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Abstract

Quantum technologies based on cold atom platforms, while benefiting from highly
stable and scalable atomic systems, still rely on the precise characterization, cal-
ibration, and control of complex experimental apparatuses. In this thesis, we
develop automated approaches to address these critical tasks, integrating physi-
cal insight with optimization and learning methods, while complying with oper-
ational constraints.

The bulk of the work presented here consists of three research papers. In the
first one, we introduce physics-inspired machine-learning models to optimize op-
tical dipole potentials for shaping ultracold gasses, achieving order-of-magnitude
improvements in speed. In the second paper, we investigate atom transport be-
tween optical tweezers, a key auxiliary operation for scalable quantum processors,
and demonstrate how shortcuts to adiabaticity and quantum optimal control can
minimize heating and excitations during fast transport. The third and last paper
analyzes a class of optimization landscapes relevant for quantum control, deriving
from first principles a set of classical surrogates. We show how time and energy
constraints translate into limited bandwidth and derivatives for the landscape,
with consequences for the design of regression models and for optimization, which
we relate to bounds in associated metrics.

Together, these results provide concrete examples of how automated optimiza-
tion, learning, and control can expand the toolset available for building quantum
firmware for cold atom platforms. The methods presented not only improve exper-
imental performance but keep implementation overhead at a minimum, thereby
simplifying operations and facilitating scale-up efforts.
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Chapter 1

Introduction

Long after spawning the first clues of physics beyond the classical realm which
lead to the development of Quantum Mechanics, Atomic, Molecular and Optical
(AMO) platforms have established themselves nowadays as strong contenders in
the Second Quantum Revolution [1]. In this regard, making use of individual
quantum systems (i.e. atoms) which are guaranteed to be identical by the laws
of Nature proved to be not only an elegant idea, but also a quite effective one.
Yet it took almost a century before this could be fully realized experimentally:
from the Stern-Gerlach experiment (1922) [2] in which quantum state preparation
through projective measurements was demonstrated in atomic beams for the first
time, it took at least the invention of the laser (1960) [3] and of laser cooling and
trapping (1980’s) [4] to get to the first Bose-Einstein Condensate (1995) [5, 6].
From there on, steady improvement in experimental techniques allowed to achieve
single atom addressing in Quantum Gas Microscopes using optical lattices loaded
with bosons (2009) [7] and fermions (2015) [8].

In current experiments with cold atoms, it is customary to trap, individually
manipulate and measure from tens to several hundreds of atoms [9, 10, 11], with
recent demonstrations reaching up to thousands [12, 13], and coherence times in
the scale of 10 s. Meanwhile, in experiments with ultracold gasses clouds contain-
ing ∼ 103÷5 atoms can be created, giving up single atom addressing in exchange
for control over their collective degrees of freedom [14, 15]. In these systems not
only external potentials can be controlled almost arbitrarily by shaping optical
dipole potentials [16] and magnetic fields [17], but even interactions can be har-
nessed by using Rydberg states [18] and tuned via magnetic fields by means of
Feshbach resonances [19].
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1.1 Applications

The high degree of controllability and long coherence times of cold atom plat-
forms makes them very attractive analog quantum simulators [20], physically
implementing the Hamiltonian of complex quantum systems which would be oth-
erwise very hard to simulate on a classical computer or to measure directly in
an experiment. This idea found application in the field of strongly correlated
condensed matter systems, where atom arrays have been used to simulate the
Superfluid-Mott insulator phase transition [21, 22], Bose- and Fermi-Hubbard
models [23, 24], and spin-chain Hamiltonians [25, 26, 27, 18], while field theories
like the sine-Gordon model can be simulated using ultracold gasses [15]. Re-
cently a lot of emphasis has been put on topological matter [28], exploiting the
electronic level structure to implement synthetic dimensions and gauge fields [29],
and implementing effective Floquet Hamiltonians using periodic driving [30].

Another prospective application of cold atom platforms is gate-based quan-
tum information processing. In this case the machine operates at a higher level
of abstraction, using a universal set of unitary operations to implement quan-
tum algorithms [31], which can perform digital quantum simulation [32] or solve
more generic mathematical problems, like integer factorization [33], search [34]
or linear systems [35]. Critically, the gate-based approach is compatible with
Error Correction, effectively allowing to trade higher requirements in physical
qubits for increased robustness against decoherence [36]. The implementations of
these algorithms can benefit from the high connectivity of reconfigurable atom
arrays and fast unitary gates (≳ 1µs), while the long preparation (≳ 100ms) and
readout (≳ 500µs) times are a limiting factor, giving rise to low repetition rates
hardly exceeding ∼ 2 Hz [37]. Overall, this translates in an estimated require-
ment of ∼ 107 physical qubits to factor a 2048 bit integer using Shor’s algorithm
on a time scale of days [38]. While these number of qubits are currently out of
reach, steady progress in the development of these platforms is being made, with
operation of up to ∼ 50 logical qubits using Rydberg atoms in optical tweezers
[11], which constitute one of the most promising avenues for scaling the number
of physical qubits up to ∼ 104 in the near future [13].

1.2 Automated optimization, learning and control

As these systems are scaled up, the complexity related to calibrating, character-
izing and controlling these systems increases too, and is to be tackled on the one
side by hardware improvement but also by developing control firmware which
is up to its task [39]. This consists in providing an interface between hard-
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ware and software operating at a higher abstraction level, matching on one side
the hardware-generated signals with physically meaningful output metrics (char-
acterization/calibration) and on the other side user directives with appropriate
hardware inputs (control). As real world hardware involves both unknown param-
eters and uncertainty, this matching task requires in practice solving minimization
problems related to a simplified model of the system at hand. Automated op-
timization plays therefore an essential role in the quantum firmware, both for
control/calibration purposes and for adapting the models to the real system by
using the information gathered during operation (learning) [40, 41].

While in this sense cold atoms – being identical, stable and well character-
ized systems – are at an advantage compared to engineered quantum systems
like superconducting circuits, in practice they still rely on non-ideal hardware
for measures and control, whose transfer function need to be taken into account
[42]. Moreover, the mentioned low repetition rates constitute a serious bottleneck
for data acquisition, tightening the operational constraints for optimization and
learning strategies. While several approaches to tackle these challenges are avail-
able (e.g. using pre-training and data amplification), the main tool that we employ
across this thesis is to derive specialized methods and Ansätze which encode as
much physical information about the system as possible [43, 44]. This typically
results effectively in a dimensional reduction of the initial problem, allowing to
achieve convergence with a small experimental data set or to treat the problem
analytically, while preserving generalization capabilities. This approach mirrors
the spirit underlying large part of physics, in which deriving simplified effective
models is one of main ways in which we can make sense of Nature, both com-
pressing the information coming from experiments and allowing to easily compute
quantities of interest, guiding further investigation by providing clues as to how
to achieve relevant phases of matter or physical regimes.

1.3 Structure of the thesis

The contents of this thesis are organized into two parts: the background which is
needed for a self-sufficient treatment of the results is presented in Part I, giving
a brief account of the operational principles of cold atom experiments in Chapter
2, and introducing the main ideas behind quantum control, both using numerical
and analytical methods in Chapter 3. The three publications in Chapter 4,5
and 6, constituting the bulk of the Author’s research work, are then gathered in
Part II, where their contents are put in the context of the thesis. Finally, Chapter
7 discusses the relevance of the results in the development of a quantum firmware
for cold atom platforms.
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Part I

Background and Motivation
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Chapter 2

Quantum hardware: physics and
controls of cold atoms

Before approaching the core topics of this thesis, which are related to firmware
development for cold atom platforms, it is helpful to first introduce some basic
concepts regarding this class of experiments. While this Chapter is not intended
as an exhaustive treatment of the physics of cold atoms, for which many excellent
sources are available [45, 46, 47, 48, 49, 50], it should give the reader enough
information to navigate the results presented in Part II. More specifically, we cover
the basic atomic physics involved in the qualitative structure and nomenclature
of energy levels, together with the external potentials whose control is one of the
main concerns of Part II, and general operational principles and structure of cold
atom platforms.

2.1 Controlling atoms with electromagnetic fields

External electromagnetic fields are the main control knobs at our disposal to
influence the internal and motional degrees of freedom of cold atoms. In order
see how this is possible, we must first discuss the main features of the emission
spectrum of alkali atoms. Because of their simple structure, featuring strong and
narrow transitions in spectral regions which are accessible to industrial lasers,
they figure among the most established species used in cold atom platforms.

The starting point of our discussion is the Hamiltonian H0 of an alkali atom,
i.e. belonging to the first group of the periodic table. Since the atoms in this
group only have one electron in the outer shell, the many-electron system can be
treated approximately by only considering the dynamics of the valence electron
in the field of the (rigid) ionic core containing the closed shell electrons and the

6



Martino Calzavara
CHAPTER 2. QUANTUM HARDWARE: PHYSICS AND CONTROLS OF

COLD ATOMS

nucleus. By using the relative and center of mass coordinates r⃗, R⃗ given by:

r⃗ = r⃗e − r⃗core, R⃗ =
mer⃗e +mcorer⃗core

me +mcore

,

with associated momenta p⃗ and P⃗ , the Hamiltonian of the system then reads as
follows:

H0 ≈
P⃗ 2

2M︸︷︷︸
Motional d.o.f.

+
p⃗2

2mr

+ Ṽ (r⃗)
︸ ︷︷ ︸
Electronic d.o.f.

, (2.1)

where M = mcore +me is the mass of the atom, mr is the reduced mass of the
electron

1

mr

=
1

mcore

+
1

me

,

and Ṽ (r⃗) is a modified central potential that accounts for the finite-size charge
distribution in the core, thus only affecting the radial part of the wavefunction.
Quantum defect theory can then be used to compute the correction to the hy-
drogenic energy levels caused by the modified potential, obtaining the modified
Rydberg formula [51]:

EnL = − R∞

(n− δL)2

(
mr

me

)
. (2.2)

The quantum defect term δL appearing in Eq. (2.2) depends on the atomic species
and is larger for low angular momentum L, as the corresponding wavefunctions
have larger overlap with the ionic core. For the L = 0, 1 orbitals of most alkali
atoms, δL is comparable with the smallest available principal quantum number
n for the valence electron, resulting in an energy correction in the eV scale [51].
This effect lifts the degeneracy with respect to L of the electronic Hamiltonian,
leading to the L = 0 ground state and the so-called D emission line connecting it
to the first excited L = 1 orbital, both characteristic of alkali spectra. The alkali
D-line wavelengths are in the optical range 580÷ 900 nm (e.g. ∼ 780 nm for 87Rb

[52]) and thus addressable with commonly available lasers.

The leading corrections to Eq.(2.1) give rise to the fine structure, splitting the
D-line into a doublet. An important contribution to the perturbation Hfs comes
from the spin-orbit coupling which, in the moving frame the valence electron, can
be thought of as the effect of the internal magnetic field caused by the motion of
the ionic core, leading to a Hamiltonian of the form

HSO = AfsL⃗ · S⃗,

where L⃗ and S⃗ represent respectively the angular and spin angular momentum
of the valence electron. While H0 commutes with L⃗ and S⃗, the same is not
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true for HSO, so that the azimuthal numbers mL,mS are not conserved anymore.
If instead we consider the total electronic angular momentum J⃗ = L⃗ + S⃗, we
have [HSO, J⃗ ] = 0⃗, so that J,mJ are good quantum numbers. We can then
express the energy eigenstates using the quantum numbers L, S, J,mJ (instead
of L, S,mL,mS), giving rise to the LS-coupling of angular momentum. This
motivates the usage of the corresponding spectroscopic notation 2S+1LJ, where
the S, P,D, F notation for L is employed (S stands for L = 0, P for L = 1,
D for L = 2 and so on). Thus, the D1 and D2 components of an alkali fine
structure doublet correspond respectively to the transitions 2S1/2 → 2L1/2 and
2S1/2 → 2L3/2. As an example, for 87Rb the fine splitting energy is around
∆Efs ∼ 0.03 eV corresponding to ∆λfs ∼ 15 nm [52] which is enough to be
resolved by commercial lasers, that can be therefore used to address only one of
the two transitions selectively.

The next order of the perturbative expansion contains the interaction between
the magnetic moment of the ionic core and the internal magnetic field due to
the motion of the valence electron, resulting in the hyperfine structure. The
corresponding Hamiltonian is given by1

Hhfs = −B⃗J (⃗0) · M⃗I ≈ AhfsI⃗ · J⃗ , (2.3)

where I⃗ is the spin of the ionic core, and Ahfs is the hyperfine structure constant,
which depends on the energy level and on the atom. The approximation in
Eq. (2.3), which holds for the states in the D-line, lies in discarding couplings
between states with different J (or L), which are separated in energy by the much
larger fine structure terms, and therefore contribute negligibly to the perturbed
eigenstates [53]. Analogously to the previous discussion regarding the spin-orbit
coupling, this term breaks the invariance of I⃗ and J⃗ , and by defining the total
angular momentum F⃗ = I⃗ + J⃗ , we can obtain a new set of conserved quantum
numbers as L, S, J, I, F,mF . The ground state is thus split into a doublet, whose
components in the case of 87Rb (I = 3/2) are F = 1, 2, standing ∆Ehfs ∼
3× 10−5 eV apart from each other, corresponding to a radiofrequency transition
of ∼ 7GHz [52].

Thanks to their long lifetimes (in the order of 10 s in realistic scenarios),
hyperfine states serve as ideal qubits or pseudo-spins for quantum computing
or simulation, offering a wide range of controls over their internal state (e.g.
with optical Raman transitions), interactions (through Feshbach resonance) and
trapping potentials. In what follows we are going to review the external potentials

1Here we neglect smaller terms due to higher orders of the multipole expansion and ionic
core polarizability.
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which are most relevant in the context of this thesis, as they will play a central
role in Part II.

2.1.1 Static magnetic fields: Zeeman shift

The first class of potentials we focus on are due to the presence of a static magnetic
field. Considering the uniform case B⃗ = B0ẑ, an atom with a non-zero magnetic
moment M⃗ will couple to B⃗ through the Zeeman Hamiltonian [52]:

HZ = −(M⃗L + M⃗S + M⃗I) · B⃗ =
µB

ℏ
(gLLz + gSSz −

µN

µB

gIIz)B0, (2.4)

where the total magnetic moment M⃗ is the sum of the orbital M⃗L, spin M⃗S and
nuclear M⃗I contributions. We then expressed the Hamiltonian in Eq. (2.4) in
terms of Bohr’s magneton µB = eℏ/(2me), the nuclear magneton µN = eℏ/(2mp),
the angular moments L⃗, S⃗, I⃗ and their corresponding non-dimensional Landé g-
factors gL = 1, gS ≈ 2, and gI .

In the weak field limit relative to the fine structure HZ ≪ Hfs the energy con-
tribution of the Zeeman term can be computed as a perturbation, by evaluating
the expectation values of HZ over the original eigenstates of Hfs. The resulting
expression can be derived equivalently using the vector precession formalism: as
J⃗ is approximately conserved (up to the perturbation), we can think of L⃗ and
S⃗ as classical vectors precessing fast around J⃗ , while J⃗ precesses slowly around
the external field B⃗. Because of this frequency scale separation, only the paral-
lel components L⃗ · J⃗ and S⃗ · J⃗ contribute appreciably to the expectation value
of the perturbation [49]. Since µN/µB ∼ 10−3, we can also neglect the small
contribution due to the nuclear spin I⃗ to obtain the following:

HZ ≈ µB

ℏ
(L⃗+ 2S⃗) · J⃗B⃗ · J⃗

J⃗2
=
µB

ℏ

(
J⃗2 +

J⃗2 − L⃗2 + S⃗2

2

)
B0Jz

J⃗2

so that the expectation value yields

⟨LSJmJ |HZ |LSJmJ⟩ = µB

(
1 +

J(J + 1)− L(L+ 1) + S(S + 1)

2J(J + 1)

)

︸ ︷︷ ︸
gJ

B0mJ ,

(2.5)
which gives us an expression for the overall electronic Landé g-factor gJ .

In the weak field limit for the hyperfine structure HZ ≪ Hhfs a similar rea-
soning can be applied, but now the vectors J⃗ and I⃗ are precessing around the
(approximately) conserved total momentum F⃗ , which in turn slowly precesses

9
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around B⃗. By projecting all vector quantities in Eq. (2.5) along F⃗ we obtain

HZ ≈ µBgJ
ℏ

(J⃗ · F⃗ )(B⃗ · F⃗ )
F⃗ 2

=
µBgJ
ℏ

(
F⃗ 2 + J⃗2 − I⃗2

2

)
B0Fz

F⃗ 2
,

whose expectation value on the unperturbed hyperfine eigenstates is given by:

⟨LSJIFmF |HZ |LSJIFmF ⟩ = µB gJ

(
F (F + 1) + J(J + 1)− I(I + 1)

2F (F + 1)

)

︸ ︷︷ ︸
gF

B0mF .

(2.6)

Let us now suppose that the magnetic field B⃗(r⃗) is inhomogeneous. Provided
that the atoms are following an adiabatic evolution in the external field [17], they
will experience a conservative potential given by

Umag(r⃗) = µBgm|B⃗(r⃗)|,

where the azimuthal quantum number m and Landé factor g are referred to the
approximately conserved angular momentum (which as we saw before depends on
the context). The sign of gm is of particular importance, distinguishing between
high- (gm < 0) and low-field (gm > 0) seeking states. In the case of the hyperfine
ground state 2S1/2 of 87Rb, Eq. (2.6) leads to gF = −1/2 for F = 1 and gF = 1/2

for F = 2, so that |F = 2,mF = 1, 2⟩ and |F = 1,mF = −1⟩ are low-field seeking
states, while |F = 2,mF = −1,−2⟩ and |F = 1,mF = 1⟩ are high-field seeking.

2.1.2 Oscillating electric fields: Optical dipole potentials

The other class of potentials that is most relevant for this thesis is generated by
shining light on the atoms. If the light frequency is far detuned from a D-line
transition, the effects on the ground state can be described strikingly well by
means of a semiclassical model. In fact, since in this regime the rate of photon
absorption and hence the populations of excited states are very low, saturation
phenomena are avoided, effectively allowing us to treat the atom as a classical
harmonic oscillator and giving rise to a conservative potential.

In presence of an oscillating electric field ϵ⃗(t) = ϵẑ cos(ωt)2, the free Hamilto-
nian will be modified by a dipole term

Hd(t) = −ϵ⃗(t) · D⃗ = ϵez cos(ωt). (2.7)

2For simplicity, we only consider the linearly polarized case. Most notably, the polarization
determines which angular momentum sub-levels are connected by transitions through selection
rules.
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Even though the expectation value of the electric dipole ⟨D⃗⟩ ∝ ⟨z⟩ is zero in the
spherically symmetric ground state 2S1/2 (L = 0), the electric field induces a non-
zero polarization D⃗(t) that we can compute using time dependent perturbation
theory [46]. In the general setting, we have a system described by the Hamiltonian

H(t) = H0 + λW (t),

where |H0| ∼ |W | and λ ≪ 1. We expand the solution to the time-dependent
Schrödinger equation in the eigenbasis of the unperturbed Hamiltonian H0 |n⟩ =
En |n⟩ , n = 0, 1, 2, . . . in its moving frame, obtaining

|ψ(t)⟩ =
∑

n

e−iEn
ℏ tbn(t) |n⟩ ,

where the slowly changing coefficients bn(t) satisfy

bn(t) =
λ

iℏ
∑

k

∫ t

0

dt′Wnk(t
′)bk(t

′)eiωnkt
′
, (2.8)

and we defined the transition frequency ωnk = (En −Ek)ℏ−1 and the matrix ele-
mentWnk(t) = ⟨n|W (t) |k⟩. Focusing on the sinusoidal case λW (t) = λW cos(ωt),
we can then fix the initial condition |ψ(t = 0)⟩ = |k⟩ at zeroth order b(0)n = δnk

and then obtain the higher orders recursively using Eq. (2.8). At first order we
obtain the general solution

|ψ(t)⟩ =
(
1 +

λ

2iℏ
Wkk

[
eiωt − e−iωt

iω

])
e−i

Ek
ℏ t |k⟩+

+
λ

2iℏ
∑

n̸=k

Wnk

[
ei(ω+ωnk)t − 1

i(ω + ωnk)
+
ei(−ω+ωnk)t − 1

i(−ω + ωnk)

]
e−iEn

ℏ t |n⟩+O(λ2),

which we can use to compute the expectation value of the (time independent)
perturbation operator ⟨W (t)⟩ = ⟨ψ(t)|W |ψ(t)⟩

⟨W (t)⟩ =


Wkk +

2λ

ℏ
∑

n̸=k

|Wnk|2ωnk

ω2
nk − ω2

( cos(ωnkt)︸ ︷︷ ︸
Transient term

− cos(ωt))


 + O(λ2).

The expression we obtained features the sum of a term that comes from H0

and as such oscillate at the resonant frequency ωnk, and a term that oscillate
at the driving frequency ω. As in practice physical systems involve dissipation
and therefore a finite damping rate Γ, the long-term response of the system is
dominated by the driven term ω, allowing us to neglect the transient term over
time scales much longer than 2πΓ−1 [49].
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We can finally obtain the relevant expression in the specific case of the electric
dipole operator in Eq. (2.7) and the ground state k = 0 by substituting λ →
−ϵ,W → −ez:

⟨Dz(t)⟩ =
2e2

ℏ
∑

n̸=0

| ⟨n| z |0⟩ |2ωn0

ω2
n0 − ω2

ϵ cos(ωt) = χ(ω)ϵ(t),

obtaining a linear response relation featuring the (real) polarizability χ(ω). We
can further simplify the expression by introducing the non-dimensional oscillator
strengths fn0 [48]

fn0 =
2m

ℏ
ωn0 |⟨n| z |0⟩|2 ,

which allows us to write the polarizability as a weighted average of harmonic
oscillators with frequencies ωn0

χ(ω) =
∑

n

fn0
e2

m(ω2
n0 − ω2)

=
∑

n

fn0χ
HO
ωn0,0

(ω).

All quantum mechanical effects are encoded in the factors fn0, while the remaining
physics is the same as for a charged classical harmonic oscillator. In fact, the
polarizabilities χHO

ωn0,Γn0
(ω) can be derived from the linear response of the system

obeying the following law of motion:

z̈(t) + ω2
n0z(t) + Γn0ż(t) = − e

m
ϵe−iωt

by setting Γn0 = 0. Damping effects due to spontaneous emission can be added
phenomenologically in the form of a friction term Γn0ż, leading to the (complex)
polarizability:

χHO
ωn0,Γn0

(ω) =
e2

m(ω2
n0 − ω2 − iΓn0ω)

,

where Γn0 is given by the spontaneous decay rate for a two-levels system [48]

Γn0 =
e2ω3

n0

3πε0ℏc
|⟨n| z |0⟩|2 .

The overall polarizability is then given by

χ(ω) =
∑

n

fn0
e2

m(ω2
n0 − ω2 − iΓn0ω)

=
∑

n

fn0χ
HO
ωn0,Γn0

(ω) (2.9)

and correspondingly we have the following electric dipole for a real field ϵ⃗(t) =

ϵ⃗ cos(ωt):
D⃗(t) = ϵ⃗ (Reχ(ω) cos(ωt) + Imχ(ω) sin(ωt)) .
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Now that we have the expression for the polarizability we can compute the
energy contribution to the system in the presence of a light field. When treating
light as a classical field, the dipole term in Eq. (2.7) is the leading term of the
resulting Hamiltonian, as in the optical range a0/λ ∼ 10−4, so the atom will
experience a very homogeneous field. Then, the atom will fill the average potential
energy of an induced dipole in the electric field [54, 55], that is:

Udip = −1

2
⟨⃗ϵ · D⃗⟩ = −ϵ

2

4
Reχ(ω) = −Reχ(ω)

2ε0c
I,

where ⟨·⟩ denotes a time average, that creates an extra 1/2 factor on top of the
one coming from the fact that we are dealing with an induced dipole. The light
intensity I is defined in terms of the Poynting vector S⃗ = µ−1

0 ϵ⃗× B⃗. For a (real)
plane wave ϵ⃗(t, r⃗) = ϵ cos

(
ωt− k⃗ · r⃗

)
, B⃗(t, r⃗) = c−1(k̂ × ϵ⃗) cos

(
ωt− k⃗ · r⃗

)
, we

have
I = ⟨|S⃗(t, 0⃗)|⟩ = ϵ2

2
ε0c.

This result shows how the reactive part of atom-light interaction determines the
appearance of a conservative potential. In the case of a spatially inhomogeneous
light field3, it will be proportional to the local light intensity, thus exerting a force
given by

F⃗dip = −∇⃗Udip =
Reχ(ω)

2ε0c
∇⃗I(r⃗).

The atom will also absorb on average a power given by [54, 55]

Pabs = ⟨⃗ϵ · ˙⃗
D⟩ = ϵ2

2
ω Imχ(ω) =

ω

ε0c
Imχ(ω)I.

If we think at the laser beam as a stream of photons each with energy ℏω, the
absorbed power corresponds to a scattering rate of the incoming photons Γsc

Γsc =
Pabs

ℏω
=

1

ℏε0c
Imχ(ω)I.

At the steady state this will be counterbalanced by an equivalent emitted power
accounted for by the scattered photons4. The cross section σ(ω) for this process
is readily obtained as

σ(ω) = Γsc
ℏω
I

=
ω

ε0c
Imχ(ω),

3Assuming that the atom moves slowly enough to treat the electron dynamics adiabatically.
4For the Lorenz polarizability in Eq. (2.9), this is only true for a two level system, strictly

speaking [48]. In general, the Lorenz model does not satisfy the optical theorem we used
implicitly, but in practice if ω0n ≫ f0nΓn0 the deviation is not so large.
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which when evaluated at resonance ω0 for a two level system yields the same
result as it can be obtained from a fully quantum mechanical treatment [48]

σ0 = 3
λ20
2π
.

As the atom emits photons isotropically, while the incoming photons all have
momentum ℏk⃗, there is a net rate of momentum transfer to the atom. This effect
is known as radiation pressure, corresponding to a force F⃗sc

F⃗sc =
dP⃗

dt
= Γscℏk⃗ =

k⃗

ε0c
Imχ(ω)I.

A useful quantity that is typically introduced in the fully quantum mechanical
treatment of the problem is the saturation intensity Isat, which we define here as

Isat,n =
ℏωn0mε0cΓ

2
n0

2e2fn0
.

Since for I ∼ Isat the saturation effects become important [48], the semiclassical
model we are discussing is only valid as long as the light intensity is much smaller
than this scale I ≪ Isat or if we are far away from any resonance |ω−ωn0| ≫ Γn0.
We can write simplified expressions for Udip and Γsc assuming that we are close
to a single resonance ω0 so that we can ignore all the others. By introducing the
detuning ∆ = ω − ω0, which we assume to satisfy ω0 ≫ ∆ ≫ Γ to also neglect
dissipation and counter-rotating terms, we can write

Udip(r⃗) ≈
ℏΓ2

8∆

I(r⃗)

Isat
, Γsc ≈

Γ3

8∆2

I

Isat
=

Γ

ℏ∆
Udip.

These expressions allows us to gain several insights: first of all the sign of the
detuning ∆ determines the sign of the potential. This leads to repulsive potentials
for blue detuned light ∆ > 0 and attractive potentials for red-detuned light ∆ < 0.
Moreover, by choosing appropriately large detunings, it is typically possible to
achieve very low scattering rates Γsc ≪ Γ, so that atom heating is negligible. As
an example, let us consider 87Rb and far-detuned laser with λ ∼ 660nm (so that
∆ ∼ 2π×70 THz with respect to the D-line) and a spectral bandwidth of 30 GHz

FWHM, corresponding to Γ ∼ 2π × 13 GHz [14]. Then for Udip/ℏ ∼ 2π × 1 kHz

scattering rates around Γsc ∼ 2π × 0.2 mHz are expected, leading to only 2

scattering events per second in a cloud of 104 atoms.
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2.2 Experiments with cold atoms

Now that the basic physical concepts concerning alkali atoms and how they inter-
act with electromagnetic fields have been covered, we can move on to comment
on the structure and operation of cold atom platforms, also focusing on the se-
tups which are most relevant for this thesis. Cold atoms experiments vastly differ
in design depending on the physical models and regimes that are meant to ex-
plore, which translates in varying characteristics in terms of atom species and
number, temperature, geometries, control and measurement fields. Nevertheless,
they typically share the same experimental cycle, namely:

1. emission,

2. cooling and trapping,

3. manipulation,

4. measurement.

During the first phase, a hot beam of atoms is usually created by heating up a
macroscopic sample of alkali metal, leading the most energetic tail of the atoms
to evaporate. By enclosing the sample in an oven with an opening that acts as a
collimator, a hot beam is created, where the kinetic energy is mostly due to the
directed motion of the atoms along the beam axis.

In the second phase, the atoms in the beam are slowed and cooled down until
they can be trapped in an external potential. This can be achieved by means of
the absorptive forces generated by resonant light, using a wide range of techniques
collectively known as laser cooling [4]. In the same experiment there are typically
several cooling stages successively dealing with lower and lower energies, which
can bring the atoms down to roughly the single photon recoil temperature:

kBTR =
(ℏk)2

2m
,

in the range of T ∼ 0.1 ÷ 1µK for most alkali atoms. In the case of ultracold
gases, a final stage of evaporative cooling [56] is required to reach the range of
T ∼ 10÷ 100 nK, which allows to observe macroscopic population of the ground
state or Bose-Einstein Condensation for most alkali species. Atom capturing and
cooling is the most time-consuming stage, taking up to ∼ 10 s starting from hot
atoms [57]. Nevertheless, state-of-the-art experiments can load pre-cooled atoms
from a magneto-optical trap in around ∼ 100ms [37], while evaporative cooling
stages, whenever necessary, can last several seconds.
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Once the atoms have reached the desired temperature, resonant driving for
cooling is turned off, leaving only conservative potentials for confinement, the
most typical choices being optical dipole potentials and magnetic traps (see
Sec. 2.1). By controlling these traps it is possible to manipulate the motional
state of the atoms, while operations on the electronic states are performed using
e.g. Raman pulses or interactions between the atoms. The latter can be controlled
by using Feshbach resonances to tune the scattering length [19] or by exploiting
the long-range Van der Waals couplings typical of Rydberg states [58, 27]. While
typical time scales for the application of individual gates are in the µs range [11],
manipulation sequences can take up a consistent fraction of overall cycle time,
lasting up to 500ms [57].

Finally, measurements are performed on the system, using a selection of read-
out techniques — which predominantly involve the imaging of the atom distri-
bution — which mainly differ in whether atoms are lost in the process or not.
For instance, during time of flight measurements the atoms are released from
the trap and let evolve ballistically which inevitably leads to the loss of the en-
tire cloud [57, 14]. Absorption measurements, since they rely on measuring the
attenuation of strongly resonant light as it passes through the atom cloud, typi-
cally lead to atom heating and losses because of photon recoil [59]. On the other
hand, less destructive techniques such fluorescence imaging — where atoms are
cooled by resonant light while the scattered photons are collected [7, 24]— and
phase-contrast dispersion imaging — which instead avoids losses by employing
off-resonant light— can be applied in-situ to obtain information about the sys-
tem with smaller loss or heating rates, thus avoiding the necessity of reloading
and cooling new atoms at each cycle. In any case, the readout phase takes much
longer than individual gates, lasting 500µs in optimized settings [11, 38].

2.2.1 Trapping setups

In Chapters 4 and 5 of this thesis we will be mainly concerned with the manip-
ulation and control of the motional state of cold atoms by means of conservative
potentials. It is then useful to shortly review the trapping setups which are most
relevant for our purposes, which can be categorized based on whether they employ
magnetic or optical confinement.

Magnetic traps employ the Zeeman shift caused by an inhomogeneous static
magnetic field (see Sec. 2.1.1 for details) that results in a position-dependent
energy shift. For instance, in Ioffe-Pritchard traps, the field intensity displays
a minimum around which it increases quadratically, giving rise to a harmonic
potential that can confine low-field seeking states, which can be prepared e.g.
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using optical pumping. The confining magnetic fields can be generated by coils or
by an integrated circuit, in a setup known as atom chip [60, 17]. The methods we
discuss in Chapter 4 are designed for this kind of experiment, where an ultracold
gas is obtained by forced RF evaporative cooling in a magnetic trap created by
atom chip, and then further manipulated using optical dipole potentials [14].

This brings us to optical traps, which instead employ the AC Stark shift in-
duced by laser light (see Sec. 2.1.2 for details) to create a potential which is
proportional to the local light intensity. Moreover, the sign of the detuning al-
lows to realize both repulsive (∆ > 0) and attractive (∆ < 0) potentials. Among
the most common setups for creating optical dipole traps we find optical lat-
tices, where the interference between split and/or reflected laser beams creates
a standing wave, resulting in a periodic potential. By selecting the number and
orientation of the different beams, it is possible to create a wide range of lattice
geometries, confining the atoms in 1,2 or 3-dimensional arrays [23, 24, 30]. An-
other widely adopted setup consists in creating individual microtraps by focusing
a red detuned gaussian beam, a technique known as optical tweezers. Arrays of
such microtraps can be generated and controlled by acousto-optic modulators
(AOM) and spatial light modulators (SLM), giving rise to a higher degree of
controllability, even in real time, of the position of the individual atoms [61, 9,
10, 18]. In Chapter 5 we will tackle the atom transport problem for one of such
setups, where a static optical tweezers array is combined with sorting tweezers.

While these two techniques focus on the realization of ordered arrays of atoms,
it is also possible to use SLM to shape arbitrary potentials. These have been
employed in experiments with ultracold gasses, where they can be used to create
uniform box potentials by smoothing out trap inhomogeneities or to generate
complicated patterns [16, 62]. Prospectively, they can also be used to generate
site-dependent potentials to address single sites in atom lattices. In Chapter 4,
we consider a setup that employs a Digital Micromirror Device, which is an array
of micromirrors whose orientation can be individually programmed, acting as a
reflective binary SLM. We will then see how to design and control a DMD optical
setup in order to shape arbitrary optical potentials for an atom chip experiment.

2.2.2 Simulating spin chain Hamiltonians

While until now we mostly dealt with the motional degree of freedom of trapped
atoms, the results and methods we develop in Chapter 6 will be tested on con-
trol problems concerning spin chain Hamiltonians, whose implementation within
cold atom platforms typically involves the electronic degrees of freedom. Given
the importance that this kind of Hamiltonians play in the study of quantum
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magnetism, a wide variety of implementations have been proposed and realized
experimentally. Without the ambition of reviewing in depth such a vast field, we
deem it useful to briefly comment on the most prominent ones.

For instance, in the context of Rydberg atoms experiments, the spin state can
be encoded in the ground |↓⟩ = |g⟩ and highly excited Rydberg states |↑⟩ = |r⟩.
Then, resonant laser driving with Rabi frequency Ω and detuning ∆, together with
long range Van der Waals interactions, gives rise to an Ising-type Hamiltonian
[27, 18] of the form:

HRyd =
ℏΩ
2

∑

i

σ(i)
x − ℏ∆

∑

i

n(i) +
∑

i<j

C6(θ)

|r⃗i − r⃗j|6
n(i)n(j),

where n(i) = (1+ σ
(i)
z )/2 and θ represents the angle between r⃗i and r⃗j. Thus, the

interactions can be tuned by rearranging the geometry of the lattice, which can
be done conveniently using reconfigurable arrays of optical tweezers.

In the case of optical lattices, the mapping is more involved, as these setups
naturally realize Bose- or Fermi-Hubbard Hamiltonians [21, 23, 63] involving
nearest neighbour hopping t and on-site interaction U :

HHub = −
∑

σ

tσ
∑

<i,j>

(c(i)†σ c(j)σ + h.c.) +
∑

σ,σ′

Uσσ′
∑

i

n(i)
σ n

(i)
σ′ ,

where σ = ↑, ↓ is an electronic state index mapped to a pseudo-spin (e.g. encoded
in the sublevels of a hyperfine groundstate), c(i)σ is the (bosonic or fermionic)
destruction operator for an atom in lattice site i and state σ and n

(i)
σ = c

(i)†
σ c

(i)
σ

the corresponding number operator. Nearest neighbours interactions can then be
implemented by means of the superexchange interaction, which arises thanks to
second order tunneling and on-site interaction, giving rise to a term with energy
∼ t2/U [64]. In combination with inhomogeneous external electromagnetic fields
and resonant driving between the electronic levels, a wide range of effective spin
chain models can be realized, using bosons [25, 24] and fermions [65]. Alterna-
tive schemes involve encoding the pseudo-spins in occupation number imbalance
between different sites in tilted optical lattices [66, 26].
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Chapter 3

Quantum firmware:
characterization, calibration and
control

In this chapter, we set the stage for the main results that will follow in Part II
of this thesis, by establishing a common context for them as steps towards the
construction of a quantum firmware [39] for cold atom platforms – a set of methods
forming a layer that interfaces the hardware described in the previous Chapter
with the quantum software designed to be run on it. The main aim of the quantum
firmware is therefore to implement in a scalable and reproducible fashion the basic
operations that build up a program, and to do it as efficiently and precisely as
possible. In order to achieve this, the quantum firmware must typically fulfill
three tasks, namely, the characterization, calibration and control of the quantum
system [40, 41].

In abstract terms, we can think at the experiment or platform as a physical
system realizing some idealized model that we want to simulate or to implement
some computation with. The first task of the firmware is then to characterize
the system, that is to match system and model as close as possible by properly
choosing the parameters of the latter as to minimize systematic errors. Moreover,
the inputs and outputs of the hardware are typically not equivalent to the ones
of the model, but are instead related through some (possibly non-linear) transfer
function, which also needs to be characterized. Another task of the firmware
is then to calibrate the system by establishing this relation between hardware
and model I/O. Finally, by using this information, the firmware must be able to
translate basic operations on the model into (typically time dependent) hardware
inputs, also called control pulses, that realize the desired operation efficiently.

The development of this kind of firmware has to deal with several challenges,
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some of which are general, while others are specific to AMO platforms and cold
atoms. For instance, all quantum systems share physical limits to observabil-
ity due to measurement back-action. Because of this fact, continuous feedback
methods, which are widely adopted in the control of classical systems [67], are
typically of limited applicability in the context of quantum systems. Here, we
have to resort to either feed-forward methods, where the target quantities are
computed offline using the previously determined model of the system and of the
transfer functions [68], or to iterative feedback methods where the measurements
at the end of the experimental cycle are used to correct the parameters of the next
iteration, until convergence is reached [69]. In the context of cold atom platforms,
these challenges come together with typically low repetition rates, which limit the
amount of data that can be acquired from the experiment in a convenient amount
of time. It follows that minimizing the data requirements for fulfilling the three
tasks described above will be one of our main concerns. Bearing these considera-
tions in mind, we can move on to introduce some of the tools and concepts that
are going to be used throughout Part II.

3.1 Regression

As pointed out before, the characterization and calibration of quantum hardware
requires matching a model with the physical system at hand, including the trans-
fer functions, on the basis of experimental data and prior information about the
system. Moreover, it is essential for feed-forward control to have access to such a
model of the system in order to compute the control pulses without experimental
feedback. This matching problem can be conveniently set in the language of re-
gression [70]: let f⃗ : Rm 7→ Rn be the function representing the relation between
inputs x⃗ ∈ Rm and outputs Rn ∋ y⃗ = f⃗(x⃗). As an example, f⃗ could be the map
between the controls of the quantum system and the fidelity (so that n = 1) of
the evolved state with respect to some target state as in Chapter 6, or the transfer
function mapping hardware inputs to the inputs of the quantum system, as we
will see in Chapter 4. By operating the platform, we gather a training data set
Strain = {(x⃗i, f⃗(x⃗i))}Ntrain

i=1 composed of I/O pairs. We then choose a parametrized
family of functions f⃗α⃗ : Rm 7→ Rn, with parameters α⃗ ∈ Rp that constitute our
model of the system. In order to find the parameter value α⃗∗ that best fits the
data set, we define a loss function L, that measures the deviation of the predicted
outputs f⃗α⃗(x⃗i) from the measured ones y⃗i = f⃗(x⃗i) and minimize it with respect
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to α⃗. A common choice is a loss of the form

Lβ,γ(α⃗,Strain) =

Ntrain∑

i=1

||f⃗α⃗(x⃗i)− y⃗i||βγ

which for n = 1, γ = β = 2 gives rise to the sum of square residuals, or L2

loss, and for n = 1, γ = β = 1 to the sum of absolute residuals, or L1 loss.
Extra terms can be added to the loss, for instance to regularize the problem or
to enforce sparsity.

Except for special cases such as linear models, loss minimization is performed
numerically by means of gradient-based methods, such as L-BFGS [71], Adam
or SGD to name just a few [72]. These methods offer far superior performance
to gradient-free methods, and the computation of gradients can be implemented
with minimal coding overhead thanks to automatic differentiation, which is nowa-
days available in software libraries for the most popular languages [73]. Moreover,
methods like Adam and SGD are designed to deal with stochastic or noisy gra-
dients, which allows us to compute the loss gradient over random subsets of the
overall training data set. This can be very helpful in instances in which computing
the full gradient would be too computationally expensive. In order to monitor
and test the prediction performance of the model during and after training, it
is necessary to employ data points which are independent of the training data
set. Hence, we typically define a validation Sval and test Stest data sets alongside
Strain, over which we can evaluate error metrics (e.g. RMS error). For instance,
validation loss or error can be used to trigger stopping conditions for gradient
descent to avoid overfitting to the training data set.

Concerning the design of regression models for physical systems, we primarily
face a trade-off between using widely employed models which benefit from a vast
literature and thorough testing by the scientific community and custom models
which are tailored to the specifics of the system at hand. The latter typically
require more work for finding loss functions, hyperparameter values and initial
conditions that lead to successful training, but can potentially lead to lower re-
quirements in experimental data [43, 44], which is one of our main concerns. In
Part II we will also explore this trade-off, first using a specialized model for trans-
fer function learning in Chapter 4 to decrease training data requirements and then
adapting well understood linear models to the study of quantum cost landscapes
in Chapter 6, which allows us to simplify training and gain more insight into the
mathematical structure of the problem.

We note that in this very brief discussion of the topic we are leaving many
conceptual problems out of the picture, such as the possible presence of multiple
local minima in parameter space or the bias of f⃗α⃗∗ as an estimator of f⃗ . While
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these are important details that can only be discussed in more specific cases, in
realistic scenarios it can be very hard or impossible to have mathematical assur-
ances in this regard because of the complexity of the models and loss functions
or of the non-ideal statistical properties of the data set. Therefore, during our
investigations, and especially in the case of custom regression models, we mostly
follow a trial-and-error approach, tweaking the design of the regression problem
until we obtain a result which satisfies our practical requirements.

3.2 Quantum Optimal Control

Once the hardware has been characterized and calibrated, we are left with the
problem of implementing the elementary operations on the quantum system that
serve as building blocks for the simulation or computation. These can be for in-
stance quantum state preparation routines, unitary gates belonging to a universal
gate set for digital quantum computing, time evolution under a given Hamiltonian
for quantum simulation or other auxiliary operations. In Part II we are going to
deal with two examples of these tasks, namely transporting atoms between differ-
ent lattice sites in Chapter 5 and quantum state transfer in Chapter 6. Quantum
Optimal Control (QOC) is a framework in which the implementation of a quan-
tum routine is set as an optimization problem [74, 75]. This establishes a close
parallel with our previous discussion on regression in Sec. 3.1, where a matching
problem is also set in these terms. In this case the objective is to match an
operation on the hardware, parametrized by the control pulse u(t) : R 7→ Rc to
a target operation on the quantum system. Given a Hamiltonian depending on
time through the control pulse H[u(t)], its associated time evolution is given by
the unitary operator

U [u(t)] = T exp

(
− i

ℏ

∫ t

0

dτH[u(τ)]

)
,

where T denotes time ordering in the exponential [76]. Once again, we first
define a figure of merit that quantifies the deviation from a perfect match and
then minimize it with respect to the control pulse. Often in QOC the figure of
merit is chosen as the state infidelity I

I = 1− | ⟨χ|U [u(t)] |ψ⟩ |2,

which is appropriate for state transfer or preparation involving a target |χ⟩. If
instead we want to quantify the deviation from a target unitary V we can use for
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instance the average gate infidelity [77]

Iavg = 1−
∫
dψ |⟨ψ|V † U |ψ⟩|2 = 1− |Tr(U †V )|2 + d

d(d+ 1)
.

Thus, the resulting functional I[u(t)] is a quantum cost landscape that we mini-
mize to find the optimal pulse u∗(t) realizing the task.

Depending on whether the figure of merit is evaluated through experimental
measurements or computed using a model, we can distinguish between closed-
and open-loop control. The latter critically benefits from efficient gradient-based
methods [68, 78], which can also be applied to parametrized pulses [79, 80] and
even employ second order derivatives to speed up convergence [81, 82]. On the
other hand, closed-loop optimal control allows us to treat the system as a black-
box, avoiding the necessity of a precise model of the system and its transfer func-
tions. This comes at the price of using gradient-free methods, which can only deal
with a relatively small parameter search space and display slower convergence.
Nevertheless, random parametrizations can be used to explore bandwidth limited
pulse spaces while avoiding local traps in such settings [69, 83].

3.3 Shortcuts to Adiabaticity

Belonging to the category of feed-forward control methods, Shortcuts to Adia-
baticity (STA) [84] take a different perspective on the problem. Instead of for-
mulating quantum control as an optimization task, the aim of STA methods is
to speed up adiabatic dynamics, which ensures the system, once prepared in an
eigenstate |n(0)⟩ at t = 0, to remain in the instantaneous eigenstate |n(t)⟩ at all
times thanks to the adiabatic theorem [76]. This theorem, which holds exactly
only in the limit of infinitely slow temporal change of the Hamiltonian, can in
practice be only applied provided that the following condition is satisfied:

∀m,n |Rmn(t)| :=
∣∣∣∣∣
⟨m(t)| Ḣ(t) |n(t)⟩
Em(t)− En(t)

∣∣∣∣∣≪ 1. (3.1)

In other terms, the Hamiltonian must change very little in the time scale defined
by the inverse gap. Such adiabatic approach can as of itself be very useful, as
it provides an experimentally simple way of preparing ground states of target
Hamiltonians. Its main limitation is the potentially long time scales over which
this process has to be applied once the gap becomes small, and its breakdown in
case of gap closing [22, 69].

STA methods offer a way out of this shortcomings by decoupling the Hamil-
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tonian driving the time evolution H̃(t) from the one H(t) whose instantaneous
eigenstates we want the dynamics to follow. As the adiabatic condition Eq. (3.1)
is not invoked, the quantity Rmn(t) is not small anymore, and appears instead in
the expression of H̃(t) [85]:

H̃(t) = H(t) + iℏ
∑

m̸=n

∑

n

Rmn(t) |m(t)⟩ ⟨n(t)|
︸ ︷︷ ︸

HCD(t)

. (3.2)

The correction HCD(t) is known as counterdiabatic term, and has the precise
purpose of canceling the deviations from adiabatic dynamics following H(t). For
this reason this method belonging to the STA family is known as counterdiabatic
driving (or transitionless quantum driving) [86, 87]. An important drawback of
this method is that it requires explicit knowledge of all the eigenstates of H(t),
which can limit its applicability in the context of many-body systems.

While counterdiabatic driving is a widely employed STA method, it is by no
means the only way to realize fast adiabatic dynamics. Another strategy, typically
referred to as invariant-based engineering is to exploit the existence of dynamical
invariants of H(t), which allows to reverse engineer quantum dynamics in such
a way to realize state transfer tasks [88, 89]. More specifically, this technique
requires that a (typically, hermitian) operator I(t) exists which is constant in the
Heisenberg picture:

dI

dt
=
∂I

∂t
+

1

iℏ
[I,H] = 0. (3.3)

This in turn implies that the dynamics generated by H(t) can be decomposed
into dynamical modes, which can be easily computed from the eigenstates of I(t).
If moreover we have that

[I(0), H(0)] = [I(T ), H(T )] = 0, (3.4)

these dynamical modes will coincide with the energy eigenstates at the begin-
ning and end of time evolution, ensuring transitionless transport between them
[90]. One of the advantages of this technique is to not rely on explicit eigenstate
knowledge, but on the other hand requiring the existence of a computationally
simple invariant satisfying Eq. (3.3,3.4) limits its applicability to only specific
Hamiltonians. In the context of this thesis, we are employing this technique in
Chapter 5 to derive analytical solutions for the problem of transporting an atom
between different lattice sites using an optical tweezer. This is possible thanks to
a well known family of dynamical invariants for single particle systems [91].
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4.1 Summary and context

The scope of this paper [92] falls within the characterization, calibration and con-
trol of the transfer function of an experiment with ultracold gasses. More specifi-
cally, we consider an experimental setup that can shape arbitrary one-dimensional
optical dipole potentials (see Sec. 2.1.2) by means of a Digital Micromirror Device
[14]. Thus, the non-linear transfer function that we are studying takes as input
the configuration of the DMD and outputs the optical dipole potential generated
by the setup. Shaping a potential is an output matching problem that requires
finding an appropriate input DMD configuration by minimizing deviation from
the target output.

While DMD-assisted beam shaping is an established technique in cold atom
platforms [16, 93, 94], our target application is the precise shaping of arbitrary
time-dependent potentials that would allow the implementation of open-loop op-
timal control or STA schemes (see Sec. 3.2 and Sec. 3.3) to one-dimensional ul-
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tracold gasses [95, 87]. Since pulse sequences are realized by concatenating many
static potential frames, it is essential for our methods to minimize the amount of
online iterations required for each frame.

In order to achieve this, we develop a physics-inspired model of the transfer
function, that we train by regression on experimental data. The optimization can
therefore happen offline using the trained model, preventing the number of online
iterations to scale with the number of frames. Here, we choose to develop a custom
model that can be trained with rather small datasets, taking less than an hour of
experimental time to be acquired. Moreover, we also develop an optimizer based
on Iterative Learning Control (ILC) [96], that employs both physical information
on the transfer function and iterative feedback to speed up convergence by an
order of magnitude, dramatically cutting down the time and data requirements
of the procedure.

In the context of this thesis, this paper shows how automated optimization
and physical insight can be combined into efficient characterization, calibration
and control methods for experimental transfer functions.

4.2 Author contribution

The Author is responsible for the ideation and development of the machine learn-
ing model of the optical system and contributed to the development of the ILC
algorithm. He is also responsible for the development of most of the software
concerned in this paper (including calibration, characterization, open- and closed-
loop optimization) and of its deployment and tuning on the experiment. He con-
tributed in generating the data for Fig. 3.b,c,d and Fig. 5, in the design of the
Figures, and in the writing of all Sections.
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We present our experimental and theoretical framework which combines a broadband superlumi-
nescent diode (SLD/SLED) with fast learning algorithms to provide speed and accuracy improve-
ments for the optimization of 1D optical dipole potentials, here generated with a Digital Micromirror
Device (DMD). To characterize the setup and potential speckle patterns arising from coherence, we
compare the superluminescent diode to a single-mode laser by investigating interference properties.
We employ Machine Learning (ML) tools to train a physics-inspired model acting as a digital twin
of the optical system predicting the behavior of the optical apparatus including all its imperfections.
Implementing an iterative algorithm based on Iterative Learning Control (ILC) we optimize optical
potentials an order of magnitude faster than heuristic optimization methods. We compare iter-
ative model-based “offline” optimization and experimental feedback-based “online” optimization.
Our methods provide a route to fast optimization of optical potentials which is relevant for the
dynamical manipulation of ultracold gases.

I. INTRODUCTION

The precise control and manipulation of light fields are
required for many diverse areas of research ranging from
microscopy [1] to quantum simulators [2]. In particu-
lar, optical beam shaping constitutes a common task, for
which wavefront manipulating devices, such as Spatial
Light Modulators (SLM) or Digital Micromirror Devices
(DMD), are especially suited. The beam shaping is im-
portant for experiments with ultracold gases, where op-
tical dipole potentials have proven to be a versatile tool
to provide the demanded level of control. In combination
with a DMD, almost arbitrary shaping of the optical po-
tential is possible, both in 1D [3–6] and 2D [7–11] set-
tings. These potentials can, as an example, be used for
generating homogeneous box potentials in ultracold gases
experiments [9]. In addition to static potentials, dynam-
ical perturbations and time-averaged potentials can also
be created, by projecting sequences of patterns onto the
DMD [4, 12].

There exist two main approaches to the optimization
of optical potentials: precalculating DMD patterns based
on physical assumptions [13, 14] and models [7] or iter-
atively updating DMD patterns based on experimental
feedback [6, 7]. The first approach avoids the need for
feedback measurement but is limited by model precision
and thus requires detailed system characterization, while
the second gives the most accurate results but typically
requires a large number of experimental iterations. Here
we implement a purely data-driven approach that com-

* These authors contributed equally to this work
§ maximilian.pruefer@tuwien.ac.at

bines different learning algorithms to get the best of both
worlds.

Using a digital twin of the system makes it possible
to shape different types of target potentials without the
need for experimental feedback. Yet because of speck-
les caused by imperfections, a model featuring just a
few known experimental parameters (parametric model)
can only predict its behavior up to limited precision and
might not always be suitable for precise potential shap-
ing. In some cases, though, such as in “clean” systems
with pin-hole filtering, simulations combined with input
beam characterization deliver very low errors on precal-
culated DMD patterns [7]. We improve the prediction
performance compared to parametric models by employ-
ing data-driven learning techniques. Learning methods
are already used for estimating the transfer matrix of
complex optical systems [15] and provide good results.
As their main disadvantage, they generally require a
large amount of data for sufficient training. In our ap-
proach, we develop a physics-inspired model that requires
a smaller amount of training data and thus saves exper-
imental time.

Despite any improvement in model precision, the ef-
fect of residual error sources can only be mitigated by
using experimental feedback [6, 7]. Therefore, we intro-
duce a feedback optimization method based on Iterative
Learning Control (ILC) [16, 17]. This method is directly
applicable to various types of experiments with wavefront
manipulating devices. Since system knowledge is directly
employed in the update law that adjusts the DMD setting
based on feedback, the number of required experimental
iterations is significantly reduced compared to heuristic
methods [6].

Because of the learning-based nature of both the ML
model and ILC method, they benefit from high pre-
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dictability of the system behavior, which can be achieved
by using light sources with low coherence. White light
was used for Bose-Einstein condensates (BEC) trapping
in order to minimize the impact of speckles on density
fluctuations [18], and the advantages of using a super-
luminescent diode (SLD) in comparison with a single-
frequency laser were shown also in combination with a
DMD [12]. Indeed, we find that using the SLD improves
model prediction results, while the feedback-based meth-
ods give errors comparable to measurement errors for
both light sources.

In perspective, the ability to efficiently shape a large
number of potentials using a DMD will provide a high
level of control for the dynamical manipulation of quan-
tum gases. The realization of non-harmonic optimal pro-
tocols [19] and quantum thermal machines [20] are but
two examples among countless possible applications.

The paper is organized as follows: in Sec.II we describe
our experimental setup and test the coherence properties
of the light sources by measuring interferences of a SLD
in comparison with a single-frequency laser; in Sec.III we
introduce the physics-inspired learning model used for
representing the optical system including its imperfec-
tions; in Sec.IV we use iterative learning control algo-
rithms for optimizing optical dipole potentials; in Sec.V
we summarize our results.

II. EXPERIMENTAL SETUP

In this section, we describe our experimental setup
and compare the optical coherence properties of a single-
frequency laser and broadband SLD. The optical appara-
tus was designed and optimized for manipulating 1D op-
tical dipole potentials in our atom chip experiment [21].
The simplified optical setup is shown in Fig.1 (a). In
the setup, the light source is easily interchangeable: we
here use either a superluminescent 110 mW fiber-coupled
diode with a spectral width of 12.7 nm and a central
wavelength of 837 nm or a single-frequency 780 nm laser.
The fiber is connected to a collimator and illuminates the
DMD with collimated light. The DMD is placed in the
focus of the first lens. The first two lenses together form
a 4-f telescope. The focal point between the two lenses is
a Fourier plane with respect to the DMD’s image plane.
The slit, which is adjustable in the transverse direction
and is parallel to the observable 1D optical potential, is
placed in the Fourier plane and closed to 0.625 mm. Be-
ing placed in the Fourier plane, the slit acts as a low-pass
filter for the transverse spatial frequencies of the light
field. This means it cuts off high-frequency k-modes of
the DMD pattern effectively leading to a lowering of the
resolution. The other 4 lenses form an objective designed
to correct chromatic aberrations for the broadband SLD.
The system acts with a demagnification of 17.5 and reso-
lution σ∥ = 3.3µm in the direction parallel to the slit (the
resolution is given by our atom chip experiment [21] for
which the optical apparatus was designed and optimized)

DM
D

 SLD/
LASER

CC
D 
ca
m
er
a

(a)

 Feedback  Modiϐied DMD pattern

Optimal 
Control
Algorithms

FIG. 1. (a) Schematic of the experimental setup. The light
source is an interchangeable SLD/laser connected with a fiber
to the collimator and projected onto the DMD. The DMD is
an array of individually controllable micromirrors which al-
lows for projecting arbitrary patterns. The system is shown
as simplified schematic omitting mirrors. The shown lens sys-
tem constitutes an imaging of the DMD pixels into the CCD
camera (image) plane with a demagnification of 17.5 and min-
imizing chromatic aberrations. The slit is placed in an effec-
tive Fourier plane of the imaging system. The red path cor-
responds to the beam and the blue to a point source in the
DMD plane. (b)-(e) Images taken with the CCD camera in
the image plane of the DMD with the same pattern projected
for (b) SLD without slit (c) laser without slit (d) SLD with
slit (e) laser with slit.

and σ⊥ = 25 µm in the transverse direction (orthogonal
to the slit). In the end, an image of the optical potential
is acquired with a CCD camera sensor with 2.4 µm pixel
size.

We use a 10.8 µm pitch near-infrared DMD, which is a
2D array of 1280x800 micromirrors. In the image plane
(on the CCD camera) 5 DMD pixels correspond to σ∥ in
the longitudinal direction and 40 DMD pixels correspond
to σ⊥ in the transverse direction. Since many pixels in
the transverse direction contribute to the local intensity
(close to the center pixels contribute almost equally to
the optical potential while far off-center pixels are con-
tributing less), we can perform very smooth gray scaling,
which is very important for high-precision optimization
of 1D optical dipole potentials via DMD. Yet, while a
narrower slit allows for better gray scaling and with that
lower discretization error and higher accuracy, it leads to
significantly reduced light intensity.
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FIG. 2. (a) Schematics of test measurement of coherence properties. Two pairs of 3x3 DMD superpixels a/b and 1/2 are
translated in a direction orthogonal and parallel to the slit, respectively. The resolution of the optical system is σ∥ = 3.3µm
in the longitudinal (parallel to slit) and σ⊥ = 25µm in the transverse (orthogonal to slit) direction, with respect to the
slit orientation. (b)-(e) Intensity measured between two superpixels as a function of distance d between them; the blue
solid line shows the intensity measured for both superpixels simultaneously “on” (electric fields from superpixels contribute in
measured intensity as |Ea/1 + Eb/2|2), the red solid line is the sum of intensities measured with only one of two superpixels

“on” (contribution is independent |Ea/1|2+ |Eb/2|2). The distance d is given in units of σ∥ and σ⊥. When the laser-illuminated

superpixels are moved orthogonal to the slit (b), positive interference is visible in the 0th slit diffraction maximum and negative
interference in the 1st. When SLD-illuminated superpixels are moved orthogonal to the slit (c) a slight interference effect is
visible only in the 0th slit diffraction maximum for very small distances between the superpixels. Panel (d) shows laser-
illuminated superpixels moving parallel to the slit, and panel (e) shows SLD-illuminated superpixels moving parallel to the
slit. There are no noticeable interference effects in the longitudinal direction on the scales larger than the camera pixel size for
both light sources.

The main advantage of using the SLD compared to
the single-frequency laser as a light source is its reduced
temporal coherence [22, 23] which is why random inter-
ferences (speckles) are reduced (see Fig.1 (b,c)). Here,
we characterize coherence effects for both light sources
as we want to understand whether we can consider the
individual pixels as coherent or incoherent sources.

We prepare two series of patterns, each of them con-
taining two superpixels moving away from each other (by
superpixel, we understand a square pattern of 3x3 mi-
cromirrors). In the image plane on the CCD camera, the
size of the superpixel is below the resolution of the op-
tical apparatus and the superpixel can be considered as
a point source, at the same time minimizing diffraction
from the edges of individual DMD mirrors. We measure
the intensity in the center between two superpixels. The
imaged intensity is in general given by the squared sum
of the electric fields of the individual pixels. In the inco-
herent case, it reduces to the sum of intensities from the
individual pixels such that the system behaves linearly
with respect to intensity.

First, the pair of superpixels is moving orthogonal to
the slit orientation (transverse direction), where the slit
is closed to 0.625 mm and resolution is lowered to σ⊥=25

µm. For both SLD and laser (see Fig.2 (b,c)), the slit
diffraction maxima are clearly distinguishable. For the
laser, positive interference can be observed in the 0th

maximum and negative in the 1st one. For the SLD, in-
terference is only observable on a very small scale (below
σ⊥). Second, the superpixels are moving in the longitu-
dinal direction, where the slit is fully opened to 13 mm
and the resolution σ∥=3.3 µm is very close to the cam-
era pixel size 2.4 µm. We observe only small interference
effects for the laser, most likely because they are hardly
accessible on this scale.

In conclusion, we observe that in both cases the SLD
shows linear behavior, that is the total intensity is given
by the incoherent sum of the intensities of each point
source. This showcases the advantages of the reduced
coherence of the SLD, which we anticipate to decrease
the amount of speckles and therefore to increase the pre-
dictability of the system.

III. PHYSICS-INSPIRED LEARNING MODEL

In this section, we describe how we use Machine Learn-
ing (ML) tools and experimental data to obtain a digital
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FIG. 3. (a) Training of the physics-inspired model. The training dataset is composed of 1D virtual inputs ν which are
transformed into 2D DMD patterns (according to Eq. (2)) and projected in the image plane. We read out a pixel row from the
CCD camera to infer the 1D optical potential generated by the system. After data acquisition, the 4-layer model is trained by
minimizing the loss function. The polynomial layer represents the nonlinear relation between virtual input and local grayscale,
while the other three layers take into account physical properties, i.e. the beam shape, the effective point spread function,
and the background. The trained model (red solid segment) is a digital twin of the physical system which converts 1D virtual
input to predicted optical potential. All the signals and layers shown in the figure are actual experimental data. (b) Test loss
dependence on the size of the training dataset. The loss converges to 2.4% for a dataset size of ∼ 102, indicating that the
model does not exhibit overfitting even for small training datasets. (c) Test loss dependence on the spatial frequency content
of training and test datasets (see main text for details). (d) Two cuts from figure (c) for σtrain = 0.3 µm and σtrain = 2.0 µm.

twin of the system. It should represent precisely the ex-
perimental system, while at the same time having a small
number of parameters to reduce the required number of
experimental measurements. In the following, we outline
our approach based on a physics-inspired model.

To formulate our problem, we treat the DMD as a
2D array to which we associate a binary configuration
matrix uij . For each pixel, a value of 1 corresponds to the
mirror position that reflects light to the optical system,
while 0 corresponds to the mirror position that reflects
light away from the system. The potential V is a vector
obtained by selecting one row of camera pixels in the
imaged output. We refer to the coordinate along this
row (and therefore, parallel to the slit) as z. We then cast
model training in the language of regression [24]: given

a set of data points composed by K couples (u
(k)
ij , V

(k)
i ),

and a family of functions Mα, parametrized by α =
[α1, ..., αN ], we find the values of α that minimize a loss

function L(u
(k)
ij , V

(k)
i ,α) defined below.

Regression problems are known to be affected by the
bias-variance tradeoff [25]. This implies that large mod-
els, having dim(α) >> K dim(V ), tend to approximate
well the training data (low bias) but fail to accurately
generalize the prediction on test data (high variance).
This phenomenon is known as overfitting, and it puts a
challenging limitation to our program. In order to al-
leviate this problem, our approach consists in develop-
ing a physics-inspired model (see Fig.3 (a)) based on the
knowledge we have about optical systems. This way, we
can reduce the number of its coefficients to the minimum
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FIG. 4. Scheme for optimizing optical potentials using Iterative Learning Control. The iterative scheme is initialized by
choosing an initial guess and the target potential. We use two methods that differ in the feedback source: offline and online.
The offline method uses the trained ML model to predict the optical potential. The online method projects the pattern on the
DMD and measures the optical potential. Then the predicted (measured) potential is subtracted from the target to get the
error that ILC uses to update the 1D virtual input. The procedure is repeated iteratively until the error converges or matches
conditions for loop break. For the best performance, the output of the offline optimization can be used as the initial guess for
online optimization. The result of the optimization loop is an optimized DMD pattern. All the signals in the figure are actual
experimental data.

necessary to represent the system precisely enough, while
avoiding overfitting.

First, we select an area of interest (AOI) on the DMD
where the patterns will be located, based on the beam
size and position. All pixels outside the AOI are turned
off. The AOI has a size of (Nrow, Ncol), and its columns
are orthogonal with respect to the slit. Then, we employ
a dimensional reduction technique which we refer to as
the “virtual input” (cf. [17]). The virtual input measures
the relative optical intensity induced by the pixels in the
corresponding column. Since the narrow slit averages
along the transverse direction, we can use the pixels on
each column to create a set of gray scales at each point
along the longitudinal direction z. In the limit of a very
narrow slit, all the pixels in a column contribute almost
equally to the final intensity, so we can define the virtual
input ν as the vector:

νj =
1

Nrow

∑

i

uij . (1)

This quantity represents the fraction of pixels that are
turned on in each column, with respect to the total num-
ber of rows inside the AOI.

In the case of non-zero slit widths, the mapping be-
tween a virtual input according to Eq. (1) and the ac-
tual relative optical intensity due to the column pattern
is non-linear and depends on the beam and on the trans-
verse shape of the point spread function (PSF). There-
fore, we have to take this effect into account when we
design our model.

Once uij is transformed into νj some information is
lost since different binary matrices map onto the same
virtual input. To invert this mapping we have to choose

a subset of binary matrices over which the mapping is
one-to-one. We define the inverse map by turning on the
pixels one by one on alternating rows above and below
the central row of the AOI ic, according to the order
ic, ic + 1, ic − 1, ic + 2, ic − 2, .... More compactly:

uij = θ

(
Nrowνj

2
− |i− ic −

1

4
|
)
, (2)

where θ(x) is the Heaviside step function.
Using the virtual input and restricting the DMD con-

figurations to the set described by Eq.(2) reduces the di-
mension of the input and output space, thus simplifying
the learning problem. On the other hand, the restriction
of the configurations might potentially introduce an arti-
ficial limitation to the potentials that can be realized. In
practice, we find the subset of binary matrices defined by
this mapping to be wide enough so that it can be used
for shaping arbitrary potentials.

For the task of learning the relation between the 1D
input ν and the 1D potential V we propose the model
V = Mα(ν) with (learnable) parameters α. This model
is depicted in Fig.3 (a) and explicitly reads:

Vi =

∣∣∣∣∣∣

M∑

j=−M
gjP (νi−j , q1, ..., qNP

)pi−j

∣∣∣∣∣∣
+ ci (3)

where P (x, q1, ..., qNP
) =

∑NP

n=1 qnx
n is a polynomial of

degree NP = 5 with no constant term, and the vector of
parameters α is the concatenation of g,q,p and c with
dim(α) ∼ 1400. The polynomial function P represents in
an abstract way the non-linear relation between virtual
input and resulting local relative intensity as discussed
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above. The remaining parameters are chosen to mimic
features of the physical system: the convolutional ker-
nel g of size Ng = 2M + 1 ∼ 71 plays the role of the
longitudinal PSF, the position-dependent term p, of size
NV ∼ 650, mimics the inhomogeneous light beam and
the offset term c, also of size NV , gives the background.
In the convolution sum we employ zero padding, which
means that the summand is zero if i−j exceeds the index
range [1, NV ].

For the training, we choose the loss function as:

L(ν(k),V(k),α) =
K∑

k=1

∑NV

i=1 |[Mα(ν(k))]i − V
(k)
i |

∑NV

i=1 V
(k)
i

, (4)

which is the mean absolute error between prediction and
measurement, normalized by the average potential itself.
This way, potentials with different average values will
contribute equally during the training.

To test the performance of the ML model, we create a
data set of 10,000 random virtual inputs by sampling a
white noise probability distribution. We filter the sample
with Gaussian filters with 10 values of σdata ranging from
0.2 to 100 DMD pixels (which corresponds to the range
[0.1, 65]µm mapped to the image plane). This way, the
dataset was subdivided into 10 subsets with varying up-
per spatial cutoff frequency. For each virtual input, the
corresponding potential was measured and stored (along
with the corresponding input).

We tested the dependence of the test loss on the train-
ing dataset size (see Fig.3 (b)). Both the training and
test datasets were assembled by mixing the subsets with
σdata ≥ 2.0 µm. The model is then trained on data
chunks of increasing size Ktrain, while keeping the test
dataset size fixed to Ktest = 300. This sequence is re-
peated 4 times, choosing new data sets at each time to
compute the standard deviation of the test loss. Even
with Ktrain = 8, the test loss is already below 3% and
the improvement for Ktrain ∼ 102 is around half a per-
cent. Adding even more data points does not appreciably
improve the prediction quality. This result is particularly
important since we aim for methods that are readily ap-
plicable to atomic density data measurement. In a typical
experiment with trapped ultracold atomic gases, taking
more than K ∼ O(102) atom densities pictures (with av-
eraging over a few shots each) for potential optimization
is a time-costly procedure. The fact that the model we
developed can be trained with less than 100 potentials
means that it is in principle possible to employ a data
set obtained by atom-density estimation of the potential
[6].

To further analyze the learning process, we tested the
dependence of the test loss on the cutoff frequency (see
Fig.3 (c,d)) of both the training and test data sets. The
frequency subsets are not mixed. At each time, we choose
independently the cutoff frequency of the training σtrain
and test σtest datasets. The dataset sizes for training
Ktrain = 160 and for testing Ktest = 39 are fixed, and
this sequence is repeated 5 times. Fig.3 (c) shows quali-
tatively the test loss as a function of σtrain and σtest. The

best results are obtained close to the diagonal, that is,
where σtrain ∼ σtest, so that training and test data look
most similar. The test loss becomes worse when σtrain or
σtest are around or below the DMD pixel size (magenta
line on the plot), indicating a possible mismatch between
the behavior of the system and the ML model on the scale
of the DMD pixel. For a more quantitative interpreta-
tion, we show two different regimes in Fig.3 (d), where a
representative scenario of the training on low frequencies
(dark blue) is compared to another curve representing
the high-frequency case. In the first case, the test loss
exhibits a low plateau above the DMD pixel size and an
abrupt increase below, corresponding to a breakdown of
the low-frequency trained model in the high-frequency
regime. The second curve instead shows how including
the high frequencies during the training does not solve
the problem, as now the prediction performance severely
deteriorates along the whole frequency range.

IV. POTENTIAL OPTIMIZATION

In this section, we introduce an optimization algorithm
based on iterative learning control (ILC) methods in-
spired by [17]. The algorithm was used to optimize dif-
ferent target potentials on the experimental setup and
we compared the results with the heuristic optimization
method described in [6] (see Sec.VI for details).

A. Online and Offline ILC

ILC methods employ measurements of the considered
output trajectory to iteratively solve a reference track-
ing problem, i.e., to find an input trajectory such that
the output of a system follows a desired target trajec-
tory as closely as possible, even in the presence of model
errors and uncertainties. The price to pay for this prop-
erty is the requirement of running in a kind of feedback
loop using experimental data. Therefore, we show how
to employ ILC algorithms either using feedback from the
physical experiment referred to as “online” ILC or from
its digital counterpart, the physics-inspired model pre-
sented in Sec.III, referred to as “offline” ILC. See Fig.4
for a schematic of the ILC algorithm. The only differ-
ence in the algorithms is that in the first case the poten-
tial V is measured, while in the second it is predicted by
the model. This way, previous (training) data is struc-
tured by the ML model while we can seamlessly improve
beyond the predictive capability of the model through
further online iterations.

Let us call νn the virtual input at the n-th iteration,
and en = V tar −V n the deviation from the target. Fol-
lowing standard ILC approaches, the correction of the
virtual input is obtained by convolution, denoted by ∗
(see Sec.VI), with an update filter Lν , and is then added
to the old virtual input to update it, i.e.,

νn+1 = νn + Lν ∗ en . (5)

Reprinted with permission from: M. Calzavara, Y. Kuriatnikov, A. Deutschmann-Olek, F. Motzoi,
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FIG. 5. Optimized effective potentials assuming a 10Hz harmonic trap. The 1D optical potential generated by the system
is inferred by reading out one selected row of the CCD. In the first column, we show the optimized effective potentials U
with the offline ILC, online ILC, and the heuristic online optimization (blue, orange, and green solid lines, respectively). The
black dotted line shows the effective target potential for atoms (see main text for details). The insets show DMD patterns for
optimization with online ILC. All three methods give a good qualitative match with the target potentials. The second column
depicts the differences δU between the target potential and the optimized potential for all 3 methods. The online ILC and the
heuristic online optimization give a compatible level of optimization while the offline ILC exhibits a larger deviation from the
target. In the third column, the error histories for online methods are shown in the semi-log scale, computed at each point
using Eq.(8). The blue line indicates the level of offline optimization error, which is shown as a constant reference line since
it requires no online iteration, showing that the offline prediction can save 50-90 heuristic iterations. The online ILC saves
more than 100 iterations compared to the heuristic method to reach a similar error level. The dashed purple line shows the
shot-to-shot measurement error.

The process is repeated until either convergence or the
desired error level is reached. In order to choose an ap-
propriate update filter, we approximate the system in a
linear and time-invariant form

V ≈ gz ∗ ν . (6)

In practice, V is recorded for a trial input, and then
fitted using a Gaussian guess for the longitudinal PSF
gz(z) = A exp(−(z− z0)2/(2σ2)), to obtain estimates for
the parameters z0, σ, A. We then use a pseudo-inversion-
based update filter [26]

Lν =
G

γν + GG
(7)

where G = F [gz] is the discrete Fourier transform of the
Gaussian PSF, G its complex conjugate and all the oper-
ations are to be understood element-wise. Here, γν > 0 is
a regularization parameter of the system inversion which
effectively reduces the high-frequency content of the in-
put updates and, therefore, of the explored virtual in-
puts νn. In the presence of measurement noise, optimal
choices for γν are ultimately given by the experimental
signal-to-noise ratio [27]. The results shown in the main
text are obtained using γν = 0.1 max

i
|Gi|2.
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B. Experimental results

We tested both the offline and online ILC algorithms
by optimizing three target potentials, using the heuristic
method as a reference. The results are shown in Fig.5.
In order to emulate an experiment with a trapped BEC,
we represent the longitudinal magnetic trap with a har-
monic potential Vmag(z) = 1

2mω
2z2 with ω = 2π×10 Hz

and m the mass of a 87Rb atom. The effective potential
U(z) as experienced by the atoms is the sum of the mag-
netic trap Vmag(z) and the optical dipole potential V (z),
which is estimated from measured intensity (see Sec.VI
for details). We design targets V tar so that the effective
potential U(z) will be either constant, sinusoidal, or lin-
ear. All methods start with the DMD completely turned
off.

Qualitatively all the methods are successful, as the fi-
nal results are barely distinguishable from the target po-
tential. For quantitative evaluation of the optimization
performance, we compute the locally normalized root
mean square error (RMS):

ϵRMS =

√√√√ 1

NV

NV∑

i=1

(
V tari − V ni
V tari

)2

. (8)

We say that the normalization is local because it is
computed point by point. As a measure of the minimum
error that can be achieved due to shot-to-shot fluctua-
tions, we acquire 100 pictures of the optimized potential
and compute the average ϵRMS , substituting V tar by the
average potential over the sample.

The measured optimization error of the offline ILC is
shown with a constant blue line in Fig.5 and ranges from
4% to 16% depending on the target. We find that the
offline ILC scheme is able to deliver a level of accuracy
already comparable to what we obtain with ∼ 100 itera-
tions of the heuristic algorithm, which would be equiva-
lent to more than 1 hour of experimental time per poten-
tial shape for BEC experiments (and more than 5 hours
with averaging over at least 5 images). The optimiza-
tion error for potentials obtained through offline learn-
ing is determined by the predictive capability of the ML
model, which depends on the training data set. To illus-
trate the robustness of the physics-inspired model and
its ability to extrapolate beyond training data we here
train it on a generic data set consisting only of parabolic
potentials. We furthermore find that better results (with
error around 3%) are achievable when the training data
set resembles the optimized configurations more closely.

For a quasi-1D BEC with an atomic density of 100
µm−1, atomic shot noise (which limits the precision with
which we can measure the potential) is at the level of 10
% [28], and the chemical potential is of the order of 1
kHz. Since constant offsets in the optimized potential do
not have an effect on the atoms, we can neglect them.
The scale of the remaining imperfections is then reduced
to around 10 Hz, which is 1% of the typical chemical po-
tential. Measuring a single potential with such precision

requires averaging over 100 repetitions, which is roughly
an hour of experimental time.

We can compare these results with [6], where the on-
line heuristic scheme gave ϵRMS ∼ (4−6)% for the atom
density in a similar setup. These numbers suggest that
the offline ILC alone is capable of generating potentials
with comparable accuracy to existing heuristic schemes.
Lifting the necessity of online iterations might be a par-
ticularly appealing choice for time-dependent potentials.

The online ILC and heuristic algorithms both converge
to the same error level. Yet online ILC reaches conver-
gence in around ∼ 10 iterations while the heuristic al-
gorithm needs around ∼ 100 iterations, which is a great
advantage for schemes incorporating experimental feed-
back. Moreover, the ILC algorithm does not need to
manually select an optimization schedule, resulting in in-
creased flexibility and bypassing time-consuming param-
eter tuning. Convergence time can be decreased even
more by using the result of offline optimization as an
initial guess for online ILC. In this case, we find that
the online ILC reaches convergence in only a few itera-
tions, resulting in an even larger speed-up compared to
the heuristic method. In any case, the final error is far
below the atomic shot noise, so it is hardly accessible in
static BEC configurations.

Unlike the online and offline ILC, the heuristic algo-
rithm does not rely on dimensional reduction and the
concept of virtual input, therefore it is not restricted to
the symmetric class of patterns described by Eq.(2). The
fact that the same error level can be achieved despite
this restriction implies that this choice does not consti-
tute a significant bottleneck for potential optimization.
While other mappings are possible, such as the optimized
dithered columns suggested in [17], we found that sym-
metric mapping offers several advantages. In fact, it is
easier to realize (as it does not require the solution of an
additional optimization problem) and also more robust
against variations of the beam shape along the transver-
sal direction.

We ran the same tests using a single-frequency laser
as a light source (see Sec.VI for details). The physics-
inspired model performs worse in the prediction of laser-
generated potentials, therefore the output of offline ILC
is noticeably worse than the predictions for SLD. On the
other hand, the online ILC algorithm optimizes the op-
tical potentials created with the laser to the same error
level as with the SLD. Based on these findings, we can
state that our method is well suited for experimental se-
tups employing SLDs as well as single-frequency lasers.

V. CONCLUSIONS

In this paper, we presented our experimental setup for
generating and efficiently optimizing 1D optical poten-
tials. We combined a digital micromirror device for po-
tential shaping control together with a SLD light source.
We performed measurements estimating the quantitative
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difference between SLD’s and laser’s coherence properties
and showing the advantages of using SLD due to its gen-
erally linear behavior.

We have implemented learning algorithms that en-
able efficient optimization of optical potentials. We have
shown how to build a physics-inspired model, which acts
as a digital twin of the experimental setup. The model
is able to recreate the main features of the optical sys-
tem based on a small set of experimental data without
the need to use deep (neural) networks and large train-
ing data sets, with the advantage of saving experimental
time.

The application of the Iterative Learning Control opti-
mization method provides a more than ten-fold speed-up
compared to heuristic approaches. The ILC algorithms
used offline with the trained models are able to optimize
optical potentials with a precision acceptable for most ex-
periments with trapped 1D ultracold gases. Using online
ILC with experimental feedback allows us to optimize
optical potentials to error levels comparable to measure-
ment error, giving a ten-fold speed-up compared to more
straightforward heuristic algorithms. By combining both
ILC strategies, namely using the result of an optimized
digital twin configuration as an initial guess for online
ILC, we get the optimized potential with just a few ex-
perimental iterations.

Regarding optimization performance for the SLD and
laser, we find that the SLD outperforms the laser using
offline ILC. However, the online ILC performs equally
well for laser and SLD giving the same level of optimiza-
tion error. The model we developed combined with It-
erative Learning Control provides a very fast way to op-
timize optical potentials with a DMD which might be
used in a large variety of experimental setups. Our work
offers a prospect for fast optimization of optical dipole
potentials which is very important for time-costly exper-
iments or for very large sequences of patterns in dynamic
situations.

VI. APPENDIX

A. DMD mount

Due to the specific construction of the Texas Instru-
ments DLP650LNIR DMD’s micromirror control mech-
anism [29], the DMD is mounted 45◦ rotated so all the
optical elements are placed in one plane. Any pattern
getting rotated 45◦ right before projecting on the DMD.
We verified that during optimization the rotation only
leads to distortions of the potential which are below the
resolution and therefore optimization is not affected.

B. Intensity to optical dipole potential conversion

The number of pixels in the output Vi as obtained from
the camera does not necessarily coincide with the number

of pixels in the input νi. In order to use the model,
we first interpolate Vi to the input grid size, using the
interp1 function in Matlab.

We assume the relation between light intensity and
optical dipole potential to be linear V = αV I with αV
as found in [30]. Since we work with red-detuned light,
αV is negative. We also suppose the relation between
the CCD readout R and intensity to be linear. We then
compute αCCD = Irpow/R by measuring the light in-
tensity with a power meter. To not saturate the CCD
we use a reduced amount of light intensity. To calculate
the finally expected dipole potentials we employ a factor
rpow = Ifull/Ilow that accounts for the source operating
at low power.

C. Mathematical details

This paper heavily relies on the discretization of func-
tions of a real variable f(z) in order to obtain finite size
vectors. If we define a coordinate grid zi = (i− 1)∆ − z̄
for i = 1, ..., n, then we refer to any discretized function
as fi = f(zi) and we denote with f the Rn vector whose
elements are fi.

Let us call F the discrete Fourier transform acting on
a vector of size n, and F−1 its inverse:

F [a]k =
n∑

j=1

aje
− 2πi

n (j−1)(k−1) (9)

F−1[b]k =
1

n

n∑

j=1

bje
2πi
n (j−1)(k−1) (10)

Then, we can define the discrete convolution of two vec-
tors a ∗ b as

a ∗ b = F−1[F [a]F [b]] (11)

where the product on the right-hand side is element-wise.

D. Heuristic algorithm

In order to assess the advantages of the ILC methods,
we employed an adapted version of the heuristic algo-
rithm described in [6] as a reference. It is an iterative
algorithm that updates the state of each pixel based on
the local differences between measured and target poten-
tials. The optimization happens in two phases, the first
fast but rough and the second slower but more precise.
During the rough phase (see Fig.5 first ∼20 iterations)
in each column DMD pixels are turned on until the dif-
ference gets lower than the chosen threshold. During the
precise phase pixels can be moved away or turned off.

E. Laser vs SLD

We show in Tab. I a detailed comparison of the per-
formance of the offline and online ILC algorithms for the
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Target 1 Target 2 Target 3
SLD, offline 0.10 0.04 0.16
Laser, offline 0.15 0.13 0.18
SLD, online 0.02 0.01 0.02
Laser, online 0.02 0.02 0.03

TABLE I. Values of ϵRMS for SLD and laser sources.

SLD and laser light sources. The values of ϵRMS , cf.
Eq.(8), should be compared with the shot-to-shot errors
of 0.01 for the SLD and 0.02 for the laser, which are
the error components that cannot be eliminated via op-
timization.
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5.1 Summary and context

This theoretical paper [97] concerns a common quantum control task in a cold
atom platform, namely the transport in space of an atom. This auxiliary op-
eration is crucial in many ways, for example to deterministically prepare atom
arrays [9, 10], to operate space-segmented designs in which storage regions are
separated by computing and readout regions and to allow the application of local
interaction gates between distant atoms [11]. It is also a rather slow operation
compared to quantum gates, creating a potential bottleneck to the performance
of cold atom platforms. We consider a setup involving a static trapping potential,
capable of holding an array of atoms in its sites. By means of moving optical
tweezers, we show how it is possible to collect an atom initially residing in one
of these sites and then to move and deposit to another site, while minimizing
residual vibrational excitations.

In order to achieve this goal, we employ both analytical STA methods and
numerical optimal quantum control (see Sec. 3.3 and Sec. 3.2). More specifically,
we make use of approximate STA solutions using invariant-based engineering [91]
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for both the (un)loading of the atom in the moving tweezers and its transport to
the final site [90], and concatenate them to create the full protocol. We show that
while analytical methods give rise to both performant and stable solutions, that
under some approximation can be also put in closed form for ease of experimental
deployment, closed-loop control methods can further refine them while avoiding
longer convergence times due to cold starts. We estimate that with our methods
the transport task we consider can be significantly sped up compared to state-of-
the-art experiments.

In the context of this thesis, this publication shows an example of how differ-
ent quantum control methods can work together and be combined with physical
information about the quantum system to implement fast and precise auxiliary
(but crucial) hardware operations, while minimizing overhead in experimental
work.

5.2 Author contribution

The Author is responsible for the ideation of the STA methods employed in
the paper and of their implementation. He contributed to the development of
the numerical software used in the paper and to the discussion of the results.
He is responsible for drafting the Sections related to the STA transport pulses,
especially Sec. III.B and App. A, and contributed to the writing of all sections
and to the design of the Figures.
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We study the optimization of the transport and transfer of neutral atoms between optical tweezers, both
critical steps in the implementation of quantum computers and simulators. We analyze four experimentally
relevant pulse shapes (piecewise linear, piecewise quadratic, minimum jerk, and a combination of linear
and minimum jerk), and we also develop a protocol using shortcuts-to-adiabaticity (STA) methods to cru-
cially incorporate the time-dependent effects of static traps. By computing a measure of the final transport
error and two measures of the heating during transport, we show that our proposed STA protocol compre-
hensively outperforms all the experimentally inspired pulses. After further optimizing the pulse shapes, we
find a lower bound on the protocol duration, compatible with the time at which the vibrational excitations
exceed half of the states hosted by the moving tweezer. This lower bound is at least eight times faster than
the one reported in recent experiments, which highlights the importance of including and optimizing the
transfer from and to static traps, which may be the largest bottleneck to speed. Finally, our STA results
demonstrate that a modulation in the depth of the moving tweezer designed to time-dependently counter-
act the effect of the static traps is key to reducing errors and reducing the pulse duration. To motivate the
implementation of our STA pulses in future experiments, we provide a simple analytical approximation
for the moving-tweezer position and depth controls.

DOI: 10.1103/7r3w-8m61

I. INTRODUCTION

Over the last decade we have witnessed a sustained
growth in the capabilities for quantum information pro-
cessing and simulation, based on significant progress in
both the confinement and control of atomic arrays [1–7],
with a critical role played by the precise manipulation
and transport of neutral atoms in optical tweezers [8,9]. In
state-of-the-art experiments, the atoms are usually cooled
to a temperature of 10–100 µK and then stochastically
loaded (with a probability of about 0.5, or half-filling)
from a magneto-optical trap into a set of space- and time-
controlled Gaussian traps or optical lattices. In general,
the experimental setup involves a spatial light modulator
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to create the static trap array, while the moving opti-
cal tweezers are controlled by acousto-optic deflectors
(AODs) [1,6,8]; other approaches for similar experiments
rely only on tweezers generated and controlled via AODs
[9–12]. These tweezers allow for a precise rearrangement
of stochastically loaded atoms, enable nonlocal connectiv-
ity, and eliminate the need to prepare a new ensemble of
atoms after each measurement, thus enhancing experimen-
tal efficiency [13].

The basic requirements for a quantum processor include
initialization and storage of qubits in a quantum regis-
ter, bringing qubits sufficiently close to realize quantum
gates and the final readout [14]. Therefore, efficient atom
transport is not only a key step in performing controlled
translations from the preparation or cooling chamber to
the science cell but also allows for on-demand interac-
tions to realize quantum operations in the correct location
(including both processing and storing sites) and with pre-
cise timing. In this context, fast and accurate manipulation
of atomic motion emerges as a central requirement for
quantum technologies to preserve coherence while attain-
ing high fidelities between the final state and a predefined
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target state [15]. Moreover, atom transport appears as a
potential long-term bottleneck in quantum computing with
cold atoms, given that other operations are expected to be
significantly faster [16].

Several experiments have been undertaken to study
atom shuttling [17–20], where the ideal goal is to obtain
a final state as close as possible to the initial state while
avoiding losses and vibrational excitations. Although the
use of long transport times (adiabatic processes) may seem
the natural path to high final fidelities, they also translate
into the accumulation of decoherence and experimental
noise [18]. Conversely, diabatic (i.e., fast) processes lead
by default to higher excitations and thus to overheating and
losses. It is therefore necessary to find a trade-off between
high fidelity and transport time [6,7]. In this work, we
focus on the optimization of the transport and transfer of
atoms between optical tweezers to speed up these opera-
tions while avoiding unwanted excitations. In particular,
the protocols we design include the capturing and releas-
ing of the atom from and to static traps (which we refer
to as transfer) as well as the transport itself. At the end
of the process, the atom is located in the desired position.
This results in increased flexibility in experimental opera-
tions (once the protocol is completed, the moving tweezers
are free to be used for other tasks) and also allows for a
shorter transfer part, which has been reported to be the
most time-consuming stage [17].

To achieve our goals, we apply optimal quantum con-
trol techniques to drive the system toward the desired state
by minimizing the infidelity [18,21–25], a measure of the
deviation between the target state and the state after the
evolution of a particle moving from one optical trap to the
next. Even though the engineered evolution path should by
construction lead to a final state close to the desired one,
there is no guarantee regarding the no-heating or no-loss
condition, meaning that the system might be excited into
the upper levels of the trap during the protocol and atoms
may potentially be lost [26]. To solve this, we first analyze
and characterize the performance of several tweezer tra-
jectories used in state-of-the-art experiments (we consider
four families: piecewise linear, minimum jerk, piecewise
quadratic, and a hybrid between the linear and minimum-
jerk ones [1,7,8,10–12,17]), with a particular focus on a
measure of the error after transport and two measures of
the vibrational excitations during transport as a function of
the total time of the protocol.

In addition to considering experimentally motivated
tweezer trajectories, we further develop a shortcuts-to-
adiabaticity (STA) approach [15,27–31] to generate analyt-
ical pulses, which can also serve as a seed for subsequent
optimization. More specifically, the STA method lever-
ages a Hamiltonian invariant to derive pulses that drive the
system in a nonadiabatic (or fast) way to the same final
state as their adiabatic (or slow) counterparts [15,30]. The
STA method provides great flexibility for computing the

tweezer trajectory because it depends on ansatz functions
that can be chosen freely, provided that they satisfy
the necessary boundary conditions. When addressing the
atom-transport problem, a wide variety of STA solutions
have been derived for a harmonic trap or a power-law
potential with time-independent frequency [15,25,31]. In
our approach, we include the static-tweezer potential in
the harmonic approximation to obtain solutions tailored
to our specific setting. We show that our STA proto-
col outperforms the best experimentally inspired transport
pulses, and our analytical approximation formulas can be
straightforwardly implemented in experiments.

Following the characterization of the initial pulses, we
carry out optimal pulse shaping using the user-friendly
QuOCS toolkit [32]. Taking advantage of an expansion of
the pulse over a randomized function basis, the included
d-CRAB algorithm [33–36] allows for a drastic reduc-
tion of the number of free parameters to be optimized, so
that a direct search method (such as Nelder-Mead) can be
employed. At the same time, the need for computing the
gradient of the control objective (or figure of merit) is alle-
viated. With this approach, low infidelities with respect to
the target state were achieved, improving by more than
one order of magnitude compared to the analytical pulse
shapes. All the optimized pulses present a more stable
behavior of the fidelity with respect to the target state after
transport. Notably, while the optimized pulses reach an
error threshold of 10−4 in a shorter total time compared
to the nonoptimized experimentally motivated pulses (with
reductions in time of 10%–30%), our proposed STA pulse
requires the shortest time to obtain an error below 10−4,
and that time does not change after optimization. We inter-
pret this as a signature of the high quality and suitability
of our STA solution, as it approaches the numerically
observed quantum speed limit (QSL) [18,37].

We aim to identify parameter regions of suitable pulses
that can be used in the design of realistic experimental
protocols. Thus, we choose the two pulses with the best
performance and provide a heat map of the error after
transport as a function of the total time and the depth of
the moving tweezer. We determine a region in the param-
eter space for the minimum-jerk pulse leading to errors
below 10−4 and certain magical time windows for the STA
pulse where the error is suppressed by at least one order of
magnitude [25]. In the investigated parameter interval, we
observe that the performance of our STA pulse is almost
independent of the moving-tweezer depth.

Finally, we identify a constraint on the choice of the
total transport duration linked to the fundamental QSL
of the system [18,37]. For an experimentally achievable
moving-trap depth of about 3.57 × 2π MHz and a trans-
port distance of 7 µm, our results point toward a QSL of
about 8 τst (here, for 39K atoms, τst ≈ 0.03 ms is the char-
acteristic time of the static tweezers, and this is related
to that of the moving trap τmt via τst ≈ 2 τmt for the
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considered maximum tweezer depth), a value that coin-
cides with the time at which the population of vibrational
states is equal to half of the states hosted by the trap.
Although our obtained time threshold for the transport pro-
cess is roughly five times larger than the one reported in
Ref. [20], our results show a lower time threshold for the
atom-transfer stage; in our case the time invested in the
transfer stage is nine times smaller than the experimental
time reported in Ref. [19]. Since the time required for cap-
turing or releasing the atom was estimated to be 12 times
larger than the time needed for the pure transport process
[17], and the protocol of Ref. [20] does not include this
time cost, our results highlight the importance of including
the transfer between tweezers in the model.

The remainder of this paper is structured as follows. In
Sec. II, we present our model for the atom-transport prob-
lem. In Sec. III, we describe the considered experimental
pulses together with the method to generate analytical
pulses by means of an STA procedure. In Sec. IV, we char-
acterize the transport process for all the considered pulses
and report the optimization results obtained using realistic
experimental parameters. A summary and conclusions are
given in Sec. V. Appendixes A–D provide details about the
STA calculations, the numerical time evolution method,
and the transport dynamics.

II. ATOM TRANSPORT IN AN EXTERNAL
POTENTIAL

The transport of an atom in the presence of a static exter-
nal potential Vst(x), from the initial position xi = 0 at time
ti = 0 to the final position xf = d at time tf = T can be
generically described by the Hamiltonian

H(x, t) = − �2

2m
∂2

∂x2 + Vmt(x, t)+ Vst(x), (1)

where m is the mass of the atom. In current experiments,
the external potential Vst(x) is typically generated either
by a series of stationary optical tweezers, leading to a sum
of Gaussian traps, or by counterpropagating laser beams,
resulting in a sinusoidal pattern [1,8,9,14,38–43]. Here,
we consider 39K atoms with m = 6.47 × 10−26 kg, and we
focus on static Gaussian traps, meaning that the external
potential Vst(x) consists of a set of nst time-independent
Gaussian wells defined by the depth amplitude Ast/� =
0.53 × 2π MHz, width σst = 0.35 µm, and minima posi-
tions xn

st = (n − 1)d, with d = 7 µm being the distance
between two adjacent minima of the periodic potential
and n = 1, 2, . . . , nst [44]. To model the moving tweezer,
we use a time-dependent Gaussian potential Vmt(x, t) and
assume that the width of the tweezer is fixed to σmt =
0.47 µm during the evolution [17,19,44,45]. Then, the con-
trol parameters for our problem are the amplitude of the
moving tweezer Amt(t) (trap depth) and the position of the

center of the Gaussian well xmt(t). The static and moving
potentials are respectively

Vst(x) = −Ast

nst∑

n=1

exp
(

− (x − xn
st)

2

2σ 2
st

)
and (2a)

Vmt(x, t) = −Amt(t) exp
(

− (x − xmt(t))2

2σ 2
mt

)
. (2b)

For the particle to be correctly transferred from the ini-
tial static tweezer to the moving one, transported through
the total distance d, and then transferred to the final static
tweezer, the following boundary conditions need to be
satisfied:

Amt(ti) = 0 and Amt(tf) = 0,

xmt(ti) = xi = 0 and xmt(tf) = xf = d.
(3)

While the maximum amplitude for both the moving
tweezer and the static traps are given by the power of the
laser beams, the dynamics of the transport protocol depend
on the trade-off between the static and moving amplitudes.
Comparable amplitudes translate into a strong interaction
between the moving and static tweezers, with the conse-
quent oscillations of the atom in the traps that, in turn,
lead to losses during transport. To prevent this from hap-
pening, we impose an extra condition on the amplitude
during transport: Amt > Ast, usually chosen as Amt ≈ 10Ast
[6,17,19].

Figure 1 presents a scheme of the atomic-transport pro-
tocol. The initial state |ψi〉 and final target state

∣∣ψtg
〉

are
the ground states, computed via exact diagonalization, of
the static Hamiltonian with a single Gaussian potential
centered at xi = 0 and xf = d, respectively. The goal is
to determine the controls xmt(t) and Amt(t) such that the
state after the complete time evolution, denoted by |ψ(tf)〉,
closely approximates the localized ground state of the final
targeted trap

∣∣ψtg
〉
. To quantify the error after the trans-

port protocol, we compute the infidelity I(tf) = 1 − F(tf),
where F(t) is the fidelity, which is defined as the over-
lap F(t) = ∣∣〈ψ(t)

∣∣ψtg
〉∣∣2. To shape the control pulses that

execute the transport task with low infidelity, we first char-
acterize the performance of several different pulse shapes
based on current experimental realizations together with
pulses that we derive within the STA formalism. In a sec-
ond stage, we use these pulse profiles as initial guesses
for optimal pulse shaping using the QuOCS toolkit, which
allows us to reach even higher and more stable fidelities.

III. TRANSPORT PULSES

This section presents a theoretical description of the
considered pulses. In Sec. III A, we describe the ini-
tial guesses motivated by experimental considerations.
Section III B contains the analytical derivation of the STA
solution.
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(a)

(b)

FIG. 1. Illustration of the transport protocol. (a) Two adjacent
static tweezers (blue) separated by a distance d. (b) The atom
initially trapped at xi = 0 is transported to the position xf = d
in a total time T = tf − ti. The amplitude of the external poten-
tial (static tweezers) denoted by Vst(x) is shown as a solid black
line, while that of the moving tweezer Vmt(x, t) is depicted by
dashed blue lines with a color gradient indicating the time evolu-
tion (from ti to tf lighter to darker—left to right). The probability
of finding the particle in the position x is given by |ψ(t)|2 and
it is represented by the filled curves with a purple color gradient
associated with the time arrow.

A. Pulses based on experiments

In current experiments, the choice of the ramps that con-
trol the position of the moving tweezer aims to suppress
heating and losses, or equivalently, to minimize excita-
tions during and after transport [1,7,8,10–12,17]. In our
model, the control pulses time-dependently define the spa-
tial trajectory followed by the bottom of the Gaussian trap
xmt(t) and its depth, determined by the amplitude Amt(t). In
practice, the minimum of the tweezer potential coincides
with the focal spot [46], while the amplitude is propor-
tional to the power of the beam [47]. The four transport
trajectories based on current experiments that we consider
are piecewise linear, piecewise quadratic, minimum jerk
(derivative of the acceleration), and a hybrid trajectory that
combines the linear and minimum-jerk ones. These are
defined below.

The linear pulse, used for instance in Ref. [17], has the
advantage of simplicity and the fact that the constant veloc-
ity can be implemented straightforwardly in experiments
(using a constant sweep rate for the AOD frequency), but
it is known to cause excitation due to the abrupt changes
in the transport velocity at the discontinuity points. In

the case of the piecewise-quadratic trajectory used in the
experiments of Ref. [7], the atoms experience alternating
accelerations of the same magnitude in the first and sec-
ond half of the trajectory. This kind of quadratic pulse
can be readily implemented with frequency-control sys-
tems [48]; however, the discontinuity in the acceleration
might induce heating. The need for smooth position func-
tions then arises to avoid unwanted excitations or energy
excess. Although it was introduced in a completely dif-
ferent context (voluntary movements in primates [49]) 40
years ago, the minimum-jerk trajectory satisfies the lat-
ter requirement and was recently used to study diatomic
molecule formation with the associated requirement of
having not only the two atoms close enough but also in
their relative motional ground state [10,11,19]. This tra-
jectory minimizes the square of the jerk (derivative of the
acceleration) over the full path, and it is also obtained when
a polynomial ansatz is used to solve the position as a func-
tion of time for a translation with zero initial and final
velocity and acceleration. In Ref. [10] the authors argue
that the selection of the trajectory should aim to mini-
mize heating due to jerk at the end points, and to avoid
parametric heating due to trap depth oscillations [50]. The
latter condition is further explained in Ref. [19]; when the
frequency of the AOD is driven with a constant sweep
rate (associated with a linear translation) resonant intensity
modulations arising from imperfections in the AOD are
avoided (see also Ref. [12]). A good compromise between
preventing heating from changes in the acceleration at the
beginning and end of the movement and at the same time
avoiding resonant intensity modulations is found by using
a hybrid pulse that implements a minimum-jerk trajectory
for the start and end of the ramp and a constant-velocity
(linear) translation for intermediate times.

As polynomial or piecewise-polynomial functions of
time, the linear, quadratic, minimum-jerk, and hybrid tra-
jectories have a simple analytical form. Since the target
state in the final tweezer should closely match the initial
state in the initial tweezer, and the considered static tweez-
ers only differ in their position, one can chose symmetric
“palindromic” pulses to reduce the degrees of freedom. In
particular, the four families of experimentally motivated
pulses that we consider are time-reversal symmetric. The
linear trajectory xl is given by

xl(d, τ , t) = d
t
τ

, (4)

where d is the distance covered and τ is the total time
required for transport.

The piecewise-quadratic trajectory xq, with a position
described by two parabolas that intersect in the mid-
point and have piecewise-constant acceleration, can be
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written as

xq(d, τ , t) = d

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2
(

t
τ

)2

for 0 ≤ t ≤ τ

2
,

−2
(

t
τ

)2

+ 4
t
τ

− 1 for
τ

2
≤ t ≤ τ .

(5)

In turn, the minimum-jerk trajectory xmj reads

xmj(d, τ , t) = d

(
10
(

t
τ

)3

− 15
(

t
τ

)4

+ 6
(

t
τ

)5
)

, (6)

where it is straightforward to check that the initial (t = 0)
and final (t = τ ) velocity and acceleration are equal to
zero.

Finally, the hybrid trajectory xhyb is defined upon the
fraction ξ of the total transport time that follows a linear
motion. This fraction parameter is also called hybridic-
ity [19]. Since the total time under linear motion ξτ

ranges between 0 and τ , we have 0 ≤ ξ ≤ 1. Moreover,
for ξ = 0, the trajectory reduces to the minimum-jerk tra-
jectory, while for ξ = 1, the trajectory coincides with the
piecewise-linear one, so it is reasonable to expect that
when changing the parameter ξ , the dynamics of the sys-
tem should interpolate between the dynamics under the
linear and minimum-jerk pulses. The hybrid trajectory can
be written as

xhyb(d, τ , t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

xmj
(

d
8(1 − ξ)

8 + 7ξ
, τ(1−ξ), t

)
for 0 ≤ t ≤ 1 − ξ

2
τ ,

d
(

15
8 + 7ξ

t
τ

− 7(1 − ξ)

2(8 + 7ξ)

)
for

1 − ξ

2
τ ≤ t ≤ 1 + ξ

2
τ ,

xmj
(

d
8(1 − ξ)

8 + 7ξ
, τ(1−ξ), t−τξ

)
+ d

15ξ
8 + 7ξ

for 1+ξ
2 τ ≤ t ≤ τ .

(7)

In Ref. [10], the experimental values of ξ are 0 and 0.95,
i.e., a full minimum-jerk trajectory and a 95% linear one.
The authors of Ref. [19] use ξ = 0.1 [see their Fig. 3(b)],
value with which they report being able to avoid resonant
intensity modulations for a translation of 4.5 µm and τ ≈
1.3 ms.

As mentioned before, we account not only for the trans-
port process but also the transfer from the initial static
trap to the moving tweezer and from the moving tweezer
toward the target static one. Therefore, the protocol con-
sists of three main stages: capturing the particle initially
in the first static trap, the transport, and the final release
of the particle in the target static tweezer. In the capturing
stage, the depth of the moving tweezer is monotonically
raised from zero to its maximum amplitude Amax

mt while
the position is kept constant. In the second transport stage,

the position of the focal point follows one of the trajec-
tories of Eqs. (4)–(7), while the power of the laser is
kept constant, consistent with the experiments described
in Ref. [11]. The third releasing stage is the inverse pro-
cess of capturing: while maintaining the target position,
the depth of the moving tweezer is decreased to zero.
To assess the dynamics and quality of the final state, we
add a fourth stage, which we call waiting time. During
this time, the moving tweezer is off, and we evaluate sev-
eral statistical measurements over the final state, mainly
to examine its time stability and the possible presence of
oscillations after transport (see for example Ref. [20]).
Moreover, this waiting time can be used in the experiments
to re-cool the atom before, for instance, the next concate-
nated transport step. The amplitude that we consider is then
given by

Amt(t) = Amax
mt

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3
1 − η

t
T

for 0 ≤ t ≤ 1 − η

3
T,

1 for
1 − η

3
T ≤ t ≤ 1 + 2η

3
T,

2 + η

1 − η
− 3

1 − η

t
T

for
1 + 2η

3
T ≤ t ≤ 2 + η

3
T,

0 for
2 + η

3
T ≤ t ≤ T,

(8)
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where ti = 0 and tf = T. The total time T is divided into
fractions defined by the parameter η, the transport time
is assigned to be ηT, and the remaining time is divided
into three intervals of equal length (1 − η)T/3 for the

capturing, releasing, and waiting stages. By doing so, we
invest equal times for the capturing, releasing, and waiting
stage. The obtained total position pulse is

xmt(t) = xi +

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for 0 ≤ t ≤ 1 − η

3
T,

x(d, ηT, t−1 − η

3
T) for

1 − η

3
T ≤ t ≤ 1 + 2η

3
T,

d for
1 + 2η

3
T ≤ t ≤ 2 + η

3
T,

d for
2 + η

3
T ≤ t ≤ T,

(9)

where x(d, τ , t) denotes any of the trajectories defined in
Eqs. (4)–(7).

The respective pulses are shown in Figs. 2(a) and 2(b).
Figure 2(a) shows the amplitude obtained via Eq. (8)
for a maximum amplitude Amax

mt /� = Aexp/� = 3.57 ×
2π MHz, d = 7 µm, η = 2/5, and T = 2.5 ms [45]. The
start and end times of the transport stage are indicated as
gray dashed vertical lines. Both controls Amt(t) and xmt(t)
satisfy the boundary conditions specified by Eq. (3). While
the amplitude for the experimentally motivated pulses
is always a piecewise-linear function, all the trajectories
have an s-shape position dependence. In Fig. 2(b), the
piecewise-linear trajectory (solid magenta) and minimum-
jerk trajectory (solid blue) are presented as the limiting
cases of the hybrid trajectory, which is depicted for several
ξ values (gradient from magenta to purple). The minimum-
jerk trajectory has the smallest velocity at the beginning
(for details about the differences between the pulses at the
beginning of the transport interval, see the insets of Fig. 2
depicting enlarged views of the pulses for times between
0.5 and 1 ms and positions between 0 and 1 µm) and at
the end of the transport and reaches the highest one at the
middle time point. For the hybrid pulse, the change ratio
at the beginning and at the end of the transport decreases
for decreasing hybridicity ξ . The quadratic pulse (dashed
yellow line) has a higher velocity in the first and final part
of the transport when compared to the minimum-jerk one,
and it also has a slightly higher velocity in the middle time
or inflection point.

B. Shortcut-to-adiabaticity solution

Since the piecewise-linear, hybrid, minimum-jerk, and
quadratic control pulses are experimentally inspired
ansätze for transport, they do not include the specifics
of the system, which are encoded in the Hamiltonian of
Eq. (1). In particular, there is no consideration of the shape

of the moving tweezers Vmt(x, t), let alone the presence of
the static tweezers Vst(x) in the background [see Eq. (2)].
To derive pulses that solve the fast-transport problem tak-
ing into account these effects while offering flexibility for
satisfying desirable and realistic boundary conditions, we
draw upon the STA framework. The main idea of STA
methods is to develop protocols that lead to the same
final state as their adiabatic (slow) counterpart in consid-
erably shorter times [51], enabling us to avoid noise and
decoherence effects.

The minimum-jerk trajectory was proposed to perform
a translation of the minimum point of a perfect harmonic
oscillator with minimal motional excitation at the begin-
ning and end of the transport by constraining the velocity
and acceleration to be zero at the initial and final times (see
for instance Refs. [15,25,52]). Here, we use the minimum-
jerk functional form in intermediate steps of the derivation
of a new set of controls Amt(t) and xmt(t), which take
into account the specific form of the moving and static
tweezers. While several STA-based approaches for atom
transport have been proposed [15,25,31,53–57], to the best
of our knowledge, the background of static tweezers has
not previously been incorporated into an STA solution. To
address a more realistic scenario, we derive an STA control
pulse that includes the transfer between optical tweezers in
the transport, therefore avoiding errors during this critical
stage.

The first step in our approach is to approximate the
Hamiltonian of Eq. (1) with a time-dependent harmonic
oscillator and then use known results on fast eigenstate
transfer for the harmonic case [15,58]. In this way, the
time-dependent oscillator accounts for both the static and
moving tweezers. We start by expanding the complete
potential in a Taylor series up to the second order around
the center of the moving tweezer xmt(t). By complet-
ing the resulting polynomial in x to a square form and
ignoring a time-dependent energy offset, we obtain a
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(a) (c)

(b) (d)

FIG. 2. Control pulses: position xmt(t) and amplitude Amt(t).
The depth of the moving tweezer or amplitude control is shown
in panels (a) and (c), while the position of the minimum of the
moving trap is shown in panels (b) and (d) for a total time of
a total time of T = 2.5 ms, a maximum amplitude Amax

mt /� =
3.57 × 2π MHz, a transport time ηT with η = 2/5, and a total
distance between static tweezers d = 7 µm. The start and end of
the transport stage are indicated by gray dashed vertical lines. (a)
Piecewise amplitude ramp consisting of four stages: transferring
the atom from the initial static tweezer to the moving one, trans-
port, transferring the atom from the moving tweezer to the target
static one, and a final waiting or measuring time, see Eq. (8);
(b) Position of the moving tweezer as a function of time for a
piecewise-linear (magenta), minimum-jerk (blue), and quadratic
(yellow dashed line) pulses [see Eqs. (4)–(6)]. The linear and
minimum-jerk trajectories are particular cases of the more gen-
eral hybrid pulse given in Eq. (7), which is also depicted for
hybridizations ξ = 0.2, 0.4, 0.6, and 0.8 (curves with color gra-
dients from blue to magenta; see insets for details of the position
control at the beginning of the transport stage). The velocity of
the moving tweezer at the beginning and end of the transport
interval decreases with ξ and is minimum for the minimum-jerk
pulse. (c) Amplitude shape calculated within the STA approach,
showing the full numerical solution (solid turquoise curve) and
the approximation obtained using Eq. (21) (dashed orange line).
The piecewise-linear amplitude associated with the piecewise-
linear, hybrid, minimum-jerk, and quadratic ramps is shown as
a light gray curve to highlight that the maximum amplitude
is the same for all pulses. The two peaks at maximum ampli-
tude depicted by the STA pulse are developed to counteract the
restoring force of the static tweezers. (d) Full numerical and
approximated position of the moving tweezer obtained with the
STA formalism, same color code as in panel (c).

moving harmonic oscillator with a time-dependent effec-
tive frequency

H0(x, t) = − �
2m

∂2

∂x2 + mω(t)2

2
[x − x0(t)]2, (10)

where ω(t) and x0(t) are related to the controls and the
derivatives of the static potential through

mω2(t) = d2Vst

dx2

∣∣∣∣
xmt(t)

+ Amt(t)
σ 2

mt
, (11)

and

x0(t) = xmt(t)−

dVst

dx

∣∣∣∣
xmt(t)

mω2(t)
. (12)

For the time-dependent Hamiltonian of Eq. (10), it is pos-
sible to construct a dynamical invariant I(x, t) such that
for any wave function ψ(t) evolving with H0(x, t), we
have (d/dt)〈ψ(t)|I(t)|ψ(t)〉 = 0. This means that with the
appropriate time dependence of ω(t) and x0(t), if the sys-
tem is initially in an eigenstate of H0(ti), the time evolution
will map it onto the corresponding eigenstate of H0(tf)
(see Appendix A for details). For our particular form of
H0(x, t), the dynamical invariant involves two auxiliary
functions α(t) and ρ(t) that satisfy

x0(t) = α̈(t)
ω2(t)

+ α(t) and (13)

ω2(t) = ω2
0

ρ4(t)
− ρ̈(t)
ρ(t)

, (14)

where ω0 is a free constant. From the first of these equa-
tions, we see that α(t) can be identified with a classical
trajectory of a driven generalized classical harmonic oscil-
lator [59], and ρ(t) can be seen as a spatial rescaling factor.
While Eqs. (13) and (14) ensure that H0(x, t) has fast trans-
port modes given by the eigenstates of I(t) up to a phase,
we also need them to coincide with the eigenstates of
H0(x, t) at the initial and final times. To fulfill the latter
requirement, the two auxiliary functions must also satisfy
the following boundary conditions:

α̇(ti) = α̈(ti) = α̇(tf) = α̈(tf) = 0 and (15)

ρ̇(ti) = ρ̈(ti) = ρ̇(tf) = ρ̈(tf) = 0. (16)

The strategy to obtain the desired pulse is essentially
reverse engineering. First, we choose α(t) and ρ(t) satisfy-
ing the boundary conditions, which we then use to compute
x0(t) and ω(t) using Eqs. (13) and (14). After that, we
numerically solve Eq. (12) to find the position of the mov-
ing tweezer xmt(t), which is finally plugged into Eq. (11) to
obtain the tweezer amplitude Amt(t).

A simple way to design functions satisfying boundary
conditions on the derivatives such as those of Eqs. (15)
and (16) is to look for an appropriate polynomial func-
tion [15,52,53,60]. This polynomial interpolation has the
advantage that most of the calculations can be carried out
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analytically. As already mentioned, the lowest-order poly-
nomial in a variable s having vanishing first and second
derivative at the initial and final points (s = 0, 1) is given
by the minimum-jerk polynomial pmj(s) = 10s3 − 15s4 +
6s5 (notice that pmj(0) = 0 and pmj(1) = 1); therefore, we
choose both α(t) and ρ(t) to have the functional form
of pmj with suitable multiplicative and additive constants.
Because our transport protocol is divided into stages, we
apply the reverse-engineering process to each time interval
and require continuous outputs. In other words, for each
stage, we propose α(s) = αi + pmj(s)(αf − αi) and ρ(s) =
ρi + pmj(s)(ρf − ρi), where s = t/(tf − ti) is the dimen-
sionless time and the i and f subscripts denote initial and

final values over the considered interval. Using this form
for the auxiliary functions, Eqs. (15) and (16) are satisfied
for any αi,f and ρi,f, which are to be fixed by the initial and
the target position and by requiring the physical controls to
be continuous functions of time.

We now turn to the calculation of the auxiliary functions.
As mentioned before, for the proposed form for α(t), it is
easy to see that α̈(t) vanishes at the initial and the final time
of each stage, i.e., for t = 0, (1 − η)T/3, (1 + 2η)T/3,
(2 + η)T/3, and T; therefore, for those values of time, we
have α(t) = x0(t). Since the position of the moving optical
tweezer x0(t) only changes during the transport interval,
the calculation of α(t) is straightforward and leads to

α(t) = d

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for 0 ≤ t ≤ 1 − η

3
T,

10

(
t − (1−η)

3 T
ηT

)3

− 15

(
t − (1−η)

3 T
ηT

)4

+ 6

(
t − (1−η)

3 T
ηT

)5

for
1 − η

3
T ≤ t ≤ 1 + 2η

3
T,

1 for
1 + 2η

3
T ≤ t ≤ 2 + η

3
T,

1 for
2 + η

3
T ≤ t ≤ T.

(17)

To compute the auxiliary function ρ(t), it is useful to define
the frequency associated with the static traps

ωst =
√

1
m

d2Vst

dx2

∣∣∣∣
x=0,d

=
√

Ast

mσ 2
st

, (18)

and the maximum frequency for the moving tweezer over
the capturing and releasing intervals, which is the same as
the initial frequency in the transport interval and is given in
terms of the maximum depth of the moving tweezer over
the capturing (c) or releasing (r) stages Amax,cr

mt :

ω
max,cr
mt =

√
Amax,cr

mt

mσ 2
mt

. (19)

Notice that in the case of the experimentally inspired
pulses described in the previous section, Amax,cr

mt matches
the global maximum amplitude of the pulse Amax

mt . At the
beginning of the capturing stage, at the end of the releas-
ing interval, and at the end of the protocol (i.e., for t = 0,
(2 + η)T/3, and T), the moving tweezer is completely off,
and we therefore have ω(t) = ωst [see Eq. (11)].

In contrast, at the end of the capturing interval and at the
beginning of the releasing interval, i.e., for t = (1 − η)T/3
and (1 + 2η)T/3, the amplitude of the moving tweezer
is at its maximum value over the capturing or releasing

stage, meaning that ω(t) =
√
ω2

st + (ω
max,cr
mt )

2. Using this
in Eq. (14), we get

ρ(t)=
√
ω0√
ωst

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 +
(

1
4√
ω̃2+1

−1
){

10
(

t
(1−η)

3 T

)3

− 15
(

t
(1−η)

3 T

)4

+ 6
(

t
(1−η)

3 T

)5
}

for 0 ≤ t ≤ 1−η
3 T,

1
4√
ω̃2+1

for 1−η
3 T ≤ t ≤ 1+2η

3 T,

1
4√
ω̃2+1

−
(

1
4√
ω̃2+1

−1
){

10
(

t− (1+2η)
3 T

(1−η)
3 T

)3

− 15
(

t− (1+2η)
3 T

(1−η)
3 T

)4

+ 6
(

t− (1+2η)
3 T

(1−η)
3 T

)5
}

for 1+2η
3 T ≤ t ≤ 2+η

3 T,

1 for 2+η
3 T ≤ t ≤ T,

(20)

024070-8



FAST ATOM TRANSPORT BETWEEN TWEEZERS. . . PHYS. REV. APPLIED 24, 024070 (2025)

with ω̃2 = (ω
max,cr
mt /ωst)

2 = Amax,cr
mt σ 2

st/(Astσ
2
mt). Now that

we have the expression for ρ(t), the calculation of ω(t) is
straightforward via Eq. (14). The resultingω(t) can be used
together with α(t) in Eq. (13) to obtain x0(t). It is important
to note that since ρ(t) ∝ √

ω0, and also because α(t) does
not depend on this quantity, ω(t) (and as a consequence
x0(t)) are independent of ω0. After that, the obtained x0(t)
is plugged into Eq. (12), and the equation is numerically
solved to get xmt(t), which we then use in Eq. (11) to derive
the amplitude control Amt(t).

The numerical solutions for the amplitude and the posi-
tion of the bottom of the moving trap are shown in
Figs. 2(c) and 2(d) as solid turquoise curves. To compare
these engineered solutions with the pulses described in
the previous section, we superimpose the piecewise-linear
pulse and the piecewise-linear amplitude as light-gray
solid curves. Note that the inset of Fig. 2(d) provides an
enlarged view of the pulses for times between 0.5 and
1 ms and positions between 0 and 1 µm. While x0(t)
strongly resembles the minimum-jerk trajectory, the ampli-
tude presents two peaks that counteract the effect of the
static tweezers during the atom-transport task and are
directly related to the second-derivative term in Eq. (11)
(see also Appendix A). For a general problem, the quan-
tity and spacing of these peaks will be given by both the
number of static traps and the spatial separation between

them. In most experimental implementations, the power of
the laser that generates the moving tweezer is kept constant
during the movement (see for instance Ref. [11] or Fig. 9 of
Ref. [19]), as we already consider for the piecewise-linear,
hybrid, minimum-jerk, and quadratic ramps; however, in
the supplemental material of Ref. [8], the authors mention
that when transferring from the static to the moving tweez-
ers, they use a quadratic intensity profile, highlighting the
possibility of implementing our STA amplitude pulse.

Before moving to the next section, we provide a quite
simple and directly applicable analytical approximation
for the STA controls. The approximated solutions can be
obtained using a quadratic approximation for the external
potential, Vst(x) ≈ −Ast(1 − 2x/d)2, which is only valid
between the two minima, i.e., for 0 ≤ x ≤ d. Within this
approximation, we get

xmt(t) ≈
x0(t)+ 4Ast

dmω2(t)

1 + 8Ast
d2mω2(t)

, (21)

an expression that when combined with Eq. (11) leads to
an approximated solution for Amt(t). It is important to note
that, for this approximated xmt(t), the boundary conditions
are also approximately fulfilled. In the transport interval,
the approximated solution can be written as

xmt(t) ≈ d

10
(

t− 1−η
3 T
ηT

)3

− 15
(

t− 1−η
3 T
ηT

)4

+ 6
(

t− 1−η
3 T
ηT

)5

+
60

⎛

⎝
(

t− 1−η
3 T
ηT

)
−3

(
t− 1−η

3 T
ηT

)2

+2

(
t− 1−η

3 T
ηT

)3
⎞

⎠

(ηT)2
(

Ast
mσ2

st
+ Amax,cr

mt
mσ2

mt

) + 4Ast

d2
(

Ast
σ2

st
+ Amax,cr

mt
σ2

mt

)

1 + 8Ast

d2
(

Ast
σ2

st
+ Amax,cr

mt
σ2

mt

)
.

(22)

A direct evaluation of the coefficients of the second
and third terms of the numerator, as well as the sec-
ond term in the denominator, leads to values below 10−3,
meaning that the STA trajectory closely resembles the
minimum-jerk one. Importantly, with the same Taylor
expansion, we also derived an approximation for the max-
imum amplitude of the STA pulse in terms of the maxi-
mum amplitude over the capturing or releasing stage (or,
equivalently, the initial amplitude in the transport inter-
val), Amax

mt,STA ≈ Amax,cr
mt + Ast(1 + 2/e3/2)σ 2

mt/σ
2
st ≥ Amax,cr

mt .
The latter expression allows us to compare pulses with
the same global maximum amplitude, which is the rele-
vant experimental parameter. The approximations obtained
for the STA control pulses using the same experimentally

realistic values for the parameters as in the previous sec-
tions are depicted in Figs. 2(c) and 2(d) as dashed orange
lines. We checked that the approximation for the maxi-
mum amplitude of the STA ramp presents a very good
agreement with the full numerical results, and also that the
relative error between the full numerical solution and the
approximation for the amplitude is less than 4% during
the transport interval.

In a recent work, Hwang et al. experimentally demon-
strated the advantage of an STA-based trajectory over the
constant-velocity and constant-jerk trajectory [61]. Also
using STA techniques and a harmonic truncation of the
tweezer potential, Jaewook Ahn’s team developed a tra-
jectory very similar to that given in Eqs. (21) and (22),
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and they demonstrated that the STA survival probabil-
ity of atoms after transportation outperforms the non-STA
ones. We would like to highlight that even though our
approaches are similar, there are two key differences:
first, their calculations consider only the moving tweezer
and not the static ones, and second, they do not develop
the amplitude pulse to make use of the depth of the
tweezer as a second control variable. To compare both
STA approaches, we simulate the transport protocol using
the trajectory described in Ref. [61] for a total distance of
7 µm and Amax

mt /� = 3.57 × 2π MHz. For a protocol time
of 2.5 ms, we obtain an infidelity of 1.5 × 10−5, to be com-
pared with the minimum-jerk infidelity of 1.4 × 10−5 and
the one for our full STA solution of 5.3 × 10−6; moreover,
the infidelity obtained with our STA approach is one order
of magnitude below the infidelity reported in Ref. [61]
for total pulse times in the range [0.01, 3] ms. As we
show in the next section, incorporating a modulation into
the amplitude of the moving tweezer that counteracts the
restoring force of the static traps allows the STA pulse to
outperform the experimentally motivated ones, even with-
out optimization. We trust that the simple approximations
for our STA solutions provided in this section will moti-
vate their experimental implementation in the near future
[62].

IV. ATOM TRANSPORT CHARACTERIZATION
AND OPTIMIZATION

In this section, we present a performance analysis of the
considered pulses and their subsequent optimization.

A. Performance of the closed-form pulses

To evaluate the performance of the transport of a single
atom under the piecewise-linear, hybrid, minimum-jerk,
quadratic, and STA pulses, we are mainly concerned with
two features: first, that the transport is faithful (high-
fidelity condition), and second, that the vibrational exci-
tations of higher states are reasonably bounded to prevent
atom losses [63,64]. To check the first condition, we ana-
lyze the transport infidelity. As explained in Sec. II, the
infidelity quantifies the error after the transport, and it is
closer to zero when the state of the atom is closer to the
target state. Since our target state is the ground state of the
target tweezer, a lower infidelity at the end of the transport
is equivalent to limited heating after the complete transport
protocol.

Since the potential of an optical tweezer has finite depth,
it is also necessary to assess whether the no-heating condi-
tion is satisfied during transport. As discussed in Ref. [64],
the main effect of heating is to expel the atom from the
trap not as a result of an increase in the mean energy
but as a consequence of the spreading of the width of
the distribution over the energy states (the physical pic-
ture is that when the upper tail of the distribution reaches

untrapped levels, the atom is lost). Based on this argument,
to quantify the increase in the vibrational quantum num-
ber, we calculate the mean value 〈N 〉 and the width �N of
the distribution of the atomic state over the instantaneous
eigenstates of the moving tweezer. Following Ref. [65], we
also calculate an effective temperature given by the expec-
tation value of the kinetic operator Teff = 2〈K〉/kB, with
kB denoting the Boltzmann constant and K = p2/(2m),
where p is the momentum operator. By means of the
virial theorem for a harmonic trap, we have 〈H 〉 = 2〈K〉
[66]. Thus, Teff is a measure of the mean energy of the
system, which is usually reported to analyze the stabil-
ity of the system during transport [25,56]. In our case,
the maximum depth of the moving tweezer during trans-
port hosts about 55 oscillator levels, and the deviation
of the lower states with respect to the harmonic ones is
small. In the following, we use Système International (SI)
units and characteristic units for the time; from the fre-
quency of the static potential [see Eq. (18)], we can define
a characteristic time as τst = 2π/ωst ≈ 0.03 ms. We use
this value, since it is fixed for any maximum amplitude
of the moving tweezer; however, the relationship between
this value and the characteristic time during transport is
τmt = 2π/ωmax

mt ≈ τst/2.
The infidelity as a function of the total time T is reported

in Fig. 3 for the piecewise-linear, hybrid (ξ = 0.8, 0.4),
minimum-jerk, quadratic, and STA (full numerical solu-
tion and approximation) pulses from left to right. We
consider total times ranging between 0.01 and 3 ms, in
agreement with the experimental values (see for instance
Ref. [10] or Ref. [19]). We calculate the maximum (solid
curve), average (dashed line), and last value (dotted line)
of the infidelity over the final interval of the pulse. Since
it constitutes an upper bound, we propose the maximum
value as the quantity to be used when comparing with
experimental results. The shaded area corresponds to one
standard deviation as a measure of the error in the fidelity.

As expected, the piecewise-linear pulse produces the
highest error after transport (with an infidelity higher than
10−2 for all T) and sustained oscillations (with a period
of about 12 τst). The hybrid-pulse behavior interpolates
between the minimum-jerk and the linear behavior and
presents more oscillations for higher ξ (i.e., going toward
the linear ramp, as expected). The quadratic-pulse infi-
delity has a similar behavior to that of the hybrid pulse with
ξ � 0.5 but with a slightly higher oscillatory behavior.
Among all the pulses, the minimum-jerk and the STA ones
present the smoothest and most stable behavior. Moreover,
the STA pulse also enables reaching the lowest infidelity
in the shortest time; the infidelity rapidly decreases for
T between 10 and 20 τst and then reaches a stable value
around 10−4. In general, we observe that all the pulses
fail in the transport task for T � 10 τst. For total times
greater than 10 τst, the infidelity decreases when the total
time increases, and the hybrid, minimum-jerk, quadratic,
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(a) (b) (c) (d) (e) (f)

FIG. 3. Error after transport. Infidelity I versus total time T for the initial (top) and optimized (bottom) pulses with: (a) piecewise
linear; hybrid with (b) ξ = 0.8 and (c) ξ = 0.4; (d) minimum jerk; (e) quadratic; and (f) STA. All the pulses have a maximum
amplitude of Amax

mt /� = 3.57 × 2π MHz, the transport time is given by η T with η = 2/5, and the total distance between static tweezers
is d = 7 µm. The maximum, average, and last value of the infidelity over the last stage of the protocol [see Eqs. (8) and (9)] are shown
as solid, dashed, and dotted lines, respectively. The shaded area indicates the standard deviation calculated over the same time interval
and quantifies the error in the infidelity. The vertical gray dashed line highlights the value of the total time for which the infidelity
reaches the threshold of 10−4. For the hybrid pulse with ξ = 0.8 and 0.4, minimum-jerk, quadratic, and STA ramps, the corresponding
times are approximately 48 τst, 41 τst, 31 τst, 38 τst, and 18 τst, with τst being the characteristic time of the static traps (the characteristic
time during transport is τmt ≈ τst/2). For the two hybrid and minimum-jerk optimized pulses, these times decrease to 28 τst, the time
for the quadratic ramp decreases to 31 τst, the STA threshold time does not change, and the piecewise-linear optimized pulse reaches
the infidelity threshold for a total time of approximately 55 τst. For the considered total pulse times and distance, the range for the mean
velocity during transport goes from 1.75 m/s at a total protocol time of 0.01 ms to 5 × 10−3 m/s for a total time of 3 ms.

and STA pulses present two more regimes: a diabatic
regime with some oscillations between T ≈ 10 τst and a
value in the range 20–50 τst, and the adiabatic regime
for sufficiently large T. The total time at which the sec-
ond regime ends depends on the pulse and corresponds
in increasing order to the ramps for STA, minimum jerk,
hybrid with ξ = 0.4, quadratic, and hybrid with ξ = 0.8.
After that, the fidelity saturates with some smooth oscil-
lations that improve when the upper time threshold of the
diabatic regime decreases. Interestingly, the STA approx-
imation captures the two first regimes well, including the
value of the diabatic threshold, but it presents strong oscil-
lations with a period of about 8 τst in the last adiabatic
regime. For total times T � 50 τst, the hybrid, minimum-
jerk, quadratic, and STA pulses reach the adiabatic regime,
and therefore, any of those pulses can faithfully perform
the transport task.

Since the STA ramp presents a clear advantage for
short T, we conclude that our proposed STA protocol has
the best performance, achieving the infidelity threshold
of 10−4 (vertical dashed line) in nearly half of the time
taken by the minimum-jerk trajectory (which is the second-
best one). Moreover, using the fidelity as a measure of
the probability of a faithful transport process between two
tweezers and assuming independent transport processes
(see Ref. [61]) between tweezers, we can estimate the

fidelity after a transport protocol involving nst traps. For
instance, using the infidelity obtained for our STA solution
for a typical experimental transport velocity of 10 nm/µs
[17], we obtain an infidelity of 10−2 after 30 consecu-
tive independent transport movements. In Appendix C,
we present examples of the evolution of the infidelity for
total pulse durations T = 0.5, 1.5, 2.5, and 3 ms, while in
Appendix D, we report the infidelities for various total dis-
tances and total pulse times, as well as their dependence on
the velocity.

To test the performance of the STA solutions in a differ-
ent experimental setting, we compute the pulses and simu-
late the evolution using the parameter values described in
Ref. [17]. Our proposed STA solutions (both fully numer-
ical and approximate) allow us to complete the transport
and transfer between two neighboring tweezers separated
by a distance of 5 µm in 160 µs with an infidelity of
about 10−4. Comparing this time to a total time of 1.25 ms
reported in Ref. [17], our pulse performs the task 7.8 times
faster, even when the transport stage is carried out more
slowly (for us, it takes 80 µs, while in the experiments
of Ref. [17], it takes 50 µs). More strikingly, our STA
protocols reduce the transfer time devoted to capturing or
releasing from and to static traps by a factor of 15 (in our
case 40 µs, versus 600 µs for the experiments reported in
Ref. [17]). We would like to stress that these results could
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be further improved by adapting the ratio between the time
devoted to the transport and transfer stage to parameters of
the system at hand.

Figure 4 depicts the maximum expected value max(〈N 〉)
and the associated uncertainty or width of the distribu-
tion max(�N ) for the occupied states of the moving
tweezer, together with the maximum effective temperature
max(Teff) as a function of the total pulse time T [67]. As
expected, both quantities increase for shorter T because
diabatic processes induce a higher mixture of states. The
increase in the vibrational modes shows a similar behavior
for all the considered pulses; for total times above 0.5 ms,

(a) (b)

FIG. 4. Upper-bound measures of heating during transport.
(a) Maximum of the mean occupied level (points) and width
(error bars) of the distribution over the moving-tweezer states
(denoted respectively by 〈N 〉 and �N ). (b) Maximum effective
temperature Teff over the complete duration of the pulse as a
function of the total time T for the initial pulses (top row) and
the optimized ones (bottom row). The measures obtained for the
piecewise-linear, hybrid with ξ = 0.8 and ξ = 0.4, minimum-
jerk, quadratic, and STA (fully numerical solution and approxi-
mation) ramps are depicted as magenta circles, burgundy crosses,
purple pentagons, blue down-pointing triangles, yellow squares,
turquoise up-pointing triangles, and orange diamonds, respec-
tively, with a line of the same color as a guide for the eye. For a
total pulse time of T ≈ 0.22 ms ≈ 8 τst, the mean occupied level
plus its uncertainty is equal to half of the states hosted by the
moving tweezer. All the initial pulses have a maximum ampli-
tude of Amax

mt /� = 3.57 × 2π MHz, a transport time of ηT with
η = 2/5, and a total distance d = 7 µm. As before, τst denotes
the characteristic time of the static traps, and this is related to
the characteristic time during transport via τmt ≈ τst/2. Given the
ranges for the total pulse time and distance, the mean velocity
during transport lies between 1.75 m/s for a total protocol time
of 0.01 ms to 5 × 10−3 m/s for a total time of 3 ms.

the wave function has a dominant weight over the ground
state of the moving trap and smaller weights over the first
and second excited states. For total pulse times shorter
than 0.5 ms, the expectation value of the occupied mov-
ing tweezer states 〈N 〉 and its uncertainty �N increase
rapidly for decreasing total times. For T ≈ 0.22 ms ≈ 8 τst,
the mean occupied level plus the associated uncertainty
reaches half of the trap states, i.e., 27 levels for our trap
hosting a total of 55 states. An estimation of the vibra-
tional number increase for a moving harmonic oscillator
can be obtained by evaluating the Fourier transform of the
acceleration at the frequency of the oscillator [1,56,68]. By
computing the Fourier transform of the acceleration of our
approximated STA trajectory [Eq. (22)], we find an agree-
ment with less than 10% of relative difference between the
time at which our protocol reaches an increase of 27 oscil-
lator levels and the time that would be needed by the STA
solution proposed by Jaewook Ahn’s group; see Eq. (7) of
Ref. [61].

The hybrid ramps demonstrate a slight advantage when
compared to the rest of the pulses, as they present a smaller
effective temperature for total times T � 1.5 ms. Further-
more, the difference in the effective temperature among the
hybrid ramps and the other pulses increases for shorter
total times, reaching a difference of about 22 µK for
T ≈ 0.3 ms between the quadratic and the hybrid ramp
with ξ = 0.8. Since the change of the energy after the
evolution of a moving harmonic oscillator for a particle ini-
tially in one of the oscillator states is given by the Fourier
transform of the acceleration evaluated at the frequency
of the oscillator [1,56,68], a purely linear pulse does not
induce heating during transport. The incorporation of the
linear part in the hybrid trajectory presented in Ref. [10]
uses the latter advantage and at the same time reduces the
error after transport (as discussed on the basis of Fig. 3,
the piecewise-linear pulse infidelity is more than 2 orders
of magnitude higher when compared to the other pulses)
induced by the velocity discontinuities at the endpoints of
the pulse by replacing them with the minimum-jerk subin-
tervals. In Appendix C, we report 〈N 〉, �N , and Teff as
functions of time for total protocol times T = 0.5, 1.5,
2.5, and 3 ms. Here, it is possible to observe that for
T = 0.5 ms, the hybrid pulse with ξ = 0.8 has the smaller
�N and Teff, followed by the hybrid pulse with ξ = 0.4.

B. Atom-transport optimization

To further reduce the transport error, we implement an
optimization protocol using the d-CRAB algorithm intro-
duced by Rach et al. in 2015 [33–35,69]. This algorithm
offers several advantages over other optimization meth-
ods, mainly because of its efficiency managing high-
dimensional control spaces; by expanding the control
pulses in a randomized basis, it reduces the dimensional-
ity of the search space while circumventing local traps that

024070-12



FAST ATOM TRANSPORT BETWEEN TWEEZERS. . . PHYS. REV. APPLIED 24, 024070 (2025)

could arise due to this restriction. Since within d-CRAB,
only a small number of parameters are optimized at the
same time, the need for gradient information is mitigated
[70,71]. This makes it possible to perform adaptive opti-
mal pulse shaping using experimental data, which implic-
itly allows experimental uncertainties—such as varying
parameters and instrumentation transfer functions [72]—to
be taken into account in the optimization cycle. We observe
that, in practice, the flexibility offered by d-CRAB comes
at the price of increased dependence on the initial guess for
the controls; this is likely the result of a more local search
in the control space. In light of this, the in-depth discussion
of the relevant experimentally feasible pulses and the STA
protocol that we presented in Sec. III becomes especially
important.

We use the QuOCS library [32], which incorporates,
among others, the d-CRAB algorithm in a user-friendly
interface [35]. The QuOCS library allows for a straight-
forward setting of the parameters related to the pulse,
such as the total time and basis parameters. It also allows
the implementation of scaling functions that set appro-
priate limits on the position and amplitude control. We
use an expansion of the control pulse in a basis of sig-
moid functions and select only some of the coefficients
as optimization control. We then conduct a systematic
pulse optimization involving four different optimization
schemes. Following the methodology outlined in Ref. [18],
we optimize the trajectory for different total times and
adjust the initial controls to identify the shortest achievable
time during the numerical analysis.

The infidelity after transport as a function of the total
time T for all the considered pulses is shown in Fig. 3
(bottom row). The optimization improves the fidelity by 2
orders of magnitude for the linear pulse and by one order of
magnitude for the remaining pulses. For all the pulses, the
shaded area corresponding to one standard deviation in the
error over the last waiting interval of the pulse is reduced
by the optimization, pointing toward a much more stable
state after transport (see also Appendix C). The optimized
piecewise-linear pulse reaches the infidelity value of 10−4

for a total time pulse of 55 τst. This threshold time remains
at 18 τst for the STA pulse, not changing appreciably after
the optimization. The threshold time for the remaining
pulses decreases between 10% and 30%; it changes from
48 τst to 28 τst for the hybrid pulse with ξ = 0.8, from 41 τst
to 28 τst for the hybrid ramp with ξ = 0.4, from 32 τst
to 28 τst for the minimum-jerk ramp, and from 38 τst to
31 τst for the quadratic pulse (all these times are indi-
cated with dashed gray vertical lines). We conclude that
the optimization yields a significant improvement for all
the pulses; however, we would like to highlight that the
full numerical solution for the STA protocol shows highly
desirable features, even without optimization. In particular,
our nonoptimized STA solution implies an improvement

of 42% in the total time required to reach the fixed infi-
delity threshold of 10−4 with respect to the nonoptimized
minimum-jerk pulse. In the case of the optimized ramps,
the STA solution improves that time by 36% with respect
to the optimized minimum-jerk pulse.

Since the objective of the optimization is to mini-
mize the final infidelity, there is no guarantee that high-
energy instantaneous eigenstates are not populated during
the obtained transport dynamics, allowing the particle to
escape the trap. For this reason, it is very important to
check that the optimized pulses does not induce heating
during the transport. As can be seen in Fig. 4 (bottom
row), the optimization leads to higher vibrational excita-
tions for the piecewise-linear and hybrid pulse with higher
hybridization (ξ = 0.8). This feature is revealed when
inspecting the effective temperature, but it is magnified by
the behavior of the mean occupied level and the width
of the distribution over the oscillator states, in line with
the discussion presented in Ref. [64]. Our results sug-
gest avoiding the use of piecewise-linear pulses, which
are known to induce heating due to their intrinsic veloc-
ity discontinuities; this is consistent with the good fidelity
obtained in Ref. [19] using a pulse with constant velocity
in the central 10% of the transport interval (ξ = 0.1). The
evolution of the infidelity, 〈N 〉, �N , and Teff is shown in
Appendix C for total times T = 0.5, 1.5, 2.5, and 3 ms.
Appendix C also contains a comparison between some
examples of initial and optimized pulses. We would like
to mention that a very small change in the pulse can trans-
late into a considerable improvement of the fidelity, as was
already exposed from the difference in the performance of
the full numerical solution for the STA pulse when com-
pared to the behavior of the approximated solution. Since
all the optimized pulses except for the piecewise-linear
one show limited heating, our results suggests that the use
of d-CRAB for pulse shaping would not induce collateral
heating that might cause major atom loss during transport.

As a final goal, we turn to the determination of good
regions in the parameter space where the transport protocol
can be reliably implemented in current experiments. We
therefore focus on the two parameters that can be changed
easily in the experiments, namely the total time of the
pulse and the maximum amplitude (depth) of the moving
tweezer. In fact, while the amplitude can be experimentally
adjusted by manipulating the laser power, other parameters
(such as the width of the tweezer) might be challenging to
modify since they are ultimately determined by the optical
elements within the apparatus. To identify good intervals
for the amplitude and total time to run the experiments,
in Fig. 5, we present heat maps for the optimized infi-
delity (minimizing the maximum of I over the last waiting
interval) for the two pulses that enable reaching the infi-
delity threshold of 10−4 in the shortest total time for a
fixed amplitude of Amax

mt /� = Aexp/� = 3.57 × 2π MHz,
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FIG. 5. Determining optimal regions in the experimentally
accessible parameter space for high-fidelity transport pulses. The
infidelity is shown for the minimum-jerk ramp (left) and our
proposed STA pulse (right) after optimization as a function of
the maximum amplitude Amax

mt . The amplitude is in units of
Aexp/� = 3.57 × 2π MHz, and the total time of the pulse T is
given in units of the characteristic time of the static traps τst
(bottom scale) and in milliseconds (upper scale). Lighter col-
ors show regions of smaller infidelity, which quantifies the error
after transport. As before, the characteristic time during transport
is given by τmt ≈ τst/2 and the mean velocity during transport
varies between 1.75 m/s for a total protocol time of 0.01 ms to
5 × 10−3 m/s for a total time of 3 ms.

i.e., the optimized minimum-jerk and STA pulses. We con-
sider total times up to 1 ms ∼ 33 τst (for larger total times,
the infidelity reaches the stable regime) and maximum
amplitudes between Aexp and 10 Aexp, both being realistic
ranges of the parameters for experimental realizations.

Our simulations show that the infidelity of the
minimum-jerk pulse has a strong dependence on both the
total time and the maximum amplitude. For larger ampli-
tude values, longer times are needed to achieve a desired
fixed value of the infidelity. We interpret this on the basis of
the relation between the capturing and releasing time and
the total time of the transport, which are here fixed to T/5
and 2 T/5 respectively. A higher amplitude of the moving
tweezer implies a larger difference between the moving
and static potential, meaning that the system requires a
longer releasing time to adjust toward the target state.
Fixing an error threshold of 10−4, the best region in the
parameter space appears for times longer than 20 τst and
amplitudes between 1 and 4 Aexp. On the other hand, by
incorporating a modulation in the amplitude of the mov-
ing tweezer that counteracts the restoring force of the
static traps, the STA pulse depicts a quite robust infidelity
against amplitude variations. Using our STA pulse, infi-
delities below 10−4 can be obtained for times longer than
20 τst independently of Amax

mt . The STA ramps also seem
to present magic time windows, exposed as lighter ver-
tical stripes, indicating that the infidelity is suppressed
by at least one order of magnitude around T ≈ 10.5 τst,
13.5 τst, 15.5 τst, 17.5 τst, and 25 τst. Such magic times have

already been found in previous works addressing efficient
atom transport. See for instance Refs. [25,31], where the
authors combine reverse-engineering methods with quan-
tum optimal control and design trajectories that show a
strong suppression of the population across excited states
for a given set of magic times [73].

Figure 5 shows a drastic increase in the infidelity for
total pulse durations below 8 τst. This feature can already
be inferred from Fig. 3 for all the considered pulses and for
Amax

mt = Aexp. Our results strongly point toward the pres-
ence of a QSL, imposing a bound for the minimum time
required for the transport task [22,37]. Taking into account
that the transport takes 2/5 of the total time, T, the bound
for the transport time is about 3 τst. When comparing with
the results for a quadratic pulse presented in Ref. [20] for
the same setting (with a distance in oscillator units and a
trap depth hosting the same amount of states) we observe
that our lower bound for the transport time is five times
larger; however, it is important to highlight that our proto-
col incorporates more information-processing details than
the one considered in Ref. [20], where only the transport
stage is taken into account with no consideration of the
time devoted to capture and release the atom. For a moving
trap hosting the same number of levels, we obtain a lower
time threshold for the transfer between tweezers, which is
nine times faster than the time reported in Ref. [19] (eight
oscillator units versus 75 oscillator units). Considering that
in Ref. [17], the authors state that the time needed for
the capturing or releasing is 12 times that required for the
transport task, our results suggests that an improvement of
the transfer between tweezers can translate into an overall
speedup, even at the cost of devoting a larger time to the
transport stage. Our findings call attention to the impor-
tance of including the transfer between tweezers in the
model; by optimizing over the entire process, which also
includes the effect of the static traps, we see the importance
of tailored solutions, such as those based on our specialized
STA, for reaching error rates in the fault-tolerant regime.

V. SUMMARY AND CONCLUSIONS

In this work, we focused on the transport and trans-
fer between tweezers of neutral atoms, a relevant problem
(and possibly a bottleneck) for the creation and improve-
ment of quantum processors and simulators [1,8]. We con-
sidered four different types of experimentally motivated
pulses: piecewise-linear, piecewise-quadratic, minimum-
jerk, and a family of hybrid linear and minimum-jerk
ramps. These pulses were used to transport not only atomic
ensembles but also few and single atoms in experiments
with optical tweezers [1,7,8,10–12,17] and optical con-
veyor belts [48]. To generate a pulse that is specifically
tailored for our problem, we developed a transport proto-
col using STA techniques. The main difference between
our STA approach and previous ones is that we take into
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account the potential of the static tweezers to optimize the
transfer between static and moving traps. To facilitate the
adoption of our pulse in future experiments, we provided
an easy-to-implement approximation for the full numeri-
cal solution. A close inspection of the approximated STA
solution shows that the associated trajectory is a modifi-
cation of the widely known minimum-jerk trajectory, with
the key difference that its amplitude modulation (related
to the depth of the moving trap) counteracts the effect of
the static tweezers. We characterized the performance of
all the considered pulses and found that our proposed STA
protocol outperforms the experimentally inspired ramps,
even without optimization.

All the considered pulses were used as initial guesses for
QuOCS optimization, leading to a reduction in the error
(quantified by the infidelity with respect to the target state)
by at least one order of magnitude. By setting a thresh-
old for the infidelity of 10−4, we obtained a reduction of
the total time of the pulse between 10% and 30% after
optimization for the hybrid, minimum-jerk, and quadratic
pulses.

Based on the discussions on heating and losses pre-
sented in Refs. [1,65], and to check that our optimized
pulses do not induce extra heating during transport, we cal-
culated the mean occupied level and the width of the distri-
bution over the states of the moving tweezer, together with
an effective temperature related to the motional energy.
For total pulse times below 8 τst ≈ 16 τmt (with τst and
τmt being the characteristic times of the static and moving
traps, respectively), the increase in the vibrational excita-
tions exceeds half of the states hosted by the moving trap.
We focused on the two pulses with the best performance,
namely the minimum-jerk and STA pulses, and we quan-
tified the error after transport as a function of the total
time of the pulse and the maximum depth of the moving
tweezer (which are both experimentally accessible param-
eters). We identified good regions in the parameter space
to reliably run the transport protocol. For total times larger
than 10 τst, both pulses provide good performance (with an
infidelity below 10−2); however, the minimum-jerk ramp
entails limitations on the maximum amplitude that can be
selected, while our proposed STA pulse provides much
more freedom. We conclude that our STA solution consti-
tutes an improvement compared to the usual minimum-jerk
trajectory.

Our findings also suggest the presence of a lower bound
for the total time of the pulses; we obtain a numerical quan-
tum speed limit for the complete protocol time of about
8 τst. Since the transport time is a fraction of the total dura-
tion of the protocol, this value corresponds to a bound of
3 τst for the transport stage, which is around five times the
value reported in Ref. [20] for a protocol that does not con-
sider the transfer time required to capture and release the
atom. Taking into account that the capturing or releasing
time was estimated to be 12 times larger than the time

needed for the transport process alone in the experiments
of Ref. [17], and that our obtained transfer time is nine
times faster than the one reported in Ref. [19], our results
draw attention to the relevance of including the transfer
between tweezers in the model. In other words, to fully
capture the information protocol, it is necessary to consider
not only the transport process but also the transfer between
optical tweezers, which makes up a significant portion (if
not the majority) of the error and the time budget.

Our analytical and numerical results show that small
deformations in the pulses (for instance, less than 4% for
the approximated STA amplitude when compared to the
full numerical solution) can translate into a decrease in the
error after transport by 2 orders of magnitude. We also con-
tribute to filling a knowledge gap identified in Ref. [48] in
the case of atomic transport by means of optical conveyor
belts, namely, providing a systematic characterization of
the effectiveness of different trajectories.

Our proposed STA pulse also demonstrates that a modu-
lation of the depth of the tweezer (in contrast to the widely
used piecewise-linear ramps) counteracts the effect of the
static tweezers, producing smaller and more stable errors
for shorter pulse durations. This adds extra controllability,
similarly to amplitude and phase control in optical lattices
[74]. To the best of our knowledge, our proposed amplitude
modulation could be implemented in current experiments
since, as mentioned in Ref. [8], amplitudes with a quadratic
dependence on time are possible. The implementation of
the modulation in the tweezer depth as a second control
that corrects the effects of the static tweezers is particularly
promising in light of the recent experimental implemen-
tation of an STA trajectory which has many common
elements to ours [61], with the key difference of correct-
ing the static-tweezer effects during the transfer process.
Our results contribute to the generalization and improve-
ment of previously known ramps for transporting neutral
atoms in state-of-the-art quantum processors and quantum
simulators based on tweezer arrays. Given the flexibility
of our approach to accommodate different external poten-
tials, we are currently working on its application to optical
lattice platforms.

ACKNOWLEDGMENTS

We thank Thomas Reisser for technical support
related to QuOCS. We thank Jan Reuter and Matteo
Rizzi for discussions about numerical stability. We also
thank Christian Groß, Philip Osterholz, Yu Hyun Lee,
Peter Bojovic, and Titus Franz for valuable discus-
sions about the experimental possibilities. We acknowl-
edge funding from the German Federal Ministry of
Education and Research through the funding program
quantum technologies—from basic research to market
under FermiQP Project No. 13N15891, under Horizon

024070-15



CRISTINA CICALI et al. PHYS. REV. APPLIED 24, 024070 (2025)

Europe programme HORIZON-CL4-2022-QUANTUM-
02-SGA via Project No. 101113690 (PASQuanS2.1)
and under HORIZON-CL4-2021-DIGITALEMERGING-
02-10 via Grant Agreement 101080085 QCFD, by
the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) under Germany’s Excellence Strat-
egy—Cluster of Excellence Matter and Light for Quantum
Computing (ML4Q) EXC 2004/1—390534, and from the
Jülich Supercomputing Center through the JUWELS and
JURECA cluster. E.C. was supported by JSPS KAKENHI
Grant No. JP23K13035.

DATA AVAILABILITY

The data that support the findings of this article are
openly available [75].

APPENDIX A: STA THEORY

For the convenience of the reader, we regroup and sum-
marize here the well-known results from the theory of
shortcuts to adiabaticity (STA), which are relevant in the
derivation of the STA-based transport pulse in Sec. III B.

1. Dynamical invariants and STA

Shortcuts to adiabaticity are a collection of methods
whose aim is to obtain a fast-forward version of the adi-
abatic time evolution of a system. We exploit a known
dynamical invariant of the system to reverse engineer an
STA pulse that realizes the desired dynamics. Let us start
by considering a time-dependent Hamiltonian H(t) and the
solutions |ψ(t)〉 to the Schrödinger equation

i�
∂

∂t
|ψ(t)〉 = H(t) |ψ(t)〉 . (A1)

A dynamical invariant of H(t) is a time-dependent operator
I(t) that satisfies the relation

dI
dt

≡ ∂I
∂t

+ 1
i�

[I , H ] = 0, (A2)

meaning that (d/dt)〈ψ(t)|I(t)|ψ(t)〉. Provided that I † = I
is Hermitian, it is possible to write any solution of Eq. (A1)
as a time-independent linear combination of eigenvectors∣∣φLR

n (t)
〉
of I(t) [30], which we denote as dynamical modes

|ψ(t)〉 =
∑

n

cn
∣∣φLR

n (t)
〉
, with

I(t)
∣∣φLR

n (t)
〉 = λn

∣∣φLR
n (t)

〉
, (A3)

and where we explicitly state that the eigenvalues λn of
I(t) do not depend on time. Additionally, in the case that
I(t) does not involve a differentiation in time, the dynam-
ical modes can be explicitly constructed by means of a

gauge transformation of the (generic) eigenvectors |φn(t)〉
of I(t) [30], featuring the so-called Lewis-Riesenfeld
phases γn(t):

∣∣φLR
n (t)

〉 = eiγn(t) |φn(t)〉 , (A4)

�
dγn

dt
= 〈φn(t)| i�

∂

∂t
− H(t) |φn(t)〉 . (A5)

In addition to being a useful tool to solve the equation
of motion [Eq. (A1)], these modes can be used to find the
Hamiltonian operator that produces a certain prescribed
time evolution by means of reverse engineering. The goal
is to realize a time evolution that maps eigenstates of H(ti)
to eigenstates of H(tf) in a given amount of time T = tf − ti
(the subscripts i and f denote, as usual, initial and final).
One way to obtain this is to impose that every dynamical
mode coincides (up to a phase factor) with an eigenstate
of the Hamiltonian at t = ti, tf. This requires the dynam-
ical invariant to commute with the Hamiltonian at the
endpoints of the time evolution, leading to the following
boundary conditions:

[I(ti), H(ti)] = [I(tf), H(tf)] = 0. (A6)

These are just necessary conditions, but they allow us to
effectively speed up the adiabatic transfer between ground
states at t = ti and t = tf in concrete cases, such as for atom
transport [15].

2. STA for atom transport

A general family of Hamiltonians that is useful for
atom transport and manipulation with a known dynamical
invariant is given by Ref. [58]:

H(t) = p2

2m
− F(t)x + m

2
ω2(t)x2 +

V
(

x − α(t)
ρ(t)

)

ρ2(t)
.

(A7)

It is possible to verify that for any constant ω0, the operator

I(t) = [ρ(p − mα̇)− mρ̇(x − α)]2

2m

+ mω2
0

2

(
x − α

ρ

)2

+ V
(

x − α

ρ

)
(A8)

is an invariant for H(t), meaning that it satisfies Eq. (A2)
provided that the following auxiliary conditions are also
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verified:

α̈ + ω2(t)α = F(t)
m

and (A9)

ρ̈ + ω2(t)ρ = ω2
0

ρ3 . (A10)

As proven in Ref. [58], there is a unitary transforma-
tion |φ〉 = U(t) |ψ〉 such that the transformed dynam-
ical invariant J = UIU†, expressed in the coordinate
ζ = ρ−1(x − α), is time independent. We can then obtain
the eigenstates of I by solving the stationary eigenvalue
problem for J and then transforming back with U†:

J |φn〉 = λn |φn〉 , with |ψn(t)〉 = U†(t) |φn〉 , (A11)

which, in the coordinate space, gives rise to [15,58]
[
− �2

2m
∂2

∂ζ 2 + 1
2

mω2
0ζ

2 + V(ζ )
]
φn(ζ ) = λnφn(ζ ),

(A12)

ψn(x, t) = ρ− 1
2 e

im
� [ρ̇x2/2ρ+(α̇ρ−αρ̇)x/ρ]φn

(
x − α

ρ

)
. (A13)

Finally, the Lewis-Riesenfeld phases are obtained as
[30,58]

γn(t) = −1
�

∫ t

0
dt′
(
λn

ρ2 + m(α̇ρ − αρ̇)2

2ρ2

)
, (A14)

and the boundary conditions from Eq. (A6), which are
necessary for eigenstate transfer, become

α̇(ti) = α̈(ti) = α̇(tf) = α̈(tf) = 0, (A15)

ρ̇(ti) = ρ̈(ti) = ρ̇(tf) = ρ̈(tf) = 0, (A16)

justifying Eqs. (15) and (16) in the main text. By fix-
ing F(t) = mω2(t)x0(t) and V(x) = 0 in Eq. (A7), we
obtain the time-dependent harmonic-oscillator Hamilto-
nian [15] from Eq. (10), while Eqs. (A9)–(A10) become
Eqs. (13)–(14), respectively, of the main text.

APPENDIX B: TIME-EVOLUTION METHOD AND
DISCRETIZATION-ERROR ANALYSIS

Numerical simulations inherently contain errors, partic-
ularly if an infinite space is approximated by a finite one, as
in the discretization of quantum-optical systems. For this
reason, we examine the stability of the time evolution and
investigate the error due to the space and time discretiza-
tion. This is a crucial step in validating our numerical
implementation. To evaluate the numerical errors present
in our implementation, we study the harmonic oscillator
under static and time-dependent conditions (using the same
frequency ωst and mass m as in the main text).

1. Space-discretization error analysis

The well-known solutions of the harmonic-oscillator
problem allow us to study the error introduced by the
space discretization, constrained only by the machine pre-
cision. We first compare the wave-function amplitude
computed via exact diagonalization and the corresponding
exact solution involving the Hermite polynomials for dif-
ferent space-discretization steps�x. The analysis offers an
understanding of the error range in the considered interval
for space discretization. Calculating the root-mean-square
error, E , between the two different computation methods
and fitting the resulting data, we relate E to the dis-
cretization step�x as E = a�xb/(1+c�x), with a = 0.46,
b = 2.31, and c = 7.03, allowing for a selection of �x
once the error threshold is fixed.

Taking into account the required computational time and
discretization precision, we found that �x ∼ 0.02 µm ≈
0.2lst ≈ 0.4lmt (where lst and lmt are respectively the char-
acteristic lengths of the static and moving trap during
transport, i.e., with maximum tweezer depth) is sufficient
to capture the wave-function details while maintaining a
discretization-error threshold of approximately 10−5 and a
computational time in the range of milliseconds.

2. Time-discretization error analysis

The time evolution is performed using the split-step
Fourier method [76–80], as explained in detail in Ref. [55].
This method is particularly effective thanks to the Baker-
Campbell-Hausdorff relation [81]

eiH�t � e−iV�t/2e−iT�te−iV�t/2 + O(�t3), (B1)

and the fast Fourier transform (FFT) algorithm [82]. In
Eq. (B1), T and V denote the kinetic and potential terms
of the Hamiltonian. We have chosen to reduce the error
by introducing a symmetric splitting, also known as Strang
splitting, where the potential is applied for a half time step
before and after the kinetic operator, obtaining an error
of O(�t3) [76,80]. The Fourier transform is used in the
intermediate steps to diagonalize the operators T and V
in their respective bases, reducing each multiplication in
Eq. (B1) to a scaling of O(N ). This combination allows
us to develop a straightforward algorithm to compute the
evolution of the state |ψ(t)〉 from time t to time t +�t that
can be summarized in the following steps:

e−iH�t |ψ(t, x)〉 ≈ e−iV�t/2e−iT�te−iV�t/2 |ψ(t, x)〉
∝ UV(x)F−1FUT(x)F−1FUV(x) |ψ(t, x)〉
∝ UV(x)F−1UT(p) |ψ(t, p)〉
∝ UV(x)

∣∣ψ ′′(t, x)
〉

∝ |ψ(t +�t, x)〉 . (B2)
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We have used UV = e−iV�t/2, UT = e−iT�t, and F denotes
the Fourier transform. Moreover, the method assumes that
the wave function does not change significantly within
each small time step �t.

To study our system described by a Hamiltonian

H(t) = p2

2m
+ V(x)+ V(x, t), (B3)

we need to recursively apply the previous algorithm to the
discretized potential V(x, tn) = Vn, where n = 0, 1, . . . , Nt,
with Nt being the total number of time steps, which in
our computation for T = 3 ms was chosen to be 5000 (see
below), leading to �t = 0.6 µs ≈ 0.02 τst ≈ 0.06 τmt.

The FFT, with a scaling of order N log(N ), is the pri-
mary source of the high computational cost, and a large
number of time steps can further slow down the computa-
tion. At first glance, the single-splitting method given by

eiH�t � eiV�teiT�t + O(�t2) (B4)

could reduce the computational time of the time evolution;
however, it incurs the cost of introducing high-order oscil-
lations for the intermediate steps. To quantify the error and
the amplitude of the induced oscillations, we studied the
time evolution of a static harmonic oscillator by analyz-
ing the infidelity between the time-evolved state and the
analytical one for each time step (we use a fixed grid of
5000 time steps). We expect a vanishing infidelity due to
the static nature of the harmonic oscillator; however, oscil-
lations are observed at all time steps except the initial and
final ones. The infidelity for the single-splitting method
oscillates around 1.7 × 10−4, while the infidelity obtained
with the Strang splitting oscillates around 2.2 × 10−7 with
the same oscillation period of two times the characteris-
tic time of the oscillator. Even though the Strang splitting
method is 30% slower, it leads to an improvement of
more than 2 orders of magnitude in the infidelity, which
is crucial for us to obtain faithful results for infidelities
under 10−4.

The time discretization �t was chosen by analyzing the
splitting methods for different total numbers of time steps.
After a careful quantification of the effects of the oscilla-
tions in the evolution method, we compute the infidelity
between the numerical and analytical harmonic-oscillator
solution as a function of�t and chose a grid of 5000 points
for the larger considered total time of 3 ms to reach infideli-
ties below 10−7. With this procedure, smaller times will
keep the error bound. When varying either the total evolu-
tion time in the range [0.01, 3] ms or the frequency of the
oscillator in the interval [ωst, 10ωst], the relation between
the two methods (Strang splitting and single splitting) is
consistent, even though the error increases for increasing
total times and frequencies. Finally, we used the transport
trajectory obtained for the harmonic oscillator within our

STA approach and calculated the root-mean-square error
between the numerically computed and analytical solu-
tions. In the latter case, we observe that the error for the
Strang splitting is one order of magnitude less than that
obtained using the single-splitting approach. For the final
simulations, the grid in space and time has been chosen
to find a compromise between obtaining higher fidelities
while spending a reasonable computational time. Given
that the experimental measurable errors are around 10−2

to 10−3, we choose these grids to reach an infidelity of the
order of 10−7 for a moving harmonic oscillator.

APPENDIX C: TRANSPORT DYNAMICS

In this section, we present the time evolution of the
quantities studied in Sec. IV for some particular values
of the total duration T of the protocol. We have cho-
sen T = 0.5, 1.5, 2.5, and 3 ms, which corresponds to
16.6 τst, 49.8 τst, 83 τst, and 99.6 τst, or 55.7 τmt, 167.1 τmt,
278.4 τmt, and 334.1 τmt. At this point, it is important to
remember that τst and τmt are the characteristic times of
the static and moving trap during transport (i.e., with
maximum tweezer depth), which are related by τst ≈ 2 τmt.

In Fig. 6 we report the error after transport measured
as the maximum of the infidelity with respect to the tar-
get state over the last waiting interval of the pulse [see
Eqs. (8) and (9)] for the five families of pulses considered
in the main text. The upper row shows the results with-
out optimization, while the error during transport obtained
for the optimized pulses is depicted in the lower row. The
darker the color of the curve, the larger the total time T.
The evolution of the infidelity depicts more or less the
same behavior for all the pulses; the fidelity is very low
until the atom reaches the target tweezer, and after that, the
fidelity rapidly increases. During the waiting stage of the
pulse, the value of the infidelity presents some oscillations
that can be seen as the thick final part of each curve. To
interpret these results, it is important to have in mind that
the data are presented in logarithmic scale; therefore, even
though the STA final evolution seems to be very noisy, the
final variations are spread on a 10−6 scale. Furthermore,
for the hybrid pulse with ξ = 0.4 and the minimum-jerk
ramp, the final infidelity is higher for T = 3 ms than for
T = 2.5 ms, which is consistent with the oscillations of the
infidelity when plotted against T (see Fig. 3 in the main
text). All the optimized pulses improve the fidelity by at
least one order of magnitude.

Figure 7 shows the time evolution of the mean occu-
pied level of the moving trap states 〈N 〉 and its uncertainty
�N given by the width of the distribution over the states
of the moving tweezer during transport (upper row), as
well as the motional effective temperature Teff (lower row).
Since the nonoptimized and optimized curves are very
similar except for the linear pulse, the values for the
initial (nonoptimized) ramps are shown as gray curves,
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(a) (b) (c) (d) (e) (f)

FIG. 6. Error during transport. Infidelity I vs time for total pulse times T = 0.5, 1.5, 2.5, and 3 ms (lighter to darker colors) for
all the considered initial pulses (top row) and the corresponding optimizations (bottom row). The time scales are given in SI units
and characteristic units, where the characteristic time τst of the static traps is related to the one of the moving trap via τst ≈ 2 τmt. All
the pulses have a maximum amplitude of Amax

mt /� = 3.57 × 2π MHz, the transport time is given by η T with η = 2/5, and the total
distance between static tweezers is d = 7 µm.

and the values obtained for the optimized pulses are in
color. As before, darker colors indicate longer total times.
Shorter pulse times are related to higher 〈N 〉, �N , and
Teff values. Furthermore, the optimization induces heating
mainly for the piecewise-linear ramp, the hybrid one with
hybridicity ξ = 0.8 (closer to the linear pulse), and the

STA approximation. We notice that the distribution over
the moving-tweezer states is more sensitive as a heating
measure for transient times than the effective temperature.
The two peaks depicted by 〈N 〉 and �N correspond to the
mixing of states induced when the wave function abandons
one of the tweezers and readjusts into the following one.

(a) (b) (c) (d) (e) (f) (g)

FIG. 7. Measures of heating during transport. Expected value 〈N 〉 for the occupied level of the moving-trap states (top row) with
the associated uncertainty�N (middle row), and effective temperature Teff (bottom row) vs time for total pulse times T = 0.5, 1.5, 2.5,
and 3 ms (lighter to darker colors) and for all the considered pulses. The colored curves correspond to the optimized pulses; the results
obtained with the initial (nonoptimized) pulses are very similar (except for the piecewise-linear pulse) and are shown in gray behind
each optimized curve. The time scales are given in SI units and characteristic units, with τst being the characteristic time of the static
traps related to the one of the moving trap via τst ≈ 2 τmt. All the pulses have a maximum amplitude of Amax

mt /� = 3.57 × 2π MHz, the
transport time is given by η T with η = 2/5, and the total distance between static tweezers is d = 7 µm.
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FIG. 8. Examples of optimized pulses. The amplitude Amt(t) and the position xmt(t) of the moving tweezer are shown for the linear
(left), minimum-jerk (center), and STA (right) ramps. The optimized pulses are plotted in colored solid curves while the initial (nonop-
timized) ones are depicted as gray dashed lines. We observe that the optimization results in small changes in the minimum-jerk and
STA trajectories compared to the rest of the pulses. As before, the time scales are given in SI units and characteristic units, with τst
being the characteristic time of the static traps related to the one of the moving tweezer via τst ≈ 2 τmt. All the pulses have a maximum
amplitude of Amax

mt /� = 3.57 × 2π MHz, the transport time is given by η T with η = 2/5, and the total distance between static tweezers
is d = 7 µm.

As expected due to the jumps in the velocity, in general,
the piecewise-linear ramp depicts the highest 〈N 〉 and �N
values.

Finally, Fig. 8 presents examples of comparisons
between the optimized pulses (colored solid lines) and
the initial guesses or nonoptimized pulses (gray dashed
lines) for the same total times, T = 0.5, 1.5, 2.5, and
3 ms, as considered before. We would like to highlight
that the optimized position pulse for the linear ramp is
not symmetric. This can also be seen in the asymmet-
ric form depicted by 〈N 〉 and �N in Fig. 7. While all
the considered initial pulses were taken as symmetric,
the automatic optimization algorithm breaks this symme-
try, particularly for the piecewise-linear and approximated
STA pulses. Furthermore, we observe that the optimiza-
tion changes the piecewise-linear pulse mainly at the
beginning and end of the transport stage; also, for the

STA pulse, the optimization tends toward smaller ampli-
tudes.

APPENDIX D: TRANSPORT AND TRANSFER
ACROSS DIFFERENT DISTANCES AND

VELOCITIES

The transport distance can range from a few microm-
eters to several hundreds of micrometers, depending on
whether the transport occurs within the computational zone
or between the storage and computational zones. We ana-
lyzed here the behavior of the minimum-jerk trajectory and
the full numerical solution of our proposed STA pulse over
distances between 1 and 14 µm. By way of example, in
Fig. 9(a), we report the error after transport quantified by
the infidelity I with the target state for a total distance of

(a) (b)

FIG. 9. Error during transport for larger distances. (a) Infidelity I vs velocity v in units of the characteristic velocity of the static
oscillator vst for distances of 3.5 and 14 µm (lighter-colored dashed line and darker-colored full line, respectively). The plots show
the average infidelity over the last interval of the pulse (see Fig. 2) with the associated standard deviation (shaded area). The STA
shows more stable behavior for both distances, followed by a speed up to reach the threshold infidelity of 10−4; in particular, for a
distance of 14 µm, that time reduces from 40 τst ≈ 1.21 ms (v = 0.014 m/s) for the minimum jerk to 24 τst ≈ 0.75 ms (v = 0.024 m/s)
for the STA, while for a distance of 3.5 µm, it reduces from 32 τst ≈ 0.97 ms (v = 0.018 m/s) to 16 τst ≈ 0.5 ms (v = 0.036 m/s).
(b) Infidelity I as function of the distance d and total time T. The time is varied between 0.01 and 7 ms, and the distance is ranges
between 1 and 14 µm. For both pulses, the infidelity is higher at short times; however, while the minimum-jerk pulse shows a stronger
dependence on T and d, the STA pulse exhibits much more stable behavior with lower infidelities.
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3.5 µm and 14 µm (i.e., half and double the distance con-
sidered in the main text; transport over larger distances,
although feasible, requires higher grid discretization and
consequently longer computational times; for that reason,
we stick to the typical range of distances found when mov-
ing atoms inside a determined zone and not among zones
[17]), and a for total pulse time T ranging between 0.01 and
7 ms, corresponding to a mean velocity during transport
varying between 1.75 and 0.0025 m/s. The figure shows
the average infidelity over the last interval of the pulses
and the associated standard deviation (shaded area) as a
function of the mean velocity calculated as d/(ηT). Simi-
lar to what was observed for the original distance of 7 µm,
the STA pulses depict a more stable behavior when com-
pared to the minimum-jerk pulses. The infidelity increases
as a function of the velocity. In both cases, the time needed
for reaching the infidelity threshold of 10−4 increases with
the distance. As before, the STA pulse allows for a reduc-
tion of approximately 40% in the time needed to obtain an
infidelity of 10−4.

In Fig. 9(b), we show the error I as function of both the
distance d and the total time of the protocol T. The time
ranges between 0.01 and 7 ms. while the distance is varied
between 1 and 14 µm. For short distances and short total
times, both protocols lead to errors above 10−1 due to the
excitations induced by higher transport speeds. The bottom
dark areas in the plots show the dependence of the quan-
tum speed limit on the distance of the transport. Longer
distances require a longer time; however, while the mini-
mum jerk reaches infidelities of 10−6 or 10−7 in specific
pairs of T and d, consistent with the oscillations present in
Fig. 9(a), the STA shows a more stable and robust behav-
ior on d and T. This suggest that the STA pulse not only
reduces the error and the protocol time but it is also much
more versatile than the considered experimentally inspired
pulses.
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6.1 Summary and context

In the following preprint [98], we investigate theoretically the properties of quan-
tum control landscapes, i.e. the family of functionals whose minimization is cen-
tral to quantum optimal control (see Sec. 3.2). We consider aspects relating
to both the representation of such landscapes [99, 100], by designing regression
models (see Sec. 3.1) and studying their performance [101], and to the problem
of finding their minima, by inspecting a collection of metrics, such as ruggedness,
variance and trap density, which characterize the hardness of this problem [102,
101].

The regression models we consider are linear combinations of basis functions
— the so-called feature maps, using ML terminology. This simple structure allows
us to relate basic properties of quantum time evolution, like transition frequencies
and total evolution time, to the ones of the landscape, establishing bounds on
the derivatives and bandwidth of this family of functions. Moreover, training
is much easier and reliable for this class of models compared to custom models
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with multiple layers, such as the one we consider in Chapter 5, substituting the
loss minimization problem with a simpler matrix inversion. We test our methods
numerically on a state transfer problem involving a one-dimensional Transverse
Field Ising Model, and find that bandwidth-limited kernels are a particularly
effective feature map choice.

Concerning optimization and metrics, we show how the bound on the deriva-
tives ensures the Lipschitz continuity of the landscape, which connects the volume
of a region in control space with the maximum improvement in the figure of merit
that we can obtain by exploring it. We discuss how this effect, together with
bandwidth limitedness, typically suppresses the local trap density and variance,
giving rise to a rather flat landscape as time discretization of the control pulse is
increased, and how these insights can inform optimizer design.

From a system-theoretical point of view, we are here addressing problems
which are formally similar to the ones in Chapter 4, while switching our focus
from the transfer function to the quantum cost landscape. These are, for instance,
how to use sampled data to create a digital twin of the system, and how we can
use physical knowledge to inform the design of optimizers and regression models.

6.2 Author contribution

The Author is responsible for all the mathematical proofs and theoretical results
in this paper. He developed the software related to linear regression and Lie-
Fourier coefficient evaluation using the Discrete Fourier Transform (Sec. III.D),
and generated all data used throughout the manuscript. He is the main contribu-
tor to all Sections except Sec. I, VIII, IX (where he also contributed) and created
all Figures.
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We derive and analyze three feature map representations of parametrized quantum dynamics,
which generalize variational quantum circuits. These are (i) a Lie-Fourier partial sum, (ii) a Tay-
lor expansion, and (iii) a finite-dimensional sinc kernel regression representation. The Lie-Fourier
representation is shown to have a dense spectrum with discrete peaks, that reflects control Hamil-
tonian properties, but that is also compressible in typically found symmetric systems. We prove
boundedness in the spectrum and the cost function derivatives, and discrete symmetries of the co-
efficients, with implications for learning and simulation. We further show the landscape is Lipschitz
continuous, linking global variation bounds to local Taylor approximation error—key for step size
selection, convergence estimates, and stopping criteria in optimization. This also provides a new
form of polynomial barren plateaux originating from the Lie-Fourier structure of the quantum dy-
namics. These results may find application in local and general surrogate model learning, which
we benchmark numerically, in characterizations of hardness and phase transitions in the problem
instances, and for meta-parameter heuristics in quantum optimizers.

I. INTRODUCTION

Many functional processes in the natural and engi-
neering sciences suffer from high complexity or limited
observability. As a result, they are often treated and
interrogated as black box oracles – systems with un-
known structure or landscape. This challenge concerns a
wide range of disparate fields, including condensed mat-
ter, control theory, complexity theory, machine learning,
and quantum optimization. The respective approaches
to modeling the landscapes reveal different but comple-
mentary methods with large overlaps and synergies.

A central question across these domains is how to char-
acterize the prescriptive performance of the system, that
is, how well it performs under a given configuration, and,
by extension, how accurately a (partial) model can pre-
dict or optimize that performance. In condensed matter
physics, average behaviour is analysed to uncover land-
scape features such as phase transitions and the preva-
lence of metastable states (or traps). In contrast, com-
plexity theory focuses on worst case performance, of-
ten emphasizing the difficulty of sampling in landscapes
plagued by barren plateaus that hinder the search for
global optima. Machine learning aims to approximate
and reproduce the functional behavior of the black-box
system, with a focus on model expressivity. Conversely,
control theory seeks to directly optimize system outputs,
raising questions about controllability in relation to high-
dimensional input spaces.

In this work, we examine this multifaceted problem
through the lens of quantum optimization and optimal
control theory. Many classical concepts, such as phase

∗ m.calzavara@fz-juelich.de
† f.motzoi@fz-juelich.de

transitions, barren plateaus, and landscape complexity,
have quantum analogues, and corresponding methodolo-
gies have been adapted to the quantum setting. For in-
stance, phase transitions are known to impact optimiza-
tion hardness, and have been studied in quantum opti-
mal control (QOC) [1–4]. Similarly, insights from clas-
sical machine learning have shaped our understanding
of variational quantum algorithms (VQAs) and quantum
machine learning (QML), often highlighting negative re-
sults due to barren plateaus [5–7]. The presence of traps
and other obstructions has also been investigated in the
QOC literature [8–11], alongside various metrics to quan-
tify the hardness of the optimization landscape [3, 12–15].
Efforts to learn and predict the quantum cost landscape
have employed techniques ranging from Fourier analysis
[16–21] to Gaussian process [3, 22, 23] and neural network
[3] Ansätze.

Rather than relying on physically inspired Ansätze, our
approach derives first-principles constraints that charac-
terize landscape structure and its surrogates under gen-
eral assumptions. We analyze the quantum functional
mapping controls to figure of merit (e.g. fidelity) using
three representations: (i) a Fourier basis expansion, (ii) a
Taylor expansion with respect to the controls, and (iii) a
low-dimensional bandwidth-limited kernel. Notably, we
show that VQA and QML landscapes can be viewed as
special cases of the general QOC landscape, where con-
trols act sequentially and time-ordering becomes trivial.

We derive upper bounds on gradient and higher-order
derivatives, bounds relating control variations to cost
changes, and bounds on the variance of the cost land-
scape, which plays a critical role in the emergence of bar-
ren plateaus. These derivative bounds enable a quantita-
tive analysis of the Taylor expansion error, establishing
its local efficiency and offering a global Lipschitz bound
that can guide optimizer design, including stopping con-
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ditions and global sampling strategies. Conversely, our
variance analysis indicates that, even under ideal con-
ditions, the fraction of the landscape with meaningful
variation shrinks rapidly with increasing problem dimen-
sionality.

Finally, we compare the representational power of the
three expansions. We find that the kernel representation
is the most expressive in the limit of dense sampling,
while the Fourier and Taylor representations are more
effective in low-data regimes. Our results provide quan-
titative dependencies of landscape complexity on key pa-
rameters such as control operator spectral bandwidth,
total evolution time (or circuit depth), and system size
– offering practical insights for algorithm design and pa-
rameter tuning.

The manuscript is organized as follows: in Sec. II we
define the notion of quantum dynamical landscape and
introduce the three representations that we will use to
study the problem. These are later investigated in depth
within dedicated sections: Sec. III for the Fourier-, Sec. V
for the Taylor- and Sec. VI for the sinc representation. In
Sec. IV we prove en passant some properties of the land-
scape derivatives (using the results from Sec. III). We
then highlight the relevance of all previous results in the
context of landscape optimization and of optimizer design
respectively in Sec. VII and Sec. VIII. Finally, we draw
our conclusions in Sec. IX. The Appendices are primarily
devoted to the mathematical proofs of the main results
(especially App. C and D), and to related details like no-
tation (App. A), problem standardization (App. B) and
numerical examples (App. E).

II. PROBLEM SETTING AND OVERVIEW

The starting point of our discussion is a finite D-
dimensional evolving quantum system, with states |ψ⟩ ∈
H ≃ CD. To consider the general case for parametric
unitary operations and extend the simple structure of
layered gates, we model the circuit evolution through its
generator given by a Hamiltonian Ĥ(t) that depends on
time through a single bounded external control u(t) ∈
[−umax, umax]. To perform time ordering, we discretize
the control to be piecewise-constant on an N -timestep
grid (with uniform step δt = T/N) from t = 0 to t = T .
Note that while δt can be made arbitrarily small to re-
tain precision, in quantum circuits one usually considers
gates generated on large single timesteps, while in control
theory the sampling rate of the control sets a practical
upper bound on δt [24].

We consider the standard bilinear form of the controls
given by

Ĥ[u(t)] = Ĥd + Ĥcu(t)

which we write in vector form (see App. A for more de-
tails about notation) as

Ĥ(uν) = Ĥd + Ĥcuν ,

where u ∈ CN := [−umax, umax]N , defining a region of
interest as a hypercube. In order to obtain a minimally
cumbersome treatment, all results in the main text are
discussed within this single control setting. Nevertheless,
most of them are proved for multiple controls in App. C,
yielding the results for a single control as a special case.

Starting from the initial state |ψ(0)⟩, the system will
evolve to

|ψ(T )⟩ = Û(u) |ψ(0)⟩
at time T , where the time-ordering is given straightfor-
wardly by

Û(u) = Û(uN ) · · · Û(u1) = e−iδtĤ(uN ) · · · e−iδtĤ(u1).
(1)

This unitary operator defines a generalized Parametrized
Quantum Circuit (PQC), where the drift and control

Hamiltonian Ĥd and Ĥc that generate the gates can in
general act at the same time. This is in contrast with the
typical VQA setting, where usually it is assumed that
only one generator is acting within the gates defining
each circuit layer.

We define a quantum dynamical landscape J(u) as the

expectation value of a Hermitian operator Ô over the
output of the circuit |ψ(T )⟩:

J(u) = ⟨ψ(T )| Ô |ψ(T )⟩ = ⟨ψ(0)| Û†(u)ÔÛ(u) |ψ(0)⟩ .
(2)

In the VQA setting, Ô is typically expressed as a sum
of observables that can be readily measured in a typical
experimental setup (e.g. Pauli strings) [22]. The case of
optimal control for a state transfer problem corresponds
instead to choosing |ψ⟩ = |ψ(0)⟩ as initial state and Ô =
|χ⟩ ⟨χ| as the density matrix of the (pure) target state.
In this case, J(u) corresponds to the state fidelity that
we want to maximize over the controls u. The average
gate fidelity Favg with respect to a gate Ûtarget can also
be written as a sum of such landscapes. In fact, given a
sample of states {|ψi⟩ ∈ H}Mi=1, we have

Favg :=
1

M

M∑

i=1

| ⟨ψi| Û†
targetÛ(u) |ψi⟩ |2

=
1

M

M∑

i=1

⟨ψi| Û†(u)ÔiÛ(u) |ψi⟩ =
1

M

M∑

i=1

Ji(u),

where we defined the observables

Ôi = Ûtarget |ψi⟩ ⟨ψi| Û†
target.

In the main text we will focus on the case of a state
fidelity landscape, but we prove most of our results for a
generic observable Ô in App. C.

The main aim of this paper is to study how to represent
a quantum dynamical landscape as a linear combination
of non-linear functions of the form

J(u) =

Nweights∑

i=1

wiϕi(u), (3)
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FIG. 1: The time-evolved expectation value ⟨Ô(u)⟩ of an observable (e.g. state fidelity Ô = |χ⟩ ⟨χ|) for a system
controlled through stepwise-constant pulses u is a Parametrized Quantum Circuit (Panel (a)). As such, it can be
represented as a shallow computational network (Panel (b)), which consists in a linear combination of non-linear

functions ϕi(u) called “features”, with weights wi (Panel (c)).

where i indexes the basis, specified depending on the
choice of the functions ϕi(u).

In the machine learning context these are usually re-
ferred to as features, hence the name “feature map rep-
resentation”. See Fig. 1 for a graphical representation of
this class of models. Compared to deep neural networks,
for these shallow models it is easier to relate their struc-
ture both to the physical content of the system generating
them and to the properties of their outputs. They can
therefore be thought of as intermediate representations
(or classical surrogates) of the quantum system, mak-
ing them an attractive tool to analyze and even compute
quantum cost landscapes [17, 18, 20, 25, 26].

A very natural and well studied choice for the feature
map is the so-called Fourier representation, given by

ϕω(u) = e−iω·u

where the weighting over ω encodes the frequency spec-
trum of the landscape. We show in Sec. III that in general
this spectrum is dense, unlike in the VQA and QML set-
ting where only discrete combinations of the ω appear,
corresponding to the eigenspectrum of the Hamiltonian
generators. Naturally, this poses a unique challenge for
classical surrogate models.

We also prove that the presence of symmetries in the
dynamics constrains these frequencies, determining se-
lection rules that we will describe in detail. We provide
in Sec. III D a numerical example for the transverse field
Ising model.

Another important representation is the polynomial
feature map given by

ϕp(u) =

N∏

ν=1

(uν − u(0)ν )pν

with p ∈ NN , u(0) a reference pulse, and where the
weights wp can be computed from the derivatives by Tay-
lor expansion, as shown in Sec. V. We bound these deriva-
tives using the Fourier representation, establishing the
Lipschitz continuity of the landscape and thereby pro-
viding an estimate of the error in this expansion. This

enables a low-order O(poly(N)) truncation under certain
conditions relating to constraining the total time and en-
ergy of the external fields.

The third representation is given by bandwidth-limited
kernel function

ϕi(u) =
N∏

ν=1

sin [ωmaxδt(uν − u
(i)
ν )]

ωmaxδt(uν − u
(i)
ν )

,

which captures correlations between different sampled
data points Dtrain = {(u(i), J(u(i)))}Ntrain

i=1 . This regres-
sion model is derived in Sec. VI by essentially integrat-
ing over the infinite Fourier spectrum, enhancing the
tractability of the learning task. We further discuss effi-
ciently training the model via RIDGE regression [17, 27].

Finally, we conclude by exploring the relevance of our
findings in the context of landscape optimization. In or-
der to quantify the difficulties inherent to this problem,
several landscape measures have been proposed in the lit-
erature (ruggedness, trap density, gradient variance and
barren plateaux, etc.) [3, 5, 6], each one highlighting
a different way in which the optimization problem can
be considered hard (or not). In Sec. VII, we relate a
selection of these measures to the representations that
we have studied, establishing bounds for them whenever
possible. We also investigate the relevance of our find-
ings in the tuning and design of optimization algorithms
in Sec. VIII.

III. LIE-FOURIER REPRESENTATION

In order to derive a Fourier representation of the land-
scape J , we expand each one of the time-step unitaries in
Eq. (1) by means of the Lie-Trotter product formula [28–
30]

Û(u) = e−iδtĤ(u)

= lim
n−→∞

(e−
iδt
n Ĥde−

iδt
n uĤc)n = lim

n−→∞
Ûn(u) (4)

which converges to its limit, with an error of order
O(n−1) that depends on δtA||Ĥ||∞. By studying this
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expression for a generic n we can find a sequence of ap-
proximations Jn of the landscape J , whose convergence
properties are discussed in detail in App. C. On the other
hand, finite order expansions are also interesting on their
own, and for example for n = 1 we recover an interleaved
circuit which is a common Ansatz for VQA [22]. More
generally, for any n and even for multiple controls (see
App. C), the resulting circuits will be Periodic Structure
Ansätze, as introduced in [7], which consist of stacked
copies of a predefined gate sequence. In such a case, we
can then apply a similar procedure to [25] and obtain an
expression of Eq. (4) as a possibly infinite sum of com-
plex exponentials. We will refer to the resulting partial
Fourier sum as to the Lie-Fourier representation of the
landscape. This stresses the dependence of the represen-
tation on the usage of the Lie product expansion as a
preliminary step, which can be in principle substituted
with higher order Suzuki-Trotter products [31] or other
approximation schemes [32], giving rise to different fre-
quencies and coefficients.

A. Commuting Hamiltonians [Ĥd, Ĥc] = 0

Let us first look at a base case of the problem. If
[Ĥc, Ĥd] = 0 the Lie-Trotter expansion stops at the first
order, and we have

Û(u) = e−iNδtĤde−iδtĤc
∑N

ν=1 uν .

The unitary operator only depends on the “effective” con-

trol ū := N−1
∑N
ν=1 uν . We can write this unitary oper-

ator as a finite sum of Fourier components by working in
the eigenbasis of Ĥc = V̂ †Λ̂V̂ , with ⟨i| Λ̂ |j⟩ = δijλi:

Û(ū) = e−iNδtĤd V̂ †e−iT Λ̂ūV̂

= e−iNδtĤd

D∑

j=1

V̂ † |j⟩ e−iTλj ū ⟨j| V̂

=:
∑

ω∈S
B̂ω(T )e−iTωū,

where we defined the spectrum of the control Hamilto-
nian S = {λj}j=1,...,D. We can now write also the trans-
fer fidelity with respect to a target state |χ⟩ from Eq. (2)
as a finite Fourier sum

J(ū) =
∑

ω,ω′∈S
⟨ψ| B̂ω†(T ) |χ⟩︸ ︷︷ ︸

b∗ω

⟨χ| B̂ω′
(T ) |ψ⟩︸ ︷︷ ︸

bω′

eiT (ω−ω′)ū

=:
∑

ω∈S∆

cω(T )e−iTωū,

where we defined the Fourier spectrum of the fidelity as
the set of all possible differences between frequencies in
the control spectrum

S∆ = {ω = λ′ − λ|λ, λ′ ∈ S} (5)
and the fidelity Fourier coefficients as

cω(T ) =
∑

ω′,ω′′∈S
δω′′−ω′,ωb

∗
ω′(T )bω′′(T ).

B. General case [Ĥd, Ĥc] ̸= 0

In general, the expansion in Eq. (4) does not stop for
any finite n, and we obtain for the cost functional a se-
quence of partial Fourier sums Jn(u) that converges to
J(u). Once again, we write the control Hamiltonian in

its eigenspectrum Λ̂ and absorb the change of basis in
the terms Ŵ which do not depend on the control u and
are defined implicitly via

Ûn(u) = V̂ † V̂ e−
iδt
n Ĥd V̂ †

︸ ︷︷ ︸
Ŵ (n−1δt)

e−
iδt
n uΛ̂ · · · e− iδt

n Ĥd V̂ †e−
iδt
n uΛ̂V̂

where we multiplied a V̂ †V̂ = Î factor on the left. When
the dependence on n is not crucial, we omit it to sim-
plify the notation. By expressing the result in terms of
the matrix components, we finally obtain the Lie-Fourier
representation of the unitary time-step evolution

⟨i| Ûn(u) |k⟩ =
D∑

j1...jnl=1

e−iδt
u
n (λj1

+···+λjn )V †
ilWljn(n−1δt) · · ·Wj2j1(n−1δt)Vj1k

=
∑

j∈[D]n

e−iδtuω(j)Aj
ik(n, δt) =

∑

ω∈Sn

e−iδtuωBωik(n, δt), (6)

where [D]n ⊂ Nn is the set of integer vectors with el-
ements ranging from 1 to D, and the sum over l is ab-

sorbed into the definition of the coefficients Aj
ik, since the

frequency ω does not depend on l:

Aj
ik(n, δt) =

D∑

l=1

V †
ilWljn(n−1δt) · · ·Wj2j1(n−1δt)Vj1k.
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In the last step all the coefficients Aj
ik corresponding to

the same frequency ω = ω(j) have been summed up into
the matrix with entries Bωik,

Bωik(n, δt) =
∑

j∈Jω

Aj
ik(n, δt), Jω = {j ∈ [D]n | ω(j) = ω}

which is only defined for values of ω belonging to the
discrete Fourier spectrum Sn

Sn = {ω(j) =
1

n
(λj1 + · · · + λjn) | j ∈ [D]n}.

Now by layering the N time-step unitaries we can build
up the full unitary Ûn(u):

Ûn(u) = Ûn(uN ) · · · Ûn(u1)

=
∑

j1···jN
e−iδt

∑
ν uνωjν ÂjN · · · Âj1

=
∑

ω1...ωN

e−iδt
∑

ν uνων B̂ωN · · · B̂ω1

=
∑

ω∈SN
n

e−iδtω·uB̂ω(n, δt), (7)

where we defined the frequency vector ω ∈ SNn and the

operator B̂ω as the product

B̂ω = B̂ωN · · · B̂ω1 .

By plugging this expression for the unitary operator back
into Eq. (2) we finally find the Lie-Fourier representation
of the fidelity:

Jn(u) = ⟨ψ| Û†
n(u) |χ⟩ ⟨χ| Ûn(u) |ψ⟩

=
∑

ω′,ω′′∈SN
n

⟨ψ| B̂ω′′† |χ⟩︸ ︷︷ ︸
b∗
ω′′

⟨χ| B̂ω′ |ψ⟩︸ ︷︷ ︸
bω′

e−iδt(ω
′−ω′′)·u

=
∑

ω∈(S∆
n )N

cω(n, δt)e−iδtω·u (8)

where (S∆
n )N is the set of frequency differences within

the Fourier spectrum of the unitary. The coefficients of
the expansion cω are given by

cω =
∑

ω′,ω′′∈SN
n

δω,ω′−ω′′b∗ω′′bω′ (9)

We conclude this derivation by pointing out that there
is a useful trick we can use since in the main text we are
working with just one control per time step. In fact, we
can equivalently write the fidelity as

Jn(u) = ⟨ψ̃| ˆ̃U†
n(u) |χ̃⟩ ⟨χ̃| ˆ̃Un(u) |ψ̃⟩ (10)

by transforming the dynamics to a new unitary frame
through V̂ , so that the initial state becomes |ψ̃⟩ = V̂ |ψ⟩
and the propagator ˆ̃U = V̂ Û V̂ †. In this new frame, the
coefficients b̃ω = bω stay the same (they are scalars),

while Ãj
ik (and consequently B̃ωik) take a simpler form

Ãj
ik(n, δt) = Wijn(n−1δt) · · ·Wj2j1(n−1δt)δj1k.

C. Basic properties of the Lie-Fourier
representation

Let us now prove some properties of the Lie-Fourier
representation. It is easy to see from Eq. (5)-(9) that,
compatibly with J and Jn being real functions, both the
fidelity spectrum S∆

n and the coefficients cω are symmet-
ric in the following way

ω ∈ S∆
n =⇒ − ω ∈ S∆

n ,

c−ω = c∗ω

Another straightforward result is that all the approxi-
mating functions Jn are bandwidth limited

Lemma 1 (Bandwidth limitation). Sn ∈ [λmin, λmax]
with λmin(λmax) the minimum (maximum) eigenvalue of

Ĥc.

Proof.

∀n min
j∈[D]n

ωj = min
j∈[D]n

n∑

i=1

λji
n

=
n∑

i=1

min
j∈[D]

λj
n

= λmin,

and the same is true for the max, which implies λmin ≤
ω ≤ λmax.

Moreover, let us consider the subset of frequencies
S ′
n ⊂ Sn obtained by constraining the choice of eigen-

values to only λmin, λmax:

S ′
n = {ω =

m

n
λmax +

n−m

n
λmin, m = 0, . . . , n}.

It easy to see that this set is a regular grid over
[λmin, λmax] with a step of n−1(λmax−λmin), which is also
larger than the maximum distance between any point in
[λmin, λmax] and S ′

n. But then as n → ∞ the frequen-
cies in S ′

n (and therefore in Sn) will fill up that interval
densely.

Similar properties hold also for the fidelity spectrum
S∆
n ⊂ [−ωmax, ωmax] where we defined ωmax = λmax −
λmin. Physically, this means that the landscape displays
a typical scale ∼ ω−1

max in control space below which there
are no new details within a given tolerance. This infor-
mation is relevant, for instance, in the context of opti-
mization, as can potentially be used to set step sizes,
filter out noise below that length scale and avoid over-
sampling. We will explore this idea more in detail later
in Sec. VII.

To better understand the properties of the Fourier rep-
resentation in the n −→ ∞ limit, we first state two results
concerning the boundedness of the coefficients:

Lemma 2 (L1 Boundedness of the coefficients).

∃r ∈ R, s.t. ∀n,
∑

ω∈(S∆
n )N

|cω(n, δt)| ≤ r
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Proof. See App. D.

Lemma 3 (L2 Boundedness of the coefficients).

∀n,
∑

ω∈(S∆
n )N

|cω(n, δt)|2 ≤ 1

Proof. See App. C for a proof valid for multiple controls
and a generic observable Ô.

Due to the exponential behaviour of r with respect to
the dimensionality of the Hilbert space D (which is it-
self exponential in the number of subsystems) and the
number of timesteps N , the L1 bound is unlikely to be
helpful in numerical predictions in general, given the re-
sults of this analysis. To obtain useful results concerning
quantities that are linear in the coefficients (such as the
landscape derivatives in Sec. IV), we will instead directly
invoke the boundedness of J . Conversely, the L2 bound
is stronger because it is constant and, as we will see in
Sec. VII, it is related to the landscape variance, as it is
quadratic in the coefficients.

These bounds also suggest that the coefficients are well
behaved in the large n limit. Following this intuition,
we can show that the coefficients with frequencies cor-
responding to the eigenvalues of the control Hamiltonian
—that is, matching the trivial commuting case (5)— con-
tain in general a finite contribution, so we will refer to
them as “resonant”. Note that these will correspond to
resonances in the landscape, i.e. generalized Rabi oscilla-
tions in the system output, which in general differ from
the resonances in the underlying physical system because
of the presence of the drift Hamiltonian.

If we fix j = (p, . . . , p) then clearly ω(j) = λp and the
corresponding contribution to the propagator coefficient

B
λp

ik is therefore

A
(p,...,p)
ik (n, δt) = lim

n−→∞

d∑

l=1

V †
ilWlp · · ·WppVpk

= V †
ip lim
n−→∞

(Wpp)
nVpk,

where the only term in the sum which is non-zero in the
limit is l = p. In fact, all the other terms contain an
off-diagonal element of Ŵ , which is vanishingly small for
large n (similarly to App. D). Moreover, we have the
first-order expansion

Wij = [V̂ e−
iδt
n Ĥd V̂ †]ij = δij − i

δt

n
[V̂ ĤdV̂

†]ij + o

(
δt

n

)
.

Thus, we can exploit the continuity of the logarithm to
write

lim
n−→∞

(Wpp(n
−1δt))n = exp lim

n−→∞
n log

(
Wpp(n

−1δt)
)

= exp lim
n−→∞

n(−i δt
n

[V̂ ĤdV̂
†]pp + o

(
δt

n

)
)

= e−iδt[V̂ ĤdV̂
†]pp ,

which gives us, as anticipated, a finite result for a res-
onant landscape frequency. Indeed, in the next section
we will see, using numerics, that the fidelity coefficients
corresponding to differences in eigenvalues are typically
finite, unless discrete symmetries decide otherwise, while
all the other coefficients converge to 0 as n → ∞, often
creating a mostly continuous spectrum in that limit. We
conclude by stating a result concerning the role of dy-
namical symmetries, which determine which frequencies
can be non-zero:

Lemma 4 (Symmetries and selection rules). Let Γ̂ be a

symmetry of the system, that is [Γ̂, Ĥc] = [Γ̂, Ĥd] = 0.

Let |γg(i), λi⟩ be the simultaneous eigenstates of Γ̂ and

Ĥc (the respective eigenvalues being γg and λi). Let Ig
be the set of indices belonging to the g-th symmetry sector

Ig = {i ∈ {1, . . . , D} | g(i) = g},

so that the projector P̂g onto that sector is

P̂g =
∑

i∈Ig

|γg, λi⟩ ⟨γg, λi| ,

and let G be the set of sector indices with corresponding
non-zero overlap on both the initial and target states

G = {g ∈ {1, . . . , G} | P̂g |ψ⟩ ̸= 0 ∧ P̂g |χ⟩ ̸= 0}.

Then, the coefficients bω of the cost functional are zero

unless ω ∈ (Γ,N)Sn, with
(Γ,N)Sn =

⋃

g∈G
(S(g)
n )N ,

and S(g)
n the set of frequencies built from the g-th sym-

metry sector

S(g)
n = {ω(j) =

1

n
(λ

(g)
j1

+ · · · + λ
(g)
jn

) | j ∈ Ing }.

The coefficients cω are zero unless ω ∈ (Γ,N)S∆
n , with

(Γ,N)S∆
n = {ω = ω′ − ω′′|ω′,ω′′ ∈ (Γ,N)Sn}.

Proof. See App. D.

In essence, the lemma establishes that the eigenvalues
that can appear in the Lie-Fourier representation of the
cost landscape can only originate from the same symme-
try sector at every time step, where the relevant sectors
must contain a projection of the initial and final states.

This result relies on the decomposition of the dynam-
ics into invariant subspaces, which causes the unitaries
to have a block diagonal matrix representation. An-
other known consequence is that the dynamical Lie alge-
bra of the generators factorizes, simplifying the dynam-
ics and putting constraints on the appearance of barren
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plateaux and on classical non-computability of the dy-
namics [7, 33]. In light of this, and given the relation be-
tween Fourier spectrum and landscape variance that we
will explore in Sec. VII, we interpret the frequency selec-
tion rules as one of the manifestations of this algebraic
phenomenon in the context of the Fourier representation
of the landscape. This provides an alternative viewpoint
on the subject and informs the further development of
classical simulation algorithms [20].

D. Numerical examples

We will now pick a specific system and see how the
theory detailed earlier in this section comes into play.
The system under consideration is the one dimensional
transverse field Ising model

Ĥ[u(t)] =

Q∑

i=1

αd(σ̂
(i)
z σ̂(i+1)

z + hzσ̂
(i)
z ) + u(t)σ̂(i)

x (11)

where the Hilbert space H, with D := dimH = 2Q is

the product of Q qubits and σ̂
(i)
a is the Pauli operator for

qubit i. We use the transverse field along the x direction
as control, while the constant αd plays the role of drift
Hamiltonian strength. The parameter hz can be used to
turn on the longitudinal field, and we fix it to zero unless
specified otherwise. We assume periodic boundary con-
ditions, so that as far as the qubit indices are concerned
Q + 1 ≡ 1. The Ising model is a paradigmatic example
of quantum dynamics [34], and its state transfer fidelity
landscape has already been object of study [2, 3]. More-
over, circuit Ansätze featuring the generators in Eq. (11)
(or variations thereof) are often used within variational
algorithms such as QAOA [35] and their dynamical sym-
metries have been studied in depth [7, 33, 36].

1. Ising model spectrum

As we will see now, the Ising model also gives rise to
a remarkably simple Lie-Fourier representation. In fact,
as we see from the eigenstates of Ĥc, namely

Q∑

i=1

σ̂(i)
x |−b1 · · · −bQ⟩ =

Q∑

i=1

(−1)bi |−b1 · · · −bQ⟩ , (12)

where we adopt the convention |−0⟩ = |+⟩ , |−1⟩ = |−⟩,
the spectrum S of the control Hamiltonian

S = {−Q,−Q+ 2, . . . , Q− 2, Q}

is highly degenerate (the number of distinct eigenvalues
increases linearly instead of exponentially in Q, as in the
non-degenerate scenario). In turn this gives rise to the
following Fourier spectra for the single-timestep unitary

and fidelity

Sn = {−Q,−Q+
2

n
, . . . , Q− 2

n
,Q},

S∆
n = {−2Q,−2Q+

2

n
, . . . , 2Q− 2

n
, 2Q}

= {ω = ωmax
k

kmax
| k = −kmax, . . . , kmax}

with kmax = Qn, so ωmax = 2Q, #Sn = kmax+1, #S∆
n =

2kmax + 1 =: n∆. We notice that for this model all the
frequencies in S∆

n are equally spaced, which allows us to
compute numerically the cω coefficients by means of the
Discrete Fourier Transform (DFT) (refer to App. E for
details).

By applying this numerical algorithm, we study the
Lie-Fourier representation of several state transfer prob-
lems for the Ising model. More specifically, we consider
the transfer between |0Q⟩ 7→ |1Q⟩ (also for non-zero longi-
tudinal field hz ̸= 0), between eigenstates of the control
Hamiltonian |+Q⟩ 7→ |−Q⟩ and between random states
|r⟩ 7→ |r′⟩ [37]. In Fig. 2 we can see plotted the coeffi-
cients of the Lie-Fourier expansion for N = 1, 2 for each
case.

Let us start by looking at the case |0Q⟩ 7→ |1Q⟩. As
expected from the discussion in the previous subsection,
we see that the coefficients corresponding to differences
in eigenvalues correspond to finite contributions, which
appear as sharp peaks, since we plotted nNcω. This plot-
ting choice was adopted to emphasize the behaviour of
the non-resonant coefficients, which we did not discuss
extensively. We observe that numerically the coefficients
give rise to an apparently smooth function within the
intervals delimited by the resonant frequencies. This
suggests that, at least in this particular case, the non-
resonant part of the Lie-Fourier expansion approximates
the Fourier Transform of a well behaved function.

2. Missing resonances

If now instead we consider the state transfer problem
|+Q⟩ 7→ |−Q⟩, we see that some of the frequencies that
were resonant in the previous case do not display a sharp
peak anymore. The reason behind this lies in the discrete
symmetries of the Hamiltonian in Eq. (11). Let us define
the following operator(s):

Σ̂α =

Q⊗

i=1

σ̂(i)
α , α = x, y, z,

which are Hermitian Σ̂†
α = Σ̂α and satisfy Σ̂2

α = Î. One

can easily check that Σ̂x is a symmetry of both gener-
ators [Ĥd, Σ̂x] = [Ĥc, Σ̂x] = 0 with eigenvalues ±1 and
eigenvectors given by

Σ̂x |−b1 · · · −bQ⟩ = (−1)
∑Q

i=1 bi |−b1 · · · −bQ⟩ .
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FIG. 2: Lie-Fourier representation coefficients of the
Ising model dynamical landscape for selected state
transfer problems. The results are computed for

n = 200 using the DFT algorithm described in App. E.
(Upper panel) The cω coefficients for a single timestep
landscape N = 1 are plotted for several values of drift
strength αDπ

−1 = 0.0, 0.89, 1.78, 2.67, 4.0 (color scale).
The line styles correspond to the real part of the even
(solid) and odd (dashed) frequency index branches and
to the imaginary part of the even branch (dot-dashed).
The imaginary part of the odd branch is numerically

zero in all cases. (Lower panel) The real parts of the cω
coefficients for a double timestep landscape N = 2 are
plotted as a function of the vector frequencies ω for
αDπ

−1 = 5.59. In all cases but for random states
|r⟩ → |r′⟩ the coefficients can be reorganized in two
branches which exhibit continuous behaviour inside

intervals defined by the resonant frequencies.

Comparing this expression with Eq. (12), we can cate-
gorize the eigenvalues in S according to the symmetry
sector they belong to:

S+ =

{
{Q,Q− 4, . . . ,−Q+ 4,−Q} if Q even

{Q,Q− 4, . . . ,−Q+ 6,−Q+ 2} if Q odd

S− =

{
{Q− 2, Q− 6, . . . ,−Q+ 6,−Q+ 2} if Q even

{Q− 2, Q− 6, . . . ,−Q+ 4,−Q} if Q odd

with S = S+ ∪ S−. Moreover, the initial and target
states lie inside a single symmetry sector:

Σ̂x |+Q⟩ = |+Q⟩ ,
Σ̂x |−Q⟩ = (−1)Q |−Q⟩ .

Then, because of Lemma 4, if Q is odd all coefficients
bω and, therefore cω, are zero. If instead Q is even, the
spectrum will be limited to the eigenvalues of the +1
symmetry sector, that is

S+
n = {Q,Q− 4

n
, . . . ,−Q+

4

n
,−Q}

which gives rise to the fidelity spectrum

S+∆
n = {2Q, 2Q− 4

n
, . . . ,−2Q+

4

n
,−2Q}.

This excludes from the spectrum roughly half of the fre-
quencies, among which the resonant frequencies that do
not appear in the |+Q⟩ 7→ |−Q⟩ case in Fig. 2. Since this
symmetry is broken in all the other cases, the resonances
are in general not suppressed and can appear as sharp
peaks.

3. Additional spectrum features

It is interesting to see that, in all cases except the
transfer between random states, the coefficients cω ∈ C
are real. As far as the |0Q⟩ 7→ |1Q⟩ case is concerned (also
for hz ̸= 0), this fact can be explained by the existence
of additional anti-symmetries of the Ising model. These
are given by the operators Σ̂y,z and have the property

Σ̂y,zĤ(u)Σ̂y,z = Ĥ(−u). But then we have the following:

J(u) = | ⟨1Q| Û(u) |0Q⟩ |2

= | ⟨1Q| Σ̂2
zÛ(uN )Σ̂2

z · · · Σ̂2
zÛ(u1)Σ̂2

z |0Q⟩ |2

= |(−1)Q ⟨1Q| Û(−uN ) · · · Û(−u1) |0Q⟩ |2 = J(−u)

which together with J ∈ R implies cω ∈ R. A similar
reasoning using Σ̂x shows another interesting property:

J(u1, . . . , uN ) = | ⟨1Q| Û(u) |0Q⟩ |2

= | ⟨1Q| Σ̂2
xÛ(uN )Σ̂2

x · · · Σ̂2
xÛ(u1)Σ̂2

x |0Q⟩ |2

= | ⟨0Q| Û(uN ) · · · Û(u1) |1Q⟩ |2

= | ⟨1Q| Û†(u1) · · · Û†(uN ) |0Q⟩ |2 = J(uN , . . . , u1),
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where the last step is justified since both Ĥ and the states
|0Q⟩ , |1Q⟩ only have real matrix elements and overlaps
with the computational basis (see App. E for more de-
tails). This property shows that in this case the Lie-
Fourier coefficients are approximately symmetric under
reversal of the frequency order cω1···ωN

= cωN ···ω1 . The
reason why the symmetry is not exact is that in the Lie-
Fourier representation the unitary Û is substituted with
Ûn, which obeys the symmetry exactly only in the n→ ∞
limit.

Another phenomenon that we observe is the splitting
of the coefficients into branches featuring apparently con-
tinuous behaviour inside the intervals described above.
In all cases without longitudinal field hz = 0, the branch
corresponding to frequencies in S∆

n with odd indices are
zero [38]. Moreover, the even/odd branches appear to be
the only ones present in all cases except the random state
transfer. In this last case, the structure looks much more
complex, potentially featuring many branches and more
discontinuities. We believe this to be related to the fact
that randomly chosen states break not only the symme-
tries we discussed, but also the ones associated to cyclic
qubit permutations [36].

The observed stepwise-continuous behaviour seems to
suggest that at least in symmetric cases it would be
advantageous to choose as feature maps a basis of e.g.
polynomial functions in frequency space. This way large
swaths of the continuous spectrum could be represented
by a few basis functions, resulting in a more efficient rep-
resentation. Even the discrete symmetries we highlighted
could be explicitly encoded within such a feature map.
While leaving this for future work, we notice that we can
achieve a similar effect with the sinc-kernel representa-
tion as presented in Sec. VI.

IV. LANDSCAPE DERIVATIVES

The Lie-Fourier representation we discussed in Section
III also allows us to prove some results concerning the
derivatives of the landscape, which are independent of
the representation itself. In fact we have that

Lemma 5 (Boundedness of the derivatives). The partial
derivatives of J(u) of any order P are bounded by

|∂p11 · · · ∂pNN J(u)| ≤ (ωmaxδt)
P

2

where P =
∑
ν pν and ωmax = |λmax − λmin| is the max-

imum transition frequency in the control Hamiltonian.

Proof. See App. C for a proof in the case of multiple
controls and a generic observable Ô.

The proof first shows that the result holds for the Lie-
Fourier approximants Jn, making use of the fact that
they are bandwidth limited and bounded 0 ≤ Jn ≤ 1.
The result for the landscape J is obtained by invoking

uniform convergence of the functions Jn and of their
derivatives of any order.

As a direct consequence we notice that the L1 norm of
the gradient, Hessian and higher order derivative tensors
are bounded by constants:

∑

p∈NN

δ||p||1,P |∂p11 · · · ∂pNN J(u)| ≤ (Nωmaxδt)
P

2
=
LP

2
,

where we defined the nondimensional parameter L =
ωmaxT , with T = Nδt the total evolution time, and
p = (p1, p2, · · · , pN )T . Since the parameter L does not
depend on the circuit depth N alone, this points to the
bounds being relevant also in the case of continuous con-
trols, which are approximated by the stepwise-constant
pulses that we studied.

Another consequence of the bound on the derivatives
is given by the following result:

Lemma 6 (Lipschitz continuity). The function J(u) is
Lipschitz continuous, that is

|J(u) − J(u′)| ≤ K||u− u′||1

where the Lipschitz constant satisfies 0 ≤ K ≤ ωmaxδt/2.
Moreover, if u is a critical point ∇J(u) = 0, then also
the following inequality holds

|J(u) − J(u′)| ≤ Kc||u− u′||21.

where 0 ≤ Kc ≤ (ωmaxδt)
2/2.

Proof. See App. C for a proof valid in the case of multiple
controls and a generic observable Ô.

In practical terms, this means that the maximum
amount of variation in the landscape value is fixed
through the constant rate K to the distance between
sampled points. This fact has important consequences
for optimization that we will explore in Sec. VII-VIII.
Besides computing an upper bound for K in terms of the
physical properties of the systems, this results clarifies
what is the relevant notion of distance between controls
that should be used in this case, namely the L1 norm
|| · ||1 (also known as “taxicab” norm, see App. A for def-
initions). In order to study the scaling for large N , we
can reabsorb the factor δt inside the norm

K

N∑

ν=1

δt|u(tν)− u′(tν)| N−→∞−−−−→ ωmax

2

∫ T

0

dt|u(t)− u′(t)|.

We can also show that the properties we just discussed
still apply if we work with parametrized controls, which
is often the case in optimal control [24, 39, 40]. The
following corollary to Lemma 5 shows that, provided the
basis functions are appropriately normalized, the same
bounds on the derivatives, and therefore on the Lipschitz
constant, are satisfied:
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Corollary 1 (Linear parametrizations of controls). Let
us consider a linear parametrization of the controls u =
Rv, where v ∈ RNc and R ∈ RN×Nc , which is normal-
ized as follows:

∀i = 1, . . . , Nc ||ri||1 :=
N∑

ν=1

|rνi| = 1.

where ri are the columns of R.
Then, the derivatives of the parametrized landscape

J̃(v) = J(Rv) obey the bound

|∂̃p11 · · · ∂̃pNc

Nc
J̃(v)| ≤ (ωmaxδt)

P

2

Nc∏

i=1

||ri||pi1 =
(ωmaxδt)

P

2
,

where P =
∑
ν pν , ∂̃µ′ν′ := ∂

∂vµ′ν′ and ∂µν := ∂
∂uµν

Proof. See App. C for a proof valid in the case of multiple
controls and a generic observable Ô.

Once again, we can derive an appropriate formula for
scaling in N by including the factor δt in the normaliza-
tion of the basis functions.

V. TAYLOR REPRESENTATION

The bound on the landscape derivatives that we found
in Lemma 5 also gives important information regarding
how efficiently the landscape can be locally represented
by means of a Taylor expansion. By taking the reference
pulse u0 as the expansion point, the Taylor representa-
tion up to order P can be written in the following form
[41] [42]

JP (u) =
P∑

p=0

∑

ν1···νp
aν(u− u0)ν1 · · · (u− u0)νp ,

aν =
1

p!
∂ν1 · · · ∂νpJ(u0),

In order to see that the landscape admits a representation
in this form, we find an upper bound for the approxima-
tion error by means of Lemma 5 and of the following
classical result due to Lagrange and Taylor:

Lemma 7 (Taylor approximation error in the Lagrange
form).

|J(u) − JP (u)| ≤ 1

2

(ωmaxδt)
P+1

(P + 1)!
||u− u0||P+1

1

Proof. See App. C for a proof valid for multiple controls
and a generic observable Ô.

Inside the control region of interest C(N)(u0) the bound
can be relaxed to

sup
u∈C(N)(u0)

|J(u) − JP (u)| ≤ (umaxL)P+1

2(P + 1)!
=: ϵ(P ), (13)

10−3 10−2 10−1 100 101 102 103
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100

101

102

103
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FIG. 3: Given an error threshold ϵ, we plot the solution
for P of the equation ϵ(P ) = ϵ. This quantity represents
the minimum order of Taylor expansion P to represent
J up to an error ϵ. The different lines show the results

for several values for the error threshold
ϵ = {10−1, 10−3, 10−5, 10−7, 10−9, 10−11, 10−13, 10−15}.

There is a crossover from umaxL < 1, where P ≲ 10 and
it depends weakly on umaxL, enabling an efficient local

representation of the landscape, to the region
umaxL≫ 1 where the dependence becomes linear

P ∼ eumaxL.

where we recall that L = ωmaxNδt. Intuitively, this im-
plies that for umax < L−1, the error of the P−order ex-
pansion is suppressed by both the numerator (exponen-
tially) and the denominator (factorially), defining a con-
trol region of improved convergence in P . On the other
hand, for umax ≥ L−1 the numerator diverges exponen-
tially, and the factorial suppression of the denominator
must first kick in for the error to vanish. Arbitrary pre-
cision can be obtained in both cases by choosing P to be
large enough.

In Fig. 3 we study what is the minimum required order
of the Taylor expansion so that ϵ(P ) = ϵ for a given error
threshold ϵ. As expected, we see that for umaxL < 1
the we do not need very high order expansions to obtain
high precision, whereas for umaxL > 1 the order required
for the expansion scales linearly with umaxL. The latter
observation can be understood by developing the bound
in Eq. (13) using Stirling’s approximation for the factorial
under the assumption umaxL,P ≫ 1:

0 ≈ log(ϵ)

P
≈ 1

P
log

(
(umaxL)P

2P !

)
≈
(

log
umaxL

P
+ 1

)
,

which implies the linear dependence P ≈ eumaxL.
This error analysis shows that the landscape can be

represented locally (i.e. for umaxL ≲ 1, which is the case
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if the pulses amplitude umax, total time T and/or max-
imum transition frequency ωmax are sufficiently small)
with a number of parameters which is polynomial in the
number of time steps N , with a degree P ≲ 10. As an
example, Fig. 3 shows that it is possible to represent the
landscape with an error below ϵ ≲ 10−3 for umaxL < 1
with a P = 5 representation, which contains O(N5) co-
efficients or even more locally for umaxL ≲ 0.25 with a
P = 2 representation, which only contains O(N2) terms
(corresponding to the gradient and Hessian of the land-
scape at the expansion point).

Such local representations provide relevant information
during optimization and can be used to obtain noise-
robust gradient estimates or to allow a direct jump to the
minimum of the local landscape, speeding up convergence
[16, 43]. In particular, for P = 2 the latter approach is
equivalent to applying Newton’s method [43], for which
our results could help bound the convergence rate. Owing
to its generality, the Taylor representation also serves as
a performance baseline for any other local representation
which exploits specific details of the system at hand [16].

In the case of bang-bang controls sν = ±1, the Taylor
representation is very similar to the one presented in [2],
although in that work the landscape is related to the log-
arithm of the infidelity. Since the controls are chosen this
way, the only allowed powers are pν = 0, 1 and therefore
the expansion is finite. The fact that the authors of [2]
could successfully represent the landscape for small val-
ues of T using only the first few orders in their expansion
is qualitatively similar to the picture that arises from our
analysis. In our case we can roughly choose the timescale
T ∗ that defines the crossover as

T ∗ =
1

umaxωmax
.

As we will see in Sec. VII, T ∗ can be interpreted as a
Quantum Speed Limit, so for T/T ∗ ≪ 1 the infidelity
cannot reach values arbitrarily close to 0. But then the
composition of J with the logarithm should only add a
prefactor close to 1 to the bounds we discussed, leading
to a qualitatively similar picture.

VI. KERNEL REPRESENTATION AND
LANDSCAPE LEARNING

We now turn to the question regarding how it is possi-
ble, given a sample Dtrain of Ntrain control values ui and
the corresponding fidelities J(ui) =: Ji, namely

Dtrain = {(ui, Ji)}Ntrain
i=1

to efficiently predict the fidelity for new control values.
This problem can be stated in the language of ma-

chine learning as a supervised learning (or regression)
task, where given a family of models of the landscape
Jw(u) parametrized by the weights w ∈ CNweights , we
look for the vector w̄ whose associated model best fits

the points in the training data set. This is quantified
by means of a loss function L, that we choose to be the
sum of the square residuals with RIDGE regularization
[2, 17, 27]:

L(w,w†,Dtrain) =

Ntrain∑

i=1

|Jw(ui) − Ji|2 + λRw
†w,

so that w̄ will correspond to the minimum of L. If the
considered model has a non-linear dependence on the pa-
rameters, which is the case for deep learning [3], one usu-
ally has to resort to gradient-based optimization to find
w̄. In the case of a linear model, that is

Jw(u) = w†ϕ(u), (14)

where the non-linear functions ϕ(u) =
(ϕ1(u), ϕ2(u), · · · , ϕNweights

(u))T : RN −→ CNweights

are usually called features, the problem reduces to linear
regression, which can be solved algebraically. This is
possible since in this case the loss reduces to a quadratic
form in the weights:

L(w,w†) = w†Φ†Φw+J†J−J†Φw−w†Φ†J+λRw
†w,

where we have defined the so-called feature matrix Φ

Φ† =
(
ϕ(u1) . . . ϕ(uNtrain)

)
.

The stationary points ∇w†L = 0 can be found by solving
the linear equation

w = − 1

λR
Φ†(Φw − J). (15)

Since the loss is real, differentiating with respect to w
gives rise to the Hermitian conjugate of this equation,
which is also satisfied when this equation is satisfied. The
solution can be written explicitly via matrix inversion:

w̄ =
(
Φ†Φ + λR1

)−1
Φ†J .

We see from this expression that the RIDGE parame-
ter λR regularizes the inverse of the covariance matrix
Φ†Φ ∈ CNweights×Nweights , avoiding potential problems
arising from small eigenvalues of Φ†Φ, which can be
caused by correlations in the data set.

In light of the Lie-Fourier representation we discussed
in Sec. III, a natural choice for the features is a complex
exponential of the form

ϕω(u) = e−iδtω·u.

Since the frequencies fill up densely the hypercube ω ∈
[−ωmax, ωmax]N , in the absence of a prior expectation on
their distribution, we consider random Fourier features
[17], which we sample with uniform probability in the
frequency hypercube. As we will see later, the bounded-
ness of the control region we are considering results in a
certain freedom to choose the frequencies in the model,
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so that they do not necessarily have to match the ones
from the Lie-Fourier representation. This can potentially
relieve us from having to deal with an infinite number of
frequencies.

Another viable option is to use polynomial features of
the form

ϕp(u) =
N∏

ν=1

(u− u0)p1 · · · (u− u0)pN ,

which give rise to a Taylor representation like the one
we studied in Sec. V, provided that the degree vectors p
are chosen appropriately. Based on our discussion of the
error, we would expect this representation to efficiently
learn the landscape at least for umaxL < 1.

These two options both suffer from the same problem,
namely, that in order to solve the problem numerically
they require subselecting a finite number of representa-
tive features Nweights from an infinite-dimensional feature
space. This space is in general needed in full to represent
the landscape exactly, as we saw in detail in Sec. III for
the Lie-Fourier representation and in Sec. V for the Tay-
lor representation. But then, we always have to neglect
features that might be important, which is potentially
problematic in the absence of guiding principles on how
to choose the ones we keep.

There is a way around this problem that allows us to
effectively perform infinite-dimensional linear regression,
by means of the so-called kernel trick [17, 27]. The start-
ing point of this method is to introduce the column vector
a as follows:

a = − 1

λR
(Φw − J)

so that together with Eq. (15) we have

w(a) = Φ†a.

We can now rewrite the loss as a function of a alone:

L(a,a†) = a†KKa−a†KJ−J†Ka+J†J +λRa
†Ka,

where we defined the kernel matrix K = ΦΦ†, turning
the original infinite-dimensional regression problem into
a finite dimensional kernel regression. Since K† = K ∈
CNtrain×Ntrain , the dimensionality of this new regression
problem is set by the number of data points Ntrain in the
training dataset. Once again, we have to minimize the
loss by solving ∇a†L = 0, which yields

ā = (K + λR1)−1J .

Finally, inference on a new data point is to be carried out
by substitution inside Eq. (14)

Jw(ā)(u) = ā†Φϕ(u) =

Ntrain∑

i=1

ā∗i κ(ui,u),

where we defined the kernel function κ(u,u′) :=
ϕ†(u)ϕ(u′), which also appears in the matrix elements
of the kernel matrix Kij = κ(ui,uj). Kernel methods
like this one are categorized as instance-based learning
methods, because the prediction for a new data point
is obtained as a linear combinations of kernel functions
evaluated on the training data points [3, 22, 23].

In the case of complex exponential features, the cal-
culation of the kernel functions can be carried out ana-
lytically, and is particularly straightforward in the case
of equally spaced frequencies as they appear in the Ising
model we discussed in Sec. III D. In fact, in that case we
have that

κ(u,u′) = ϕ†(u)ϕ(u′) = lim
n−→∞

1

nN∆

∑

ω∈(S∆
n )N

e−iδtω·(u−u′) = lim
kmax−→∞

(
1

2kmax + 1

)N kmax∑

k=−kmax

e−i
ωmaxδt
kmax

k·(u−u′) =

=
N∏

i=1

lim
kmax−→∞

1

2kmax + 1

(
kmax∑

ki=0

e−i
ωmaxδt
kmax

ki(ui−u′
i) + c.c.− 1

)
=

N∏

i=1

lim
kmax−→∞

1

2kmax + 1

(
e−iωmaxδt(ui−u′

i)

1 − e+i
ωmaxδt
kmax

(ui−u′
i)

+ c.c.

)

=

N∏

i=1

lim
kmax−→∞

O(kmax)

2kmax + 1

(
e−iωmaxδt(ui−u′

i)

−iωmaxδt(ui − u′i)
+ c.c.

)
=

N∏

i=1

sin [ωmaxδt(ui − u′i)]
ωmaxδt(ui − u′i)

= κ(u− u′),

where we remind that n∆ = #S∆
n is the number of fre-

quencies in the n-th order Lie-Fourier representation, and
the sums over ki are computed using the well-known for-
mula for the geometric series. The fact that we obtain
a (multidimensional) sinc kernel is consistent with the

bandwidth-limited nature of the problem. Moreover, we
find that for a data set Dtrain obtained by sampling an
infinite cubic hyperlattice ui ∈ π(ωmaxδt)

−1ZN this in-
stance of kernel regression reduces to the well known
Whittaker-Shannon interpolation formula [44]. In fact,
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since the sinc function reduces to a delta function on the
hyperlattice points, we have that

κ(π(ωmaxδt)
−1(p− q)) = δp,q ∀p, q ∈ ZN ,

therefore the kernel is the identity matrix Kij = δij and
ā = J by setting λR = 0, which gives us the desired
result

Jw(ā)(u) =

Ntrain∑

i=1

Jiκ(u− ui) =
∑

p∈ZN

Jiκ

[
u− πp

ωmaxδt

]
.

According to this kernel representation, the estimated
landscape is a linear superposition of sinc kernels with
a given wavelength. Moreover, in the case of the
Whittaker-Shannon formula, the individual kernels rep-
resent the solution for a single sampling point, playing
the same role of a Green function for a classical linear
field theory. This suggests that, similarly to classical op-
tics, the landscape has a maximum resolution related to
the kernel’s wavelength, below which details cannot be
distinguished. We will make this argument more precise
in the following section.

A. Numerical examples

We now benchmark the performance in the regres-
sion task of the various representations for the same
quantum dynamical landscape we already studied nu-
merically in Sec. III. The system we consider is the
transverse field Ising model in Eq. (11), with no lon-
gitudinal field hz = 0 and the state transfer problem
|0Q⟩ 7→ |1Q⟩. We generate a training dataset by ran-
domly sampling a set of controls uniformly inside the hy-
percube ui ∈ CN = [−umax, umax], and then we compute
the state transfer fidelity Ji for each one of the sampled
controls. Then we train each regression model as de-
scribed previously, and evaluate the prediction error on
a new set data points Dtest = {(ui, J(ui))}Ntest

i=1 , which
we define as the root mean squared error:

ϵrms =

√√√√ 1

Ntest

Ntest∑

i=1

(Ji −
Nweights∑

j=1

wjϕj(ui))
2

In order to obtain a fair comparison between the three
regression models, we need to take into account several
aspects. First of all, while the number of featuresNweights

can be chosen freely for the Fourier and Taylor features,
it is fixed to Nweights = Ntrain in the case of kernel regres-
sion, as it is an instance-based method. For this reason,
we proceed as follows: we split the training data set into
a set that we use for the training itself and a valida-
tion data set which we use to evaluate the error ϵrms,
repeat the training for a range of values of Nweights, and
finally fix Nweights by choosing the value that gives the
lowest validation error. Another important aspect is the
choice of the RIDGE regularization parameter λR. We

empirically found that keeping Nweights < Ntrain greatly
simplifies the analysis in this regard, since then the best
results are typically obtained by fixing λR as small as it
is permitted by numerical stability. The results of this
analysis are presented in Fig. 4, where the prediction er-
ror ϵrms is plotted as a function of Ntrain for the various
regression models.

The most significant finding is that the sinc kernel fea-
tures appear to provide the best prediction performance
if Ntrain is large enough. Even though its prediction error
is larger than for the other feature maps when the train-
ing dataset is too small, the plots suggest that there is a
threshold value forNtrain above which the sinc kernel out-
performs both the Taylor and Fourier feature maps. This
threshold becomes larger as N,umax increase in value.
Meanwhile, for few training samples we see that the Tay-
lor representation generally does best. In the intermedi-
ate range, a crossover takes place between Taylor being
best for few time step layers, while Fourier works better
for more time steps.

We also find qualitatively that the sinc kernel regres-
sion is generally more stable and can tolerate smaller val-
ues of λR compared to the other choices. Finally, we find
that the inferior performance of the sinc kernel for low
Ntrain can be greatly improved by decreasing the kernel
bandwidth to ωker ≤ ωmax, giving rise to

κ(u− u′) =
N∏

i=1

sin [ωkerδt(ui − u′i)]
ωkerδt(ui − u′i)

.

The results that we obtain using this strategy are show-
cased in Fig. 5. There we see that a trade-off between
precision on small and large data sets arises, so that ωker
has to be tuned based on practical considerations regard-
ing the problem and the data resources at hand.

B. Analysis of Fourier regression

Let us now go back to Fourier features regression and
examine the problem more closely. A first insight that
we can gain is that the regression problem for bounded
sampled controls ui ∈ CN does not require finding an
exact representation of the landscape J over u ∈ RN ,
for which we would indeed need an infinite number of
frequencies. All we need to do is to find an approximation
that is good enough inside the hypercube CN . This has
important consequences as far as the Fourier spectrum of
the approximations is concerned. In order to understand
this point, we reformulate the loss we have chosen (we
fix λR = 0 for simplicity) as the Monte Carlo sampling
of an integral:

Ntrain∑

i=1

|Jw(ui) − Ji|2
Ntrain

≈
∫

CN

dNu

(2umax)N
|Jw(u) − J(u)|2

where we assume the sampled controls to be drawn from
the uniform probability distribution over CN . As we saw
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FIG. 4: Prediction performance ϵrms of surrogate models as a function of training dataset size Ntrain for the system
given by Eq. (11). The results shown in the plot are obtained for Q = 5 qubits, time T = 1.0, where the colors

correspond to the choice of feature map. Each of the six plots corresponds to a value of the parameters (N, umax)
∈ {2, 4} × {1.0, 2.0, 4.0}. For Taylor and Fourier features we have λR = 10−6, and only the result for the optimal

value of Nweights ≤ Ntrain is shown, while for the sinc kernel we have λR = 10−12. The training datasets are sampled
from a pool of 12672 controls, while the test datasets with Ntest = 128 are sampled from another pool of 3200 and
each training/test is repeated 32 times. The solid lines correspond to the median of the prediction errors ϵrms over
the samples, while the shaded area corresponds to the 25 − 75 percentile range. The dotted line shows the square

root of the variance of the sampled landscape. Compared to the other feature maps, the sinc kernel model typically
shows lower values of ϵrms for large values of Ntrain, while the opposite is true for the Taylor representation.

in Sec. III, J can be approximated with arbitrarily low
error over CN with its Lie-Fourier representation Jn for
a large enough n. We now try to solve the regression
problem for the integral loss by choosing the model Jw
as a sum of Fourier components picked from a set of

frequencies E (that we can suppose to be finite, bounded
and satisfying the same symmetries as the Lie-Fourier
spectrum (S∆

n )N ). The integral loss can then be written
directly in term of the weights as follows:

L̃(w,w†) =

∫

CN

dNu

(2umax)N

∣∣∣∣∣∣
∑

α∈E
wαe

−iδtα·u −
∑

ω∈(S∆
n )N

cωe
−iδtω·u

∣∣∣∣∣∣

2

=

∫

CN

dNu

(2umax)N


 ∑

α,α′∈E
w∗

α′wαe
iδt(α′−α)·u +

∑

ω,ω′∈(S∆
n )N

c∗ω′cωe
iδt(ω′−ω)·u −

∑

α∈E,ω∈(S∆
n )N

[w∗
αcωe

iδt(α−ω)·u + c∗ωwαe
iδt(ω−α)·u]




=
∑

α,α′∈E
w∗

α′wακ̃(α′ −α) +
∑

ω,ω′∈(S∆
n )N

c∗ω′cωκ̃(ω′ − ω) −
∑

α∈E,ω∈(S∆
n )N

[w∗
αcωκ̃(α− ω) + c∗ωwακ̃(ω −α)] (16)

where we defined the frequency space kernel κ̃ as

κ̃(ω) =
N∏

ν=1

sinωνδtumax

ωνδtumax
.

1. Discrete frequencies approximation

Since κ̃ has a finite resolution in Fourier space, the
loss is to a first approximation only a function of a local
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FIG. 5: Sinc kernel regression with reduced kernel
bandwidth ωker ≤ ωmax on the system given by

Eq. (11). The results shown in the plot are obtained for
Q = 5, T = 1.0, N = 4, umax = 1.0 and the different

colors (from blue to yellow) corresponding to
ωker/ωmax = 0.1, 0.3, 0.5, 0.8, 0.9, 1.0. The training

datasets are sampled from a pool of 12672 points and
each training is repeated 32 times. The median (solid

lines) and interquartile range (shaded area) of the
prediction errors ϵrms over the samples are shown. The
dotted line shows the square root of the variance of the
sampled landscape. Reducing ωker considerably reduces

prediction error for small training datasets, but also
increases it for large datasets.

average of the weights wα within a certain volume in fre-
quency space. We can study the consequences of this fact
by expanding the kernel function for small arguments:

N∏

ν=1

sinωνδtumax

ωνδtumax
= 1− (||ω||2δtumax)2

6
+o((||ω||2δtumax)2)

This means that within a ball in frequency space defined
by the Euclidean norm || · ||2 and with radius ∆ω, we can
approximate the kernel with a constant up to an error
of order (∆ω δt umax)2. Since the coefficients relating to
frequencies closer than ∆ω are then summed up in the
loss function, the regression problem effectively depends
only on a smaller subset of frequency modes than the
original ones. In practice, this suggests that we can find
approximate representations with fewer frequencies than
the ones in the Lie-Fourier representation, as long as we
are just interested in a bounded control region of interest.
Estimating how many of these frequencies should be used
is a hard problem because it is related to a N -dimensional
sphere stacking problem [45].

2. Flat landscape approximation

It is perhaps even more interesting to take this rea-
soning to its extreme logical consequences and consider
a regression model containing only the zero frequency
mode w0. By substituting the small argument expan-
sion for the kernel into Eq. (16) and neglecting the terms
o((δtumax||ω||2)2) [46], we obtain the following

L̃(w0, w
∗
0) = |w0|2+

∑

ω,ω′∈(S∆
n )N

c∗ω′cω(1− δt2umax
2

6
||ω′−ω||22)

−
∑

ω∈(S∆
n )N

(w∗
0cω + c∗ωw0)(1 − δt2umax

2

6
||ω||22).

We can find the solution w̄0 to the regression problem
by solving the equation ∇w†L = 0. To the zeroth order
approximation the solution is given (up to a phase) by

w̄0 =
∑

ω∈(S∆
n )N

cω = Jn(0),

as defined by Eq. (8). We can substitute again into the
loss function to evaluate how well the constant model
approximates the landscape. We obtain:

L(w̄0, w̄
∗
0) =

δt2u2max

6

∑

ω,ω′∈(S∆
n )N

c∗ω′cω(||ω||22+||ω′||22−||ω′−ω||22)

≤ (δtumax)2

6

∣∣∣∣∣∣
∑

ω∈(S∆
n )N

cω

∣∣∣∣∣∣

2

2Nω2
max ≤ (umaxL)2

3N

N−→∞−−−−→ 0,

where in the last step we made use of the boundedness
of the landscape |Jn(0)|2 ≤ 1.

This results implies a remarkable property of any dy-
namical landscape with finite time-energy budget L: as
the number of controls N increase, the landscape be-
comes increasingly close to a flat landscape when distance
between landscapes is measured using the L2 norm. As
we will see in the next Section, this is related to the ap-
pearance of (polynomial) barren plateaux. In relation to
landscape learning, this suggests that the sum of square
residuals for uniform finite samples is not a well defined
loss function, unless N is fixed, which in practice forces
us to introduce a cutoff in control pulse discretization
(or, equivalently, in frequency) in order to obtain a well
defined regression problem. Since numerical experiments
necessarily deal with finite values of N , it is possible in
practice to use the loss L2 for regression, but these con-
siderations cast a doubt on the relevance of scaling anal-
ysis for this kind of problems.

In order to surpass the difficulties arising from this
artificial cutoff, it is most likely to be necessary to employ
stronger notions of distance (e.g. using the sup-norm
L∞), non-uniform sampling strategies, or a combination
of the two. Since the landscapes we are studying are,
after all, objective functions to be optimized, sampling
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could also be provided by an optimizer [3, 4]. This way,
the focus of the problem would shift from learning the
landscape itself to learning the landscape as it ”appears”
to the optimizer.

VII. LANDSCAPE METRICS

We now discuss the relevance of the results concern-
ing quantum dynamical landscapes that we derived up
to now in the context of optimization. Finding the con-
trols that minimize the landscape J(u) = ⟨Ô(u)⟩ is the
problem we have to solve both in the context of optimal
control (for which the landscape often corresponds to the

infidelity, so that Ô = Î − |χ⟩ ⟨χ|) and VQA.
As we have seen in the previous section, the landscape

can be represented by means of a kernel with a band-
width which is set by the time and energy scales of the
problem. Therefore, analogously to classical optics, the
finite bandwidth of the landscape should prevent us from
distinguishing details below a certain length scale l in
control space, at least up to a certain tolerance δJ . But
then the landscape can be discretized up to an error δJ
by sampling it on points standing at a distance l from
one another. In order to make these considerations more
precise, we can use the formula from Lemma 6. Then, we
can see that for two controls u,u′ whose infidelity differs
by δJ , the following holds true

||u− u′||1 ≥ 2δJ

ωmaxδt
=: l. (17)

As anticipated, the two controls have to be separated
by a certain minimum distance l (which depends also on
δJ), that has to be measured using the taxicab norm
|| · ||1. This simple fact has multiple consequences on the
landscape properties.

A. General Quantum Speed Limit

We first analyse the general structure of the Quan-
tum Speed Limit (QSL), which can be defined as the
minimum time TQSL needed to perform a control task,
such as state transfer to the target state |χ⟩. We can ob-
tain this from the infidelity landscape assuming the value
J = 0 at least once within the bounded control region of
interest CN = [−umax, umax]N . Even though we cannot
say anything about the QSL for a single target state,
we can put a lower bound on the time T⊥

QSL needed to

reach both the original target state |χ⟩ and an orthogo-
nal state |χ⊥⟩ , ⟨χ|χ⊥⟩ = 0. Although this definition of
the QSL looks rather artificial, if the system exhibits full
state controllability it will also satisfy this condition, so

that T fullQSL ≥ T⊥
QSL. The bound on T⊥

QSL (and therefore

on T fullQSL) can be derived as follows: Since by definition

there are controls u∗,u∗
⊥ ∈ CN such that U(u∗) |ψ⟩ = |χ⟩

and U(u∗
⊥) |ψ⟩ = |χ⊥⟩, the infidelity landscape will as-

sume there the values J(u∗) = 1 − | ⟨χ|χ⟩ |2 = 0 and
J(u∗

⊥) = 1 − | ⟨χ|χ⊥⟩ |2 = 1. But then as we have al-
ready seen, Lemma 6 implies that

||u∗ − u∗
⊥||1 ≥ |J(u∗) − J(u∗

⊥)|K−1 ≥ 2

ωmaxδt

The two controls inside the hypercube CN which are fur-
thest away from each other stand at opposite corners, so
that we have

||u∗ − u∗
⊥||1 ≤ ||umax − (−umax)||1 = 2umaxN,

which plugged back in the previous equation with T =
Nδt gives the result:

T⊥
QSL ≥ 1

ωmaxumax
=

1

umax|λmax − λmin|
, (18)

where we remind that ωmax = |λmax − λmin| is the maxi-
mum transition angular frequency in the control Hamil-
tonian (ℏ = 1). Note that since T⊥

QSL becomes vanish-
ingly small as the bounds on the controls umax are en-
larged, this lower bound for the Quantum Speed Limit
is clearly not tight in the rather common cases in which
the amplitude of the drift Hamiltonian Ĥd constitutes
the bottleneck in time for achieving controllability.

B. Trap separation and trap density

The notion of a minimum distance between distin-
guishable landscape points can also be used to infer the
properties of the landscape around the local minima u∗,
which we define as global minima inside a neighbourhood

M = {u∗ ∈ CN | ||u− u∗||1 ≤ ϵ⇒ J(u) ≥ J(u∗)} (19)

for some given ϵ > 0.
As a visualization, we can picture the quantum dy-

namical landscape J(u) as a topographic landscape with
mountains and valleys, filled up with water up until a
certain level J̄ which is the same across the region we are
considering. The water will split up into disconnected
water pockets forming a collection of lakes, as pictured
in Fig. 6. We can interpret the water level as the current
infidelity value and the lakes would be the control regions
we have to explore to find better controls. We define the
depth of each lake as the difference in height between the
water level and the lowest point of the landscape inside
the lake (i.e., the local minimum). But then, we can use
the result on Lipschitz continuity to relate the extent of
the lakes to their depth, i.e., the improvement in infi-
delity that can be achieved by exploring it. By noticing
that the local minima as we defined them are also critical
points ∇J(u∗) = 0, we can use the second version of the
inequality in Lemma 6, that is

||u− u⋆||1 ≥
√

2δJ

(ωmaxδt)2
=

√
2δJ

N

L
, (20)
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FIG. 6: The quantum dynamical landscape J as a
topographical landscape filled with water up to J̄ .

Climbing out of the water from a minimum of depth δJ
requires moving in control space over a distance of at

least lc. Even though the size of a lake lc diverges with
the control space dimensionality N , the underwater

control volume fraction shrinks to zero (see Sec. VII B).

which is a stronger condition than Eq. (17) when 2J < 1,
and where as before L = Tωmax. We can then define a
new control length scale lc

lc = β
N

L
(21)

where β = max{
√

2δJ, 2δJ}. Then, given a lake of depth
δJ , starting from its shore we need to travel a distance
(measured using the taxicab norm || · ||1) of at least lc
in order to get to the bottom of the lake u∗ (the local
minimum). In other terms, Eq. (21) implies that the
connected neighbourhood of the local minimum where
|J(u)−J(u∗)| < δJ (corresponding to the surface of the

lake in our picture) contains a taxicab ball T (N)
lc

(u⋆) of
radius lc centered around u⋆:

T (N)
lc

(u⋆) = {u ∈ RN : ||u− u⋆||1 ≤ lc}.

This means that to every local minimum of depth δJ is
associated a volume in control space of at least

Vol T N
lc =

(2lc)
N

N !
=

(
2β

L

)N
NN

N !
.

As we cannot fit more than (Vol T N
lc

)−1 of these balls in
the unit volume, this gives us an upper bound to their av-
erage density within the bulk volume (2umax)N , this way
neglecting surface effects determined by finite bounds on
the control region of interest. We can study the large N
behaviour of the density bound by means of the Stirling
formula:

(Vol T N
lc )−1 = exp

(
−N log

(
e

2β

L

)
+ O(logN)

)
, (22)

so that the maximum density is exponentially suppressed
if 2eβ > L and grows exponentially for 2eβ < L while

the marginal case 2eβL−1 = 1 requires further inspection
of the remainder O(logN). On one hand, this suggests
a way to bound the number of minima in a given volume
but on the other hand, since the radius lc increases as
N is scaled up, Eq. (22) is only reliable for unbounded
problems umax = ∞, which is a typical assumption in
VQA settings [47].

C. Landscape ruggedness

Another relevant property related to landscape minima
is the ruggedness, which instead is a local measure of
their sharpness. It can be defined as the average diagonal
element of the Hessian evaluated at the minima [3]

ρ =
1

N#M
∑

u∈M

N∑

ν=1

∂2νJ(u),

where M is defined by Eq. (19). We can readily give an
upper bound for this quantity by using the derivatives
bound from Lemma 5 for P = 2:

|ρ| ≤ 1

N#M
∑

u∈M

N∑

ν=1

|∂2νJ(u)| ≤ (ωmaxδt)
2

2
.

It is worth noting that for fixed total time T , ρ van-
ishes as N increases. Since the Hessian H is the leading
contribution to the Taylor expansion of the landscape
near a local minimum ∇J(u0) = 0, a large ruggedness
implies a low robustness of the solution with respect to
small perturbations. Using again Lemma 6, we can up-
per bound this error. Given a small control deviation
||u − u⋆||1ωmaxδt ≪ 1, the stronger version of the in-
equality for critical points gives rise to

|J(u) − J(u⋆)| ≤ (ωmaxδt)
2

2
||u− u⋆||21,

which, unlike ρ, allows to quantitatively relate control
errors to fidelity variations.

D. Barren plateaux

Shifting the focus away from local minima, we can now
consider a metric which is often studied in the context
of landscape optimization (especially for VQA applica-
tions), namely the variance of the gradient over the con-
trols, defined as follows

Var
u∈CN

[∂νJ(u)] = Eu∈CN [|∂νJ |2] − |Eu∈CN [∂νJ ]|2

where expectation values are integral averages evaluated
over the control hypercube CN via

Eu∈CN [g] =

(
1

2umax

)N ∫

CN

cNu g(u).
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An exponential suppression of the latter with respect to
some resource (number of qubits, circuit depth, etc.) is
customarily referred to as the problem of barren plateaux
(or, alternatively, of vanishing gradients). In the litera-
ture these averages are often computed over unbounded
controls u ∈ RN , which here corresponds to taking the
limit umax → ∞. Although this assumption simplifies the
derivations, in practice the available controls are always

bounded by experimental constraints. For this reason
we try here to prove as much as possible for the case of
bounded controls.

The Lie-Fourier representation of the landscape allows
us to directly relate the variances of any derivative of Jn
to the representation coefficients. This way we can prove
upper bounds which are also valid for the true landscape
J :

Lemma 8 (Variance over bounded controls). For any integer n ≥ 1, P ≥ 0 and 1 ≤ ν1, . . . , νP ≤ N we have:

Var
u∈CN

[(
P∏

p=1

∂νp

)
Jn

]
= δt2P

∑

ω,ω′∈(S∆
n )N\{0}
c∗ωcω′(

P∏

p=1

ωνpω
′
νp)(κ̃(ω − ω′) − κ̃(ω)κ̃(ω′)), κ̃(ω) =

N∏

ν=1

sin δtωνumax

δtωνumax

Moreover, the following upper bounds hold:

Var
u∈CN

[(
P∏

p=1

∂νp

)
Jn, J

]
≤ min

[
L2P

4N2P
,

(LP+1umax)2

3N2P+1
+ o

(
L2P+2

N2P+1

)]
.

Proof. See App. C for a proof valid in the case of multiple
controls and a generic observable Ô.

It is interesting to note that, similarly to what was al-
ready observed in Sec. VI B, the variance over the hyper-
cube CN could be expressed by means of a quadratic form
of the Lie-Fourier coefficients featuring a modified ver-
sion of the sinc kernel κ̃(ω) where the bandwidth δtumax

is now set by the size of the integration region. Since
the formula holds in general for any set of frequencies
and coefficients, it also proves that this quadratic form is
semi-positive definite.

The upper bound in Lemma 8 shows that the vari-
ance for bounded controls increases with the time-energy
budget L and it decreases with the number of controls
or circuit layers N , the dependence being polynomial in
both cases, while in the same limit being exponentially
suppressed with the order of the derivatives P . Since
these upper bounds are independent on the details of the
spectrum (other than ωmax), they can be understood as
constraints on the best-case scenario for barren plateaux
across quantum systems as set by time, depth and band-
width limitation for their Lie-Fourier expansion.

The upper bound for the variance implies that even for
P = 0 (which corresponds to not taking any derivatives)
this quantity goes to zero for large N if L = Tωmax is
kept constant. As a consequence, the landscape becomes
flatter and the control region RδJ(N) where J is smaller

than its average by more than a finite amount δJ > 0,
which we define as

RδJ(N) = {u ∈ CN s.t. Eu∈CN [J ] − J(u) > δJ},

shrinks to zero in volume compared to the control hyper-

cube. In fact we have that:

Var
u∈CN

J =

∫

CN

dNu

Vol CN |J(u) − Eu∈CN [J ]|2 ≥
∫

CN

dNu

Vol CN |J(u)−Eu∈CN [J ]|2Θ(Eu∈CN [J ]−J(u)− δJ)

≥ (δJ)2

Vol CN
∫

CN

dNu Θ(Eu∈CN [J ] − J(u) − δJ)

= (δJ)2
VolRδJ(N)

Vol CN .

But then by making use of the asymptotic upper bound
from Lemma 8 for P = 0, we conclude that

VolRδJ(N)

Vol CN ≤ O
(

1

N

)
N→∞−−−−→ 0.

This fact is closely related to the discussion in Sec. VI B
and also clarifies what happens to the volume surround-
ing the minima that we discussed previously (the over-
all lake surface). In fact, if we choose the water level
to be below the landscape average J̄ < Eu∈CN [J ] and
fix δJ = Eu∈CN [J ] − J̄ , then RδJ(N) is the part of the
control landscape underwater. The fact that the volume
fraction associated to this control region shrinks to zero
as N → ∞ could appear somewhat surprising, given that
the minimum distance lc ∝ N we have to travel to get
from shore to bottom diverges. But the two facts are
not necessarily mutually exclusive, as the balls T N

lc
will

eventually not completely fit inside CN as N increases,
and the changes in volume determined by the growth in
dimensionality are hard to picture intuitively.

Unfortunately we cannot extend all the results for the
true landscape J from Lemma 8 to unbounded controls
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by just taking the limit umax → ∞, because the limits
in the Lie product expansion order n and control region
size umax cannot be exchanged. Instead, if we work with
a finite n, i.e. in the typical VQA/PQC setting, where
the circuit has finite depth and therefore the Fourier rep-
resentation is finite and exact, then that is possible. As
noticed before, the n = 1 case correspond physically to
an interleaved circuit, and the frequencies in the Fourier
representation S∆

1 = S∆ correspond only to the differ-
ences in control Hamiltonian eigenvalues. Keeping this
distinction in mind, we can prove similar results for un-
bounded controls.

Lemma 9 (Variance over unbounded controls). For any
integer n ≥ 1, P ≥ 0 and 1 ≤ ν1, . . . , νP ≤ N we have:

Var
u∈RN

[(
P∏

p=1

∂νp

)
Jn

]
= δt2P

∑

ω∈(S∆
n )N\{0}

|cω|2
P∏

p=1

ω2
νp

Moreover, the following bounds hold:

Var
u∈RN

[(
P∏

p=1

∂νp

)
Jn, J

]
≤
(

(δtωmax)P

2

)2

,

∑

ν1,...,νP

Var
u∈RN

[(
P∏

p=1

∂νp

)
Jn

]
≥ ∆J2δt2P

4
∑

ω∈(S∆
n )N\{0}

1
||ω||2P2

where we defined ∆J as the maximum variation in Jn,

∆J := sup
u∈RN

Jn(u) − inf
u∈RN

Jn(u).

Proof. See App. C for a proof in the case of multiple
controls and a generic observable Ô.

While the upper bound holds for both the Lie-Fourier
representations Jn and the landscape J itself, the lower
bound only holds for finite n. The latter can be de-
rived thanks to the simpler structure of the kernel in
the case of unbounded controls, but we do not rule out
that it might be possible to derive an equivalent result
for bounded controls. More specifically, the case P = 1
(i.e. the gradient variance) gives us a worst-case sce-
nario estimate for the barren plateaux even across dif-
ferent systems and different initial and target states (or
observables). We can derive a simplified, looser bound
in terms of the smallest non-zero frequency ωmin ∈ S∆

n ,
which assures ∀ω ∈ (S∆

n )N\{0}, ||ω||22 ≥ ω2
min, so that

N∑

ν=1

Var
u∈RN

[∂νJn] ≥ ∆J2δt2

4
∑

ω∈(S∆
n )N\{0}

1
||ω||22

≥ ∆J2δt2ω2
min

4((#S∆
n )N − 1)

,

which recovers the exponential suppression in circuit
depth N that is typical in the case of barren plateaux.
In the case n = 1 of an interleaved circuit, S∆

1 = S∆

can be of order O(D2 = 22Q) if Ĥc is non-degenerate,
but as we saw in Sec. III D it can be much smaller in
physically relevant systems thanks to degeneracies. In
the case of the Q-qubits Ising model (with or without
longitudinal field), we have S∆ ∼ O(Q2), so that even
in the worst case scenario the gradient variance is only
exponentially suppressed in the circuit depth N , but not
in the number of qubits Q. This is in contrast to the
case of a non-degenerate Ĥc, where this analysis does
not rule out the existence of fixed depth barren plateux
when Q increases. As a conclusive remark, we note that
the dependence of gradient variance suppression on the
growth of the dynamical Lie algebra [7] implies that the
latter must play a decisive role in the distribution of the
Fourier coefficients, deciding how far away the system
will be from this bound.

VIII. APPLICATIONS TO OPTIMIZER DESIGN

The considerations we made in the previous Section are
also relevant for the design of optimization algorithms.
First of all, the length scale l we derived from Lipschitz
continuity constrains how local the search needs to be.

If we want to obtain an improvement of at least δJ
to our current best control u, Eq. (17) assures us that
such an improvement cannot be found within distance l.
This is especially relevant to in-situ optimization, such
as black-box optimizers like DCRAB [39, 48] and SOMA
[49]. For example, taking into account shot noise or other
uncertainties, it may be meaningless to try to pick points
closer than l. For instances of DCRAB based on a sim-
plex search, the length scale can specifically be used to
constrain the size of the simplex, for example at the start
of the optimization. Alternatively, given the finite resolu-
tion of arbitrary waveform generators, one can constrain
the minimum vertical resolution so as to attain a given
change in the cost function landscape.

Going further still, one can consider a general parame-
terization of the controls given by a linear transformation
of the piece-wise constant basis as prescribed by Ref. [24],
such that

u(t) =

Nc∑

i=1

ri(t)vi.

As we have seen in Corollary 1, the derivative properties
that we proved for the landscape J(u) are still true for

the parametrized landscape J̃(v) provided that the basis
functions are properly normalized (which we are always
free to achieve). Hence, the notion of the length scale l
also applies to the new control space.

The convergence rate of the optimizers can also be af-
fected by characterizing landscape properties, especially
for model-based control. Gradient optimizers [10, 50] in
particular will have to estimate step sizes which can be
aided by notions of minimum distance as above, as well as
bounds on first and second derivatives given by Lemma 5.
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Similarly quantum Newton search [51] and quasi-Newton
search [10, 43] can also benefit from bounds on the Hes-
sian. Likewise, the minimum length scale can be helpful
to inform stopping conditions, especially in the presence
of shot noise or decoherence.

The nature of the landscape is also especially impor-
tant for sampling based methods such as those using
machine learning, e.g. the aforementioned meta-learning
optimizer SOMA [49], since it can help to set a min-
imum distance between search points. This minimum
distance is especially relevant to discrete point sampling,
e.g. within a Monte-Carlo tree search, as used in global
reinforcement learning [52], or in grid search methods
such as DIRECT [53]. In fact, the Lipschitz continuity
of the landscape calls for a wider adoption of global opti-
mizers that are specific to this class of functions, improv-
ing convergence with respect to more naive approaches
[53–56].

As an illustrative example, we can apply the upper
bound for the Lipschitz constant to the DIRECT algo-
rithm [53]. Appropriate bounds for extensions of this
algorithm [22, 55, 56] can be derived in a similar way.
Since DIRECT samples J on a rectangular grid, we can
assume u′ − u = heν for some canonical basis vector eν
and h > 0 [57]. But then we have the following result

|J(u) − J(u′)| ≤ ωmaxδt

2
||u′ − u||1 ≤ ωmaxδth

2
.

This means that we can use the upper bound K ≤
ωmaxδt/2 within DIRECT as an additional condition dur-
ing the selection of potentially optimal hyperrectangles
to decrease the number of function evaluations.

IX. CONCLUSIONS

In this paper we derived from first principles and un-
der very general assumptions the main properties of three
different feature map representations of a quantum dy-
namical landscape. The latter is the expectation value
of an observable over the output state of a generalized
Parametrized Quantum Circuit, which is equivalent to a
controlled quantum system with stepwise-constant con-
trols, and generalizes Variational Quantum Algorithm
circuits. The feature map representations are approx-
imations of the landscape, which we use to study the
properties of the landscape itself, and as physics-informed
models for supervised learning, with the aim of informing
the development of methods for quantum cost function
optimization.

First, we obtained a Fourier representation [25] by
means of a Lie-Trotter approximation of the dynamics.
We showed that the resulting frequency spectrum fills
up densely a finite hypercube, with size given by the
maximum transition frequency in the control Hamilto-
nian. We proved analytically some important proper-
ties of the representation coefficients which are related

to boundedness and discrete symmetries, which are use-
ful for the further development of simulation and learning
algorithms [20]. We found numerically in the case of the
Ising Model that owing to the high degree of symmetry of
the Hamiltonian and initial and target states, the spec-
trum is a stepwise-continuous function, opening up the
possibility of further compression by using e.g. polyno-
mial bases in frequency space. These numerical results
were obtained thanks to an algorithm that can be ap-
plied to any model with equally spaced control eigenval-
ues. This allows further landscape exploration of Pauli
controlled systems, which are a common Ansatz for ease
of experimental implementation and theoretical investi-
gation [16, 20, 22, 58].

We then showed that the bounds in absolute value and
bandwidth of the landscape cause it to be a Lipschitz
continuous function. This means that there is a global
maximum ratio between change in cost function and trav-
eled length in control space. We related this property to
a local upper bound on the error of a Taylor expansion,
which is therefore an efficient representation when the
overall time-energy budget is limited. Local models are
often useful for optimization, and this result can inform
further study in this regard [16, 43].

Since the dense Fourier spectrum represents a chal-
lenge for supervised learning with a finite dimensional
feature space, we derived analytically an equivalent ker-
nel regression problem that gives rise to the sinc ker-
nel representation. Here, the landscape is represented
as a linear superposition of finite bandwidth kernels in
a way that generalizes the Green’s function expansion
from linear optics. In numerical benchmarks against the
other two representations, the sinc kernel showed to be
more efficient if the training data set is large enough,
while its inferior performance on small data sets can be
greatly improved by reducing the kernel bandwidth. We
also commented on the limits of random sampling and
of the L2 distance to distinguish different landscapes, ar-
guing that stronger notions of distance, such as L∞, or
optimization-driven sampling strategies [3, 4, 52] are nec-
essary to obtain a meaningful regression problem when
the number of time steps N is not fixed or is too large.

We then discussed the consequences of our findings on
some landscape metrics which are relevant for optimiza-
tion. In particular, we showed that the aforementioned
Lipschitz constant implies a minimum granted robustness
of local optima, together with a relation between the vol-
ume of an unexplored region in control space and the
improvement in the cost function value we can obtain
by exploring that region. We also related the Fourier
representation to the variance of the landscape and its
derivatives over the controls. This allowed us to prove
a set of upper bounds that constrain the best case sce-
nario for this quantities, purely based on time, energy
and depth limitations and largely independently on the
specific Hamiltonian. This way, we showed that for con-
stant final time T and bounded controls, the non-trivial
regions of the landscape have a vanishingly small vol-
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ume compared to a fixed control region of interest as the
number of control parameters increases. Overall, owing
to the generality of the properties and the bounds we
found, we deem them to be useful as universal baselines
for the considered metrics in more specific cases.

Finally, we explored how these landscape properties in-
form the design and tuning of optimizers. In this sense,
the generalization of our proofs to parametrized land-
scapes is instrumental, allowing for the application to
popular Quantum Optimal Control algorithms such as
GRAPE [10, 50], DCRAB [48], Krotov [59], SOMA [49],
and SPINACH [43], where our results inform the choice
of stopping conditions and the estimate of convergence
ratios. They also provide estimates for appropriate step-
ping sizes, bounds on the Hessian, and inform the choice
of vertical resolution in the controls, which can all greatly
benefit hyperparameter choices in such algorithms. We
also argued in favour of Lipschitz-aware optimizers such
as DIRECT [22, 53], for which we derive a more specific
Lipschitz constant. The information about distance be-
tween sampled points is especially relevant to global op-
timizers and sampling based strategies such as machine
learning, for example dictating the branching in Monte-
Carlo tree searches [52]. That is, this can be used to
decrease the number of calls to the quantum circuit by
discarding sampling in areas which cannot contain better
quantum cost function values because of Lipschitz conti-
nuity.
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Appendix A: Symbols, notation and useful formulas

a. Sets and vectors

We indicate sets with calligraphic capital letters like
H,F ,D. Given a set F , we use the exponential notation
FN with N ∈ N for the N -fold cartesian product of the
set with itself and the symbol #F for its cardinality.

Throughout the paper we often switch between vector
and coordinate notation. We use boldface lower case let-
ters for (column) vectors v ∈ CN , always implying that
v = (v1, . . . , vN )T , and boldface upper case letters for
matrices A ∈ CM×N , with

A =



a11 . . . a1N
...

. . .
...

aM1 . . . aMN


 =

(
a1 . . . aN

)

We use vectorized shorthand notations for fixed scalar
quantities, e.g.:

1 = (1, . . . , 1)T , ωmax = (ωmax, . . . , ωmax)T .

When dealing with sums over a vector index k ∈ ZN ,
where each element ki ∈ Z of the vector spans the inte-
gers between ai ≤ ki ≤ bi we sometimes use the following
shorthand notation:

b∑

k=a

:=

b1∑

k1=a1

· · ·
bN∑

kN=aN

.

b. Norms and balls

We use the following notation for norms of vectors in
CN :

||v||1 =
N∑

i=1

|vi|

||v||2 =

√√√√
N∑

i=1

|vi|2

||v||∞ = max
i=1,...,N

|vi|

and equivalent definitions hold for matrices. We indicate

with {ei}i=1,...,N the canonical basis. We call C(N)
A (s0)

the real ball defined by the sup-norm || · ||∞ of radius A
centered around s0 (i.e. the translated hypercube):

C(N)
A (s0) = {s ∈ RN : ||s− s0||∞ ≤ A}

and T (N)
A (s0) the real ball defined by the L1 (also known

as “taxicab”) norm || · ||1 of radius A centered around s0:

T (N)
A (s0) = {s ∈ RN : ||s− s0||1 ≤ A}.

In both cases, we drop the s0 argument when considering
a ball centered at the origin s0 = 0.

We use the braket notation for quantum states |ψ⟩ , |χ⟩
and operators Û . Since we work with finite dimensional
systems with Hilbert space H ≃ CD, we can choose a
finite orthonormal basis {βi}i=1,...,D with ⟨βi|βj⟩ = δij ,
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∑d
i=1 |βi⟩ ⟨βi| = id(H) =: Î and represent quantum op-

erators as matrices with (capital letter) entries Uij

Uij = ⟨βi| Û |βj⟩ , Û =
∑

ij

Uij |βi⟩ ⟨βj |

and quantum states as vectors with entries ψi

ψi = ⟨βi|ψ⟩ , |ψ⟩ =

D∑

i=1

ψi |βi⟩ .

When dealing with product Hilbert spaces H⊗Q, given
|ψ⟩ ∈ H we use the notation

|ψQ⟩ := |ψ⟩⊗Q .
We indicate with

||Ô||∞ = max
|ψ⟩∈H\{|0⟩}

√
⟨Ôψ|Ôψ⟩
⟨ψ|ψ⟩

the sup-norm of the operator Ô. The sup-norm is sub-
additive and sub-multiplicative, and coincides with the
absolute value of the largest singular value of Oij . We
use the convention ℏ = 1 throughout the text.

c. Linear expansion of exponentials

Since we are going to use this result inside several
proofs, we show here a formula concerning the linear ex-
pansion of the exponential. Given a (finite dimensional)

operator X̂ ∈ CD×D, we have

||eX̂− Î||∞ = ||
∞∑

n=1

X̂n

n!
||∞ ≤

∞∑

n=1

||X̂||n∞
n!

= e||X̂||∞ −1,

||eX̂ − Î − X̂||∞ = ||
∞∑

n=2

X̂n

n!
||∞ ≤

≤
∞∑

n=2

||X̂||n∞
n!

= e||X̂||∞ − 1 − ||X̂||∞,

where we made use of the subadditivity and submulti-
plicativity of the sup-norm || · ||∞. Because of the mean
value theorem, we have for x ≥ 0 ∈ R, ∃y ∈ [0, x]

ex = 1 + xey

which implies

ex − 1 − x = x(ey − 1).

By applying again the same theorem we have ∃z ∈ [0, y]
such that

ex − 1 − x = x(yez) ≤ x2ex.

Using these inequalities we can conclude:

||eX̂ − Î||∞ ≤ e||X̂||∞ − 1 ≤ ||X̂||∞e||X̂||∞ , (A1)

||eX̂ − Î − X̂||∞ ≤ e||X̂||∞ − 1 − ||X̂||∞
≤ ||X̂||2∞e||X̂||∞ . (A2)

Appendix B: Reduction to standard form

We consider the time evolution of a quantum system
of finite dimension D under the time dependent Hamil-
tonian

Ĥ(t) = Ĥ(0) +
M∑

µ=1

Ĥ(µ)uµ(t)

where the controls uµ(t) are bound to an interval uµ ∈
[umin
µ , umax

µ ]. In general, only M ′ out of M control Hamil-

tonians Ĥ(µ) are linearly independent (let us say they are
µ = 1, . . . ,M ′). Then we can write the remainingM−M ′

terms as a linear combination of the first M ′ terms

Ĥ(t) = Ĥ(0) +

M ′∑

µ′=1

Ĥ(µ′)uµ′(t) +

M∑

µ=M ′+1

Ĥ(µ)uµ(t)

= Ĥ(0)+
M ′∑

µ′=1

Ĥ(µ′)uµ′(t)+
M∑

µ=M ′+1

M ′∑

µ′=1

a(µ
′)

µ Ĥ(µ′)uµ(t) =

= Ĥ(0) +
M ′∑

µ′=1


uµ′(t) +

M∑

µ=M ′+1

a(µ
′)

µ uµ(t)




︸ ︷︷ ︸
u′
µ′ (t)

Ĥ(µ′),

where the linearly independent controls u′µ(t) are bound

to another interval u′µ ∈ [u
′min
µ , u

′max
µ ]. Since Ĥ(t) only

depends on u′µ(t), we can suppose without loss of gener-
ality that the control Hamiltonians are linearly indepen-
dent from the start and drop the apex notation.

We will now show that by a further reparametrization
we can also fix the energy scales across different controls
to a common value ωmax and (optionally) center the con-
trol bounds around the origin. Let us define the maxi-

mum transition frequency ω
(µ)
max in the control Hamilto-

nian Ĥ(µ) as

ω(µ)
max = |λ(µ)max − λ

(µ)
min|

where λ
(µ)
max(λ

(µ)
min) is the maximum (minimum) eigenvalue

of Ĥ(µ). We define new controls ũµ(t) as

uµ(t) = mµ +
ωmax

ω
(µ)
max

ũµ(t), mµ =
umin
µ + umax

µ

2

Then we can rewrite the Hamiltonian as

Ĥ(t) = Ĥ(0) +
M∑

µ=1

Ĥ(µ)uµ(t) =

Ĥ(0) +
M∑

µ=1

Ĥ(µ)mµ +
M∑

µ=1

Ĥ(µ)ωmax

ω
(µ)
max

ũµ(t) =

ˆ̃H(0) +

M∑

µ=1

ˆ̃H(µ)ũµ(t)
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so that now we have ∀µ ω̃
(µ)
max = ωmax and the rescaled

controls ũµ(t) are bound to the symmetric interval

[−∆̃uµ/2, ∆̃uµ/2] given by

∆̃uµ =
ω
(µ)
max

ωmax
(umax
µ − umin

µ )

Although the price to pay lies in modifying the drift
Hamiltonian Ĥ(0), we notice that loosening the bounds
symmetrically does not change mµ nor the drift term:

umin
µ 7→ umin

µ − δ, umax
µ 7→ umax

µ + δ,

∆̃uµ 7→ ∆̃uµ +
ω
(µ)
max

ωmax
δ, mµ 7→ mµ.

We can then study the problem as the control bounds

are changed for fixed drift by simply changing ∆̃uµ. Fi-
nally, we notice that adding a term δI proportional to
the identity to the Hamiltonian only changes the overall
phase of the time evolution, and therefore does not affect
observation values, hence the landscape. But then we
can use this freedom to shift the controls Ĥ(µ) so that
|λ(µ)max| = ||Ĥ(µ)||∞ = ωmax/2.

Appendix C: Multiple controls

We now generalize the Lie-Fourier representation that
was discussed in the main text to the case of multiple con-
trols. More specifically, we consider the following Hamil-
tonian

Ĥ(t) = Ĥ(0) +
M∑

µ=1

Ĥ(µ)uµ(t),

where we assume without loss of generality that uµ(t) ∈
[−u(µ)max, u

(µ)
max] and ω

(µ)
max = ωmax (see Appendix B for

details), while we keep the same time discretization
convention as in the single control case. We will call

umax = maxµ u
(µ)
max. When discretizing the control pulses

uµν := uµ(tν), we use the following matrix notation:

U =



u11 . . . u1N

...
. . .

...
uM1 . . . uMN


 =

(
u1 . . . uN

)

where now the control vector uν ∈ RM represents the
value of the M controls at the ν-th timestep. Corre-
spondingly, the control region of interest for the dis-
cretized pulse is

U ∈ C :=

M,N∏

µ,ν=1

[−u(µ)max, u
(µ)
max], Vol(C) =

M,N∏

µ,ν=1

2u(µ)max

We then start by expanding the timestep unitary Û(u),
defined by

Û(u) = e−iδt(H
(0)+

∑M
µ=1 uµH

(µ))

as a sum of complex exponentials by means of the Lie-
Trotter product formula Eq. (4). In order to achieve that,
we express the control Hamiltonians in their eigenbasis
Ĥ(µ) = V̂ (µ)†Λ̂(µ)V̂ (µ), and absorb the change of basis in
the terms Ŵ which do not depend on the controls

Ûn(u) = (e−
iδt
n Ĥ(0)

e−
iδt
n u1Ĥ

(1) · · · e− iδt
n uM Ĥ(M)

)n

= V̂ (M)† V̂ (M)e−
iδt
n Ĥ(0)

V̂ (1)†
︸ ︷︷ ︸

Ŵ (1)(n−1δt)

e−
iδt
n u1Λ̂

(1)

V̂ (1)V̂ (2)†
︸ ︷︷ ︸

Ŵ (2)

· · · V̂ (M−1)V̂ (M)†
︸ ︷︷ ︸

Ŵ (M)

e−
iδt
n uM Λ̂(M)×

× V̂ (M)e−
iδt
n Ĥ(0)

V̂ (1)†
︸ ︷︷ ︸

Ŵ (1)(n−1δt)

e−
iδt
n u1Λ̂

(1) · · · V̂ (M).

By generalizing the notation from the M = 1 case we can define the M multiindices J = (j(1), . . . , j(M)) and write
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[Ûn(u)]ik = (
∑

j(1)...j(M)l

e
−iδt∑M

µ=1 uµ(qj(µ) ·λ(µ))
V

(M)†
il W

(1)

lj
(1)
1

(n−1δt)W
(2)

j
(1)
1 j

(2)
1

· · ·W (M)

j
(M−1)
1 j

(M)
1

· · ·

· · ·W (1)

j
(M)
n−1j

(1)
n

(n−1δt)W
(2)

j
(1)
n j

(2)
n

· · ·W (M)

j
(M−1)
n j

(M)
n

V
j
(M)
n k

)

=
∑

J∈[D]n×M

e
−iδt∑M

µ=1 uµωj(µ)AJ
ik(n, δt) =

∑

ω∈Sn

e−iδt
∑M

µ=1 uµωµBω
ik(n, δt) =

∑

ω∈Sn

e−iδtω·uBω
ik(n, δt),

where we defined ω = (ω1, . . . , ωM )T ∈ Sn and we gen-

eralized the symbol Sn := S(1)
n × · · · × S(M)

n compared
to the single control case. Anyways the two definitions
coincide for M = 1. Now by stacking the N time-step
unitaries we can build up the full unitary Ûn(U). We
can define the multiindices J(ν) = (j(1ν), . . . , j(Mν))

Ûn(U) = Ûn(uN ) · · · Ûn(u1)

=
∑

J(1)···J(N)

e
−iδt∑µν uµνωj(µν) ÂJ(N) · · · ÂJ(1)

=
∑

ω(1)...ω(N)

e−iδt
∑

µν uµνωµν B̂ω(N) · · · B̂ω(1)

=
∑

Ω∈SN
n

e−iδtTr(Ω
TU)B̂Ω(n, δt)

where we defined the frequency matrix Ω

Ω =



ω11 . . . ω1N

...
. . .

...
ωM1 . . . ωMN




which is an element of the set SNn =
∏MN
µν=1 S

(µ)
n . By

plugging this expression for the unitary operator back
into Eq. (2) we finally find the Lie-Fourier representation
Jn of the quantum dynamical landscape J associated to
the observable Ô

Jn(U) = ⟨ψ| Û†(U)ÔÛ(U) |ψ⟩ = ⟨ψ|


 ∑

Ω′′∈SN
n

eiδtTr(Ω
′′TU)B̂Ω′′†(n, δt)


 Ô


 ∑

Ω′∈SN
n

e−iδtTr(Ω
′TU)B̂Ω′

(n, δt)


 |ψ⟩ =

=
∑

Ω′,Ω′′∈SN
n

⟨ψ| B̂Ω′′†(n, δt)ÔB̂Ω′
(n, δt) |ψ⟩ e−iδtTr((Ω′−Ω′′)TU) =

∑

Ω∈(S∆
n )N

cΩ(n, δt)e−iδtTr(Ω
TU)

where (S∆
n )N =

∏MN
µν=1 S

(µ)∆
n and S(µ)∆

n is again the set
of frequency differences within the Fourier spectrum of
the timestep unitaries, for each control

S(µ)∆
n = {ω = ω′ − ω′′|ω′, ω′′ ∈ S(µ)

n },

and the coefficients of the expansion cΩ are given by

cΩ(n, δt) =
∑

Ω′,Ω′′∈SN
n

δΩ,Ω′−Ω′′ ⟨ψ| B̂Ω′′†ÔB̂Ω′ |ψ⟩

=
∑

Ω′∈SN
n

⟨ψ| B̂(Ω′−Ω)†ÔB̂Ω′ |ψ⟩

1. Proofs valid for multiple controls

Lemma 3 (L2 Boundedness of the coefficients).

∀n
∑

Ω∈(S∆
n )N

|cΩ(n, δt)|2 ≤ ||Ô||2∞
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Proof. We first notice the following:

EU∈C [|Jn|2] =
1

Vol(C)

∫

C
dMNU J∗

n(U)Jn(U)

=
∑

Ω,Ω′∈(S∆
n )N

c∗ΩcΩ′

M,N∏

µ,ν=1

∫ u(µ)
max

−u(µ)
max

du

2u
(µ)
max

eiδt(ω
′
µν−ωµν)u

=
∑

Ω,Ω′∈(S∆
n )N

c∗ΩcΩ′

M,N∏

µ,ν=1

sin δt(ω′
µν − ωµν)u

(µ)
max

δt(ω′
µν − ωµν)u

(µ)
max

Now we fix ∀µ u(µ)max = umax and take the following limit:

lim
umax→∞

EU∈Cumax
[|Jn|2] =

∑

Ω,Ω′∈(S∆
n )N

c∗ΩcΩ′

M,N∏

µ,ν=1

δωµν ,ω′
µν

=
∑

Ω∈(S∆
n )N

|cΩ|2.

But then we can make use of the following inequality:

|Jn(U)| = | ⟨ψ| Û†
n(U)ÔÛn(U) |ψ⟩ |

≤ ||Û†
n(U)ÔÛn(U)||∞ ≤ ||Ô||∞

where we made use of the sub-multiplicativity of the sup-
norm and of the fact that for any unitary ||Û ||∞ = 1.
This implies a bound on the expectation value as

EU∈Cumax
[|Jn|2] ≤ 1

Vol(Cumax
)

∫

Cumax

dMNU ||Ô||2∞ = ||Ô||2∞.

This bound will therefore be also valid in the limit
umax −→ ∞, allowing us to conclude. The result in the
main text follows by fixing M = 1 and noticing that
|| |χ⟩ ⟨χ| ||∞ = 1.

Lemma 11 (Uniform convergence over compact
sets). Jn converges uniformly to J over U ∈
[−umax, umax]M×N for any umax ≥ 0, and the same is
true for the derivatives of any order:

sup
U∈[−umax,umax]M×N

∣∣∣∣∣
P∏

p=1

∂µpνp(J(U) − Jn(U))

∣∣∣∣∣
n−→∞−−−−→ 0

Proof. Let us call Bumax = {z ∈ C : |z| <
umax}, B̄umax

= {z ∈ C : |z| ≤ umax} and consider
the holomorphic extensions of Jn, J . It is easy to see
that they are given by

Jn(U) := ⟨ψ| Û†
n(U∗)ÔÛn(U) |ψ⟩

J(U) := ⟨ψ| Û†(U∗)ÔÛ(U) |ψ⟩

for any U ∈ CM×N . These functions are holomorphic as
they are combinations of exponentials, finite sums and
products, and they are only functions of U (and not of

U∗). The fact that the Lie product expansion of Û(u)
converges uniformly over u ∈ B̄Mumax

is a slight modifica-
tion of the classic result due to Lie. Following e.g. [28],
we can define

Ŝn = exp

(
− iδt
n
Ĥ(u)

)
, T̂n = e−

iδt
n Ĥ(0)

M∏

µ=1

e−
iδt
n uµĤ

(µ)

,

so that we have Û(u) = Ŝnn , Ûn(u) = T̂nn and

||Û(u) − Ûn(u)||∞ ≤ n||Ŝn − T̂n||eζ

where

ζ := δt

(
||Ĥ(0)||∞ +

umaxMωmax

2

)
.

We can estimate ||Ŝn− T̂n|| using the triangular inequal-
ity

||Ŝn− T̂n|| ≤ ||Ŝn− Î − iδt

n
Ĥ(u)||+ ||T̂n− Î − iδt

n
Ĥ(u)||

and the result on exponential approximations shown in
Appendix A, which gives the result

||Û(u) − Ûn(u)||∞ ≤ n

(
2e

ζ
n
ζ2

n2

)
eζ

n→∞−−−−→ 0

This property trivially extends to finite products,
in fact given two parametrized operator sequences
X̂n(u), Ŷn(u′) with u,u′ ∈ B̄Mumax

, we have

||X̂n(u)Ŷn(u′) − X̂(u)Ŷ (u′)||∞ ≤
||X̂n(u)||∞||Ŷn(u′) − Ŷ (u′)||∞+

+ ||X̂n(u) − X̂(u)||∞||Ŷ (u′)||∞.
But then if the two sequences converge uniformly and are
uniformly bounded,

sup
u∈B̄M

umax

||X̂n(u) − X̂(u)|| n→∞−−−−→ 0,

sup
u∈B̄M

umax

||Ŷn(u) − Ŷ (u)|| n→∞−−−−→ 0,

sup
u∈B̄M

umax

||X̂n(u)|| ≤ Xmax, sup
u∈B̄M

umax

||Ŷn(u)|| ≤ Ymax

which is satisfied by the timestep unitaries, as we have

||Û(u)||∞, ||Ûn(u)||∞ ≤ eζ ,

then also the product converges uniformly. But then also
the approximants Jn converge uniformly to J , in fact

sup
U∈B̄M×N

umax

|Jn(U) − J(U)|

= sup
U∈B̄M×N

umax

| ⟨ψ| Û†
n(U∗)ÔÛn(U) − Û†(U∗)ÔÛ(U) |ψ⟩ |

≤ sup
U∈B̄M×N

umax

||Û†
n(U∗)ÔÛn(U) − Û†(U∗)ÔÛ(U)||∞

≤ ϵn
n−→∞−−−−→ 0.
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for some infinitesimal sequence ϵn ≥ 0. Now we just
need to show that this notion of convergence extends to
the derivatives ∂p1111 · · · ∂pMN

MN Jn(U). Since as we have al-
ready seen Jn, J are holomorphic functions, we can write

the partial derivatives as contour integrals by means of
Cauchy’s theorem [42], from which follows easily the uni-
form convergence on all compacts of the partial deriva-
tives. In fact, for all U ∈ Bumax

we have

|∂p1111 · · · ∂pMN

MN (J − Jn)(U)| =

∣∣∣∣∣
p11! · · · pMN !

(2πi)MN

∫

∂B̄umax

du′11

∫

∂B̄umax

du′MN

J(U ′) − Jn(U ′)
(u′11 − u11)p11+1 · · · (u′MN − uMN )pMN+1

∣∣∣∣∣

≤ p11! · · · pMN !

(2π)MN

∫ 2π

0

dϕ′11umax

∫ 2π

0

dϕ′MNumax sup
U ′∈∂B̄M×N

umax

( |J(U ′) − Jn(U ′)|
|u′11 − u11|p11+1 · · · |u′MN − uMN |pMN+1

)

≤ ϵn
p11! · · · pMN !

(2π)MN

2πumax

ap11+1
11

· · · 2πumax

apMN+1
MN

n−→∞−−−−→ 0,

where we defined aµν = infu′∈∂B̄umax
|uµν − u′µν | > 0

which is strictly larger than zero, as uµν lies in the open
ball of radius umax, while u′µν lies on its boundary, the
circle of radius umax. So we proved uniform convergence
also for the derivatives on the sets BM×N

umax
for any umax ≥

0. But then the same result clearly holds for the restric-
tions to real controls U ∈ [−umax, umax]M×N ⊂ BM×N

umax+δ
for δ > 0, since the complex derivatives reduce in this
case to the usual real derivatives.

We can prove a generalized version of the result pre-
sented in the main text concerning the partial derivatives
of the landscape J . We assume without loss of generality

that ω
(µ)
max = ωmax (see Appendix B for details). The re-

sult is first shown to be valid for each of the approximants
Jn and then uniform convergence is used to conclude that
the result is also valid for J .

Lemma 5 (Boundedness of the derivatives). The deriva-
tives of any order P ≥ 1 of J(U) are bounded by

∣∣∣∣∣
P∏

p=1

∂µpνpJ(U)

∣∣∣∣∣ ≤ (δtωmax)
P ∆O

2

where ∆O = (max|ψ⟩∈H −min|ψ⟩∈H) ⟨ψ| Ô |ψ⟩.

Proof. Since Jn is the expectation value of Ô on a quan-
tum state generated by the action of a unitary on the
initial state, namely

Jn(U) = ⟨ψ| Û†
n(U)ÔÛn(U) |ψ⟩

we have

∀U , n min
|ψ⟩∈H

⟨ψ| Ô |ψ⟩ ≤ Jn(U) ≤ max
|ψ⟩∈H

⟨ψ| Ô |ψ⟩ .

But then if we define

Ō =
(max|ψ⟩∈H + min|ψ⟩∈H) ⟨ψ| Ô |ψ⟩

2
the function J̃n(U) = Jn(U) − Ō has the same deriva-

tives of order P ≥ 1 as Jn and satisfies J̃n(U) ∈
[−∆O/2,∆O/2].

For any given n,U , µ, ν we can define the restriction

F (u) = J̃n(u11, . . . , u︸︷︷︸
µν

, . . . , uMN ),

so that by the definition of partial derivative we get

d

du
F (u) = ∂µνJn(U).

Clearly, since F is a restriction of J̃n, we also have F (u) ∈
[−Fmax, Fmax], with Fmax = ∆O/2.

By rearranging the order of the frequency sums in the
Lie-Fourier representation Jn, we can see that F is a lin-
ear combination of complex exponentials in the variable
u:

F (u) =
∑

Ω∈(S∆
n )N

cΩ(n, δt)e−iδtTr(Ω
TU)

∣∣∣∣∣∣
uµν=u

=
∑

ωµν∈S(µ)∆
n

∑

ω11∈S(1)∆
n

· · ·
∑

ωMN∈S(M)∆
n

cΩe
−iδt∑αβ ̸=µν ωαβuαβ

︸ ︷︷ ︸
c′ωµν

(n,δt,uαβ ̸=µν)

e−iδtωµνu
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This implies several properties: first of all ∀n,U F is
a holomorphic function when we extend the variable to
complex values u ∈ C. F is bandwidth limited, namely
ωµν ∈ [−ωmax, ωmax]. It also means that F = O(ea|s|)
with a ≤ amax = δtωmax.

Then, the conditions for Bernstein’s Inequality as
proved in [60], Vol.2 p.276 are all satisfied, which in our
case implies that ∀n,U

|∂µνJn(U)| =

∣∣∣∣
d

du
F (u)

∣∣∣∣ ≤ amaxFmax = δtωmax
∆O

2
.

An alternative proof (although of a version of the in-
equality which is looser by a factor of 2) can be found in
[61], Sec. 2.3.8. So the case P = 1 is settled. If now we
suppose the bound

∣∣∣∣∣
P−1∏

p=1

∂µpνpJn(U)

∣∣∣∣∣ ≤ (δtωmax)
P−1 ∆O

2

to be true, we can now show by the same argument as
before that it also holds for P . In fact, by defining the
restriction F (u) as

F (u) =
P−1∏

p=1

∂µpνp J̃n(u11, . . . , u︸︷︷︸
µν

, . . . , uMN ),

we have that F (u) satisfies all the conditions as in
the P = 1 case, with amax = δtωmax and Fmax =

(δtωmax)
P−1

∆O/2. But then by Bernstein’s Inequality
we have again ∀n,U
∣∣∣∣∣
P∏

p=1

∂µpνpJn(U)

∣∣∣∣∣ =

∣∣∣∣
d

du
F (u)

∣∣∣∣

≤ amaxFmax = δtωmax(δtωmax)P−1 ∆O

2
.

We can then conclude by induction that the bound on
the derivatives of Jn is true for all P ≥ 1.

We now show that the same bounds hold for the func-
tion J itself. Now, since the bounds apply to the partial
derivatives ∀n and are constant, the same bounds will
also hold in the limit of large n, and this limit coincides
with the partial derivatives of J .

The case treated in the main text is easily obtained
by setting M = 1 and noting that in this case E =
max|ψ⟩∈H | ⟨ψ| (|χ⟩ ⟨χ|) |ψ⟩ | = | ⟨χ|χ⟩ |2 = 1.

We point out that while we derived this bound on the
derivatives as a consequence of the Fourier representa-
tion, it is likely not the only way to prove a similar re-
sult. Other proofs might be possible e.g. by using the
standard formula [50]

d

ds
eA+sB

∣∣
s=0

= eA
∫ 1

0

eAtBe−Atdt

or a variation thereof.

Under the same assumptions of M multiple controls
and generic observable Ô we can also prove the result
concerning the variance of the first order derivatives.

Lemma 6 (Lipschitz continuity). The function J(u) is
Lipschitz continuous, that is

|J(U) − J(U ′)| ≤ K||U −U ′||1
where the Lipschitz constant K ≥ 0 is upper bounded by
ωmaxδt∆O/2. Moreover, if U is a critical point, so that
∀µ, ν ∂µνJ(U) = 0, then the following inequality holds

|J(U) − J(U ′)| ≤ Kc||U −U ′||21.
where 0 ≤ Kc ≤ (ωmaxδt)

2∆O/2.

Proof. As we already discussed, J : RM×N −→ R is a con-
tinuously differentiable function (as it is the restriction to
real controls of a holomorphic function) and has bounded
partial derivatives. Let us consider its restriction to the
straight line connecting U to U ′

J̃ : R −→ R, J̃(l) = J(U(l)) = J((U −U ′)l + U ′),

so that J̃(1) = J(U) and J̃(0) = J(U ′), and the re-
stricted function is also continuously differentiable, with
derivatives given by the chain rule. Because of the mean
value theorem, we have

J̃(1) − J̃(0) =
dJ̃

dl

∣∣∣∣∣
l=c

=

M,N∑

µ,ν=1

∂µνJ(U(c))(U −U ′)µν

for some 0 ≤ c ≤ 1. But then by using the bound from
Lemma 5 we have the result

|J(U) − J(U ′)| ≤
M,N∑

µ,ν=1

|∂µνJ(U(c))||U −U ′|µν

≤ ωmaxδt∆O

2
||U −U ′||1.

If U is a critical point ∀µ, ν ∂µνJ(U) = 0, we have that

dJ̃

dl

∣∣∣∣∣
l=0

= 0,

so we can apply the mean value theorem twice, obtaining:

J̃(1) − J̃(0) =
dJ̃

dl

∣∣∣∣∣
l=c

=
d2J̃

dl2

∣∣∣∣∣
l=d

d =

d

M,N∑

µ,ν=1

M,N∑

µ′,ν′=1

∂µν∂µ′ν′J(U(d))(U −U ′)µν(U −U ′)µ′ν′

for some 0 ≤ d ≤ c. But then by using the bound from
Lemma 5 we have the result

|J(U) − J(U ′)| ≤
M,N∑

µ,ν=1

M,N∑

µ′,ν′=1

|∂µν∂µ′ν′J(U(d))||U −U ′|µν |U −U ′|µ′ν′

≤ (ωmaxδt)
2∆O

2
||U −U ′||21.
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By setting M = 1 and ∆O = 1, consistently with a
fidelity landscape for a single control, we obtain the result
from the main text.

Corollary 1 (Linear parametrizations of controls). Let
U(V ) be a linear parametrization of the controls given
by uµν =

∑
µ′ν′ rµνµ′ν′vµ′ν′ , where µ′ = 1, . . . ,Mc and

ν′ = 1, . . . , Nc, which is normalized as follows:

∀µ′, ν′
Mc∑

µ=1

Nc∑

ν=1

|rµνµ′ν′ | = 1.

Then, the partial derivatives of the parametrized land-
scape J̃(V ) = J(U(V )) obey the bounds

∣∣∣∣∣
P∏

p=1

∂̃µ′
pν

′
p
J̃(V )

∣∣∣∣∣ ≤ (δtωmax)P
∆O

2

P∏

p=1

Mc,Nc∑

µp,νp=1

|rµpνpµ′
pν

′
p
|

= (δtωmax)P
∆O

2
.

where ∂̃µ′ν′ := ∂
∂vµ′ν′ and ∂µν := ∂

∂uµν
.

Proof. Let us start with a preliminary step by computing

∂̃µ′ν′uµν(V ) = ∂̃µ′ν′

Mc∑

α=1

Nc∑

β=1

rµναβvαβ = rµνµ′ν′ ,

with the higher order derivatives are zero because U(V )
is a linear function. For this reason, by applying the chain
rule for differentiation p times and using the bounds from
Lemma 5 we obtain the first result:
∣∣∣∣∣
P∏

p=1

∂̃µ′
pν

′
p
J̃(V )

∣∣∣∣∣ =

=

∣∣∣∣∣∣

P∏

p=1




Mc∑

µp=1

Nc∑

νp=1

rµpνpµ′
pν

′
p
∂µpνp


 J(U(V ))

∣∣∣∣∣∣

≤ (δtωmax)
P ∆O

2

P∏

p=1




Mc∑

µp=1

Nc∑

νp=1

|rµpνpµ′
pν

′
p
|


 .

If then we require the condition

∀µ′, ν′
Mc∑

µ=1

Nc∑

ν=1

|rµνµ′ν′ | = 1,

we have the same bound as the one used in the proof of
Lemma 6, that is

∣∣∣∣∣
P∏

p=1

∂̃µ′
pν

′
p
J̃(V )

∣∣∣∣∣ ≤ (δtωmax)
P ∆O

2

Therefore, using trivially the same reasoning as the one
presented in that proof we can obtain the claimed result
about Lipschitz continuity with the same upper bound
for K. By setting M = 1 and ∆O = 1 we recover the
result from the main text.

Lemma 7 (Taylor approximation error in the Lagrange
form).

|J(U) − JP (U)| ≤ ∆O

2

(δtωmax)P+1

(P + 1)!
||U −U0||P+1

1

Proof. Let us define the P -order Taylor representation of
f as follows:

JP (U) =

P∑

p=0

∑

µ1ν1...µpνp

∂µ1ν1 . . . ∂µpνpJ(U0)

p!

p∏

i=1

(U−U0)µiνi .

The result can then be proved using similar tools as the
ones used in Lemma 6. Let us first define the restrictions
J̃(l), J̃P (l) as done previously, using the parametrization

l ∈ [0, 1] 7→ U(l) = (U −U0)l + U0.

It is easy to check that the derivatives of J̃ , J̃P evaluated
at l = 0 are the same up to order P :

dpJ̃P
dlp

∣∣∣∣∣
l=0

=
∑

µ1ν1...µpνp

∂µ1ν1 . . . ∂µpνpJ(U0)

p∏

i=1

(U−U0)µiνi

=
dpJ̃

dlp

∣∣∣∣∣
l=0

∀ 0 ≤ p ≤ P.

But then we can apply the mean value theorem to the
remainder r(l) := J̃(l) − J̃P (l):

dP r(l)

dlP
=
dP+1r

dlP+1

∣∣∣∣
l=c

l =
dP+1J̃

dlP+1

∣∣∣∣∣
l=c

l

where 0 ≤ c ≤ l. By integrating both sides P times we
get:

∫ l

0

dl1 · · ·
∫ lP−1

0

dlP
dP r(lP )

dlP
= r(l)

=
dP+1J̃

dlP+1

∣∣∣∣∣
l=c

∫ l

0

dl1 · · ·
∫ lP−1

0

dlP lP

=
dP+1J̃

dlP+1

∣∣∣∣∣
l=c

l(P+1)

(P + 1)!
.

By developing the derivative and evaluating the expres-
sion at l = 1 we get:

J(U) − JP (U) =

∑

µ1ν1...µP+1νP+1

∂µ1ν1 . . . ∂µP+1νP+1
J(U)

(P + 1)!

P+1∏

i=1

(U −U0)µiνi

from which the claimed result follows readily by applying
the derivative bound found in Lemma 5.
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Lemma 8 (Variance over bounded controls). Let C =
∏M,N
µ,ν=1[−u(µ)max, u

(µ)
max]. Then for any for any n ≥ 1, P ≥ 0 and

1 ≤ µ1, . . . , µP ≤M , 1 ≤ ν1, . . . , νP ≤ N we have:

Var
U∈C

[(
P∏

p=1

∂µpνp

)
Jn

]
= δt2P

∑

Ω,Ω′∈(S∆
n )N\{0}
c∗ΩcΩ′(

P∏

p=1

ωµpνpω
′
µpνp)(κ̃(Ω−Ω′)− κ̃(Ω)κ̃(Ω′)), κ̃(Ω) =

M,N∏

µ,ν=1

sin δtωµνu
(µ)
max

δtωµνu
(µ)
max

Moreover, the following bounds hold:

Var
U∈C

[(
P∏

p=1

∂µpνp

)
Jn, J

]
≤ min

[
L2P∆O2

4N2P
,
M(∆OLP+1umax)2

3N2P+1
+ o

(
L2P+2

N2P+1

)]
.

Proof. This proof is made up of two parts: first, we show
how to derive the representation of the variance in the
claim, and then we use it to prove the upper bounds.

We remind that given a (real) function F , we define
its variance over a set C ⊂ RM×N as

Var
U∈C

[F ] = EU∈C [|F |2] − |EU∈C [F ]|2, (C1)

where

EU∈C [F ] =

∫

C

dMNU

Vol(C)
F (U)

Let us start by computing the expectation value of the
derivatives:

EU∈C

[(
P∏

p=1

∂µpνpJn

)]
=

∫

C

dMNU

Vol(C)

(
P∏

p=1

∂µpνp

)
Jn(U)

=
∑

Ω∈(S∆
n )N

cΩ

(
P∏

p=1

−iδtωµpνp

)
M,N∏

µ,ν=1

1

2u
(µ)
max

u
(µ)
max∫

−u(µ)
max

du e−iδtωµνu

=
∑

Ω∈(S∆
n )N

cΩ

(
P∏

p=1

−iδtωµpνp

)
M,N∏

µ,ν=1

sin δtωµνu
(µ)
max

δtωµνu
(µ)
max

. (C2)

We can then do the same for the square modulus:

EU∈C



∣∣∣∣∣

(
P∏

p=1

∂µpνp

)
Jn

∣∣∣∣∣

2



=

∫

C

dMNU

Vol(C)

(
P∏

p=1

∂µpνp

)
J∗
n(U)

(
P∏

p=1

∂µpνp

)
Jn(U)

= δt2P
∑

Ω,Ω′∈(S∆
n )N

c∗ΩcΩ′

(
P∏

p=1

ωµpνpω
′
µpνp

)
κ̃(Ω′−Ω).

By substituting these results inside Eq. (C1) and by
noticing that

κ̃(0−Ω′) − κ̃(0)κ̃(Ω′) = 0

we can restrict all sums to non-zero frequencies in
(S∆
n )N\{0}, which gives us the result in the claim. Once

again, we obtain the case treated in the main text just
by setting M = 1.

We now briefly comment on the convergence of expec-
tation values and variances over bounded sets. Given
a sequence Fn which is uniformly bounded ∀U ∈
C |Fn(U)| ≤ Fmax and converges uniformly to F over
a bounded set C (with non-zero volume), we have that
also its expectation value over C will converge:

|EU∈C [Fn] − EU∈C [F ]| =

=
1

Vol(C)

∣∣∣∣
∫

C
dMNUFn(U) − F (U)

∣∣∣∣

≤ 1

Vol(C)

∫

C
dMNU |Fn(U) − F (U)|

≤ sup
U∈C

|Fn(U) − F (U)| n→∞−−−−→ 0.

Moreover, if we have two such bounded converging se-
quences Fn, Gn then also their product converges uni-
formly and is bounded |FnGn| ≤ FmaxGmax, as can be
seen from the following inequality:

|FnGn − FG| = |FnGn − FGn + FGn − FG|
≤ |Fn − F ||Gn| + |Gn −G||F |.

Because of this fact it is easy to see that also the variance
(being defined in terms of expectation values of powers
of Fn) converges as expected:

lim
n→∞

Var
U∈C

[Fn] = lim
n→∞

EU∈C [F 2
n ] − lim

n→∞
|EU∈C [Fn]|2

EU∈C [F 2] − |EU∈C [F ]|2 = Var
U∈C

[F ]

This shows that the variance and expectation values of
the Lie-Fourier representation of the landscape Jn and
of its derivatives over C converge to the corresponding
quantities computed for the true landscape J . It should
be stressed that this convergence result does not neces-
sarily hold for unbounded controls U ∈ RM×N , since in
that case we do not have any guarantee of uniform con-
vergence of Jn to J .
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We now show how to obtain the upper bound in the
claim. The first part of the bound is an obvious con-
sequence of the bound of the derivatives from Lemma
5, which holds for both F = J, Jn. As already dis-
cussed before, by defining F̃ (U) = F (U) − Ō we have

∀U ∈ RM×N , F̃ (U) ∈ [−∆O/2,∆O/2], so that the
bound

|∂µν F̃ | ≤
(δtωmax)P∆O

2

holds also for P = 0. Moreover, the variance is not af-
fected by uniform shifts, as

Var
U∈C

[F̃ ] = EU∈C [(F − Ō − EU∈C [F ] + EU∈C [Ō])2]

= EU∈C [(F − EU∈C [F ])2] = Var
U∈C

[F ].

But then we have

Var
U∈C

[(
P∏

p=1

∂µpνp F̃

)]
≤ EU∈C



∣∣∣∣∣

(
P∏

p=1

∂µpνp F̃

)∣∣∣∣∣

2



=

∫

C

dMNU

Vol(C)

∣∣∣∣∣

(
P∏

p=1

∂µpνp F̃ (U)

)∣∣∣∣∣

2

≤
(

(Tωmax)P∆O

2NP

)2

.

Concerning the second part of the bound, we first prove
the result for finite n, starting by finding the asymptotic
expansion of the kernel κ̃(Ω):

log(κ̃(Ω)) =

M,N∑

µ,ν=1

log

(
sin δtωµνu

(µ)
max

δtωµνu
(µ)
max

)
=

M,N∑

µ,ν=1

(
sin δtωµνu

(µ)
max

δtωµνu
(µ)
max

− 1

)
+ o

(
sin δtωµνu

(µ)
max

δtωµνu
(µ)
max

− 1

)

=

M,N∑

µ,ν=1

1 − (δtωµνu
(µ)
max)2

6
− 1 + o((δtωµνu

(µ)
max)2)

=

M,N∑

µ,ν=1

− (δtωµνu
(µ)
max)2

6
+ o((δtωµνu

(µ)
max)2) (C3)

Now we take the exponential of both sides and obtain
the result:

κ̃(Ω) = exp

(
M,N∑

µ,ν=1

− (δtωµνu
(µ)
max)2

6
+ o((δtωµνu

(µ)
max)2

)

= 1 − 1

6

M,N∑

µ,ν=1

(δtωµνu
(µ)
max)2 + o((δtωµνu

(µ)
max)2).

In order to obtain the claim, we make use of the represen-
tation of the variance we found previously and substitute
the asymptotic expansion:

Var
U∈C

[(
P∏

p=1

∂µpνp

)
Jn

]
= δt2P

∑

Ω,Ω′∈(S∆
n )N\{0}
c∗ΩcΩ′

(
P∏

p=1

ωµpνpω
′
µpνp

)
(κ̃(Ω−Ω′) − κ̃(Ω)κ̃(Ω′))

=
∑

Ω,Ω′∈(S∆
n )N\{0}
c∗ΩcΩ′

(
δt2P

P∏

p=1

ωµpνpω
′
µpνp

)
M,N∑

µ,ν=1

[
(δtu

(µ)
max)2

6
(ω2
µν + ω′2

µν − (ωµν − ω′
µν)2)+

+ o((δtωµνu
(µ)
max)2) + o((δtω′

µνu
(µ)
max)2) + o((δt(ωµν − ω′

µν)u(µ)max)2))]

≤

∣∣∣∣∣∣
∑

Ω∈(S∆
n )N\{0}

c∗Ω

∣∣∣∣∣∣

∣∣∣∣∣∣
∑

Ω′∈(S∆
n )N\{0}

cΩ′

∣∣∣∣∣∣
MN

(
((δtωmax)P+1umax)2

3
+ o(((δtωmax)P+1umax)2)

)
.

In order to upper bound the term containing the sum of
Lie-Fourier coefficients, we first notice that

EU∈RM×N [Jn] = c0.

To show that, we fix ∀µ u(µ)max = umax inside Eq. (C2) and

take the limit umax → ∞:

lim
umax→∞

EU∈Cumax
[
P∏

p=1

∂µpνpJn]

= lim
umax→∞

∑

Ω∈(S∆
n )N

cΩ

(
P∏

p=1

−iδtωµpνp

)
M,N∏

µ,ν=1

δωµν ,0

=

{
c0, P = 0,

0, P > 0.
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We also recall from the discussion in Lemma 5 that

∀U , n min
|ψ⟩∈H

⟨ψ| Ô |ψ⟩ ≤ Jn(U) ≤ max
|ψ⟩∈H

⟨ψ| Ô |ψ⟩ .

By linearity of the expectation value this implies that

min
|ψ⟩∈H

⟨ψ| Ô |ψ⟩ ≤ EU∈RM×N [Jn] ≤ max
|ψ⟩∈H

⟨ψ| Ô |ψ⟩

from which easily follows that

∣∣∣∣∣∣
∑

Ω∈(S∆
n )N\{0}

cΩ

∣∣∣∣∣∣
= |Jn(0) − EU∈RM×N [Jn]|

≤ max
|ψ⟩∈H

⟨ψ| Ô |ψ⟩ − min
|ψ⟩∈H

⟨ψ| Ô |ψ⟩ = ∆O.

By substituting this result in the chain of inequalities for
the variance we obtain the claim. By setting ∆O = 1
and M = 1 we obtain the result from the main text.
The result for J comes trivially from taking the limit on
both sides, which is possible thanks to the uniform con-
vergence of variance and expectation values we discussed
previously in this proof.

Lemma 9 (Variance over unbounded controls). For any n ≥ 1, P ≥ 0 and 1 ≤ µ1, . . . , µP ≤M , 1 ≤ ν1, . . . , νP ≤ N
we have:

Var
U∈RM×N

[(
P∏

p=1

∂µpνp

)
Jn

]
= δt2P

∑

Ω∈(S∆
n )N\{0}

|cΩ|2
P∏

p=1

ω2
µpνp

Moreover, the following bounds hold:

Var
U∈RM×N

[(
P∏

p=1

∂µpνp

)
Jn, J

]
≤
(

(δtωmax)P∆O

2

)2

,
∑

µ1,ν1,...,µP ,νP

Var
U∈RM×N

[(
P∏

p=1

∂µpνp

)
Jn

]
≥ ∆J2δt2P

4
∑

Ω∈(S∆
n )N\{0}

1
||Ω||2P2

where we defined ∆J as the maximum variation in Jn

∆J := sup
U∈RM×N

Jn(U) − inf
U∈RM×N

Jn(U).

Proof. Let us define Cumax
:= [−umax, umax]M×N . The

integrals that define the expectation values of a function
F over RM×N can then be obtained as limits for umax →
∞ of integrals over Cumax

:

Var
U∈RM×N

[F ] = lim
umax→∞

EU∈C [|F |2] − lim
umax→∞

|EU∈C [F ]|2.
(C4)

Following the steps already take in the proof of Lemma
8, we start with the expectation value of Jn, which was
there shown to give rise to

lim
umax→∞

EU∈Cumax

[(
P∏

p=1

∂µpνp

)
Jn

]
=

{
c0, P = 0,

0, P > 0.

We can then do the same for the square modulus:

lim
umax→∞

EU∈Cumax



∣∣∣∣∣

(
P∏

p=1

∂µpνp

)
Jn

∣∣∣∣∣

2



= δt2P
∑

Ω,Ω′∈(S∆
n )N

c∗ΩcΩ′(
P∏

p=1

ωµpνpω
′
µpνp)

M,N∏

µ,ν=1

δωµν ,ω′
µν

= δt2P
∑

Ω∈(S∆
n )N

|cΩ|2
P∏

p=1

ω2
µpνp .

By substituting these results inside Eq. (C4) and by
noticing that

κ̃(0−Ω′) − κ̃(0)κ̃(Ω′) = 0

we can restrict all sums to non-zero frequencies in
(S∆
n )N\{0}, which gives us the result in the claim.
Concerning the upper bound in the claim, it is a direct

consequence of the corresponding bound for finite umax

that we proved in Lemma 8. Since the bound holds for
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any umax it also holds for umax → ∞ because of the
continuity property of the limit.

The lower bound is not as trivial to derive, and only
holds for Jn (and not J , since the limits in umax and n
do not necessarily commute). Using the representation
of the variance we derived previously in this Lemma, we
have

∑

µ1,ν1,...,µP ,νP

Var
U∈RM×N

[(
P∏

p=1

∂µpνp

)
Jn

]

= δt2P
∑

Ω∈(S∆
n )N\{0}

|cΩ|2
P∏

p=1

M,N∑

µp,νp=1

ω2
µpνp

= δt2P
∑

Ω∈(S∆
n )N\{0}

|cΩ|2||Ω||2P2

where the Ω = 0 term can be omitted from the sum as it
does not contribute to the variance. We then notice the
following:

|Jn(U) − c0| =

∣∣∣∣∣∣
∑

Ω∈(S∆
n )N\{0}

cΩe
−iδtTr(ΩTU)

∣∣∣∣∣∣
≤

∑

Ω∈(S∆
n )N\{0}

|cΩ|

therefore, by considering separately the two inequalities
given by the absolute value, namely

−
∑

Ω∈(S∆
n )N\{0}

|cΩ| ≤ Jn(U) − c0 ≤
∑

Ω∈(S∆
n )N\{0}

|cΩ|

and noting they are true also for any U ∈ RM×N , they
will hold respectively for the infimum and the supremum:

sup
U∈RM×N

Jn(U) − c0 ≤
∑

Ω∈(S∆
n )N\{0}

|cΩ|

inf
U∈RM×N

Jn(U) − c0 ≥ −
∑

Ω∈(S∆
n )N\{0}

|cΩ|.

By subtracting the second equation from the first one we
obtain that

∑

Ω∈(S∆
n )N\{0}

|cΩ| ≥
∆J

2
(C5)

where we defined the maximum variation ∆J as in the
claim. The lower bound can then be obtained as the
global minimum of the function

V (cΩ, c
∗
Ω) := δt2P

∑

Ω∈(S∆
n )N\{0}

|cΩ|2||Ω||2P2

over cΩ subject to the constraint given by Eq. (C5).
Let us first study the corresponding problem with

equality constraints

∑

Ω∈(S∆
n )N\{0}

|cΩ| =
∆J

2
(C6)

We can use the method of Lagrange multipliers by finding
the stationary point of the cost function L

L(cΩ, c
∗
Ω) =

∑

Ω∈(S∆
n )N\{0}

δt2P |cΩ|2||Ω||2P2 − λ|cΩ|.

Since L is not differentiable whenever any cΩ = 0, we will
also have to examine these irregular points along with the
stationary points. Thus, the candidate minima are given
by

∀Ω ∈ (S∆
n )N\{0} ∂L

∂c∗Ω
= cΩ

(
δt2P ||Ω||2P2 − λ

2|cΩ|

)
= 0

=⇒ ∀Ω ∈ (S∆
n )N\{0} cΩ = 0∨ |cΩ| =

λ

2δt2P ||Ω||2P2
.

While almost any subset of frequencies can have zero
coefficients, not all of them can be be zero, otherwise
Eq. (C6) would not be satisfied. We can then define
F ̸= ∅ as the set of frequencies with non-zero coefficients
cΩ ̸= 0, and fix λ using the equality Eq. (C6) as

λ =
∆Jδt2P∑

Ω∈F\{0}
1

||Ω||2P2
. (C7)

We can now substitute this result in the expression for
the variance:

∑

µ1,ν1,...,µP ,νP

Var
U∈RM×N

[(
P∏

p=1

∂µpνp

)
Jn

]

= δt2P
∑

Ω∈F\{0}
|cΩ|2||Ω||2P2

=
λ2

4δt2P

∑

Ω∈F\{0}

1

||Ω||2P2
=

∆J2δt2P

4
∑

Ω∈F\{0}
1

||Ω||2P2
,

where in the last step we made use of Eq. (C7). As
the denominator is a sum of positive quantities, it is
easy to see that the minimum over the equality con-
straint Eq. (C6) is obtained when all frequencies are
non-zero F = (S∆

n )N . On the other hand the maxi-
mum is obtained when all frequencies are zero except
the largest one, for which ||Ω||22 = ω2MN

max , and Vmax =
∆J2δt2Pω2MNP

max /4. To see that the minimum over the
equality constraint Eq. (C6) is also the minimum over
the inequality constraint Eq. (C5), we can reason as fol-
lows. Let us consider the following sets

E− = {cΩ ∈ Cn
N
∆−1 |

∑

Ω∈(S∆
n )N\{0}

|cΩ| ≥
∆J

2
},

E+ = {cΩ ∈ Cn
N
∆−1 | δt2P

∑

Ω∈(S∆
n )N\{0}

|cΩ|2||Ω||2P2 ≤M}.

where we used the notation n∆ = #S∆
n . Since these two

sets are solutions to continuous inequalities they are both
closed, and E+ is bounded as E+ ⊂ Eb, with

Eb = {cΩ ∈ Cn
N
∆−1 |

∑

Ω∈(S∆
n )N\{0}

|cΩ|2 ≤ M

(δtωmin)2P
}.
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It follows that E = E+ ∩ E− is a closed and bounded set.
As such, it admits a minimum (and a maximum) of the
continuous function V (this is a well known consequence
of the Bolzano-Weierstrass theorem). Now, we have

E− = (E− ∩ E+) ∪ (E− ∩ (Cn
N
∆−1 \ E+)) = E ∪ E ′.

Since by definition V > M over E ′, V cannot assume its
minimum value inside E ′ (unless E = ∅), since it assumes
smaller values V ≤M inside E . The set E can be further
decomposed into E = Eint ∪ ∂E− ∪ ∂E+, with

∂E− = {cΩ ∈ Cn
N
∆−1 |

∑

Ω∈(S∆
n )N\{0}

|cΩ| =
∆J

2
}

∂E+ = {cΩ ∈ Cn
N
∆−1 | δt2P

∑

Ω∈(S∆
n )N\{0}

|cΩ|2||Ω||2P2 = M}

Eint = {cΩ ∈ Cn
N
∆−1 |

∑

Ω∈(S∆
n )N\{0}

|cΩ| >
∆J

2
∧

δt2P
∑

Ω∈(S∆
n )N\{0}

|cΩ|2||Ω||2P2 < M}

If M > Vmax, V cannot assume its minimum value in-
side ∂E+, as then there would be points on ∂E− where V
would be smaller. That cannot even happen at an inter-
nal point belonging to the open set Eint, as then it would
be a stationary point ∇V = 0, while the only stationary
point of V is cΩ = 0, which does not belong to E . The
only remaining option is that V assumes its minimum
value on ∂E−. This implies that the stationary point we
have found with the method of Lagrange multipliers is
the minimum of V over E−, that is the minimum of the
variance subject to Eq. (C5). The results cited in the
main text follow by fixing M = 1, ∆O = 1.

Appendix D: Proofs valid only for one control M=1

Lemma 2 (Boundedness of the coefficients).

∃r ∈ R, s.t. ∀n,
∑

ω∈(S∆
n )N

|cω(n, δt)| ≤ r

Proof. We start by noticing that the following inequality
holds:

∀i, j 0 ≤ |e Â
n − Î|ij ≤ ||e Â

n − Î||∞ ≤ ||Â||∞
n

e
||Â||∞

n ,

where we employed Eq. (A1). So, since ||V̂ ||∞ = 1, by
defining

R(n) :=
||δtĤd||∞

n
e

||δtĤd||∞
n ,

we can write an inequality for Wij :

|Wij | = |δij − δij +Wij | ≤ δij + |Ŵ − Î|ij ≤ δij +R(n).
Then, we plug this inequality into the sum of the moduli
of the Fourier coefficients:

∑

ikj

|Ãj
ik| ≤

∑

ikj

|Wijn | · · · |Wj2j1 ||δj1k|

≤
∑

ij1...jn

(δijn +R(n)) · · · (δj2j1 +R(n)) =

= D
n∑

m=0

(
n

m

)
R(n)mDm

= D
n∑

m=0

(
n

m

)(
Dδt||Ĥd||∞

n

)m
e

mδt||Ĥd||∞
n =

D

(
1 +

Dδt||Ĥd||∞
n

e
δt||Ĥd||∞

n

)n
n→∞−−−−→ DeDδt||Ĥd||∞ .

The passage from the sum over j to the sum over m is
performed by noticing that the expansion of the product
in the second line gives rise to terms which consists in
m+1 independent chains of Kronecker deltas (which can
also be trivial), each one of which gives rise to a d factor
when summed up over its indices.

Because of this inequalities, the positive sequence∑
ikj |Ã

j
ik| is upper-bounded by a (positive) converging

sequence. But a positive converging sequence has a finite
maximum A. This result implies the boundedness of the
B̃ωik coefficients

∑

ik

∑

ω∈Sn

|B̃ωik| =
∑

ik

∑

ω∈Sn

|
∑

j∈Jω

Ãj
ik| ≤

≤
∑

ik

∑

ω∈Sn

∑

j∈Jω

|Ãj
ik| =

∑

ikj

|Ãj
ik| ≤ A,

and of the coefficients of the fidelity itself:
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∑

ω∈(S∆
n )N

|cω| =
∑

ω∈(S∆
n )N

∣∣∣∣∣
∑

ω′ω′′∈F
δω,ω′−ω′′ ⟨ψ̃| B̃ω′′† |χ̃⟩ ⟨χ̃| B̃ω′ |ψ̃⟩

∣∣∣∣∣ ≤
∑

ω∈(S∆
n )N

∑

ω′ω′′∈F
δω,ω′−ω′′ | ⟨ψ̃| B̃ω′′† |χ̃⟩ ⟨χ̃| B̃ω′ |ψ̃⟩ |

=

(∑

ω′∈F
| ⟨χ̃| B̃ω′ |ψ̃⟩ |

)2

≤


max

ij
|χ̃i||ψ̃j |

︸ ︷︷ ︸
≤1

∑

ij

∑

ω′∈F
|B̃Ω′ |ij




2

≤


∑

ij

∑

ω(1)...ω(N)

|B̃ω(N) · · · B̃ω(1) |ij




2

≤

≤


∑

ij

∑

ω∈Sn

|B̃ωij |




2N

≤ A2N .

which concludes the proof with r = A2N .

Lemma 4 (Symmetries and selection rules). See main
text.

Proof. Since [Ĥd, Γ̂] = [Ĥc, Γ̂] = 0, we can choose V̂ in

Eq. (6) so that both Λ̂ = V̂ ĤcV̂
† and ˆ̃Γ = V̂ Γ̂V̂ † have

diagonal matrix representations:

⟨i| ˆ̃Γ |k⟩ = δikγg(i)

where g(i) maps the index i ∈ {1, . . . , D} to the corre-
sponding symmetry sector index g ∈ {1, . . . , G}. But

since also [ ˆ̃Hd,
ˆ̃Γ] = 0, then

⟨i| ˆ̃Hd |k⟩ = δg(i)g(k)[
ˆ̃H
(g(i))
d ]ik

must be block diagonal, with blocks ˆ̃H
(g)
d corresponding

to the degenerate eigenspaces of ˆ̃Γ. We name Ig the set
of index values belonging to the g-th block:

Ig = {i ∈ {1, . . . , D} | g(i) = g}

This in turn implies that Ŵ = V̂ e−
iδt
n Ĥd V̂ † = e−

iδt
n

ˆ̃Hd

has block diagonal matrix elements in the same fashion.
But then

Ãj
ik = Wijn · · ·Wj2j1δj1k ̸= 0

only when all the indices i, k, j1, . . . , jn ∈ Ig belong to the
same block. Correspondingly, if we consider products like

ˆ̃AJ := ˆ̃Aj(N) · · · ˆ̃Aj(1)

,

where J is the multiindex

J =
(
j(1) . . . j(N)

)
,

we have ÃJ
ik ̸= 0 only when i, k ∈ Ig and j(1), . . . , j(N) ∈

Ing belong to the same block. This determines selection

rules for the frequencies in the spectrum Sn of the time
step operator Ûn(u)

[ ˆ̃Un(u)]ik =
∑

j∈[D]n

e−iδtuωj Ãj
ik =

∑

ω∈Sn

e−iδtuωB̃ωik,

since then the only combinations of eigenvalues that are
allowed are the ones of eigenvalues within the same sym-
metry sector, so that the spectrum becomes

(Γ)Sn =

G⋃

g=1

S(g)
n

S(g)
n = {ωj =

1

n
(λj1 + · · · + λjn) | j ∈ Ing }.

Concerning B̃ωik, in general we can only say that they are
block diagonal in the indices i, k in the same way as Wik

and Ãj
ik, but the frequency ω does not select uniquely

the block.

For similar reasons, when it comes to the full time
evolution operator Ũn(u)

ˆ̃Un(u) =
∑

j(1)···j(N)

e
−iδt∑ν uνωj(ν) ˆ̃Aj(N) · · · ˆ̃Aj(1)

=
∑

ω∈(Γ,N)Sn

e−iδtω·uB̂ω

the only combinations of frequencies for which the coef-
ficients are non-zero are in the set

(Γ,N)Sn =

G⋃

g=1

(S(g)
n )N

We can now use this information to write a decompo-
sition for the Lie-Fourier representation of the matrix
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element

⟨χ| Ûn(u) |ψ⟩ = ⟨χ̃| ˆ̃Un(u) |ψ̃⟩
=
∑

i,k

∑

J

e
−iδt∑ν uνωj(ν) χ̃iÃ

J
ikψ̃k

=
G∑

g=1

∑

i,k∈Ig

∑

J∈In×N
g

e
−iδt∑ν uνωj(ν) χ̃iÃ

J
ikψ̃k

=
G∑

g=1

∑

i,k∈Ig

∑

ω∈(S(g)
n )N

e−iδtω·uχ̃iB̃
ω
ikψ̃k

=
G∑

g=1

∑

ω∈(S(g)
n )N

e−iδtω·ub(g)ω

where b
(g)
ω ̸= 0 only if g ∈ G, defined as

G = {g = 1, . . . , G | ∃i, k ∈ Ig, χ̃iψ̃k ̸= 0}, (D1)

that is, b
(g)
ω is non-zero only if both initial and target state

have a non-zero overlap with the eigenstates generating
the g-th symmetry sector. In fact we have

ψ̃k = ⟨k| V̂ |ψ⟩ = ⟨k|
D∑

i=1

|i⟩ ⟨γg(i), λ(g(i))i |ψ⟩ =

= ⟨γg(k), λ(g(k))k |ψ⟩ ̸= 0

and similarly for χ̃. But this is equivalent to asking
P̂g |ψ⟩ ̸= 0 and P̂g |χ⟩ ̸= 0 as in the claim. Therefore,
we can conclude

⟨χ| Ûn(u) |ψ⟩ =
∑

g∈G

∑

ω∈(S(g)
n )N

e−iδtω·ub(g)ω =
∑

ω∈(Γ,N)Sn

e−iδtω·ubω.

The spectrum of the fidelity is constructed as usual by
taking all possible frequency differences, also across dif-
ferent symmetry sectors, by means of Eq. (8), giving rise

to the frequency set (Γ,N)S∆
n .

Appendix E: Details about Ising model landscapes

1. Computing Lie-Fourier coefficients with the
Discrete Fourier Transform (DFT)

When the single-timestep spectrum S∆
n of the Lie-

Fourier representation Jn of the landscape only contains
evenly spaced frequencies, that is

S∆
n = {ω = ωmax

k

kmax
| k = −kmax, . . . , kmax},

its coefficients can be computed numerically by means of
the DFT. In fact, we can write

Jn(u) =

kmax∑

k=−kmax

cke
−i δtωmax

kmax
k·u, (E1)

where we used the shorthand ck = cω(k) and the multi-

index notation for k ∈ ZN . Let us now multiply both
sides of Eq. (E1) by exp(−iφ(u)), with

φ(u) = δtωmax(u · 1)

and evaluate the expression on a square hyperlattice
given by

uj =
2πj

δtωmax

kmax

n∆
, (E2)

where j ∈ ZN is an integer multiindex whose elements
each range from 0 to n∆ − 1. Then, we obtain the left
hand side expressed as the N -dimensional DFT of the
coefficients

e−iφ(uj)Jn(uj) =

n∆−1∑

k=0

ck−kmax
e
−i 2π

n∆
k·j

which means that the coefficients themselves can be ob-
tained using the inverse DFT:

ck−kmax
=

1

nN∆

n∆−1∑

j=0

e−iφ(uj)Jn(uj)e
i 2π
n∆

k·j
.

We note that all the Fourier components, and hence the
functions Jn, are invariant under the transformation u 7→
u+2πkmax(δtωmax)−1m, with m ∈ ZN . This means that
they are all periodic with period Tn = 2πkmax(δtωmax)−1

(or an integer multiple thereof) along each dimension.
Because of the orthogonality of these Fourier components
in the L2[0, Tn]N sense, we can be sure that the coeffi-
cients given by the inverse DFT and the ones from the
Lie-Fourier expansion are the same.

The DFT and its inverse can be computed efficiently
for a sample of M points using the Fast Fourier Trans-
form algorithm in O(M logM) flops, but the sample de-
fined by Eq. (E2) contains M = nN∆ points, which pre-
vents us from pushing the computation to large numbers
of time steps N .

2. Time symmetry in the real case

Whenever both the Hamiltonian Ĥ and the states
|ψ⟩ , |χ⟩ defining the state transfer problem only have real
matrix elements and overlaps in the same basis, the land-
scape

J(δt;u) = | ⟨χ| Û(δt;uN ) · · · Û(δt;u1) |ψ⟩ |2,

where Û(δt;u) = exp
(
−iδtĤ(u)

)
is symmetric under

change of sign of time

J(δt) = J(−δt).
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In order to see this, let us first express the overlap in
index form:

⟨χ| Û(δt;uN ) · · · Û(δt;u1) |ψ⟩
=
∑

j

χj1Uj1j2(δt;u1) · · ·UjN jN+1
(δt;u1)ψjN+1

While working in this basis, the Hamiltonians at the dif-
ferent timesteps are going to be real and symmetric ma-
trices, hence they can be diagonalized by means of real
orthogonal matrices V ∈ RD×D, V TV = 1:

Uik(δt;u) = Vij(u)e−iδtΛj(u)V Tjk(u).

By expressing this way every unitary appearing in the
overlap, it is easy to see that it can be expressed as a
real combination of Fourier components (which are not
the same as the ones in the Lie-Fourier representation in

the main text):

⟨χ| Û(δt;uN ) · · · Û(δt;u1) |ψ⟩ =

=
∑

j,k

χj1Vj1k1(u)e−iδtΛk1
(u)V Tk1j2(u) · · ·

· · ·VjNkN (u)e−iδtΛkN
(u)V TkN jN+1

(u)ψjN+1
=
∑

j,k

rjke
−iδtωk .

But then the square absolute value is time symmetric as
expected:

J(δt) =

∣∣∣∣∣∣
∑

j,k

rjke
−iδtωk

∣∣∣∣∣∣

2

=

∣∣∣∣∣∣


∑

j,k

rjke
−iδtωk




∗∣∣∣∣∣∣

2

∣∣∣∣∣∣
∑

j,k

rjke
+iδtωk

∣∣∣∣∣∣

2

= J(−δt).
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Chapter 7

Discussion

As anticipated in Part I, in this thesis we have dealt with several aspects con-
cerning the development of a quantum firmware for cold atom platforms. In
Chapter 4 we have focused on the transfer function mapping hardware inputs of
a DMD into optical dipole potentials for the manipulation of ultracold gasses. We
developed methods that allow for precise shaping of this potential while keeping
in with the constraint of the rather low repetition rate of the experimental cycle.
We envisage these methods to be useful in the shaping of time-dependent control
pulses, especially if they involve the complex structures required to implement
engineered systems such as quantum field thermal machines [103].

We then moved our focus in Chapter 5 from the transfer functions to the quan-
tum system itself, considering the technically important control task of transport-
ing an atom between different sites of an array of optical tweezers. We derived
solutions for the transport problem that speed up this operation considerably
compared to state-of-the-art experiments, while keeping residual vibrational ex-
citations under control and by only using a single pair of moving tweezers. The
possibility of rearranging the atoms without individual control of all the static
sites reduces considerably the hardware requirements, simplifying platform de-
sign and potentially increasing the amount of atoms that can be dealt with using
finite resources. In combination with two-qubit local collisional gates [104, 105],
this could in perspective deliver a fermionic platform with a high degree of con-
nectivity and a rather simple hardware design.

Finally, in Chapter 6 we still concerned ourselves with quantum control, but
now from the perspective of characterizing the quantum cost landscape associated
to this problem. We find that limited time and energy budgets translate in limited
bandwidth and Lipschitz constant, which flatten the landscape as time discretiza-
tion is refined. From the point of view of regression, this makes bandwidth-limited
kernels particularly suited feature maps. In the context of closed-loop optimal
control schemes, we envisage them as efficient local landscape estimators with
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good noise-filtering properties, which can be used for robust gradient estimation
or to devise analytic descent strategies [106]. Moreover, our analysis of landscape
metrics is informative for the tuning of gradient-free optimizers, and highlights
the relevance within QOC of Lipschitz-aware algorithms such as DIRECT [107,
108] in order to deal with landscape flattening.

These contributions therefore provide a collection of methods and insights that
tackle important challenges in the development of quantum firmware for cold atom
platforms, concerning a variety of experimental setups, different building blocks
constituting these systems and all the three fundamental tasks that we identified
in Chapter 3 as characterization, calibration and control. On a conclusive note,
while the road to realize a quantum platform delivering an advantage in real-world
simulational or computational tasks might still be very long, and the contributions
presented in this thesis barely stir the surface of a deep ocean of complexity, it is
the hope of the Author that what has been covered here might help those who
thread this route after him save their own time and efforts, at least by avoiding
the mistakes he made along the way.
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