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A B S T R A C T

Anaerobic digestion is a crucial process for treating organic waste, such as wastewater sludge, agricultural
residues and food waste. While the influence of physicochemical parameters on the prokaryotic community
composition in anaerobic digesters has been extensively characterized, the role of biotic interactions in shaping
the prokaryotic communities remains poorly understood. This study addresses this knowledge gap by analyzing
the complete active microbiome of nine full-scale anaerobic digesters. Our findings reveal that eukaryotes,
consisting primarily of protists and fungi, account for approximately 40 % of RNA sequence reads alongside
dominant Archaea, indicating their substantial role in the digestion process. Our results suggest that the chosen
sludge retention time during anaerobic digestion indirectly affects the archaeal community composition and thus
treatment efficacy by cascading through eukaryotes, highlighting their integral role in the system. This study
highlights the critical role of eukaryotes in regulating prokaryotic communities and their indirect contribution to
the optimization of anaerobic digestion efficiency.

1. Introduction

Anaerobic digestion is a biological process in which organic matter is
decomposed in an oxygen-free environment by a microbial consortium,
producing biogas and nutrient-rich digestate (Holm-Nielsen et al., 2009;
Pain and Hepherd, 1985). Each year, substantial quantities of waste are
produced from municipal wastewater treatment, agriculture, forestry,
food production, and other industries, posing significant environmental
and health risks. Anaerobic digestion offers a sustainable approach to
waste management, simultaneously enhancing energy production by
converting biomass waste into bioenergy products (Yu and Schanbacher,
2010). Large bioreactors, or anaerobic digesters (ADs), are used for
anaerobic digestion, which is generally cost-effective and environmen-
tally friendly. Nonetheless, ADs present challenges, such as system
instability and limited bioenergy efficiency (Xu et al., 2018). Currently,
a deeper understanding of microbial community composition and
function within ADs is recognized as crucial for optimization (Yang
et al., 2022).

Most studies to date have focused on prokaryotic community dy-
namics and interspecies interactions in ADs, examining factors such as
substrate composition (Xie et al., 2007), digester operating conditions
(Castillo M. et al., 2006), eco-thermodynamics (Nobu et al., 2020),

metabolic inhibition (Glenn, 1976), and quorum sensing (Anburajan
et al., 2023). Accordingly, four main phases of anaerobic digestion are
characterized – hydrolysis, acidogenesis, acetogenesis, and methano-
genesis – all of which are recognized to be facilitated by distinct pro-
karyotic species (Gujer and Zehnder, 1983). During hydrolysis, complex
organic waste is broken down into monomers, such as amino acids,
long-chain fatty acids, and sugars, by extracellular enzymes from hy-
drolytic Bacteria (Gujer and Zehnder, 1983; Menzel et al., 2020). This
step may be inhibited by the accumulation of intermediates, including
amino acids and sugars, due to suppressed enzyme production and ac-
tivity (Glenn, 1976). The soluble monomers are then used as substrates
by acidogenic Bacteria, which convert them into volatile fatty acids
(VFAs), acetate, hydrogen (H2), and carbon dioxide (CO2) (Gujer and
Zehnder, 1983). Next, acetogenic Bacteria further degrade these prod-
ucts, also producing acetate, H2, and CO2. Methanogenic Archaea
complete the final step by converting acetate to CO2 and methane
through acetotrophic methanogenesis or by reducing CO2 with H2 to
methane and water via hydrogenotrophic methanogenesis. These stages
are interdependent, with methanogens relying on acidogens and ace-
togens for substrates, and acetogens depending on methanogens to
maintain low H2 partial pressure through interspecies H₂ transfer (Boone
et al., 1989; Harper and Pohland, 1986; Liu et al., 2020; Winter and
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Knoll, 1989).
Next to prokaryotic communities, anaerobic environments are also

inhabited by eukaryotes. Several studies have characterized eukaryotic
communities in anoxic environments, revealing they are predominantly
composed of protists and fungi (Fenchel and Finaly, 1990; Hackstein
et al., 1999; Hirakata et al., 2019). Anaerobic protists and fungi can
directly degrade organic matter, accelerating hydrolysis (Mishra et al.,
2020; Priya et al., 2007). For example, in the rumen, the yeast Candida
assimilates fatty acids (Ando et al., 2006), while ciliates break down
complex carbohydrates to produce VFAs, lactate, CO₂, and H₂ (Li et al.,
2022; Williams, 1986). In anaerobic reactors, ciliates have been
observed to consume particulates directly, thus facilitating the solubi-
lization of particles, which is generally considered a rate-limiting step
during treatment (Priya et al., 2007). Despite this knowledge, eukaryotic
functions in ADs are poorly understood (Bareither et al., 2013; Hirakata
et al., 2016; Li et al., 2021; Matsubayashi et al., 2017; Mishra et al.,
2020; Priya et al., 2007; Staley et al., 2018; Yang et al., 2022).

A variety of interactions, including competition, syntrophy, and
predation, exist among bacterial, archaeal, and eukaryotic communities
in waste decomposition (Yang et al., 2022). Protistan predation is
known to exert top-down control on prokaryotic abundance, community
structure, function, and diversity across ecosystems (Hirakata et al.,
2016; Jürgens et al., 1999). Although little is known about how preda-
tion affects anaerobic microbial communities, one study found that
anaerobic ciliates significantly modified prokaryotic community struc-
ture and function, particularly methanogenesis, in upflow anaerobic
sludge blanket reactors (Hirakata et al., 2016). There is further evidence
that certain protists selectively prey on Archaea (Ballen-Segura et al.,
2017). However, these studies investigated the effects of individual
species. Given the complexity of species interactions, which often
involve more than one-to-one relationships, examining cross-kingdom
interactions at the community level may reveal a higher level of
ecological complexity. Here, we hypothesize that eukaryotes as a com-
munity play a critical role in shaping the prokaryotic community
composition and thus process efficacy in ADs.

The aim of this study is to identify and disentangle the biotic and
abiotic factors influencing microbial community composition in full-
scale ADs. This includes mapping the most abundant active prokary-
otic and eukaryotic species and investigating interactions between them.
To achieve this, we re-analyzed a publicly available metatranscriptomic
dataset from previously studied ADs (Mei et al., 2016; Nobu et al.,
2020), gaining comprehensive insights into the microbial community
composition, including Archaea, Bacteria, and eukaryotes.

2. Material and methods

2.1. Sample collection and sequencing

We analyzed data from previously investigated ADs (Mei et al., 2016;
Nobu et al., 2020). While Mei et al. (2016) used 16S rRNA gene
sequencing to characterize the microbial communities, Nobu et al.
(2020) used the same sludge samples for RNA extraction, which were
here analyzed for the whole active microbiome. In brief, sludge samples

were selected in triplicate from ADs at nine full-scale municipal waste-
water treatment plants (WWTPs) across two countries (called ADurb,
USST, USRA, USMO, USDV (USA) and JPTR, JPNA, JPMR and JPHW
(Japan)): Eight of the WWTPs were operated with the conventional
primary-secondary (activated sludge) treatment scheme, while one
plant (USRA from the USA) was only configured with primary treatment
before AD treatment (Table 1). Most ADs operated at mesophilic tem-
peratures (approximately 35 ◦C), except for JPTR, which ran at a slightly
elevated temperature (approximately 40 ◦C), JPHW and USRA, which
were operated at slightly lower temperature (< 30 ◦C), and JPMR, which
was operated at thermophilic conditions (> 50 ◦C). Additionally, three
ADs (JPHW, JPNA and USDV) were operated in series (with the same
retention time) with the first digester treating primary/secondary clar-
ifier sludge, and the second treating sludge produced by the first. ADurb,
JPNA, and USST also treated non-sewage-derived waste, including food
waste, green waste and sludge from other sources. Different sludge
samples were collected at different time points (e.g. 1 month apart), as
documented in Mei et al. (2016). To assess active gene expression, RNA
was extracted and analyzed through metatranscriptomic sequencing,
using the Illumina HiSeq-2000 1 TB platform. For further details on the
sampling process and sequencing, see Mei et al. (2017) and Nobu et al.
(2020).

2.2. Data processing

The raw metatranscriptome data from Nobu et al. (2020) are avail-
able on the Joint Genome Institute Integrated Microbial Genome and
Metagenome (IMG/M) database (project IDs can be found in Nobu et al.,
2020). The sequence data files were downloaded in compressed SRA
format using the SRA toolkit v.3.0.1 (SRA Toolkit Development Team,
2022) with prefetch, then converted to the standard FASTQ format using
fasterq-dump. To address potential biases introduced during the sam-
pling, RNA extraction, and sequencing processes, the quality of the
FASTQ files was controlled using FASTQC v0.11.9 (Andrews, 2010). To
minimize potential biases, the paired-end FASTQ files were trimmed
using Trim Galore v.0.6.4_dev (Krueger, 2015). Specifically, bases with a
quality score below 30 were removed, and the last ten bases were
trimmed from the 3′ end. Mothur v.1.45.3 (Schloss et al., 2009) was
employed to assemble the overlapping paired-end reads into a single
contiguous sequence (contig) with a maximum expected error threshold
and maximum ambiguity of 2 bp. SortMeRNA v.4.3.4 (Kopylova et al.,
2012) was used to filter the contigs for rRNA, using several reference
databases (e.g., SILVA 16S, 23S, 18S, and 28S). The sorted rRNA contigs
were then assembled into longer contigs using Trinity v.2.14.0
(Grabherr et al., 2011). The contigs were subsequently utilized for
taxonomic assignment by screening with BLASTN+ 2.10.0 (Camacho
et al., 2009) against the ribosomal gene sequence databases PR2 v4.13.0
(Guillou et al., 2012) for eukaryotes and SILVA 138 Ref NR. 99 (Pruesse
et al., 2007) for prokaryotes. The following filtering criteria were
employed to ensure precise taxonomic assignment: (i) Only the best hit
of the query sequence to a reference sequence of the respective database
was retained and (ii) an expectation value for saving hits was set to a
threshold of 1e− 30 for both databases. After assembling the reads into

Table 1
Metadata for anaerobic digester samples. The table provides key operational and environmental parameters for the AD samples analyzed in this study.

AD name Sample ID State Country Operation temperature Feed sludge type Sludge retention time pH

ADurb SRR5466728, SRR5467090, SRR5467091 Illinois USA 35 Primary+ Secondary 26 7.1
USST SRR6960509, SRR6960551, SRR6960797 Illinois USA 35 Primary+ Secondary 23 7.1
USRA SRR6960540, SRR6960549, SRR7976299 Illinois USA 30 Primary 20 7.5
USMO SRR6960507, SRR7976295, SRR7976300 Illinois USA 35 Primary+ Secondary 72 7.3
USDV SRR6960550, SRR7976301, SRR7976310 Illinois USA 35 Primary+ Secondary NA 7.3
JPTR SRR6960803, SRR7976356, SRR7976357 Kansai Japan 40 Primary+ Secondary 27.8 7.3
JPNA SRR6960802, SRR7976323, SRR7976324 Chubu Japan 35 Primary+ Secondary 39.6 NA
JPMR SRR6960800, SRR6960801, SRR7976327 Kanto Japan 50 Primary+ Secondary 20 7.6
JPHW SRR6960799, SRR7976325, SRR7976326 Kyushu Japan 30 Primary+ Secondary 23.1 7.5
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contigs using Trinity, the original reads were mapped back to the
assembled transcripts using Bowtie2v.2.4.1 (Langmead and Salzberg,
2012). Backmapping allowed us to validate the accuracy and
completeness of the assembled contigs. Salmon v.1.9.0 (Patro et al.,
2017) was employed to quantify the Bowtie2 read counts of each Trinity
transcript. The “Number of Reads” provided by Salmon was used as read
counts. Read counts of distinct transcripts were then binned if being
assigned to the same species for all further analyses. Streptophyta,
chloroplasts, and macroscopic Metazoa were removed as they are pre-
sumed to be remnants of dying material within the sludge derived from

macroscopic organisms, rather than actual active organisms. The mi-
crobial community was distinguished in prokaryotes (Bacteria and
Archaea) and eukaryotes (protists, fungi, and microscopic Metazoa). To
minimize the impact of background noise, species with read counts
below four were excluded. To consider only data of high quality, contigs
shorter than 400 bp were removed, as they were considered to be too
fragmented or the result of artifacts. The data were processed in R
v.4.3.2 (2023–10–31), making use of the following packages: lattice v.
0.22–6 (Deepayan, 2008), tidyr v. 1.3.1 (Wickham et al., 2024), dplyr v.
1.1.4 (Wickham et al., 2023), tidyverse v. 2.0.0 (Wickham et al., 2019),

Fig. 1. Microbial community composition in anaerobic digesters. (A þ B) Chord charts showing the 30 most abundant (A) prokaryotic and (B) eukaryotic
species with a relative abundance >1 %. Each line represents the presence of the annotated species in the corresponding AD, and the scale refers to the sum of
connections between sampling location and found number of species. (Cþ D) Bubble plots showing the relative abundance of the 30 most abundant (C) prokaryotic
and (D) eukaryotic species.
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circlize v. 0.4.16 (Gu et al., 2014), rlist v. 0.4.6.2 (Ren, 2021), funrar v.
1.5.0 (Grenié et al., 2017) and vegan v. 2.6–6.1 (Oksanen et al., 2024).
Visualization was performed using ggplot2 v. 3.5.1 (Wickham, 2016),
ggthemes v. 5.1.0 (Arnold, 2024), and kableExtra v. 1.4.0 (Zhu, 2024).
To determine whether the sequencing depth was adequate to capture the
diversity in each sample, rarefaction curves were generated (function
rarefy, package vegan). The rarefaction curves (Hurlbert, 1971) showed
an adequate saturation in sequencing depth, indicating a high level of
comparability between samples and thus no rarefying was required
(Supplementary Figure S 1).

2.3. Community analyses

To gain an overview of the microbial community composition at
varying levels of richness and evenness, alpha diversity was assessed
using Hill Numbers (Hill, 1973) for q = 0 (species richness), q = 1
(exponential of Shannon entropy), and q = 2 (Inverse Simpson index)
(function renyi, package vegan, Supplementary Figure S 2). These alpha
diversity indices were used to assess differences within each sample.
Subsequently, chord charts were constructed to provide an overview of
the most abundant species and their distribution (Fig. 1A + B). Bubble
plots were generated to analyze the relative abundance of the most
prevalent taxa with an abundance greater than 1 % (Fig. 1C + D).
Principal Coordinate Analysis (PCoA) (Gower, 1966) based on
Bray-Curtis dissimilarities was employed to quantify the community
structure of archaeal, bacterial, and eukaryotic communities. For each
community, the first axis (PCoA1) of the eigenvectors, which explained
56 % for eukaryotes, 29 % for Bacteria, and 19 % of the variation for
Archaea served as a measure of community structure (function pcoa,
package ape, Supplementary Table S 3, Table S 4, Table S 5). PERMA-
NOVA (Anderson, 2001) was used to disentangle the influence of abiotic
factors and biotic factors, represented by the PCoA eigenvectors of the
microbial communities, on the composition of archaeal, bacterial and
eukaryotic communities (function adonis, package vegan, Fig. 2). To
further investigate the correlations between the factors influencing the
community composition, multivariate dispersion based on normalized
and Bray-Curtis transformed data was calculated and an NMDS plot for
each community composition (archaeal, bacterial and eukaryotic) was
generated (metaMDS function, package vegan, Fig. 3A–C). No potential
outliers were identified. A two-dimensional NMDS was employed for
ease of interpretation, but for the archaeal community, a
three-dimensional NMDS with a lower stress value (0.198) was also
obtained to enhance ordination accuracy (Supplementary Figure S 5).

To determine the influence of eukaryotic and prokaryotic species on the
AD microbiome, the eukaryotic species were fitted onto the archaeal and
bacterial NMDS plots, and the prokaryotic species were fitted onto the
eukaryotic NMDS plot. The ten species exhibiting the most robust cor-
relations, as indicated by the highest R2-values, were displayed (func-
tion envfit, package vegan, Fig. 3A–C). To test which abiotic factors
shape the microbial communities the measured abiotic factors (opera-
tion temperature, sludge retention time, and pH) were fitted onto the
ordination (Fig. 3A–C). To further identify potential correlations be-
tween metabolic capacities we accessed particularly prominent physi-
ological capabilities of respective prokaryotic communities, as
determined by Nobu et al. (2020), and also plotted them onto the
ordination. In brief, Nobu et al. (2020) constructed a matrix containing
the species-level metagenome-assembled genomes (MAG) clusters with
values representing their corresponding presence, absence, or diversity
(number of protein families or number of pathways present in the target
MAG cluster). Subsequently, all metagenomes were annotated and
specifically analyzed for a range of processes, including sugar degra-
dation, amino acid degradation, electron transduction mechanisms,
respiration (in the presence of oxygen and nitrogen species), H2 meta-
bolism, formate metabolism, and polymer hydrolysis (glycosyl hydro-
lase, extracellular peptide, and extracellular lipase families). Curation
included an analysis of the functional domains, signal peptides, trans-
membrane domains, carbohydrate-active enzymes, peptidases, lipases,
and hydrogenases (see Nobu et al., 2020 for more details).

Given the observed biological effects, variance partitioning analysis
(Anderson and Cribble, 1998; Cushman and McGarigal, 2002; Økland,
2003) was conducted to disentangle interactions (function varpart,
package vegan). To test differences in specific species abundance be-
tween ADs from different regions, we used Welch Two Sample t-tests
(function t.test, package stats) and assessed differences in community
composition between ADs from the USA and Japan, via PERMANOVAs
on both the eukaryotic and prokaryotic communities (function adonis,
package vegan). Network analysis was conducted following alpha- and
beta-diversity analysis to further elucidate and enumerate the relation-
ships among microbial communities (Fig. 4). The network analysis was
performed using the Sparse and Compositionally Robust Inference of
Microbial Ecological Networks (SPIEC-EASI) pipeline (Kurtz et al.,
2015) with non-normalized count data as the input. The networks were
generated using the sparse Meinshausen-Bühlmann neighborhood se-
lection (mb) method (function spiec.easi, package SpiecEasi). In
consideration of the density of the networks, the default scaling factor
determining the minimum sparsity (lambda.min.ratio) was set to 0.001

Fig. 2. Overview of explained variation in prokaryotic (Bacteria and Archaea) and eukaryotic community composition. Arrows indicate significant influences on the
eukaryotic and prokaryotic communities according to PERMANOVA, respectively. Percentages represent the R2-values of explained variation. Asterisks represent
significant codes: * for p ≤ 0.05, ** for p ≤ 0.01, and *** for p ≤ 0.001.

M. Badra et al.



Water Research 278 (2025) 123371

5

and the parameter nlambda was set to 50, with the objective of
achieving a stability threshold closer to 0.05. The resulting network was
visualized using Cytoscape v. 3.8.0 (Shannon et al., 2003). To facilitate
visualization, the complexity of the network was reduced by aggregating

nodes at the taxonomic order level, with edges representing the number
of species with detected associations (Supplementary Figure 4). Further,
taxonomic orders were grouped into functional groups - defined as
fungi, microscopic Metazoa, protists, Bacteria and Archaea - with their

Fig. 3. Influences on prokaryotic (Archaea and Bacteria) and eukaryotic community composition in anaerobic digesters. (A-C) The non-metric multidi-
mensional scaling (NMDS) plots showing the multidimensional data in two dimensions. Each point represents one independent sample. The proximity of two points
(samples) is indicative of a high degree of similarity in terms of their microbial communities. The color of each point and polygon indicates the sampled AD. The
arrows showing the direction of the fitted factors which were displayed by a maximum estimated p-value of 0.05. Weak predictors have shorter arrows than strong
predictors. (A) The archaeal community is shown, with the significant abiotic shaping force, temperature, and the eukaryotic shaping species, highlighted. (B) The
bacterial community is displayed, with the significant abiotic shaping factors, temperature and lipase as well as the shaping eukaryotic species. (C) NMDS plot of the
eukaryotic community composition shows the significantly shaped abiotic factor pH and the prokaryotic (archaeal and bacterial) shaping species. (D-F) Venn di-
agrams showing the partitioned variance explaining the composition of the (D) archaeal, (E) bacterial and (F) eukaryotic community. Significant effects according to
ANOVA are marked by stars: * for p ≤ 0.05, ** for p ≤ 0.01, and *** for p ≤ 0.001. Note that here (D) also a significant effect of the eukaryotic community
composition on the archaeal community was found.
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respective nodes displayed as pie charts, reflecting the relative abun-
dance of each order (Fig. 4). The size of the nodes was adjusted in
accordance with the number of reads, while the thickness of the edges
corresponded to the number of individual connections between the or-
ders. The color of the edge indicated the sign of the association.

3. Results

3.1. Eukaryotic communities in ADs are more diverse than prokaryotic
communities

Following quality filtering and Trinity contig assembly, a total of
110,615,484 SSU rRNA contiguous sequence reads were identified.
These sequence reads were assigned to 6185 distinct species. Pro-
karyotes represented the majority of sequence reads and species richness
with approximately 62.8 % and 66.6 %, respectively. Among pro-
karyotes, only a small number of archaeal species (approx. 6.75 % of all
prokaryotic species) contributed to about 61.45 % of all prokaryotic
reads (Fig. 1, Supplementary Table S 2). Eukaryotes (37.2 % of all reads)
were dominated by protists with approximately 60.2 % of all eukaryotic
species contributing about 45.7 % of all eukaryotic reads. Fungi
accounted for 31.1 % of all eukaryotic species representing approx. 43.5
% of all eukaryotic sequence reads and microscopic Metazoa repre-
sented approx. 8.7 % of the eukaryotic species richness and contributed
approximately 10.7 % of all eukaryotic sequence reads.

Given that the vast majority of sequence reads were represented by
only a few species-level taxa (hereafter called species) across all ADs
(Fig. 1A + B), we specifically investigated the relative abundance of the
30 most abundant prokaryotic and eukaryotic species (Fig. 1C + D). Of
the 30 most abundant prokaryotic species, 21 species were Archaea
belonging to the phylum Halobacterota, three species represented Fir-
micutes (Bacteria), and two species Proteobacteria (Bacteria) (Fig. 1A +

C). A single species was identified within each of the following taxo-
nomic groups: Crenarchaeota (Archaea), Thermoplasmatota (Archaea),
Bacteroidota (Bacteria), and Elusimicrobiota (Bacteria) (Fig. 1A + C).
Twenty-six of the top 30 species were identified in all nine ADs (Fig. 1A).
Overall, species from the archaeal phylum Halobacterota exhibited the
highest relative abundance in all ADs, except for ADurb, where species
of the Proteobacteria dominated (Fig. 1C).

In contrast to prokaryotes, which were heavily dominated by species
of only one phylum, the thirty most abundant eukaryotes were more
evenly composed of 13 protistan, nine metazoan, and seven fungal

species. Within protists, three of the most prevalent species belonged to
the phyla Ciliophora and Cercozoa, while two were assigned to the
phylum Discosea. Apusomonadidae, Dinoflagellata, Discoba, Meta-
monada and Sagenista were each represented by a single species. An
undescribed species of the Dino-Group II Clade 5 (Dinoflagellata)
exhibited the highest relative abundance in many ADs, with up to 80 %
of eukaryotic sequence reads in ADs from Japan (Supplementary
Figure S 4). Additionally, the yeast Candida orthopsilosis was also found
in high abundance in many ADs, with a higher relative abundance of
approximately 32 % in the USA compared to 10.2 % in Japan (Welch’s t-
test: p< 0.001, Supplementary Figure S 4, therein referred to as "Fungi").

Differences in community composition between ADs from the USA
and Japan were evident in both eukaryotic and prokaryotic commu-
nities. However, regional variation was more pronounced in eukaryotes
(PERMANOVA: R² = 0.421, p < 0.001) compared to prokaryotes
(PERMANOVA: R² = 0.098, p < 0.002) (Fig. 1C+D).

3.2. Biotic and abiotic factors contribute similarly to community
composition variation

Anaerobic digestion is monitored and steered by changes in abiotic
factors, such as sludge retention time (SRT), operation temperature, and
pH, which were given special attention during our analyses (Table 1).
However, the main interest here is the investigation of biotic influences
as a shaping factor and a response to environmental changes. The ma-
jority of environmental factors exhibited a similar degree of explanatory
power comparable to that of biotic factors (Fig. 2). Measured abiotic
factors in the tightly controlled ADs collectively explained approxi-
mately 30 % of the variation in respective community composition,
while individual biotic factors accounted for around 10 % of the varia-
tion of eukaryotes, Archaea, and Bacteria, respectively (Fig. 2).

To further explore and disentangle abiotic and biotic influences, we
investigated how biotic influences correlate and interact with abiotic
influences while shaping the community compositions of Archaea,
Bacteria, and eukaryotes (Fig. 3). The technical replicates grouped
closely, confirming that the respective microbial communities in each
AD were stable and consistent across repeated sampling and processing.
We show that eukaryotic species shaped the archaeal community in
dependence on environmental temperature (Fig. 3A). To further disen-
tangle the effects of temperature and biotic effects on the archaeal
community composition, variance partitioning was employed, which
revealed a significant overlap of 3.6 % of the explained variation by

Fig. 4. Specific microbial associations in the anaerobic digester microbiome, shown by the summarized core co-occurrence network. The associations are
summarized for different taxonomic groups, i.e. fungi, microscopic Metazoa, protists, Bacteria and Archaea. Node size is proportional to the relative number of reads
for prokaryotes and eukaryotes. Edge thickness indicates the number of associations between taxonomic groups. The color codes for the ratio of negative (red) to
positive (blue) associations.
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temperature and eukaryotes, next to independent effects of pH and the
bacterial community (Fig. 3D).

For the bacterial communities, NMDS plotting revealed a strong in-
fluence of temperature and lipase activity, i.e. the degradation of lipids,
both following the same axis (Fig. 3B). The bacterial communities in the
AD ADurb were distinct, which was not explained by measured envi-
ronmental factors (Fig. 3B, see also Fig. 1C). Temperature negatively
correlated with all ten shown eukaryotic species.

Variance partitioning revealed that the archaeal community struc-
ture exerted an independent effect on the bacterial community compo-
sition, explaining 6.3 % of the variation (Fig. 3E, Supplementary Table S
3).

For the eukaryotic community composition, pH negatively corre-
lated with cytochrome bd oxidase (a terminal oxidase for aerobic
respiration) and protease (degradation of proteins) (Fig. 3C). The
eukaryotic communities from the US American ADs correlated with
enzyme activity, whereas eukaryotic communities from Japanese ADs
correlated with pH. The bacterial community composition influenced
the eukaryotic community by 6.7 % (Fig. 3F).

3.3. From community analyses to specific microbial interactions

To lift our analyses from the community level to the species level,
network analyses were performed (Fig. 4). In total, 1277 edges were
identified, representing associations between functional groups. The
predominant associations were observed among Bacteria, with 317
edges (~24.8 %), followed by those between Bacteria and protists (214
edges, ~16.8 %), Bacteria and fungi (194, ~15.2 %), and Bacteria and
Archaea (122, ~9.6 %) (Fig. 4). Associations involving microscopic
Metazoa were fewer in comparison to the other functional groups.

Functional groups showed distinct differences in the sign of associ-
ations. The analyses revealed predominantly negative associations be-
tween protists and Bacteria (67.3 %), suggesting strong predator-prey
interactions between both groups. Similarly, predominantly negative
associations were observed between fungi and Bacteria (66.5 %), indi-
cating strong competition between these groups. In contrast, predomi-
nantly positive associations were identified among the bacterial
community (75.1 %) and between protists and fungi (78.8 %).

4. Discussion

This study reveals that AD microbial communities are prokaryote-
dominated, supporting their recognized role as primary agents in
anaerobic digestion (Supplementary Table S2; Godon et al., 1997). The
most prevalent prokaryotes include members of the archaeal phylum
Halobacterota, notablyMethanothrix (formerly Methanosaeta) and other
Halobacterota/Euryarchaeota species such as Methanoculleus and
Methanospirillum, which contribute to terminal end-product degradation
(Fig. 1; Nobu et al., 2020). Among Bacteria, the classes Bacilli, Gam-
maproteobacteria, and Bacteroidales (within Firmicutes, Proteobac-
teria, and Bacteroidota, respectively) rank among the top 30 most
abundant taxa, playing key roles in fat and carbohydrate degradation (Li
et al., 2013; Fig. 1). Consistent with prior research, we identified a core
prokaryotic community, with 26 of the top 30 species detected across all
nine ADs (Chouari et al., 2005; Fig. 1).

Historically, eukaryotic communities in ADs have been overlooked,
primarily due to difficulties in accurately detecting microeukaryotes.
Biases in universal eukaryotic primers can exclude entire phyla, such as
Amoebozoa (Fiore-Donno et al., 2016; Hong et al., 2009; Jeon et al.,
2008). Moreover, DNA-based methods may not reliably reflect active
community members, potentially distorting interpretations of commu-
nity structure (Zakrzewski et al., 2012). Using ribosomal RNA from
metatranscriptomes, which better represents active community mem-
bers due to rRNA’s correlation with microbial activity (Wagner, 1994),
we found that active eukaryotes, primarily protists, constitute 40 % of
the sequence reads in ADs (Supplementary Table S 2).

Via whole microbiome analyses, this study reveals a complex inter-
kingdom loop among Bacteria, Archaea, and eukaryotes within ADs
(Fig. 2). Unlike temperature and pH, which can fluctuate due to
biochemical processes by the microorganisms’ activity within the
reactor, SRT can be more precisely controlled through active manage-
ment of sludge input and removal. We show that changes in SRT
significantly shift bacterial communities (Lee et al., 2011) with subse-
quent effects on both archaeal and eukaryotic composition. Our findings
indicate that subsequently, eukaryotes shape the archaeal community
through primarily negative correlations. Finally, Archaea influence
bacterial community structure through a mix of positive and negative
associations. This interkingdom loop, modulated by SRT, reveals that
shifts in the archaeal community cascade through eukaryotes, high-
lighting their integral role in the system. The indirect effects of SRT
through this interkingdom loop represent a novel finding, com-
plementing the known impacts of temperature and pH.

The question arises by which mechanisms do eukaryotes shape the
prokaryotic core microbiome of ADs. These mechanisms can be cate-
gorized into several fundamental ecological interactions: predation,
competition, and symbiosis/syntrophy. While AD operational controls
and prokaryotic self-regulation are influential, the interplay between
eukaryotes and prokaryotes involves complex relationships that collec-
tively impact microbial community structure and function. It is impor-
tant to acknowledge that predator-prey dynamics can result in positive
and/or negative associations requiring a careful interpretation of
associations.

Predation emerge as a primary interaction type, where eukaryotes,
as voracious microbial predators, exert top-down control in these mi-
crobial food webs, supported by numerous negative associations of eu-
karyotes with bacterial and archaeal species (Fig. 4). Despite this,
predation appears relatively unselective, as indicated by its limited
impact on overall bacterial community composition (Fig. 2). Sessile
peritrich ciliates, especially species related to Campanella umbellaria,
Opercularia sp., and the yet undescribed species assigned to Sessilida_X,
rank among the 30 most abundant eukaryotes. Known for their high
filtration rates in activated sludge, sessile peritrich ciliates significantly
contribute to prokaryotic population regulation and water clarification
(Dubber and Gray, 2011; Macek, 1989; Martín-Cereceda et al., 2001).
Although predation on Archaea by these ciliates is undocumented, it is
plausible given their low selectivity in particle filtration.

A key question is why eukaryotes specifically alter archaeal
composition without similarly affecting Bacteria. Rapid bacterial turn-
over may allow these communities to swiftly recover from predation.
Certain taxa, such as acetogenic Bacteria, display high metabolic flexi-
bility, allowing efficient growth across diverse conditions and thus
resilience to protistan predation (Lever, 2012). In contrast,
slower-growing Archaea, including dominant methanogens that rely on
energetically less favourable pathways (Schink, 1997), may be more
vulnerable to predation in energy-limited environments. This growth
disparity may explain why bacterial composition remains stable while
archaeal communities shift under predation.

In addition to predation, competition between prokaryotes and eu-
karyotes shapes community dynamics. As Bacteria initiate AD by con-
verting organic matter into monomers, which are further degraded into
VFAs, hydrogen, and acetate (Mata-Alvarez, 2002), some eukaryotes –
particularly fungi such as Candida and the fungus-like non--
photosynthetic green alga Prototheca – compete with acidogenic and
acetogenic Bacteria for monomers and VFAs (Anderson, 1945; Bernalier
et al., 1992). Furthermore, most predatory protists consume preferen-
tially smaller food particles like prokaryotes (Estermann et al., 2023;
Geisen et al., 2016), allowing fungi an advantage in competing for
shared resources, further reflected in the negative associations observed
between fungi and Bacteria (66.5 %).

Symbiotic and syntrophic interactions also likely occur between
eukaryotes and prokaryotes in ADs, particularly involving archaeal
methanogens. This is evidenced by taxa such as Paracercomonas sp. and

M. Badra et al.



Water Research 278 (2025) 123371

8

Giardia intestinalis among the 30 most abundant eukaryotes. Para-
cercomonas produces acetate and hydrogen (Hirakata et al., 2020),
essential metabolites for methanogens. Similarly, Giardia intestinalis,
which lacks hydrogenosomes, produces hydrogen nonetheless, poten-
tially supporting methanogenic Archaea (Benchimol et al., 2022; Lloyd
et al., 2002). These potential interactions, though poorly understood,
highlight the complex relationships between eukaryotes and Archaea.
The relative importance of each interaction type likely fluctuates
depending on specific environmental conditions and community com-
positions within individual AD systems. Understanding these diverse
ecological interactions is crucial for optimizing AD performance and
stability for which this study is an important stepping stone.

An intriguing finding in our analysis that must be addressed is the
high abundance of an undescribed species from the Dino-Group II Clade
5 (Syndiniales, Alveolata) in multiple ADs (Supplementary Figure S 4,
therein referred to as "Dinoflagellata"). Although widely distributed and
likely ecologically significant, little is known about its biology due to
limited culturable isolates (Stoeck et al., 2006). Syndiniales, encom-
passing five major MALV groups (MALV I–V or called Dino-Groups I–V
in the PR2 database), are frequently found in anoxic habitats and are
likely heterotrophic, though their ability to prey on prokaryotes remains
uncertain (Guillou et al., 2008; Stoeck et al., 2006).

5. Conclusion

In conclusion, the results of our study support that eukaryotes play a
crucial role as regulators of the archaeal community composition and
thus treatment efficacy and efficiency. The herein-reported interking-
dom loop, modulated by SRT, reveals that shifts in the archaeal com-
munity cascade through eukaryotes, highlighting their integral role in
the system.
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