigmoid Activation: After convolutional processing, the output is 
passed through a sigmoid activation function to produce an attention 
map. While sigmoid activation is common, its role in our TAM is to 
generate a continuous attention map reflecting the relevance of different 
regions in the image. The input tensor x undergoes convolutional pro
cessing represented as: 

conv(x) = W*x+ b (2) 

where W is the convolutional weight, x denotes the input tensor, and b 
represents the bias. Subsequently, the output of this convolution is 
passed through the sigmoid activation function: 

attentionmap = σ(conv(x) ) =
1

1 + e− conv(x) (3) 

The sigmoid activation maps the output to values in the range of 0 to 1, 
producing an attention map that reflects the network’s internal 
perception of image relevance.

Thresholding Operation: A predefined threshold is applied to this 
attention map to create a binary mask. This mask highlights the regions 
with attention values above the threshold, effectively filtering out less 
relevant parts of the image. This step allows the model to focus on 
informative areas while suppressing irrelevant or noisy regions.

The binary attention mask is generated by applying a defined 
threshold to the attention map: 

mask(i, j) =
{

1, ifattentionmap(i, j) > threshold
0, otherwise (4) 

The TAM helps to alleviate noise by reducing the influence of non- 
relevant areas in the image. By focusing on regions with higher atten
tion values, the TAM ensures that noise or irrelevant details are less 
likely to interfere with the segmentation process. This selective focus 
improves the model’s ability to segment mitochondria accurately, even 
in challenging imaging conditions. Once we achieve clear and accurate 
segmentation of mitochondria, our system can then delineate a contour 
line around each detected mitochondrion. This sets the basis for accurate 
quantification of the mitochondrial network. By generating these con
tours, the system provides insights into various parameters such as area, 
perimeter, circularity, and thickness, offering a comprehensive and 
quantitative description of mitochondrial morphology. Furthermore, the 
system incorporates a skeletonization feature that is applied to the 
detected mitochondria. This skeletonization process provides additional 
information about the mitochondrial network, including mitochondrial 
length, branch connectivity, types of branches, and distances between 
branches. This dual approach of contouring and skeletonization gives 
rise to a robust tool for a thorough analysis of mitochondrial structures, 
facilitating the study of mitochondrial dynamics and their implications 
in cellular functions.

3. Results

3.1. Segmentation performance

To validate the effectiveness of our approach, we compared our 
segmentation model, GAU-Net, with other state-of-the-art algorithms U- 
Net++[30], FCNN[31], SegNet[32], and U-Net[33] and evaluated its 
performance using a variety of segmentation metrics. These metrics 
range from 0 to 1, with 1 indicating optimal performance (see Methods 
and Materials). The benchmarking results highlight the superior per
formance of GAU-Net relative to other methods across multiple datasets, 
as shown in Tables 1, 2, and 3. On our custom dataset Table 1, GAU-Net 
achieved the highest F1 score (0.9689), accuracy (0.9946), IoU 
(0.9397), precision (0.9796), and specificity (0.9965), outperforming U- 
Net++, FCNN, SegNet, and U-Net. These results demonstrate GAU-Net’s 
capability to perform domain-specific segmentation tasks with remark
able precision. On the ISIC2018 dataset (Table 2), GAU-Net achieved the 
highest F1 score (0.8809) and IoU (0.8057), showing improvements 
over other models. These differences, while small, underline GAU-Net’s 
consistent performance across most metrics and its adaptability to 
diverse medical imaging challenges. On the Kvasir-SEG dataset 
(Table 3), GAU-Net achieved F1 score (0.7453) and IoU (0.6040), 
showcasing its ability to capture fine-grained details. While SegNet 
(specificity 0.9773) and U-Net (specificity 0.9837) achieved higher 
specificity, GAU-Net led in F1 score and IoU, metrics critical for overall 
segmentation performance. These results highlight GAU-Net’s ability to 
outperform existing methods on our custom dataset, where intricate 
mitochondrial patterns demand advanced edge detection and spatial 
feature extraction. However, its performance on the ISIC2018 and 
Kvasir-SEG datasets shows slight variations in certain metrics. This 
difference can be attributed to the distinct characteristics of the datasets. 
GAU-Net was primarily designed to focus on patterns with complex and 
overlapping shapes, where edge and border details are critical for ac
curate segmentation. This is particularly true for our custom dataset, 
where mitochondrial structures are intricate, densely packed, and often 
exhibit significant overlap. The Gabor Layer and TAM in GAU-Net are 
specifically tailored to enhance segmentation in such challenging sce
narios. In contrast, the ISIC2018 and Kvasir-SEG datasets do not share 
these characteristics. The patterns in these datasets are generally less 
complex, with clearer boundaries and minimal overlap between struc
tures. Additionally, these datasets feature high-resolution images with 

Fig. 2. Diagram of the proposed Thresholding Attention Mechanism (TAM).

Table 1 
Benchmarking GAU-Net: Quantitative Comparison with State-of-the-Art Seg
mentation Methods on Our Dataset.

Model F1Score Accuracy IoU Precision Specificity

UNet++ 0.8311 0.9718 0.7110 0.8199 0.9834
FCNN 0.8008 0.9321 0.7056 0.8100 0.9822
SegNet 0.9187 0.9820 0.8616 0.9331 0.9910
U-Net 0.8571 0.9729 0.8603 0.8729 0.9832
GAU-Net 0.9689 0.9946 0,9397 0.9796 0.9965
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minimal acquisition noise, which naturally reduces the need for 
advanced edge detection or attention mechanisms.

The results in Tables 4, 5, and 6 highlight the impact of incorporating 
the Gabor Layer and (TAM) on segmentation performance across three 
datasets: our custom dataset, ISIC2018, and Kvasir-SEG. On our custom 
dataset (Table 4), the model without the Gabor Layer and TAM 
(− Gabor/-TAM) achieved an F1 score of (0.9527), accuracy of (0.9927), 
and IoU of (0.9189). Adding the Gabor Layer (+Gabor/-TAN) resulted in 
improvements across all metrics, with an F1 score of (0.9615), IoU of 
(0.9260), and precision of (0.9756). Incorporating TAM without the 
Gabor Layer (− Gabor/+TAM) achieved slightly better results, with an 
F1 score of 0(.9626) and IoU of (0.9280). However, the combination of 
both the Gabor Layer and TAM (+Gabor/+TAN) demonstrated the best 
performance, with an F1 score of (0.9689), accuracy of (0.9946), IoU of 
(0.9397), and precision of (0.9796). On the ISIC2018 dataset (Table 5), 
the baseline model (− Gabor/-TAM) achieved an F1 score of (0.8618), 
accuracy of (0.9007), and IoU of (0.7728). Adding the Gabor Layer 
(+Gabor/-TAM) provided improvements, with an F1 score of (0.8757), 
IoU of (0.7862), and precision of (0.8692). Incorporating TAM without 
the Gabor Layer (− Gabor/+TAM) resulted in slightly lower IoU 
(0.7750) and F1 score (0.8626) but improved precision to (0.8800). The 
full model (+Gabor/+TAN) achieved the best performance, with an F1 
score of (0.8809), accuracy of (0.9091), IoU of (0.8057), and precision 
of (0.8848). On the Kvasir-SEG dataset (Table 6), the baseline model 
(− Gabor/-TAN) achieved an F1 score of (0.7426), accuracy of (0.9189), 
and IoU of (0.5905). Adding the Gabor Layer (+Gabor/-TAM) improved 
segmentation performance, achieving an F1 score of (0.7513), IoU of 
(0.6017), and precision of (0.7545). Using TAM alone (− Gabor/+TAM) 
resulted in similar metrics to the baseline, with an F1 score of (0.7432) 
and IoU of (0.5865). The combination of both the Gabor Layer and TAM 
(+Gabor/+TAM) achieved the best performance, with an F1 score of 
(0.7453), accuracy of (0.9925), IoU of (0.6040), and the highest preci
sion of (0.7888). Overall, these results demonstrate that both the Gabor 
Layer and TAM contribute to improved segmentation performance. 
While each component individually enhances certain metrics, the 

combination of both consistently provides the best outcomes across all 
datasets. The GAU-Net architecture demonstrates its strength in 
handling segmentation tasks where edge and orientation details are 
critical, such as in mitochondria segmentation using light microscopy 
(custom dataset) and gastrointestinal polyp segmentation (Kvasir-SEG 
dataset). These datasets feature intricate and irregular structures, where 
the inclusion of the Gabor Layer and TAM enhances the model’s ability 
to capture fine-grained details and spatial features.

The evaluation of the Thresholded Attention Mechanism across 
different threshold values revealed that a threshold of 0.1 provided the 
best overall performance. At this threshold, the model achieved the 
highest F1 score of 0.9615, indicating a superior balance between pre
cision (0.9756) and recall. Additionally, it delivered the highest accu
racy of 0.9934, confirming that the model correctly classified the 
majority of instances. The IoU at this threshold was also the highest 
(0.9260), reflecting the model’s ability to capture significant overlap 
between predicted and ground truth segmentation (Table 7). Based on 
these results, the threshold value of 0.1 was consistently applied across 
all datasets, including our custom dataset, ISIC2018, and Kvasir-SEG, to 
ensure uniformity in the evaluation and to maximize the model’s per
formance under diverse conditions.

The inclusion of the Gabor Layer and Thresholded Attention Mech
anism (TAM) in the GAU-Net architecture enhances segmentation per
formance with minimal impact on model complexity. The baseline 
model, without the Gabor Layer and TAM, comprises 12,517,889 pa
rameters, while the combined model (with both components) has 
12,647,592 parameters, reflecting a 1.04 % increase in the total 
parameter count. The Gabor Layer contributes 4 trainable parameters 
(sigma, theta, lambd, and gamma) and is responsible for edge- and 
orientation-specific feature extraction, while the TAM adds 129,699 
parameters through attention gates, enabling the model to focus on 
relevant regions and suppress irrelevant features. From a computational 
efficiency perspective, the combined model increases training and 
inference time by ~ 6–8 % compared to the baseline. This is due to the 
additional operations introduced by the Gabor Layer and TAM. 

Table 2 
Benchmarking GAU-Net: Quantitative Comparison with State-of-the-Art Seg
mentation Methods on (ISIC2018 dataset).

Model F1Score Accuracy IoU Precision Specificity

Unet++ 0.8796 0.9149 ​ 0.7843 0.8747 0.9534
FCNN 0.7801 0.8837 ​ 0.6509 0.7413 0.8920
SegNet 0.8681 0.9141 ​ 0.7332 0.8801 0.9509
U-net 0.8339 0.9101 ​ 0.8000 0.8177 0.9458
GAU-Net 0.8809 0.9091 ​ 0.8057 0.8848 0.9383

Table 3 
Benchmarking GAU-Net: Quantitative Comparison with State-of-the-Art Seg
mentation Methods on Kvasir-SEG dataset.

Model F1Score Accuracy IoU Precision Specificity

Unet++ 0.7377 0.9201 ​ 0.5934 0.7754 0.9214
FCNN 0.5352 0.7959 ​ 0.3654 0.4218 0.8080
SegNet 0.7280 0.8782 ​ 0.5703 0.6921 0.9773
U-net 0.7395 0.8819 ​ 0.5867 0.8819 0.9837
GAU-Net 0.7453 0.9225 ​ 0.6040 0.7888 0.9638

Table 4 
Comparison of Segmentation results with and without Gabor Layer and 
Thresholding Attention Mechanism (TAM) (our dataset).

Model F1Score Accuracy IoU Precision Specificity

− Gabor/-TAM 0.9527 0.9927 0.9189 0.9713 0.9973
+Gabor/-TAM 0.9615 0.9934 0.9260 0.9756 0.9977
− Gabor/+TAM 0.9626 0.9935 0.9280 0.9729 0.9974
+Gabor/+TAM 0.9689 0.9946 0.9397 0.9796 0.9965

Table 5 
Comparison of Segmentation results with and without Gabor Layer and 
Thresholding Attention Mechanism (TAM) (ISIC2018).

Model F1Score Accuracy IoU Precision Specificity

− Gabor/-TAM 0.8618 0.9007 0.7728 0.8660 0.9301
+Gabor/-TAM 0.8757 0.9089 0.7862 0.8692 0.9370
− Gabor/+TAM 0.8626 0.9024 0.7750 0.8800 0.9389

+Gabor/+TAM 0.8809 0.9091 0.8057 0.8848 0.9383

Table 6 
Comparison of Segmentation results with and without Gabor Layer and 
Thresholding Attention Mechanism (TAM) (Kvasir-SEG).

Model F1Score Accuracy IoU Precision Specificity

− Gabor/-TAM 0.7426 0.9189 0.5905 0.7498 0.9555
+Gabor/-TAM 0.7513 0.9230 0.6017 0.7545 0.9511
− Gabor/+TAM 0.7432 0.9158 0.5865 0.6912 0.9501
+Gabor/+TAM 0.7453 0.9925 0.6040 0.7888 0.9638

Table 7 
Segmentation results with different threshold values (our dataset).

Threshold F1Score Accuracy IoU Precision Specificity

0.05 0.9518 0.9848 0.9159 0.9677 0.9927
0.15 0.9590 0.9009 0.9223 0.9716 0.9988
0.1 0.9615 0,9934 0,9260 0,9756 0.9977

0.2 0.9413 0.9054 0.9200 0.9423 0.9941
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However, this trade-off is justified by the substantial gains in key seg
mentation metrics, including IoU and F1 score, where the combined 
model consistently outperforms the baseline across multiple datasets.

3.2. Comparative analysis of mitochondria segmentation systems

Next, we evaluated and compared the performance of our mito
chondria segmentation system, MitoSkel, with two other established 
tools for mitochondria segmentation and analysis: Ilastik and MitoSeg
Net [17,18]. We assessed effectiveness and accuracy in segmenting 
mitochondria across different cell lines and different microscopes, using 
a comprehensive range of metrics. Our test dataset included a total of 
270 images of the mitochondrial network of individual cells, captured 
from SIM, Airyscan, and confocal microscopes from different cell lines 
(see Materials and Methods section). This diverse range of imaging 
modalities allowed us to assess the robustness and adaptability of the 
segmentation systems under varying imaging conditions. To achieve 
this, we refrained from performing any preprocessing on the raw image 
data. This approach ensured that all systems were evaluated based solely 
on their intrinsic segmentation capabilities, without any external en
hancements or modifications to the original image quality. Furthermore, 
it is important to note that all images used in our testing were resized to 
a resolution of 512x512 pixels. This specific image dimension was 
required by MitoSegNet. Adhering to this uniform image size across all 
tested systems ensured that the results were directly comparable. For 
Ilastik, we followed the guidelines of images segmentation and we an
notated 10 images from different cell lines and imaging conditions to 
train the model before using it for the testing phase. In terms of accu
racy, MitoSkel achieved a mean accuracy of approximately (0.951), 
indicative of its effectiveness in delineating mitochondria within mi
croscopy images. MitoSegNet closely followed with a mean accuracy of 
approximately (0.926), while Ilastik exhibited a mean accuracy of about 

(0.922). Regarding the F1 score, MitoSkel demonstrated the highest 
mean F1 score, approximately (0.762), which assesses balance between 
precision and recall. Ilastik provided a mean F1 score of about (0. 696), 
while MitoSegNet obtained a lower mean F1 score of approximately 
(0.620). Analysis of IoU, which measures the ability to capture the 
spatial extension of mitochondria, provided the highest mean IoU for 
MitoSkel, at (0.633). Ilastik obtained a mean IoU of about (0.553), while 
again MitoSegNet exhibited the lowest mean IoU, approximately 
(0.459). The specificity analysis revealed that our system achieved a 
mean specificity of approximately (0.974), demonstrating its capability 
to accurately identify true negative cases. MitoSegNet also demon
strated strong performance with a competitive mean specificity of 
around (0.971). In contrast, Ilastik showed a slightly lower mean spec
ificity of approximately (0.932). Precision measurements further sup
ported these findings, with MitoSkel exhibiting the highest mean 
precision at approximately (0.774), in line with its effectiveness in 
minimizing false positive outcomes. MitoSegNet closely followed with a 
mean precision of about (0.758). While Ilastik presented respectable 
precision, it reported a lower mean precision of approximately (0.621). 
Additionally, the analysis of Mean Absolute Error (MAE) showcased 
MitoSkel’s performance with the lowest mean MAE of about 0.049, 
indicating strong alignment with ground truth annotations. In contrast, 
both MitoSegNet and Ilastik reported slightly higher mean MAE values, 

Fig. 3. Example of images showing qualitative comparison of segmentation between MitoSkel, Ilastik and MitoSegNet. The first two columns display the 
original images and their corresponding GT masks. The subsequent three columns illustrate the overlay between the ground truth mask and the generated seg
mentation masks for MitoSkel, Ilastik, and MitoSegNet, respectively. The color scheme used for the overlay depicts different segmentation outcomes: black represents 
true negatives (TN), green indicates false positives (FP), orange corresponds to false negatives (FN), and white true positives(TP). (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this article.)

Table 8 
Evaluation of the segmentation efficacy of MitoSkel is conducted alongside two 
other tools for mitochondria segmentation based on DL: Ilastik and MitoSegNet.

Model F1Score Accuracy IoU Precision Specificity

MitoSkel 0.762 0. 951 ​ 0. 633 0. 774 0. 974
Ilastik 0.696 0.922 ​ 0.552 0.620 0.932
MitoSegNet 0.619 0.926 ​ 0. 458 0. 758 0. 971

S. Zaghbani et al.                                                                                                                                                                                                                               Biomedical Signal Processing and Control 106 (2025) 107762 

6 



approximately (0.073) and (0.077), respectively Fig. 3 and Table 8. 
Collectively, these results show the effectiveness and reliability of 
MitoSkel for mitochondria segmentation in microscopy imaging 
applications.

3.3. Assessing segmentation performance on multiple cell lines

To assess the general applicability of MitoSkel, we conducted tests 
using four cell lines commonly used in mitochondria research: HeLa, 
HCT, U2OS and COS7. We manually annotated 8 images from each of 
the selected cell lines and applied data augmentation techniques to 
expand our dataset, resulting in 40 test images after five different geo
metric modifications. We then analysed the images with MitoSkel, 
Ilastik and MitoSegNet. In the context of Hela cells, MitoSkel achieved 
an accuracy of (0.947), closely trailing behind Ilastik at (0.951) but 
outperforming MitoSegNet (0.934). Furthermore, MitoSkel provided a 
F1 score of (0.787) slightly behind Ilastik (0.821), but above MitoSegNet 
(0.7099). The IoU of MitoSkel (0.650) illustrated a moderate overlap 
between the segmented regions and the ground truth while Ilastik 
attained a slightly higher IoU (0.698). With U2OS cells, MitoSkel’s ac
curacy (0.954) was better than that of Ilastik (0.944) and on par with 
MitoSegNet (0.955). MitoSkel’s F1 score reached (0.675), exceeding 
both Ilastik (0.644) and MitoSegNet (0.618). The IoU score of (0.556) 
also outperformed Ilastik (0.514) and MitoSegNet (0.486). In the case of 
HCT cells, MitoSkel provided the highest accuracy at (0.956), compared 
to Ilastik (0.937) and MitoSegNet (0.941). Its F1 score of (0.623) sur
passed both Ilastik (0.527) and MitoSegNet (0.508). Moreover, the IoU 
of (0.458) depicted a robust alignment between MitoSkel’s segmented 
regions and the ground truth, improving the performance of Ilastik 
(0.364) and MitoSegNet (0.342). Regarding COS7 cells, MitoSkel ob
tained better scores than the other two systems, with an accuracy of 

0.965, followed by Ilastik (0.944) and MitoSegNet (0.923), a mean F1 
score of 0.815, surpassing Ilastik (0.743) and MitoSegNet (0.526) and an 
improved IoU of (0.688), compared to Ilastik (0.592) and MitoSegNet 
(0.425) Fig. 4 and Table 9. In summary, MitoSkel consistently demon
strated significant performance in mitochondria segmentation across a 
diverse array of cell lines. While MitoSkel performed consistently well 
across most cell lines, its accuracy in HeLa cells was slightly lower than 
that of Ilastik. This difference can be attributed to the unique challenges 
posed by HeLa cells, which are characterized by a relatively high density 
of mitochondria and significant overlap between mitochondrial struc
tures. These factors make precise segmentation more difficult, especially 
in distinguishing individual mitochondria. Ilastik, which incorporates 
manual feature-based classification, may have an advantage in handling 
such datasets by leveraging user-defined features tailored to the specific 
imaging conditions. In contrast, MitoSkel relies on automated feature 
learning, which, while offering a general and robust solution, may be 
less effective in specific challenging scenarios like dense mitochondrial 
networks in HeLa cells.

3.4. Assessing MitoSkel performance across diverse microscopy 
techniques

We also tested our MitoSkel segmentation tool across different mi
croscopy techniques, namely Airyscan, SIM (Structured Illumination 
Microscopy), and confocal microscopy, and compared it with MitoSeg
Net and Ilastik. For Airyscan microscopy, MitoSkel achieved an accuracy 
of approximately 0. 971, better than MitoSegNet, (0.934), and Ilastik, 
(0.951). The F1 score for MitoSkel was 0.767, exceeding MitoSegNet 
(0.709) and Ilastik (0.746) and the IoU was (0.627), again improved 
compared to MitoSegNet (0.552) and Ilastik (0.5806). In the context of 
SIM microscopy, MitoSkel provided an accuracy score of 0.973, 

Fig. 4. Example of images showing qualitative comparison of segmentation results between MitoSkel, Ilastik and MitoSegNet across four different cell 
lines (U2OS, HCT, HeLa and COS7). The first two columns display the original images and their corresponding ground truth masks. The subsequent three columns 
illustrate the overlay between the ground truth mask and the generated segmentation masks for MitoSkel, Ilastik, and MitoSegNet, respectively. The color scheme 
used for the overlay depicts different segmentation outcomes: black represents true negatives (TN), green indicates false positives (FP), orange corresponds to false 
negatives (FN), and white signifies true positives (TP). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.)

S. Zaghbani et al.                                                                                                                                                                                                                               Biomedical Signal Processing and Control 106 (2025) 107762 

7 



exceeding both MitoSegNet, (0.946), and Ilastik (0.946). The F1 score 
for MitoSkel was 0.889, whereas MitoSegNet (0.795) and Ilastik (0.714) 
lagged behind. However, the IoU score for MitoSkel was comparatively 
lower (0.494) compared to MitoSegNet (0.5368) and Ilastik (0.565). 
This suggests that while MitoSkel excels in terms of accuracy, there may 
be slight challenges in delineating mitochondrial structures accurately 
according to the IoU metric when using SIM microscopy. With Confocal 
microscopy, MitoSkel’s accuracy (0.951) was comparable to Ilastik 
(0.951), followed by MitoSegNet (0.941). The F1 score for MitoSkel was 
(0.761), surpassing MitoSegNet (0.706) but slightly below Ilastik 
(0.785). The IoU score was moderate at (0.534), while Ilastik (0.650) 
demonstrated a slightly higher IoU score Fig. 5 and Table 10. In 
conclusion, MitoSkel demonstrated high level of accuracy in Airyscan 
microscopy, while maintaining robust performance in SIM and confocal 
microscopy as well. Our evaluation shows that MitoSkel is a versatile 
and effective system for mitochondria segmentation across various 

microscopy techniques.
The performance of MitoSkel under different microscopy techniques 

is influenced by the inherent noise and data variance present in each 
method. Airyscan and SIM microscopy, which offers high-resolution 
images with minimal noise, supports MitoSkel’s strong performance. 
For confocal microscopy, the moderate resolution and higher noise 
levels may contribute to the observed lower F1 and IoU scores compared 
to Airyscan and SIM. These findings illustrate that variations in resolu
tion, contrast, and noise across microscopy techniques have a tangible 
impact on segmentation performance. Future refinements to MitoSkel 
could focus on improving robustness to structured illumination artifacts 
and noise through advanced preprocessing or model training strategies.

3.5. Methodology for Calculating mitochondrial structural metrics

To comprehensively understand mitochondrial dynamics and their 

Table 9 
Quantitative comparison of segmentation result across multiple cell lines: evaluation of the performance of our mitochondria segmentation system, MitoSkel, across 
various cell lines, comparing it with two established segmentation systems, Ilastik and MitoSegNet.

Cells System F1 Accuracy IoU Precision Specificity

U2OS
MitoSkel 0.675 0.954 0.556 0.629 0.970
Ilastik 0.644 0.944 0.513 0.554 0.955
MitoSegNet 0.618 0.955 0.486 0.712 0.984

HeLa
MitoSkel 0.787 0.947 0.650 0.954 0.994
Ilastik 0.821 0.951 0.698 0.865 0.979
MitoSegNet 0.709 0.934 0.552 0.964 0.996

HCT
MitoSkel 0.623 0.956 0.458 0.495 0.958
Ilastik 0.527 0.937 0.364 0.379 0.939
MitoSegNet 0.508 0.941 0.342 0.387 0.950

COS7
MitoSkel 0.8155 0.965 0.688 0.752 0.972
Ilastik 0.743 0.944 0.592 0.605 0.942
MitoSegNet 0.526 0.923 0.425 0.548 0.961

Fig. 5. Mitochondria Segmentation in Varied Microscopic Environments: the result is showing qualitative comparison of segmentation results between 
MitoSkel, Ilastik and MitoSegNet across different microscopes: Confocal, SIM and Airyscan. The first two columns display the original images and their cor
responding ground truth masks. The subsequent three columns illustrate the overlay between the ground truth mask and the generated segmentation masks for 
MitoSkel, Ilastik, and MitoSegNet, respectively.
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role in cellular function, accurately quantifying morphological charac
teristics is essential. To quantify key parameters of mitochondria, we 
developed an image analysis approach to extract and measure perim
eter, area, thickness, circularity, and total branch length from 
segmented images.

Perimeter and Area: The perimeter was measured as the total dis
tance around the boundary of each mitochondrial structure, while the 
area represented the total number of pixels within the contour. These 
metrics provide insight into the size and boundary complexity of the 
mitochondria. The perimeter P can be calculated using: 

P =
∑N

i=1
di (5) 

Where di is the distance between consecutive points along the contour of 
the object, and N is the total number of the points on the contour.

The area A can be defined as the sum of all pixels enclosed by the 
contour: 

A =
∑

(x,y)∈Contour

1 (6) 

Where (x, y) are the coordinates of pixels within the boundary of the 
mitochondrial structure.

Circularity: Circularity was calculated to assess the shape of the 

mitochondria, with a value closer to 1 indicating a more circular 
structure. Circularity C is calculated by: 

C =
4πA
P2 (7) 

This equation provides a measure of how close the shape is to a perfect 
circle, with C = 1 indicating a perfect circle.

Thickness: The thickness of each mitochondrial branch was evalu
ated by analyzing the skeletonized representation of the structure. The 
mean thickness was determined by averaging the width across the 
branches, providing a measure of the overall diameter of mitochondrial 
segments. The average thickness T of mitochondrial branches can be 
estimated using: 

T =
2 ×

∑M
i=1ti

M
(8) 

where ti represents the local thickness at each skeleton pixel and M is the 
total number of pixels along the skeleton.

Total Branch Length: The total branch length was calculated by 
summing the lengths of all individual branches within each mitochon
drial structure, allowing for the evaluation of network complexity and 
connectivity. More details on how we calculated the parameters are 
shown in Fig. 6.

Table 10 
Quantitative Evaluation of Segmentation Metrics Across Different Microscopy Systems:a comparison between our proposed system MitoSkel and mitochondria DL 
based segmentation systems: Ilastik and MitoSegNet.

Microscope System F1 Accuracy IoU Precision Specificity

Confocal
MitoSkel 0.761 0.951 0.629 0.866 0.987
Ilastik 0.775 0.951 0.650 0.783 0.973
MitoSegNet 0.686 0.941 0.534 0.890 0.991

SIM
MitoSkel 0.889 0.973 0.802 0.892 0.985
Ilastik 0.795 0.946 0.661 0.720 0.953
MitoSegNet 0.656 0.940 0.494 0.972 0.997

Airyscan
MitoSkel 0.776 0.973 0.635 0.810 0.988
Ilastik 0.722 0.961 0.568 0.628 0.967
MitoSegNet 0.763 0.974 0.619 0.880 0.994

Fig. 6. Schematic Representation of Morphometric Parameter Calculation.
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3.6. Benchmarking the skeletonization performance of MitoSkel

Skeletonization is a useful approach towards the quantification of 
mitochondrial properties. It transforms the complex network of mito
chondria into a simplified, skeleton-like framework from which infor
mation about branching patterns, interconnections, and spatial 
organization of mitochondria within cells can be extracted [5,34]. To 
this end, we incorporated a skeletonization tool in MitoSkel, which we 
also benchmarked against those of MitoSegNet and Ilastik. We used a 
diverse dataset comprising 40 images sourced from various cell lines and 
microscopes (see Methods and materials). Images underwent segmen
tation processing, resulting in binary masks that were subsequently 
skeletonized with the different tools. Our comparison also included a 
comparison with MINA [5], a recognized system for mitochondria 
skeletonization. We considered several metrics, including total numbers 
of branches, total lengths, and mean branch lengths.

The average branch length for the ground truth stood at 3.515 µm, 
closely aligned with MitoSkel average branch length of 3.219 µm. In 
contrast, Ilastik and MitoSegNet provided average branch lengths of 
2.507 µm and 2.002 µm respectively, both farther from the ground truth 

Fig. 7B. Interpreting the average total branches provides insights into 
the performance of each segmentation system in representing the 
branching structure of mitochondria on average across the dataset. The 
ground truth average of 238.809 branches serves as the reference point 
for our data sate. MitoSkel’s average total branches number of 207.261 
suggests a slightly lower count compared to the ground truth average. In 
contrast, Ilastik’s average total branches number of 416.952 indicates a 
tendency to overestimate the branching structure on average. Mito
SegNet’s average total branches number of 720.023 substantially de
viates from the ground truth average Fig. 7C. The analysis of the total 
length of mitochondrial branches also provides a valuable measure of 
the performance of each segmentation system. The ground truth of the 
testing data exhibited a total length of branches of 758.200 µm. MitoSkel 
achieved remarkable accuracy, with a total length of branches of 
620.485 µm. In contrast, MitoSegNet exhibits a substantial over
estimation, recording a total length of branches of 1285.660 µm. Simi
larly, Ilastik shows a moderate overestimation with a total length of 
branches of 959.256 µm, indicating that both systems tend to capture 
more of the branching structure’s length than actually present in the 
images Fig. 7A. In conclusion, the close alignment of MitoSkel analysis 

Fig. 7. MitoSkel skeletonization results and a skeletons comparison with MINA, Ilastik and MitoSegNet: A. show a comparison between MitoSkel, Ilastik and 
MitoSegNet in term of total length of the mitochondria network. B. shows a comparison between MitoSkel, Ilastik and MitoSegNet in terms of the mean branch length 
of mitochondria, C. shows a comparison between MitoSkel, Ilastik and MitoSegNet in terms of total number of branches and D. shows comparison between our 
proposed system MitoSkel and MINA skeletonization system in terms of mean branch lengths. 40 images were used in all the conditions.
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with the ground truth in total branches number and total length of 
branches as well as the average length of mitochondria underscores its 
reliability and precision. Conversely, MitoSegNet tends to overestimate, 
while Ilastik demonstrates a moderate tendency to overestimate. The 
visual comparison between the overlapped areas of the skeleton and the 
binary mask revealed a high degree of accuracy and alignment Fig. 8A. 
This indicates that MitoSkel effectively captures the essential structure 
of the original image while maintaining its topological integrity, as 
shown by the substantial overlap observed in our analyses. When 
comparing the mitochondrial skeletonization results with those from the 
MINA system, a workflow for analyzing mitochondrial morphology 
using fluorescence images or 3D stacks, we observed notable differences 
in low and high-resolution images. In cases of low-resolution imaging, 
the skeletons by MitoSkel mapped accurately onto the mitochondrial 
structures, indicating a high level of precision in segmentation Fig. 8B 
and C. Conversely, the skeletonization produced by MINA failed to align 
accurately with the underlying raw images, suggesting that the system 
may not be adequately equipped to handle lower-resolution data. Under 
conditions of high-resolution, MINA showed an improvement in the 
skeletonization results close to Mitoskel high performance of accuracy 
and alignment Fig. 8D and E. However, the comparison of the mean 
branch length between MitoSkel, MINA, and the ground truth revealed 
significant variations Fig. 7D. For a ground truth mean branch length of 
3.515 µm, Mina reported a considerably higher mean branch length of 
16.722 µm, suggesting a substantial overestimation. This is in contrast 
with MitoSkel, which with 3.219 µm was closer to the ground truth, 

indicating a relatively accurate representation of the mean branch 
length.

3.7. MitoSkel Graphical user interface

In addition to its robust segmentation capabilities, MitoSkel offers a 
user-friendly interface designed to streamline the process of mitochon
drial analysis for researchers. Its intuitive design and user-friendly fea
tures simplify the segmentation and quantification process, making it 
accessible to users with varying levels of expertise in image analysis. 
MitoSkel is versatile, handling different image sizes effectively. Users 
can select an image size closest to their input images for optimal con
venience or opt for a larger size to potentially enhance segmentation 
results. A screenshot of the graphical user interface is shown in Figs. 9 
and 10. Furthermore, MitoSkel provides a wide range of data outputs, 
catering to diverse research needs. Researchers can obtain comprehen
sive metrics such as branch lengths, thickness, circularity, area, and 
perimeter, which offer valuable insights into mitochondrial morphology 
and structure.

Additionally, detailed skeletonization results including branch 
number, lengths, and connectivity are provided, enabling researchers to 
dissect the spatial organization and complexity of mitochondrial net
works. More details are provided in the screenshots in Figs. 11 and 12 To 
facilitate data management and subsequent analysis, all these parame
ters are collated into an Excel file, ensuring ease of access and 
compatibility with common analysis tools. This comprehensive suite of 

Fig. 8. Visual comparison of skeletonization result between our proposed system MitoSkel and Mitochondria skeletonization system MINA. A. Presents 
MitoSkel skeletonization result: the first column presents the initial image, then the segmentation contours followed by the skeletonization result and finally the 
overlay between the original data and the skeleton. B. illustrate the skeleton result of MINA tool in low resolution imaging. C. present the skeleton result of MitoSkel 
in low resolution. D. shows the MINA skeletonization result in high resolution. E. displays the MitoSkel result in high resolution condition.
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Fig. 9. MitoSkel Graphical User Interface: A user-friendly interface is used to analyse mitochondria morphology. The interface provides buttons to analyse in
dividual as well as batches of images. Background subtraction, contrast enhancement, and Gaussian filters can be applied to the original image to enhance the quality 
of the segmentation results. A checkbox is provided to select the adequate image size.

Fig. 10. Output of MitoSkel Graphical User Interface. Examples of segmentation and skeletonization result are shown. Buttons for saving the histograms, seg
mentation data, and the generated skeletons excels files are available.
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features makes MitoSkel an efficient tool for mitochondrial analysis, 
allowing researchers to uncover new insights into mitochondrial 
biology.

3.8. Assessing mitochondrial morphology Changes in HeLa cells upon 
DRP1 depletion and CCCP Exposure

Next, we evaluated the segmentation and quantification of the 
properties of the mitochondrial network using samples under different 
morphological states, concretely, normal, fragmented, and elongated. 
As example of elongated mitochondria, we used HeLa cells with a 
knockout (KO) of Dynamin-related protein 1 (Drp1) Fig. 13C. Drp1 is an 
essential regulator of mitochondrial fission and its absence leads to 
elongation of mitochondria [35–37]. We used treatment of wild type 
HeLa cells with carbonyl cyanide m-chlorophenyl hydrazone (CCCP) to 
generate samples with fragmented mitochondria Fig. 13A. CCCP is a 
mitochondrial uncoupling agent that disrupts mitochondrial membrane 
potential and promotes fragmentation [38]. Untreated wild type HeLa 
cells were used as a reference sample for a “normal” mitochondrial 
network Fig. 13B.

Importantly, analysis of the images acquired for the three mito
chondrial reference states with MitoSkel allowed us to identify and 
quantify distinct morphological changes. The average branch length 
from the skeletonization results post-segmentation revealed significant 
elongation in Drp1-depleted cells with 5.952 μm, compared to 2.54 μm 
in CCCP-treated cells and 3.216 μm in the wild-type. In terms of average 
thickness, Drp1 KO cells exhibited a value of 0.1116 μm, indicative of 
slender mitochondrial profiles when compared to CCCP-treated cells at 
0.0730 μm and wild-type at 0.0920 μm. In line with this, the average 
percentage of circularity measure inversely related to the elongation of 

mitochondrion was lowest in Drp1-depleted cells (52.13 %) and wild- 
type cells (61.56 %). In contrast, CCCP-treated cells exhibited the 
highest circularity (69.43 %), reflecting a more fragmented phenotype. 
Fig. 14A-D. These quantitative results by MitoSkel accurately reflect the 
expected morphological characteristics, thereby validating the system’s 
efficacy in distinguishing and quantifying variations in mitochondrial 
structure under varying physiological states.

4. Discussion

In our study, we addressed current challenges in mitochondrial 
segmentation in the analysis of 2D images, characterized by complex 
issues such as mitochondrial overlap, variability in image acquisition, 
and the diverse morphologies exhibited by mitochondria across 
different cell lines. Prior work in mitochondrial segmentation and 
quantification has often been hampered, especially when dealing with 
the dual challenges of image noise and low resolution, by the varied 
mitochondrial morphologies observed across cell types. MitoSkel rep
resents a significant improvement in overcoming these barriers.

A cornerstone of our approach is the diversity of the image data used 
for training, which encompasses a wide range of microscopy modes and 
cell lines. This diverse dataset has been instrumental in enhancing the 
generalizability of our mode, enabling it to adeptly segment mitochon
dria across a multitude of imaging conditions and cell types.

In addition, the adoption of an advanced deep learning model, GAU- 
Net, a version of U-Net augmented with an attention thresholding 
mechanism and the integration of a Gabor layer into the original model, 
has proven critical. The Gabor filter’s effectiveness in feature detection 
across multiple scales stems from its unique ability to capture both fine 
details and broader patterns simultaneously. This property is 

Fig. 11. Excel file for Connectivity and Structural Parameters of Skeletonized Networks.
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particularly advantageous when dealing with the diverse shapes and 
structures of mitochondria, which can vary significantly in size and 
morphology across different cellular contexts. By leveraging the Gabor 
filter’s adaptability, our model can efficiently extract relevant features 
from mitochondria at various scales, enabling it to discern subtle nu
ances in mitochondrial morphology. Moreover, the integration of the 

attention thresholding mechanism adds another layer of sophistication 
to our approach. By selectively focusing the model’s attention on regions 
of interest within the image, such as mitochondria, while minimizing 
distractions from background noise, we can effectively guide the 
learning process towards key features of biological significance. We 
expect GAU-Net to prove a valuable innovation for the improvement of a 

Fig. 12. Excel file for Morphometric Analysis of Segmented Mitochondria: Perimeter, Area, Thickness, Circularity, and Total Branch Length.

Fig. 13. Mitochondrial Morphology Changes in HeLa Cells DRP1 KO and upon CCCP Exposure. A. An example of a HeLa cell treated with CCCP, displaying 
fragmented morphology. B. An example image of a wild-type cell with normal morphology. C. HeLa DRP1 KO cell exhibiting elongated mitochondrial morphology. 
Each row presents, respectively, the initial image, segmentation result, detected mask, skeleton result, and overlay of the skeleton with the initial image.
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Fig. 14. Mitochondrial Morphology Changes quantification in HeLa Cells DRP1 KO and CCCP Exposure: A. presents the Mean branch length of mitochondria 
skeletons in the three conditions: wt, cccp and drp1. B. comparison of the total length of the mitochondria network. C. displays a comparison of the circularity ratio of 
mitochondria. D. presents the thickness of mitochondria in the same condition.

Fig. 15. Mitochondrial Segmentation in High-Noise Environments: the first-row data show the initial noisy images, the three following rows present the seg
mentation result of MitoSkel, Ilastik and MitoSegNet in noisy conditions.
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diverse range of segmentation tasks from complex fluorescence micro
scopy images.

MitoSkel proficiently identifies mitochondrial areas, even in images 
that are significantly affected by noise or exhibit high levels of 
complexity. A comparative analysis with established systems such as 
MitoSegNet and Ilastik shows the improved performance of our system 
Fig. 15. This was particularly evident not only in the segmentation of 
lower quality images, but also in the skeletonization of the identified 
mitochondria, a key step in the quantitative parametrization of the 
mitochondrial network. MitoSkel does not necessitate human interven
tion or annotation prior to segmentation such as Ilastik. Moreover, our 
system not only provides segmentation results but also offers quantifi
cation of morphological shapes, reducing the time and resources 
required by biologists when analyzing mitochondrial shapes. Our system 
also addresses and resolves common constraints encountered in other 
segmentation tools, such as stringent requirements regarding image 
format or size. By enabling segmentation that conforms to the original 
dimensions of the images, our system assures enhanced accuracy and 
reliability in the results.

Evaluation of MitoSkel across different cell lines revealed subtle 
variations in performance. While MitoSkel performed equally with 
Ilastik in HeLa and U2OS cells, it was most effective in COS7 and HCT 
cells. These variations could be due to differences in staining quality, 
mitochondrial density, and cell morphology across cell lines. Specif
ically, the slightly lower accuracy observed in HeLa cells is likely due to 
the unique challenges posed by this cell line, including high mitochon
drial density and significant structural overlap. These characteristics 
make distinguishing individual mitochondria particularly difficult for 
fully automated methods like MitoSkel. By contrast, Ilastik benefits from 
manual feature-based classification, allowing for tailored adjustments 
that improve segmentation in such challenging conditions. Despite this, 
MitoSkel’s performance remains robust across a wide range of imaging 
conditions, achieving comparable results to Ilastik in confocal imaging, 
matching MitoSegNet in SIM images, and exceeding both in Airyscan 
conditions.

However, we recognize that our system is not without its limitations. 
A significant hurdle we encounter is the precise delineation of over
lapping mitochondria, especially evident in low-resolution images 
where distinguishing individual mitochondria becomes notably chal
lenging, even for the human eye. The complexity of their shapes further 
exacerbates this difficulty, leading to instances where users may struggle 
to annotate images accurately. Another limitation of our model is its 
slower training speed compared to the original U-Net. This decrease in 
performance speed is due to the integration of an additional Gabor layer 
and TAM. The Gabor layer, while beneficial for feature extraction, adds 
computational complexity which results in longer training times.

Furthermore, while our dataset includes images from multiple cell 
lines and microscopy techniques, it may not cover the full spectrum of 
experimental conditions, potentially limiting the generalizability of 
MitoSkel. Variations in staining protocols, imaging resolution, and 
mitochondrial morphology in other cell types or microscopy methods 
could impact performance. Lastly, our evaluation relied on manually 
annotated datasets, which may introduce variability in the ground truth. 
Future improvements could address these challenges by incorporating 
automated annotation methods, expanding the diversity of the training 
dataset, and optimizing the computational efficiency of MitoSkel to 
make it more accessible to researchers with limited computational 
resources.

In conclusion, we report here MitoSkel, a new AI-based platform 
with a user-friendly interface for the automatic segmentation of indi
vidual mitochondria and the quantification of their features from 2D 
fluorescence microscopy images. Our system can be applied to images 
obtained from different cell types and microscopy modes. Importantly, 
we show that MitoSkel can identify quantitative differences in the 
properties of distinct mitochondrial morphologies. By offering flexi
bility, precision, and user accessibility, MitoSkel system offers a useful 

tool for researchers in cell biology and related disciplines, driving for
ward our understanding of mitochondrial dynamics and functionality.

5. Materials and methods

5.1. Dataset preparation and pre-processing

The ground truth annotations were created by a collaborative team 
comprising a biologist and two informaticians, employing the “Labelkit” 
AI tool for image annotation. This process involved manually annotating 
a portion of the image, followed by using Labelkit to generate the initial 
mask, with subsequent manual corrections to address any missing or 
inaccurate annotations. The training dataset for the GAU-Net model 
comprised 102 images, including 12 U2OS images captured with SIM, 
67 U2OS confocal images, and 23 confocal images of HeLa cells. These 
images were divided into 512x512 patches and augmented using five 
modifications, resulting in a total of 1470 images. For the testing phase, 
we utilized 30 U2OS (confocal and SIM) images and 6 HeLa (confocal) 
images, which were also cropped into 512x512 patches and augmented 
similarly to the training dataset.

Cell-lines testing dataset: To assess the system’s efficiency across 
different cell lines, we employed 8 images from each cell lines: U2OS, 
HCT, COS7, and HeLa cells, augmenting them accordingly to have 40 
images per cell condition.

Microscopy testing dataset: To evaluate the proposed system under 
different microscopy imaging conditions, we utilized 8 images of U2OS 
cells (SIM), 8 images of primary LF cells (Airyscan), and 8 images of 
HeLa cells (confocal). All the images were augmented.

Skeleton testing dataset: To test the skeletonization performance, we 
used 40 images from different cell lines and conditions.

The ground truth of all the training and testing dataset were manu
ally labelled using LabelKit as describing previously.

All data augmentation applied included rotations, horizontal and 
vertical flips, as well as scaling transformations to enhance variability 
and improve the model’s generalization capabilities.

5.2. Cell culture

HeLa cells stably expressing Tom20-mEGFP, COS-7, and LF cells 
were cultured in DMEM[39] (4.5 g/L D-Glucose, Sodium Pyruvate, 
GlutaMAX; Gibco, Cat# 10569010). HCT cells were cultured in modified 
McCoy‘s 5A (GlutaMAX; Gibco, Cat# 36600021). U2OS cells were 
cultured in DMEM (1 g/L D-Glucose, Sodium Pyruvate, GlutaMAX; 
Gibco, Cat# 10567014). Media for all cell lines were supplemented with 
10 % (vol/vol) heat-inactivated FBS (Bio&SELL, FBS Superior stabil) and 
1 % antibiotics (penicillin–streptomycin, Bio&SELL). Cells were 
cultured at 37 ◦C, and 5 % CO2 under humidified conditions. Generally, 
cells were passaged at subconfluency every two to three days. Only cells 
under passage 20 were used for experiments. Monthly mycoplasma tests 
were conducted to rule out contamination.

5.3. Fluorescent Labelling of mitochondria for microscopy

For COS7 and U2OS cells, 35 mm µ-dishes (Ibidi) were coated 
overnight at 4 ◦C using 400 µL poly-l-lysine solution (0.1 mg/mL, Cul
trex). On the following morning, dishes were washed three times with 
sterile, double-distilled water (Milli-Q), and allowed to dry at room 
temperature (RT). Cells were seeded at a density of 2e5 cells per dish in 
complete culture medium (CCM). After 18 h of incubation at 37 ◦C, 5 % 
CO2 under humidifed conditions, media was replaced with fresh CCM 
and MitoTracker Deep Red FM (Invitrogen) was added to a final con
centration of 100 nM. Following 25 min of staining at 37 ◦C, cells were 
washed two times with pre-warmed CCM, and, finally, incubated for one 
hour in fresh CCM to allow diffusion of the dye. HCT cells were seeded 
into a removable 8-well chamber (Ibidi, Cat#80841) on a custom made 
25 x 75 mm2 no. 1.5H cover slip (knittelGLASSS, Cat#CG000001) with 
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a density of 2e4 cells per well. After two days, cells were stained with 
100 nM MitoTracker Deep Red FM in fresh CCM for 10 min at 37 ◦C. 
Subsequently, cells were washed with CCM three times for 5 min at 
37 ◦C.

LF cells were seeded, one day prior to staining, at a density of 1e5 
cells per well onto coverslips of 15 mm diameter in a 12-well plate. 
Mitochondria were labelled using 100 nM MitoTracker Orange for 20 
min at 37 ◦C. Afterwards, cells were washed twice with pre-warmed 
CCM. To allow diffusion of the dye, cells were incubated for one hour 
at 37 ◦C, 5 % CO2, under humidified conditions in fresh CCM. Finally, 
cells were fixed using 4 % para-formaldehyde (PFA), washed three times 
in PBS, and mounted on a glass slide using ProLong Gold Antifade 
mounting medium (Invitrogen).

HeLa Tom20-mEGFP cells were seeded at a density of 5e4 cells per 
well into a 8-well chambe µ-slide. Mitochondria were labelled using 150 
nM MitoTracker Deep Red FM for 25 min at 37 ◦C. After washing three 
times with pre-warmed CCM, cells were incubated with fresh CCM for 
30 min at 37 ◦C. To induce mitochondrial fragmentation, cells were 
treated with CCCP at a final concentration of 10 µM for 20 min at 37 ◦C. 
Following this incubation period, the CCCP-containing medium is 
aspirated, and the cells were fixed with 3.7 % PFA in CCM for 8 min at 
RT. Finally, cells were washed three times with PBS.

5.4. Microscopes and imaging parameters

COS7 live cell imaging was performed at 37 ◦C and 5 % CO2 on a 
Leica TCS SP8 gSTED 3x microscope (Leica Microsystems) equipped 
with a HC PL APO CS2 63x/1.40 OIL objective (Leica Microsystems). 
MitoTracker Deep Red FM was excited using the 633 nm white light 
laser line. Fluorescence emission light was collected using the HyD de
tector with filters passing light between 648 nm and 689 nm. Images 
were bidirectionally scanned at 600 Hz speed. Pixel size was set to 0.015 
µm. Lines were averaged a total of eight times. HCT and HeLa Tom20- 
mEGFP imaging was performed on the Abberior INFINITY Line 
employing an IX83 inverse microscope (Olympus) equipped with a 
UplanXApo 60x/1.42 Oil ∞/0.17/OFN26.5 objective (Olympus). De
tector wavelength window was set to 600 nm to 750 nm, 633 nm laser 
line, dwell time to 5 µ s and pixel size to 500 nm.

LF cells were acquired using a LSM 980 Airyscan 2 (ZEISS) inverse 
confocal laserscanning microscope equipped with a Plan-Apochromat 
63x/1.40 Oil DIC M27 (ZEISS) objective. The 561 nm laser line was 
used for excitation, a 488/561 beam splitter employed, and emitted light 
detected using the GaAsP-PMT with the wavelength window set to 300 
nm − 735 nm. Scanned lines were averaged four times. Acquired images 
were processed using the superresolution processing module in Zen Blue 
3.5).

U2OS cells were acquired using a ZEISS Elyra 7 microscope equipped 
with a Plan-Apochromat 63x/1.4 Oil DIC M27 (ZEISS) objective. The 
following parameters were used: 647 nm laser, camera exposure time of 
50 ms, an LBF 405/488/561/742 beam splitter, and a 640 longpass 
filter. SIM reconstruction was performed with Zeiss Zen Black software.

5.5. Training and inference

To train our GAU-Net model, we employed the Adam optimizer with 
a learning rate of 0.0001, ensuring stable convergence while preventing 
gradient explosion. The training process was limited to 200 epochs, with 
early stopping implemented to mitigate overfitting. We utilized binary 
cross-entropy as the loss function, which effectively optimizes pixel-wise 
segmentation tasks. A batch size of 16 was chosen to balance compu
tational efficiency and model generalization. To further enhance sta
bility and learning efficiency, batch normalization was applied after 
each convolutional layer, which helps normalize activations and accel
erate convergence. Additionally, model checkpointing was used to save 
the best-performing model based on validation loss, ensuring optimal 
model selection for inference. These training strategies contributed to 

the robustness and effectiveness of GAU-Net in handling complex seg
mentation tasks across diverse imaging conditions.

5.6. Evaluation metrics

The quality and performance of the segmentation results obtained 
from the MitoSkel neural network architecture were evaluated with 
segmentation metrics, such as F1 Score, Accuracy, Dice coefficient, 
Precision, Specificity, and Jaccard Index (Intersection over Union). 
These metrics provide quantitative measures to assess the accuracy, 
precision, and overall effectiveness of the segmentation process, thus 
allowing a comprehensive analysis of the model performance[16–18].

Accuracy: This measures the proportion of correctly identified pixels 
(both true positives and true negatives) in the image. 

Accuracy =
TP + TN

TP + TN + FP + FN
(9) 

Where TP = True Positives, TN = True Negatives, FP = False Positives, 
FN = False Negatives.

F1 Score: This is the harmonic mean of precision and recall, 
providing a balance between them. 

F1Score = 2
Precision.Recall

Precision + Recall
(10) 

Where Precision = TP
TP+FP andRecall = TP

TP+FN
IoU (Intersection over Union) Score: Also known as the Jaccard 

Index, this metric measures the overlap between the predicted seg
mentation and the ground truth. 

IoU =
TP

TP + FP + FN
(11) 

Specificity: This measures the proportion of actual negatives that are 
correctly identified (i.e., the ability of the model to identify true nega
tives).

Specificity =
TN

TN + FP
(12) 

Precision: Also known as Positive Predictive Value, this assesses the 
proportion of positive identifications that were actually correct. 

Precision =
TP

TP + FP
(13) 

Mean Absolute Error (MAE): In the context of image segmentation, MAE 
measures the average magnitude of errors between the segmented image 
and the ground truth, pixel by pixel. 

MAE =
1
N

∑N

i=1
|yi − ŷi| (14) 

Where yi is the true value, ŷi is the predicted value, and N is the total 
number of pixels.
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