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Abstract: Accidents at ski resorts present a significant safety concern, underscoring the
urgency of addressing these issues. This study aims to enhance safety protocols by provid-
ing resort operators with more effective data analysis methodologies. We present and test
methods for analyzing video footage from downhill ski areas where detailed information
needed to correct errors, due to perspective, lens distortion, etc., is not available. This can
be the case, e.g., for webcam footage and accidental videos (e.g., on YouTube). As much
of this kind of video is available and could be used for statistical analysis, methods are
needed that allow for at least for an approximate consideration of such aspects. Using
video footage obtained from various ski resorts, we developed and tested several methods
for analyzing and correcting the trajectories of skiers captured in the videos. Our analysis
revealed that using five reference lines, along with the most appropriate x and y coordinate
corrections, is an effective approach for achieving precise calibration of the video data.
The corrected trajectory data, adjusted for perspective distortions and scaling inaccuracies,
provide a detailed basis for analyzing skier behavior and identifying high-risk zones prone
to collisions.

Keywords: ski resort safety; trajectory correction; video data analysis; accident prevention

1. Introduction
Accidents at ski resorts are a significant safety concern, particularly as skiing and

snowboarding grow in popularity. Despite the implementation of safety regulations by
organizations like the International Ski Federation, injuries remain a prevalent issue, high-
lighting the need for more effective safety measures [1]. The dynamics of these injuries
are influenced by a range of factors, including skier behaviour, environmental conditions,
and the effectiveness of safety equipment, making it critical to understand these elements
in depth [2].

For example, the design and adjustment of ski boots play a crucial role in preventing
lower extremity injuries. Research has shown that poorly fitted or adjusted ski boots can
lead to severe fractures, underscoring the importance of proper equipment [3]. Additionally,
demographic factors such as age and gender also influence injury patterns, with differ-
ent groups showing varying susceptibility to certain types of injuries [4]. In particular,
older adults and younger, less experienced skiers are at higher risk, which necessitates
tailored safety strategies [5]. Studies have also highlighted that children and inexperienced
skiers often display insufficient knowledge of safety rules, further increasing their risk [6].
Moreover, the risks associated with skiing can be exacerbated by improper training and
the lack of physical preparation, leading to a higher incidence of injuries among certain
populations [7].

To address these issues, this study develops advanced methodologies for analyzing
and correcting the trajectories of skiers captured on video. Leveraging video footage
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from various ski resorts, we apply a combination of scaling factors, reference systems,
and mathematical models to adjust the raw trajectory data [8]. Video analysis has become
an indispensable tool in sports research, offering detailed insights into complex movements
in dynamic environments like skiing [9]. This approach allows for precise calibration of
skier trajectories, ensuring that the corrected data accurately reflects actual skier move-
ments, which is essential for reliable safety assessments [10]. The use of such data-driven
approaches is crucial, especially as more skiers and snowboarders hit the slopes, increasing
the risk of accidents [11]. Here, we deal with a common situation were precise data that al-
low for a correction of perspective effects, lens distortion, change in landscape, etc., are not
available. This can happen, e.g., when footage from webcams or private sources (YouTube,
etc.) is used. Despite the limitations, such videos might provide valuable information and
deserve to be considered in more detail. Here, we explore different approaches that allow
at least for an approximate consideration of these aspects.

Moreover, refined data enable a deeper analysis of the conditions under which col-
lisions and other accidents are most likely to occur. By adjusting scaling coefficients and
exploring different correction models, this study aims to develop a flexible framework
adaptable to various scenarios at ski resorts [12]. This framework not only enhances our
understanding of collision risks, but also informs the development of strategies to mitigate
these risks, ultimately contributing to improved skier safety [13]. The integration of predic-
tive models and biomechanical analyses can further assist in tailoring preventive measures
to the specific needs of different skier populations [11]. Video analysis aids experts in
identifying skier injuries and analyzing their biomechanical characteristics during the
racing process. This approach not only enhances skier safety, but also helps bridge the
gap in understanding the mechanisms of ACL injuries in alpine skiing [14]. Additionally,
understanding the specific environmental factors that influence skier behavior can also
contribute to more effective risk management strategies [10].

Video analysis in sports, including skiing, has gained significant attention. Shih [9]
provided an overview of content-aware video analysis techniques, essential for processing
large volumes of sports footage. Wu et al. [15] extended this discussion by reviewing video
action recognition in sports, highlighting the challenges and advancements in the field.
Papic et al. [16] demonstrated the application of neural networks to enhance the accuracy
and speed of data acquisition in sports, a technique highly relevant for analyzing skiing
videos. In the context of trajectory analysis, Boltes and Seyfried [8] and Zhang et al. [10] used
tools like PeTrack to extract and analyze skier trajectories, forming the basis for the trajectory
correction methods employed in this study. Further advancements in video analysis tools,
such as those discussed by Barris and Button [17], provide crucial improvements in tracking
and analyzing skier movements in real-time.

The use of scaling factors and reference systems in trajectory analysis is well-supported
by existing research. Zhong and Chang [18] developed algorithms for real-time event
detection in sports video, and Xu et al. [19] proposed a framework for semantic annotation
of sports video, which enhances the contextual analysis of skier trajectories. Roh et al. [20]
explored gesture recognition in low-resolution sports video, providing methodologies
that can be adapted for analyzing skier movements. These approaches offer a robust
framework for understanding the dynamic movements of skiers and developing strategies
to improve safety. Moreover, the integration of machine learning with traditional data
analysis methods, as discussed by Duan et al. [21], provides a comprehensive approach to
sports video analysis. This is further complemented by recent advancements in AI-assisted
video tracking systems, which have shown potential for real-time application in dynamic
sports environments such as skiing [22].
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The visualization and interpretation of sports data have also been significant areas
of research. Afzal et al. [23] surveyed visualization and visual analytics approaches for
image and video datasets, emphasizing the importance of translating raw data into action-
able insights. Huang and Deng [24] utilized data mining and image feature retrieval in
tennis match analysis, offering techniques that could be applied to skiing. The effective
visualization of sports data is critical for understanding complex movement patterns and
communicating findings to practitioners in the field. Additionally, the importance of visual
analytics in safety assessment is highlighted by studies such as Silva et al. [25], who applied
video analysis to assess physical activity intensity in sports.

In the following, we first describe the problems faced dealing with video footage
where relevant information on the perspective is missing or only approximately known.
We then introduce a method for perspective correction, describe its principles, and explain
how it is applied to correct the trajectory data. Finally, we discuss our findings and
possible improvements.

2. Perspective Correction
To obtain more accurate insights into skiers’ movements, our current focus is on pro-

cessing and analyzing their trajectory data. Accurately capturing and interpreting this data
is crucial for understanding the dynamics of skiing, such as speed, direction, and turning
patterns. We use video footage provided by KFV (Kuratorium für Verkehrssicherheit, Board
for Safety in Traffic), Vienna (Austria). The data were collected for different slopes in the
downhill skiing resort Grosseck–Speiereck in Austria using a single camera with a fixed
position. We identified all of the trajectories using the software PeTrack (Version 0.10.3) [8]
in this study.

The following configurations and parameters were used (Table 1). While PeTrack
performed reliably under most conditions, it exhibited certain limitations in handling
motion blur during rapid skier movements and detecting objects in frames with low
contrast due to varying lighting conditions. These challenges have been acknowledged and
discussed in Section 3.

Table 1. Configuration and limitations of PeTrack software in skiing videos.

Parameter Value/Observation

Resolution 1920 × 1080 pixels
Frame Rate 25 fps

Motion Blur Minor inaccuracies in rapid
skier movements

Low Contrast Challenges in detecting skiers in
poor lighting

Camera Perspective Variations Reduced accuracy at field of view edges

2.1. Problems in Data Extraction

For the analysis of the collective motion of skiers, we are interested in the individual
trajectories. These can be extracted from the videos similar to the techniques used, e.g., in
pedestrian dynamics. However, whereas data in the latter case are usually obtained in
laboratory conditions where all relevant parameters are known, here, we have to rely on
observational data with several unknowns, e.g., the exact geometry, especially the slope
of the area, and the distance of the camera to the objects. Furthermore, other corrections
might be relevant, e.g., lens corrections. Therefore, we have to use approximations and
estimates when correcting the extracted trajectories.

Figure 1 illustrates the geometry and coordinate systems, with the intention of provid-
ing a clearer understanding of the issues related to mapping the video trajectories onto the
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“real” trajectories. In the video, the coordinates are represented as (x′, y′), given in pixels,
while the corrected coordinates in the real-world plane are denoted as (x, y).

Figure 1. Geometry scheme: The camera is positioned at the front of the slope, allowing for compre-
hensive monitoring of all skiers on the slope.

2.2. Determination of Correction Coefficient

Figures 2 and 3 present screenshots that have been extracted from the video
footage. We use these screenshots to determine approximate scaling factors for the x-
and y-coordinates that account for perspective and distortion effects. Assuming that the
width of the slope is almost constant, a scaling factor for the x-coordinate can be deter-
mined. Based on the apparent size of the same person at different positions on the slope,
a correction factor for the y-coordinates is derived.

Figure 2. Screenshot of the PeTrack working platform. The red lines represent the grid system of the
PeTrack platform, corresponding to the coordinates (x′, y′). The yellow lines at the top and bottom
indicate the width of the slope. The pixels of the top and bottom lines are noted, and d2 and dy

represent the distance in pixels.
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(a) Top of the slope

(b) Bottom of the slope
Figure 3. The pixel size of a person at the top and bottom of the slope is illustrated, with the two
reference lines—the top line and the bottom line—also noted for comparison.

To determine the correction in x-direction we perform the following steps:

1. Selection of reference lines: Reference lines were selected based on two key criteria:
(1) visual uniformity of the slope width in the video frames and (2) their position
in areas where skier movement trajectories were well-defined and less affected by
out-of-frame distortions. The lines were drawn at positions where the slope appeared
to have minimal curvature and variability, ensuring reliable scaling. For example,
in Figure 2, the top and bottom lines were chosen where the slope width appeared
consistent and measurable.

2. Scaling factor determination: The scaling factor for the x-coordinate sx was cal-
culated as the ratio of the pixel widths between the top and bottom reference lines,
minimizing perspective distortions. For the y-coordinate, the vertical scaling coef-
ficient sy was derived by comparing the pixel heights of the same skier at different
vertical positions (Figure 3). These steps ensure the coefficients reflect both horizontal
and vertical variations caused by perspective distortions.

3. Deriving the correction factor: Using this scaling factor, we derive the correction

factor as fx(dy) =
sx ·dy

d2
, where dy is the distance between any point in the slope

and the bottom line, whereas d2 is the distance between the two reference lines (see
Figure 2).
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4. Application to correction: Finally, this correction factor is applied to the x-coordinates
to correct for distortions from the perspective.

As shown by the relevant data in Figure 2, we can determine both the scaling factor
and the correction factor in the x-direction,

sx = dbottom/dtop = 385.22/209.90 = 1.84 (1)

fx(dy) =
sx · dy

d2
=

1.84 · dy

52.48
= 0.035 · dy (2)

Note that we do not calibrate the positions. Instead, all coordinates, including the cor-
rected ones, will be given in pixels. This is sufficient to obtain a qualitative understanding
of the skiers’ trajectories.

The correction in y-direction is determined by the following steps:

1. Selection of reference points: As shown in Figure 3, we selected a person at the top
of the hill and the same person at the bottom of the hill, recording their height pbottom

and ptop (in pixels) at these two different locations.
2. Scaling factor determination: Next, we calculate the ratio of the two pixel values,

which allows us to determine the scaling factor sy = pbottom
ptop

.

3. Deriving the correction factor: The correction factor for an arbitrary point on the slope
depends on its y-coordinate. Using the scaling factor, we derive a correction factor
as fy(dy) =

sy ·dy
d2

, where dy is the distance between the location of the point and a
reference line at the bottom, and d2 the distance between the top and the bottom point.

4. Application to correction: Finally, this correction factor is applied to the y-coordinates
to correct for distortions.

In Table 2, the end point coordinates (x′, y′) for a skier at the top and bottom of the
slope are extracted from the video. The apparent size of this skier is 5.135 pixels at the top
and 32.622 pixels at the lower position. This results in a scaling factor of 6.35, which leads
to the correction factor

fy(dy) =
6.35 · dy

209.97
= 0.03 · dy (3)

Table 2. Coordinates of the top and bottom points in Figure 3.

Points Frame x′ y′

1 213 −258.107 316.847
2 213 −258.107 311.712
3 925 −252.335 134.364
4 925 −252.227 101.742

With this, we have nearly completed the y-axis correction. Next, our focus will shift
to correction. First, we need to select a baseline to transform the raw trajectory obtained
from PeTrack. We have chosen the line connecting points 3 and 4 in Figure 2 as the baseline.
To start, we will explore perspective correction using the trajectory shown in Figure 4.

We applied a processing step to the original coordinates obtained from the software
as follows:

xi = x′i + αx · dy (4)

yi = y′i + αy · dy (5)
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Here, we have introduced the abbreviations αx = 0.035 and αy = 0.03 for the correction
coefficients in the x- and y-directions. dy is the distance of the object to the reference line
(see Figure 2), i.e.,

dy = y′i − ybase (6)

where ybase is the y-coordinate of the baseline.

Figure 4. Original trajectory from video, the red line here shows one skier’s movement path.

In addition, to further clarify the correction factors fx(dy) and fy(dy), the correction
coefficients αx and αy, and the scaling factors sx and sy, we provide the following explanation:

sx =
dbottom

dtop
, sy =

pbottom
ptop

fx(dy) =
sx · dy

d2
= αx · dy, fy(dy) =

sy · dy

d2
= αy · dy

Figure 5 provides a diagram illustrating how the model works.
The above two Formulas (4) and (5) were used for the correction of the (x′, y′)-

coordinates extracted from the video to determine the real coordinates (x, y).
As we can see from Figure 6, the overall shapes of the two trajectories are basically

the same, indicating that after the correction, the change in the trajectory did not lead to a
strong deviations of the path. As expected, the correction is much larger for large y-values,
but the overall shape of the trajectory is not significantly changed.

The derivation of the correction factors used so far was based on some assumptions.
In the following, we will use improved correction methods to see whether this will have a
stronger effect on the extracted trajectories.
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Figure 5. Flowchart of the model.

Figure 6. Original vs. corrected trajectory.

2.3. Refinement of the Correction Coefficient

In the previous section, we assumed that the correction coefficients were constant
because we only chose two reference points for the correction. However, in reality, the width
and slope of the hill are not uniform, necessitating additional reference points to account
for these variations. To address this, we selected more reference lines to determine more
accurate correction coefficients, making the correction more representative of real-world
conditions. In this approach, the correction coefficient is no longer constant, but varies with
position on the slope.
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The reference system was expanded to include five lines to account for slope irregular-
ities and variations in terrain. Five lines were chosen as a balance between computational
efficiency and accuracy. By adding more reference lines, we were able to derive position-
dependent correction coefficients that reflect finer variations in slope geometry.

To derive the equation for the dependence of α on the position on the slope, we need to
collect more data points. After obtaining six additional points, we can perform a regression
analysis. The results of this analysis can be seen in Table 3, which illustrates how the
correction coefficient α varies with the variation in the y-coordinate.

Both linear and nonlinear regression analyses were applied to test their effectiveness
in capturing the variations in correction coefficients. Linear regression provides a sim-
pler model that approximates global trends, while nonlinear regression (e.g., polynomial
regression) can capture finer variations at different vertical positions.

Table 3. Scaling factor α determined at different positions (see Figure 7).

Points Width (in Pixel) y-Coordinate alpha(y)

1, 2 p12 = 181.95482 155.4505 0.0316
6, 7 p67 = 261.4292 130.05 0.0338
8, 9 p89 = 316.269 111.9395 0.0451
3, 5 p35 = 392.048 93.47985 0.0982

10, 11 p1011 = 418.945 82.603 0.109

Figure 7. Screenshot with more points from PeTrack working platform.

The data from Table 3 are plotted in Figure 8. Performing a linear regression analysis
we find

α(y) = −0.0012 · y + 0.1958 (7)

for the dependence of the correction coefficient on the y-coordinate.
Considering Figure 9, a non-linear regression analysis seems to be more appropriate.

We utilized a polynomial regression of the form

α = β0 + β1 · y + β2 · y2 (8)
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and obtain
α = 0.000023 · y2 − 0.006583 · y + 0.502847 . (9)

Figure 8. Linear regression analysis for the dependence of α on the position using the data from
Table 3.

Figure 9. Nonlinear regression analysis using the same points as in Figure 8.

2.4. Corrected Trajectories for Improved Corrections

As we have determined the correction coefficient function, we can now apply the
two regression models to our trajectory data, processing the raw data we obtained. This
processed data allows us to visualize and analyze the adjusted trajectory effectively.

As shown in Figure 10, there is a clear difference between the two correction methods.
The linear correction exhibits a smaller amplitude, noticeably expanding the movement
range in the x direction. In the higher y region, the linear correction closely aligns with
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the original trajectory, whereas the nonlinear correction is shifted further to the left of the
original trajectory. Additionally, in the lower y region, the nonlinear correction (green
dotted line) consistently shows the corrected trajectory lower than the original one (blue
solid line) in the y direction. Conversely, the linear corrected trajectory (red dotted line)
starts lower than the original trajectory and then surpasses it as it progresses.

Figure 10. Comparison of original and corrected skier movement trajectories for the linear (left) and
non-linear (right) correction.

Due to the lack of direct ground truth data, we adopted an internal consistency
approach to evaluate our methods. The deviations were quantified using RMSE and MAE,
with the five-reference-line nonlinear regression method serving as the refined reference
standard. Table 4 summarizes these results, which highlight the superior performance of
this approach.

Table 4. Performance comparison of alternative methods relative to the five-reference-line nonlinear
regression (baseline).

Method RMSE (Pixels) MAE (Pixels) Correlation
Coefficient (R)

Two Reference
Lines 2.84 1.67 0.91

Linear Regression
(5 Lines) 2.12 1.12 0.94

In this section, we applied basic perspective correction to the original trajectory and
then refined the correction coefficient. We implemented both linear and nonlinear cor-
rections based on two regression formulas and compared their effects on the trajectory.
The results suggest that further refinement of the correction methods is necessary to achieve
a more accurate representation of the skier’s movement. It may be essential to explore
alternative models or incorporate additional factors into the correction process to better
align the visualized trajectory with the actual dynamics of the skier. Some alternative
correction schemes have been explored in [26].
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3. Discussion
While PeTrack has proven effective for extracting skier trajectories, its performance is

influenced by certain environmental and video-specific factors: 1. Motion blur: Rapid skier
movements occasionally caused motion blur, leading to minor inaccuracies in trajectory
tracking. 2. Low resolution or contrast: Frames with poor lighting or distant skiers posed
challenges for consistent detection and tracking. 3. Camera perspective variations: Changes
in camera perspective impacted the consistency of trajectory extraction, particularly at
the edges of the field of view. These limitations may slightly impact the precision of the
extracted trajectories but do not undermine the overall trends and conclusions drawn
from the data. Although PeTrack was sufficient for the scope of this study, future work
will involve a comparison with other state-of-the-art trajectory extraction tools, such as
DeepLabCut or OpenPose, to assess their suitability for dynamic skiing environments.

Our study provides a novel methodology for correcting skier trajectories extracted
from video data, offering a foundational tool for safety assessments in ski resorts.
The methodology is specifically designed for cases where much information needed to
properly correct the extracted data for effects like perspective and lens distortion is not avail-
able. This is often the case for webcame footage or private videos, which otherwise provide
interesting insights into the dynamics of downhill skiing. The practical implications of this
work are noteworthy. Corrected trajectory data allow ski resort operators to identify high-
risk zones, optimize trail designs, and implement effective safety protocols. Furthermore,
safety engineers can utilize the refined data to design better collision-prevention systems,
such as predictive monitoring tools. Policymakers, on the other hand, can leverage these
insights to establish evidence-based safety regulations, ensuring safer skiing environments
for diverse populations.

Although this study focuses on video-based trajectory correction methods, we recog-
nize the potential of integrating digital terrain models (DEM) or digital surface models
(DSM) to improve ski slope modeling accuracy. DEM/DSM data can provide detailed infor-
mation about slope gradients, surface irregularities, and terrain features, which are crucial
for enhancing trajectory corrections. For instance, combining DEM/DSM data with video-
derived trajectories could allow for a more realistic representation of skier movements,
especially in areas with complex terrain. However, the integration of DEM/DSM data
presents certain challenges. Co-registering trajectory data with terrain surfaces requires
accurate alignment of video coordinates and DEM/DSM spatial data, which involves
additional computational steps and precise calibration. Furthermore, obtaining high-
resolution DEM/DSM data may be subject to limitations in data availability and cost. De-
spite these challenges, the potential benefits of such integration are substantial and warrant
further exploration.

Real-world ski slopes often exhibit non-uniform geometries, including varying widths
and gradients. These irregularities introduce challenges when applying manually se-
lected reference lines for perspective correction. To overcome these limitations, automated
approaches, such as homography transformations, can be employed. Homography trans-
formations use multiple reference points to map distorted video planes to real-world
planes, enabling dynamic correction of perspective effects. This technique has been widely
used in computer vision and could be integrated into future versions of our methodology.
Additionally, incorporating calibration markers or grids on the ski slope could provide a
systematic means of defining reference points and improving the accuracy and consistency
of the corrections. These grids, combined with homography transformations, would allow
for automatic scaling and adjustment based on the slope’s unique geometry.
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4. Conclusions
In this study, we have explored various methodologies to correct the trajectories

extracted from skiing videos, focusing on improving the accuracy of the data through
different calibration techniques. Our goal was to identify the most effective method for
trajectory correction by comparing the outcomes of these different approaches.

Initially, we used two reference lines as the baseline to calculate the scaling factor
and correction coefficient. This approach is based on the assumption that the slope of the
hill is constant. To incorporate the effect of changing slopes, we expanded the reference
system to include five lines and conducted a regression analysis based on this new setup.
During the regression process, both linear and nonlinear methods were employed, allowing
for a comparison of their outcomes. Ultimately, we concluded that incorporating additional
factors into the model could result in improved outcomes, offering potential for further
refinement beyond the current results.

This study highlights the importance of using corrected trajectory data for accurate
skier behavior analysis. By addressing perspective distortions and slope variations, our
methods provide a reliable framework for identifying high-risk zones and supporting the
design of safety measures. The results obtained from our comparisons provide valuable
insights into the effectiveness of various approaches, which can be applied to future studies
or practical implementations. Although we encountered challenges along the way, the final
outcomes demonstrate that with the right methodology, accurate and reliable trajectory
corrections can be achieved. We are optimistic that these findings can be further refined and
utilized in real-world scenarios, contributing to the advancement of sports video analysis
and data accuracy in motion tracking.

5. Future Work
In the future, we plan to integrate artificial intelligence (AI) into the trajectory correc-

tion process. Specifically, employing neural networks to analyze skier trajectories offers
several advantages over traditional methods, including enhanced accuracy, adaptability to
diverse environmental conditions, and the capability for real-time data processing.

Data Requirements and Preprocessing: The implementation of neural networks would
require large-scale, high-quality datasets consisting of trajectory data, environmental pa-
rameters (e.g., slope gradients and snow conditions), and potential collision events. These
data would need to be preprocessed to ensure consistency, such as normalizing input
variables and addressing missing or noisy data.

Model Training and Validation: The neural network training process would involve
defining appropriate architectures (e.g., convolutional neural networks for spatiotemporal
data) and optimizing the hyperparameters using training datasets. Validation would be
conducted with unseen test data to assess the model performance and generalizability.

Benefits of AI Integration: Compared with traditional methods, AI-powered systems can
dynamically adapt to diverse terrains and skier behaviors, making them particularly valuable
for real-time applications. Additionally, AI can identify complex patterns in large datasets,
leading to more precise risk assessments and improved collision-prevention systems.

These advancements would enable the development of intelligent safety manage-
ment systems at ski resorts, leveraging AI for dynamic risk monitoring and adaptive
safety interventions.

By the way, we plan to collaborate with ski resort operators to obtain ground truth
data using GPS-based systems or motion capture technologies. This will allow us to
validate the corrected trajectories more rigorously and further enhance the robustness of
the proposed methodology.



Appl. Sci. 2025, 15, 695 14 of 15

Author Contributions: Conceptualization, B.Z. and A.S.; software, B.Z.; formal analysis, B.Z.;
investigation, B.Z.; data curation, B.Z.; writing—original draft preparation, B.Z.; writing—review and
editing, A.S.; visualization, B.Z.; supervision, A.S. All authors have read and agreed to the published
version of the manuscript.

Funding: The APC was funded by the third-party.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Acknowledgments: The authors thank Michael Nader for providing the video footage of the skiing
resorts from Austria. Buchuan Zhang thanks the financial support from the China Scholarship
Council (Grant No. 202006150010).

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Hildebrandt, C.; Mildner, E.; Hotter, B.; Kirschner, W.; Hoebenreich, C.; Raschner, C. Accident Prevention on Ski Slopes—Perceptions

of Safety and Knowledge of Existing Rules. Accid. Anal. Prev. 2011, 43, 1421–1426. [CrossRef] [PubMed]
2. Castellani, C.; Singer, G.; Eibisberger, M.; Petnehazy, T.; Wernitznigg, D.; Kaulfersch, C.; Fritsch, G.; Spitzer, P.; Till, H. An

Epidemiologic Analysis of Winter Sport Accidents on Ski Slopes Comparing Two Seasons. J. Sport. Med. Phys. Fit. 2019,
59, 648–654. [CrossRef] [PubMed]

3. Buerkner, A.; Simmen, H.P. Fractures of the Lower Extremity in Skiing—The Influence of Ski Boots and Injury Pattern. Sportverletz.
Sportschaden 2008, 22, 207–212. [CrossRef]

4. Ekeland, A.; Rodven, A.; Heir, S. Injuries Among Children and Adults in Alpine Skiing and Snowboarding. J. Sci. Med. Sport
2019, 22, S3–S6. [CrossRef] [PubMed]

5. Ma, X.; Li, J.Y.; Andd, S.G.; Ao, Y.F.; Yang, Y.P. Comparison and Analysis of Skiing Injuries at Ski Resorts in Chongli, China and
Japan. Chin. J. Traumatol. 2023, 26, 63–67. [CrossRef]

6. Ruedl, G.; Pocecco, E.; Brunner, F.; Greier, K.; Hildebrandt, C.; Raschner, C. Factors Associated with Safety Knowledge on Alpine
Ski Slopes. Sportverletz. Sportschaden 2018, 32, 227–232. [CrossRef]

7. Hörterer, H. Carving Skiing. Orthopade 2005, 34, 426–432. [CrossRef]
8. Boltes, M.; Seyfried, A. Collecting Pedestrian Trajectories. Neurocomputing 2013, 100, 127–133. [CrossRef]
9. Shih, H.C. A Survey of Content-aware Video Analysis for Sports. IEEE Trans. Circuits Syst. Video Technol. 2018, 28, 1212–1231.

[CrossRef]
10. Zhang, B.; Dressler, T.; Maurer, A.; Nader, M.; Schadschneider, A. Simulation of Downhill Skiing Areas. Collect. Dyn. 2024, 9, 1–7.

[CrossRef]
11. Kim, S.; Endres, N.K.; Johnson, R.J.; Ettlinger, C.F.; Shealy, J.E. Snowboarding Injuries Trends Over Time and Comparisons with

Alpine Skiing Injuries. Am. J. Sport. Med. 2012, 40, 770–776. [CrossRef]
12. Yamaguchi, S.; Ito, Y.; Tanabe, T.; Nishimura, K.; Adachi, S.; Sunako, S.; Saito, Y.; Okaze, T.; Niiya, H.; Tsunematsu, K.; et al.

Co-creation with Local Governments and Ski Resorts to Generate Scientific Information That Contributes to Ski Resort Avalanche
Safety Management. Bull. Glaciol. Res. 2024, 42, 9–17. [CrossRef]

13. Muser, M.H.; Schmitt, K.U.; Lanz, C.; Walz, F.H. Experimental Analysis of Biomechanical Loading of Skiing Collisions. Dtsch. Z.
Sportmed. 2009, 60, 315–320.

14. Bere, T.; Flørenes, T.W.; Krosshaug, T.; Koga, H.; Nordsletten, L.; Irving, C.; Muller, E.; Reid, R.C.; Senner, V.; Bahr, R. Mechanisms
of Anterior Cruciate Ligament Injury in World Cup Alpine Skiing: A Systematic Video Analysis of 20 Cases. Am. J. Sport. Med.
2011, 39, 1421–1429. [CrossRef] [PubMed]

15. Wu, F.; Wang, Q.; Bian, J.; Ding, N.; Lu, F.; Cheng, J.; Dou, D.; Xiong, H. A Survey on Video Action Recognition in Sports: Datasets,
Methods and Applications. IEEE Trans. Multimed. 2023, 25, 7943–7966. [CrossRef]

16. Papic, C.; Sanders, R.H.; Naemi, R.; Elipot, M.; Andersen, J. Improving Data Acquisition Speed and Accuracy in Sport Using
Neural Networks. J. Sport. Sci. 2021, 39, 513–522. [CrossRef]

17. Barris, S.; Button, C. A Review of Vision-based Motion Analysis in Sport. Sport. Med. 2008, 38, 1025–1043. [CrossRef] [PubMed]
18. Zhong, D.; Chang, S. Real-time View Recognition and Event Detection for Sports Video. J. Vis. Commun. Image Represent. 2004,

15, 330–347. [CrossRef]

http://doi.org/10.1016/j.aap.2011.02.018
http://www.ncbi.nlm.nih.gov/pubmed/21545875
http://dx.doi.org/10.23736/S0022-4707.18.08665-6
http://www.ncbi.nlm.nih.gov/pubmed/29877678
http://dx.doi.org/10.1055/s-2008-1027947
http://dx.doi.org/10.1016/j.jsams.2018.07.011
http://www.ncbi.nlm.nih.gov/pubmed/30100170
http://dx.doi.org/10.1016/j.cjtee.2022.08.002
http://dx.doi.org/10.1055/s-0043-115189
http://dx.doi.org/10.1007/s00132-005-0793-x
http://dx.doi.org/10.1016/j.neucom.2012.01.036
http://dx.doi.org/10.1109/TCSVT.2017.2655624
http://dx.doi.org/10.17815/CD.2024.166
http://dx.doi.org/10.1177/0363546511433279
http://dx.doi.org/10.5331/bgr.23R02
http://dx.doi.org/10.1177/0363546511405147
http://www.ncbi.nlm.nih.gov/pubmed/21515807
http://dx.doi.org/10.1109/TMM.2022.3232034
http://dx.doi.org/10.1080/02640414.2020.1832735
http://dx.doi.org/10.2165/00007256-200838120-00006
http://www.ncbi.nlm.nih.gov/pubmed/19026019
http://dx.doi.org/10.1016/j.jvcir.2004.04.009


Appl. Sci. 2025, 15, 695 15 of 15

19. Xu, C.; Wang, J.; Lu, H.; Zhang, Y. A Novel Framework for Semantic Annotation and Personalized Retrieval of Sports Video.
IEEE Trans. Multimed. 2008, 10, 421–436. [CrossRef]

20. Roh, M.c.; Christmas, B.; Kittler, J.; Lee, S.w. Gesture Spotting for Low-resolution Sports Video Annotation. Pattern Recognit. 2008,
41, 1124–1137. [CrossRef]

21. Duan, L.; Xu, M.; Tian, Q.; Xu, C.; Jin, J. A Unified Framework for Semantic Shot Classification in Sports Video. IEEE Trans.
Multimed. 2005, 7, 1066–1083. [CrossRef]

22. Li, H.; Yang, M.; Yang, C.; Kang, J.; Suo, X.; Meng, W.; Li, Z.; Mao, L.; Sheng, B.; Qi, J. Soccer Match Broadcast Video Analysis
Method Based on Detection and Tracking. Comput. Animat. Virtual Worlds 2024, 35, e2259. [CrossRef]

23. Afzal, S.; Ghani, S.; Hittawe, M.M.; Rashid, S.F.; Knio, O.M.; Hadwiger, M.; Hoteit, I. Visualization and Visual Analytics
Approaches for Image and Video Datasets: A Survey. ACM Trans. Interact. Intell. Syst. 2023, 13, 1–41. [CrossRef]

24. Huang, H.; Deng, R. Analysis Technology of Tennis Sports Match Based on Data Mining and Image Feature Retrieval. Complexity
2020, 2020, 877161. [CrossRef]

25. Silva, P.; Santiago, C.; Reis, L.P.; Sousa, A.; Mota, J.; Welk, G. Assessing Physical Activity Intensity by Video Analysis. Physiol.
Meas. 2015, 36, 1037–1046. [CrossRef]

26. Zhang, B. Downhill Skiing From a Traffic Perspective Ph.D. Thesis, University of Cologne, Cologne, Germany, 2025; in preparation.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TMM.2008.917346
http://dx.doi.org/10.1016/j.patcog.2007.07.013
http://dx.doi.org/10.1109/TMM.2005.858395
http://dx.doi.org/10.1002/cav.2259
http://dx.doi.org/10.1145/3576935
http://dx.doi.org/10.1155/2020/8877161
http://dx.doi.org/10.1088/0967-3334/36/5/1037

	Introduction
	Perspective Correction
	Problems in Data Extraction
	Determination of Correction Coefficient 
	Refinement of the Correction Coefficient
	Corrected Trajectories for Improved Corrections

	Discussion
	Conclusions
	Future Work
	References

