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A B S T R A C T

Differential equations for two-phase equilibria under isothermal–isobaric conditions are derived. These equa-
tions can be used in connection with arbitrary equations of state (Helmholtz energy models) for fluid mixtures
to compute phase envelopes. In contrast to conventional computation methods, which solve the (nonlinear)
algebraic equations describing phase equilibrium by means of iterative methods and which often suffer from
convergence problems, the differential equations merely have to be integrated, but not solved. Convergence
problems are thus avoided. The computation of phase envelopes from differential equations is rapid, reliable,
and advantageous in connection with complicated equations of state.
1. Introduction

Nowadays the calculation of phase equilibria of mixtures from equa-
tions of state is usually accomplished by solving a system of algebraic
equations representing the thermodynamic equilibrium conditions. We
mention here – on behalf of many others – the pioneering work of
Michelsen [1], who already in 1980 proposed a method for computing
isoplethic phase envelopes of multicomponent mixtures based on such
algebraic equations. These equations are nonlinear; the solutions have
to be found numerically by means of iteration methods, and conver-
gence is not certain—particularly not if there are many components or
if the underlying equation of state is very complicated.

This disadvantage is aggravated if the equation of state can return
unphysical results for certain density–temperature combinations. A
modern example is the GERG model [2], which makes it possible to cal-
culate thermodynamic properties of mixtures with impressive accuracy.
Unfortunately, a root finder algorithm that, on its path to the solution,
accidentally runs into a problematic region is easily ‘‘derailed’’.

An alternative is the formulation of the equilibrium conditions as a
system of differential equations. To obtain the phase envelopes, these
equations have to be integrated, not solved; convergence problems are
thus avoided.

An example of such differential equations are the Gibbs–Konowalow
equations of 1881 [3] (originally for binary mixtures only; an extension
to multicomponent mixtures can be found in [4]). These equations,
however, are cumbersome to use with equations of state, as they have
the pressure as an independent variable.

Differential equations that are particularly suited for use with equa-
tions of state have been proposed some years ago for isothermal as
well as isobaric phase envelopes [5], for isopleths [6], and for critical
curves [7], and their application to the construction of phase diagrams

E-mail address: ulrich.deiters@uni-koeln.de.

has been demonstrated [8,9].
The differential equations published so far, however, do not cover

the case of isothermal–isobaric phase envelopes for ternary and higher
mixtures. Such phase envelopes are needed, for instance, to construct
Gibbs triangle diagrams. This is the topic of this work.

2. Algorithm

2.1. Derivation

In the ‘‘isochoric thermodynamics’’ [10,11] formulation the central
thermodynamic potential is the Helmholtz energy density,

𝛹 (𝜌 , 𝑇 ) = 𝐴(𝜌 , 𝑇 )
𝑉

, (1)

where 𝜌 is the vector of the concentrations or molar densities,

𝜌 =
⎛

⎜

⎜

⎝

𝜌1
⋮
𝜌𝑁

⎞

⎟

⎟

⎠

with 𝜌𝑖 = 𝑥𝑖𝜌 =
𝑥𝑖
𝑉m

(2)

(𝑥𝑖: mole fraction of component 𝑖, 𝑉m: molar volume).
The chemical potentials and the pressure are obtained from 𝛹 as

𝜇 = ∇𝛹
𝑝 = −𝛹 + 𝜇 ⋅ 𝜌 , (3)

where the differentiations are with respect to the concentrations 𝜌𝑖. The
‘‘⋅’’ denotes the scalar product. The total differentials of these properties
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are (cf. [5], Eqs. (18) and (20))

d𝜇 = 𝜳 d𝜌 +
(

𝜕 ⃗𝜇
𝜕 𝑇

)

d𝑇

d𝑝 = (𝜳𝜌 ) ⋅ d𝜌 +
(

𝜕 𝑝
𝜕 𝑇

)

d𝑇 .
(4)

Here 𝜳 stands for the Hessian matrix of 𝛹 ,

𝜳 =
⎛

⎜

⎜

⎝

𝛹11 … 𝛹1𝑁
⋮ ⋱ ⋮

𝛹𝑁1 … 𝛹𝑁 𝑁

⎞

⎟

⎟

⎠

with 𝛹𝑖𝑗 =
(

𝜕2𝛹
𝜕 𝜌𝑖 𝜕 𝜌𝑗

)

. (5)

𝜳 is symmetric and, for stable phases, positive definite.
d𝑇 and d𝑝 are zero for isothermal–isobaric cases, hence the total

differential of the pressure reduces to
d𝑝 = (𝜳𝜒𝜌 𝜒 ) ⋅ d𝜌 𝜒 = 0, (6)

where 𝜒 = ′, ′′ denotes the coexisting phases. Moreover, along the phase
boundary we have d𝜇 ′′ = d𝜇 ′,

𝜳 ′ d𝜌 ′ = 𝜳 ′′ d𝜌 ′′. (7)

Multiplication with 𝜌 ′′ (this is allowed for symmetric matrices) yields

(𝜳 ′𝜌 ′′) ⋅ d𝜌 ′ = (𝜳 ′′𝜌 ′′) ⋅ d𝜌 ′′ (8)

and, because of Eq. (6),

(𝜳 ′𝜌 ′′) ⋅ d𝜌 ′ = 0. (9)

One way to proceed from here is making one mole fraction, 𝑥′𝑘, the
marching variable. Dividing Eqs. (6) and (9) by d𝑥′𝑘 gives

(𝜳 ′𝜌 ′′) ⋅ 𝑠 ′ = 0 (10)

(𝜳 ′𝜌 ′) ⋅ 𝑠 ′ = 0, (11)

where we have defined the ‘‘slope vector’’

𝑠 𝜒 ≡ d𝜌 𝜒

d𝑥′𝑘 𝜎
. (12)

The subscript ‘‘𝜎’’ indicates that the derivatives are calculated along the
phase envelopes, i.e., at saturation.

We note that

𝑠′𝑘 =
d𝜌′𝑘
d𝑥′𝑘 𝜎

=
d(𝑥′𝑘𝜌

′)

d𝑥′𝑘 𝜎
= 𝜌′ + 𝑥′𝑘

d𝜌′

d𝑥′𝑘 𝜎
= 𝜌′ + 𝑥′𝑘

𝑁
∑

𝑖=1

d𝜌′𝑖
d𝑥′𝑘 𝜎

= 𝜌′ + 𝑥′𝑘

𝑁
∑

𝑖=1
𝑠′𝑖 ,

(13)

which after rearrangement yields
(1 − 𝑥′𝑘)𝑠

′
𝑘 − 𝑥′𝑘

∑

𝑖≠𝑘
𝑠′𝑖 = 𝜌′ (14)

or, using vector notation,
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−𝑥′𝑘
⋮

−𝑥′𝑘
1 − 𝑥′𝑘
−𝑥′𝑘
⋮

−𝑥′𝑘

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⋅

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑠′1
⋮

𝑠′𝑘−1
𝑠′𝑘
𝑠′𝑘+1
⋮
𝑠′𝑁

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= 𝜌′. (15)

According to Gibbs’ phase rule 2-phase a 𝑁-component mixture
t constant pressure and temperature has got 𝑁 − 2 thermodynamic
egrees of freedom. For mixtures of four or more components it is
ecessary to specify 𝑁 − 3 constraints, e.g., that some mole fractions or
ome mole fraction ratios are kept constant. Ways to set up constraint
quations have been described elsewhere [5].
2 
Combining Eqs. (10), (11), and (15), and – for 𝑁 > 3 – the constraint
equations results in a system of linear equations for the derivatives 𝑠′𝑖 ,

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝛹⃗ ′
1 ⋅ 𝜌

′′ … 𝛹⃗ ′
𝑘−1 ⋅ 𝜌

′′ 𝛹⃗ ′
𝑘 ⋅ 𝜌

′′ 𝛹⃗ ′
𝑘+1 ⋅ 𝜌

′′ … 𝛹⃗ ′
𝑁 ⋅ 𝜌 ′′

𝛹⃗ ′
1 ⋅ 𝜌

′ … 𝛹⃗ ′
𝑘−1 ⋅ 𝜌

′ 𝛹⃗ ′
𝑘 ⋅ 𝜌

′ 𝛹⃗ ′
𝑘+1 ⋅ 𝜌

′ … 𝛹⃗ ′
𝑁 ⋅ 𝜌 ′

−𝑥′𝑘 … −𝑥′𝑘 1 − 𝑥′𝑘 −𝑥′𝑘 … −𝑥′𝑘
𝑎𝑙1 … 𝑎𝑙 ,𝑘−1 𝑎𝑙 𝑘 𝑎𝑙 ,𝑘+1 … 𝑎𝑙 𝑁
⋮ ⋮ ⋮ ⋮ ⋮

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⋅𝑠 ′
𝑘 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0
0
𝜌′

0
⋮

⎞

⎟

⎟

⎟

⎟

⎟

⎠

with 𝑙 = 1,… , 𝑁 − 3.
(16)

Here we have made use of the definition of the matrix–vector product,

𝜳 ′𝜌 𝜒 ≡
⎛

⎜

⎜

⎜

⎝

𝛹⃗ ′
1 ⋅ 𝜌

𝜒

⋮
𝛹⃗ ′

𝑁 ⋅ 𝜌 𝜒

⎞

⎟

⎟

⎟

⎠

, (17)

where 𝛹⃗ ′
𝑘 denotes the 𝑘th row vector of 𝜳 ′.

Inserting Eq. (4) into the condition of equal d𝜇 gives

𝜳 ′′ d𝜌 ′′ − 𝜳 ′ d𝜌 ′ = 0, (18)

and after division by d𝑥′𝑘
𝜳 ′′𝑠 ′′ = 𝜳 ′𝑠 ′. (19)

As 𝑠 ′ is known at this point, Eq. (19) constitutes a well-defined system
f linear equations for 𝑠 ′′.

2.2. Special case: infinite dilution

If one of the concentrations, for instance 𝜌𝑖, is zero, the main
diagonal element of the Hessian 𝛹𝑖𝑖 diverges because of the ln 𝜌𝑖 term
in the Helmholtz energy density 𝛹 (𝜌 , 𝑇 ). This is the case when, for
example, a phase envelope calculation for a ternary mixture is started
at a binary phase equilibrium.

As already explained elsewhere [5], this problem can be solved by
(a) multiplying Eq. (19) from the left-hand side with a diagonal matrix
built from a concentration vector,
(

diag 𝜌 ′ 𝜳 ′′) 𝑠 ′′ =
(

diag 𝜌 ′ 𝜳 ′) 𝑠 ′, (20)

and (b) replacing all 𝛹𝑖𝑖𝜌𝑖 terms in Eqs. (16) and (20) by the proper
limiting values,
lim
𝜌′𝑖→0

𝛹 ′
𝑖𝑖𝜌

′
𝑖 = lim

𝜌′′𝑖 →0
𝛹 ′′
𝑖𝑖 𝜌

′′
𝑖 = 𝑅𝑇

lim
𝜌′𝑖→0

𝛹 ′
𝑖𝑖𝜌

′′
𝑖 = 𝑅𝑇 𝜙𝑖

lim
𝜌′′𝑖 →0

𝛹 ′′
𝑖𝑖 𝜌

′
𝑖 = 𝑅𝑇 𝜙−1

𝑖

with 𝜙𝑖 ≡ exp

(

−
𝜇r
𝑖
′′ − 𝜇r

𝑖
′

𝑅𝑇

)

.

(21)

The 𝜇r𝜒
𝑖 are residual chemical potentials of component 𝑖, which are

well-defined and computable even if some concentrations are zero.
Eqs. (16) and (20) together provide the derivatives that have to be

ntegrated in order to determine the phase envelopes.

2.3. Special case: critical states

At a critical point the concentrations 𝜌 ′ and 𝜌 ′′ become equal.
Consequently the system matrix in Eq. (16) has two identical rows, and
the equation cannot be solved any longer.



U.K. Deiters

e

e
𝜆

t
t

l

s

m

l

t

a

m
P
u

l

(
e

s
o
t

e

(

m
d

s

p

d

Fluid Phase Equilibria 595 (2025) 114387 
As a workaround we replace the first row of Eq. (16) with an
quation for 𝑠′𝑘,
⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 … 0 1 0 … 0
𝛹⃗ c

1 ⋅ 𝜌
c … 𝛹⃗ c

𝑘−1 ⋅ 𝜌
c 𝛹⃗ c

𝑘 ⋅ 𝜌
c 𝛹⃗ c

𝑘+1 ⋅ 𝜌
c … 𝛹⃗ c

𝑁 ⋅ 𝜌 c

−𝑥′𝑘 … −𝑥′𝑘 1 − 𝑥′𝑘 −𝑥′𝑘 … −𝑥′𝑘
𝑎𝑙1 … 𝑎𝑙 𝑘−1 𝑎𝑙 𝑘 𝑎𝑙 𝑘+1 … 𝑎𝑙 𝑁
⋮ ⋮ ⋮ ⋮ ⋮

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⋅𝑠 ′
𝑘 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑓 𝜌c𝑘
0
𝜌c

0
⋮

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

(22)

where 𝑓 is a yet unknown scalar.
In the vicinity of a critical point the vector connecting the two

coexisting phases, 𝜌 ′′ − 𝜌 ′, is approximately aligned with the critical
igenvector 𝑢 c

1, i.e., with the eigenvector of 𝜳 c that is associated with
1, the lowermost eigenvalue,

(𝜌 ′′ − 𝜌 ′) ∝ 𝑢 c
1. (23)

The alignment is not exact, since a step along the eigenvector, 𝜌 c →

𝜌 c + 𝛼 ⃗𝑢 c
1, is usually neither an isobaric process nor in accordance with

he constraints. In most cases, however, the alignment is good enough
o obtain approximations for the derivative vectors:

(a) 𝑠 ′ is obtained as solution of Eq. (22) while varying 𝑓 until the
condition
𝑠 ′ ⋅ 𝑢 c

1

∣ 𝑠 ′ ∣
→ max with ∣ 𝑠 ′ ∣≡

√

𝑠 ′ ⋅ 𝑠 ′ (24)

is fulfilled.
(b) Then 𝑠 ′′ is found by following 𝑢 c

1 into the opposite direction,

𝑠 ′′ = 𝑠 ′ −
𝑠 ′ ⋅ 𝑢 c

1

∣ 𝑠 ′ ∣
𝑢 c
1, (25)

assuming that 𝑢 c
1 is normalized.

The slope vectors can be used in principle to initialize a phase enve-
ope calculation at a critical point of a mixture. As will be explained

in the next section, however, there are practical reasons why this
approach often fails, particularly for mixtures with more than three
components.

3. Application

The integration can be conveniently performed with a variety of
tandard methods, e.g., the Runge–Kutta–Fehlberg method [12] or the

Cash–Karp method [13].
The elements of the Hessian matrices 𝜳 ′ and 𝜳 ′′ can be ob-

tained directly from the Helmholtz energy density equation by pre-
cise (multi)complex numerical differentiation or by automatic formal
differentiation [11,14].

It is not necessary to invert the equation of state, i.e., to calculate
olar volumes for a given pressure, as the isobaric condition is already

contained in the differential equations. This avoids a time-consuming
auxiliary calculation.

In order to avoid the accumulation of errors in the course of the
integration it is advisable to ‘‘polish’’ the integration results by using
them as starting values for an iterative solver of the algebraic equi-
ibrium conditions; usually a single iteration step is sufficient. In the

vicinity of critical points, however, more steps may be needed, as here
he condition of the linear equations Eqs. (16) and (20) deteriorates.

In principle any phase equilibrium algorithm for multicomponent mix-
tures can be used for this. The methods of Quiñones and Deiters [10,11]
nd of Nichita [15] offer the advantage that they, too, no not require

the inversion of the equation of state. For the examples presented below
the former method was used.
 e

3 
Table 1
Parameters of the Peng–Robinson equation used in this work.

component 𝑎c/(J cm3 mol−2) 𝑏/(cm3/mol) 𝜔

methane 2.49637322 × 105 26.7771081 0.011
ethane 6.04124604 × 105 40.4800508 0.099
propane 1.01769308 × 106 56.3124099 0.153
methane–ethane 2.95008705 × 105 33.6286961
methane–propane 4.86444937 × 105 41.5447590
ethane–propane 7.80374655 × 105 48.3963469

In conventional calculations of phase envelopes – by solving alge-
braic equations – it is a common ‘‘trick of the trade’’ to use polynomial
extrapolation of already established equilibrium states to obtain initial
values for the next one. This has some superficial similarity to the

ethod proposed here, namely the integration of differential equations.
olynomial extrapolation, however, lacks thermodynamic insight and is
sually much less accurate.

The topology of ternary and higher phase diagrams can change
very much over small ranges of pressure or temperature. It is therefore
advisable to use parametric marching [16] or other techniques that
et the phase envelope calculation ‘‘go around bends’’ [15,17,18]. The

following Gibbs triangles illustrate this.
We present here some phase diagrams for the ternary system

methane + ethane + propane), computed with the Peng–Robinson
quation of state [19] and the usual Soave-style mixing rules.1 The

parameters are listed in Table 1. The diagrams were created with the
ThermoC program package [20]. The integration runs were started at
the left triangle edge, i.e., at the (methane + propane) phase equilib-
rium. 𝑥′2 was used as the marching variable; parametric marching was
turned on.

At low pressure (2.5 MPa) methane and ethane are both in the vapor
tate, whereas propane is a liquid. Consequently the phase diagram is
f the band type. At 7.4 MPa ethane liquefies, and so the band shifts
o the lower edge of the triangle diagram (Fig. 1).

At higher pressures the two-phase region detaches from the lower
dge and contracts, until it vanishes in a critical boundary point

(Fig. 2).
Fig. 3 illustrates the behavior of the concentrations along the phase

boundaries as functions of the marching variable (𝑥′2). The inserts are
magnifications of the critical region. They show that the slopes 𝑠′𝑖 =
d𝜌′𝑖∕d𝑥

′
2 and 𝑠′′𝑖 = d𝜌′′𝑖 ∕d𝑥′2 are almost oppositely equal at the critical

point. The arrows in Fig. 3 indicate the predictions from Eqs. (24) and
25).

A peculiar feature is the ‘‘hook’’ that some of the curves exhibit
close to the critical point; it underlines the importance of parametric

arching or similar algorithms [17,18] when exploring such phase
iagrams.

The existence of these ‘‘hooks’’ is one of the reasons why it is
difficult to initialize the integration of the concentration derivatives at
a critical point: The 𝜌𝜒1 (𝑥

′
2) and 𝜌𝜒3 (𝑥

′
2) functions are strongly curved

and change their slopes rapidly. It is therefore necessary to use a small
integration step size. This, however, requires solving Eqs. (16) and (20)
so close to the critical point that they are ill-conditioned and their
olutions become numerically unstable.

The 𝜌𝜒2 (𝑥
′
2) function in this example seems to be better behaved.

However, its limiting slopes can become very large, possibly even
infinite, and this would create computational problems, too.

When during a phase envelope calculation an isothermal–isobaric
hase envelope of a ternary mixture is followed through a critical point,

the liquid phase becomes the vapor phase and vice versa. Therefore
Figs. 1 and 2 contain single phase envelopes. If there are more then

1 These phase diagrams merely serve to illustrate the topology of phase
iagrams. We do not strive to match experimental data nor recommend this
quation of state or our parameter set.



U.K. Deiters

s
p
o
b

d

Fluid Phase Equilibria 595 (2025) 114387 
Fig. 1. Gibbs triangle of the (methane + ethane + propane) system at 280 K and (a) 2.5 MPa, (b) 7.4 MPa. liquid phase, – – – vapor phase, ⋯ ⋯ connodes.
Fig. 2. Gibbs triangle of the (methane + ethane + propane) system at 280 K and (a) 8.0 MPa, (b) 10.0 MPa. liquid phase, – – – vapor phase, ⋯ ⋯ connodes, ◦ ternary
critical point.
o
d
t
a

three components, however, it is necessary to specify constraints. These
constraints apply to the ′ phase, not to the coexisting ′′ phase. When
the boundary curve of constrained liquid phase is followed through a
critical point, it becomes the boundary curve of a constrained vapor
phase—and this is different from the boundary curve of the uncon-
trained vapor phase. The reverse is true for the coexisting vapor
hase. Therefore an isothermal–isobaric phase diagram phase diagram
f a mixture of four or more components contains two sets of phase
oundary curves, which intersect in the critical point.

This is illustrated by Fig. 4, which shows the 𝑥𝜒2 vs. 𝑥𝜒1 phase
iagram2 of the 5-component mixture (methane + butane + heptane

2 We refrain from displaying a 4-dimensional Gibbs hypertetrahedron.
 h

4 
+ decane + tetradecane) at 529.51 K and 13.94 MPa, computed again
with the Peng–Robinson equation of state. For this calculation all 𝑘𝑖𝑗
factors were set to 0. The constraints were 𝑥′4∕𝑥

′
3 = 0.5 and 𝑥′5∕𝑥

′
3 = 1.

The marching mole fraction was 𝑥′1.
Fig. 5 shows the concentrations of the five components as functions

f the marching mole fraction 𝑥′1. The arrows indicate the predicted
irections of the derivative vectors for Component 1 (methane) at
he critical point. Again the curves exhibit sharp ‘‘hooks’’ that require
dvanced marching methods.

4. Conclusion

The algorithm for isothermal–isobaric phase envelopes proposed
ere is based on the integration of ordinary differential equations.
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Fig. 3. Concentrations (molar densities) 𝜌𝜒1 (red), 𝜌𝜒2 (green), and 𝜌𝜒3 (blue) as functions
of the marching variable 𝑥′2 for the phase diagram Fig. 2a. liquid phase, – – –
apor phase, ◦ ternary critical point.

Fig. 4. Vapor–liquid equilibrium of (methane + butane + heptane + decane +
tetradecane) at 529.51 K and 13.94 MPa, computed with the Peng–Robinson equation
of state: 𝑥𝜒2 vs. 𝑥𝜒1 . Black curves: constrained phase, – – – unconstrained phase;
ray lines: connodes, ◦ quinary critical point.

It avoids the convergence problems that so often hamper algorithms
ased on the numerical, iterative solution of the algebraic equations
escribing phase equilibria. The time-consuming calculation of densi-

ties for the given pressure is never required. The new algorithm is very
rapid, and it is particularly useful for thermodynamic models that can
return physically unreasonable results for some combinations of their
state variables.
5 
Fig. 5. Concentrations (molar densities) 𝜌𝜒𝑖 , 𝑖 = (1,… , 5) (colors red, . . . , blue) as
functions of the marching variable 𝑥′1 for the 5-component system of Fig. 4.
constrained phase, – – – unconstrained phase, ◦ quinary critical point. The solid curve
of Component 3 lies under the curve of Component 5.

Symbols

𝑎𝑙 𝑖 constraint coefficient of component 𝑖 in the 𝑙th
constraint

𝑎 𝑙 vector of coefficients of the 𝑙th constraint,
𝑎 𝑙 ≡ (𝑎𝑙1,… , 𝑎𝑙 𝑁 )

𝑁 number of components
𝑝 pressure
𝑠 𝜒 derivative vector, 𝑠 𝜒 ≡ (𝑠𝜒1 ,… , 𝑠𝜒𝑁 ) with 𝑠𝜒𝑖 ≡ d𝜌𝜒𝑖 ∕d𝑥

′
𝑘 ∣𝜎

𝑇 temperature
𝑢 1 eigenvector associated with the lowermost eigenvalue

of 𝜳
𝑥𝑖 mole fraction of component 𝑖
𝜇r
𝑖 residual chemical potential of component 𝑖

𝜇 vector of chemical potentials, 𝜇 ≡ (𝜇1,… , 𝜇𝑁 )
𝜌 molar density, 𝜌 ≡ 𝑉 −1

m
𝜌𝑖 concentration (molar density) of component 𝑖
𝜌 vector of concentrations, 𝜌 ≡ (𝜌1,… , 𝜌𝑁 )
𝛹 Helmholtz energy density, 𝛹 ≡ 𝐴∕𝑉
𝜳 Hessian matrix of 𝛹
𝛹⃗ 𝑖 𝑖th row vector of 𝜳
𝛹𝑖𝑗 matrix element of 𝜳
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