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Differential equations for two-phase equilibria under isothermal-isobaric conditions are derived. These equa-
tions can be used in connection with arbitrary equations of state (Helmholtz energy models) for fluid mixtures
to compute phase envelopes. In contrast to conventional computation methods, which solve the (nonlinear)
algebraic equations describing phase equilibrium by means of iterative methods and which often suffer from
convergence problems, the differential equations merely have to be integrated, but not solved. Convergence

problems are thus avoided. The computation of phase envelopes from differential equations is rapid, reliable,
and advantageous in connection with complicated equations of state.

1. Introduction

Nowadays the calculation of phase equilibria of mixtures from equa-
tions of state is usually accomplished by solving a system of algebraic
equations representing the thermodynamic equilibrium conditions. We
mention here — on behalf of many others — the pioneering work of
Michelsen [1], who already in 1980 proposed a method for computing
isoplethic phase envelopes of multicomponent mixtures based on such
algebraic equations. These equations are nonlinear; the solutions have
to be found numerically by means of iteration methods, and conver-
gence is not certain—particularly not if there are many components or
if the underlying equation of state is very complicated.

This disadvantage is aggravated if the equation of state can return
unphysical results for certain density—temperature combinations. A
modern example is the GERG model [2], which makes it possible to cal-
culate thermodynamic properties of mixtures with impressive accuracy.
Unfortunately, a root finder algorithm that, on its path to the solution,
accidentally runs into a problematic region is easily “derailed”.

An alternative is the formulation of the equilibrium conditions as a
system of differential equations. To obtain the phase envelopes, these
equations have to be integrated, not solved; convergence problems are
thus avoided.

An example of such differential equations are the Gibbs—Konowalow
equations of 1881 [3] (originally for binary mixtures only; an extension
to multicomponent mixtures can be found in [4]). These equations,
however, are cumbersome to use with equations of state, as they have
the pressure as an independent variable.

Differential equations that are particularly suited for use with equa-
tions of state have been proposed some years ago for isothermal as
well as isobaric phase envelopes [5], for isopleths [6], and for critical
curves [7], and their application to the construction of phase diagrams
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has been demonstrated [8,9].

The differential equations published so far, however, do not cover
the case of isothermal-isobaric phase envelopes for ternary and higher
mixtures. Such phase envelopes are needed, for instance, to construct
Gibbs triangle diagrams. This is the topic of this work.

2. Algorithm

2.1. Derivation

In the “isochoric thermodynamics” [10,11] formulation the central
thermodynamic potential is the Helmholtz energy density,
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where 5 is the vector of the concentrations or molar densities,
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(x;: mole fraction of component i, V;: molar volume).
The chemical potentials and the pressure are obtained from ¥ as
%4
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where the differentiations are with respect to the concentrations p;. The
“.” denotes the scalar product. The total differentials of these properties
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are (cf. [5], Egs. (18) and (20))
a
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Here ¥ stands for the Hessian matrix of ¥,
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¥ is symmetric and, for stable phases, positive definite.

dT and dp are zero for isothermal-isobaric cases, hence the total
differential of the pressure reduces to

dp=P¥p5%)-dp¥ =0, (6)
where y =',” denotes the coexisting phases. Moreover, along the phase
boundary we have di” = dj’

v dp' =w"dp". 7
Multiplication with " (this is allowed for symmetric matrices) yields
@'p")-dp" ="5")-dp" (8
and, because of Eq. (6),

W'p" -dp’ =0. 9

One way to proceed from here is making one mole fraction, x;, the
marching variable. Dividing Egs. (6) and (9) by dxk gives
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where we have defined the “slope vector”
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The subscript “c” indicates that the derivatives are calculated along the
phase envelopes, i.e., at saturation.
We note that

ol | d(xp) L dpf & dp] ul
r _ "k ’ _l _ ’ ’
T 4| T Tax, kax, =0+ Z =7 +xkzs"
o k = i=1
13
which after rearrangement yields
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According to Gibbs’ phase rule 2-phase a N-component mixture
at constant pressure and temperature has got N — 2 thermodynamic
degrees of freedom. For mixtures of four or more components it is
necessary to specify N —3 constraints, e.g., that some mole fractions or
some mole fraction ratios are kept constant. Ways to set up constraint
equations have been described elsewhere [5].
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Combining Egs. (10), (11), and (15), and — for N > 3 — the constraint
equations results in a system of linear equations for the derivatives s; s
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Here we have made use of the definition of the matrix-vector product,
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where ¥ 1. denotes the kth row vector of ¥’.
Inserting Eq. (4) into the condition of equal dji gives

¥'dp" -¥'dp' =0, 18)
and after division by dx|
T/Ig’// — q]/g:/. (19)

As 5’ is known at this point, Eq. (19) constitutes a well-defined system
of linear equations for 5.

2.2. Special case: infinite dilution

If one of the concentrations, for instance p;, is zero, the main
diagonal element of the Hessian ¥;; diverges because of the Inp; term
in the Helmholtz energy density ¥(5,T). This is the case when, for
example, a phase envelope calculation for a ternary mixture is started
at a binary phase equilibrium.

As already explained elsewhere [5], this problem can be solved by
(a) multiplying Eq. (19) from the left-hand side with a diagonal matrix
built from a concentration vector,

(diag E'T”) "= (diag ﬁ'q") 5/, 20)
and (b) replacing all ¥,

limiting values,
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The ;4!,”’ are residual chemical potentials of component i, which are
well-defined and computable even if some concentrations are zero.

Egs. (16) and (20) together provide the derivatives that have to be
integrated in order to determine the phase envelopes.

2.3. Special case: critical states
At a critical point the concentrations 5’ and 5" become equal.

Consequently the system matrix in Eq. (16) has two identical rows, and
the equation cannot be solved any longer.
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As a workaround we replace the first row of Eq. (16) with an
equation for s,
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where f is a yet unknown scalar.

In the vicinity of a critical point the vector connecting the two
coexisting phases, p” — p’, is approximately aligned with the critical
eigenvector i, i.e., with the eigenvector of ¥* that is associated with

Ay, the lowermost eigenvalue,

G -5 s, 23)
The alignment is not exact, since a step along the eigenvector, j¢ —
p¢ + aiif, is usually neither an isobaric process nor in accordance with

the constraints. In most cases, however, the alignment is good enough
to obtain approximations for the derivative vectors:

(a) 5/ is obtained as solution of Eq. (22) while varying f until the

condition
= — max with |5’ |= V5’5’ @24
N

is fulfilled.

(b) Then 5" is found by following ii{ into the opposite direction,
3’/ . ’/_"C
§7 =5 - —Lis, (25)
[sr] !

assuming that &{ is normalized.

The slope vectors can be used in principle to initialize a phase enve-
lope calculation at a critical point of a mixture. As will be explained
in the next section, however, there are practical reasons why this
approach often fails, particularly for mixtures with more than three
components.

3. Application

The integration can be conveniently performed with a variety of
standard methods, e.g., the Runge-Kutta—Fehlberg method [12] or the
Cash-Karp method [13].

The elements of the Hessian matrices ¥’ and ¥” can be ob-
tained directly from the Helmholtz energy density equation by pre-
cise (multi)complex numerical differentiation or by automatic formal
differentiation [11,14].

It is not necessary to invert the equation of state, i.e., to calculate
molar volumes for a given pressure, as the isobaric condition is already
contained in the differential equations. This avoids a time-consuming
auxiliary calculation.

In order to avoid the accumulation of errors in the course of the
integration it is advisable to “polish” the integration results by using
them as starting values for an iterative solver of the algebraic equi-
librium conditions; usually a single iteration step is sufficient. In the
vicinity of critical points, however, more steps may be needed, as here
the condition of the linear equations Egs. (16) and (20) deteriorates.
In principle any phase equilibrium algorithm for multicomponent mix-
tures can be used for this. The methods of Quifiones and Deiters [10,11]
and of Nichita [15] offer the advantage that they, too, no not require
the inversion of the equation of state. For the examples presented below
the former method was used.
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Table 1

Parameters of the Peng-Robinson equation used in this work.
component a./(J em® mol-2) b/(cm?/mol) ®
methane 2.49637322 x 10° 26.7771081 0.011
ethane 6.04124604 x 10° 40.4800508 0.099
propane 1.01769308 x 10° 56.3124099 0.153
methane-ethane 2.95008705 x 10° 33.6286961
methane-propane 4.86444937 x 10° 41.5447590
ethane-propane 7.80374655 x 10° 48.3963469

In conventional calculations of phase envelopes — by solving alge-
braic equations - it is a common “trick of the trade” to use polynomial
extrapolation of already established equilibrium states to obtain initial
values for the next one. This has some superficial similarity to the
method proposed here, namely the integration of differential equations.
Polynomial extrapolation, however, lacks thermodynamic insight and is
usually much less accurate.

The topology of ternary and higher phase diagrams can change
very much over small ranges of pressure or temperature. It is therefore
advisable to use parametric marching [16] or other techniques that
let the phase envelope calculation “go around bends” [15,17,18]. The
following Gibbs triangles illustrate this.

We present here some phase diagrams for the ternary system
(methane + ethane + propane), computed with the Peng-Robinson
equation of state [19] and the usual Soave-style mixing rules.! The
parameters are listed in Table 1. The diagrams were created with the
ThermoC program package [20]. The integration runs were started at
the left triangle edge, i.e., at the (methane + propane) phase equilib-
rium. x), was used as the marching variable; parametric marching was
turned on.

At low pressure (2.5 MPa) methane and ethane are both in the vapor
state, whereas propane is a liquid. Consequently the phase diagram is
of the band type. At 7.4 MPa ethane liquefies, and so the band shifts
to the lower edge of the triangle diagram (Fig. 1).

At higher pressures the two-phase region detaches from the lower
edge and contracts, until it vanishes in a critical boundary point
(Fig. 2).

Fig. 3 illustrates the behavior of the concentrations along the phase
boundaries as functions of the marching variable (x’2). The inserts are
magnifications of the critical region. They show that the slopes 5] =
dp}/dx), and s!" = dp'/dx’, are almost oppositely equal at the critical
point. The arrows in Fig. 3 indicate the predictions from Egs. (24) and
(25).

A peculiar feature is the “hook” that some of the curves exhibit
close to the critical point; it underlines the importance of parametric
marching or similar algorithms [17,18] when exploring such phase
diagrams.

The existence of these “hooks” is one of the reasons why it is
difficult to initialize the integration of the concentration derivatives at
a critical point: The pf (x;) and pé’ (x;) functions are strongly curved
and change their slopes rapidly. It is therefore necessary to use a small
integration step size. This, however, requires solving Egs. (16) and (20)
so close to the critical point that they are ill-conditioned and their
solutions become numerically unstable.

The pg’ (x’z) function in this example seems to be better behaved.
However, its limiting slopes can become very large, possibly even
infinite, and this would create computational problems, too.

When during a phase envelope calculation an isothermal-isobaric
phase envelope of a ternary mixture is followed through a critical point,
the liquid phase becomes the vapor phase and vice versa. Therefore
Figs. 1 and 2 contain single phase envelopes. If there are more then

1 These phase diagrams merely serve to illustrate the topology of phase
diagrams. We do not strive to match experimental data nor recommend this
equation of state or our parameter set.
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(a) p =2.5MPa.

(b) p = 7.4 MPa.

Fig. 1. Gibbs triangle of the (methane + ethane + propane) system at 280 K and (a) 2.5 MPa, (b) 7.4 MPa. —— liquid phase, — — — vapor phase, - - connodes.

(a) p = 8.0 MPa.

CH

(b) p = 10.0 MPa.

Fig. 2. Gibbs triangle of the (methane + ethane + propane) system at 280 K and (a) 8.0 MPa, (b) 10.0 MPa. —— liquid phase, - — — vapor phase, --- - connodes, o ternary

critical point.

three components, however, it is necessary to specify constraints. These
constraints apply to the ’ phase, not to the coexisting ”” phase. When
the boundary curve of constrained liquid phase is followed through a
critical point, it becomes the boundary curve of a constrained vapor
phase—and this is different from the boundary curve of the uncon-
strained vapor phase. The reverse is true for the coexisting vapor
phase. Therefore an isothermal-isobaric phase diagram phase diagram
of a mixture of four or more components contains two sets of phase
boundary curves, which intersect in the critical point.

This is illustrated by Fig. 4, which shows the x? vs. x{ phase
diagram? of the 5-component mixture (methane + butane + heptane

2 We refrain from displaying a 4-dimensional Gibbs hypertetrahedron.

+ decane + tetradecane) at 529.51 K and 13.94 MPa, computed again
with the Peng-Robinson equation of state. For this calculation all k;;
factors were set to 0. The constraints were x}/x} = 0.5 and x./x} = 1.
The marching mole fraction was x].

Fig. 5 shows the concentrations of the five components as functions
of the marching mole fraction x|. The arrows indicate the predicted
directions of the derivative vectors for Component 1 (methane) at
the critical point. Again the curves exhibit sharp “hooks” that require
advanced marching methods.

4. Conclusion

The algorithm for isothermal-isobaric phase envelopes proposed
here is based on the integration of ordinary differential equations.
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Fig. 3. Concentrations (molar densities) pf (red), p; (green), and p§ (blue) as functions
of the marching variable x/, for the phase diagram Fig. 2a. —— liquid phase, - - -
vapor phase, o ternary critical point.

0.4 T T T T
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0.15

0.05

Fig. 4. Vapor-liquid equilibrium of (methane + butane + heptane + decane +
tetradecane) at 529.51 K and 13.94 MPa, computed with the Peng-Robinson equation
of state: x? vs. x?. Black curves: —— constrained phase, - — — unconstrained phase;
gray lines: connodes, o quinary critical point.

It avoids the convergence problems that so often hamper algorithms
based on the numerical, iterative solution of the algebraic equations
describing phase equilibria. The time-consuming calculation of densi-
ties for the given pressure is never required. The new algorithm is very
rapid, and it is particularly useful for thermodynamic models that can
return physically unreasonable results for some combinations of their
state variables.
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25F

p, /(mol dm™)
\

05

Fig. 5. Concentrations (molar densities) pf,i = (1,...,5) (colors red, ..., blue) as
functions of the marching variable x| for the 5-component system of Fig. 4. —
constrained phase, — — — unconstrained phase, o quinary critical point. The solid curve

of Component 3 lies under the curve of Component 5.

Symbols

ay; constraint coefficient of component i in the /th
constraint

a, vector of coefficients of the /th constraint,

a; =(ay,...,ay)

number of components

pressure

derivative vector, 57 = (sf, ...

temperature

eigenvector associated with the lowermost eigenvalue

of ¥

mole fraction of component i

residual chemical potential of component i

vector of chemical potentials, i = (uy, ..., puy)

molar density, p =V, 1

concentration (molar density) of component i

vector of concentrations, g = (p;,...,px)

Helmholtz energy density, ¥ = A/V

Hessian matrix of ¥

vl
Tz

2y with & = doX /d+!
S Sy) with s¢ = dp; /dx |,

SN

ith row vector of ¥
matrix element of ¥
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