Automated Dynamic Al Inference Scaling on
HPC-Infrastructure: Integrating Kubernetes, Slurm and vLLM

Tim Trappen
Ruhr University Bochum
Bochum, Germany
tim.trappen @ruhr-uni-bochum.de

Viktor Achter
University of Cologne
Cologne, Germany
achter @uni-koeln.de

Abstract

Due to rising demands for Artificial Inteligence (Al) inference, espe-
cially in higher education, novel solutions utilising existing infras-
tructure are emerging. The utilisation of High-Performance Comput-
ing (HPC) has become a prevalent approach for the implementation
of such solutions. However, the classical operating model of HPC
does not adapt well to the requirements of synchronous, user-facing
dynamic Al application workloads. In this paper, we propose our so-
lution that serves LLMs by integrating vLLM, Slurm and Kubernetes
on the supercomputer RAMSES. The initial benchmark indicates that
the proposed architecture scales efficiently for 100, 500 and 1000
concurrent requests, incurring only an overhead of approximately
500 ms in terms of end-to-end latency.

Keywords
Inference, High-Performance Computing, Large Language Model

ACM Reference Format:

Tim Trappen, Robert KeBler, Roland Pabel, Viktor Achter, and Stefan Wes-
ner. 2025. Automated Dynamic Al Inference Scaling on HPC-Infrastructure:
Integrating Kubernetes, Slurm and vLLM. In Proceedings of Next-Gen Mid-
dleware for MLOps in Distributed Systems (MIND ’25). ACM, New York,
NY, USA, 6 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction

Artificial Intelligence (Al), and in particular Large Language Mod-
els (LLMs), have become an integral factor in numerous areas of our
lives. For instance, the use of LLMs in an university setting involves
a wide range of user groups, including students, researchers, and
even the administration. Students benefit from personalized edu-
cation pathways, are provided with dynamic learning content and
feedback, and thus can self-regulate their individual progress [2, 14].
The use of chatbots within e-learning platforms, such as MoodleBot,
provides students with a personal tutor who is available 24/7, thereby

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

MIND °25, Nashville, TN, USA

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxX-xxxX-X/YYYY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Robert KeBler
University of Cologne
Cologne, Germany
kessler@uni-koeln.de

Roland Pabel
University of Cologne
Cologne, Germany
pabel @uni-koeln.de

Stefan Wesner
University of Cologne
Cologne, Germany
wesner @uni-koeln.de

reducing the administrative workload for teachers [15, 18]. Scien-
tists are already making use of the increasingly powerful LLMs for
their research work in various domains such as drug discovery or
partial differential equations, where the requests range from simple
literature search and summary to concept clarification, data analysis
and methodology guidance [1]. However, the potential of LLMs
goes way beyond this, meaning that in the future they could serve
as a kind of Al research assistant, as envisaged by the AuroraGPT !
project [5]. Even the administrative offices are increasingly using Al
tools, for example to support the enrollment process or to provide
better assistance with scholarship applications [12].

For higher education institutions, compliance and data gover-
nance pose the greatest challenges when adopting to Al This creates
the need for independent and sovereign Al infrastructure which
provides easy to use and privacy preservering access to models.
Universities that operate their own data centers are predestined to
offer such services themselves, as they tend to possess the necessary
computing power and can also guarantee the data privacy aspects.
The computing systems operated by higher education institutions
are often High-Performance Computing (HPC) systems, also known
as supercomputers, which are used by scientists from a wide range
of scientific disciplines to solve highly complex research problems
and perform simulations, but tend to be underutilized [11]. However,
the operating model of HPC systems is based on static allocation of
computing resources, which is suitable for training LLMs but is not
an inherent match for processing dynamic LLM inference requests
[16]. To overcome this discrepancy, one can either (i) implement
dynamic resource allocation in HPC systems from scratch, which
requires at least adjustments at the level of the resource manager and
programming models [20], or (ii) implement a scalable web API,
that handles the dynamic management of HPC jobs and forwards the
inference requests accordingly. Due to the manifold modifications
required for approach (i), this comprehensive implementation is very
sophisticated, whereas approach (ii) offers an implementation us-
ing micro-service architecture, which can be deployed in a scalable
manner using e.g. Kubernetes.

The remainder of this paper is structured as follows, in section 2
we present and discuss challenges and other approaches to solve
the problem of serving dynamic Al inference workloads on HPC
infrastructure. In section 3 we describe our own approach, evaluate
its performance in section 4 and discuss eventual threats to validity

Uhttps://www.anl.gov/cels/auroragpt-foundation-models-for-science

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://www.anl.gov/cels/auroragpt-foundation-models-for-science

MIND 25, December 15-19, 2025, Nashville, TN, USA

in section 5. We conclude our paper with an outlook on the future
work in section 6.

2 Related Work

As HPC and Al converge, this is reflected, for example, in the mas-
sive investments of the European Union (EU) in so-called Al Fac-
tories®, which are intended to drive forward the development of
trustworthy generative Al models in Europe. But also on a smaller
scale, existing HPC infrastructures at higher education institutions
are being used to run Al projects such as Open Source-KLnrw 3.
This poses a certain contradiction, as Al environments are usually
based on dynamic cloud-native solutions, whereas HPC systems
are operated using batch processing and static resource allocation.
Specifically, HPC systems are not inherently designed to support
interactive applications, which is why Lopez et al. propose to rely
on a sovereign dual-stack architecture for future systems, in order
to combine the best of both worlds [16]. HPC systems have always
been performance-sensitive, yet with the advent of Al workloads, it
is becoming critical for cloud computing as well. In order to ensure
sustainable performance of HPC systems, especially in the exas-
cale era, accelerators such as Graphics Processing Units (GPUs)
are essential, which in turn are also required for Al. The approach
proposed by Hoefler et al., aims on the advatages of the HPC-Cloud
convergence, by providing a simple and fast access to accelerators
with their Acceleration as a Service (XaaS) model [10]. In turn, Al
itself can be used in the HPC domain to efficiently generate high-
performant parallel code, which subsequently improves not only
conventional HPC applications but also the models themselves [6].

This kind of convergence does also pose certain challenges, in-
cluding not only performance but also sustainability and scalability
factors. Resch et al. therefore suggests that, in addition to the tra-
ditional TOP500 list of supercomputers, future evaluations should
also focus specifically on Al workloads, emphasizing the time to
deliver a solution or the complexity of finding a solution rather than
pure Floating Point Operations Per Second (FLOPS) [19]. In order
to overcome the challenges associated with realizing Al-coupled
HPC workflows, the development of new middleware solutions is
required to accommodate various execution motifs such as dynamic
orchestration, multistage pipeline, and adaptive training [4].

To provide Al inference on a system, a variety of services must
be operated and linked with each other, e.g., a user registry, service
registry, and service identifier components, but also the support of
scheduling and scaling functions. Guran et al. present a middleware
solution that considers this and serves as a LLM gateway, but is
lacking support for HPC environments [9]. The FLEXI project at
FernUniversidt in Hagen implements on-premise hosting of open-
source LLMs in an higher-education environment but also lacks
support for HPC systems [22]. This shortcoming has been addressed
by Luiz et al., who have developed a solution that implements a
scalable microservice-based master-slave architecture that serves
heterogeneous LLM models on HPC infrastructure leveraging the
Slurm workload manager [17]. A similar implementation is offered
by Chat Al, which operates its chat front-end as a web service in the
Cloud , and then forwards the corresponding LLM requests via an

2https://digital— strategy.ec.europa.eu/en/policies/ai-factories
3https://www.oski.nrw

Trappen et al.

API gateway to the respective model on the HPC infrastructure for
being processed [7].

Despite all these efforts, resource and workflow managers still
show a lack of support for the openness, transparency, and reusabil-
ity of such workflows on HPC systems, meaning that the inherent
dynamicity in such systems needs to be further fostered [8]. Further-
more, although attempts have been made to implement Al inference
on HPC systems, there is a lack of systematic performance studies

[3].

3 Architecture

Our approach separates various microservices into two layers, as
illustrated in Figure 1. The first layer consists of (i) a Kubernetes-
based web API that forwards inference requests from users to the
corresponding models in the backend and manages the lifecycle
of resources / models. The second layer consists of (ii) the LLM
models themselves which are encapsulated into Slurm jobs.

(i) Kubernetes 4 (i) HPC Node

Slurm Job
VLLM A

Slurm Job

Application A
)
PostgreSQL vLLM B

Figure 1: Visualization of the flow between layers for an incom-
ing inference request.

To orchestrate the containers required for the services of our web
APIL, we use Kubernetes* to automatically schedule, manage and
scale the deployments. For the underlying container runtime we use
Apptainer’, since it is specifically designed for HPC environments.
As resource manager for the allocation and deployment of the HPC
nodes running the LLM endpoints, we use Slurm®, as this is the de
facto standard in this domain.

Central to almost all of the microservices is a single relational
PostgreSQL database running in Kubernetes. It holds two domains
(): (a) authentication and (b) Slurm job management, as visualized
in Figure 2. Authentication consists of a simple 1:N relation of
identity_tenants and their APl keys identity_tenant_
authentications, which are stored in an encrypted format.
Slurm job management consists of multiple 1:N relations, which
have proven to provide consistency in an actual production scenario.

3.1 Inference Components

3.1.1 VvLLM. Offering heterogeneous LLM serving and inference
in a high-throughput scenario requires a fully scalable inference
engine, such as the open-source software vLLMS. One of its major
advantages is the introduction of PagedAttention, which splits the
Key-Value Cache (KVC) into blocks and assigns them to logical

“https://kubernetes.io
5hnps://applainer.org
Shttps://slurm.schedmd.com
7https://www.postgresql.org
8htps://github.com/vlim-project/viim

https://digital-strategy.ec.europa.eu/en/policies/ai-factories
https://www.oski.nrw
https://kubernetes.io
https://apptainer.org
https://slurm.schedmd.com
https://www.postgresql.org
https://github.com/vllm-project/vllm

Automated Dynamic Al Inference Scaling on HPC-Infrastructure

W o

[idenliIyitenantiauthemicati(ms] [aiJm)deliconﬁgurali()m]

ai_model_endpoint_jobs

ai_model_endpoints

Figure 2: Visualization of the central database schema.

pages allowing for dynamic scaling of allocated GPU memory [13].
This mapping is handled via block tables, managed by a central KV
cache manager. In doing so, blocks may be reused in single- and
shared across multiple requests, leading to significant performance
gains in scenarios where single prompts consist of long inputs, or a
large amount of requests need to be served simultaneously. This also
allows for models with weight sizes exceeding the memory capacity
of a single GPU to run efficiently across multiple GPUs. vLLM
implements an OpenAl-standard compatible FastAPI frontend for
serving requests. If the number of requests received exceeds the
system’s concurrent throughput capabilities, a first-come, first-served
scheduling policy is employed for all incoming requests.

3.1.2 Web Gateway. The flow of a single request from a user’s
application through the Web Gateway to the desired vLLM endpoint
running inside a Slurm job is visualized in Figure 1. The system’s pri-
mary entry point for client applications is the Web Gateway, which is
responsible for authentication and the subsequent forwarding of in-
coming requests. Its API endpoints are OpenAl-standard compatible,
making them agnostic to the consuming client application. Request
properties are strongly typed and validated, adding an additional
layer of robustness. Authentication is handled via long-lived bearer-
tokens, stored in an encrypted format in the database and authenti-
cated on each request. To minimise database load, a distributed mem-
ory cache stores recently authenticated API keys for a limited period.
Subsequent to the authentication and validation process (1), the Web
Gateway conducts a search for available endpoints corresponding
to the requested LLM within the ai_model_endpoints table
(2). It then forwards the request - along with all request parameters
- to a matching node (3). The response flows from vLLM back to
the Web Gateway (4) and then to the requesting application (5). If
no matching vLLM endpoint ready for inference is found, custom
HTTP status codes are returned.

3.2 Management Components

Figure 3 visualizes the flow between microservices and layers de-
scribed in the following subsections, which are ordered in the way
the components interact with each other, starting from the Job
Worker.

3.2.1 Job Worker. The Job Worker functions as an intermedi-
ary between our Kubernetes-based microservices and the Slurm-
managed HPC infrastructure. It is implemented as a long-running
background process, responsible for scheduling new vLLM instances
via Slurm and removing expired jobs. Each run, it compares the
entries in the ai_model_endpoint_jobs table with the con-
figurations specified in the ai_model_configurations table,
for example number of requested model instances. If no matching

MIND '25, December 15—19, 2025, Nashville, TN, USA

(Kubernetes \

(, PostgreSQL j

HPC Node A \

Slurm Job

VLLM A

1
Job Worker
Slurm Job
Slurm Submit VvLLM B —
Endpoint
Gateway HPC Node B
Slurm Job
vLLM C
Endpoint
v Worker] Slurm Job
Metrics vLLM D
Gateway
- J)

Figure 3: Visualization of the flow between layer for Slurm and
vLLM management.

endpoint job is found, configuration parameters are passed to the
Slurm Submit, which requests ressourcess for a job with the corre-
sponding model. On success, an ai_model_endpoint_jobs
entry is created, containing information such as the Slurm job id,
timestamps for job submission, job registration and readiness of
the contained VLLM server. To prevent simultaneous submission
and subsequent startup of jobs, which could lead to inconsistent
port mappings on compute-nodes, model configurations are iterated
synchronously. The Job Worker waits for a specified timespan after
a successful submit before proceeding to the next configuration.

3.2.2 Slurm Submit. Slurm Submit is the service handling com-
munication between the Job Worker and Slurm. It accepts a string
from an SSH connection, which is forwarded to a bash script that
actually deploys the job. A dedicated munged process inside the
container provides authentication for the Slurm components. The
comma-delimited parameters from the string are parsed and used
to select a model-specific . s1urm file from a folder mounted into
the container, that in turn is used to run Slurm’s sbatch. The file
holds #SBATCH directives specifying hardware requirements of the
requested node(s), among others. In addition, it sets environment
variables for the vVLLM container and configures a curl request to
the Endpoint Gateway. For multi-node multi-GPU setups, required
for very large models, it also contains logic for setting up head and
worker nodes.

3.2.3 Endpoint Gateway. Upon successful submission of a Slurm
job, a curl POST is initiated from the Slurm script to the API of the
Endpoint Gateway. It contains the endpoint job id, Slurm job id,
node id, model version, capabilities and bearer token for the vLLM
server that is being spawned. Authentication with the Endpoint Gate-
way is facilitated by a bearer token that is passed to the script. The
underlying business logic proceeds to check if the internal job id
holds a corresponding job in ai_model_endpoint_jobs that
has no endpoint attached. If that is the case, it compares the ports of
all already existing endpoints on the supplied node and assigns a port
p = argmax(port) + 1, which is passed back to the Slurm script in

MIND 25, December 15-19, 2025, Nashville, TN, USA

the curl response to be used by the vLLM server. Finally, a new entry
is created in ai_model_endpoints, holding information such
as node, port, model version, bearer token and a nullable datetime
field indicating readiness of the endpoint, which at that time is null.

3.2.4 Endpoint Worker. The Endpoint Worker is another long-
running background service, responsible for managing endpoint
health status. Each run, it iterates over all entries in the ai_model
_endpoint_jobs table and sends a GET request to the /health
endpoint of each job, which is provided by the vLLM server. End-
point jobs not yet marked as ready but receive a response status-
code 200 are updated accordingly by setting their corresponding
fields to the current datetime. Once marked ready, the endpoint
will be considered for forwarding requests by the Web Gateway.
In cases where no response is returned, the Endpoint Worker dif-
ferentiates two cases: (1) jobs that have been canceled or expired
and (2) jobs that are still starting up. Since loading model weights
can require a substantial amount of time, a configurable 30-minute
timeout is currently implemented before a job is deemed cancelled
or expired. Moving forward, this could be dynamically configured
with an additional estimated load time on a per-model basis via the
ai_model_configurations table. For cancelled or expired
jobs, the Endpoint Worker removes the corresponding entries in
ai_model_endpoints and ai_model_endpoint_jobs.

3.2.5 Metrics Gateway. The Metrics Gateway serves API end-
points for Prometheus, a time-series database, and Grafana, an open-
source observability platform. The Prometheus endpoint returns a
response with the required format for Prometheus” HTTP service
discovery, which allows for dynamic (de-)registration of targets for
metrics scraping. By accessing the ai_model_endpoints table,
it converts necessary information like node id, port and bearer token
of all running vLLM instances to the specified Prometheus template
and allows for additional meta fields to be added, such as job id and
Slurm job id. While metrics of our Kubernetes based microservices
can be conveniently scraped with Prometheus Operator, obtaining
metrics from the vLLM instances requires this workaround, as they
are not part of the Kubernetes cluster and may change network
adresses over time. The Grafana endpoints, in contrast, accept vari-
ous POST request parameters, which are used to control the amount
and type of running model instances.

3.3 Observability & Automated Dynamic Scaling

In addition to the fundamental inference and management compo-
nents, an observability stack is utilized, comprising Prometheus,
Grafana and Grafana Loki to facilitate visualisation, reporting and
logging. This allows for real-time monitoring of critical metrics, such
as the vVLLM instance load or concurrent Web Gateway requests,
hence providing insight into how frequently certain models are ac-
cessed. In combination with live logging, it provides the capability
to efficiently identify and resolve issues almost instantaneously.
This stack also comprises the central part of the mechanism to dy-
namically scale up or down vVLLM model instances inside Slurm jobs,
based on GPU load. Utilizing Grafanas alert rules with its contact
point webhook notifications, custom JSON payloads are automati-
cally sent to the metrics gateway. Here, the business logic adjusts
the number of model instances specified in the ai_model_job

Trappen et al.

_configurations table. This triggers the Job Worker to auto-
matically start the newly requested number of instances on its next
invocation, currently every 15 seconds. Hence, the system scales
by actual hardware load, since VLLM reports metrics like KVC
utilization, queue times and token throughput. In our first tests, we
utilized the VLLM queue time metric, where a queue time above
5 seconds over 30 sustained seconds triggered instantiation of an
additional model instance (see subsection 4.2 for further explana-
tion). Compared to scaling by number of requests, which in the
context of LLMs is an arbitrary metric on its own given the lack of
uniformity of the requests [21], for example input token count or
hyperparameters like maximum generated tokens, this setup allows
for maximizing GPU load and thus token throughput. In our first
tests, we utilized the vVLLM queue time metric, where a queue time
above 5 seconds over 30 sustained seconds triggers instantiation of
an additional model instance (c.f. subsection 4.2).

4 Performance Evaluation
4.1 Methodology

In this section, we provide preliminary performance results for
our system via the serve-benchmark in VLLM using the Burst-
GPT_without_fails_2 dataset [21].

We benchmark two system configurations: (1) GPU-S, which uti-
lizes two NVIDIA L40S GPUs with an AMD EPYC 9654 CPU, and
(2) GPU-L, which uses one NVIDIA H100 GPU and an AMD EPYC
9454 CPU. All configurations utilize 96GB RAM. Networking is
based on Mellanox Infiniband HDR100 (100GBit/s), with two ports
for redundancy on Kubernetes nodes and one port on compute nodes.
The topology consists of 8 leaf-switches linked to 2 spine-switches
via 5 HDR (200GBit/s) links each, resulting in a bisection bandwidth
of 8000 Gb/s. The maximum blocking factor is 2.3:1.

For our baseline model, we use Mistral Small 3.2 24B Instruct
2506° with default parameters. The load is simulated and averaged
over 50 runs for three scenarios: 100, 500 and 1000 concurrent re-
quests. All runs are performed from a dedicated interactive node
inside the HPC cluster, using the same vLLM container image run-
ning inside the Slurm jobs used for inference serving (v0.10.2). The
seed is set to 0, to ensure that every benchmark run uses the same
samples from the dataset. The vVLLM node is not restarted or mod-
ified between runs; however, between each run, the KVC is fully
cleared. All requests are handled using streaming.

In addition to the baseline benchmark, the system is also bench-
marked including the Web Gateway. Before starting a full run, the
vLLM serve-benchmark sends one initial request to the specified
target, which triggers the caching of the authentication in the Web
Gateway, causing it to only perform one database trip for each in-
coming request to look up the vLLM node endpoint.

4.2 Results

Results for the GPU-S and GPU-L configurations are shown in Ta-
ble 1. The vLLM benchmark suite defines time to first token (TTFT)
as a timespan between sending the request and receiving the cor-
responding first token. Similarly, end to end latency (E2EL) is a

9Mistral Small 3.2 24B Instruct 2506 on HuggingFace

https://huggingface.co/mistralai/Mistral-Small-3.2-24B-Instruct-2506

Automated Dynamic Al Inference Scaling on HPC-Infrastructure

MIND '25, December 15—19, 2025, Nashville, TN, USA

Table 1: GPU-S and GPU-L configuration performance benchmarks for concurrent vLLM and Web Gateway requests.

Configuration GPU-S GPU-L

Benchmark vLLM Node Web Gateway vLLM Node Web Gateway

Concurrent Requests 100 500 1000 100 500 1000 ‘ 100 500 1000 100 500 1000
E2EL Median (ms) 2307.96 7381.58 22385.04 2186.39 6331.33 22963.34 1195.80 3029.86 6190.10 1149.93 3076.11 9419.23
E2EL Std (ms) 5215.32 9316.33 20958.25 5151.45 9148.52 19999.29 2940.16 4984.30 8206.37 2981.23 4994.50 8465.61
Requests Total Duration (s) 30.01 48.02 84.76 30.03 46.95 79.75 17.20 25.94 34.81 17.31 26.28 37.25
Requests Total Input Tokens 77561.00 381456.00 768960.00 77561.00 381456.00 768960.00 | 77561.00 381456.00 768960.00 77561.00 381456.00 768960.00
Requests Total Output Tokens 7048.98 49763.68 141407.84 6976.34 49567.64 141313.34 | 6978.78 50126.12 142778.08 7027.58 49955.58 142664.64
TPOT Median (ms) 65.52 90.61 102.13 63.33 79.20 94.97 33.41 67.21 86.74 3249 42.20 49.05
TPOT Std (ms) 6.36 13.07 18.00 5.52 6.92 10.50 2.34 12.19 29.23 2.08 3.16 5.58
TTFT Median (ms) 404.38 1849.79 8328.36 334.79 2412.93 6825.14 225.58 993.91 2190.97 207.35 1133.02 3109.98
TTFT Std (ms) 37.59 1477.46 12460.81 146.29 1950.86 13191.81 14.34 87.98 189.22 62,97 841.35 3642.25
Throughput Requests (req/s) 3.33 10.54 11.83 3.33 10.77 12.56 5.82 19.52 28.87 5.79 19.31 26.95
Throughput Token Output (tok/s) | 234.91 1048.13 1672.62 232.51 1066.95 1775.28 405.79 1956.22 4121.70 406.30 1928.61 3844.97
Throughput Token Total (tok/s) 2820.34 9088.70 10768.98 2818.61 9282.65 11435.67 4916.07 16849.58 26322.19 4893.63 16664.20 24569.65

timespan between sending the request and receiving the correspond-
ing last token. Therefore time per output token (TPOT) is defined
as:

e2el — ttft

= - 1
output_len—-1 M

tpot

Unintuitively, for GPU-S, total request duration and TPOT favors
the Web Gateway setup, albeit with slightly increased E2EL in 100
and 1000 concurrent request scenarios. The 500 concurrent request
scenario stands out particularly for TTFT, where sending requests to
vLLM directly is noticeably faster by about 500ms (23.34%). GPU-L,
in contrast, behaves more as expected, displaying slightly higher to-
tal request durations across all Web Gateway scenarios, with a higher
E2EL and TTFT from 500 concurrent requests upward. Curiously,
TPOT is significantly lower in these cases (37.21% / 43.45%). The
reasons for this will need to be investigated in a more detailed system
analysis in the future. Inspecting the vLLM logs, the GPU-S configu-
ration starts queuing requests from 255 concurrent requests onward,
while the GPU-L configuration does not appear to queue requests
in any of our scenarios. While this could be an indicator for queue-
ing impacting general performance, especially when done across
multiple GPUs, it also leads to the assumption that once queueing
has started, the slight latency introduced by the Web Gateway could
buffer the impact of load put on the vLLM api server, ‘masking’ the
queuing process. When compared to GPU-L (where no queueing
occurs), we observe higher E2EL and TTFT as expected. However,
at 500 and 1000 concurrent requests, MD and Std for TTFT deviates
massively for the Web Gateway when compared to direct vVLLM
node access, with a nearly 1 second (41.95%) slower median TTFT.

This suggests that our current implementation of routing requests
via the Web Gateway starts to bottleneck in scenarios where enough
GPU compute is present to handle the incoming load.

5 Discussion

The presented architecture is still considered a work in progress, and
this paper does not claim to represent best practices. Its purpose is to
provide a starting point for other infrastructure projects, highlighting
where the chosen implementation has succeeded, where it faced
problems, and where it currently falls short.

From early friendly user tests with small groups that use vari-
ous applications to access our Web Gateway, such as KI:Connect'?

l0https://kicomlect.pages.rwth— aachen.de/pages/

or Open WebUI!!, we are confident that the foundation of our ar-
chitecture - scaling LLM serving for synchronous applications in
an HPC environment - is sound. Management of vLLM instances
in Slurm jobs has run successfully in this small-scale production
setting for multiple months, across a variety of tested models, cov-
ering single-node single-GPU, single-node multi-GPU, and even
multi-node multi-GPU configurations.

Our benchmarks show that when scaling beyond a 1000 concur-
rent request scenario, improvements must be made to our benchmark
setup and/or the Web Gateway. The increase in TTFT degrades
end-user experience, signaling a longer wait time between the user
sending a prompt and the model starting to return a response. How-
ever, TPOT remains consistent, which translates to smooth streaming
and therefore ‘typing’-animation for chatbot applications. We iden-
tify several key areas that require further investigation to solve the
arising bottleneck:

Networking: since we run the vVLLM benchmark suite from
within a compute-node of the HPC system, high concurrency sce-
narios might be impacted by networking components, favoring a
direct request from compute-node to compute-node. Alternatively,
improper request handling in the Web Gateway may contribute.

Caching: as every request performs a database lookup for a match-
ing model endpoint, implementing a caching mechanism could re-
duce database load and speed up request handling.

Scaling: horizontal or vertical scaling of either the Web Gateway
or PostgreSQL via Kubernetes could improve performance.

Despite these necessary improvements, institutional provisioning
of LLMs on sovereign infrastructure provides clear data privacy ben-
efits, especially when handling sensitive data. However, preventing
LLM-based attack vectors like prompt injections requires trained
experts and domain specific knowledge, which must be seen as
additional cost for said privacy benefits.

6 Conclusion & Outlook

In this work, we presented our approach to building a production-
ready, modular architecture for highly scalable serving of LLM
inference in an HPC context. By leveraging HPC-native components
like Slurm and Apptainer, managed by custom tailored microservices
and integrating them with cloud-native solutions for orchestration
and observability like Kubernetes, Prometheus and Grafana, we
implemented a robust solution to deploy and scale LLMs using

Mhttps://openwebui.com

https://kiconnect.pages.rwth-aachen.de/pages/
https://openwebui.com

MIND 25, December 15-19, 2025, Nashville, TN, USA

the open-source inference engine vLLM. In addition, we shared
performance benchmarks for two distinct compute-node hardware
configurations under different load scenarios, showcasing the via-
bility of HPC infrastructure for synchronous workloads like web
requests from Al chatbot applications. As our architecture represents
a work in progress, our next steps will be directed toward a high-
troughput production scenario in a higher education setting. Given
the scarcity of usage data for this application, we hope to attain
a better understanding of how far sovereign infrastructure for Al
applications needs to scale. We will also explore the deployment of
other generative ai modalities. With growing concerns about the sus-
tainability of Al ensuring efficient usage of compute resources will
take high priority. Thus, further work on leveraging components like
Slurm to balance compute during peak usage times of Al inference
while allocating the unused ressources to research computations dur-
ing off-hours should take priority. Furthermore, exploring hardware
configurations from vendors other than NVIDIA seems advisable to
prevent a vendor lock-in for datacenters.

Acknowledgments

The work presented in this paper is the result of the joint project by
Ruhr-University Bochum and University of Cologne: ‘Open Source-
KIL.nrw’. The project is fully funded by the Ministry of Culture and
Science of the State of North Rhine-Westphalia.

References

[1] Microsoft Research Al4Science and Microsoft Azure Quantum. 2023. The Impact
of Large Language Models on Scientific Discovery: A Preliminary Study Using
GPT-4. arXiv:2311.07361 [cs] doi:10.48550/arXiv.2311.07361
Michael E. Bernal. 2024. Revolutionizing eLearning Assessments: The Role of
GPT in Crafting Dynamic Content and Feedback. Journal of Artificial Intelligence
and Technology 4, 3 (May 2024), 188-199. doi:10.37965/jait.2024.0513
[3] Wesley Brewer, Greg Behm, Alan Scheinine, Ben Parsons, Wesley Emeneker, and
Robert P. Trevino. 2020. Inference Benchmarking on HPC Systems. In 2020 IEEE
High Performance Extreme Computing Conference (HPEC). IEEE, Waltham, MA,
USA, 1-9. doi:10.1109/HPEC43674.2020.9286138
[4] Wes Brewer, Ana Gainaru, Frédéric Suter, Feiyi Wang, Murali Emani, and
Shantenu Jha. 2025. Al-coupled HPC Workflow Applications, Middleware and
Performance. arXiv:2406.14315 [cs] doi:10.48550/arXiv.2406.14315
Franck Cappello. 2024. AuroraGPT: Exploring Al Assistant for Science. In 2024
IEEE International Parallel and Distributed Processing Symposium (IPDPS).
IEEE, San Francisco, CA, USA, 1-1. doi:10.1109/IPDPS57955.2024.00009
[6] Le Chen, Nesreen K. Ahmed, Akash Dutta, Arijit Bhattacharjee, Sixing Yu,
Quazi Ishtiaque Mahmud, Waqwoya Abebe, Hung Phan, Aishwarya Sarkar,
Branden Butler, Niranjan Hasabnis, Gal Oren, Vy A. Vo, Juan Pablo Munoz,
Theodore L. Willke, Tim Mattson, and Ali Jannesari. 2024. The Landscape and
Challenges of HPC Research and LLMs. arXiv:2402.02018 [cs] doi:10.48550/
arXiv.2402.02018
Ali Doosthosseini, Jonathan Decker, Hendrik Nolte, and Julian M. Kunkel.
2024. Chat AI: A Seamless Slurm-Native Solution for HPC-Based Services.
arXiv:2407.00110 [cs] doi:10.48550/arXiv.2407.00110
Jorge Ejarque, Rosa M. Badia, Loic Albertin, Giovanni Aloisio, Enrico Baglione,
Yolanda Becerra, Stefan Boschert, Julian R. Berlin, Alessandro D’Anca, Do-
natello Elia, Francois Exertier, Sandro Fiore, José Flich, Arnau Folch, Steven J.
Gibbons, Nikolay Koldunov, Francesc Lordan, Stefano Lorito, Finn Lgvholt,
Jorge Macias, Fabrizio Marozzo, Alberto Michelini, Marisol Monterrubio-Velasco,
Marta Pienkowska, Josep de la Puente, Anna Queralt, Enrique S. Quintana-Orti,
Juan E. Rodriguez, Fabrizio Romano, Riccardo Rossi, Jedrzej Rybicki, Miroslaw
Kupcezyk, Jacopo Selva, Domenico Talia, Roberto Tonini, Paolo Trunfio, and
Manuela Volpe. 2022. Enabling Dynamic and Intelligent Workflows for HPC,
Data Analytics, and AI Convergence. Future Generation Computer Systems 134
(Sept. 2022), 414-429. doi:10.1016/j.future.2022.04.014
Narcisa Guran, Florian Knauf, Man Ngo, Stefan Petrescu, and Jan S. Rellermeyer.
2024. Towards a Middleware for Large Language Models. arXiv:2411.14513 [cs]
doi:10.48550/arXiv.2411.14513
[10] Torsten Hoefler, Marcin Copik, Pete Beckman, Andrew Jones, Ian Foster, Manish
Parashar, Daniel Reed, Matthias Troyer, Thomas Schulthess, Dan Ernst, and Jack

[2

[5

[7

[8

[9

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Trappen et al.

Dongarra. 2024. XaaS: Acceleration as a Service to Enable Productive High-
Performance Cloud Computing. arXiv:2401.04552 [cs] doi:10.48550/arXiv.2401.
04552

Robert KeBler, Simon Volpert, and Stefan Wesner. 2024. Towards Improving
Resource Allocation for Multi-Tenant HPC Systems: An Exploratory HPC Clus-
ter Utilization Case Study. In 2024 IEEE International Conference on Clus-
ter Computing Workshops (CLUSTER Workshops). IEEE, Kobe, Japan, 66-75.
doi:10.1109/CLUSTERWorkshops61563.2024.00019

Suleman Ahmad Khairullah, Sheetal Harris, Hassan Jalil Hadi, Rida Anjum
Sandhu, Naveed Ahmad, and Mohammed Ali Alshara. 2025. Implementing Arti-
ficial Intelligence in Academic and Administrative Processes through Responsible
Strategic Leadership in the Higher Education Institutions. Frontiers in Education
10 (Feb. 2025). doi:10.3389/feduc.2025.1548104

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng,
Cody Hao Yu, Joseph Gonzalez, Hao Zhang, and Ion Stoica. 2023. Efficient
Memory Management for Large Language Model Serving with PagedAttention.
In Proceedings of the 29th Symposium on Operating Systems Principles (Koblenz,
Germany) (SOSP ’23). Association for Computing Machinery, New York, NY,
USA, 611-626. doi:10.1145/3600006.3613165

Fangfang Liu, Yiyun Wang, Qiuling Feng, Linkai Zhu, and Guang Li. 2024.
Optimizing E-Learning Environments: Leveraging Large Language Models for
Personalized Education Pathways. In 2024 5th International Conference on Edu-
cation, Knowledge and Information Management (ICEKIM 2024). Atlantis Press,
Chengdu, China, 811-817. doi:10.2991/978-94-6463-502-7_86

Rongxin Liu, Carter Zenke, Charlie Liu, Andrew Holmes, Patrick Thornton,
and David J. Malan. 2024. Teaching CS50 with Al: Leveraging Generative
Artificial Intelligence in Computer Science Education. In Proceedings of the
55th ACM Technical Symposium on Computer Science Education V. 1 (SIGCSE
2024). Association for Computing Machinery, New York, NY, USA, 750-756.
doi:10.1145/3626252.3630938

Pedro Garcia Lopez, Daniel Barcelona Pons, Marcin Copik, Torsten Hoefler, Ed-
uardo Quifiones, Maciej Malawski, Peter Pietzutch, Alberto Marti, Thomas Ohlson
Timoudas, and Aleksander Slominski. 2025. Al Factories: It’s Time to Rethink
the Cloud-HPC Divide. arXiv:2509.12849 [cs] doi:10.48550/arXiv.2509.12849
Anderson de Lima Luiz, Shubham Vijay Kurlekar, and Munir Georges. 2025.
Scalable Engine and the Performance of Different LLM Models in a SLURM
Based HPC Architecture. arXiv:2508.17814 [cs] doi:10.48550/arXiv.2508.17814
Alexander Tobias Neumann, Yue Yin, Sulayman Sowe, Stefan Decker, and
Matthias Jarke. 2025. An LLM-Driven Chatbot in Higher Education for Databases
and Information Systems. IEEE Transactions on Education 68, 1 (Feb. 2025),
103-116. doi:10.1109/TE.2024.3467912

Michael M. Resch, Johannes Gebert, and Dennis Hoppe. 2025. The Future of HPC
and Al In 2025 International Conference on Intelligent Control, Computing and
Communications (IC3). IEEE, Mathura, India, 897-904. doi:10.1109/1C363308.
2025.10956516

Ahmad Tarraf, Martin Schreiber, Alberto Cascajo, Jean-Baptiste Besnard, Marc-
André Vef, Dominik Huber, Sonja Happ, André Brinkmann, David E. Singh, Hans-
Christian Hoppe, Alberto Miranda, Antonio J. Pefia, Rui Machado, Marta Garcia
Gasulla, Martin Schulz, Paul Carpenter, Simon Pickartz, Tiberiu Rotaru, Sergio
Iserte, Victor Lopez, Jorge Ejarque, Heena Sirwani, and Felix Wolf. 2024. Mal-
leability in Modern HPC Systems: Current Experiences, Challenges, and Future
Opportunities. IEEE Transactions on Parallel and Distributed Systems 35, 9
(2024), 1-14. doi:10.1109/TPDS.2024.3406764

Yuxin Wang, Yuhan Chen, Zeyu Li, Xueze Kang, Yuchu Fang, Yeju Zhou, Yang
Zheng, Zhenheng Tang, Xin He, Rui Guo, Xin Wang, Qiang Wang, Amelie Chi
Zhou, and Xiaowen Chu. 2025. BurstGPT: A Real-World Workload Dataset
to Optimize LLM Serving Systems. In Proceedings of the 31st ACM SIGKDD
Conference on Knowledge Discovery and Data Mining V.2 (KDD °25). ACM,
Toronto, ON, Canada. doi:10.1145/3711896.3737413

Torsten Zesch, Michael Hanses, Niels Seidel, Piush Aggarwal, Dirk Veiel, and
Claudia De Witt. 2024. Flexible LLM Experimental Infrastructure (Flexi) —
Enabling Experimentation and Innovation in Higher Education Through Access
to Open LLMs. In 2024 21st International Conference on Information Technology
Based Higher Education and Training (ITHET). IEEE, Paris, France, 1-8. doi:10.
1109/ITHET61869.2024.10837635

https://arxiv.org/abs/2311.07361
https://doi.org/10.48550/arXiv.2311.07361
https://doi.org/10.37965/jait.2024.0513
https://doi.org/10.1109/HPEC43674.2020.9286138
https://arxiv.org/abs/2406.14315
https://doi.org/10.48550/arXiv.2406.14315
https://doi.org/10.1109/IPDPS57955.2024.00009
https://arxiv.org/abs/2402.02018
https://doi.org/10.48550/arXiv.2402.02018
https://doi.org/10.48550/arXiv.2402.02018
https://arxiv.org/abs/2407.00110
https://doi.org/10.48550/arXiv.2407.00110
https://doi.org/10.1016/j.future.2022.04.014
https://arxiv.org/abs/2411.14513
https://doi.org/10.48550/arXiv.2411.14513
https://arxiv.org/abs/2401.04552
https://doi.org/10.48550/arXiv.2401.04552
https://doi.org/10.48550/arXiv.2401.04552
https://doi.org/10.1109/CLUSTERWorkshops61563.2024.00019
https://doi.org/10.3389/feduc.2025.1548104
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.2991/978-94-6463-502-7_86
https://doi.org/10.1145/3626252.3630938
https://arxiv.org/abs/2509.12849
https://doi.org/10.48550/arXiv.2509.12849
https://arxiv.org/abs/2508.17814
https://doi.org/10.48550/arXiv.2508.17814
https://doi.org/10.1109/TE.2024.3467912
https://doi.org/10.1109/IC363308.2025.10956516
https://doi.org/10.1109/IC363308.2025.10956516
https://doi.org/10.1109/TPDS.2024.3406764
https://doi.org/10.1145/3711896.3737413
https://doi.org/10.1109/ITHET61869.2024.10837635
https://doi.org/10.1109/ITHET61869.2024.10837635

	Abstract
	1 Introduction
	2 Related Work
	3 Architecture
	3.1 Inference Components
	3.2 Management Components
	3.3 Observability & Automated Dynamic Scaling

	4 Performance Evaluation
	4.1 Methodology
	4.2 Results

	5 Discussion
	6 Conclusion & Outlook
	Acknowledgments
	References

