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Specifying Precision in Visual-orthographic Prediction
Error Representations for a Better Understanding
of Efficient Reading
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Abstract

W Efficient visual word recognition presumably relies on
orthographic prediction error (oPE) representations. On the
basis of a transparent neurocognitive computational model
rooted in the principles of the predictive coding framework,
we postulated that readers optimize their percept by removing
redundant visual signals, allowing them to focus on the infor-
mative aspects of the sensory input (i.e., the oPE). Here, we
explore alternative oPE implementations, testing whether
increased precision by assuming all-or-nothing signaling and
more realistic word lexicons results in adequate representa-
tions underlying efficient word recognition. We used behavioral
and electrophysiological data (i.e., EEG) for model evaluation.
More precise oPE representations (i.e., implementing a binary

INTRODUCTION

The predictive processing framework of cortical function-
ing assumes that the brain uses learned patterns in the
environment to optimize information processing starting
from the sensory input (de Lange, Heilbron, & Kok, 2018;
Rao & Ballard, 1999; Srinivasan, Laughlin, & Dubs, 1982).
The framework assumes that the brain constructs probabi-
listic inferences about upcoming sensory information by
making predictions based on past experiences (Clark,
2013). The primary framework for investigating predictive
processing involves manipulating predictability within the
immediate or recently learned context of sensory input (Yan,
de Lange, & Richter, 2023; Eisenhauer, Gagl, & Fiebach, 2022;
Hofmann, Remus, Biemann, Radach, & Kuchinke, 2022;
Heilbron, Richter, Ekman, Hagoort, & de Lange, 2020;
Eisenhauer, Fiebach, & Gagl, 2019; Hawelka, Schuster,
Gagl, & Hutzler, 2015; Alink, Schwiedrzik, Kohler, Singer,
& Muckli, 2010). Recently, we showed that humans not
only implement predictive processing based on the imme-
diate context but also based on predictable patterns that
can be derived from our long-term memory (Gagl et al.,
2020). Here, we investigate the influence of algorithmic
and knowledge-based precision by implementing the
orthographic prediction error (oPE) in multiple variants
to allow an investigation of how prediction error
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signaling and a frequency-sorted lexicon with the 500 most
common five-letter words) explained variance in behavioral
responses and electrophysiological data 300 msec after stimu-
lus onset best. The original less-precise oPE representation still
best explains early brain activation. This pattern suggests a
dynamic adaption of represented visual-orthographic informa-
tion, where initial graded prediction errors convert into binary
representations, allowing accurate retrieval of word meaning.
These results offer a neurocognitive plausible account of effi-
cient word recognition, emphasizing visual-orthographic infor-
mation in the form of prediction error representations central
to the transition from perceptual processing to the access of
word meaning. |l

representations are formed. We implement alternative
hypotheses based on transparent computational models
(Guest & Martin, 2021) and evaluate them based on human
behavior and brain activation.

The principles of predictive coding (Rao & Ballard,
1999; Srinivasan et al., 1982) provide a framework for
investigating the integration of sensory information (i.e.,
vision) and stored knowledge essential to reading (i.e.,
phonology, semantics). The Prediction Error Model of
Reading (PEMoR; Gagl et al., 2020) postulates that this
integration is based on the removal of redundant visual
signals to focus on the informative aspects of the percept
(i.e., oPE). Thus, we believe that the oPE representation,
which integrates sensory and stored information, is essen-
tial for efficient word perception.

A central characteristic of the PEMoR is its simplicity,
allowing an implementation that is fully transparent, with-
out free parameters based only on a single image computa-
tion. Here, we exploit that simplicity, investigating two
aspects of precision in predictive processing. In general,
predictive processing becomes more precise when the
upcoming information can be better predicted, resulting
in a reduction of uncertainty (Clark, 2013). High-quality
visual input is crucial for the reading process, as it allows
the brain to fine-tune its response to characteristics of
sensory information, allowing efficient decoding by a reduc-
tion of uncertainty and a focus on what information is most
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important for visual word recognition (Kwon & Legge,
2012; Rauschecker et al., 2011; Pelli, Burns, Farell, &
Moore-Page, 2006; Legge, Pelli, Rubin, & Schleske, 1985).
High precision allows the brain to quickly and accurately
decode discrepancies between expected and actual
visual input, leading to more efficient error correction
and adaption during reading (Gagl et al., 2020;
Rauschecker et al., 2011; Cohen, Dehaene, Vinckier,
Jobert, & Montavont, 2008). In addition, high precision,
in a predictive context, is associated with more effective
visual orthographic processing facilitating word recogni-
tion (Gagl et al., 2020; Eisenhauer et al., 2019; Elgort,
Brysbaert, Stevens, & Van Assche, 2018; Tamminen &
Gaskell, 2013). Furthermore, well-described predictabil-
ity and priming effects further suggest that precision
plays a crucial role in reading, where it not only
decodes the visual form of words but also helps to
combine orthographic information with the semantic
and context information (Eisenhauer et al., 2022; Brust
& Denzler, 2019; Carreiras, Armstrong, Perea, & Frost,
2014; Gagl, Hawelka, Richlan, Schuster, & Hutzler,
2014; Dimigen, Sommer, Hohlfeld, Jacobs, & Kliegl,
2011; Dambacher, Kliegl, Hofmann, & Jacobs, 20006).
In other words, precision in early visual-orthographic

word processes precedes effective extraction of mean-
ing from text.

Here, we explore two algorithms that implement a
binary all-or-nothing prediction error representation that
increases precision in visual orthographic representation
by a shift from a graded error for each pixel (i.e., any value
between 0 and 1) to a binary (error or not) representation.
One algorithm implemented the binary prediction error
on the level of the error (see Figure 1A) and one on the
level of the prediction (see Figure 1B). These hypotheses
implement a precision increase by a simplification of the
representation from graded to binary prediction errors,
potentially more likely reflecting signals implemented in
neuronal all-or-nothing signal (i.e., spikes; Qin et al.,
2020; Saszik & DeVries, 2012). In the original PEMoR,
the prediction results from a pixel-by-pixel mean that inte-
grates the visual appearance of all words stored in the
mental lexicon. Thus, the resulting prediction and predic-
tion error representations comprised graded values for
each pixel. When assuming binary all-or-nothing coding,
the value of a pixel can be either 0 or 1 (see Figure 1).

The first hypothesis of the present study implements a mean
prediction similar to the original PEMoR implementation
(Figure 1A, B). In addition, to increase the precision of
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Figure 1. Schematic depiction of the PEMoR adaptations to increase precision in the prediction error representations. (A, B) PEMoR version that
assumes a graded prediction (i.e., based on a pixel-by-pixel mean calculation combining all words stored in the lexicon, i.e., the redundant visual
information; see A) and a binary prediction error output (see B). After the redundant visual information is removed from the sensory input (i.e., by
subtraction), we implemented thresholds for calculating a stimulus-specific prediction error (i.e., from 10-90% in steps of 10%). If we do not
implement the threshold in mean prediction implementation, it would be identical to the original oPE formulation. (C, D) The second new PEMoR
version assumes a threshold to achieve a binary prediction that automatically results in a binary output. Again, we implemented the knowledge-based
prediction but then implemented a threshold to get a binary prediction (i.e., with the same thresholds in B; see C). (D) As a consequence, after
removing the new binary prediction from the sensory input (i.e., that is, monochrome), the oPE representation is automatically a binary
representation but with different results, especially for high and low thresholds (e.g., compare examples from B and D).
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the prediction error, a threshold is administered after we
calculate the prediction error, resulting in a precise binary
prediction error representation (Figure 1B). In contrast, we
achieve higher precision in the second hypothesis by
implementing a threshold already at the prediction, resulting
in a binary instead of a graded signal (Figure 1C). Integrating
the binary prediction with the binary (i.e., monochrome)
sensory input results in a more precise prediction error.
Thus, here, we achieve increased prediction error preci-
sion based on two different algorithms, implementing a
threshold either at the level of the prediction or after cal-
culating a graded prediction error.

Furthermore, we test one additional source that could
increase precision in the prediction error representation:
the number and type of words included in the lexicon of
the model. Numerous studies have shown that contextual
factors influence predictive processing in language com-
prehension (Eisenhauer et al., 2022; Schrimpf et al.,
2021; Shain, Blank, van Schijndel, Schuler, & Fedorenko,
2020; Zhang, Zhao, & Wang, 2020; de Lange et al., 2018;
Heilbron & Chait, 2018; Kok, Jehee, & de Lange, 2012;
Alink et al., 2010; Griffiths, Chater, Kemp, Perfors, &
Tenenbaum, 2010). The PEMOR, in its current implementa-
tion, has the context of a word recognition task that includes
words with a fixed number of letters (i.e., five letters). Thus,
in principle, one must perceive the visual stimulus and map it
to an entry in the lexicon (i.e., the memory for learned
words). Here, by assuming an active predictive word recog-
nition process, lexicon items are the stored knowledge used
to predict the upcoming sensory information (see Figure 1).
Therefore, in addition to increasing the precision on the algo-
rithm level (see above), we can also increase the precision by
assuming different lexicons, including fewer words than
assumed in the original implementation (Gagl et al., 2020).

Restricting the stimulus material to only five-letter
words increases the precision by better predicting where
the stimulus is presented, removing artificial noise that is
the consequence of unavailable parafoveal preview in
word recognition tasks. In natural reading, we reliably
extract word length from parafoveal preview information,
allowing exact saccade targeting (e.g., Meixner, Nixon, &
Laubrock, 2022; Gagl, Hawelka, & Wimmer, 2015; Gagl,
Hawelka, & Hutzler, 2014; Rayner, 2014; Hawelka, Gagl,
& Wimmer, 2010; for a more detailed discussion on the
influence of visual noise, see Gagl et al., 2020). Further-
more, restricting the input to a specific word length also
restricts the words in the lexicon that are used to generate
the prediction (Gagl et al., 2020). Until now, the PEMoR
assumed that all German words within the same word
length were used to form the prediction, as explorations
using words with different lengths resulted in lower model
fits (i.e., see the appendix of Gagl et al., 2020). In a recent
study investigating word recognition after learning, we
knew the items of the lexicon (i.e., the words that were
correctly perceived in most cases). We found that using
the known lexicon items to calculate the prediction
allowed modeling human and animal behavior in an

orthographic decision task with high accuracy (Gagl et al.,
2024). Thus, in this study, we explore whether we can
increase the precision of the prediction error by restricting
the number of words that are used to generate the predic-
tion. We test if the model that includes only a subset of the
lexicon results in a more adequate prediction error. Again,
we use two variants, first restricting the words of a
frequency-sorted lexicon (i.e., only the most frequent
words are included) or a lexicon assumption that is not
influenced by word frequency (i.e., randomly selecting
the same number of words as frequency-based lexicon).
However, implementing a threshold or an adequate lex-
icon comes with the problem of selecting the most appro-
priate threshold value for the implementation and the
appropriate set of words. We solve the issue by testing
multiple PEMoR implementations, including varying
thresholds and lexicon items for both new hypotheses
(see example words in Figure 1A and B). For model com-
parison, we test the variants against each other and also
contrast the new implementations with the original oPE
implementation. For model evaluation and comparisons,
we use human behavioral and electrophysiological brain
data (see Gagl et al., 2020, for detailed descriptions).

METHODS
New Implementation of the PEMoR

As assumed in PEMOR, the oPE was implemented by image-
based computations. For each pixel of the images (e.g., five-
letter words in Courier New font: 140 X 40 pixels in size),
we estimate a knowledge-based prediction and stimulus-
specific prediction errors (see Equation 2). Note that we
simplify here. For the purpose of presenting the formulas,
we recode the values 0 for black and 255 for white (standard
in grayscale images) to black being represented by 0 and
white by 1. Therefore, for both new hypotheses, the result-
ing prediction error per pixel can either have a high value of
1 when not predicted or a low value of 0 when correctly pre-
dicted. The difference between the two hypotheses is
whether the binary algorithm was applied to the prediction,
resulting in different model behaviors (see Figure 1).

Mean Prediction Hypothesis

As shown in Figure 1A, the mean prediction is calculated in
the same way as in the original implementation (Gagl et al.,
2020), allowing a graded prediction error (i.e., parametric
implementation with values between 0 and 1; see Equation 1).

| StoredWords,; ;
Prediction; ; = 21 &
n ©)

i,j = 140, 40

The prediction image (Prediction;;) is the result of a
pixel-by-pixel mean (i.e., 7, j represents the pixel matrix
of the images with 140 columns and 40 rows) over all
images from all stored words (StoredWords, ;) in the lexicon
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(n represents the number of words in the lexicon). First, we
implement a sum from all pixel matrices, conserving the
position of the pixel in the matrix over all words of the lex-
icon. To calculate the mean for each pixel value, we divided
the sum by 7 (i.e., the number of words in the lexicon).
Note that the words used to approximate the lexicon (i.e.,
the stored words) for the prediction for each pixel were
taken from the German SUBTLEX database (i.e., all five-
letter words; Brysbaert et al., 2011). SUBTLEX-DE consists
of German-language subtitles from 4610 films and television
shows. How we adapt the lexicon to achieve a more precise
prediction is described below.

To achieve a more precise binary prediction error repre-
sentation with a graded mean prediction, a threshold has
to be implemented on the level of the prediction error (i.e.,
after the prediction is subtracted from the sensory input).

oPE = 1 if (Sensory[nputz- ; — Prediction; 2,) > Threshold
1] —
770 otherwise

Threshold =[.1 2 3 4.5 .6 .7 .8 .9 )

In this hypothesis, the resulting prediction error repre-
sentation (0PE; ) is achieved by first subtracting the mean
prediction (Prediction, ;) from the sensory input (Sezzsory-
Input; ;) pixel by pixel. Note that the Sensorylnput;; is a
monochrome image with the value 0 when black and 1
when white. After that, we applied a threshold to all the
pixel values, pixel by pixel (threshold values varied from
0.1t0 0.9, representing 10%-90% thresholds). If the result
of the subtraction was above the threshold value, the oPE
pixel at that position was set to 1 (i.e., when the predic-
tion was not correctly predicting the sensory input). If the
result of the subtraction was below the threshold, we
assumed a prediction error of 0 at the specific pixel
(i.e., correctly predicting the sensory input). For example,
with a .5 threshold (50%), when the sensory input of a
given pixel is 1, and the prediction at that pixel is 0.2,
the prediction error of that one pixel is 1 because the dif-
ference, 0.8, is higher than the .5. If the prediction is 0.6,
the prediction error is 0 as the difference value, .2, is
lower than the value of the threshold, .5.

Binary Prediction Hypotbesis

Here, we assume a precise, binary prediction. Again, we first
calculated the pixel-by-pixel mean of all the words in the lex-
icon. The difference now is that we implement a threshold
for each pixel value of the prediction matrix (Prediction, ).

i > StoredWords; ;
Prediction;; = n
0 otherwise

> > Threshold

i.j = 140, 40

Threshold =11 2 3 4 5 6 .7 8 9] (3
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The pixel values of the binary Prediction,; (see Equa-
tion 3) are 1 when the average across the pixel values of
the image representation of the StoredWords in the lexi-
con (i.e., StoredWordls,; ;) exceeded the Threshold. Thus,
the pixel values of the binary Prediction can be a value
that is either 0 or 1 (i.e., compare the prediction images
shown in Figure 1C). A consequence of the binary prediction
is that the prediction error that integrates a monochrome
Sensorylnput;; and a binary, therefore also monochrome,
Prediction; ; based on a subtraction can also only result in a
monochrome oPE; ; representation. Let us look at the exam-
ple from above. When the sensory input is 1 and the predic-
tion is O (i.e., the mean prediction of 0.2 was set to 0 as the
threshold at the prediction was higher with 0.5), the predic-
tion error is 1 because the difference between 0 and 1 is 1. If
the prediction is 1 (i.e., the mean prediction of 0.6 was set to
1 as the threshold was lower), the prediction error is 0 as the
difference between 1 and 1 is 0. Thus, when implementing a
threshold at the prediction or after the prediction error cal-
culation (as in the mean prediction assumption), both result
in a binary prediction error. Obviously, from the examples in
Figure 1, the two assumptions result in very different oPE;;
representations when thresholds are low or high. Still,
already here, a higher similarity between the hypotheses at
a threshold of 0.5 becomes visible.

Word-frequency-driven Prediction

To enhance the precision of the word lexicon, we rank all
five-letter words from the German SUBTLEX database
according to their frequency (i.e., the first word of the lex-
icon is the most frequent one and the last one the rarest
word; see Brysbaert et al., 2011; Coltheart, 2005, for a dis-
cussion on the implementation). We then generate pre-
dictions for chunks of words, ranging from the top 100
to the top 3108 highest frequency words, in steps of 100.
Accordingly, two prediction hypotheses were calculated
separately for each of the 32 different word-frequency
lexicons. In addition, as a control condition for the best fit-
ting models with a frequency sorted lexicon, we compared
the frequency-ranked lexicons to a condition in which we
randomly draw the same number of words multiple times
(10 times for each same lexicon size as the frequency-
based lexicon). These control conditions allow us to inves-
tigate if frequency sorting is essential for the lexicon.

Model Evaluations

For the model evaluations, we generated an oPE for each
stimulus presented in the studies, separate for the two
new and the original prediction error assumptions. In
addition, we generated one variant for each combination
of threshold and word lexicon assumptions, resulting in a
total of 576 models. To create a parameter for model com-
parison, we summed up the pixel values from the oPE
matrix for each stimulus. This summed oPE then repre-
sents the overall prediction error amount per word. So,
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as shown in the examples of Figure 1, the white values rep-
resent the amount of error per letter string (i.e., a large
number of white pixels represents a high prediction error;
see Gagl et al., 2020, for more details).

Here, we evaluate the new oPE implementations by
comparing the model fit of regression models (i.e., linear
mixed models [LMMs]; Bates, Michler, Bolker, & Walker,
2015). Specifically, we compare all 576 model implemen-
tations (i.e., hypotheses) with varying threshold levels and
lexicon assumptions. For both hypotheses, the new oPE
assumptions are compared separately for each lexicon.
In addition, we also compare these new oPE implementa-
tions to the original oPE model described by Gagl and
colleagues (2020), assessing both prediction hypotheses
under the same conditions. We use LMMs and the Akaike
Information Criterion (AIC; Akaike, 1973) to find the best
fitting model. The behavioral data are based on a lexical
decision task, and the brain data are based on electrophys-
iological measurements with EEG (see detailed descrip-
tions of the data set in Gagl et al., 2020). The EEG data give
us the chance to investigate neuronal implementation
with a highly time-resolved data set. Please note that the
behavioral and EEG data are based on independent groups
of participants.

Word Recognition Bebhavior

All stimuli of the lexical decision task (i.e., indicate by but-
ton press if the stimulus is a word or not) had five letters
(800 words and nonwords), and participants were typically
reading native speakers of German (nz = 35; find the
behavioral lexical decision data here: https://osf.io/d8yjc/).
We estimated linear mixed models (Bates, Michler, et al.,
2015) for each of the oPE assumptions as predictors to
describe logarithmic transformed RTs (i.e., to account
for the ex-Gaussion distribution of RTs). Inspired by the
previous analysis (see Gagl et al., 2020), we also estimated
the interaction of the oPE and word lexicality (i.e., word,
pseudoword, or consonant strings); we also added deci-
sion accuracy, letter-string frequency within whole lexi-
con as covariates of no interest to the models. To account
for variability across different letter strings, we included
random intercepts for each unique letter string (see
Equation 4).

After initially fitting the linear mixed models across oPE
assumptions generated from all word lexicons and differ-
ent thresholds, to identify the optimal fit by accounting for
variability across both participants and letter string com-
prehensively, we applied the “maximal” model estimation
methods (Bates, Kliegl, Vasishth, & Baayen, 2015) to
assess the winning oPE models’ fit with all possible ran-
dom effect components included. In this approach, we
began by fitting the most complex model, which included
all possible random slopes. However, due to the highly
complex structure of random effects, these models often
fail to converge. To address this, we incrementally reduced
the model complexity by systematically removing random

slopes. This stepwise reduction ultimately produced a
convergent model formula that successfully fit the winning
word lexicon and threshold oPE assumptions, as well as
the original oPE generated from the corresponding word
lexicon (see Equation 5). For the model fit comparison, we
used the AIC (see Equation 6) comparing the model
including a oPE variant with the null model without an
OPE variant (Akaike, 1973).

log(RT) ~ oPE = Lexicality + Accuracy
+ Frequency + (1|participant) + (1|string)  (4)

log(RT) ~ oPE * Lexicality + Accuracy
+ Frequency + (oPE|participant) 4 (1|string) (5)

AAIC = AIC, — AIC,py; ©)

Electrophysiological Data

To test the timing and effect changes of the new oPE on
the neuronal level, we first focus on the two-time points
previously identified as relevant (see Gagl et al., 2020,
for details): (i) posterior electrodes at 230 msec after stim-
ulus onset showing an oPE effect and (ii) frontal electrodes
at 430 msec after stimulus onset showing an interaction of
the oPE with lexicality. EEG epochs were preprocessed
(see Gagl et al., 2020), and for the first LMM-based analysis,
in addition to the new oPEs, we include lexicality, string
frequency, and trial order as covariates of no interest. Ran-
dom effects for participants and electrode locations
account for variability due to individual differences and
electrode characteristics (see Equation 7). Again, the AIC
compares the model fit (see Equation 6). The “maximal”
model method was also conducted for oPE models on
the EEG activation at two time points. When including ran-
dom slopes, the model failed to converge for the original
oPE at the 230-msec time window. Although the pat-
tern between model comparisons is the same as using
Equation 7.

Activation,,, ~ oPE = Lexicality + Frequency
+ Trial + (1|Participant) + (1|String) @)

As an additional comparison, we again ran the linear
regression analysis described in Gagl and colleagues
(2020) for the entire EEG epochs (from 200 msec before
and 800 msec after word onset). We used the multiple
regression analysis with the same parameters as in the
time-point-specific EEG evaluations and the winning oPE
model (i.e., number of pixels, word/nonword, and the
interactions with word/nonword distinction). Inference
was made based on a cluster-based permutation test
(Maris & Oostenveld, 2007). All clusters with a probability
of less than an assumed alpha value of 0.05 under this
simulated null hypothesis were considered statistically
significant.
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RESULTS

Behavioral Results

Model evaluation based on behavioral lexical decision data
showed that the 50% threshold models, both with mean and
binary prediction, including the 500 and 1800 most frequent
words (i.e., 16% and 58% of the full lexicon; see Figure 2A and
B), had the best model fit. For both models, the fit was higher
than the original oPE implementation when more than the
300 most frequent words were included in the lexicon.
Applying the parsimonious mixed model approach to all four
models, again, no difference was found between the algo-
rithms. However, a higher model fit was identified for the
500-word lexicon implementation (see Figure 2C). In addi-
tion, we ran 10 separate simulations in which we randomly
drew either 500 or 1800 words from the full lexicon to

approximate an oPE version without a frequency-ordered
lexicon (see Figure 2C). For all four models, we found that
the frequency-ordered lexicon assumption for the oPEs esti-
mation consistently provides a better model fit (500-word
random lexicon: mean AIC difference = 109.7; 95% confi-
dence interval [104.87, 114.53] vs. frequency ordered lexi-
con: AIC difference = 124; see Figure 2C).

Inspecting the high similarity of the 50% threshold, the
500-word version of the binary and mean prediction
models showed that they were perfectly correlated (» =
1; see Figure 3A). For all other thresholds, we did not find
such a high correlation between the two implementations.
Furthermore, when inspecting the total prediction error,
we see a linear decrease when assuming a mean prediction
and an inverted U-shape function when investigating the
binary hypothesis (see Figure 3B). Therefore, we cannot
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Figure 2. Model comparison results for lexical decision behavior. (A) Model comparison results based on lexical decision RTs for word-frequency-
driven oPE estimations, including all thresholds implemented on the level of prediction error under the binary prediction hypothesis. The x axis
represents the number of most frequent words used in the word lexicon to generate prediction and prediction errors each time. Model comparison
results are also shown for original oPE (solid black line) generated from different word frequency word lexicons. All AIC differences presented here
are compared against a version of the linear mixed model without an oPE predictor (null hypothesis, HO). (B) Similar model comparison results are
based on lexical decision RTs for word-frequency-driven oPE estimations, including all thresholds implemented on the level of prediction error under
the mean prediction hypothesis. (C) Model comparison for randomly selected versus frequency-ordered lexicons for the best fitting models (500 and
1800 word lexicons: 50% oPE). The results demonstrate that a frequency-based 50% oPE model using a 500-word lexicon provides a better model fit
for human lexical decision performance. (D) Fifty percent oPE from a 500-word lexicon affects RTs in the lexical decision task. Blue line shows the
effects for words, green line for pseudowords, and red line for consonant strings. Dots represent mean RT estimates across all participants, separated
into oPE value and stimulus category after excluding confounding effects.
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Figure 3. Similarities between and absolute oPE values of both algorithms and all thresholds when including the most frequent 500 words from the
lexicon. (A) Correlation matrix between each oPE value from two algorithms at each threshold. All correlation coefficients range from —.09 to 1, with
the perfect correlations marked by a black rectangle. (B) The number of error pixels of the oPE representation for each word or nonword

(pseudoword and consonant strings) separated for all thresholds (x axis) and both algorithms. Note that the number of error pixels is lower for words
compared with nonwords. For the binary oPE, the difference at 10% is 16 pixels, which raises 42 pixels at the 50% threshold. The peak difference at
42.5 is found for the 60% threshold, which again declined to 11.5 pixels for the 90% threshold. For mean oPEs, the difference between thresholds is

symmetric (i.e., similar to the correlations) with 15 pixels at 10% and 90%,

23 at 20% and 80%, 31 at 30% and 70%, 40 at 40% and 60%, and peaking at

42 pixels at 50%. Boxes and whiskers represent the distribution of the data, with the box spanning the interquartile range, which captures the middle
50% of the data, and the whiskers extend to 1.5 times the interquartile range, indicating variability outside the upper and lower quartiles. Outliers
beyond this range are displayed as individual points. The horizontal line within each box represents the median of the distribution. (C) Correlation of
the absolute oPE with the model fit separated by the algorithms. The red dot represents the best fitting model (i.e., 500-word frequency sorted

lexicon with a 50% threshold resulting from both algorithms).

differentiate between the two implementations, as the high-
est model converges to the only combination that does not
allow a differentiation between the two hypotheses.

Observing the 50% oPE on RT in lexical decision task based
on the linear mixed model (see Figure 2D), after excluding
confounding effects, participants tend to quickly identify letter
strings with low oPE value as words and the response is slower
to recognize words with high oPE value; opposite pattern
shown for pseudoword and consonant string categories, par-
ticipants tend to respond slowly for low oPE value and quickly
decide for letter strings with high oPE value.

Simulation Results

Inspecting the model simulations in detail (i.e., see
Figure 3) gave a direct indication of why the model

comparison could not differentiate between two imple-
mentations: (i) mean and (ii) binary prediction algorithms
with a 50% threshold. The two prediction error represen-
tations are perfectly correlated (see Figure 3A). Further
inspection also revealed that absolute prediction errors
resulting from the mean prediction algorithm showed
high correlations between equidistant thresholds (i.e.,
10% and 90% thresholds), which was not the case for
the binary prediction algorithm. This finding can also
explain why the model fits between equidistant thresholds
from the mean prediction algorithm are equal (i.e., see
overlapping lines in Figure 2B).

Furthermore, the absolute prediction error values of the
mean prediction algorithm showed a reduction of the pre-
diction error values from low to high applied thresholds
(see Figure 3B). When inspecting the prediction error
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example images in Figure 1B, one can see that with a low
threshold, the error is large as the images include the
errors that stem from the sensory input (i.e., the lower part
of the “g”) but also errors that stem from the prediction
(i.e., the errors in the area above the lower case letters).
The prediction error decreases with increasing thresholds,
resulting primarily from reducing the influence of the pre-
diction on the error, in other words, from pixels where we
expect that they are black in sensory input but, in contrast,
are white instead. So, with a high threshold, only the errors
that were not expected (i.e., not strongly included in the
prediction) remained (i.e., the lower part of the “g”). The
best fitting model, at the 50% threshold, results in a repre-
sentation that holds both errors that stem from the predic-
tion and errors that result from unexpected parts of the
sensory input with an overall error that is in between the
more extreme thresholds (see Figure 3B).

For the binary prediction algorithm, the 50% threshold
results in the same errors, but here, the resulting errors are
the lowest compared with all other thresholds. This find-
ing indicates that the best fitting model is also the model
with the lowest errors in the representation, resulting in an
inverted U-shape function (see Figure 3B). In addition, we
found that the correlation decreased between equidistant
thresholds (see Figure 3A), indicating that the absolute
error increases toward more extreme thresholds, but the
represented information becomes more dissimilar. This
finding stands in stark contrast to the implementation of
the mean algorithm. When inspecting the examples of
Figure 1B, one can identify the cause of this simulation pat-
tern. The resulting prediction error representations are
similar to the sensory input for high thresholds, a case
not present in the mean algorithm. In contrast, with low
thresholds, the errors only include the sensory input that
is highly unexpected (i.e., the lower part of the “g”) plus
the error that stems from the prediction—predicting away
most of the sensory input, indicating that one can use the
threshold in the binary prediction algorithm to navigate
the importance of the sensory input or the prediction
for the prediction error (e.g., high threshold—more
sensory information; low threshold—more prediction
information). Thus, that balance that we find at the 50%
threshold represents both the information from the sen-
sory input and the prediction in an optimal way with a low
overall error.

Furthermore, when correlating the model fit indices
(i.e., as shown in Figure 2A and B) with the absolute error
(i.e., as shown in Figure 3B), we find a strong negative
association for the binary algorithm (r = —.75; t(7) =
—3.0; p = .02) but a weaker one for the mean algorithm
(r=—.19;t(7) = —0.5; p = .62; see Figure 3C). This find-
ing indicates that the prediction error representation that
results from the binary algorithm follows the pattern of the
representation with the lowest error also holds the opti-
mal representation. This relationship is not present in
the mean algorithm. One further interesting observation
is that the prediction error representation that primarily
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includes the sensory input (i.e., the 90% threshold from
the binary algorithm; yellow line in Figure 2A) results in
a lower model fit compared with prediction errors that
are on the other more extreme end holding errors that
largely stem from the prediction (i.e., low threshold con-
dition of both algorithms). This finding replicates our
previous finding that prediction error representation is a
better representation when compared with the sensory
input (i.e., see Gagl et al., 2020), but also that even predic-
tion error variants with a high overall error, mainly holding
the information included in the prediction, result in a
higher model fit (e.g., compare 90% and 10% in Figure 2A).
Underlining the importance of prediction error representa-
tions for efficient visual word recognition behavior.

Electrophysiological Results

Based on the behavioral results, we focused the EEG anal-
ysis on the new oPE formulations, which showed the best
model fit for response times (50% threshold based on 500-
word lexicon, mean, and binary implementations). First,
we analyze the two-time windows of central interest (230
and 430 msec after stimulus onset) identified when
describing the original oPE implementation (Gagl et al.,
2020). The original oPE had the highest model fit at ampli-
tudes at 230 msec. The 50% oPE model (AIC = 990034)
outperformed the null model (AIC = 990042) by 8 points.
However, the original oPE model from the 500-word
lexicon (AIC = 990033) performed even better, surpass-
ing the null model by 9 points. Again, there is no difference
between the mean and binary algorithm. At 430 msec, the
509% oPE model (AIC = 3185938) demonstrated an
improvement over the null model (AIC = 3185940), with
a 2-point difference. In addition, the 50% oPE model out-
performed the original oPE model from the 500-word lex-
icon (AIC = 3185939) by 1 point. Together, these results
suggest that, at the early time window, around 230 msec,
the original oPE was the best fitting model. Still, at the later
time window, around 430 msec, there is a consistent
advantage of the 50% oPE model over both the null and
original oPE models.

In addition, we investigated the effects of the 50% thresh-
old mean binary oPE based on the 500-word lexicon with a
multiple-regression analysis for the full epochs. The models
included the 50% threshold oPE (based on a 500-word lex-
icon), number of pixels, lexicality, and the interactions of
the oPE with lexicality. In comparison to the original oPE,
we again find a significant main effect of the new oPEs,
but the cluster was only from 210 msec to 250 msec at sim-
ilar sensors (compare dashed lines vs. yellow area in
Figure 4A). This finding is in line with the 230-msec model
comparison analysis, as we found a higher model fit and a
larger cluster for the original implementation when com-
pared with the new implementations.

When inspecting the effect of lexicality, we found that
with new oPE implementations, the cluster lasted from
410 msec to 800 msec. This finding, when contrasted to

Volume 37, Number 8

520z Jaquiada( GO U0 Jasn UIQy YaUjolqigipels pun -sjepsiaAun Aq ypd L0gg0 & udol/yy8661Z/67E L/8/LE/IPd-a1oe/UD0lNPa W I0BIIP//:dRY WOl papeojumoq



A

230 msec 370 msec 440 msec
500 Word Lexicon

D Posterior sensors at 230 msec

N

Time [msec]

2
50% oPE 51 , Category
- - = 0 : ~ Consonant string
=4 o - Pseudoword
‘@ 81 \ - Word
N g
w . \
5 62
L : A 0.4 08 1.2 1.6
-4 | . ek : , icon: 509
00 5 200 200 600 800 500 Word Lexicon: 50% oPE
Time [msec]
B 420 msec 470 msec 700 msec E go:tal Sensors af 430 mses
= . i
Word/ = —i
Nonword 50 | jf? Category
— = ‘ r 1 Consonant String
3 2] o-1 [ 1] & Pseudoword
= > ! & Words
NO B-2 |
7 = 1
© (@)
821 CS PW W
-200 0 200 400 600 800
Time [msec]
C F
458 ee A0 mees 00 HSED _Ifrontal sensors at 430 msec
50% oPE X y 3 >1
Word/ ? 1 -
Nonword Eg% % Category
= b= ~ Consonant string
> o g ~ Pseudoword
.5. 2 5 = WOI‘d
N ©-1.0 \
(7] 0 2
© (@)
[&]
& 5 0.40.81.21.6
Lu_ 1 ; . - p— : - 1 . 0,
-200 5 260 400 600 800 500 Word Lexicon: 50% oPE

Figure 4. EEG results for lexical decision task of 200 words and 200 nonwords (100 pseudowords, 100 consonant strings) including 50% oPE based
on a 500-word lexicon: timing of 50% threshold based on 500-word lexicon oPE effects separately. Effect sizes from multiple regression ERPs are
presented as time courses for each sensor and time-point with orange shadow areas marking time windows with significant activation clusters
(dashed rectangles mark the significant activation time windows from the multiple regression analysis for original oPE). ERP-derived effect size
estimates results are shown for (A) the main effect of the 50% oPE based on a 500-word lexicon, (B) the word/nonword effect, and (C) the 50% oPE
by word/nonword effects. The right column shows the activation patterns related to the significant activation clusters in more detail. Dots represent
mean predicted pV across (D and F) all participants and items separated by 50% oPE and stimulus category, and (E) all items separated by stimulus
category, excluding confounding effects. The frontal cluster includes the following sensors: AF3, AF4, AF7, AF8, F1, F2, F3, F4, F5, F6, F7, F8, SO1,
SO2, FP1, FP2, Fz. The posterior cluster includes the following sensors: 02, O1, Oz, PO10, PO3, PO4, PO7, PO8, PO9, POz.

the lexicality effect in the analysis with the classical oPE
implementation, started later in time but lasted longer
(see Figure 4B). The interaction cluster between 50%
threshold oPE, and lexicality started earlier and lasted lon-
ger when compared with the original implementation.
The cluster spanned from 300 msec to 800 msec and,
therefore, even started before the lexicality effect cluster
(see Figure 4C). This finding changes the order of effects
when compared with the original analysis from oPE clus-
ter, lexicality cluster, and oPE X Lexicality interaction clus-
ter to oPE, oPE X Lexicality interaction cluster, and

lexicality cluster. This sequence change could indicate,
in accordance with the change of the oPE effect pattern
(i.e., compare Figure 4D to 4F; from all negative to positive
effect for words and negative effect for nonwords) before
lexical access, that the prediction error representation is a
central part of the access process to lexical knowledge.

DISCUSSION

The PEMoR highlights the role of oPE representations
(oPE) that integrate visual-orthographic knowledge with
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sensory inputs for efficient word perception (Gagl et al.,
2020). Here, we revisited the original PEMoR and investi-
gated if increasing the precision of the oPE is central to
conserving critical visual information for efficient word
identification. We explored adaptations of the original
PEMOoR formulation (two algorithms and nine thresholds
each), facilitating transparent theoretical development
(i.e., as suggested by Guest & Martin, 2021), in which we
increased the precision of the oPE on two levels: graded
versus all-or-nothing (i.e., binary) oPE and full-size versus
partial frequency sorted lexicons. Overall, precision
increases model fit. By implementing a binary oPE (i.e.,
precision by maximizing the differences between error
and no error), pixel information becomes more easily dif-
ferentiated (i.e., similar to a Quick Response code [QR
code)), increasing model fit. By implementing more real-
istic lexicon assumptions, the knowledge base of the
model could be identified as a frequency-sorted lexicon
containing a smaller number of words (i.e., as indicated
by the word frequency effect; e.g., see Gregorovd, Turini,
Gagl, & V0, 2023; Brysbaert et al., 2011), also increasing
model fit. Overall, we found that both ways to increase
precision resulted in adequate models describing visual
word recognition behavior and late electrophysiological
brain responses, outperforming the original PEMoR
implementation. Only for early brain activation, we find
the original oPE implementation to be the best fitting
model.

Our explorations identified the most optimal oPE imple-
menting a threshold at 50% and a lexicon with only the
most frequent 500 five-letter words (about 16% of all
five-letter words in the SUBTLEX-DE; Brysbaert et al.,
2011) resulting from both the mean and binary prediction
algorithms. In the context of the current PEMoR imple-
mentation with five-letter words, 500 words would be
roughly 16% of all five-letter words. In the context of an
entire corpus (i.e., the 190,500 words in the SUBTLEX-
DE), the 16% would translate to roughly 30,480 words,
which aligns nicely with the estimated average adult pro-
ductive vocabulary (i.e., about 30,000 to 40,000 words;
e.g., see Brysbaert, Stevens, Mandera, & Keuleers, 2016).

Interestingly, both algorithms resulted in an oPE that
perfectly correlated only for the implementation of a
50% threshold. This oPE best explains human behavioral
performance and electrophysiological brain activation
starting from 210 msec to 250 msec. In contrast, the orig-
inal oPE implementation (i.e., graded prediction error)
better described an electrophysiological component start-
ing earlier from 150 msec to 250 msec. This pattern of
results is intriguing as it indicates that one possibly imple-
ments precise prediction error signals in late processes
(N400, behavior) but not necessarily in early processing.
Using transparent computational models allows us to
identify the differences explicitly and formulate a hypoth-
esis on how the oPE representation changes from early to
late time windows. The central difference between the
original and the new formulation is that the individual
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pixel values are parametric in the former and binary in
the latter, increasing the precision on the pixel level.
The difference between early, graded prediction error
and late binary prediction error could indicate a transfor-
mation of the oPE representation over time, settling on a
solution with less nuance (i.e., only binary signaling). In
other words, we might have identified a case of precision
increase in a prediction error representation from early
perceptual to later meaning retrieval processes.

Implementing the oPE representation as access code to
word meaning (i.e., as proposed in Gagl et al., 2020),
which becomes more precise over time, offers a simple
algorithm that integrates sensory input and word knowl-
edge for efficient lexical access. Similar to a QR code that
stores, for example, the link to a webpage, our brain could
implement the link between the visual stimulus of a word
and its meaning via a binarized oPE representation. The
central feature of the oPE representation, in contrast to a
QR code, is that it is not an arbitrary representation but
based on a neurocognitively plausible assumption (i.e.,
predictive coding; Rao & Ballard, 1999) integrating the rel-
evant information (i.e., word knowledge) with the sensory
input while respecting the visual characteristics of the task
(i.e., visual word recognition). Although optimized, it is
still possible to infer the word when inspecting the oPE
(see Figure 1). Therefore, when word knowledge is stored
and predictive processing to optimize perception is imple-
mented, one has all the ingredients to generate an oPE
representation. Both are relatively widely accepted claims
(see Carreiras et al., 2014; Norris & Kinoshita, 2012;
Coltheart, 2005, for the assumption of word knowledge;
see Heilbron et al., 2020; Clark, 2013; Price & Devlin,
2011; Alink et al., 2010; Rao & Ballard, 1999, for the
assumption of predictive coding). Still, a solution purely
relying on visual information would be highly susceptible
to various sources of error (i.e., through font changes or
noisy sensory information), so it is highly likely that
readers account for other sources of information (i.e.,
letters and letter-combination information) to, for exam-
ple, make an access code more reliable (i.e., see Gagletal.,
2024, for a broader account of orthographic processing
within a predictive processing framework). A technical
solution for information storage, as implemented in the
QR code, shares the implementation of a precise repre-
sentation. However, it must implement arbitrary informa-
tion irrelevant to the user (i.e., as the version of the
encoding algorithm), being a reliable solution for the
task. A barcode approach, as put forward by Hannagan,
Agrawal, Cohen, and Dehaene (2021), based on a simula-
tion study using deep-neuronal network computer vision
models (i.e., a technical solution to visual perception; see
van Rooij et al., 2024) is expected to have similar issues
(i.e., one needs to code the model version or training
regime). Thus, the oPE representation might be a prag-
matic solution to the problem of representing sensory
information in an optimal way within the parameters
innate to the task of visual word recognition.
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Interestingly, the binary and mean prediction assump-
tions for the oPE generation could not be empirically dif-
ferentiated when focusing on the best fitting model. The
50% threshold variant, irrespective of the number and
type of words in the lexicon, was the best fitting model
but also resulted in identical oPE representations (i.e., per-
fect correlation). Nonetheless, the binary prediction and
mean prediction algorithms could be differentiated when
inspecting the simulations across all thresholds. Several
aspects of both the binary and the mean prediction imple-
mentation are compelling, although the mean algorithm
resulted in higher model fits over all thresholds. In addition,
the mean prediction algorithm can be best incorporated into
the notion that brain activation evidence suggests a transfor-
mation from a parametric to a binary oPE representation.
This is because both the original, parametric, oPE implemen-
tation, and the binary oPE based on the mean prediction
error algorithm implement the same prediction. In addi-
tion, noteworthy aspects of the oPE representations from
the mean algorithms are that irrespective of the threshold,
strong prediction errors are always present, and the
amount of the prediction error at a high threshold is low-
est when compared with all other implementations.

The binary prediction algorithm, in contrast, is based on
binary signaling only, making the algorithm more straight-
forward (i.e., binary signaling is less complex than the sig-
naling of parametric information). Furthermore, we find a
correlation of the absolute prediction error (i.e., the sum
of all error pixels) with the model fit, indicating that the
best fitting model also had the lowest prediction error
compared with all other binary oPE implementations.
The model fit decreases, and prediction error increases
the lower the threshold gets. At low thresholds, the oPE
representation becomes more similar to the sensory input
(see Figure 1), including a high amount of redundant
visual information. In contrast, when inspecting high
threshold implementations, the prediction error is also
increased. In addition, we find that the high threshold
oPEs primarily represent the information contained in
the prediction (see Figure 1). The high dissimilarity of
the oPE predictions resulting from low or high thresholds
could be a meaningful feature one could test in future
studies. As previously described in the implementation
of the original oPE implementation (Gagl et al., 2020),
visual noise in the sensory input changes the importance
of the oPE for visual word recognition. At high noise levels,
we even found that a representation of the sensory input
resulted in a better fit for behavioral data. With this binary
prediction algorithm, one could use the threshold as a
parameter to adapt depending on environmental factors
influencing the sensory input (i.e., sensory noise). Note
that the latter is not inherent to the mean algorithm. Thus,
a clear differentiation based on a direct empirical test is
needed to specify the algorithm for the oPE implementa-
tion further.

The evaluation of new oPE formulations on EEG time
courses shows that we can better explain early reading-

related brain activation with the original oPE implementa-
tion than the new binary implementations. The oPE effect
shares the time window and topography with the previ-
ously described occipito-temporal N170 and N250 compo-
nents, which are both linked to early orthographic
processing in visual word recognition (e.g., as they dis-
criminate letters and words from nonlinguistic stimuli;
Barber & Kutas, 2007; Hauk, Davis, Ford, Pulvermiiller,
& Marslen-Wilson, 2006). In addition, the components
were associated with visual word characteristics
(Sassenhagen, 2019; Dufau, Grainger, Midgley, &
Holcomb, 2015), mark findings related to predictive pro-
cessing from priming studies (Eisenhauer et al., 2019;
Grainger & Holcomb, 2009; Holcomb & Grainger, 2006),
and experiments with more natural sentence reading
paradigms (Milligan, Antinez, Barber, & Schotter, 2023;
Kornrumpf, Niefind, Sommer, & Dimigen, 2016). Thus,
the oPE effect, best described by an implementation of a
graded error representation as described originally (Gagl
et al., 2020), shows an effect in electrodes at a time window
that was previously associated with prelexical visual-
orthographic processes, typically preceding the lexical-
semantic processes observed in later components.

From 300 msec poststimulus, we find a significant inter-
action of the oPE with the lexical status of the letter string
(i.e., word or nonword, lexicality) when using the best
fitting (on behavioral data) binary oPE (including a fre-
quency sorted 500-word lexicon). About 100 msec later,
we find a cluster showing the lexicality effect. Besides
the earlier start of the interaction, both clusters overlap
in time and topography. The change in the oPE from a
parametric to a binary representation needs to be investi-
gated in future work, but the pattern fits with the notion of
a precise access code. The interaction effect could mark a
process of accessing the lexicon before that lexicality effect
marks access to the lexicon. Within this time range, the
N400 component—typically associated with semantic and
lexical processing—emerges (e.g., Kutas & Federmeier,
2011; Lau, Phillips, & Poeppel, 2008). Brain activation
400 msec after stimulus onset was associated with seman-
tic congruity and expectation violations within reading,
where it indexes the integration of word meaning and con-
textual fit within a sentence (Delogu, Brouwer, & Crocker,
2019; Davenport & Coulson, 2011; Laszlo & Federmeier,
2011) or lexical processing (Eisenhauer et al., 2019,
2022; Lau, Weber, Gramfort, Himildinen, & Kuperberg,
2016; Brothers, Swaab, & Traxler, 2015; Laszlo & Federmeier,
2009). Thus, the pattern of results aligns with theoretical
frameworks in reading research that propose a transition
from orthographic to semantic processing, with greater
predictive precision enhancing the reader’s access to
meaning (Kumari, 2022; Hagoort, 2013).

Limitations

One of the central takeaways from the present study is that
the oPE representation changes its form over time. This

Fu and Gagl 1359

520z Jaquiada( GO U0 Jasn UIQy YaUjolqigipels pun -sjepsiaAun Aq ypd L0gg0 & udol/yy8661Z/67E L/8/LE/IPd-a1oe/UD0lNPa W I0BIIP//:dRY WOl papeojumoq



finding indicates a dynamic transformation algorithm to
a currently static set of alternative models. This central
limitation of the current approach motivates the imple-
mentation of a PEMoR version involving timing, so one
can model the increase in precision before or while the
OPE representation helps access word meaning. Fur-
thermore, the applicability of the oPE as an access code
currently lacks font and size generalizability (i.e., at
present, it is limited to a mono-spaced font that does
not change in size) and focuses on the pixel level. In
newer work, we expanded the idea of prediction error
representations to the letter and letter-sequence level
(Gagl et al., 2024; Gagl, Weyers, Wurth, & Mueller, 2021),
developing a generative model capable of simulating ortho-
graphic decision behavior across species. Still, future work
must solve the issue of font and size generalizability, as
humans can change the visual outlet of a text without
detriment in reading efficiency. Changing the threshold
parameter in the binary prediction algorithm could
adapt the representation to different contexts, poten-
tially allowing the adaptation to different visual configu-
rations of a script. As noted before, this will be part of
future research.

Conclusion

Here, we revisited the PEMoR (Gagl et al., 2020), investi-
gating if and how readers implement high precision in
visual-orthographic representations underlying efficient
word recognition. We found the implementation of a
graded prediction error representation in early process-
ing and a more precise prediction error representation in
later processes (i.e., early vs. late brain activation) and
behavioral responses. Especially for late processes, we
found that higher precision in terms of visual reliability
(i.e., graded vs. binary implementation of the representa-
tion) and lexicon structure (i.e., assuming that the lexi-
con consists of the 16% most frequent words) lead to
more accurate model assumptions. Furthermore, the
new formulation provided insights into potential mecha-
nisms to adapt the prediction error representation over
time, as we found evidence of a change in the prediction
error representation from a less precise graded to a more
precise binary representation, potentially allowing more
efficient access to meaning. Thus, our results provide a
view on efficient visual-orthographic representations
rooted in the visual information inherent in visual word
recognition and the neuronally plausible predictive cod-
ing theory highlighting the role of error-based represen-
tations as key to accessing word meaning.
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