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Zusammenfassung 

Ein entscheidender Schritt in der frühen Embryonalentwicklung ist die Festlegung verschiedener 

Zellschicksale entlang der dorsoventralen (DV) Achse. Das Zellschicksal wird durch die räumliche und 

zeitliche Expression bestimmter Gene festgelegt, die durch genregulatorische Netzwerke (GRN) 

reguliert werden. Diese Arbeit befasst sich mit der Evolution des DV-GRN von Insekten. In der Gruppe 

der stark spezialisierten Drosophiliden ist die dorsoventrale Musterbildung durch den Toll Signalweg 

reguliert, welcher den BMP Signalweg kontrolliert. Während das dorsoventrale Netzwerk in Drosophila 

melanogaster gut untersucht ist, ist nur wenig über das genregulatorische Netzwerk bekannt, welches 

die Bildung der dorsoventralen Achse des Roten Reismehlkäfers Tribolium castaneum reguliert. Das 

Ziel dieser Arbeit war es neue potentielle Dorsoventral-Gene in Tribolium zu identifizieren. Um dieses 

Ziel zu erreichen, wurde eine vergleichende Transkriptom-Analyse nach der Herunterregulierung 

verschiedener Bestandteile des Toll und BMP Signalwegs durch RNAi durchgeführt. Ich habe die 

Expressionsmuster ausgewählter Gruppen der 796 differentiell exprimierten Genen untersucht. Des 

Weiteren, wurden funktionelle Untersuchungen für Gene durchgeführt, die ein typisches 

dorsoventrales Expressionsmuster aufweisen. Die Ergebnisse weisen darauf hin, dass einige der 

konservierten Dorsoventral-Gene (z.B. Tartan) einen stärkeren Einfluss auf die dorsoventrale 

Musterbildung in Tribolium haben als ihre Drosophila Homologe. Zusätzlich unterscheiden sich die 

Expressionsdomänen von einigen Notch Signalweg Bestandteilen erheblich von denen ihrer Homologe 

in Drosophila. Interessanterweise wird Zfh-1 anders als in Drosophila, für die Aufrechterhaltung der Tc-

twist Expression während der Keimbandstreckung benötigt und ist daher essenziell ist für die 

Entwicklung des Mesoderms in Tribolium.  

Neben der Bildung der Köperachsen, tragen auch morphogenetische Bewegungen von Epithelien 

erheblich zur Entwicklung komplexer Embryonalstrukturen bei. In Drosophila ist der Fog Signalweg an 

der Kontrolle morphogenetischer Bewegungen beteiligt. Fog induziert apikale Zellkonstriktionen, 

welche die Invagination von Epithelien ermöglichen. Die Inaktivierung des Fog Signalwegs führt zu 

Defekten in der Internalisierung des Mesoderms und des hinteren Mitteldarms. Bisher wurde davon 

ausgegangen, dass der Fog Signalweg ausschließlich während Gastrulation einiger stark abgeleiteter 

Fliegen eine Rolle spielt. Im zweiten Teil dieser Arbeit wird die Funktion des Fog Signalwegs im 

Tribolium Embryo untersucht, welcher eine im Vergleich zu Drosophila ursprünglichere Form der 

Embryonalentwicklung aufweist. Interessanterweise führt die Herunterregulierung wichtiger Fog 

Signalwegbestandteile in Tribolium zu einer verzögerten Mesoderminternalisierung und einem 

vollständigen Verlust der Internalisierung des Hinterdarms und posterioren Endoderms. Dies weist auf 

eine Konservierung des Fog Signalwegs für die Gewebeinternalisierung während der Gastrulation 

außerhalb von höheren Dipteren hin. Zusätzlich werden in dieser Arbeit bisher unbekannte Funktionen 
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des Fog Signalwegs bei der Bildung der posterioren Amnionfalte, bei der Positionierung der 

primordialen Keimzellen und in der Ausweitung der extraembryonalen Serosa erläutert. Auch deuten 

die Ergebnisse auf eine weitere konservierte, allgemeinere Rolle von Fog für die Koordinierung von 

Zellformveränderungen im Blastoderm hin. 
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Abstract 

A crucial step in early embryonic development is the determination of different cell fates along the 

dorsoventral (DV) axis. These cell fates are defined by the spatially and temporally restricted 

expression of gene sets, controlled by complex gene regulatory networks (GRN). Here, we address the 

evolution of the DV-GRN within insects. In the highly derived group of the drosophilids, dorsoventral 

patterning is dominated by Toll-signaling, which directly controls BMP-signaling. Whereas the DV-GRN 

of Drosophila melanogaster is well understood, little is known about the GRN that acts during 

establishment of the DV axis in more basally branching insects like the red flour beetle Tribolium 

castaneum. This work aimed to identify new potential DV patterning genes in Tribolium. To achieve 

this goal, a comparative transcriptome analysis after knockdown of Toll signaling and BMP signaling 

components by RNAi was performed. I analyzed the expression patterns of selected subgroups of the 

796 differentially expressed genes. Furthermore, functional studies for genes exhibiting typical 

dorsoventral expression patterns were performed. The results suggest that some of the conserved DV-

GRN components (e.g. Tartan) have a stronger and earlier influence on DV patterning in Tribolium. In 

addition, the expression of Notch signaling components clearly differs from the expression pattern of 

their Drosophila homologs. But the most striking finding was the identification of Zfh-1, which is 

required for maintaining Tc-twist expression during germ band extension and is thus essential for 

mesoderm development in Tribolium. 

Besides the establishment of the body axis, morphogenetic movements of epithelial sheets 

significantly contribute to the development of complex embryonic structures. The Fog signaling 

pathway is one of the best studied processes in initiating early morphogenetic movements by cell 

shape changes.  Modifications of the acto-myosin cytoskeleton by Fog signaling result in apical cell 

constrictions which enable bending of epithelial sheets. In Drosophila, loss of Fog signaling causes 

defects in mesoderm and posterior midgut internalization. So far, it was assumed that Fog signaling is 

exclusively involved in gastrulation in some highly derived flies. In the second part of this work the role 

of Fog signaling was analyzed in Tribolium, which possesses a more ancestral mode of embryogenesis. 

Interestingly, knockdown of important Fog signaling components in Tribolium cause similar defects in 

ventral furrow formation and internalization of the posterior endoderm. This indicates the 

conservation of Fog signaling in tissue internalization during gastrulation outside of higher dipterans.  

In addition, this work presents so far unknown functions of the Fog signaling pathway in formation of 

the posterior amniotic fold, positioning of the primordial germ cells and spreading of the serosa. 

Furthermore, the results suggest another conserved more general role of Fog in coordinating cell shape 

changes in the blastoderm. 
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CHAPTER I   

Reconstructing the dorsoventral gene regulatory network of 
Tribolium castaneum 

1 Introduction 

1.1 Gene regulatory networks (GRNs) 

Pathways are a simple way to visualize gene interactions. In a pathway each component acts upon a 

substrate or another gene product. Nevertheless, a pathway is often limited in describing the various 

complex gene interactions. In fact, genes or gene products are not only affecting single targets, but are 

also influenced by numerous gene products, deriving from multiple pathways. This complex system of 

interaction between different pathways can be best described as networks (Stern, 2010). Gene 

regulatory networks (GRNs) consist of various regulatory inputs like binding of gene products to 

enhancers, silencers and insulators (cis-regulatory elements) (Levine and Davidson, 2005). The 

diversity of cis-regulatory elements establishes compartmentation by enabling the independent 

control of gene transcription in different body parts (Carroll, 2005).  

Transcription factors (TFs) are often the most essential parts of GRNs and act as key regulators. 

Different transcription factors can concurrently bind to one enhancer. Depending on the set of bound 

TFs at a specific time, the enhancer activates the expression of a specific gene set, thus resulting in 

functional output (Levine and Davidson, 2005). Furthermore, gene expression can be influenced by 

genetic circuits. By feed-forward loops components of a network can modify their own expression by 

either enhancing or repressing it. These circuits act directly by negative or positive self-regulation or 

indirectly via regulation of target genes (Peter and Davidson, 2011).  

Embryogenesis is controlled by large gene-regulatory networks, which generate spatially and 

temporally refined patterns of gene expression, enabling progressive restriction of cell fates from 

pluripotent fields of cells to complex organs and tissues. (Sandmann et al., 2007). Evolutionary 

alterations of the functional organization of the gene regulatory networks that control development 

of the body plan cause changes in animal anatomy (Peter and Davidson, 2011). In fact, instead of 

changes in protein structure, evolutionary changes in morphology occur primarily through changes in 

regulatory sequences (Carroll, 2005). The dorsoventral gene regulatory network (DV-GRN) of 

Drosophila was already intensively studied (Bonn and Furlong, 2008; Stathopoulos and Levine, 2002, 

2005). However, elucidating the genes and their interlinkage in the DV-GRN of more ancestral insects 

like Tribolium or Oncopeltus, might provide insights in the integration of Toll signaling in the regulation 

of early developmental processes like cell-fate determination.  
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1.2 Tribolium as an emerging model organism  

Due to their diversity and the easy husbandry conditions, insects are suitable for evolutionary 

comparative analysis. Drosophila is a member of the evolutionary relatively young order of Diptera, 

and many aspects of its embryogenesis are highly derived. Tribolium castaneum (Tc) is a more basally 

branching member of the insect lineage, with ~300 million years of independent evolution from 

Drosophila (Rousso et al., 2010). Thus, it shares many features with other insects, particularly a more 

ancestral mode of embryonic development, compared to Drosophila. In long germ-type embryos, like 

those of Drosophila melanogaster, the segments are formed synchronously in the blastoderm. In short 

germ-type insects, like Tribolium castaneum, only head and thorax segments are generated in the 

blastoderm stage, while the abdominal segments derive from a posterior segment addition zone (Fig. 

1.1) after gastrulation. In addition, Tribolium embryos develop two distinct extraembryonic 

membranes: amnion and serosa. The fruit fly possesses only a reduced amnioserosa (Tautz and 

Sommer, 1995). However, the localization of the three germ layers (mesoderm, neurogenic ectoderm 

and dorsal ectoderm) along the DV axis does not differ between both insects.  

 

Figure 1.1: Fate determination and segmentation in D. melanogaster and T. castaneum  
Drosophila as well as Tribolium mesoderm, neurogenic ectoderm and dorsal ectoderm are specified in the blastoderm. In 
long germ-type embryos like Drosophila, all segments are formed synchronously in the blastoderm. In short germ-type 
embryos, like Tribolium castaneum the segments are successively added at the posterior end after gastrulation. Only the 
most anterior segments are formed in the blastoderm. Drosophila possesses a single extraembryonic tissue, the amnioserosa. 
Tribolium has two extraembryonic membranes: amnion and serosa.  
modified from (Sommer, 2009) 

  



12 
 

Many tools for functional analysis are available in Tribolium castaneum. Diverse methods for 

generation of transgenic lines (Berghammer et al., 2009; Gilles and Averof, 2014; Gilles et al., 2015; 

Lorenzen et al., 2003; Pavlopoulos et al., 2004) and for transient gene expression (Benton et al., 2013) 

could be established, enabling advanced techniques like live-imaging. In addition, Tribolium shows a 

strong RNAi response (parental as well as embryonic) (Bucher et al., 2002; Posnien et al., 2009), 

providing many possibilities for functional studies. Furthermore, the availability of a well annotated 

genome (Tcas 5.2/OGS 3) as well as various transcriptomic data (different embryonic stages) and a 

database, containing functional information on genes based on a genome-wide RNAi screen 

(iBeetleBase, Schmitt-Engel et al., 2015), qualify Tribolium as a perfect candidate for comparative 

analysis. Although the DV-GRN of Tribolium shows some regulatory differences compared to the 

Drosophila DV-GRN, the flour beetle has still an evolutionary intermediate position compared to other 

insects. For example, the jewel wasp Nasonia vitripennis (Hymenoptera), or the milk weed bug 

Oncopeltus (Hemiptera) show both a stronger reliance on BMP signaling (Lynch and Roth, 2011; Ozuak 

et al., 2014; Sachs et al., 2015). The evolution of the insect DV-GRN will be described in detail in the 

next section.  
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1.3 The evolution of dorsoventral patterning 

The formation of the two body axes, the anterior-posterior (AP) axis and the dorsoventral (DV) axis is 

a crucial early step in establishing the body of any animal (Wilson et al., 2014). Though, early 

embryogenesis and corresponding formation of the axes varies in different species. BMP (bone 

morphogenic protein) signaling and its role in dorsoventral patterning is highly conserved (De Robertis 

and Kuroda, 2004). However, in the model organism Drosophila melanogaster the Toll pathway plays 

the major role in dorsoventral patterning, whereas BMP acts downstream and only on the dorsal side 

of the embryo (Lynch and Roth, 2011) (Fig. 1.2). Although, Toll signaling has a conserved function in 

innate immunity of almost all bilaterians (Caamano and Hunter, 2002; Lemaitre et al., 1996; Rosetto 

et al., 1995), its role in axis formation appears to be an evolutionary novelty in insects (Leulier & 

Lemaitre 2008). This leads to the conclusion that Toll was integrated into an existing patterning 

pathway during insect evolution. Regarding its evolutionary changing role in DV-patterning, the Toll- 

NFκB/Dorsal pathway is an interesting subject that promises insights into evolution of gene regulation 

and into functional constraints, underlying gene regulatory network (GRN) evolution. Comparative 

studies using more basally branching insects might help to understand the mechanisms of such 

modifications. The emerging model organism Tribolium castaneum is an insect with more ancestral 

features of embryogenesis and is thus, a perfect candidate for comparative analysis. The following 

section concentrates on Drosophila in order to highlight the best understood DV patterning system, 

which is the foundation for comparative studies in this thesis. 

 

Figure 1.2: Evolution of dorsoventral patterning 
The BMP pathway (blue) plays a conserved role in the establishment of dorsoventral polarity in vertebrates as well as in 
arthropods. However, during insect evolution the Toll pathway (red) which has a conserved role in innate immunity, became 
dominant in establishing the DV axis. 
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1.3.1 Formation of the dorsoventral axis in Drosophila melanogaster 

One of the best studied developmental processes is the dorsoventral axis formation of Drosophila 

melanogaster. Multiple former studies uncovered the fine-tuned, spatio-temporal gene expression 

which leads to the determination of different cell fates.  

The DV-axis is established by migration of the oocyte nucleus from a central-posterior towards an 

anterior-cortical location (Peri and Roth, 2000; Roth, 2003; Roth and Lynch, 2009). The maternal mRNA 

of the TGFα-like ligand Gurken is located around the nucleus and activates upon translation, the EGF 

receptor (Roth, 2004) in the overlying follicle cells (Schupbach and Roth, 1994). EGFR signaling restricts 

the expression of the sulfotransferase Pipe to the ventral side where it modifies several components 

of the vitelline membrane (Nilson and Schupbach, 1998; Roth, 2003). This dorsoventral polarity of the 

egg chamber is transmitted to the early embryo via an extracellular proteolytic cascade in the 

perivitelline space (Fig. 1.3). 

The final step of the protease cascade is the cleavage of Spätzle. After cleavage, Spätzle binds and 

activates the Toll receptor. Probably, the cleaved Spätzle protein is present in a concentration gradient. 

Cleavage of the Toll-ligand Spätzle generates a gradient of Toll receptor activation on the ventral side 

of the embryo (Morisato, 2001; Moussian and Roth, 2005). The activation of the Toll receptor leads to 

the phosphorylation and degradation of Cactus. Usually Cactus binds the NF-κB transcription factor 

Dorsal, which is consequently retained in the cytoplasm. Upon degradation of Cactus, Dorsal can 

translocate into the nuclei which leads to the establishment of a nuclear Dorsal gradient (Fig. 1.3) with 

peak levels at the ventral midline (Moussian and Roth, 2005; Roth et al., 1991). The nuclear Dorsal 

gradient in Drosophila is stable and leads to the transcriptional regulation of 60-70 different target 

genes (Type I, Type II, Type III) which are activated or repressed by Dorsal in a concentration-

dependent manner (Reeves and Stathopoulos, 2009) (Fig. 1.3). Genes like twist and snail are 

expressed, due to high nuclear Dorsal levels (Type I), on the ventral-most side of the embryo and 

specify the presumptive mesoderm (Jiang et al., 1991; Leptin, 1991). In more lateral regions of the egg 

circumference, intermediate nuclear Dorsal concentrations activate the transcription of genes like 

ventral nervous defective (vnd) (Type II), which trigger formation of the neuroectoderm.  
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Figure 1.3: Establishment of the dorsoventral axis in Drosophila melanogaster 
Activation of EGF signaling (blue) in the dorsal ovary follicle cells by Gurken (green) restricts Pipe (red) to the ventral side. 
Pipe activates a protease cascade in the perivitelline space. The cleaved and thus active ligand Spätzle binds to Toll receptors 
which finally results in the establishment of a nuclear Dorsal gradient with peak levels at the ventral midline (brown). 
Dependent on the nuclear Dorsal concentration, different target genes are expressed along the dorsoventral axis.  

Two subgroups of Type III genes are regulated by low nuclear dorsal concentrations. Type III+ genes 

like short gastrulation (sog) are activated, while Type III- genes like the BMP homolog decapentaplegic 

are repressed (Hong et al., 2008; Reeves and Stathopoulos, 2009). dpp is expressed on the dorsal most 

side, where no nuclear Dorsal is present. Sog acts as an inhibitory modulator for BMP signaling and 

antagonizes the BMP2/4-like ligand Decapentaplegic (Dpp) in lateral regions (Reeves et al., 2012). Dpp 

gets bound and transported to the dorsal side, where it is cleaved by the metallo-protease Tolloid. 

Released Dpp can than bind to its receptors (Nunes da Fonseca et al., 2008). This mechanism restricts 

the activation of BMP signaling to the dorsal side, which is necessary for the specification of the dorsal 

non-neurogenic ectoderm and the amnioserosa (Nunes da Fonseca et al., 2008). The differences of the 

DV-GRN of Tribolium will be discussed in the following section. 

 

1.3.2 The dorsoventral gene regulatory network of Tribolium castaneum 

DV patterning in Tribolium shows many similarities to DV-patterning in Drosophila melanogaster. 

However, the mRNA of the Tribolium TGFα homolog is not localized in the ovaries. Thus, the process 

of DV polarity transmission from the ovary to the embryo remains unclear (Lynch and Roth, 2011). 

Former studies showed that Toll is also a key component in DV patterning of Tribolium castaneum. Like 

in Drosophila, the activation of Tc-Toll by binding of Tc-Spätzle leads to nuclear uptake of Tc-Dorsal. 

But in contrast to Drosophila, the resulting Tc-Dorsal gradient is spatio-temporally dynamic (Chen et 

al., 2000; Nunes da Fonseca et al., 2008). The Tc-Dorsal gradient refines from a broad domain in the 

early blastoderm to a narrow stripe along the ventral midline (Fig. 1.4). Finally, it disappears from the 

germ rudiment before the onset of gastrulation (Chen et al., 2000). In addition, Toll and cactus are 

zygotically expressed genes in Tribolium, whereas they are maternally expressed in the fruit fly (Lynch 

and Roth, 2011). Thus, the dynamism of the Dorsal gradient is caused by several negative and positive 

feedback mechanisms that act on zygotic level (Nunes da Fonseca et al., 2008). Previous studies (Lynch 
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and Roth, 2011; Nunes da Fonseca et al., 2008) showed that Tc-Cactus is activated by Tc-Dorsal itself 

and in addition by the Tc-Dorsal target Tc-Twist. This Dorsal-/Twist-dependent activation of Tc-Cactus 

simultaneously leads to an enhanced repression of Tc-Dorsal. In addition, Tc-Dorsal regulates its own 

activator Tc-Toll in a positive feedback loop (Fig. 1.4). Furthermore, ChIP sequencing experiments 

revealed a potential self-regulative input of Tc-Dorsal and a positive regulation of Tc-Dorsal on the Toll 

ligand Tc-Spätzle (Stappert, PhD Thesis 2014). 

Another difference is that the BMP pathway plays a more important role in DV-patterning of Tribolium 

castaneum, and that the Toll pathway influences less target genes compared to the derived patterning 

system of Drosophila. It was shown, that loss of sog in Drosophila results in weaker defects than the 

Tc-sog kd, which leads to a strong dorsalization of the embryo, indicating that Tc-Dorsal is not a direct 

repressor of Tc-dpp (Nunes da Fonseca et al., 2010). Moreover, dpp knockout in Drosophila does not 

affect the mesoderm, while knockdown of dpp in Tribolium results in a slight expansion of the 

mesoderm (Nunes da Fonseca et al., 2008). These results strengthen the presumption that Toll's role 

in DV patterning is derived, and that the DV-GRN changed since the last common ancestor of flies and 

beetles. The approach to elucidate these changes is described in the following sections.  

 

Figure 1.4: Regulation of dorsoventral patterning genes 
The Drosophila nuclear Dorsal-gradient is stable and regulates the transcription of ~ 50 target genes in a concentration-
dependent manner. The same signaling cascade initiates the expression of Tc-twist and other DV patterning genes in 
Tribolium castaneum. However, in contrast to Drosophila the nuclear Tc-Dorsal gradient is dynamic due to feedback 
mechanisms. Tc-cactus is regulated by Dorsal and by the Dorsal target gene twist. This activation establishes a negative 
feedback loop, as Cactus has a negative influence on the nuclear uptake of Dorsal. In addition, Tc-Dorsal regulates its own 
activator Tc-Toll in a positive feedback loop.  
modified from (Chen et al., 2000; Nunes da Fonseca et al., 2008; Stappert, PhD Thesis 2014)  
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1.4 Identification of new DV-patterning genes by differential expression 

analysis 

Comparative studies are often performed by candidate gene approaches, requiring sequence 

identification of already known pathway components in the organism of interest by DNA or protein 

BLAST. Many important evolutionary studies are based on this approach. However, analyzing 

evolutionary changes in gene regulatory networks by a candidate gene approach depends on the 

presence of the respective pathway components, rendering discovery of new genes involved in a GRN 

impossible. Modern techniques like whole genome sequencing, identification of binding regions by 

ChIP-sequencing or generation of transcriptomes by RNA-sequencing (RNA-seq), facilitate new 

opportunities in the wide field of evolution and development. To get more insights into the DV-GRN of 

Tribolium castaneum and the differences in composition and wiring of the genes to the DV-GRN of 

Drosophila melanogaster, I performed a genome wide comparative differential expression analysis 

after RNAi. The establishment of this modern technique for comparative studies in Tribolium was 

performed together with Dominik Stappert (Frey, Master Thesis 2013; Stappert, PhD Thesis 2014). 

 

1.4.1 Generation of knockdown embryos lacking key DV patterning genes  

To identify new potential target genes, transcriptomes of Tc-Toll1, Tc-twist, Tc-sog and Tc-dpp 

knockdown (kd) embryos were generated by parental RNA interference (pRNAi). Wildtype embryos 

derived from uninjected mothers served as control. Considering possible false positive results by genes 

activated via the injection procedure itself (e.g. inflammatory genes, RNAi machinery genes), an 

additional control was used. Therefore, female pupae were injected with dsRNA for dsRed which is 

derived from Discosoma spec. and is not present in the Tribolium genome. Thus, dsRed knockdown 

embryos should not show differential gene expression.  

The RNA for transcriptome analyses was isolated from embryos derived from dsRNA injected mothers 

and staged to 7.5h to 11.5h AEL. At that stage, the embryo proceeds from the early differentiated 

blastoderm stage to the horseshoe stage. The carefully selected time window captures a critical time 

in DV patterning. During the differentiated blastoderm numerous direct target genes of the key 

regulators Dorsal and Twist are expressed. These genes are especially important for tissue specification 

and early tissue differentiation during the gastrulation of the embryo. The embryos were stained with 

DAPI and surveyed for phenotypic penetrance (Fig. 1.5). 

                                                           
1 Knockdown of Tc-dorsal results in a higher death rate of the injected females and to a reduced number of eggs. Tc-Toll 
RNAi is upstream of Tc-dorsal and thus phenocopies Tc-dorsal with regard to its dorsoventral phenotype. 
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dsRed kd embryos do not show any morphological defects and look similar to embryos from untreated 

wildtype control females (Fig. 1.5 A-A`). Although knockdown of Tc-twist results in complete loss of the 

mesoderm (Stappert et al., 2016), the visible defects in DAPI-stained Tc-twist kd embryos are rather 

mild. Older embryos show characteristic finger-like structures at the posterior end (Fig. 1.5 B-B’’). 

These structures are the malphigian tubules which are usually wrapping the connection of the hindgut 

and the midgut. Compared to wildtype (WT) blastoderm stage embryos (Fig. 1.5 A`), which show an 

oblique borderline between the big anterior serosa cells and the more compact posterior germ band 

cells, the border becomes straight and is shifted towards the posterior pole after knockdown of Tc-Toll 

(Fig. 1.5 C’). Elongating germ bands look like a thin tube which is interrupted at different places (Fig. 

1.5 C’’). Due to their respective defects, Tc-sog kd and Tc-dpp kd embryos show antagonistic 

phenotypes. Whereas the knockdown of Tc-sog results in loss of the neurogenic ectoderm and the 

head structures (Fig. 1.5 D), Tc-dpp kd embryos lack the dorsal ectoderm (Fig. 1.5 E). Similar to Tc-Toll 

kd, Tc-sog-RNAi and Tc-dpp-RNAi embryos reveal already strong DV-defects in the differentiated 

blastoderm stage. Tc-sog kd embryos have a straight serosa-germ band border. Furthermore, the 

border shifts towards the posterior pole (Fig. 1.5 D’). Also, the serosa-embryo border of Tc-dpp-

deficient embryos loses its obliqueness, but shifts to a more anterior position (Fig. 1.5 E’), compared 

to wildtype embryos. Furthermore, extending germ bands show the typically reduced head upon loss 

of Tc-sog and tube-shaped remaining segments (Fig. 1.5 D’’). The tube-like shape of the germ band 

was also seen for Tc-dpp-deficient embryos. In addition, some tissue at the posterior end does not get 

invaginated and is thus not covered by the serosa (Fig. 1.5 E’’).   
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Figure 1.5: Fate maps of dorsoventral phenotypes 
(A-E) Fate maps of Tribolium embryos at the beginning of gastrulation2. The different colors indicate different cell fates as 
displayed in the legend. (A’-E’) DAPI stained embryos corresponding to A-E. The dashed lines represent the embryo-serosa 
border. (A’’-E’’) DAPI stained elongated germ bands of the respective knockdowns shown in (A-E). Anterior to the left; kd = 
knockdown. (A) Fate map of a wildtype embryo or of embryos from mothers injected with dsRNA of dsRed.  The embryo-
serosa border at beginning of gastrulation is oblique (A’). (A’’) Fully extended germ band stage wildtype embryo. (B) Fate map 
of Tc-twist knockdown embryos in which the mesoderm is lost. In Tc-twist kd embryos, the embryo-serosa border is not 
affected (B’), while germ bands show a misplacement of the malpighian tubules (B’’). (C) Fate map of dorsalized Tc-Toll 
knockdown embryos. The dorsal serosa is expanded and its border becomes straight (C’). The mesoderm is lost and the 
neurogenic ectoderm is also affected. (C’’) Germ band embryos after Tc-Toll kd have a tube-like morphology. (D) Fate map of 
dorsalized Tc-sog knockdown embryos. The mesoderm is present, but the neurogenic ectoderm is lost and the dorsal serosa 
is expanded. Similar to Toll kd embryos, the serosa is shifted towards the posterior pole (D’) and the elongated germ band 
forms a tube with reduced head structures (D’’). (E) Fate map of ventralized Tc-dpp knockdown embryos. The dorsal serosa 
is lost and the neurogenic ectoderm is expanded. (E’) The embryo-serosa border is shifted towards the anterior pole and 
germ band embryos show a typical tissue ball at the posterior end, which is not surrounded by serosa (E’’).  
modified from (Fonseca et al., 2009)  

                                                           
2 In former schemes the amnion comprised the whole dorsal-most side reaching to the primitive pit. Due to unpublished 
results by Matthew A. Benton, the borders of the amnion were modified in A. 
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1.4.2 Validation of the knockdown efficiency  

Before the isolated RNA was sequenced, the knockdown efficiency of the samples was analyzed by 

qRT-PCR (Stappert et al., 2016). Five replicates of wildtype, Tc-Toll kd and Tc-twist kd and 3 replicates 

of each dsRed kd, Tc-sog kd and Tc-dpp kd were chosen due to the best results for phenotypic 

penetrance; analysis of the knockdown efficiency by qRT-PCR and quality of the isolated RNA and send 

to the Cologne Center for Genomics (CCG)3. After an additional quality control, the samples were 

sequenced by Ilumina sequencing (HiSeq 2000, paired end mode, read size of 100 bp) (Stappert, PhD 

Thesis 2014).  

 

1.4.3 Identification of differentially expressed genes 

The bioinformatic analysis of the RNA-sequencing data was performed by Dominik Stappert. In this 

study, only genes which showed up as differentially expressed upon analysis with two different 

programs, DESeq2 and edgeR were considered. Details about the used pipeline and algorithms are 

described in the PhD Thesis of Dominik Stappert, 2014 and in our corresponding paper (Stappert et al., 

2016). A comparison of the transcriptomes of uninjected wildtype embryos compared to embryos 

derived from mothers injected with dsRed dsRNA revealed that the injection procedure itself has no 

influence on gene regulation in the embryos. For future generation of Tribolium transcriptomes it is 

thus sufficient to use control embryos from uninjected mothers.  

To identify differentially expressed genes, the sequenced transcriptomes of the respective knockdown 

embryos were first compared to the transcriptomes of control embryos (WT and dsRed-kd). The 

identified genes should be regulated either by Tc-Toll and/or Tc-twist or by BMP signaling. The 

comprehensive transcriptome analysis revealed in total 796 genes (Fig. 1.6 A, table), which were 

differentially expressed in the knockdown embryos compared to the control with a false discovery rate 

(FDR) of 1%. The data set identified 310 differentially expressed genes in Tc-Toll kd embryos compared 

to the control, 347 upon Tc-twist kd compared to the control. 377 genes showed up as potentially 

regulated by Dpp. However, only 18 differentially expressed genes could be identified by comparing 

the transcriptomes of Tc-sog knockdown embryos and the control (detailed list in the supplement of 

(Stappert et al., 2016)). Although the fate shift seen in Tc-sog kd embryos is severe (massive expansion 

of the neuroectoderm), the effect on more downstream components is restricted. Sog is an inhibitory 

modulator of BMP signaling (van der Zee et al., 2006) and might not have as many target genes as a 

transcription factor. A heat map (Fig. 1.6 B) shows the 222 genes up- or downregulated in more than 

one knockdown condition.   

                                                           
3 6 samples were then send to GATC (Konstanz) and 18 samples to the Cologne Center for Genomics (CCG) for sequencing (in 
total 24 RNA samples). Due to a first test of the procedure, the first six samples were produced and sent separately from the 
other samples. 
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Figure 1.6: 222 genes are differentially expressed in more than one knockdown condition 
(A) Venn diagram depicting the number of genes which are differentially expressed upon kd of Tc-twist, Tc-Toll, Tc-dpp, Tc-
sog as compared to wildtype embryos. Each field in the Venn diagram shows the number of genes that are exclusively found 
in the overlap of conditions indicated by the diagram. (B) Heat map showing if genes that are found in the overlapping fields 
of the Venn diagram are up regulated (yellow) or down regulated (blue). The numbers in the figure correspond to the numbers 
in the fields of the Venn diagram.  
(Stappert et al., 2016) 
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1.5 Aims of the study 

Although they interact differently, the transcription factors Dorsal and Twist are key regulators of 

dorsoventral patterning in Tribolium and Drosophila, and likely control major parts of the DV-GRN in 

both organisms. However, BMP signaling has a stronger influence on DV patterning in Tribolium, while 

Toll signaling seems to control less genes compared to Drosophila. Since little is known of the 

components involved in the Tribolium DV-GRN, a simple candidate gene approach might not be 

sufficient to reveal all evolutionary changes compared to the DV-GRN of Drosophila. 

The goal of this study was to identify new potential DV pattering genes via unbiased comparative 

differential transcriptome analysis after knockdown via pRNAi of (Tc-Toll, Tc-twist, Tc-short 

gastrulation and Tc-decapentaplegic) followed by high-throughput RNA sequencing. Providing direct 

information on differential gene expression, this approach facilitates analysis of GRNs. Based on the 

RNA-sequencing data, two subgroups of potential DV patterning genes will be chosen and further 

investigated by in-situ hybridization, concerning their mRNA expression domains. A selection of these 

genes will be functionally analyzed by the generation of knockdown embryos via pRNAi. The identified 

differences in the DV-GRNs of Tribolium and Drosophila will be discussed in an evolutionary context.   
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2 Results 

2.1 Verification of the RNA-seq data by an in-situ hybridization screen  

For the identification of genes involved in the dorsoventral gene regulatory network (DV-GRN), the 

transcriptomes of Tc-Toll, Tc-twist, Tc-sog and Tc-dpp knockdown embryos were compared to a control 

(Stappert et al., 2016).  

201 genes showed up as upregulated upon Tc-Toll kd compared to the control. To verify the 

bioinformatics analysis, the expression patterns of a random selection of them was investigated. I 

analyzed the mRNA expression for some of the genes in wildtype embryos and compared it to Tc-Toll 

deficient embryos. The expression patterns in Tc-Toll knockdown embryos reflect the data of the 

differential transcriptome analysis. As the serosa expands after knockdown of Tc-Toll 8 of 10 the genes 

are strongly expressed in the serosa (Fig. 2.1). TC008197 is only expressed in the dorsal serosa (Fig. 2.1 

I). Especially this part is strongly expanded in Toll knockdown embryos (Fig. 2.1 I’). The verification of 

the RNA-sequencing data correlates well with the RNA-seq data set. Thus, subgroups of potential 

dorsoventral patterning genes had to be chosen for further analysis. 

 

Figure 2.1: Expression patterns of genes differentially expressed upon knockdown of Tc-Toll 
The expression pattern of selected genes which were upregulated in Tc-Toll kd embryos compared to the control. (A) DAPI 
staining of a wildtype embryo in the differentiated blastoderm stage. The dashed line indicates the oblique border between 
the serosa (anterior) and the embryo proper (posterior). (B) In Tc-Toll knockdown embryos, the embryo-serosa border is 
straight and shifted towards the posterior. (B-I) Expression patterns as identified by ISH; (B’-H’) Expression of the same gene 
as depicted in pictures labeled with corresponding capital letters in Tc-Toll kd embryos. All embryos shown in lateral view – 
with exception to G, which is shown in a ventral view. Anterior to the left. All genes are expressed in the serosa. Note that 
TC008197 (I) is just expressed in the posterior-dorsal part of the serosa and that TC006785 (G) is also expressed in two ventral 
stripes. The expression pattern in Tc-Toll knockdown embryos reflects the data from the differential transcriptome analysis. 
As the serosa expands upon knockdown of Tc-Toll most of the genes show a wider expression domain.  
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2.1.1 Detailed analysis of two subgroups of differentially expressed genes  

Facing a large numbers of potential target genes (796, FDR of 1%), it was necessary to reduce the data 

set for screening. Thus, I concentrated on those 222 genes which were differentially expressed in more 

than one knockdown condition (Fig. 1.6 B). The mesoderm is missing in Tc-Toll and Tc-Twist 

knockdowns, hence this comparison should predominantly reveal genes specifying the mesodermal 

fates of the embryo (Fig. 1.5 B and C). The opposing influence of Tc-sog and Tc-dpp kd is especially 

affecting the ectoderm. Thus, the comparisons of their transcriptomes should result in a list of genes 

mainly expressed in the ectoderm (Fig. 1.5 D and E). According to the resulting fate shift of the 

respective knockdown conditions, differentially expressed genes after knockdown of both Tc-Toll and 

Tc-twist (Fig. 2.2 A), as well as after knockdown of Tc-dpp and Tc-sog (Fig. 2.2 B) were most interesting 

for first analysis. 

 

Figure 2.2. Genes differentially expressed upon Tc-Toll kd vs. Tc-twist kd and Tc-sog vs. Tc-dpp kd 
ctrl - control embryos; kd - knockdown; FDR - false discovery rate; up - upregulated; down - downregulated. Transcriptomes 

of different knockdown conditions were first compared to the transcriptome of control embryos. The number of significantly 

differentially expressed genes was detected with a FDR of 1%. To increase the dataset, also genes with a FDR of 5% were 

included. (A) Number of genes differentially expressed between Tc-sog kd and Tc-dpp kd. (B) Number of genes differentially 

expressed between Tc-twist kd and Tc-Toll kd. For the identity of corresponding genes see Appendix B and C.  

 

2.1.2 Identification of genes regulated by Dpp 

The first group consists of all genes which were differentially expressed in Tc-dpp and Tc-sog 

knockdown embryos with a FDR of 1% (Fig. 2.2 A). As expected, the identified 14 genes which were 

up- or downregulated in Tc-dpp knockdown embryos are regulated in the opposite direction after Tc-

sog knockdown. Out of this group of 14 genes, 10 are downregulated in Tc-dpp kd embryos compared 

to knockdown of Tc-sog. Thus, these genes should be expressed either in the serosa or in ectodermal 

regions of the embryo. 
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An in-situ hybridization screen revealed that 5 of these 10 genes are strongly expressed in the 

extraembryonic serosa (Fig. 1.5 A-E). The other 5 genes did not show a localized mRNA expression 

pattern. This finding can be explained by the prominent shift of the embryo-serosa border in different 

directions (Fig. 1.5 D’ and E’). The remaining 4 genes showed up as being upregulated upon Tc-dpp kd, 

whereas they are downregulated in Tc-sog deficient embryos. These 4 genes are likely acting in the 

neurogenic ectoderm of the embryo and are therefore interesting candidates. Among these genes, Tc-

patched (TC004745) is expressed mainly in the head anlagen of differentiated blastoderm stage 

embryos (Fig. 2.3 F). This expression domain is also visible for Tc-tartan (TC014658), but in addition Tc-

tartan, as well as Tc-prospero (TC010596), show an additional broad neuroectodermal expression (Fig. 

2.3 G and H). To enlarge the data set and to increase the chances to identify promising candidates, also 

the 14 genes (exclusively on this list) which showed up as differentially regulated with a false discovery 

rate of 5% were analyzed. 7 of them showed a localized expression pattern: 4 are expressed in the 

serosa, 2 are expressed in segmental stripes and one shows mRNA expression in the neuroectoderm 

(see Appendix B).  

 

 

Figure 2.3: Expression patterns of genes differentially expressed upon knockdown of Tc-sog and Tc-dpp 
(A-H) Expression patterns as identified by ISH; (A’-H’) Same embryo as depicted in pictures labeled with corresponding capital 
letters, nuclei stained with DAPI for staging; Embryos in A-D in primitive pit stage; Embryos in E-H are gastrulating; Embryos 
in A-E: lateral view; embryos in F-H ventral view; Anterior to left. A - D) TC015392, TC006771, TC015379, and TC010157 are 
expressed in the serosa. Note that TC015392 is just expressed in part of the serosa and that TC006771 is also expressed in 
the primitive pit. E) TC001715 is expressed in the serosa, but also in the germ rudiment. F) TC004745/Tc-patched is not 
expressed in the serosa, but in the embryo proper. A DV stripe of strong expression posterior to the presumptive head lobes 
is visible. G) TC014658/Tc-tartan is expressed in the same domain in which strong expression for TC004745/Tc-patched is 
detected. The expression is absent from the mesoderm. H) TC010596/Tc-prospero is not expressed in the serosa, but inside 
the germ rudiment, in which the expression is absent from the future mesoderm, although the expression borders are not 
well defined.  
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2.1.3 Expression patterns of genes regulated by Toll and/or Twist 

The second subgroup of 38 genes showed up as differentially expressed after knockdown of both, Tc-

Toll and Tc-twist with a false discovery rate of 1% (Fig. 2.1 A).  

As the mesoderm is missing in both knockdown conditions, the 19 genes which are downregulated in 

both Tc-Toll and Tc-twist kd, are of special interest. The 14 genes which showed a specific mRNA 

expression domain, include already known dorsoventral patterning genes like Tc-twist itself, Tc-cactus 

and Tc-snail (Fig. 2.4 A, B and C). Also, the known Drosophila Twist targets heartless (Fig. 2.4 G) and 

downstream-of-fgf (dof) (Fig. 2.4 H) showed up as downregulated in Tc-Toll and Tc-twist kd embryos. 

Like the remaining genes, both show a clear ventral expression domain in the presumptive mesoderm 

of blastoderm Tribolium embryos (Fig. 2.4 A-D and G-L). Furthermore, I could identify Tc-Delta (Fig. 2.4 

D). In Drosophila, Delta is expressed in the neuro-ectoderm, whereas it is repressed in the presumptive 

mesoderm (Vassin et al., 1987). However, in Tribolium Tc-Delta seems to be positively regulated by 

Toll and Twist in the mesoderm. Its expression is furthermore co-localized with two other components 

of the Delta/Notch pathway: Tc-E(spl)1 and Tc-E(spl)3. Both enhancer of split homologs of Tribolium 

are expressed in a mesodermal domain with enhanced levels at its lateral borders (Fig. 2.4 E and F). 

Similar to Delta, E(spl)1 and E(spl)3 are expressed in the neurogenic ectoderm in Drosophila (Knust et 

al., 1992; Wech et al., 1999). The only gene showing a typical anterio-posterior (AP) expression pattern 

was TC008064 (sloppy paired/slp). Tc-slp is a pair-rule gene (Choe and Brown, 2007) which is expressed 

in segmental stripes along the AP axis (Fig. 2.4 M). Some of the candidates from this group (TC003461, 

TC003606, TC007056, TC009862, TC010195 and TC013142), did not show a specific mRNA expression 

pattern (data not shown). Of the remaining 19 genes which are upregulated in Tc-Toll kd embryos and 

downregulated in Tc-twist embryos, only two showed a distinct expression pattern. Interestingly, they 

are expressed in the serosa, which is expanded after loss of Tc-Toll. Similar to the analysis of potential 

Tc-Sog vs Tc-Dpp targets, the expression patterns of 20 genes (exclusively on this list) which showed 

up as differentially expressed with a FDR of 5% were also analyzed. 5 of them are expressed in the 

mesoderm, 3 in the serosa and 2 are expressed in segmental stripes (see Appendix C). 
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Figure 2.4: Expression patterns of genes downregulated upon knockdown of Tc-Toll and Tc-twist 
(A-N) Whole-mount ISH of embryos at blastoderm stage. (A-C) Primitive pit stage (E-H, J, L, M, N) or early gastrulation stage 
(D, I, K). (A′-N′) DAPI staining of the respective embryos. (A-H, M) Ventral surface views. (I-L, N) Lateral views with dorsal side 
pointing upwards. The anterior pole points to the left. All genes (except in G, H and M) are expressed in the presumptive 
mesoderm. Note that Tc-cactus (B) is also expressed in ventral parts of the serosa. Tc-E(spl)1 (G) and Tc-E(spl)3 (H) are 
expressed in narrow lateral stripes at the border of the mesoderm. 
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2.2 Functional analysis of genes potentially involved in the DV-GRN of 

Tribolium 

To further investigate the role of selected candidate genes in the DV-GRN of Tribolium castaneum, 

functional studies using pRNAi were performed. The survival of the mothers injected with the 

respective dsRNA, the phenotypic penetrance in the embryos derived from these mothers and 

analyzed the expression of different marker genes in the knockdown (see Appendix D and E) were 

determined for each kd condition. Tc-twist was used as mesodermal marker, Tc-achaete-scute 

homolog (Tc-ash) as neuronal marker (Wheeler et al., 2003), Tc-pannier as marker for the amnion and 

the dorsal ectoderm (van der Zee et al., 2005) and Tc-engrailed (Brown et al., 1994) (not shown in Fig. 

2.5) or Tc-gooseberry (Davis et al., 2001) as segmental markers (Fig. 2.5).  

 

 

Figure 2.5: Expression of marker genes 
(A-D) Expression of Tc-twist, Tc-achaete-scute homolog (Tc-ash), Tc-pannier and Tc-gooseberry (Tc-gsb) in wildtype embryos. 
(A) Tc-twist is expressed in a strong mesodermal stripe in differentiated blastoderm embryos. (B) Amniotic Tc-pannier 
expression along the embryo-serosa border and in the dorsal ectoderm around early gastrulation. (C) Expression of neuronal 
precursor marker Tc-achaete-scute homolog during germ band extension. (D) Expression of segmental marker Tc-gooseberry 
during germ band extension.  
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2.2.1 Functional analysis of Sog/Dpp targets 

2.2.1.1 Neuroectodermal expression of Tc-uniflatable 

A candidate showing an interesting neuroectodermal expression pattern could be identified among 

the differentially expressed genes with a false discovery rate of 5% (see Appendix B). Tc-uninflatable 

(TC000871) is a potential candidate, as it is known to be involved in Notch signaling in Drosophila (Xie 

et al., 2012; Zhang and Ward, 2009). 

Tc-uif is upregulated in Tc-dpp kd and downregulated in Tc-sog kd embryos. In blastoderm embryos, it 

is expressed in a broad neuroectodermal domain, while it is absent from the mesoderm on the ventral 

side (Fig. 2.6 A). Shortly before gastrulation the expression becomes enhanced in two stripes flanking 

the mesoderm (Fig. 2.6 B). In elongating germ bands, Tc-uif is expressed uniformly with exception of 

the mesoderm (data not shown). Interestingly, uif also shows an early expression in ectodermal cells 

in Drosophila embryos (Zhang and Ward, 2009). No changes in the early expression of the marker genes 

in Tc-uif kd embryos could be detected (see Appendix D). However, the neuroectodermal expression 

domain is expanded to the ventral side after Tc-twist knockdown (Fig. 2.6 C). This result suggests a 

negative regulation of Tc-uif by either Twist itself, or by a Twist target gene.  

Knockdown of Tc-uninflatable results in a consistent phenotype with a high phenotypic penetrance 

(61.45%; N=182). The knockdown embryos show thinner abdominal segments compared to wildtype 

embryos (Fig. 2.6 D and E). In addition, the posterior segments were often bended. Although, the 

mRNA shows an early localization before gastrulation, the defects are restricted to the segment 

addition zone of extending germ band embryos. However, affecting the segment addition zone 

indicates an important role of Tc-uif in embryonic development.  

 
Figure 2.6: Functional analysis of Tc-uninflatable 
(A-C) Expression patterns detected by ISH. (A’-C’) Corresponding embryos, nuclei stained with DAPI for staging; All embryos 
in ventral view; Anterior to left. (A-C) Expression of TC000871/Tc-uniflatable (Tc-uif) in wildtype embryos. (A) In primitive pit 
stage embryos, Tc-uif is expressed in broad lateral domains. (B) When gastrulation proceeds, expression of TC000871 
enhances in stripes flanking the mesoderm. (C) In Tc-twist kd embryos the neuroectodermal expression domain expands 
towards the ventral side. E shows DAPI staining of older embryos (~24h-48h AEL) after Tc-uif knockdown via pRNAi. The 
abdominal segments of these embryos are thinner and often bent compared to WT (D).   
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2.2.1.2 Tc-tartan is involved in neurogenesis of Tribolium castaneum 

The second candidate Tartan, is a transmembrane protein with extracellular leucine-rich repeats (LRRs) 

and is expressed in proneural clusters and sensory mother cells of Drosophila embryos (Chang et al., 

1993). The weak neuroectodermal expression of Tc-tartan which is visible in blastoderm stage embryos 

(Fig. 2.7 A) becomes more enhanced and segmental in elongating germ bands, whereas expression is 

still absent from the mesoderm along the ventral midline (Fig. 2.7 B and C). Matching the fate shift 

upon twist knockdown, the neuroectodermal expression domain of Tc-tartan shows an expansion 

towards the ventral side, where the mesoderm is missing (Fig. 2.7 D). This indicates that Tc-tartan is 

repressed in the mesoderm similar to Tc-uif.  

Although I could not observe morphological defects in DAPI-stained Tc-tartan knockdown embryos, 

changes in marker gene expression were observed. In contrast to wildtype embryos which express Tc-

ash in proneural clusters cells (Fig. 2.7 E), Tc-tartan kd embryos lack expression of the neural marker, 

except in the pregnathal head region (Fig. 2.7 F). This result suggests a strong involvement of Tc-tartan 

in the neurogenesis of Tribolium castaneum embryos. 

 

 

Figure 2.7. Functional analysis of Tc-tartan 
(A-K) Expression patterns detected by ISH. (A’-K’) Corresponding embryos, nuclei stained with DAPI for staging; All embryos 
in ventral view; with exception of A and A’ which show the embryo in a lateral view; Anterior to left. 
(A-C) Wildtype expression of TC014658/Tc-tartan in different stages of embryonic development. (A) Shows high expression 
levels of Tc-tartan in the head anlagen and weak expression in the more lateral neuroectoderm, while it is absent from the 
mesoderm. (B and C) In the elongating germ band the neuronal expression of TC014658 becomes more segmental. (D) 
Knockdown of Tc-twist results in lateral expression of Tc-tartan expands towards the ventral side. (E and F) The knockdown 
of Tc-tartan results in loss of the neural cells (E), indicated by the absence of the Tc-achaete-scute homolog (Tc-ash) compared 
to wildtype (F).  
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2.2.2 Functional analysis of Toll and Twist targets 

2.2.2.1 FGF pathway components mimic the Tc-twist knockdown phenotype 

Four of the candidate genes showing mesodermal expression were chosen for further functional 

studies. Tc-heartless (TC004713, Tc-htl), which encodes a FGF receptor and is known to be a target of 

Twist in Drosophila, is expressed in a Tc-twist like mesodermal domain (Fig. 2.8 B and C) in the 

blastoderm. The loss of Tc-htl expression in Tc-twist knockdown embryos (data not shown) indicates 

that it is also a target of Twist in Tribolium. In addition, Tc-heartless deficient embryos have the same 

abnormal structure of the hindgut and the malpighian tubules as Tc-twist kd embryos (Fig. 2.8 A’, B’ 

and C’). Furthermore, using the G04609 line or “heart-GFP-line” (Koelzer et al., 2014), I was able to 

show that the knockdown of Tc-htl frequently (70.91%; N=115) results in loss of the cardioblast cell 

row (Fig. 2.8 A’’, B’’ and C’’), similar to the knockdown of Tc-twist. Using the muscle enhancer line 

pBA19 (Lorenzen et al., 2003), I could also show a complete loss of the somatic muscles in Tc-twist kd 

embryos (Fig. 2.8 B’’), as well as upon loss of Tc-htl (Fig. 2.8 C’’’). However, the marker genes do not 

show changes in their expression (see Appendix E).  

A second component of the FGF pathway was identified. Tc-downstream-of-fgf (TC0113239/dof) is a 

known Twist target gene in Drosophila and is involved in the FGF-dependent migration of tracheal and 

mesodermal cells. In Tribolium, Tc-dof is first expressed in a mesodermal stripe in the blastoderm (Fig. 

2.8 D). I was not able to observe defects in DAPI-stained embryos (Fig. 2.8 D’) or in the expression of 

marker genes after Tc-dof knockdown (see Appendix E). Although, the knockdown does not lead to 

complete loss of the cardioblast cell row, like in Tc-twist or Tc-htl deficient embryos, the loss of Tc-dof 

results in a clear reduction of the cardioblasts (Fig. 2.8 D’’). This is in line with a reduction of the somatic 

muscles after knockdown of Tc-dof in embryos of the pBA-19 line (Fig. 2.8 D’’’). It is likely that Tc-dof 

has a similar, but also slightly weaker role in DV patterning of Tribolium compared to Drosophila. 

The fact that knockdown embryos of both, Tc-heartless as well as Tc-dof mimic the knockdown of Tc-

twist, indicates that FGF signaling is most likely a direct and highly important target of Twist in 

Tribolium. The strong defects in heart precursor cells and the somatic muscles suggest, that FGF 

signaling has a strong influence on development of the mesodermal derived tissues.  
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Figure 2.8: Functional analysis of FGF signaling components 
The FGF-receptor heartless (htl) and downstream-of-fgf (dof) are involved in the formation of the heart, the visceral 
mesoderm and somatic muscles. (B-D) Both expressed in a twist-like stripe in the mesoderm. Knockdown embryos were 
created in transgenic lines in which mesodermal derived tissue is labeled by GFP: the heart-GFP line G04609 (Koelzer et al., 
2014) (A’’-D’’) and muscle-GFP line pBA-19 (Lorenzen et al., 2003) (A’’’-D’’’). The results were compared to embryos after 
twist kd. (B’-C’) Interestingly, upon htl knockdown the embryos showed fingering at the posterior end similar to twist kd 
embryos. They also show loss of the mesodermal derived cardioblasts (A’’-C’’) and complete loss of the somatic muscles (A’’’-
C’’’). In comparison dof kd embryos show a weaker phenotype. The knockdown embryos lack the fingering (D’). Furthermore, 
the cardioblasts as well as the somatic muscles are not missing but strongly reduced (D’’ and D’’’). It seems that in Tribolium 
loss of a FGF ligand leads to weaker defects than the loss of the FGF receptor. 
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2.2.2.2 Laminin B1 – A regulator of heart and muscle development 

Besides its enhanced mesodermal expression, Tc-Laminin B1 (TC005184, Tc-LanB1) showed also a 

weaker expression in the whole embryo proper, but it is absent from the serosa (Fig. 2.9 A and B). The 

mesodermal expression is maintained during the elongation of the germ band (Fig. 2.9 C). After 

knockdown of Tc-LanB1 via pRNAi, I observed fully elongated germ bands with a thinner and irregular 

shaped abdomen compared to WT (Fig. 2.9 D and D’). The defects in embryogenesis occurred in 

71.83% (N=116) of the knockdown embryos. However, expression of the selected marker genes did 

change neither in the early nor in the late stages (Appendix E). While the cardioblast cell row is always 

completely lost (Fig. 2.9 E and E’), the knockdown of Tc-LanB1 results only in partial loss and 

disorganization of the mesoderm derived somatic muscles (Fig. 2.9 F and F’). Furthermore, the muscle 

effect strongly varies in terms of strength (Appendix F). Compared to loss of LanB1 in Drosophila, the 

effects seem to be more severe during Tribolium embryogenesis (Urbano et al., 2009).  

 

 

Figure 2.9: Knockdown of Tc-LanB1 leads to loss of mesodermally derived tissues 
(A-C) Tc-LanB1 is expressed in the whole germ rudiment and upregulated in the presumptive mesoderm in differentiated 
blastoderm embryos. (D and D’) Tc-LanB1 knockdown. DAPI-stained germ band stage embryo shows defects in posterior 
segments. (E-E‘) Embryos of the enhancer trap line G04609. The cardioblast cell row (the presumptive heart) expresses EFGP 
(magenta counterstaining is DAPI). (E) Wildtype embryo of the G04609 line. (E‘) G04609 embryo after Tc-LanB1 kd shows loss 
of the cardioblast cell row. (F and F‘) pBA19 enhancer trap line which expresses EGFP in muscles. (F) Wildtype pBA19 embryo. 
The body wall muscles are labeled by EGFP. (F’) Tc-LanB1 knockdown in pBA19, which shows GFP expression in somatic 
muscles. The somatic muscles are partially lost and severely disorganized. 
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2.2.2.3 Zfh1 – A transcription factor regulating late Tc-twist expression 

Tc-zincfinger homeodomain 1 (TC011114; Tc-zfh1) is an unusual transcription factor combining zinc 

fingers and a homeodomain (Fortini et al., 1991). Transcription factors are often main regulators of 

GRN, thus it appears to be an interesting candidate which might be involved in DV patterning of 

Tribolium. Zfh1 was identified as differentially expressed with a FDR of only 5%. Expression of Tc-zfh1 

appears firstly in early blastoderm embryos in a posterior located spot (Fig. 2.10 A). When the 

extraembryonic serosa separates from the embryo proper (differentiated blastoderm), Tc-zfh1 

expression expands to a ventral twist-like stripe (Fig. 2.10 B). This mesodermal expression also persists 

after gastrulation and is visible along the ventral midline (Fig. 2.10 C and D). The knockdown of Tc-zfh1 

results in high mortality of the injected mothers (72%; N=200). In addition, the survivors showed a 

reduced egg lay rate (data not shown). However, 94% of the embryos derived from these females 

(N=16) showed severe morphological defects (Fig. 2.10 E and F). A reduction of the dsRNA 

concentration from 1 µg/µl to 0.1 µg/µl reduced the sterility but did not affect the phenotypic 

penetrance of the embryos (data not shown). Surprisingly, the investigation of the marker gene 

expression shows only changes in the expression of Tc-twist. While the early expression of Tc-twist 

seems to be unaffected (Fig. 2.10 G), Tc-twist expression is completely absent from the developing 

abdominal segment during germ band elongation (Fig. 2.10 H and I). These findings indicate that Tc-

zfh1 is not only a target gene of Tc-Twist, but that it also regulates the maintenance of Tc-twist 

expression during germ band development. 
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Figure 2.10: Analysis of mRNA expression and functional relevance of Tc-zfh1 
(A-D) Wildtype expression of TC0111114/Tc-Zinc finger homeodomain 1 (Tc-zfh1) in different stages. (A’-I’) Same embryo as 
depicted in pictures labeled with corresponding capital letters, nuclei stained with DAPI for staging; all embryos in ventral 
view; Anterior to left. (A) Initially, Tc-zfh1 is expressed in blastoderm embryos in spot at the posterior pole. (B) In the 
differentiated blastoderm around gastrulation, expression additionally arises in a ventral domain similar to the mesodermal 
expression of Tc-twist. (C and D) In the elongating germ band, Tc-zfh1 is expressed at the ventral midline. Upon knockdown 
of TC011114 severe defects occur already in early germ band stage embryos. Often, first defects can be observed at the 
posterior part of the embryo (E). Later these defects become more severe and different structures of the embryos are affected 
(F). G-I) The early Tc-twist expression is not affected by the knockdown of Tc-zfh1(G) while, Tc-twist expression is missing in 
most of the thorax and abdominal segments (H) compared to Tc-twist wildtype expression (I).  

 

In summary, the expression analysis of genes differentially expressed in Tc-dpp and Tc-sog kd embryos, 

as well as genes downregulated after knockdown of Tc-Toll and Tc-twist confirmed two aspects. First, 

the reliability of the experimental approach and the RNA-sequencing data and second, expression 

patterns of genes could be identified which clearly differ from the already investigated expression 

domains of their Drosophila homologs. Finally, first functional studies for Tc-uif, Tc-tartan, Tc-htl and 

Tc-dof, LanB1 and zfh1 indicate a function of these genes in early but also in later development of 

Tribolium embryos.  
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3 Discussion  

3.1 Verification of the RNA-sequencing data 

The identification of the single nodes in a GRN is a requirement for uncovering evolutionary changes 

in the respective network. As comparative studies by a candidate gene approach are only helpful to 

investigate changes in the regulation of already known homologs, we used differential transcriptome 

analyses by RNA-sequencing after pRNAi. This approach enables the genome wide identification of 

new potential components of the Tribolium DV-GRN. In fact, we uncovered a broad range of interesting 

candidates. 796 genes showed up as differentially expressed in knockdown embryos lacking Toll or 

BMP signaling components. Determination of the knockdown penetrance for each sample as well as 

testing the knockdown efficiency by qRT-PCR and the quality control of the isolated RNA of the 

respective samples, helped to select the best possible starting material for a comparative 

transcriptome analysis. During the bioinformatics analysis, two different programs were used to 

compare the dependence of the resulting data on the used algorithms. As more than 85% of the 

differentially expressed genes identified by edgeR overlapped with those identified by DESeq2 we 

considered only the genes which showed up in both programs for further analysis. In a next step we 

tried to identify some of the already known DV-GRN components in the different knockdown 

backgrounds compared to the control. Tc-twist, Tc-Toll as well as Tc-sog were found to be significantly 

downregulated in the respective knockdown samples. However, Tc-dpp did not appear as 

downregulated upon knockdown of Tc-dpp. It could be, that this was due to the poorly annotated Tc-

dpp sequence in the official gene set the RNA-sequencing reads were mapped to (OGS 2/Tcas 3.0). The 

new official genome (OGS 3/Tcas 5.2) shows a sequence of almost twice the size. Nevertheless, other 

marker genes expressed in the serosa like Tc-zerknüllt 1 (zen) 1, Tc-zen2 or Tc-dorsocross (doc) or on 

the dorsal side like Tc-iroquois (Tc-iro) showed the expected downregulation in Tc-dpp knockdown 

samples (Nunes da Fonseca et al., 2008; van der Zee et al., 2005; van der Zee et al., 2006). Both, Tc-

Toll as well as Tc-twist kd showed a downregulation of the mesodermal expressed genes Tc-twist, Tc-

snail and Tc-cactus. These first results suggest a successful generation of RNA from different 

knockdown backgrounds as well as an accurate bioinformatics analysis of the RNA-sequencing data. 

Next, I tried to reproduce and thus verify the differential regulation of some candidate genes by ISH. 

Due to the fate shift of the serosa, a lot of genes upregulated in Tc-Toll kd embryos compared to the 

control showed expression in the serosa. Screening the expression patterns of some of those genes in 

wildtype and Tc-Toll knockdown embryos, showed the expected expansion of the serosa and thus of 

the expression domains of these genes (Fig. 2.1). Proving the biological authenticity of the RNA-

sequencing data legitimates further studies on expression patterns of genes potentially involved in the 

DV-GRN of Tribolium castaneum.   
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3.2 Expression patterns of some candidates suggest an involvement in DV 

patterning 

Among 796 differentially expressed genes we found 222 to be differentially expressed in more than 

one knockdown condition with a FDR of 1% (Fig. 1.6). The majority of the identified genes differentially 

expressed between Tc-sog and Tc-dpp knockdown showed strong expression in the extraembryonic 

serosa (Fig. 2.5 A-E) and only 3 out of 14 genes showed expression within the embryo proper (Fig. 2.5 

F-H). In addition, these genes are all strongly expressed in the head anlagen of differentiated 

blastoderm embryos. In fact, the analysis of the expression domains of this group reflects the strong 

interaction of the anterior-posterior (AP) and dorsoventral (DV) patterning system during early 

embryogenesis. Loss of some of the most important DV patterning genes like Tc-Toll, Tc-sog and Tc-

dpp do not exclusively affect the fate determination along the DV axis, but cause also a contrary shift 

of the embryo-serosa border, and thus influence the size of the presumptive head and the serosa.  

With high chance, the genes downregulated in Tc-Toll and Tc-twist RNAi embryos are acting in 

specification of the presumptive mesoderm. Indeed, the ISH screen revealed that 12 genes show high 

expression levels in the mesoderm or in region directly flanking the mesoderm. By relaxing the FDR to 

5%, additional ventrally expressed genes were identified. The identification of already known elements 

of the early dorsoventral patterning system like Tc-twi, Tc-snail, Tc-cactus served as control to verify 

the accuracy of the bioinformatic analysis. Furthermore, the results showed a different regulation of 

the Delta/Notch pathway in Tribolium compared to Drosophila. In the fly, both enhancer of split 

homologs (E(spl)1 and E(spl)3) as well as mRNA of the Notch ligand Delta are expressed in the 

neurogenic ectoderm, while Notch signaling is inhibited in the mesoderm by the repression of Delta 

(Aranda et al., 2008; De Renzis et al., 2006; Vassin et al., 1987). In contrast, all three Tc-Delta, Tc-E(spl)1 

and Tc-E(spl)3 seem to be active in the mesoderm. During late differentiated blastoderm, the 

enhancers of split expression domains slowly clear from the mesoderm and get enhanced at its 

borders. Those findings suggest that the pathway has a different region of activity and might thus 

influence also other downstream components. The FGF signaling pathway is represented by the 

receptor Tc-heartless and a more downstream component Tc-dof. Both are also mesodermally 

expressed in Drosophila (Beermann and Schroder, 2008; Sharma et al., 2015). Furthermore, important 

genes involved in cell adhesion (integrins, laminin B1 and dystroglycan) could be identified as targets 

of Tc-Toll and Tc-Twist. However, zinc finger homeodomain 1 (zfh1) was the only transcription factor 

showing a distinct mesodermal expression pattern and a function in DV patterning.  
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3.2.1 Tc-uninflatable knockdown affects the formation of abdominal segments 

Two genes differentially expressed upon Tc-sog and Tc-dpp kd showed neuroectodermal mRNA 

expression domains in the ISH screen. In Drosophila, uninflatable (uif) is localized in the apical plasma 

membrane of all ectodermal derived epithelia and is mainly involved in tracheal inflation (Zhang and 

Ward, 2009) and in antagonizing Notch signaling during imaginal wing disc development (Xie et al., 

2012). The co-expression with the Delta/Notch components E(spl)1 and E(spl)3 (Fig. 2.3 A and B), could 

indicate an earlier involvement of uninflatable in Tribolium embryogenesis, although loss of Tc-uif only 

affects late embryogenesis (Fig. 2.6 D and E). The embryos show thinner abdominal segments which 

suggest defects in the segment addition zone. However, none of the marker genes showed an altered 

expression pattern (Appendix D). Also Drosophila embryos show no early alterations in embryonic 

development due to loss of uninflatable, although also Dm-uif is expressed in the early embryo before 

gastrulation (Zhang and Ward, 2009). So far, no linkage of the early expression pattern of Tc-uif and 

the rather late effect on the development of the abdominal segments could be identified. To further 

investigate the role of Tc-uif in dorsoventral patterning of Tribolium, a more detailed analysis of the 

phenotype would be necessary. 

 

3.2.2 Tc-tartan is an early regulator in neurogenesis 

Tartan is a transmembrane protein containing an extracellular leucine-rich repeat (LRR) domain (Milan 

et al., 2001). Early Drosophila tartan expression arises in transversal segmental stripes and two 

additional longitudinal ventral stripes before the expression is restricted in sensory mother cells and 

proneural clusters in later development. However, Dm-tartan deficient embryos show defects in the 

formation of the central and peripheral nervous system. But as the neurons are not completely absent, 

it is likely that Dm-tartan does not act alone, but that the pathway is at least partially redundant (Chang 

et al., 1993). Interestingly, a second closely related gene with LRRs, Dm-capricious (Lorenzen and 

Capko, 2003), was identified in the Drosophila genome. Unlike Dm-tartan, Dm-cap does not show an 

early expression before gastrulation but is expressed in motorneurons and muscles in later stages 

(Milan et al., 2001), supporting the redundancy in neuron development. Tc-tartan is exclusively 

expressed in the neuroectoderm of blastoderm embryos with enhanced expression in the head 

anlagen (Fig. 2.7 G and 2.3 A). Later, strong expression levels are visible in segmental clusters in the 

neuroectoderm (Fig. 2.7 B and C). Former studies (Chang et al., 1993) showed that Dm-tartan 

expression is probably negatively regulated by Single-minded (Sim) on the ventral side and by 

Decapentaplegic (Dpp) on the dorsal side of the embryo. Expansion of the Tc-tartan expression domain 

towards the ventral side after loss of Tc-twist (Fig. 2.7 D) suggests, that Tc-tartan is negatively regulated 

either by Twist itself or like Dm-tartan, by a Twist target (e.g. Sim). Unlike in Drosophila, loss of Tc-
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tartan results in complete loss of proneural clusters in thorax and abdominal segments as indicated by 

the absence of Tc-ash expression (neural marker) (Fig. 2.7 E compared to F). The significantly stronger 

defects are in line with the fact, that I identified only a single gene in Tribolium that shows more 

similarities to Dm-tartan. Thus, it seems that Tc-tartan is absolutely required for development of the 

nervous system in Tribolium embryos.  

 

3.2.3 Involvement of the FGF pathway in formation of mesodermal derived tissue 

Fibroblast growth factors (FGFs) as well as their corresponding receptors (FGFRs) play key roles in early 

embryonic development and cell migration in both, invertebrates and vertebrates (Bottcher and 

Niehrs, 2005; Muha and Muller, 2013). Previous studies revealed that while two different FGF 

receptors (Heartless and Branchless) are responsible for heart formation and development of the 

tracheal system in Drosophila, only a single FGFR ortholog exists in Tribolium. Tc-heartless acts in both 

processes (Beermann and Schroder, 2008; Beiman et al., 1996; Klambt et al., 1992; Sharma et al., 

2015). The analysis of Tc-heartless (Tc-htl) knockdown embryos show that the Tribolium FGF receptor 

is not only essential for the development of the cardioblasts (Fig. 2.8 C’’), but that Tc-htl kd embryos 

show the same malformation of the hind gut (proctodeum) and the malpighian tubules like Tc-twist kd 

embryos (Fig. 2.8 B’ and C’). These defects indicate a general involvement of Tc-htl in the development 

of all mesodermally derived tissues, including the somatic muscles. In fact, knockdown of Tc-htl in the 

pBA-19 line with muscle-specific expression of GFP results in complete loss of the body wall muscles 

(Fig. 2.8 C’’’) similar to loss of Tc-twist. Thus, also the single FGF receptor Heartless seems to have a 

prominent role in formation of the somatic muscles. Previous studies in Drosophila underline the 

importance of heartless in the dorsal-directed migration of mesodermal cells including the dorsal 

somatic muscles (Gisselbrecht et al., 1996). These findings could be also verified by other studies 

(Sharma et al., 2015). Furthermore, it was shown that Tc-Heartless also acts in the development of the 

tracheal network, thereby combining the function of two separate FGF receptors in Drosophila. 

Another component of the FGF pathway could be identified as being upregulated in Tc-Toll and Tc-

twist knockdown embryos. The mRNA of the adaptor protein Downstream of FGFR (Dof), also known 

as Stumps, is co-expressed with both FGF receptors in Drosophila. It is thought to promote the 

migration of both, mesodermal as well as tracheal cells (Imam et al., 1999; Vincent et al., 1998). The 

involvement in FGFR-dependent cell migration could also be demonstrated by the knockdown of dof 

in Tribolium, which is like Dm-dof co-expressed with its receptor Heartless (Fig. 2.8 D). Although the 

effect was weaker compared to knockdown of Tc-heartless, Tc-dof kd embryos showed at least partial 

loss of the cardioblast cell row (Fig. 2.8 C’’ and D’’) and somatic muscles (Fig. 2.8 C’’’ and D’’’). In 

summary, my results indicate a similar role of FGF signaling in the DV-GRN of Tribolium castaneum 

compared to Drosophila.  
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3.2.4 Extracellular matrix components (ECMs) and their role in mesoderm 
formation 

Basement membranes (BM) provide mechanical stability and are physical barriers between different 

cell types. They are essential for tissue morphogenesis like differentiation, shape, adhesion, survival 

and migration of cells. BMs consist of Laminins, Collagen IV and other extracellular matrix (ECM) 

components like Nidogen. Laminins bind to cell surface receptors to mediate cellular responses 

(Kusche-Gullberg et al., 1992; Montell and Goodman, 1989; Urbano et al., 2011). The transcripts of Tc-

Laminin B1 (FDR1%) as well as two of its receptors: Tc-Integrin αPS2/Inflated (FDR1%) and Tc-

Dystoglycan (FDR5%) were identified as upregulated in Tc-Toll and Tc-twist kd embryos. In Drosophila 

only LanB1 is expressed in the presumptive mesoderm (Bogaert et al., 1987; Dekkers et al., 2004; 

Montell and Goodman, 1989; Schneider and Baumgartner, 2008; Urbano et al., 2011; Wehrli et al., 

1993). In contrast, all three of them showed mesodermal expression in Tribolium blastoderm embryos 

(Fig. 2.4 I and N; data not shown for dystroglycan). The most obvious defect upon knockdown of Tc-

LanB1 is an irregular shape of the posterior segments (Fig. 2.9 D’). In addition, I could show the loss of 

the mesodermally derived cardioblasts (Fig. 2.9 E’) and an irregular shape and uneven distribution of 

the somatic muscles (Fig. 2.9 F’). Compared to loss of LanB1 in Drosophila, which only results in mild 

muscle defects (Urbano et al., 2009), the knockdown of Tc-LanB1 seems to cause stronger defects. 

Furthermore, the early co-expression of the three ECM components in Tribolium could indicate an 

ancestral feature of ventral furrow formation which might have been partially lost in Drosophila. It was 

shown that the interaction of Laminin, Integrins and Dystoglycan plays an important role in 

gastrulation of many animals, especially in vertebrates (Ettensohn and Winkelbauer, 2004). However, 

we did not find evidence for an involvement in ventral furrow formation of the ECM components in 

Tribolium. Analyzing defects in mesoderm invagination requires more complex and time-intense 

methods like preparation and staining of cross-sections. A more careful analysis of embryos lacking 

ECM components might confirm a more ancestral role of Laminin B1, Integrin αPS2 and Dystroglycan 

in mesoderm invagination during the gastrulation of Tribolium embryos.  
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3.2.5 Zfh1 - A new essential regulator maintaining late Tc-twist expression 

Zinc finger homeodomain 1 (Zfh1) is a promising candidate for being an essential component of the 

DV-GRN of Tribolium. It is upregulated after knockdown of Tc-Toll and Tc-twist. Fitting the 

transcriptomic data, Tc-zfh1 is, similar to its Drosophila homolog (Casal and Leptin, 1996; Lai et al., 

1991), exclusively expressed in the mesoderm (Fig. 2.10 A-D). This gene was also isolated by screening 

a cDNA expression library derived from Drosophila embryos in which all cells show mesodermal 

characteristics (Casal and Leptin, 1996). As both, homeodomain and zinc-finger proteins possess the 

most common DNA-binding motifs, they are involved in a wide range of developmental processes in 

D. melanogaster (Fortini et al., 1991). Zfh1 belongs to a rare class of transcription factors containing 

both, homeodomains as well as zinc finger domains. Loss of Zfh1 function in Drosophila embryos 

results in various degrees of spatially restricted defects in cell fate or positioning and the lack the 

caudal visceral mesoderm (CVM) (Broihier et al., 1998; Kusch and Reuter, 1999). Thus, it is unlikely that 

Dm-Zfh1 is required for the initial mesoderm formation or for the differentiation of mesodermally 

derived tissues (Lai et al., 1993). Knockdown of Tc-zfh1 by RNAi leads to multiple severe morphogenetic 

defects during germ band formation (Fig. 2.10 E and F). Loss of the Tc-zfh1 expression domain after Tc-

twist knockdown indicates that at least early Tc-zfh1 expression is dependent on Twist or one of its 

targets. However, late Tc-zfh1 expression is similarly to Drosophila, independent of Twist (data not 

shown). In contrast, late Tc-twist expression is deleted in all abdominal segments upon knockdown of 

Tc-zfh1 (Fig. 2.10 G-I). These findings indicate that Tc-zfh1 is not only a target of Twist, but that it also 

involved in maintaining Tc-twist expression in the elongating germ band. Little is known about the re-

initialization of twist expression in the growth zone of Tribolium. The strong effect on Tc-twist 

expression suggests, that compared to its role in Drosophila, Tc-zfh1 is an essential component for 

mesoderm development in Tribolium. In summary, the identification of Tc-zfh1 could be a first step in 

uncovering the pathways acting in the segment addition zone of short germ insects like Tribolium. 

Part of the Tribolium phenotype after loss of zfh1 is a strong sterility effect. Pupal as well as adult 

injections with a standard concentration of 1µg/µl dsRNA resulted in complete sterility and high 

mortality of the female beetles. This effect could be avoided by lowering the concentration of the 

injected dsRNA. It was already shown that Zfh1 loss of function leads to defects in the gonadal 

mesoderm in Drosophila (Broihier et al., 1998; Kusch and Reuter, 1999). Thus, the observed sterility of 

Tc-zfh1 dsRNA injected beetles implies a similar role in development of the gonads in Tribolium. 
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3.3 Possibilities and limitations of comparative analysis by RNA-sequencing  

Since the Tribolium DV-GRN differs from the well-studied dorsoventral patterning system of 

Drosophila, the main goal of this study was to identify new genes functioning in the establishment of 

the DV axis of Tribolium. In addition, differences in the position, regulation and function of already 

known elements within the network should be uncovered. Thus, we performed a differential 

transcriptome analysis after knockdown by pRNAi as a global and unbiased approach. 

 

3.3.1 Stronger influence of Tribolium homologs on early embryonic development 

Some genes or even whole pathways seem to play comparable roles in Drosophila and Tribolium, like 

the components of the FGF pathway (heartless and dof). Other Tribolium DV patterning homologs 

show a tendency to have a stronger influence on the early development compared to Drosophila. 

While two genes regulate the determination and differentiation of proneural clusters in Drosophila 

(tartan and capricious), the single Tribolium homolog (Tc-tartan) is showing comparatively stronger 

defects after knockdown by pRNAi. The same is true for different components of the extracellular 

matrix (ECM). The mRNA of Integrin, Laminin B1 and Dystroglycan is co-localized in the mesoderm of 

Tribolium. In contrast, they have complementary expression domains in Drosophila. Moreover, the 

strong defects after knockdown of Tc-laminin B1 suggest a relevant and maybe more ancestral role of 

ECM components in mesoderm development. Another gene with an only minor role in the DV-GRN of 

Drosophila is zfh1. However, my results show that Tc-zfh1 is essential for the maintenance of mRNA 

expression of the mesodermal key regulator Tc-twist during germ band formation and extension. This 

new role of Zfh1 which was not shown so far might be an adaption to the more ancestral 

developmental mode of short-germ embryogenesis. The stronger influence of LanB1, heartless and 

tartan on Tribolium DV patterning can be explained by the fact that only single homologs were 

identified in Tribolium. In contrast, the Drosophila genome contains a second homolog for each of 

these genes. In Tribolium these genes are absolutely required for functions which are distributed 

between two genes in the fly. If a duplication and a subsequent sub-functionalization occurred during 

evolution in drosophilids or if one of these genes was secondarily lost in the beetle, remains unclear.  

  



43 
 

3.3.2 Comparative analysis for de novo identification of DV-GRN components 

In total we could identify 796 genes (Fig. 1.6 A, table) which were differentially expressed in the 

knockdown embryos compared to the control with a false discovery rate (FDR) of 1%. More than 300 

differentially expressed genes could be identified upon knockdown of each, Tc-Toll, Tc-twist and Tc-

dpp knockdown. 18 genes showed differential expression levels in Tc-sog knockdown embryos 

compared to the control. A more thorough analysis on two subgroups: Tc-Toll kd versus Tc-twist kd 

and Tc-sog kd versus Tc-dpp kd revealed numerous genes showing typical dorsoventral expression 

patterns. First functional studies on some of the genes showing promising expression patterns resulted 

in interesting new insights in the Tribolium DV-GRN.  

The identified genes and their function in DV patterning of Tribolium revealed some of the differences 

in the DV-GRN of Drosophila and Tribolium. However, only one gene has a profound new role in 

Tribolium embryogenesis. One explanation could be that the Tribolium DV-GRN does not drastically 

differ in the genes that are involved but rather in the interplay of those genes. This theory fits the 

findings suggesting that evolutionary changes in GRN occur most likely on the level of transcriptional 

regulation instead of changes in protein structure. Thus, comparative transcriptome analysis after RNAi 

can only suggest a list of genes that are potentially influenced. It remains open if the genes showed up 

due to a simple fate shift (e.g. shift of the embryo-serosa border) or if the regulation of their expression 

was directly influenced by the loss of their regulator. For this purpose, a ChIP sequencing approach can 

be used. ChIP sequencing detects only genes that are bound by a specific gene (e.g. Dorsal). In 

consequence, the identified genes are most likely direct target genes. The most promising approach 

might thus be a combination of both, transcriptome analysis and ChIP sequencing. However, the data 

set provide a great basis for several new questions on early development of Tribolium castaneum.  
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3.3.3 Reasons for the detection of false positives 

Although genome wide comparative analysis after RNAi is a great achievement for the field of 

evolution & development, one should not disregard technical difficulties. So far no “gold standard” 

bioinformatic pipeline for analysis of RNA-seq data is available. Different programs are provided for 

the intermediate steps like trimming, mapping of the reads, generation of count tables and 

identification of differential expression. In addition, improved versions of used programs as well as 

new developed tools for bioinformatic analyses are constantly released. Thus, it is challenging to find 

the best method to analyze these data and to ensure the accuracy of the generated lists of potential 

candidate genes. Choosing stringent settings like low false discovery rates (FDR) should ensure the 

breakdown of the data set to a manageable number of genes. However, this procedure poses a danger 

of missing potential interesting candidates. On the other hand, false positive candidates should be 

avoided. Nevertheless, the appearance of false positives during comparative analyses is a constant 

problem in analyzing RNA-sequencing data (Conesa et al., 2016).  

The generation of lists containing differentially expressed genes in more than one knockdown 

condition also resulted in a list of genes which are allegedly differentially expressed in both, Tc-Twist 

and Tc-dpp knockdown embryos. A closer look on the fate shift caused by the respective knockdowns 

revealed that there is almost no overlap in the regions affected by both knockdowns (Fig. 2.12). Indeed, 

an ISH screen resulted in the identification of only one distinct expression pattern (fushi tarazu). In 

addition, examining the genomic region revealed that most of the genes showed a hit in a poorly 

annotated region with low RNA seq support. Thus, most of those genes can be considered as false 

positives (Dassen, Bachelor Thesis 2016).  

One reason for false positives is a low cutoff. Genes with low fold-changes can be wrongly detected as 

positive hit (Sims et al., 2014). In addition, genes with very low expression levels and thus low raw read 

counts can show false high fold-changes in comparative analysis. For example, a gene with a read count 

of 2 in wildtype samples could show a read count of 8 in a knockdown sample and thus produce a high 

fold change. Such low read counts are problematic as they might only reflect background signal and 

have to be removed by normalization. Since these genes are measured with higher noise, measuring a 

large fraction of the genes with low read counts can produce a dataset that is biased towards 

identifying differentially expressed genes with low read counts. (Busby et al., 2013). The choice of 

analysis tool (programs) is also connected to the detection rate of false positives (Soneson and 

Delorenzi, 2013). The algorithms of both DESeq2 and edgeR, show inflated false positives rates 

compared to other programs (Rocke et al., 2015). Another possible source for false positive results is 

the mapping of the reads to a genome. The genome used for this work in 2013 was the official genome 

OGS2 (Tcas 3.0). Although, many gene models were already quite accurate some had to be annotated 
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and changed dramatically in the new official genome OGS3 (Tcas 5.2) published in 2016. Thus, some 

of the false positive can be explained by mismapping of the reads. However, it could be interesting to 

map our RNA sequencing data to the reannotated genome and compare the resulting lists of 

differentially expressed genes. It might be also worth to run some of the analyses on improved versions 

of the used programs or even by newly developed tools. In summary, the bioinformatic analysis of RNA 

sequencing data is a critical step in global comparative analyses. The pipeline for the analysis should 

be chosen carefully according to the number of groups compared and the general biological question 

of the study.  

 

3.4 Conclusion 

In summary, we achieved the aim of a global and unbiased identification of Tribolium DV-GRN 

components in Tribolium castaneum. In total 116 potential candidate genes from different 

comparisons were investigated by an ISH screen. The identified localized expression patterns and first 

functional studies indicate a potential involvement of some of the discovered genes in dorsoventral 

patterning. The analysis of the 28 genes differentially regulated upon Tc-sog and Tc-dpp knockdown 

(14 with FDR of 1%, 14 with a FDR of 5%) revealed that the neuroectodermal expressed genes Tc-

uniflatable and Tc-tartan are both involved in the development of Tribolium embryos. Especially the 

investigation of the 58 genes which showed up as differentially regulated after knockdown Tc-Toll and 

Tc-twi (38 with FDR of 1%, 20 with a FDR of 5%) led to the discovery of new expression patterns, such 

as the mesodermal expression of the Tc-E(spl) genes, as well as new early phenotypes caused by the 

knockdown of genes known to have later and often less important roles in Drosophila. In particular, 

Tc-zfh1 is likely to be an essential component of the Tribolium DV-GRN that is required to maintain the 

expression of Tc-twi during germ band elongation. Compared to expensive and time-consuming RNAi 

or mutant screening projects, differential expression analysis by RNA sequencing provides faster 

results of equal accuracy and biological relevance.  
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3.5 Outlook 

Also, the analysis of 30 genes (FDR of 1%) differentially expressed in Tc-Toll kd embryos resulted in 

potentially interesting candidates (Dassen, Bachelor Thesis 2016). One of the most interesting genes 

is TC011067. Its expression domain in late uniform blastoderm stages spans the ventral most region 

along the whole AP axis and strongly resembles the expression domain of Tc-cactus. Due to a partial 

inside-out phenotype and missing head structures after pRNAi, TC011067 was also identified as 

potential DV patterning gene by the iBeetle4 screen. TC011067 is annotated as Serine Protease P125 

and is currently investigated in our lab. First results by Salim Din Muhammad suggest that TC011067 is 

not only a Toll target but that it is also a positive feedback element, which is likely to act upstream of 

Toll. Thus, this gene might help to gain important insights in the early establishment and stabilization 

of the nuclear Dorsal gradient and the spatial and temporal influence of the nuclear Dorsal gradient 

on the transcriptional regulation of its target genes. This finding proves that the enormous amount of 

data can be used for a broad range of questions on early embryonic DV patterning and morphogenesis. 

Another important step could be the improvement of the data set by BLASTing the RNA-seq reads to 

the new official gene set (OGS 3). Results of a colleague already showed that the accuracy of the new 

genome does not only reduce the detection of false positives, but that it also results in gain of some 

new potential candidates.      

                                                           
4 The iBeetle projects is a large-scale RNAi screening project in the red flour beetle Tribolium castaneum. Using the RNA 

interference method, genes are silenced in the pupal and larval developmental stages. The observed phenotypes are 
annotated in the public iBeetle-Base. The here described results are based on personal communication with Muhammad 
Salim Din Muhammad. 
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CHAPTER II   
Fog signaling and its role in epithelial morphogenesis in Tribolium 
castaneum 
 

4 Introduction 

4.1 The role of cell shape changes in embryonic development  

The determination of cell fates by anterio-posterior and dorsoventral patterning during early 

embryogenesis is crucial for the development of complex structures like organs. However, another 

mechanism should not be ignored. Cell migration and morphogenetic movements of epithelial sheets 

are essential for correct formation and folding of tissues. Morphogenesis, the reorganization of cells 

and tissues into new forms, is an essential part of animal development (Sawyer et al., 2010). These 

movements ensure the internalization of cells from the outer surface to the interior by ingression of 

single cells or the invagination of cell sheets. Spatial and temporal changes in the cytoarchitecture and 

the resulting cell shape changes are the underlying processes for morphogenetic movements (Suzuki 

et al., 2012). To study morphogenesis in the context of development it is necessary to understand the 

molecular mechanisms of how patterning genes interfere with cytoskeleton components in order to 

change cell shapes (Dawes-Hoang et al., 2005; Leptin, 1994).  

The invagination of epithelial cell sheets during gastrulation is shared in many organisms (Leptin, 

1999). The Fog signaling pathway is one of the best studied processes in initiating early morphogenetic 

movements by cell shape changes and plays a major role during gastrulation of Drosophila 

melanogaster (Manning and Rogers, 2014). 

The process of cell shape changes is taking place in different steps (Fig. 1.1 A). First, the apical surface 

of cells is domed. Subsequently, Fog signaling activates ROK which leads to rearrangements of the 

actomyosin network. The actomyosin network is connected to adherens junctions, which are 

facilitating its localization to the apical side of the cells. The force generated by apically localized 

contraction of the actin-myosin cytoskeleton results in flattening of the apical cell surface. At the same 

time, the cells start to elongate along the apical-basal axis, leading to a columnar shape of the previous 

cuboidal cells. The continued constriction of apical actin-myosin pulls the adherens junctions close 

together, resulting in the apical constriction of the cells (Dawes-Hoang et al., 2005). The reduction of 

the apical surface diameter is also affecting the cell shape of the neighboring cells and hence triggering 

bending of the whole tissue sheet (Fig. 1.1 B). These cell shape changes are especially important to 

drive the internalization of the presumptive mesoderm and the posterior midgut primordium during 

fly gastrulation (Fig. 1.1 C) (Manning and Rogers, 2014; Parks and Wieschaus, 1991).   
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Figure 1.1: Morphogenetic events induced by Fog signaling 
Model of Fog function in controlling cell shape changes in the mesoderm of Drosophila embryos. (A) Fog signaling 
at the apical side of the cell (blue dots) results in localized activation of ROK (red asterisk) and leads to a 
rearrangement of the actin-myosin network. Thus, myosin (pink) is relocated to the apical side of the cell 
(arrows). In consequence, by contraction of the actin-myosin cytoskeleton the domed apical cell surface gets 
pulled down and flattens. In addition, the adherens junctions (Baumert et al.), connected to the actin-myosin 
network, move to the apical edge of the cell (arrows). The result of these movements and contractions is the 
apical constriction of the cells. (B) This process is essential for the bending and folding of epithelial cell sheets 
during embryonic gastrulation. (C’-C’’’) A Drosophila embryo undergoing gastrulation. Embryos were stained for 
Neurotactin to outline cells. The yellow arrows indicate cell groups undergoing Fog pathway induced apical 
constriction. (C’) Ventral furrow formation. (C’’) Posterior midgut invagination. (C’’’) Closer view of posterior 
midgut cells undergoing apical constriction. Germ cells are carried in with this invagination.  
(modified from Dawes-Hoang et al., 2005 and Manning and Rogers, 2014) 
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4.2 The Fog signaling pathway 

Formation of the ventral furrow and invagination of the posterior midgut are the first morphogenetic 

movements in Drosophila embryogenesis and were extensively studied (Leptin, 1994). One of the best 

understood pathways regulating these processes is the Folded gastrulation (Fog) pathway, which 

induces apical constriction of cells and thus folding of epithelial sheets (Manning and Rogers, 2014). 

 

4.2.1 The Pathway components and their interaction 

Folded gastrulation (Fog) is a secreted protein localized in cells of the presumptive mesoderm and 

posterior ectoderm (Costa et al., 1994; Manning and Rogers, 2014; Morize et al., 1998). Fog is 

expressed in a ventral stripe in the presumptive mesoderm and a smaller posterior domain, precisely 

mimicking the pattern of constriction initiations (Costa et al., 1994). Experiments showed that a 

depletion of Fog in some cells does not affect a wide area of cells. Thus, it is likely that Fog diffusion to 

the neighboring cells is rather limited. Loss of Fog in Drosophila embryos prevents apical constrictions 

in both, the posterior midgut and the ventral furrow (Costa et al., 1994). In addition, problems in 

germband extension (convergent extension) occur which leads, as a secondary effect, to wrinkled or 

twisted embryos (Parks and Wieschaus, 1991) (Fig. 1.2). 

Apical constriction is initiated when Folded Gastrulation (Fog) binds to the G-protein coupled receptor 

(GPCR) Mist (Mesoderm Invagination Signaling Transducer), which was first identified as Methuselah-

like 1 by a GPCR targeted RNAi screen in 2013 (Adams and Celniker, 2000; Brody and Cravchik, 2000; 

Manning et al., 2013). GPCRs are a large group of receptors for classical neurotransmitters and 

neuromodulators that are present in vertebrates and invertebrates (Brody and Cravchik, 2000; Venter 

et al., 1988), although only few are involved in regulating morphogenesis. Mist possesses an 

extracellular domain enabling the interaction with large ligands like Fog. In Drosophila the mist 

expression domain largely overlaps with fog expression and includes the ventral presumptive 

mesoderm as well as the posterior-dorsal region of posterior midgut primordium (Dawes-Hoang et al., 

2005; Manning et al., 2013). Similar to fog the loss of mist affects correct ventral furrow and posterior 

midgut formation during gastrulation (Manning et al., 2013; Parks and Wieschaus, 1991).  
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Figure 1.2: Cta- mutant embryos show several defects during gastrulation 
Scanning Electron Microscopy (Misof et al.) of wildtype and cta- mutant embryos. All are ventral views. H and P show 
dorsolateral views. (A, C, E, G, I, K, M, O) and (B, D, F, H, J, L, N, P) show the embryos depicted in (A, C, E, G, I, K, M, O). (A and 
B) Wildtype embryo at the onset of ventral furrow formation. The arrow in (A) indicates the edge of the flattened zone. The 
arrow in (B) points to a midcentral cell beginning apical constriction. (I and J) Beginning ventral furrow formation in a cta- 
mutant embryo. As in wildtype, a flattened zone of cells is visible (arrow in I). Some midcentral cells undergo apical 
constriction (arrow in J). (C and D) Wildtype embryo forming a shallow groove (arrow in C). (K and L) A cta- mutant embryo 
of an analogous stage to the WT embryo in (C and D). The cta- mutant embryo has constricted some cells (arrow in L), but has 
failed to form a shallow groove. (E and F) Wildtype embryo that has deepened and closed over the ventral furrow. The forming 
cephalic fold is also apparent. (M and N) A cta- mutant embryo of similar stage to the embryo in (E) and (F). No ventral groove 
has formed. Instead, only some of the midcentral cells have constricted (arrow in N). (G) Wildtype embryo that has begun to 
extend its germband. (0) A cta- mutant embryo that has closed over its ventral furrow, even though some midcentral cells 
have failed to change shape. This embryo failed to extend its germband, instead forming folds on the ventrolateral sides. (H) 
Wildtype at a stage similar to the embryo in (G). Cell shape changes similar to those forming the ventral furrow form the 
posterior midgut invagination. The posterior midgut begins as a shallow cup under the pole cells. (P) Because very few cells 
at the posterior pole of the cta- mutant embryo change their shape (arrow), it fails to form a posterior midgut invagination. 
(modified from Parks and Wieschaus, 1991) 

 

 

Transmission of the extracellular Fog signal across the plasma membrane by Mist is dependent on a 

trimeric G-protein interacting with the GPCR. Identified in a screen for female sterile mutations, the G-

protein α-subunit Concertina (Cta) was the pathway element which was discovered first (Schupbach 

and Wieschaus, 1989). Cta mRNA is uniformly expressed in Drosophila embryos and is required to 

recruit a Rho guanine nucleotide exchange factor (RhoGEF2) and Myosin II to the apical membrane 

(Kerridge et al., 2016; Parks and Wieschaus, 1991). In detail, the receptor Mist is interacting with a 

trimer consisting of Gα, Gβ and Gγ. Upon binding of Fog, Cta's exchange of GTP for GDP enables Cta to 

dissociate from its partners and thus to activate the downstream target RhoGEF2. Activation of 

RhoGEF2 in turn results in activation of the GTPase Rho1 and Rho Kinase (Rok) (Manning and Rogers, 



51 
 

2014). This signaling cascade finally results in apical-medial accumulation of non-muscular Myosin II 

(Fig. 1.3) and thus, in pulsatile contraction of the actomyosin network (Dawes-Hoang et al., 2005; 

Martin et al., 2009). The morphological defects observed in cta- mutant embryos coincide with the 

effects of loss of Fog and Mist. Lack of Fog, Mist or Cta results not only in failure of posterior midgut 

primordium invagination and an abnormal ventral furrow formation, but affects various invagination 

events during Drosophila development, like the internalization of the salivary glands or folding of the 

wing imaginal discs (Costa et al., 1994; Manning and Rogers, 2014; Nikolaidou and Barrett, 2004).  

 

 

Figure 1.3: The Fog signaling pathway 
Scheme depicting the interaction of the Fog signaling components. The G-protein coupled receptor (GPCR) Mist interacts 
with the inactive, α-subunit of a G-protein (Cta) bound to GDP. When the ligand Fog binds to the receptor, it stimulates the 
exchange of GTP for GDP, which enables Cta to dissociate from its heterotrimer partners, Gβ and Gγ. The subsequent 
activation of RhoGEF2 results in activation of Rho1 and Rok.  Finally, the phosphorylation of the regulatory light chain of non-
muscle myosin II by Rok induces apical actomyosin network contraction in the cells. (modified from Manning and Rogers, 
2014).  
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4.2.2 Regulation of Fog signaling 

Fog signaling plays an important role in initiating ventral furrow formation and posterior midgut 

invagination by apical constriction. cta and RhoGEF2 are expressed ubiquitously in Drosophila. The 

expression domains of fog and mist largely overlap, but seem to be under independent control (Dawes-

Hoang et al., 2005; Manning et al., 2013; Manning and Rogers, 2014). 

Twist and Snail function as the master regulators of mesoderm specification and ventral furrow 

formation (Leptin, 1991; Leptin and Grunewald, 1990). Former experiments could show that twist- 

mutant embryos, lack mesodermal fog expression, indicating that Fog activity in the ventral furrow is 

completely dependent on Twist (Costa et al., 1994). However, the posterior expression domain 

remains unaffected after loss of twist or snail (Leptin, 1994). Surprisingly, mesodermal localization of 

mist is probably regulated by Snail. snail- mutant embryos lack ventral mist expression, whereas it’s 

expression is maintained upon loss of twist. Similar to fog, mist expression around the posterior midgut 

primordium is unaffected even after loss of both, twist and snail (Manning et al., 2013). In contrast to 

Twist, which is known as a key activator, Snail mainly functions as a transcriptional repressor (Leptin, 

1991). Thus, it might be that mist expression is not activated by Snail itself, but rather indirectly by a 

Snail target (Manning et al., 2013). 

 

4.2.3 Fog and T48 - Two distinct mechanisms of myosin localization 

Former results indicate that Fog signaling is not the only pathway regulating the coordination and 

contraction of the actomyosin network to induce apical constriction (Dawes-Hoang et al., 2005). 

Although all cells show apical accumulation of myosin after ubiquitous expression of fog, basal myosin 

is only lost in ventral cells. Loss of RhoGEF2 also results in reduction of the basal myosin, but the cells 

fail to accumulate myosin to the apical side. In contrast to loss of fog, mist or cta, embryos lacking 

RhoGEF2 do neither invaginate the mesoderm nor the posterior midgut (Barrett et al., 1997; Hacker 

and Perrimon, 1998). Thus, apical myosin localization seems to be not only dependent on Fog signaling, 

but on an additional factor. 

Another target of Twist is the ventrally localized transmembrane protein T48 (Gould et al., 1990; 

Leptin, 1991). It has been shown that T48 contributes complementary to Fog signaling to the induction 

of apical constriction via direct binding with RhoGEF2 (Fuse et al., 2013; Kolsch et al., 2007). Similar to 

twist, the mRNA of the transmembrane anchor T48 is expressed in a broad ventral stripe in the 

presumptive mesoderm. The protein is localized to the apical cell membrane recruiting RhoGEF2. 

Unlike fog or mist, T48 is not expressed at the posterior midgut primordium (Fig. 1.4 B-F). This is in line 

with observations that T48 mutant embryos show no defects in posterior midgut invagination. 
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Nevertheless, loss of T48 results in disorganized and delayed formation of the ventral furrow. These 

results indicate that neither Fog signaling nor T48 is absolutely required for mesoderm internalization 

(Kolsch et al., 2007). The fact that cta+T48 double mutants completely fail to form a ventral furrow 

and to invaginate the posterior midgut rather suggest, that they might act in parallel to induce apical 

constriction (Kolsch et al., 2007; Manning and Rogers, 2014). While Fog signaling causes via activation 

of Cta the release of RhoGEF2 from microtubules, T48 concentrates RhoGEF2 to the apical membrane 

(Manning and Rogers, 2014). Thus, Twist regulates two targets acting in separate pathways to modify 

and activate the actomyosin network during Drosophila gastrulation (Fig. 1.4 A).  

 

 

Figure 1.4: Regulation of apical constriction by Twist and Snail 
(A) Scheme of regulatory inputs on Fog signaling. Two pathways act complementary to induce apical constriction. (B-H) mRNA 

expression patterns of twist, snail, fog, mist, T48, cta and RhoGEF2 at the onset of Drosophila gastrulation. (modified from 

Urbansky et al., 2016) 
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4.3 Conservation of Fog signaling in insect morphogenesis 

So far it was stated, that Fog signaling is poorly conserved. The ligand Fog was assumed not to be 

conserved outside of the genus Drosophila (Manning and Rogers, 2014), and that its receptor Mist is 

not conserved outside of insects. In contrast, downstream components like members of the Gα12/13 

family, RhoGEFs or RhoA have been proven to be highly conserved regulators of apical constriction in 

vertebrates (Suzuki et al., 2012). They are involved in different processes like cytoskeletal and cell 

shape changes, such as neurite outgrowth and retraction, tumor cell invasion, or angiogenesis during 

human development (Waterhouse et al., 2011; Xiang et al., 2013).  

However, recent data from our lab (Rodrigo Nunes da Fonseca and Cornelia von Levetzow, Kai Conrads, 

Matthias Pechmann) as well as by Urbansky et al., 2016 draw a different picture. It seems that Fog is a 

fast-evolving protein containing neither conserved domains nor transmembrane regions. The rapid 

and dramatic sequence changes require a careful phylum based reciprocal BLAST approach to identify 

fog in other insect species (Conrads, Master Thesis 2015). Comparative studies by Urbansky et al., 2016 

using Drosophila melanogaster and the midge Chironomus riparius, a basal member of the Diptera, 

suggest that Fog signaling is involved in gastrulation in only some highly derived lineages. Chironomus 

possesses a different mode of mesoderm internalization. Instead of forming a deep tube-like ventral 

furrow, single cells move from the epithelial surface inwards (ingression). Unlike Drosophila, 

mesoderm internalization in Chiromonus seems to work independently of Fog signaling. Ectopic 

expression of fog mRNA prior to gastrulation was sufficient to induce cell shape changes, resulting in 

ventral furrow formation similar to Drosophila gastrulation. Two different fogs were identified in 

Chiromonus. While fog1 was not expressed at all, fog2 showed a broad domain of expression before 

onset of gastrulation. Nevertheless, loss of fog2 did not result in early morphogenetic defects, 

suggesting a late function of Fog in the midge (Urbansky et al., 2016). Thus, it seems likely that Fog 

function was recruited from later developmental stages to accelerate the process of gastrulation in 

some insects with fast developing embryos. The identification of twist and snail, fog, mist, T48, cta and 

RhoGEF2 in the genomes of major families of winged insects indicates a conservation of these genes 

for more than 400 million years (Misof et al., 2014; Urbansky et al., 2016). 

The work by Kai H. Conrads (unpublished) uncovered the function of Fog signaling also in mesoderm 

and gut invagination in the jewel wasp Nasonia vitripennis (Hymenoptera). Furthermore, our group 

could identify the respective orthologs of fog, mist and cta in the red flour beetle Tribolium castaneum 

(Coleoptera). Both organisms exhibit more ancestral features during embryonic development 

compared to Drosophila.   
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4.4 Different modes of mesoderm internalization 

The highly divers class of insects possesses various modes of embryonic development. Changes in 

embryogenesis are often correlated with changes in morphogenesis and thus, with different strategies 

of mesoderm invagination (Roth, 2004). Three basic modes of internalization can be distinguished (Fig. 

1.5).  

Type I can be found in many dipterans, coleopterans and neuropterans (Bock, 1939). The cells of the 

presumptive mesoderm undergo apical constriction and simultaneously apicobasal elongation, which 

results in formation of a well-defined ventral furrow. At the same time, the lateral neuroectodermal 

sheets move ventral and fuse at the ventral midline. This results in a tube-like structure of the 

internalized mesoderm (Leptin and Grunewald, 1990; Sweeton et al., 1991). Type II mesoderm 

internalization is determined by disruption of the epithelial continuity. The ectodermal cells separate 

from the future mesoderm, which remains a stiff plate. As the ectodermal tissue moves over the 

mesoderm and fuses at the ventral side, the mesoderm gets internalized. This more passive mode of 

mesoderm invagination is often found in hymenopterans and some lepidopterans (Fleig et al., 1988; 

Roth, 2004). Type III mode strongly differs from the mechanisms mentioned so far and is common for 

numerous hemimetabolous insects (Anderson, 1972; Jura, 1972). The mesodermal cells build an 

irregular mass that gets pushed inwards by the ectodermal cells fusing at the ventral midline. During 

the whole process of internalization, the mesodermal cells stay mitotically active and either no or only 

a shallow and less distinct ventral furrow can be observed (Roth, 2004). This type shows some 

similarities with a process called ingression, in which single cells move inwards in a less organized way. 

However, variations in mesoderm formation can be found within a single insect order (Roth, 2004). 

Ingression-like mesoderm internalization has also been reported for different more basally branching 

flies like Chironomus riparius (Urbansky et al., 2016) or Anopheles gambiae (Goltsev et al., 2007), and 

seems to be independent of Fog signaling.  

While type I mesoderm internalization is common for highly derived flies like Drosophila, it seems that 

hemimetabolous insects mainly internalize their mesoderm via the ingression-like type III mode 

(Anderson, 1972). The fast embryogenesis of many holometabolous insects require a simple, but highly 

organized mechanism for mesoderm internalization, indicating that formation of a ventral furrow by 

apical constriction might be derived from a more ancient mode of cell ingression (Roth, 2004; Urbansky 

et al., 2016).   
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Figure 1.5: Three types of mesoderm internalization  
Type I: Cells of the presumptive mesoderm undergo apical constriction, resulting in a deep ventral furrow. Type II: The 
neuroectoderm separates from the mesodermal cells, which form a stiff plate. The ectodermal epithelium covers the 
mesoderm and fuses at the ventral midline. Type III: The mesodermal cells stay mitotically active, while they get passively 
internalized by the ectoderm moving to the ventral side. (modified from Roth, 2004) 

 

 

4.5 Morphogenetic movements during Tribolium gastrulation 

Morphogenetic evolution usually originates in changes of gene regulation. In detail, it was shown that 

differences in gene expression can be correlated to changes in tissue and cell behavior (Urbansky et 

al., 2016).  

Unlike in Drosophila, Tribolium castaneum gastrulation involves complex morphogenetic movements 

not only of embryonic tissues, but also of two distinct extraembryonic membranes: amnion and serosa. 

At the onset of gastrulation, these membranes undergo drastic rearrangements. After cellularization 

the cells are evenly distributed in the undifferentiated blastoderm. The serosa becomes first visible in 

the differentiated blastoderm stage after ~8 h after egg lay (30°C). In this stage the serosa cells are 

wider compared to the cells of the embryo proper. The embryo-serosa border is running from a more 

anterior position on the ventral side (Fig. 1.6 A’’) to a more posterior position on the dorsal side (Fig. 

1.6 A and A’). The cells neighboring the serosa border are part of the amnion, which dorsally slightly 
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extends towards the posterior pole (Fig. 1.6 A)5. At around the same time, cells at the posterior pole 

of the egg start to undergo apical constrictions and form a cup-shaped pit, the so-called primitive pit 

(Fig. 1.6 A pp and A’). The primitive pit finally becomes a deep fold while the amnion and serosa start 

to spread to the ventral side, covering the embryo proper (Handel et al., 2000) (Fig. 1.6 B and B’). At 

the same time, the mesodermal cells undergo apical constriction and form a ventral furrow. The edges 

of the extraembryonic membranes are not yet closed at that time (serosal window) (Fig. 1.6 B’’). After 

serosal window closure, the mesoderm gets fully internalized. The abdominal segments are 

successively added from a posterior segment addition zone (Fig 1.6 C-C’’). During germ band extension 

the embryo is completely covered by the serosa and additionally by the amnion on the ventral side 

(Fig. 1.6 D and D’). The segments are now well-defined and the appendages like legs and mouth parts 

start to form (Fig. 1.6 D’’).  

 

 

Figure 1.6: Gastrulation of Tribolium castaneum 
(A–D) Schematic wildtype gastrulation and germband extension. (A’-D’) Lateral and (A’’-D’’) ventral view of DAPI stained 
embryos corresponding to the developmental stages depicted in A-D. (A) The formation of the posterior primitive pit (pp) in 
differentiated blastoderm embryos marks the onset of gastrulation. The anterior extraembryonic serosa (red) with its 
flattened and stretched-out cells can be easily distinguished from the embryo proper (green) with its columnar and cells in 
higher density (A’ and A’’). The cells neighboring the serosa border (purple) will form the amnion. (B) During gastrulation 
amnion and serosa overgrow the germ rudiment and form a deep posterior and a smaller anterior fold. (B and B’’) The edge 
of the extraembryonic tissue forms the serosal window (Sweeton et al.). (C-C’’) After closure of the serosal window, the 
amnion and the serosa are visible as separate membranes and protect the embryo during germband extension (D-D’’). 
(modified from van der Zee, 2005)  

                                                           
5 In former schemes the amnion comprised the whole dorsal-most side reaching to the primitive pit. Due to unpublished 
results by Matthew A. Benton, the borders of the amnion were modified in A. 
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The morphogenetic movements involved in mesoderm internalization in Tribolium vary along the 

anterio-posterior (AP) axis (Fig. 1.7). The mesoderm of the most anterior segments (pregnathal) stays 

relatively flat and forms a stiff plate, while the ectoderm breaks the contact and migrates ventrally 

until it fuses at the ventral midline (Fig. 1.7 A-A’’ and D). This mechanism resembles type II mode which 

is also observed during the gastrulation of Nasonia vitripennis (Hymenoptera). Similar to mesoderm 

internalization of Drosophila (type I), the more posterior parts of the mesoderm in gastrulating 

Tribolium embryos (thorax) form a deep ventral furrow until the ectodermal plates fuse on top of it 

(Fig. 1.7 B-B’’ and D). Interestingly, even a third type of mesoderm internalization can be observed 

during Tribolium gastrulation. The cells of the segment addition zone lack Tc-twist expression and form 

a multilayered mass. These cells clearly differ from the remaining epithelial cells and get pushed 

inwards by the ectoderm moving to the ventral midline (Fig. 1.7 C-C’’ and E) (Handel et al., 2005; Roth, 

2004).  

 
 

Figure 1.7: Different mechanisms of Tribolium mesoderm internalization along the AP axis 

Schematic model of different modes of mesoderm internalization. blue = lateral ectoderm, green = mesectoderm, red = 
mesoderm precursors expressing twist, pink = mesoderm precursors not expressing twist. (A-A’’) The anterior mesoderm 
forms a stiff plate and gets covered by the ectodermal epithelium. (B-B’’) The mesoderm of the thorax segments gets 
internalized, similar to Drosophila, by establishing a deep ventral furrow. (C-C”) In segments deriving from the growth zone 
(abdominal), a multilayered mass of cells is internalized by the migration of the lateral ectodermal cells. (D) Tribolium embryo 
during gastrulation. The lines correlate to the different mechanisms of mesoderm internalization. (E) Location of mesoderm 
internalization in the segment addition zone depicted in C. (modified from Lynch et al.,2012) 
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4.6 Aims of the study 

Previous results from our group suggest, that Fog is indeed conserved outside of drosophilids. 

Orthologs of the fast-evolving Fog protein could be identified not only in Tribolium, but also in Nasonia 

vitripennis. Recent studies seem to confirm the theory that apical constrictions in an epidermal sheet 

might be an adaption to enable a very fast gastrulation (Urbansky et al., 2016). Tribolium is a more 

basally branching member of the insects compared to the fruit fly. Thus, it differs drastically in 

embryogenesis and early morphogenetic movement. In consequence, the role of Fog signaling might 

deviate from its role during Drosophila gastrulation.  

In this work, I carefully analyze the expression patterns of Tc-fog, Tc-mist, Tc-cta as well as Tc-T48. As 

a second potential receptor (Smog), which might have a function redundant or maybe complementary 

to mist, was recently identified in Drosophila, I also analyzed the expression and function of Tc-smog. 

Furthermore, we wanted to analyze the influence of Fog signaling on different morphogenetic 

movements like mesoderm and gut internalization during Tribolium gastrulation. Thus, I investigated 

different defects in the respective knockdown embryos. In addition, the examination of changes in the 

mRNA expression patterns of the Fog signaling components in different knockdown backgrounds, may 

give further insights into the regulation of apical constriction by Fog signaling in Tribolium castaneum.  
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5 Results  

5.1 Expression patterns of the Fog signaling key components in Tribolium 

castaneum 

One homolog for each of the key components of Drosophila Fog signaling: folded gastrulation (fog), 

mesoderm invagination signal transducer (mist) and concertina (cta) could be identified by BLAST 

approaches (iBeetle Genome Browser; OGS 3.0). None of these genes shows an mRNA expression in 

syncytial stages of embryogenesis (data not shown). However, a BLAST search using transcriptomes of 

different embryonic stages (pre-blastoderm, blastoderm and differentiated blastoderm), indicates at 

least a maternal supply of the ligand Tc-fog and the G-protein α-subunit Tc-cta (iBeetle Genome 

Browser; RNA-Seq data was supplied by Michael Schoppmeier, Ho Chung, Ho Ryun and Uli Loehr). In 

fact, low expression levels are often hard to detect by in-situ hybridization (ISH). 

The mRNA expression patterns of the major players Tc-fog, Tc-mist) and Tc-cta were determined by 

ISH. A first signal of Tc-fog mRNA is detectable in the late blastoderm (Fig. 2.1 A) and becomes 

enhanced during the differentiated blastoderm stage (Fig. 2.1 B-E). It persists throughout gastrulation 

and during germ band extension (Fig. 2.1 F-H). Similar to the Dm-fog expression, Tc-fog is expressed in 

an additional domain on the ventral side of the embryo proper. In the differentiated blastoderm fog 

can be detected in a small mesodermal domain (Fig. 2.1 B). This expression domain expands to a broad 

stripe in the posterior mesoderm (Fig. 2.1 C and D) including the ventral part of the gastrulation fold 

(Fig. 2.1 E). However, fog expression only covers the posterior half of the Tc-twist domain (unpublished 

data, Rodrigo Nunes da Fonseca). During late gastrulation, the germ rudiment is covered by the amnion 

as well as the serosa. The mesodermal Tc-fog expression is now located in the posterior part of the 

extending germ band (Fig. 2.1 F-H).  
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Figure 2.1: Expression patterns of Tc-folded gastrulation (Tc-fog) throughout early embryogenesis 
(A-H) Whole mount ISH of wildtype embryos from early blastoderm until beginning of germ band extension. (A’-H’) DAPI 
staining of the respective embryos. The anterior is left, all dorsal view, except D and G which are ventral views. (A) 
Extraembryonic Tc-fog expression starts at the anterior pole of the embryo similar to markers of the early serosa (B-E) and 
persists throughout the serosa until late differentiated blastoderm stage. (B) Embryonic Tc-fog starts at a ventral domain 
most likely in the presumptive mesoderm. (C-E) The expression becomes enhanced at the ventral midline in later stages. (F-
H) Both, the serosal as well as the embryonic expression persist throughout gastrulation and beginning germ band extension. 
 

Although Fog signaling components are not expressed in the amnioserosa of Drosophila (Costa et al., 

1994; Manning et al., 2013), the extraembryonic mRNA expression domain is shared by the ligand and 

its receptor in Tribolium. Also, Tc-mist becomes first expressed in the serosa (Fig. 2.2 B). However, 

around the time the primitive pit starts to form, Tc-mist expression in the serosa starts retracting to 

the ventral side and eventually disappears at the onset of gastrulation (Fig. 2.2 C-F). Similar to Tc-fog, 

Tc- mist is expressed in an additional domain in the embryo proper. The expression starts at the 

differentiated blastoderm stage at the posterior pole of the egg (Fig. 2.2 B). During formation of the 

primitive pit (Fig. 2.2 C, D and E) and the posterior amniotic fold (Fig. 2.2 F), the posterior expression 

of Tc-mist becomes strongly enhanced. While the germ band extends, mist expression is restricted to 

the posterior segments. A pattern of stripes and spots is forming (Fig. 2.2 G and H).   
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Figure 2.2: Expression patterns of Tc-mist throughout early embryogenesis 
(A-H) Whole mount ISH of wildtype embryos from early blastoderm until beginning of germ band extension. (A’-H’) DAPI 
staining of the respective embryos. The anterior is left, all dorsal view, except D, G and H which are ventral views. (A-H) 
Wildtype expression of Tc-mist. (B) Tc-mist is first detected in the serosa of early differentiated blastoderm embryos. Around 
the same time Tc-mist expression becomes also initiated at the posterior pole. (C-E) The serosal expression of Tc-mist starts 
to vanish starting on the dorsal side until it finally completely disappears right before gastrulation. In contrast, expression 
becomes enhanced in the posterior region and is eventually visible throughout the posterior amniotic fold (F) which indicates 
the onset of gastrulation. (G) During germ band extension Tc-mist is expressed in the region of the posterior segments. (H) 
The expression pattern subsequently expands and becomes segmental when germ band extension proceeds.  
 

The mRNA expression of the G-protein α-subunit Tc-Concertina (Cta) is co-localized with the posterior 

expression domain of the receptor Mist. First signs of Tc-cta expression are visible in the early 

differentiated blastoderm stage (Fig. 2.3 B). As the embryo begins to gastrulate, the posterior 

expression of Tc-cta becomes stronger (Fig. 2.3 C-E). In contrast to Tc-mist expression, the borders of 

the concertina expression domain are not sharp but fuzzy (Fig. 2.3 C and D). However, late cta 

expression is rather weak and stays restricted to the most posterior part of the developing embryo 

(Fig. 2.3 G and H). 
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Figure 2.3: Expression pattern of Tc-concertina (Tc-cta) throughout early embryogenesis 
(A-H) Whole mount ISH of wildtype embryos from early blastoderm until beginning of germ band extension. (A’-H’) DAPI 
staining of the respective embryos. The anterior is left, all dorsal view, except G and H which are ventral views. (A-H) Wildtype 
expression of the G-protein α-subunit Tc-cta. Similar to Tc-fog, Tc-cta becomes first time visible shortly before primitive pit 
formation at the posterior pole of the embryo (B) and gets stronger during posterior amniotic fold formation (C-F). (G and H) 
During gastrulation and early germ band elongation Tc-cta is expressed in the segment addition zone of the embryo.  
 

In D. melanogaster, the mRNA expression domains of the ligand Fog and its receptor Mist largely 

overlap (Manning et al., 2013). In contrast, in Tribolium Tc-fog and Tc-mist only share their 

extraembryonic expression domain in the serosa, whereas they do not overlap in the embryo proper. 

Only Tc-fog is expressed in the mesoderm, which later gets invaginated by the formation of the ventral 

furrow. Instead, they share their expression domain in the extraembryonic serosa. Moreover, mist and 

the downstream component concertina are both expressed at the primitive pit, which develops into a 

deep fold during Tribolium gastrulation. Later they are expressed in the segment addition zone (Fig. 

2.4).  
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Figure 2.4: Comparison of the Fog signaling mRNA components expression domains 

(A-X) Whole mount ISH of wildtype embryos from early blastoderm until beginning of germ band extension. (A’-X’) DAPI 
staining of the respective embryos. The anterior is left, all dorsal view, except G and H which are ventral views., except for 
(D, G, L, O, P, W and X) which show ventral surface views. (A-H) Wildtype expression of Tc-fog. (I-P) Wildtype expression of 
Tc-mist. (Q-X) Wildtype expression of G-protein α-subunit Tc-cta. The receptor Mist and its ligand Fog show both an overlap 
in their extraembryonic mRNA expression domains. Furthermore, the posterior mRNA expression around the primitive pit is 
shared by Tc-mist and Tc-cta. 
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5.2 Knockdown of Fog signaling components in Tribolium results in a variety 

of defects 

In Drosophila, Fog signaling plays an essential role in cell shape changes and thus the internalization of 

epithelial sheets. Fog deficient embryos show disorganized apical constriction of presumptive 

mesodermal cells, the posterior midgut does not invaginate and the germ band fails to extend (Costa 

et al., 1994). 

To analyze the functional relevance of the Fog pathway in Tribolium embryogenesis, I produced not 

only Tc-cta knockdown (kd) but also Tc-fog kd and Tc-mist kd embryos by parental RNAi (pRNAi). 

Unfortunately, the Tc-cta kd leads to lethality and sterility of the injected beetles. Interestingly, the 

mutations in the cta gene were first isolated in a screen for female sterile mutations (Schupbach and 

Wieschaus, 1989). Females homozygous for these mutations survive but are sterile (Parks and 

Wieschaus, 1991). Even injection of adult beetles instead of pupae did not result in a sufficient amount 

of eggs for statistical analyses. Similarly, the injection of Tc-mist dsRNA leads to a sterility effect 

although much milder compared to Tc-cta kd. The best results were accomplished by injection of Tc-

fog dsRNA. Nevertheless, it was necessary to characterize the phenotype of mist and concertina 

knockdown embryos. DAPI stainings, as well as live-imaging movies revealed that the knockdown of 

all three key components of the pathway results in similar defects (Fig. 2.5).  

Extending Tc-fog kd germ band embryos show a variety of morphological defects (Fig. 2.5 A). The 

serosa fails to migrate over the posterior pole and leaves the embryo uncovered at the ventral and 

posterior side. Thus, the embryo looks broader at the posterior end. However, the anterior head lobes 

are covered by the serosa. Similar defects are observed in Tc-mist and Tc-cta knockdown embryos of 

the same developmental stage (Fig. 2.5 B and C). In summary, the loss of Tc-fog, Tc-mist and Tc-cta 

affects the embryos in the same way. Furthermore, the phenotypic penetrance was for all three 

knockdowns around 75-95% (Tc-fog kd: N=163; Tc-mist kd: N=57; Tc-cta kd: N=83). 

 
 

Figure 2.5: Knockdown of Tc-fog, Tc-mist and Tc-cta by RNAi results in the same phenotype. 

(A-C) DAPI staining of Tc-fog, Tc-mist and Tc-cta knockdown embryos. The anterior is left, all lateral view, the dorsal side is 
upwards. All pictures show lateral views of embryos during early germ band extension. In all three knockdown embryos the 
serosa is only covering part of the future head lobes while the posterior of the embryo is broader and not covered by serosa.   
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5.3 Fog signaling is required for primitive pit formation  

Live-imaging is an excellent method to get a more detailed impression of the early morphogenetic 

movements during Tribolium embryogenesis and its disturbance after RNAi. Compared to looking at 

fixed samples, live-imaging enables real-time analysis of morphogenetic changes. To image enough 

embryos for proper statistics, the development of more than only one embryo was tracked at the same 

time. As control, embryos from mock (H2O) injected mothers were simultaneously imaged. 

To further characterize the embryonic and extraembryonic development of knockdown embryos 

compared to the wildtype, we used a “Life-Actin” line (created by Tania Vazquez Faci; Van der Zee lab; 

unpublished). In this transgenic line, the cell outlines are labeled by GFP fused to actin. The pictures in 

Figure 2.6 show stills from movies of wildtype and cta knockdown embryos and are used for an 

accurate description of the various defects. Due to the strong sterility effect after injection of dsRNA 

for Tc-cta, the statistics are based on embryos upon Tc-fog kd. More than 180 embryos of mothers 

injected with Tc-fog dsRNA were analyzed by live-imaging (Fig. 2.7, movies in Appendix H). Around 76% 

(N=139) of the embryos showed a strong phenotype (Fig. 2.7 A). A limiting factor for the evaluation of 

the different defects is the orientation of the respective embryos. Thus, the number of the analyzed 

embryos (N) varies between the subgroups of defects (see Fig. 2.7 B, and Table C). 

In a wildtype undifferentiated blastoderm embryo, the cells are evenly distributed and shaped. The 

posterior pole does not show a sign of invagination yet (Fig. 2.6 A and A’). Around 8h AEL the 

extraembryonic serosa is specified in the anterior part of the egg. As the serosa cells are bigger they 

can be easily distinguished from the embryo proper (Fig. 2.6 B, dashed line marks the embryo-serosa 

border). Around the same time, the most-posterior cells start to flatten (Fig. 2.6 B’). These cells 

subsequently bend inwards and the primitive pit is formed (Fig. 2.6 C and C’), which finally becomes a 

deep amniotic fold (Fig. 2.6 D and D’) when the embryo gastrulates. The extraembryonic tissue 

(amnion and serosa) starts to cover the germ band on the ventral side which can be easily seen by the 

still open serosal window (Fig. 2.6 E, arrow). After around 14h AEL the serosal window finally closes 

(Fig. 2.6 F, arrow) and the germ band elongates.  
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Figure 2.6: Description of the Tc-cta knockdown phenotype throughout early Tribolium embryogenesis 

Stills from movies of a Life-Actin line. The anterior is left, the dorsal side is upwards. (A-F) Development of a WT embryo. (A) 
Undifferentiated blastoderm wildtype embryo. (B) In the differentiated blastoderm the serosa is specified. (B’) The most 
posterior cells of the embryo start to flatten. (C and C’) The primitive pit is formed. (D and D’) During gastrulation, the primitive 
pit develops to a deep fold. (E) Amnion and serosa envelop the embryo. (F) The serosal window closes during germ band 
extension. (G-L) Development after Tc-cta knockdown. (G and G’) No defects are visible in an undifferentiated blastoderm 
embryo. (H/H’ and I/I’) The posterior cells flatten but no primitive pit is formed. (I/I’) The amnion cells become visible at the 
posterior-dorsal side of the egg (I; yellow outline). (J/J’) The actin-myosin cable at the border of the serosa-amnion border 
becomes visible (blue arrow). Aggregation of cells at the posterior pole of a Tc-cta kd embryo (white arrow). (K; blue arrow) 
The serosa only covers part of the head lobes but not the remaining embryo. (K; white arrow) The serosa rips off from the 
amnion. (L) Sometimes holes open during germ band extension.  
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Compared to the wildtype, cta and fog-RNAi embryos show several defects in embryonic development, 

especially in morphogenesis. Although the most-posterior cells move slightly away from the vitelline 

membrane surrounding the egg (compare Fig. 2.6 G/G’ and H/H’), they do not undergo apical 

constriction. In 95% (Fig. 2.7 B) of differentiated blastoderm stage embryos no formation of a primitive 

pit can be observed (Fig. 2.6 compare C/C’ and I/I’). Instead, the extraembryonic amnion cells become 

visible at the posterior-dorsal side of the egg (Fig. 2.6 I; white outline), as they become broader. 

However, in cta-RNAi as well as fog-RNAi embryos, they look more similar to the flat and broad serosa 

cells, from which they are separated by an actin-myosin cable (Fig. 2.6 J, blue arrow). In 96% (Fig. 2.7 

B) of the knockdown embryos, the serosa and the amnion remain on the dorsal side of the egg. 

Furthermore, embryos lacking Fog signaling components do not form a deep posterior amniotic fold 

during gastrulation (compare Fig. 2.6 D and J). The embryo starts to develop without getting covered 

by amnion and serosa. In addition, one can observe an aggregation of cells at the posterior pole (Fig. 

2.6 J/J’ arrow) in ~85% (Fig. 2.7 B) of the kd embryos. Probably, the serosa cells do not manage to 

flatten and are thus not able to surround the embryo. In consequence, they rip off from the amnion 

cells when the lateral sides of the embryo start to condensate (Fig. 2.6 K; white arrow, 96% see Fig. 2.7 

B). Interestingly, the serosa is still able to cover at least part of the head lobes in around 90% (Fig. 2.7 

B) of the embryos (Fig. 2.6 K; orange arrow). In some embryos, holes open up in the abdominal 

segments of the elongating germ band (Fig. 2.6 L). These holes become wider as the germ band 

elongation proceeds. However, only about 29% of the Tc-fog knockdown embryos show this dramatic 

defect. Thus, it is likely that this effect represents the strongest phenotypic defect. 
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Figure 2.7: Statistical characterization of the Tc-fog kd phenotype 

(A) 98% of the offspring of beetles injected with H2O show a normal development (N=124). In comparison, the relative phenotypic penetrance upon Tc-fog RNAi is 76% (N=183). (B) Knockdown of 
Tc-fog results in several morphological defects. In 96% of all knockdown embryos the serosa does not expand towards the ventral side of the egg and ruptures from the embryo proper around 
beginning of germ band extension. Nevertheless, the anterior head lobes of almost all knockdown embryos (90%) are covered by the serosa. In addition, the majority of Tc-fog kd embryos (95%) 
fail to form a primitive pit. Instead, in around 85% of the offspring the presumptive primordial germ cells become visible at the posterior end. Less often (29%) the formation of holes along the 
midline of the embryos could be observed. (C) The table shows the absolute numbers as well as the percentage of the control as well as the fog kd embryos and their different defects.  
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5.4 Mesoderm invagination is delayed upon Tc-fog knockdown  

Another essential step during Tribolium gastrulation is the invagination of the ventrally located 

mesoderm. A deep ventral gastrulation furrow forms in wildtype embryos. However, compared to 

Drosophila, the depth of this furrow varies along the anterio-posterior axis (Handel et al., 2005). After 

disruption of Fog signaling, Drosophila embryos show an incomplete invagination of the mesoderm 

during gastrulation (Kolsch et al., 2007; Sweeton et al., 1991). To test for a potential conserved function 

of Fog signaling in mesoderm internalization, I used Tc-fog knockdown embryos. As the invagination 

of the mesoderm and especially the closure of the overlying ectoderm is difficult to track via live 

imaging, fixed embryos were investigated. In order to ensure proper staging, the embryos were 

primarily staged using a two-hour time window. Second, the process of segmentation was determined 

by an in-situ hybridization using the segmentally expressed pair-rule gene Tc-gooseberry (Tc-gsb) 

(Davis et al., 2001). Simultaneously, the mesoderm was stained with an mRNA probe for Tc-twist. To 

visualize and compare the mesoderm invagination along the entire anterio-posterior axis, wildtype as 

well as fog knockdown embryos were sectioned in 30µm slices.  

 

In horseshoe stage embryos (~16-18h AEL) the anterior part of the ventral furrow is quite shallow (Fig. 

2.8 A1), whereas the furrow becomes more prominent in middle and posterior regions of the 

gastrulating embryo (Fig. 2.8 A2 and A3). Nevertheless, the mesoderm is not yet internalized and the 

ectoderm is still widely open. In comparison, slightly older wildtype embryos around serosal window 

closure (~19-21h AEL) show a complete internalization of the Tc-twist expressing mesodermal cells 

along the entire AP-axis (Fig. 2.8 B1-B3). At that time point, the embryo proper got completely covered 

by amnion and serosa (Fig. 2.8 B) and the neighboring ectodermal plates have fused on top of the 

mesoderm. The gastrulation of embryos upon Tc-fog knockdown differs from the wildtype situation. 

Due to the missing primitive pit and amniotic fold formation, the Fog-deficient embryos around 19-

21h AEL did not get covered by amnion and serosa (Fig. 2.8 C). Although the overall morphology looks 

very different from wildtype embryos of the same age, the number of Tc-gooseberry stripes indicate a 

similar developmental stage (Fig. 2.8 compare B and C). Nevertheless, the mesoderm internalization is 

clearly delayed. The location of the Tc-twist expressing cells in the cryo-section resembles the situation 

of younger wildtype embryos. The ventral furrow is less curved in Tc-fog knockdown embryos 

compared to the control, especially in posterior regions (Fig. 2.8 compare A3 and C3). Furthermore, the 

borders of the ectodermal plates did not yet fuse along the ventral midline (Fig. 2.8 C1-C3).  
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To investigate ventral furrow formation on a cellular level, embryos of the respective stages were 

stained with a nuclear marker (Sytox green) and the cell outlines were visualized by an F-actin labeling 

with Phalloidin (magenta). Wildtype embryos after serosal window closure have a completely 

internalized mesoderm which has already differentiated to a mesenchymal mass and is covered by the 

ectoderm (Fig. 2.8 E-E’’). The progress of mesoderm internalization in embryos of the same 

developmental age lacking Tc-fog mRNA, resembles more a younger wildtype situation (Fig. 2.8 

compare D-D’’ and F-F’’). The depth of the ventral furrow as well as the progress of ectoderm closure 

is similar between Tc-fog knockdown embryos 19-21h AEL and wildtype embryos around the 

horseshoe stage. 

Although Tc-fog knockdown embryos form a ventral furrow for mesoderm internalization the depth of 

the furrow and the timing differ from the wildtype situation. The mesoderm internalization upon loss 

of Fog signaling is delayed compared to the wildtype control.  
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Figure 2.8: Mesoderm internalization is delayed in Tc-fog RNAi embryos 

(A-C) Whole mount ISH of embryos from early horseshoe wildtype embryos (16-18h AEL, 25°C) and slightly older (19-21h AEL, 

25°C) wildtype and fog kd embryos. DAPI staining in blue. Tc-gooseberry (orange in A-C; red in A1-C3) was used as segmental 

marker to determine the developmental stage and as orientation along the anterio-posterior axis. The forth stripe between 

C2 and C3 is very weak, but visible in lateral views. The anterior pole points to the left. (A1-C3) Cryosections of the respective 

embryos seen in A-C. Tc-gooseberry expression was detected by Fast Red (magenta) and the mesodermal marker Tc-twist 

was stained by NBT/BCIP (blue). The figure shows three different sections of each embryo along the anterio-posterior axis. 

(A1-A3) Wildtype embryos at the horseshoe stage show already the formation of a ventral furrow in order to internalize the 

mesoderm. Whereas the furrow is very deep in posterior regions (A3), it is flatter in the anterior part of the embryo. (B1-B3). 

When the germ band starts to elongate, the mesoderm is already fully internalized along the whole anterio-posterior axis. 

(C1-C3) In comparison, the ectoderm is not yet closed on top of the mesoderm in Tc-fog kd embryos of the same age. (D-F’’) 

Phalloidin (magenta) and Sytox (green) staining of a posterior area of embryos of an equivalent age as the embryos in A-C. 

Although wildtype embryos around 19-21h AEL have an internalized mesoderm which already starts to differentiate, fog kd 

embryos show the formation of a ventral furrow (F-F’’) comparable to younger wildtype embryos (D-D’’).  
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As the first results suggested that at least the depth and speed of ventral furrow formation is affected 

but probably not the mesoderm internalization itself, further experiments were done. During germ 

band extension, the internalized mesoderm becomes segmented. These segmental cluster of Tc-twist 

expressing cells can be visualized in longitudinal sections (Figure 2.9). In wildtype embryos the 

mesoderm is on the ventral side covered by the ectoderm. Furthermore, the sections clearly show the 

organization of the differentiating mesoderm in the respective thorax and abdominal segments of the 

elongating embryo (Fig. 2.9 A-B’). The whole embryo proper is protected by the amnion, from which 

it is separated by a liquid filled space, the amniotic cavity (Fig. 2.9 C). Tc-fog knockdown embryos show 

a general developmental delay (Fig. 2.9 D). Although the Tc-twist positive cells are at this stage 

completely covered by the ectoderm, the organization of the mesoderm seems to be affected. Some 

of the mesodermal cells are not as deeply internalized as in control embryos (Fig. 2.9 D-E’). 

Furthermore, the development of the segments is defective after Tc-fog knockdown. The segmental 

mesoderm looks misshaped and less organized (Fig. 2.9 compare B and E). The morphogenetic defects 

are most severe at the posterior end of the developing embryo. Instead of covering the ectoderm on 

the ventral side, the amnion is located posterior-dorsally to the embryo proper. Neighboring the 

amnion, the serosa is covering the yolk on the dorsal side of the egg (Fig. 2.9 F). These results suggest 

that the mesoderm gets indeed internalized even after loss of Fog signaling. However, the 

internalization is not as organized as in wildtype embryos.  

 

Figure 2.9: Internalization of the mesoderm in extending germ band embryos 
(A, B, D, E) Whole mount ISH of elongating germ band embryos. (B’, C, E’ and F). DAPI staining of the respective embryos. 
Anterior points towards the right, dorsal side is up. (A) The mesoderm of almost fully extended wildtype embryos is visualized 
by the expression of Tc-twist. (B) The mesoderm is internalized and covered by a layer of ectodermal cells. (C) In the posterior 
segment addition zone, the mesoderm (me) is facing the yolk. The amnion (am) covers the ectoderm (ec) on the ventral side. 
(D and E) Also Tc-fog RNAi embryos of the same age show internalization of the mesoderm. (E’ and F) However, the segmental 
mesodermal packs seem to be less defined, especially in posterior regions of the embryo.  



74 
 

As the mesoderm internalization is clearly affected by loss of Fog signaling, it is interesting to further 

investigate the formation of different mesodermally derived tissues. Two different transgenic lines 

were used in order to visualize the development and organization of somatic muscles and cardioblasts. 

Uninjected control embryos of the pBA-19 line (Lorenzen et al., 2003) express EGFP in all somatic 

muscle cells shortly before hatching of the larva (Fig. 2.10 A). Although the muscles are clearly visible 

in Tc-fog knockdown embryos, they seem to be less organized compared to the very structured somatic 

muscle pattern in control embryos (Fig. 2.10 B).  

A second mesodermally derived tissue is the dorsally located heart. The enhancer trap line G04609 (or 

heart-GFP line; Trauner et al., 2009; Koelzer et al., 2014) expresses EGFP in the cardioblast cell row 

(Fig. 2.10 C, white arrows). In control embryos, the cardioblast cell rows move to the dorsal side of the 

embryo, where they fuse during dorsal closure. However, in Tc-fog knockdown embryos, the number 

of cardioblasts is strongly reduced (Fig. 2.10 D, white arrow). In addition, there is a second EGFP signal 

in the heart-GFP line, which is presumably a subgroup of cells located next to tendons (Koelzer et al., 

2014). Also this group of cells is affected by loss of Fog signaling. Although most of these cells seem to 

be present, they are unevenly distributed and form misshaped groups (Fig. 2.10 compare C and D). In 

summary, the results indicate a delay in mesoderm invagination upon loss of Tc-fog. However, similar 

to Drosophila, the vast majority of the mesoderm gets internalized. Compared to wildtype embryos, 

the internalization process is less organized. In consequence, the differentiation of cardioblasts as well 

as the accurate positioning of the somatic muscles is affected.  

 

Figure 2.10: Defects of the mesodermal derived tissue in late embryonic development 

(A and B) Embryos of the pBA19 enhancer trap line embryo (Lorenzen et al., 2003). The body wall muscles marked by EGFP 
in the pBA19 line (A) are formed after Tc-fog kd (B) although they show a more disorganized distribution compared to 
wildtype. (C and D) embryos of the enhancer trap line G04609. The cardioblast cell row (the presumptive heart) of this 
enhancer trap line expresses EFGP (green) (Trauner et al., 2009; Koelzer et al., 2014). (C) In wildtype embryos the cardioblast 
cells can be easily observed (arrows), while there is only a small bunch of GFP positive cardioblasts formed in Tc-fog RNAi 
embryos.  
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5.5 Positioning of the primordial germ cells is controlled by Fog signaling 

One of the most important roles of Fog signaling in Drosophila is the posterior midgut invagination. 

During gastrulation, a group of cells at the posterior pole undergoes apical constriction and thus start 

to invaginate. In Tribolium, the process of primitive pit and amniotic fold formation seems to correlate 

with the invagination of the posterior midgut in Drosophila. As shown before, Tc-mist as well as Tc-cta 

are both expressed at the posterior pole (Fig. 2.4). Furthermore, in 95% of the analyzed embryos (Fig. 

2.7 B), loss of one of the main Fog signaling components results in absence of the primitive pit (Fig. 2.6 

H-J). In wildtype embryos, the cells at the posterior pole give rise to the posterior midgut and hindgut 

(Berns et al., 2008). Unlike in Drosophila, Tribolium embryos do not develop pole cells. However, the 

cells forming the primitive pit are positive for the putative primordial germ cell marker Tc-tapas (Fig. 

2.11 A and E) (unpublished data Jeremy Lynch, University of Illinois Chicago). During gastrulation these 

cells move to the inside, although the exact mechanisms of primordial germ cell internalization in 

Tribolium castaneum are yet unknown. When the germ band starts to elongate, the primordial germ 

cells form a cluster of cells located at the posterior tip of the segment addition zone (Fig. 2.11 B and 

F). 

Analyzing live-imaging movies Tc-fog knockdown embryos revealed that 85% of the gastrulating 

knockdown embryos show the formation of an external cluster of cells at the posterior end (Fig. 2.6 J 

and 2.7 B). Further experiments show that this cell cluster expresses Tc-tapas (Fig. 2.11 C and G). The 

cells remain at the posterior pole associated with presumptive endoderm even during germ band 

extension (Fig. 2.11 D and H). It seems that Fog signaling is required for the correct positioning of the 

primordial germ cells during Tribolium gastrulation.  
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Figure 2.11: Germ cells upon Tc-fog knockdown visualized by Tc-tapas 

(A-H) Whole mount ISH for the potential germ cell marker Tc-tapas of embryos at primitive pit stage (A, C, E and G) and germ band extension (B, D, F and H). (A’-H’) DAPI staining of the respective 

embryos. The anterior to the left. All embryos shown in lateral views. (A and E) Tc-tapas was used to visualize the future germ cells, which are located in the primitive pit region of wildtype embryos. 

(B and F) Later during germ band elongation the germ cells got already invaginated and are visible at the posterior end of the embryo. In comparison, Tc-fog knockdown embryos (C and G) do not 

develop a primitive pit and the Tc-tapas expressing cells are separated from the embryo proper. (D and H) Also during gastrulation the germ cells do not get internalized and are visible at the 

posterior pole of the egg, sitting on top of the extending germ band. 
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5.6 Regulation of Fog signaling in Tribolium 

In Drosophila melanogaster, the ventrally expressed transcription factors twist and snail are required 

for both, specification of the mesoderm and activation of ventral fog expression (Manning and Rogers, 

2014). Loss of Dm-twist and Dm-snail cause depletion of the mesodermal fog domain (Leptin, 1994). 

However, the dorsoventral gene regulatory network (DV-GRN) of Tribolium differs from the Drosophila 

dorsoventral patterning system. To identify the regulatory mechanisms of Fog signaling in Tribolium, 

it was necessary to analyze the expression domains of Tc-fog and Tc-mist in different RNAi 

backgrounds.  

Like in Drosophila, Tribolium twist shows expression in a ventral stripe (Sommer and Tautz, 1994). As 

Tc-fog expression is co-localized in a mesodermal domain (Fig. 2.12 A), it seemed likely that its 

mesodermal expression is regulated by Twist in Tribolium, too. Interestingly, neither Tc-fog nor Tc-mist 

showed changes in their mRNA expression pattern after knockdown of Tc-twist (Fig. 2.12 B and F). 

Prior experiments in Tc-snail embryos showed the same result for Tc-fog (unpublished data from 

Cornelia von Levetzow). Thus, it seems that unlike in Drosophila, mesodermal Fog signaling is not 

regulated by Twist or Snail but by another dorsoventral patterning gene.  

Similar to Drosophila, Toll is the key regulator of the DV-GRN in Tribolium (Lynch and Roth, 2011). The 

dynamic nuclear Dorsal gradient, with peak level at the ventral side then activates different target 

genes in a concentration-dependent manner (Chen et al., 2000; Nunes da Fonseca et al., 2008). The 

loss of Toll results in dorsalization of the embryo (Fonseca et al., 2009). The mesoderm as well as parts 

of the neuroectoderm are missing. Furthermore, the embryo-serosa border becomes straight and is 

shifted towards the posterior pole, which causes also a reduction of the presumptive head region. As 

expected, the embryonic ventral expression domain of Tc-fog is depleted in Tc-Toll knockdown 

embryos (Fig. 2.12 C). Due to a reduction of the ventral serosa, Tc-mist shows a weak uniform 

expression. The posterior mRNA expression of Tc-mist however, remains unaffected (Fig. 2.12 G).  

Another gene which was chosen to analyze the regulation of Fog signaling in Tribolium was Tc-caudal 

(Tc-cad). Tc-caudal is expressed in a posterior-to-anterior gradient and is thus an essential part of the 

posterior system (Schroder et al., 2000; Wolff et al., 1998). Similar to Tc-Toll knockdown embryos, Tc-

caudal deficient embryos still form a primitive pit, although the formation of the posterior amniotic 

fold is less distinct. In addition, the dorsal serosa is expanded towards the posterior pole. Analysis of 

the Tc-fog expression domain upon Tc-caudal knockdown revealed on the one hand a loss of the 

mesodermal expression and on the other hand the de novo appearance of a posterior Tc-fog domain 

(Fig. 2.12 D). Thus, it is likely that Caudal regulates Tc-fog expression in opposing ways. It activates Tc-
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fog expression in the mesoderm and simultaneously inhibits fog at the primitive pit. However, loss of 

Tc-caudal did not influence the expression of Tc-mist (Fig. 2.12 H).  

The results of the careful analyses of Fog signaling components in different genetic backgrounds 

suggest, that Fog signaling in Tribolium might be regulated not only by dorsoventral patterning. Rather 

also parts of the anterio-posterior gene regulatory network are involved.  

 

  

Figure 2.12: Expression of Tc-fog and Tc-mist in different RNAi backgrounds 

(A-H) Whole mount ISH of wildtype and knockdown embryos around primitive pit stage. The anterior is left, the dorsal side 
is upwards. (A) In wildtype embryos of the primitive pit stage, Tc-fog is expressed in the serosa and the posterior part of the 
future mesoderm. (E) Similarly, also Tc-mist shows in addition to a posterior expression domain at the primitive pit, serosal 
expression. However, the expression starts to faint from the dorsal side of the serosa. (B and F) Knockdown of Tc-twist does 
not influence the expression domains of fog and mist. (C) Although the ventral posterior expression domain is abolished in 
Tc-Toll kd embryos, they are still able to form a primitive pit. (G) Tc-Toll RNAi embryos are still expressing mist around the 
primitive pit. (D)Tc-caudal knockdown causes loss of the ventral Tc-fog expression, whereas a new expression domain appears 
at the posterior pole. (H) However, both Tc-mist expression domains remain unaffected by loss of Tc-caudal.  
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As afore mentioned, unlike Tc-fog knockdown embryos, embryos after Tc-Toll knockdown are still able 

to form a posterior fold comparable to the amniotic fold. However, this fold looks more radial-

symmetric than in wildtype embryos (Fig. 2.13 A). Due to loss of the mesoderm in Toll knockdown 

embryos, the ventral Tc-fog expression domain gets lost, whereas Tc-mist expression is still detectable 

(Fig. 2.13 C and G). To analyze the effect of the posterior mRNA expression of the receptor without the 

embryonic mRNA expression of its ligand Fog on the formation of the amniotic fold, embryos deficient 

for both, Tc-Toll and Tc-fog were generated. dsRNA for both genes was co-injected in a transgenic line 

expressing nuclear EGFP (each 1µg/µl) (Sarrazin et al., 2012). The development of the double 

knockdown embryos and a wildtype control were documented by live-imaging. 

94% of the offspring derived from mothers injected with dsRNA for Tc-Toll and Tc-fog showed a 

phenotype (Fig. 2.13 B). Nevertheless, not all of the defective embryos showed the expected defects 

for a double knockdown. Around 7% of the embryos showed the typical phenotype of a Tc-fog 

knockdown (Fig. 2.13 B). Interestingly, none of the 76 investigated embryos showed only the defects 

of a Tc-Toll single knockdown. However, 99% of the double knockdown embryos showed no sign of 

primitive pit formation and embryo invagination (Fig. 2.13 A and B). Furthermore, the germ cells were 

also visible in some of the double knockdown embryos. Statistics on the occurrence of germ cells were 

not possible as the germ cells are not easy to detect in nGFP embryos.  
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Figure 2.13: Double knockdown of Tc-Toll and Tc-fog results in loss of the posterior amniotic fold 
(A) DAPI staining of Tc-Toll, Tc-fog and Tc-Toll + Tc-fog knockdown embryos. The anterior pole points to the left, the dorsal 

side points upwards. All pictures show lateral views of embryos during formation of the posterior amniotic fold. Although, 

the posterior fold is forming upon knockdown of Tc-Toll, it is missing in Tc-fog knockdown embryos and after double 

knockdown of Tc-Toll + Tc-fog, respectively. (B) The statics shows that 97% of the mock embryos (H2O injected mothers) 

develop a normal primitive pit. 3% of the control embryos show a natural occurrence of random defects. 87% of the embryos 

derived from mothers injected with Tc-Toll + Tc-fog dsRNA do not form a primitive pit. 7% of the knockdown embryos show 

only the defects typical for a Tc-fog single knockdown and 6% of the embryos were wildtypes.  
 

These results indicate that the formation of a posterior fold in Tc-Toll knockdown embryos depends on 

Fog signaling. Although the ventral Tc-fog mRNA expression neighboring the posterior pole is missing 

upon Tc-Toll knockdown, the formation of an amniotic fold suggests that the posterior localized 

receptor still gets activated. One explanation could be a long-range signaling by diffusion of the Fog 

protein diffusing from the serosa. Another possibility is, that Fog signaling might have a distinct 

function in serosa spreading and that this spreading, which is absent in Tc-Toll + Tc-fog double 

knockdown embryos, might be required for primitive pit formation. 
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5.7 Serosa spreading - A novel function of Fog signaling 

So far, it was believed that Fog signaling is especially important for apical constrictions during insect 

gastrulation. However, both the ligand Tc-fog as well as its receptor Tc-mist are expressed in the 

extraembryonic serosa during the differentiated blastoderm stage (Fig. 2.14 A and B). Although the 

serosal Tc-mist expression disappears during gastrulation (Fig. 2.2 E), Tc-fog expression persists (Fig. 

2.14 F-H). The membrane marker GAP43-YFP (Benton et al., 2013) enables the visualization of the cell 

outlines during embryonic development. During gastrulation of wildtype embryos, the serosal cells 

flatten and thus become wider (Fig. 2.14 C). The change of the cell shape is important as the serosa 

cells do not undergo further cell divisions, but have to surround the whole embryo proper during germ 

band extension (Fig. 2.14 E). At the stage of serosal window closure, the serosal cells have reached the 

highest level of cell flattening, seem to have the same size and are evenly distributed in the entire egg 

(Fig. 2.14 E and E’, blue marked cells).  

The single knockdown of Tc-fog leads usually to a weaker phenotype when the dsRNA is not injected 

into adults but embryos (injections performed by Matt A. Benton). As fog is maternally supplied 

(iBeetle Genome Browser; RNA-Seq data was supplied by Michael Schoppmeier, Ho Chung, Ho Ryun 

and Uli Loehr), the already existing protein weakens the RNAi effect. Although, the loss of Tc-fog is still 

strong enough to cause defects in internalization of the germ cells (Fig. 2.14 D), the serosa manages to 

cover the embryo during germ band elongation (Fig. 2.14 F). This circumstance enables a more 

accurate comparison of the serosa spreading in wildtype and Tc-fog knockdown embryos. Compared 

to the evenly enlarged serosa cells in wildtype embryos, the serosa of weak Tc-fog kd looks less 

organized. The anterior serosa cells are still very small and not as flat as more posterior cells. 

Furthermore, the more posterior serosa cells are extremely large and stretched (Fig. 2.14 F and F’, red 

marked cells). This effect is probably caused by the condensation of the embryo proper which pulls the 

neighboring serosa cells ventrally.  
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Fig. 2.14: Loss of Tc-fog affects serosal expansion 
(A and B) Expression of Tc-fog and Tc-mist in differentiated blastoderm wildtype embryos. Both genes are expressed in the 
extraembryonic serosa. (C, E) Wildtype embryos injected with H2O and the membrane marker GAP43-YFP. (D and F) Embryo 
injected with Tc-fog RNAi and GAP43-YFP. (E’ and F’) Higher magnification of embryos depicted in E and F. The anterior is 
left, the dorsal side is upwards. (A) Wildtype expression of Tc-fog. (B) Wildtype expression of Tc-mist. (C) A wildtype embryo 
at the beginning of gastrulation.  Amnion and serosa starts to fold over the embryo proper. (E) The same embryo depicted in 
C shortly after serosal window closure. The serosa cells (blue) are evenly sized and distributed (also see E’). (D) A Tc-fog 
knockdown embryo showing a mild phenotype. Although the germ cells are visible during gastrulation, serosa and amnion 
manage to over grow the embryo. (F) Shortly before serosal window closure, a weak Tc-fog kd shows an uneven pattern of 
the serosa cells (red). (F’) The anterior serosa cells are very small, whereas the more posterior serosa cells look wider and 
plane. (pictures C-F provided by Matthew A. Benton) 
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The co-expression of Tc-fog and Tc-mist already suggested a potential function of Fog signaling in the 

serosa of Tribolium embryos. In addition, the formation of an amniotic fold after Tc-Toll knockdown 

(Fig. 2.6 C and G) supposes, that the Fog protein might diffuse from the serosa to the posterior pole 

and acts via long range signaling. Our recent results in weak Tc-fog knockdowns indicate that the serosa 

might not only be a second source for posterior Fog signaling, but that it might have a novel function 

in coordinated cell flatting and spreading of the serosa cells during gastrulation.  

 

 

5.8 Knockdown of smog does not result in morphogenetic defects 

Recent studies (Kerridge et al., 2016), revealed that a second G-protein coupled receptor (GPCR) called 

Smog, is required for cell shape changes associated with both mesoderm invagination and ectoderm 

elongation. This additional receptor of Fog signaling is ubiquitously expressed in Drosophila. To analyze 

if Smog is also involved in early Tribolium morphogenesis, it was first identified by a BLAST approach 

(iBeetle Genome Browser; OGS 3.0). 

 

In a second step, the expression pattern of Tc-smog was determined. Different embryonic stages, 

including the yet uncellularized pre-blastoderm (syncytium) (Fig. 2.15 A’), the blastoderm Fig. 2.15 B’), 

the differentiated blastoderm (Fig. 2.15 C’), different gastrulation stages (Fig. 2.15 D’-F’) and the early 

elongating germ band (Fig. 2.15 G’ and H’) were analyzed. None of the stages showed a definite 

staining result. The weak color reaction seen in all embryonic stages (Fig. 2.15 A-H) could indicate a 

weak uniform expression of Tc-smog. However, also the sense probe showed a very weak signal. Such 

weak stainings can also be interpreted as unspecific background staining. According to transcriptomic 

data (iBeetle Genome Browser; RNA-Seq data was supplied by Michael Schoppmeier, Ho Chung, Ho 

Ryun and Uli Loehr), smog is weakly expressed in the ovaries but not in the blastoderm. However, 

other transcriptome data suggest a general expression of Tc-smog in a not further defined stage (RNA-

Seq data was supplied by the iBeetle consortium and 9 external contributors). Functional studies on 

knockdown embryos generated by both, parental6 (N=11) as well as embryonic (N=20) dsRNA injection 

did not indicate a function of Tc-smog on early morphogenetic movements or cell shape changes in 

Tribolium catsaneum (data not shown). 

  

                                                           
6 The injection of Tc-smog dsRNA in pupae as well as in adults results in sterility of the females. Thus, the knockdown 

experiment was repeated by embryonic injections.  
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Figure 2.15: Expression patterns of Tc-smog 

(A-H) Whole mount ISH of wildtype embryos from early blastoderm until beginning of germ band extension. (A’-H’) DAPI 
staining of the respective embryos. The anterior pole to the left, the dorsal side upwards, except for F, G and H which show 
ventral surface views. In Tribolium castaneum smog is either not expressed or shows a very weak uniform expression 
throughout early embryonic development. The blue dots in C-H are unspecific background staining.  
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5.9 T48 does not contribute to mesoderm internalization in Tribolium 

castaneum 

Another gene which contributes to cell shape changes in Drosophila melanogaster is T48. It encodes 

for a transmembrane protein that helps to recruit RhoGEF2 to apical membranes. Under control of 

Dm-Twist, it is expressed in a ventral stripe (Gould et al., 1990; Leptin, 1991). Like loss of Fog or Cta 

alone, the depletion of T48 affects mesoderm internalization but does not block it completely. Thus, a 

strong effect on mesoderm internalization could only be detected by abolishing both T48 and Fog 

signaling (Kolsch et al., 2007). Most likely, T48 and Fog signaling act in parallel to concentrate RhoGEF2 

apically and they redundantly contribute to mesoderm invagination in D. melanogaster (Manning and 

Rogers, 2014). 

Tc-T48 has been identified and cloned in our lab previously, but no expression or functional data could 

be obtained using ISH and RNAi (unpublished data, Rodrigo Nunes da Fonseca and Cornelia von 

Levetzow). As the quality of the Tribolium genome increased over the last years, and transcriptomic 

data of different developmental stages became available, we wanted to review the previous results. I 

could verify the old sequencing data by BLAST to the new official genome (iBeetle Genome Browser; 

Tcas 5.2/OGS 3.0). An in-situ hybridization using an additional probe, which does not overlap with the 

previously used one, did result in uniformly stained embryos of different developmental stages (data 

not shown), consistent with transcriptomic data of blastoderm and differentiated blastoderm embryos 

(iBeetle Genome Browser; RNA-Seq data supplied by Michael Schoppmeier, Ho Chung, Ho Ryun and 

Uli Loehr). However, parental (N=296 embryos) as well as embryonic RNAi (N=30 embryos) 

experiments could not demonstrate a role of T48 in mesoderm internalization of Tribolium castaneum. 

Thus, a double knockdown of both Tc-fog and Tc-T48 by co-injecting the dsRNA into pre-blastoderm 

embryos was created (injections by Matthew A. Benton). Unlike in Drosophila, Tribolium double 

knockdown embryos did not show visible defects in ventral furrow formation (data not shown). 

However, compared to the embryos injected only with Tc-fog dsRNA, the general phenotype seemed 

to be stronger in the Tc-fog and Tc-T48 double knockdown embryos. Only 8 out of 20 (40%)Tc-fog kd 

embryos showed a strong phenotype, whereas 16 out of 20 (80%) double kd embryos showed the 

typical morphological defects, like the serosa remaining on the dorsal side, no primitive pit formation 

and visible germ cells (data not shown). Regarding uniform T48 expression and the influence on all 

aspects of the phenotype, it is likely that T48 in Tribolium castaneum does not exclusively enhance 

mesoderm internalization but instead is a more global factor contributing to cell shape changes in the 

whole embryo.  
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6 Discussion 

6.1 Fog and its conserved role in tissue internalization during gastrulation 

As a member of the coleopterans Tribolium possesses several more ancestral features of embryonic 

development, compared to the highly derived fruit fly D. melanogaster. Drosophila is a typical long 

germ insect in which all segments develop simultaneously before gastrulation. In contrast, only the 

head and thorax segments of Tribolium are specified prior to gastrulation. The abdominal segments 

are formed consecutively from a posterior segment addition zone after gastrulation (short germ 

embryogenesis) (Tautz and Sommer, 1995). The different modes of early tissue specification are not 

the only differences between the two model systems. While Drosophila embryos possess a single 

rudimentary extraembryonic membrane (amnioserosa), which remains on the dorsal side of the egg 

throughout embryogenesis, two separate extraembryonic membranes (amnion and serosa) protect 

the developing Tribolium embryos (Tautz and Sommer, 1995). These membranes are an essential part 

of the first morphogenetic movements taking place during Tribolium gastrulation, including the 

formation of the posterior amniotic fold (Handel et al., 2000). 

Fog signaling is affecting the development of various tissues, throughout embryogenesis but especially 

during gastrulation. Thus, the loss of the Fog signaling components Tc-fog, Tc-mist and Tc-cta results 

in a highly complex phenotype, including defects in cell shape changes at the posterior pole (amniotic 

fold formation) and invagination of the mesoderm (Fig. 3.1). In addition, late defects occur in hindgut 

formation and dorsal closure. Furthermore, the data presented in this work suggest a so far unknown, 

but more general function of Fog signaling in coordinating tissue-wide cell shape changes like flattening 

and spreading of the serosa. In the following chapters, the different defects and their dependence on 

Fog signaling are discussed in detail.  

 

Figure 3.1: Gastrulation after fog knockdown 
During gastrulation of wildtype embryos, the ventral mesoderm starts to be internalized (arrows). Around the same time, the 

serosa (orange/red) and the amnion (purple) start to overgrow the germ rudiment. In contrast, upon Tc-fog kd both 

extraembryonic tissues stay at the dorsal side of embryo. Especially the amnion is strongly pulled towards the posterior-

ventral side by the condensation of the embryo proper. However, the primitive pit and the later deep posterior gastrulation 

fold are completely missing. In addition, knockdown of fog results in a delay in mesoderm invagination. modified from 

(Rodrigo Nunes da Fonseca; unpublished)  
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The co-expression of fog, mist and T48 in the mesoderm of Drosophila embryos already indicate a role 

of Fog signaling in mesoderm development (Kolsch et al., 2007; Leptin, 1991; Manning et al., 2013). 

Different studies provide accurate information about the role of Fog signaling in inducing apical 

constriction for successful internalization of the mesoderm. Although the mesoderm gets internalized, 

the mesodermal cells in loss of function mutant Drosophila embryos (fog, mist-, cta- and T48-) show an 

unorganized pattern of apical constriction and a delay in mesoderm invagination (Costa et al., 1994; 

Dawes-Hoang et al., 2005; Kolsch et al., 2007; Manning and Rogers, 2014).  

In contrast to Drosophila, the only pathway component showing enhanced expression in the Tribolium 

mesoderm prior to gastrulation is Tc-fog (Fig. 1.1 A-E). Nevertheless, Tc-fog, Tc-mist and Tc-cta 

knockdown embryos show the same defects in mesoderm internalization that have been described in 

Drosophila. In Tribolium, the position of Tc-twist positive segmental cell clusters covered by the 

ectoderm (longitudinal sections) of control and Tc-fog knockdown embryos, proves the successful 

internalization of the mesoderm (Fig. 2.9 B and E). However, an analysis of Tc-twist expressing cells in 

cross-sections of carefully staged Tribolium wildtype and knockdown embryos revealed a reduction in 

the depth of the ventral furrow. Especially posterior regions were affected. Loss of Tc-fog results in a 

delay of around 3h in mesoderm invagination (Fig. 2.8).   

The effect of Fog signaling on mesoderm internalization in Tribolium strongly resembles the situation 

in Drosophila, proving that Fog signaling has indeed a conserved role in regulating morphogenetic 

movements during gastrulation. Although Fog signaling is essential for timing and coordination of 

ventral furrow formation, the fact that loss of Tc-fog is not sufficient to prevent mesoderm 

internalization suggests, that Fog signaling is not the only pathway regulating mesoderm 

morphogenesis.  
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6.2 Genes with less influence on apical constrictions in Tribolium compared 

to Drosophila 

In Drosophila the transmembrane anchor protein T48 contributes to bending of epithelial sheets by 

apical constrictions. Complementary to Fog signaling, which activates RhoGEF2 release from 

microtubules, T48 concentrates RhoGEF2 to the apical membrane (Kolsch et al., 2007; Manning and 

Rogers, 2014). These parallel pathways explain the incomplete progression of apical constriction in the 

absence of one of those pathways, as seen in fog- mutant embryos (Costa et al., 1994; Kolsch et al., 

2007; Sweeton et al., 1991). Embryos deficient for T48 fail in formation of ventral furrow although 

invagination of the posterior midgut primordium is unaffected. However, cells lacking T48, only show 

a less organized and delayed invagination but are still able to undergo apical constriction, although it 

might be slightly weaker. Recent studies could show that the combined loss of fog and T48 in 

Drosophila, abolishes ventral furrow formation and results in an ingression-like mesoderm cell 

behavior, reminiscent of mesoderm invagination observed in Chironomus riparius. Thus, mesoderm 

ingression does not require Fog or T48 function (Urbansky et al., 2016). An opposing effect was 

observed for the early ubiquitous expression of fog and T48 in C. riparius embryos. Both genes were 

sufficient to invoke a Drosophila-like invagination of the mesoderm Chironomus embryos. Dm-T48 

shows an early mRNA localization in a ventral twist-like stripe in the presumptive mesoderm, whereas 

it is absent from the posterior area of midgut invagination. In Tribolium, transcriptomic data suggest a 

weak T48 expression prior to gastrulation (although no localized mRNA expression domain could be 

identified by ISH). In contrast, it seems not to be expressed at all in Chironomus (Urbansky et al., 2016). 

Furthermore, Tc-T48 knockdown embryos did not show defects in primitive pit or ventral furrow 

formation. It also did not affect spreading of the serosa. In fact, double knockdown experiments using 

Tc-T48 and Tc-fog dsRNA resulted in embryos with typical features of strong Tc-fog knockdowns, 

including visible primordial germ cells and lack of posterior amniotic fold formation. This suggests a 

more general function of T48 for enhancing Fog signaling in all tissues. In summary, the results indicate 

that an evolutionary gain of early fog and T48 activity in the mesoderm may constitute a genetic switch 

to increase the speed of fly gastrulation (see results 2.9). 

Another Fog signaling component, the GPCR Smog which was recently discovered, could be identified 

in Tribolium. smog is uniformly expressed in both, Drosophila and Tribolium embryos. An involvement 

of smog in cell shape changes during mesoderm internalization, PMG invagination and especially 

ectoderm extension has been reported in Drosophila (Kerridge et al., 2016). However, the results by 

analysis of Tc-smog kd by parental as well as embryonic RNAi suggest, that Tc-smog has no role during 

Tribolium gastrulation, neither for amniotic fold or ventral furrow formation, nor for serosa spreading 

or ectoderm morphogenesis.   
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6.3 The importance of posterior amniotic fold formation by Fog signaling 

One of the early morphogenetic movements during Tribolium embryogenesis is the formation of a 

posterior amniotic fold. At the onset of gastrulation, Fog signaling induces apical constrictions of the 

cells at the posterior pole. In turn, these cells form a cup-like structure which finally converts to a deep 

fold when the amnion, part of the dorsal ectoderm and the serosa start to move ventrally and thus 

fold over (posterior amniotic fold) to finally cover the embryo proper (Handel et al., 2000). Embryos 

lacking one of the Fog signaling components fail to form a primitive pit (Fig. 2.6). In consequence, 

amnion and serosa remain on the dorsal side and the embryo proper gets not covered.  

One theory suggests, that the spreading of the serosa to the ventral side at the onset of gastrulation, 

might indirectly be required for primitive pit formation. It was proposed that germband condensation 

drives initiation of amnion folding. Expansion of the amniotic fold and closure of the amniotic cavity 

are likely driven by contraction of an actomyosin cable at the boundary between the amnion and 

serosa (Benton et al., 2013). Not only loss of Tc-fog but also the double knockdown of Tc-Toll and Tc-

fog embryos results in immobility of the serosa. Similarly, double knockdown embryos do not form a 

primitive pit, whereas it is still formed upon Tc-Toll single kd (Fig. 2.13 A). Thus, it seems possible that 

the spreading of the serosa influences posterior amniotic fold formation. 

During later development, defects in hindgut formation occur in Tc-fog knockdown embryos. Although 

the hindgut fate seems to be unaffected, the invagination tube is located outside of the embryos (von 

Levetzow, PhD Thesis 2008). The defects in Drosophila fog- mutant embryos are more severe. It seems 

that the defective invagination of the PMG primordium during gastrulation results in absence of a tube-

like hindgut or posterior midgut in later stages (Lengyel and Iwaki, 2002). However, also in Drosophila 

Fog signaling does not affect the cell fate. The strong defects can be explained by the initial failure of 

tissue invagination.  

Besides the missing pole cells, the posterior amniotic fold in Tribolium resembles the posterior midgut 

(PMG) invagination of Drosophila (Handel et al., 2000). The process of PMG invagination in Drosophila 

is well-studied. After the first apical constrictions appear at the dorsal side of the posterior midgut 

primordium, shrinking of the remaining cell apices results in formation of a cup-like indentation 

(Sweeton et al., 1991; Turner and Mahowald, 1976). During germ band extension this cup moves 

dorsally before it becomes deeper by further invagination of the cells, forming a structure referred to 

as amnioproctodeal tube (Rickoll and Counce, 1980; Sonnenblick, 1941). Only the center cells belong 

to the PMG primordium. The remaining invaginated cells give rise to the hindgut and the malpighian 

tubules, as indicated by the expression of the hindgut (proctodeum) marker brachyenteron (Berns et 

al., 2008; Kispert et al., 1994; Singer et al., 1996; Wu and Lengyel, 1998).  
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Although the hindgut in Tribolium is formed much later during germ band retraction, Tc-brachyenteron 

is already expressed at the tip of the posterior amniotic fold during late gastrulation and throughout 

germ band extension (Berns et al., 2008).  Hence it is likely, that the formation of the amniotic fold in 

Tribolium is homologous to the formation of the amnioproctodeal tube in Drosophila. Supporting this 

theory, it has been shown that the midgut epithelium of Tribolium confusum probably derives from 

cells associated with the proctodeal invagination (Handel et al., 2000; Stanley, 1970). 

 

 

6.4 Positioning of the primordial germ cells is influenced by Fog signaling 

One of the most obvious morphological defects after loss of Fog signaling is the failure to internalize 

the primordial germ cells at the posterior pole (Fig. 2.11). Primordial germ cells (PGCs) are the 

progenitor cells that give rise to the gametes (Marlow, 2015). Different mechanisms of germ cell 

formation evolved during insect evolution. While specification of the primordial germ cells in some 

insects is induced by maternal supply of several gene products (germ plasm), they are specified by 

zygotically activated transcription factors in others (Lynch et al., 2012).  

In many holometabolous insects including Drosophila and Nasonia, the PGCs emerge from so-called 

pole cells at the posterior pole of the egg prior to cellularization. Maternally supplied germ plasm 

induces the formation of the pole cells which get internalized during posterior midgut invagination 

later in embryogenesis (Fig. 2.3). Another feature that is shared by both species is the localization of 

oskar mRNA in the pole plasm (Ephrussi and Lehmann, 1992; Lynch et al., 2012; Lynch et al., 2011). 

After crossing the endoderm, the cells migrate to their final position in the gonadal mesoderm 

(Coffman, 2003; Sonnenblick, 1941). The pole cell-based mode of PGC formation seems to be derived 

from a more ancestral mechanism, which has been described for hemipterans and some 

holometabolous lineages, e.g. members of the coleopterans (e.g. Tribolium) (Lynch et al., 2012). This 

second type of primordial germ cell formation is not dependent on maternally supplied pole plasm. 

The germline fate is specified by zygotic gene expression, often later in embryonic development 

(Extavour and Akam, 2003). Similar to the system observed in Drosophila, PGCs separate from 

blastoderm after cellularization, get internalized (Fig. 2.3 C1-C4) and translocate to the gonads. 

Tribolium embryos lack a localized oskar expression. Instead, ubiquitous mRNA of Tc-vasa gets 

selectively degraded, so that it is only found at the posterior pole at the onset of gastrulation. Later it 

marks the primordial germ cells (Lynch et al., 2012; Schroder, 2006). Oskar localization is probably 

secondarily lost in Tribolium, as it was also found in Gryllus bimaculatus (Ewen-Campen et al., 2012). 

In contrast to the so far mentioned mechanisms, the PGCs in Gryllus form in later embryonic stages 
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from a subgroup of mesodermal cells which give rise to the future gonads. This probably most ancestral 

mode of germline specification is usually found in basally branching insects. 

  

Figure 3.2: Germ cell formation in Drosophila, Nasonia, and Tribolium 
Red =oskar (osk) mRNA, magenta = Tc-vasa mRNA, blue = nuclei. (A1-C1) In the early stages of embryogenesis, osk mRNA is 

localized in the posterior pole plasm of Drosophila (A1) and oosome of Nasonia (B1), while Tc-vasa is ubiquitous expressed 

in Tribolium (C1). (A2-C2) In Drosphila and Nasonia the posterior cells of the syncytial blastoderm interact with the pole plasm 

(A2), or the oosome (B2), respectively. In the Tribolium, the nuclei are surrounded by a homogenous environment (C2). (A3-

C3) In the fly the pole cells are formed by single nuclei that entered the pole plasm (A3). In Nasonia, the oosome along with 

multiple nuclei bud simultaneously from the posterior (B3). Tc-vasa becomes localized at the posterior pole of late 

blastoderm Tribolium embryos (B4). (A4-C4) After formation of the pole cells and completed cellularization of the blastoderm, 

Dm-osk (A4) and Nv-osk (B4) get degraded. (C4) Tc-vasa positive cells delaminate from the blastoderm into the interior of the 

embryo in order to form the primordial germ cells. (Lynch et al.,2012) 

 

Although the different modes of germline specification seem to correlate in general to more derived 

and more ancestral lineages, the formation of pole cells in coleopterans occurs several times, even 

within closely related species. Although the PGCs of Callosobruchus, a seed beetle, are derived from 

pole cells, Atrachya embryos do not possess these specific cells (Benton et al., 2016; Quan and Lynch, 

2016). Thus, it is likely that minor changes in gene regulation act as a switch between the different 

ways of PGC formation.   
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I observed a cluster of cells at the posterior pole of Tc-fog knockdown embryos which were positive 

for the putative germ cell marker Tc-tapas (Patil et al., 2014). Furthermore, the timing of their 

occurrence and their location indicate their germline fate.  

Fog signaling might influence the direction of PGC positioning in Tribolium castaneum. It is possible 

that the physical circumstances, generated by apical constriction of the most posterior cells, trigger 

the PGCs to leave the epithelium to the interior of the embryo. As Tc-fog knockdown embryos lack 

apical constrictions in this area, the cells move to the outer surface. Hence, Fog signaling is probably 

only indirectly required for PGC internalization. The influence of Fog signaling on positioning of the 

PGCs has shed some more light on the evolutionary history of germline determination in insects. 

Together with the dependency on maternally supplied gene products, early morphogenetic 

movements induced by Fog, might explain the transition from a later zygotic germline specification. 

This also includes extensive cell migration to an early and pole cell based PGC specification in derived 

species like Drosophila. 

 

 

6.5 The regulatory network underlying Fog signaling  

Similar to Drosophila dorsoventral patterning, Toll signaling initiates the early fate determination in 

Tribolium castaneum (Lynch and Roth, 2011; Nunes da Fonseca et al., 2008). In both organisms, the 

two transcription factors twist and snail are expressed in a ventral stripe and control specification of 

the mesoderm (Leptin, 1991, 1994; Sommer and Tautz, 1994). In Drosophila, ventral Fog signaling is 

activated by both of them, leading to ventral furrow formation (Manning and Rogers, 2014). The co-

localization of Tc-fog and Tc-twist strongly indicates a regulation of the ventral Fog signaling by Tc-

Twist similar to Drosophila. However, the observation that neither Tc-fog nor Tc-mist showed changes 

in their expression domains (Fig. 2.12 B and F) in Tc-twist knockdown embryos, is contradictory to this 

hypothesis. In addition, former results suggest that Tc-snail is not required for Tc-fog expression 

(Rodrigo Nunes da Fonseca, unpublished). These data rather suggest that the mesodermal activation 

of Tc-fog depends on other factors. 

DV and AP patterning are connected to a certain degree. Thus, the expression pattern analysis of Tc-

fog and Tc-mist in caudal knockdown embryos should reveal a possible influence of the AP patterning 

system on Fog signaling. The knockdown of Tc-caudal results in defects in convergent extension and 

thus, in a broader and shorter germ rudiment. Furthermore, the dorsal serosa is slightly expanded 

towards the posterior pole (Schroder et al., 2000; Wolff et al., 1998). Tc-mist expression remains 

unaffected upon knockdown of caudal (Fig. 2.12 H). The fact that the mesodermal Tc-fog expression 

domain is lost after Tc-caudal kd, whereas a new expression domain appears in the region of the 
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primitive pit (Fig. 2.12 D) suggest, that Tc-caudal has two divergent roles in Fog regulation. It activates 

Tc-fog expression in the mesoderm and simultaneously inhibits its expression at the primitive pit. 

Although Tc-caudal deficient embryos form a primitive pit, the amniotic fold is less distinct.  

In summary, Tc-mist expression seems to be independent of both, the DV patterning system and Tc-

caudal. However, Tc-caudal regulates Tc-fog expression in the mesoderm as well as in the primitive 

pit. Besides changes in the DV-GRN of Tribolium (Stappert et al., 2016), also the regulatory network 

underlying Fog signaling differs from Drosophila.  

 

 

6.6 Serosa spreading and cellularization - A novel function of Fog signaling 

6.6.1 Fog signaling regulates flattening of the serosa cells 

The serosa is a monolayered epithelium that protects the embryo from desiccation and against 

pathogens (Jacobs et al., 2013; Panfilio, 2008). To form a differentiated blastoderm, the embryonic 

cells start to contract and become columnar. In contrast, the serosa cells start to spread and become 

squamous to finally envelop the embryo and the yolk. Squamous epithelia are often associated with 

developmental or tissue remodeling processes (Pope and Harris, 2008).  

Although, germ band extension seems to be unaffected, Tc-fog knockdown embryos are deformed in 

late stages (von Levetzow, PhD Thesis 2008). These morphological defects can be explained by the late 

influence of serosa and amnion on dorsal closure of the embryo. At the end of embryogenesis, the 

extraembryonic membranes rupture (~ 52h AEL) and retract to the dorsal side (Hilbrant et al., 2016; 

Panfilio et al., 2013). In consequence, the lateral parts of the embryo start to move dorsally and finally 

fuse at the dorsal midline (Koelzer et al., 2014). This process is disrupted by loss of Fog signaling and 

the dorsal side of the embryo remains open, similar to Tc-zen2 knockdown embryos (van der Zee et 

al., 2005). As the extraembryonic tissue has a great influence on embryonic morphogenesis, different 

questions raised facing the serosal co-expression of Tc-fog and Tc-mist. Is the immobility of the serosa 

after loss of Fog signaling a primary or secondary effect? Could Fog signaling influence cell shape 

changes in the serosa? If not, why are ligand and receptor co-expressed?  

Knockdown of Tc-Toll results in dorsalized embryos which lack the mesoderm as well as the ventral 

ectoderm. The embryo-serosa border becomes straight and is shifted towards the posterior pole, 

deleting part of the head anlagen. In Tc-Toll kd embryos Tc-fog is strongly expressed in the symmetric 

serosa, while Tc-mist shows a weaker but uniform expression instead of ventrally enhanced serosal 

expression in wildtype embryos. Furthermore, the mesodermal expression domain of Tc-fog is lost, 

indicating that it is activated by dorsoventral patterning genes, whereas the posterior Tc-mist 
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expression remains unaffected (Fig. 2.12 C and G). Interestingly, Tc-Toll knockdown embryos are still 

capable to form a primitive pit. This implies that the posterior localized receptor still gets activated.  

Two theories might explain the unaffected formation of the posterior amniotic fold. The first 

explanation could be that the serosa serves as a source for long-range signaling. Diffusion of the Fog 

protein from the serosa to the posterior pole could be still sufficient to induce apical constrictions and 

hence primitive pit indentation. Drosophila Fog is thought to act as an autocrine factor which only 

diffuses a couple of cell widths (Costa et al., 1994). However, the Tribolium Fog protein is less than half 

the size of Dm-Fog, making long-range signaling more likely (Fig. 3.3).  

 

 

Figure 3.3: Fog is a fast-evolving protein 
The Fog protein evolved very fast in both, nucleotide as well as amino acid sequence. Furthermore, the Tribolium Fog is much 
smaller than its Drosophila and Anopheles orthologs. (Rodrigo Nunes da Fonseca, unpublished) 

 

Nevertheless, the simultaneous expression of Tc-fog and Tc-mist in the serosa might give hints for 

another explanation. Fog signaling could have a distinct function in cell shape changes in the serosa, 

influencing its spreading. Cell flattening requires extensive remodeling of adherens junctions (Szuperak 

et al., 2011) and changes in the actin-myosin network. The transformation from a cuboidal to a 

squamous epithelium involves shrinking the lateral membrane and extending the basal and apical 

membranes (Brigaud et al., 2015). Studies on the amnioserosa cells in Drosophila revealed, that its cell 

shape changes are dependent on a rotation of the microtubule cytoskeleton. The authors suggested 

that similar mechanisms may underlie the development of other squamous epithelial monolayers 

(Pope and Harris, 2008). 

Injecting Tc-fog dsRNA (1µg/µl) into embryos resulted in weaker phenotypes in which the primordial 

germ cells did not get invaginated, but amnion and serosa managed to cover the embryo during 

gastrulation (Fig. 2.14 D and F). Those weak phenotypes enabled a proper comparison of the cell shape 

changes within the serosa. In wildtype embryos, all serosa cells start to flatten at the same time and 

are of equal size when the reach their peak levels of flattening at serosal window closure (Fig. 2.14 C 

and E). Interestingly, the anterior serosa cells did not undergo cell flattening after loss of Tc-fog. In 

contrast, the posterior serosa cells were abnormally enlarged around the stage of serosal window 
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closure (Fig. 2.14 E’ and F’). One feature of a strong Tc-fog knockdown phenotype is, that the serosa 

rips off from the amnion and the embryo proper during germ band condensation (Fig. 2.6 K). If the 

serosa cells do not undergo cell flattening, they remain on the dorsal side. The embryonic cells move 

to the ventral side exerting physical force, especially on the lateral serosa cells. As the connection 

between the serosa and the amnion might be a structural weak point, the cells lose contact and the 

serosa moves back to the dorsal side.  

The results presented in this work indicate that Fog signaling in Tribolium is not only required for tissue 

internalization via apical constrictions, but that it is rather involved in cell shape changes in general, 

especially for coordinated cell flattening of the serosa cells. This function was never observed before. 

However, so far Fog signaling was mainly studied in Drosophila in which the amnioserosa remains on 

the dorsal side.  

 

 

6.6.2 A role of Fog signaling in the blastoderm 

The generation of Tc-fog knockdowns by embryonic injection revealed another interesting part of the 

phenotype, which was never observed in knockdown embryos after pRNAi. The injection of higher 

dsRNA concentrations (>3 µg/µl) led to the formation of big holes in the uniform blastoderm. Holes 

seem to occur naturally also in wildtype embryos but usually close very fast. The holes which form in 

the early blastoderm of Tc-cta, Tc-fog and Tc-mist knockdown embryos remain open (unpublished data 

by Matthew A. Benton). As Fog signaling induces pulsatile contraction of the actomyosin network 

(Dawes-Hoang et al., 2005; Martin et al., 2009), it might also influence the coordination of the 

cytoskeleton during cellularization and in the early blastoderm.  

 

Figure 3.4: Fog signaling is involved in germ rudiment formation of Tribolium castaneum 
(A) Wildtype embryo injected with H2O and the membrane marker GAP43-YFP. (B) Embryo injected with Tc-fog RNAi and 
GAP43-YFP. Holes are visible in the posterior part of the blastoderm. (pictures provided by Matthew A. Benton) 
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In Tribolium the cells of the blastoderm undergo some cell shape changes prior to gastrulation. The 

embryonic cells start to contract and become columnar, while the serosa cells started to flatten and 

become squamous (Benton et al., 2013; Handel et al., 2005; Handel et al., 2000). This explains the 

extension of some of the holes during early condensation of the germ rudiment (Fig. 3.4 A and B).  

Interestingly, knockdown experiments in the Gryllus bimaculatus, result in the same phenotype upon 

cta and mist knockdown (Fig. 3.5 A and B, unpublished data by Matthias Pechmann). Tribolium as well 

as Gryllus are more basally branching insects compared to Drosophila. Thus, it is likely that the role of 

Fog signaling in coordinating embryo condensation represents an ancestral process.  

 

Figure 3.5: Fog signaling is involved in germ rudiment formation of Gryllus bimaculatus 
Females of a H2B-eGFP line expressing nuclear eGFP were used for dsRNA injection. (A) Control embryo. (B) Embryo injected 
with Gb-fog RNAi embryo showing a disintegrating blastoderm with numerous holes. (pictures provided by Matthias 
Pechmann)  
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6.7 Conclusion 

In Drosophila Fog signaling is involved in tissue internalization during gastrulation, like internalization 

of the mesoderm and the posterior midgut primordium. By activating the GPCR Mist, the Gα-subunit 

Concertina (Cta) and RhoGEF2, Fog signaling controls rearrangements of the actomyosin network, 

resulting in apical constrictions and thus bending of epithelial sheets (Dawes-Hoang et al., 2005; 

Manning and Rogers, 2014). The loss of pathway components results in defects in ventral furrow 

formation. However, the mesoderm still gets internalized, indicating that Fog signaling is important 

but not absolutely essential for mesoderm invagination (Costa et al., 1994).  

Although pathway homologs were identified in the genomes of many different winged insects, recent 

comparative studies in the more basally branching fly Chironomus, in which Fog signaling plays only a 

minor role in mesoderm internalization, indicate that Fog signaling was recruited to increase the speed 

of gastrulation (Urbansky et al., 2016). This could be an adaption to the very fast embryonic 

development of highly derived long-germ insects like Drosophila melanogaster.  

This work focused on Fog signaling in the red flour beetle Tribolium castaneum which possesses a more 

ancestral mode of embryogenesis. The observations in embryos deficient of Fog signaling components 

showed that Fog signaling is also involved in mesoderm internalization and invagination of posterior 

endoderm homologous to the PMG primordium. This suggests indeed a conserved role of Fog signaling 

during gastrulation outside of dipterans. However, the defects in early morphogenetic movements 

after loss of Tc-fog are more multifaceted. Tc-fog is required for formation of the posterior amniotic 

fold as well as the positioning of the primordial germ cells. Furthermore, the presented data suggest 

an involvement of Fog signaling in cell shape changes other than apical constrictions, like the transition 

from a cuboidal to a flat squamous shape of extraembryonic cells during serosa spreading. In addition, 

cellularization defects in blastoderm embryos of Tribolium and Gryllus indicate an additional 

conservation of Fog signaling in stabilizing the cytoskeleton during formation of the blastoderm. 
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Material &Methods  
 

7 Strains 

The San Bernadino wildtype strain was used for RNAi injections and as wild-type control, if not 

specified otherwise. For selected experiments, different transgenic lines like pBA19 (“muscle-line”) 

(Lorenzen et al., 2003), G04609 (“heart-line”) (Koelzer et al., 2014), a nGFP strain (Sarrazin et al., 2012) 

and a Life-actin GFP line (Tania Vazques, van der Zee lab; unpuplished) were used. 

 

 

8 Animal keeping and embryo collection 

The beetles are kept in boxes containing a mixture of 75% wheat flour "Extra" type 405 (Diamant Mehl) 

and 25% dark wheat flour type 1050 (Diamant Mehl) mixed with 25 g/kg dry yeast. To avoid fungal 

infestation, the flour is complemented with 0.3 g/kg fungicide (Fumagilin B, Medivet Pharmaceuticals 

Ltd). The animals are kept at 30°C, which ensures a generation cycle of around 30 days (Bucher, 2009).  

For the collection of eggs, the beetles are transferred to special wheat flour ("Instant" Diamant Mehl, 

type 405). This flour has a grain size suited for efficient egg collection. Around 30 minutes after transfer 

to new flour, the females start to lay eggs. A certain stage of embryos is obtained as follows: After a 

specific egg-laying period the beetles are transferred to new flour and the eggs are further incubated 

at 30°C for several hours (minimum age) on fresh flour before they are collected (total time - 0.5 h = 

maximum age). Adult beetles are separated from flour and eggs by using sieves with a mash size of 

710 μm. The eggs are separated from the flour by using sieves with a mesh size of 300 μm. 

For constant access to young beetles with high egg lay (EL) rates, one EL per week was set up. 1.2 g 

embryos were transferred to a box containing 1250 g of mixed flour. After 4 weeks the pupae can be 

sorted (males/females) for RNAi experiments. A turn-over of the stock was done every 3 months. 

Beetles from every-week-egg lays were collected and 23 g were transferred into new boxes containing 

900 g of mixed flour.  
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9 Total RNA isolation 

For the isolation of total RNA, Tribolium eggs are collected in a defined stage, dependent on 

subsequent experiments. Due to problems with the quality of isolated Tribolium RNA, the 

manufacture’s protocol using TRIzol (Life Technologies) was modified (Stappert et al., 2016).  

First, the eggs were washed with water followed by two minutes incubation in 50% DanKlorix (Colgate-

Palmolive). To remove all remaining Klorix solution, they were again rinsed with clear water. The eggs 

were transferred into a 1.5ml RNAse-free reaction tube and shock frozen in liquid nitrogen (-80°C) for 

later processing or treated with TRIzol for direct RNA isolation. The eggs were homogenized in 500 μl 

TRIzol using a pestle. It should be noticed that working on ice is important to avoid degradation of the 

RNA. After centrifugation for 10 min (12,000 x g at 4°C) the supernatant was transferred into a new 

reaction tube and mixed with additional 500 μl TRIzol (total volume of 1ml). The samples were 

incubated for 5 min at room temperature before 100 μl chloroform were added. The tubes were 

shaken thoroughly by hand for 15 seconds and incubated for 2-3 minutes at RT. The phases were 

separated by 15 minutes centrifugation at 4°C (12,000 x g). The upper aqueous phase (containing the 

RNA) was transferred into a new reaction tube and the contained RNA was precipitated by adding 40 

μl 3M NaAc pH5.2 and 800μl room temperature 100% EtOH followed by incubation for at least 30 min 

at -80°C. After centrifugation (20 min, full speed at 4°C), the RNA pellet was purified from 

contaminations (TRIzol or polysaccharides from flour) by different washing steps. 800 μl 3M NaAc 

pH5.2 were added and samples were incubated for 5 minutes at RT. After centrifugation (15 min, full 

speed, 4°C) the pellet was washed with 800 μl room temperature 70% EtOH, followed again by 

incubation for 5 minutes at RT and centrifugation (15 min, full speed, 4°C). The washing steps were 

repeated before the pellet was resuspended in 21 μl RNase-free H2O. The concentration and 260/280 

and 260/230 ratios were checked on a NanoDrop2000 (Thermo Scientific). The samples were stored 

at -80°C. 

 

 

10 cDNA synthesis 

Complementary DNA (cDNA) is synthesized from RNA by the enzyme reverse transcriptase and was 

used as template for probe and dsRNA synthesis as well as qRT-PCR. Due to an optimized protocol for 

generation of first-strand cDNA for qRT-PCR, the SuperScript VILO cDNA Synthesis Kit (Life 

Technologies) was used according to the manufacture’s manual. 
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11 Primer design 

Primers are required to amplify DNA by PCR. Primers are DNA oligonucleotides, which bind to the DNA 

which should be amplified. Polymerases can bind to the primers and copy the sequence selected by a 

forward (5’) and a reverse primer (3’). The online application Primer3 version 0.4.0 

(http://bioinfo.ut.ee/primer3-0.4.0/) (Untergasser et al., 2012) was used for primer design. For in-situ 

probes or dsRNA synthesis the fragment size was set to 500 bp to 800 bp. The primer size was set to 

20-24 bp. Furthermore, the primers should show a low self- and cross-complementarity and the GC 

content should be <50%. The suggested primers were tested for specificity by BLASTing them to the 

Tribolium genome. Appropriate primers should bind to a unique sequence without any mismatches. 

The primer design for the in-situ hybridization screen and dsRNA synthesis of the differential 

expression analysis was based on the Tribolium Tcas 3.0 annotation/ OGS 2 (http://bioinf.uni-

greifswald.de/gb2/gbrowse/tribolium/). The primers used for analysis of the Fog signaling pathway 

were designed by using the new T. castaneum genome assembly Tcas 5.2/ OGS 3. All primers used in 

this work are listed in the Appendix A, B, C and G. 

 

 

12 Standard Polymerase Chain Reaction (PCR) 

Polymerase Chain reaction is a method for in vitro amplification of a selected piece of DNA using Taq 

polymerase (Mullis, 1990). Taq polymerase is derived from the thermophilic bacterium Thermus 

aquaticus and is able to resist the high temperatures that are required for denaturation of double 

stranded DNA (dsDNA) into single stranded DNA (ssDNA). Denaturation takes place at 94°C. Primers 

are used to specify the target DNA and to enable binding of the polymerase. For amplification of a 

specific DNA fragment, two primers (5’ and 3’) are needed. Annealing of the primers to single DNA 

strands takes place at 55-65°C. Too low temperatures result in unspecific binding of the primers. The 

last step enables efficient binding of polymerase to the primers and elongation of the complement 

strand. Elongation of the new strand takes place at 72°C. To efficiently amplify the DNA, all three steps 

are repeated ~35 times. 

 

                            

Reaction mix for standard PCR  

10 µl Red Taq mix, Sigma 
  7 µl H2O   
  1 µl cDNA 
  1 µl specific 5’ primer (10 μM) 
  1 µl specific 3’ primer (10 μM) 

Cycler program for standard PCR 

Denaturation  5 min 94°C 
Denaturation 30 sec 94°C  
Annealing 30 sec 55-57°C  
Elongation 1 min 72°C  
Elongation 5 min 72°C 

35x 
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13 Gel electrophoresis 

To confirm the presence and correct size of PCR products, 5 µL of the reaction was run on a 1% agarose 

gel run in 0.5x TRIS-Acetat-EDTA-Buffer (TAE) at 135 V. To visualize the DNA, 1-2 drops of 0.025% 

ethidium bromide solution per 50 ml agarose were used. The size of the bands was determined using 

2.5 µL of the Smart Ladder MW 1700-10 (Eurogentec). 

 

             

 

 

14 In-situ hybridization (ISH) 

In-situ hybridization is a method to detect the presence and location of mRNA in different tissues. The 

gene specific mRNA is hybridized with a complementary mRNA-probe. The probe is for example 

labeled with Digoxygenin (DIG) which is detected by using an anti-DIG antibody (anti-DIG-AB). The 

enzyme alkaline phosphatase is conjugated with the anti-DIG-AB and converts a substrate like 

NBT/BCIP (nitro blue tetrazolium chloride/5brome-4chlor-3indolyl-phosphate) into a purple dye. The 

staining indicates the spatial expression of the gene of interest. 

 

14.1 Generation of mRNA probes  

14.1.1 Two-step Polymerase Chain Reaction 

A two-step polymerase chain reaction (PCR) strategy was used to amplify DNA as template for 

antisense mRNA probe synthesis. To detect complementary mRNA in subsequent in-situ hybridizations 

(ISH), the DNA template was equipped with a T7 promotor. To amplify DNA of the gene of interest, 

first a standard PCR (denaturation at 94°C, annealing at 57°C, elongation at 72°C, 35 cycles) using cDNA 

as template was performed. A linker sequence was attached to the gene specific primers used for the 

1. PCR. A second PCR was performed using only one of the gene specific primers (3’ for sense/5’ for 

antisense) and one T7 universal primer that contains the T7 promotor sequence and is able to bind to 

the linker sequence which was attached during the 1.PCR. The universal primer binds to a specific 

sequence which is attached to the 5’ end of the gene specific primer (T7 linker) and was amplified 

during the first PCR. Cycling parameters for the second PCR reaction are the same as for the first PCR. 

The amplicon from the second PCR is used as template for RNA probe synthesis.   

50 x TAE 

2 M TRIS 
0.05 M EDTA 
In H2O (adjusted to pH 8.0) 
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14.1.2 Probe synthesis 

To label the probe during synthesis UTP-Digoxigenin (DIG) (Roche) was used. 3 μl of the amplicon from 

the second PCR were mixed with 7 μl of T7 master mix and incubated for 4 hours at 37°C. The reaction 

was stopped by adding 15 μl H2O and 25 μl 2x Stop solution (0.2 M NaAc, 1% HAc; pH 6.0). For 

precipitation 2.5 μl tRNA (20 mg/ml; Roche), 5 μl LiCl (4M) and 150 μl 100% EtOH were added. The 

probes were incubated for at least 30 minutes at -20°C followed by a full speed centrifugation at room 

temperature for 30 minutes. The RNA pellet was dried for 5 minutes before it was resuspended in 40 

μl 50% formamide, 2x SSC. The probes were stored at -20°C. The correct size of the probes was tested 

on a 1% agarose gel.  

 

             

 

  

Reaction mix for sense probe  

10 µl Red Taq mix, Sigma 
  7 µl H2O   
  1 µl cDNA 
  1 µl 5’ T7 universal primer (10 μM) 
  1 µl specific 3’ primer (10 μM) 

Reaction mix for antisense probe  

10 µl Red Taq mix, Sigma 
  7 µl H2O   
  1 µl cDNA 
  1 µl specific 5’ primer (10 μM) 
  1 µl 3’ T7 universal primer (10 μM) 

Linker sequences attached to the gene specific primers 

5’ T7 linker:  ggccgcgg  
3’ T7 linker:  cccggggc  

5’ T7 universal primer:  gagaattc taatacgactcactatag ggccgcgg  
3’ T7 universal primer:  agggatcc taatacgactcactataggg cccggggc 
 

T7 master mix 

3.5 µl RNAse-free H2O 
0.25 µl RNAse inhibitor 
1 µl 10x T7 reaction buffer 
1 µl DIG labelling mix 
1 µl T7 polymerase 
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14.2 Embryo fixation 

Tribolium eggs were rinsed with tap water to remove dirt and left-over flour. For dechorionization the 

eggs were put for 2 min in 50% DanKlorix (Colgate-Palmolive). The Klorix was then thoroughly washed 

away with tap water. To fix the embryos, they were incubated in fixation solution (2 ml 10% 

formaldehyde, 3 ml PBS, 5 ml heptane), shaking at 120 rpm, for 45 min to 1.5 h. The embryos were 

devitellinized by methanol (MeOH) shock or by hand dissection. The embryos can be stored at -20°C. 

 

 

14.3 Detection of mRNA expression  

Embryos were transferred from MeOH into PBST (first 2:1, then 1:2 MeOH:PBST), washed with PBST 

(2 times, 5 min each), fixed in 5% PFA/PBST for 30 min. The PFA was washed away with 1xPBST (four 

times, 5 min each). The embryos were slowly transferred into hybridization solution I (first 1:1 hyb sol 

I:1xPBST for 10 min, then 100% hyb sol I for 10 min) and then pre-hybridized in hybridization solution 

II at 65°C for 1 h. 4 μl probe, specific for the mRNA of interest, was diluted in 196 μl hybridization 

solution II and incubated with the embryos overnight at 60 °C while rotating. The probe was washed 

away by washing four times for 5 min, and four times for 30 min with hybridization solution I at 60 °C. 

The embryos were then transferred into PBST (first 2:1, then 1:2, hyb sol I:1xPBST, at 60 °C) and washed 

for 10 min with PBST (room temperature). For blocking, embryos were incubated two times for 30 min 

in PBST that contains bovine serum albumin (BSA, 100 μl/ml) and normal goat serum (NGS, 30 μl/ml). 

Then, anti-digoxigenin antibody coupled with alkaline phosphatase was added in a final concentration 

of 1:4000 and incubated with the embryos overnight at 4 °C while rotating. The next day the embryos 

were rinsed by washing three times for 5 min and three times for 15 min with PBST and three times 

for 5 min with AP-buffer. For the color reaction 8 μl NBT/BCIP (nitro blue tetrazolium chloride/5brome-

4chlor-3indolyl-phosphate; Roche) solution in 400 μl AP-buffer were added to the embryos. The color 

reaction was observed and stopped by washing three times with PBST when background staining 

started to develop. The staining was then fixed by incubating the embryos for 30 min in 5% PFA in 

PBST. Background staining was in some cases removed by incubating the embryos for ≥20 min in 100% 

ethanol (EtOH). The EtOH was washed away by two to three washes with 1xPBST. The embryos were 

embedded into VECTASHIELD Mounting Medium with DAPI (Vector Laboratories).  
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15 Double in-situ hybridization (dISH) 

This protocol was modified from (Schinko et al., 2009). The amount of each probe to use is a critical 

variable that must be optimized for every probe preparation. DIG-labeled probes detected by 

NBT/BCIP are more sensitive than fluorescein-labeled probes detected by INT/BCIP. Thus, best results 

can be expected by detect the stronger signal first, using a fluorescein-labeled probe visualized by 

NBT/BCIP (Roche) color reaction. Second, the weaker signal should be detected by a DIG-labeled probe 

stained by FAST Red (Roche). Fast red staining is both, colormetric (red) and fluorescent (orange). 

Day 1 of the double in-situ hybridization protocol is similar to day 1 of the standard ISH protocol (see 

above). However, both mRNA probes (2 µl each) were mixed and diluted in 196 µl hybridization 

solution II and incubated with the embryos overnight at 60 °C while rotating.  

 

10x PBS (Phosphate Buffered Saline) 
dissolve in 800 ml H2O 
80 g NaCl 
2 g KCl 
14.4 g Na2HPO4 
2.4 g KH2PO4 
Adjust to pH 7.4 
fill up to 1 l with millipore H2O (autoclave) 
 

1x PBST 
5 ml 10x PBS  
500 ml 20% Tween  
fill up to 50 ml with millipore H2O 
 
 
 
 
 

Hybridization Solution I  

25 ml formamide 
12.5 ml 20xSSC 
50 µl heparine (50 mg/ml) 
250 µl 20% Tween20 
fill up to 50 ml with millipore H2O 
 

Hybridization Solution II  

25 ml formamide 
12.5 ml 20xSSC 
50 µl heparine (50 mg/ml) 
250 µl 20% Tween20 
500 µl salmon sperm (100 mg/ml) 
fill up to 50 ml with millipore H2O 

AP-buffer 

1 ml TRIS-HCl (pH 9.5) 
500 µl 1M MgCl2 
200 µl 5M NaCl 
50 µl 20% Tween20 
fill up to 50 ml with millipore H2O 
 

Blocking Solution 

100 µl BSA (1 mg/ml in PBS) 
 .30 µl NGS (60 mg/ml) 
fill up to 1 ml with 1xPBST 
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Also the second day resembles mainly the protocol for single ISH. Dilute the antibody for the first 

staining (anti-DIG-AP) was diluted 1:2000 in blocking solution. 500 µl of diluted antibody was added to 

the embryos. The samples were incubated over night at 4°C (or for 1 h at room temperature) on a 

rotator.  

As mentioned above, best results were achieved by staining with NBT/BCIP first. Thus, the next day 

the embryos were rinsed by washing three times for 5 min and three times for 15 min with PBST and 

three times for 5 min with AP-buffer (see single ISH protocol). 8 μl NBT/BCIP solution were diluted in 

400 μl AP-buffer and were added to the embryos. The reaction was stopped by both, a decrease in pH 

and dilution of the staining buffer. The alkaline phosphatase was deactivated by washing the embryos 

three times for 20 min in glycine-HCl (100 mM glycine-HCl, pH 2.3) on a rotator. Afterwards the 

inactivation buffer (IB) was removed by washing the embryos three times 20 min in 1xPBST. To remove 

the unspecific background staining, the embryos can be incubated for 15-30 min in 100% EtOH on a 

rotator, followed by a slow retransfer into PBST. After another round of blocking (2x 30 min, rotator) 

on room temperature, the second antibody was added. If the DIG-labeled probe was used as the first 

stain, then use the fluorescein-labeled probe here. Dilute the antibody for the second staining (anti-

fluorescein-AP) was diluted 1:2000 in blocking solution and 500 µl of the diluted antibody was added 

to the embryos. The embryos were incubated in the dark over night at 4°C or for 1 h at room 

temperature on a rotator. 

The second color reaction was performed on day 4. The embryos were washed three times for 5 min 

and three times for 15 min with PBST. Afterwards, the embryos were prepared for the staining by 

washing them three times for 10 min in 0.1 M Tris-HCl (pH 8.0) solution. For staining, 1 Fast Red tablet 

was dissolved in 2 ml of 0.1 M Tris-HCl solution (pH 8.0). The samples should be incubated in the dark 

at room temperature until the staining is strong and distinct. If the staining is weak or absent after 3 

h, continue staining overnight at 4°C. The color reaction is stopped by washing the embryos 3 times 10 

min in PBST. EtOH should not be used to remove Fast Red background staining, as also the specific 

staining would be removed! The embryos were mounted with VECTASHIELD Mounting Medium with 

DAPI (Vector Laboratories). 

 

                     

Inactivation buffer (100 mM glycine-HCl) 

11.1 g Glycine-HCl 
800 ml millipore H2O 
adjust to pH 2.3 
fill up to 1 l with millipore H2O 
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16 Fluorescence staining 

16.1 Phalloidin staining  

Dechorionated, fixed embryos (not treated with methanol) were devitellinized by hand and washed in 

PBST (3 times, 5 min each). The embryos were post-fixed in 350 μl 5% PFA/PBST for 20 min. The PFA 

was removed by five 5 min washes with PBST. After 1 h incubation in 500 μl blocking solution (100 μl 

BSA (100 μg/ml), 250 μl NGS (30 μl/ml), 5 μl 20% Tween, 5 ml 1xPBS), Alexa Fluor 555/568 Phalloidin 

(Molecular Probes, life technologies) was added (1:50 in blocking solution) and the embryos were 

incubated over night at 4°C. Phalloidin was removed by washes in PBST (5 times, 10 min each). The 

embryos were covered with VECTASHIELD Mounting Medium with DAPI or for fluorescent staining 

(Vector Laboratories).  

For Phalloidin staining on cryosections it should be noticed that best results were generated by 

performing the Phalloidin staining protocol directly on the sections. Therefore, a humidity chamber 

covered with aluminum foil (light protection) was used. To ensure a proper humidity and to suck up 

the used solutions the bottom of the chamber was covered with paper towels. To avoid contact of the 

samples with the already used solutions, the slides were placed on a grid (see Fig. A). During the 

washing steps the chamber was placed on a shaker. The sections were then covered in VECTASHIELD 

Mounting Medium for fluorescence staining (Vector Laboratories). One spacer on each side was used 

to avoid destruction of the samples by the coverslip. 

 

 

Figure A: Humidity chamber for Phalloidin staining on cryosections. 
The samples are protected from light by covering the chamber in aluminum foil. The humidity is kept by paper towels soaked 
with the washing solutions. The samples are placed on a slightly higher grid to avoid contamination with already used 
solutions. 
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16.2 Nuclear staining 

16.2.1 DAPI staining  

Dechorionated, fixed embryos were transferred from methanol to PBST (PBS supplemented with 1 % 

Tween20) and washed three times for 5 min with PBST. Then, the embryos were embedded in 

VECTASHIELD Mounting Medium with DAPI (4′,6-Diamidin-2-phenylindol) (Vector Laboratories).  

 

16.2.2 Sytox staining 

Dechorionated and fixed embryos were stained by ~30 min incubation in PBST with 1:5000 Sytox Green 

(Thermo Fisher Scientific). During the staining the embryos should be kept in the dark at 4°C. After 

several washing steps with PBST, the embryos can be mounted in VECTASHIELD Mounting Medium for 

fluorescence staining (Vector Laboratories). For nuclear staining of cryosections, the protocol was 

performed on slides in a humidity chamber (see Phalloidin staining). 
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17 Generation of knockdown embryos by RNA interference (RNAi)  

RNA interference is a natural defense mechanism against RNA-viruses. Furthermore, it is involved in 

gene regulation and transposal control. In developmental biology it used as a popular tool for transient 

gene knockdown. dsRNA that is present in cells silences gene expression by degradation of mRNA. 

Long dsRNA from an exogenous source like viruses is cut by Dicer, an RNAse III enzyme, into small 

fragments (Miller et al., 2012). The produced small interfering RNA (siRNA) is incorporated into the 

RNA-induced silencing complex (RISC) which binds mRNA complementary to the siRNA and causes 

mRNA cleavage through the action of the catalytic Argonaute proteins (Hammond et al., 2001). The 

cleavage of mRNA reduces the amount of mRNA available for translation and thus phenocopies a loss 

of function mutation (Hammond et al., 2001; Miller et al., 2012). This mechanism can be 

experimentally employed for the specific knockdown of target genes by inserting long dsRNA 

molecules (about 200 bp to 1.5 kb) into cells, whereas the dsRNA molecules correspond to part of the 

coding region of the respective target gene. 

 

 

17.1 Production of double-stranded RNA (dsRNA)  

17.1.1 2. PCR for amplification of a dsRNA template 

Similar to the generation of RNA probes for in-situ hybridization we used a PCR-based approach for 

dsRNA synthesis. The linker sequences attached to the fragments during the first PCR serve as binding 

sites for the T7 universal primer. In contrast to the second PCRs used for probe synthesis, generation 

of dsRNA requires both T7 3’ and T7 5’ primers. Cycling parameters for the PCR reaction are the same 

as used for standard PCR. The amplicons had a size between 500 bp and 800 bp.  

 

 

17.1.2 dsRNA synthesis 

For synthesis of dsRNA the MEGAscript T7 Kit (Life Technologies) was used. 12 μl of the T7 master mix 

is added to 8 μl template from the second PCR. The reaction mix is placed on 37°C for 4 h or overnight. 

To stop the reaction 115 µl RNAse-free water and 15 µl ammonium acetate stop solution were added 

before the dsRNA was purified by adding 150 µl phenol:chloroform. The reaction was vortexed for 1 

minute followed by 5 minutes centrifugation (5000 rpm). The upper, aqueous layer was transferred 

into a new tube avoiding the interface. dsRNA was precipitated by adding 150 μl isopropanol followed 

by incubation for at least 30 minutes at 80°C. The sample was spun at full speed in a refrigerated 

centrifuge (4°C) for 15 minutes before the supernatant was decanted and the dsRNA pellet was 
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washed with 300 µl 70% ethanol. After another full speed centrifugation for 5 minutes at 4°C the pellet 

dried for 5 minutes before it was resuspended in 21 μl RNase-free H2O. To check the quality of the 

dsRNA, 1 µl of the dsRNA can be separated by gel electrophoresis. If multiple bands are observed, the 

reaction can be boiled (96°C, 30 sec) to resolve secondary structures. The concentration of the dsRNA 

was checked with a NanoDrop 2000 (Thermo Scientific).  

 

 

18 Adult or pupal injections (pRNAi) 

Two possibilities for parental RNAi (pRNAi) in beetles were used: Either the injection into female pupae 

or the injection into virgin adult females (Bucher et al., 2002; Posnien et al., 2009). It should be noticed 

that knockdown of some genes results in sterility of the beetles, if they are injected as pupae. If sterility 

occurs, it is advisable to inject into adult females or to lower the concentration of the dsRNA. The 

pupae or adult females (adults were first anesthetized on ice) were fixed with their abdomen on double 

sided tape (Doppelklebeband Fotostrip, transparent 05338, Tesa). The dsRNA was diluted to a final 

concentration of 1 μg/μl. For better visualization of the injected volume dsRNA solution can be mixed 

with phenol red (1 µl in 10 µl dsRNA). For injection of the dsRNA, thin glass needles were generated 

from capillaries (Hilgenberg) by a laser needle puller (Sutter Instrument Co. Model P-2000). The dsRNA 

was loaded to the needle with microloader tips (Eppendorf). The tip of the needle was opened using a 

razor blade. After one day of regeneration time, injected females were pooled with males at a ratio of 

4:1. The RNAi effect can last from a few days to several weeks and can be checked by DAPI staining, 

ISH or qRT-PCR. To account for any bias caused by the injection procedure itself (increase of death rate 

or number of embryos showing defects or the upregulation of immune- and stress-related genes), 

dsRNA of an exogenous gene (e.g. dsRed or eGFP) can be used as control. However, the results of our 

differential transcriptome analysis suggest that there is no significant upregulation of RNAi-related 

genes or genes involved in immune- and stress response caused by the injection procedure itself 

(Stappert et al., 2016). Thus, injection of H2O or using an equal amount of uninjected wildtype beetles 

should be sufficient as control. 

 

      

 

  

Settings for needle puller 

Heat = 400 
Filament = 4 
Velocity = 60 
Delay = 255 
Pull = 150 
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19 Embryonic injections (eRNAi) 

Especially for genes showing a sterility effect upon dsRNA injection into female pupae or even adult 

beetles, it might be necessary to generate knockdowns by embryonic injection (Schinko et al., 2009). 

Furthermore, eRNAi can be used for timed gene knockdown in a specific embryonic stage and thus for 

analysis of a specific part of the phenotype (Horn and Panfilio, 2016). The following protocol was 

adapted from the embryonic injections protocol by (Benton et al., 2013). As the needles (Hilgenberg) 

for embryonic injections need to be shorter and less flexible than for pupal or adult injections, a 

different program for pulling the needles was used (see below). Afterwards the needles were opened 

by polishing them for 15 to 30 min on a grinder (Narishige, EG-44). The opened needle was cleaned by 

rinsing it with some EtOH (if the EtOH gets sucked up into the tip, the needle is open). The embryos 

were dechorionated by washing them three times with 25% DanKlorix for 2bmin followed by careful 

washing with tap water. For the subsequent injection procedure, the embryos were lined up in with 

the anterior facing the edge of the slide. Due to the evaporation of the water surounding the embryos, 

they stick to the slide. To avoid dehydration of the embryos and for subsequent live-imaging, the 

embryos were covered with halocarbon oil 700 (Sigma; CAS 9002-83-9). If the embryos should be fixed 

and devitellinized by MeOH shock (for staining), they were lined up on parafilm and were not covered 

with oil. After injection of the embryos, the parafilm were cut into stripes transferred into reaction 

tubes containing fixation solution. After 25 min fixation at room temperature, the parafilm dissolved 

and the embryos could be treated with MEOH.  

 

            

 

  

Settings for needle puller 

Heat = 325 
Filament = 4 
Velocity = 50 
Delay = 255 
Pull = 150 

Settings for microinjector 

Time = 0.5-1.00 
Pressure = 30-60 (highly dependent on needle) 
Balance = 0.5 (const. pressure) 
 settings should be adjusted for each needle 
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20 Cuticle preparation 

Cuticle preparations of larva shortly after hedging, is a simple method to analyze morphological defects 

after gene knockdown by pRNAi. Eggs were collected and incubated for 72 h at 30°C. The 

dechorionated embryos were embedded in Hoyer’s medium 1:1 mixed with lactic acid. Careful 

pressure on the coverslip helps to ensure that the Hoyer’s is also reaching unhedged larva in the eggs. 

After one night at 60°C the larval tissue is digested and just the cuticles are left. The cuticles were 

visualized using the Zeiss Axioplan2 microscope (dark field). 

 

                

 

 

21 Cryosections 

The embedding agar (2 g agarose and 15 g sucrose in 100 ml 1xPBS) was melted using the microwave. 

The embryos were then embedded in the agarose in a petri dish (make sure that the agar surrounds 

the embryo from all sides!). After the agarose cooled down, blocks of agarose containing the embryos 

(1.0 cm x 0.5 cm x 0.5 cm) were cut out. To make the cells more permeable, the embedded embryos 

were incubated overnight in sucrose solution (15 g sucrose in 50 ml 1xPBS). In addition, the treatment 

of the embryos with sucrose solution helps to attach the embryo to the agarose. The tissue specimen 

was bound to the specimen block by using Tissue-Tek O.C.T.TM Compound (Sakura). After shock 

freezing the samples in -80°C isopentan, the embryos were sliced at -20°C in intervals of 30 µm (Leica 

CM 1850 Cryostat) and transferred to Superfrost Ultra Plus microscope slides (Thermo Scientific). The 

sections were dried over night at room temperature and were stored on RT or at -20°C for long term 

storage.  

 

                                      

  

Hoyer’s medium 

0.6 g/ml Arabic gum 
1.2 M chloral hydrate 
217 mM glycerol 

Embedding medium 

2 g agarose 
15 g sucrose 
in 100 ml 1xPBS 
heated in microwave 

Sucrose solution 

15 g sucrose 
in 50 ml 1xPBS 
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22 Microscopy 

All embryos were covered with a coverslip using two spacers (18x18 mm coverslips cut in half). Pictures 

of non-fluorescent ISH stainings were taken with a “SteREO Lumar.V12” stereomicroscope (Zeiss) or a 

Axioplan2 microscope (Zeiss) operated by the AxioVision 4.8.2.0 software. Pictures of embryos stained 

with fluorescent dyes (Sytox Green, Phalloidin) were taken using an “Axio Imager 2” microscope 

equipped with an “ApoTome 2” (Zeiss). The Z stacks were combined to a projection using the Zen2 

Blue software, AxioVision 4.8.2.0 or Image J. Pictures of cross- and longitudinal sections stained with 

Phalloidin and Sytox Green were imaged using the Zeiss LSM700 with Imager.M2 and analyzed with 

the Zen 2 Black Software.  

All pictures were processed using Adobe Photoshop CS4 for brightness and contrast as well as black or 

white balance. Changes were always applied to the whole picture.  

 

 

23 Live-imaging 

Eggs for live-imaging were treated very gently especially during chorion removal as described in section 

8.2. Keep the eggs in tap water afterwards to avoid desiccation. For mounting, the eggs were placed 

with a fine brush from the water surface onto a coverslip and lined up in a row. After approximately 2 

minutes air-drying the embryos stick to the glass and can be covered with halocarbon oil 700 (Sigma; 

CAS 9002-83-9). For subsequent imaging the coverslip with the embryos was attached to a slide using 

two spacers (18x18 mm coverslips cut in half). Embryogenesis was visualized at room temperature 

using the Zeiss AxioImager.Z2 in combination with an Apotome.2 module and a movable stage (Zen 2 

Blue) or the Applied Precision DeltaVision RT microscope.  
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Appendix A: Primerlist RNA-Seq 

The list contains the primer sequences of genes for generation of the initial knockdown samples for RNA-sequencing and of 
marker genes used for characterization of the respective knockdown phenotypes. Primers containing the linker sequences 
and both T7 universal primers where used for RNA-probe synthesis and generation of dsRNA for injections.  

 

Nr. Gene Sequence 

1 5’ T7 linker ggccgcgg 

2 3’ T7 linker cccggggc 

3 5’ T7 universal primer gagaattc taatacgactcactatag ggccgcgg 

4 3’ T7 universal primer agggatcc taatacgactcactataggg cccggggc 

5 dsRed_fwd ggccgcggTGGTGTAGTCCTCGTTGTGG 

6 dsRed_rev cccggggcAGTTCATGCGCTTCAAGGTG 

7 TC000176 (Toll)_fwd ggccgcggAACCCGAAGCGTTTTATGTC   

8 TC000176 (Toll)_rev cccggggcTACGTCCAGTTTCCGATGAG 

9 TC014598 (twist)_fwd ggccgcggGCTGATGGACCTGACCAACT 

10 TC014598 (twist)_rev cccggggcCTCCAATCACCCTCCATCC 

11 TC008466 (dpp)_fwd ggccgcggAGATCGACACTGTTGCCCCTTTT 

12 TC008466 (dpp)_rev cccggggcAGATGGTTGGTTTTGGGGTCTTG 

13 TC012650 (sog)_fwd ggccgcggTACCGAAACCTGGAGTGCGTGT 

14 TC012650 (sog)_rev cccggggcCCTTCCAGTCGCCACTACAT 

15 TC010407 (pannier)_fwd ggccgcggGTCAAAACTGCCACCCTGTT 

16 TC010407 (pannier)_rev cccggggcCCGGTACAACCAAAAGTGCT 

17 TC008433 (achaete-scute homolog) fwd ggccgcggGTCATCCAGAGCAAACGACC 

18 TC008433 (achaete-scute homolog)_rev cccggggcTCGGGACTTTTCGGTTCGTA 

19 TC006788 (gooseberry)_fwd ggccgcggACGTTGGAAGTTGAGGCAAG 

20 TC006788 (gooseberry)_rev cccggggcACCAGCGAAAAGGCTGTAAT 

21 TC009896 (engrailed)_fwd ggccgcggCAAAAGGGCCAAAATCAAAA 

22 TC009896 (engrailed)_rev cccggggcAAAAATCCCGTGTCTTGCAC 
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Appendix B: Genes differentially expressed upon Tc-dpp kd and Tc-sog kd 
Genes detected as up- or downregulated upon Tc-dpp kd and Tc-sog kd with a false positive rate of 1% (FDR01) and 5% (FDR05). The list contains the official TC-identifier, information about up- or 
downregulation in the different knockdown conditions and Drosophila orthologs of the respective genes. Furthermore, the primer sequences and expression patterns are listed. 

 Nr. Gene 
Tc-twist kd 

vs. wt 
Tc-Toll kd 

vs. wt 
potential Drosophila homolog 5’ Primer (fwd) 3’ Primer (rev) Expression Pattern 

FD
R

0
1 

1 TC001715 down up windpipe ggccgcggAGTGGTGATGAGGGAAGTGG cccggggcTGACGCTTTGATCGTCACTC serosa, prim pit, uniform in germband, serosal window free! 

2 TC006222 down up dimmed ggccgcggGATGTGGAGGTGGAGGACAT cccggggcGCGTTCTCTTGGTGGTTTTC first uniform, later anterior serosa, germband uniform, serosal window  

3 TC006771 down up downstream of receptor kinase ggccgcggAGATGGAAGCTCTGGAACGA cccggggcTCCAAAGTTGCTCCTGCTTT first nothing, later serosa + prim. pit, germband nothing 

4 TC008855 down up Dopamine transporter ggccgcggGTAGAGCGAAACCGACGAAG cccggggcTAGCTGCCATTTCGGGTATC nothing 

5 TC010157 down up Succinyl coenzyme A synthetase α subunit ggccgcggCATCAACCTGCAGAAGCAAA cccggggcCGTGATGTCGCTCAAGAAAA serosa (stronger dorsal), serosal window!!! 

6 TC010855 down up epidermal retinol dehydrogenase 2 (LOC660853) ggccgcggACCCCAAAGCTTACGCCTAT cccggggcGCGCTTTCATGATGGATTTT serosa, uniform in germband (very weak!!!) 

7 TC014139 down up n.a. ggccgcggCGAAAGAAGCCCAAGAACTG cccggggcCCAGTTGGGATCACTCTGGT uniform, later serosa, germband uniform 

8 TC015188 down up waterproof ggccgcggTTGATCGAACAAACGAGCAG cccggggcGACAACACCATCCCCAAATC serosa 

9 TC015379 down up n.a. ggccgcggTTCTGCAGACATGGAAGCAC cccggggcTCAGCGTAACTTTCGCCTTT serosa, serosal window!!! 

10 TC015392 down up n.a. ggccgcggCCAGACAAAGGGACTTGGAA cccggggcTCCAATCCGAACAACTCCTC serosa 

11 TC004745 up down patched ggccgcggGGCAAGTTCCTCTTCGTGAG cccggggcCCTCCTGTGCGAACTTCTTC stronger at headregion, segment. in germband,strong in head 

12 TC007409 up down twin of eyeless ggccgcggCCCAGAACGAGAGCGTCTAC cccggggcCCCGACATCGAACTGTAGGT x 

13 TC010596 up down prospero ggccgcggCAGGTCTTCTCGCCCTACAG cccggggcGCCTGTCTGGCGTACTTCTC stronger at headregions + most ventral regions free, points in germband  

14 TC014658 up down tartan ggccgcggCAAGGGACTTGGCAAATTGT cccggggcTTGCTCAACCAGAGCAAATG stronger at headregion, strong in head + 2 spots in growth zone 

FD
R

 0
5 

1 TC002459 down up CG3165  ggccgcggATTAGTCCCGAAGCCACCTC cccggggcCCGCACAAGTGACTAGCATC serosa 

2 TC004480 down up n.a. ggccgcggCGAGCAGACATTTCTCTTGAGG cccggggcTGGTAATTACTCGGCGTACC x 

3 TC004902 down up n.a. ggccgcggACTGGAATGCAGAGTTCCGA cccggggcGCACGGACACCAGATCAATT x 

4 TC008024 down up vir-1 - virus-induced RNA 1 (CG31764) ggccgcggAGGTGGCGGTATTGTGGATA cccggggcCGTCGGCTAATACCTGATTGAC twi domain weaker, growth zone 

5 TC009479 down up n.a. ggccgcggCACCTCCTGCACCATCTACA cccggggcTCCATTTCTTCTCAAGCCGAAC serosa 

6 TC010590 down up Rcd6 - Reduction in Cnn dots 6 (CG11175) ggccgcggTCTTTGTCTCATCGCCTGGA cccggggcTCGGGATAATGGCGCTACTT serosa 

7 TC013334 down up n.a. ggccgcggTCCCCAATCAGAACCTCCAC cccggggcTCCGCTTGTTCAAATCTGGC x 

8 TC012208 down up n.a. ggccgcggCACAGTCCTTCTCGCTGGTA cccggggcGTGTGGTCCCTCAACTTGC weak in twi domain 

9 TC014534 down up chemosensory protein 7 ggccgcggTTCGGCCGCTGAAAACAAAT cccggggcCGTTTCTTGTACTGACCCTGT weak uniform 

10 TC001270 up down knot ggccgcggTCTCGCGAGTACCTCTTGAC cccggggcGGTGTTTCGTTCCTGTTCCC S/E border  

11 TC004474 up down Toll 7 ggccgcggACACGTTCCTGGACAAGACT cccggggcAGTGGGAGTTCGACGACAAT stripes in early embryo 

12 TC000871 up down uninflatable ggccgcggCAGATGCGACAAAGAGGACG cccggggcCGTAAGCGGGCGACATTAAA lateral stripes in early embryo, later stronger in head and growth zone 

13 TC011763 up down empty spiracles ggccgcggGCTTCTCCATCGACTCCATC cccggggcTGCTTCCACTTGTTGACGTG embryo uniform, germband uniform 

14 TC001364 up down hedgehog ggccgcggATCGCTCGAAATACGGAATG cccggggcAAAGTCCGCCGTAGCATAAA AP-pattern 
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Appendix C: Genes differentially expressed upon Tc-twist vs Tc-Toll knockdown 
Genes detected as up- or downregulated upon Tc-twist kd and Tc-Toll kd with a false positive rate of 1% (FDR01) and 5% (FDR05). The list contains the official TC-identifier, information about up- 
or downregulation in the different knockdown conditions and Drosophila orthologs of the respective genes. Furthermore, the primer sequences and expression patterns are listed. 

 Nr. Gene 
Tc-twist kd 

vs. wt 
Tc-Toll kd 

vs. wt 
potential Drosophila homolog 5' Primer (fwd) 3' Primer (rev) Expression Pattern 

FD
R

0
1 

1 TC001667 down down inflated/integrin αPS2 ggccgcggACCAACACACGCTACAACCA cccggggcAGTACGACGACCCACAAAGG ventral stripe at gasrtulation, later along midline 

2 TC002003 down down cactus ggccgcggCACCTGTTGAAACACCAACG cccggggcTCGCTGTACTCGTCCTCTGA ventral midline 

3 TC004114 down down delta ggccgcggCCTGTTTGAATGGCGGTACT cccggggcTTCGACTCGGAGGACACTCT ventral (haben wir bestimmt irgendwo) 

4 TC004713 down down heartless ggccgcggGTACCCCAAAACCCCAGATT cccggggcGCTGGTTTCACCTGCATTTT ventral stripe, later two stripes along midline 

5 TC005328 down down n.a. ggccgcggGATAAAAGAGGGGCCCAGAG cccggggcGCATTCGGTTACGAGACCAT prim. pit, gastrulation, growth zone 

6 TC005541 down down E(spl)mγ-HLH/ E(spl)3 ggccgcggGAAGGTGATGAAGCCGATGT cccggggcTGGTCAGAAACTGCGACACT two stripes (prim pit stage), later two spots head 

7 TC006580 down down E(spl)mγ-HLH/E(spl) 1 ggccgcggAAGAGCCCCAGCCGATCT cccggggcACCACGGCCTCCACACAT two stripes (prim pit stage), later two spots head 

8 TC008064 down down sloppy-paired 2 ggccgcggAATAACTCTCCTACCTACGGTTTTT cccggggcCACAGTGACAGGTTTGAGGAG AP pattern  

9 TC011323 down down dof/stumps ggccgcggTATCACCCCGAAAGAGATCG cccggggcTCTCCTCAACTCCTGCCACT ventral stripe, midine germband 

10 TC014474 down down escargot/snail ggccgcggGTGCAAATGCTGGAGGACAT cccggggcGCAGGTGGGACACGAATACT ventral stripe 

11 TC014598 down down twist ggccgcggGCTGATGGACCTGACCAACT cccggggcCTCCAATCACCCTCCATCC ventral stripe, later along midline 

12 TC010105 down down lethal (2) essential for life ggccgcggGGACGATGACGACTTCCACT cccggggcGGTTGTTCGACTTTGGGTTG artifacts 

13 TC010461 down down n.a. ggccgcggCCGAACGAACCTACGACAAT cccggggcGAATTCCGGTGTCGTGACTT nothing 

14 TC003461 down down Laminin A ggccgcggTAACGGGAGGTTTTGTCAGG cccggggcATTGCGGATCCTACGTGTTC x 

15 TC003606 down down n.a. ggccgcggATCGTCGTGATGGTGGTGA cccggggcTGTACACATAAGGATCCATGTCC nothing 

16 TC007056 down down n.a. ggccgcggGTCATCCAGCAGTGCAAGAA cccggggcTCTTTCGGCAAAAACTTGCT nothing 

17 TC009862 down down n.a. ggccgcggCAACCCAACCAACCAAGTCT cccggggcAAAAGTCGCAAGGCGTTAAA x 

18 TC010195 down down Papilin ggccgcggGGGTGCAACATCACAAACTG cccggggcCCTTCCGGTTTGACACAAGT x 

19 TC013142 down down JhI-21 ggccgcggGCCTCTGGATCGCTCTACTG cccggggcCCGCCACAGAAAACCATAAT artifacts 

20 TC000319 up up n.a. ggccgcggACACGAGGTTTTACCGTTGG cccggggcGAGAAATGCATTCGCAGACA maternal, pot. embryo not serosa 

21 TC006513 up up foraging ggccgcggAATTGTCAAAGGACCGCAAC cccggggcCTCCCAGACAGCTCTCCATC maternal 

22 TC015747 up up pollux ggccgcggCAGACGCAGTTTCAGCCATA cccggggcTGCATTTTCCTTCTCCATCC nothing 

23 TC000089 down up n.a. ggccgcggGGAACGTCCTTCCGTTACAA cccggggcGACGGAGATGAACCTTTTGG nothing 

24 TC000611 down up similar to CG3823 CG3823-PA (LOC657947) ggccgcggGACATCGGAAAAATCCGAGA cccggggcGGGGAATGTTCAGAATGTGG nothing 

25 TC004948 down up similar to peroxiredoxin (LOC656825) ggccgcggCAAGGCGACAAATGGGTAGT cccggggcCGAGGGCATTGTAACCTTGT nothing 

26 TC005503 down up similar to AGAP011121-PA (LOC654889) ggccgcggCCCAGAGGCTACTGTCCAAA cccggggcTCCAGGCTCTCACATGACTG nothing 

27 TC006631 down up sodium-dependent phosphate transporter  ggccgcggTTTACGTTTTTGGGGCTTTG cccggggcACTCATGGCAATGGTGAACA nothing 

28 TC007255 down up similar to AGAP000696-PA, transcript variant 1  ggccgcggTGTCGCTTTCTGTAGCATCG cccggggcCTTTAGGGGTGGTGGTTGTG nothing 

29 TC008197 down up  similar to SET domain containing 3 (LOC664524) ggccgcggCCAAGGAGGAGATCATGGAA cccggggcCATGCTGTGAAGATGCGACT pot. serosa, stronger dorsal, segmental stripes in germband 

30 TC008400 down up similar to Cuticular protein 100A CG12045-PA  ggccgcggGCAGTTTTGCTCGTTTTGGT cccggggcGCAAAAGCGTATTGCTCACA serosa 

31 TC011140 down up Cpap3-a1 ggccgcggGTCGCAAGGGAGAAACTTTG cccggggcCTTGGCTGGTTTAGCAGGAG nothing 
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32 TC011602 down up similar to GA14337-PA (LOC662721) ggccgcggAAAGGAGGGTGGGGCTTAC cccggggcGTTGCTGCAAGTTGTTGACG nothing 

33 TC012828 down up  similar to Cuticular protein 92F CG5494-PA  ggccgcggTCGCACTGGTCATTATCCAA cccggggcCCATCATGTCCAATCACAGC actifacts 

34 TC014517 down up 
similar to conserved hypothetical protein 

(LOC660482) 
ggccgcggACCGCACCAAAAAGTCAATC cccggggcCGAGTCCTAACAGCCCCATA actifacts 

35 TC015517 down up 
similar to take-out-like carrier protein JHBP-1 

(LOC663271) 
ggccgcggCGCCCGAAATTATCAAATGT cccggggcTCAGCTGTTCGTTACCGTTG uniform 

36 TC015555 down up n.a. ggccgcggTTGTCGTTCGAAGTGCAGAC cccggggcTTGCCCAAATTCCACTTTTT nothing 

37 TC015564 down up similar to CG2837 CG2837-PD (LOC660047) ggccgcggTGGTGTCCACCTGTTGATTG cccggggcGTCGTTGCTTCCACTCGTTT nothing 

38 TC016034 down up 
similar to conserved hypothetical protein 

(LOC100141613) 
ggccgcggATCACGCAGAGAAGGCAAGT cccggggcGGTGGGGAACGATAAGGTCT x 

FD
R

 0
5 

1 TC000216 down down neuralized ggccgcggCGACTCCAATTTCCTGCTCG cccggggcCCGCACATATAAAGGACGGC ventral stripe (twi domain), germband uniform 

2 TC000920 down down deformed ggccgcggCGTGGCGAGTTAATTGAGGG cccggggcAATTGGCATCTTCGAGTCGC ventral stripe + 2 stripes in head region, 2 stripes in germband 

3 TC001169 down down Cpap 3-c5 ggccgcggGCAGGCCGATTGAAGTTGAT cccggggcGTTGTTGTCGCACTTCCAGT x 

4 TC005184 down down Lan B1 ggccgcggGCTTTTGAGCCGTCGTACAT cccggggcTGCAGAAATTGTCAAGGGCC ventral stripe, later along midline 

5 TC006788 down down gooseberry ggccgcggACGTTGGAAGTTGAGGCAAG cccggggcACCAGCGAAAAGGCTGTAAT x 

6 TC000035 down down n.a. ggccgcggTTCCTGCAAATACCCCGGAT cccggggcTCAGTCAGTGTTGGCATGTT twi domain free (very dynamic!?) 

7 TC000922 down down zen2 ggccgcggAACGCCCCAGTTTTCAACAA cccggggcCTCATCCTTCACCACCACCT serosa 

8 TC001270 down down knot ggccgcggTCTCGCGAGTACCTCTTGAC cccggggcGGTGTTTCGTTCCTGTTCCC S/E border  

9 TC001364 down down hedgehog ggccgcggATCGCTCGAAATACGGAATG cccggggcAAAGTCCGCCGTAGCATAAA AP-pattern 

10 TC006750 down down multiple edematous wings/integrin αPS1 ggccgcggCGAAATCGCAAACACCAAGC cccggggcATCGGTTAAAATCGTGGCCG germband uniform 

11 TC006882 down down n.a. ggccgcggTGGCATCGAGTGTGAGTTCT cccggggcGCGAGCTTGGTCACATACAG x 

12 TC008062 down down sloppy-paired ggccgcggACTAATCCTGGGCCTGTCCT cccggggcACTTAAGTTGTGCCGGATGG AP-pattern 

13 TC009157 down down dystroglycan ggccgcggACCACCACTACTGTAAGCCC cccggggcGGTTGAAATGGCACCAGGAG ventral twi domain, germband midline 

14 TC011114 down down Zn finger homeodomain 1 ggccgcggCGCCTTCAACGTCACATGAT cccggggcGACCTTCGCTTGTTTCGTGT early posterior spot, ventral stripe at gastrulation 

15 TC004491 up up fumble ggccgcggGACATCACCAAAGACGAGGC cccggggcGCTGCTAGCGACCAAATCTC nothing 

16 TC009220 up up n.a. ggccgcggTGCAGAACCTCATCGACGAT cccggggcGACTTTCTCCTCCGTCTCCC uniform, uniform in germband 

17 TC011870 up up kayak ggccgcggGGTTTCGTCCCACCTCTAGT cccggggcAATTCGGTCTGCAAGGCTTC overstained 

18 TC007256 down up n.a. ggccgcggCCTCTTCACAGAACTTGGAGG cccggggcACACACATAACACAACGCCT x 

19 TC010980 down up n.a. ggccgcggTGGAATGTCGGCCGATATGA cccggggcTTGCCCAAACCAATACCAGC x 

20 TC030077 down up serpin 5 ggccgcggGCGCTCGAGAAATCGGAAAT cccggggcTTGACTTTCTCTTGCGCGAC serosa 
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Appendix D: Marker gene expression in Tc-sog and Tc-dpp 

knockdown embryos  

 

 

Marker gene expression after RNAi for genes differentially regulated upon Tc-sog and Tc-dpp knockdown  
(A-E) wildtype embryos. (F-I) TC006771 kd embryos. (J-M) TC014658/Tc-tartan kd embryos. (N-Q) TC000871/Tc-uninflatable 
kd embryos. (A, F, J, N) Expression of amnion marker Tc-pannier at serosal window stage. (B, G, K, O) Expression of 
mesodermal marker Tc-twist during germ band extension. (C, H, L, P) Expression of neuronal precursor marker Tc-achaete-
scute homolog during germ band extension. (D, I, Q) Expression of segmental marker Tc-gooseberry during germ band 
extension. (E, M) Expression of segmental marker Tc-engrailed during germ band extension.  Expression patterns in all kd 
embryos are wildtype -like with the following exception: (L) The expression of Tc-achaete-scute homolog is only visible in the 
head and the posterior end of elongated germ band embryos upon TC014658/Tc-tartan kd. All panels show ISHs and ventral 
surface views of embryos with the anterior pole pointing to the left. exp - expression; kd - knock down; Tc-ash - Tc-achaete-
scute homolog; Tc-gsb - Tc-gooseberry; Tc-en - Tc-engrailed. 
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Appendix E: Marker gene expression in Tc-Toll and Tc-twist 

knockdown embryos 

 

 

Marker gene expression after RNAi for genes differentially regulated upon Tc-Toll and Tc-twist knockdown. (A-
E) wildtype embryos. (F-I) TC011323/Tc-dof kd embryos. (J-M) TC004713/Tc-heartless kd embryos. (N-Q) TC011114/Tc-Zinc 
finger homeodomain 1 (Tc-zfh1) kd embryos. (R-U) TC005184/Tc-LanB1 kd embryos. (A, F, J, N, R) Expression of amnion 
marker Tc-pannier at serosal window stage. (B, G, K, O, S) Expression of mesodermal marker Tc-twist during germ band 
extension. (C, H, L, P, T) Expression of neuronal precursor marker Tc-achaete-scute homolog during germ band extension. (D, 
Q, U) Expression of segmental marker Tc-gooseberry during germ band extension. (E, I, M) Expression of segmental marker 
Tc-engrailed during germ band extension. Expression patterns in all kd embryos are wild type-like with following exception: 
(O) Tc-twist expression is missing from a large portion of the trunk in TC011114/Tc-zfh1 kd embryos. All panels show ISHs and 
ventral surface views of embryos with the anterior pole pointing to the left with the exception of (O) showing a lateral view. 
exp - expression; kd - knock down; Tc-ash- Tc-achaete-scute homolog; Tc-gsb - Tc-gooseberry; Tc-en - Tc-engrailed. 
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Appendix F: Varity in knockdown strength of Tc-LanB1  

 

Knockdown of Tc-LanB1 leads to loss of mesodermal derived tissues. 
(A-D) pBA19 enhancer trap line which expresses EGFP in muscles (blue counterstaining is DAPI) (Lorenzen et al., 2003). (A) 
Wild type pBA19 embryo. The body wall muscles are labeled by EGFP. (B-D) Tc-LanB1 knockdown.  (B) Mild phenotype 
showing partial loss and irregular shape of the muscles. (C) Intermediate Tc-LanB1 kd phenotype. The number of muscles 
fibers is strongly reduced, remaining muscles have a more spherical shape compared to wild type. (D) Strong Tc-LanB1 kd 
phenotype. The muscles are almost completely lost. (E-H) Embryos of the enhancer trap line G04609. The cardioblast cell row 
(the presumptive heart) expresses EFGP (blue counterstaining is DAPI) (Koelzer et al., 2014; Trauner et al., 2009). (E) Wild 
type embryo of the G04609 line. (F-H) Different stages of G04609 embryos upon Tc-LanB1 kd (F = youngest embryo, before 
serosal rupture; G = oldest embryo, after serosal rupture) show loss of the cardioblast cell row. kd: knockdown DAPI: 4',6-
diamidino-2-phenylindole for nuclear staining. 
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Appendix G: Primerlist Fog signaling 
The list contains the primer sequences which were used to analyze the Fog signaling pathway in Tribolium. Primers containing 
the linker sequences and both T7 universal primers where used for RNA-probe synthesis and generation of dsRNA for 
injections. The primer in red were used to create non-overlapping fragments. 

Nr.  Gene Primer Name/Number Sequence 

1  

cta 

359_TC034430_for ggccgcggTCAAGCTGTGGCGGGATAG 

2  360_TC034430_rev cccggggcCAGTGGATGTTCGTCTCGGGATT 

3  1151_TC034430 (cta) fwd_new ggccgcggAATCCCGAGACGAACATCCA 

4  1152_TC034430 (cta) rev_new cccggggcTTACATAAGAACCCGGCGGA 

5  

fog 

fog_fwd_ROD CACCGACAAGGACGTGGCGATTGT 

6  fog_rev_ROD AATCCTCCTCCAGAAGAGCG 

7  953_TC006723_fwd ggccgcggCCCGCATCCATAATTGTGTT 

8  954_TC006723_rev cccggggcAGAAGAGCGCCTCACCATC 

9  1141_TC006723_fwd 2.0 ggccgcggTAATCACCGTTGCATCTTGC 

10  1142_TC006723_rev 2.0 cccggggcATCGTGGTCACTTCCACCTC 

11  1153_TC006723 (fog) fwd_new ggccgcggCCAGTACAGAAGGTGGGGAG 

12  1154_TC006723 (fog) fwd_new cccggggcACCTAACAGTCGAACAAAAGGT 

13  

mist 

955_TC010654_ fwd 1 ggccgcggACAAAAATGGGAGCTTGTGG 

14  956_TC010654_ rev 1 cccggggcGGAGAAAGTTGGAGCTGTCG 

15  957_TC010654_ fwd 2 ggccgcggGCCTTCTTCTGGCTCAACAC 

16  958_TC010654_rev 2 cccggggcAAGACCCTTGGAAGCAGTT 

17  1155_TC010654 (mist) fwd_new ggccgcggATGACGGCTGTTAGGGTGAA 

18  1156_TC010654 (mist) rev_new cccggggcGACACAGCGATTGAGAAGCA 

19  

smog 

1097_1_TC013504 (smog) fwd ggccgcggCGATCCTGGAAACGATCCTA 

20  1098_1_TC013504 (smog) rev cccggggcTGCAGATGGTTTTGCTCTTG 

21  1157_TC013504 (smog) fwd_new ggccgcggGCCCGTCTTACTTTGACCAC 

22  1158_TC013504 (smog) rev_new cccggggcTCTCTGCGAGCCGAACATAT 

23  

T48 

T48_Conny_fwd ATTCGCCCGAAAGACGAGACT 

24  T48_Conny_rev CACTCTGAATCCGCAGTGGAA 

25  3 A11_T48_fwd ggccgcggGCCCCAAAGGATGTATCAAA 

26  4 A11_T48_fwd cccggggcGAGTGGCATGAAGTGCAGAA 

27  1159_TC033934 (T48) fwd_new ggccgcggTTATAACACTGAGGCCCGCA 

28  1160_TC033934 (T48) rev_new cccggggcCTTTGGGGCCACATTTCAGG 

29  1161_TC033934 (T48) fwd_iBeetle ggccgcggCGACACGCGCTACATTCATT 

30  1162_TC033934 (T48) rev_iBeetle cccggggcAACAGCACCACAATGTCCAC 

 

Appendix H: Movies 

1) Life-Act_wildtype 

2) Life-Act_Tc-cta knockdown 

3) Life-Act_Tc-fog knockdown 

4) nGFP_wildtype 

5) nGFP_Tc-Toll+Tc-fog double knockdown  
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