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Chapter 1

Introduction

1.1 Motivation

Spare parts play a crucial role in ensuring the availability of complex technical

systems. Whether in manufacturing, transportation, or energy, equipment down-

time caused by faulty or missing parts can lead to substantial costs and service

disruptions. To prevent such outcomes, firms maintain inventories of spare parts.

Spare parts are characterized by irregular demand, long and uncertain lead times,

and a large assortment of parts with heterogeneous characteristics. This makes

spare parts planning a particularly challenging field of inventory management

(Sherbrooke 2004, Huiskonen 2001).

A central task in spare parts planning is to balance service quality and cost of

working capital. Firms aim for high service levels to keep customers satisfied and

avoid downtime. At the same time, inventories tie up cash, especially for spare

parts that are expensive and slow-moving. Finding the right balance between

service level and cost of working capital depends on information about uncertainty

in demand and supply, which determines safety stocks and reorder levels.(Silver

et al. 1998, Fortuin 1980).

In practice, this information is often inaccurate or incomplete. Lead times stored

in enterprise resource planning (ERP) systems do not necessarily reflect actual

lead times. Demand forecasts frequently rely on simple models that fail to account

for the intermittent nature of spare parts demand. For many parts, data is too

sparse to apply standard statistical techniques (Syntetos and Boylan 2005). As a

result, firms either hold excess stock to guard against uncertainty or accept lower

service levels to reduce capital lock-up Turrini and Meissner (2019).
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Chapter 1. Introduction

At the same time, firms collect vast amounts of operational data in their infor-

mation systems. Purchase orders, master data, and transaction histories provide

a rich basis for improving forecasts and planning decisions. Modern data-driven

methods, in particular machine learning, are well-suited to extract patterns from

such data. These methods enable more accurate predictions, can adapt to het-

erogeneous part characteristics, and allow for cross-learning between parts with

similar features (Makridakis et al. 2018a, 2022). By exploiting these opportunities,

firms can improve their spare parts planning, reduce costs, and increase service

levels.

This dissertation is motivated by the potential of data-driven methods to address

fundamental challenges in spare parts planning. It investigates how modern

forecasting techniques can be used to improve the accuracy of planning parameters,

how uncertainty in demand can be represented more realistically, and how data

scarcity can be mitigated through cross-learning.

1.2 Outline

The dissertation consists of three research papers, each addressing a specific

challenge in spare parts planning. Together, they provide a coherent perspective

on how data-driven methods can be applied to forecast supply and demand

processes more accurately and to improve the quality of inventory decisions.

Chapter 2 examines the prediction of procurement lead times.1 In many compa-
1Chapter 2 is based on the paper by Robin Reiners, Christiane Haubitz, and Ulrich Thone-

mann that was published in Production and Operations Management (Reiners et al. 2025). Dr.
Christiane Haubitz was mainly responsible for collecting the data, identifying the problem, and
conducting the pre-study. The remaining work, including the literature review, programming,
and revisions for Production and Operations Management, was carried out by Robin Reiners.
Professor Ulrich Thonemann contributed through discussions on the study’s design and the
positioning of the paper. The paper benefited from comments of two anonymous referees and
the editors of Production and Operations Management as well as from feedback at the ISIR
Summer School 2023 at Cardiff University, United Kingdom, on August 30, 2023.
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Chapter 1. Introduction

nies, planned lead times are stored as static entries in ERP systems. These values,

however, often differ substantially from actual supplier lead times. Inaccurate

lead times distort inventory control parameters and lead to either excess stock or

inventory shortages. This chapter develops machine learning models that combine

purchase order data with item and supplier characteristics to generate more accu-

rate lead time predictions. Using real company data, the study demonstrates that

these predictions substantially outperform ERP entries and classical benchmarks,

and that improved lead time information translates into significant inventory

savings without compromising service quality.

Chapter 3 addresses the estimation of demand during replenishment lead times.

Inventory policies require not just point forecasts but an understanding of the

full distribution of demand over the lead time, especially under the intermittent

demand patterns typical of spare parts. Traditional parametric assumptions, such

as normal or poisson distributions, are poorly suited to such demand patterns.

To overcome this limitation, the chapter proposes a non-parametric conditional

density estimation framework that provides part-specific predictive distributions

of lead time demand. By generating richer representations of demand uncertainty,

the approach enables more robust safety stock and base stock decisions and better

aligns forecasting models with the realities of spare parts demand.

Chapter 4 builds on chapter 3 by testing the robustness of cross-learning ap-

proaches in a controlled simulation environment.2 While Chapter 3 shows that

pooling information across parts can improve distributional forecasts, it remains

unclear how well these methods perform when no inherent similarities exist across

SKUs. Chapter 4 addresses this question by systematically varying the degree of

similarity and data availability across parts. The study evaluates how the machine
2Chapter 4 was presented at ISIR on August 14, 2025. It is joint work with Professor Florian

Sachs and Professor Ulrich Thonemann. The work was mainly carried out by Robin Reiners.
Professors Florian Sachs and Ulrich Thonemann contributed through discussions on the modeling
approach, the design and analysis of the simulation study, and the positioning of the paper.
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Chapter 1. Introduction

learning based method behaves under varying degrees of SKU similarity and

compares its performance with single-SKU methods. The results highlight both

the benefits and the limits of cross-learning: substantial gains are achieved when

similarities exist, but performance converges to item-level methods when they

do not. This analysis provides important insights for the practical application of

cross-learning, clarifying when it should be relied upon and when other methods

are more favorable.

Chapter 5 concludes the dissertation by summarizing the key insights, reflecting

critically on the limitations of the studies, and outlining directions for future

research in data-driven spare parts planning.

1.3 Contribution

This dissertation contributes to the literature on inventory management, demand

forecasting, and supply chain analytics by showing how data-driven methods

solve core spare-parts planning challenges and translates inventory research into

practice. The contributions are threefold.

In Chapter 2, we contribute by showing how operational data can be leveraged

to improve supply-side information. By applying machine learning to purchase

order and master data, the work develops predictive models for procurement lead

times that are more accurate than static ERP entries and classical time-series

benchmarks. The link between improved lead time predictions and inventory

outcomes is established empirically, showing tangible benefits for firms.

In Chapter 3, we advance the modeling of demand uncertainty in spare parts

contexts. By moving from point forecasts to full predictive distributions, the

Chapter provides a framework that captures the irregular and intermittent nature

of spare parts demand. This approach improves the reliability of safety stock

4



Chapter 1. Introduction

calculations and offers a practical approach that firms can implement with the

data they already collect.

In Chapter 4, we clarify the role of cross-learning in data-scarce settings. While

prior work has suggested the promise of pooling information across parts, this

dissertation systematically evaluates its robustness. It shows that cross-learning

delivers substantial improvements when item similarities are informative, but

that its advantages fade when similarities are absent. These findings provide

both methodological and managerial guidance, specifying the boundary conditions

under which cross-learning should be applied.

Taken together, the three studies demonstrate that data-driven methods can

improve the quality of information used in spare parts planning, that these

improvements translate into better inventory performance, and that the conditions

under which different methods are effective can be explicitly understood. The

dissertation thus contributes both to academic research and to practice, offering

firms concrete ways to improve service levels and reduce capital lock-up by making

better use of the data they already have.

5



Chapter 2

Lead time prediction for inventory

optimization with machine learn-

ing
Modern decision-support applications build on planning parameters such as lead

time, price, yield, etc., which are maintained as master data. The accuracy of

master data significantly influences the viability of such applications. However,

the maintenance of master data is considered a tedious and error-prone task. In

this study, we explore the effectiveness of machine learning techniques to improve

the accuracy of plan lead times. We apply both unsupervised and supervised

learning methods for creating lead time prediction models. We test our approach

using historical data of a global equipment manufacturer. In a numerical analysis

the calculated plan lead times are over 30% more accurate than current plan lead

times in terms of mean-squared-error (MSE). This increased accuracy of plan lead

times reduces inventory investment by approximately 7%.

6
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2.1 Introduction

Supply chain management has become an integral factor in competitive strategy to

enhance organizational productivity and profitability (Li et al. 2006). Considerable

research and effort have been devoted to formulating optimization methods that

require master data to achieve high quality results. Maintenance of master data

is a time-consuming, tedious and error prone task since the data can be volatile,

ambiguous, and influenced by factors outside the company’s scope (Escudero et al.

1999).

Artificial intelligence (AI) technologies have gained prominence in their applica-

tion to business-related problems and have been applied to pattern recognition,

inference and learning from experience (Brynjolfsson and McAfee 2017). In supply

chain management, AI applications have been developed and deployed to e.g.,

inventory control and planning, transportation network planning, and purchasing

and supply management (Min 2010).

This study is motivated by a problem faced by a global equipment manufacturer

which we refer to as “the company”. The company has annual sales of several

billion euros and operates world-wide. To provide maintenance and repair services

for specialized equipment, the service department holds spare parts in stock. While

some stock-keeping-units (SKU) are produced internally, many are purchased

from external suppliers with different lead times. To coordinate inventory levels

across multiple levels in their supply chain, the company employs optimization

methods for determining inventory control parameters, that is re-order points,

base-stock levels and order quantities. The calculation of these parameters relies

on plan lead times that are retrieved from their enterprise resource planning (ERP)

system. Due to inaccurate plan lead times of some SKUs, many inventory control

parameters are sub-optimal, resulting in lower service levels or higher inventory

7
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than optimal.

In this paper, we address plan lead times and analyze how well their accuracy can

be improved by machine learning. We propose a method to derive plan lead times

with machine learning and compare the performance of three different machine

learning regression algorithms: linear regression, random forests, and gradient

boosting. We benchmark their performance with classical statistical approaches,

that is single-exponential-smoothing (SES) and the historical average, as well as

the current plan lead times from the company’s ERP system.

Our results show that plan lead times estimated with machine learning predict

lead times more accurately than currently employed plan lead times. The best

performing machine learning model improves lead time accuracy in terms of MSE

by over 30% compared to current plan lead times. We also analyze the accuracy

of our method for SKUs with respect to their procurement frequency and we find

that our approach offers significant gains even for newly sourced SKUs. For very

frequently procured SKUs, our approach still offers substantial gains in accuracy

compared to classical statistical measures, but the difference is smaller than for

infrequently procured SKUs.

To quantify the expected business benefits from improved plan lead times, we

conducted an inventory simulation on historical data. The results from the

simulation show that inventory holding can be reduced by approximately 10%

while maintaining the same service level. The remainder of this paper is structured

as follows. In Section 2.2, we review the relevant literature on lead time prediction.

In Section 2.3, we outline the problem and identify requirements for improving

plan lead times with machine learning. In Section 2.4, we present our method

of both supervised and unsupervised learning. In Section 2.5, we examine the

economic implications of improved plan lead times and present numerical results.

In Section 2.6, we derive practical implications, outline limitations and conclude.

8
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2.2 Literature review

Lead times are an important parameter in inventory optimization, extensively

discussed in literature (Muthuraman et al. 2015, Silver et al. 2016, Wang 2012).

However, the literature has paid little attention to analyzing lead time accuracy

and predicting lead times, especially in the context of inventory planning and

optimization.

In practice, plan lead times are often derived from supply chain contracts, employee

experience, or computed from historical data (Grout and Christy 1993, Lawrenson

1986, Urban 2009, Lingitz et al. 2018). In some papers, lead times are predicted

but not for stock replenishment. Berlec et al. (2008) examine how to accurately

predict product delivery times, a critical factor in effective contract negotiations.

Their study focuses on identifying commitment-worthy lead times for customers,

ensuring that contracts reflect achievable delivery schedules. Similarly, Duffie et al.

(2017) and Yang and Geunes (2007) explore aspects of customer lead time within

contractual contexts, they do not specifically address its prediction for inventory

replenishment.

Some recent studies have made promising strides in the field of lead time predic-

tion through analytics. While these explorations are noteworthy, they present

opportunities for further refinement and validation within the peer-reviewed schol-

arly community. Banerjee et al. (2015) combine matrix gamma distribution and

step-wise linear regression to predict lead times. Liu et al. (2018) and de Oliveira

et al. (2021) employ regression models and compare various machine learning

techniques, demonstrating high accuracy in predicting supplier lead times. How-

ever, these studies do not address the unique challenges in inventory management

posed by spare parts, which are seldom re-ordered, leading to scarcity in historical

data at the SKU level. These studies also neither address implementation of the
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approaches nor the financial implications of implementing such predictive models.

To address these gaps, our research leverages machine learning for lead time

prediction. Insights from studies in related domains, such as transportation

(Hofleitner et al. 2012, Choi et al. 2016, Barbour et al. 2018) and manufacturing

(Lingitz et al. 2018, Burggräf et al. 2020, Bender and Ovtcharova 2021), indicate

the effectiveness of ensemble decision tree models. Specifically, the studies by

Oeztürk et al. (2006), Lingitz et al. (2018), Gyulai et al. (2018) and Bender and

Ovtcharova (2021) have consistently demonstrated the superior performance of

ensemble decision tree models such as random forest and gradient boosting in

predicting various lead times.

While the existing literature offers insights into prediction methodologies, several

open questions remain regarding how these predictions can be leveraged to derive

accurate plan lead times for inventory control. Existing research focuses on pre-

dicting lead times at the individual purchase order level, whereas inventory control

requires a lead time parameter to estimate the lead time demand distribution

to compute base stock levels, safety stock or reorder points. This gap between

order-level lead time predictions and the need for suitable parameters for inventory

management is addressed in this paper.

Moreover, while the literature addresses how lead time variability impacts base

stock levels and inventory investments, it is typically assumed that the lead time

distribution is already known or can be estimated from historical data. This

assumption is particularly problematic for spare parts, where data is often sparse,

making it difficult to estimate moments from historical observations.

Building on existing research in lead time prediction, we extend the literature by

examining how varying SKU order frequencies affect bias in predictive models.

The inherent bias introduced by SKU order frequency discrepancies presents a

key challenge in procurement operations. Frequently ordered SKUs generate

10
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extensive historical data, allowing for higher prediction accuracy in machine

learning models. Conversely, infrequently ordered SKUs have sparse historical

data, leading to greater uncertainty in lead time predictions. This imbalance

reflects the operational nature of procurement systems, where demand varies

widely among SKUs. We address this challenge through a comprehensive approach

combining feature engineering techniques and systematic evaluation of balancing

methods for regression tasks.

Building on these findings, our analysis focuses on three machine learning models:

linear regression, random forest, and gradient boosting (Weisberg 2005, Breiman

2001, Friedman 2002). By applying these models to predict supplier lead times

accurately, we aim to develop a framework that not only enhances inventory

planning and optimization but also addresses the unique challenges posed by spare

parts, thus contributing significantly to the existing body of knowledge in the

field.

2.3 Problem description

To offer repair and maintenance services to its customers, the company operates a

warehouse network for its spare parts. To efficiently manage inventories, the service

division of the company regularly optimizes its inventory control parameters (such

as re-order points and base-stock levels) under service-level constraints. Due to

inaccurate lead time parameters, inventory levels have been sub-optimal.

When analyzing the historical lead times, we observe a high dispersion. Figure

2.1 provides some information on lead times at the company. This data and

other data of the company had to be sanitized by the company’s request, but the

general insights and relative performance data that we report are not affected by

the sanitation. Figure 2.1(a) shows the lead time distribution of all SKUs. We

11
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Figure 2.1: Plan and actual lead time characteristics of all purchase orders
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can see that the distribution is highly skewed with a long right tail. Figure 2.1(b)

plots order frequencies against procurement lead times. While procurements

with longer lead times generally belong to SKUs with lower order frequencies, no

strong relationship exists between these variables. This is evidenced by a single

SKU ordered approximately 280 times spanning lead times from 20 to 170 days.

Figure 2.1(c) shows the accuracy of current plan lead times. We can see that

the deviations from the planned lead times occur with similar magnitude in both

directions. Figure 2.1(d) shows the order frequency of all SKUs. We find a highly

skewed number of purchase orders per SKU. While a few SKUs are ordered at a

high frequency, the majority of SKUs are ordered infrequently.

Plan lead times are maintained as master data. These plan lead times are static

and are rarely updated. The vendor management and the inventory management

teams manage and maintain the plan lead times on the basis of the contractually

agreed lead times. For most SKUs, the plan lead time is agreed upon with the

individual supplier. For the remaining SKUs, the plan lead times are generated
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by calculating the historical average lead times of the SKU. Considering how

infrequently most SKUs are procured, estimates based solely on historical lead

time data (interpolation) are limited by the available observations. Together with

experts from the company, we discussed which data from their ERP might contain

causal information about lead times. After this qualitative approach, we queried

operational attributes from the ERP system. We worked with two different data

sources: SKU master data and transactional purchase order data.

2.4 Methodology for accurate plan lead time

prediction

Our methodology is structured into three fundamental stages. The first stage

involves a rigorous data preparation process. We briefly touch our cleaning

and merging process of the raw data sets, ensuring the integrity of the data.

Subsequently, we conduct an insightful initial analysis to identify features with

potential significance for our predictive models. The second stage encompasses

feature engineering. This step is dedicated to the creation and transformation of

features to improve the performance of the applied machine learning techniques.

In the final stage we build upon the prepared data set and apply machine learning

algorithms to refine our predictive models. We define robust evaluation techniques,

serving as benchmarks for comparing and selecting the most effective models.

Through regularization and hyper-parameter optimization, we tailor the models

to predict plan lead times accurately.
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2.4.1 Data preparation and exploratory analysis

We work with two different data sources: SKU master data and transactional

purchase order data. SKU master data contain data such as the supplier from

which the SKU is sourced, the country it is sourced from, and the current plan

lead time. Transactional purchase data contain information on purchased SKUs

over four years (2018 - 2022), including the request and delivery date and the plan

lead time at the time when the SKU was ordered. Therefore, this data set holds

information on how master data, such as plan lead time, has changed over time.

Most pre-processing of our data consisted of storing information as correct data

types and identifying SKUs with missing entries. Since we could not fix missing

values, these SKUs representing less then 2% of the total data set were dropped.

An analysis of categorical variables reveals that a large share of purchase orders is

sourced from the country in which the global warehouse is located (Figure 2.11a).

We also observe countries of origin with only few purchase orders and therefore

we clustered countries from the same continent with less than 1% of the order

volume. The remaining categorical variables seem plausible and do not require

further processing.

While assessing the numerical features of our data sets, we observe some extreme

outliers for the variable’s valuation price and purchase order quantity. We decide

to winsorize them based on Tukey’s rule of thumb (Tukey 1992). This method

is widely used in statistical analysis (Carling 2000, Wiley and Wiley 2019) and

applied in machine learning to ensure models account for all data points while

mitigating the impact of extremes, where models benefit from capturing the full

range of data without being skewed by extremes. It identifies outlier values based

on the inter-quartile range (IQR). Corresponding outliers are truncated and set

to a constant value equal to the IQR times a factor, which, following Tukey’s rule,
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Figure 2.2: Lead time volatility over time
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Table 2.1: Pre-processed features

Column Data type Training set statistics Test set statistics

Purchase order Category Unique: 144,059 Unique: 15,989
SKU description String Unique: 16,090 Unique: 7,667
SKU ID Category Unique: 16,090 Unique: 7,667
Supplier ID Category Unique: 331 Unique: 246
Business unit Category Unique: 12 Unique: 12
Business line Category Unique: 13 Unique: 13
Business type Category Unique: 2 Unique: 2
Business area Category Unique: 5 Unique: 5
Criticality Category Unique: 3 Unique: 3
ABC / XYZ Category Unique: 9 Unique: 9
Country code Category Unique: 11 Unique: 11
Requested in time Boolean Y (27 %) N (73 %) Y (36 %) N (66 %)
Repairable part Boolean Y (4 %) N (96 %) Y (4 %) N (96 %)
Manual correction Boolean Y (2 %) N (98 %) Y (1 %) N (99 %)
Long tail lead time Boolean Y (6 %) N (94 %) Y (8 %) N (92 %)
Valuation price Float µ: 331.17 σ: 571.21 µ: 335.41 σ: 565.82
Order quantity Integer µ: 9.31 σ: 13.73 µ: 11.38 σ: 15.35
Current plan lead time Integer µ: 48.32 σ: 39.16 µ: 54.14 σ: 41.21
End of support (days) Integer µ: 3,527.19 σ: 571.21 µ: 3,546.50 σ: 535.16

Lead time Integer µ: 49.37 σ: 39.16 µ: 56.04 σ: 44.60

we set to 1.5. For linear regression, we normalize numerical data by re-scaling

features to the range of zero to one. We do not normalize the numerical data for

random forest and gradient boosting, as tree based models do not require feature

scaling (Brownlee 2020).

Despite initial concerns about the potential impact of COVID-19 on lead-time

volatility, our analysis did not uncover any significant fluctuations or patterns in

the data, as illustrated in Figure 2.2. The lead times remain relatively stable over
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the observed period, with no extreme variances that would necessitate adjustments

to the data set.

Our final data set includes 160,048 purchase orders across 17,728 SKUs, which are

used for model training and testing (cf. Table 2.1). For performance evaluation,

we implement a fixed origin evaluation procedure, splitting the data into a training

set and a test set (Tashman 2000). The first 42 months of data comprise the

training set, while the final six months, selected to coincide with the company’s

semi-annual review period, form the test set.

To validate that the data of the training set do not deviate heavily from the test

set, we compare both sets in Table 2.1. Key statistics of all features for each set

indicate that both share similar characteristics.

Although the overall lead time volatility remains relatively consistent over time, we

observe an increase of 6.67 days in average lead times compared to the training set.

This shift does not indicate a broader pattern but rather reflects normal operational

variations. We explored various splitting points as suggested by Hyndman and

Athanasopoulos (2018), but ultimately, we chose the above mentioned split to

maintain sufficient observations. We exercise the train-test split at this point to

ensure that no information from the test set is used for feature engineering.

2.4.2 Feature engineering

We next present feature engineering techniques to extract meaningful information

from the existing data set and to transform this information so that machine

learning models can process it.

In our data set, we have short descriptions of the SKUs. We anticipate that

our models can learn from other SKUs with similar lead times. For example,

electronic parts with a similar description of “8 GB DDR4 RAM” and “6 GB
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DDR4 Memory” can have similar lead times.

Strings cannot be interpreted by machine learning algorithms and we must convert

them into ratio scale numeric representations that machine learning algorithms

can process. We use KNN-regression to identify similar SKUs from the same

supplier based on their description (unsupervised learning). For each SKU, we

calculate a measure of lead time central tendency from its similar SKUs and use

it as a feature for the machine learning algorithm.

Before starting with feature engineering, we have to pre-process some data. Be-

cause the SKU descriptions are not very extensive, most data cleaning, like

removing stop words or expanding contractions, is redundant (Webster and Kit

1992). We merely remove extra white spaces, lowercase all characters, and split

the descriptions into single words (tokenization).

Because the SKU descriptions are concise, we use the bag of words count vectorizer,

a vector space representation model for unstructured text (Zhang et al. 2010).

From a total of N SKU descriptions, each SKU description n can be represented

as a set of unique words (tokens) Sn. The corpus is the union from these sets

∪N
n=1Sn. It includes every unique word from each SKU description and a single

part description can be represented as a (1 × ∪N
n=1Sn) vector, where each column

corresponds to a specific word from the corpus. The value of each column is the

frequency of how often that word appears in the description. Table 2.2 illustrates

the concept.

We cluster SKUs which are sourced from the same supplier based on their cosine

similarity. To evaluate if these clusters are meaningful to predict lead times,

we analyze if SKUs from the same group have similar lead times. The part

descriptions of the SKUs shown in Table 2.2, for example, have a cosine similarity

of 0.83. For each SKU, we calculate its average lead time and compare it to the

average of all historical lead times from the SKUs in the same cluster (cf. Figure

17



Chapter 2. Lead time prediction

Figure 2.3: Creation of similarity feature
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Table 2.2: Example count vectorization

Word counts

SKU Description 8 16 GB DDR4 RAM Memory

00001 8 GB DDR4 RAM 1 0 1 1 1 0
00002 16 GB DDR4 Memory 0 1 1 1 0 1

2.3(b)). We see that the average lead time of an SKU correlates with the average

lead time of the SKUs from the same group. Therefore, we add the average lead

time from the clustered SKUs as an additional feature. For SKUs which are not in

any cluster, we take their average historical lead time. For those SKUs that have

not been procured before we take the average lead times from the corresponding

supplier.

As shown in Figure 2.1(a), the distribution of the target variable (lead time)

is skewed, indicating an imbalance with a long tail extending towards longer

lead times. To address this, we explored various balancing techniques such as

random over- and under-sampling, as well as synthetic minority oversampling for

regression, which have been proposed for handling imbalanced regression tasks

(Branco et al. 2017, Torgo et al. 2013). In our analysis, these sampling methods
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did not improve results, probably because such techniques are more suited for

contexts where the under-represented numeric value interval is most critical, and

a wrongful prediction can be costly, often at the expense of overall performance

(Torgo et al. 2013).

We conducted a point-biserial correlation analysis, finding a weak but significant

negative correlation r = −0.109, p ≤ 0.001 between lead times and punctuality

(defined as a deviation of ±3 days from the contractually agreed lead time). To

improve the machine learning algorithm’s ability to detect this correlation, we

include a Boolean indicator for long lead times in the training set. We define long

lead times as those in the 95th percentile, corresponding to a value of 119 days.

This threshold represents the minority class and aligns with the typical range for

rare events reported in the literature (Torgo et al. 2013).

As an additional feature, we compute a measure of supplier performance according

to the business rules applied at the company. At the company, the supplier

performance is measured as the share of orders delivered in time compared to all

orders placed at the supplier. We first compute this measure for each supplier

in the training set. Afterwards, we append this measure to the corresponding

supplier in the test set. Some suppliers included in the test set do not appear in

the training set. For those, we take the average supplier performance across all

suppliers in the training set to complete the records.

As in most machine learning applications, the target variable is influenced by

categorical (nominal scale) features. One-hot encoding, the most widely used

coding scheme (Rodríguez et al. 2018), but in our case leads to undesirable

sparsity in the data, especially with numerous categories such as the supplier

ID (Gupta and Asha 2020, Prokhorenkova et al. 2017). To address this, we

implement multiple Bayesian encoding techniques: target encoder, polynomial

encoder, helmert encoder, james-stein encoder, m-estimate encoder, weight of

19



Chapter 2. Lead time prediction

evidence encoder and catboost encoder – for a full reference, please refer to

Pedregosa et al. (2011) and Prokhorenkova et al. (2017). We choose the one which

performs best in cross-validation, an approach that we cover in the next Section.

2.4.3 Model optimization and evaluation

Informed by our literature review, we train three established machine learning

algorithms to predict lead times: linear regression, random forest, and gradient

boosting. Linear regression serves as our baseline, leveraging its capacity for

modeling relationships between scalar responses and explanatory variables through

a least squares approach (Weisberg 2005). The random forest algorithm, aggregates

predictions from a multitude of decision trees trained in parallel on random data

subsets to enhance predictive accuracy and mitigate over-fitting (Breiman 2001).

Gradient boosting constructs an additive model in a forward stage-wise fashion,

and is particularly adept at addressing the residuals of preceding trees, sharpening

accuracy on more complex or noisy data sets (Friedman 2002).

Our primary performance metric is the MSE as the performance of an inventory

control system heavily depends on achieving a low MSE in lead time demand fore-

casts (Syntetos et al. 2009). The MSE penalizes large deviations from observations

disproportionately compared to minor deviations.

However, we recognize that the MSE can be challenging to interpret due to its

dependence on the scale of lead time, especially when assessments are conducted

across various SKUs. To address this, we also report the mean-absolute-percentage-

error (MAPE), a scale-free metric, which prevents high or low performance in

terms of MSE from being disproportionately influenced by a few SKUs. In addition

to MSE and MAPE, we also evaluate the bias (mean forecast error). Evaluating

bias is crucial because even with high accuracy, a model that consistently over- or
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underestimates can lead to poor inventory performance.

As discussed in Section 2.3, the procurement frequency of SKUs in our dataset

is highly skewed, potentially leading to bias for infrequently ordered items. To

address this, we explored balancing techniques such as minority over-sampling

(OS) and majority under-sampling (US), as well as sample weighting based on

the inverse of order frequency. These methods aimed to ensure a more balanced

representation of SKUs and improve the model’s ability to generalize across both

frequently and infrequently ordered items. However, our results indicated that

these techniques did not consistently improve model performance or significantly

reduce bias. Therefore, we do not use these methods in the main analysis. Detailed

results from the experiments are provided in Table EC.2 of the e-companion for

reference and transparency.

To determine the effectiveness of these techniques, as well as to optimize hyper-

parameters and perform feature elimination, we calibrate our models using a

cross-validation procedure based on a rolling forecasting origin, applied to the

training data (Hyndman 2014). This technique takes into account the temporal

nature of our data. The process involves dividing the training data set into several

subsets, or ’folds,’ considering the sequential order of the data. During each

iteration, one fold is reserved for validation, while the remaining folds are used for

training the model. This sequential approach ensures that the model is trained

on past data and tested on future data. For our analysis, we implement the

commonly used k = 5 folds.

In the initial configuration, we evaluate a base machine learning model, utilizing

all available features and default hyper-parameters. This configuration serves

as a benchmark for assessing model performance. To improve the model, we

then perform hyper-parameter tuning through a grid search in a cross-validation

framework, optimizing the model’s performance with the full feature set (Kuhn
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Figure 2.4: Cross-validation results of reverse-feature elimination with hyper-parameter tuning
process
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and Johnson 2019).

For regularization, we use the recursive feature elimination method (Athey and

Imbens 2019). In an iterative process, the models are trained on the full feature set.

In each iteration, the one feature with the lowest importance score is eliminated.

This step is repeated until all but one features have been removed. In order to

find appropriate hyper-parameter values we use a grid search approach after every

feature elimination round. The grid design includes 100 parameter combinations

(Santner et al. 2003). For our final model we choose the feature sub-set and

hyper-parameter configuration that minimizes the MSE averaged over the five

folds (cf. Figure 2.4). A summary for each algorithm of the included features, as

well as hyper-parameters and their optimal values can be found in Table 2.3 of

the appendix.

To estimate plan lead times, we need to derive a representative purchase order

22



Chapter 2. Lead time prediction

from historical purchase orders for each SKU. We pass the representative purchase

order’s feature set into our trained machine learning model and use the response

value as new plan lead times. The approach is rather trivial: To calculate a

representative purchase based on information from the train-set, we take averages

for the numerical values. For categorical values we take the most frequent value.

2.5 Numerical results

2.5.1 Prediction accuracy

We analyze the accuracy of our models in predicting purchase order lead times for

our test set. 490 SKUs were newly introduced, for which traditional forecasting

techniques like SES can not be applied due to the absence of historical data. Figure

2.5 illustrates the prediction errors for different lead time forecasting methods.

While the top graphs show the MSE, the graphs in the middle show the MAPE,

and finally the bottom graphs show the bias. The metrics for the three graphs on

the left were calculated for all 7,667 SKUs and the metrics for the graphs on the

right were calculated for the subset of 7,177 SKUs for which historical data exists.

To analyze our numerical results, we first focus on MSE for SKUs with demand

in the training set, as shown in Figure 2.5(b). The data indicates that algorithms,

in general, provide more accurate lead time predictions than those from the

ERP system. In bench-marking classical methods against regression methods,

the latter demonstrate improved MSE outcomes compared to methods such as

SES and historical averages. SES and historical averages perform similarly. The

inclusion of additional features in regression models appears to contribute to their

enhanced predictive performance. Within the category of regression models, it is

the machine learning models, gradient boosting and random forest, that further
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Figure 2.5: Accuracy of different potential plan lead times
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enhance the predictive accuracy. Within this subset, random forest stands out,

improving MSE by 34.84% over current ERP plan lead times, marking a significant

improvement in forecast accuracy.

After confirming the effectiveness of the random forest model in terms of MSE for

SKUs with demand in the training set, we examine the other graphs for consistent

patterns. Upon extending the analysis to all SKUs as shown in Figure 2.5(a),

consistency in algorithmic performance is observed even when evaluating SKUs
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without demand in the training set, with the random forest maintaining its lead

in predictive accuracy. A similar improvement is observed in Figures 2.5(c) and

2.5(d). The random forest model not only lowers MSE but also reduces MAPE by

2.62 and 3.11 percentage points, respectively, which corresponds to improvements

of 8.36% and 9.94%. These reductions underscore the model’s increased predictive

accuracy, confirming that the improvements are not disproportionately affected

by outliers.

Continuing the analysis, we observe that both historical averages and SES exhibit

a notable negative bias, as shown in Figure 2.5(f), aligning with expectations

given the approximate 6-day shift in average lead times between the training and

test sets (cf. Section 2.4.1). These methods inherently lack the capability to

adapt to future developments. Consequently, their performance during inference

is suboptimal. In contrast, current plan lead times (ERP) incorporate some level

of foresight by reflecting temporal adjustments made by planners or adjustments

derived from contractual obligations. This foresight allows for the anticipation

of potential shifts. However, these plan lead times systematically underestimate

actual lead times, as shown in Figures 2.5(e) and 2.5(f), indicating a persistent

negative bias.

Regression models, particularly machine learning approaches like gradient boosting

and random forest, are designed to identify and adjust for underlying data patterns.

This capability enables them to effectively “debias” their predictions, as evidenced

by the minimal bias observed even amidst slight shifts between training and test

data. The high accuracy and low bias exhibited by these models demonstrate

their robustness and their ability to generalize effectively to new data.

By evaluating model performance in relation to the order frequency in the training

set, we gain insights into the reliability of our predictive methods for SKUs

with varying levels of historical data. Figure 2.6 presents the performance of
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Figure 2.6: Accuracy of different potential plan lead times relative to order frequency
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different forecasting methods against the procurement frequency of SKUs from the

training set. The frequency categories range from “ new ”, indicating no historical

procurement data in the train-set, to “monthly”, indicating frequent procurement.

The graph plots the performance of our best performing machine learning model

(random forest), current plan lead times (ERP), as well as conventional statistical

methods (SES and historical averages). It illustrates a trend towards improved

performance as the procurement frequency increases, signifying better accuracy

with more data.

Notably, the random forest model consistently outperforms both the current plan

lead times and classical statistical measures across all performance measures and

almost all frequency categories. For instance, for new SKUs our method delivers an
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Figure 2.7: Feature importance
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MSE roughly 25% lower than that of the current plan lead times. This significant

reduction in error is indicative of the robustness of our method, particularly for

SKUs without prior order history.

To generate some insights into how the features contribute to the prediction, we

show the feature importance for random forest and gradient boosting in Figure 2.7.

It becomes evident that the current plan lead time is a dominant feature, suggesting

that the models heavily utilize this information to refine their predictions.

However, the significance of the “Long tail lead time”, “Cluster feature” and the

advanced encoding of “Part ID” and “Supplier ID” emphasize the critical role of

feature engineering in enhancing model performance. It indicates that the models

are not solely reliant on current lead time parameters and historical lead times

but also on the nuanced interplay of SKU characteristics. These features capture

underlying patterns and similarities across SKUs that are otherwise not directly

observable, thus providing powerful predictors that complement and enhance the

historical data. Their substantial role in both models underscores the effectiveness

of our feature engineering process, greatly enhancing the model’s ability to forecast
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lead times accurately.

In conclusion, the findings suggest that machine learning regression models,

particularly the random forest, offer substantial improvements over traditional

statistical methods and current ERP planning estimates in predicting lead times.

2.5.2 Inventory performance

To quantify the expected business benefits of increased plan lead time accuracy

we conduct a simulation study. We evaluate how the more accurate plan lead

times also improve the company’s inventory performance. In our simulation, we

compare how inventory levels evolve, using (1) the current plan lead times, and

(2) the improved plan lead times. We use actual historical lead times for our

benchmark. Our purchase orders hold information on when replenishment orders

were submitted and when they arrived. We can simulate a realistic inventory

development on an SKU level by modelling a periodic review base-stock policy

with base-stock level S (Silver et al. 2016). This inventory control policy is applied

in many real-world spare parts inventory systems (Cavalieri et al. 2008, Boylan and

Syntetos 2010, Syntetos et al. 2012, Wang 2012) and also used by the company.

The intraperiod timing assumptions for the base-stock policy are as follows: Each

SKU is reviewed daily, and if the inventory position is below the base-stock

level S, a corresponding replenishment order is submitted to the supplier. After

submitting the replenishment order, previous replenishment orders may arrive

with lead times according to historical data. Subsequently, potential back-orders

are fulfilled. Then demands dt arrive and are either fulfilled or back-ordered. We

assume that lead times and demands are independent from each other.

To determine the appropriate base-stock level S that meets the target β service

level, the model must account for uncertainties in both demand and lead time.
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Traditionally, this uncertainty is addressed by modeling the shortfall, which

includes variability in order arrival sequences. In the presence of stochastic lead

times, order crossover can occur, where orders are received in a different sequence

than they were placed. This may result in higher inventory levels when earlier

orders arrive. As reported by Robinson et al. (2001) neglecting order crossover

under order-up-to inventory policies can lead to significantly higher inventory costs.

However, we do not consider the effect of order crossover due to its complexity,

its limited relevance to our primary objectives, and its low occurrence rate in our

data set (0.18% of all purchase orders). Most SKUs are sourced from a single

supplier with long intervals between orders relative to the variability in lead time.

Therefore, we use the lead time demand distribution to calculate the base-stock

level S∗. Lead time demand describes the cumulative demand in the risk period

with the duration of the lead time plus the review interval LTD = ∑L+1
t=1 dt.

Employing a base-stock policy, our objective is to ensure that a certain percentage

of lead time demand is satisfied from stock (β service level). To determine the

appropriate base-stock level S a probability function of lead time demand exceeding

S is required. xx For fast-moving items, the assumption of normally distributed

lead time demand is typically reasonable. However, our SKUs often exhibit

intermittent demand patterns that the normal distribution may not represent.

This is almost invariably the case for spare parts (Turrini and Meissner 2019). For

slow-moving items the poisson distribution typically offers a good fit for the arrival

of spare part demand (Silver et al. 1998). For demands that are not unit-sized but

of constant size the resulting distribution of demand per period can be modelled

by a “package poisson” distribution (Ritchie and Kingsman 1985). If demand

size is not constant, it is reasonable to assume that demand arrivals are poisson

distributed, and the order size follows a logarithmic distribution. In such cases,

total demand is negative binomial distributed over lead time (Quenouille 1949).

For our simulation, we use negative binomial distributions to model our spare part
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demand, noting that the poisson distribution is a special case of this distribution.

To compute the moments of the distributions, it is necessary to forecast both lead

time and demand. We utilize the predicted lead times to estimate the average

lead time, denoted as µL. To quantify lead time uncertainty, we employ the

root-mean-squared-error (RMSE) as an estimator for the standard deviation of

lead time, denoted as σL, following the methodology suggested by Barrow (2016).

Expected demand, µD, and demand variance, σ2
D, are derived from the purchase

order data within the training dataset.

The moments of the lead time demand distribution are calculated using established

formulas for the mean and variance of the sum of a random number of random

variables µLT D = µD · µLT and σ2
LT D = µLT σ2

D + µ2
Dσ2

LT (Zipkin 2000, p. 285).

To determine the appropriate base-stock level, we aim to ensure that the expected

back-orders during a replenishment cycle do not exceed a specified fraction of

demand within the same cycle. This objective is formalized through the following

optimization problem (Sieke et al. 2012):

min S

s.t.
 ∞∑

y=S+1
(y − S) · fLT +R(y) −

∞∑
y=S+1

(y − S) · fLT (y)
 ≤ (1 − β)µR

(2.1)

Here, fLT +R and fLT are the demand distributions over lead time plus review

period, and lead time, respectively.

We use S∗
ML to refer to the base-stock level based on the plan lead time derived

from our proposed machine learning method, and S∗
ERP to refer to the base-stock

level based on the current plan lead time.

For our simulation, the initial inventory position starts at the respective base-

stock level S∗
ML or S∗

ERP . Assessing inventory performance right away might be
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Figure 2.8: Simulation results
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unrepresentative, as the system has not had time to settle into its steady-state.

Therefore, we do not measure inventory performance for the duration of the

training set but only evaluate on the test set.

The amount of capital lockup has been scaled linearly in order to not reveal

information about the company. Figure 2.8 summarizes our simulation results.

The trade-off curve shows the capital lockup for a given realized service level.

The grey curve shows inventory performance based on base-stock levels S∗
ERP (β),

while the black curve describes inventory performance based on base-stock levels

S∗
ML (β).

The black curve is constantly below the grey curve, implying that compared to

the current plan lean times, our approach leads to stock levels that achieve higher

service levels while having the same capital lockup. To derive some financial

implications of our proposed method, we investigate inventory performance for

an achieved 95% service level. We find that to attain the targeted service level,

base-stock levels S∗
ML require roughly 7% less capital than base-stock levels S∗

ERP .
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2.6 Discussion

2.6.1 Implications

The implications that we derive from our results provide recommendations for

implementing lead time prediction approaches with machine learning and how

they can be used in practice to exploit potential benefits.

Effective feature engineering can provide significant benefits. In our spare parts

setting, data on SKU level is often limited. We successfully develop a text

classification algorithm to incorporate information from similar SKUs based on

their descriptions. Additionally, we enrich our data set with general information

on supplier performance. State-of-the-art algorithms allow us to train our models

on sparse categorical features. While conducting our study, we have found that

there is a relationship between the extent of information extraction from the

available data and the accuracy of our models. The feature importance analysis in

Section 2.4.2 has clearly indicated that the additional features derived from feature

engineering significantly contribute to accuracy improvements for all machine

learning models we investigate.

Machine learning enables a more accurate prediction of lead time solely based on

observed purchase orders. There are very few studies attempting to predict lead

times solely based on the limited information available at a company. Companies

often depend on (1) lead times specified in supply contracts, (2) employees’

experience, or (3) average values based on historical data. We have seen that (1)

lead times specified in supply contracts can significantly deviate from actual lead

times. (2) Relying on expert knowledge can result in predictions being biased by

stock-out aversion. Additionally, by relying on human experience, the company is

exposed to the risk of unique human knowledge leaving the company in employee
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churn. (3) Average values based on historical data have been shown to be limited

by the frequency of observations.

Our results align well with current evidence from an emerging stream of literature

addressing the viability of machine learning applications for lead time prediction.

We contribute to this literature stream by confirming that machine learning

applications can reliably predict lead times with high accuracy. This is an

opportunity for many companies to predict lead times operationally and take

short-term measures. Indications as to whether an order arrives earlier or later

than expected can be used to manage critical inventories tightly.

Plan lead times derived from machine learning are particularly valuable for

procurement structures with large number of different SKUs with only a few

purchase orders each. We have shown that compared to other alternatives, our

method performs best for SKUs that are more frequently procured than once

every half a year. This demonstrates a major advantage of our machine learning

approach to determine plan lead times compared to methods that rely solely on

past data: the data for available SKUs can be exploited to predict lead times

for SKUs with an insufficiently large set of historical data. With increasing

procurement frequency the accuracy of other methods converge, due to many

observations being available from which estimates can be derived.

Plan lead time accuracy improves inventory performance. When lead time is

used in the planning process to set inventory control parameters, increased lead

time accuracy is expected to improve business outcomes. The business benefits

of increased plan lead time accuracy are challenging to quantify since they are

based on adjusted processes to reflect the improved accuracy. Therefore, we

simulated inventory developments based on current and improved plan lead times.

We estimate that for achieving a targeted service level of 95%, our approach is

expected to reduce capital lockup by 7%.
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While the findings in our study are promising, it is important to discuss the

generalizability of these results. Our primary goal is not to identify a universally

superior model but to demonstrate the benefits of applying machine learning

techniques to lead time prediction in contexts characterized by sparse data and

lead time uncertainty, such as spare parts management. A distinct and important

contribution of our paper, compared to the existing literature, is our focus on

predicting the lead time distribution from the supplier’s perspective. Suppliers,

who order from various manufacturers, often have limited information about the

production state of products and manage a wide variety of product types. Our

methodology addresses this complexity by using machine learning to effectively

handle diverse and incomplete data, enabling more accurate predictions of lead

times.

The higher accuracy of the random forest model in our study can be attributed

to its robustness against skewed feature distributions and its ability to handle

complex, non-linear relationships. However, we recognize that these findings may

not directly apply to all contexts. Supply chain environments vary significantly,

with differences in data availability, supplier behavior, and SKU characteristics.

Consequently, no single model is likely to consistently outperform others across

all scenarios. Therefore, while random forest demonstrates high effectiveness in

our setting, we do not claim it will always be the best-performing model.

Our findings emphasize the critical importance of robust feature engineering and

the incorporation of domain-specific knowledge. These elements are likely to be

more decisive in the success of any machine learning model for lead time prediction

than the specific choice of algorithm. The general methodology we use is likely

to yield good results in similar contexts where suppliers face uncertainty due to

diverse products and limited visibility into production processes. This adaptability

underscores the broader applicability of our approach beyond our specific study.
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Our study offers a scalable and solid methodology that can be adapted by re-

searchers and practitioners alike to address the challenge of lead time prediction

in various contexts, particularly those involving spare parts with limited historical

data. As more companies develop in-house data science capabilities, implementing

these advanced techniques becomes increasingly feasible and less resource-intensive.

Although implementing data collection processes and operationalizing machine

learning pipelines may initially seem complex and costly compared to simpler

methods like SES, the significant accuracy improvements demonstrated in this

study make a strong case for the investment.

We have successfully implemented this machine learning tool within a company,

demonstrating its practical applicability and tangible benefits. The long-term cost

savings from more accurate lead time predictions, as evidenced by our simulation,

are likely to outweigh the initial implementation costs. The strategic advantage

gained through improved inventory management and procurement processes

justifies the complexity of the machine learning methods used. This approach

provides a robust framework for companies to enhance operational efficiency and

make informed decisions, thereby transforming how lead time predictions are

handled in practice.

2.6.2 Limitations

In this study, we derived accurate plan lead times for SKUs. These plan lead times

are point estimates of lead time which are used by optimization tools for inventory

planning to set inventory control parameters. While many firms use inventory

management software ignoring lead time uncertainty (Dolgui et al. 2013), lead

time fluctuations strongly degrade the tools’ performance and cause high inventory

costs. Chopra et al. (2004), Song et al. (2010), Babai et al. (2022), as well as

others, have demonstrated the economic implications of lead time uncertainty.
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They have shown the importance of accounting for its effects regardless of the

procedures used to compensate for demand uncertainty.

In addition to our proposed machine learning approach, it’s important to acknowl-

edge that alternative or complementary strategies, such as continuous improvement

methodologies, could be employed to improve plan lead time accuracy. Continu-

ous improvement could involve identifying and focusing on the most critical or

problematic parts and suppliers to either better predict lead times or create robust

processes that can respond to the uncertainty. By integrating such continuous

improvement efforts with machine learning models, companies can potentially

enhance their overall planning accuracy and operational resilience.

In this study, we also illustrate the impact that ill-estimated lead times can have

on inventory performance. Yet, we only cover the forecasting of point estimates

of lead time. Modern optimization tools account for lead time uncertainty and

depend on estimates on the lead time uncertainty, i.e., the variance of the response

value (Cachon and Terwiesch 2008, Song et al. 2010, Silver et al. 2016).

In the future it would be great if the methods we describe in our paper, were used

for non-parametric conditional density estimation (Bertsimas and Kallus 2020,

Dalmasso et al. 2020, Pospisil and Lee 2018). The conditional density estimation

could be used to estimate lead time demand directly fitting into recent research

of Boylan and Babai (2022) and Babai et al. (2022). Their research is dedicated

to estimating lead time demand distributions directly, albeit considering only

univariate lead time samples.

2.6.3 Conclusion

In this study, we addressed the challenge of maintaining inaccurate master data

on which many inventory optimization models rely. We investigated with special

36



Chapter 2. Lead time prediction

regard to plan lead times how well the maintenance of this planning parameter

can be automated by means of machine learning.

We applied unsupervised and supervised machine learning in our lead time predic-

tion approach. Based on natural language processing techniques, we identified

similar SKUs and used this information to generate features for our model. To

derive plan lead times from our machine learning models, we used the features of

representative purchase orders to generate a response value from our model. This

value can be used as plan lead time.

We tested our approach on historical data of a global equipment manufacturer. We

bench-marked the results against current plan lead times from the company as well

as simple statistical measures of central tendency. We found that our approach

significantly increases the accuracy of plan lead times by over 30% compared to

current plan lead times. Simulations have shown that the increased accuracy of

plan lead times reduces capital lockup by approximately 10% while increasing

the likelihood of achieving the targeted service level for a given capital lockup.

This translates into significant cost reduction for inventory-keeping as well as into

reputational benefits due to fewer back-orders. Moreover, we developed a method

to predict lead times for new SKUs, which can be used as decision support for

contract negotiations with the suppliers. With specific regard to plan lead times,

machine learning has proven to be a viable technique for improving the quality of

master data. Thus our method creates tangible and intangible added value by

automating a notoriously tedious and error-prone task.
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Appendix of Chapter 2

2.A Univariate analysis of available features

Figure 2.9: Numerical data
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Figure 2.10: Categorical data
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Figure 2.11: Categorical data (Part 2)
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2.B Summary of tuned models

Table 2.3: Model hyper-parameters and selected features

Model Hyper-parameters Selected features

Gradient boosting
n_estimators: 100
max_depth: 3
max_features: None

max_leaf_nodes: None
min_samples_leaf: 1
min_samples_split: 2

sub_sample: 1
learning_rate: 0.1 18

Random forest
n_estimators: 100
max_depth: None
max_features: 1

max_leaf_nodes: None
min_samples_leaf: 1
min_samples_split: 2

bootstrap: True
cpp_alpha: 0
max_samples: None

16

Linear regression fit_intercept: True positive: False 2
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2.C Summary of model performance

Table 2.4: Model performance overview

train test
All SKUs

(n = 7, 667)
Only SKUs in train set

(n = 7, 177)
n MSE MAPE Bias MSE MAPE Bias MSE MAPE Bias

ERP 1 830.6 39.35% -3.15 932.1 31.34% -4.54 898.7 31.28% -4.51
Averages 1 387.2 28.91% 0.00 - - - 862.2 31.57% -5.09
SES 1 403.3 29.87% -0.15 - - - 876.4 31.99% -5.26
LR∗ 2 484.9 34.00% 1.41 731.5 32.02% -1.71 694.8 31.07% -1.39
Weighted LR 4 492.2 35.62% 0.77 724.0 33.02% -1.98 691.5 32.13% -1.76
LR (US) 4 627.9 37.95% 0.64 720.7 32.67% -2.23 691.0 31.85% -2.09
LR (OS) 16 479.0 34.42% 1.99 788.7 32.89% -1.56 753.7 31.72% -1.24
Gradient boosting∗ 18 413.6 33.29% 1.35 650.9 30.36% -1.24 623.4 29.73% -1.11
Weighted gradient boosting 10 407.1 32.63% 1.07 646.4 29.75% -1.55 620.2 29.13% -1.42
Gradient boosting (US) 10 517.3 35.61% 0.68 646.8 30.23% -1.57 618.8 29.63% -1.47
Gradient boosting (OS) 14 431.1 33.37% 1.80 705.6 30.92% -1.75 677.3 30.07% -1.56
Random forest∗ 12 473.5 33.29% 0.39 618.5 25.24% -1.39 585.6 24.81% -1.32
Weighted random forest 12 504.2 34.52% 0.72 632.6 26.97% -0.77 599.9 26.51% -0.77
Random forest (OS) 18 557.6 36.82% 0.63 663.5 28.71% -0.84 631.0 27.87% -0.87
Random forest (US) 10 573.4 33.06% -0.81 631.5 25.94% -1.43 602.9 25.64% -1.37
∗ Selected in cross-validation

Table 2.5: Simulation results for all methods

Service level Model Capital lockup Capital savings

85% ERP 1,218,123,965.88 € —
SES 1,153,739,599.75 € 5.286%
LR 1,143,935,411.35 € 6.090%
GB 1,141,816,798.08 € 6.264%
RF 1,135,381,412.14 € 6.793%

90% ERP 1,518,342,779.62 € —
SES 1,456,810,798.41 € 4.053%
LR 1,443,757,794.03 € 4.912%
GB 1,442,369,887.88 € 5.004%
RF 1,424,368,535.77 € 6.189%

95% ERP 2,200,420,450.99 € —
SES 2,115,939,863.53 € 3.839%
LR 2,087,833,984.71 € 5.117%
GB 2,070,314,210.50 € 5.913%
RF 2,026,603,605.10 € 7.899%

98% ERP 3,426,263,745.37 € —
SES 3,331,896,626.09 € 2.754%
LR 3,309,870,953.32 € 3.397%
GB 3,254,059,394.89 € 5.026%
RF 3,126,957,703.56 € 8.736%
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Learning lead time demand distri-

butions from sparse data: A condi-

tional density estimation approach
The cumulative distribution function of lead time demand is central to inventory

control applications (Babai et al. 2022). Historically, the inventory control litera-

ture has focused on theoretical lead time demand distributions. Some research has

used non-parametric methods such as bootstrapping, particularly for items with

non-standard demand patterns (Saldanha et al. 2023). However, non-parametric

methods are difficult to apply when demand history is sparse, demand patterns

are lumpy, or lead times are long (Zhou and Viswanathan 2011).

We consider such a setting in the context of spare parts inventory management. We

develop a new non-parametric conditional density estimation approach based on

machine learning that overcomes limitations of existing non-parametric techniques.

To evaluate its performance, we use a periodic review cost model. We benchmark

our method against established parametric and non-parametric alternatives using

historical data for 6,695 SKUs from a global equipment manufacturer. Our results

indicate that the proposed approach can lead to substential cost savings compared

to the alternative approaches.
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3.1 Introduction

Effective inventory management is critical to achieving high part availability at low

inventory costs. Inventory management of spare parts is particularly challenging

and faces unique challenges: demand is typically intermittent, lead times are long

and volatile, and historical data is often sparse. Accurate estimation of lead time

demand distributions allows for well-balanced inventory and service reliability.

Estimating the cumulative distribution function of lead time demand is challenging.

Traditional inventory models often assumes specific probability distributions, such

as the normal or gamma distributions for faster-moving items, and poisson,

compound poisson, negative binomial or stuttering poisson distributions for low

or intermittent demand patterns (Axsäter 2015). Empirical studies, however,

have demonstrated that such parametric distributions frequently fail to accurately

represent real-world lead time demand, particularly for spare parts characterized

with intermittent and volatile demand (Syntetos et al. 2012, Turrini and Meissner

2019). This can lead to solutions resulting in excess inventory and capital lock-up

or in back-orders and thus penalty costs.

The global equipment manufacturer (“company”) we worked with faced this chal-

lenge. The company is a large global manufacturer of highly specialized industrial

equipment, with multi-billion annual revenues and operations across multiple

continents. To support its maintenance and repair services, the company main-

tains an extensive inventory of spare parts, comprising both internally produced

components and externally sourced SKUs from a diverse global supplier network.

The company employs state-of-the-art optimization models that require lead time

and demand distributions to determine reorder points, base-stock levels, and

order quantities. The company found that the underlying assumptions about

lead time demand distributions (e.g. poisson, negative binomial or normal) do
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not appropriately capture their setting. Demand patterns are highly intermittent

and sporadic, and lead times are long. Because of production delays, shipping

disruptions, and supply chain disruptions lead times are quite volatile. Lead time

demands frequently exhibit skewness, multimodality, and other characteristics

not captured by standard demand distributions, leading to suboptimal inventory

decisions.

Given these limitations, non-parametric methods, notably bootstrapping tech-

niques involving resampling historical demand data, may be suitable alternative

approaches (Willemain et al. 2004, Syntetos et al. 2015, Hasni et al. 2019). Boot-

strapping avoids rigid parametric assumptions and directly utilizes historical

observations, making it potentially effective in capturing complex lead time de-

mand patterns. However, despite their practical applications and adoption in

commercial software (Willemain and Smart 2001), bootstrapping methods have

important limitations. They often suffer from high variance and biased tail es-

timates when the sample size is small, which is common for spare parts with

intermittent demand (see, e.g., Efron 1992, Hall 1992).

Recent developments in machine learning offer promising avenues for demand

forecasting, extending beyond simple point predictions to distribution estimations.

Machine learning methods have shown to capture intricate data patterns, by

leveraging cross-learning across similar SKUs (Semenoglou et al. 2021, Makridakis

et al. 2018a). Such cross-learning effects can significantly improve estimation

accuracy. Despite these potential advantages, the application of machine learning

for estimating lead time demand distributions in a multi-period setting, particularly

within the context of intermittent demand typical of spare parts inventories, has

not been addressed in the literature.

Our research addresses this gap by proposing a novel approach combining the

strengths of bootstrapping methods with the capabilities of machine learning-based
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conditional density estimation. Specifically, we use distributional random forests

integrated with bootstrapping to create a robust approach for estimating lead time

demand distributions. The distributional random forest approach leverages cross-

learning among SKUs, enhancing tail estimation accuracy when few historical

data are available.

We also contribute to the literature by empirically validating our approach against

classical parametric and non-parametric distribution-fitting approaches. Our

results indicate substantial improvements offered by our approach, achieving

reductions in inventory costs relative to traditional parametric methods, and

performance superior to traditional bootstrapping techniques, in particular when

back-order penalty costs are high.

The remainder of this paper is structured as follows: Section 3.2 reviews the

literature on lead time demand estimation. Section 3.3 describes the problem

setting and the data employed in our empirical analysis. Section 3.4 details our

approach, its implementation. Section 3.5 presents the data used in our empirical

analysis, describes the benchmark methods, and details the simulation-based

evaluation framework. Section 3.6 presents and analyzes the empirical results.

Finally, Section 3.7 discusses theoretical and practical implications, concludes our

findings, and identifies future research opportunities.

3.2 Literature review

Base-stock is used to buffer against the upper tail of the lead time demand distribu-

tion function; mis-estimation of the distribution therefore results in high inventory

levels or high back-order levels (Axsäter 2015). Estimating this distribution can

be challenging as demand and lead time records are typically limited, irregular,

noisy, and often statistically not well-behaved. Saldanha et al. (2023) categorized
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research for the estimation of lead time demand into two streams of literature –

parametric and non-parametric approaches. In the following review, we provide

an overview of the existing literature before synthesizing the motivation for our

hybrid machine learning and bootstrapping approach.

3.2.1 Parametric approaches

Parametric approaches assume a specific lead time demand distribution and

estimate the parameters of that distribution from historical data. The parametric

stream originates in Fetter and Dalleck (1961) and Hadley and Whitin (1963),

who express lead time demand as the random sum of order sizes that arrive during

a stochastic lead time.

The main attraction of the approach is analytical convenience: solutions can

be directly derived from the distributions. For fast moving items the normality

assumption is often reasonable. For slow-moving or intermittently demanded

items this assumption is generally inappropriate (Syntetos et al. 2011), leading

to systematic inventory errors when normality is imposed (Turrini and Meissner

2019, Tyworth and O’neill 1997, Vernimmen et al. 2008). Therefore, several

alternatives to the normal distribution have been proposed for modeling lead time

demand, including the gamma, erlang, weibull, lognormal, and negative binomial

distributions (Keaton 1995, Turrini and Meissner 2019, Tyworth and O’neill 1997,

Vernimmen et al. 2008, Tadikamalla 1984, Levén and Segerstedt 2004, Shore

1986). For slower-moving demand, the negative binomial (poisson–logarithmic)

and stuttering poisson (poisson–geometric) are often recommended (Axsäter 2015).

However, these approaches share a common limitation: they perform poorly when

the true demand distribution differs significantly from the assumed form, for

instance, when empirical lead time demand shows multi-modality. Large-scale

goodness-of-fit studies suggest that no single distribution consistently fits lead time
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demand across SKUs (Turrini and Meissner 2019, Syntetos et al. 2012). These

studies indicate that standard distributions fail to provide an adequate fit for a

substantial share of demand series, especially when assessed with goodness-of-fit

tests sensitive to inventory-relevant tail behavior.

Parametric models offer analytical simplicity and work well when their assumptions

hold, yet they struggle with multimodality and sparse data. These weaknesses

have motivated distribution-free alternatives.

3.2.2 Non-parametric approaches

To address the limitations of rigid distributional assumptions, a growing body of

research explores non-parametric methods. These approaches do not impose a

specific functional form on lead time demand and are well-suited to spare parts

with erratic or intermittent demand patterns (Saldanha et al. 2023).

A straightforward non-parametric approach is to use the empirical distribution

derived directly from past lead time and demand observations (e.g. Fetter and

Dalleck 1961). While simple, the empirical estimator is sensitive to sampling noise,

particularly when data is limited.

Within the sample average approximation framework, Levi et al. (2007) show that

the empirical solution performs well, if the sample size is large and the target

service level is high. Levi et al. (2015) further show that the required sample size

depends on demand volatility.

To improve robustness in data-scarce environments, resampling techniques such

as bootstrapping have been proposed (Efron and Tibshirani 1986). Bootstrapping

generates pseudo-samples by resampling with replacement from historical data.

This enables estimation of the sampling distribution of key statistics, such as the

critical fractile, and allows for bias correction and confidence interval construction
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(Boylan and Babai 2022).

Several bootstrap variants have been developed for inventory problems. Book-

binder and Lordahl (1989) apply the bootstrap to lead time demand data, arguing

that it handles skewed distributions effectively. However, this requires a sufficient

number of lead time demand observations, which are often unavailable for spare

parts. Moreover, the classical bootstrap appraoch assumes independent and iden-

tically distributed observations (iid). Wang and Rao (1992) address this by fitting

an autoregressive model to daily demand and bootstrapping the residuals. While

this accounts for autocorrelation, it introduces new model assumptions that may

not hold under sparse data.

A two-step bootstrap method has also been proposed for cases where demand

and lead time data are recorded separately: first sampling a lead time, then

resampling the corresponding number of demands (Fricker and Goodhart 2000).

Alternative approaches separately bootstrap inter-demand intervals and demand

sizes (Viswanathan and Zhou 2008, Zhou and Viswanathan 2011) . While this

method works well on simulated data, Zhou and Viswanathan (2011) show that

it underperforms on real-world datasets with limited history, where parametric

methods prove more robust. Huh et al. (2011) propose using the Kaplan–Meier

estimator for censored sales data. This approach tends to struggle under long

lead times and sparse demand.

More recently, a multivariate bootstrap framework has been introduced to accom-

modate stochastic lead times and irregular demand patterns (Saldanha et al. 2023).

However, their experiments show it still requires a fair number of replenishment

cycles to be reliable. As reviewed by Hasni et al. (2019), bootstrapping methods

offer flexibility but often face difficulties when data is sparse or highly volatile –

conditions common in spare parts environments.

A more recent stream of research integrates machine learning with inventory
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models. Ban and Rudin (2019) embed a regularized quantile regression into

the newsvendor cost function and establish finite-sample bounds. Huber et al.

(2019) compare tree ensembles, neural networks, and classical quantile regression,

showing that most of the benefit comes from improved demand prediction. Cao

and Shen (2019) develop a neural network for non-stationary demand quantiles

and demonstrate improved performance in rolling inventory decisions. However,

these methods remain largely confined to the single-period newsvendor setting.

They do not directly address continuous-review inventory models with stochastic

lead times.

Parametric methods are analytically convenient but often misrepresent the irregu-

lar and multimodal nature of lead time demand for spare parts. Non-parametric

approaches, such as bootstrapping, avoid distributional assumptions but struggle

with high variance and unreliable tail estimates when data is sparse. Machine

learning methods offer promising improvements by leveraging patterns across

SKUs, but existing applications focus on point forecasts or single-period quantiles.

A consistent challenge across all approaches is data sparsity at the individual

SKU level. No existing method adequately addresses multi-period distribution

estimation under long and volatile lead times with intermittent demand.

We address this by combining bootstrapping with distributional random forest to

estimate full lead time demand distributions. Our approach learns across SKUs,

remains non-parametric, and improves accuracy in data-scarce environments.

3.3 Problem description

The company is a global manufacturer of highly specialized healthcare equipment,

supplying hospitals and clinical institutions with mission-critical systems. To

support its maintenance operations, the company manages a network of warehouses
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holding tens of thousands of spare parts. These parts are essential to keeping

equipment operational. When service teams are unable to promptly replace

failed components due to stockouts, repair delays occur, and the company incurs

contractual penalty costs.

To mitigate such risks while keeping inventory investment low, the company

regularly optimizes inventory. The objective is to minimize the total expected

cost, which includes both capital-related holding costs and back-order penalty

costs. Central to this optimization is the estimation of the lead time demand

distribution – the probability distribution of cumulative demand over a stochastic

lead time. Inaccurate estimation of this distribution leads to suboptimal decisions:

underestimation results in stockouts and penalty payments, while overestimation

leads to excess inventory and tied-up capital.

While both parametric and bootstrapping approaches provide a means of estimat-

ing the lead time demand distribution, neither method is well suited for reliably

determining base-stock levels under sparse and intermittent demand.

Figure 3.2 shows two lead time demand distributions derived from the same

historical order data for a typical spare part (Table 3.1). The parametric estimate

in Figure 3.2a is based on a fitted negative binomial distribution. To obtain

its moments, separate forecasts were made for demand and lead time, with the

mean and variance of lead time demand computed through convolution of these

forecasts. In contrast, the empirical distribution in Figure 3.2b is constructed by

bootstrapping historical order data directly.
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Table 3.1: Order data

Order date Lead time Demand

2018-10-16 119 7

2019-02-06 119 7

2019-06-18 77 50

2021-07-29 123 17

2023-01-31 108 15

Figure 3.1: Inventory development
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Figure 3.2: Lead time demand distributions under different estimation methods
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(b) Lead time demand sampled via bootstrapping
method

The resulting shapes reflect the challenges imposed with such limitated data. In

five years, only one order resulted in non-zero demand during lead time. This

extreme sparsity, also visible in the inventory development in Figure 3.1, leads the

bootstrapped distribution to concentrate probability mass at a few isolated values.

The parametric distribution, by contrast, is smooth and unimodal – driven more

by model assumptions than actual data.

Estimating lead time demand distributions based on such historical data is difficult.

Parametric methods risk oversmoothing important structural features such as

spikes, mass at zero, or multimodality. Non-parametric methods suffer from high

variance and poor tail estimation under data sparsity, especially problematic when

safety stock is set for percentiles with high penalty costs

This creates a core operational challenge: how can the company estimate realistic
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lead time demand distributions in the presence of sparse, intermittent demand

and volatile lead times?

To address this, we propose a hybrid approach that combines bootstrapping with

distributional random forest. This method leverages shared patterns across similar

SKUs to improve estimation accuracy, particularly in the tails of the distribution.

By integrating machine learning into the estimation process, the approach remains

non-parametric, incorporates cross-sectional information, and is robust to the

limitations of both classical parametric and non-parametric methods.

3.4 Methodology

This Section details the research methodology, commencing with the formal inven-

tory modeling framework employed. It then elaborates on our proposed approach

for lead time demand distribution estimation, which integrates bootstrapping

with distributional random forest. Subsequently, we describe the benchmark para-

metric and non-parametric methods used for comparison. Finally, the evaluation

framework for assessing the performance of these different approaches is presented.

3.4.1 Modeling framework

We consider a single-echelon, periodic review inventory system for managing spare

parts, operating under an average cost criterion. The system is reviewed at the

beginning of each time period t ∈ N. At the start of each period, a replenishment

order placed earlier may arrive. Demand Dt ∈ N0 is then realized, assuming that

demand follows some probability density function Dt ∼ fD(·). Demand not met

from available stock is back-ordered and fulfilled upon receipt of a subsequent

replenishment. We assume that no order crossover is possible, as is rarely the case

52



Chapter 3. Conditional density estimation for lead time demand

in our setting (cf. Section 2.4)

At the end of each period, a replenishment order is placed to restore the inventory

position to a base-stock level S ∈ N0. Orders are subject to a stochastic lead time

L ∈ N with known probability density distribution fL(·) that is independent of

probabilty density function fD(·).

The inventory position at time t is IPt = It − Bt + Ot, where It is the on-hand

inventory, Bt is the back-order level at the beginning of period t, and Ot is the

pipeline inventory. The order quantity Qt placed at the end of period t is given

by Qt = max {0, S − IPt}.

Let DL = ∑L+1
t=1 Dt denote the cumulative demand over the stochastic lead time

L, where L ∼ fL(·). We denote realizations of DL by dℓ ∈ N. The distribution

of DL is induced by the convolution of the lead time distribution fL(·) and the

demand distribution fD(·).

The system incurs linear holding and back-order penalty costs. Let h denote the

per-unit holding cost per period, and b the per-unit back-order cost per period.

The long-run expected cost per period under a given base-stock level S is

C(S) = h · E
[
S − DL

]+
+ b · E

[
DL − S

]+
. (3.1)

The first term represents expected holding costs, while the second term represents

expected back-order costs. The objective is to find the optimal base-stock level

S∗ that minimizes the expected cost:

S∗ = arg min
s∈N

C(s). (3.2)

While the true distribution fDL(·) is unknown, we have access to a dataset DT =

{(xt, dℓ
t)}T

t=1, with observed realizations of lead time demand dℓ
t and corresponding
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covariates in vector xt such as SKU characteristics. These observations are used to

estimate the conditional probability density function fDL|X(dℓ | x), which models

the distribution of lead time demand given item-specific or contextual information.

3.4.2 Solution approach

Inspired by Bertsimas and Kallus (2020), we use machine learning to estimate the

conditional distribution of lead time demand based on contextual features. Let

J denote the set of all SKUs in our study. Our approach combines a temporal

bootstrapping procedure with a distributional random forest to generate empirical

estimates of the conditional probability density function f̂DL
j |X(dℓ|xj,t) for each

SKU j ∈ J . Our model is trained on a dataset containing historical data for

these SKUs across many time periods, enabling the estimation of these distinct

probability functions.

We first construct a pseudo-sample of lead time demand realizations for each

SKU j by applying a non-parametric bootstrapping procedure to its historical

demand time series. Specifically, for each SKU j and each bootstrap iteration

b = 1, . . . , B, we randomly select a start date tb from the historical demand data

of a given SKU. We then draw a lead time realization lj,b from the empirical

distribution of historical lead times observed for SKU j. The corresponding lead

time demand is computed as dℓ
j,b = ∑lj,b

i=0 Dj,tb+i, that is, the sum of daily demands

for SKU j over the sampled lead time lj,b. Each sampled lead time demand

is paired with covariates xj,b describing temporal and contextual features (e.g.,

timing, characteristics specific to SKU j and it’s cluster information), forming an

empirical training set DB =
{(

xj,b, d
(l)
j,b

)
| j ∈ J , b = 1, . . . , B

}
.

Next, we employ the distributional random forest approach as follows: we train

a random forest regressor on DB to model the relationship between the feature
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vectors xb and the corresponding lead time demand realizations dℓ
b (Scornet et al.

2015). At the time of prediction, the forest structure provides a notion of local

similarity between observations: for a new feature vector x, we identify the

set of training observations that fall into the same terminal nodes across the

ensemble. Following a random forest conditional density construction adapted

from Walzner et al. (2025), we use leaf-wise occurrence weights to form a local

empirical distribution. Specifically, let nm(x) denote the terminal node of tree m

to which the feature vector x is assigned, and let Nm(x) be the set of training

samples that fall into terminal node nm(x). The aggregated neighborhood of x is

then given by N (x) = ⋃M
m=1 Nm(x) (Lin and Jeon 2006).

The weight structure induced by the random forest ensemble can be interpreted

as a data-adaptive kernel, which effectively defines a non-parametric estimator

(Scornet 2016). For each observation i ∈ N (x), we compute a weight wi(x) that

reflects how often this observation co-occurs with x in the same terminal node

across the forest, and the number of observations are in that node. Formally, we

define the weight as

wi(x) = 1
M

M∑
m=1

1{i ∈ Nm(x)}
|Nm(x)| , (3.3)

where 1{·} is the indicator function, which evaluates to 1 if the condition inside

the braces is true, and 0 otherwise. In this context, 1{i ∈ Nm(x)} is equal to 1 if

training observation i appears in the same terminal node as x in tree m, and zero

otherwise.

Using these weights, we construct an empirical conditional probability mass func-

tion over the observed lead time demand values in the neighborhood. Specifically,

the estimated probability of observing lead time demand dℓ given feature vector x

is computed as

f̂drf
DL

j |X(dℓ | x) =
∑

i∈{N (x)|dℓ
i=dℓ}

wi(x), (3.4)
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SKU Weight [kg] Country dℓ

A 55 DE 70
B 60 CH 40
C 75 DE 90
D 40 EN 30
A 55 DE 60
E 80 IT 60

S 35 DE 62.5
T 65 DE 67.5

(a) Raw input data DB
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(b) Decision trees based on input features

Sample w(xS) w(xT )

A1 0.25 0.250
A2 0.25 0.250
B 0.00 0.125
C 0.25 0.250
D 0.25 0.000
E 0.00 0.125

(c) Calculated weights wi(x)
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(d) Estimated conditional proabilty density

Figure 3.3: Illustration of conditional distribution estimation with distributional random
forest adapted from Walzner et al. (2025)

where the sum is taken over all training observations i in the neighborhood of x

whose lead time demand value dℓ
i exactly matches dℓ. The total probability over

all possible dℓ values sums to one due to the normalization of the weights.

This approach yields a discrete, data-driven approximation of the conditional

distribution of lead time demand. The resulting density estimate can be directly

inserted into the expected cost function in Equation 3.1 to compute inventory

performance metrics and derive the optimal base-stock level S∗.

Figure 3.3 provides an intuitive illustration of how the distributional random

forest estimates the conditional distribution of lead time demand. In Figure 3.3a,

we see a small dataset where each SKU is described by features such as weight and

country of origin, along with its observed lead time demand dℓ. Two new SKUs,

labeled S and T , are introduced, and we aim to estimate their lead time demand

distribution based on the patterns learned from the existing data. Figure 3.3b
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shows how decision trees split the data based on input features – for example, one

tree splits on whether weight is above 50 kilograms, and the other on whether the

SKU is beeing sourced from Germany (DE). Each tree groups SKUs into leaf nodes

that represent locally similar observations. Figures 3.3c and 3.3d show the result

of this grouping: for a new observation like S or T , we identify which training

samples land in the same leaves, assign weights based on how frequently they

co-occur, and then use those weights to build a weighted empirical distribution

over past demand values.

To make this more concrete, consider the new SKU S. This SKU is assigned to the

same terminal nodes as four training samples: D, A1, A2, and C. Among these,

A1 and A2 are both instances of SKU A and have observed lead time demands

of 70 and 60, respectively; SKU C has an observed lead time demand of 90, and

SKU D of 30. Figure 3.3c shows that each of these four observations receives an

equal weight of 25% when estimating the distribution for SKU S. Consequently,

the estimated probability that the lead time demand of SKU S equals that of SKU

D, namely 30, is 25%. The same applies to each of the other observed demand

values (60, 70, and 90), resulting in a discrete empirical distribution as visualized

in Figure 3.3d.

3.4.3 Benchmark estimators

To assess the performance of our proposed approach, we compare it against two

reference approaches: a non-parametric temporal bootstrap (Saldanha et al. 2023)

and a classical parametric estimator based on separate forecasting of demand and

lead time (Eppen and Martin 1988).

The first benchmark estimates the distribution of lead time demand through

an unconditional temporal bootstrap for each SKU independently. Let {Dt}T
t=1
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denote the historical demand time series for a given SKU, and let {lk}K
k=1 be

the observed lead time realizations with K being the number of obsered lead

times. For each bootstrap iteration b = 1, . . . , B, a calendar date tb ∈ {1, . . . , T}

and a lead time realization lb ∈ {l1, . . . , lK} are sampled independently. The

corresponding lead time demand is computed as dℓ
b = ∑lb

i=0 Dtb+i. The resulting

sample {dℓ
1, . . . , dℓ

B} defines the empirical probability density function

f̂ boot
DL (d) = 1

B

B∑
b=1

1{dℓ
b = d}, (3.5)

which assigns probability mass to previously observed demand totals over randomly

sampled lead time windows.

The second benchmark models demand and lead time as independent random

variables. Demand is assumed to follow a negative binomial distribution, motivated

by compound poisson demand processes in which intermittent arrivals and variable

order sizes lead to negative binomial lead time demand (Quenouille 1949). This

framework has been widely adopted in inventory settings involving spare parts

and slow-moving items (Silver et al. 1998, Ritchie and Kingsman 1985, Prak et al.

2018).

To forecast demand D̂t, we apply Croston’s method (Croston 1972), which sepa-

rately models non-zero demand sizes zt and inter-arrival times pt. This method

is regarded as the standard for intermittent demand forecasting. It is commonly

implemented in commercial forecasting systems and is strongly connected to

inventory control formulations, where it facilitates explicit safety stock calculation

(Willemain et al. 1994, Johnston and Boylan 1996, Levén and Segerstedt 2004,

Hyndman 2008, Syntetos et al. 2015). We also consider the Syntetos–Boylan

Adjustment (SBA), a bias-corrected variant that modifies Croston’s forecast to

reduce systematic overestimation.
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Both Croston and SBA apply SES to non-zero demand sizes zt and inter-arrival

times pt, with forecasts updated only when demand occurs:

ẑt = αzt + (1 − α)ẑt−1, p̂t = αpt + (1 − α)p̂t−1, (3.6)

In Croston’s method, the per-period demand forecast is given by d̂t+1 = ẑt

p̂t
, while

the SBA correction adjusts this to d̂t+1 =
(
1 − α

2

)
ẑt

p̂t
. These forecasts serve as

the mean estimate for the per period demand distribution fD(·). The variance is

estimated using the squared forecast errors V̂[Dt] = 1
n

∑
t(dt − d̂t)2.

Lead time L is modeled as a discrete random variable, independent of period

demand. Since lead time is observed only on delivery days it forms a sparse,

irregular time series. We forecast lead time using SES, which is well-suited to

low-noise, non-seasonal data. Let T denote the set of time periods at which

deliveries occur (i.e., the periods when previously placed orders arrive). Let

{lτ|τ ∈ T } denote the observed lead times corresponding to those delivery periods.

SES is applied only at these points:

l̂τ = αlτ + (1 − α)l̂τ−1, (3.7)

with the forecast held constant between updates l̂t = l̂τ for τi < t < τi+1.

Given the forecasts for demand d̂t and lead time l̂t, and the corresponding squared

forecast errors V̂[Dt], V̂[L], the moments of the lead time demand distribution

are calculated using established formulas for the mean and variance of the sum of

a random number of random variables (Zipkin 2000, p. 285)

µDL = d̂tl̂t, σ2
DL = d̂tl̂t + V̂[Dt]l̂t + d̂t

2 · V̂[L]. (3.8)
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These moments define a negative binomial approximation f̂ par
DL with parameters

r = µ2
DL

σ2
DL − µDL

, p = r

r + µDL

(3.9)

provided σ2
DL > µDL . In the few cases where this condition fails, the variance

is set equal to 1.1 times the mean. Although this may look ad hoc, Sani (1995)

shows that it produces robust results.

3.5 Evaluation procedure

To analyze the performance of the proposed approaches, we evaluate each approach

within a cost-based inventory simulation. The evaluation focuses on inventory

performance across a diverse portfolio of spare parts.

3.5.1 Data description

We use the dataset of Reiners et al. (2025), which consists of transactional purchase

order records and master data from the ERP system of the company. Data spans

from January 2018 to October 2023 and includes 219,985 purchase orders for

17,728 distinct SKUs.

Each transaction captures historical order quantities, realized lead times, valuation

prices, and additional supplier and SKU-level attributes. Table 3.2 provides

an overview of the relevant features used in this study. The final feature set

includes both raw transactional data and engineered variables such as SKU cluster

assignments to support learning across related items.

Details on the cleaning, filtering, and feature engineering steps are documented in

Reiners et al. (2025)
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Table 3.2: Fields used in this study

Field Description

Part ID Internal identifier for each SKU
Order date Purchase order creation date
Order quantity Number of units requested in the order
Lead time Realized procurement lead time in calendar days
Delivery date Date the item was received at the warehouse
Valuation price Unit cost of the item in euros
Supplier ID Internal identifier for the supplier
Supplier country Country of origin of the supplier
Information record ERP-level material–supplier reference
Cluster ID Feature-engineered categorical SKU grouping

3.5.2 Model tuning and forecast optimization

To ensure a fair and meaningful comparison, each estimation method is tuned

and validated using a consistent time-based data split: training data spans from

January 1, 2018 to December 31, 2021; validation is performed from January

1st, 2022 to December 31, 2022; and test performance is evaluated from January

1st, 2023 to October 11, 2023. This split allows model selection based on a

complete seasonal cycle of historical data while maximizing the available training

set. Moreover, it approximately reflects a typical 80/20 train-test split when

training and validation periods are combined, while preserving the temporal

structure essential to time series modeling (Vandeput 2021).

For the proposed distributional random forest approach, model performance is

influenced by the structure of the individual trees in the ensemble. We therefore

tune the forest using 5-fold cross-validation, optimizing the configuration of

hyperparameters (Hastie et al. 2009). To find appropriate hyperparameter values,

we use a grid search approach with a maximum entropy grid design with 100

parameter combinations that fill the defined parameter space (Santner et al. 2003).

These include ensemble parameters (e.g., number of estimators, minimum leaf

size), time-series lags and moving averages, trend and seasonal extraction flags,

categorical encoding schemes, and similarity-based clustering thresholds. We then
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choose the hyperparameter configuration that minimizes the RMSE averaged over

the five folds.

For the parametric benchmark, the smoothing parameters α and β (cf. Equations

3.6, 3.7) in the Croston, SBA and SES methods are tuned via grid search over the

interval [0.05, 0.3], using RMSE on the validation set as the selection criterion. For

each stock keeping unit, the method that achieves the lowest rolling one-step-ahead

squared forecast error on the validation set is retained as the final model.

The bootstrap estimator has few tunable parameters. The number of bootstrap

iterations B is fixed at a large value (e.g., B = 10, 000) to ensure stability of the

empirical distribution. Sampling is restricted to time points that allow full lead

time intervals within the demand history, thereby avoiding truncation artifacts.

A short summary of the hyper-parameters and their optimal values for each

algorithm can be found in Table 4.3.

3.5.3 Simulation framework

We simulate a single-echelon periodic review inventory system using historical

demand and lead time data from the company. For each SKU, we evaluate how the

different estimation methods affect inventory performance when used to determine

base-stock levels.

For each estimation method (distributional random forest, bootstrap, parametric),

we compute the estimated distribution f̂DL(·) for a given SKU and derive the

cost-optimal base-stock level Ŝ by solving the optimization problem in Equation

3.2. Using the actual historical realizations of demand and lead time, we then

simulate inventory operations over an out-of-sample evaluation window as follows:

At the beginning of each period t, the inventory position IPt = It − Bt + Ot
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Table 3.3: Tuned hyperparameters and selected values for each estimator

Method Hyperparameter Tuning range Selected value

Distributional
random forest

Number of trees 50, 100, 200, 300 200
Min samples per leaf 5, 10, 25, 50, 100 5
Bootstrap samples 100, 500, 1000 100
Multivariate True, False True
Lag periods {1}, {1,2}, {1,2,3}, {1,3} {1}
Rolling window periods* {2}, {3}, {2,3} {2,3}
Rolling window function** simple, exponential exponential
Enable trend True, False True
Enable seasonality True, False False
Categorical encoder CatBoost, Target, LOO,

James-Stein
James-Stein

Text similarity threshold 0.5, 0.6, 0.7, 0.8, 0.9 0.6
Minimum cluster size 1, 2, 3, 5, 10, 100 5

Parametric
(SES, Croston, SBA)

Smoothing parameter α [0.05, 0.3] (grid search) chosen per SKU
Smoothing parameter β
(SBA only)

[0.05, 0.3] (grid search) chosen per SKU

Bootstrap estimator Number of bootstrap itera-
tions (B)

Fixed 10,000

Sampling constraint — Full lead time only

* defines window lengths p used to compute static. With p ∈ {2, 3} separate statistics are computed for each p,
using data up to time t−1 only (the target is lagged one step).

** selects the statistic per window. Simple uses the equal–weight mean over the last p values. Exponential
uses an exponentially weighted mean with span p, which maps to α = 2/(p + 1) and weights wk = α(1−α)k−1

1−(1−α)p ,
k = 1, . . . , p.

is reviewed. If IPt < Ŝ, a replenishment order of size Qt = Ŝ − IPt is placed.

Deliveries occur after the realized lead times recorded in the historical data. After

delivery and potential fulfillment of back-orders, demand dt is realized and either

satisfied from inventory or back-ordered. Lead times and demands are treated as

empirically observed and independent.

To account for transient effects, the initial warm-up period is excluded from

evaluation. Cost performance is assessed over the remaining horizon, based on (i)

average on-hand inventory valued at an annual holding cost rate of 10 % of the

SKU’s unit price, (ii) average back-orders valued at a per-unit penalty cost, and

(iii) total average cost as defined in Equation 3.1.
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3.6 Results

This Section presents the empirical results of the simulation study described in

Section 3.4. We evaluate and compare inventory performance across the three lead

time demand estimation methods – parametric, non-parametric bootstrapping,

and the proposed distributional random forest under varying levels of back-order

penalty cost. Figure 3.6 summarizes the main findings in terms of back-order

penalty cost, inventory holding cost and total cost.

3.6.1 Model analysis

To better understand the distributional random forest, we examine the internal

behavior of the model through its feature importance structure. Figure 3.4 presents

the relative importance scores of the input variables, as estimated by the trained

ensemble. The most influential features are “Part ID”, the most recent demand

lag “Lag 1”, and short-term trend estimates.

The prominence of “Part ID” in particular suggests that the model places sub-

stantial weight on SKU-specific characteristics. Since “Part ID” id is encoded as

a high-cardinality categorical variable, the forest can use it as a proxy for average

lead time demand. However, while this indicates a strong reliance on SKU identity,

it does not mean the model ignores cross-sectional information.

The forest’s structure ensures that predictions for a given SKU are informed not

only by its own history, but also by training examples from other SKUs that fall

into similar terminal nodes. This occurs when SKUs exhibit comparable values in

the temporal features – especially lagged demand and trend estimates. In other

words, even though “Part ID” appears important, the forest performs an implicit

form of local averaging across SKUs that are similar in their recent lead time
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Figure 3.4: Feature importance of the distributional random forest model

demand behavior.

Figure 3.5 shows estimated lead time demand distributions for a representative

SKU using three different methods: parametric estimation, bootstrapping, and

the distributional random forest. The parametric estimate appears as a smooth,

unimodal distribution with a clear central tendency and rapidly declining tails.

The bootstrap estimate, by contrast, consists of a small number of discrete spikes,

with the majority of probability mass concentrated at a few historical values. The

distributional random forest yields a more dispersed shape, with multiple peaks

and smoother transitions between demand levels, including non-zero probabilities

in regions not covered by the bootstrap.

These shapes reflect how each method handles limited historical information. The

parametric method imposes a predefined distributional form including probabilities

for unobserved lead time demands, including non-negligible probability mass to the

extreme upper tail of the distribution. The bootstrap method, relying exclusively

on empirical resampling, reflects only those values previously observed. As a

result, when few historical demand realizations exist, the estimate becomes sparse,

and the tail ends of the distribution are poorly represented.

The distributional random forest exhibits a broader and smoother estimate,

including lead time demand levels not observed for the target SKU. This can be

attributed to the way the model aggregates information from other SKUs with

65



Chapter 3. Conditional density estimation for lead time demand

0 10 20 30 40 50
demand

0%

20%

40%

60%
f̂

D
(L

)
(·)

Parametric

0 10 20 30 40 50
demand

0%

20%

40%

60%

Distributional Random Forest

0 10 20 30 40 50
demand

0%

20%

40%

60%

Bootstrapping

Figure 3.5: Comparison of lead time demand distribution estimates for a representative SKU

similar temporal features, such as lagged lead time demand and trend. When

those SKUs have experienced higher demand levels during lead times, the model

may assign probability to those outcomes – even if they are not present in the

focal SKU’s history.

3.6.2 Aggregate results

Figure 3.6a shows the total cost incurred by each estimation method as a function

of the unit back-order penalty cost b. The proposed distributional random

forest consistently achieves the lowest total cost across all penalty levels. The

parametric estimator performs worst overall, while the bootstrapping method

yields intermediate cost levels. At low unit back-order penalty cost values, the

total cost curves for the bootstrapping and distributional random forest methods

are nearly indistinguishable. As the penalty increases, a growing performance gap

emerges: the bootstrapping method incurs increasingly higher costs compared to

the forest-based approach.

Figures 3.6b and 3.6c provide the decomposition of total cost into inventory

holding cost and back-order penalty cost, respectively. The parametric method

leads to the highest inventory levels, followed by the forest and then the bootstrap.

In terms of back-order cost, the bootstrap method performs worst, particularly at
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Figure 3.6: benchmark simulation results

high penalty levels. The distributional random forest maintains back-order costs

that are consistently and substantially lower than those of bootstrapping, despite

only slightly higher inventory levels.

These results can be interpreted by examining the differences in how each method

estimates the cumulative distribution function of lead time demand. While both

the bootstrap and the distributional random forest rely on empirical information,

their treatment of the distribution tails differs significantly. At low unit back-order

penalty cost levels, inventory policies are more responsive to the distribution’s

central mass, where both methods provide similar estimates, explaining the near-

identical total cost. However, as the penalty cost increases, the inventory model

becomes more sensitive to tail risk. The bootstrap method, due to limited sample

size, places insufficient probability mass in the tail regions, leading to systematic
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underestimation of high-demand scenarios and consequently elevated back-order

costs.

In contrast, the distributional random forest draws on cross-sectional patterns and

smooths over sparse observations, thereby allocating more probability mass to

extreme values. This results in slightly higher inventory levels but prevents costly

stockouts under high-penalty conditions. The model anticipates heavy-tail risks

better than pure bootstrapping, reducing expected penalty costs and improving

overall inventory performance.

3.6.3 Stratified analysis by order frequency

To better understand how the performance of each method evolves with data

availability, we conduct a stratified analysis based on order frequency. Figure 3.7

presents simulation outcomes for five sets of SKUs, ranging from extremely sparse

(only one training observation) to relatively dense (more than four observations

per year). Each row in the figure reports total cost, inventory cost, and back-order

cost for each estimation method across penalty levels.

In the first row (166 SKUs with only one historical observation), the distributional

random forest and bootstrap methods perform nearly identically across all cost

components. This is expected: with a single training observation, lag features

are undefined and the forest model cannot leverage temporal patterns or cross-

sectional learning. In this regime, the distributional random forest essentially

collapses to an empirical bootstrap. With only one sample in the train set the

parametric estimator cannot fit an arrival rate and therefore collapses to a last

observed demand forecast. This yields large base-stock levels resulting in access

inventory costs but low back-order costs, showing that fitting a parametric model

to a single observation is ill posed.
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Figure 3.7: Simulation results by order frequency cohort
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In the second and third row (788 and 1,521 SKUs with one to two observations per

year), the forest begins to outperform the bootstrap method. With even minimal

additional data, the random forest can incorporate information from similar SKUs

and exploit structure in the feature space. As a result, it maintains comparable

or slightly higher inventory levels while significantly reducing back-order costs

– especially as penalty levels rise. The cost advantage of the forest approach

becomes most pronounced in these low-data settings, where the bootstrap still

struggles with tail estimation.

In the fourth and fifth rows (1,931 and 2,267 SKUs with higher observation counts),

the performance of all methods begins to converge. The bootstrap method benefits

from richer historical data and produces more stable estimates of the lead time

demand distribution, including its tails. The forest continues to deliver the lowest

total cost, but the marginal advantage over bootstrapping narrows considerably. In

high-data regimes, the cost of model misspecification (in the case of the parametric

estimator) remains the primary driver of suboptimality.

Across all cohorts, the parametric estimator performs worst because data is too

sparse to fit the negative binomial model reliably. The imposed distributional

form assigns non-zero probability to unobserved high-demand outcomes used

in the base-stock calculation. Parts for which the parametric fit overestimates

tail mass receive higher base-stocks, increasing inventory cost relative to both

the bootstrap and the distributional random forest. While this additional stock

reduces back-orders, the penalty savings are insufficient to compensate for the

additional holding cost, so total cost remains highest for the parametric approach.

Two factors plausibly amplify this effect: small-sample parameter bias that inflates

variance estimates and a concentration of expensive SKUs for which modest stock

increases translate into disproportionately higher holding cost. Together, these

mechanisms explain the large and persistent total-cost delta of the parametric
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method across low-data settings.

3.7 Conclusions

This study addresses a central challenge in spare parts inventory management: the

accurate estimation of lead time demand distributions under conditions of sparse,

intermittent demand and volatile lead times. Traditional parametric models, while

analytically convenient, exhibit limited reliability when historical data is sparse.

With only a few observations, the data provides almost no reliable information

about the true underlying lead time demand behavior, resulting in highly uncertain

distribution estimates. Non-parametric bootstrapping methods avoid restrictive

functional forms but also produce unstable results when historical data is sparse –

particularly in the tails, where inventory decisions are most sensitive.

To overcome these limitations, we propose a novel approach that combines temporal

bootstrapping with distributional random forests. This method preserves the

non-parametric nature of bootstrapping while leveraging the cross-sectional and

temporal structure of the data through machine learning. Our results, based on

a large-scale empirical study using data from a global equipment manufacturer,

demonstrate that this approach consistently outperforms both classical parametric

and non-parametric benchmarks in terms of total cost, particularly as back-order

penalties increase.

The performance gains are most pronounced for SKUs with sparse historical

data, where traditional methods are least reliable. By enabling cross-learning

across SKUs and improving tail estimation, the proposed method reduces costly

stockouts without requiring significant increases in inventory levels. In extreme

cases, such as when only a single training observation is available for an SKU, the

distributional random forest reduces to behavior similar to bootstrapping, as little
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cross-learning is possible. Conversely, when sufficient historical data is available

and bootstrapping performs reliably on its own, the added benefit of the forest

structure diminishes. These boundary cases highlight the adaptive nature of the

method – it maintains performance in data-poor conditions and converges toward

standard bootstrapping when data is abundant.

Practically, our findings suggest that companies can improve spare parts inventory

performance by integrating machine learning techniques that move beyond point

forecasting and embrace full distributional estimation. From a theoretical per-

spective, the results highlight the value of combining non-parametric estimation

with data-adaptive learning in inventory control applications.

Future research could extend this work by exploring other models for distribution

estimation, integrating external covariates such as macroeconomic indicators or

supplier performance metrics, and applying the method to multi-echelon inventory

systems. Furthermore, there is potential to explore adaptive learning mechanisms

that update demand distributions in real time as new data becomes available.

In conclusion, the proposed approach represents a significant advancement in the

estimation of lead time demand distributions, offering both theoretical innova-

tion and practical value for inventory management in complex, data-constrained

environments.
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Figure 3.8: Sensitivity of the distributional random forest to hyperparameter settings
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Figure 3.9: Tuning convergence of the distributional random forest
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Cross-learning for lead time de-

mand forecasting
In spare parts supply chains, sparse and intermittent observations complicate

lead time demand estimation, which is a critical requirement for inventory man-

agement. Despite an extensive body of literature it remains an active area of

research (Nikolopoulos 2021). Traditional methods typically estimate each stock-

keeping-unit (SKU) independently. In contrast, cross-learning methods share

information across related SKUs and have performed well in forecasting competi-

tions (Makridakis et al. 2018a, 2022), learning transferable patterns (Semenoglou

et al. 2021).

We study when cross-learning improves estimation of lead time demand. We

evaluate a cross-learning estimator (distributional random forest) against two series-

by-series benchmarks: a non-parametric bootstrap and a parametric negative-

binomial model. In a simulation experiment, we vary demand intermittency as

well as alignment between features and true demand behavior. The methods are

evaluated based on realized inventory cost in a periodic-review base-stock system

against the cost-optimal policy from the true distribution.

Results show that when features are informative, cross-learning achieves near-

optimal solutions and yields the largest gains for slow moving SKUs. With

misleading features, cross-learning converges toward the bootstrapping estimator,

indicating robustness. The parametric method shows sensitivity to demand

intermittency. These results inform when to prefer each approach: cross-learning

when features are informative and data are scarce, bootstrapping when features are

uninformative or intermittency is moderate, and parametric models in data-rich

conditions.
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4.1 Introduction

Effective spare parts inventory management relies on accurate estimates of lead

time demand, that is, the cumulative demand that materializes over a replenish-

ment lead time. In contrast to fast-moving consumer goods, spare parts exhibit

intermittent, low-volume, and highly skewed demand with substantial heterogene-

ity across SKU. These characteristics challenge classical, series-by-series forecasting

approaches that rely either on strong distributional assumptions or on sufficient

demand data for each SKU. When the demand data per SKU are scarce, point

and distributional forecasts of lead time demand become inaccurate, which in

turn propagates to high inventories or large back-orders.

For the case of univariate data parametric and non-parametric approaches have

been proposed to address this challenge. Parametric approaches assume a specific

distributional form for lead time demand (e.g., negative binomial) and estimate the

corresponding parameters from past data (Axsäter 2015, Babai et al. 2021). While

parametric methods can be efficient when data are rich and distributional assump-

tions are met, they perform poorly when distributional assumptions are violated.

Non-parametric methods make no assumptions about the distributional family.

The most common is bootstrapping, which constructs an empirical distribution by

resampling observed demand histories (Willemain et al. 2004). Non-parametric

bootstrapping is more flexible but struggles when historical data are sparse. For

overviews of these approaches, the reader is referred to Syntetos et al. (2016) and

Hasni et al. (2019).

Another stream of literature exploits feature information across SKUs. If SKUs

share product attributes or usage contexts, pooling data can improve estimation

of the predictive distribution of lead time demand. Evidence in support of such

cross-learning comes from forecasting competitions (Makridakis et al. 2018a, 2022),
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from recent work on installed-base forecasting (Van der Auweraer et al. 2019,

2021), and from recent work on data-driven inventory management that leverages

pooled data (Reiners et al. 2025). However, the success of cross-learning rests on a

tacit assumption: feature similarity aligns with similarity of demand behavior over

lead time. When this alignment fails (e.g., SKU look similar but serve different

usage contexts), cross-learning can be misleading.

The contribution of this paper is to provide an assessment of these trade-offs

through a controlled analysis. We design a simulation experiment that allows us

to vary both the demand rate (slow vs. fast movers) and the degree of alignment

between feature-based and demand-based similarity. Within this experiment we

benchmark three approaches: a cross-learning estimator (distributional random

forest) that exploits information on SKUs, a bootstrap estimator, and a parametric

estimator based on the negative binomial distribution.

The analysis focuses on three dimensions. First, we examine the size of the

efficiency gains that cross-learning can deliver when feature similarity genuinely

reflects demand behavior. Second, we investigate the robustness of cross-learning

when features are misleading.Third, we examine how these effects vary with the

demand rate. The findings provide indications when to use cross-learning methods

in spare parts inventory management and when to apply traditional methods.

The remainder of the paper is organized as follows. Section 4.2 reviews related

work. Section 4.3 formally describes the problem of estimating lead time demand

distributions as well as the inventory system and policy. Section 4.4 discusses the

design of our simulation experiment after which the numerical results are presented

and discussed in Section 4.5. Finally, Section 4.6 concludes with implications for

research and practice.
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4.2 Literature review

Prior research on lead time demand estimation can be grouped by the extent to

which methods treat SKUs in isolation or exploit cross-SKU information. Classical

inventory models typically assume that each SKU is forecasted separately, while

more recent approaches aim to pool information across SKU through hierarchical

modeling or machine learning. This review first summarizes single-SKU estimation

methods, then discusses approaches to cross-SKU learning, before positioning our

study in this landscape.

Single-SKU. Early models typically estimate lead time demand distributions

independently for each SKU, either through parametric or non-parametric ap-

proaches. Parametric models impose a functional form (e.g. normal, gamma,

weibull, negative binomial) and estimate parameters from historical observations

(Hadley and Whitin 1963, Keaton 1995, Vernimmen et al. 2008, Turrini and

Meissner 2019). They often provide closed-form inventory solutions and perform

well when demand is fast-moving and assumptions hold. However, they often mis-

estimate distributions of spare parts from industry datasets (Syntetos et al. 2012,

Axsäter 2015). Bayesian extensions such as the poisson-gamma and compound

poisson bayesian models have shown to improve fit over traditional frequentist

models and inventory efficiency by capturing variability in arrivals and batch sizes

(Aronis et al. 2004, Babai et al. 2021), though they add complexity.

Non-parametric estimators such as empirical distributions or bootstrapping avoid

restrictive assumptions (Bookbinder and Lordahl 1989, Fricker and Goodhart 2000,

Zhou and Viswanathan 2011). They can capture skewness in the distribution

but rely on sufficient SKU-level demand data to be reliable. When demand

data are sparse, resampling methods can suffer from high variance and may

78



Chapter 4. Cross-learning for lead time demand forecasting

lead to inaccurate tail estimates (Syntetos et al. 2015, Hasni et al. 2019, Boylan

and Babai 2022). While extensions to bootstrapping incorporate time-series

dynamics (Wang and Rao 1992, Willemain et al. 2004, Zhou and Viswanathan

2011) or multivariate sampling (Saldanha et al. 2023), these remain fundamentally

single-SKU estimators.

Cross-SKU. Another stream of literature replaces series-by-series fitting with

joint learning. Some studies cluster SKU or stratify demand series before applying

bootstrap-based resampling, effectively borrowing information across similar SKUs.

For example, association-rule mining and hierarchical clustering have been used

to group spare parts with correlated consumption, allowing joint replenishment

decisions (Tsai et al. 2009, Moharana and Sarmah 2018). Recent work demonstrates

that hierarchical clustering combined with joint replenishment policies can yield

significant cost reductions compared to ABC classification, k-means clustering,

or single-SKU management (Lolli et al. 2025). This approach illustrates how

clustering can act as a form of cross-SKU learning, though its effectiveness depends

on the chosen similarity metric and whether it reflects true demand dependencies.

Machine learning models are capable of learning from multiple demand series to

accurately predict individual ones (Semenoglou et al. 2021). Early applications

embed machine learning into the newsvendor setting, employing quantile regression,

tree ensembles, or neural networks (Ban and Rudin 2019, Huber et al. 2019, Cao

and Shen 2019). These approaches demonstrate improved forecast accuracy from

leveraging patterns across SKU, though they often focus on point forecasts or

single-period quantiles.

Cross-learning pools information across SKU. In forecasting, this is implemented

with global models that are trained on many series jointly rather than local models

fitted per SKU. Empirical studies show that global models can improve accuracy

79



Chapter 4. Cross-learning for lead time demand forecasting

when SKU histories are short and patterns recur across series. These gains are

strongest for heterogeneous but related parts and when model architectures can

extract shared structure at scale (Makridakis et al. 2018b, Semenoglou et al. 2021).

A key reference is Semenoglou et al. (2021), who evaluate cross-learning neural

networks on the M4 monthly data. They report consistent improvements over

series-by-series training when cross-learning is paired with appropriate feature

extraction and regularization. They also document regimes where gains diminish,

such as highly idiosyncratic series. These findings position cross-learning as a prac-

tical remedy for sparse histories. While this tension has been noted in forecasting

competitions (e.g., Makridakis et al. 2018a, 2022), it remains underexplored in

the spare parts inventory context.

In summary, single-SKU estimators whether parametric or non-parametric are vul-

nerable to demand data sparsity and heterogeneity. Cross-learning methods, from

hierarchical models to modern machine learning, offer a way to pool information,

but their success depends critically on the alignment between observed features

and latent demand similarity. Our study contributes by systematically evaluating

this alignment: we benchmark parametric, bootstrap, and distributional machine

learning estimators under conditions of both aligned and misaligned similarity,

providing boundary conditions for when cross-learning improves or undermines

predictive accuracy.

4.3 Description of the inventory system and

policy

We consider the task of estimating lead time demand distributions for spare parts

inventory management. The inventory system is modeled as a single-echelon,

periodic review base-stock system. The sequence of events in a period is as follows:
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At the beginning of each period t ∈ N, a replenishment order may arrive if it was

placed L periods earlier, where L denotes a random lead time. Demand Dt ∈ N

is then realized. Unmet demand is back-ordered and fulfilled upon receipt of

subsequent replenishments. At the end of each period, an order is placed to restore

the inventory position to a predetermined base-stock level S ∈ N0. Orders are

subject to stochastic lead times L ∼ fL(·) that are independent of the per-period

demands Dt ∼ fD(·).

Let the cumulative demand over the stochastic lead time be denoted by DL =∑L
t=1 Dt, with realizations dL ∈ N. The associated distribution fDL(·) is a random-

sum mixture,

fDL(dL) =
∑
ℓ∈N

fL(ℓ)f ∗ℓ
D (dL), (4.1)

where f ∗ℓ
D denotes the ℓ-fold convolution of fD. Inventory costs consist of linear

holding and back-order penalty costs. For a given base-stock level S, the long-run

expected cost per period is

C(S) = h · E[S − DL]+ + b · E[DL − S]+, (4.2)

where h denotes the per-unit holding cost per period and b the per-unit back-order

penalty cost. The optimal base-stock level S∗ minimizes this expected cost:

S∗ = arg min
S∈N0

C(S). (4.3)

The distribution fDL(·) is not directly observable and must be estimated from

historical data. Each SKU j ∈ J is characterized by a limited time series of

demand and lead time realizations {(dj,t, lj)}, together with a feature vector xj

describing product attributes, supplier characteristics, or usage context. The task
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is to estimate the conditional distribution

fDL|X(dL | xj), (4.4)

which captures the probability distribution of lead time demand conditional on

observable SKU features. These estimates are then used in the Cost Function

(4.2) to derive base-stock levels and inventory performance metrics.

In practice the task is difficult. Intermittent demand produces short histories that

make parameter estimates in parametric models unstable, while non-parametric

methods struggle to capture the distribution tails with so little data. Observable

features add further uncertainty because they may or may not reflect actual

demand behaviour. Cross-learning across SKUs can be beneficial when features

are informative but can degrade performance when they are not. To understand

under which conditions each method is appropriate, we construct a simulation

experiment with known ground truth.

4.4 Experimental design

This section outlines the design of the simulation experiment. We describe the

treatments, how synthetic demand, lead time, and feature data are generated, how

the benchmark estimators are implemented, and how performance is measured

against the cost-optimal policy.

4.4.1 Treatments

Each treatment combines an arrival-rate level and an alignment level (cf. Table

4.1). At the arrival-rate level, we control the expected number of arrivals over the

lead time. We consider very slow moving demand with 0.1 arrivals on average,
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a medium regime with 0.5 arrivals, a faster regime with one arrival, and a very

fast regime with ten arrivals per lead time. These four levels span the range of

intermittency observed in the empirical dataset introduced in Chapter 3. For the

same reason, we set average lead times to 60 days and the valuation price to $29,000

to match the empirical setting; holding and back-order penalty parameters are

introduced in Subsection 4.4.4. We report daily arrival rates by dividing expected

arrivals by the average lead time λ ∈ {0.0017, 0.0083, 0.0167, 0.1667}.

At the alignment level, we control the relationship between feature-based similarity

and the true demand structure. We consider perfect alignment, slight misalignment

with 10% of SKUs reassigned, moderate misalignment with 25%, high misalignment

with 50%, and a random case with 100% reassignment (i.e., no information).

The misalignment is implemented by reassigning the specified proportion of

SKUs so that they appear closer to other groups, while their demand processes

remain unchanged. These five levels cover the range from fully informative to

non-informative similarity. Section 4.4.2 describes in detail the data-generating

processes and the construction of feature similarity to map these alignment levels.

We report alignment by the reassignment fraction φ ∈ {0%, 10%, 25%, 50%, 100%}.

Per treatment we simulate 300 SKUs in three equal-size groups to create controlled

heterogeneity in lead time demand patterns for cross-learning. Within each

treatment the groups differ only in demand size, with means of 1.5, 10, and

100 units. These levels represent low, medium, and high demand, which creates

enough contrast for transfer across SKUs without adding excess complexity to

the experiment.

Each treatment spans 1000 years to obtain statistically stable performance mea-

sures under strong intermittency. The first four years form the training sample,

the next two years are used for validation, and the remaining 994 years constitute

the test horizon. Thus, the training and validation set are similar to the real
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Table 4.1: Treatments and data regime.

Component Symbol / Levels Notes

Treatment factors
Daily arrival rate λ ∈ {0.0017, 0.0083, 0.0167, 0.1667} Intermittency control.
Feature demand alignment φ ∈ {0%, 10%, 25%, 50%, 100%} Share misassigned; 100% = random.

Fixed settings
SKUs per treatment N = 300 (3×100) Groups of different demand-size mean.
Group 1 N = 100, demand-size mean 1.5 units Subgroup within N = 300.
Group 2 N = 100, demand-size mean 10 units Subgroup within N = 300.
Group 3 N = 100, demand-size mean 100 units Subgroup within N = 300.
Lead time E[L] = 60 days Used for daily-rate conversion.
Valuation price $29,000 Scales holding cost.
Holding cost rate h = 0.1 × $29,000/a Applied daily.
Back-order penalty b ∈ {1, . . . , 1000} Sensitivity; main tables b = 500.
Horizon and split 1000 years; train 4 years, val 2 years,

test 994 years
Daily periodic-review simulation.

world scenario in Chapter 3. However the large test set enables us to obtain a

clear picture of the methods’ performance.. A summary is provided in Table 4.1.

4.4.2 Data generating processes

We consider two stylized stochastic processes for generating lead time demand,

which together capture the analytical tractability of classical base-stock models

and the complexity of real-world spare parts demand.

Compound poisson with logarithmic-series demand sizes. The first

process couples demand arrivals N with a poisson process rate λ with a logarithmic

distribution of demand sizes Y with parameter p ∈ (0, 1) and deterministic

replenishment lead times of length L. Poisson demand arrivals coupled with

logarithmically distributed demand sizes result in a closed-form negative binomial

distribution for lead time demand, a canonical assumption in the inventory

literature (Quenouille 1949, Babai et al. 2021, Syntetos et al. 2015). This setting

allows exact evaluation of the lead time demand distribution fDL(·). Logarithmic

sizes were generated under three experimental conditions: logarithmic parameter

p = 0.5 (µ = 1.5, σ = 0.89), p = 0.97 (µ = 10, σ = 1.41) and p = 0.99845 (µ =
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Table 4.2: Data generating processes (DGPs).

Component Symbol / Levels Notes

DGP A Nt ∼Poisson(λ); Y ∼LogSeries(p); L = 60 Closed-form lead time demand:
DL ∼NegBin.Size parameters p ∈ {0.5, 0.97, 0.99845}

DGP B Nt ∼Poisson(λ); Y ∼Geom(q);
L∼Γ(k = 3.0, θ = 20.0);E[L] = 60 Panjer recursion

Size parameters q ∈ {0.40, 0.10, 0.01}

Feature similarity cluster ID and similarity matrix Louvain clustering on synthetic similarities;
misalignment via reassignment share φ.

100, σ = 233.07). In the former case, slow moving demand with mostly unitsized

demand is simulated whereas in the latter case demand patterns are lumpy.

Poisson–gamma mixture with geometric demand sizes. The second pro-

cess is less restrictive and intended to reflect spare parts demand more realistically.

Here both lot sizes and lead times vary. Demand arrivals also follow a poisson

process with rate λ but with a geometric distribution of demand sizes with suc-

cess probability q and stochastic replenishment lead times following a gamma

distribution with shape parameter k and scale parameter θ.

Unlike the poisson–logarithmic case, this setting does not yield a closed-form

distribution for DL. We can compute the lead time demand distribution using

panjer recursion (Panjer 1981). Geometric sizes were generated under three

experimental conditions: q = 0.40 (µ = 1.5, σ = 1.94), q = 0.10 (µ = 10, σ = 9.49),

and q = 0.01 (µ = 100, σ = 99.5). In the first case, demand is dominated by

unit-sized orders, whereas in the last case demand is highly lumpy. Lead times

were generated as L ∼ Γ(k = 3.0, θ = 20.0), which implies an average lead time of

60 periods consistent with the empirical dataset introduced in Chapter 3.

A summary of the data generating processes is provided in Table 4.2.

Feature similarity and cluster construction. As described in Chapter 2,

SKUs can be associated with a feature vector xj capturing product descriptors or

85



Chapter 4. Cross-learning for lead time demand forecasting

usage attributes. To mimic cross-learning in the synthetic data, we construct a

matrix of pairwise similarity scores (cf. Section 2.4.2). These scores are sampled

from specified ranges: when two SKUs originate from the same demand group, their

similarity is sampled from an interval close to one, whereas when they originate

from different demand groups, their similarity is sampled from an interval closer

to zero. This similarity matrix serves as input to a clustering algorithm, so that

SKUs are assigned to feature-based clusters in addition to their underlying demand

pattern.

In the aligned case, the similarity structure ensures that an algorithm such

as Louvain (Blondel et al. 2008) can recover the true demand groups. In our

treatments misalignment φ is introduced by reassigning a fixed share of SKUs so

that their similarity scores are shifted toward other groups, while their demand

process remains unchanged. In the slight, moderate, and high treatments, 10%,

25%, and 50% of SKUs are misassigned in this way. These SKUs are therefore

connected more strongly in feature space to SKUs with different demand behaviour,

which induces feature-based methods to transfer information across heterogeneous

groups. This reflects the practical concern that observable features do not always

align with demand. In the random case (φ = 100%), all similarity scores are

drawn independently of demand, so clustering provides no information about the

underlying structure.

4.4.3 Benchmarked methods

Parametric approach. We forecast demand using Croston’s method (Croston

1972) with the Syntetos–Boylan adjustment (SBA) (Syntetos and Boylan 2005)

and the Teunter–Syntetos–Babai (TSB) formulation (Teunter et al. 2011). Both

are widely used in the intermittent demand literature and are regarded as refer-

ence methods for spare parts forecasting, as they employ recursive exponential
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smoothing updates and correct the bias and variance problems that arise under

sparsity (Hasni et al. 2019, Teunter and Duncan 2009).

Following established practice, smoothing constants are kept small to reflect the

assumed stationarity of the process. For SBA we select values of α ∈ [0.05, 0.3] for

both demand sizes and inter-arrival times, consistent with prior recommendations

(Syntetos and Boylan 2001, Eaves and Kingsman 2004, Teunter and Duncan

2009). Following Teunter et al. (2011), in TSB we set the smoothing constant

for demand-occurrence probability smaller than that for demand size and tune

β ∈ [0.01, 0.05]. Candidate values are applied uniformly across SKUs within a

treatment, and the best configuration is selected using a grid search with step size

0.05 for α and 0.01 for β with MSE as selection criterion. For demand we employ

a rolling one-step-ahead scheme across the entire validation horizon, so that each

day’s demand is predicted using only past data.

Lead times, which are observed only at receipt events, are modeled independently of

demand and smoothed with SES at each receipt, with the forecast held constant in

between. The combination of smoothed means and error-based variance estimates

from demand and lead time provides the two moments of lead time demand.

These moments are then matched to a negative binomial distribution, yielding a

closed-form predictive distribution (Zipkin 2000).

Bootstrapping. We apply a temporal bootstrap independently to each SKU.

From the observed demand history and empirical lead time realizations, pseudo-

samples of lead time demand are generated by repeatedly drawing a random

calendar date and pairing it with a lead time sampled with replacement. The

corresponding demand over the sampled horizon is aggregated to form a synthetic

realization. Repeating this procedure B = 10, 000 times yields an empirical

distribution of lead time demand, which serves directly as the estimator.

87



Chapter 4. Cross-learning for lead time demand forecasting

The method reproduces the empirical shape of the distribution, capturing skewness

and lumpiness without parametric assumptions. Unlike the two-state Markov

scheme of Willemain et al. (2004), the temporal bootstrap accommodates stochastic

lead times without auxiliary assumptions, consistent with the arguments of Teunter

and Duncan (2009). With short demand histories the resulting distribution may

be discrete and irregular, since it is limited to linear combinations of the observed

demand sizes. As the history lengthens and the number of bootstrap replications

increases the distribution stabilizes, but under strong intermittency it remains

sensitive to sampling variability unless further structure is imposed (Willemain

et al. 2004, Boylan and Babai 2022).

Distributional random forest. The estimator we propose in Chapter 3 ex-

tends the bootstrap procedure by exploiting feature-based similarity across SKUs.

The procedure first constructs a pseudo-sample of lead time demands using the

bootstrap scheme described above. Each realization is paired with the feature

vector of its SKU. Features include a one hot encoding of the cluster identifier

to enable cross learning across similar SKUs and an encoded part identifier to

preserve part identity. This lets the random forest place weight on the SKUs

own pseudo samples when they exist while still drawing on information from

feature-similar SKUs. No temporal features are used since the design is stationary.

This data is then used to fit an ensemble of decision trees. At prediction time,

the random forest identifies a neighborhood of training observations through

terminal-node assignments. This yields a discrete, data-driven approximation of

the lead time demand distribution for an SKU with features, combining local

evidence from its own history with cross-SKU information.

Hyperparameters are tuned by time-series cross-validation. Candidate settings are

generated by Latin hypercube sampling of a maximum entropy grid. The search

space includes the number of trees (n_trees ∈ {50, 100, 200, 300}), the maximum
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Table 4.3: Estimators and tuning.

Estimator Main setting Notes

Parametric (Croston SBA; TSB) α ∈ [0.05, 0.30] Rolling one-step CV. SES for mean lead
time. Moment match to NegBin for fDL .β ∈ {0.01, . . . , 0.05}

Bootstrap (per-SKU temporal) B = 10,000 Random start day with resampled lead
time. Aggregate over horizon. Empirical
fDL .

Distributional Random Forest n_trees ∈ {50, 100, 200, 300} Five-fold expanding-window CV. Cluster
threshold in [0.5, 0.9] and minimum
cluster size in [1, 1000]. Features: cluster
ID and encoded part ID.

max_depth ∈ {5, 10, 20, None}
min_leaf ∈ {5, 10, 25, 50, 100}
B ∈ {10, 100, 200, 300}

depth of the trees (max_depth ∈ {5, 10, 20, None}), the minimum number of

samples per leaf (min_leaf ∈ {5, 10, 25, 50, 100}), and the number of bootstrap

samples (B ∈ {10, 100, 200, 300}). Clustering parameters are also tuned, with

similarity thresholds between 0.5 and 0.9 and minimum cluster sizes between 1

and 300. Cross-validation here follows a five-fold expanding-window scheme: in

each fold the training sample is extended forward in time and the next fixed block

of days is used for validation (Hyndman 2014).

The tuning procedure allows the model to decide whether to exploit cross–sectional

information or to rely on a part’s own history. When cluster identifiers carry

predictive value the random forest may assign them high importance and draws

strength from neighboring SKUs. When they do not, the model may reduce their

weight and falls back on the individual identifier. In this way the search over

alternative hyperparameters allows that similarity is exploited when it improves

accuracy and that negative transfer can be limited when cluster information is

weak. A summary of the estimators and their main tuning parameters is provided

in Table 4.3.
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4.4.4 Evaluation procedure

To assess the competing estimators we follow a practice that is well established in

the intermittent demand literature (e.g., Syntetos and Boylan 2008, Teunter and

Duncan 2009, Babai et al. 2022, Teunter et al. 2011, Syntetos et al. 2015), namely

to evaluate predictive distributions through their induced inventory performance

rather than through purely statistical accuracy metrics. This choice is consistent

with our setting where the decision maker’s objective is to minimize expected

inventory cost in the base-stock system described in Section 4.3.

The evaluation proceeds in two stages. In the first stage, each estimator produces

a predictive distribution of lead time demand for every SKU. Given this discrete

distribution we compute the expected holding and back-order costs for each

candidate base-stock level by applying the same cost function as in Section 4.3.

The base-stock level is then chosen as the minimizer of expected total cost. Holding

costs are parameterized as ten percent of the part valuation price per year, scaled to

the daily simulation horizon. Back-order penalty costs are treated as an exogenous

parameter and are varied across a wide grid from 1 to 1000 to assess sensitivity.

In the second stage, these base-stock levels are applied in a discrete-event simula-

tion of the inventory system. The evaluation excludes a warm-up period (train and

evaluation sets as described in Section 4.4.2) to remove initialization effects, after

which inventory trajectories are recorded. From these trajectories we compute

average holding and back-order costs, the corresponding service levels, and the

realized total cost.

Because the synthetic environment provides the true distribution of lead time

demand, the cost-optimal policy can be derived exactly by solving the same

optimization problem with the true distribution rather than an estimated one.

This policy provides a benchmark against which realized performance is evaluated.
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Reported results include absolute cost levels as well as relative efficiency defined

as the ratio of realized cost to the true optimal cost.

4.5 Results

This section presents the empirical results. We evaluate the inventory performance

of the three estimators under varying data regimes and alignment conditions.

Performance is reported as average total cost and its deviation from the theoretical

optimum. Two sets of experiments are analyzed: the poisson–gamma mixture

with geometric lot sizes and stochastic lead times, and the compound poisson with

logarithmic-series lot sizes implying a negative binomial distribution (cf. Tables

4.4 and 4.5). Rows vary the daily arrival rate. Row blocks vary the degree of

feature–demand alignment. Within each cell the first number is cost in $100,000

and the second is the percent deviation from optimal cost.

For the poisson–gamma mixture with geometric lot sizes and stochastic lead

times (Table 4.4), in the aligned case with very slow arrivals at λ = 0.0017, the

parametric estimator yields a cost of $465,000 which is 54% above optimal, while

the bootstrap yields $325,000 at 7.5% above optimal. The distributional random

forest attains $307,000, almost indistinguishable from the optimum at only 1.7%

deviation. Reading across the row, this demonstrates the relative inefficiency

of the parametric method under sparsity and the improvement gained through

cross-learning.

Increasing arrival rates reduce all deviations. When λ = 0.1667, costs across

methods are close to the optimum, with deviations below 12% even for the

parametric estimator. These results align with literature on data-rich settings,

which support the use of parametric estimation. Across misalignment levels we

observe how the random forest gradually loses its advantage but never deteriorates
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Table 4.4: Total cost (in $100,000) and deviation from the optimum at b = 500 by misalignment
level φ and daily arrival rate λ under poisson–gamma mixture with geometric demand sizes.

Methods

φ λ S∗
par(b) S∗

boot(b) S∗
drf(b)

0%

0.0017 (4.65, 54.0%) (3.25, 7.5%) (3.07, 1.7%)
0.0083 (6.36, 33.4%) (5.29, 10.9%) (4.67, -2.1%)
0.0167 (7.74, 31.1%) (6.29, 6.6%) (6.04, 2.2%)
0.1667 (20.83, 11.5%) (18.89, 1.2%) (19.07, 2.2%)

10%

0.0017 (4.65, 54.0%) (3.25, 7.5%) (3.18, 5.3%)
0.0083 (6.36, 33.4%) (5.29, 10.9%) (5.06, 6.1%)
0.0167 (7.74, 31.1%) (6.29, 6.6%) (6.11, 3.5%)
0.1667 (20.83, 11.5%) (18.89, 1.2%) (18.75, 0.4%)

25%

0.0017 (4.65, 54.0%) (3.25, 7.5%) (3.28, 8.7%)
0.0083 (6.36, 33.4%) (5.29, 10.9%) (5.62, 17.9%)
0.0167 (7.74, 31.1%) (6.29, 6.6%) (6.18, 4.6%)
0.1667 (20.83, 11.5%) (18.89, 1.2%) (18.75, 0.4%)

50%

0.0017 (4.65, 54.0%) (3.25, 7.5%) (3.28, 8.6%)
0.0083 (6.36, 33.4%) (5.29, 10.9%) (5.28, 10.7%)
0.0167 (7.74, 31.1%) (6.29, 6.6%) (6.30, 6.7%)
0.1667 (20.83, 11.5%) (18.89, 1.2%) (18.75, 0.4%)

100%

0.0017 (4.65, 54.0%) (3.25, 7.5%) (3.32, 9.8%)
0.0083 (6.36, 33.4%) (5.29, 10.9%) (5.40, 13.2%)
0.0167 (7.74, 31.1%) (6.29, 6.6%) (6.30, 6.7%)
0.1667 (20.83, 11.5%) (18.89, 1.2%) (18.75, 0.4%)

Note: The entry for φ = 0% and λ = 0.0083 reports a deviation of −2.1% for S∗
drf(b). This does not indicate

performance better than the true optimum. The benchmark cost is computed with panjer recursion with
discretization and truncation, so it only approximates the lead time demand distribution and can shift the
computed optimum slightly. At λ = 0.0083 demand is still very sparse, so simulation variance is material.
Together these effects can produce small negative deviations for some b. Figure 4.3 shows the simulation results
over the full range of b and demonstrates that such cases are rare and close to zero. We therefore treat −2.1% as
essentially zero and indistinguishable from the optimum.

below bootstrap. Even under 100% randomization the method yields cost levels

similar to bootstrapping, showing that the random forest reverts to local estimation

in the absence of informative features.

Turning to the compound poisson with logarithmic-series sizes in Table 4.5, the

qualitative ranking is the same but contrasts are more pronounced. Under full

alignment the random forest is essentially optimal across all arrival rates, with

deviations between 0.0% and 0.4%, whereas the bootstrap remains 15 to 27% above

the benchmark even at λ = 0.1667 and much higher at very low λ. The parametric

estimator is again far from optimal at very low λ. Unlike in the poisson–gamma

mixture, these gains persist at higher arrival rates. This reflects the absence of

lead time uncertainty and the tractable negative binomial target, which make
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Table 4.5: Total cost (in $100,000) and deviation from the optimum at b = 500 by misalignment
level φ and daily arrival rate λ under compound poisson with logarithmic-series demand sizes.

Methods

φ λ S∗
par(b) S∗

boot(b) S∗
drf(b)

0%

0.0017 (0.50, 281.7%) (0.16, 24.7%) (0.13, 0.0%)
0.0083 (0.38, 48.1%) (0.33, 27.3%) (0.26, 0.1%)
0.0167 (0.49, 51.3%) (0.40, 24.4%) (0.32, 0.0%)
0.1667 (0.97, 30.8%) (0.85, 15.3%) (0.74, 0.4%)

10%

0.0017 (0.50, 281.7%) (0.16, 24.7%) (0.14, 6.1%)
0.0083 (0.38, 48.1%) (0.33, 27.3%) (0.29, 14.6%)
0.0167 (0.49, 51.3%) (0.40, 24.4%) (0.36, 9.7%)
0.1667 (0.97, 30.8%) (0.85, 15.3%) (0.85, 15.7%)

25%

0.0017 (0.50, 281.7%) (0.16, 24.7%) (0.15, 12.8%)
0.0083 (0.38, 48.1%) (0.33, 27.3%) (0.33, 27.9%)
0.0167 (0.49, 51.3%) (0.40, 24.4%) (0.40, 24.8%)
0.1667 (0.97, 30.8%) (0.85, 15.3%) (0.85, 15.6%)

50%

0.0017 (0.50, 281.7%) (0.16, 24.7%) (0.16, 17.9%)
0.0083 (0.38, 48.1%) (0.33, 27.3%) (0.33, 27.6%)
0.0167 (0.49, 51.3%) (0.40, 24.4%) (0.40, 23.4%)
0.1667 (0.97, 30.8%) (0.85, 15.3%) (0.85, 15.7%)

100%

0.0017 (0.50, 281.7%) (0.16, 24.7%) (0.16, 24.0%)
0.0083 (0.38, 48.1%) (0.33, 27.3%) (0.33, 29.3%)
0.0167 (0.49, 51.3%) (0.40, 24.4%) (0.40, 24.8%)
0.1667 (0.97, 30.8%) (0.85, 15.3%) (0.85, 15.7%)

Notes: Misalignment (φ) shown as the share of parts randomly reassigned across clusters. The daily arrival rate
is computed from arrivals per lead time divided by the 60-day lead time representing 0.1, 0.5, 1, and 10 arrivals
per lead time. Each cell reports (total cost in $100,000, deviation in % vs. theoretical optimum).

cross-SKU pooling more effective and expose tail noise in per-SKU resampling.

As misalignment increases, the random forest converges toward the bootstrap and

from 25% to 100% misassignment they are essentially indistinguishable across

arrival rates. The random forest does not fall below the bootstrap by more

than a few percentage points, consistent with tree-based localization. Sensitivity

to misalignment is larger than in the poisson–gamma mixture, with deviations

reaching 24 to 29% at λ ∈ {0.0083, 0.0167} under full randomization, compared to

mostly single-digit deviations in Table 4.4. Overall, the compound poisson results

confirm the value of cross-learning when features align and show a faster loss of

advantage under misalignment.

The estimated distributions in Figure 4.1 illustrate these dynamics. When feature

alignment is high, the random forest produces predictive distributions that closely
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Figure 4.1: Example of estimations for different methods for λ = 0.0017 and geometric demand
sizes with q = 0.01.
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replicate the true theoretical distribution we sampled the data from. This is visible

in the smooth, symmetric shapes resembling the true negative binomial or panjer

recursed distributions, in contrast to the irregularity of the bootstrap which reflects

sampling noise. Under misalignment the random forest distributions become less

regular but remain centered around the correct mean, whereas the bootstrap

increasingly exhibits spikes and mass shifts due to data sparsity. The parametric

estimator appears smoother but systematically biased, with mass displaced toward

the center and underweighting of the tails, explaining its persistent cost penalties.

The decision rules of one tree from the random forest further illustrate the

mechanism in Figure 4.2 (showing the first three levels). Under perfect alignment
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Figure 4.2: Example of tree structure under different alignment levels with λ = 0.0017 and
geometric demand sizes.
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(...) (...) (...) (...)

part_id_291 ≤ 0.5
samples = 188418

value = 5.4
samples = 931
value = 93.6

part_id_241 ≤ 0.5
samples = 94251

value = 42.5
samples = 950
value = 121.2

part_id_293 ≤ 0.5
samples = 189349

value = 5.8

part_id_264 ≤ 0.5
samples = 95201

value = 43.3

cluster_id_2 ≤ 0.5
samples = 284550

value = 18.4

(b) 25% random assignment

(...) (...)

part_id_230 ≤ 0.5
samples = 282607
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value = 37.6

part_id_268 ≤ 0.5
samples = 283590

value = 3.8
samples = 960
value = 54.3

part_id_241 ≤ 0.5
samples = 284550

value = 4.0

(c) Random assignment

the random forest exploits cluster identifiers to partition SKUs cleanly by their

true demand group, thereby transferring information across genuinely similar

SKUs. With partial misalignment, splits show both cluster features and part

identifiers being used, indicating that the algorithm learns across SKUs with local

correction. Under random alignment the random forest relies almost exclusively
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on individual identifiers, effectively collapsing to a local estimator. This adaptive

weighting of cross-sectional information explains why the random forest captures

gains when available and avoids severe losses when similarity misleads.

4.6 Conclusions

We studied cross-learning for estimating lead time demand distributions in spare

parts inventory and assessed its value under controlled variation in data sparsity

and alignment between observable features and true demand behavior. Using a

simulation with compound poisson and poisson–gamma mixture demand, stochas-

tic lead times, and long test horizons, we compared a distributional random forest

to a per-SKU temporal bootstrap and a per-SKU parametric negative binomial

approach. The results show that when features align with demand, cross-learning

yields material cost reductions, particularly for slow movers where within-SKU

histories are short. When features mislead, performance deterioration is limited

relative to non-parametric bootstrapping because tree-based localization shifts

weight back to the focal SKU and curbs negative transfer. Parametric estimation

performs well only when data are abundant and assumptions match the data

generating process; under sparsity or misspecification it remains far from the

inventory optimum.

These findings provide practical guidance. Cross-learning is most useful when part

attributes or usage context carry information about demand and when intermittent

arrivals constrain local estimation. In such settings, distributional machine learning

can recover stable lead time demand distributions and improve stock decisions

without strong distributional assumptions. When alignment is uncertain or weak,

local estimators remain competitive and the proposed method reverts toward

them, preserving robustness. The study also clarifies that evaluation through

96



Chapter 4. Cross-learning for lead time demand forecasting

realized inventory costs is essential, since small distributional improvements at

the tails can translate into meaningful changes in holding and back-order costs.

The work has limitations. The modeling is deliberately stylized to isolate the

mechanics of cross-learning. We assume a single-echelon, periodic-review base-

stock system with stationary, independent demand and lead time, a convex

separable cost structure, and full backlogging. The learning problem is framed with

clean feature representations, fixed similarity metrics, and controlled alignment

noise, a condition that is unlikely to hold in practice. The simulation uses synthetic

data from known distributions, which do not capture all aspects of real-world

demand. The evaluation focuses on average cost performance, without analyzing

service level distributions or other risk measures. These reductions make the

dynamics tractable and the claims precise, but they narrow external validity to

settings with stable structure and well-behaved features.

Future research can extend to nonstationary and hierarchical settings, incorporate

causal or experimental features derived from usage telemetry, and study joint

learning of demand and lead time. The empirical study in Chapter 3 already

demonstrates performance on one firm’s industrial data within a cost-based

inventory evaluation. Future work could extend this work to further external

replication. A natural next step is to re-run the same evaluation on two established

contexts: the royal air force dataset, the jewellery dataset and the automotive

aftermarket dataset used in intermittent-demand literature (Teunter and Duncan

2009, Teunter et al. 2010, Hasni et al. 2019, Babai et al. 2022).

Overall, the results support cross-learning as a principled and robust approach

for distributional estimation in spare parts inventory, with clear benefits when

informative similarity exists and tempered risks when it does not.
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Appendix of Chapter 4

4.A Full range of back-order penalty cost

Figure 4.3: Details of simulation for λ = 0.0017 and geometric demand sizes.
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Figure 4.4: Details of deviation grid for poisson-gamma mixture.
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Chapter 5

Conclusion
This dissertation examined how data-driven methods can improve spare-parts

planning when demand is intermittent, lead times are volatile, and histories are

sparse. Across three studies, it addressed the accuracy of plan lead times, the

estimation of full lead time demand distributions, and the conditions under which

cross-learning across parts is beneficial. The results show that better information

improves inventory outcomes and that the value of specific methods hinges on

data availability, tail risk, and the informativeness of observable similarity.

5.1 Summary of key results

The results of this thesis provide three main recommendations when putting

inventory research to practice: Consider the data, consider the distribution, not

only the point and consider the boundaries.

Consider the data. Chapter 2 showed that plan lead times derived with

supervised learning from purchase-order and master data are materially more

accurate than static ERP values and simple time-series baselines. In our case

company, machine-learning regressors improved MSE by over 30% versus ERP

entries. The gains persist across frequency segments and are especially relevant for

infrequently purchased items and new SKUs. In a simulation study, replacing ERP

plan lead times with learned values reduced capital lock-up while maintaining

a 95% service target, with an estimated 7% reduction in required inventory

investment for that service level. Feature engineering, the use of categorical

encoders and text-based SKU similarity were decisive. These results demonstrate

that firms can raise planning quality with the data they already collect.
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Consider the distribution, not only the point. Chapter 3 moved from point

forecasts to full predictive distributions of lead time demand. A distributional

random forest that blends temporal bootstrapping with cross-sectional learning

produced lower total cost than both a per-SKU bootstrap and a classical parametric

benchmark, with the largest advantages when back-order penalties emphasize

tail risk. Cost decompositions explain the pattern. The distributional random

forest holds slightly more inventory than the bootstrap but cuts back-order

penalties substantially by allocating more probability mass to extreme outcomes

that standard bootstraps understate when histories are short. As data become

abundant, differences narrow and the non-parametric methods converge.

Consider the boundaries. Chapter 4 tested when cross-learning helps for

distributional forecasting. In controlled experiments, cross-learning via a distribu-

tional random forest delivered material cost reductions when observable features

aligned with true demand similarity, and showed limited downside when similarity

signals were weak. (With weak alignment the forest naturally reverts toward local

estimation and tracks the bootstrap; with strong alignment it uses pooling to

smooth tails). As histories grow, the estimates from all methods converge and the

inventory cost curve flattens near its optimum. Parametric estimation is weak in

sparse data but becomes competitive once arrivals are frequent. The upshot is

a practical rule to employ cross-learning when informative similarity exists and

expect neutral outcomes otherwise.

Jointly, the chapters connect improved inputs to realized outcomes: more accurate

plan lead times lower capital-lockup for a given service level; distributional fore-

casting cuts penalty exposure without excessive stock; and cross-learning offers a

robust pathway through sparsity. Together they form an implementable pipeline

that starts from raw operational data and ends in improved inventory decisions.
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5.2 Critical review and future research

In Chapter 2 the evidence shows that machine learning can correct inaccurate

plan lead times using information already present in operational systems, yet

the external validity of the specific model choice is limited. Random forests

performed well because they tolerate skewness and capture nonlinearity, but no

single algorithm will dominate across all supply settings. The decisive lever is

careful feature engineering that embeds domain knowledge, including text based

similarity and supplier performance signals. The study focused on point estimates

that feed existing planning tools and did not quantify uncertainty, although

inventory optimization often requires dispersion measures. The proposed path

forward is to extend the same data pipeline to conditional density estimation so

that full predictive distributions of lead time or lead time demand can be used

directly. Continuous improvement efforts on problematic parts and suppliers can

complement modeling by stabilizing inputs and creating routines that absorb

residual uncertainty. Together these directions would connect the demonstrated

gains in accuracy to decision models that account for variability rather than only

central tendency.

In Chapter 3 the move from point forecasts to distributional estimation improves

cost outcomes under sparse histories, but the design leaves room for broader scope.

The distributional random forest with temporal bootstrapping exploits cross

learning to sharpen tail behavior, which is where service penalties concentrate.

The method adapts as data accumulate and converges toward standard non-

parametric baselines, which supports robust deployment. Open issues include

the range of distributional learners that could be substituted without strong

assumptions, the role of external covariates such as macro conditions and supplier

metrics, and the extension from single location control to multi echelon settings
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where upstream and downstream nodes interact. Another frontier is adaptive

updating that refreshes predictive distributions as new transactions arrive, turning

the approach into a live component of planning rather than a periodic batch

procedure.

In Chapter 4 controlled simulations inform when cross learning adds value and

when it should defer to local estimators, but the abstraction that makes these

mechanisms transparent also narrows generalizability. The setting assumes a single

echelon system with periodic review, stationary and independent demand and

lead time, convex separable costs, and full backlogging. Feature representations

are clean and similarity is governed by exogenous alignment noise, while data

are generated from known processes. We evaluate models by average cost under

a back-order penalty. We do not model fill rate or service distributions, which

limits direct transferability to practice. The most direct next steps are to relax

stationarity, to model hierarchical and networked structures, and to incorporate

causal features derived from usage telemetry that carry information about demand

formation. Joint estimation of demand and lead time would align with practice

where both processes evolve together. Replication on established intermittent

demand datasets such as the royal air force, jewellery, and automotive aftermarket

collections would further test robustness and aid comparison across studies.

Taken together the chapters indicate a staged research agenda that deepens mod-

eling of uncertainty, widens operational scope, and broadens empirical grounding.

Chapter 2 motivates richer outputs for lead time by moving from points to dis-

tributions. Chapter 3 introduces a distributional learner that is effective under

sparsity and can leverage on external signals. Chapter 4 specifies the conditions

under which cross learning is reliable and sets out the relaxations and replications

needed for wider adoption. The result is a coherent roadmap from data inputs

to informed decisions that remain stable when data are thin, tails matter, and
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observable similarity is only partially informative.
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