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ABSTRACT

This thesis presents two main projects focused on hybrid quantum search algorithms.

The first, Particle-Guided Grover’s Search, applies Bayesian inference to quantum search
when the number of solutions is @ priori unknown. It begins with a prior distribution that en-
codes our initial “beliefs” about the true number of solutions in the search space, and recursively
updates these beliefs using Bayesian inference. Measurement outcomes of the quantum search
that do not yield a solution are interpreted as “evidence”, guiding the Bayesian update to deter-
mine the optimal number of Grover iterations for subsequent rounds.

This approach leverages Particle Filtering — a Bayesian filtering technique — to avoid explicitly
storing the entire prior distribution at each step. Instead of requiring O(/N') memory, the method
draws a set of “particles” from the prior and updates their associated weights as quantum search
failures accumulate. Particle filtering also offers the advantage of incorporating information from
all past failures, rather than only the most recent one. The algorithm’s performance is bench-
marked against a prior work [15].

The second project, Runtime—Coherence Trade-offs for Hybrid SAT Solvers, is focused
on a class of hybrid k-SAT solvers. These solvers are based on a well-known random walk tech-
nique called Schéning’s algorithm, which uses two sources of randomness to perform a local
search over the space of all assignments for a k-SAT problem.

In this project, we assume that these sources of randomness are encoded into a long bitstring,
allowing the random walk to be interpreted as a deterministic function mapping each bitstring
to either 0 or 1, depending on whether the walk successfully finds a satisfying assignment. This
functional perspective enables us to pose the question: Given a bound on the coherence time
of a quantum computer, which portion of the bitstring should we search coherently, and which
portion should be left to classical search?

We address this question by introducing a family of hybrid algorithms called “partial Grover-
izations”, which strategically combine quantum and classical resources. We analyze the runtime
performance of this family as a function of the available quantum coherence time. The results of
this work have been published in [32].



ZUSAMMENFASSUNG

Diese Dissertation stellt zwei Hauptprojekte vor, die sich mit hybriden Quanten-Suchalgorithmen
befassen.

Das erste, Particle-Guided Grover’s Search, wendet Bayessche Inferenz auf die Quanten-
Suche an, wenn die Anzahl der Lésungen « priori unbekannt ist. Es beginnt mit einer A-Priori-
Verteilung, die unsere anfinglichen ,Glauben” tiber die tatsichliche Anzahl von Lésungen im
Suchraum kodiert, und aktualisiert diese Glauben rekursiv unter Verwendung der Bayesschen
Inferenz. Messergebnisse der Quantensuche, die keine Losung liefern, werden als ,,Evidenz” in-
terpretiert, die die Bayessche Aktualisierung bestimmen, um die optimale Anzahl von Grover-
Iterationen fiir nachfolgende Runden zu bestimmen.

Dieser Ansatz nutzt Partikelfilterung — eine Bayessche Filtertechnik —, um zu vermeiden, dass
beijedem Schritt die gesamte A-Prior-Verteilung explizit gespeichert werden muss. Anstatt O(N)
an Speicher zu benétigen, zieht die Methode eine Menge von ,,Partikeln® aus der A-Priori-Verteilung
und aktualisiert deren zugehorige Gewichte jedes Mal, wenn die Quantensuche erfolglos ist. Die
Partikelfilterung bietet aufferdem den Vorteil, dass sie Informationen aus allen vorherigen erfol-
glosen Suchvorgingen berticksichtigt und nicht nur aus dem letzten. Die Leistung des Algorith-
mus wird mit der einer fritheren Resultat in der Literatur [15] verglichen.

Das zweite Projekt, Runtime—Coherence Trade-offs for Hybrid SAT Solvers, konzentriert
sich auf eine Klasse hybrider k-SAT-Solver. Diese Solver basieren auf einer bekannten Random-
Walk-Technik namens Schénings Algorithmus, die zwei Zufallsquellen verwendet, um eine lokale
Suche tiber den Raum aller Zuweisungen eines k-SAT-Problem durchzufthren.

In diesem Projekt gehen wir davon aus, dass diese Zufallsquellen in einer langen Bitkette kodiert
sind, sodass der Random Walk als deterministische Funktion interpretiert werden kann, die jede
Bitkette entweder auf 0 oder 1 abbildet, je nachdem, ob der Walk erfolgreich eine zufriedenstel-
lende Zuweisung findet. Diese funktionale Perspektive erméglicht es uns, die Frage zu stellen: An-
gesichts einer Begrenzung der Kohirenzzeit eines Quantencomputers, welchen Teil der Bitfolge
sollten wir kohirent durchsuchen und welchen Teil sollten wir der klassischen Suche tiberlassen?

Wir gehen dieser Frage nach, indem wir eine Familie von Hybridalgorithmen namens ,,partielle
Groverisierungen” einftihren, die Quanten- und klassische Ressourcen strategisch kombinieren.
Wir analysieren die Laufzeitleistung dieser Familie als Funktion der verfiigbaren Quantenkohirenzzeit.
Die Ergebnisse dieser Arbeit wurden in [32] veréffentlicht.
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1 INTRODUCTION TO QUANTUM SEARCH
AND BOOLEAN SATISFIABILITY

The aim of this thesis is to study different aspects of quantum search algorithms, and in particu-
lar Grover iterations. The problem that quantum search algorithms are designed to tackle is (un-
structured) Search Problem'. Take for example Traveling Salesman Problem (TSP), the problem
of finding the shortest possible route that visits every given city exactly once, and returns to the
starting city. This problem can be formulated as follows, given a length L is there any Joop, de-
fined as a closed route, that connects all given cities, and its length is at most L? if so which one?
This way, the TSP is formulated as a search problem. If one tries to solve this problem naively, one
would need to go through all the loops that include every given city, one by one, and calculate their
corresponding length to check if the criteria length(loop) < L is satisfied for any loop. There are
in total n! loops that visit every city exactly once for n given cities since fixing the starting point
of a route, or choosing the first city, would leave n — 1 cities to travel to next, and further fixing
the second city, would leave n — 2 cities, and so on.

Assume we had stored all legitimate loops in a list in advance, the brute-force algorithm will
require to look at the list as many as n!/2-times o average, to be able to tell if any of them satisfies
the given condition. Depending on the ordering of cities, we might be lucky and find such loop
pretty early in the list, or on the contrary, on a bad day we might need to search through them
all. The brute-force algorithm is said to solve the TSP, since it either confirms that at least one
such loop exists, and outputs the corresponding loop, or stops with an output “not found”. Each
time we look at the list, we request a piece of information from the list. This request is one of the
conventional units to measure the performance of algorithms, and is called a guery.

This example, moreover, illustrates the practice in the computational setting, to classify com-
putational problems and algorithms in terms of how the required effort scales with the problem
size. In our particular example, the size of the problem is the number of cities 1, and the effort is the
number of times we need to look into the list of legitimate loops before we find one that satisfies
the criteria. In the jargon of computer science, the cost (the number of queries) scales factorially
with the problem size (number of cities). In this thesis, we adopt this method of comparing algo-
rithms, where an algorithm is more efficient than others, if its scaling is more favourable. From
this perspective, a quantum search algorithm remarkably performs better than the brute-force,
namely in a manner where the number of queries scales as O(Vnl). Although this “efficiency”
is comparably modest, and in practice many heuristics perform much better than n!, quantum
search algorithms —in general— are more powerful in the sense that they can be applied to many
classical search algorithms that are based on search heuristics. We will discuss this further, and
provide an example of such hybrid algorithms in Chapter 4.

"'We will soon come back to what is meant by “unstructured”.



1 Introduction to Quantum Search and Boolean Satisfiability

1.1 QUANTUM SEARCH ALGORITHMS

Quantum search algorithms are more efficient than similar classical algorithms since the required
“effort” to find a distinguished element in a set that contains it, for a quantum search algorithm is
squared root of the classical counterpart. The underlying set of elements that we wish to search
in, is called the search space. To precisely quantify our comparison of algorithms’ performance, we
will use the following definitions:

Definition 1. Big-Ob: the function f : N — N issaid to be in the worst case of order of function
9 : N =N, as its input n grows if

de,ng >0 suchthar  f(n) < cg(n) Vn > ny,
and, is written as f(n) = O(g(n)).

Definition 2. Big-Theta: the function f : N — N is said to be on average of order of function
g : N — Nas its input n grows if

deg,e2,m0 >0 such that c1g(n) < f(n) < cag(n) Vn > no,
and, is written as f(n) = ©(g(n)).

For example, the brute-force algorithm we discussed earlier, needs O(n!) queries to the list of
loops since for ¢ = 1 the number of queries is less than n!. This condition actually holds for
any ng > 1. We say as well that the runtime of this algorithm scales as O(n!). On the contrary,
the corresponding quantum search algorithm has a runtime that scales as O(V/n!). We will givea
formal definition of runtime later in Section 1.2.

In general, the quantum search algorithms provide a quadratic speedup over their classical coun-
terpart. In this context, a speedup means any improvement over the current runtime of an algo-
rithm. It is important to note that, this speedup can be gained assuming no inherent structure
in the search space to be exploited. If there exists such structure, it might not be possible to de-
sign a quantum search algorithm that could take advantage of this structure, and yet provide a
quadratic speedup. The Branch and Bound method [43] is an example where the quantum search
algorithms could successtully be applied [48]. In short, the Branch and Bound method which is
used to tackle combinatorial optimization problems, breaks the problem of finding an optimal
configuration to smaller sub-problems (branching), and calculates bounds for the quantity to be
optimized (bounding). The method speeds up the search problem by eliminating sub-problems
that cannot contain the optimal solution. The Branch and Bound serves as a base for many search
heuristics, and provides a strong tool for many industrial applications.

On the contrary, any database that is structured —in some way— would not be a good play-
ground for quantum search algorithms. Because, normally there is a well-tuned classical search
algorithm that is designed to take the full advantage of this structure. A nice example is the
NASA/IPAC Extragalactic database, a large database that contained 206 million astronomical
objects as of 2014. What holds back the application of quantum search here, is the very structure
that has been created upon the storage of the data. This structure typically involves some label as-
signment to the data such that retrieving the data is done very efficiently. Unfortunately, standard
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quantum search algorithms are inherently unstructured; they treat all database elements equally
by initializing the search in a uniform superposition as we shall see soon. Thus, unless specific
structure is embedded into the “oracle” or initial state %, quantum search algorithms are agnostic
to any labelling or preference.

Assume a set that contains IV elements with ¢-many of them being distinguished in someway.
We can model this search space by mapping each element to an index from 0, ... N — 1. The
search problem is defined by a “search criteria” that can be represented as a function f : ¢ —
{0,1} withi € {0,... N —1}. We call an element marked if its index is mapped to one, and aim
to find such elementin a search problem. As it was discussed above, the task of finding one of these
marked elements can be approached classically by repeatedly selecting an element, and checking
whether it is marked. This algorithm will succeed in O(IN/t) evaluations of f, or equivalently
queries. On the other hand, the corresponding quantum search algorithm only needs O(1/N/t)
evaluation of the “search criteria” to find a marked element.

In the abstract setting, this function is modelled as a black box whose internal working is un-
known to us, but is capable of recognizing the solution to a search problem by distinguishing
between a marked element and a non-marked one. In the case of function f, by mapping them
to one and zero, respectively. This black box is called an oracle, and although it can recognize a
solution when it is presented, this does not mean that it knows the solution « priori, or can dis-
tinguish it among other elements in the search space.

Since all the operations in quantum circuits (except for the measurements of course) shall be
unitary, given a classical oracle, in this case f, we need to represent it as a unitary operator. For this,
we consider [logy N'| qubits to encode the indices of all the elements in the search space which
are called computational qubits, plus one auxiliary qubit which we denote as |¢). The quantum
oracle constructed from f, Oy, can be represented as

2)lg) 2 [2)]g @ f(2)),

withz € {0,...N — 1}, and @ denoting addition modulo 2. The auxiliary qubit is usually
prepared in the state (|0) — |1))/v/2, so if x be a solution to the problem, upon application of
the oracle the auxiliary qubit will pick a negative sign, and become (|1) —|0))/+/2. Conveniently,
the oracle leaves auxiliary qubit intact if  is not a solution. It is important to note that the state of
the auxiliary qubit will be left unchanged by the action of Oy, it merely introduces a phase shift
of 7 to the whole state |x)|g). For this reason, we can simplify things and instead represent the
oracle as
) =5 (<1 [a).

This way, we avoid writing the unchanged |¢) through the algorithm. This construction of the
oracle yields in a unitary operator, Oy. To see this, we note that in the basis {‘m)}ivz_ol, Oy is
diagonal, moreover, it is real. In fact the diagonal of Oy is either one or minus one. Therefore,
O' = O, further O? = I and this completes the proof.

Before technically discussing quantum search algorithms, we need to talk about a subtle point
on oracle design. In many search problems, the oracle has a rather complex structure, and would

2 . .
The notion of “oracle” will be covered soon.
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need more than one auxiliary qubit to be implemented. The extra auxiliary qubits provide a
workspace for some “scratch” computation, and are called garbage gubits. There are two reasons
to erase the garbage qubits once the desired computation is over:

1. Resource reuse: To be able to use them again in later calls to the oracle,

2. Preserving quantum interference: To ensure that interference patterns among computa-
tional qubits are not disrupted by entanglement with garbage qubits.

In quantum computing, there usually exist some specific interference patterns among compu-
tational qubits that are critical for quantum speedup. If the garbage qubits become correlated
with the computational qubits, this can affect the entanglement and interference patterns among
the computational qubits. Hence, normally we would not want our computational qubits to
correlate with the garbage ones.

Therefore, a further step called uncomputation needs to be added to the oracle once the phase
shift are computed. The goal of uncomputation is to restore these extra auxiliary qubits to their
initial states, usually |0).

In the operational level the uncomputation simply means applying the inverse of the oracle to
both the computational and garbage qubits. This step clears any unwanted entanglement between
the qubits, making sure the computational qubits are ready for the next operation. We do not
discuss the details of uncomputation and oracle design here, and refer to [53] for more details.

In the following, we review the principles of Grover iterations, the building blocks of quan-
tum search algorithms. We further discuss their performance analysis, and argue that whether the
number of marked elements ¢, is known or not, the search cost scales as \/ N/t queries.

1.1.1 PRINCIPLES OF GROVER ITERATIONS

As we discussed in the previous section, a search space of size [N can be represented by the in-
dices, 0, ... N — 1, or alternatively, the basis states of [logy IN'| qubits. The corresponding basis
states {|0),...| N — 1)} are called computational basis. To encode this search space, the qubits are
prepared in the uniform superposition of computational basis, |¢) = LN Zﬁal 7). The uni-
formity indicates that every base state is as likely as the others to be measured, confirming our
assumption on the absence of any structure in the data. Any quantum search algorithm consists
of asequence of rotations, known as Grover operator, that aims to rotate this superposition toward
the superposition of marked states. [35]

Assume there are ¢-many marked elements out of the total V. Initial state [)), alternatively

can be written as the superposition of marked and unmarked states as

) =Xty + /L9,

where |a), |3) are the states corresponding to the superposition of unmarked and marked ele-

ments, respectively. Itis convenient to define the angle 6 such thatsin /2 = 4/ %, consequently

N—
cosf/2 = /AL
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The Grover operator is designed to rotate [t)) - in the plane spanned by |a) and | 3) — towards
|3). This is done by two consecutive reflections. The first reflection implements the oracle, and

1 0
o-(y )
The state |1)) represented as the vector <g> , will be mapped to <_Odﬂ) by this reflection.

is simply a reflection around | ),

The second reflection, or the diffusion operator, is a reflection around the state [¢)), given as

D = 2|¢)) (| — I. The diffusion operator can be represented in the plane of |cr) and |3) as,

D cosf siné
sinf —cos@)/’
It turns out that the combined effect of the two reflections—the oracle followed by the diffusion
operator—is equivalent to a rotation by an angle 6. This rotation technically defines the Grover
operator,

(L1)

G — DO — <c9s€ —sin9>7
sinff  cos®
which has the effect of amplifying the amplitudes of marked states while simultaneously reduc-
ing the amplitudes of unmarked states. In other words, the application of the Grover operator
enhances the overlap between |¢) and the superposition of marked states. Consequently, the
probability of measuring a marked element is increased. The blue parts in figure 1.1 depicts one

application of this rotation.

By iteratively applying the Grover operator, we can rotate the initial state |1/), towards the de-
sired superposition — namely, the superposition of all the marked states | 5). But how many appli-
cations of the Grover operator, or Grover iterations are needed? The Grover operator— as discussed
above- is a rotation in the plane of marked and unmarked states, and knowing the angle 6 we can
determine how many rotations are needed to get as close as possible to the desired superposition.
Itis important to note that since the rotation angle of the Grover operator is twice as the angle be-
tween the initial state and the superposition of unmarked states, the rotation angle is already fixed
by the parameters of search problem, z.e. N and t. Therefore, it is very likely that no combined
iterations of Grover can align the initial state perfectly with the superposition of marked states.
It is, however, possible to achieve an almost perfect alignment such that measuring the resulting
state— most likely— yields in finding a marked element *. One can calculate the probability of mea-
suring a marked element after k-many applications of Grover iteration. To see this, we consider
the action of k& Grover iterations on the initial state,

2k +1 2k +1

2

GF|p) = cos ( 0)|cr) + sin ( 0)|8).

3See [63] for the perfect alignment procedure.
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Figure 1.1: Grover rotation shown as two consecutive reflections on the initial state (blue parts). First the
oracle operator O, reflects the initial state |t), around the superposition of unmarked states
|ar). Then the diffusion operator D, reflects the resulting state around the initial state. These
reflections rotates the initial state towards the superposition of marked states |3), by angle 6.
The red vector illustrates a overshooting, where too many applications of Grover operator will
decrease the overlap between the initial state and the marked states.

8)

T

The probability of finding a marked element by measuring the state G¥|1)) is given by,

9)

which is defined as the success probability of the Grover iterations. Ideally, we want a process that

2k +1

psucc(k) = Sin2 (

maximizes the success probability. Such rotations shall result in a state which overlaps maximally
with | 3), such that upon measurement, it is most likely to find a solution to the search problem.
We call this number the optimal number of iterations.

Obviously, {|«), |8)} is an orthogonal basis. The optimal number of iterations shall possibly

rotate the state |1)) by § — g The criteria to determine the optimum number of iterations reads
then,
2k+1 t N
2+ aég;»2(2k+1)arcsin,/ﬁzw:»k:% — (1.2)

where we have used the assumption ¢ < N to exploit small-angle approximation. This is a rea-
sonable assumptions since if ¢ is not significantly smaller than [V, the advantage of Grover itera-
tions diminishes. In such cases, classical algorithms may perform comparably, or even outperform
Grover iterations, making the quantum approach less beneficial.

Equation 1.2 also proves that the quantum search solves a search problem with NV total elements
and t marked ones, in O(y/N/t) queries to the oracle. The algorithm achieves this with a con-
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stant (z.e., O(1)) probability of success, which can be increased to near certainty with repetition

if needed [63].

What if we keep running Grover iterations? Well, the Grover iterations like all other rotations
are periodic. By consecutively rotating the initial state it will be mapped to itself at some point,
but before that there is a number of rotations that will approximately align this state with the
superposition of marked states. Any further iteration would rotate the state further away from
the desired superposition, and so-called overshoot the rotated state. The red arrow in figure 1.1
depicts this situation.

Therefore, it is very important to apply Grover iterations just as many as the optimum number
of iterations. But as we saw earlier the optimum number of iterations is a function of the parame-
ters of the underlying search problem. In many practical search problems, the number of marked
elements is not known a priori. Can one still take advantage of quantum search algorithms in such
cases? The answer to this question is luckily positive. In the next section we will cover different ap-
proaches to tackle this problem. The pseudocode 1 outlines the Quantum Search algorithm. We
adopt the notations [N] to denote a search space of size IV, and bin() the binary representation,
respectively.

Algorithm 1 Quantum Search

Input: 1) Search space: [N]
2) n + 1 qubits with n = [logy N1.
3) A black box oracle Oy, that acts on elements of [N] as O¢|x)|q) = |z)|q ® f(x)).
z €{0,...bin(N — 1)}, f(z) = lif x is a solution to the search problem, otherwise,
f(z)=0.
4) An integer k set as the number of Grover iterations.

Output: An element of [N].

1: Initialization: |¢))|q) = [0)®""!
The state of the computational qubits and the one auxiliary qubit are represented by |1)) and

‘s HO"@HX _ 0)—1|1
2. Superposition: [1)]q) 21X, |y} = o N1 oy (0L

The Hadamard gate H®™, and a Pauli  followed by a Hadamard gate H X, are applied to
the first 7 qubits and the last one(auxiliary), respectively.
DOy)* -
3. Grover Iterations: [¢')|¢) (~—f)—+z |x*) (%)
The Grover operator is applied k-times with k& ~ [F+/N/t].
> The state |x*) is the superposition of all solutions. Here it is assumed that t is known to the
algorithm, if not, the state of the computational qubits could be any superposition of the compu-

|q), respectively.

tational basis.
4: Measurement: The state of computational qubits is measured. With high probability a so-
lution z* is read.
> Again, if t be unknown, the measurement outcome can be any element of the search space.
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1.1.2 GROVER ITERATIONS WITH UNKNOWN NUMBER OF SOLUTIONS

How can one take advantage of the quantum search when the number of marked elements is not
known in advance? In other words, is there any modification of Grover iterations that can be used
when ? is unknown, and yet provide the squared root speedup?

There are in general two approaches. The first one utilizes a quantum subroutine called Quan-
tum Counting, and suits the fault-tolerant regime of quantum computing. The second approach
proposed by Boyer ez al. [13] is practical and based on bounding the probability of success from
below. We discuss both approaches here, and will propose our approach using Bayesian inference
in Chapter 3. The second approach will serve as a baseline to compare our results later.

Quantum Phase Estimation [41] is a quantum subroutine that is able to find the eigenvalues of
a unitary operator up to the desired precision. Since all the eigenvalues of a unitary operator have
unit modulus, the problem of finding eigenvalues is reduced to finding the corresponding phases
of the eigenvalues. In other words, if one manages to estimate the phases, then the corresponding
eigenvalues can be approximated easily.

The application of Quantum Phase Estimation to Grover operator G in order to estimate its
eigenvalues is called Quantum Counting [14]. We now briefly discuss the main idea of Quantum
Counting subroutine and refer to [53] for more details. Similar to the electrical circuits, a prede-
termined memory location in a quantum circuit is called a register. In Quantum Phase Estimation
two registers are used, the first one is prepared in |0) ®d_and the second one in the eigenstate |u) of
the operator whose eigenvalues we are interested in. In the following we argue why for the Quan-
tum Counting it suffices to prepare the second register in the superposition of computational
basis.

Recall the Grover operator from equation 1.1. This operator has the eigenvalues \g = e A\ =
e!27=9), corresponding to the eigenstates |1g) = %(]c@ +1ilB)) [v1) = %(\a} —1i|B)). The
|a) and |3) are the superposition of the unmarked and marked elements, respectively. It is not
difficult to see that there are , y € C such that

zlvo) + yl1) = cos(0/2)a) + sin(6/2)|5),

with the right hand side being the superposition of the computational basis |+)". Hence, in
Quantum Counting the second register is simply set in the superposition of the computational
basis, with the minor change that instead of n = [logy N'| computational qubits, totally n + 1
qubits are used to also include the auxiliary qubit *.

The number of qubits in the first register d, depends on the desired precision of estimation
and the success probability in measuring the phases. We will later discuss how d is related to the
probability of success.

The pseudocode 2 presents Quantum Counting subroutine.

The first and second steps set both registers, separately, in the uniform superposition of the
computational basis. In the third step, 6 and 27 — 6 the phases of Grover operator’s eigenvalues
are encoded into the relative phases of the amplitudes of the first register using the controlled-
Grover operations. By performing inverse Quantum Fourier Transform in the fourth step, the

*Here, we assume that only one auxiliary qubit is required to encode the oracle; if more are needed, this number will
increase accordingly.
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Algorithm 2 Quantum Counting

Input: 1) d + n + 1 qubits.
2) A black box which performs controlled — G7 operation.

Output: m-bit approximation of 0 as 0.
®d| )@t

1: Initialization: |0)

®d @n41
2: Superposition: |0)®d]0>®n+1 grent, H—>d‘+>n+l

> )" = (z|vo) + ylv)|+) = z|vo)|+) + ylvi)|+). For simplicity, we restrict our
analysis to the branch |vy), and insert the other branch later.
; ¢ cig? ! pod— .
3. Controlled-G2' "s: |+)%|1p) —=———— (|0} + €2 1)) ... (|0) + €2° 1)) |1pp)

= 5755t €] ) w)-
> T/ae notation CI means that the control is on the state of the j-th qubit in the first register.

’
4: Inverse Fourier Transform: Z] 01 7 15) LILIN |0)

On the first register, inverse Fourier transform is applied.
> The ful[ state includes contributions from both branches: x Z =0 L it l7) +

UZ oL etCm=03 5\, Applying the inverse FT yields: x|0) + y|21 — ).
5: Measurement. The first register is measured. With high probability 0 or 27 — 0 are read.

basis of the first register changes from the Fourier basis to the computational basis. This allows
reading oft the phases directly through measurements. Fourz'er basis on a d-dimensional Hilbert

space is the orthonormal basis {|k‘>}k o} with k) = \f 22 o1 g2mijk/2 |7), with {[5)} 21 !
being the computational basisand & € 0, . .. 24 1. Inour case, # (or similarly 27 —0) is encoded
as €'%7 in the amplitudes. By comparing with the standard Fourier basis, we have 6 = 227r—dk. The
inverse Fourier transform yields a state in the computational basis \k)id:?)l, with a peak around

the base |k*) for which k* ~ 2;70. Consequently, the phase 6 can be estimated as 6 ~
keep the pseudocode clear, we refer to the outcome of the inverse FT and the measurement simply

as 6.

The quantum Fourier Transform is the quantum counterpart of discrete Fourier Transform.

2rk*
ga—- 1o

We do not discuss this subroutine here, for our purpose it suffices to note that the computational

basis | ) ,01 are mapped to the Fourier basis \k‘) 01 via the quantum FT, and conversely, the in-
verse quantum FT maps the Fourier basis back to the computational basis. It is worth to mention
that both subroutines require O(d?) gate operations.

The final stage of Quantum Counting is performing measurement on the first register. Now, if
we aim to estimate § up to [ 5] + 1 bits of binary precision with n = logy IV, and with a success
probability of at least 0.9, we would need d = [ %] + 3 qubits in the first register. This turns out
to be sufficient to estimate ¢, the number of marked elements, reasonably e, |At] < O(V/1).
(See [53] for detailed analysis). But how about the total number of Grover iterations? In total,

d
» 27t =24~ 1= O(VN),
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calls to the Grover operator is needed! Therefore, Quantum Counting is not suitable for the cur-
rent quantum devices, which are far from being fault-tolerant, mainly because it requires O (v V)
applications of the Grover operator.

There is a quantum FT-free version of quantum counting that is given by Aaronson ez al. [1].
This simplified quantum counting procedure is able to estimates the number of marked elements

t —from a list of total N elements— in O(4/ %e_l log(671)), with € being the estimation error
and 0 the probability of failure. This procedure requires O(log N') qubits of space.

We now discuss the second approach proposed by Boyer ez /. [13]. The following lemma cap-
tures the core idea underlying their algorithm.

Lemma 1. Let t be the unknown number of marked elements in a search problem of size N, and
0 € [0,7/2] be the angle such that sin(0/2) = \/t/N. For an arbitrary positive integer m, and
integer j that is drawn from [0, m — 1] um’formly, the followz'ng holds: If j-many Grover iterations
be applied to a register initiated in 1)) = \F Z i), the average probability of success upon
measuring GJ 1) is,

1 sin(2m#)

Pstuce =T T - 1.
Pace (1) 2 4msind (13)

We observe that in particular, Dyyec () > 1 7 whenm > The proof starts by calculating

sin 0
the average success probability over all the p0551ble Grover cycle’s. A Grover cycle is defined as one
application of Grover iterations to the state [t/). The average success probability over all possible

cycles is,

ﬁsucc Z SlIl 2] +1 9/2) (14)

Using trigonometry relations, the right hand side of 1.4 can be simpliﬁed to the right hand side of

1.3. Then it is easy to see that for all number of iterations m > % \ / , the inequality jn(%ne)

msinf —

% holds, and this completes the proof.

Using this lemma, Boyer ez /. could provide a routine that modifies Grover’s Search to find a
solution to a search problem in O(y/N/t) queries to the oracle, even when the number of solu-
tions is not known  priori. We call this routine as Guess-and-Check Grover’s Search. It obviously
is probabilistic, and the key insight into its performance is that, after a sufficient number of Grover
cycles, the success probability in each cycle becomes atleast 1 /4 on average. We do not discuss the
runtime analysis here, and refer to [13] for more details.

The algorithm for Guess-and-Check Grover’s Search is outlined in the following.

10
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Algorithm 3 Guess-and-Check Grover’s Search
Input: 1) [logy N'| + 1 qubits.

2) Search space: [N].

3) A black box oracle O on [N}, as described in Algorithm 1.
Output: A marked element z*.

Em+ 1A« 8

2: Guess number of iterations: j < draw an integer from [0, m) uniformly.

Perform Quantum Search:

x <~ QuUANTUMSEARCH([N], [logy N'| 4 1 qubits, Oy, 5) > This is one Grover cycle.
if x is marked then

‘ return T

else

 Expand the interval: m < min(Am, v'N)

goto?2

b

This algorithm will run until it finds a marked element. To avoid an infinite loop when t = 0,
a stopping time can be introduced such that the runtime of the algorithm still remains v/ N. This
way the algorithm might return “no marked element found” incorrectly even though there exists
at least one marked element. This is fine since this “failure” error can be made arbitrary small.

To handle the case that the number of solutions in the search problem is relatively large, a classi-
cal sampling phase can be introduced. This is necessarily important for ¢ > 3 since the runtime
analysis of the algorithm assumes the condition ¢ < %.

Guess-and-Check Grover’s Search is theoretically simpler than Quantum Counting and also
practically better suited for benchmarking the quantum search with unknown ¢, especially in
the near-term and noisy quantum computing regime. But one might still wonder, can one do
better than this? The main clue here is that this method remains unaftected by the outcomes of
Grover iterations as long as the measurement is unsuccessful. In each Grover cycle, the number
of iterations is selected uniformly from a predefined interval, not projecting any belief one might
have on the potential number of solutions. Furthermore, it does not incorporate the information
we might gain from the failed attempts or unsuccessful Grover cycles. By interpreting Grover
cycles as experiments one can perform on a search space, then it becomes natural to approach the
problem from Bayesian inference’s perspective.

Additionally, some unstructured search problems, despite an unknown number of marked ele-
ments, may provide partial information on the possible number of solutions — a factor that could
be leveraged to make such “beliefs” and improve the search efficiency. Studying Grover iterations
within the Bayesian framework is the subject of Chapter 3. We will then use Guess-and-Check
Grover’s Search with slight modifications as a baseline to compare our results. We will review the
basics of Bayesian inference in Chapter 2, and in particular will focus on a Bayesian technique
called particle filtering which comes handy in our later study.

11
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1.2 BOOLEAN SATISFIABILITY PROBLEM

In this section, we discuss what k-SAT problem is, and its significance. k-SAT will be the subject
of our study in Chapter 4.

Consider the following problem: in an N x N chess board with N being a natural number,
can one place N queens such that no two queens threaten each other? The above question, called
the N -queens problem, is an example of a class of mathematical problems called Constraint Satis-

faction Problem. In all constraint satisfaction problems, a set of variables are given such that each

can take values from its corresponding domain. The problem then asks whether there exists any
way one can assign values to all variables such that a set of given limitations, or constraints, are si-
multaneously satisfied. In the N -queens problem, the variables are the IV queens, their respective
domains are all the N x N squares of the chess board, and the constraints are

* No two queens can attack each other by being in the same row.
* No two queens can attack each other by being in the same column.
* No two queens can attack each other by being in the same diagonal.

Explicit solutions of IV -queens problem except for N = 2, 3 were constructed by [36]. However,
finding all the solutions is a non-trivial problem.

An important class of constraint satisfaction problems are Boolean satisfiability or SAT prob-
lem. In the SAT problem, the variables are logical variables z.e. they either take TRUE or FALSE as
values, and the constraints are given in the form of a Boolean logic formula defined as follows:

Definition 3. Boolean logic formula: a formula that takes a set of logical variables
x; € {TrRUE,FaLse}  for i€ {l,...n},

combines them using logical operators AND,OR,NOT, IMPLICATION and EQUIVALENCE, and re-
turns either TRUE or FALSE.

Let n be the number of variables that occur in a Boolean logic formula. Since each variable can
be interpreted as either TRUE or FALSE, there are in total 2" ways of assigning values to them. We
call each way of assigning values to the variables in a formula, an assignment.

An example of a Boolean logic formulais ¢ :== ((z1 A —~x3) = 22) A ((z2 V ~21) & x3)
that maps the assignment 1 = TRUE, x93 = TRUE, 3 = FALSE to FALSE, and assignment
x1 = FALSE, 29 = TRUE, £3 = TRUE to TRUE. We say that the latter assignment sazisfies the
formula ¢.

We are now in a position to define Boolean satisfiability problem.

Definition 4. Boolean Satisfiability problem asks whether, given a Boolean logic formula, there
exists an assignment of variables that satisfies the formula.

Normally the Boolean logic formula is transformed into a form that is easier to manipulate algo-
rithmically. Using this form, called Conjunctive Normal Form (CNF), any formula can be written
as the conjunction of disjunctions, z¢. as AND of statements composed of ORs of a number of
variables or their complements. Each such statement is called a clause.

12
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Considering our earlier example of the Boolean logic formula ¢, it can be transformed to the
CNF form as follows,

¢ = ((z1 A ~z3) = 22) A ((22 V —71) & 23)
= ("l’l V xo V $3) VAN (IQ V -z V —|$3) VAN (—LTQ V 333) VAN ($1 V .’E3).

We do not discuss the details of this transformation here, and refer the curious reader to [61].

1.2.1 k-SAT PROBLEM

A special case of the SAT problem, called the £-SAT problem, is when all clauses — or disjunctions
— contains exactly k variables or their negations. A k-SAT formula can be represented in the CNF

form as follows,
L . . .
F=N\C; with €= 1§ Vi vl
j=1

with C denoting the j-th clause in the formula, and [ l(j )
clause. A literal is either a Boolean variable or its negation. Using literals, the CNF formulas can

be represented in a more neat and compact form.

the i 4 1-th literal occurring in the j-th

An example of 3-SAT formula in terms of the Boolean variables is,

Fy = /\ Cj with,

Ci=—-x1VaVas
Cy = —x9 VgV 1y

C3=ux1V 23V 24

Alternatively, F'; can be represented in terms of literals as,
3
F=N\C;  wih,
j=1

SN SAVISAVIS

Cy =12 viPvi?

Cs =1 vi® Vil

The assignments that satisfy F include 1222324 = {0000, 0100, 0001, 1100, 1010, 0011,
1110,1011,0111,1111}.

Notall SAT formulas have satisfying assignments. Finding a satisfying assignment for a k-SAT
formula, or confirming that no such assignment exists, is known to be computationally very hard

13
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for k > 3. Quantifying the “hardness” of SAT was historically important. To understand this
importance, we need to review a few concepts first.

A decision problem is any computational problem that can be stated as a YEs/No question. By
computational problem we mean any problem that can be modelled on a computer. An example
of a decision problem is the primality test of a number stated as: “given a natural number n, is n
a prime number?” The TSP problem as it was presented in Section 1 is another example.

We talked earlier about using big-Oh and big-Theta to quantify the performance of some
search algorithms. The notion of “complexity” of an algorithm is, however, a much deeper con-
cept. To formalize this notion, and as well quantify the “complexity” of a computational problem,
there exists luckily a powerful tool. In 1936 Alan Turing [62] invented a simple abstract machine
with the intent of capturing the notion of computability. Later on many attempts could success-
fully extend this machine to other physical domains of computation like probabilistic, quantum,
etc, and added to its strength.

The Turing machine is one of the most prominent inventions of the 20-th century, providing a
fundamental measure for both computational problems and algorithms. In what follows we aim
to intuitively cover its main idea, and refer the interested reader for a nice and thorough discussion
to [4].

The Turing machine is a tuple: a finite set of symbols, a finite set of possible states the machine
can be in, and a transition function which consists of a finite set of operations. The machine
works on one or more fapes that serve as its “memory”, and might be of read-only or read/write
type. Each tape is a line of cells which is infinite in one direction. For every tape the machine has
a tape head which enables it to read/write a symbol off/on one cell at a time. Assume the machine
works on k tapes. At the ¢-th time step, k symbols that are directly under the heads are read. Let
us call these symbols c1, ca, . . . ¢k, and the current state machine is at as s; # Syarr. The halt
state, Sgart, is an element of the set of possible states for which the machine halts, and returns an
output.

Roughly speaking, the transition function at the i-th step does the following:

1. Takes s; and c1, ¢, . . . ¢} as inputs.

2. Based on the inputs performs a finite number of operations, and returns potentially new

symbols ¢}, ¢5, . .. ¢},

3. Changes the state s; potentially to a new state from the set of all possible states.
4. Decides the next movement for each head from the set {Stay, RigHT, LEFT}.

The R1GHT, LEFT commands mean moving the head of the corresponding tape one cell to the
right or left, respectively. The machine continues to operate according to the above instructions
until it hits the halt state. Otherwise, it continues forever.

We are now equipped with the promised tool to cover the notion of complexity. An algorithm
is formally defined as a Turing machine that computes a problem. A problem, in this context,
is typically modelled as a function with a countable domain and range. An algorithm then is a
Turing machine that for every input of the function, follows a sequence of steps, and halts with
an output of the function. The number of steps such Turing machine takes to solve the problem
is called the running time, or simply the runtime of the algorithm.

14
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Turing machines are helpful in classifying the computational problems, as well. The first class
of functions that was known to be efficiently computable was the c/ass P. Class P is defined as all
decision problems that are decided correctly (7.¢. returned a YEs/No) by the Turing machine in a
number of time steps that is a polynomial function in the input size. The “P” in the name of this
class stands for polynomial time. For example, the problem of determining if a number is prime
is shown to be in P [2].

The second studied class of computable functions is the c/ass NP, standing for non-deterministic
polynomial time. A decision problem is said to be in NP, if and only if there exists a “non-
deterministic” Turing machine that can decide it correctly in a number of steps that is bounded by
a polynomial function of the input size. A “non-deterministic” Turing machine differs from the
standard one mainly in its transition function. The transition function of a non-deterministic
Turing machine may prescribe more than one action to be performed for any given input config-
uration - ze., a state s; and tape symbols {c; };?:1— at each step. On the contrary, the transition
function of a deterministic Turing machine specifies exactly one such action for each input con-
figuration. Intuitively, a non-deterministic Turing machine can be imagined as “trying all possible
choices in the actions in parallel” and accepting if any computation path leads to YES.

We are almost where we can talk about the importance of the SAT problem. The final notions
we need are “reducibility”, “NP-hardness” and “NP-completeness”. A decision problem A is said
to be polynomial-time reducible to another decision problem B if there exists an algorithm (cor-
responding to a deterministic Turing machine) with polynomial runtime that does the following.
For any given input of problem A produces an input for problem B with the below condition:
The answer to the original input for A is YEs if and only if the answer to the transformed input
for B is also YES. And we show itas A <p B. Now, a problem B is said to be in the class NP-
hard if every problem A in NP is polynomial-time reducible to it, z.e. A <p B. This means that
problems in NP-hard are at least as difficult as the hardest problems in NP. Finally, a problem is
in the class NP-complete if it lies in the intersection of NP-hard and NP.

The long detour was worth taking since the first problem that was proved to be NP-complete,
was the Boolean Satisfiability problem [21] and [45]. That is, any problem in NP can be reduced
in polynomial time to the Boolean satisfiability problem by a deterministic Turing machine. This
result is a well-known theorem in complexity theory, called Cook-Levin. Boolean satisfiability
problem is important practically, as well. In fact, many industrial optimization problems can be
converted to some form of it. The k-SAT problem will be the focus of our work in Chapter 4,
where we will design some class of hybrid (quantum-classical) algorithms that aim to take advan-
tage of the quantum search in some classical SAT-solvers.
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2 INTRODUCTION TO BAYESIAN INFERENCE

There are in general two different approaches to probabilities in statistics, one is founded by
Thomas Bayes in 18th century [12], and formalized later by Laplace [44] while the other was de-
veloped much later in the 20th century [33, 51, 52]. The two approaches led to different schools in
statistical inference, namely Bayesian inference and frequentist inference, respectively. Statistical
inference is the process of drawing conclusions from observed data, about the quantities that are
not observed. To understand this, consider a “random process” we are interested to study through
alimited number of “observations” we can afford. To model this process probabilistically there are
two main approaches: using Frequentist approach one regards the pieces of information gained
from the observations objectively, on the contrary to the Bayesian one where the gained informa-
tion is interpreted subjectively.

Take for example a biased coin that we aim to guess the probability of it landing on head. As-
sume we have flipped the coin 14 times, and observed 10 heads and 4 tails. If we ask our frequen-
tist statistician friend, he would consider this probability as a fixed but unknown parameter p,
and simply would estimate it by the “sample” proportion of heads. In this approach, it is assumed
that the coin “behaves” the same way every time it is tossed, z.e., the chance of getting heads or
tails does not change from one toss to the next, and each toss is unaffected by what has happened
before or will happen later. The outcome of each tossing of the coin is called a sample. Further-
more, he would assume there is an underlying probability distribution that every sample is drawn
according to it, in this case probability p, for heads and 1 — p, for tails with 0 < p < 1. Our
frequentist friend would estimate this probability as p = % ~ 0.714.

Interestingly, if we ask our Bayesian statistician friend, he would take a different approach to
this problem. He would assume the probability of coin landing on head —~which he would treatasa
random variable P-is initially distributed uniformly over [0, 1]. In the next step, our friend would
wonder how “likely” it is to see the observed data under this assumption. He would consider a
function proportional to f(P) = P1%(1 — P)%, reflecting the dependance of observed data on
the variable P. Finally, he would update his initial belief on the uniformity of the distribution of
P, using this function and get another distribution which in this case would be the same as f(P)
for0 < P < 1. Thisupdated distribution is indeed a probability distribution after normalization
(such that the total area under f(P) be one in the interval [0, 1]), because f(P) is nonnegative
over this interval.

This example clearly illustrates how the two points of view lead to different results, the fre-
quentist approach estimates the unknown probability as a point estimate whereas the Bayesian
one provides a probability distribution for it which is regarded as a random variable. Of course,
we can calculate the “expected value” of this variable which in this case is E[P] ~ 0.688, but
still the two estimated values are different in both nature and quantity. The frequentist estimate
treats the probability as a fixed but unknown parameter; the more observations we collect from
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the random process, the more accurate this point estimate becomes. This reflects an objective
perspective, where the parameter is fixed but unknown. In contrast, the Bayesian approach treats
the probability as a random variable, representing our uncertainty or belief about its true value
through a probability distribution. As more data become available, this distribution is updated
to better capture our knowledge, providing a subjective perspective on the unknown probability.

Both frequentist and Bayesian approaches are essential for drawing scientific conclusions, and
deciding which one would be the suitable tool depends on the specific context. For example,
the discovery of Higgs boson was established through a frequentist analysis [17], whereas many
subsequent studies have employed Bayesian methods to investigate the possibility of new physics

(beyond Standard Model) aftecting the Higgs field e.g. [27].

In Section 1.1.2, we discussed the problem with Grover iterations with an initially unknown
number of solutions t. There we looked at a specific algorithm, Guess-and-Check Grover Search,
that makes repeated attempts with random assignments of number of iterations, where failed at-
tempts to find a marked element results in new attempts. The question is if we somehow could
make active use of these failed attempts in order to gain information about the search space. More
specifically, can we gain information on the number of marked elements? Or similarly, we could
initially have a “hunch” of what the number of marked elements ¢ are while we are not certain.
(One may regard these two questions are related, in the sense that the information gained from
a failed attempt potentially could give us such a hunch for the next attempt.) Such questions of
partial, or vague knowledge are ideally suited for the framework of Bayesian inference. By inter-
preting the number of solutions in a search space as a random variable, each time an experiment —
in form of Grover iterations — is failed, a new piece of evidence is provided. One can utilize these
pieces to update one’s beliefs on the distribution of the desired random variable.

In what follows, we begin with the basic concepts from random variables all the way to the
Markov Chains, and will discuss the Bayes’ rule. In Section 2.2, with the aim of preparing for
studying dynamic systems in Bayesian inference, we shortly introduce Dynamic Bayesian Net-
works, and discuss the simplest model of them called Hidden Markov Model via an example. In
Section 2.3, we discuss different Bayesian marginalization categories to estimate full posterior dis-
tributions. Finally, Section 2.4 presents a step by step construction of a Bayesian filtering algo-
rithm known as Particle Filtering. To understand why we need to take this long detour, con-
sider the case of the coin example, once more. In this case, there are only two possible outcomes
for each experiment, allowing us to represent our beliefs completely. However, in the Grover’s
search, there are up to N possible hypotheses for the number of solutions, with /N being the size
of the search space. Therefore, storing a full belief distribution over all possible values of ¢ could
require O (V) memory units. Here is where we resort to Particle Filtering which provides a mem-
ory-efficient approximation of the belief distribution. Rather than storing probabilities for every
possible t, Particle Filtering maintains a set of weighted samples— called particles— drawn from an
appropriate “importance distribution”. These particles are then updated based on all observations
made so far, allowing us to capture the most significant features of the evolving belief distribution
using a fixed computational budget.
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2.1 Basic concepts

2.1 BASIC CONCEPTS

Recall the coin example we considered in the previous section. The possible outcomes for throw-
ing the coin were { H, T'}, z.e. landing on the head or tail, respectively. Such set that contains all
possible outcomes of a random experiment is called sample space. A random variable is a map
from the sample space to the real numbers. In other words, a random variable is the numerical
description of the outcomes of a random experiment, which can either be discrete or continuous.
In our example, this map can be simply H + +1,7" + —1. A random variable can be consid-
ered as a quantity that could take various values, and a “probability distribution” would describe
the probability that each value would happen. In the discrete case, the probability distribution is
described by a function, which assigns probabilities to each possible value.

Aninfinite collection of random variables with some index over time, space or another index set,
is called a zandom or stochastic process. Random processes first came up in physics to describe the
random phenomena that their state changes over time. In that context, the dynamic of a system
is modelled by a collection of random variables that describe the “state” of a system, and the set of
all possible states a system can be in at any point in time is called the szaze space. If the index set be
countably infinite, the random process is called discrete-time, and is simply an infinite sequence
of random variables, e.g. Z1, Za,.... We will only consider discrete-time random processes in
this thesis.

The simplest example of a random process is an z.z.d. process. A process is said to be indepen-
dent and identically distributed(ii.d.), if it consists of an infinite sequence of random variables
that are independent, and follow the same probability distribution. An important i.i.d. process
is a Bernoulli process with Z1, Zs, . . . being independent and following the same Bernoulli dis-
tribution. The Bernoulli distribution is a discrete probability distribution over a binary random
variable. For example the process of coin flipping we looked at earlier, is a Bernoulli process be-
cause the binary random variables Z; : {H, T} — {+1,—1}fori € {1,2,...} are assumed
to be independent, and follow the same distribution P(Z; = H) = p, P(Z; =T) =1—1p
with0 < p < l,andforalli € {1,2,...}. The independence property of i.i.d. processes
means that they are memoryless in the sense that for any time step 7, the future Z; 1, Z; 1o, . ..
are independent of the past Z1, Za, ... Z;_1.

The next simple memoryless random process is a Markov process [47]. Before defining a Markov
process, we need to discuss the notions of “event” and “conditional probability”. An event is a
subset of sample space to which a probability is assigned. The probability that an event occurs
is the sum or the integral of probabilities over this subset depending on the sample space being
discrete or continuous. The conditional probability is the probability of an event occurring, given
that another event is already known to have occurred. The conditional probability of event A

“given” event B is defined as P(A|B) = P(ANB)

P(B)
A Markov process is a random process Zy, Z1, Za, . . . such that for all states (; and all¢ > 0
P(Zit1 = G1|Zi = Giy - - Zo = Qo) = P(Ziy1 = Giv1|Zi = G) (2.1)

In other words, the probability distribution of future Z; ;1 given all the past Zy, ... Z;_1, and
current Z;, only depends conditionally on the current Z;. The condition 2.1 is also known as the
Markov property.
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Figure 2.1: A Markov chain model of a hypothetical stock market. There are three possible states in this
chain depicted as Bull, Bear and turtle, each indicating an increasing, decreasing or little changes
in the market values, respectively. The conditional probabilities are shown by arrows.

0.65

The simplest Markov process is called Markov chain which is a Markov process with a discrete
sample space. A discrete-time Markov chain consists of three components: Initial distribution,
the state space and transition matrix. The initial distribution p, is the probability distribution
of the first random variable in the sequence also known as the znitial state, the state space that
contains all possible values the states can take, and finally, the transition matrix encodes the con-
ditional probabilities. The transition matrix is defined as P = (p;;)i j=1,...n, with p;; > 0 such
that >_7" | pi; = 1. The conditional probability p;; is the probability of the chain transforming
from the ¢-th state to the j-th. The most commonly used Markov chains are discrete-time with a
finite state space. In such models, the initial state is described probabilistically by an initial distri-
bution p, and the the state of the i-th step is given by P?p. There is a whole field about studying
the properties of different Markov chains which is not relevant to our work, hence we leave it. As
a simple example of a Markov chain we consider the stock market of a hypothetical economy in a
given week. In this model there are totally three possible states: 1-Bull market, 2- Bear market and
3-Stagnant market each representing a trend of increasing, decreasing, or stable average market
values, respectively. The transition matrix of this model is given by,

0.65 0.3 0.05
P={(015 0.8 0.05
0.25 0.25 0.5

Figure 2.1 depicts this Markov chain. In many real-world systems, we cannot directly observe
the true underlying state, instead we observe some indirect or noisy data that depends on those
states. In fact, many dynamic systems modelled by Markov chains require inferring the system’s
hidden states from observed data using conditional probability. These tasks fall into the category
of “inverse problems”, where the goal is to recover unobserved causes or states based on observed
effects. In the Bayesian framework, this inference is performed using Bayes’ rule, which allows
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2.2 Dynamic Probabilistic Models in Bayesian Inference

the computation of posterior probabilities or updated beliefs about the system’s state “given” the
observations.

Definition 5. Bayes’rule [12]: Assume a state space S is partitioned as Hy, . . . Hy, i.e,
1 H, #0 Vke{l,...n},
2 HoNH =0 i k+#l and
3. Up_y Hr = S.

Further assume P(Hy,) # 0 and an event E with P(E) # 0. Then Bayes’ rule states that for all
ke{l,...n}
P(E|Hy) - P(Hy)
> i—1 P(E|H;)P(H;)

Each Hj, is called a hypothesis because the observation of event £/ might affect its probability.
Hence F is called the evidence.
In Bayesian inference notation,

* P(Hy) is called prior probability, representing the initial belief about the k-th hypothesis

before any evidence is observed.

* P(Hy|E) is called the posterior probability, which quantifies the updated belief in the k-th
hypothesis after considering the evidence F.

* P(E|Hy) is known as the likelihood, describing how likely it is to observe the evidence E
assuming the k-th hypothesis is true.

* Y, P(E|H;)P(H;) = P(E) is the marginal likelihood, and is the probability that the

evidence is observed irrespect of which hypotheses 1. . . n being true .

Bayes’ rule provides a fundamental framework for reasoning about the probability of a cause
(hypothesis) given an observed effect (evidence). When dealing with complex systems involving
multiple interdependent variables, Bayesian networks — also known as belief networks — are used
to represent and compute joint probability distributions efficiently by exploiting conditional in-
dependencies. In the next section, we focus on a temporal extension of these models, known
as dynamic Bayesian networks, which are particularly relevant for reasoning about systems that
evolve over time.

2.2 DynaMic PROBABILISTIC MODELS IN BAYESIAN INFERENCE

Bayesian networks [50, 54, 55] are probabilistic graphical models that represent a set of random
variables, and their conditional dependencies. In such a network the variables are represented as
nodes and the conditional dependencies as directed edges. The direction of arrows in a Bayesian
network is from a potential cause toward a potential effect. A Bayesian network which models a
sequence of variables (over time for example) is called a dynamic Bayesian network [23, 24]. In the
context of temporal models, this cause-effect structure often corresponds to transitions between
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2 Introduction to Bayesian Inference

latent(unobserved) system states and their observable outputs. That is, a hidden state at one time
step influences the next state as well as the measurements obtained.

The simplest form of dynamic Bayesian networks is represented by the Hidden Markov Model
(HMM) [7, 8, 9,10, 11]. HMM:s can be seen as a special case of dynamic Bayesian networks where
the system evolves over discrete time steps, with hidden states and observable outputs. In a typi-
cal HMM, both the hidden states and observations are discrete random variables. While HMMs
are limited in structure and assume discrete variables, dynamic Bayesian networks generalize this
framework: they allow for more complex state structures, longer-range temporal dependencies,
and can model both discrete and continuous variables. For simplicity, we begin by defining HMMs
and providing an illustrative example. This helps building intuition for how probabilistic tempo-
ral models operate and will form the basis of our discussion on Bayesian sampling in the next
section.

A Hidden Markov Model consists of an underlying Markov process whose states are not di-
rectly observable (hidden), but the process generates observable outputs that depend probabilis-
tically on the hidden states.

Let Z; and Y; be two discrete-time random processes. The pair (Z;,Y;) fori > 0 is called a
bidden Markov model if

* Z; be a Markov process whose state is not observable directly,

* P(Y; =wilZo = Co,--- Zi = G) = P(Ys = wil Zs = G),
Yy; € {yi},VQ S {Cz} andalli > 0.

One of the early applications of HMMs was in speech recognition ([5, 6]). Speech recognition is a
technique that enables the conversion of a piece of speech to text. For many years HMMs were the
dominant method in automatic speech recognition systems. Before discussing how this method
works we need to talk about a few technicalities. A phoneme is the smallest unit of sound in a
language such that all the spoken words are built from phonemes. Phonemes are helpful in dis-
tinguishing among words, for example the words “cat” and “bat” each consists of three phonemes
Jc/®/t/and /b/2/t/, respectively. They differ only in the first phoneme. During the conversion
of a speech to text, first the speech or acoustic data is transformed to a “feature” vector in the fre-
quency domain via the Fourier transform. In the next step, one has to “guess” which phoneme the
given feature vector most likely corresponds to, at every time step. This is where the main chal-
lenge of speech recognition lies. Depending on potential acoustic noises, different accents, and
etc the true phonemes can be incorrectly guessed. For example in English /d/, /t/ and /6/ (the
latter corresponding to the phoneme of th) are similar phonemes, and can be confused during
recognition.

The HMM:s that are used for speech recognition consists of two statistical models to overcome
this issue, namely an acoustic model, and a language model. An acoustic model is a model that
represents the relationship between the phonemes (hidden states) Z;, and the observable acoustic
features, Y;. Here 4 serves as an index for time steps. How exactly the acoustic models are created
and trained is beyond the scope of this thesis, but mainly they are a probabilistic map between
feature vectors and phonemes. For example a particular feature vector could be mapped to either
of /d/, [t/ or /8 with probabilities 0.7, 0.2, 0.1, respectively. Using the observed feature vector

is helpful in the estimation of the true phoneme, but one still can do better! Using the structure
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2.2 Dynamic Probabilistic Models in Bayesian Inference

Figure 2.2: The graphical representation of the hidden Markov model as the simplest dynamic Bayesian
network. In this model there is a hidden state variable, Z; for each time step which is condi-
tioned on the previous state variable, and is observed via the measured variable Y;. In the speech
recognition process these dependencies are modelled by a language model and an acoustic one.

Language model

Acoustic model

of the languages, we can refine our guess. In fact, the hidden state Z; is observed through the
feature vector Y;, and is conditioned on the previous state Z;_1 in HMMs for speech recognition.
For example, in English the probability that a vowel phoneme follows the phoneme /1/ is much
higher that a consonant phoneme.

At this point, hopefully this example clarifies the dependencies of variables in the HMMs. The
following steps summarize the speech recognition procedure at time step

1. Using the Fourier transform the (analogue) acoustic data is converted to (digital) feature

data, Y;.

2. A probabilistic function for the state phoneme Z; “given” the observed feature data Y3, and
the previous phoneme state Z;_1 is estimated.

3. The probeabilistic function is maximized such that under the assumed models, the observed
feature data is most probable.

The dynamical Bayesian network representation of our earlier example from speech recognition
is given by figure 2.2.

We will omit the explicit notation of random variables from this point forward for readabil-
ity and instead refer directly to their corresponding sample space outcomes. The state variable
Z; = (;with ; € S then would be denoted by (;. We use boldface letters (.., y) to emphasize
that certain values may be vector-valued. For notational consistency, we note that boldface does
not distinguish ¢ from (; therefore, we assume from this point onward that all state variables are
vector-valued, without loss of generality.

Dynamic Bayesian networks define a structured probabilistic model over sequences of variables,
representing how hidden states evolve over time and generate observations. This model can be
formalized using a probabilistic state space model, which describes the system as follows:
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2 Introduction to Bayesian Inference

Definition 6 (Probabilistic state space model). 4 state space is called probabilistic if (; and y;,
the state of the system and the measurement outcome at time step i, are given according the following
conditional probability distributions

G ~p(GlG-1) ¢ eR”
yi ~p(yil&;) y™ €R™,

withi=1,2,....

The notation  ~ p(x) means the variable x is given according to the probability distri-
bution p(x). This definition specifies dynamic Bayesian networks in continuous domains: a
Markov process (; governs the evolution of hidden states, while observations y; are conditionally
dependent on the current state. The conditional probability distribution p({;|;—1), describes
the “dynamic model” of the system which is stochastic, and p(y;|(;), is the distribution of the
measurement outcomes given the state, or simply the “measurement model”. According to this
model, the state distribution at any time step depends only on the state at the previous step, ze.,
P(CklCok—1,¥1:k—1) = P(Ck|Ck—1). Further, the measurement model assumes that measure-
ments are conditionally independent of one another and state histories, z.e. p(y&|Co:ks Y1:6—1) =
P(¥k|Ck)- Therefore, this probabilistic state space model is Markovian.

2.3 FROM JOINT POSTERIOR TO BAYESIAN MARGINALIZATION

In a Bayesian inference, we often aim to estimate the set of states (o.7 = {(o,(1,... (7} of
a system at time 7', given a set of measurement outcomes y,.;- = {y;,Y¥,:---yp}. Here, y,
represents all the quantities that are measured at time step 4. This is, we want to calculate the joint
posterior of all states, considering all the measurements,

p(y1.7|Co.7)r(Co:1)
p(yl:T)

p(yir) = /p(ylsT|C0:T)p(C0:T)dC0:T-

p(CO:T|y1:T) = With,

In this notation, p(y1.7|Co.7) is the likelihood model, p(¢o.7) the prior distribution, and p(y1.7)
the normalization constant. The main struggle is that at each step of the Bayesian update - ze.,
every time a new measurement is made— the full posterior is needed to be recomputed. As the
number of measurements increases, the computational cost grows, making the calculations in-
tractable.

To address this, a common strategy is to consider a selected marginal distributions of the states
rather than the full posterior. Bayesian inference offers three key approaches for this purpose:
Bayesian filtering, Bayesian prediction, and Bayesian smoothing.

In what follows, we introduce these three marginal distributions, and in the next section explore
one of the Bayesian filtering algorithms called particle filtering that we use as a key tool in our
analysis later in Chapter 3.

24



2.3 From Joint Posterior to Bayesian Marginalization

Bayesian Filtering considers the marginal distributions of the current state (;, given the current
and previous measurements,

p(Glyw)  i=1,...T.

Bayesian Prediction considers the marginal distributions of the future state (; 1, withn > 0 given
all the current and previous measurements,

p(Cisnlyrs)  i=1,...T, n=12,...

Finally, Bayesian smoothing considers the marginal distributions of a past state (;, given all the
current and previous measurements y 1.7,

p(Glyrr), 1<i<T.

The figure 2.3 presents these three marginal distribution schematically.

Figure 2.3: The graphical representation of Bayesian filtering, prediction and smoothing. In filtering, the
posterior distribution at the current state is estimated considering the current and previous

measurements, in prediction, the posterior distribution of a future state is estimated given all
the measurements so far, and finally in smoothing, the posterior distribution of a past state is
estimated given all the measurements so far.

Filtering

Prediction

Smoothing

Calculating the marginal distributions associated with Bayesian filtering, prediction, and smooth-
ing is significantly more efficient than computing the full joint posterior over all system states.
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2 Introduction to Bayesian Inference

Each of these tasks can be approached with various algorithms customized to the structure of
the problem. One of the well-known Bayesian filtering algorithms is Kalman filtering (37, 38,
60]. The Kalman filter is the solution of Bayesian filtering where the system dynamic and mea-
surement model are both linear, and the noises in both state transitions and measurements are
assumed to be Gaussian. The Kalman filter is widely used in GPS navigation systems, for example
in position estimation.

2.4 BREAKING DowN THE POSTERIOR: BUILDING PARTICLE
FILTERS STEP BY STEP

Not all Bayesian filtering algorithms are exactly solvable like the Kalman filter. In many practical
scenarios, calculating the marginal filtering distribution analytically is not feasible due to nonlin-
earity or non-Gaussianity in the models. To address this, Bayesian sampling methods are em-
ployed to approximate these distributions. These methods rely on Monte Carlo approximations
that enables practical inference and learning in dynamic systems.

We now introduce how Monte Carlo approximations are used in Bayesian filtering. In Bayesian
filtering problems, we often are interested to estimate the expectation value of a function g :
R™ — R™ over a posterior distribution at the current time step 7,

Blg(O)ly1r] = / &(Op(Clyr)de, (2.2)

where p(C|y1.7) is the posterior distribution of the state ¢, given the measurements y1,...yr
(filtering distribution). Since this integral is generally intractable analytically, numerical methods
like Monte Carlo techniques are employed. These algorithms use random sampling to approx-
imate results and, with independent samples and guarantee convergence with an error term of
O(L~1/?), with L being the number of samples. The upcoming sections provide three Bayesian
sampling algorithms that are used in this context.

The integral in 2.2 can be estimated —using sampling methods— by sum of L independent ran-
dom samples drawn according to ¢ @) ~ p(Cly1T),

Blg©lvirl ~ 7> ().

h

In what follows, we derive the Particle Filtering algorithm step by step, beginning with Zmpor-
tance Sampling, then extending it to Sequential Importance Sampling (SIS). Finally, we arrive at
Particle Filtering, which approximates the posterior distribution using a weighted set of Monte
Carlo samples, known as particles. The following sections are based on [57, Chapters 1, 6, 11].

2.4.1 IMPORTANCE SAMPLING

In many Bayesian filtering problems, it is not possible to sample directly from the posterior distri-
bution due to its complex form. Therefore, rather than sampling from p({|y1.7), one considers
sampling from an importance distribution, m((|y1.7) which approximates it, and is easy to sam-
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2.4 Breaking Down the Posterior: Building Particle Filters Step by Step

ple from [46]. The choice of an appropriate importance distribution is highly dependent on the
specific problem at hand. In Section 2.4.3, we will mention an optimal choice for the importance
distribution. The importance distribution is also referred to as the proposal distribution in the
literature.

To find out how importance sampling estimates equation 2.2, we assume that L samples are
drawn from an importance distribution: ¢ (1) ~ 7(¢ly1.T), withi = 1, ... L. It then follows,

maowqu/g@mmmﬂ«

_ S 8(QpyirOp()dS
[ p(y17|Op(()d¢
[P e ()] m(Clyrr)ac

J [Pl 7 ¢y, 1)d

To derive equation 2.3, we have used the Bayes’ rule to replace the posterior distribution with
the likelihood p(y1.7(¢), and prior p({) which can usually be evaluated easily. To derive 2.4, we
have assumed that the importance distribution 7({|y1.7), has a greater or equal support com-
pared to the actual posterior, ensuring that the fraction is well-defined.

1 P17l DNp(ECD) ¢ (4)
HﬁﬂyﬂwLZ RN ORI (25)
LT LyE i cO)p(e0) '
L 1 (¢ y1.7)
L . .
=> wiig(¢?) (2.6)

i=1
p(yllec)%p(c(“)
. (i) _ (¢ ly1:1)
with v [ ZL P(m:ﬂd“)?(d”)} 27)
=1 w((Dlywr)

Using Monte Carlo approximation according to the importance distribution, one arrives at
2.5, which can be written as the weighted sample average (see 2.6). The weights w'®, are meant
to correct for approximating the target distribution, and are rather easy to calculate. First, one
computes the nominator in 2.7, which corresponds to the unnormalized weights, and then divides
these unnormalized weights by their sum z.e., denominator, to get the normalized weights.

In summary, the posterior distribution can be approximated by an importance distribution as

L
p(Clyrr) = Y w?s(¢—¢W), (2.8)
i=1

with §() representing the Dirac delta function.
Given a prior p(¢) and a measurement model p(y1.7|¢), one can approximate the posterior
by importance sampling given in Algorithm 4.
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2 Introduction to Bayesian Inference

Algorithm 4 Importance Sampling

Input: 1) Prior: p(()

2) Measurement model: p(y1.7/()

3) Importance distibution: 7(¢|y1.7)

4) Number of samples: L
Output: Posterior approximation: p({|y1.7)

1: function IMPORTANCE SAMPLER(.)
2: fori=1,...,Ldo
3 L Draw samples §(i) ~7((ly1.T)
; iohts: @)  POLrlc)pc™)

4 Compute unnor}mahzed Vizélghts. L e (I
5: Then normalize: w(® + % fori =1,...L.
6. returnp(Cly1.r) = ZiLzl w(i)fs(f - C(i))-

2.4.2 SEQUENTIAL IMPORTANCE SAMPLING

When dealing with dynamic systems where the state evolves over time and new measurements are
continuously acquired, a one-time application of importance sampling is not sufficient. Instead,
one typically employs sequential Monte Carlo methods, such as Sequential Importance Sampling
(SIS). The main idea behind SIS is to iteratively draw sets of samples (or particles) and update their
corresponding weights, with the importance distributions and weights being recursively linked to
those of the previous time step.

To derive SIS algorithm, we assume that the underlying state space is probabilistic, and consider
the full posterior distribution of the system from ¢ = O up to a time step ¢ = £,

P(Co:k|Y1:k) X D(YE|Co:ks Y1:k—1)P(Co:ke| Y 1:5—1) (2.9)
= p(¥r|C)P(ClCo:k—1, Y 1:—1)P(Cosk—1]Y 1:—1) (2.10)
= p(¥k|Ck)P(C|Ce—1)P(Cosk—1]Y1:6—1)- (2.11)

Relation 2.11 is particularly significant because it illustrates how the full posterior distribution
up to time ¢t = K is recursively related to that of the previous time step. The proportionality

in 2.9 follows from the conditional probability identity p(a|b, ¢) = pelab)p(alb) 1 1 this case
p Y Y p(elb)
p(c|b) = p(yk|y1:x—1), is a constant since the measurements’ outcomes y;, fori = 1,...k,

are assumed to be fixed and can be dropped. Derivations of 2.10 and 2.11, rely on the Markov
properties of the state space model.

"To derive this relation, Bayes’ rule and chain rule for probabilities are used.
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2.4 Breaking Down the Posterior: Building Particle Filters Step by Step

Using the same logic as in Section 2.4.1, one can indeed construct a SIS procedure that samples

particles according to a given proposal distribution C(gl,)c ~ m(o:k|¥1:x), and computes their
corresponding wights. Let us consider the importance weights of the particles at time ¢ = &:

, (4)
w(z) x p(C[);kb’l:k:)

. (2.12)
p(yk|<,i”>p<<;i”r<gl> p(CSh Iy n-1) (2.13)
( |Y1 k)
<yk|<,§ (eI ”p(dé?i y15-1) (2.14)
(Ck |C0k 1YL k) 77(<0:k—1|y11k_1)
(%)
B p(YkKk )p(Gy, ’Ck—l)wl(jll’ (2.15)

(1) yi)

(@) (Colk 1

. Yik-1)
with w; ~; oc | , being the importance weights of the particles at time t = k —

(CO k—1 [y1:8— 1)
we have successfully constructed a recursive relation for importance weights.

To arrive at equation 2.13, we have applied relation 2.11. Moreover, in deriving 2.14, we as-
sumed that the importance distribution can be constructed recursively such that

T(Cokly1:6) = m(CelCok—1, Y1) T (Cok—1]¥ 1:5—1) (2.16)

We can now summarize one step of the SIS procedure as follows: assume we have already drawn
the particles Cé%_ | from the importance distribution 7({o.x—1|y1:k—1) in the previous steps.
(4)

Further assume the importance weights from the previous step, ¢ = k — 1, are given w,.” ,,

1. Draw L new particles for t = k according to (lgi) ~ W(Ck‘c(()f])g,l, Yik)s

i (@)@ )
2. Calculate the corresponding (unnormalized) weights, w ,(;) = (yk|(< y ey le*l)w,(Ql,
(Ck |CQ k— 17y1:k)

. . 0) @l
3. Normalize the weights w,~ = ﬁ

The new particles {C } -, with their corresponding importance weights {wk L

the approximation to the posterior distribution p(x|y1:x)-

— 1 represent

The algorithm 5 summarizes the full SIS procedure.
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Algorithm 5 Sequential Importance Sampling

Input: 1) Prior: p(p)
2) Measurement model: p(y;|¢;)
3) Dynamic Model: p((;|¢i—1)
4) Importance distribution: 7(¢;|Co:i—1, ¥1:i)
5) Number of samples: L
Output: Full Posterior approximation: p(Cx|y1.x) fork =1,...T
: function SIS(.)
: fori=1,...Ldo

Draw initial samples according to Céi) ~ p(<o),

fork=1,...Tdo
fori =1,...Ldo

1

2

3

4: Set the initial weights w(()l) =1/L.

S

6

7 Draw samples according to C](CZ) ~ 7 (Ck ]Cézl)f_l, Vik)-

) () ()~ .
8: Compute unnormalized weights ﬂ)g) — P ‘(%“ )(I;( S Kk_l)w,(ﬁl,
W(Ck |Cotk_1,)’1;k)
. (@)
9: Then normalize wl(;) — %
2j=1 W
10:  Store: {C,(;),wlil)}le

11: return p((i|y1.x) & ZiLzl wg)é(gk — C,Ef)) fork=1,...T.

It is convenient to assume the importance distribution is Markovian in the sense that,

T(Ck|Cok—15 Y 1:k) = T(ChlCho15 Y1:8)- (2.17)

This eliminates the need to store all C(SZ])C throughout the algorithm, hence simplifying the sam-
pling process. This assumption also is often made in the Particle Filtering which we are going to
discuss next.

2.4.3 PARTICLE FILTERING

We finally arrive at the Particle Filtering, the Sequential Importance Sampling algorithm with a
resampling step added to it [26, 34, 42, 56]. SIS can encounter a problem called the degeneracy
problem. Degeneracy happens when most of the samples (particles) have negligible weights and
result in a poor and ineftective representation of the target distribution. This issue has historically
limited the practical application of SIS. To address this issue, a resampling step is added to the
procedure, transforming it into Sequential Importance Resampling (SIR) or particle filtering. The
resampling step ensures that particles with very small weights are removed, and the particles with
considerable weights are duplicated. The algorithm 6 presents how resampling is performed at
the time step t = k.

Itis important to note that resampling does not change the desired expectation value, meaning
that Eg[g(¢)|y1.7] = E[g(¢)|y1.7], where R represents the set of resampled indices. We refer
to [57] for the proof. Resampling, nevertheless, introduces additional variance to the estimate.
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Algorithm 6 Resampling in Particle Filtering

Input: The current particles with corresponding weights: {( ,Ej), w,(:) L

Output: Resampled particles with corresponding weights: {{’ (i), w;(i) L

1: function RESAMPLING(.)

2 forj=1,...Ldo

3 Draw index i € {1, ..., L} with probability w,(:)
4 C/éj) “ C]E;l)

5 Set the new weights: w;g(j) «— 1/L

6

return {(’ l(f), w;(i) iL:1

This is because resampling is a stochastic process that involves randomly selecting particles based
on their weights, which can lead to the loss of diversity among particles. There are different meth-
ods to resample new particles efficiently to minimize the variance. We do not discuss them here,
and refer again to [57] for details. For our purpose it suffices to note that for this reason, the resam-
pling step is not executed at every time step but only when it is necessary, to balance a trade-oft
between weight degeneracy and increased variance due to resampling. In many particle filtering
implementations, resampling is triggered based on a criterion involving the “effective” number of
particles.

The effective number of particles is estimated as,

Neff =~

where w,(;), denotes the normalized weight of the i-th particle at the time step k. Resampling
is typically performed when n.g falls below a specified threshold, e.g. < L /10 with L the total
number of particles. This ensures that the particle set remains representative of the underlying
distribution. As the variance of the particle weights increases, the denominator in this expression
grows, leading to a decrease in neg. When neg drops below the threshold, it indicates that a
few particles dominate the weight distribution, and many have negligible weights. Resampling
addresses this imbalance by replacing the current weighted particle set with a uniformly weighted
set, such that the algorithm can concentrate on areas where the true state is more likely to be, based
on observations.

Algorithm 7 outlines the particle filtering procedure.
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Algorithm 7 Particle Filtering

Input: 1) Prior: p(p)
2) Measurement model: p(y;|¢;)
3) Dynamic Model: p((;|¢i—1)
4) Importance distribution: 7(;|Ci—1, ¥1:i)
5) Number of samples: L
Output: Full Posterior approximation: p(Cx|y1.x) fork =1,...T

1: function PARTICLE FILTER(.)

2: for i=1,...Ldo '

3: Draw initial samples according to Céz) ~ p(<o),

4:  Set the initial weights w(()l) =1/L.

5: fork=1,...Tdo

6: fori =1,...Ldo ‘ '

7: Draw samples according to C](CZ) ~ 7 (Ck ]C,gz_)l, Vik)

- (7) pyel¢nct 16 ) (4)
5 Compute )" = = Oy Wh-
. (i)
9: Then normalize wl(;) — %
. Z]’:l wy

10: Neff < 725:1(11}]?))2

11: if neg < L/10 then
12: t {C,gl),w,(;) L« RESAMPLING({C,EZ),U)](;) L)
13 Store: {¢\V W E
14: | return p((ply1k) = ZZ-Lzl w,(;)é(fk - C,gz)) fork=1,...T.

Here, as mentioned before, we have assumed that the importance distribution is Markovian
in the sense of equation 2.17 (see input of Algorithm 7). The performance of Particle Filtering
algorithm depends on how well the importance distribution 7, can approximate the target dis-
tribution. According to [57] the optimal importance distribution” that gives the lowest possible
variance for the importance weights is,

7(CrlCo:k—1, Y1:k) = P(ClCh—1,Yk)- (2.18)

This is known as the optimal importance distribution in particle filtering.[26, 56]

This is indeed the case, for generic non-Markovian importance distributions.
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3 FrROM FAILURE TO INSIGHT: BAYESIAN
STRATEGIES IN QUANTUM SEARCH

As we discussed in Section 1.1.2, Guess-and-Check Grover’s Search [13] solves a search problem
with IV total elements and an unknown number of ¢ solutions, in O(y/N/t) queries to the or-
acle. This algorithm does not rely on prior knowledge of the number of candidate solutions;
instead, for each Grover cycle, it randomly selects a number from a specified interval and set it as
of the proposed number of iterations. In contrast, Particle-Guided Grover’s Search, the method
discussed below, formulates our initial “beliefs” as a prior distribution, which is updated based on
the failures of each Grover cycle. This evolving posterior is then used to adaptively determine the
number of iterations for the next Grover cycle.

To benchmark the performance of Particle-Guided Grover’s Search, we compare it against the
practical (non-asymptotic) runtime of the Guess-and-Check Grover’s Search algorithm. Cade ez
al. [15] have conducted a detailed analysis of the query complexity of this algorithm that goes be-
yond asymptotic estimates. They introduce a modified version of the Guess-and-Check strategy
and provide rigorous upper bounds on both the expected and worst-case query complexities for
Grover’s search with an unknown number of solutions. We adopt their algorithm as a baseline,
applying minor modifications, and implement it using a Monte Carlo approximation. Section
3.1 presents both the original QSearch algorithm from Cade ez a/. and the adapted version used
in our comparison.

In Section 3.2, we introduce the methodology underlying Particle- Guided Grover’s Search. Sec-
tion 3.3 then presents the results and key findings of this approach.

3.1 RELATED WORKS

In this section we first discuss the QSearch algorithm, the modified Guess-and-Check Grover’s
Search, which is proposed by [15]. Afterwards, we will briefly review the results of the first steps
to this work 3.2, which was performed by Robert Derichs [25].

Let us first consider the key modifications introduced in QSearch algorithm:

1. A classical sampling step is added prior to calling the Quantum Search algorithm to include
the caset > 3N /4.

2. A global time-out mechanism is introduced to manage the case t = 0, and ensure a lower
bound on the success probability.

3. A time-out mechanism is also added to limit the number of quantum queries in each in-
stance of Guess-and-Check Grover’s Search, allowing the algorithm to restart once this
limit is reached.
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3 From Failure to Insight: Bayesian Strategies in Quantum Search

Using these modifications to Guess-and-Check Grover’s Search, Cade ez 4/. have presented
algorithm 8. Lines 9-16 correspond to Guess-and-Check Grover’s Search algorithm 3. In Guess-
and-Check Grover’s Search, the algorithm initially performs a Grover cycle with j = O iterations,
which is equivalent to classical sampling. In contrast, QSearch begins with a random choice of
{0, 1} iteration, since the initial value of m is set to 6/5 rather than 1 as in the original Guess-
and-Check Grover’s Search (see line 7). The total number of oracle queries is capped at 9.2v/N.
If no marked element is found within this limit, the algorithm resets m = 6/5 and restarts Guess-
and-Check Grover’s Search over. In each Grover cycle, the number of Grover iterations, plus one
for measurement, is added to the total number of quantum queries (see line 14).

A global time-out Nyyys = logs(1/e€) is introduced, with € being the upper bound on the
probability of failure (see line 6). Finally, the classical sampling step is included in line 2, with the
number of samples Nsymple = 130, as specified in [15].

We now modify the QSearch algorithm to enable Monte Carlo simulation. To simulate Cras-
SICALSAMPLING and QUANTUMSEARCH, we compare the “true success probability” of each sub-
routine with a random number u ~ U[0,1). Here U].,.) represents a uniform distribution
over a real-valued half-open interval. For our benchmark, we sample the “true number of so-
lutions” in the search space according to a given distribution and denote it as £,y This value
is used to compute the true success probabilities: p_ . = tacrual/N for classical sampling, and
Pecess(4) = sin?((2j + 1) arcsin(y/tyeruat/N)) for Quantum Search, with j being the num-
ber of iterations. A call to either subroutine is considered successful if its corresponding success
probability exceeds or equals the random number g.

In this simulation, we adopt an alternative measure of complexity: we count the number of
queries made to the classical verification function until a marked element is successfully found.
Each query to the Grover oracle typically involves two classical function evaluations, as the oracle
implementation generally requires two such calls— one for performing the reflection about the
superposition of unmarked states, and another for uncomputation. Accordingly, unless stated
otherwise, the runtime throughout this chapter is reported in terms of classical queries.

Further, we set the upper bound on the failure probability to € = 0, meaning that we only
count the number of successful attempts in finding a solution.

Pseudocode 9 presents the QSearch Simulator. If CLASSICALSAMPLER is successful, the solu-
tion is returned along with the current query count. Otherwise, the subroutine is considered to
have failed, and the preset number of classical sampling attempts is added to the total query count
(see line 15).

The average runtime of QSearch Simulator, compared to the expected runtime of QSearch, is
shown in Figure 3.1. The average is computed over both the number of solutions ¢ and the size
of the search space IV, and the results are presented as a function of the ratio t/N. The search
space sizes were set to N € {103,...10°}, with increments of 103. The number of solutions
was restricted to the regime t < IN/4, which is the focus of our study. Values of ¢ were sampled
according to t ~ U{1, [N/4]}, with 103 samples drawn for a fixed value of N. The average is
taken over each fraction of t/N. Here U{a, b} denotes a uniform distribution over the discrete
integers from a to b, inclusive. For the expected runtime of QSearch, we have used formulas (1-
3) given in [15]. Although both runtimes align overall, the Monte Carlo simulation yields lower
query estimates than the theoretical expectation for small values of t /N
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Algorithm 8 QSearch [15]

Input: 1) Search space: [N],

2) Number of classical sampling: Nsampic,

3) Upper bound on the probability of failure: € > 0.

4) [logy N'| + 1 qubits.

5) A black box oracle O on [N, as described in Algorithm 1.

Output: A marked element or “No marked element found”.

10:
11:
12:
13:
14:
15:
16:
17:
18:

1
2
3
4
S:
6
7
8
9

. function QSEARCH([N], Nsample; €, [logg N'| + 1 qubits, Oy)

7 < CLASSICALSAMPLING([ V], Nsmplc)

if x is marked then

 returnz

Nruns < [logs(1/€)], Qumax < aV'N,7 < 0 >o=9.2

while r < Ny, do

m 4 %, Quum < 0

J < draw an integer from [0, m) uniformly.

while qum +7< Qmax do

y < QUANTUMSEARCH([N], [logy N'| + 1 qubits, Oy, j) > One Grover cycle.

if y is marked then

‘ return y

else
Qsum ¢ Qsum +7 + 1 >Add j + 1 to gquantum queries.
m < min(Am, v N) A =3

B J < draw an integer from [0, m) uniformly.

r—r+1

_ return “No marked element found”

Input: Search space: [V], Number of samples: Nsymple
Output: A marked element or “No marked element found”

19

20:
21:
22:
23:
24:
25:
26:

: function CrassicALSAMPLING(V, Ngample)
k+ 0
while & < Ngppi do
x 4— Sample from [N] uniformly at random.
if x is marked then
. returnz
k—k+1
| return “No marked element found.”
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3 From Failure to Insight: Bayesian Strategies in Quantum Search

Algorithm 9 QSEARCH SIMULATION viA MONTE CARLO

1: function QSEARCH SIMULATOR(N, Nsamples tactual)

2 (success, quer'ies) — CLASSICALSAMPLER(N, NSample7 tactual)

3 if success then

4: L return queries

5: Qmax — oV N ba=9.2
6: r < 0, queries + 0

7 while TRUE do

8

9

m 4 2, Qum + 0
: J < draw an integer from [0, m) uniformly.
10: while Qsum + J < Qmax do
11: success ¢~ GROVERSIMULATOR(N, t,crual, J)
12: Qsum ¢ Qsum +7+ 1
13: queries <— queries —|—2j +1
14: if success then
15: ‘ return queries +NSampIe
16: else
17: L m ¢ min(Am, v'N) > A 2
18 J < draw an integer from [0, m) uniformly.
19: function CLASSICALSAMPLER(N, Nsamples tactual)
20: pglccess — taCtual/ N
21: for k = 1 to Nsympl. do

22: L ifpglccess > rand() then
23: return (TRUE, k)

24:  return FALSE

25: function GROVERSIMULATOR(N, t4crual, J)

26 P ¢ sin? (274 1) - axesin(y/fuca/N)

27: | if p%. .. > rand() then

28: \ return TRUE
29: else
30: || return FALSE
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3.2 Methodology

Figure 3.1: The average runtime of QSearch Simulator compared to the expected runtime of QSearch. The
search space size was variedas N € {10%,2-10%,...10°}, and for each fixed IV, the number of
solutions was sampled 10% times uniformly from ¢ < /4. The average is taken over fractions

oft/N.
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Robert Derichs [25] has previously explored Grover’s Search from a Bayesian perspective. His
work laid the groundwork for this line of research by providing numerical evidence that incor-
porating Bayesian reasoning can improve the runtime performance of Grover’s Search with un-
known number of solutions. In that study, a full prior distribution was maintained and updated
at each step, which introduced a scalability limitation— restricting the search space to sizes up to
N = 10* due to computational constraints. In this work, we extend the Bayesian approach to
Grover’s Search by introducing particle filtering as a scalable alternative, as detailed in the next
section.

3.2 METHODOLOGY

In this section, we formulate how Grover’s Search can be interpreted from a Bayesian inference
perspective, given a prior distribution p(t) over the potential number of solutions in a search

problem.

In the following, we first review the components of Bayes’ rule as applied to Grover’s Search
in Section 3.2.1. Next, in Section 3.2.2, we will explain the necessity of Particle Filtering for this
approach, propose an algorithm, termed Particle-Guided Grover’s Search that employs Particle
Filtering. Finally, in Section 3.3 we present the results.
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3 From Failure to Insight: Bayesian Strategies in Quantum Search

3.2.1 GROVER ITERATIONS WITH BAYESIAN UPDATES

To apply Bayesian inference to Grover iterations with an unknown number of marked elements,
the first step is to identify the components of the Bayesian model. The problem can be stated
as: assuming a prior distribution over the possible values of ¢, the unknown number of marked
elements, which iteration count jj, in the k-th Grover cycle maximizes the likelihood of measuring
amarked element, given thatall previous Grover cycles with iteration counts j1, jo, . . . , jx—1 have
resulted in failure?

The set of hypotheses comprises all possible numbers of marked elements, here taken as all non-
negative integers less than IN/4, where N denotes the size of the search space." The first compo-
nent to consider is the prior distribution over the potential number of marked elements. The prior
distribution, denoted by p(¢) is a discrete distribution for the set of hypotheses ¢ € [1,... N/4].

The second component is the likelihood, which is based on “the piece of evidence” obtained
from a failed Grover cycle. Let j denote the number of iterations executed in the most recent
Grover cycle, which resulted in failure. We denote this failure event by —7j, indicating that j is
unlikely to be the optimal number of iterations for the given search problem. The measurement
model or the likelihood describes how likely it is to observe =5 assuming the hypothesis ¢ is true,
and corresponds to the projection of the initial state |1g) = \/% Zfigl |), rotated by G7, onto

the superposition of unmarked states, and is expressed as follows:
p(—j|t) = cos? ((2]' + 1) arcsin m), (3.1)

where arcsin |/ & corresponds to g, given the actual number of marked elements is ¢.

The posterior follows from Bayes’ rule as

o p(ilet)
PRI = ST et

Finally, an update rule is needed to propose a candidate number of Grover iterations for the next

round. Numerical simulations indicate that selecting the number of iterations by maximizing the
expected success probability per iteration yields superior performance compared to alternative
objectives. This quantity is defined as

]Ep(t) Lpsuccess (])] 1 /4 9
ﬁsuccess(j) = = - Zp(t) sin ((2] =+ ].) arcsin \/ t/N),
J Ji4
where p(t) denotes the current belief over the number of marked elements, and sin?(. .. ) cor-
responds to the projection of the initial state |¢)g) = LN vaz_ol ), rotated by G, onto the

superposition of marked states.

Table 3.1 summarizes the components of Grover iterations within the Bayesian framework.

UIf the number of solutions is largeri.e. t > N, /4, classical random sampling may be preferable to Grover’s Search.
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3.2 Methodology

Table 3.1: The components of Bayesian updates for Grover’s Search

Prior p(t)
Likelihood p(—j]t) = cos® ((2j + 1)6/2) with  6/2 = arcsin \/t/N
Posterior p(tl~j) = p(~ilOp()/ S p(il)p(t)

3.2.2 PARTICLE-GUIDED GROVER’S SEARCH

In previous section, we discussed the components of the Bayesian updates for Grover’s Search. All
distributions involved in this method, in principle, scale up to size N/4. This presents challenges
for applying Bayesian inference in this context, as it would not only increase the classical runtime
of the algorithm to O(N?), but also require O(IV) bits to store and update the full prior distri-
bution at each step. In the following section, we address this limitation by introducing Particle-
Guided Grover’s Search — a hybrid algorithm that combines Grover’s Search with Bayesian filter-
ing, specifically particle filtering, to achieve computational efficiency. Applying Particle Filtering
to Grover’s Search offers an additional advantage: by design, Bayesian filtering methods — includ-
ing Particle Filtering — sequentially estimate the posterior distribution using both current and past
observations. This means that all failed Grover cycles up to the current step are naturally incor-
porated into the belief update process. As a result, the prior at each step becomes “informative”,
which can enhance the performance of Particle-Guided Grover’s Search.

Before applying Particle Filtering to Grover’s Search, it is important to clarify a key distinction.
Bayesian Filtering is traditionally designed to estimate the evolving state of a dynamic system over
time. In contrast, the system we address here — the search space — is inherently static.

Nevertheless, there exists substantial research on adapting Sequential Particle Filters to static
models (e.g., [19, 20, 26, 39]). Some approaches, such as those in [19, 20], reinterpret the static set-
ting by introducing artificial dynamics. While effective in some cases, such dynamic formulations
are unnecessarily complex for our specific application.

What we do here instead, is an adaptation of Particle Filtering, Sequential Importance Resam-
pling (SIR), to our static inference problem. We begin by drawing an initial set of particles from
the prior and assigning them uniform weights (Initialization). As new evidence of the form —jj,
becomes available, we update the weights of the existing particles recursively using the likelihood
(Recursive Update). To reduce weight degeneracy, we include a resampling step, which regen-
erates particles when the weight variance becomes too large (Resampling).
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3 From Failure to Insight: Bayesian Strategies in Quantum Search

The subroutine Particle Filtered Posterior Estimation (Algorithm 10) implements the Sequen-
tial Importance Resampling (SIR) algorithm, adapted specifically for Grover’s Search. It assumes
that the initial set of particles has already been generated in a preceding step, referred to as Initial-
ization of Particles. The likelihood function is defined as p(—j[t) = cos® ((2j + 1)6/2) with

0/2 = arcsin \/t/N. The function takes the particles and their corresponding weights from
previous step, {t(i), w,(ﬁl }z‘L:p and returns particles (potentially new, if resampling is triggered)

with the updated weights, {(%), wl(j) M

Algorithm 10 Particle Filtered Posterior Estimation

Input: 1) Measurement model (likelihood): p(—j | %)
2) Recent observation: —j, '
3) Particles and their corresponding weights from previous step: {t@), w,(ﬁl W

Output: Particles (potentially new) and the corresponding updated weights: {¢(%), w,(j) W

1: function POSTERIORESTIMATOR(p(—j | t), =jks {t(i),wlgill}le)
2: fori=1,...,Ldo
3. t Upd iohts: 1 4(0) Y, (@)

: pdate weights: W, < p(—jx | t\)w, ",
4 Then normalize: w,(;) — ZD](;)/ Zle 1211(6])
Compute effective sample size: neg = 1/ ZZ-Lzl(w,(j))2
if neg < L/10 then > Resampling step.
t {t(i),wg)}le — RESAMPLING({t(i),w,(;) L 1) (Algorithm 6)
return {t(9), w,(:)}f:l

Pseudocode 11 presents the Particle-Guided Grover’s Search algorithm. The procedure begins
by drawing a set of particles from the prior distribution (line 4). Initially, the particles are assigned
uniform weights. Using the approximation provided by the particles and their associated weights,
a candidate number of Grover iterations is proposed through a subroutine called Bayesian Up-
date Rule for Grover’s Search (Algorithm 12). If this Grover cycle fails to find a marked element,
the algorithm recursively updates the particle weights to incorporate the new evidence from the
failed attempt. A resampling step, implemented as part of Algorithm 10, may regenerate a new
set of particles if weight degeneracy is detected. This process continues until a marked element is
successfully identified.
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Algorithm 11 Particle-Guided Grover’s Search

Input: 1) Search space: [N],

2) [logy N'| + 1 qubits,

3) A black box oracle O on [N}, as described in Algorithm 1.
4) Prior: prior(t)

5) Number of particles: L.

Output: A marked element

10:

11:
12:
13:
14:
15:

1
2
3
4:
S:
6
7
8
9

: function PGGS([N],[logy N'| + 1 qubits, Oy, prior(t), L)

0+ k > Initialize time step counter.
while TRUE do
if k = 0 then > Initialization of Particles.

fori=1,...Ldo
Draw initial particles according to @) ~ prior(t)
Set the initial weights to w(()l) «—1/L
jo + BayesDeciston({t(®), w(()z)}iLzl)
else 4
{t(i),w,(;) L |+ POSTERIORESTIMATOR(p(—j |
t)a _'jkflv {t(l)aw]izll 1L:1)
 Jk BavesDeciston({t(®), w,(:) L)
y <~ QUANTUMSEARCH([N], [logy N'| + 1 qubits, Oy, ji) > One Grover cycle.
if y is marked then
return y
k+1<+k

Algorithm 12 Bayesian Update Rule for Grover’s Search

Input: Set of particles and their corresponding weights: {t(?), wlgf) M
Output: Candidate number of Grover iterations for next round: jchosen

1
2
3
4:
S:
6
7
8

. function BavesDecrston({t®, w(}£ )

aVeragePSUCCeSS < O
Define fuuccess(7) = 1 Y21, [wf sin? (2] + 1) arcsin /t0/N)]
forj=1,...[v/N|do
if Douccess(j) > averagePsuccess then
averagePsuccess <— ﬁsuccess(j)

j chosen €~ ]
return jchosen

To benchmark the Particle-Guided Grover’s Search (Algorithm 11), we perform a Monte Carlo
simulation. The subroutine QUANTUMSEARCH is replaced with GROVERSIMULATOR, as de-
fined in Algorithm 9. A variable queries is introduced to track the number of queries made to
the classical oracle function f. For each Grover cycle with j, iterations, a total of 2j;, + 1 queries
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3 From Failure to Insight: Bayesian Strategies in Quantum Search

are counted in queries; 2}, for implementation of the quantum oracle, and one additional query
accounts for verifying the measurement outcome.

3.3 RESULTS

In this section, we present the results of benchmarking Particle-Guided Grover’s Search (PGGS)
in comparison to QSearch. Various priors are considered, including truncated Gaussian mixtures,
and a uniform prior. The implementation is carried out in /#/iz, and the source code is available
at repository [29]. Finally, we discuss the findings in section 3.3.4.

To compare the performances of the two algorithms, besides the uniform distribution, we con-
sider discrete distributions derived from truncated Gaussians. A truncated Gaussian distribution
over real random variable X with mean 1, variance o2, and support restricted to the interval [a, b]

is defined as

(z—w)?

1 . 67 202
Nl 0?) oy = { Vo " aim-aimy fore € lod
0 otherwise.

Here x € R, and ®(.) is the cumulative distribution function (CDF) of the standard normal dis-

tribution. The term @(I)TT“) — ®(*>£) in the denominator serves as a normalization constant,

ensuring that the truncated Gaussian distribution integrates to one over the interval [a, b]. Since

our focus is solely on benchmarking the performance of Grover’s Search within the Particle Fil-
tering framework against QSearch, we restrict the number of solutions ¢ to the range [1, [ N/4]].
This excludes the regime where classical sampling could potentially outperform Grover’s Search.
Accordingly, we set @ = 1 and b = [N/4] throughout this section. Further, we always assume
t € Z, and therefore work exclusively with discrete distributions.

Next, we exploit univariate Gaussian mixtures to construct priors that are bimodal. A univari-
ate Gaussian mixture is a probabilistic model composed of several Gaussian distributions defined
over the same random variable — hence the term univariate. A univariate Gaussian mixture over
real random variable X, with K" components is defined as,

K
p(z) = 27% 'N(ﬂﬁ\ﬂkﬁkZ)
k=1

withz € R, and 7, being the mixing weights, with 7r;, > 0and 25:1 7 = 1. Again, we employ
univariate Gaussian mixtures defined over discrete distributions due to ¢ € Z. For simplicity, we
omit explicit references to the variable domain and the truncated interval from this point onward.

3.3.1 ParTtIicLES EvoLuTIiON IN PGGS

To demonstrate how the particles, or candidate values for ¢, evolve over steps of Grover cycles in
PGGS we consider two cases given in table 3.2. Here IV denotes the size of search space, ;.41 the
true number of solutions and L the number of particles used in PGGS. Case 1 is easier for PGGS,
than case 2, since the fraction ¢/ for the first is much larger, 7.e. 60/10° versus 60/10'2.
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Table 3.2: The two cases considered to demonstrate the particle evolution in PGGS. The evolution is de-
picted in figure 3.2

CaseNo. | N tacrual L 7 o
1 10° 60 100 100 10°
2 1012 |60 100 100 10°

Figures 3.2 presents how the particles and their corresponding weights evolve by steps of Grover
cycles. For the first cycle, all the particles have similar weights and as more cycles fail to find a
solution, the weights of particles with values close to t,cqua1 grows large, and the weights of particles
with large ¢ values shrinks. The procedure continues until the algorithm finds a solution. Figure
3.2b illustrates the degeneracy phenomenon, which becomes apparent around the 5-th cycle. At
this point, the variance of the particle weights becomes large, triggering the resampling step. As a
result, new particles are drawn from the current weighted distribution, and their weights are reset
to uniform values.

Particles Evolution Particles Evolution
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~ w
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(a) Case 1 with prior Ny (100, 106) (b) Case 2 with prior Nd(100, 1012)

Figure 3.2: Evolution of particles through Grover cycles for two cases as described in table 3.2.

3.3.2 COMPARISON

In this section, we evaluate the performance of PGGS in comparison to the QSearch simulator.
The evaluation is conducted in a setting where the true number of solutions is sampled from the
same prior distribution employed by PGGS. In the next section, we examine the scenario where
there is a mismatch between the distribution from which the actual number of solutions is drawn
and the prior assumed by PGGS.

Here to benchmark performance, we consider two types of average query counts as key indica-
tors:

1. For each experiment, we draw Ngmple Values of €, from a given prior. For each sampled
value, both PGGS and QSearch are executed and the number of queries is computed. The
averages is then taken over unique values of the fraction ¢/N according to the sampled
values for t,cqual, and the mean is reported for each algorithm.
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3 From Failure to Insight: Bayesian Strategies in Quantum Search

2. The second indicator involves computing an overall average across all /N fractions for a
fixed prior, thereby yielding a single performance metric per algorithm for each prior.

We benchmark both algorithms under various prior distributions and present the results ac-
cordingly. Since the comparative trends remain consistent across different search space sizes, we
fix the search space to N = 10°. Nevertheless, simulations with larger spaces—up to 1010—are
still feasible on a standard laptop. The number of particles is set to L = 100; however, we observe
that even with as few as 10 particles, PGGS maintains a performance advantage over QSearch. The
number of samples drawn for £,cqa1, denoted Nmple, is fixed at 103 , as increasing the sample size
does not significantly affect the observed behavior of the algorithms.

Table 3.3: Different prior distributions considered to benchmark PGGS against QSearch.

Case No. | Prior Varied Parameter
1 Unimodal: Ny (,u, 02) oand p

2 Bimodal: ﬂlNd(u1,U12)+772Nd(u2,022) 71'1/71'2

3 Uniform: U{1, [N/4]} N

Cask 1: UNIMODAL DISTRIBUTION

Figures 3.3 and 3.5 present a comparison of average query counts between PGGS and the QSearch
simulator under varying standard deviations and means of a unimodal truncated Gaussian prior.
The results are shown as a function of the ratio ¢ /N For each case, the values of t,.y, are drawn
from the corresponding prior distribution, and the average query count is computed for each
unique value of £ /N

We investigate the PGGS’s performance under varying levels of spread by considering the prior
distribution /\/’d(lO7 02), witho € {1,10,..., N/10} increasing on an exponential scale. The
mean is fixed at 44 = 10 to challenge the algorithm in a more demanding regime.

The results indicate that PGGS maintains consistent performance across different spreads, ex-
cept when ¢ ~~ 1. To better visualize this behavior, Figure 3.3b restricts the sampled values of ¢ to
< 100 using rejection sampling. Across the relevant regime (¢ < N/4, excluding ¢ ~ 1), PGGS
exhibits query counts that are largely insensitive to the spread of the prior.

Overall, the results demonstrate a clear improvement in average query efficiency for PGGS over
QSearch. Figure 3.3a compares the total average query counts for both methods across different
distributions, showing that PGGS achieves roughly a 50% reduction in average queries relative to
QSearch.

Figure 3.4 illustrates the probability mass functions corresponding to two extreme cases from
the variance analysis.

To study how shifting the mean of the Gaussian distribution influences the performance of
PGGS, we run another set of simulations. We considered the prior distribution Ny ( L 106) , with
p € {1,10,...,N/100} increasing on an exponential scale.

The results indicate that PGGS keeps the performance advantage across different means, except
when ¢t ~ 1. To better visualize this behavior, Figure 3.5b restricts the sampled values of ¢ to
< 100 using rejection sampling. Across the relevant regime (¢ < N/4, excluding t ~ 1), PGGS
exhibits query counts that are largely insensitive to shifting of the prior.
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Figure 3.3: The comparison of PGGS versus QSearch average queries. The prior distribution was taken as
Ny (10, 02), varyingo € {1, 10, ..., N/10} with exponential steps. The settings chosen for
this simulation were: N = 106, L = 100, Naample = 1000.
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Figure 3.4: The comparison of probability mass function for two prior distributions Ny ( 10, 1010) (left)
and NVy(10, 1) (right). The size of search space was set to N = 10°.
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The numerical simulations again suggest an improvement in average query efficiency for PGGS
over QSearch. Figure 3.5a compares the total average query counts for both methods across dif-
ferent distributions, showing that PGGS achieves more than 50% reduction in average queries
relative to QSearch.
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Figure 3.5: The comparison of PGGS versus QSearch average queries. The prior distribution was taken as
Ny (u, 106), withvarying i € {1, 10, ..., N/100} with exponential steps (for figure 3.5b the
upper bound was set to IN/1000 to facilitate more efficient rejection sampling.). The settings
chosen for this simulation were: N = 10, L = 100, Naample = 1000.

Figure 3.6 depicts the probability mass functions corresponding to two extreme cases from the
mean shifting study.
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Figure 3.6: The comparison of probability mass function for two prior distributions Ny (104, 106) (lefr)
and My (17 106) (right). The size of search space was set to N = 10°.

CASE 2: BIMoDAL DISTRIBUTION

Another relevant setting for comparing the performance of PGGS and QSearch is when the prior
distribution is bimodal. The insights obtained in the previous section regarding the effects of
shifting the mean and varying the standard deviation are expected to extend to this case as well.
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3.3 Results

Therefore, we focus here on studying the impact of varying the mixing ratio between the two
modes.

To this end, we consider bimodal priors of the form mNy (5007 104) + mo Ny (10, 104) , with
m € {0.1,0.2,...,0.9}and o = 1 — 7y.

Figure 3.7 presents the results. Once again, PGGS outperforms QSearch across all priors (ex-
ceptfort ~ 1), both in terms of average query counts per prior (Figure 3.7a) and per unique ratio
t/N (Figure 3.7b). The observed improvement is approximately 50%.
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Figure 3.7: The comparison of PGGS versus QSearch average queries. The prior distribution was taken
as TNy (500, 104) + 7r2./\fd(10, 104), with varying m; € {0.1,0.2,...,0.9}. The settings
chosen for this simulation were: N = 10°, L = 100, Nsample = 1000.

Figure 3.8 illustrates the probability mass functions corresponding to two extreme cases from
the mixing ratio analysis.
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Figure 3.8: The comparison of probability mass function for two prior distributions 0.1y (500, 104) +

0.9N;(10, 10*) (left) and 0.9N; (500, 10*) + 0.1y (10, 10*) (right). The size of the search
space was set to N = 10°.
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3 From Failure to Insight: Bayesian Strategies in Quantum Search

CASE 3: UNIFORM DISTRIBUTION

The final distribution we consider to demonstrate PGGS’s advantage over QSearch is the uniform
distribution. This scenario is particularly noteworthy, as it demonstrates that even starting from
auniform prior, PGGS can incorporate evidence gathered during the search process and, in some
cases, outperform methods like QSearch that remain agnostic throughout.

To study this scenario, we use uniform priors /{1, [ N/4]}. The values of N were varied over
{106,107, 10%,10}. We first note that the average query counts for both algorithms are sig-
nificantly lower than previous cases (see Figure 3.9a). This is expected, as the Gaussian priors in
carlier experiments were deliberately designed to place more weight on difficult regimes (e.g., small
t/N values). In contrast, the uniform prior assigns equal probability to all values, including those
corresponding to easier cases (7.e., larger t /), reducing the overall query count.

Figure 3.9b illustrates the overall performance trends for both algorithms under this setting.
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Figure 3.9: The comparison of PGGS versus QSearch average queries. The prior distribution was taken as
U{1,[N/4]} withvarying N € {10°,107,10%,10°}. The settings chosen for this simulation
were: L = 100, Ngmple = 1000.

It is remarkable that PGGS still achieves a relative improvement of approximately 50% over
QSearch, despite not using a classical sampling subroutine like QSearch does.

This setting is also conceptually important: it suggests that PGGS can offer an improvement
even in the complete absence of prior information about the likely number of solutions in the
search space — by employing a uniform prior. This approach appears consistent with the Principle
of Indifference, which recommends assigning equal degrees of belief to all hypotheses when no
distinguishing evidence is available. An important question remains, however: can PGGS still
provide an improvement using a uniform prior that does not match the distribution from which
the actual number of solutions is drawn? We address this question in the next section.

3.3.3 TESTING PGGS UNDER PRIOR MISMATCH

In this section, we study the cases where there is a mismatch between the distribution from which
the actual number of solutions is drawn, and the prior used by PGGS.

In the Bayesian framework, when genuine prior information is unavailable, it is common to
use a non-informative prior to minimize the influence of prior assumptions on the inference. The
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simplest form of such a prior is the uniform distribution over the parameter space, which reflects
equal weighting across all parameter values.

Nevertheless, we explored scenarios in which the number of solutions was sampled from a uni-
form distribution, yet the prior employed was sharply biased — ¢.¢., a unimodal distribution —
contrary to Bayesian principles. In these cases, it is unsurprising that PGGS exhibited poorer per-
formance compared to QSearch.

We also examined scenarios in which the number of solutions was drawn from a unimodal dis-
tribution Ny (,u, 02) , while PGGS assumed a uniform prior. We divided these into three distinct

regimes:
L. pu=N/4
2. u=N/8
3. p=10
For the first two regimes, we examined search spaces of size N € {10°,...10%}, using expo-

nentially increasing increments. To clearly illustrate the impact of spread, each simulation em-
ployed two distinct deviations — one wide and one relatively narrow. All other simulation param-
eters (7.e. Ngmple and L) were held constant as before.

The simulation results indicate that when p = NN /4, the average number of queries for both
PGGS and QSearch are nearly identical, with PGGS showing a modest advantage. This slight
improvement is notable, as this regime typically favors classical sampling — a capability that PGGS
lacks as a subroutine.

For the case p = N/8, the ratio of average query counts for PGGS relative to QSearch was
approximately 0.5 — same as the advantage PGGS achieves when the prior aligns with the true
distribution.

The most intriguing regime occurs when y1 = 10. Not only is this the regime where Grover’s
search achieves its maximum speedup, but previous simulations (Figure 3.3b) also have revealed
that PGGS’s performance becomes highly sensitive to variations in the spread. For computational
efficiency, we restricted our analysis to N = 10%and 107. Foreach IV, we tested two spread values,
o = 103 and 105, using L = 100 particles as before. The number of samples for the wider
spread was maintained at 1000, while for the narrower spread it was reduced to 100 to expedite
the process.

Figure 3.10 illustrates the average performance for both algorithms under this setting.

The case with o = 10° (left), remains manageable for PGGS, and the average query count
for PGGS is approximately half that of QSearch. However, when the distribution is relatively
narrow, with o = 102 (right), PGGS performs significantly worse than QSearch. This outcome
is expected, as PGGS, starting from a uniform prior, takes longer to identify that the optimal
number of iterations is large. In contrast, QSearch, by exponentially increasing the interval from
which the candidate number of iterations is drawn, reaches this optimal value much more quickly.

One may still question why the performance of PGGS changes drastically from N = 10°
to N = 107 for the narrower spread. The hypothesis is that, since the number of actual so-
lutions is sampled from the same distribution, namely Nd( 10, 106), the uniform distribution
U{1, [N/41} deviates more from N(10, 10%) when N = 107 compared to when N = 106,
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Figure 3.10: The comparison of PGGS versus QSearch average queries with a mismatched prior. In this
setup, the actual number of solutions was sampled from a unimodal distribution Ny (10, 02) s
while PGGS assumed a uniform prior. The search-space sizes considered were N €
{105,107}, and all simulations used L = 100 particles.

To analyze this quantitatively, we introduce a statistical measure known as the Ku/lback-Leibler
(KL) divergence, which in this context quantifies how much information is lost when one distri-
bution, P, is approximated by another, ). In the discrete case, the KL divergence is defined as:

Definition 7. (Kullback-Leibler divergence or the relative entropy from Q) to P)

P(z)
DKL(P H Q) = P({l}) lo s
2 Ple)log (o)

with X being the sample space both distributions are defined over.

Alternatively, the KL divergence can be written as

_ P(z) ]
Die(P 1| Q) = Eaer 108 (5 7))
which represents the expected discrepancy in log-probability between the true distribution P
and the approximation (). The KL divergence is a nonnegative quantity that achieves its mini-
mum value, namely zero, if and only if P = () almost everywhere. This reflects the fact that the
best possible approximation of P by ) occurs when the two distributions assign exactly the same
probabilities — and thus the same log-likelihoods — to every value = of a random variable. Any de-
viation from P leads to an increase in information loss, as quantified by the KL divergence. This
justifies its alternative name, relative entropy.
There are two primary interpretations of relative entropy in this context:

1. Information Gain in Bayesian Updating: In the traditional Bayesian framework, rela-
tive entropy typically measures the information gain when updating from a prior to a pos-
terior distribution upon observing new data. It quantifies how much our knowledge of the
underlying system has increased after incorporating the evidence, reflecting the difference
between the prior belief and the posterior distribution.
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2. Loss of Potential Information with Non-Informative Priors: Alternatively, relative
entropy can measure how much potential information is lost when we assume a non-
informative or poorly matched prior relative to the true underlying distribution of solution
counts in the search problem. In this context, it captures the inefficiency introduced by a
prior that does not accurately reflect the characteristics of the search problem, resulting in
a suboptimal utilization of available information.

Although these two interpretations are related in the sense that both involve a comparison be-
tween distributions, they are fundamentally different. The former focuses on the updating of
beliefs in light of observed data, while the latter reflects the misalignment between prior assump-
tions and the true distribution, leading to a loss of potential information.

Here, we focus on the latter interpretation, using relative entropy to quantify the information
that would be lost if non-informative priors fail to align with the true distribution. Mathematica
code has been employed to compute the relative entropies for both cases:

Dyt (L{{l, [106/47} || Ma(10, 106)> =1.04109 x 10*

Dxt (L{{l, [107/41} || Na (10, 106)) — 1.04165 x 10°

The larger divergence in the second case may offer an explanation for the observed change in PGGS
behavior. However, the exact impact of these quantities on PGGS performance remains an open
question. Further investigation is required to explore how the relative entropy, in both of these
senses, influences PGGS performance.

3.3.4 Di1sCcUSSIONS

In this chapter, we benchmarked PGGS, a Bayesian-inspired variant of Grover’s search, against
QSearch, a relevant approach from the literature. We evaluated their performance across a range
of settings.

The results demonstrate that PGGS achieves an overall runtime improvement when the prior
matches the distribution from which the number of solutions is drawn. Moreover, PGGS exhibits
robustness with respect to the mean and standard deviation in the unimodal case, as well as to
variations in the mixing weight ratio — except in the regime where t /N =~ 0. Notably, simulations
also indicate that PGGS continues to provide a performance advantage even when the prior does
not match the true distribution of the number of solutions, with the same exceptionin the t /N =~
0 regime.

Moreover, PGGS incorporates a resampling step as part of the Particle Filtering process. It
may be tempting to omit this step, given that the target distribution is ultimately concentrated
on a single value of ¢. One might reason that a concentrated distribution is desirable, and thus,
avoiding resampling could be more aligned with the search objective.

To evaluate this, we tested PGGS on several instances both with and without the resampling
step (as defined in Line 6 of Algorithm 10). The results indicate that including the resampling step
is, in fact, beneficial: PGGS consistently achieved lower average query counts when resampling
was retained.
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4 RUNTIME—COHERENCE TRADE-OFFS FOR
HYBRID SAT-SOLVERS

The present chapter has been published under the title Runtime-coberence trade-offs for hybrid
SAT-solvers as a pre-print [31], and is published in JEEE Transactions on Quantum Engineering
[32].

The manuscript has been written together with S6ren Wilkening, Johan Aberg, and David
Gross (with me as the corresponding, first author). Within the collaboration, I was responsible
for obtaining the analytic runtime estimates, which constitute the main result of the paper. The
numerical analysis and circuit implementation were carried out by S6ren Wilkening.

The analysis was carried out in a mathematical framework where a random walk on the space
of assignments is replaced by a simplified model — a random walk on Z. While this model is a
standard tool in the field, the pre-print Ref. [31] included a detailed appendix with a rigorous jus-
tification. Since the results reproduced here can be interpreted without this argument (by taking
the Z random walk as a highly plausible model, rather than as a source of rigorous bounds), and
because the appendix was written by Johan Aberg alone, we have omitted it from this thesis.
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4.1 ABSTRACT

Many search-based quantum algorithms that achieve a theoretical speed-up are not practically
relevant since they require extraordinarily long coherence times, or lack the parallelizability of
their classical counterparts. This raises the question of how to divide computational tasks into a
collection of parallelizable sub-problems, each of which can be solved by a quantum computer
with limited coherence time. Here, we approach this question via hybrid algorithms for the k-
SAT problem. Our analysis is based on Schéning’s algorithm, which solves instances of k-SAT
by performing random walks in the space of potential assignments. The search space of the walk
allows for “natural” partitions, where we subject only one part of the partition to a Grover search,
while the rest is sampled classically, thus resulting in a hybrid scheme. In this setting, we argue that
there exists a simple trade-off relation between the total runtime and the coherence-time, which
no such partition based hybrid-scheme can surpass. For several concrete choices of partitions,
we explicitly determine the specific runtime coherence-time relations, and show saturation of the
ideal trade-off. Finally, we present numerical simulations which suggest additional flexibility in
implementing hybrid algorithms with optimal trade-oft.

4.2 INTRODUCTION

Consider a quantum algorithm that takes exponential time to run, but still offers a polynomial
speed-up over the best classical method. Examples include Grover searches to brute-force a pass-
word or for finding the solution for a combinatorial optimization problem for which no classi-
cal heuristics exist. Fully quantum implementations might not be desirable for two reasons: (1)
Quantum hardware that can sustain very long computations might not be available, and (2) quan-
tum algorithms, like Grover’s search, might not be easily amenable to parallelization. One is thus
lead to the question of how to best break up such instances into a set of smaller, parallelizable
subproblems that can individually be solved on quantum hardware.

We consider the well-known sazisfrability problem with k the number of literals in each clause,
(k-SAT)and focus particularly on 3-SAT since it provides an attractive test bed to investigate such
questions. k-SAT is the archetypical combinatorial optimization problem and represents a class
of use cases with considerable practical relevance. Moreover, there is a classical randomized algo-
rithm [58, 59] due to Schéning, with a performance close to the best-known algorithms with prov-
able performance, and which furthermore allows for a closed-form asymptotic run-time analysis.
And indeed, the algorithm obtained by replacing the classical search of the Schéning-procedure
by a Grover search [35] yields a guantum-Schoning algorithm with a quadratic improvement vis-
a-vis its classical counterpart [3]. (Below, we will refer to quantum algorithms that arise this way
as Groverizations of their classical versions).

However, such “fully quantized” Schoning’s SAT-solvers cannot be performed in parallel, which
arguably is a relevant feature for algorithms that run in exponential time. Hybrid schemes, based
on “partial” Groverizations of Schéning’s algorithm, where Grover search procedures are applied
only to certain sub-routines, usually do allow for parallelizations.

Starting point of our analysis is the stochastic nature of Schéning’s algorithm as a random walk.
This point of view yields two classes of hybrid algorithms, where one class Groverizes the random
choice of the initial state of the walk, while the other class Groverizes the randomness in the walk
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itself. Within an established model of Schoning’s algorithm, we optimize the resulting run-times
by balancing the resources allocated to the subroutines.

421 RUNTIME-COHERENCE TIME TRADE-OFFS

Before specializing the Schéning process, let us briefly outline the trade-offs between runtime and
coherence time that can be expected for quantum search problems. Consider an algorithm that
solves instances of size n with runtime 7'(n). For exponential-time algorithms, we work with a
somewhat coarser measure, the (asymptotic) runtime rate

1
v = lim ~logT(n),
where we drop the base of the logarithm from here on; the base is 2 unless explicitly stated oth-
erwise. In other words, T" € O*(27"), where O* denotes scaling behavior up to polynomial
factors. The aim is to trade it off against the coberence time required to run the algorithm. If C'(n)
is the longest time over which coherence has to be maintained while running the algorithm, then
the coberence time rate is

1
x = lim —logC(n).

n—oo N
Now restrict attention to search algorithms with classical runtime rate 7. A completely Grover-
ized version runs with rate yg = ¢ /2. All of its runtime will be spent coherently, specifically
executing Grover iterations. Therefore, xg = 7c/2 as well. We can visualize these two points

in a “runtime rate vs coherence time rate”-chart, a mode of visualization that we will employ fre-

quently (Fig. 4.1).

To achieve a trade-oft between total runtime and coherence time, we will consider algorithms
that apply Grover’s procedure only to a subset of the search space. It is easy to see that any algo-
rithm which results from such a procedure must have coordinates (x, ) that lic on or above the
line segment

L={0uyvc—x)x€l0,7/2]}

that connects the purely classical point (0, y¢) to the completely Groverized one (y¢ /2, vc/2).

Indeed, take a partial Groverization that achieves parameters (x, ). Then one can replace the
Grover part by a classical search. The resulting classical algorithm will have parameters (0, y +
X ), because the Grover search contributed x to the runtime rate, but its classical simulation will
contribute 2 instead. But if the initial parameters were below the line, i.e. if ¥ < y¢ — X, then
the resulting classical algorithm runtime rate is v + x < ¢, contradicting the assumption that
o describes the classical complexity of the search.

It is not obvious that, conversely, every point on this optimal line segment can actually be real-
ized, much less with an algorithm that is “natural” or easy to implement. Deciding the parameter
ranges for natural partial Groverizations of Schéning’s procedure is the main goal of this paper.
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Vel2 X

Figure 4.1: We will frequently visualize the behavior of algorithms by indicating their position in a “run-
time rate vs coherence time rate”-chart. Classical algorithms require no coherence, and thus lie
on the y-axis. In the example given, the point on the upper left hand side represents a classi-
cal probabilistic search with runtime rate yc. A completely Groverized version has coordinates
(v¢/2, vc/2) (bottom right), meaning that it will spend its entire runtime coherently. Hybrid
algorithms that use Grover only for a subset of the search space must lie in the shaded area above
or on the dashed line segment connecting these two points.

RELATED WORK

Dunjko etal.[28] have previously considered partial Groverizations of Schéning’s algorithm. They
aimed to minimize a different metric: total number of clean qubits, rather than coherence time.
In fact, they work in a highly constrained regime, where the number of available clean qubits only
scales as cn, with 0 < ¢ < 1 and n the number of variables of the given 3-SAT formula. Surpris-
ingly, they show that even this meager allotment of qubits in principle yields a speed-up compared
to the classical Schoning’s algorithm !

Despite the superficial similarities, their and our papers are quite different. We allow for qubit-
counts that are quasi-linear in n, i.e. O(n log n), reasoning that for exponential-time algorithms,
coherence time and parallelizability might be more limiting than the number of available qubits.
As it will turn out, the setting considered here can interpolate between the classical and the fully
Groverized performance, while the runtime rates obtainable in [28] stay close to the classical ones.
While [28] uses de-randomization techniques, our approach builds more directly on the original
Schéning’s algorithm. This makes our approach technically less involved, and it also makes the
lessons learned more widely applicable, since the basic technique of using Grover search over a
subset of all variables, directly generalizes to any NP problem, whereas de-randomizations to a
larger extent rely on the particular structure of the problem at hand.

1According to [28], Supplemental Material Section B.4, the relative speed-up to the classical Schéning’s rateis f(¢) =
(1 — log v/3)3(c), where the Beta function up to O(*%™) is implicitly given as A3(c) In % + Bf(c) = ¢
As mentioned in [28] using a straightforward encoding of each trit into two qubits, one can assume A = 10 and
B = 50. To be consistent with our encoding, we consider log, 3 qubits to encode a trit and then, calculate the
maximum speed-up in the rate, i.e. f(1) =~ 0.0028.
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4.3 SETTING THE STAGE

4.3.1 SCHONING’S ALGORITHM

Here we provide a very brief introduction to the pertinent aspects of Schoning’s 3-SAT solver.
For a more thorough review, we refer the reader to [58, 59]. In the 3-SAT problem, we are given
a collection of clauses C1, . . ., Cr, on n binary variables, where each clause is of the form C; =

l(()j) \Y, lgj) V léj), and where each of the literals l((]j), lgj), lgj) is one of the binary variables or
its negation. The 3-SAT formula is the conjunction of all the given clauses, C' := /\JLzl(;'j,
and the computational task is to determine whether there exists an assignment of the 7 binary
variables that satisfies C'. According to Schoning [58], an algorithm exists that, although with run-
time that is exponential in 7, can perform better than an exhaustive search through all potential
assignments.

Schoning’s algorithm (Alg. 13) depends on two parameters N, m to be determined later. It
begins by choosing an assignment z € {0, 1}*" uniformly at random. The algorithm then
performs an m-step random walk over the space of n-bit strings (the inner loop in Alg. 13, from
Line 5). In every step, it checks (according to a pre-determined order) all the clauses C, . . ., Cr.
If all are satisfied, then x is a solution and the algorithm terminates. Otherwise, it finds the first
unsatisfied clause, chooses one of the three variables corresponding to the literals of that clause
uniformly at random. The value of x is then updated, by negating that variable. This concludes
the step. If no solution is found after m steps, the walk is terminated. Up to N such walks are
attempted (the outer loop in Alg. 13), each time using a fresh uniformly random starting point x.

Algorithm 13 Schéning’s Algorithm

1: function ScHOENING(C'q, ..., Cr, N,m)

2 fori=1...N do

3 « < uniformly random value from {0, 1}*"
4 forj =1..mdo

S: if x satisfies C'1, . .., C, then

6 return x

7 else

8 k < index of first unsatisfied clause

9 | < index of one of the three variables occurring in C}, chosen uniformly at

random

10: L x < x, with the [-th bit of = flipped
11: | return False

4.3.2 ANALYSIS OF THE RUN-TIME OF SCHONING’S ALGORITHM

The analysis of the run-time of Schéning’s algorithm is sketched in [58, 59] and a more in-depth
analysis can be found in [49]. Here we follow a very similar line of reasoning, with our particular
ansatz in mind. In the following, we present an overview, see Appendix [31] for a more detailed
account.
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Assume that there is at least one satisfying assignment 2*. We first aim to lower-bound the
probability that a given random walk finds a solution. Let xg be the (random) initial config-
uration, and z; the one attained after the [-th step of the random walk. The probability that
any solution is found during any step of the walk is certainly at least as large as the probability
P(zy, = x*) that the walk finds 2* at the m-th step. To analyze P(x,, = x*), we follow in
the steps of Schéning [58, 59], and focus on the evolution of the Hamming-distance dg (x;, £*)
between the current configuration and the selected satisfying assignment z*.

The fundamental insight is that if a clause C}, is violated at the [-th step, then atleast one of the
three variables that appear in C}, must differ between x; and the satistying assignment 2*. Thus,
the random flip decreases the Hamming distance to the solution with probability at least 1/3:

P(dp(zir,2*) = dg(z,2%) = 1) > (4.1)

W =

This suggests to pass from a description of the process on bit-strings to its projection x; +>
dp(x, x*) onto N. However, this would generally yield a process that would be no easier to
analyze than the original one. One may for example note that although Schéning-process (z;);
is Markovian on the space of bit-strings {0, 1}*", one cannot generally expect its projection
(dH(xl, x*))l to be Markovian on N.

The general idea for the analysis is to replace (via a coupling) the true projection (d g (2, z*)) i
with another process (d;); on Z, which is Markovian and which moreover upper-bounds the true
Hamming-distance,

du(z, ") < dp. (4.2)

More precisely, the Markov process (d;); is defined by the transition probabilities

2 1
Pldy1 =di+1) = 3 Pldi1=d—1)= 3 (4.3)

The transition probabilities (4.3) can be interpreted as worst-case scenarios of each step in the
Schéning process.

From the bound (4.2) it follows that P(z; = z*) > P(d; < 0). In other words, the suc-
cess probability of the Schéning-process is lower-bounded by the probability that the substitute-
process d; reaches 0.

Given the lower bound P(d,, < 0) on the probability of success of each given walk, we expect
at least one out of N = 1/P(d,, < 0) walks to find 2*. More precisely, if € is the tolerated
probability for failure, then the number of repetitions needed in order to find an existing solution
satisfies

log e
N > .
- log(l - P(dm < 0))

(4.4)

The required number IV of repetitions will be exponential in n. It is then common to take a
coarser point of view, and only analyze the corresponding rate
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1
v:=— lim —log P(d,, <0), so that N =0*(2™), (4.5)
n—oo n
where O denotes scaling behavior up to polynomial factors in order to achieve any constant
probability of failure e. With the choice m = n (i.., the termination time is equal to the number
of variables) it turns out [58, 59] that v < log % ~ 0.415.

It is surprisingly technically difficult to rigorously derive the “global bound” P(z; = z*) >
P(d; < 0) from the “local bound” (4.1). However, the Markovian version (d;); of the Ham-
ming distance random walk is commonly accepted as a good (in fact, conservative) model of the
Schéning-process. In the main body of this paper, we will therefore phrase our arguments in
terms of that model. More technical details on the relation between the two processes are given

in Appendix [31].

4.3.3 PARTIAL GROVERIZATIONS: THE GENERAL IDEA

For random walks we naturally tend to think of the randomness as being generated whenever
needed, like when we assign the initial state, or make the random choices along the path. However,
we can alternatively picture the walk as a deterministic process that is fed with an external random
string S a list from which it picks the next entry whenever a random choice is to be made. When
the purpose of the walk is to find (an efhiciently recognizable) solution to some computational
problem, one can thus view the walk as a (deterministic) map that designates each input string S
as being “successful” or “unsuccessful”, in the sense of the walk reaching the satistying solution
x* or not. To this mapping, we can in principle apply a Grover-search procedure, since the walk
(as well as the solution-recognition procedure) can be performed via reversible circuitry, and can
thus also be implemented coherently.

As described in the previous section, Schéning’s algorithm proceeds with an initialization, fol-
lowed by a random walk on the space of 2" assignments. The initialization requires 7 bits of
randomness, 7, since the initial state is selected uniformly over all 2" strings. A walk of length m
requires a string Sy of m log 3 bits to encode the needed randomness. The log 3-factor is due
to the fact that, at each step, the algorithm randomly selects which one of the three literals (of the
first violated clause) should be flipped. An m-step Schoning-walk can thus be viewed as a map
from S = (S1, Sw) to a binary variable that tells us whether a satisfying assignment has been
reached or not.

With a coherent circuit that implements this map, we can thus replace the uniformly distributed
random variable .S, with a uniform superposition over a corresponding number of qubits, and
proceed via standard Grover-iterations [35]. We would expect such a procedure to yield a satisfy-
ing assignment at a run-time that scales as O* (2"7€) iterations, with v = 1 log % ~ 0.208 [3],
i.e., the standard quadratic speed-up. Up to a few constant qubits, one needs n+(log 3+log L)m
qubits to encode this map as a quantum circuit, where L is the number of clauses in the 3-SAT
formula (more details are given in Section 4.6). Since the number of clauses grows linearly in n
for the regime of interest by the SAT phase-transition conjecture [18], and for the Schéning walk
m = n, the space complexity of such encoding is O(n log n).
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4 Runtime-coberence trade-offs for hybrid SAT-solvers

The view of random walks as maps on random input strings opens up for the concept of partial
Groverizations. Nothing would in principle prevent us from regarding only a part of the input
string S as the input of the Grover-procedure, while keeping the rest of the string classical. Need-
less to say, one would generally expect the result to be less efficient than the “full” Groverization.
However, the gain would be that the partial Groverization breaks the tasks into a collection of
subproblems, each of which can be run in parallel on a quantum device that requires shorter co-
herence time.

Although it seems reasonable to expect that such a division in principle is always possible, one
may also expect that it in general would be challenging to find a quantum circuit that implements
it in an economical manner. (We can always resort to a full coherent circuit for S in its entirety,
putting the “classical part” in a diagonal state.) However, there may be “natural” divisions of the
process, which can be exploited. For Schoning’s algorithm it is close to hand to consider the divi-
sion S = (S, Sw), i.e., the division of the required randomness into the initialization-part and
the walk-part. One can thus consider two particularly natural classes of “partial” Groverizations
of Schéning’s algorithm. For one of these, the Groverized Initialization (GI), the choice of the
initial state is implemented coherently, while the walk is kept “classical”. For the Groverized Walk
(GWW), the choice of initial state is kept classical, while the walk itself is performed coherently.

As described in Section 4.3.2, the actual analysis is based on the random walk (d;); on Z, rather
than the true Schoning walk on strings in {0, 1}*". The idea is nevertheless the same; the re-
quired randomness is divided into the initialization and the walk per se, resulting in GI- and GW-
processes. As described in Section 4.3.2, the rate of the true Schoning-process can be bounded by
the rate of the substitute process (d;);. It turns out that a similar argument can be made for GW
(see Appendix [31]), thus yielding a rigorous bound for the rate also in this case. However, for
the other processes we rather regard the (d;); process as a model of the genuine Schéning-walk,
without rigorous guarantees of analogous bounds.

4.4 PARTIAL GROVERIZATIONS

The previous section introduced two types of partial Groverizations of Schéning’s algorithm, GI
and GW, based on the division S = (ST, Sy ), i.e. the initial and the walk randomness. In this
section, we describe these schemes in detail and further discuss their “fractional” cases.

In the GI scheme, there is an outer loop that classically samples Sy, and is followed by a
Grover-search inner loop over the space of all possible St. Similarly, GW starts with a classical
outer loop that samples Sy and is followed by a Grover-search inner loop over the space of all
possible Sy (this space is well-defined as the walk length is fixed). We obtain Fractional Grover-
ized Initialization (FGI) by adapting GI to a regime where only a fraction 2 of the variables in the
initialization can be searched coherently, with 0 < z < 1. Fractional Groverized Walk (FGW)
is similarly an adaption of GW to a regime where Grover-search can be performed on the ran-
domness of walks of at most my steps, with 0 < my,. In both these fractional schemes, two
classical outer loops contain a Grover-search inner loop. The algorithms introduced here depend
on parameters (N1, Na, etc), that will be specified explicitly in Section 4.5.

All Grover searches will use an oracle derived from the function shown in Alg. 14: It tests
whether a Schoning-walk with initial configuration € {0,1}" and walk randomness w €
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4.4 Partial Groverizations

{1,2,3}™ will lead to a satisfying assignment. For notational convenience, we let the elements
of w take ternary in values, with the interpretation that w; determines which of the three literals
occurring in the first violated clause (if any) in step [ of the walk is flipped. For a qubit-based im-
plementation, it is not difficult to re-label the decision variables using [ log 3| binary variables.

Algorithm 14 Schoning Walk & Oracle

: function ORACLE(z(, w)
. return TRUE if SCHOENINGWALK (¢, w) satisfies all clauses, else FALSE

1

2

3:

4: function SCHOENINGWALK(x, w)

S: forj =1..mdo

6 if x violates one of C1, ..., Cy, then

7 k <+ index of first unsatisfied clause

8 [ «+ index of the w;-th variable occurring in Cj,
9 x < x, with the [-th bit of = flipped

10: | returnx

For the different variants of partial Groverizations discussed below, we will fix a subset of argu-
ments to the oracle, and consider it as a function of the remaining ones. Fixed arguments will be
denoted as subscripts, e.g. ORACLE,, :  — ORACLE(z, w). With these conventions, we have:

Algorithm 15 Groverized Initialization

: fori = 1N2 do

w < uniformly random value from {1, 2, 3}*™

x < Grover-search for | /N7 | iterations using ORACLE,,()
if z satisfies all clauses then

| returnz

Algorithm 16 Groverized Walk
I: fori =1...Nido

2 x( < uniformly random value from {0, 1}*"

3 w < Grover-search for | /N3 | iterations using ORACLE; ()
4: Z < SCHOENINGWALK(zq, w)

S if x satisfies all clauses then

6 | returnz

7: return False

One may note that the Grover search in the Groverized walk only is guaranteed to succeed
(with high probability) for a specific collection of initial states. The number of rounds N7 of
the outer loop is selected in such a way that it with high probability hits the set of advantageous
initial states at least once, thus allowing the Grover-procedure to reach the satisfying assignment.
Similar remarks apply to the other partial Groverizations.

61



4 Runtime-coberence trade-offs for hybrid SAT-solvers

Next, we discuss the “fractional searches”. In the first one, the argument x of the oracle is
broken up as & = (2, z4) with x4 taking | 2 - n] bits and . being [ (1 — 2) - n] bits long. Here,
z € [0, 1] is a free parameter whose value will be determined below.

Algorithm 17 Fractional Groverized Initialization

LA

: fori =1...Nydo

w <— uniformly random value from {1, 2, 3
for j = 1...N\) do

& < uniformly random value from {0, 1}*I(1=2)"]

x4 < Grover-search for L\/]@ J iterations using ORACLE(ICM)()

= (x¢, xq)
if x satisfies all clauses then
_ returnz

}><m

return False

The second fractional algorithm breaks up the walk randomness as w = (w,, wy) with w, €
{1,2,3}™e and wy € {1,2, 3} respectively. Again, the values of m., mq are chosen later.

Algorithm 18 Fractional Groverized Walk

. fori =1...N; do

x( < uniformly random value from {0, 1}*"
for j = 1...N2(c) do
W, 4 uniformly random value from {1, 2, 3} %"

wy $— Grover-search for L NQ(q)J iterations using ORACLE 4 4,.)()
W = (We, wg)

x < SCHOENINGWALK(Z(, w)

if x satisfies all clauses then

. returnz

10: return False

In the final algorithm, a fraction of z € [0, 1] of both types of variables, the ones corresponding
to the initialization and the ones corresponding to the walk, will be treated quantum mechanically.
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4.5 Run-time Analysis

Algorithm 19 Evenly Fractionalized Grover
. fori = 1..N() do

2. < uniformly random value from {0, 1}*[(1=2)"]

1

2

3 w, <— uniformly random value from {1, 2, 3} * [(1=z)m]

4 (x4, wq) < Grover-search for L N(‘I)J iterations using ORACLE ;;_,,,.()
5: w = (We, wy)

6 xo = (T, xq)

7 & < SCHOENINGWALK(zq, w)

8 if x satisfies all clauses then

9. | returnx

10: return False

4.5 RUN-TIME ANALYSIS

We will now lower-bound the probability of success of the various approaches. As a preparation,
in Sec. 4.5.1, we give a brief account of the analysis of the classical case, before moving on to the
Groverized versions in Sec. 4.5.2.

4.5.1 THE cLASSICAL SCHONING PROCESS

The main ideas of the classical analysis are close to their presentation in Refs. [58, 59]. We work in
the Markovian model (d;); for the behavior of the Hamming distances, as laid out in Sec. 4.3.2.
Frequently, it will be convenient to measure quantities “in units of 7 or m”. For example, we will
soon choose a number + € [0, 1] and assume that the initial value dy is equal to £n. Of course,
this only makes sense if £n is an integer. In order to keep the notation clean, we will implicitly
assume that such expressions have been rounded to the next integer.

Choose numbers £, v € [0,1]. A given walk (d;); is certainly successful (in the sense that
d,, < 0)if
1. The initial value is dy = kn,

2. the random walk decreases the Hamming distance in exactly vm of its m steps, and

3. the condition
kn < (2v—1)m (4.6)

holds.

Indeed, the right hand side of (4.6) is the difference between the number of steps where the Ham-
ming distance has been decreased, vm, and the number of steps where the Hamming distance has
been increased, (1 — v)m.
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4 Runtime-coberence trade-offs for hybrid SAT-solvers

For any fixed pair of values s, v subject to (4.6), we will now compute the probability of this
particular route to success. Denote the first event by 1 and the second event by E». They occur
with respective probabilities

e -d(L) e (0)@TO e

Since the two events are independent, the success probability of the walk is lower-bounded by

Plam = 2*|K) > P(dy < 0|z) > P(Ey A Ey) = P(Ey)P(Es) (4.8)

“5(m) () @R e

The various binomial coefficients can be conveniently related to entropies. To this end, recall the
definition of the binary entropy function

H(p) = —plogp — (1 —p)log(1 —p) for pel0,1],

and the relative entropy

D(p | ¢) = —plogq— (1 —p)log(l —q) — H(p) for p,q€[0,1].

Then using the well-known estimate [22, Chapter 11.1]

L onn(e < < n ) < gnH(),

n—+1 — \Kkn

Equation (4.9) can, after some straight-forward calculations, be concisely rewritten as
P(dy, < 0|z) 2 27 -HEw)ng=Dlg)m (4.10)

where 2 denotes an inequality holds asymptotically, up to a polynomial factor. Equation (4.10)
directly gives an upper bound on the rate v defined in (4.5). Since the rate expresses the logarithm
of the complexity “in units of n”, it makes sense to also express the length of the walk in terms of
p = m/n. Then:

1
v=—lim —log P(dn <0|z) <1—H(k)+pD(v | 1/3) = v(u, k,v).  (411)
n—oo n
In particular, the infimum of y(, &, /) subject to the constraints (4.6) and 0 < 11,0 < v,k < 1
is a valid bound for . We will perform such optimizations explicitly for the partially Groverized
versions in Sec. 4.5.2. For the classical procedure, we just state the final result:

1 2
/L:l7 [{,:7, UV =

4
2 — log = ~ 0.4150. 412
. 3 No=logz (4.12)
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Remark: One might be tempted to search a tighter bound by summing the contributions to
the probability of success that arise from all consistent values for y, &, v, instead of just consid-
ering the extremal value. However, the rate of a sum of exponentially processes is asymptotically
determined by the rate of the dominating summand alone, i.e. for all collections of ; > 0, it

holds that
lim —llog g 277 = gup 1y,
n—oo n - i '
1

(assuming convergence). Therefore, considering only the dominating term does not affect the
overall asymptotic rate.

4.5.2 PARTIALLY GROVERIZED PROCESSES

In this section, we derive the main results of this paper: Bounds on the asymptotic rates for par-
tially Groverized versions of Schéning’s scheme.

GROVERIZED INITIALIZATION, ALGORITHM 15

For the parameters N1, N2, we choose constant multiples of 1/P(E1),1/P(FE?2) respectively.
The value of the constant depends on the acceptable probability € of failure, as exhibited in Eq. (4.4).
Since this constant does not effect the rate, we will not specify it here. The probabilities do depend
essentially on the parameters /1, &, v, though. We will therefore write N1 (k) and Na(p, ). Be-
cause the asymptotic complexity of a Grover search is the square root of the classical complexity,
the rate function of Gl is then given by

el v) = im S1og (VMmN ) = L L up ) 1/3). (@413)

n—oo N

Likewise, the required coherence time scales with the number of Grover iterations, i.e. as O* (2X™),
for

x(k) := lim llog VNi(k) = 1_2H(H) (4.14)

n—o0 M

The parameters are constrained by

TS (4.15)

where the final condition is a re-arranged version of the success criterion (4.6).

We now determine the minimal rate gy over the consistent parameters. Because relative en-
tropy is non-negative, it is always advantageous to reduce the value of 1 until it is minimal subject
to the constraints. This is achieved by changing the final inequality in (4.15) to equality. Re-

arranging, we arrive at

1 K
0<k<1, 0y, = -4+ —, 416
<k < <p, Vv 2+2# (4.16)
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4 Runtime-coberence trade-offs for hybrid SAT-solvers

which allows us to eliminate v = v(k, f1) from the problem. Varying 7y with respect to p gives
rise to the criticality condition

!
0L 9,761(k 1) = By D(1/2+ 1/ (2p) || 1/3) (417)
o (Y 4 Lo (B 4 1ogs 3
—210g( P )+2log< p >+log3 5" (4.18)

This can be solved explicitly e.g. using a computer algebra system [30], leading to

2
n=3K = V=3, uD(v || 1/3) = k. (4.19)

Eliminating 11, we get

() = 1—125’(/6) +h,
L (4.20)
xai(k) = —

The pair of equations (4.20) contain all information about the asymptotic behavior of the
Groverized Initialization procedure. Each value of x gives a solution for the two undetermined
constants N1 (k), No(u = 3k, v = %) in Alg. 15, in such a way that it will run with a small prob-
ability of returning a false negative. Varying x, we thus obtain a family of algorithms that find
different compromises between the required coherence time and the total runtime. The achiev-
able pairs of values are shown in Fig. 4.2.

0421
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0.38 -

0.36 -

034 . : .
0.00 0.05 0.10 0.15 0.20

Figure 4.2: Rates (xc1(k), va1(r)) for the required coherence time and the total runtime of the Grover-
ized Initialization algorithm, as the parameter & is varied. The horizontal bar denotes the run-
time rate achieved by the classical Schéning process. In other words, points above this line are
uninteresting. The vertical bar denotes the coherence rate that allows one to run a completely
Groverized version of the Schoning process. This, arguably, makes points to the right of this
line uninteresting as well. Points to the left of the minimum (at (vy, x) ~ (0.339,0.139)) can
represent advantageous choices if either the total coherence time of a quantum computer is lim-
ited, or a larger degree of parallelization is desired. The dashed line is the lower bound on the

1

runtime rate given the coherence time, as introduced in Fig. 4.1. It is achieved for k = 3
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4.5 Run-time Analysis

Finally, we explicitly determine the minimal rate achievable in the Groverized Initialization
scheme. With the help of a computer algebra system [30], one easily finds

1 1 1
0= Oxci(k) = ilog +1 < log (E — 1) =2 = k= R (4.21)

11—k
which gives

3 3 log5
p=% e = Tog ~0.339, o~ 0.139. (4.22)

Remark: One can cast the final minimization into the form

1- 1
vo1 = inf y1(k) = inf(f(ﬁ) + n) = — sup<—/<; - H(“2)>

This expression shows that the optimization amounts to computing a Legendre transform. In-
deed, with f(k) := 1/2(H (k) — 1), the right hand side equals — f*(—1). For physicist readers,
it might be amusing to note that S(nk) = nH (nk) formally equals the entropy of an n-spin
paramagnet as a function of the total magnetization. The Legendre transform of the entropy is a
Massieu thermodynamic potential, equal to F'/T (with F the free energy) expressed as a function
of the inverse temperature [16, Chapter 5.4]. We will, however, not pursue this analogy here.

GROVERIZED WALK, ALGORITHM 16

The analysis proceeds in close analogy to the above case. The asymptotic rate function of GW is

Ao, i) = Tim Clog(Ni()y/Nav, ) = 1~ H(s) + 5D [ 1/3),  (423)

n—oo n

subject to the set of constraints (4.15). The parameters v, {4 can be treated in exactly the same
way as before, leading again to (4.19). In particular, the coherence time rate takes the simple form
X = /2, which allows us to eliminate x in favor of x. We immediately obtain

Yow(x) =1—H(2x) + x. (4.24)
Again, it is not difficult to solve for the lowest runtime [30]:
p=3(vV2-1), k=v2-1, ~vew~0228,  yow~02071.  (4.25)

At the optimal point, the runtime scales with a rate that is very close to the one of a full Grover-
ization of Schéning’s process, namely ypg = ¢ /2 =~ .2075. The flip side is that the required
coherence times are basically identical:

XFG — XGw = 0.0004.

The findings are summarized in Fig. 4.3.
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Figure 4.3: The runtime rate vs coherence time rate curves for Groverized Initialization (GI, blue) and
Groverized Walk (GW,, red). The point marked “CG” at the bottom right of the diagram rep-
resents the complete Groverization of the Schoning process. For long coherence times, GW is
preferable, while for shorter coherence times GI achieves a lower total runtime.

FrACTIONAL GROVERIZED INITIALIZATION, ALGORITHM 17

In the case of Alg. 17, the initial Hamming distance is the sum of two terms dy = k(1 — 2)n +
kq2n, which model dy (¢, ¥7) and d g (4, ;) respectively. Define the analogues

P = gt () PED =30

of P(E,) introduced in Eq. (4.7). Analogous to the discussion in Sec. 4.5.2, the parameters
N¢, N{ are defined as the reciprocals of these probabilities, times a constant that influences the

probability of a false negative, but will not be discussed as it has no impact on the asymptotic rates.
The success criterion is now

(1—2)ke+ 28 < 2v—1)p
and the other constraints are
0 < Ke, kg, V2 < 1, 0 < u.

The asymptotic rate function for the runtime of FGI reads

.1
rct(kes gy v, i 2) = lim —log (Nf (ki 2)y/ N (g3 2) Na(v, 1))

n—oo

= (1= 2)(L = H(ke) + 5 (1= H(xy)) +1nD( | 1/3)  (4.26)
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Arguing as in Sec. 4.5.2, the inequality in the success criterion may be replaced by an equality.
Solving for v gives

1/:1+ (1fz)mc+2/<;q.
2 2u

We proceed as in the first two cases. Criticality of 0,,vrGr with respect to 11 occurs at

2
p=3((1—2)ke+ 2zKq) = uD( || 1/3) = (1 — 2)kc + 2kq, V= 3
Plugging in, we arrive at
1-H
Yecr(Ke, Kq; 2) = (1 — 2)(1 — H(ke) + Ke) + 2(2(%) + nq) (4.27)

In other words, the runtime rate function is a convex combination of the ones for the classi-
cal Schéning process and for the GI scheme, with weights (1 — 2), 2 respectively. Because the
classical part does not affect the coherence time, we may set k. to its optimal value k) = 1/3
(c.f. Eq. (4.12)). Geometrically, as we vary z € [0, 1], Eq. (4.27) describes a line connection
(xci(kq), va1(kq)) with the parameters of the classical Schoning process (0, v¢ ). By the convex-
ity of the GI curve, the fractional algorithm will have a better runtime rate to the left of the value
of k4 at which the line becomes tangent to the curve. In other words, the critical & is defined by
the condition

dar _ ya1r — ¢
Ix X

By a computer calculation [30], this happens for K, = % (i.e. equal to K.), resulting in the follow-
ing curve:

Figure 4.4: The runtime rate vs coherence time rate for the FGI algorithm. This fractional scheme’s per-
formance is the convex combination of the classical point (0, v¢ ), and GI at the tangent point
to the theoretical lower bound. One can note that the FGI partially saturates the optimal per-
formance relation.
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FracTIONAL GROVERIZED WALK, ALGORITHM 18

In the FGW scheme, we assume that the classical and Groverized walks decrease the Hamming dis-
tance in exactly v.m,. and v,my steps, respectively, where we have used a subscript to differentiate
between the classical and Groverized random walks. The probabilities of such walks occurring is
given by:

paem = () () G) T pe = () ()

(4.28)

Analogous to the discussion in Sec. 4.5.2, the parameters N§, Ny are defined as the reciprocals of
the probabilities P(ES), P(E]), times a constant that influences the probability failure, but will
not be discussed as it has no impact on the asymptotic rates. We further parameterize the walk
lengths as m. = pc.n and my = pgn. The runtime rate is

1
’YFGW(/{aVCaMcqunuq) = lim 1og<N1(m)N§(uc,uc) Ng(”qv#q))

n—oo n

= 1— H(k) + pD(ve | 1/3) + %D(yq 11/3)  (4.29)
with parameters subject to the constraints

0<Kk<,

O S Mcmuq?
0<we,v, <1,

k< (20— Dpte + (20 — Dty

(4.30)

The first steps of the analysis should now be familiar. There is no loss of generality in assuming
that the final inequality is tight, which can be re-arranged to give

N /ﬂi—(2llc—1),uc+l
¢ 2414 2’

The rate ypqw is stationary as a function of 44 if
2
g =35 — (ve = o) = vy = =, D (v, [1/3) = 1/205 — (22t~ 1) = X(0,ver ).
Eliminating ~ in favor of the coherence rate x gives
Kk =2x+ (27/0 - 1):“0
and thus

tg = 6x, YW (Ve te; x) = 1 — H(2x + (2ve — 1) pe) + peD(ve || 1/3) + x.
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We now need to minimize yggw for fixed ) as a function of i, Ve, subject to

0<2x+ (2ve — Dpe <1,
OSMC)
0<rv.<1.

We may assume that j. # 0, for else we are just replicating the GW scheme. A computer
calculation [30] gives

Ve

2 — 1
Op.(vIn2) + Oy.(7In2) = —arctan(1l — 2v.) + In(3 — 3v.) — 3 In 2,

C
which has zeros at v, = % and v, = %
Forv, = %, one finds

2
Op.(yIn2) = 3 arctan(1l — 4y + 2/3u.)

which has one zero, at p. = %(4)( — 1). The constraint p. > 0 then implies x > %. But

this is larger than the coherence time rate y¢/2 ~ 0.208 sufficient to implement a completely
Groverized version of Schoning’s process, so this solution is not of interest.
We turn to the other solution, v, = % For it,

Op.(vIn2) = 1/3(—2arctanh(1 — 4x — (2u.)/3) +1n2),

which has one zero:

2
e =1—6x = g = 6X, Vc:Vq:§7 YFGW = 7YC — X-
The runtime vs coherence rate curve for the FGW scheme is given in the following figure:

14
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Figure 4.5: The runtime rate vs coherence time rate for the FGW algorithm. This fractional scheme’s per-
formance connects the GW curve to the classical Schoning point and is tangent to the curve.
It achieves the optimal performance relation partially for a larger regime than FGI and for low
coherence times, it comes to lie on top of the FGI line.
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EVENLY FRACTIONALIZED GROVER

The runtime rate is

ywrc = (1= 2) (1= Hre) + peD(ve | 1/3)) + 2/2(1 = H(xg) + 1 Dlvq || 1/3))
(4.31)

with success criterion
(1 —2)ke+ 2rg = (1 — 2)(2ve — D pe + 2204 — 1) pyg,
which is in particular true if the following two equations hold
ke = (2 — 1) pte, kg = (2vg — 1)pg.

But this is just the convex interpolation between a completely classical and a completely Grover-
ized process. In particular, by choosing the parameters as for the original Schéning process

2 1

Ve=Vg =3 Hc:/iq:§7 Pe = f1g =1,

we obtain a coherence time-runtime rate curve that linearly connects the classical point (0, y¢)
to the completely Groverized one (¢ /2, vc/2) (Fig. 4.6).
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Figure 4.6: Runtime—coherence time rate curves for the covered algorithms. The linear interpolation be-
tween the classical and the completely Groverized points are realizable using an increasing num-
ber of methods - first only EFG, then also FGW, finally also FGI - as the coherence time de-
creases.

4.5.3 A HEURISTIC DE-RANDOMIZATION OF THE GI SCHEMES

In this section, we provide evidence that the Groverized initialization schemes can reach further
into the y—x chart than what the Markovian model suggests. To see why this is plausible, note that
the role of randomness for the initial configuration x is very different from the role of randomness
for the walk decisions w. In the first case, there is an “absolute measures of the quality of the initial
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configuration”, namely the Hamming distance to the solution. The probability that the walk does
find the solution is quite obviously a function of that metric. Therefore, baring major algorithmic
insights, it is unavoidable to consider many different initial configurations before encountering
one that will likely lead to a solution.

In contrast, itis not implausible that “every walk works for equally many initial configurations”,
i.e. that there are no choices for w that are “intrinsically better than others”. More precisely, it
seems reasonable to assume that for sufficiently large n, and generic SAT formulas, it holds that

with high probability in w

1
— —log (Pr[SCHOENINGWALK(x, w) = 2" | dg(x,2*) = h, w}) (4.32)
n T
1
~—— log<Pr [ScroENINGWALK(7, w') = 2* | dy (x, ) = h]>
n T’

The right hand side can be easily calculated, as by Ref. [58], for p1 = 3,

QI;E[SCHOENINGWALK(.Q:, w) = z* |dy(x,z*) = h] = 270,

Under Assumption (4.32), one can restrict the outer loop over w’s from Alg. 15 to No = 1 iter-
ation, and compensate by increasing the number of Grover iterations for x to Ny = O*(27¢ /2y,
In other words, the Groverized Initialization scheme with these parameters would lie on the op-
timal point (x,v) = (v¢/2,7¢/2).

Being even bolder, one could then speculate that the analysis of Sec. 4.5.2 carries over and that,
as one varies the fraction of initialization bits that are subjected to a Grover search, one could
trace out the optimal (), 7)-line. In other words, it does not seem impossible that the following
Alg. 20, with parameter choice

Nl(C) _ O*(nyc(lfz)n)’ Nl(q) — O*(Q'YCzn/2)’

achieves the optimal trade-oft.

Algorithm 20 Heuristically De-Randomized Fractional Groverized Initialization

1: w < uniformly random value from {1, 2, 3} *™

2: forj = 1...N1(C) do

3: % < uniformly random value from {0, 1}* [(1=2)n]

x4 < Grover-search for { N. l(q)J iterations using ORACLE ()

4
5 = (x¢, zq)

6: if x satisfies all clauses then
7

8

: . returnz
. return False

To gather evidence in favor of Assumption (4.32), we have resorted to numerical methods. A
first ansatz is to compute the Lh.s. of Eq. (4.32) exactly, which is possible for small values of n by
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4 Runtime-coberence trade-offs for hybrid SAT-solvers

iterating over all 2" assignments to x. Results are shown in Fig. 4.7 for a randomly chosen set of
3-SAT formulas with n = 20 variables, L = 91 clauses. The number of satisfying assignments o
of the formulas are varied. Only the case g = 1 can be directly compared to the analytic bounds.
However, note that even for this case, the empirically observed rate of yqr ~ .12 £ .02 is much
lower than the value ¢ /2 =~ .208 that we would expect theoretically. Presumably, n = 20 is still
too small to show the asymptotic behavior.

Groverized Initialization: n =20

il
: l h

W} i

0.02 t !

10 10' 10°
#(sol 3SAT-formula) 7y

Figure 4.7: Plot of the runtime rate for the heuristically de-randomized GI scheme. Error bars indicate
variation as a function of the formulas and the walk variables w. On the z-axis, we show the
number of satisfying assignments in the formula. Only the case of £y = 1 should be directly
comparable to the analytic bounds. The empirically observed behavior is much better than the
analytic results, suggesting that n = 20 is too small to capture the asymptotic behavior.

To test this assumption, we had to turn to numerical heuristics, to at least probe the behavior
for much larger values of n, where an exact computation is no longer possible. The results are
shown in Fig. 4.8. We used a SAT instance with n = 1414 variables that we believe to have a
single satisfying assignment 2™ which is explicitly known. To generate the instance, a128-bit plain
text was encoded by a 128-bit key using the XTEA block cipher truncated to three rounds. The
formula represents the conditions on an input key to map the known plain text to the known
ciphertext. The clauses are designed such that they enforce the correct evaluation of bit-wise
operations of the algorithm with respect to the given input and output. XTEA was restricted to
three rounds in order to keep the size of the formula manageable. While we have no formal proof,
itis reasonable to assume that there is a unique key that satisfies the formula. This is supported by
consistency checks in terms of running SAT solvers on a version of this problems with even fewer
rounds [40].

Let us denote the sphere of strings with Hamming distance h from 2* by M"(z*). For a fixed
walk randomness w, and for h = 1, ... 11, we have drawn x uniformly from M h(2*). In order
to compare the numerical results to the theory prediction, we have to use the value of the right
hand side of Assumption (4.32) for non-asymptotic values of n.

The following plot shows the empirically estimated probabilities of Schoning’s walk (with p1 =
3) arriving at the solution, when starting from a random initial configuration of given Hamming
distance. The findings show the expected behavior of averaging over w, already for a fixed random
value of w. In this sense, they are compatible with Assumption (4.32). We note, however, that we
were not able to probe the assumption for larger values of h. Garnering a better understanding

74



4.6 Circuits

for the concentration properties of the Schoning walk as a function of the walk choices remains
therefore an open question.

t  data

2 4 6 8 10
Hamming distance

Figure 4.8: Estimated probability for a uniformly random initial configuration = with Hamming distance
h to be mapped to z* under a Schéning walk, for a fixed, randomly chosen set of walk de-
cisions w (c.f. Alg. 20). The SAT instance has n = 1414 variables and is believed to have a
unique satisfying assignment [40]. For each data point, 10% initial configurations x, were sam-
pled uniformly from the Hamming distance sphere M" (2*). The results agree well with the
theoretical prediction under Assumption (4.32) (orange line).

4.6 CIRCUITS

In this section, we discuss an implementation of the partial Groverization schemes and present the
main building blocks of their quantum circuits. Given 7 variables and the length of Sch6ning’s
walk m, the quantum implementation requires n + m log 3 qubits to encode the initializations
and walk randomness. The oracles of the partial Groverization schemes are some adaptation of
one or more Schéning walks, and regardless of the search space they act on, the label of the violated
clause at each step needs to be stored in their workspaces. This is necessary since such oracles
are typically realized using uncomputation, therefore, log L extra auxiliary qubits are needed at
each step, amounting to m log L qubits in total for the workspace. As a result, encoding any
Groverization of Schéning’s algorithm asymptotically needs n + (log 3 + log L)m qubits.
Figure 4.9 represents a single step of Schéning walk, schematically. The first register encodes
the space of all possible initialization. The gates ev;, for j € {1, .., L}, act on the first two regis-
ters. Each gate consists of a few controlled-gates where the control qubits correspond to the three
variables in the j-th clause, and the target qubit is the second register. The second register is an
auxiliary qubit, initially set to |0), and is negated as soon as the first violated clause is detected. The
third register consists of log L auxiliary qubits that are used to count the number of clauses from
where the first violated clause has happened. The last register is a qutrit providing the random-
ness of the corresponding walk step. The controlled-gates ch;, for j € {1, .., L} act on the first
three registers, and take care of variable flipping wherever the first violated clause is detected. The
0V 1V 2block represents a triple controlled-gate where the control qutrit is the subspaces corre-
sponding to the computational basis states |0), |1), |2). Figure 4.10 depicts the controlled-gates
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4 Runtime-coberence trade-offs for hybrid SAT-solvers

including ch;, in detail. The sub-figure on the right shows the corresponding controlled-gate for
GI, where the walk randomness is fed classically to the last register.

All partial Groverization of Schéning algorithm can be implemented using slight modifica-
tions. For the GW algorithm, the n-qubit variable register will not be initialized in the uniform
superposition of all possible assignments |4-)©", but rather in a state with classically randomly
defined variables |1 - - - ;). For the Gl algorithm the qutrit within every Schéning’s step can be
removed since we can, for every Schoning’s step, generate a random number € {0,1,2} and
apply only the X gates based on the classically determined 7 (see figure 4.10).

47 SUMMARY & OUTLOOK

This work considers hybrid schemes for search-based quantum algorithms, with the aim to allow
for parallelizability, and to reduce the need for long coherence times. The basic gist is to parti-
tion the randomness of an underlying classical probabilistic algorithm into a part that is subject
to Grover search, while the rest is sampled classically. Such “partial Groverizations” allow for par-
allelization of the classical sampling, as well as enable adaption to available coherence times. We
consider exponential-time algorithms, why our analysis focuses on the asymptotic run-time rates
and coherence-time rates. We argue that these two types of rates are bounded by a general trade-
off relation that no hybrid-scheme can beat. For our concrete analysis, we consider hybrid schemes
based on Schoning’s algorithm, where the latter solves 3-SAT (or more generally k-SAT) prob-
lems by random walks in the space of assignments. The walk-procedure allows for several par-
tial Groverization-schemes. We determine the corresponding run-times and coherence-times of
these schemes, and demonstrate saturation of the general trade-off relation. Many of these partial
Groverizations intuitively lend themselves for efficient circuit implementations, and we provide
the main building blocks of these. On a more speculative note, we present numerical evidence
that the GI scheme can be partially de-randomized, in the sense that a single “typical” instance
of the classical randomness of the walk appears to mimic the effects of the repeated sampling.
This would open for an additional flexibility in the implementation of these hybrid-schemes, still
maintaining the optional trade-off.

In this investigation, we have focused on partial Groverizations of Schéning’s algorithm. How-
ever, this approach should in principle be applicable to any classical probabilistic search scheme,
since it essentially only rests on partitions of the underlying randomness. The main concern
would be to find “natural” partitions that are algorithmically accessible, in the sense that the partial
Groverization can be implemented efficiently. Explicit run-time and coherence-time rates would
also require a classical scheme, as well as partitions, that are sufficiently tractable for analysis, unless
one would resort to numerical estimates.

The partial de-randomization of GI-scheme that is suggested by our numerical explorations,
would deserve further investigations. In particular, the question is to what extent, and in what
sense, the hypothetical relation (4.32) would be true. Moreover, one may ask if something similar
also would apply to fractional GI. For numerical investigations, it would be relevant to extend
to larger Hamming distances, further classes of 3-SAT instances, as well as problem sizes. This
would likely involve challenges to design reliable numerical estimates, since exact calculations by
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Figure 4.9: The quantum implementation of a single Schéning’s step for a general implementation of the
partial Groverization of Schoning’s algorithm. The ev; gates evaluate the j-th clause on the
corresponding variables and the controlled-gates containing ch; and 0 V 1 V 2 act on all the
registers and check if the j-th clause is the first violated clause and if so, flip one of three variables
in it based on the randomness provided by the if -statement, 0V 1V 2. Here 0V 1V 2 represents
a triple controlled-gate where the control qutrit is the subspaces of the computational basis
(visualized in figure 4.10). The log L auxiliary qubits are needed for uncomputation.
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Figure 4.10: Implementation of the variable flips of Schéning’s walk within amplitude amplification.
Here, x;,, ;, and ;, are the variables of the j-th clause. The 0 V 1 V 2 block represents a
triple controlled-gate where the control qutrit is the subspaces of the basis |0), |1), |2). For the
Gl algorithm, the walk randomness can be provided by fixing a random number r € {0, 1,2}
for every walk step.
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the very nature of the problem quickly becomes intractable. For purely analytical approaches,
some notion of concentration of measure of walks, would be interesting.

In the spirit of [58, 59] we have in this investigation employed “the walk on Z” as a model of the
true Schéning-procedure. In Appendix of [31] (see also [49]) we additionally provide bounds for
the true rates of Schoning-procedure and the GW-procedure, in terms of the mirroring processes
on Z. It would be relevant to obtain similar bounds also for the GI-process, as well as for the
various fractional schemes.
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Applying Bayesian inference to Grover’s Search when the number of solutions is unknown presents
two main challenges:

1. representing the prior knowledge over the solution space, which may require storing an
array of size O(NN), and

2. assuming the availability of a meaningful prior distribution in the first place.

To address these challenges, we employ Particle Filtering, a Bayesian filtering method. While
typically used in dynamic systems with evolving latent states, Particle Filtering can also be benefi-
cial in static settings such as search problems. Specifically, it allows one to approximate the prior
distribution with a manageable number of weighted particles, thereby circumventing the need for
large memory and enabling adaptation based on observed evidence.

We implement this approach in the Particle-Guided Grover’s Search (PGGS) algorithm and
benchmark it against QSearch through numerical simulations. Various experimental settings were
explored. Results suggest that PGGS achieves a consistent speedup — roughly halving the average
query count — whenever the particle distribution aligns well with the actual distribution from
which the number of solutions is drawn, regardless of the type of distribution.

PGGS addresses the first challenge by approximating the prior with a finite set of weighted
particles that evolve over time based on observations. The second challenge is partially addressed:
PGGS performs well unless the true distribution over the number of solutions is sharply peaked
in region t/N =~ 0. In such cases, 2 mismatch between the prior and reality leads to a worser
performance.

In studying the trade-off between coherence and overall runtime for hybrid SAT solvers, we
focused on Schéning’s random walk over assignments of a 3-SAT formula. The walk begins at a
uniformly random assignment and then, at each step, checks whether the given formula is satis-
fied. If not, it picks the first unsatisfied clause — according to a predefined order — and randomly
flips one of its literals. Thus, there are two sources of randomness: (1) choosing the initial assign-
ment (which may be repeated if the walk exceeds a predefined step threshold), and (2) picking
which literal to flip at each failed step.

We recast this randomized procedure as a deterministic function that maps a single “random-
ness string” (encoding both the initial assignment and the sequence of literal-flips) to either suc-
cess (finding a satisfying assignment) or failure. In other words, each bitstring fully specifies one
run of the walk, and its output indicates whether that run finds a solution. This viewpoint reduces
“finding a satisfying assignment” to the search problem “find a bitstring that the deterministic
function maps to success.”

Once we treat the walk’s two randomness-choices as two contiguous sub-bitstrings, we can
ask: which sub-bitstring is most expensive to search (assuming a limited quantum resources)? If
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coherence time allows us to search only a fraction of the whole bitstring, it makes sense to allocate
that quantum resource to the sub-bitstring requiring the largest amount of work. Moreover, one
can ask whether correlating the two sub-bitstrings — rather than choosing them independently —
yields any advantage when only a fraction of the bits can be searched coherently.

To answer these questions, we designed a family of hybrid SAT-solvers based on Schéning’s
walk, each parameterized by how it allocates the quantum coherence budget between the two sub-
bitstrings. We analyzed the resulting trade-offs: given a coherence-time limit of zn qubits (with
n variables in the 3-SAT instance and 0 < z < 1), how should we allocate those zn qubits across
the “initialization” bits and the “flip-choice” bits? Our results show that, when a full quantum
search over the bitstring is infeasible, the optimal strategy is to allocate qubits fractionally equally
between the two sub-bitstrings — an algorithm we name Evenly Fractionalized Grover. In other
regimes, two variants — Fractional Groverized Walk (allocating the qubits to a fraction of flip-
choices) and Fractional Groverized Initialization (allocating the qubits to a fraction of the initial
assignment) — can perform just as well as the “evenly fractionalized” version.

Admittedly, these polynomial-speedup hybrid strategies do not dramatically improve practical
3-SAT solving. This is because 3-SAT is NP-complete and heuristics based on Davis-Putnam-
Logemann-Loveland algorithm (DPPL), a backtracking algorithm, or its other variant Conflict-
Driven Clause Learning (CDCL), and stochastic local search, already outperform such hybrid
algorithms for practical cases. Nonetheless, this line of inquiry is academically valuable: it offers
a systematic framework for designing and analyzing hybrid quantum-classical algorithms, a field
still in its infancy. By identifying which components of a probabilistic algorithm’s encoding ben-
efit most from limited quantum search, one can gain valuable insight into how to optimally parti-
tion and allocate scarce coherence resources in hybrid algorithms derived from that probabilistic
framework.
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Chapter 3 presented the application of Bayesian filtering to Grover’s Search when the number of
solutions is unknown. Benchmark results demonstrated an improvement over QSearch [15].

The relative entropy, both as a measure of information gain in Bayesian updating and as an
indicator of potential information loss when non-informative priors are employed, could serve as
key factors in understanding PGGS’ performance. This raises an important open question that
warrants further investigation in future work.

Further, identifying the minimal number of particles necessary to capture the essential charac-
teristics of the prior remains an unanswered question which is crucial to answer, especially since
the runtime of PGGS scales polynomially with the number of particles, L.

Here, PGGS has been evaluated in settings where the algorithm runs until a marked element
is found. An alternative evaluation strategy could introduce a fixed runtime cutoft, allowing for
a more nuanced comparison with QSearch in time-constrained scenarios. Additionally, a formal
runtime analysis of PGGS would be beneficial to estimate the classical resources required by this

hybrid algorithm.

Also, the performance of PGGS in the regime t/N =~ 0 appears unstable under various pa-
rameter settings. Since — as expected by Grover’s Search — both QSearch and PGGS exhibit their
highest average query counts at this point, this regime needs further investigation.

We have tested PGGS under Gaussian and uniform distributions; however, particle filters are
particularly valuable for handling non-Gaussian and more complex distributions. Investigating
the behavior of PGGS under such priors could present a direction for future work.

Lastly, the current upper bound on the number of Grover iterations—set to v IV, following
the suggestion by Boyer ez al. [13]- requires further investigation in the Bayesian context, where
adaptive strategies might yield more efficient performance.

Chapter 4 examined the trade-off between runtime and coherence time in a family of hybrid
SAT solvers, developed by analytically bounding the success probability of the underlying ran-
dom walk — namely, Sch6ning’s algorithm. There, we introduced a key technique: by encoding
the two sources of randomness used in the random walk into a single long bitstring, we reformu-
lated the randomized algorithm as a deterministic function that maps each bitstring to either 0 or
1, depending on whether the walk successfully finds a satistying assignment. This reformulation
allowed us to identify which parts of the bitstring are computationally more expensive to search,
enabling us to allocate the more powerful search tool — namely, quantum search — to those compo-
nents. This approach provides a generalizable framework that can be applied to other probabilis-
tic algorithms, particularly in the context of hybrid algorithm design, to maximize performance
under constrained quantum resources.

81



6 Outlook

Further, the bounds provided in 4 are asymptotic and expressed in terms of success rates. While
numerical simulations were conducted to evaluate how well these theoretical bounds hold in prac-
tice, further numerical investigations are necessary to study these rate estimates.
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