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Abstract

Paulina L. A. Goedicke

Perfect Tensors from Multiple Angles and (Quantum)
Combinatorial Structures in Category Theory

This dissertation investigates well-known (quantum) combinatorial struc-
tures, such as (quantum) designs and (quantum) orthogonal Latin squares
through the lenses of matrix algebras, group theory, and category theory.
A central focus is placed on perfect tensors, objects that generalise orthogo-
nal Latin squares (OLS), whose existence problem has long been a central
topic in combinatorics, exemplified by Euler’s classically unsolvable “36 of-
ficers” problem. Perfect tensors are examined using representation theory
and quasi-orthogonal subalgebras of matrix algebras, yielding a new per-
spective on the problem of constructing perfect tensors in arbitrary dimen-
sions. In particular, it is shown that the existence of a 2-unitary in dimension
d2 is equivalent to the existence of four mutually quasi-orthogonal subalge-
bras of Md2(C) that are each isomorphic to Md(C). This correspondence is
further interpreted in terms of groups and their representations, offering a
new structural viewpoint on perfect tensors by relating the existence of per-
fect tensors to the existence of a group G with a d2-dimensional irreducible
representation and four subgroups on which the representation is also ir-
reducible with multiplicity d and on which the respective character “fac-
torises“. A search algorithm implemented in the algebra software GAP is
presented that was used to find examples of such groups. Furthermore, ad-
ditional construction schemes for all dimensions that are of the form 2m, 22m

or dn, where m and d are odd integers greater than 1 and n is an arbitrary
integer greater than 1, leading to two-unitary complex Hadamard matrices
in dimensions 22m, 24m and d2n, respectively, are developed, based on the
doubly perfect bi-unimodular sequences ansatz introduced by Rather [95].
Using the same ansatz, an analytical resolution of Euler’s thirty-six officers
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problem is provided, which differs from the earlier constructions of perfect
tensors in dimension 36 via computer-assisted methods.

Beyond this, the thesis introduces an abstract notion of categorical designs
formulated via arrow categories. When applied to the categories Mat(N)
and CP[FHilb], this framework produces a category-theoretic description
of balanced incomplete block designs (BIBDs) and of quantum designs, re-
spectively. The construction generalises Zauner’s definition of quantum de-
signs [121] and extends it to a broader concept that can also be interpreted
as combinatorial superoperators. These new concepts will be used to define
a category of mutually unbiased bases (MUBs) and a category of so-called
combinatorial quantum channels.

Together, these contributions provide new mathematical tools and ex-
plicit constructions at the intersection of combinatorics, category theory, and
quantum information, deepening the structural understanding of designs in
both classical and quantum contexts.
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1 Introduction

Combinatorics is a vast field of mathematics with applications in many dif-
ferent areas such as computer science, the design of experiments and ulti-
mately also theoretical physics. One important concept herein is combina-
torial design theory which deals with incidence structures (designs) that de-
scribe a relation between a given set of points and a set of blocks. A notable
example of a combinatorial design is provided by balanced incomplete block
designs (BIBDs), an incidence structure that divides a set of v points into a
set of b blocks such that each block contains k points, each point is contained
in r blocks and each two blocks share exactly λ points. Here a prominent
example is given by a complete set of mutually orthogonal Latin squares of
order d (MOLS(d)) that can be described by a BIBD consisting of d2 points
and d(d + 1) blocks such that each block contains d points, each point is
contained in d + 1 blocks and each two blocks share only one point. This
incidence structure happens to be equivalent to a finite affine plane of order
d [110].

Zauner extended the concept of BIBDs by introducing the more general
notion of quantum design [121], which consists of a set of b trace k projectors
on a v-dimensional Hilbert space that satisfy some trace constraints. In the
classical limit, where all projectors commute, one obtains classical BIBDs.
This concept describes famous quantum structures such as mutually unbi-
ased bases (MUBs) and SIC-POVMs, laying the groundwork for what could
be called “quantum combinatorics“. Numerous other intersections between
quantum theory and combinatorics have been identified. For example, the
problem of constructing two orthogonal Latin squares (OLS) of order d has
been shown to be equivalent to constructing an absolutely maximally en-
tangled state of four qudits [41]. Moreover, Wocjan and Beth constructed
mutually unbiased bases from orthogonal Latin squares [17], and Wootters
pointed out that affine planes and mutually unbiased bases actually can be
described by the same incidence structure [119]. With the development of
quantum computing, it becomes thus relevant to explore how (quantum)
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combinatorial objects are integrated into quantum information theory.
Apart from Zauner’s quantum designs, other combinatorial objects also

possess quantum analogues, which can provide new theoretical insights.
For instance, Vicary et al. introduced the notion of quantum Latin squares
(QLS), a quantum analogue of Latin squares, which enable a novel con-
struction scheme for unitary error bases [83]. Quantum Latin squares also
contribute to the classification of other biunitary constructions, including
Hadamard matrices [79], quantum teleportation and error correction, and of-
fer a new method for constructing MUBs, as shown by Musto [80]. Building
on this, Życzkowski et al. introduced quantum orthogonal arrays (QOA) and
demonstrated that their relationship to QLS is analogous to the relationship
between classical orthogonal arrays (OA) and LS [40, 41]. Moreover, they
introduced the notion of quantum orthogonal Latin squares (QOLS), anal-
ogously to its classical counter part OLS [41]. Building on this, in Ref. [99]
Życzkowski et al. then presented a quantum solution to Euler’s thirty-six of-
ficers problem, i.e. classically, no two OLS of order six exist, by constructing
a QOLS of order six, using numerical methods.

QOLS are closely related to perfect tensors, i.e. 4-valent tensors that can
be reshaped into a unitary matrix U ∈ U(d2) for every bipartition of their
indices. This structure also goes under the name 2-unitary, indicating that
all three, the unitary U itself, its partial transpose UΓ as well as its reshuf-
fled version UR, are unitary. In this work the names perfect tensors and
2-unitaries will be used interchangeably. Perfect tensors have their roots
in holographic quantum error-correcting codes [90] and are particularly in-
teresting in the theory of tensor networks. Different construction methods
have been discussed in Refs. [99, 95, 41, 46, 99] which range from analyti-
cal constructions via OLS over numerical constructions to constructions via
so-called perfectly perfect bi-unimodular sequences (in this work: doubly
perfect bi-unimodular sequences). While construction schemes using OLS
do not exist for the special case d2 = 36, since there are no OLS of order six,
Życzkowski et al. constructed a 36-dimensional 2-unitary from a QOLS of
order six in Ref. [99]. Rather et al. then demonstrated that a solution can also
be obtained using bi-unimodular doubly perfect sequences [95]. Although
the latter approach has some analytical aspects to it, the question whether it
is possible to construct a 2-unitary in dimension 36 without using any nu-
merical tools remained open. This raises the following question:

Problem 1: Can one find an analytic solution to the Euler’s thirty-six officers
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problem, i.e. can one construct a 36-dimensional 2-unitary fully analytically?

A generalisation of 2-unitary matrices to k-unitary matrices, i.e. 2k-valent
tensors that are unitary for all possible bipartitions of their indices, has been
given in Ref. [41] and a link between these structures and absolutely maxi-
mally entangled states of 2k parties with local dimension d, namely AME(2k, d)-
states, has been established, demonstrating that these structures could be a
useful tool in constructing AME-states.

Some combinatorial aspects can also be found in the research on quasi-
orthogonal systems of subalgebras of matrix algebras that have been widely
discussed in the works of Ohno, Weiner and Petz in Refs. [88, 114, 93, 92].
They demonstrated that given a matrix algebra Mp2(C), finding the maxi-
mal number of pairwise quasi-orthogonal subalgebras isomorphic toMp(C)
is a non-trivial task. Moreover, they established a connection between maxi-
mal Abelian subalgebras (MASAs) and MUBs. Some bounds on the number
of quasi-orthogonal subalgebras isomorphic to Mp(C) have been given by
Ohno [88] for the case where p is a prime power. In Ref. [86] the authors
defined an algebraic analogue of the combinatorial structure resembling an
affine plane and showed that this in fact leads to a complete set of MASAs
when applied to the matrix algebra Mp2(C). This reproduces the findings
of Zauner who described the same instance in terms of quantum designs.
Moreover, they showed that a set of subgroups of an index group of a nice
error basis, where all subgroups have pairwise trivial intersections and map
to pairwise commutative subalgebras under the respective representation,
give rise to a set of mutually quasi-orthogonal MASAs. This establishes a
link between combinatorics and representation theory.

Problem 2: How do perfect tensors relate to systems of quasi-orthogonal
subalgebras of matrix algebras? Can one describe perfect tensors from a
group theoretical point of view? Does that lead to new approaches on mak-
ing existence statements about perfect tensors in arbitrary dimensions?

The diverse connections between classical combinatorics and quantum com-
binatorial objects naturally prompt the question of whether one can formu-
late a more general framework - quantum combinatorics - from which clas-
sical combinatorics would emerge as a special (commutative) case that not
only encompass quantum designs but also QLS, perfect tensors, k-unitaries
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and QOA. In fact, while MUBs and SIC-POVMs can be described by Za-
uner’s quantum designs, a description of QLS and perfect tensors and their
relation to quantum designs is unknown. An overview about some of the
open problems in this area was given by Życzkowski et al. in Ref. [56]. Nev-
ertheless, a unified framework that fully captures the relationship between
classical and quantum combinatorics remains to be established.

Problem 3: How does a unified framework of classical and quantum combi-
natorics that captures all the structures discussed so far look like? Is there a
relation between QOLS and MUBs similar to the one between affine planes
and MOLS?

One approach towards getting a better understanding of any mathematical
structure is by reformulating it in a different “language“. Thus it can be in-
structive to consider (quantum) combinatorial objects in other settings like
category theory.

Category-theoretical formulations of quantum combinatorial notions like
QLS and MUBs have been made by Musto and Vicary in Refs. [81, 82, 84, 83].
They described QLS and MUBs as objects in a category using special dagger
Frobenius algebras. First attempts to find a category-theoretical description
of quantum designs have been developed in the present author’s master’s
thesis [36] by defining a category of quantum designs using the arrow cat-
egory of the category of finite-dimensional Hilbert spaces and completely
positive maps, CP[FHilb]. The same thesis also covers formulation of a cat-
egory of classical block designs using the arrow categories of the category
of relations and the category of matrices and natural numbers, Mat(N), and
the definition of a functor between this category and the category of quan-
tum designs. The similarity in the construction of these categories raises the
following questions:

Problem 4: Can one generalise the category theoretical description of classi-
cal and quantum block designs to a more general construction scheme that
can be applied to any monoidal pointed category? Does such a generalisa-
tion lead to new insights or new mathematical objects?

Although this thesis does not aim to fully answer all of these questions, it
delivers partial answers by discussing well-known combinatorial structures
in the language of matrix algebras, group theory and category theory. Special
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emphasis will lie on perfect tensors, which will be explored in terms of repre-
sentation theory and quasi-orthogonal subalgebras of matrix algebras, lead-
ing to new approaches to finding perfect tensors in arbitrary dimensions. In
particular, it will be shown that the existence of a 2-unitary in dimension d2 is
equivalent to the existence of four mutually quasi-orthogonal subalgebras of
Md2(C) isomorphic toMd(C). This instance will also be described in terms
of groups and representations, providing a new way to look at and for per-
fect tensors. Moreover, construction schemes of perfect tensors from doubly
perfect bi-unimodular sequences in all dimensions that are of the form 2m,
22m or dn, where m and d are odd integers greater than 1 and n is an arbi-
trary integer greater than 1, will be presented and an analytical solution to
Euler’s thirty-six officers problem based on a doubly perfect bi-unimodular
sequence ansatz will be delivered.

Furthermore, a more abstract notion of categorical designs based on ar-
row categories will be derived that when applied to the categories Mat(N)
and CP[FHilb] leads to a category theoretical description of BIBDs and quan-
tum designs respectively. In fact, this construction generalises the notion of
quantum designs given by Zauner to a notion of quantum designs that could
also be understood as combinatorial superoperator. Special cases are given
by the category of MUBs and the category of so-called combinatorial quan-
tum channels. Eventually, it will be discussed how perfect tensors fit into
this model.

1.1 Outline

The mathematical concepts that are used throughout the thesis, beginning
with (quantum) combinatorial notions such as BIBDs, (quantum) Latin squares,
mutually unbiased bases (MUBs), absolutely maximally entangled (AME)
states, Hadamard matrices, perfect tensors and the definition of (doubly)
perfect sequences will be introduced in Section 2.1 of Chapter 2. The sec-
ond part of this chapter, Section 2.2, is devoted to quasi-orthogonal sys-
tems of subalgebras of matrix algebras, introducing the notions of quasi-
orthogonality between subalgebras, factors, maximal Abelian subalgebras
(MASAs), and delocalised subalgebras. Building on this, in Section 2.3, se-
lected concepts from the representation theory of finite groups and character
theory are discussed. Finally, the last section, Section 2.4, covers basic no-
tions from monoidal category theory, categorical quantum theory, and arrow
categories.
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Chapter 3 begins with a matrix-algebraic perspective on perfect tensors
in Section 3.1, showing that the existence of a 2-unitary in dimension d2 is
equivalent to the existence of four mutually quasi-orthogonal subalgebras
ofMd2(C) isomorphic toMd(C). Moreover, a generalisation to k-unitaries
will be discussed and it will be demonstrated that, while the existence of a
k-unitary implies the existence of k quasi-orthogonal subalgebras ofMdk (C)
isomorphic to Md(C), the other direction does not hold. Here a specific
example will be given for the case d3 = 27. Building on this, Section 3.2
phrases these concepts in the more abstract framework of groups and repre-
sentations and it will be shown that the existence of a 2-unitary can be related
to the existence of a group G with a d2-dimensional irreducible representa-
tion and four subgroups on which the representation is also irreducible with
multiplicity d. As an explicit example of such a group, nice error bases will
be discussed. Moreover, a search algorithm implemented in the algebra soft-
ware GAP, that has been used to look for groups satisfying these criteria, will
be presented.

The third part of the chapter, Section 3.3, addresses construction schemes
for perfect tensors from doubly perfect sequences in all dimensions that are
of the form 2m, 22m or dn, where m and d are odd integers greater than 1 and n
is an arbitrary integer greater than 1, which lead to 2-unitaries in dimension
22m, 24m and d2n, respectively. Moreover, an analytic solution for the problem
of finding a 2-unitary in dimension d2 = 36 based on a doubly perfect bi-
unimodular sequence of length 36 and period 3 will be presented.

The final section discusses several open questions and observations that
were encountered throughout the chapter, including the minimal order of
2-unitaries in dimensions d2 = 9, 16, 25, 36 and the relation between a quasi-
orthogonal decomposition ofM9(C) and different 2-unitaries in dimension
9.

Chapter 4 introduces a categorical framework based on arrow categories
that generalises both quantum and block designs by transferring the essen-
tial properties of block designs into a pointed monoidal dagger category. The
application of this framework to the categories Mat(N) and CP[FHilb] is
then discussed, showing that it yields a categorical representation of both
block designs and quantum designs, which can be connected via a functor.
Furthermore, these techniques are used to define a category of MUBs and to
define so-called combinatorial quantum channels. Finally, these concepts are
reformulated in the language of matrix algebras and it will be discussed how
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perfect tensors fit into this model.
Lastly, Chapter 5 summarises the thesis and discusses open questions.





9

2 Background

In this chapter, the mathematical foundations relevant to this work will be
discussed. Beginning with the definitions of combinatorial structures such as
balanced incomplete block designs, Latin squares, and affine planes, the first
section aims to introduce the relatively new field of quantum combinatorics
in an exploratory manner. Concepts such as quantum Latin squares, MUBs,
AME states, Hadamard matrices, and perfect tensors will be explained. More-
over, the definition of (doubly) perfect sequences will be provided.

The second part of the chapter is devoted to quasi-orthogonal systems of
subalgebras of matrix algebras, where the notions of factors, MASAs, and
delocalised subalgebras will be defined. In the third section, some concepts
from the representation theory of finite groups as well as character theory
will be discussed. Finally, the last section of this chapter addresses the ba-
sic notions of monoidal categories, category-theoretical quantum theory, and
arrow categories.

Familiarity with fundamental concepts of group theory, algebra and quan-
tum theory will be assumed. For an introduction see Refs. [31, 68].

2.1 (Quantum) Combinatorics

Combinatorics is a vast field with applications in many different areas such
as computer science, the design of experiments and ultimately also theoret-
ical physics. A substantial part of this chapter is drawn from the definitions
in Ref. [37], which are largely adapted from Ref. [110].

One principal concept in this area is the notion of a design: a way to relate
a given set of objects (points) to another set of objects (blocks).

Definition 2.1. [37] A design (V, B, I) is given by a set V = {1, .., v} of points,
and a set B = {1, . . . , b} of blocks and an incidence relation I between them.
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Designs can also be represented as bipartite graphs, where the vertex set is
partitioned into disjoint subsets of points and blocks [37]. More precisely,
a design (V, B, I) with |V| = v and |B| = b can be encoded in an incidence
matrix X, which is a v× b binary matrix defined by

Xi,j =

{
1 if (i, j) ∈ I,
0 otherwise.

Throughout this work, the incidence matrix representation of designs will be
used primarily. In particular, for a design (V, B, I) with associated incidence
matrix X, the shorthand notation X : b→ v will be adopted.

2.1.1 Block Designs

Designs can come with extra structure, i.e. certain symmetries within the
incidence relations. Prominent examples include uniformity- and regularity-
conditions.

Definition 2.2. [37] A design X : b→ v is called

• k-uniform, if every block contains exactly k points: ∑v
i=1 Xi,j = k, for all j =

1, .., b .

• r-regular, if every point appears in exactly r blocks: ∑b
j=1 Xi,j = r for all i =

1, .., v.

In other words, every column of X contains exactly k “1”s and every row of
X contains exactly r “1”s.

Definition 2.3. [37] A k-uniform and r-regular design X : b → v is called
λ-balanced, if any two points are contained in exactly λ blocks. One then has:

X · XT = λ
(

Ev×v − Iv×v

)
+ rIv×v.

Here XT is the transpose incidence matrix, Ev×v denotes the v× v-matrix in
which every entry is equal to 1, and Iv×v denotes the v× v identity matrix.

Combining these properties, one obtains the notion of a balanced incomplete
block design (BIBD).

Definition 2.4. [37] A balanced incomplete block design (BIBD), or a (v, k, r, b, λ)-
design, is a design X : b→ v which is k-uniform, r-regular and λ-balanced.
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By simple counting arguments, one can easily derive the following equa-
tional properties ([110], p. 4-5):

Lemma 2.4.1. For a (v, k, r, b, λ)-design, the following equations hold:

b · k = r · v (2.1)
λ(v− 1) = r(k− 1) (2.2)

To simplify terminology, often the term block design will be used through-
out this work to refer to BIBDs.

Two block designs can be related via a homomorphism:

Definition 2.5. [37] Consider two designs X : b → v and X′ : b′ → v′. A
design homomorphism f : X → X′ is a pair of functions fv : v → v′ and
fb : b→ b′ such that the following diagram commutes:

b b′

v v′
X

fb

X′

fv

Projective and Affine Planes

Prominent examples of block designs are given by affine and projective planes.
The latter are special cases of so-called symmetric block designs:

Definition 2.6. ([110], p. 23) A (v, k, r, b, λ)-design is symmetric when v = b;
that is, when there are as many points as blocks.

In this case Lemma 2.4.1 then implies that r = k.

Example 1. ([110], p. 27) Consider a finite projective plane of order d. One
then has v = d2 + d + 1 points and b = d2 + d + 1 lines (blocks) such that
there are k = d + 1 points on each line and each point appears on r = d + 1
lines. Moreover, every pair of lines intersect in exactly one point. Hence
one has a symmetric block design with parameters v = b = d2 + d + 1,
r = k = d + 1 and λ = 1.

For d = 2, this is equal to the so-called Fano plane:
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FIGURE 2.1: The Fano plane is a block design with parame-
ters v = b = 7, r = k = 3 and λ = 1. This corresponds to a

projective plane of order 2.

One can show that the following theorem holds true:

Theorem 2.6.1. ([110], p. 28) For every prime power q ≥ 2, there exists a (sym-
metric) (q2 + q + 1, q + 1, 1)-design (i.e. a projective plane of order q).

For non-prime power dimensions d, the existence problem of projective
planes is not fully solved. It was shown that projective planes are known
to not exist, if d = 1 mod 4 or d = 2 mod 4 and if the square-free part of d
contains at least one prime factor of the form 4k + 3 [19].

Projective planes are equivalent to affine planes, which itself are (d2, d, d +
1, d, 1)-designs ([110], p. 106). To see that consider a projective plane of or-
der d. By removing one line (block) and hence d points from the projective
plane, one obtains an affine plane. Conversely, given an affine plane, one can
construct a projective plane by adding a line (block) with d points that inter-
sects with all other lines in exactly one point to the affine plane 1. A direct
consequence of this fact is the following:

Theorem 2.6.2. ([110], p. 29) For every prime power q ≥ 2, there exists a (q2, q, 1)-
design (i.e. an affine plane of order q).

1See Ref. [110], p. 106 for further details of the proof.
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The lines of an affine plane of order d can be grouped into so-called par-
allel classes. Removing one or more of these parallel classes, such that one is
left with k parallel classes, one ends up with an incidence structure known as
k-net of order d. A k-net with k = d + 1 is called complete and coincides with
an affine plane [86].

Mutually Orthogonal Latin Squares

Affine planes and hence also projective planes are closely related to mutually
orthogonal Latin squares which will be introduced in this section.

Definition 2.7. [84] A Latin square of order d, in short: LS(d), is a square
arrangement of size d such that every entry, taken from the set {0, ..., d− 1},
occurs once in each row and each column.

In the case d = 3 for example, the following forms a Latin square:

0 1 2
2 0 1
1 2 0

The following definition is well-established and can be found in similar
spirit in Ref. [110] on page 131:

Definition 2.8. i) Two Latin squares L and K of size d are called orthog-
onal, if the set of ordered pairs [Lij, Kij] is composed of all possible d2

combinations of symbols of L and K, where i, j ∈ [d].

ii) A collection of m LS of order d is called mutually orthogonal (MOLS), if
they are pairwise orthogonal.

Example 1. For d = 3, the following two Latin squares are orthogonal:

0 2 1
2 1 0
1 0 2

0 1 2
2 0 1
1 2 0

⇝
00 21 12
22 10 01
11 02 20

Definition 2.9. ([94], p. 96) An OLS(d) with entries from the set {0, 1, ..., d−
1} is said to be in normal form, if every top row is 0, 1, ..., d− 1, in that order
and the left column of one of the squares also has 0, 1, ..., d− 1, in that order.
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Proposition 2.9.1. ([110], p. 139) A complete set of MOLS(d) is equivalent to an
affine plane.

Proof. Consider an affine plane of order d. Choose an arbitrary parallel class
to represent column indices and another arbitrary parallel class to represent
row indices. Now, number each line of the column parallel class in arbitrary
order and then do the same with the lines of the row parallel class. If one
now takes another arbitrary parallel class and label its lines randomly with
0, 1, ..., d− 1, one can assign to each pair of row and column indices a number
corresponding to a line of this third parallel class by using the intersection
properties of the three corresponding lines of the plane. In this way, the lines
of the affine plane can be used as indices for a d× d-matrix where the entries
are given by the points of the plane. This matrix is a Latin square. If one
chooses a fourth parallel class to construct another Latin square in the same
way, both Latin squares are orthogonal. This is merely due to the fact that
each line of the third parallel class meets every line of the fourth parallel
class at exactly one point. As any affine plane of order d has d + 1 parallel
classes and two of them were chosen to generate matrix indices, one can thus
construct d− 1 mutually orthogonal Latin squares. Conversely, given d− 1
MOLS(d), one can construct an affine plane of order d in a similar way. See
Ref. [110], p. 136-139 for more details.

One can now establish the following important theorem:

Theorem 2.9.1. ([110], p. 139) Let d ≥ 2. Then the existence of any one of the
following designs implies the existence of the other two designs:

i) d− 1 MOLS(d),

ii) an affine plane of order d,

iii) a projective plane of order d.

As a consequence, one finds:

Theorem 2.9.2. (Theorem 4.24 in Ref. [25]) For every prime power p, there exist
p− 1 MOLS of order p, arising from the structure of the finite field Fp.

What is known about the existence of non-complete sets of MOLS of or-
der d? In 1782, Euler conjectured that there are no two orthogonal Latin
squares of order d ≡ 2 mod 4, the so-called 36 officers problem. This con-
jecture stood until the beginning of the 20-th century, when Tarry proved
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that there indeed do not exist two orthogonal Latin squares of order 6 in
1900 [111], leaving the other cases open. It was only in 1960 when Bose,
Shrikhande, and Parker disproved these other cases [16]. Thus, OLS of order
d can be constructed for any d ̸= 2, 6.

2.1.2 Quantum Designs

The concept of a quantum design was introduced by Zauner in his disserta-
tion [121]. In the following, his definition will be recalled, with minor adjust-
ments in terminology for consistency.

Definition 2.10. A quantum (v, b)-design is a set D = {p1, ..., pv} of complex
orthogonal b× b projection matrices pi on a b-dimensional Hilbert space Cb,
i.e. pi = p†

i = p2
i for all i ∈ {1, . . . , v}.

Just as with classical designs, certain structural properties can also be defined
for quantum designs.

Definition 2.11. A quantum (v, b)-design is called

• r-regular, if there exists some r ∈N with tr(pi) = r for all i ∈ {1, . . . , v},

• k-uniform, if there exists some k ∈ R with ∑v
i=1 pi = k · Ib×b.

Definition 2.12. [121] Given a quantum (v, b)-design, its degree is the cardi-
nality of the set {tr(pi pj)|i, j ∈ {1, . . . , v}, i ̸= j}.

It follows that a quantum design has degree 1 just when there exists some
λ ∈ R such that

tr(pi pj) = λ ∀i, j = 1, ..., v with i ̸= j. (2.3)

Such a quantum design will be called λ-balanced in the course of this work.
That λ is real in this case follows from a simple argument: λ = tr(pi pj) =

tr((pi pj)
†)∗ = tr(p†

j p†
i )
∗ = tr(pj pi)

∗ = tr(pi pj)
∗ = λ∗.

The following lemma can then be established analogous to Lemma 2.4.1
for classical designs.

Lemma 2.12.1. [121] For a k-uniform, r-regular and λ-balanced quantum design
D = {p1, ..., pv} with pi ∈ Cb the following equations hold:

b · k = v · r, (2.4)
λ(v− 1) = r(k− 1). (2.5)
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Proof. This proof is also part of the present author’s paper [37].
Consider an r-uniform, k-regular and λ-balanced quantum design D =

{p1, ..., pv} with pi ∈ Cb. By applying the trace function to the uniformity
condition, one gets:

tr
( v

∑
i=0

pi

)
=

v

∑
i=0

tr(pi) = k · tr(Ib×b). (2.6)

Using the regularity condition this expression becomes:

v

∑
i=0

tr(pi) =
v

∑
i=0

r = v · r = k · tr(Ib×b) = k · b. (2.7)

This proves Eq. 2.4.
In order to prove Eq. 2.5, start with the following expression:

b = tr(Ib×b) = tr(I2
b×b). (2.8)

Using the uniformity condition, one gets:

tr(I2
b×b) =

1
k2 tr

( v

∑
i=0

pi

v

∑
j=0

pi

)
=

1
k2

v

∑
i,j=0

tr(pi pj) (2.9)

=
1
k2

v

∑
i,j=0,j ̸=i

λ +
1
k2

v

∑
i

r =
1
k2 (λv(v− 1) + vr). (2.10)

Here the uniformity and the λ-condition have been used in the third step.
Hence one has:

b =
1
k2 (λv(v− 1) + vr)⇔ (2.11)

b · k
v
· k = λ(v− 1) + r. (2.12)

Using Eq. 2.4, one obtains:

r · k = λ(v− 1) + r. (2.13)

This is equivalent to Eq. 2.5.

Definition 2.13. [121] A quantum design is commutative when all projection
matrices pairwise commute.
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Theorem 2.13.1 ([121], Theorem 1.10). A commutative quantum design is equiv-
alent to a classical block design.

The proof is based on the fact that every commutative design is unitarily
equivalent to a design comprised of diagonal matrices (as the projections are
idempotent, the diagonal entries must therefore be 0 or 1) and can be found
in Ref. [121].

Example 1. Let A be an affine plane of order d, i.e. A has d2 points and
d(d + 1) lines that can be grouped into d + 1 parallel classes that contain d
lines each. Each line contains d points and each point is contained in d + 1
lines. Moreover, each two lines from different parallel classes intersect in
exactly one point. In other words, consider a block design with parameters
b = d2, v = d(d + 1), r = d, k = d + 1 and λ = 1. According to Theo-
rem 2.13.1 this block design gives rise to a commutative quantum design, i.e.
set of commuting orthogonal projectors pi, of the form:

DA = {p1, ..., pd(d+1)}, with pi ∈ Md2(C) (2.14)

The projectors can be grouped into d + 1 so-called parallel classes A1 = {p1
1,...,

p1
d},..., Ad+1 = {pd+1

1 , ..., pd+1
d } and fulfil:

i) tr(pa
i ) = d ∀ i = 1, ..., d(d + 1),

ii) ∑
(d+1)
a=1 ∑d

i=1 pa
i = (d + 1)Id2 ,

iii) tr(pa
i , pb

j ) = (1− δab) + d · δabδij for all i, j ∈ [d] and a, b ∈ [d + 1].

This construction can also be seen as d + 1 d-outcome measurements in the
Hilbert space Cd2

, each consisting of orthogonal projectors of rank d. Each
parallel class can be seen as a subalgebra ofMd2(C). One has that tr(pq) = 1
for p, q not lying in the same parallel class and hence each two parallel classes
are quasi-orthogonal 2 subalgebras of Md2(C). In total, one has d + 1 of
them.

This example actually describes a complete set of MUBs. These structures
will be introduced in the next section.

2See Section 2.2.1 for more details.
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MUBs

Notable examples of uniform and regular quantum designs are mutually un-
biased bases (MUBs) which play a crucial role in quantum information theory.

Definition 2.14. [86] A set of k bases {{| f 1
i ⟩}i∈[d], .., {| f k

i ⟩}i∈[d]} in a d-dimensional
Hilbert space H is called mutually unbiased, if the the following holds for any
pair of bases:

⟨ f a
i | f b

j ⟩ = δa,b
1
d
∀ i, j ∈ [d]. (2.15)

In other words, the inner product between any two vectors from different
bases is constant.

A set of d + 1 MUBs in a Hilbert space of dimension d is called complete.
The following example is taken from Ref. [37] and has originally been made
in Ref. [121]

Example 1. [121] A uniform and regular quantum design of degree 2 with
parameters r = 1, b = d, v = d · k and Λ = { 1

d , 0} defines a set of k MUB’s in a
d-dimensional Hilbert space H. Indeed, the d · k projectors all have trace one
and satisfy the following condition, where a labels the different orthogonal
classes, and i labels the projectors within an orthogonal class:

k

∑
a=1

d

∑
i=1

pa
i = k · I (2.16)

Moreover, the following holds:

tr(pa
i pb

j ) =
1
d
(1− δab) + δijδab

It is easy to see that one gets a complete set of MUBs if v equals d (d + 1), as

one then has k = d + 1.

2.1.3 Orthogonal Quantum Latin Squares, Perfect Tensors,
and AME-States

Let K be a Latin square of order d. One can construct a quantum Latin square
by replacing the classical entries with elements of the computational basis:

Kij 7→ |Kij⟩ . (2.17)
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Due to the properties of Latin squares, every row and every column of the
corresponding quantum Latin square forms an orthonormal basis in Cd.

This motivates the following definition:

Definition 2.15. [42] A quantum Latin square (QLS) of order d is a d× d array
of quantum states {|Ψij⟩}i,j∈[d] in a Hilbert space Hd such that each row and
each column forms an orthonormal basis:

QLS(d) =

 |Ψ0,0⟩ · · · |Ψ0,d−1⟩
...

. . .
...

|Ψd−1,0⟩ · · · |Ψd−1,d−1⟩

 .

The concept of QLS was first introduced in Ref. [83] and later generalised
to quantum orthogonal Latin squares (QOLS) in Ref. [42]:

Definition 2.16. Two QLS(d)s Φ and Ψ are called orthogonal if the set {|ϕij⟩ =
|Φij⟩ ⊗ |Ψij⟩}i,j∈[d] forms an orthonormal basis of H⊗2

d and

i) All rows satisfy

trB

(
d−1

∑
k=0
|ϕik⟩ ⟨ϕjk|

)
= δijId (2.18)

ii) All columns satisfy

trB

(
d−1

∑
k=0
|ϕki⟩ ⟨ϕjk|

)
= δijId (2.19)

One can show that this is equivalent to the following condition:

Proposition 2.16.1. [82] Two QLS(d)s Φ and Ψ are orthogonal if and only if one,
and hence both, of the following equivalent conditions hold:

d−1

∑
i,j=0
|Φij⟩ ⟨Φij| ⊗ |Ψij⟩ ⟨Ψij| = Id2 , (2.20)

d−1

∑
i,j,p,q=0

⟨Φij|Φpq⟩⟨Ψij|Ψpq⟩ |ij⟩ ⟨pq| = Id2 . (2.21)
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Analogously to the classical case, one can construct a quantum orthog-
onal Latin square of order d from two orthogonal classical Latin squares K
and L by making the following assertion:

KijLij 7→ |KijLij⟩ . (2.22)

Now each row and each column of the resulting array forms an orthonormal
basis of H⊗2

d .
Every pair of orthogonal Latin squares gives rise to a QOLS, but the con-

verse is not true in general. In fact, QOLS can consist of entangled states, that
is, they need not be product states. In this thesis, such QOLS will be referred
to as genuinely quantum following previous notions by Życzkowski.

Perfect Tensors

Let V be a finite-dimensional vector space over a field F, and let V∗ be its
dual space. A tensor of type (m, n) on V is a multilinear map

T : V∗ × · · · ×V∗︸ ︷︷ ︸
m times

×V × · · · ×V︸ ︷︷ ︸
n times

→ F.

A tensor of rank (k, k) can be reshaped into a matrix of dimension dk 3 .
Since there are 1

2 (
2k
k ) bipartitions of the 2k indices (excluding global transpo-

sitions), there are 1
2 (

2k
k ) matrices that can be constructed from this tensor [41].

Consider for example the case k = 2. The indices of the (2, 2)-tensor A can
be reshaped into a matrix in three inequivalent ways, each of which corre-
sponding to one of the following matrices:

⟨ij| A |kl⟩⇝ A, (2.23)

⟨ik| A |jl⟩⇝ AR (reshuffling), (2.24)

⟨il| A |kj⟩⇝ AΓ (partial transpose). (2.25)

Definition 2.17. A (2, 2)-tensor T is called perfect if its reshaping into a matrix
U ∈ U(d2) is unitary for every possible bipartition of its four indices. The
resulting matrix U is then called a 2-unitary.

A unitary U that remains unitary under reshuffling is also known as dual
unitary. Similarly, a unitary U whose partial transpose is also unitary is called
Γ-dual unitary.

3See Ref. [10], p. 239 for more details
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For a bipartite matrix U ∈ U(d2) that can be written as a tensor product
of two sub-matrices U = U1 ⊗U2 , the following holds [46]:

UR = UR
1 ⊗UR

2 and UΓ = UΓ
1 ⊗UΓ

2 . (2.26)

Thus, if U is 2-unitary, its sub-matrices are also 2-unitary [46].

Proposition 2.17.1. If U ∈ U(d2) is 2-unitary, then its partial transpose is also
2-unitary.

Proof. Let U ∈ U(d2) be 2-unitary, then UΓ and (UΓ)Γ = U are unitary per
definition. Moreover, one has (UΓ)R = (UR)S, where S denotes the partial
swap4. Since UR is unitary per definition, (UΓ)R = (UR)S is also unitary,
and hence UΓ is 2-unitary.

For higher-order tensors one can make the following generalisation:

Definition 2.18. [41] A (k, k)-tensor T is called k-unitary if its reshaping into
a matrix U ∈ U(dk) is unitary for every possible bipartition of its 2k indices.

A weaker condition is given by multiunitarity:

Definition 2.19. [41] A (k, k)-tensor T is called multiunitary if its reshaping
into a matrix U ∈ U(dk) is unitary for some, but not all, of the 1

2 (
2k
k ) possible

index permutations.

These concepts and there applications are extensively discussed from a
geometric point of view in Ref. [74].

Proposition 2.19.1. [41] Every pair of orthogonal Latin squares of order d gives
rise to a 2-unitary matrix in dimension d2.

2-unitaries are closely related to so-called absolutely maximally entangled
(AME)-states:

Definition 2.20. [41] An absolutely maximally entangled state of N parties, each
with local dimension d, i.e. an AME(N, d) state, is a pure state whose reduced
density matrices are maximally mixed for every bipartition into k ≤ N/2
subsystems:

ρk =
1
dk Idk , ∀k ≤ N

2
. (2.27)

4US corresponds to the following index change: ⟨ij|U |kl⟩ → ⟨ij|U |lk⟩.
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Example 1. [33] For N = 2 = d the Bell-states are AME-states:

|Φ+⟩ = 1√
2

(
|0⟩A ⊗ |0⟩B + |1⟩A ⊗ |1⟩B

)
, (2.28)

|Φ−⟩ = 1√
2

(
|0⟩A ⊗ |0⟩B − |1⟩A ⊗ |1⟩B

)
, (2.29)

|Ψ+⟩ = 1√
2

(
|0⟩A ⊗ |1⟩B + |1⟩A ⊗ |0⟩B

)
, (2.30)

|Ψ−⟩ = 1√
2

(
|0⟩A ⊗ |1⟩B − |1⟩A ⊗ |0⟩B

)
(2.31)

(2.32)

Another key example is when N = 4. Consider a state on four subsystems

of local dimension d (labeled A, B, C, D):

|Φ(4, d)⟩ = 1
d

d−1

∑
i,j=0
|i⟩A |j⟩B ⊗ |Ψij⟩CD . (2.33)

Theorem 2.20.1. [41] The existence of a 2-unitary matrix is equivalent to the exis-
tence of an AME(4, d) state.

Proof. Consider a state on four subsystems of local dimension d :

|Φ(4, d)⟩ = 1
d

d−1

∑
i,j=0
|i⟩A |j⟩B ⊗ |Ψij⟩CD , (2.34)

where

|Ψij⟩CD = Uij |i⟩C |j⟩D , (2.35)

and Uij = ∑d−1
k,l=0 Tij

kl |kl⟩ ⟨ij| is a 2-unitary. By slight abuse of notation, the
corresponding perfect tensor will be denoted by Tkl

ij . The full state can then
be written as:

|Φ(4, d)⟩ = 1
d

d−1

∑
i,j,k,l=0

Tijkl |i⟩A |j⟩B |k⟩C |l⟩D . (2.36)
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The density operator associated to this state is given by:

ρ = |Φ⟩ ⟨Φ| = 1
d2

d−1

∑
i,j,k,l,m,n,r,s=0

TijklTmnrs†|i⟩A|j⟩B|k⟩C|l⟩D ⟨m|A ⟨n|B ⟨r|C ⟨s|D .

(2.37)

The state described by this operator can be partitioned into two subsystems
of size two in three different ways: AB|CD, AD|CB and AC|BD. Tracing out
the subsystem AB one finds:

trAB(ρ) =
1
d2

d−1

∑
m,n,k,l,r,s=0

TmnklTmnrs†|k⟩C|l⟩D ⟨r|C ⟨s|D .

This is equal to

1
d2 ICD, (2.38)

if and only if

(TT†)rs
kl = δr

kδs
l (2.39)

which means that the tensor Tkl
ij reshaped into a matrix has to be unitary.

Since one can do this for all three bipartitions,one finds that the state |Φ⟩ is
an AME(4, d)-state if and only if the tensors Tkl

ij , Tki
l j and T jl

ik reshaped into a

matrix are unitary, i.e. Tkl
ij is perfect.

Theorem 2.20.2. [41] The existence of a QOLS(d) is equivalent to the existence of
an AME(4, d) state.

Proof. AME⇒ OQLS(d).

Consider an AME(4, d)-state which, following the proof of the previous the-
orem, can be written as:

|Φ(4, d)⟩ = 1
d

d−1

∑
i,j=0
|i⟩A|j⟩B|Ψij⟩CD, (2.40)
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where |Ψij⟩ ∈ HCD. By considering the vectors corresponding to the subsys-
tems A and B as index sets, one can arrange the |Ψij⟩ in a d× d grid. Due to
the AME-properties, one finds that for every bipartition the following holds:

1
d2 IAC = trBD(|Ψij⟩ ⟨Ψij|). (2.41)

But this is equivalent to

1
d2 IAC =

1
d2 trBD

(
d−1

∑
i,j,k,l=0

|ij⟩ ⟨kl| ⊗ |Ψij⟩ ⟨Ψkl |
)

=
1
d2

d−1

∑
i,k=0
|i⟩ ⟨k| ⊗ trD

(
d−1

∑
j=0
|Ψij⟩ ⟨Ψkj|

)

=
1
d2

(
IA ⊗ trD

(
d−1

∑
j=0
|Ψij⟩ ⟨Ψij|

)
+

d−1

∑
i ̸=k,i,k=0

|i⟩ ⟨k| ⊗ trD

(
d−1

∑
j=0
|Ψij⟩ ⟨Ψkj|

))
.

This is only true, if

trD

(
d−1

∑
j=0
|Ψij⟩ ⟨Ψij|

)
= IC and (2.42)

trD

(
d−1

∑
j=0
|Ψij⟩ ⟨Ψkj|

)
= 0. (2.43)

This proves condition i) of Def. 2.16. Analogously, one can prove condition
ii) of Def. 2.16. Condition i) holds because every bipartition of |Φ(4, d)⟩ is
maximally entangled: Consider the setting from above and choose the OQLS
entries to be given by the states associated to the subsystem CD. Due to the
AME-property one then finds

ρΨ =
d−1

∑
m,n=0

|Ψmn⟩ ⟨Ψmn| =
1
d2 ICD (2.44)

via tracing out the subsystem AB.

QOLS(d)⇒ AME.
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Conversely, if one has two orthogonal quantum Latin squares forming a d× d
grid with entries |Ψ⟩, one can use each entry to construct a state

|Φ⟩ = 1
d

d−1

∑
i,j=0
|i⟩A|j⟩B|Ψij⟩CD.

Analogously to the calculation above, one can show that this state is an
AME(4, d)-state using condition i) and ii) of Def. 2.16.

It follows that the existence of MOLS, QOLS, AME(4, d) states, and 2-
unitaries are intimately related.

This correspondence can be generalised to higher rank tensors:

Proposition 2.20.1. [41] Every k-unitary of dimension dk corresponds to an AME(2k,
d) state.

The existence of AME(4, d)- states for arbitrary dimensions d is a widely
discussed topic. Refs. [58, 59] give a broad overview with the most important
cases summarised below:

For d = 2 no AME(4, 2) and hence no 2-unitary of dimension 4 exists.
This is has been proven by Higuchi and Sudbery in Ref. [55]. For the cases
d = 3, 4, 5 a standard constructive route is via combinatorial designs (orthog-
onal arrays, OLS and MOLS). These can be used to produce 2-unitary ma-
trices and thus AME(4, d)-states. For prime-power dimensions one usually
gets constructions from stabilizer codes and finite-field methods [58]. The
case d = 6 is tied to Euler’s “36 officers“ problem and the non-existence of
a pair of orthogonal Latin squares of order 6 showing that there cannot exist
a 2-unitary and hence an AME(4, 6)-state that arises from a classical com-
binatorial structure (compare to the discussion on the existence of MOLS in
the previous section). However, the explicit construction of a 2-unitary of
dimension 36 in Ref. [99] being equivalent to a genuinely quantum orthogo-
nal Latin square proved the existence of AME(4, 6)-states demonstrating the
usefulness of quantum combinatorics.

2.1.4 Hadamard Matrices

Hadamard matrices have a wide range of applications: from combinatorics
and signal processing, to error-correcting codes and quantum computing [8].
In this work, they are primarily of interest in the context of 2-unitary matri-
ces.
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Definition 2.21. [20] A complex Hadamard matrix of order n is a square matrix
H ∈ Cn×n such that the following holds:

|Hij| = 1 for all i, j ∈ [n],

HH† = nIn.

If all entries are powers of q-th roots of unity, i.e. (Hij)
q = 1 for all i, j ∈

[n], then the Hadamard matrix is said to be of Butson-type [20].

2.1.5 Doubly Perfect Sequences

The study of unimodular sequences originates in harmonic analysis and com-
binatorics and plays an important role in signal processing, where bi-unimodular
sequences, i.e. unimodular sequences whose discrete Fourier transform is
also unimodular, are relevant in communication systems and radar systems [5].

Let ωd = exp(2πi/d) be a primitive d-th root of unity. A unimodular
sequence of length d2n and phase d is a sequence defined as:

Λ(a) = ω
f (a0,...,a2n−1)
d = [λ0, . . . , λd2n−1 ], (2.45)

where f (a) = f (a0, . . . , a2n−1) is a function f : Z2n
d → Z. Throughout this

thesis, vectors will be denoted by using bold font.

Definition 2.22. Given a sequence Λ(a) = ω
f (a0,...,an−1)
d , its discrete Fourier

transform (DFT) is given by:

F (Λ)(k) = Λ(a)ω−[k,a]
d , (2.46)

where

[k, a] = kT Ja, with J =
(

0 In
−In 0

)
(2.47)

defines the symplectic product on Z2n
d .

In the following, the absolute value of a sequence is defined as:

|Λ| := [|λ0|, . . . , |λd2n−1 |]. (2.48)
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For a unimodular sequence Λ it is easy to verify that its absolute value is
given by the all-one array:

|Λ| = [1, . . . , 1]. (2.49)

A bi-unimodular sequence Λ additionally satisfies:

|F (Λ)| = [1, . . . , 1]. (2.50)

Definition 2.23. Given a sequence Λ of length d2n and phase d, its auto-
correlation is defined as:

(Λ ⋆ Λ)(a) = ∑
b∈Z2n

d

Λ(a + b)Λ(b). (2.51)

One important concept that can be derived from this is the concept of per-
fect sequences, i.e. sequences with zero auto-correlation (also known as ZAC
or CAZAC sequences), having their roots in radar and communication the-
ory [5]5.

Definition 2.24. A sequence Λ of length d2n is called perfect if its auto-correlation
satisfies:

(Λ ⋆ Λ)(a) = δ(a)λ0 = [λ0, 0, . . . , 0], (2.52)

i.e., the auto-correlation vanishes for all off-peak values of a.

Similarly, one can define a twisted auto-correlation:

Definition 2.25. Given a sequence Λ of length d2n and phase d, its twisted
auto-correlation is defined as:

(Λ⋆̃Λ)(a) = ∑
b∈Z2n

d

ω
[a,b]
d Λ(a + b)Λ(b). (2.53)

The twisted auto-correlation can vanish on all off-peak elements. This
motivates the following definition:

Definition 2.26. A perfect sequence Λ of length d2n is called doubly perfect, if
the following holds:

(Λ⋆̃Λ)(a) = δ(a)λ̃0 = [λ̃0, 0, . . . , 0].
5The property of the sequences that all entries of the autocorrelation except from the peak

are zero, ensures that the incoming radar signals do not interfere with the outgoing signals.
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For a bi-unimodular doubly perfect sequence, it is straightforward to ver-
ify that λ0 = λ̃0 = d2n.

Example 1. [95] The following bi-unimodular sequence of length 36 and
period 3 is doubly perfect:

Λ = exp

(
2πi

3
[0, 2, 2, 0, 0, 1, 0, 1, 1, 1, 2, 1, 0, 2, 0, 2, 2, 2, 2, 0, 2, 2, 2, 1, 1, 1, 2, 0,

2, 2, 0, 1, 2, 2, 1, 0]

)
.

Theorem 2.26.1. [46] If Λ is a bi-unimodular, doubly perfect sequence, then so is
F (Λ).

Proof. Since Λ is bi-unimodular, its Fourier transform is unimodular:

|F (Λ)| = [1, . . . , 1].

• Auto-correlation: Let Λ be perfect, i.e., (Λ ⋆ Λ)(a) = δ(a)d2n. Using
the convolution theorem:

F (Λ ⋆ Λ)(a) = dn F (Λ)(a)F (Λ)(a), (2.54)

and applying the Fourier transform again, one obtains:

F (F (Λ) ⋆F (Λ))(a) = dn F 2(Λ)(a)F 2(Λ)(a) (2.55)
= δ(a)dn, (2.56)

which implies:

(F (Λ) ⋆F (Λ))(a) = F−1(δ(a)) · dn = δ(a)d2n. (2.57)
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• Twisted auto-correlation: Let (Λ⋆̃Λ)(a) = δ(a)d2n. Then:

(F (Λ)⋆̃F (Λ))(a) = ∑
b
F (Λ)(a + b)F (Λ)(b)ω[a,b]

d (2.58)

= ∑
b,l,k

Λ(k)Λ(l)ω[b,l]−[a+b,k]+[a,b]
d (2.59)

= ∑
l,k

Λ(k)Λ(l)ω−[a,k]
d ∑

b
ω
[k+a−l,b]
d (2.60)

= ∑
l,k

Λ(l− a)Λ(l)ω−[a,l]
d (2.61)

= δ(a)d2n. (2.62)

Thus, F (Λ) is also bi-unimodular and doubly perfect.

There are additional transformations under which doubly perfect sequences
remain invariant. The following proposition can be found in a similar spirit
in Ref. [46]:

Proposition 2.26.1. Let Λ(a) be a bi-unimodular doubly perfect sequence. Then
the sequences

i) Λ̃(a) = Λ(a) ·ω[b,a]
d

ii) Λ̃(a) = Λ(a− b)

are also bi-unimodular doubly perfect.

Proof. Let Λ(a) be a bi-unimodular doubly perfect sequence.

i) Consider Λ̃(a) = Λ(a) ·ω[b,a]
d . Then:

|Λ̃(a)| = |Λ(a)| · |ω[b,a]
d | = 1. (2.63)

Hence Λ̃(a) = Λ(a) · ω[b,a]
d is also unimodular. The Fourier transfor-

mation of Λ̃(a) = Λ(a) ·ω[b,a]
d is given by:

F (Λ̃)(a) = Λ̃(k)ω−[a,k]
d = Λ(k) ·ω[b,k]−[a,k]

d = Λ(k) ·ω[b−a,k]
d (2.64)
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which leads to:

|F (Λ̃)(a)| = |Λ(k)| · |ω[b−a,k]
d | = 1. (2.65)

The auto-correlation picks up a global phase factor yielding:

(Λ̃ ⋆ Λ̃)(a) = ∑
k∈Zn

d

Λ(a + k)ω[b,a+k]Λ(k)ω−[b,k] (2.66)

= ∑
k∈Zn

d

Λ(a + k)Λ(k)ω[b,a] (2.67)

= δ(a) ·ω[b,a]
d . (2.68)

Hence the auto-correlation vanishes on all elements except the peak
element. Similarly, for the twisted auto-correlation one gets:

(Λ̃⋆̃Λ̃)(a) = ∑
k∈Zn

d

Λ(a + k)ω[b,a+k]Λ(k)ω−[b,k]ω[k,a] (2.69)

= ∑
k∈Zn

d

Λ(a + k)Λ(k)ω[k,a]ω[b,a] (2.70)

= δ(a) ·ω[b,a]
d . (2.71)

ii) Now consider Λ̃(a) = Λ(a− b). First note that:

|Λ̃(a)| = |Λ(a− l)| = 1, (2.72)

since the shift only permutes the entries in the array Λ and does not
change their values. For the DFT one finds :

|F (Λ̃)(a)| = |F (Λ(a− l))| = |Λ(k)| · |ω−[a−l,k]
d | = 1. (2.73)

Moreover, for the auto correlation one finds:

(Λ̃ ⋆ Λ̃)(a) = ∑
k∈Zn

d

Λ(a + k− b)Λ(k− b). (2.74)

(2.75)

Now setting : k− b = l, one gets:

(Λ̃ ⋆ Λ̃)(a) = ∑
l−b∈Zn

d

Λ(a + l)Λ(l) (2.76)

= δ(a). (2.77)
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Analogously, for the twisted auto-correlation one finds:

(Λ̃⋆̃Λ̃)(a) = ∑
k∈Zn

d

Λ(a + k− b)Λ(k− b)ω[a,k−b] (2.78)

= ∑
l−b∈Zn

d

Λ(a + l)Λ(l)ω[a,l] (2.79)

= δ(a). (2.80)

In particular, Λ remains doubly perfect under multiplication by a scalar
z ∈ C with |z| = 1.

2.2 Algebras

Algebras serve not only as a bridge between linear algebra and abstract alge-
bra in terms of representation theory (see Section 2.3), they also play a signif-
icant role in quantum theory. Throughout this thesis, it will be assumed that
an algebra A over a field F with multiplication · : A×A → A is associative
and unital:

• associative if (A · B) · C = A · (B · C) for all A, B, C ∈ A,

• unital if there exists an element 1 ∈ A such that 1 · A = A · 1 = A for
all A ∈ A.

In the following the · will be omitted and instead of A · B the shorthand
notation AB will be adopted.

To model quantum theory, one requires an operation corresponding to
complex conjugation and transposition. This is achieved by introducing an
anti-linear involution on A, namely † : A → A, satisfying:

• (A†)† = A

• (AB)† = B† A†

for all A, B ∈ A. This concept leads to what is known as a ∗-algebra [86],
where the star stems from the fact, that the dagger operation is often denoted
with a star in the literature. A closely related concept is that of a C∗-algebra:
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Definition 2.27. [86] A C∗-algebra is an algebra A together with an anti-
linear involution † : A → A and a norm ∥ · ∥ such that:

• ∥A · B∥ ≤ ∥A∥∥B∥

• ∥A† A∥ = ∥A∥2

for all A, B ∈ A, and such that A is complete with respect to the metric
induced by the norm.

Since in this thesis only finite dimensions are considered, the latter prop-
erty, i.e. the norm being complete with respect to the metric, is irrelevant for
now.

Every finite-dimensional C∗-algebra is unital and possesses a canonical
trace [86], i.e. a linear functional tr : A → C satisfying tr(AB) = tr(BA)
for all A, B ∈ A, which scaled by 1/tr(1) leads to the notion of the canonical
normalised trace: τ = (1/tr(1))tr.

In quantum theory, operators can be described using C∗-algebras:

Example 1. Let H be a finite dimensional Hilbert space with inner product
⟨·, ·⟩ : H ⊗ H → C. This induces a Hilbert space L(H) ∼= H ⊗ H∗ whose
elements are bounded linear maps from H to itself: X ∈ L(H). The inner
product of this space is given by the Hilbert-Schmidt inner product

⟨X, Y⟩HS = τ(X†Y),

where X†, Y ∈ L(H) and τ denotes the normalised trace: τ(A) = tr(A)/tr(1).
Together with the anti-linear involution † : X 7→ X† and the Hilbert-Schmidt
norm

∥X∥HS =
√

τ(X†X),

this space forms a C∗-algebra.6

Finite-dimensional C∗-algebras can be described in terms of matrices, as
the following theorem suggests:

Theorem 2.27.1. [86] Every d-dimensional C∗-algebra C is ∗-isomorphic7 to a di-
rect sum of full matrix algebras:

C ∼=
k⊕

i=1

Mni (C) (2.81)

6This norm coincides with the Schatten 2-norm, which satisfies the Cauchy-Schwarz inequal-
ity: ∥XY∥2 ≤ ∥X∥2∥Y∥2 for X, Y ∈ L(H).

7That means that the isomorphism preserves the dagger structure.
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for some n1, . . . , nk satisfying ∑k
j=1 n2

j = d.

The elements of L(L(H)), i.e. bounded linear maps from H ⊗ H∗ to it-
self, again form a ∗-algebra, the algebra of superoperators, with inner product
given by

⟨S, R⟩S = Tr(SR†),

where S†, R ∈ L(L(H)).
One can associate to each subalgebra A ⊆ L(H) a superoperator PA ∈

L(L(H)) ∼= H⊗ H∗ ⊗ H∗ ⊗ H that projects ontoA. This is also referred to as
the trace-preserving expectation onto A.

2.2.1 Quasi-orthogonal Systems of Subalgebras

In the following, the orthogonality relations between two subalgebras of
L(H) will be discussed. This has also been addressed in Refs. [114, 88, 92].

Definition 2.28. Let A,B be two ∗-subalgebras of L(H), and let PA, PB ∈
L(L(H)) be the corresponding projection operators. Then A and B are said
to be quasi-orthogonal, if

Tr(PAP†
B) = 1. (2.82)

Since any two subalgebras A,B always contain the unit element, they
cannot be orthogonal. However, their trace-free parts

A0 = {A ∈ A | tr(A) = 0}, B0 = {B ∈ B | tr(B) = 0}

can be orthogonal with respect to the Hilbert-Schmidt inner product. There-
fore, A and B are quasi-orthogonal if and only if their trace-free parts are
orthogonal. To see this, decompose each subalgebra into the orthogonal sum
of its trace-free part and the identity:

A = A0 ⊕C1, B = B0 ⊕C1.

The corresponding projectors are then given by:

PA = PA0 + P1, PB = PB0 + P1.

Taking the trace of their product yields:

Tr(PAP†
B) = Tr(PA0 P†

B0
) + Tr(PA0 P1) + Tr(PB0 P1) + Tr(P1P1)

= Tr(PA0 P†
B0
) + 1,
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where the fact that A0 and B0 are orthogonal to C1 was used in the second
step. This expression equals 1 if and only if Tr(PA0 PB0) = 0, i.e. if A0 and B0
are orthogonal.

A third characterisation is given by the following:

Proposition 2.28.1. [114] Two ∗-subalgebras A,B ⊆ L(H) are quasi-orthogonal
if and only if

τ(AB) = τ(A)τ(B) (2.83)

for all A ∈ A and B ∈ B.

Proof. Let A ∈ A and B ∈ B. Define their trace-free parts as:

A0 = A− τ(A)1 ∈ A0, B0 = B− τ(B)1 ∈ B0.

Then:

τ(A0B†
0) = τ(AB†)− τ(τ(A)B†)− τ(τ(B)∗A) + τ(τ(A)τ(B)∗1)

= τ(AB†)− τ(A)τ(B†),

since τ is linear and τ(1) = 1. Therefore, τ(A0B†
0) = 0 holds, if and only if

τ(AB†) = τ(A)τ(B†), which is equivalent to Eq. (2.83).

Before giving an explicit example for quasi-orthogonal subalgebras, it is
instructive to introduce two important types of subalgebras, namely factors
and maximal Abelian subalgebras (MASAs), that are useful to model quantum
systems consisting of multiple parties. This will be done in the next section.

2.2.2 Local and Delocalised Subalgebras

Let A ⊆ L(H) be a subalgebra. The commutant of A is defined as

A′ = {Y ∈ L(H) | XY = YX ∀X ∈ A}.

Each subalgebraA has a commutantA′ which can be used to define its center:

Z(A) = A∩A′. (2.84)

Depending on the form of its center, i.e. on how one can characterise the
relation between the subalgebra and its commutant, a subalgebra has a par-
ticular structure.
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Definition 2.29. [114] A subalgebra A ⊆ L(H) is called a factor, if Z(A) =
A∩A′ = C1, i.e. A has a trivial center.

The counterpart to this is the notion of a maximal Abelian subalgebra (MASA),
i.e. a maximal set of commuting operators that is closed under taking ad-
joints. Since commuting self-adjoint matrices are simultaneously diagonal-
isable, a MASA corresponds to the set of all diagonal matrices [86]. Now it
is straightforward to verify that the commutant of a MASA is given by the
whole algebra and thus one can characterise MASAs also as follows:

Proposition 2.29.1. A subalgebra A ⊆ L(H) is a MASA, if and only if it is equal
to its own center: Z(A) = A.

One can show that a set of quasi-orthogonal MASAs of the matrix alge-
braMd(C) that spansMd(C), corresponds to a collection of d + 1 MUBs in
Cd [86].

The following example relates quasi-orthogonality of MASAs to affine
quantum designs:

Example 1. Consider Example 1 from Section 2.1 again, i.e. consider the
affine quantum design that resembles the combinatorial structure of an affine
plane. Since Md2(C) ∼= Md(C) ⊗Md(C), one can try to decompose the
projectors into a tensor product of elements ofMd(C) via:

pa
i =

d

∑
m,k=1

ca
k,m,ie

a
k,i ⊗ f a

m,i, (2.85)

where ca
k,m ∈ C and ea

k , f a
m ∈ Md(C) for all k, m and a. Since the pa

i ’s are or-
thogonal projectors, i.e. (pa

i )
2 = pa

i = (pa
i )

†, it is easy to see that the following
has to hold:

• ca
k,m,i = 1 for all k, m and a.

• The elements ea
k,i and f a

m,i also have to be orthogonal projectors for all
k, m and a.

Hence the expression reduces to:

pa
i =

d

∑
k,m=1

ea
k,i ⊗ f a

m,i. (2.86)

Imposing the conditions i)-iii) from above, one further gets:
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i) ⇒ ∑d
k,m=1 tr(ea

k,i)tr( f a
m,i) = d,

ii) ⇒ ∑d
k,m=1 ∑d+1

a=1 ∑d
i=1 ea

k,i ⊗ f a
i,m = (d + 1)(Id ⊗ Id),

iii) ⇒ ∑d
k,l,m,n=1 tr(ea

k,ie
b
l,j)tr( f a

m,i f b
n,j) = (1− δab) + d · δabδij.

Moreover, commutativity of the pa
i ’s implies:

d

∑
k,l,m,n=1

[ea
l,i ⊗ f a

m,i, eb
l,j ⊗ f b

n,j] = 0. (2.87)

One obvious choice would be to set f a
m,i := Id for all i ∈ [d], a ∈ [d + 1]

and to assume that the ea
l,i form d + 1 MUBs inMd(C). Then the resulting

set of orthogonal classes {A1, ..., Ad+1}, where Aa = {pa
1, ..., pa

d}, actually
form d + 1 quasi-orthogonal subalgebras of Md2(C) ∼= Md(C) ⊗Md(C)
and would be of the form

Aa ∼= Ma ⊗ I, ∀a ∈ [d + 1]. (2.88)

Here the Ma are mutually quasi-orthogonal MASAs.

This example is closely related to the combinatorial k-nets over an algebra
which have been discussed by Nietert et al. in Ref. [86].

Recall that every finite-dimensional ∗-algebra is ∗-isomorphic to a direct
sum of matrix algebras. In this context, one finds:

Proposition 2.29.2. [114] LetA be a factor of a matrix algebraMn(C) ∼=Mk(C)⊗
Ml(C) with k · l = n. Then

A ∼=Mk(C)⊗ Il .

Coming back to quantum theory, one can now give the following exam-
ple:

Example 2. Consider the Hilbert space H = HL ⊗ HR, where dim(HL) =
n = dim(HR). That is, H is the tensor product of a “left” and a “right” space.
Then the space of superoperators L(H) can be associated with the tensor
product of two local algebras: a “left” and a “right” subalgebra:

L(H) ∼= L(HL)⊗ L(HR).
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In terms of matrix algebras this can be written as follows:

L(H) ∼=Mn2(C) ∼=Mn(C)⊗Mn(C),

with L(HL) ∼=Mn(C) ∼=Mn(C)⊗ In and L(HR) ∼=Mn(C) ∼= In⊗Mn(C).
Hence the left and the right space give rise to left and right factors inMn2(C).
It is straightforward to verify that L := L(HL) andR := L(HR) are each oth-
ers commutant, and that the following holds:

ZL(L) = L ∩ L′ = L ∩R = C1 = R′ ∩R = ZR(R). (2.89)

Throughout this thesis, the terms left (right) factor or left (right) subalgebra will

be used when referring to L(HL) and L(HR), respectively.

Proposition 2.29.3. Let A be a factor of the matrix algebraMn(C) and let A′ be
its commutant. Then A and A′ are quasi-orthogonal.

Proof. LetA be a factor ofMn(C). According to Prop. 2.29.2,A is isomorphic
to Mk(C) ⊗ Il where k · l = n. But then A′ has to be isomorphic to Il′ ⊗
Mk′(C) where k′ · l′ = n. It it now easy to verify that:

τ(AA′) = τ(A)τ(A′) (2.90)

for each choice of A ∈ A and A′ ∈ A′.

In particular, the two local subalgebras L and R in Example 2 are quasi-
orthogonal.

Definition 2.30. A subalgebra A ⊆ L(HL ⊗ HR) is called delocalised if it is
quasi-orthogonal to both the left and right subalgebra, L andR.

2.3 Representation Theory of Finite Groups

As many physical processes inhabit symmetries that can be traced back to
groups, the representation of these groups via matrices play a crucial role in
quantum physics. This section will give a brief review of some fundamental
concepts in representation theory with special emphasis on irreducible rep-
resentations of finite groups and character theory. Familiarity with the basic
notions of group theory will be assumed (see Ref. [101] for an introduction).
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Definition 2.31. ([31], p. 3) Let G be a finite group. A representation of G on a
K-vector space V is a group homomorphism

ρ : G → GL(V), (2.91)

where GL(V) denotes the general linear group on V. The dimensions of the
representation is given by the dimension of the vector space V.

If V is a Hilbert space, a representation of a group G is a group homomor-
phism from G to L(H). Two representations can be linked via a morphism:

Definition 2.32. ([31], p. 3) Let (ρ, V) and (ρ′, W) be two representations of
a group G. A map ϕ : V → W such that ρ′ ◦ ϕ = ϕ ◦ ρ holds is called an
intertwiner or equivalently a morphism between representations.

2.3.1 Irreducible representations

Definition 2.33. ([31], p. 4) A subrepresentation of a representation (ρ, V) is a
representation ρ|W on a subspace W ⊂ GL(V) such that ρ|W(g) = ρ(g)|W .
A representation is called irreducible if there exists no non-zero subspace of
GL(V).

In the course of this thesis, for the term “irreducible representation“ of-
ten the acronym “irrep“ will be adopted. In fact, both terms will be used
interchangeably.

Proposition 2.33.1. ([31], p. 4) Given two representations (ρ, V) and (ρ′, W) of a
group G, their tensor product (ρ⊗ ρ′, V⊗W) and their direct sum (ρ⊕ ρ′, V⊕W)
are again representations.

The proof can be found on p. 4 in [31].

Theorem 2.33.1. ([31], p. 7) Any representation (ρ, V) of a finite group G, where
V is a K-vector space, can be decomposed into a direct sum of distinct irreducible
representations.

The proof can be found on p. 7 in [31].
The following theorem is a direct consequence from Burnside’s theorem

and has been proven in Ref. [107].

Proposition 2.33.2. Let H be a Hilbert space and G be a finite group with repre-
sentation ρ on H. Then the linear span of {ρ(g)}g∈G is equal to L(H), if and only
if ρ is irreducible.
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2.3.2 Character Theory

Representation theory can also be rephrased in terms of character theory,
which bears the advantage that the irrelevant information that is contained
in a representation is neglected by only considering the traces of the matrices
that lie in the image of the representation homomorphism ([60], p. 14).

Definition 2.34. ([60], p. 14) Let (ρ, V) be a representation of a group G. Its
character χ is defined to be

χ(g) = tr(ρ(g)), (2.92)

where tr(.) denotes the trace on GL(V). The degree of χ is given by χ(e) and
equals the dimension of ρ.

One also says that χ is afforded by ρ. The following lemma and its proof
can be found in similar spirit in Ref. [60] on page 20.

Lemma 2.34.1. Let χ be a character afforded by a representation (ρ, V) of the group
G. Then the following holds for any g ∈ G with order n:

i) χ(g) = ∑ ϵi, where ϵn
i = 1,

ii) |χ(g)| ≤ χ(e),

iii) χ(e) = dim(V).

Proof. i) Let g ∈ G have order n, i.e. gn = e. Then: I = ρ(e) = ρ(gn) =
ρ(g)n and hence ρ(g) also has order n. Since ρ is unitary, one can di-
agonalise ρ(g) with all eigenvalues being on the main diagonal. From
ρ(g)n = I it then follows, that all eigenvalues ϵi have to be nth-roots of
unity, i.e. ϵn = 1. Now taking the trace one gets: χ(g) = tr(ρ(g)) =
∑i ϵi.

ii) |χ(g)| = |∑i ϵi| ≤ ∑i |ϵi| = χ(e).

iii) χ(e) = tr(ρ(e)) = tr(I) = dim(V).

Since characters are constant on the conjugacy classes of a group8, a char-
acter can also be understood as a class function χ : G → C. One can define a
scalar product on the space of class functions:

8This can easily be verified using the cyclic properties of the trace.
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Definition 2.35. ([60], p. 20) Given a group G and two characters χ1 and χ2,
their scalar product is defined to be:

⟨χ1, χ2⟩ =
1
|G| ∑

g∈G
χ1(g)χ2(g). (2.93)

The characters of all irreducible representations of a group are orthonor-
mal with respect to this scalar product:

Proposition 2.35.1. ([60], p. 21) Let G be a group. Then

⟨χi, χj⟩ = δij ∀ χi, χj ∈ Irr(G). (2.94)

It follows that the irreducible characters form a basis on the space of class
functions. With that one can determine any representation by its character
via a character table, i.e. a table that displays the values of all characters of a
certain group G for each conjugacy class of G.

Theorem 2.35.1. ([60], p. 19) Let G be a group with character χ. Then the following
holds for all h ∈ G:

1
|G| ∑

g∈G
χ(gh)χ(g) =

χ(h)
χ(e)

. (2.95)

The proof can be found in Ref. [60] on page 19.
For h = e this implies:

1
|G| ∑

g∈G
χ(g)χ(g) =

1
|G| ∑

g∈G
|χ(g)|2 = 1. (2.96)

Definition 2.36. Let G be a group and χ be a character. One says that χ
factorises, if

χ(e)χ(gh) = χ(g)χ(h) ∀ g, h ∈ G. (2.97)

Proposition 2.36.1. Let G be a group with d-dimensional representation (ρ, V)
and let A, B be subgroups of G. The algebras A = ⟨ρ(A)⟩ and B = ⟨ρ(B)⟩ are
quasi-orthogonal, if and only if the character afforded by ρ factorises.

Proof. Let N ∈ A = ⟨ρ(A)⟩ and M ∈ B = ⟨ρ(B)⟩ such that N = ρ(a) and
M = ρ(b) for some a ∈ A and b ∈ B. Since ρ is a group homomorphism one
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finds: N′ = ρ(ab) = ρ(a) · ρ(b) = N ·M. Thus, one has: τ(N′) = τ(ρ(ab)) =
τ(ρ(a) · ρ(b)) = τ(N · M). One can now apply Prop. 2.28.1 and get that
χ(e)χ(ab) = d · χ(ab) = d · tr(ρ(a) · ρ(b)) = d · tr(N · M) = tr(N)tr(M) =
tr(ρ(a))tr(ρ(b)) = χ(a)χ(b) iff A and B are quasi-orthogonal.

Given a representation ρ of a group G, its kernel is defined by: ker(ρ) =
{g ∈ G | ρ(g) = I} ([60], p. 23). In particular, the kernel is a normal subgroup
of G ([60], p. 23). It is straightforward to see that, in the language of character
theory, the kernel of a character χ is given by {g ∈ G | χ(g) = χ(e)}([60],
p. 23).

Definition 2.37. ([60], p. 28) A representation (ρ, G) is called faithful, if its
kernel is the trivial group {eG}.

In particular, a character is called faithful, if the set {g ∈ G | χ(g) = χ(e)}
only contains the identity element of G.

Proposition 2.37.1. Let G be a compact group with d2-dimensional representation
(ρ, V) and let R, L be two subgroups, the following are equivalent

• χ(l−1rlr−1) = χ(e) = d2 for all r ∈ R, l ∈ L, i.e. l−1rlr−1 ∈ ker(χ) for
all r ∈ R, l ∈ L.

• ⟨ρ(L)⟩ and ⟨ρ(R)⟩ are each others commutant.

Proof. To see that, first assume that all elements of ⟨ρ(R)⟩ and ⟨ρ(L)⟩ com-
mute. One then finds for all l ∈ L and r ∈ R:

χ(l−1rlr−1) = tr(ρ(l−1rlr−1)) = tr(ρ(l−1)ρ(r)ρ(l)ρ(r−1))

= tr(ρ(l−1)ρ(l)ρ(r)ρ(r−1)) = χ(e) = d2.

On the other hand, for a compact group G with representation ρ on a Hilbert
space, one can assume that ρ is unitary. Now, if

χ(l−1rlr−1) = χ(e) = d2

holds for all l ∈ L and r ∈ R, one finds that the following has to hold:

d2 = χ(l−1rlr−1) = tr(ρ(l−1rlr−1)).

Since ρ is unitary, ρ(l−1rlr−1) = ρ(l)−1ρ(r)ρ(l)ρ(r)−1 has to be the identity,
as a unitary U has trace equal to its dimension iff it is the identity. But this
means that ρ(l) and ρ(r) have to commute for all pairs of l, r and in particular,
that l−1rlr−1 ∈ ker(χ).
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Similarly to the the algebraic case, one can define the center of a group
G, Z(G), as the set of elements of G that commute with all elements of G. It
is easy to see, that the image of any element of Z(G) under a representation
has to be proportional to the identity matrix. Thus, the elements of Z(G) all
have a character whose absolute value is equal to χ(e). This motivates the
following definition:

Definition 2.38. ([60], p. 26) Let χ be a character of a group G. Then Z(χ) =
{g ∈ G | |χ(g)| = χ(e)}.

Lemma 2.38.1. ([60], p. 27) Let χ be a character of a group G and ρ be the repre-
sentation associated to χ. Then

• Z(χ) = {g ∈ G | ρ(g) = ϵI for some ϵ ∈ C}

• Z(G) =
⋂{Z(χ) | χ ∈ Irr(G)}

The proof can be found on page 27 in Ref. [60]

Proposition 2.38.1. Let G be a group and χ be a character afforded by the repre-
sentation ρ : G → L(H). Within the subgroup Z(χ) the character factorises.

Proof. Consider Z(χ) = {g ∈ G | ρ(g) = ϵI, ϵ ∈ C}. Then for any l, r ∈ Z(χ)
one can find ϵ, ϵ′ ∈ C such that

ρ(l) = ϵI and ρ(r) = ϵ′I.

From this one can conclude that

ρ(l · r) = ρ(l) · ρ(r) = ϵϵ′I. (2.98)

Taking the trace one finds

χ(l · r) = ϵϵ′χ(e) =
1

χ(e)
ϵϵ′χ(e)2 =

1
χ(e)

χ(l)χ(r) (2.99)

and thus the character factorises.

Proposition 2.38.2. ([60], p. 28) Let χ ∈ Irr(G). Then

χ(e)2 ≤ |G : Z(χ)| (2.100)

with equality, if and only if χ vanishes on G− Z(χ).
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The proof can be found on page 28 in [60]. When equality holds in the
above equation, one has: Z(χ) = Z(G) [60]. This motivates the following
definition:

Definition 2.39. [63] A group G with irreducible character χ is said to be of
central type, if χ(e)2 = |G : Z(G)|.

The last two theorems of this section turn out to be useful in Section 3.2 .
Their proofs can be found in [60] on page 38.

Theorem 2.39.1. ([60], p. 38) Let χ ∈ Irr(G). Then χ(e) | |G|.

Theorem 2.39.2. ([60], p. 38) Let χ ∈ Irr(G). Then χ(e) | |G : Z(χ)|.

2.3.3 The Clifford Group

Since processes in quantum mechanics are modelled by unitary operators,
one of the main interests here lies in unitary representations, i.e. representa-
tions of the form ρ : G → U(H) where U(H) denotes the unitary group of
a Hilbert space H. One prominent example of such a representation is the
representation of Zn

d that generates the Weyl-Heisenberg group (WH-group),
which is a subgroup of U(H). The WH-group can be used to characterise
quantum kinematics and quantum states [112].

For an n-qudit system, this group is defined as follows:

Definition 2.40. (Generalised Weyl-Heisenberg group)
Let Z = diag(1, ωd, ω2

d, ..., ωd−1
d ), where ωd = exp(2πi/d) and

X =


0 0 ... 0 1
1 0 ... 0 0
0 1 ... 0 0
. . ... . .
0 0 ... 1 0

 (2.101)

be the discrete Weyl-Heisenberg operators in Md(C), defining an orthogo-
nal basis in Md(C) via {XiZj}i,j∈[d]. One can generalise this to higher di-
mensions, i.e.Mdn(C) ∼= (Md(C))

⊗n
by defining a basis

{
n⊗

i=1

Xki Zli} where ki, li ∈ Zd ∀ i ∈ [n]. (2.102)
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One can now define a projective homomorphism π : Z2n
d
∼= Zn

d ×Zn
d →

Mdn(C) by

π : u = (k1, .., kn, l1, .., ln) 7→
n⊗

i=1

Xki Zli . (2.103)

Setting

J =
(

0 In
−In 0

)
, (2.104)

a symplectic product in Z2n
d can be defined by:

[u, u′] = uJu′ mod d. (2.105)

Now, setting

τd = exp(πi/d), (2.106)

i.e. τ2
d = ωd, one can show that the following has to hold:

π(u)π(u′) = τ
[u,u′ ]
d π(u + u′). (2.107)

Thus, π(u) and π(u′) commute if and only if the symplectic of u and u′ is
equal to zero or d.

Denoting the Weyl-Heisenberg group by H(dn), its normaliser NU(dn)(H(dn))

in U(dn) is given by the so-called Clifford group:

Definition 2.41. [112] The Clifford group consists of all unitary operators
X ∈ U(dn) for which the following holds

XH(dn)X−1 = H(dn). (2.108)

Prominent examples of unitaries that lie in the Clifford group are given
by the Hadamard, π/4-phase and controlled-X gates, all of which are ele-
mentary quantum gates used in quantum computing [112].
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Chinese Remaindering of the Clifford Group

The construction in Def. 2.40 is based on the assumption that the Hilbert
space has dimension d. If d can be realised as the product of two smaller
numbers d1, d2 that are coprime, one can apply the Chinese remainder theorem
to the phase space Z4

d = Z4
d1d2

:

Theorem 2.41.1 (Chinese Remainder Theorem). ([85], p. 629) Let n = n1, ..., nk
with ni ∈ N/{0} for all i ∈ [k]. If the ni are pairwise coprime for all i ∈ [k], then
there exists an isomorphism

Zn ∼= Zn1 × ..×Znk , x mod n 7→ (x mod n1, ..., x mod nk). (2.109)

The following discussion is inspired by Ref.s [2, 28].
Let d = d1 · d2, where d1 and d2 are coprime, and π : Z4

d →Md2(C) be a
projective representation of Z4

d onMd2(C) such that

π : (a1, a2, a3, a4) 7→ Xa1
d Za2

d ⊗ Xa3
d Za4

d (2.110)

with

π(u)π(u′) = τ
[u,u′ ]
d π(u + u′), (2.111)

where τ = ω2
d = exp(πi/d) and [u, u′] = uT Ju′. According to the Chinese

remainder theorem one can define an isomorphism

Zd
∼= Zd1 ×Zd2 , ai mod d 7→ (ki mod d1, xi mod d2) (2.112)

for each component ai of a tuple u = (a1, a2, a3, a4) ∈ Z4
d. Moreover, the

following holds

Md2(C) =M(d1·d2)2(C) ∼=Md2
1
(C)⊗Md2

2
(C) ∼= (Md1(C)⊗Md2(C))⊗2.

Let d−1
i denote the multiplicative inverse of di. One can then show that:

ωd = ω
d−1

2
d1

ω
d−1

1
d2

. (2.113)

The representation homomorphism π can thus be redefined as follows:

π : (Zd1 ×Zd2)
4 → (Md1(C)⊗Md2(C))⊗2,

(k, x) 7→ (Xk1
d1

Zd−1
2 k2

d1
⊗ Xx1

d2
Z

d−1
1 x2

d2
)⊗ (Xk3

d1
Zd−1

2 k4
d1

⊗ Xx3
d2

Z
d−1

1 x4
d2

).
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The Weyl-Heisenberg actually provides an example of a nice error basis, a
concept that was first introduced as unitary error bases in a representation-
theoretic setting by Knill [65] and further discussed by Klappenecker and
Roettler in Ref. [63].

Definition 2.42. [63] Let G be a group of order d2 and π : G → U(d) be a
projective unitary representation such that π(g)π(h) = ω(g, h)π(gh) for all
g, h ∈ G and a scalar function ω : G× G → C×. The set of unitary matrices
{π(g) ∈ U(d)|g ∈ G} is called a nice error basis, if

tr(π(g)) = 0 ∀ g ∈ G with g ̸= eG. (2.114)

Given a nice error basis E = {π(g) ∈ U(d)|g ∈ G}, one calls G its index
group and the values of the function ω : G× G → C× its factor system. Con-
sider the cyclic group W, generated by the values of ω(g, h). Set H := W×G
with group multiplication:

(a, g) ◦ (b, h) = (abω(g, h), gh), ∀a, b ∈W, g, h ∈ G. (2.115)

One can show that H is a finite group with respect to this multiplication [63].
Every group isomorphic to such kind of group is called abstract error group [65,
63].

Theorem 2.42.1. [63] A group H is an abstract error group, if and only if H is a
group of central type with cyclic center Z(H).

2.4 Category Theory

Category theory is a branch of mathematics that organises mathematical ob-
jects by abstracting away from their internal structure and focusing instead
on the relationships (morphisms) between them [73]. While playing a major
role in abstract mathematics, like homological algebra and topology, it is also
important in computer science and in theoretical physics. In fact, the field of
categorical quantum theory provides a neat framework to model quantum
processes and quantum protocols for quantum computations [54]. Categor-
ical quantum theory distills quantum mechanics down to its compositional
structure, capturing the essence of quantum processes in terms of objects,
morphisms, and their interaction [54]. One of the most practical benefits
of categorical quantum theory is its use of string diagrams to reason visu-
ally about quantum processes. Complex quantum protocols such as telepor-
tation, entanglement swapping, or error correction become diagrams [54].
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Moreover, categorical quantum theory formalises the interface between clas-
sical and quantum information [54].

In this section, the basic notions of categorical quantum theory will be
explained. Starting with a brief recap of monoidal categories and monoidal
functors, dagger structures and Frobenius algebras will be then explained,
laying the foundation for categorical quantum theory. Building on this, it
will be explained how complete positivity of algebraic maps can be modelled
in a category theoretical context and how this can be used to define a cate-
gory of quantum channels. The author refers to Maclane [73] and Heunen
and Vicary [54] for further background on category theory and categorical
quantum theory and to Ref. [118] for more details on the graphical calculus
for open quantum systems.

Definition 2.43. ([54], p. 2) A category C consists of the following:

• a class of objects obj(C)

• for every pair of objects A and B, a class of morphisms HomC(A, B)

• for every pair of morphisms f : A → B, g : B −→ C, a composite
g ◦ f : A→ C

• for every object A ∈ obj(C) , an identity morphism idA : A→ A

such that for all A, B, C, D ∈ obj(C) and all f : A → B, g : B → C, h : C → D
∈ HomC , the following holds

• associativity:

h ◦ (g ◦ f ) = (h ◦ g) ◦ f , (2.116)

• identity:

idB ◦ f = f ◦ idA. (2.117)

Graphically, one can represent objects as

A
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and a morphism f : A→ B as

f

A

B

where one reads the diagram from bottom to top. The concatenation of two
morphisms f : A→ B and g : B→ C can be represented via:

f

g

A

C

The categories that will be mostly used in this thesis are the category of ma-
trices and natural numbers, Mat(N), and the category of finite-dimensional
Hilbert spaces and bounded linear maps, FHilb:

Example 1.

(i) ([54], p. 16) The category FHilb has as objects finite-dimensional Hilbert
spaces and as morphisms bounded linear maps between Hilbert spaces.
The composition is the composition of linear maps as ordinary func-
tions and the identity morphisms are given by identity linear maps.

(ii) ([102], p. 4) The category Mat(N) of matrices over N has objects equal
to the set of natural numbers and for m, n ∈N, a hom-set HomMat(N)(m, n)
that is equal to the set of all n× m-matrices over N. The composition
is defined by matrix multiplication and the identity morphism is given
by the identity matrix. 9

9One can exchange the field of natural numbers into an arbitrary number field.



2.4. Category Theory 49

Given two categories, one can define a map between them that relates objects
to objects and morphisms to morphisms:

Definition 2.44. ([54], p. 9) Given two categories C and D, a functor between
these two categories is defined by the following data:

• for each object A ∈ Obj(C), there is an object F (A) ∈ Obj(D)

• for each morphism f : A → B in C, there is a morphism F ( f ) :
F (A)→ F (B) in D

such that F respects composition

F (g ◦ f ) = F (g) ◦ F ( f ) (2.118)

for all morphisms f : A→ B and g : B→ C in C and the following holds for
every object A in C:

F (idA) = idF (A). (2.119)

The above definition defines a covariant functor. There also exist contravariant
functors that reverse the direction of the morphisms, such that F (g ◦ f ) =
F ( f ) ◦ F (g) holds ([54], p. 9).

Definition 2.45. ([54], p. 10) Let F ,G : C → D be two functors. A natural
transformation ζ : F → G assigns to each object A in C a morphism

ζA : F (A)→ G(A)

in D, such that the following diagram commutes for every morphism f :
A→ B in C:

F (A) G(A)

F (B) G(B)

ζA

F ( f ) G( f )

ζB

Definition 2.46. ([54], p. 10) A natural isomorphism is a natural transforma-
tion, where every component ζA is an isomorphism.

Definition 2.47. ([73], p. 93) A functor F : C → D defines an equivalence of
categories, if it is
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• essentially surjective: for every object D in D ,there exists an object C in
C, such that F (C) ∼= D in D.

• fully faithful: for any pair C, C′ of objects in C, the map

F : HomC(C, C′) −→ HomD(F (C),F (C′)) (2.120)

is bijective.

2.4.1 Monoidal Categories

In ordinary category theory, morphisms describe relationships between ob-
jects that can be composed in a sequential manner, but many systems (phys-
ical, computational, or logical) require parallel composition: putting things
together not in sequence, but side by side. Monoidal categories do exactly
this and hence provide a framework to model quantum systems.

Definition 2.48. ([54], p. 30) A monoidal category (C,⊗C , IC) is comprised of
the following data:

• a category C ,

• a functor ⊗C : C × C → C called the tensor product which associates to
every pair of objects (A, B) in C, an object A ⊗C B in C, and to every
pair of morphism ( f , g) in C, a morphism f ⊗C g in C with source and
target given by the tensor products of the source and target objects,

• an object IC in C called the tensor unit,

• a natural isomorphism

α : ⊗C(⊗C × id)→ ⊗C(id×⊗C) (2.121)

called the associator,

• natural isomorphisms

ρ : id⊗C IC → IC , (2.122)
λ : IC ⊗ id→ IC , (2.123)

called right- and left-unitor respectively,
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such that the pentagon relation

(A⊗ B)⊗ (C⊗ D)

((A⊗ B)⊗ C)⊗ D A⊗ (B⊗ (C⊗ D))

(A⊗ (B⊗ C))⊗ D A⊗ ((B⊗ C))⊗ D)

αA,B,C⊗DαA⊗B,C,D

αA,B,c⊗idD

αA,B⊗C,D

idA⊗αB,C,D

and the triangle identity

(A⊗ I)⊗ C A⊗ (I⊗ C)

A⊗ C

αA,I,C

ρA⊗idC idA⊗λC

hold.

Graphically, the monoidal product of two objects A, B ∈ obj(C) will be
expressed as two lines parallel to each other:

A B

On two morphisms f : A → A′, g : B → B′ ∈ HomC , the monoidal product
looks as follows:

A

B

C

D

f ⊗ g

A

B

f

C

D

g=
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The following example discusses the monoidal product in the categories
Mat(N) and FHilb:

Example 1.

(i) ([54], p. 16) The category FHilb has as objects finite-dimensional Hilbert
spaces and as morphisms bounded linear maps between Hilbert spaces.
Composition is the composition of linear maps as ordinary functions
and the identity morphisms are given by identity linear maps. The
monoidal product is given by the tensor product on Hilbert spaces and
the unit object is the one-dimensional Hilbert space C.

(ii) ([102], p. 4) The category Mat(N) of matrices over N has objects given
by natural numbers. For m, n ∈ N, the Hom-set HomMat(N)(m, n) is
the set of all n×m-matrices over N, composition being matrix multipli-
cation. The monoidal product on objects is given by the multiplication
of numbers and on morphisms by the Kronecker product of matrices.
The monoidal unit is the natural number 1.

2.4.2 Special Dagger Frobenius Algebras

In order to define adjoint maps, one needs a categorical analogue that imple-
ments this. This is achieved by a so-called dagger functor:

Definition 2.49. ([54], p. 74) A dagger category is a category C equipped with
a contravariant, involutive functor (−)† : Cop → C such that:

• For every morphism f : A→ B, there exists a morphism f † : B→ A,

• ( f †)† = f for all morphisms f ∈ HomC(A, B),

• (g ◦ f )† = f † ◦ g† for all composable morphisms f : A→ B, g : B→ C,

• id†
A = idA for all objects A ∈ C.

On objects the functor acts as the identity.
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Graphically, the dagger-functor corresponds to a vertical reflection of the
diagram:

( )†

A

B

f =

B

A

f †

In order to fully model quantum theory, one needs a structure that mod-
els operations like discarding or initialising a quantum state and copying or
deleting a quantum state. This can be achieved by (co)monoids:

Definition 2.50. ([54], p. 129) In a monoidal category, a monoid is a triple
(M, µ, η) consisting of an object M and morphisms µM : M⊗M → M (mul-
tiplication) and ηM : I → M (unit) such that the following conditions are
satisfied:

• associativity: µM ◦ (µM ⊗ idM) = µM ◦ (idM ⊗ µM),

• unitality: µM ◦ (idM ⊗ ηM) = idM = µM ◦ (ηM ⊗ idM).

One also refers to η as a state. Graphically, the multiplication and unit
correspond to the following diagrams:

A A

A

µA
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A

η

The dual concept is given by comonoids:

Definition 2.51. ([54], p. 128) In a monoidal category, a comonoid is a triple
(M, ∆, ϵ) consisting of an object M and morphisms ∆M : M → M⊗M (co-
multiplication) and ϵM : M → I (counit) such that the following conditions
are satisfied:

• coassociativity: (∆M ⊗ idM) ◦ ∆M = (idM ⊗ ∆M) ◦ ∆M,

• counitality: (idM ⊗ ϵM) ◦ ∆M = idM = (ϵM ⊗ idM) ◦ ∆M.

One also refers to ∆ as the copy map and to ϵ as an effect. Graphically, the
comultiplication and counit correspond to the following diagrams:

A

A A

∆A

A

ϵ

Combining these two notions gives rise to the following structure:
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Definition 2.52. ([54], p. 148) In a monoidal category, a Frobenius structure
consists of a pair of a monoid and a comonoid A, µ, ∆, η, ϵ such that the Frobe-
nius law is satisfied:

∆ ◦ µ = (µ⊗ idA) ◦ (idA ⊗ ∆) = (idA ⊗ µ) ◦ (∆⊗ idA).

Graphically, the Frobenius law is given by:

µ

∆ =

µ

∆

Definition 2.53. ([54], p. 150) Let (A, µ, η, ∆, ϵ) be a Frobenius structure in a
monoidal category. It is called special if the following condition holds:

µ ◦ ∆ = idA.

Graphically this is equivalent to

A

A

A

∆A

µA

=
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Special commutative dagger Frobenius structures provide the categorical
framework to model classical data inside quantum systems:

Definition 2.54. ([54], p. 151) In a braided monoidal category, a classical struc-
ture is a special commutative dagger Frobenius algebra (†-SCFA).

They enable a diagrammatic, and algebraically rich way to represent mea-
surement, copying, basis structures, and controlled operations.

Example 1. ([54], p. 147-151) In FHilb, special commutative dagger Frobe-
nius structures correspond precisely to orthonormal bases. The comultiplica-
tion copies basis elements: ∆(|i⟩) = |i⟩ ⊗ |i⟩ and the counit ϵ(|i⟩) = 1 deletes
elements.

A concept, that is closely related to units and counits is given by so-called
pointed structures:

Definition 2.55. A pointed monoidal category is a monoidal category for
which every object A is equipped with a canonical morphism pA : I→ A.

The counit in a Frobenius structure corresponds to a pointed structure in
a pointed category. However, not every pointed structure corresponds to a
counit of a Frobenius structure.

Example 1.

i) The category CP[C] has a pointed structure given by the adjoint of the
trace map V ⊗V∗ → I.

ii) In Mat(N) a pointed structure is given by a column matrix with a 1 at
every entry: pn : 1→ n.

2.4.3 Completely Positive Maps in Category Theory

The concept of completely positive maps is well-established [77] and plays a
significant role in quantum theory. Here Selinger’s categorical description of
completely positive maps [106], will be considered, exploiting the notion of
dagger Frobenius structures, which was introduced in the previous section.
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Definition 2.56. Let (A, µA, ηA) and (B, µB, ηB) be dagger Frobenius struc-
tures in a monoidal dagger category. A morphism f : A→ B satisfies the CP-
condition, if there exists some object X and some morphism g : A⊗ B → X,
such that the following equation holds:

∆

µ

f =
g

g†

One can show that, in a symmetric monoidal dagger category, a morphism
that satisfies this condition constitutes a CP-map [54].

Example 1. In FHilb, consider a POVM consisting of b projections pi : H →
H. One can define a completely positive map φ : Cb → H ⊗ H∗ that sends
the computational basis vector |i⟩ to pi. Graphically, one can represent φ as
follows, where bH : C→ H∗ ⊗ H is the evaluation map:

b

∑
i=1

H H∗

pi

b†
H

i

Proposition 2.56.1. Let (C,⊗C , IC) be a monoidal dagger category. There is a
category CP[C] in which

• objects are special symmetric dagger Frobenius structures in C,

• morphisms are morphisms of C that satisfy the CP-condition.

Example 2. In CP[FHilb] objects are finite dimensional H∗-algebras, i.e.
an algebra A that is also a Hilbert space with an anti-linear involution † :
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A→ A satisfying ⟨ab|c⟩ = ⟨b|a†c⟩ = ⟨a|cb†⟩, and morphisms are completely
positive maps.

A special case is the following subcategory of CP[C]:

Definition 2.57. The category CPc[C] has classical structures special commu-
tative dagger Frobenius structures in C, as objects and completely positive
maps between these structures as morphisms. It is a subcategory of CP[C].

Proposition 2.57.1 ([54], p. 241). The category CPc[FHilb] is monoidally equiv-
alent to Mat(N).

An interpretation of these constructions is the following: while C mod-
els pure state quantum mechanics and CP[C] models mixed state quantum
mechanics, CPc[C] describes statistical mechanics [54].

2.4.4 Arrow Categories

Just as ordinary categories describe how objects relate via arrows, arrow cat-
egories describe how arrows relate to each other via commuting squares.
Hence they treat the morphisms of a category as objects in their own right.
This shift in perspective is fundamental when reasoning about diagrams,
natural transformations, and higher-order structures. Moreover, arrow cate-
gories are particularly useful in categorical quantum theory, as they describe
transformations between processes.

Definition 2.58 ([102], p. 23-24). For a category C, its arrow category Arr[C] is
defined as follows:

• objects are triples (A, B, h) with h : A→ B in C,

• morphisms ϕ : (A, B, h) → (A′, B′, h′) are pairs of morphisms ϕA :
A → A′ and ϕB : B → B′ in C, such that the following diagram com-
mutes:

A A′

B B′
h

ϕA

h′

ϕB

Example 1. The arrow category of Mat(N), namely Arr[Mat(N)], has ob-
jects that are matrices over the natural numbers Mi : vi → bi and morphisms
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that are pairs of matrices Nv : v1 → v2, Nb : b1 → b2 over the natural num-
bers, such that the following diagram commutes:

v1 v2

b1 b2

M1

Nv

M2

Nb

In what follows, it will be shown, that arrow categories inherit certain struc-
tures from their underlying category. This includes functors, natural trans-
formations and the monoidal product. These results are part of the present
author’s Master’s thesis and can also be found in Appendix A of Ref. [37].

Proposition 2.58.1. [37] Given a functor F : C → D, applying the arrow con-
struction to this functor, gives another functor F̃ : Arr[C]→ Arr[D].

Proof. Given a functor F : C → D , one can define a functor F̃ : Arr[C] →
Arr[D] as follows. On objects, one maps f : A → B in Arr[C] to an object
F( f ) : F(A) → F(B) in Arr[D]. On morphisms, one maps (ϕ, ψ) : f → f ′ in
Arr[C] to a morphism F̃(ϕ, ψ) = (F(ϕ), F(ψ)) : F( f )→ F( f ′) in Arr[D]. This
is valid because the diagram

F(A) F(A′)

F(B) F(B′)

F(ϕ)

F( f ) F( f ′)
F(ψ)

commutes due to functoriality of F. Moreover, one has

F̃(idA, idB) = (F(idA), F(idB)) = (idF(A), idF(B)), (2.124)

where (idA, idB) is the identity morphism in Arr[C]. Due to functoriality of
F and because the concatenation of two commuting diagrams yields again a
commuting diagram, F̃ also preserves composition.

Similarly, a contravariant functor F : C → D gives rise to a contravariant
functor F̃ : Arr[C]→ Arr[D] [37].



60 Chapter 2. Background

Proposition 2.58.2. [37] Let F, G : C → D be two functors between two categories
C and D, and let F̃, G̃ : Arr[C] → Arr[D] be the induced functors on the arrow
categories. A natural transformation η : F ⇒ G induces a natural transformation
η̃ : F̃ ⇒ G̃.

Proof. Let η : F ⇒ G be a natural transformation that assigns to every object
A in C, a morphism ηA : F(A)→ G(A), such that for any morphism f : A→
B in C the following diagram (naturality condition) commutes:

F(A) G(A)

F(B) G(B)

ηA

F( f ) G( f )
ηB

One can use the naturality of η to define a natural transformation η̃ : F̃ ⇒ G̃
that assigns to every object f : A → B in Arr[C] a morphism η̃ f = (ηA, ηB) :
F̃( f ) → G̃( f ) via the commutative diagram from above, such that for any
morphism (ϕ, ψ) : f → f ′ in Arr[C]:

A A′

B B′

ϕ

f f ′

ψ
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the following diagram (naturality condition in the arrow category) commutes:

F(A) G(A)

F(A′) G(A′)

F(B) G(B)

F(B′) G(B′)

F(ϕ)

ηA

F( f )

G(ϕ)

G( f )
ηA′

F( f ′)

G( f ′)

F(ψ)

ηB

G(ψ)

ηB′

Here the the top, the back, the front and the bottom face commute due to
naturality of η and the two side faces commute by definition. Hence the
whole diagram commutes and one has defined a natural transformation η̃ :
F̃ ⇒ G̃.

Proposition 2.58.3. [37] If η : F ⇒ G is a natural isomorphism, then so is η̃ :
F̃ ⇒ G̃.

The proof can be found in Ref. [38].

Theorem 2.58.1. [37] Let C and D be equivalent categories; that is, there exist
functors F : C → D and G : D → C and natural isomorphisms F ◦ G ∼= idD and
G ◦ F ∼= idC . Then Arr(C) and Arr(D) are also equivalent.

Proof. By Proposition 2.58.1 the functors F : C → D and G : D → C give
rise to functors F̃ : Arr[C] → Arr[D] and G̃ : Arr[D] → Arr[C]. From
Proposition 2.58.3 one knows that the natural isomorphisms F ◦ G ∼= idD
and G ◦ F ∼= idC give rise to natural isomorphisms F̃ ◦ G̃ ∼= idArr[D] and
G̃ ◦ F̃ ∼= idArr[C]. Hence one has an equivalence.
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One can show that the same theorems apply to monoidal functors and
monoidal natural transformations [38]. Furthermore, given a monoidal cat-
egory, it is possible to define a monoidal product for its arrow category as
the following proposition will demonstrate. However, this result is not nec-
essarily new and can be in fact found in a similar notion in [116].

Proposition 2.58.4. [37] For a monoidal category C, one can define a monoidal
product on Arr[C], written ⊠, as follows:

• on objects, f ⊠ g := f ⊗ g;

• on morphisms, (p, q)⊠ (p′, q′) := (p⊗ p′, q⊗ q′).

Proof. It will be shown that the pentagon and the triangle axiom are satisfied.
The pentagon axiom holds, due to the following diagram, where the front
and the back face commute, because α satisfies the ordinary pentagon axiom.
The two side faces commute due to the definition of the monoidal product
and naturality of the associator, and the top and bottom faces commute due
to naturality of the associator:

A1⊗(A2⊗(A3⊗A4)) (A1⊗A2)⊗(A3⊗A4) ((A1⊗A2)⊗A3)⊗A4

B1⊗(B2⊗(B3⊗B4)) (B1⊗B2)⊗(B3⊗B4) ((B1⊗B2)⊗B3)⊗B4

A1⊗((A2⊗A3)⊗A4) (A1⊗(A2⊗A3))⊗A4

B1⊗((B2⊗B3)⊗B4) (B1⊗(B2⊗B3))⊗B4

f1⊗( f2⊗( f3⊗ f4))

α

idA1
⊗α

( f1⊗ f2)⊗( f3⊗ f4)

α

(( f1⊗ f2)⊗ f3)⊗ f4
α⊗idA4

α

idB1⊗α

α

α

f1⊗( f2⊗ f3)⊗ f4)

α

( f1⊗( f2⊗ f3))⊗ f4

α

The triangle axiom for Arr[C] is given by the following diagram:

(A⊗ I)⊗ A′ A⊗ (I⊗ A′)

A⊗ A

(B⊗ I)⊗ B′ B⊗ (I⊗ B′)

B⊗ B′

( f⊗idI)⊗ f ′

ρ⊗idA′

α

f⊗(idI⊗ f ′)
idA⊗λ

f⊗ f ′

ρ⊗idB′

α

idB⊗λ
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Here the top and the bottom faces commute due to the the triangle identity
and the two side faces commute due to the definition of the monoidal prod-
uct in Arr[C] and due to naturality of the left and right unitors in C. Finally,
the back face commutes because of the naturality of the associator.
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3 Perfect Tensors from
Multiple Angles

This chapter aims to shed light on the existence problem of perfect tensors
from multiple angles, as the title already indicates. Starting with the most
natural way1 to look at perfect tensors, namely from the algebraic point of
view, in Section 3.1, the existence problem of perfect tensors will be linked to
the existence problems of systems of four factors of a matrix algebraMd2(C),
which form two pairs of commuting subalgebras. This will in parts be gen-
eralised to multiunitaries. In Section 3.2 these concepts will then be put in
the more abstract language of groups and representations. After this, con-
struction schemes of perfect tensors from doubly perfect bi-unimodular se-
quences in arbitrary dimensions and in particular an analytic solution for
d2 = 36 will be presented in Section 3.3. Finally, in the last section the mini-
mal order2 of 2-unitaries up to dimension 36 as well as a diagonal decompo-
sition ofM9(C) into factors isomorphic toM3(C) will be discussed.

Some of the results presented in this chapter have been previously pub-
lished in Ref. [46] (c.f. Teilpublikationen listed on page iii). In particular, the
algebraic characterisation of 2-unitarity presented in Sec. 3.1 appears in [46]
(Sec. VII), though additional examples have been added here. Moreover, the
pen-and-paper construction of a 2-unitary of dimension 36 detailed in Sec-
tion 3.3 has been published as Sec. IV of Ref. [46]. However, the paper left
some constructions implicit. Most notably, Theorem 5 uses the existence of
trace-orthonormal bases in finite extension fields, but does not describe an
algorithm for constructing them concretely. Such an algorithm is presented

1Of course, “most natural“ is subjective.
2The term order refers here, and everywhere else in this chapter to the smallest positive

integer that, when used as an exponent for a matrix (or for an element of any kind of group),
gives the identity matrix (or the identity element of the group).
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in Section 3.3.2 of this chapter. An implementation in the computer alge-
bra system SageMath appears in Appendix B.1 and in the present author’s
GitHub repository [35]. This section also contains further concrete examples
beyond those that have appeared in [46]. The generalisation to k-unitaries
in Section 3.1.3, all results of Section 3.2 except from the no-go theorem for
Clifford 2-unitaries in dimension 36, and all of Section 3.4 have not been pre-
viously published.

3.1 The Algebraic Point of View

In this section the existence problem of 2-unitaries in dimension d2 will be
considered in a matrix algebraic context. The underlying mathematical con-
cepts were introduced in Section 2.2.1. For this, the action of a 2-unitary
U ∈ Md2(C) as automorphism A → UAU† on Md2(C) on the local sub-
algebras R,L ofMd2(C) will be investigated. As it turns out, the resulting
subalgebras URU†, ULU† are delocalised. Moreover, the converse is also
true: every delocalised subalgebra gives rise to a 2-unitary. Building on that,
the existence of multiunitary matrices will be linked to the existence of de-
localised subalgebras inMdk (C) in the second part of the section. It will be
shown that, while the existence of a multiunitary in dimension dk implies the
existence of k delocalised subalgebras inMdk (C), the converse is not true.

3.1.1 Related Work

Quasi-orthogonal systems of matrix algebras have already been widely dis-
cussed in the works of Ohno, Weiner and Petz (see Refs. [88, 93, 92, 114]),
where it was demonstrated that given a matrix algebraMd2(C), finding the
maximal number of pairwise quasi-orthogonal subalgebras isomorphic to
Md(C) is a non-trivial task. In Ref. [88] the author shows that, if p is a prime,
the maximal number of pairwise quasi-orthogonal subalgebras isomorphic
to Mp(C) in Mp2(C) is p2 + 1 for p ≥ 3. Furthermore, the author proves
that the left factor is quasi-orthogonal to a factor obtained by conjugating the
left factor with a unitary, if and only if this unitary can be decomposed into a
tensor product of two orthonormal bases where all prefactors are equal to 1.
Although not stated in the paper, one can deduce that the unitary has to be
dual unitary in that case, since this property is directly linked to the matrix
having a Schmidt decomposition into a tensor product of two orthonormal
bases with all Schmidt coefficients being equal to 1 (see Ref. [10], p. 241).
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3.1.2 Delocalised Subalgebras of Md2(C) and the Existence
of 2-unitaries

In this section, the relation between perfect tensors and systems of four quasi-
orthogonal subalgebras in Md2(C), where two of them will correspond to
the left and the right subalgebra, will be discussed. As a start, Proposi-
tion 3.0.1 will relate the reshuffle and partial transpose of a unitary U ∈
U(d2), corresponding to the dual and the Γ-dual unitary, to the overlap of
the subalgebra AL := ULU† with the two local subalgebras. The overlap
of two subalgebras was introduced independently in Ref. [88] and Ref. [48]
and basically describes how far two subalgebras are away from being quasi-
orthogonal.

Proposition 3.0.1. Consider the matrix algebra Md2(C) ∼= Md(C) ⊗Md(C)
and let U ∈ U(d2). Set A := ULU†, where L ∼= Md(C) ⊗ Id. Then the
following holds:

i) Tr(PAL P†
L) = ||UR(UR)†||22,τ ,

ii) Tr(PAL P†
R) = ||UΓ(UΓ)†||22,τ .

Proof. i). Let
√

dEij =
√

d |i⟩ ⟨j| be an ONB in L ∼= Md(C) and Id be the
identity operator of Md(C). Then PL = d ∑d

i,j=1 |Eij ⊗ Id⟩ ⟨Eij ⊗ Id| is the
projection onto the left subalgebra. Similarly,

PULU† = d
d

∑
i,j=1
|U(Eij ⊗ Id)U†⟩ ⟨U(Eij ⊗ Id)U†| (3.1)

is a projection onto A. One then has:

Tr(PULU† P†
L) = d2

d

∑
i,j,k,l=1

|⟨(UEij ⊗ IdU†)|Ekl ⊗ Id⟩|2

= d2
d

∑
i,j,k,l=1

|τ
(
(UEij ⊗ IdU†)(Ekl ⊗ Id)

)
|2

= d2
d

∑
i,j,k,l=1

| 1
d2 tr

(
(UEij ⊗ IdU†)(Ekl ⊗ Id)

)
|2

=
1
d2

d

∑
i,j,k,l=1

|tr
(
(UEij ⊗ IdU†)(Ekl ⊗ Id)

)
|2
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Now compute:

tr
(
(UEij ⊗ IdU†)(Ekl ⊗ Id)

)
= tr

( d

∑
r,s=1

(UEij ⊗ ErrU†)(Ekl ⊗ Ess)

)

= tr
( d

∑
r,s=1

U |ir⟩ ⟨jr|U† |ks⟩ ⟨ls|
)

=
d

∑
r,s=1
⟨ls|U |ir⟩ ⟨jr|U† |ks⟩

=
d

∑
r,s=1

Uls
ir U†

ks
jr =

n

∑
r,s=1

Uls
ir (U

∗)ks
jr

=
d

∑
r,s=1

(UR)li
sr(U

R∗)
kj
sr =

d

∑
r,s=1

(UR)li
sr((U

R)†)sr
kj

= (UR(UR)†)li
kj

With that one gets:

Tr(PULU† P†
L) =

1
d2

d

∑
i,j,k,l=1

|(UR(UR)†)li
kj)|

2

=
1
d2 ||U

R(UR)†||22
= ||UR(UR)†||22,τ .

A similar argument can be made for ii).

Based on this, one can make the following statement:

Proposition 3.0.2. Consider the matrix algebra Md2(C) ∼= Md(C) ⊗Md(C)
and let U ∈ U(d2). Set A := ULU†, where L ∼= Md(C) ⊗ Id. Then the
following holds:

i) A is quasi-orthogonal to L iff UR is unitary,

ii) A is quasi-orthogonal to L′ = R iff UΓ is unitary,

iii) A is delocalised iff U is a 2-unitary.
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Proof. Recall that two subalgebras AL and L are quasi-orthogonal, if and
only if Tr(PULU† P†

L) = 1, where PAL is the projection onto AL and PL is the
projection onto L. Therefore, i) and ii) reduce to the following statements:

i) ||UR(UR)†||22,τ = 1 ⇔ UR is unitary,

ii) ||UΓ(UΓ)†||22,τ = 1 ⇔ UΓ is unitary.

So assuming that UR is a unitary in dimension d2, one directly sees that:

Tr(PULU† P†
L) =

1
d2

d

∑
i,j,k,l=1

|(UR(UR)†)li
kj)|

2

=
1
d2

d

∑
i,j,k,l=1

|(Id2)li
kj)|

2 =
1
d2 · d

2 = 1

and thusA and L are quasi-orthogonal. A similar argument can be made for
UΓ.

Now for the other direction, assume that L and A are quasi-orthogonal,
i.e. that Tr(PULU† P†

L) = 1. One then finds:

Tr(PULU† P†
L) = ||UR(UR)†||22,τ = 1. (3.2)

The 2-norm satisfies the following inequality

||X ·Y||2,τ ≤ ||X||4,τ · ||Y||4,τ (3.3)

for all X, Y ∈ L(H), where ||X||4,τ denotes the normalised Schatten-4-norm.
With that one gets:

1 = ||UR(UR)†||22,τ ≤ ||UR||44,τ ≤ ||UR||42,τ . (3.4)

Since the two norm is just a reordering of matrix entries, it holds that

||UR||2,τ = ||U||2,τ = 1. (3.5)

Hence one gets:

1 = ||UR(UR)†||22,τ ≤ ||UR||44,τ ≤ ||UR||42,τ = ||U||2,τ = 1. (3.6)



70 Chapter 3. Perfect Tensors from Multiple Angles

From that one can conclude that the Schatten-2-norm and the Schatten-4-
norm of UR are equal. Write the Schatten norms in terms of Eigenvalues:

||U||p,τ =
(1

d ∑
i

λ
p/2
i (UU†)

)1/p
(3.7)

Then Eq. 3.6 implies that the following has to be true:( 1
d2 ∑

i
λi(UR(UR)†)

)2
=

1
d2 ∑

j
λ2

j (U
R(UR)†) (3.8)

Using Jensen’s inequality, one can deduce that all the eigenvalues of UR(UR)†

have to be equal. There can be at most d2 eigenvalues and since the sum over
all the eigenvalues has to be equal to d2, one can conclude that all of them
have to be equal to 1. But this means that UR(UR)† is the identity matrix. Be-
cause the 2-norm is invariant under transpositions one can equally conclude
that (UR)†UR is the identity matrix. Therefore, UR has to be unitary. Analo-
gously, one can prove that ||UΓ(UΓ)†||22,τ = 1 implies that UΓ is unitary.

From i) and ii) one can then conclude thatAL is delocalised, which proves
iii).

A proof using the other characterisation of quasi-orthogonality defined
in Proposition 2.28.1, can be found in Appendix A.

Example 1. Consider the matrix algebraM9(C) ∼=M3(C)⊗M3(C) with
left and right factors given by L =M3(C)⊗ I and R = I⊗M3(C) respec-
tively.

A basis forM3(C) is given by the WH-basis:

{XiZj} for i, j ∈ [3]. (3.9)

The left and right factors expressed in terms of this basis are given by:

L = ⟨I9, X⊗ I3, Z⊗ I3, X2 ⊗ I3, Z2 ⊗ I3, XZ⊗ I3, X2Z2 ⊗ I3,

XZ2 ⊗ I3, X2Z⊗ I3⟩

and

R = ⟨I9, I3 ⊗ X, I3 ⊗ Z, I3 ⊗ X2, I3 ⊗ Z2, I3 ⊗ XZ, I3 ⊗ X2Z2,

I3 ⊗ XZ2, I3 ⊗ X2Z⟩.
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Now consider the 2-unitary permutation matrix of order 4:

UOLS =



1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0


. (3.10)

This matrix corresponds to the following MOLS(3) which is in normal form:

11 22 33
23 31 12
32 13 21

. (3.11)

One obtains U by replacing each entry of the above Latin square by a 3× 3
block with a single one at the place indexed by the Latin square entry and
zero everywhere else.

Now the following subalgebras are delocalised:

ULU† = ⟨I9, XZ⊗ X2Z2, X2Z2 ⊗ XZ, XZ2 ⊗ X2Z, X2 ⊗ X,

Z⊗ Z2, X2Z⊗ XZ2, Z2 ⊗ Z, X⊗ X2⟩,
URU† = ⟨I9, X⊗ X, X2 ⊗ X2, Z2 ⊗ Z2, XZ⊗ XZ, Z⊗ Z,

X2Z2 ⊗ X2Z2, X2Z⊗ X2Z, XZ2 ⊗ XZ2⟩.

The calculations can be found in the Sage notebook on the present author’s
GitHub repository [35].

3.1.3 Generalisation to k-Unitaries

Given that the notion of 2-unitaries can be generalised to k-unitaries, it is
natural to ask, if one can generalise Proposition 3.0.5 to matrix algebras iso-
morphic to a k-fold tensor product of Md(C) with k local subalgebras and
k delocalised subalgebras isomorphic toMd(C). As it turns out, this will in
general not work, as the case k = 3 already demonstrates.
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Multiunitaries and Delocalised Subalgebras in Dimension 9

Consider the matrix algebra Md3(C) ∼= Md(C) ⊗Md(C) ⊗Md(C). This
algebra has three local subalgebras: the left subalgebra L = Md(C) ⊗ Id2 ,
the right subalgebra R = Id2 ⊗Md(C), and the “middle“ subalgebraM =
Id ⊗Md(C)⊗ Id. All of these subalgebras clearly commute with each other.
Consider L =Md(C)⊗ Id2 . Its commutant is given by: L′ = R ·M. Now
since L and R ·M have trivial intersection, these subalgebras are factors
where one factor is isomorphic to Md(C) and the other is isomorphic to
Md2(C). The same holds for R and L ·M and forM and R · L. Now it is
easy to verify that the following pairs of subalgebras are quasi-orthogonal:

• L andR

• L andM

• R andM

• L andR ·M

• R and L ·M

• M andR · L

In this context, one says that a subalgebra is delocalised if and only if it is
quasi-orthogonal to L,R andM.

Proposition 3.0.3. Consider the matrix algebraMd3(C) ∼=Md(C)⊗Md(C)⊗
Md(C) and letL =Md(C)⊗ Id2 ,R = Id2 ⊗Md(C) andM = Id⊗Md(C)⊗
Id. Now consider U ∈ U(d3) and set AL := ULU†. The following holds:

i)

Tr(PULU† P†
L) =



∥∥∥ tr3
(
UR2,4(UR2,4)†)∥∥∥2

2∥∥∥ tr2
(
UR3,4(UR3,4)†)∥∥∥2

2∥∥∥ tr3
(
UR1,5(UR1,5)†)∥∥∥2

2∥∥∥ tr2
(
UR1,6(UR1,6)†)∥∥∥2

2

(3.12)
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ii)

Tr(PULU† P†
R) =


||tr2(UΓ3,6(UΓ3,6)†)||22
||tr3(UR3,5(UR3,5)†)||22
||tr2(UΓ1,4(UΓ1,4)†)||22
||tr1(UR2,4(UR2,4)†)||22

(3.13)

iii)

Tr(PULU† P†
M) =


||tr3(UΓ2,5(UΓ2,5)†)||22
||tr3(UΓ1,4(UΓ1,4)†)||22
||tr1(UR3,4(UR3,4)†)||22
||tr2(UR2,6(UR2,6)†)||22

(3.14)

Proof. The proof starts with discussing the trace conditions for the subalge-
bra AL.

I. Trace condition for AL and L

Let
√

dEij =
√

d |i⟩ ⟨j| be an ONB inMd(C). Then

PL = d
d

∑
i,j=1
|Eij ⊗ Id2⟩ ⟨Eij ⊗ Id2 |

is the projection onto the left subalgebra. Similarly, one has

PULU† = d
d

∑
i,j=1
|U(Eij ⊗ Id2)U†⟩ ⟨U(Eij ⊗ Id2)U†|
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as projection onto AL. Following the proof of Prop. 3.0.2, one can then com-
pute:

Tr(PULU† P†
L) = d2

d

∑
i,j,k,l=1

|⟨(UEij ⊗ Id2U†)|Ekl ⊗ Id2⟩|2

= d2
d

∑
i,j,k,l=1

|τ
(
(UEij ⊗ Id2U†)(Ekl ⊗ Id2)

)
|2

= d2
d

∑
i,j,k,l=1

| 1
d3 tr

(
(UEij ⊗ Id2U†)(Ekl ⊗ Id2)

)
|2

=
1
d4

d

∑
i,j,k,l=1

|tr
(
(UEij ⊗ Id2U†)(Ekl ⊗ Id2)

)
|2.

Further compute:

tr
(
(UEij ⊗ Id2U†)(Ekl ⊗ Id2)

)
= tr

( d

∑
r,s,t,u=1

(UEij ⊗ Err ⊗ EttU†)(Ekl ⊗ Ess ⊗ Euu)

)

= tr
( d

∑
r,s,t,u=1

U |irt⟩ ⟨jrt|U† |ksu⟩ ⟨lsu|
)

=
d

∑
r,s,t,u=1

⟨lsu|U |irt⟩ ⟨jrt|U† |ksu⟩

=
d

∑
r,s,t,u=1

Ulsu
irt (U

†)
jrt
ksu

=
d

∑
r,s,t,u=1

Ulsu
irt (U

∗)ksu
jrt . (3.15)
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Line (A.7) can be transformed in various ways:

(A.7) =
d

∑
r,s,t,u=1

(UR2,4)liu
srt(U

R2,4∗)
kju
srt

=
d

∑
r,s,t,u=1

(UR2,4)liu
srt((U

R2,4)†)srt
kju

=
d

∑
u=1

(UR2,4(UR2,4)†)liu
kju,

or, analogously,

(A.7) =
d

∑
s=1

(UR3,4(UR3,4)†)lsi
ksj,

(A.7) =
d

∑
t=1

(UR1,5(UR1,5)†)ilt
jkt,

(A.7) =
d

∑
r=1

(UR1,6(UR1,6)†)irl
jrk.
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With that one gets:

Tr(PULU† P†
L) =

1
d4

d

∑
i,j,k,l=1


|∑d

u=1(U
R2,4(UR2,4)†)liu

kju|
2

|∑d
s=1(U

R3,4(UR3,4)†)lsi
ksj|

2

|∑d
t=1(U

R1,5(UR1,5)†)ilt
jkt|

2

|∑d
r=1(U

R1,6(UR1,6)†)irl
jrk|

2

=
1
d4

d

∑
i,j,k,l=1



∣∣∣( tr3
(
UR2,4(UR2,4)†))li

kj

∣∣∣2∣∣∣( tr2
(
UR3,4(UR3,4)†))li

kj

∣∣∣2∣∣∣( tr3
(
UR1,5(UR1,5)†))il

jk

∣∣∣2∣∣∣( tr2
(
UR1,6(UR1,6)†))il

jk

∣∣∣2

=
1
d2



∥∥∥ tr3
(
UR2,4(UR2,4)†)∥∥∥2

2∥∥∥ tr2
(
UR3,4(UR3,4)†)∥∥∥2

2∥∥∥ tr3
(
UR1,5(UR1,5)†)∥∥∥2

2∥∥∥ tr2
(
UR1,6(UR1,6)†)∥∥∥2

2

II. Trace condition for AL andR

Next, the goal is to compute Tr(PULU† P†
R). The calculation proceeds as in

the beginning of this proof. Compared to Eq. (A.7), the indices l and k are in



3.1. The Algebraic Point of View 77

the third position, instead of in the first position. One finds:

Tr(PULU† P†
R) =

1
d4

d

∑
i,j,k,l=1

|tr
(
(UEij ⊗ Id2U†)(Id2 ⊗ Ekl)

)
|2

=
1
d4

d

∑
i,j,k,l=1

|tr
( d

∑
r,s,u,t=1

(UEij ⊗ Err ⊗ EttU†)(Ess ⊗ Euu ⊗ Ekl)
)
|2

=
1
d4

d

∑
i,j,k,l=1

|tr
( d

∑
r,s,u,t=1

U |irt⟩ ⟨jrt|U† |suk⟩ ⟨sul|
)
|2

=
1
d4

d

∑
i,j,k,l=1

|
d

∑
r,s,t,u=1

Usul
irt (U

∗)suk
jrt |2. (3.16)

This expression can be transformed in multiple ways:

(A.12) =
1
d4

d

∑
i,j,k,l=1

|
d

∑
s=1

(UR2,4(UR2,4)†)sil
sjk|

2,

(A.12) =
1
d4

d

∑
i,j,k,l=1

|
d

∑
u=1

(UΓ1,4(UΓ1,4)†)iul
juk|

2,

(A.12) =
1
d4

d

∑
i,j,k,l=1

|
d

∑
t=1

(UR3,5(UR3,5)†)ilt
jkt|

2,

and

(A.12) =
1
d4

d

∑
i,j,k,l=1

|
d

∑
r=1

(UΓ3,6(UΓ3,6)†)irl
jrk|

2.

This gives us:

Tr(PULU† P†
R) =

1
d2


||tr2(UΓ3,6(UΓ3,6)†)||22
||tr3(UR3,5(UR3,5)†)||2
||tr2(UΓ1,4(UΓ1,4)†)||22
||tr1(UR2,4(UR2,4)†)||22

.



78 Chapter 3. Perfect Tensors from Multiple Angles

III. Trace condition for AL andM

Finally, one has:

Tr(PULU† P†
M) =

1
d4

d

∑
i,j,k,l=1

|tr
(
(UEij ⊗ Id2U†)(Id ⊗ Ekl ⊗ Id)

)
|2

=
1
d4

d

∑
i,j,k,l=1

|tr
( d

∑
r,s,u,t=1

(UEij ⊗ Err ⊗ EttU†)(Ess ⊗ Ekl ⊗ Euu)
)
|2

=
1
d4

d

∑
i,j,k,l=1

|tr
( d

∑
r,s,u,t=1

U |irt⟩ ⟨jrt|U† |sku⟩ ⟨slu|
)
|2

=
1
d4

d

∑
i,j,k,l=1

|
d

∑
r,s,u,t=1

Uslu
irt (U

∗)sku
jrt |2. (3.17)

This expression can again be transformed in multiple ways:

(A.9) =
1
d4

d

∑
i,j,k,l=1

|
d

∑
r=1

(UR2,6(UR2,6)†)irl
jrk|

2,

(A.9) =
1
d4

d

∑
i,j,k,l=1

|
d

∑
s=1

(UR3,4(UR3,4)†)
skj
sli |

2,

(A.9) =
1
d4

d

∑
i,j,k,l=1

|
d

∑
u=1

(UΓ1,4(UΓ1,4)†)ilu
jku|

2,

and

(A.9) =
1
d4

d

∑
i,j,k,l=1

|
d

∑
t=1

(UΓ2,5(UΓ2,5)†)
jkt
ilt |

2.

Hence one is left with:

Tr(PULU† P†
M) =

1
d2


||tr3(UΓ2,5(UΓ2,5)†)||22
||tr3(UΓ1,4(UΓ1,4)†)||22
||tr1(UR3,4(UR3,4)†)||22
||tr2(UR2,6(UR2,6)†)||22

.
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Set AM := UMU† and AR := URU†. Both subalgebras are isomorphic
toMd(C) and commute with AL. One can calculate the trace conditions for
these subalgebras in a similar way (see Appendix A). This gives rise to the
following table, that displays which quasi-orthogonality condition is linked
to which rearrangement of indices:

AL,L AL,M AL,R AR,L AR,M AR,R AM ,L AM ,M AM ,R
R1,5 x x x x
R1,6 x x x x
R2,4 x x x x
R2,6 x x x x
R3,4 x x x x
R3,5 x x x x
Γ1,4 x x x x
Γ2,5 x x x x
Γ3,6 x x x x

TABLE 3.1: Relation between the quasi-orthogonality con-
ditions of subalgebras and rearrangements of a unitary U.

Moreover, one can easily show that the following is true:

• URT
1,5 = UTR2,4

• URT
1,6 = UTR3,4

• URT
2,4 = UTR1,5

• URT
2,6 = UTR3,5

• URT
3,4 = UTR1,6

• URT
3,5 = UTR2,6

This means for instance, that, if UR1,5 is unitary, then so is UTR2,4 .

Theorem 3.0.1. Consider the matrix algebra Md3(C) ∼= Md(C) ⊗Md(C) ⊗
Md(C) and letL =Md(C)⊗ Id2 ,R = Id2 ⊗Md(C) andM = Id⊗Md(C)⊗
Id. Now consider U ∈ U(d3) and set AL := ULU†,AM := UMU† and AR :=
URU†.

If U is a multiunitary, in the sense that UR3,4 and UR3,5 are unitary, then
AL,AM and AR are delocalised.
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Proof. Assume that UR3,4 is unitary, one finds that:

Tr(PULU† P†
L) =

1
d4

d

∑
i,j,k,l=1

|
d

∑
u=1

(UR3,4(UR3,4)†)liu
kju|

2

=
1
d4

d

∑
i,j,k,l=1

|
d

∑
u=1

(Id3)liu
kju|

2

=
1
d4

d

∑
i,j,k,l=1

|tr3(Id2 ⊗ Id)
li
kj|

2

=
d2

d4

d

∑
i,j,k,l=1

|(Id2)li
kj|

2 =
1
d2 · d

2 = 1.

Thus AL and L are quasi-orthogonal. A similar argument shows that AL
andM, AR andR and AM andR are quasi-orthogonal. Due to cyclicity of
the trace, this then implies that AR andM are also quasi-orthogonal.

Similarly, assuming that UR3,5 is unitary, one can show that

Tr(PULU† P†
R) = 1 (3.18)

holds and thus AL and R, AM and L and AM andM are quasi-orthogonal.
Again, because of the cyclicity of the trace, this implies that AR and L are
also quasi-orthogonal.

Therefore, if UR3,4 and UR3,5 are unitary, the subalgebras AL, AR and AM
are delocalised.

Of course, one could pick another combination of rearrangements of U to
make this construction work as long as they cover all trace conditions.

In particular, the last theorem implies that, if U is 3-unitary, i.e. 9 rear-
rangements are unitary, then AL, AR and AM are delocalised.

Example 2. Consider the matrix algebra M2(C) ⊗M2(C) ⊗M2(C) and
consider the following basis forM2(C):

{XiZj}i,j=0,1 with X =

(
0 1
1 0

)
and Z =

(
1 0
0 −1

)
. (3.19)

Define the three local subalgebras:

L ∼=M2(C)⊗ I4 = ⟨I2 ⊗ I4, XZ⊗ I4, Z⊗ I4, X⊗ I4⟩,
R ∼= I4 ⊗M2(C) = ⟨I4 ⊗ I2, I4 ⊗ XZ, I4 ⊗ X, I4 ⊗ Z⟩,

M∼= I2 ⊗M2(C)⊗ I2 = ⟨I2 ⊗ I2 ⊗ I2, I2 ⊗ XZ⊗ I2, I2 ⊗ Z⊗ I2, I2 ⊗ X⊗ I2⟩.
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Now consider the following self-adjoint 3-unitary taken from Ref. [41]:

U =
1√
8



−1 −1 −1 1 −1 1 1 1
−1 −1 −1 1 1 −1 −1 −1
−1 −1 1 −1 −1 1 −1 −1
1 1 −1 1 −1 1 −1 −1
−1 1 −1 −1 −1 −1 1 −1
1 −1 1 1 −1 −1 1 −1
1 −1 −1 −1 1 1 1 −1
1 −1 −1 −1 −1 −1 −1 1


. (3.20)

The following subalgebras are delocalised:

AL = ULU† = ⟨I8, Z⊗ Z⊗ X, XZ⊗ XZ⊗ Z, X⊗ X⊗ XZ⟩,

AM = UMU† = ⟨I8, XZ⊗ Z⊗ XZ, Z⊗ X⊗ Z, X⊗ XZ⊗ X⟩,

AR = URU† = ⟨I8, Z⊗ XZ⊗ XZ, X⊗ Z⊗ Z, XZ⊗ X⊗ X⟩.

The calculations can be found in the Sage notebook on the present author’s
GitHub repository [35].

The other direction, delocalisation of the three subalgebras implies 3-
unitarity, does not hold. The unitary of dimension 27 in the next example
provides a counter example.

Example 3. Consider the matrix algebra M3(C) ⊗M3(C) ⊗M3(C) and
consider the basis {XiZj}i,j=0,1,2 forM3(C) with:

X =

0 0 1
1 0 0
0 1 0

 and Z =

1 0 0
0 ω3 0
0 0 ω2

3

 , where ω3 = exp(2πi/3).

(3.21)
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One can define the three local subalgebras:

L ∼=M3(C)⊗ I9

= ⟨I3 ⊗ I9, X⊗ I9, XZ⊗ I9, X2Z2 ⊗ I9, XZ2 ⊗ I9, X2 ⊗ I9, Z⊗ I9,

X2Z⊗ I9, Z2 ⊗ I9⟩,

M∼= I3 ⊗M3(C)⊗ I3

= ⟨I3 ⊗ I3 ⊗ I3, I3 ⊗ X⊗ I3, I3 ⊗ XZ⊗ I3, I3 ⊗ X2Z2 ⊗ I3, I3 ⊗ XZ2 ⊗ I3,

I3 ⊗ X2 ⊗ I3, I3 ⊗ Z⊗ I3, I3 ⊗ X2Z⊗ I3, I3 ⊗ Z2 ⊗ I3⟩,

R ∼= I9 ⊗M3(C)

= ⟨I9 ⊗ I3, I9 ⊗ X, I9 ⊗ XZ, I9 ⊗ X2Z2, I9 ⊗ XZ2, I9 ⊗ X2, I9 ⊗ Z,

I9 ⊗ X2Z, I9 ⊗ Z2⟩.

Now consider the following permutation3, which is multiunitary but not 3-
unitary, since one rearrangement of U is not unitary:

U = Perm(0, 26, 13, 7, 21, 11, 5, 19, 15, 22, 9, 8, (3.22)
20, 16, 3, 24, 14, 1, 17, 4, 18, 12, 2, 25, 10, 6, 23). (3.23)

Its cycle structure is given by:

(0)(1 26 23 25 6 5 11 8 15 24 10 9 22 2 13 16 14 3 7 19 4 21 12 20 18 17).

The following subalgebras are delocalised:

• AL = ULU†,

• AM = UMU†,

• AR = URU†.

Again, the calculations can be found in the Sage notebook on the present
author’s GitHub repository [35].

3The notation used here was adopted from Ref. [41] and displays which entry gets mapped
to which position through the permutation (in this specific example 0 is fixed, 1 gets mapped to
26, etc.) .
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k-Unitaries and Delocalised Subalgebras

In contrast to the bipartite case, for dimensions d3 only one direction of
Prop. 3.0.2 holds. It is natural to ask, if that is also true for arbitrary k > 3.
For this consider the matrix algebra Mdk (C) ∼= Md(C) ⊗Md(C) ⊗ ... ⊗
Md(C), where k > 2. Now, the following k local subalgebras are both, mu-
tually quasi-orthogonal and commutative: L =Md(C)⊗ Idk−1 ,R = Idk−1 ⊗
Md(C),M1 = Id ⊗Md(C)⊗ Idk−2 , ..., andMk−2 = Idk−2 ⊗Md(C)⊗ Id. A
subalgebra is called delocalised, if it is quasi-orthogonal to all k local subalge-
bras.

One can now suggest the following:

Proposition 3.0.4. Consider the matrix algebraMdk (C) ∼=Md(C)⊗Md(C)⊗
... ⊗Md(C) for k ≥ 2. Let L = Md(C) ⊗ Idk−1 , R = Idk−1 ⊗Md(C) and
M1 = Id ⊗Md(C) ⊗ Idk−2 , ..., Mk−2 = Idk−2 ⊗Md(C) ⊗ Id. Now con-
sider U ∈ U(dk) and set AL := ULU†, AR := URU†, AM1 := UM1U†,
..., AMk−2 := UMk−2U†.

If U is a multiunitary in the sense that k2 reorderings of U are unitary, thenAL,
AR, AM1 , ..., AMk−2 are delocalised.

Proof. Let
√

dEij =
√

d |i⟩ ⟨j| be an ONB inMd(C). Then

PL = d
d

∑
i,j=1
|Eij ⊗ Idk−1⟩ ⟨Eij ⊗ Idk−1 |

is the projection onto the left subalgebra. Similarly, one has

PULU† = d
d

∑
i,j=1
|U(Eij ⊗ Idk−1)U†⟩ ⟨U(Eij ⊗ Idk−1)U†|
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as projection onto AL. Compute:

Tr(PULU† P†
L) = d2

d

∑
i,j,m,l=1

|⟨(UEij ⊗ Idk−1U†)|Eml ⊗ Idk−1⟩|2

= d2
d

∑
i,j,m,l=1

|τ
(
(UEij ⊗ Idk−1U†)(Eml ⊗ Idk−1)

)
|2

= d2
d

∑
i,j,m,l=1

| 1
dk tr

(
(UEij ⊗ Idk−1U†)(Eml ⊗ Idk−1)

)
|2

=
1

d2k−2

d

∑
i,j,m,l=1

|tr
(
(UEij ⊗ Idk−1U†)(Eml ⊗ Idk−1)

)
|2.

Further compute:

= tr
(

∑d
r1,..,rk−1,

s1,..,sk−1=1
U |ir1...rk−1⟩ ⟨jr1...rk−1|U† |ms1...sk−1⟩ ⟨ls1...sk−1|

)
= ∑d

r1,..,rk−1,
s1,..,sk−1=1

⟨ls1...sk−1|U |ir1...rk−1⟩ ⟨jr1...rk−1|U† |ms1...sk−1⟩

= ∑d
r1,..,rk−1,

s1,..,sk−1=1
Uls1...sk−1

ir1...rk−1
(U∗)ms1...sk−1

jr1...rk−1
.

Now the orthogonality condition for AL := ULU† and L is given by the
following trace equation:

Tr(PAL P†
L) =

1
d2(k−1)

d

∑
i,j,m,l=1

|
d

∑
r1,..,rk−1,

s1,..,sk−1=1

Uls1...sk−1
ir1...rk−1

(U∗)ms1...sk−1
jr1...rk−1

|2. (3.24)

There are many possible ways to rearrange the indices in these equation in
order to simplify them. Apply for example the change l ↔ r1 in the expres-
sion for U and the change m ↔ r1 in the expression for U∗ and denote it as
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UR1,2 . One then gets:

Tr(PAL P†
L) =

1
d2(k−1)

d

∑
i,j,m,l=1

|
d

∑
r1,..,rk−1,

s1,..,sk−1=1

(UR1,2)
r1s1...sk−1
il...rk−1

(U∗R1,2)
r1s1...sk−1
jm...rk−1

|2

=
1

d2(k−1)

d

∑
i,j,m,l=1

|
d

∑
r1,..,rk−1,

s1,..,sk−1=1

(UR1,2)
r1s1...sk−1
il...rk−1

((UR1,2)†)
jm...rk−1
r1s1...sk−1 |

2

=
1

d2(k−1)

d

∑
i,j,m,l=1

|tr3,...,k

(
(UR1,2(UR1,2)†)

jm
il

)
|2

where tr3,...,k denotes the partial trace over the subsystems 3 to k. If UR
1,2 is

unitary then this expressions is equal to one and hence L and AL are quasi-
orthogonal in that case. Actually, there are 2 · (k− 1) possible ways to rear-
range the indices leading to different rearrangements of U.

A similar calculation shows that the orthogonality condition for AL :=
ULU† andR resp.Mi relies on the following traces:

Tr(PAL P†
R) =

1
d2(k−1)

d

∑
i,j,k,l=1

|
d

∑
r1,..,rk−1,

s1,..,sk−1=1

(Ur1...rk−1i
js1...sk−1

(U∗)r1...rk−1m
ls1...sk−1

)|2 (3.25)

and

Tr(PAL P†
Mi

) =
1

d2(k−1)

d

∑
i,j,k,l=1

|
d

∑
r1,..,rk−1,

s1,..,sk−1=1

(Ur1...ri−1iri+1...rk
js1...sk−1

(U∗)r1...rm−1mrm+1...rk
ls1...sk−1

)|2

(3.26)

which give k− 2 trace conditions for the subalgebrasM1 = Id ⊗Md(C)⊗
Idk−2 , ...,Mk−2 = Idk−2 ⊗Md(C)⊗ Id. Here the first condition leads to k new
ways of partitioning the index set (the other k − 2 are superfluous as they
lead to rearrangements of U that already have been covered in the quasi-
orthogonality condition of L and AL ). The remaining k− 2 conditions give
k− 1 new ways of partitioning the index set. Hence in total one gets: 2(k−
1) + k + (k− 1)(k− 2) = k2 ways. So if U is multi-unitary in the sense that
k2 rearrangements are unitary, then AL is delocalised. The trace conditions
for the other subalgebras can be found in Appendix A.
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In general, far less than k2 reorderings of U have to be unitary in order for
the subalgebras to be delocalised, as Theorem 3.0.3 already suggests. This is
because the reorderings of U appear in more than one trace condition. For
k = 4 for example, four reorderings of U suffice to delocalise all local sub-
algebras (see Appendix A). This can also be demonstrated in the following
example:

Example 4. For d = 16 = 42 = 24 the following permutation matrix of order
2 is 2-unitary. Moreover, it is multiunitary in the sense that 4 rearrangements
of U are unitary:

U16 = Perm(0, 11, 13, 6, 14, 5, 3, 8, 7, 12, 10, 1, 9, 2, 4, 15). (3.27)

Its cycle structure is given by:

(0)(1 11)(2 13)(3 6)(4 14)(5)(7 8)(9 12)(10)(15). (3.28)

This matrix gives rise to two delocalised subalgebras isomorphic toM4(C)
and 4 delocalised subalgebras that are isomorphic toM2(C) inM16(C).

How many reorderings of U suffice to delocalise the local subalgebras for
general k remains an open question.

In Ref. [88] the author proved that inMpk (C), where p ≥ 3 is a prime, the
number of mutually quasi-orthogonal subalgebras isomorphic toMp(C) is
given by

Nk =
p2k − 1
p2 − 1

. (3.29)

This number is clearly greater than the one derived in Prop. 3.0.4. Consider
the case k = 3 and p = 3 = d for example. While there have to be 91 mutually
quasi-orthogonal subalgebras isomorphic toM3(C) in total, the construction
via 3-unitaries only gives 9. However, the bound in Ref. [88] only applies
to prime numbers, whereas the approach via k-unitaries does not restrict to
prime dimensions. The question in which dimensions k-unitaries exist also
remains open.

3.2 The Group-Theoretical Perspective

In this section the existence problem of 2-unitaries will be addressed from
the group theoretical point of view. This will be done by first formulating
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Proposition 3.0.2 in terms of groups and representations and then presenting
a search algorithm for the algebra software GAP that aims to find suitable
systems of subgroups that give rise to mutually quasi-orthogonal subalge-
bras via a representation.

3.2.1 Related Work

In Ref. [88] the author gives an example of a quasi-orthogonal decomposition
of a matrix algebra, where each subalgebra corresponds to a factor, obtained
via a projective representation of subgroups of the group Z4

p. Although the
author himself does not establish the connection, this decomposition also
provides an example for Proposition 3.0.2 and hence it is natural to ask if
Z4

p is the only group that provides such an example or if there also exist
other groups. In Ref. [120] the authors go one step further and discuss dual
unitarity conditions of a unitary represented via a projective representations
of finite groups. They, too, discuss Z4

p as a specific example. Interesting to
note is, that Z4

p with its projective representation happens to be an example
of an abstract error group (see [63] for more details), a concept that builds
on nice error basis that were introduced by Knill in Ref. [65]. Whether there
exist other groups that can be used to construct 2-unitaries will be the central
topic of this section.

3.2.2 The Existence of 2-unitaries and the Existence Groups
with Factorising Character

Proposition 3.0.2 could be used to find 2-unitaries in arbitrary dimensions
d2 for d > 2 but since algebras are in comparison to groups rather complex
structures, it might be more fruitful to discuss that matter from a group the-
oretical perspective. For this, rephrase Prop. 3.0.2 in the language of group
theory:

Proposition 3.0.5. The following is sufficient for the existence of a 2-unitary U ∈
U(d2):

i) There exists a finite group G of order |G| ≥ d4 with a d2-dimensional complex
irreducible representation (ρ,Md2(C)), which affords a character χ.

ii) There exist subgroups L, R, AL, AR < G of order |L|, |R|, |AL|, |AR| ≥ d2

such that ρ restricted to any of these subgroups is a d-dimensional irrep with
multiplicity d.
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iii) For all l ∈ L, r ∈ R l−1r−1lr ∈ ker(χ) and L ∩ R = Z(χ) . Similarly, for
all al ∈ AL, ar ∈ AR a−1

l a−1
r alar ∈ ker(χ) and AL ∩ AR = Z(χ).

iv) The character factorises for all pairs of subgroups L, R, AL, AR < G, i.e. :

d2χ(l · r) = χ(l)χ(r) ∀ l ∈ L, r ∈ R. (3.30)

Proof. According to Prop. 3.0.2, the existence of a 2-unitary is guaranteed by
the existence of a delocalised subalgebra of Md2(C). In the following the
different criteria will be related to their algebraic analogue:

i) This condition fixes the algebraMd2(C).

ii) Here the two local subalgebras and the delocalised subalgebra are fixed,
as Prop. 2.33.2 implies that ⟨ρ(A)⟩, ⟨ρ(R)⟩ and ⟨ρ(L)⟩ are isomorphic to
Md(C)).

iii) Because of Prop. 2.37.1 , this criterion ensures that the two local sub-
algebras L,R and AL,AR are each others commutant. Moreover, it
implies that the subalgebras satisfy

⟨ρ(L)⟩ ∩ ⟨ρ(R)⟩ = C1, (3.31)
⟨ρ(AL)⟩ ∩ ⟨ρ(AR)⟩ = C1, (3.32)

and hence are factors.

iv) Following Prop. 2.28.1), this conditions corresponds to all four subal-
gebras being mutually quasi-orthogonal.

What restrictions can one make on the group order? According to Theo-
rem 2.39.1, the order of a group |G| must be divisible by χ(e). In this case,
that means that d2 | |G| and thus there has to exist a number m ∈ N, such
that |G| = m · d2. Since it is also required that |G| ≥ d4, one can conclude
that m ≥ d2. Moreover, according to Theorem 2.39.2, χ(e) = d2 also has to
divide |G : Z(χ)| and hence there has to exist a number m′ ∈ N such that
|G : Z(χ)| = m′ · d2. Additionally, Theorem 2.38.2 says that |G : Z(χ)| ≥ d4

and hence m′ ≥ d2. Taking these criteria together, one finds:

m′d2 = |G : Z(χ)| = |G|
|Z(χ)| =

md2

|Z(χ)| (3.33)
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which is equivalent to

|Z(χ)| = m
m′

with m ≥ m′ ≥ d2. (3.34)

Thus m has to be divisible by m′.
Moreover, one can conclude, that the order of |G| cannot be squarefree.

More concretely, the groups one is concerned about have to be of order that
is greater or equal to d4 . Moreover, the order has to be divisible by d2 and
by the order of the index of Z(χ). For low values of d ≥ 3 4 that means:

d |G| ≥ |G| is divisible by
3 34 = 81 32 = 9
4 44 = 256 42 = 16
5 54 = 625 52 = 25
6 64 = 1206 62 = 36

What are examples of groups meeting these criteria? Do they come with
additional structures/requirements?

Example: Error groups

Recall that a group G is an abstract error group if and only if it is of cen-
tral type and has cyclic center. Hence, if one assumes that the group G in
Prop. 3.0.5 is of central type and has a faithful irreducible representation (this
implies that Z(G) is cyclic according to Theorem 2.32 on p. 29 in Ref. [60]),
one finds that G is an abstract error group. In particular G is isomorphic to
the direct product of an order d4 index group of a nice error basis and an or-
der d group generated by the factor system (see Definition 2.3.3). This can be
seen by considering Theorem 2.38.2, which leads to the following equality:

|G| = d4|Z(G)|. (3.35)

The character afforded by ρ has to vanish on G− Z(G), i.e.

χ(g) =

{
ϵχ(e), i f g ∈ Z(G)

0, otherwise.
(3.36)

4For d = 2 the construction does not make sense as there are no 2-unitaries in dimension 4.
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This means that abstract error groups of order d5 provide an example to
Prop. 3.0.5. If G has trivial center, it corresponds to the Weyl-Heisenberg
group in dimension d4.

Moreover, the subgroups L, R and A also form error groups. To see that,
consider an arbitrary element l ∈ L. Because the character is either 0 or
ϵχ(e) for every element of G and some ϵ ∈ C, l has to fall into one of these
classes. If l ∈ Z(G), then l commutes with every element in G and hence
also with every element in L and therefore: l ∈ Z(L). Per definition, any
element of Z(L) cannot have character equal to zero if its degree is unequal
to zero, as one has that Z(L) = {l ∈ L | |χ(l)| = χ(e)}. There might be
more elements in Z(L) than in Z(G), but per definition these also cannot
have vanishing character. Hence χ vanishes on all elements of L − Z(L).
According to Theorem 2.38.2, the following equality has to hold:

|χ ↾L (e)|2 =
|L|
|Z(L)| (3.37)

This can be rewritten into:

d2|Z(L)| = |L|. (3.38)

So L is actually also a (smaller) abstract error group corresponding to an error
group of order d2. The factor system has again order d. One can draw similar
conclusions for the subgroups R and A.

How can one relate the group order of |G|, |L| and |R|? Since ρ is assumed
to be faithful, one has: L ∩ R = {e} and hence

|L · R| = |L||R| = d4|Z(L)||Z(R)|. (3.39)

One can thus make the following observation:

|L · R|
|Z(L)||Z(R)| =

|G|
|Z(G)| . (3.40)

In the special case where G, L, and R have trivial center, one can conclude
that G is actually a direct product of the subgroups L and R.

In Therorem 3.0.5 it was assumed that the subgroups L, R and A are not
Abelian and that their pairwise intersection is not necessarily trivial. This
distinguishes the construction from the one given in Ref. [86], where the ex-
istence of k subgroups of an index group of a nice error basis was related
to the existence of k MASAs. Here the authors assumed that the subgroups
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have pairwise trivial intersections and are Abelian. Thus, one might say, for
some error basis L, R:

L, R not Abelian, l−1rlr−1 ∈ ker(χ) ∀ l ∈ L, r ∈ R and L∩ R = Z(χ)→
factor

L, R Abelian and L ∩ R = {e} →MASAs

An explicit example of subgroups of an error group giving rise to quasi-
orthogonal factors was given in Ref. [88]:
Let p be a prime number. Consider the Weyl-Heisenberg operators Z =

diag(1, ωp, ω2
p, ..., ω

p−1
p ), where ωp = exp(2πi/p) and

X =


0 0 ... 0 1
1 0 ... 0 0
0 1 ... 0 0
. . ... . .
0 0 ... 1 0

 (3.41)

inMp(C), defining an orthogonal basis inMp(C) via {XiZj}i,j∈Zp .
Let π : Z4

p →Mp2(C) be a projective homomorphism such that:

π : u = (k1, k2, l1, l2) 7→ Xk1 Zl1 ⊗ Xk2 Zl2 . (3.42)

Moreover, let the symplectic product be defined by:

[u, u′] = k1k′2 − k2k′1 + l1l′2 − l2l′1 mod p. (3.43)

In particular, π is a p2-dimensional irrep. Let D ∈ Zp be such that D ̸=
k2 mod p for all k ∈ Zp. For any a, a0, a1 ∈ Zp one can define the following
subgroups of Z4

p:

Ca0,a1 = {b0(1, a1, 0, a0) + b1(1, a0, 1, a1D)|b0, b1 ∈ Zp} (3.44)

Da = {b0(1, 1, a, aD) + b1(1, 2, a, 2aD)|b0, b1 ∈ Zp} (3.45)

D∞ = {b0(0, 0, 1, 0) + b1(0, 0, 0, 1)|b0, b1 ∈ Zp}. (3.46)
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These subgroups give rise to the following subalgebras ofMp2(C) that are
isomorphic toMp(C) [88]:

⟨π(Ca0,a1)⟩, ⟨π(Da)⟩ and ⟨π(D∞)⟩. (3.47)

The algebras defined this way are quasi-orthogonal [88]. Now, according
to Theorem 3.0.5, this means that π restricted to these subgroups is a p-
dimensional irrep with multiplicity p and that the character afforded by π
factorises on these subgroups.

The author gives an explicit example for the case p = 3:

Example 5. [88] Consider the orthogonal basis inM3(C) via {XiZj}i,j∈Z3 in
M3(C) and the projective representation π : Z4

3 →M9(C) with:

π : u = (k1, k2, l1, l2) 7→ Xk1 Zl1 ⊗ Xk2 Zl2 . (3.48)

Let D = 2. The following subgroups of Z4
3 give rise to 10 quasi-orthogonal

factors inM9(C) via π:

i) C1,0 = {b0(1, 0, 0, 1) + b1(1, 1, 1, 0)|b0, b1 ∈ Z3}

ii) C1,1 = {b0(1, 1, 0, 1) + b1(1, 1, 1, 2)|b0, b1 ∈ Z3}

iii) C1,2 = {b0(1, 2, 0, 1) + b1(1, 1, 1, 1)|b0, b1 ∈ Z3}

iv) C2,0 = {b0(1, 0, 0, 2) + b1(1, 2, 1, 0)|b0, b1 ∈ Z3}

v) C2,1 = {b0(1, 1, 0, 2) + b1(1, 2, 1, 2)|b0, b1 ∈ Z3}

vi) C2,2 = {b0(1, 2, 0, 2) + b1(1, 2, 1, 1)|b0, b1 ∈ Z3}

vii) D0 = {b0(1, 1, 0, 0) + b1(1, 2, 0, 0)|b0, b1 ∈ Z3}

vii) D1 = {b0(1, 1,−1, 2) + b1(1, 2,−1, 1)|b0, b1 ∈ Z3}

viii) D2 = {b0(1, 1,−2, 1) + b1(1, 2,−2, 2)|b0, b1 ∈ Z3}

ix) D∞ = {b0(0, 0, 1, 0) + b1(0, 0, 0, 1)|b0, b1 ∈ Z3}

Here the subgroups D0 and D∞ give rise to the left and the right subalge-
bra. By construction, the other eight subgroups then give rise to delocalised
subalgebras.
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In this example, a 2-unitary U maps an element W ∈ H(32) to another ele-
ment W ′ ∈ H(32) under conjugation:

UWU† = W ′. (3.49)

Thus, U is an element of the Clifford group.
Are all 2-unitaries elements of the Clifford group? The following consid-

eration will show that this question must be answered in the negative.

No-go for Clifford 2-unitaries in dimension 36

The following observation can also be found in Ref. [46], co-authored by the
present author. Recall that the Chinese remainder theorem gives a possibil-
ity to factorise the Weyl-Heisenberg group if the dimension is a product of
coprime integers. Let d = 3 · 2 and consider the Weyl-Heisenberg operators
Z6 = diag(1, ω6, ω2

6, ..., ω5
6), where ω6 = exp(2πi/6) and

X6 =


0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

 . (3.50)

According to the Chinese remainder theorem these operators have to fac-
torise into products of the following form

Z6 ∼= Z2 ⊗ Z3, X6 ∼= X2 ⊗ X3, (3.51)

where Z2 = diag(1, i), Z3 = diag(1, ω3, ω2
3) and

X2 =

(
0 1
1 0

)
, X3 =

0 0 1
1 0 0
0 1 0

 (3.52)

for w3 = exp(2πi/3). A basis forM6(C) is given by {Xi
6Zj

6}i,j∈Z6 which is
isomorphic to

{Xa1
2 Z(3−1 mod 2)b1

2 ⊗ Xa2
3 Z(2−1 mod 3)b2

3 }a1,b1∈Z2,a2,b2∈Z3 . (3.53)
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This amounts to

{Xa1
2 Z2b1

2 ⊗ Xa2
3 Z2b2

3 }a1,b1∈Z2,a2,b2∈Z3 . (3.54)

This factorisation of the basis extends to all unitaries within the Weyl-Heisenberg
group and thus also the Clifford group, implying that one can factorise each
62-dimensional unitary U into a tensor product of a 9-dimensional and a 4-
dimensional unitary. Since the reshuffle and the partial transpose operations
are linear on the tensor factors, 2-unitarity of U would imply that the two
sub-matrices are also 2-unitary. But as there do not exist 2-unitaries in dimen-
sion 4, one can conclude from this that a 36-dimensional 2-unitary cannot be
of this form and thus cannot be an element of the Clifford group. This no-go
statement can be generalised to arbitrary dimensions that are congruent to
2 mod 4.

3.2.3 GAP-Search

In light of the last section, where the existence of a Clifford 2-unitary in di-
mension 36 has been disproven, it is natural to ask, if there exists another
example of a group fulfilling the criteria of 3.0.5 that gives rise to a 2-unitary
of dimension 36. Moreover, are there any other groups that give rise to non-
Clifford 2-unitaries in other dimensions?
Inspired by Ref. [44], where the authors used the computational algebra soft-
ware GAP [32] to look for group designs, i.e. the group-theoretical description
of unitary t-designs, by “harvesting“ character tables, one can use the criteria
in Prop. 3.0.5 to look for groups that give rise to 2-unitaries within the GAP
system.

In trying to answer the above questions, the present author has con-
ducted a search in the SmallGroups-library [13] of the GAP-software. The
SmallGroups-library contains groups of order at most 2000 except the ones
of order 1024, groups of cubefree order of at most 50000, groups of order pn

for n ≤ 6 and all primes p, groups of order p7 for p = 3, 5, 7, 11, groups of
order gn · p for qn |28, 36, 55, 74 and all primes p ̸= q, groups of squarefree
order and groups whose order factorises into at most 3 primes [13].

GAP comes equipped with its own programming language which has
control structures (if-statements, while-loops, etc.) that are similar to the lan-
guage Pascal. Moreover, GAP is equipped with functions that can be used to
calculate the most important entities in group theory, representation theory
and character theory. Table 3.2 displays some of these functions. For more
details the author refers to the GAP-manual [32].
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In order to conduct the search the author has written a program that can
be run directly in the GAP-software using the command “Read("filename.g")“.
In order to reduce the complexity of the search, the algorithm was designed
to search for the matrix group arising from the irrep in Proposition 3.0.5,
rather than the group itself. This means in particular, that it suffices to check
that the subgroups L and R (AL and AR) commute with each other in iii) of
Prop. 3.0.5.

The following criteria have been used to write the algorithm:

• Find group |G| ≥ d4 with irrep affording a character χ, that satisfies:
χ(eG) = d2.

• Find subgroups |L|, |R|, |A| ≥ d2 , such that χ ↾A (e) = χ ↾L (e) = χ ↾R
(e) = d2 and ⟨ 1

d χ ↾AL , 1
d χ ↾AL⟩ = ⟨

1
d χ ↾R, 1

d χ ↾R⟩ = ⟨ 1
d χ ↾L, 1

d χ ↾L⟩ = 1.

• Check that the subgroups |L|, |R| commute

• Check that character factorises for all pairs of subgroups L, R, A < G.

Note that the fourth subgroup has been dropped here and the name of the
third has been changed to A. This is because the existence of AL implies the
existence of AR and hence one can reduce the computational complexity by
only searching for one subgroup.

In the following, the pseudocode of the program will be presented. The
code itself can be found on the present author’s GitHub repository [35]. For
better readability, the pseudocode slightly differs from the code there. How-
ever, the overall logic stays the same.

The following table displays GAP-functions that were used in the code5:

Function Output
IRR(G): a list of all irreps of G
SUBGROUPS(G): a list of all subgroups of G
DEGREEOFCHARACTER(χ): the degree of χ, i.e. χ(e)
ISSQUAREINT(n): true, if n is a square integer
RESTRICTEDCLASSFUNCTION(χ, H): χ restricted to H
ISCHARACTER(χ): true, if χ is a character
ISIRREDUCIBLE(χ): true, if χ is irreducible

TABLE 3.2: List of GAP functions used in the code.

5Here G refers to a group, H refers to a subgroup of G and χ to a character of G.
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At the heart of the program lies the following function that takes as input
a group G and outputs a list consisting of a group G, a character degree
and a list of subgroup triplets, if this group fulfils the criteria from above. It
outputs fail, if it does not.

function TESTGROUP(G)
local variables: χ, SubGrps, SubGrpsχ, Triplets, SubGrpscom,

SubGrpsnoncom
SUBGROUPS(G)← SubGrps
for χ in Irr(G) do

if ISSQUAREDEG(χ) then
TESTCHARACTER(G, SubGrps, χ)← SubGrpsχ

SORTSUBGROUPS(SubGrpsχ, χ)← SubGrpscom, SubGrpsnoncom
FINDTRIPLETS(SubGrpscom, SubGrpsnoncom)← Triplets
return Triplets, G, χ

end if
end for
return fail

end function

The function first computes the subgroups of G and stores them in a list
SubGrps. Then it loops through the list of irreducible representations of G
and checks for each character χ, if it has square dimension. If yes, then the
function TESTCHARACTER(G, SubGrps, χ) will be called and ouputs a list of
subgroups SubGrpsχ that fulfil the criteria from ii) with respect to χ. In the
next step, the function calls SORTSUBGROUPS(SubGrpsχ, χ) in order to filter
out the subgroups that are quasi-orthogonal and to divide these subgroups
into two lists: one of commuting and one of non-commuting pairs of sub-
groups.
In the last step, the function calls FINDTRIPLETS(SubGrpscom, SubGrpsnoncom)
to construct triplets of subgroups consisting of two commuting subgroups
and one subgroup that does not commute with the other two subgroups. If
the construction was successful, the function will output the list of triplets
along with the corresponding group and the dimension of the irrep in the
last step. If not, it will output fail.



3.2. The Group-Theoretical Perspective 97

The function uses several other functions that will be explained in the fol-
lowing.
The function ISSQUAREDEG(χ) takes as input a character χ, checks if its
degree is a square integer greater than one, using the GAP-functions The
function TESTCHARACTER(G, SubGrps, χ) takes as input a group G, a list
of subgroups of G, namely SubGrps, and a character χ. It checks for each
subgroup, if the restriction of χ onto this subgroup is an irreducible charac-
ter with multiplicity being the square root of the degree of χ and the degree
being equal to the degree of χ. The function returns a list of subgroups of G
that fulfil these conditions. If this list is shorter than 4, the function returns
fail (as one cannot find 4 subgroups in that case).

function TESTCHARACTER(G, SubGrps, χ)
local variables: H, d, χrestr., Output
[ ]← Output
for H in SubGrps do

Sqrt(DEGREEOFCHARACTER(χ))← d
RESTRICTEDCLASSFUNCTION(χ, H)← d · χrestr.
if DEGREEOFCHARACTER(χrestr.) = d and ISCHARAC-

TER(χrestr.) = true and IsIrreducible(χrestr.) = true then
add H to Ouput

end if
end for
if LENGTH(Output) < 4 then

return false
else

return Output
end if

end function

The function FACTORISINGCHARACTER(χ, SubGrp1, SubGrp2) takes as
input a character χ, two subgroups SubGrp1, SubGrp2 and outputs true if
the character factorises and false if it does not.
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function FACTORISINGCHARACTER(χ, Subgroup1, Subgroup2)
local variables: h, k
for h in Elements(SubGrp1) do

for k in Elements(SubGrp2) do
if χ(k)χ(h) ̸= χ(hk)χ(e) then

return false
end if

end for
end for
return true

end function

The function SORTSUBGROUPS(SubGrps, χ) takes as input a list of sub-
groups and a character χ and checks for which of the subgroups the char-
acter factorises, calling the function FACTORISINGCHARACTER(χ, SubGrp1,
SubGrp2). Via the function COMMUTINGSUBGROUPS(SubGrp1, SubGrp2),
these groups are then sorted into to two lists - one which contains pairs of
subgroups that commute with each other and one which consists of pairs of
non-commuting subgroups. If one of the resulting lists has length smaller
than 2, the function outputs fail, otherwise it will output the two lists.
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function SORTSUBGROUPS(SubGrps, χ)
local variables: H, K, Output1, Output2
[ ]← Output1
[ ]← Output2
for H in SubGrps do

for K in SubGrps do
if H ̸= K then

if FACTORISINGCHARACTER(χ, H, K) = true then
if COMMUTINGSUBGROUPS(H, K) = true then

Add [H, K] to Output1
else

Add [H, K] to Output2
end if

end if
end if

end for
end for
if LENGTH(Output1) < 2 or LENGTH(Output2) < 2 then

return fail
else

return Output1, Output2
end if

end function

The function FINDTRIPLET(List1, List2) takes as input two lists of pairs
of objects and creates a new list consisting of triplets, where the first two
elements form an element in the first list and the third element is chosen in
such a way that both, the first and the third, and the second and the third
element, exist as elements in the second list. The function returns fail, if the
creation was not successful. Otherwise, it will output the list of triplets.
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function FINDTRIPLET(List1, List2)
local variables: L, R, B, A, Output
[ ]← Output

for [L, R] in List1 do
for [B, A] in List2 do

if (L = B and R ̸= A) or (R = B and L ̸= A) or(L = A and R ̸=
B) or (R = A and L ̸= B) then

add [L,R, A] to Output
end if

end for
end for
if LENGTH(Output) = 0 then

return fail
else

return Output
end if

The whole search algorithm clearly scales with the order of the group that
is tested, since having more group elements implies more and also larger
subgroups that have to be tested. Thus, for groups of higher order the calcu-
lations become particularly cumbersome and some point max out the mem-
ory capacity. This imposes a restriction on the search space within the
SmallGroups-library. The main bottleneck of the algorithm is the test if two
subgroups commute. This has computational complexity of order O(n ·m),
where n and m denote the order of the two subgroups, respectively.

To test, if the code actually does what is desired, each function was indi-
vidually tested on specific examples within the SmallGroups library, where
the outcome was known. More concretely, the whole search algorithm was
applied to both an example and a non-example of Prop. 3.0.5, namely the
group SmallGroup(243,65) together with the irrep number 65, and the group
SmallGroup(32,50) together with the irrep number 83, corresponding to the
WH group for d = 3 and the WH group for d = 2. This was to ensure that
the algorithm does not deliver false negatives and false positives.

Since there are restrictions on the order of the groups that should be
searched for, clearly, not all of the groups in the library were of interest (e.g.
groups of squarefree order). The SmallGroups library is organised in 11 lay-
ers, where each layer contains groups of specific orders. The groups of cube-
free and squarefree order are located in the 10-th layer, which could thus be
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left out in the search space. Unfortunately, due to the huge computational
complexity for higher order groups, the algorithm maxed out the memory
capacity before looping through the whole search space. This already hap-
pens for groups having order 1000 leaving the rest of the library unexplored.

The algorithm did not find any example of groups satisfying the criteria
other than the WH-group. While this rules out the existence of such a group
in GAP’s Smallgroups library up to groups of order 1000, it does not rule out
the existence of such a group in general. This is not only because the algo-
rithm could loop through the whole library but also because the Smallgroups
library only contains groups up to order except 1024, groups of cubefree or-
der at most 50000, groups of order pn for n ≤ 6 and all primes p, groups of
order p7 for p = 3, 5, 7, 11, groups of order gn · p for qn |28, 36, 55, 74 and all
primes p ̸= q, groups of squarefree order and groups whose order factorises
into at most 3 primes [13]. Hence, it is possible that there exist solutions for
groups with higher order or other groups that are not part of the library. Of
course, it is also possible that the Weyl-Heisenberg group is indeed the only
possible solution, which would imply that there are certain 2-unitaries that
cannot be described by Prop. 3.0.5, e.g. in dimension d2 = 36.
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3.3 Perfect Tensors from Doubly Perfect Sequences

The preceding section established that Clifford 2-unitaries cannot exist in di-
mension 36, since the Chinese Remainder Theorem would in that case imply
that there exists a 2-unitary in dimension 4, which is known to be impossi-
ble. However, 2-unitaries are known to exist in dimension 9. This raises the
question of whether a 2-unitary in dimension 36 can be obtained from a 2-
unitary in dimension 9 combined with an appropriate 4-dimensional matrix.
As demonstrated below, such a construction is feasible. Following Rather’s
Ansatz of constructing a 2-unitary using doubly perfect bi-unimodular se-
quences, one can use a doubly perfect sequence with period d = 3, that gives
rise to a 2-unitary in dimension 9, and modify it in such a way that it yields a
2-unitary in dimension 36. This naturally leads to an examination of the re-
lationship between doubly perfect sequences and perfect tensors in arbitrary
dimensions, which will be addressed in the following section.

3.3.1 Related Work

Recall that the existence of two orthogonal Latin squares of order d = 6 was
disproven by Tarry in 1900. With the development of the concept of quan-
tum orthogonal Latin squares, this existence problem got extended to the
quantum case. An extensive computer search recently resolved the existence
problem for d = 6 in the affirmative and additional computer-generated so-
lutions were later reported in Refs. [21, 20, 95]. These solutions are exact in
the sense that every matrix entry of the two-unitary can be expressed as an
algebraic number. However, while the constructions used symmetries, their
deeper structure remained unexplained. This section builds on the results
of Rather, who linked the existence of 2-unitaries to the existence of what
he called perfectly perfect bi-unimodular sequences (in this work: doubly
perfect sequences).

Recall the definition of the Weyl-Heisenberg operators in Sections 2.3.
Now consider a bipartite unitary U ∈ U(d2) in diagonal decomposition. Ac-
cording to Refs. [113, 95], such a unitary can be decomposed into the maxi-
mally entangled basis in the following way:

U =
1
dn ∑

a∈Z2n
d

Λ(a) |Φa⟩ ⟨Φa| (3.55)
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where Λ(a) ∈ C for all a =

(
a1
a2

)
∈ Z2n

d and

|Φa⟩ = (Za1 X−a2 ⊗ Idn) ∑
q∈Zn

d

|qq⟩ (3.56)

with {Za1 X−a2}a1,a2∈Zn
d

being the Weyl-Heisenberg basis. Consider the fol-
lowing identity

UU† =
1

d2n ∑
a,b∈Z2n

d

Λ(a)Λ(b) |Φa⟩ ⟨Φa |Φb⟩ ⟨Φb| (3.57)

= ∑
a∈Z2n

d

|Λ(a)|2 |Φa⟩ ⟨Φa| , (3.58)

where it has been used that ⟨Φa |Φb⟩ = δa,bd2n in the last step. This expres-
sion is equal to the identity matrix in dimensions d2n if and only if |Λ(a)|2 =
1 for all a ∈ Z2n

d .
That means that one can associate the phases Λ(a) with a unimodular se-

quence. In fact, it has been shown that U is dual unitary if and only if Λ(a) is
a bi-unimodular sequence [113], i.e. both Λ(a) and its Fourier transform are
unimodular. One can now make the following assertion, which has already
been proven by Rather in Ref. [95]:

Theorem 3.0.2. A bipartite unitary U ∈ U(d2) in diagonal decomposition with
coefficients {Λ(a)}a∈Z2n

d
is 2-unitary if and only if Λ(a) is a doubly perfect bi-

unimodular sequence of length d2n.

Proof. The proof is analogous to the one given in Appendix A of Ref. [95].
The only difference is that the phase space here is given by Z2n

d rather than
Z2

d.
Let U ∈ U(d2) be written as

U =
1
dn ∑

a∈Z2n
d

Λ(a) |Φa⟩ ⟨Φa| =
1
dn ∑

a1 ,a2∈Zn
d

Λ(a1, a2) |Za1 X−a2⟩ ⟨Za1 X−a2 | .

(3.59)

Unitarity of U already implies that |Λ(a)| = 1 and hence unimodularity, as
was demonstrated above.
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Because (A⊗ B)R = |A⟩ ⟨B∗|, UR can be written as follows

UR =
1
dn ∑

a1,a2∈Zn
d

Λ(a1, a2)Za1 X−a2 ⊗ (Za1 X−a2)∗. (3.60)

One thus finds

UR(UR)† =
1

d2n ∑
a,b∈Z2n

d

Λ(a)Λ(b)Za1 X−a2(Zb1 X−b2)† ⊗ (Za1 X−a2)∗(Zb1 X−b2)T .

Using the identities:

(XaZb)T = ω−ab
d X−aZb, (XaZb)∗ = XaZ−b (3.61)

and

(XaZb)(Xa′Zb′) = ωa′b
d Xa+a′Zb+b′ , (3.62)

this transforms into

1
d2n ∑

a,b∈Z2n
d

Λ(a)Λ(b)ωa1(b2−a2)
d Xb2−a2 Za1−b1 ⊗ω

−a1(b2−a2)
d Xb2−a2 Zb1−a1

=
1

d2n ∑
a,b∈Z2n

d

Λ(a)Λ(b)Xb2−a2 Za1−b1 ⊗ Xb2−a2 Zb1−a1 .

This is equal to the identity matrix if and only if the following condition
holds:

∑
a∈Z2n

d

Λ(a)Λ(a + l) = 0 for l ̸= (0, .., 0) (3.63)

which means that the cross-correlation of Λ vanishes on all off-peak ele-
ments. From the condition |Λ(a)| = 1, one can then derive that the peak
element of the cross-correlation of Λ takes the following form:

∑
a∈Z2n

d

|Λ(a)|2 = d2n. (3.64)

For the Γ-dual unitarity condition one can make use of the following fact
namely that if (UR)Γ = UΓS, where S denotes the SWAP-gate, is unitary,
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then so is UΓ. Hence consider:

(UR)Γ =
1
dn ∑

a1,a2∈Zn
d

Λ(a1, a2)Za1 X−a2 ⊗ (Za1 X−a2)†. (3.65)

One finds:

(UR)Γ((UR)Γ)† =

1
d2n ∑

a,b∈Z2n
d

Λ(a)Λ(b)Za1 X−a2(Zb1 X−b2)† ⊗ (Za1 X−a2)†(Zb1 X−b2).

Using the the identities in Eq. 3.61 and Eq. 3.62 again, this transforms into:

1
d2n ∑

a,b∈Z2n
d

Λ(a)Λ(b)ωa1(b2−a2)
d Xb2−a2 Za1−b1 ⊗ω

−b2(b1−a1)
d Xa2−b2 Zb1−a1

=
1

d2n ∑
a,b∈Z2n

d

Λ(a)Λ(b)ωa1a2+b1b2−2b1a2
d (Xb2−a2 Za1−b1 ⊗ Xa2−b2 Zb1−a1).

Again this is equal to the identity matrix if and only if b = a. Set b = a + l,

where l =
(

l1
l2

)
∈ Z2n

d . Then the prefactor ωa1a2+b1b2−2b1a2
d turns into:

ωa1l2−a2l1+l1l2
d = ω

[a,l]+l1l2
d . (3.66)

Thus, (UR)Γ((UR)Γ)† is equal to the identity matrix if and only if

∑
a∈Z2n

d

Λ(a)Λ(a + l)ω[a,l]
d = 0 for l ̸= (0, .., 0), (3.67)

which means that the twisted cross-correlation of Λ vanishes on all off-peak
elements. From the condition |Λ(a)| = 1, one can then derive again that the
peak element of the twisted cross-correlation of Λ takes the following form:

∑
a∈Z2n

d

|Λ(a)|2 = d2n. (3.68)

Thus, U is 2-unitary if and only if Λ is doubly perfect and bi-unimodular.
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In Ref. [95] the author has found doubly perfect sequences for d = 6 and
d = 3 that give rise to 2-unitaries in dimension 36 using numerical meth-
ods. It is natural to ask, if there is an analytic approach to construct doubly
perfect sequences of length 36 and if one can use this framework to construct
perfect tensors in arbitrary dimensions using doubly perfect sequences. Both
questions will be addressed in the following sections.

3.3.2 Doubly Perfect Sequences in Arbitrary Dimensions

Before discussing an analytic approach to construct a perfect tensor in di-
mension 36, it is instructive to first consider the more general case, namely
that of arbitrary dimensions. In Ref. [95] the author states that bi-unimodular
sequences of the form

Λ = ωa2−b2+ab
d (3.69)

are doubly perfect for any odd d that is not a multiple of 5. For odd d that are
multiples of 5, the following bi-unimodular sequence is perfect [95]:

Λ = ωa2+b2+ab
d (3.70)

Can one find a more general approach that covers all odd d at once and ide-
ally all dimensions? The following theorem will give a generalisation.

Theorem 3.0.3. Let a ∈ Z2n
d and τ2

d = ωd. The sequence Λ(a) = τaT Na
d , where

N is a symmetric 2n× 2n-matrix, is doubly perfect if and only if ker(N) = {0} =
ker(N + J).

Proof. Compute the auto-correlation of Λ:

(Λ ⋆ Λ)(a) = ∑
b∈Z2n

d

Λ(a + b)Λ(b) = ∑
b∈Z2n

d

τ
(a+b)T N(a+b)
d τ−bT Nb

d (3.71)

= τaT Na
d ∑

b∈Z2n
d

τ2aT Nb
d = τaT Na

d ∑
b∈Z2n

d

ωaT Nb
d , (3.72)

where it was used that bT Na = bT NTa = (Nb)Ta = (aT Nb)T = aT Nb.
Since the sum over all roots of unity vanishes, this expression is equal to

δ(a) if and only if ker(N) = {0}.
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Similarly, compute the twisted auto-correlation of Λ:

(Λ⋆̃Λ)(a) = ∑
b∈Z2n

d

Λ(a + b)Λ(b)ωaT Jb
d = τaT Na

d ∑
b∈Z2n

d

ω
aT(J+N)b
d . (3.73)

This expression is equal to δ(a) if and only if ker(J + N) = {0}.

The condition ker(J + N) = {0} = ker(N) for the matrices N and N + J
is equivalent to requiring that both N and N + J have non-zero determinant,
i.e. that they are invertible.

What are examples of matrices satisfying this condition? One obvious
choice would be the identity matrix: N = I2n. However, this only works for
odd d as the following observation will demonstrate. For odd d the 2n× 2n-
matrix generating the symplectic product is defined by:

J =
(

0 In
−In 0

)
. (3.74)

With that one gets:

det(N + J) = det
(

In In
−In In

)
= det(In + In) = 2det(In) = 2 ̸= 0. (3.75)

However, for even d the matrix J turns into:

J =
(

In In
In In

)
, (3.76)

and thus one gets

det(N + J) = 0. (3.77)

This leads to the following statement:

Proposition 3.0.6. Let τd = exp(πi/d). If d is odd, the bi-unimodular sequence

Λ(a) = τaTI2na
d = τ

∑2n
i=0 a2

i
d is doubly perfect and has length d2n.

Example 6. Let d = 3 and N = I2. Then the sequence Λ(a) = τaT Na
3 =

ω
2(a2

1+a2
2)

3 is doubly perfect. The diagonal matrix constructed with this se-
quence is a 2-unitary in dimension 32 = 9:
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UΛ,3 =
1
3



ω2
3 −ω3 0 0 0 ω3 + 2 0 0 0 ω3 + 2

0 ω3 − 1 0 0 0 ω2
3 −ω3 ω2

3 −ω3 0 0
0 0 ω3 − 1 ω2

3 −ω3 0 0 0 ω2
3 −ω3 0

0 0 ω2
3 −ω3 ω3 − 1 0 0 0 ω2

3 −ω3 0
ω3 + 2 0 0 0 ω2

3 −ω3 0 0 0 ω3 + 2
0 ω2

3 −ω3 0 0 0 ω3 − 1 ω2
3 −ω3 0 0

0 ω2
3 −ω3 0 0 0 ω2

3 −ω3 ω3 − 1 0 0
0 0 ω2

3 −ω3 ω2
3 −ω3 0 0 0 ω3 − 1 0

ω3 + 2 0 0 0 ω3 + 2 0 0 0 ω2
3 −ω3


.

The construction in Prop. 3.0.6 gives rise to 2-unitaries in dimensions d2n

where d is odd. However, even dimensions are not covered by this. What
happens if one changes the index space to be Z2n

2 ? As it turns out the follow-
ing statement is true:

Proposition 3.0.7. For every n > 1 there exist doubly perfect sequences of the form
Λ(a) = iaT Na for a ∈ Z2n

2 .

Before proving this theorem, it is instructive to consider the following ex-
ample of 2n× 2n-matrices N over Z2 that fulfil ker(J + N) = {0} = ker(N):

N =

(
An In
In An

)
, where AT

n = An. (3.78)

What are the requirements for the matrix An that guarantee that N and N + J
have non-zero determinant? The matrix N has determinant given by

det(N) = det(A2
n − In) = det(An − In)det(An + In) = det(An + In)

2.
(3.79)

Over Z2, this expression is only equal to 0 if det(An + In) = 0 and hence if
N generates a doubly perfect sequence the following has to hold:

det(An + In) ̸= 0. (3.80)

Denoting the characteristic polynomial by PAn(λ), this is equivalent to

det(An + In) = PAn(−1) = PAn(1) ̸= 0 (3.81)

which means that 1 cannot be an eigenvalue of An.
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Now consider the matrix

N + J =
(

An 0
0 An

)
. (3.82)

Its determinant is given by

det(N + J) = det(A2
n) = det(An)

2 = PAn(0)
2 ̸= 0 (3.83)

This expression is only non zero, if An is invertible. Using this construction,
one can now prove Proposition 3.0.7:

Proof. It is sufficient to prove that there exist some matrices N ∈ Z2n
2 ×Z2n

2
that satisfy: ker(J + N) = {0} = ker(N). Consider the matrix

N =

(
A In
In A

)
, where AT = A. (3.84)

One has to construct A in such a way that it does not have 1 and 0 as eigen-
values. In the following, it will be referred to F2n instead of Zn

2 .
Using Theorem 2 from Ref. [71], there exists a self-dual orthonormal basis

{α, α2, ..., α2n} ⊂ F2n for the trace form (a, b)tr = trF2n /F2(ab), where a, b ∈
F2n . Now, let 0, 1 ̸= β = ∑n−1

i=0 biα
2i ∈ F2n . The action by multiplication with

β on a basis element can be represented by: β · α2j
= ∑n−1

k=0 Akjα
2k 6. Now

using the linearity of the trace and the fact that the basis is self-dual, one
obtains trF2n /F2(α

2i
, β · α2j

) = Aij, i. e. the matrix coefficients of the matrix A
representing the action of multiplication by β. Therefore, the matrices

N =

(
A In
In A

)
and N + J =

(
A 0
0 A

)
(3.85)

are matrix representations of the following matrices:(
β 1
1 β

)
,
(

β 0
0 β

)
. (3.86)

Now, because 0, 1 ̸= β and thus β2 ̸= 0 and β2 − 1 ̸= 0, it follows that

det(N) = β2 − 1 ̸= 0 and det(N + J) = β2 ̸= 0.

6Here the trace function is given by: trF2m/F2
(β) = ∑m−1

i=0 β2i
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What are concrete examples of these instances?

Example 7. Consider the matrices

N =

(
A In
In A

)
and N + J =

(
A 0
0 A

)
. (3.87)

For n = 2 choosing the matrix to be

C =

(
0 1
1 1

)
(3.88)

leads to

N =


0 1 1 0
1 1 0 1
1 0 0 1
0 1 1 1

 and N + J =


0 1 0 0
1 1 0 0
0 0 0 1
0 0 1 1

 . (3.89)

Both matrices have non-zero determinant and thus generate a doubly perfect
sequence of length 16 and period 2.

For n = 3, choosing

C =

0 0 1
0 1 1
1 1 1

 (3.90)

gives a doubly perfect sequence of length 64.

In general, the existence of these types of matrices in dimension m relies on
the existence of a self-complementary orthonormal basis (SCN basis) of F2m

over F2. In Ref. [71], the author proves that one can construct such a basis
for every odd m using a normal basis in F2m . The corresponding algorithm
looks as follows:

1. Find a normal basis generator α0 ∈ F2m and construct a normal basis
{α0, α2

0, α22

0 , ..., α2m

0 } of F2m over F2.

2. Compute the matrix A = tr(αα′), where α′ = S · (α0, α2
0, α22

0 , ..., α2m

0 )T

with S being a m×m cyclic permutation matrix with entries Sij = δi,j−1
for all i, j ∈ [m].
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3. Compute A−1 and ω = (∑m−1
i=0 α2i

0 Si)00

4. Compute γ = Ω · A−1 where Ωi = ω2−iM
with 0 ≤ i < m and M =

(1/2)(m + 1). Now γ is a SCN basis of F2m over F2.

This basis can now be extended to a SCN basis of F22m over F2 following the
subsequent procedure:

1. Pick a random element κ ∈ F22 with trF22 /F2(κ) = 1.

2. Compute the product of {κ, κ2} and the SCN basis γ of F2m over F2.
This gives a SCN basis γ′ of F22m over F2.

Now, following the proof of Prop. 3.0.7, picking an arbitrary element β ∈ F2m

with β ̸= 0, 1, the m× m matrix trF2m /F2(γ
2i

, β · γ2j
) = cij is invertible and

thus the matrices

N =

(
C Im
Im C

)
and N + J2m =

(
C 0
0 C

)
(3.91)

are also invertible. Similarly, the 2m× 2m matrix trF22m /F2(γ
′2i

, β · γ′2j
) = c′ij

is invertible and thus the matrices

N′ =
(

C′ I2m
I2m C′

)
and N′ + J4m =

(
C′ 0
0 C′

)
(3.92)

are also invertible. Therefore, one can construct examples for all (even and
odd) powers of 2. A SageMath-implementation of this procedure has been
realised by the present author in I., Appendix B.1.

There are also other examples of matrices over Z2 generating doubly per-
fect sequences, that do not fall into the category above. These will be dis-
cussed in the following.

Example 8. Consider matrices of the form

N =

(
An Bn
BT

n An

)
, where AT

n = An. (3.93)

Let n = 2 and let

A2 =

(
0 1
1 1

)
and B2 =

(
0 1
0 0

)
. (3.94)
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The following matrix generates a doubly perfect sequence of length 16:

N =


0 1 0 1
1 1 0 0
0 0 0 1
1 0 1 1

 . (3.95)

For n = 3 one can use the matrices

A3 =

0 0 1
0 1 1
1 1 1

 and B2 =

0 0 1
0 0 0
0 0 0

 (3.96)

to build a matrix

N =

(
A3 B3
BT

3 A3

)
(3.97)

that gives rise to a doubly perfect sequence of length 64.

Another, less straightforward example that leads to doubly perfect sequences
over Z2n

2 is given by “kite-shaped“ matrices:

Example 9. Consider 2n× 2n-matrices of the form:

Nij =

{
1 for i + j ≤ 2n− 1,
0 otherwise.

(3.98)

A computer search showed that these types of matrices generate doubly per-
fect sequences, if n is not congruent to 1 mod 3, for all n ∈ [500]. This can be
found in a SageMath notebook in II., Appendix B.1.

Lacking a rigorous proof that “kite-shaped“ matrices generate doubly per-
fect sequences for all dimensions, one can make the following conjecture:

Conjecture: For all n not congruent to 1 mod 3, the kite-shaped 2n × 2n-
matrices over Z2 generate doubly perfect sequences of length d2n.

Complex Hadamard matrices (CHMs) were introduced in Section 2.1. In
Ref. [95] the author constructed CHM in dimension 36 using bi-unimodular
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doubly perfect sequences. Other construction schemes for 2-unitary CHMs
in square dimensions were presented in Ref. [20] using permutations and
Hadamard matrices. The next theorem generalises these findings by show-
ing that it is possible to construct 2-unitary CHMs in dimensions d2n using
doubly perfect sequences.

Theorem 3.0.4. Let Λ : Z2n
d → C be a sequence and G and H be matrices with

entries given by Ga,b = ω
aT

1 a2
d Λ(a− b)ω−bT

1 b2
d and Ha,b = Λ(a− b)ω[a,b]

d for
a, b ∈ Z2n

d and ωd = exp(2πi/d). Then G and H are proportional to a two-
unitary if and only if Λ is bi-unimodular and doubly perfect.

Proof. The proof can be done by showing that the matrix with entries Ga,b =

ω
aT

1 a2
d Λ(a− b)ω−bT

1 b2
d is locally equivalent to a diagonal matrix with the en-

tries being the Fourier transform of the sequence Λ.
Let Λ(a) be a sequence. Consider the circulant matrix (Λ(a− b))a,b∈Z2n

d
.

Since circulant matrices are diagonalised by the Fourier matrix, one has:

(Λ(a− b))a,b∈Z2n
d
= (Fd ⊗ Fd) ∑

a∈Z2n
d

F (Λ)(a) |a⟩ ⟨a| (F†
d ⊗ F†

d ). (3.99)

The phase factors are implemented by the controlled-Z-gate

CZ =
n⊗

i=0
∑

mi∈Zd

Zmi ⊗ |mi⟩ ⟨mi| . (3.100)

This means one can write G = CZ(Λ(a− b))a,b∈Z2n
d

CZT . and hence

G = CZ(Λ(a− b))a,b∈Z2n
d

CZT (3.101)

= CZ(Fd ⊗ Fd) ∑
a∈Z2n

d

F (Λ)(a) |a⟩ ⟨a| (F†
d ⊗ F†

d )CZT . (3.102)

Using the fact that:

FdXdF†
d = Zd, (3.103)
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one can show that the following holds:

CZ(Fd ⊗ Fd) =
n⊗

i=0
∑

mi∈Zd

Zmi Fd ⊗ |mi⟩ ⟨mi| Fd (3.104)

=
n⊗

i=0
∑

mi∈Zd

FdXmi ⊗ |mi⟩ ⟨mi| Fd (3.105)

= (Fd ⊗ Id)CX(Id ⊗ Fd). (3.106)

Here CX =
⊗n

i=0 ∑mi∈Zd
Xmi ⊗ |mi⟩ ⟨mi| is the controlled-X-gate. Using this,

one finds:

G = (Fd ⊗ Id)CX(Id ⊗ Fd) ∑
a∈Z2n

d

F (Λ)(a) |a⟩ ⟨a| (Id ⊗ F†
d )CXT(F†

d ⊗ Id)

= (Fd ⊗ Id) ∑
a∈Z2n

d

F (Λ)(a) |Φa⟩ ⟨Φa| (F†
d ⊗ Id).

According to Theorem 3.0.2, the matrix:

UF (Λ) = ∑
a∈Z2n

d

F (Λ)(a) |Φa⟩ ⟨Φa| (3.107)

is 2-unitary if and only if F (Λ)(a) is a doubly perfect bi-unimodular se-
quence and due to Theorem 2.26.1 this is the case if and only if Λ(a) is a
doubly perfect bi-unimodular sequence. Now G, being locally equivalent
to UF (Λ), is 2-unitary if and only if Λ(a) is a doubly perfect bi-unimodular
sequence.

Now if G is 2-unitary, then GΓ is also 2-unitary according to Prop. 2.17.1.
But the partial transpose of G is given by:

(Ga,b)
Γ = (Gb1b2

a1a2 )
Γ = Gb1a2

a1b2
= ωa1b2−a2b1 Γ(Λ(a1 − b1, b2 − a2)), (3.108)

which leads to

(Ga,b)
Γ = ω[a,b]Γ(Λ(a− b)) (3.109)

From this one can conclude that

ω[a,b]Γ(Λ(a− b)) (3.110)
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is a doubly perfect sequence. The sequence Γ(Λ(a)) gives rise to the follow-
ing matrix:

∑
a∈Zn

d

Γ(Λ(a)) |Φa⟩ ⟨Φa| = ∑
a∈Zn

d

Λ(a) |(Za1 X−a2)T⟩ ⟨(Za1 X−a2)T | (3.111)

= ∑
a∈Zn

d

Λ(a)S |Za1 X−a2⟩ ⟨Za1 X−a2 | S (3.112)

= SUΛS (3.113)

Here S denotes the swap operator. Since the swap operator preserves 2-
unitarity, the above matrix is 2-unitary if and only if Γ(Λ(a)) is doubly per-
fect. Thus one can conclude that

ω[a,b]Λ(a− b) = Ha,b (3.114)

is doubly perfect and hence H is 2-unitary if and only if G is 2-unitary.

The resulting matrices are Hadamard as each entry fulfils |Ga,b| = |Λ(a−
b)| = 1 for a, b ∈ Z2n

d due to bi-unimodularity of Λ(a− b).

Example 10. The following matrix with entries Ga,b = ω
aT

1 a2
3 Λ(a−b)ω−bT

1 b2
3 ,

where a, b ∈ Z2
3, can be obtained from the doubly perfect bi-unimodular se-

quence Λ(a) = ω2aTI2a
3 = ω

2(a2
1+a2

2)
3 :

UΛCHM ,3 =
1
3



1 ω3 ω3 ω3 ω3 1 ω3 1 ω3
ω3 1 ω3 ω2

3 1 1 ω2
3 ω2

3 ω3
ω3 ω3 1 ω2

3 ω3 ω2
3 ω2

3 1 1
ω3 ω2

3 ω2
3 1 1 ω2

3 ω3 1 ω3
1 ω2

3 1 ω2
3 1 1 1 1 ω2

3
ω3 ω3 1 1 ω2

3 1 ω3 ω2
3 ω2

3
ω3 ω2

3 ω2
3 ω3 ω3 1 1 ω2

3 1
ω3 1 ω3 ω3 ω2

3 ω2
3 1 1 ω2

3
1 1 ω2

3 1 ω2
3 1 ω2

3 1 1


. (3.115)

To sum up, this section introduced construction schemes of doubly per-
fect bi-unimodular sequences for all dimensions that are of the form 2m, 22m

or dn, where m and d are odd integers greater than 1 and n is an arbitrary in-
teger, which lead to 2-unitaries in dimension 22m, 24m and d2n, respectively.
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However, these construction schemes do not encompass the case 36, which
will be discussed separately in the next section.

The present author has constructed a SageMath notebook, which pro-
duces doubly perfect sequences and their corresponding 2-unitary matrices
in all dimensions mentioned above. As an input only the dimension and the
matrix N that characterises the sequence are needed. This notebook can be
found in II., Appendix B.1.

3.3.3 An Artisanal 2-Unitary in dimension 36

In the previous section, a doubly perfect sequence of period 3 and length
9 has been derived. Can one use this matrix to construct a doubly perfect
sequence of length 36 and period 3? In other words, is it possible to construct
a 36-dimensional 2-unitary “by hand“?

Theorem 3.0.5. Consider the quadratic form f : Z2
3 → Z3, f (a1, a2) = a2

1 + a2
2.

The sequences Λ : Z2
3 ×Z2

2 → C defined by

Λsym(a, x) = ω
f (a1,a2)−g(a1,a2,x1−x2)
3 (3.116)

and

Λsparse(a, x) = ω
f (a1,a2)+g(0,a2,x1−x2)
3 , (3.117)

where

g : Z3
3 → Z3 (3.118)

g(a1, a2, x1 − x2) =

{
0, for (x1, x2) = (1, 1)
(a1 + a2 + (x1 − x2))

2, for (x1, x2) ̸= (1, 1)
(3.119)

are doubly perfect corresponding to a symmetric and a sparse 2-unitary in dimension
36.

Proof. The proof makes us of quadratic Gauß sums. More concretely, the
following relations will be used:

∑
x∈Z3

ωax2+bx+c
3 = i

√
3aω−ab2+c

3 , a ̸= 0 (3.120)

∑
x∈Z3

ωbx+c
3 = 3ωc

3δ(b). (3.121)
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Let Λsparse(k, l, x1, x2) = ω
f (k,l)+g(l,x1−x2)
3 where g(l, x1 − x2) equals to (l +

(x1 − x2)
2, if (x1, x2) ̸= (1, 1) and 0 else. Setting x = (x1, x2), the cross-

correlation of Λ is then given by:

(Λ ⋆ Λ)(k, l, x) = ∑
k′ ,l′∈Z3

∑
x′∈Z2

2

ω
(k+k′)2+(l+l′)2+g(l+l′ ,x1+x′1,x2+x′2)−k′2−l′2−g(l′ ,x′1,x′2)
3

= ∑
k′ ,l′∈Z3

∑
x′∈Z2

2

ω
k2+l2+2kk′+2ll′+g(l+l′ ,x1+x′1,x2+x′2)−g(l′ ,x′1,x′2)
3

Set ∆g := g(l + l′, x1 + x′1, x2 + x′2) − g(l′, x′1, x′2) and consider that 2 ∼=
−1 mod 3. Then:

(Λ ⋆ Λ)(k, l, x1, x2) = ωk2+l2

3 ∑
k′∈Z3

ω−kk′
3 ∑

x′1,x′2∈Z2,l′∈Z3

ω
−ll′+∆g
3 (3.122)

= ωk2+l2

3 3δk ∑
x′1,x′2∈Z2,l′∈Z3

ω
−ll′+∆g
3 (3.123)

where it has been used that the sum over all n− th-roots of unity vanishes in
the last step.

One now has to show that

∑
x′1,x′2∈Z2,l′∈Z3

ω
−ll′+∆g
3 ∝ δlδx1 δx2 (3.124)

So the only case where this sum should not vanish is when (x1, x2) = (0, 0).
In this case one finds:

x′1 x′2 −ll′ + g(l + l′, x′1, x′2)− g(l′, x′1, x′2)
0 0 2l2 + ll′ + 2l
0 1 2l2 + ll′ − 2l
1 0 2l2 + ll′

1 1 0

This leads to

(Λ ⋆ Λ)(k, l, 0, 0) = ωk2+l2

3 9δk(δl(ω
−l
3 + ωl

3 + 1) + 1) (3.125)
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which gives:

(Λ ⋆ Λ)(0, 0, 0, 0) = 36. (3.126)

It is now left to prove that

∑
x′1,x′2∈Z2,l′∈Z3

ω
−ll′+∆g
3 = 0 (3.127)

for (x1, x2) ̸= (0, 0). Unfortunately, this can only be done by going through
each possible combination of the variables x1, x2, x′1, x′2 step by step which is
a rather cumbersome thing to do analytically.

Start with (x1, x2) = (1, 1). In this case, one finds:

x′1 x′2 −ll′ + g(l + l′, 1 + x′1, 1 + x′2)− g(l′, x′1, x′2)
0 0 −ll′ − l′2

0 1 l2 − l + ll′ + l′

1 0 l2 + l + ll′ − l′

1 1 l2 + ll′ + l′2

This leads to

(Λ ⋆ Λ)(k, l, 1, 1) = ωk2

3 9δk ∑
l′∈Z3

(ωl2−ll′−l′2
3 + ω

−l2+l+l′(l−1)
3

+ω
−l2−l+l′(l+1)
3 + ω−l2+ll′+l′2

3 ),

which using Eqs. 3.120, leads to:

(Λ ⋆ Λ)(k, l, 1, 1) = ωk2

3 9δk(−
√

3iω−l2

3 + 3δ(l − 1)ω−l2+l
3 + 3δ(l + 1)ω−l2−l

3

+
√

3iωl2

3 ).

For l = 0, this vanishes trivially. For l = 1 one finds:

(Λ ⋆ Λ)(k, 1, 1, 1) = ωk2

3 9δk(−
√

3iω−1
3 + 3 +

√
3iω1

3)

= ωk2

3 9δk(−2
√

3sin(2π/3) + 3) = ωk2

3 9δk(−2
√

3

√
3

2
+ 3) = 0.
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A similar argument can be made for l = −1. Hence (Λ ⋆ Λ)(k, l, 1, 1) van-
ishes for all values of l and k.

Next, consider (x1, x2) = (0, 1). One finds:

x′1 x′2 −ll′ + g(l + l′, x′1, 1 + x′2)− g(l′, x′1, x′2)
0 0 ll′ + l′ + l + l2 + 1
0 1 l2 − l′ + ll′ − 1
1 0 −l′2 − ll′ + l′ − 1
1 1 l2 + l′2 − l − l′ + ll′ + 1

This leads to

(Λ ⋆ Λ)(k, l, 0, 1) = ωk2

3 9δk ∑
l′∈Z3

(ω
l′(1+l)−l2+l+1
3 + ω

l′(l−1)−l2−1
3

+ω
−l′2+l′(1−l)+l2−1
3 + ω

l′2+l′(l−1)−l2−l+1
3 ),

which using Eqs. 3.120, leads to:

(Λ ⋆ Λ)(k, l, 0, 1) = ωk2

3 9δk(3δ(l + 1)ω−l2+l+1
3 + 3δ(l − 1)ω−l2−l

3 −
√

3iω−l2+l
3

+
√

3iωl2+l
3 ).

For l = 0, this expression again vanishes trivially. For l = 1 one finds:

(Λ ⋆ Λ)(k, 1, 0, 1) = ωk2

3 9δk(0 + 3ω1
3 −
√

3iω0
3 +
√

3iω2
3)

= ωk2

3 9δk

(
3
2

(
−1 + i

√
3
)
− i
√

3− i
√

3
2

(
1 + i
√

3
))

= ωk2

3 9δk(−
3
2
+

i3
√

3
2
− i
√

3− i
√

3
2

+
3
2

)
= 0.

A similar argument can be made for l = −1. Hence (Λ ⋆ Λ)(k, l, 0, 1) van-
ishes for all values of l and k.

Finally, consider (x1, x2) = (1, 0). One finds:

x′1 x′2 −ll′ + g(l + l′, 1 + x′1, x′2)− g(l′, x′1, x′2)
0 0 ll′ − l′ − l + l2 + 1
0 1 −l′2 − l′ − ll′ − 1
1 0 l2 − ll′ + l′ − 1
1 1 l2 + l′2 + l + l′ + ll′ + 1
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This leads to

(Λ ⋆ Λ)(k, l, 1, 0) = ωk2

3 9δk ∑
l′∈Z3

(ω
l′(l−1)−l2−l+1
3 + ω

−l′2−l′(l+1)+l2−1
3

+ω
l′(1+l)−l2−1
3 + ω

l′2+l′(l+1)−l2+l+1
3 )

which using Eqs. 3.120, leads to:

(Λ ⋆ Λ)(k, l, 1, 0) = ωk2

3 9δk(3δ(l − 1)ω−l2−l+1
3 −

√
3iω−l2−l

3 + 3δ(l + 1)ω−l2−l
3

+
√

3iωl2−l
3 ).

For l = 0, this expression again vanishes trivially. For l = 1, one finds:

(Λ ⋆ Λ)(k, 1, 0, 1) = ωk2

3 9δk(3ω2
3 −
√

3iω1
3 +
√

3iω0
3)

= ωk2

3 9δk

(
−3
2

(
1 + i
√

3
)
− i
√

3
2

(
−1 + i

√
3
)
+ i
√

3

)

= ωk2

3 9δk

(
−3

2
− i3
√

3
2

+
i
√

3
2

+
3
2
+

i2
√

3
2

)
= 0.

A similar argument can be made for l = −1. Hence (Λ ⋆ Λ)(k, l, 1, 0) van-
ishes for all values of l and k. One can thus conclude that Eq. 3.127 indeed
holds, if (x1, x2) ̸= (0, 0).

In order to compute the twisted cross-correlation it is necessary to first dis-
cuss what the Chinese remainder isomorphism does to the twisted cross-
correlation. For d = 6 the twisted cross correlation is defined with ω6 =
exp(2πi/6). This can be factorised into:

ω6 = (−1)31 mod 2ω21 mod 3
3 = (−1) ·ω2

3. (3.128)

Therefore, one finds:

ω
[a,a′ ]
6 = ω

2[(k,l),(k′ ,l′)]
3 (−1)[(x1,x2),(x′1,x′2)]. (3.129)
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One then finds:

(Λ⋆̃Λ)(k, l, x) = ∑
k′ ,l′∈Z3,

x′∈Z2
2

ω
(k+k′)2+(l+l′)2+g(l+l′ ,x+x′)−k′2−l′2−g(l′ ,x′)+kl′−k′ l
3 (−1)[x,x′ ]

= ∑
k′ ,l′∈Z3

∑
x′∈Z2

2

ω
k2+l2+(2k−l)k′+(2l+k)l′+∆g
3 (−1)x1x′2−x2x′1

Set ∆g := g(l + l′, x + x′)− g(l′, x′) again and consider that 2 ∼= −1 mod 3.
Then:

(Λ⋆̃Λ)(k, l, x) = ωk2+l2

3 ∑
k′∈Z3

ω
−(k+l)k′
3 ∑

x′1,x′2∈Z2,l′∈Z3

ω
(k−l)l′+∆g
3 (−1)x1x′2−x2x′1

= ωk2+l2

3 3δ−l,k ∑
x′1,x′2∈Z2,l′∈Z3

ω
(k−l)l′+∆g
3 (−1)x1x′2−x2x′1

= ωk2+l2

3 3 ∑
x′1,x′2∈Z2,l′∈Z3

ω
ll′+∆g
3 (−1)x1x′2−x2x′1 .

Similarly to the previous case, one now has to show that

∑
x′1,x′2∈Z2,l′∈Z3

ω
ll′+∆g
3 (−1)x1x′2−x2x′1 ∝ δlδx1 δx2 (3.130)

Consider the case (x1, x2) = (0, 0):

x′1 x′2 ll′ + g(l + l′, x′1, x′2)− g(l′, x′1, x′2) x1x′2 − x2x′1
0 0 l2 0
0 1 l2 + l 0
1 0 l2 − l′ 0
1 1 ll′ 0

This leads to

(Λ⋆̃Λ)(k, l, 0, 0) = ωk2+l2

3 9δk(δl + 1 + 1 + ω−l
3 ) = 36 (3.131)

and thus in particular:

(Λ⋆̃Λ)(0, 0, 0, 0) = 36. (3.132)
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It is now left to prove that

∑
x′1,x′2∈Z2,l′∈Z3

ω
ll′+∆g
3 (−1)x1x′2−x2x′1 = 0 (3.133)

for (x1, x2) ̸= (0, 0).
For (x1, x2) = (1, 1) one has:

x′1 x′2 ll′ + g(l + l′, 1 + x′1, 1 + x′2)− g(l′, x′1, x′2) x′2 − x′1
0 0 −l′2 + ll′ 0
0 1 l′ + l2 − l − 1 -1
1 0 −l′ + l2 + l′ 1
1 1 l′2 + l2 0

For (x′1, x′2) = (1, 0) and (x′1, x′2) = (0, 1) it is easy to see that the sum over
l′ vanishes. Thus one is left with:

(Λ⋆̃Λ)(k, l, 1, 1) = ωk2+l2

3 9δk(−i
√

3ω−l2

3 + i
√

3ω−l2

3 ) = 0. (3.134)

So (Λ⋆̃Λ)(k, l, 1, 1) vanishes for all choices of k and l.
For (x1, x2) = (0, 1) one finds:

x′1 x′2 ll′ + g(l + l′, x′1, 1 + x′2)− g(l′, x′1, x′2) - x′1
0 0 l′ + l2 + l + 1 0
0 1 −l′ + l2 − 1 0
1 0 −l′2 + ll′ + l′ − 1 -1
1 1 l′2 − l′ + l2 − l + 1 -1

For (x′1, x′2) = (0, 0) and (x′1, x′2) = (0, 1) it is again easy to see that the
sum over l′ vanishes. Thus one is left with:

(Λ⋆̃Λ)(k, l, 0, 1) = ωk2+l2

3 9δk(−i
√

3ω−l2−l
3 + i

√
3ω−l2−l

3 ) = 0. (3.135)

So (Λ⋆̃Λ)(k, l, 0, 1) vanishes for all choices of k and l.
Lastly, consider the case (x1, x2) = (1, 0):

x′1 x′2 ll′ + g(l + l′, 1 + x′1, x′2)− g(l′, x′1, x′2) x′2
0 0 −l′ + l2 − l + 1 0
0 1 −l′2 + ll′ − l′ − 1 1
1 0 l′ + l2 − 1 0
1 1 l′2 + l′ + l2 + l + 1 1



3.3. Perfect Tensors from Doubly Perfect Sequences 123

For (x′1, x′2) = (0, 0) and (x′1, x′2) = (1, 0) it is again easy to see that the
sum over l′ vanishes. Thus one is left with:

(Λ⋆̃Λ)(k, l, 1, 0) = ωk2+l2

3 9δk(−i
√

3ω−l2+l
3 + i

√
3ω−l2+l

3 ) = 0. (3.136)

So (Λ⋆̃Λ)(k, l, 1, 0) vanishes for all choices of k and l. From this one can
conclude that Eq. 3.133 is satisfied if (x1, x2) ̸= (0, 0).

Hence the sequence Λsparse is doubly perfect and according to Theorem 3.0.2,
Λsparse gives rise to a 2-unitary in dimension 36.

The proof that Λsymm is doubly perfect can be done analogously. The
author refers to the SageMath notebook in Appendix B.1 for a numerical
proof of this theorem.

How does the 2-unitary in dimension 36 look like? Does it have any
special properties? Writing the sequences from Theorem 3.0.5 out, one finds:

Λsparse = exp

(
2πi

3
[0, 2, 0, 1, 0, 0, 0, 1, 1, 2, 2, 1, 2, 1, 2, 0, 2, 2, 1, 2, 2, 0, 0, 2, 2, 1, 2, 0,

2, 2, 0, 1, 1, 2, 2, 1]

)
,

Λsym = exp

(
2πi

3
[0, 2, 0, 1, 0, 0, 0, 1, 2, 2, 1, 1, 0, 2, 2, 0, 1, 1, 1, 2, 2, 0, 0, 2, 0, 2, 1, 2,

2, 2, 2, 1, 2, 2, 2, 1]

)
.

These arrays can be reshaped into:

Λsparse =



1 ω2
3 ω3 ω2

3 ω3 ω3
ω3 ω3 ω3 ω2

3 1 ω3
ω2

3 ω3 1 ω3 1 1
ω2

3 ω2
3 ω2

3 1 ω3 ω2
3

ω2
3 ω3 1 ω3 1 1

ω3 ω3 ω3 ω2
3 1 ω3

 , (3.137)
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and

Λsym =



1 ω2
3 1 ω3 1 1

1 ω3 ω2
3 ω2

3 ω3 ω3
1 ω2

3 ω2
3 1 ω3 ω3

ω3 ω2
3 ω2

3 1 1 ω2
3

1 ω2
3 ω3 ω2

3 ω2
3 ω2

3
ω2

3 ω3 ω2
3 ω2

3 ω2
3 ω3

 . (3.138)

Inserting these into

UΛ =
1

36 ∑
a∈Z2

6

Λa1,a2 |Φa⟩ ⟨Φa| , (3.139)

where

a =

(
a1
a2

)
and |Φa⟩ =

1
6
(Za1

6 X−a2
6 ⊗ I6) ∑

n∈Z6

|nn⟩ ,

one obtains two 2-unitaries in dimension 36, namely Usparse and Usymmetric.
A computer calculation shows that their traces do not coincide and hence
these unitaries are not unitarily equivalent. Moreover, the absolute value
of each entry is equal to 1. The quadratic form f (a1, a2) = a2

1 + a2
2 can be

rewritten as f (a) = aTI2a and hence, the sequence in the previous theorem
is essentially a modified solution for the case d = 3 and n = 1 and N = I2
in Theorem 3.0.3, which corresponds to a 2-unitary in dimension 9. More
concretely, if one interprets the x-values of the sequences in Theorem 3.0.5
as indices, one can construct four 9-dimensional matrices, three of which
are dual unitary (corresponding to (x1, x2) ∈ {(1, 0), (0, 1), (0, 0)}) and one
which is 2-unitary (corresponding to (x1, x2) = (1, 1)). The details of the
calculations can be found in the SageMath notebook in Appendix B.1.

For the sparse solution one finds the following perfect subsequences that
give rise to dual-unitaries in dimensions 9:

i) (x1, x2) = (0, 0)

⇝ Λsparse(a1, a2, 0, 0) = ω
2a2

1+a2
2

3 . (3.140)



3.3. Perfect Tensors from Doubly Perfect Sequences 125

M00 =
1
3



ω3 −ω2
3 0 0 0 ω2

3 + 2 0 0 0 ω2
3 + 2

0 ω2
3 + 2 0 0 0 ω2

3 − 1 ω2
3 − 1 0 0

0 0 ω2
3 + 2 ω2

3 − 1 0 0 0 ω2
3 − 1 0

0 0 ω2
3 − 1 ω2

3 + 2 0 0 0 ω2
3 − 1 0

ω2
3 + 2 0 0 0 ω3 −ω2

3 0 0 0 ω2
3 + 2

0 ω2
3 − 1 0 0 0 ω2

3 + 2 ω2
3 − 1 0 0

0 ω2
3 − 1 0 0 0 ω2

3 − 1 ω2
3 + 2 0 0

0 0 ω2
3 − 1 ω2

3 − 1 0 0 0 ω2
3 + 2 0

ω2
3 + 2 0 0 0 ω2

3 + 2 0 0 0 ω3 −ω2
3



ii) (x1, x2) = (0, 1)

⇝ Λsparse(a1, a2, 0, 1) = ω
2a2

1+a2
2−a2+1

3 (3.141)

M01 =
1
3



ω2
3 − 1 0 0 0 ω2

3 + 2 0 0 0 ω2
3 − 1

0 ω3 −ω2
3 0 0 0 ω2

3 − 1 ω3 −ω2
3 0 0

0 0 ω3 −ω2
3 ω2

3 − 1 0 0 0 ω3 −ω2
3 0

0 0 ω3 −ω2
3 ω3 −ω2

3 0 0 0 ω2
3 − 1 0

ω2
3 − 1 0 0 0 ω2

3 − 1 0 0 0 ω2
3 + 2

0 ω3 −ω2
3 0 0 0 ω3 −ω2

3 ω2
3 − 1 0 0

0 ω2
3 − 1 0 0 0 ω3 −ω2

3 ω3 −ω2
3 0 0

0 0 ω2
3 − 1 ω3 −ω2

3 0 0 0 ω3 −ω2
3 0

ω2
3 + 2 0 0 0 ω2

3 − 1 0 0 0 ω2
3 − 1



iii) (x1, x2) = (1, 0)

⇝ Λsparse(a1, a2, 1, 0) = ω
2a2

1+a2
2+a2+1

3 (3.142)

M10 =
1
3



ω2
3 − 1 0 0 0 ω2

3 − 1 0 0 0 ω2
3 + 2

0 ω3 −ω2
3 0 0 0 ω3 −ω2

3 ω2
3 − 1 0 0

0 0 ω3 −ω2
3 ω3 −ω2

3 0 0 0 ω2
3 − 1 0

0 0 ω2
3 − 1 ω3 −ω2

3 0 0 0 ω3 −ω2
3 0

ω2
3 + 2 0 0 0 ω2

3 − 1 0 0 0 ω2
3 − 1

0 ω2
3 − 1 0 0 0 ω3 −ω2

3 ω3 −ω2
3 0 0

0 ω3 −ω2
3 0 0 0 ω2

3 − 1 ω3 −ω2
3 0 0

0 0 ω3 −ω2
3 ω2

3 − 1 0 0 0 ω3 −ω2
3 0

ω2
3 − 1 0 0 0 ω2

3 + 2 0 0 0 ω2
3 − 1


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Similarly, for the symmetric solution one also finds three perfect subsequences
that give rise to dual-unitaries in dimensions 9:
i)(x1, x2) = (0, 0)

⇝ Λsym(a1, a2, 0, 0) = ω
a2

1+a2
2+a1a2

3 (3.143)

N00 =



1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1


ii) (x1, x2) = (0, 1)

⇝ Λsym(a1, a2, 0, 1) = ω
a2

1+a2
2−a1−a2+a1a2+2

3 (3.144)

N01 =



0 0 0 0 0 0 0 0 ω3
0 0 0 0 0 1 0 0 0
0 0 ω2

3 0 0 0 0 0 0
0 0 0 ω2

3 0 0 0 0 0
ω3 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 ω2

3 0
0 0 0 0 ω3 0 0 0 0


iii) (x1, x2) = (1, 0)

⇝ Λsym(a1, a2, 1, 0) = ω
a2

1+a2
2+a1+a2+a1a2+2

3 (3.145)
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N10 =



0 0 0 0 ω3 0 0 0 0
0 ω2

3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 ω3
0 0 0 0 0 ω2

3 0 0 0
0 0 0 0 0 0 ω2

3 0 0
0 0 0 1 0 0 0 0 0

ω3 0 0 0 0 0 0 0 0


Now consider the case (x1, x2) = (1, 1). Here one has that the subsequences
for the sparse and the symmetric solution coincide:

Λsym(a1, a2, 1, 1) = ω
2(a2

1+a2
2)

3 = Λsparse(a1, a2, 1, 1) (3.146)

This is the sequence from Example 6, which is doubly perfect and gives rise
to the following 2-unitary matrix of order 3:

UΛ,3 =
1
3



ω2
3 −ω3 0 0 0 ω3 + 2 0 0 0 ω3 + 2

0 ω3 − 1 0 0 0 ω2
3 −ω3 ω2

3 −ω3 0 0
0 0 ω3 − 1 ω2

3 −ω3 0 0 0 ω2
3 −ω3 0

0 0 ω2
3 −ω3 ω3 − 1 0 0 0 ω2

3 −ω3 0
ω3 + 2 0 0 0 ω2

3 −ω3 0 0 0 ω3 + 2
0 ω2

3 −ω3 0 0 0 ω3 − 1 ω2
3 −ω3 0 0

0 ω2
3 −ω3 0 0 0 ω2

3 −ω3 ω3 − 1 0 0
0 0 ω2

3 −ω3 ω2
3 −ω3 0 0 0 ω3 − 1 0

ω3 + 2 0 0 0 ω3 + 2 0 0 0 ω2
3 −ω3


.

Now it is natural to ask, if there is a way to decompose Usparse and Usymmetric
into a 9-dimensional 2-unitary and some other unitary matrix. A direct ap-
proach would be to just build the direct sum of all of the submatrices. This
would clearly lead to a unitary, as every submatrix is unitary. However, this
approach does not result in a 2-unitary. In order to obtain a 2-unitary out
of these submatrices, one has to combine them in another way. This will be
discussed in the following.

For this, divide the sequence Λsparse again into sub-sequences, but this
time only separate the (x, y) = (1, 1) sub-sequence from the rest. This gives
rise to two matrices: UΛ,3, which is 9-dimensional, and a 27-dimensional uni-
tary that can be obtained by taking the direct sum of the matrices M00, M01
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and M10. This unitary will be denoted by UΛsparse ,27. Now consider the bell
basis:

|Φ00⟩ =
1√
2
(|00⟩+ |11⟩), (3.147)

|Φ01⟩ =
1√
2
(|01⟩+ |10⟩), (3.148)

|Φ10⟩ =
1√
2
(|00⟩ − |11⟩), (3.149)

|Φ11⟩ =
1√
2
(|01⟩ − |10⟩). (3.150)

Here the indexation already indicates the association to one of the submatri-
ces M00, M01, M10 and UΛ,3 = M11. One can now define the following map,
which projects a state in C3 onto one of the three bell states {|Φ00⟩ , |Φ01⟩ , |Φ10⟩}:

B = ∑
(x,y)∈{(0,0),(0,1),(1,0)}

|Φxy⟩ ⟨x̂− ŷ| . (3.151)

The hat above the x and y indicates that x and y are elements of Z3 rather
than Z2, meaning in particular, that −1 corresponds to 2.

Now, the following matrix is 2-unitary (and equal to Usparse):

UΛ = UΛ,3 ⊗ |Φ11⟩ ⟨Φ11|+ (I9 ⊗ B)UΛsparse ,27(I9 ⊗ B†). (3.152)

A similar decomposition can be made for the symmetric solution, using the
matrices N00, N01 and N10.

In the algebraic picture, one can construct two delocalised subalgebras
ofM36(C) isomorphic toM6(C) by conjugating the two local subalgebras
L =M6(C)⊗ I andR = I⊗M6(C) with UΛ:

AL := UΛLU†
Λ, (3.153)

AR := UΛRU†
Λ. (3.154)

The exact form of these subalgebras can be found in the SageMath notebook
on the present author’s GitHub repository [35]. It is noteworthy that, whileL
andR can be expressed as the spans of the WH-basis, AL and AR cannot. In
particular, comparing this to the case d2 = 9, where a 2-unitary in dimension
9 maps basis operators to basis operators up to a phase, this is not the case
for d2 = 36.
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3.4 Further Discussions

This section discusses further observations that were made while conducting
the research presented in this chapter. Starting with exploring the minimal
orders of the 2-unitaries that have been considered in this chapter, the sec-
tion ends with a discussion on the relation between different 2-unitaries of
dimension 9 and a quasi-orthogonal decomposition ofM9(C).

3.4.1 Order of 2-Unitaries

Recall that Prop. 3.0.5 relates the existence problem of a 2-unitary in dimen-
sion d2 to the existence of a finite group of order greater than d4 with d2-
dimensional irreducible representation and a quadruple of subgroups of or-
der greater than d2 that meet certain criteria. If the 2-unitary itself can be
described through this representation, it naturally has to have a finite order.
Hence one can ask what the minimal order of a 2-unitary is. In the algebraic
picture, this boils down to the following question: given a factor of a finite-
dimensional algebraAwhich has the form UAU†, where U is a unitary, what
is the minimal order of U such that UAU† is delocalised, i.e. U is 2-unitary?

i) d2 = 9: So far, the lowest known order of a 2-unitary permutation is 4.
For example, the 2-unitary obtained from an OLS(3) in normal form in
Example 1 is of order 4. It has the following cycle structure:

(0)(1 8 2 4)(3 5 6 7). (3.155)

The existence of 2-unitary permutation matrices with order 2 can be
ruled out as it is impossible to construct an OLS(3) whose entries only
make up 2-cycles. To see that, assume that the OLS(3) is in normal
form, i.e.:

11 2 · 3 ·
2 · · ·
3 · · ·

The only possible completion of the first row without creating a cycle
that is greater than 2 is given by:
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11 23 32
2 · · ·
3 · · ·

If one assumes that the OLS(3) is made of 2-cycles, this leads to:

11 23 32
2 · · 12
3 · 13 ·

This clearly cannot be an OLS(3).

The 2-unitary from Example 6, which is not a permutation, has order
3. So far, this is the lowest known order of a 2-unitary in dimension 9.
However, there might exist 2-unitaries of order 2, which have not been
found so far.

ii) d2 = 16: The following permutation matrix has order 2:

U16 = Perm(0, 11, 13, 6, 14, 5, 3, 8, 7, 12, 10, 1, 9, 2, 4, 15). (3.156)

Its cycle structure is given by:

(0)(1 11)(2 13)(3 6)(4 14)(5)(7 8)(9 12)(10)(15). (3.157)

iii) d2 = 25: The following permutation matrix obtained from an OLS(5)
in normal form has order 2:

U25 = Perm(0, 23, 19, 7, 11, 22, 6, 3, 14, 15, 16, 4, 12, 20, 8, 9, 10, 21, 18, 2,
13, 17, 5, 1, 24).

Its cycle structure is given by:

(0)(1 23)(2 19)(3 7)(4 11)(5 22)(6)(8 14)(4 11)(5 22)(6)(8 14)(9 15)
(10 16)(12)(13 20)(17 21)(18)(24).

iv) d2 = 36: Due to the non-existence of an OLS(6), there does not exist a 2-
unitary permutation matrix. The 2-unitaries from Theorem 3.0.5 have
order 3. There might exist 2-unitaries with order 2 which have not been
found so far.
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The following table summarises these findings:

d2 9 16 25 36
min order 3 2 2 3 (3.158)

3.4.2 The Number of MOLS and the Number of Quasi-Orthogonal
Factors ofMp2(C)

Let p be a prime unequal to two. From Proposition 3.0.2 it becomes clear
that any 2-unitary permutation matrix of order p2 gives rise to two quasi-
orthogonal factors isomorphic toMp(C). Since any p2-dimensional 2-unitary
permutation matrix is equivalent to a pair of orthogonal Latin squares of or-
der p, this instance leads to the following statement:

Proposition 3.0.8. Every pair of OLS(p) gives rise two quasi-orthogonal factors of
Mp2(C).

Proof. This follows immediately from Theorem 3.0.5.

Is there a way to generalise that to a set of k MOLS(p)? By simple counting
arguments one can prove the following:

Proposition 3.0.9. A set of k MOLS(p) gives rise to k(k − 1)/2 pairs of quasi-
orthogonal factors ofMp2(C).

Proof. Let K1, ..., Kk be mutually orthogonal Latin squares of order p. Ac-
cording to Prop. 2.19.1 each pair of orthogonal Latin squares gives rise to
a 2-unitary in dimension p2. Now a simple counting argument yields that
there are

k−1

∑
i=1

i =
k(k− 1)

2
(3.159)

different pairs. According to 3.0.8 each pair gives rise to a pair of quasi-
orthogonal factors ofMp2(C).

The question now arises, if these subalgebras are actually distinct from
each other. As it turns out, this is in general not the case.
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Consider the following 3 MOLS(4) (a complete set of MOLS of order 4):

K1 =

1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

K2 =

1 2 3 4
4 3 2 1
2 1 4 3
3 4 1 2

K3 =

1 2 3 4
3 4 1 2
4 3 2 1
2 1 4 3

There are three possibilities to form distinct pairs:

I. (K1, K2)

II. (K1, K3)

III. (K2, K3)

According to 2.19.1 each of these pairs gives rise to a 2-unitary in dimension
16. Write the elements of L =M4(C)⊗ I4 andR = I4 ⊗M4(C) in terms of
the Weyl-Heisenberg basis: {XiZj}i,j∈[3] where

X =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 Z =


1 0 0 0
0 i 0 0
0 0 −1 0
0 0 0 −i

.

Now apply each of these 2-unitaries to L and R. This results in three
pairs of quasi-orthogonal factors:

I. (AL1 , AR1)

II. (AL2 , AR2)

III. (AL3 , AR3)

But AR3 = AR1 (the calculation can be found in a Sage notebook on the
present author’s GitHub repository [35]) and hence these pairs are not dis-
tinct.

3.4.3 Quasi-Orthogonal Decomposition ofM3(C)⊗M3(C)

In this section the following question will be addressed: given a maximal
set of mutually quasi-orthogonal distinct factors, what can be said about the



3.4. Further Discussions 133

2-unitaries are needed to generate these factors by conjugating the local sub-
algebras? This will be done for local dimension p = 3, in which case the max-
imal number of orthogonal Latin squares is two. This OLS(3) gives rise to one
pair of quasi-orthogonal factors ofM9(C) according to Prop. 3.0.8. However,
in Ref. [88] the author shows that the following ten factors ofM9(C) are dis-
tinct and hence form a quasi-orthogonal decomposition ofM9(C) [88]:

A1 = span(I9, X ⊗ Z, X2 ⊗ Z2, Z ⊗ X2, XZ ⊗ X2Z, X2Z ⊗ X2Z2, Z2 ⊗
X, XZ2 ⊗ XZ, X2Z2 ⊗ XZ2)

A2 = span(I9, XZ⊗Z, X2Z2⊗Z2, Z⊗X2Z2, XZ2⊗X2, X2⊗X2Z, Z2⊗
XZ, X⊗ XZ2, X2Z⊗ X2)

A3 = span(I9, XZ2⊗Z, X2Z⊗Z2, Z⊗X2Z, X⊗X2Z2, X2Z2⊗X2, Z2⊗
XZ2, XZ⊗ X, X2 ⊗ XZ)

A4 = span(I9, X⊗ Z2, X2⊗ Z, Z2⊗X2, XZ2⊗X2Z2, X2Z2⊗X2Z, Z⊗
X, XZ⊗ XZ2, X2Z⊗ XZ)

A5 = span(I9, XZ⊗Z2, X2Z2⊗Z, Z2⊗X2Z2, X⊗X2Z, X2Z⊗X2, Z⊗
XZ, XZ2 ⊗ X, X2 ⊗ XZ2)

A6 = span(I9, XZ2⊗Z2, X2Z⊗Z, Z2⊗X2Z, XZ⊗X2, X2⊗X2Z2, Z⊗
XZ2, X⊗ XZ, X2Z2 ⊗ X)

A7 = span(I9, XZ⊗X2Z2, X2Z2⊗XZ, XZ2⊗X2Z, X2⊗X, Z⊗Z2, X2Z⊗
XZ2, Z2 ⊗ Z, X⊗ X2)

A8 = span(I9, XZ⊗XZ, X2Z2⊗X2Z2, XZ2⊗XZ2, X2⊗X2, Z⊗Z, X2Z⊗
X2Z, Z2 ⊗ Z2, X⊗ X)

L = span(I9, XZ⊗ I3, X2Z2⊗ I3, XZ2⊗ I3, X2⊗ I3, Z⊗ I3, X2Z⊗ I3, Z2⊗
I3, X⊗ I3)

R = span(I9, I3⊗XZ, I3⊗X2Z2, I3⊗XZ2, I3⊗X2, I3⊗Z, I3⊗X2Z, I3⊗
Z2, I3 ⊗ X)

Combinatorially, this can be regarded as dividing the d2 × d2 = 9× 9 = 81
basis operators ofM9(C) into d2 + 1 = 10 different sets of cardinality d2 = 9
that only intersect in one element, namely the identity matrix. This is the
same combinatorial structure as an affine plane of order 9 or equivalently a
complete set of MOLS(9). The corresponding quantum design is affine with
parameters v = 81, b = 90, r = 10, k = 0, 9 and λ = 0, 9.
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In light of Theorem 3.0.5, the following question arises: what are the 2-
unitaries that map the two local subalgebras L andR to the remaining eight
subalgebras? Do they have special features? As it turns out one can use the
following four 2-unitaries to generate the decomposition:

I.

UCHM,3 =
1
3



1 1 1 1 ω3 ω2
3 1 ω2

3 ω3
1 1 1 ω2

3 1 ω3 ω3 1 ω2
3

1 1 1 ω3 ω2
3 1 ω2

3 ω3 1
1 ω3 ω2

3 1 ω2
3 ω3 1 1 1

ω3 ω2
3 1 1 ω2

3 ω3 ω2
3 ω2

3 ω2
3

ω2
3 1 ω3 1 ω2

3 ω3 ω3 ω3 ω3
1 ω2

3 ω3 1 1 1 1 ω3 ω2
3

ω2
3 ω3 1 ω3 ω3 ω3 1 ω3 ω2

3
ω3 1 ω2

3 ω2
3 ω2

3 ω2
3 1 ω3 ω2

3


(3.160)

This 2-unitary was taken from Ref. [41].

II.

The following 2-unitary was taken from Ex. 6 and corresponds to the doubly

perfect sequence Λ(a1, a2) = ω
2(a2

1+a2
2)

3 :

UΛ,3 =
1
3



ω2
3 −ω3 0 0 0 ω3 + 2 0 0 0 ω3 + 2

0 ω3 − 1 0 0 0 ω2
3 −ω3 ω2

3 −ω3 0 0
0 0 ω3 − 1 ω2

3 −ω3 0 0 0 ω2
3 −ω3 0

0 0 ω2
3 −ω3 ω3 − 1 0 0 0 ω2

3 −ω3 0
ω3 + 2 0 0 0 ω2

3 −ω3 0 0 0 ω3 + 2
0 ω2

3 −ω3 0 0 0 ω3 − 1 ω2
3 −ω3 0 0

0 ω2
3 −ω3 0 0 0 ω2

3 −ω3 ω3 − 1 0 0
0 0 ω2

3 −ω3 ω2
3 −ω3 0 0 0 ω3 − 1 0

ω3 + 2 0 0 0 ω3 + 2 0 0 0 ω2
3 −ω3


.

III.
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UΛCHM ,3 =
1
3



1 ω3 ω3 ω3 ω3 1 ω3 1 ω3
ω3 1 ω3 ω2

3 1 1 ω2
3 ω2

3 ω3
ω3 ω3 1 ω2

3 ω3 ω2
3 ω2

3 1 1
ω3 ω2

3 ω2
3 1 1 ω2

3 ω3 1 ω3
1 ω2

3 1 ω2
3 1 1 1 1 ω2

3
ω3 ω3 1 1 ω2

3 1 ω3 ω2
3 ω2

3
ω3 ω2

3 ω2
3 ω3 ω3 1 1 ω2

3 1
ω3 1 ω3 ω3 ω2

3 ω2
3 1 1 ω2

3
1 1 ω2

3 1 ω2
3 1 ω2

3 1 1


. (3.161)

This 2-unitary Hadamard matrix of order 6 was taken from Example 10 (ob-
tained from Theorem 3.0.4). According to Theorem 3.0.4, the partial trans-
pose of UΛCHM,3 is also 2-unitary and has order 4.

IV.

UOLS,3 =



1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0


(3.162)

This unitary corresponds to the 2-unitary permutation matrix obtained from
an OLS in normal form that was introduced in Section 3.1 in Example 1.

The following table displays commutative pairs of delocalised subalge-
bras, their underlying groups (see Ex. 5), the 2-unitary mapping the two local
subalgebras L andR to the pair, its order and its trace7:

7More detailed calculations can be found on the present author’s GitHub repository [35].
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Pair of subalgebras Underlying groups U ord(U) tr(U)
A1,A4 C1,0, C2,0 UCHM,3 8 1
A2,A5 C1,1, C2,1 UΛ,3 3 -3
A3,A6 C1,2, C2,2 UΛCHM ,3 6 3
A7,A8 D1, D2 UOLS,3 4 1

Here UCHM,3 and UOLS,3 are equivalent under local unitary transforma-
tions8 [41].

In Ref. [98] it was shown that there is only one equivalence class of 2-
unitary permutation matrices of dimension 9 under local unitary transfor-
mations. In fact, it was conjectured that all 2-unitaries in dimension 9 are
LU-equivalent [96]. If this is true, all of the 2-unitaries above should be LU-
equivalent.

8This means that for each 9-dimensional 2-unitary, there exist unitary operators
U1, U2, U3, U4 such that: U = (U1 ⊗U2)UOLS(U3 ⊗U4).
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4 (Quantum) Combinatorial
Structures in Category
Theory

In Section 2.1 the concepts of block designs and quantum designs were intro-
duced. Based on Def. 2.4 and Def. 2.10, a category-theoretic model for both
classical and quantum designs will be developed in this chapter, using ar-
row categories and the categories Mat(N) and CP[FHilb]. This framework
transfers the essential properties of block designs into a pointed monoidal
dagger category leading to the more abstract notion of categorical block de-
signs. This approach not only generalises the description of classical and
quantum designs using completely positive maps, but also establishes a con-
nection between them via a functor. Furthermore, based on these techniques,
a category of MUBs will be defined, and the concept of combinatorial quan-
tum channels will be derived.

This chapter is based on the present author’s publication Ref. [37] (c.f.
Teilpublikationen on page iii) which is joint work with Jamie Vicary. All results
in this chapter have been derived by the present author. The statements of
technical definitions, lemmas, theorems, and their proofs have largely been
carried over verbatim from the publication. All those texts were written by
the present author. Section 4.4 has not previously appeared.

4.0.1 Related Work

The previous chapter illustrated the rich range of applications that design
theory has in quantum theory. It is therefore natural to ask how these find-
ings can be translated into the language of category-theoretical quantum the-
ory. A categorical approach to hypergraphs was proposed by Dörfler and
Waller (see [27]). Since every block design can be represented as a uniform



138 Chapter 4. (Quantum) Combinatorial Structures in Category Theory

and regular hypergraph, their construction already provides a category-
theoretical description of block designs. Nevertheless, because their approach
relies on the power-set functor, this notion is rather complicated and thus in
this work a category of block designs will be defined in a slightly different
way, namely via the category of matrices and natural numbers Mat(N). This
formulation not only generalises the framework of Dörfler and Waller, which
appears as a subcategory, but also has the advantage that it does not make
use of the power-set functor.

First attempts to find a category-theoretical description of quantum and
classical designs have been developed in the present author’s master’s the-
sis [36] by using the arrow category of the category of finite-dimensional
Hilbert spaces and completely positive maps, CP[FHilb] and the arrow cat-
egories of the category of matrices and natural numbers, Mat(N). Category-
theoretical formulations of certain combinatorial structures, such as Latin
squares (LS) and quantum Latin squares (QLS), already exist (see [81, 84]).
However, these are not embedded within framework developed in Ref. [36].
The following chapter aims to generalise these notions and embed them into
a broader category-theoretical framework.

Before diving into the more general framework, recall the definitions of
block designs and homomorphisms between them (Def. 2.4 and Def. 2.5).
One straightforward way to define a category of block designs is given by
the following:

Definition 4.1. [37] The category Design has designs as objects, and design
homomorphisms as morphisms. The category Block is the full subcategory
on the block designs.

This definition could equivalently be formulated in terms of points and
blocks. However, the more abstract formulation is adopted here to align
more closely with the categorical framework developed in the following sec-
tions. For quantum designs the situation is less obvious as it is not clear how
to define quantum designs as objects. However, the abstract notion devel-
oped in the next section will turn out to be elucidating.

4.1 The Design Construction

In this section the so-called design construction, that gives an abstract notion
of the uniformity-, regularity- and λ-balanced condition from Section 2.1 in
an arbitrary rigid monoidal category, will be developed.
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Definition 4.2 (Design construction). [37] Let F : D ↪→ C be a faithful
monoidal functor between pointed monoidal dagger categories. The cate-
gory Design[C,D] is the subcategory of Arr[C] where the morphisms are
given by pairs of morphisms of C which are in the image of the functor F;
omit F from the notation, ensuring it is clear from the context. Where F = id,
simply write Design[C].

Definition 4.3. [37] The category RUDesign[C,D] is the subcategory of
Design[C,D] where objects f : A→ D are r-regular and k-uniform, for scalars
r, k ∈ Hom(IC , IC), with the pointed structure and its dagger represented by
a black dot:

D

f = r

D

A

f
= k

A

Lemma 4.3.1. [37] In RUDesign[C,D] for any k-uniform, r-regular object f :
A→ D, the following equations hold:

k · dim(A) = r · dim(D) (4.1)

where dim(A) = p†
A ◦ pA for A ∈ obj(C). Here pA : 1 → A is the pointed

structure of C.

Proof. Via composition with p†
D and pA respectively, the regularity and uni-

formity condition become:

f = k · dim(A) f = r · dim(D)

Hence Eq. 4.1 holds.

Definition 4.4. [37] The category BDesign[C,D] is the subcategory of
RUDesign[C,D] where all k-uniform and r-regular objects f : A → D are
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λ-balanced for scalars λ ∈ Hom(IC , IC):

f †

f
= λ

 −

 + r

Lemma 4.4.1. [37] In BDesign[C,D] for any k-uniform, r-regular object f :
A→ D, the following equation holds, where dim(D) = p†

D ◦ pD for D ∈ obj(C):

λ · (dim(D)− 1) = r · (k− 1) (4.2)

Proof. To prove Eq. 4.2, concatenate the λ-condition with both pA and p†
A

which gives:

f †

f
= λ(dim(D)2 − dim(D)) + r dim(D)

On the other hand one has:

f †

f

= k

f

= k r

If one now concatenates with p†
D, one gets:

f †

f
= k r dim(D)

From this one can easily deduce Eq. 4.2.
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4.2 The Category of Block Designs

In this section the design-constructions from Section 4.1 will be applied to the
categories Mat(N) and CP[FHilb] that have been discussed in Section 2.4
and it will be shown that this yields a categorical model of both classical
quantum designs.

Consider the category of finite sets and functions FSet. There exists a
faithful functor FSet ↪→ Mat(N) which takes every set to the natural num-
ber coinciding with its cardinality. Furthermore, following Theorem 2.57.1,
it holds that FSet ↪→ Mat(N) ∼= CPc[FHilb].

In the following, it will be demonstrated that there exists a functor from
the category BDesign[Mat(N), FSet] to the category Block. Additionally, it
will be proved that BDesign[Mat(N), FSet] is equivalent to the category
BDesign[CPc[FHilb], FSet].

Theorem 4.4.1. [37] There exists a functor G : BDesign[Mat(N), FSet] −→
Block.

Proof. First note that the morphisms in BDesign[Mat(N), FSet] are given by
pairs of functions. The functor sends each object in BDesign[Mat(N), FSet]
to an incidence matrix in Block by sending each matrix entry greater than 0
to 1. The uniformity, regularity and λ-conditions of the design construction
ensure that the incidence matrix one obtains that way, represents a uniform,
regular and λ-balanced design. On morphisms the functor acts as the iden-
tity.

Similarly, one can argue that the following holds.

Theorem 4.4.2. [37] There exists a functor G : Design[Mat(N), FSet] −→
Design.

This indicates that the categories Design[Mat(N), FSet] and
BDesign[Mat(N), FSet] actually define a more general concept of (block)designs,
which will be referred to as categorical (block)designs [37].

Lemma 4.4.2. [37] The category BDesign[Mat(N), FSet] is equivalent to the
category BDesign[CPc[FHilb], FSet].

Proof. According to Proposition 2.57.1 the categories CPc[FHilb] and Mat(N)
are equivalent. Using Theorem 2.58.1 from Section 2.4, this gives rise to an
equivalence between their arrow categories.
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There already exists a category-theoretical characterisation of LS (see Ref. [81]).
However, these objects do not fit into the framework here.

4.3 The Category of Quantum Designs

Having retrieved the category of block designs by applying the design con-
struction to the categories Mat(N) and CPc[FHilb], in this section, the de-
sign construction will be applied to the category CP[FHilb]. As it turns out,
this will give a notion of a category of quantum designs that contains a cate-
gory QDesignB, which has objects that are uniform and regular quantum
designs of degree 1, as a subcategory. Another important subcategory is
given by the category QDesignRU which has uniform and regular quantum
designs as objects. This subcategory also contains a subcategory MUB, with
objects that are sets of mutually unbiased bases.

Recall from Section 2.4 that CP[FHilb] is comprised of finite dimensional
H∗-algebras and completely positive maps. Applying the design construc-
tion to this category, one then gets a category Design[CP[FHilb]], with ob-
jects that are CP-maps between finite dimensional H∗-algebras, and mor-
phisms that are pairs of CP-maps:

Definition 4.5. [37] The category QDesign is defined to be the category
Design[CP[FHilb]].

This category will be referred to as the category of quantum designs,
where quantum designs are here a more abstract thing than what was de-
fined by Zauner (see Def. 2.10).

Definition 4.6. [37] The subcategory RUDesign[CP[FHilb]] of QDesign is
called QDesignRU. Its objects are uniform and regular quantum designs.

Definition 4.7. [37] The subcategory BDesign[CP[FHilb]] of QDesignRU
is called QDesignB. Its objects are uniform and regular quantum designs
with degree 1.

Example 1. [37]
Consider the subcategory of QDesignB where all objects are CP-maps be-
tween matrix algebras: ϕ : H ⊗ H∗ → K ⊗ K∗ where dim(H) = b and
dim(K) = v. Because H is a special Frobenius algebra, one gets dim(H) =
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tr(idH). One then has the following uniformity and regularity conditions:

H H∗

ϕ

dK

= k

H H∗

dH
dH

K K∗

ϕ

b†
K

= r

K K∗

dK

b†
K

The λ-condition is given by:

ϕ†

ϕ

= λ

 dK

b†
K

−

 + r

Let H = C2 = K and consider the CP-map φ : C2 ⊗ C2 → C2 ⊗ C2 with
matrix representation: 

1 0 0 1
0 1

2
1
2 0

0 1
2

1
2 0

1 0 0 1


This map represents a quantum design with parameters λ = k = r = 2 =
v = b.

Having considered completely positive maps from a non-commutative al-
gebra to a non-commutative algebra in FHilb in Ex. 1, it is natural to ask
what happens if one considers CP-maps from a commutative algebra to a
non-commutative algebra, i.e. maps of the form: φ : H → K∗ ⊗ K. In fact, it
will turn out that one can encode uniform and regular quantum designs of
degree 1 according to Zauner’s notion via these maps. The next theorem can
be found in similar spirit in the present author’s master’s thesis [36] but is
also part of Ref. [37].

Theorem 4.7.1. [37] There exists a subcategory of QDesignB that has objects that
represent uniform and regular quantum designs of degree 1 according to Zauner’s
notion.
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Proof. Consider a uniform, regular and λ-balanced quantum design D =
{p1, ..., pv}, where each pi is a b× b projection matrix in a Hilbert space Cb.
Following Example 1, these projections pi : Cb → Cb then give rise to a
completely positive map ϕ : Cv → Cb ⊗ Cb in FHilb. This is valid because
imposing the uniformity-, regularity- and λ-condition on the projector has
no impact on the CP-condition. Now take ϕ′ = ϕ† : Cb ⊗Cb → Cv, i.e.:

pi

dCb

i

∑v
i=1

Then one finds:

ϕ′ = k
dCb

ϕ′

bCb

= r

ϕ†′

ϕ′

= λ

 −

 + r

These coincide with the conditions given by the design construction applied
to FHilb. Moreover, one can recover Eq. 2.4 and Eq. 2.5 from Lemma 2.12.1,
as dim(Cv) = v and dim(Cb) = b and Eq. 4.1 and Eq. 4.2 hold.

4.3.1 A Functor Between Categorical Block Designs and Cat-
egorical Quantum Designs

In this section a functor between BDesign[Mat(N), FSet] and QDesignB
will be constructed that relates classical block designs to quantum designs.
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Since these results already have been published in the present author’s Mas-
ter’s thesis [36], they will only be included for the sake of completeness.

Proposition 4.7.1. [36, 37] There exists a functor Q : BDesign[Mat(N), FSet]→
QDesignB that relates a generalised balanced incomplete block designs to uniform,
regular and λ-balanced quantum designs.

Proof. According to Lemma 4.4.2 the categories BDesign[Mat(N), FSet] and
BDesign[CPc[FHilb], FSet] are equivalent. So one can actually represent an
arbitrary object χ : b → v in BDesign[Mat(N), FSet] via a uniform, reg-
ular and λ-balanced CP-map χ : Cb → Cv. The functor Q acts on objects
by sending each object χ : Cb → Cv in BDesign[Mat(N), FSet] with pa-
rameters k, r and λ to the map ϕ = χ ◦ L : Cb ⊗ Cb → Cb → Cv, where
the map L : Cb ⊗Cb → Cb is the so-called Cayley embedding, which in the
present case simply becomes the multiplication µ : Cb ⊗ Cb → Cb as one
has that A = Cb ∼= (Cb)∗ = A∗. Its conjugate L† is just the comultiplication
∆ : Cb → Cb ⊗ Cb. The resulting map ϕ is as concatenation of completely
positive maps also completely positive. Depict this via the following string
diagram:

µ

χ

= ϕ

Via concatenation, each morphism in BDesign[Mat(N), FSet]

Cb Cb′

Cv Cv′

χ

ξ ′

χ′

ξ
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gets mapped to a morphism in QDesignB, as follows:

Cb ⊗Cb Cb′ ⊗Cb′

Cb Cb′

Cv Cv′

µ

ξ ′⊗ξ ′

µ

χ

ξ ′

χ′

ξ

This diagram commutes, because ξ ′ can be extended to a morphism of monoids
as ξ ′ is a function. It is easy to verify that this functor respects composi-
tion and sends the identity morphism in BDesign[Mat(N), FSet], i.e. idψ =
(id, id), to the identity morphism idQ(ψ) = (id⊗ id, id⊗ id) in QDesignB.
The regularity-condition then becomes:

k
dCb

= k µ =

χ

µ
= ϕ

which is exactly the regularity-condition in QDesignB. Here the fact that Cb

is a special Frobenius algebra has been used in the first step. For uniformity
one finds:

r =

χ

∆

µ =

ϕ

∆
=

ϕ

bCb

which is precisely the uniformity condition in QDesignB. In a similar way
one can verify that the λ-condition in BDesign[Mat(N), FSet] gets mapped
to the λ-condition in QDesignB.
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In this construction, every classical design gives rise to a uniform and reg-
ular quantum design of degree 1, analogously to Theorem 2.13.1. However, it
is straightforward to verify that the functor Q does not yield an equivalence
of categories, as it is not essentially surjective.

4.3.2 The Category of MUB’s

How do MUB’s fit into this picture? Recall that MUB’s are quantum designs
of degree 2 and hence they cannot be in the category QDesignB. But what
about the category QDesignRU? In the present author’s Master’s thesis a
notion of a “MUB-quantum design“ in a category-theoretical setting has al-
ready been discussed. Another category-theoretical description can be found
in Ref. [81]. However, in these pictures, MUBs were only considered as ob-
jects in a category rather than as a class of objects that form a category them-
selves. In this section, a category of MUBs, namely MUB, will be defined as
a subcategory of QDesignRU, that has objects that are collections of MUBs.
This not only provides a more general framework for MUBs in a category-
theoretical setting, but also highlights the strong connections between MUBs
and design theory in general.

Theorem 4.7.2. [37] There exists a subcategory MUB of QDesignRU with objects
that are collections of MUBs and morphisms that are pairs of functions.

Proof. Let A1 = {p1
1, ...p1

d}, ..., Ak = {pk
1, ..., pk

d} be a set of k MUBs is Cd and
consider the CP-map M : Ck·d ∼= Cd ⊗Ck → Cd ⊗Cd:

M =
k

∑
a=1

d

∑
i=1

i a

dCd

pa
i
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This map satisfies the following equations:

M = k
dCd

M

bCd

=

M†

M
=

1
d

 −

 +

Here the last equation can be understood as a modified λ-equation1. Re-
stricting QDesignRU to objects of this form, one gets a category that has
objects that are 1-uniform and k-regular quantum designs of degree 2 where
Λ = { 1

d , 0}, i.e. k MUBs in dimension d.

This theorem can also be formulated in terms of collections of MASAs.
However, to the present author’s knowledge, these objects have not yet been
established in the language of category theory.

A widely-discussed topic is the existence of MUBs in non-primepower
dimensions. One can ask, if it is possible to extend the functor Q to a functor
Q̃ : BDesign[Mat(N), FSet]→ MUB that maps a classical design to a set of
MUBs. Since the domain of the functor is given by the category of BIBDs, this
would be mean that Q̃ needs to map the λ-condition in BDesign[Mat(N), FSet]
to the modified λ-condition in MUB. It is unclear, if and how that works. A
more promising approach would be to define Q̃ on a category of resolvable
BIBDs, as the incidence structure underlying a set of k MUBs is also a resolv-
able BIBD. However, such a category remains to be established.

4.3.3 Combinatorial Quantum Channels

Quantum channels are modelled by completely positive trace-preserving
maps ([10], p. 246). In light of the previous discussions, the question arises,
how the CP-maps representing quantum designs relate to quantum chan-
nels.

1In fact, this is because the design has degree 2 and hence there are two parameters for λ.



4.3. The Category of Quantum Designs 149

Theorem 4.7.3. [37] Every 1-uniform and r-regular quantum design in QDesignRU,
which has the form S : H ⊗ H∗ → K⊗ K∗, defines a quantum channel.

Proof. By definition, S is completely positive. Applying the uniformity con-
dition to S(ρ), where ρ is an arbitrary state in H ⊗ H∗, shows that S is also
trace-preserving.

This motivates the following definition:

Definition 4.8. A combinatorial quantum channel is a 1-uniform, r-regular quan-
tum design in QDesignRU having the form S : H ⊗ H∗ → K⊗ K∗.

It is easy to verify that the following equation holds:

dim(H) = r · dim(K). (4.3)

Example 1. Consider the Pauli channel Λ : M2(C) → M2(C), Λ(ρ) =

∑3
i=0 piσiρσi, where ∑3

i=0 pi = 1 and ρ is an arbitrary density matrix inM2(C).
This is a combinatorial quantum channel with parameters v = 2 = b and
k = 1 = r.

Another example can actually be constructed from the category-theoretical
description of MUB’s:

Example 2. Let A1 = {p1
1, ...p1

d}, ..., Ak = {pk
1, ..., pk

d} be a set of k MUBs is
Cd and consider the CP-map M̃ := M† : Cd ⊗Cd → Ck·d ∼= Cd ⊗Ck:

M̃ =
k

∑
a=1

d

∑
i=1

i a

dCd

pa
i

This map is trace preserving and completely positive and hence defines a
combinatorial superoperator with parameters d, d · k, k.
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4.4 Further Discussions

This section aims to put the category theoretical notion of quantum designs
into an algebraic picture and thus links this chapter to Chapter 3, ultimately
discussing 2-unitaries in a design-theoretic context.

4.4.1 Combinatorial Superoperators

The CP-maps representing quantum designs can be taken out of the category-
theoretical context and can be discussed in an algebraic way. In fact, every
CP-map describes a superoperator satisfying certain symmetries. Dropping
the requirement for the superoperator to be completely positive, one gets a
more generalised description:

Definition 4.9. An operator S ∈ L(B) ⊗ L(V)∗ (or equivalently a map S :
L(B) → L(V)), where V and B are Hilbert spaces of dimension v and b re-
spectively, is called a combinatorial superoperator with parameters v, b, k, r, λ ∈
R, if there exist bases {|βi⟩B}βi∈[b] ∈ B and {|νj⟩}νj∈[v] ∈ V, such that for

|Φb⟩ = ∑b−1
i=0 |ii⟩ and |Φv⟩ = ∑v−1

j=0 |jj⟩
2 the following holds:

• uniformity:

S |Φb⟩ = r · |Φv⟩ (4.4)

• regularity:

⟨Φv| S = k · ⟨Φb| (4.5)

• λ-condition:

S · S† = λ
v−1

∑
i,j=0,
i ̸=j

|ii⟩ ⟨jj|+ r · Iv. (4.6)

This generalises the concept of block designs.

Proposition 4.9.1. The parameters of a combinatorial superoperator relate via the
following equations:

v · r = b · k (4.7)
λ · (v− 1) = r · (k− 1) (4.8)

2These are vectorizations of the trace operators.
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Proof. In order to prove the first equation, apply ⟨Φv| from the left to the
uniformity condition and |Φb⟩ from the right to the regularity condition. One
then gets on the one hand

⟨Φv| S |Φb⟩ = r · ⟨Φv|Φv⟩ = r · v

and on the other:

⟨Φv| S |Φb⟩ = k · ⟨Φb|Φb⟩ = k · b.

But then:

k · b = r · v.

The second equation can be proven as follows:

⟨Φv| S · S† |Φv⟩ = λ
v−1

∑
m,n=0

v−1

∑
i,j=0,i ̸=j

⟨nn|ii⟩⟨jj|mm⟩+ r · v

= λ · v(v− 1) + r · v.

On the other hand one has:

⟨Φv| S · S† |Φv⟩ = k ⟨Φv| S |Φb⟩ = k · r⟨Φv|Φv⟩ = k · r · v.

It follows:

λ · v(v− 1) + r · v = r · k · v⇐⇒ λ · (v− 1) = r · (k− 1).

From Proposition 4.9.1 it is immediate that a combinatorial superoperator
with v = b automatically fulfils r = k.

In terms of matrix algebras, a combinatorial superoperator can be de-
scribed as a map S : Mb(C) → Mv(C), i.e. as an element of Mb(C) ⊗
Mv(C)∗. The following example shows that there exist superoperators that
encode quantum designs according to Zauner’s notion with parameters
v, b, k, r, λ ∈ R. This coincides with Theorem 4.7.1.

Example 1. Consider the combinatorial superoperator S = ∑v
i=1 |ii⟩ ⊗ ⟨pi| ∈

Mb(C)⊗Mv(C)∗ with parameters v, b, k, r, λ ∈ R, where pi = p2
i = p†

i ∈
Mb(C). Now the following holds:
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i) S |Φb⟩ = r |Φv⟩ ⇔ tr(pi) = r

ii) ⟨Φv| S = k ⟨Φb| ⇔ ∑v
i=1 pi = kIb

iii) S · S† = λ ∑v
i,j=1,i ̸=j |ii⟩ ⟨jj|+ rIv ⇔ tr(pi pj) = λ for i ̸= j.

The following example coincides with Theorem 4.7.2:

Example 2. Consider the combinatorial superoperator M : Md(C) →
Md·k(C), M = ∑k

a=1 ∑d
i=1 |ia⟩ ⊗ ⟨pa

i | with parameters v = d, b = d · k, k, r =

1, λ = 1/d, where the operators pi = p2
i = p†

i ∈ Md(C) correspond to a set
of k MUBs. If k = d + 1, this gives a complete set of MUB’s. One finds:

i) M |Φd⟩ = |Φk·d⟩

ii) ⟨Φk·d|M = k ⟨Φd|

iii) M ·M† = 1
d ∑k

a,b=1,a ̸=b ∑d
i,j=1 |ia⟩ ⟨jb|+ Ik·d

4.4.2 Perfect Tensors as Combinatorial Superoperators

A question that arises immediately is, if this framework also encompasses
2-unitaries. This question will be addressed in the following.

Proposition 4.9.2. A 2-unitary U = ∑d−1
i,j=0 |LijKij⟩ ⟨ij| ∈ U(d2), where the

|LijKij⟩ forms an idempotent3 OLS(d) is a combinatorial superoperator with val-
ues v = d2 = b, k = 1 = r and λ = 0.

Proof. Let U = ∑d−1
i,j=0 |LijKij⟩ ⟨ij| ∈ U(d2) be a 2-unitary, where LijKij forms

an OLS(d). Denote |Φ⟩ = ∑d−1
m=0 |mm⟩ and assume that the OLS is idempo-

tent. Then the following holds:

i) U |Φ⟩ = ∑d−1
m=0 |LmmKmm⟩ = |Φ⟩

ii) U† |Φ⟩ = ∑d−1
i,j,m=0⟨LijKij|mm⟩ |ij⟩ = ∑d−1

i,j,m=0 δLij ,mδKij ,m |ij⟩ = |Φ⟩

iii) UU† = Id2 .

3That means that the main diagonal of the OLS is given by (00, 11, ..., dd).
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Example 3. The 2-unitary permutation from Example 4, which can be ob-
tained from an idempotent OLS(4), is combinatorial superoperator with val-
ues v = 16 = b, k = 1 = r and λ = 0.

In the more general case, where one assumes that the OLS is not necessarily
idempotent, the following holds:

i) U |Φ⟩ = ∑d−1
m=0 |LmmKmm⟩ = ∑l∈diag(L),k∈diag(K) |lk⟩

ii) U† |Φ⟩ = ∑d−1
i,j,m=0⟨LijKij|mm⟩ |ij⟩ = ∑d−1

i,j,m=0 δLij ,mδKij ,m |ij⟩

iii) UU† = Id2 .

Thus, one can reproduce the state |Φ⟩ = ∑d−1
m=0 |mm⟩ only up to a permuta-

tion.
How does the situation change if one assumes that U corresponds to a

QOLS(d) that is not isomorphic to a permutation? In this case, the construc-
tion might fail, as the following example shows:

Example 4. The 36-dimensional 2-unitary corresponding to the sparse solu-
tion of Theorem 3.0.5 does not correspond to a combinatorial superoperator.
Indeed, applying UΛsparse to |Φ⟩ = ∑6

m=0 |mm⟩ gives:

UΛsparse |Φ⟩ =
1
6

(
ω2

3 , 3ω3,−ω3 + 2,−3ω3 + 3,−ω3 + 2, 3ω3, 3ω3 − 3, ω2
3, 3,

ω2
3 , 3ω3 − 3, 2ω3 − 1, ω2

3 ,−3, ω2
3,−3ω3 + 3, 2ω3 − 1,

−3ω3 + 3, 3ω3 − 3,−ω3 + 2,−3ω3, ω2
3,−3ω3,−ω3 + 2, ω2

3,

−3ω3 + 3, 2ω3 − 1,−3ω3 + 3, ω2
3,−3, 3ω3 − 3, 2ω3 − 1,

3ω3 − 3, ω2
3, 3, ω2

3

)
.

This expression cannot be transformed into |Φ⟩ = ∑6
m=0 |mm⟩.
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5 Conclusion

This chapter gives a brief summary of the main results that were attained in
the course of the thesis. Moreover, it addresses some questions that remain
open and might be interesting for future work. While the central focus of this
thesis laid on perfect tensors and finding possible construction schemes, a
significant part of the thesis was also devoted to study general combinatorial
notions in the language of category theory. In doing that, the aim was to gain
a better understanding of quantum combinatorial objects and their relation
to each other.

One question, posed in the beginning of this thesis, was, if the combina-
torial aspects of quasi-orthogonal systems of subalgebras of matrix algebras
that have been widely discussed in the works of Ohno, Weiner and Petz in
Refs. [88, 114, 93, 92] can be extended to perfect tensors. This question was
addressed in Chapter 3. Here perfect tensors were discussed from multiple
angles, beginning with a matrix-algebraic perspective on perfect tensors in
Section 3.1. It was shown that the existence of a perfect tensor is equivalent
to the existence of four mutually quasi-orthogonal factors of Md2(C) iso-
morphic to Md(C). Furthermore, it was shown that this equivalence does
not hold for k-unitaries and k quasi-orthogonal subalgebras ofMdk (C) iso-
morphic toMd(C): While the existence of a k-unitary implies the existence
of k quasi-orthogonal subalgebras, the other direction does not hold. Here
a specific counterexample was given for the case d3 = 27. This answered
the question how perfect tensors are related to systems of quasi-orthogonal
subalgebras of matrix algebras, namely via four mutually quasi-orthogonal
factors of Md2(C). These results somehow contrast with the algebraic k-
nets defined by Nietert et al. that are related to mutually quasi-orthogonal
MASAs ofMd2(C) [86]. If and how these two concepts are related, remains
an open question, that could reveal more insights on the problem of con-
structing MUBs and which role perfect tensors play in that matter. Moreover,
one could ask how k-unitaries are related to MOQLS and hence how MOQLS
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are related to quasi-orthogonal systems of matrix algebras.
Building on this, this equivalence was put in the more abstract framework

of groups and representations in Section 3.2 in trying to answer the question
how perfect tensors can be described group-theoretically. Here the existence
of a 2-unitary was related to the existence of a group G with a d2-dimensional
irreducible representation and four subgroups on which the representation
is also irreducible with multiplicity d and on which the respective character
factorises (see Prop. 3.0.5). As an explicit example of such a group nice error
bases were discussed, and it was shown that 2-unitaries can only be elements
of the Clifford group for dimensions that are not congruent to 2 mod 4, ruling
out the existence of 36-dimensional Clifford 2-unitaries. Moreover, a search
algorithm implemented in the algebra software GAP was presented that was
used to look for groups that satisfy the criteria from Prop. 3.0.5. While this
algorithm could reproduce the already known example, it could not find any
other example within the GAP’s SmallGroups library for groups up to order
1000. This left out a part of the library that remains to be explored. This
could either be done by trying to improve the computational complexity of
the search algorithm or by using more computational power. Moreover, as
the library is limited to certain groups, there also might be other groups that
satisfy the criteria that are not in the library. Hence the problem of finding
groups that satisfy criteria from Prop. 3.0.5 other than WH-group, or ruling
out their existence remains open.

The objective of making existence statements about perfect tensors in ar-
bitrary dimension was discussed in the third part of the chapter, Section 3.3.
Here construction schemes for perfect tensors from doubly perfect sequences
for all dimensions that are of the form 2m, 22m or dn, where m and d are odd
integers greater than 1 and n is an arbitrary integer greater than 1, were pre-
sented. These lead to 2-unitaries in dimension 22m, 24m and d2n, respectively,
providing an entire new way to construct perfect tensors in these dimen-
sions. Moreover, an analytic solution for d2 = 36 was constructed, using
Rather’s bi-unimodular doubly perfect sequence ansatz and the Chinese re-
mainder theorem, yielding two 2-unitaries in dimension d2 = 36: a sparse
and a symmetric 2-unitary. These 2-unitaries can not only be obtained with-
out using any numerical tools, they also have some interesting aspects to
them that distinguish them from the computer found solution in Ref. [99],
e.g. both 2-unitaries have order 3 and the absolute value of all entries is equal
to 1. Moreover, it was shown that these 2-unitaries can be decomposed into
a direct sum of one 9-dimensional 2-unitary and three 9-dimensional dual
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unitaries.
In the final section of Chapter 3, the minimal order of 2-unitaries in di-

mensions d2 = 9, 16, 25, 36 was discussed. Here it was observed that in
dimensions 16 and 25, the minimal order of 2-unitaries equals 2, whereas
in dimensions 9 and 36, the smallest order identified so far is 3. It would
be interesting to know, if there are 2-unitaries in dimension 9 and 36 that
have order 2. Moreover, the relation between a quasi-orthogonal decompo-
sition of M9(C) into factors and different 2-unitaries in dimension 9 was
discussed, showing that four 2-unitaries, of which 2 are unitarily equivalent,
can be used to generate such a decomposition by conjugating the local alge-
bras L and R. Given that the decomposition consists of 10 factors, where
two of them correspond to the two local algebras, one could ask how many
(inequivalent) 2-unitaries are needed in general to generate such a decompo-
sition.

Another question that was posed in the introduction was, if one can gen-
eralise the category theoretical description of classical and quantum block
designs derived in Ref. [36] to a more general construction scheme that can be
applied to any monoidal pointed category. Answering this question was the
central objective of chapter 4. Here a category-theoretical framework based
on arrow categories, called the design construction, that generalises both
quantum and classical block designs by transferring the essential properties
of block designs into a pointed monoidal dagger category was introduced.
It was shown that applying this framework to the categories Mat(N) and
CP[FHilb] yields a categorical representation of block designs and quantum
designs, respectively, which can be connected via a functor. Furthermore, the
more abstract notion of categorical block designs was derived, which gave a
new way to look at quantum designs. In fact, this construction generalises
the notion of quantum designs given by Zauner to a notion of quantum de-
signs that could also be understood as combinatorial superoperators. Fur-
thermore, it was shown, that one can define a category of MUBs and a cat-
egory of so-called combinatorial quantum channels, using these techniques.
In the last section of the chapter, these findings were then reformulated in the
language of matrix algebras and it was discussed how perfect tensors can be
put into this framework. This, however, did not yield particularly signifi-
cant results. There are several open questions that could be worth further
exploration. For example, given that SIC-POVMs can also be described in a
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design-theoretic way, it would be interesting to know, if one can define a cat-
egory of SIC-POVMs similarly to the category of MUBs. This could give new
structural insights on SIC-POVMs and their relation to other combinatorial
structures. Another open problem is given by defining a category of resolv-
able BIBDs, which would encompass a broader class of block designs, and
checking if this category can be mapped to the category of MUBs via a func-
tor. This could lead to new insights on the existence problem of MUBs and
would make the category-theoretical framework of classical designs more
complete. In this context, it would also be worth exploring, if and how the
already existing categorical notions of (quantum) Latin squares can be em-
bedded into the design construction. Finally, finding interesting examples
of combinatorial superoperators/quantum channels (if there are any) and
investigating how the design construction relates to classical channels also
remains to be done.

Overall, the results of this thesis contribute partial but meaningful an-
swers to the questions that were raised in the introduction. By discussing
well known combinatorial structures in the language of matrix algebras, group
theory and category theory, the thesis gave some new insights on the diverse
connections between classical combinatorics and quantum combinatorial ob-
jects and even providing a more generalised view on them in the language
of category theory. These findings could be interesting in the quest of estab-
lishing a unified framework of classical and quantum combinatorics that not
only encompass quantum designs but also QLS, perfect tensors, k-unitaries
and QOA and from which classical combinatorics would emerge as a special
(commutative) case.
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List of Abbreviations

AME Absolutely Maximally Entangled
BIBD Balanced Incomplete Block Design
MOLS Mutually Orthogonal Latin Squares
LS Latin Square
OLS Orthogonal Latin Square
OA Orthogonal Array
MUB Mutually Unbiased Basis
POVM Positive Operator Valued Measure
SIC-POVM Symmetric Informationally Complete POVM
MASA Maximal Abelian Sub Algebra
QOA Quantum Orthogonal Array
QLS Quantum Latin Square
QOLS Quantum Orthogonal Latin Square
†-SCFA Dagger Special Commutative Frobenius Algebras





161

List of Symbols

H Hilbert space
H∗ Dual Hilbert space
L(H) Hilbert space of bounded linear operators
U(H), U(n) Unitary group over a Hilbert space H of dimension n
GL(V) General linear group over a vector space V
ω Root of unity
A,L,R,M (Sub)algebras
1 Identity element of an algebra
Md(C) Matrix algebra over complex numbers
C1 Subalgebra generated by all diagonal matrices
C,D Categories
F ,G Functors
id Identity morphism
η Natural transformation or unit of a monoid
µ Multiplication of a monoid
ϵ Counit of a comonoid or root of unity
∆ Comultiplication of a comonoid
F (·) Fourier transform
F, K Fields
X Incidence matrix
I Identity matrix or tensor unit (in a monoidal category)
J Matrix generating the symplectic product
E All-one-matrix
diag(·) Diagonal matrix
S SWAP gate
CX Controlled X-gate
CZ Controlled Z-gate
F Fourier gate
Tr(·), tr(·) Trace
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τ(·) Normalised trace
⟨·, ·⟩, (·, ·) Inner product
|| · ||p p-norm
δij Kronecker delta
⟨·⟩ Span of elements of an algebra/a vector space
a, b Vectors
Zd Cyclic group of order d
[G : K] Index of the subgroup K in a group G
χ Character afforded by a representation
ρ, π Representations
v, b, k, r, λ Parameters of a BIBD
Λ Bi-unimodular sequence
⊗,⊠ Tensor product (in a category)
× Cartesian product
⋆ Convolution product
[d] All numbers from 0 to d− 1
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A Additional Material for
Section 3.1, Chapter 3

In the following some additional material to Chapter 3, Section 3.1 will be
provided.

A.1 Alternative proof for Theorem 3.0.2:

Consider two arbitrary operators pL =
√

d ∑d
i,j=0 eij ⊗ I ∈ L and pA =√

d ∑d
i,j=0 U(eij ⊗ I)U† ∈ AL. In order for L and AL to be quasi-orthogonal,

the trace needs to factorise in such that:

1
d2 tr(pApL) =

1
d4 tr(pL)tr(pA)

The left hand side is equal to:

1
d2 tr(pApL) =

1
d

d

∑
i,j,k,l=0

tr(U(ekl ⊗ I)U†(eij ⊗ I)) (A.1)

This trace has already been computed in the proof of Theorem 3.0.1. Using
this one arrives at:

1
d

tr(pLpA) =
1
d

d

∑
i,j,k,l=1

UR(UR)†)li
kj. (A.2)
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The right hand side will be computed in the following:

1
d4 tr(pL)tr(pA) =

1
d3

d

∑
i,j=0

tr((eij ⊗ I))
d

∑
k,l=0

tr(U(ekl ⊗ I)U†)

=
1
d2

d

∑
i,j=0

tr(|i⟩ ⟨j|)
d

∑
k,l=0

tr(U(|k⟩ ⟨l| ⊗
d

∑
r=0
|r⟩ ⟨r|)U†)

=
1
d

d

∑
k,l,r=0

tr(U |kr⟩ ⟨lr|U†)

=
1
d

d

∑
k,l,r=0

d

∑
m,t=0

⟨mt|U |kr⟩ ⟨lr|U† |mt⟩

=
1
d

d

∑
k,l,r=0

d

∑
m,t=0

Umt
kr (U

†)lr
mt

=
1
d

d

∑
k,l,r=0

(UU†)lr
kr

But since U is a d2-dimensional unitary this equals to:

d

∑
k,l,r=0

(UU†)lr
kr = d2. (A.3)

One thus finds that the following has to hold:

d

∑
i,j,k,l=1

(UR(UR)†)li
kj = d2. (A.4)

On the other hand one has:
d

∑
i,j,k,l=1

|UR(UR)†)li
kj|

2 = d2. (A.5)

Therefore, if L and A are quasi-orthogonal, the following equation has to be
satisfied:

d

∑
i,j,k,l=1

(UR(UR)†)li
kj =

d

∑
i,j,k,l=1

|UR(UR)†)li
kj|

2 = d2. (A.6)
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But this is only possible, if (UR(UR)†)li
kj equals to either 0 or 1 for all i, j, k, l.

Since the sum equals to d2 there have to be d2 1’s and because the Schat-
ten norm is invariant under unitary transformations, one can conclude that
UR(UR)† has to be the identity matrix in dimension d2 and thus UR is uni-
tary.

A.2 Additional Calculations to Theorem 3.0.3

I. Trace condition for AR andR

Let

PR = d
d

∑
i,j=1
|Id2 ⊗ Eij⟩ ⟨Id2 ⊗ Eij|

the projection onto the right subalgebra and

PURU† = d
d

∑
i,j=1
|U(Id2 ⊗ Eij)U†⟩ ⟨U(Id2 ⊗ Eij)U†|

be the projection onto AR. Compute:

Tr(PURU† P†
R) = d2

d

∑
i,j,k,l=1

|⟨(UId2 ⊗ EijU†)|Id2 ⊗ Ekl⟩|2

= d2
d

∑
i,j,k,l=1

|τ
(
(UId2 ⊗ EijU†)(Id2 ⊗ Ekl)

)
|2

= d2
d

∑
i,j,k,l=1

| 1
d3 tr

(
(UId2 ⊗ EijU†)(Id2 ⊗ Ekl)

)
|2

=
1
d4

d

∑
i,j,k,l=1

|tr
(
(UId2 ⊗ EijU†)(Id2 ⊗ Ekl)

)
|2.
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Further compute:

tr
(
(UId2 ⊗ EijU†)(Id2 ⊗ Ekl)

)
= tr

( d

∑
r,s,t,u=1

(UEtt ⊗ Err ⊗ EijU†)(Euu ⊗ Ess ⊗ Ekl)

)

= tr
( d

∑
r,s,t,u=1

U |tri⟩ ⟨trj|U† |usk⟩ ⟨usl|
)

=
d

∑
r,s,t,u=1

⟨usl|U |tri⟩ ⟨trj|U† |usk⟩

=
d

∑
r,s,t,u=1

Uusl
tri (U

†)
trj
usk

=
d

∑
r,s,t,u=1

Uusl
tri (U

∗)usk
trj . (A.7)

Line (A.7) can be transformed in various ways:

(A.7) =
d

∑
r,s,t,u=1

(UR1,6)isl
tru(U

R1,6∗)
jsk
tru

=
d

∑
r,s,t,u=1

(UR1,6)isl
tru((U

R1,6)†)tru
jsk

=
d

∑
s=1

(UR1,6(UR1,6)†)isl
jsk,

or, analogously,

(A.7) =
d

∑
r=1

(UR3,4(UR3,4)†)
krj
lri ,

(A.7) =
d

∑
t=1

(UR3,5(UR3,5)†)
tkj
tli ,

(A.7) =
d

∑
u=1

(UR2,6(UR2,6)†)uil
ujk.
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With that one gets:

Tr(PULU† P†
L) =

1
d4

d

∑
i,j,k,l=1


|∑d

s=1(U
R1,6(UR1,6)†)isl

jsk|
2

|∑d
r=1(U

R3,4(UR3,4)†)
krj
lri |

2

|∑d
t=1(U

R3,5(UR3,5)†)
tkj
tli |

2

|∑d
u=1(U

R2,6(UR2,6)†)uil
ujk|

2

=
1
d4

d

∑
i,j,k,l=1



∣∣∣( tr2
(
UR1,6(UR1,6)†))il

jk

∣∣∣2∣∣∣( tr2
(
UR3,4(UR3,4)†))li

kj

∣∣∣2∣∣∣( tr1
(
UR3,5(UR3,5)†))li

kj

∣∣∣2∣∣∣( tr1
(
UR2,6(UR2,6)†))il

jk

∣∣∣2

=
1
d2



∥∥∥ tr2
(
UR1,6(UR1,6)†)∥∥∥2

2∥∥∥ tr2
(
UR3,4(UR3,4)†)∥∥∥2

2∥∥∥ tr1
(
UR3,5(UR3,5)†)∥∥∥2

2∥∥∥ tr1
(
UR2,6(UR2,6)†)∥∥∥2

2

II. Trace condition for AR andM

Next, the aim is to compute Tr(PURU† P†
M). The calculation proceeds as

in the beginning of this proof. Compared to Eq. (A.7), the indices l and k are
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in the third position, instead of in the first position. One finds:

Tr(PURU† P†
M) =

1
d4

d

∑
i,j,k,l=1

|tr
(
(UId2 ⊗ EijU†)(Id ⊗ Ekl ⊗ Id)

)
|2

=
1
d4

d

∑
i,j,k,l=1

|tr
( d

∑
r,s,u,t=1

(UErr ⊗ Ett ⊗ EijU†)(Ess ⊗ Ekl ⊗ Euu)
)
|2

=
1
d4

d

∑
i,j,k,l=1

|tr
( d

∑
r,s,u,t=1

U |rti⟩ ⟨rtj|U† |sku⟩ ⟨slu|
)
|2

=
1
d4

d

∑
i,j,k,l=1

|
d

∑
r,s,t,u=1

Uslu
rti (U

∗)sku
rtj |2 (A.8)

This expression can be transformed in multiple ways:

(A.12) =
1
d4

d

∑
i,j,k,l=1

|
d

∑
t=1

(UR2,4(UR2,4)†)
ktj
lti |

2,

(A.12) =
1
d4

d

∑
i,j,k,l=1

|
d

∑
u=1

(UR1,6(UR1,6)†)ilu
jku|

2,

(A.12) =
1
d4

d

∑
i,j,k,l=1

|
d

∑
r=1

(UΓ2,5(UΓ2,5)†)
rkj
rli |

2,

and

(A.12) =
1
d4

d

∑
i,j,k,l=1

|
d

∑
s=1

(UΓ3,6(UΓ3,6)†)sli
skj|

2.

This gives us:

Tr(PURU† P†
M) =

1
d2


||tr1(UΓ3,6(UΓ3,6)†)||22
||tr1(UΓ2,5(UΓ2,5)†)||2
||tr3(UR1,6(UR1,6)†)||22
||tr2(UR2,4(UR2,4)†)||22

.
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III. Trace condition for AM andM

Finally, one has:

Tr(PUMU† P†
M) =

1
d4

d

∑
i,j,k,l=1

|tr
(
(UId ⊗ Eij ⊗ IdU†)(Id ⊗ Ekl ⊗ Id)

)
|2

=
1
d4

d

∑
i,j,k,l=1

|tr
( d

∑
r,s,u,t=1

(UErr ⊗ Eij ⊗ EttU†)(Ess ⊗ Ekl ⊗ Euu)
)
|2

=
1
d4

d

∑
i,j,k,l=1

|tr
( d

∑
r,s,u,t=1

U |rit⟩ ⟨rjt|U† |sku⟩ ⟨slu|
)
|2

=
1
d4

d

∑
i,j,k,l=1

|
d

∑
r,s,u,t=1

Uslu
rit (U

∗)sku
rjt |2 (A.9)

This expression can again be transformed in multiple ways:

(A.9) =
1
d4

d

∑
i,j,k,l=1

|
d

∑
r=1

(UR2,6(UR2,6)†)
rjk
ril |

2,

(A.9) =
1
d4

d

∑
i,j,k,l=1

|
d

∑
t=1

(UR2,4(UR2,4)†)
kjt
lit |

2,

(A.9) =
1
d4

d

∑
i,j,k,l=1

|
d

∑
u=1

(UR1,5(UR1,5)†)ilu
jku|

2,

and

(A.9) =
1
d4

d

∑
i,j,k,l=1

|
d

∑
s=1

(UR3,5(UR3,5)†)sli
skj|

2.

Hence one is left with:

Tr(PUMU† P†
M) =

1
d2


||tr1(UR3,5(UR3,5)†)||22
||tr3(UR1,5(UR1,5)†)||22
||tr3(UR2,4(UR2,4)†)||22
||tr1(UR2,6(UR2,6)†)||22

.
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IV. Trace condition for AM andR

Next, the aim is to compute Tr(PUMU† P†
R). The calculation proceeds as in

the beginning of this proof. Compared to Eq. (A.7), the indices l and k are in
the third position, instead of in the first position. One finds:

Tr(PUMU† P†
R) =

1
d4

d

∑
i,j,k,l=1

|tr
(
(UId ⊗ Ekl ⊗ IdU†)(Id2 ⊗ Eij)

)
|2

=
1
d4

d

∑
i,j,k,l=1

|tr
( d

∑
r,s,u,t=1

(UErr ⊗ Ekl ⊗ EttU†)(Ess ⊗ Euu ⊗ Eij)
)
|2

=
1
d4

d

∑
i,j,k,l=1

|tr
( d

∑
r,s,u,t=1

U |rkt⟩ ⟨rlt|U† |sui⟩ ⟨suj|
)
|2

=
1
d4

d

∑
i,j,k,l=1

|
d

∑
r,s,t,u=1

Usuj
rkt (U

∗)sui
rlt |

2 (A.10)

This expression can be transformed in multiple ways:

(A.12) =
1
d4

d

∑
i,j,k,l=1

|
d

∑
t=1

(UR3,4(UR3,4)†)ilt
jkt|

2,

(A.12) =
1
d4

d

∑
i,j,k,l=1

|
d

∑
u=1

(UR1,5(UR1,5)†)
kuj
lui |

2,

(A.12) =
1
d4

d

∑
i,j,k,l=1

|
d

∑
r=1

(UΓ3,5(UΓ3,5)†)rli
rkj|

2,

and

(A.12) =
1
d4

d

∑
i,j,k,l=1

|
d

∑
s=1

(UΓ2,5(UΓ2,5)†)
skj
sli |

2.

This gives us:

Tr(PUMU† P†
R) =

1
d2


||tr3(UΓ3,4(UΓ3,4)†)||22
||tr1(UΓ2,5(UΓ2,5)†)||2
||tr2(UR1,5(UR1,5)†)||22
||tr1(UR3,5(UR3,5)†)||22

.
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V. Trace condition for AR and L

Next, the aim is to compute Tr(PURU† P†
L). The calculation proceeds as in

the beginning of this proof. Compared to Eq. (A.7), the indices l and k are in
the third position, instead of in the first position. One finds:

Tr(PURU† P†
L) =

1
d4

d

∑
i,j,k,l=1

|tr
(
(UId2 ⊗ EijU†)(Ekl ⊗ Id2)

)
|2

=
1
d4

d

∑
i,j,k,l=1

|tr
( d

∑
r,s,u,t=1

(UErr ⊗ Ett ⊗ EijU†)(Ekl ⊗ Ess ⊗ Euu)
)
|2

=
1
d4

d

∑
i,j,k,l=1

|tr
( d

∑
r,s,u,t=1

U |rti⟩ ⟨rtj|U† |ksu⟩ ⟨lsu|
)
|2

=
1
d4

d

∑
i,j,k,l=1

|
d

∑
r,s,t,u=1

Ulsu
rti (U

∗)ksu
rtj |2 (A.11)

This expression can be transformed in multiple ways:

(A.12) =
1
d4

d

∑
i,j,k,l=1

|
d

∑
u=1

(UR2,6(UR2,6)†)liu
kju|

2,

(A.12) =
1
d4

d

∑
i,j,k,l=1

|
d

∑
r=1

(UR1,5(UR1,5)†)
rkj
rli |

2,

(A.12) =
1
d4

d

∑
i,j,k,l=1

|
d

∑
t=1

(UΓ1,4(UΓ1,4)†)
ktj
lti |

2,

and

(A.12) =
1
d4

d

∑
i,j,k,l=1

|
d

∑
s=1

(UΓ3,6(UΓ3,6)†)lsi
ksj|

2.

This gives us:

Tr(PURU† P†
M) =

1
d2


||tr2(UΓ3,6(UΓ3,6)†)||22
||tr2(UΓ1,4(UΓ1,4)†)||2
||tr1(UR1,5(UR1,5)†)||22
||tr3(UR2,6(UR2,6)†)||22

.
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VI. Trace condition for AM and L

Next, the aim is to compute Tr(PUMU† P†
L). The calculation proceeds as in

the beginning of this proof. Compared to Eq. (A.7), the indices l and k are in
the third position, instead of in the first position. One finds:

Tr(PUMU† P†
L) =

1
d4

d

∑
i,j,k,l=1

|tr
(
(UId ⊗ Ekl ⊗ IdU†)(Eij ⊗ Id2)

)
|2

=
1
d4

d

∑
i,j,k,l=1

|tr
( d

∑
r,s,u,t=1

(UErr ⊗ Ekl ⊗ EttU†)(Eij ⊗ Euu ⊗ Ess)
)
|2

=
1
d4

d

∑
i,j,k,l=1

|tr
( d

∑
r,s,u,t=1

U |rkt⟩ ⟨rlt|U† |ius⟩ ⟨jus|
)
|2

=
1
d4

d

∑
i,j,k,l=1

|
d

∑
r,s,t,u=1

U jus
rkt (U

∗)ius
rlt |

2 (A.12)

This expression can be transformed in multiple ways:

(A.12) =
1
d4

d

∑
i,j,k,l=1

|
d

∑
u=1

(UR3,5(UR3,5)†)
juk
iul |

2,

(A.12) =
1
d4

d

∑
i,j,k,l=1

|
d

∑
r=1

(UR1,6(UR1,6)†)rli
rkj|

2,

(A.12) =
1
d4

d

∑
i,j,k,l=1

|
d

∑
t=1

(UΓ1,4(UΓ1,4)†)ilt
jkt|

2,

and

(A.12) =
1
d4

d

∑
i,j,k,l=1

|
d

∑
s=1

(UΓ2,5(UΓ2,5)†)
jks
ils |

2.

This gives us:

Tr(PUMU† P†
L) =

1
d2


||tr3(UΓ1,4(UΓ1,4)†)||22
||tr3(UΓ2,5(UΓ2,5)†)||2
||tr3(UR1,4(UR1,4)†)||22
||tr2(UR3,5(UR3,5)†)||22

.
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A.3 Multiunitaries and Delocalised Subalgebras in
Dimension 16

Proposition A.0.1. Consider the matrix algebraMd4(C) ∼=Md(C)⊗Md(C)⊗
Md(C)⊗Md(C) and let L = Md(C)⊗ Id3 be the left subalgebra, R = Id3 ⊗
Md(C) be the right subalgebra andM1 = Id ⊗Md(C)⊗ Id2 andM2 = Id2 ⊗
Md(C)⊗ Id be the "middle subalgbras". Now consider U ∈ U(n4) and setAL :=
ULU†, AR := URU†, AM1 := UM1U† and AM2 := UM2U†.

If U is multiunitary in the sense that there are 16 rearrangements of U that are
unitary, then AL, AR, AM1 and AM2 are delocalised.

Proof. Let
√

deij =
√

d |i⟩ ⟨j| be an ONB in Md(C) and Id3 be the identity
operator of L(HM1)⊗L(HM2)⊗L(HR) ∼=Md3(C). Then

PL = d
d

∑
i,j=1
|eij ⊗ Id3⟩ ⟨eij ⊗ Id3 |

is the projection onto the left subalgebra. Similarly, one has

PULU† = d
d

∑
i,j=1
|U(eij ⊗ Id3)U†⟩ ⟨U(eij ⊗ Id3)U†|

as projection onto A. Following the proof of Prop. 3.0.1, one then computes:

Tr(PULU† P†
L) = d2

d

∑
i,j,k,l=1

|⟨(Ueij ⊗ Id3U†)|ekl ⊗ Id3⟩|2

= d2
d

∑
i,j,k,l=1

|τ
(
(Ueij ⊗ Id3U†)(ekl ⊗ Id3)

)
|2

= d2
d

∑
i,j,k,l=1

| 1
d4 tr

(
(Ueij ⊗ Id3U†)(ekl ⊗ Id3)

)
|2

=
d2

d8

d

∑
i,j,k,l=1

|tr
(
(Ueij ⊗ Id3U†)(ekl ⊗ Id3)

)
|2

=
1
d6

d

∑
i,j,k,l=1

|tr
(
(Ueij ⊗ Id3U†)(ekl ⊗ Id3)

)
|2.



174 Appendix A. Additional Material for Section 3.1, Chapter 3

Further compute:

tr
(
(Ueij ⊗ Id3U†)(ekl ⊗ Id3)

)
= tr

( d

∑
r1,r2,
s1,s2,
t,u=1

(Ueij ⊗ er1r1 ⊗ er2r2 ⊗ ettU†)

×(ekl ⊗ es1s1 ⊗ es2s2 ⊗ euu)

)
.

This can be transformed into:

tr
( d

∑
r1,r2,
s1,,s2,
t,u=1

U |ir1r2t⟩ ⟨jr1r2t|U† |ks1s2u⟩ ⟨ls1s2u|
)
=

d

∑
r1,r2,s1,s2,t,u=1

⟨ls1s2u|U |ir1r2t⟩ ⟨jr1r2t|U† |ks1s2u⟩

=
d

∑
r1,r2,s1,s2,t,u=1

Uls1s2u
ir1r2t (U

†)
jr1r2t
ksu

=
d

∑
r1,r2,s1,s2,t,u=1

Uls1s2u
ir1r2t (U

∗)ks1s2u
jr1r2t .

Hence one gets:

Tr(PULU† P†
L) =

1
d6

d

∑
i,j,k,l=1

|
d

∑
r1,r2,s1,s2,t,u=1

Uls1s2u
ir1r2t (U

∗)ks1s2u
jr1r2t |

2.

This expression can be transformed in various ways. Labeling the upper
indices with 1, 2, 3, 4 and the lower indices with 5, 6, 7, 8, one can perform the
following index swaps in order to simplify the expression:

1↔ 6

1↔ 7

1↔ 8

5↔ 2

5↔ 3

5↔ 4
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Similarly, one gets

Tr(PULU† P†
R) =

1
d6

d

∑
i,j,k,l=1

|
d

∑
r1,r2,s1,s2,t,u=1

Us1s2ul
ir1r2t (U

∗)s1s2uk
jr1r2t |

2.

with possible index shifts:

4↔ 6

4↔ 7

4↔ 8

5↔ 1

(5↔ 2)

(5↔ 3)

Moreover, one finds:

Tr(PULU† P†
M1

) =
1
d6

d

∑
i,j,k,l=1

|
d

∑
r1,r2,s1,s2,t,u=1

Us1ls2u
ir1r2t (U

∗)s1ks2u
jr1r2t |

2.

with possible index shifts:

2↔ 6

2↔ 7

2↔ 8

(5↔ 1)

(5↔ 3)

(5↔ 4)

Lastly, one has:

Tr(PULU† P†
M2

) =
1
d6

d

∑
i,j,k,l=1

|
d

∑
r1,r2,s1,s2,t,u=1

Us1s2lu
ir1r2t (U

∗)s1s2ku
jr1r2t |

2.

with possible index shifts:
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3↔ 6

3↔ 7

3↔ 8

(5↔ 1)

(5↔ 2)

(5↔ 4)

These index shifts correspond to 16 rearrangements of the matrix U ∈ U(d4).
Analogous calculations hold for the trace conditions of AR, AM1 and AM2 .

From here, proceed like in the proof for k = 3 with the prefactor d6 instead
of d4. In the following the proof that AL is quasi-orthogonal to L if UR1,6

is
unitary will be sketched as an example.

One can rewrite the trace condition as follows:

Tr
(

PULU† P†
L

)
=

1
d6

d

∑
i,j,k,l=1

∣∣∣∣∣ d

∑
r1,s1s1,s1=1

Uls1s2u
ir1r1t (U∗)ks1s2u

js1r2t

∣∣∣∣∣
2

=
1
d6

d

∑
i,j,k,l=1

|
(

d

∑
r1,t=1

UR1,6
(

UR1,6
)†
))

jkr2t
ilr2t

∣∣∣2
=

1
d6

d

∑
i,j,k,l=1

∣∣∣∣∣trCD

(
UR1,6

(
UR1,6

)†
)jk

il

∣∣∣∣∣
2

Now assuming that UR1,6 is unitary, one finds:

Tr
(

PULU† P†
L

)
=

1
d6

d

∑
i,j,k,l=1

∣∣∣trCD (Id4)
jk
il

∣∣∣2
=

1
d6 d4

d

∑
i,i,k,l=1

∣∣∣(Id2)
jk
il

∣∣∣2
= 1

Hence AL is quasi-orthogonal to L .
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A.4 Additional calculations for Theorem 3.0.4

Similarly, to the calculations in the proof of Theorem 3.0.4, once can derive
the following trace conditions for the subalgebra AR:

Tr(PAR P†
L) =

1
d2(k−1)

d

∑
i,j,m,l=1

|
d

∑
r1,..,rk−1,

s1,..,sk−1=1

Uls1...sk−1
r1...rk−1i (U

∗)
ms1...sk−1
r1...rk−1 j |

2, (A.13)

Tr(PAR P†
R) =

1
d2(k−1)

d

∑
i,j,m,l=1

|
d

∑
r1,..,rk−1,

s1,..,sk−1=1

Us1...sk−1l
r1...rk−1i (U

∗)
s1...sk−1m
r1...rk−1 j |

2, (A.14)

Tr(PAR P†
M⊣) =

1
d2(k−1)

d

∑
i,j,m,l=1

|
d

∑
r1,..,rk−1,

s1,..,sk−1=1

Us1..sa−1lsa ..sk−1
r1...rk−1i (U∗)s1..sa−1msa ..sk−1

r1...rk−1 j |2.

(A.15)

The trace conditions for the subalgebras AMa for a ∈ [k− 2] are given by:

Tr(PAMa
P†
L) =

1
d2(k−1)

d

∑
i,j,m,l=1

|
d

∑
r1,..,rk−1,

s1,..,sk−1=1

Uls1...sk−1
r1..raira−1..rk−1

(U∗)ms1...sk−1
r1..ra jra−1..rk−1

|2,

(A.16)

Tr(PAMa
P†
R) =

1
d2(k−1)

d

∑
i,j,m,l=1

|
d

∑
r1,..,rk−1,

s1,..,sk−1=1

Us1...sk−1l
r1..raira−1..rk−1

(U∗)s1...sk−1m
r1..ra jra−1..rk−1

|2,

(A.17)

Tr(PAMa
P†
M⌊) =

1
d2(k−1)

d

∑
i,j,m,l=1

|
d

∑
r1,..,rk−1,

s1,..,sk−1=1

Us1..sb−1lsb ..sk−1
r1..raira−1..rk−1

(U∗)s1..sb−1msa ..sb−1
r1..ra jra−1..rk−1

|2.

(A.18)
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B Additional Material for
Section 3.3, Chapter 3

B.1 SageMath Notebooks

In the following, some SageMath notebooks containing some calculations
and implementation of algorithms supplementary to Section 3.3 will be dis-
played:

I. Self Complementary Orthonormal Bases in F2m /F2.

II. 2-Unitaries From Doubly Perfect Sequences for All Dimension (except
d2 = 36).

III. Doubly Perfect Sequences of length 36 - a sparse and a symmetric so-
lution.

These notebooks can also be found on the present author’s GitHub reposi-
tory [35].
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