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1. Zusammenfassung 

Das Kirsten Rat Sarcoma viral oncogene homolog (KRAS) ist eine häufig vorkommende 

Mutation bei nicht-kleinzelligem Lungenkrebs (NSCLC) und beeinflusst das Fortschreiten der 

Krankheit sowie die Therapiestrategie. In dieser Studie wurde eine Pipeline für maschinelles 

Lernen (ML) auf radiologische Bildmerkmale angewendet, die aus internen CT-Bildern aus 

dem Archiv der Uniklinik Köln extrahiert wurden, mit dem Ziel KRAS-Mutationen bei NSCLC-

Patienten zu identifizieren.  

Zunächst wurden zwei seperate Datensätze gebildet und mit statistischen Tests und 

Techniken zur Dimensionalitätsreduktion analysiert. Anschließend wurde die vorgeschlagene 

ML-Pipeline auf beide Datensätze angewandt, wobei eine fünffache Kreuzvalidierung auf dem 

Trainingssatz (70/30-Train/Test-Split) durchgeführt wurde, bevor sie auf dem anderen 

Datensatz validiert wurde.  

Die Ergebnisse zeigen, dass sich die radiologischen Merkmale zwischen den beiden 

Datensätzen signifikant unterscheiden (Mann-Whitney-U-Test, p-Wert<0,05), obwohl die 

Methoden zur Merkmalsextraktion identisch sind, was darauf hindeutet, dass eine erfolgreiche 

Übertragbarkeit des Modells schwierig zu erreichen sein könnte. Dies wurde bei den externen 

Tests deutlich (externer F1-Score=0,38). Oversampling- und Undersampling-Techniken 

wurden angewandt, um die positiven und negativen KRAS-Fälle auszugleichen, aber sie 

halfen nicht, eine bessere Klassifizierung des Vorhandenseins von KRAS-Mutationen zu 

erreichen. Im Allgemeinen ist die Genauigkeit der KRAS-Vorhersage aufgrund der nur 

mäßigen Ergebnisse (höchster Test F1-Score=0,62) für die klinische Anwendung nicht 

ausreichend. 

In zukünftigen Arbeiten könnte die Komplexität der KRAS-Mutation untersucht werden, da 

Submutationen im Behandlungsprozess eine Rolle zu spielen scheinen. Größere 

multizentrische Datensätze mit ausgeglichenem Tumorstadium (T-Stadium), einschließlich 

Multiscanner-Datensätzen, scheinen für die Erstellung robuster Vorhersagemodelle 

erforderlich zu sein.  
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2. Einleitung 

2.1 Epidemiologie und Pathogenese des nicht-kleinzelligen 

Bronchialkarzinoms  

Mit ca. 1,8 Millionen dokumentierten Todesfällen pro Jahr ist das Bronchialkarzinom weltweit 

die häufigste krebsbedingte Todesursache mit ca. 18,0% aller Krebstode.1 Jährlich kommt es 

in der Bundesrepublik Deutschland nach der letzten veröffentlichten Schätzungen des Robert 

Koch-Instituts Berlin für das Jahr 2019 zu etwa 59.221 Neuerkrankungen, davon etwa 35.675 

Männer und 23.546 Frauen.2 Das Bronchialkarzinom ist damit nach Prostatakrebs bei 

Männern und Brustkrebs bei Frauen die zweithäufigste Krebsart. Bei Frauen hat das 

Bronchialkarzinom in Deutschland sowie weltweit nach dem Mammakarzinom und dem 

Colonkarzinom die 3.-höchste Inzidenz und ist die 2.-häufigste Krebstodesursache. Beim 

Mann ist es die häufigste krebsbedingte Todesursache und hat nach dem Prostata-CA die 2.-

höchste Inzidenz.1-3  

Das Rauchen stellt den wichtigsten Risikofaktor für das Bronchialkarzinom dar. Es sind über 

7.000 Chemikalien im Tabakrauch bekannt, davon sind mehr als 250 Toxine gesichert 

krebserregend. Dazu gehören polyzyklische aromatische Kohlenwasserstoffe (PAKs), 

Cadmium und Beryllium (toxische Metalle), Cyanwasserstoff, Kohlenmonoxid und Ammoniak.3 

Weitere kausale Faktoren bestehen in der Exposition gegenüber kanzerogenen Chemikalien 

wie Radon, Asbest, Arsen sowie Feinstaub.4   

Außerdem kann eine genetische Prädisposition der Entstehung des Bronchialkarzinoms 

zugrunde liegen.  

Die beispielsweise in Tabakrauch enthaltenen Schadstoffe schädigen dabei die Zellen des 

respiratorischen Epithels. Im Laufe der Zeit wird die Mutationsrate durch den andauernden 

epithelialen Reparaturbedarf und die erhöhte Zellteilungsrate gesteigert. Schließlich gelingt es 

den körpereigenen Reparaturmechanismen nicht mehr diese Schäden auszugleichen.5 

Bei dieser Kanzerogenese des NSCLC entstehen dann durch unkontrollierte Zellteilung 

lokalisierte Tumorherde bzw. –knoten.6   

Die folgende Abbildung des Robert-Koch-Instituts gibt die Verteilung der Lungentumoren nach 

Geschlecht und histologischem Typ wieder. 
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Abb. 1:  Verteilung der histologischen NSCLC-Subtypen nach Geschlecht 2 

 

Im Hinblick auf die histologischen Subtypen des nicht kleinzelligen Bronchialkarzinoms 

(NSCLC), wird der häufigste Subtyp, das Adenokarzinom, in Deutschland, in ca. 40% 

der Fälle diagnostiziert. Rund 25% entfallen auf das Plattenepithelkarzinom, knapp 

20% auf das kleinzellige Lungenkarzinom (SCLC). Bei weiteren ca. 10% der Tumore 

ist eine sichere histologische Zuordnung nicht möglich.  

Das pulmonale Adenokarzinom entsteht meist in peripheren Lungenabschnitten durch 

unkontrollierte Zellteilung glandulärer Zellen des Bronchialepithels und lässt sich 

seinerseits in verschiedene Subtypen unterteilen. Einige hiervon, wie beispielsweise 

das invasiv muzinöse und das solide Adenokarzinom der Lunge produzieren Muzin, 

während andere Varianten, wie das lepidische Adenokarzinom der Lunge keine 

Schleimproduktion aufweisen.5 Im Vergleich zum Plattenepithelkarzinom, der 

zweithäufigsten Unterformen des NSCLC, weist das Adenokarzinom ein langsameres 

Wachstum auf und wird durchschnittlich in früheren Tumorstadien diagnostiziert.7 

Der kleinzellige Typ (SCLC) wird, wegen der charakteristischen kleinen 

spindelförmigen Tumorzellen mit hyperchromatischem Zellkern bei wenig Zytoplasma, 

auch als Haferzellkarzinom oder „Oat Cell Carcinoma“ bezeichnet. Die Zellen liegen 

meist einzeln oder im lockeren Zellverband. Immunhistochemisch zeichnen sie sich 

u.a. durch die Expression von Creatinkinase 7 und 18 aus. Der Zellteilungszyklus ist 

schneller als der des NSCLC, was insgesamt eine schlechtere Prognose bedingt. 

Außerdem typisch sind eine zentrale Lage innerhalb der Lunge und das Auftreten 

paraneoplastischer Syndrome durch ektope Hormonausschüttung.8   
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Abbildung 2 gibt eine schematische Übersicht der Entstehung von Adenokarzinomen 

(der häufigsten Unterform des NSCLC) und des SCLC aus Zellen des respiratorischen 

Epithels.  

 

Abb. 2:  Entstehung des Adenokarzinoms (NSCLC) und SCLC aus Zellen des respiratorischen 

Epithels 9   

 

Aus neuroendokrinen Zellen entwickeln sich SCLC, aus Clara-Zellen entstehen 

Adenokarzinome. Alveolarzellen Typ II können sowohl SCLC als auch Adenokarzinom 

hervorbringen. Hierbei ist ergänzend anzumerken, dass sowohl histologische 

Mischpopulationen aus Adenokarzinom-Zellen als NSCLC und SCLC-Zellen, als auch die 

sekundäre Transformation von Adenokarzinomen zu einem SCLC in der Literatur beschrieben 

warden.9 

 

2.2 Klassifikation des Bronchialkarzinoms 

Die Klassifikation der Tumoren und ihr Ausbreitungsgrad stellen ein zentrales Instrument in 

der Diagnose und Behandlung von Lungenkarzinomen dar. Den bei der Diagnostik und 

Therapie des Bronchialkarzinoms getroffenen Entscheidungen liegt die klinische Klassifikation 

der Tumoren anhand ihrer Ausbreitung zugrunde. Betrachtet werden lokale, regionale und 

Tumorstreuung fernab der primären Lokalisation.  
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Diese sogenannte TNM-Klassifikation des Bronchialkarzinoms ist somit ein zentrales Element 

in der Diagnose und Behandlung des Bronchialkarzinoms (T = Primärtumor; N = Lyphknoten; 

M = Fernmetastasen).   

Die T-Kategorie beschreibt den Primärtumor in seiner lokalen Ausdehnung. Hierbei warden, 

entsprechend der Einteilung der 9. Version für Bronchialkarzinom des American joint 

committee on cancer (AJCC), insgesamt 12 verschiedene Kategorien für das NSCLC 

unterschieden. Diese werden in der folgenden Tabelle (Tab.1) dargestellt:  

 

Tab. 1: Die T-Klassifikation 11,12       

T-Kategorie Erläuterung 

Tx Primärtumor kann nicht beurteilt werden oder Nachweis von 

malignen Zellen im Sputum oder bei Bronchialspülungen, 

jedoch Tumor radiologisch oder bronchoskopisch nicht 

sichtbar. 

T0 Kein Anhalt für Primärtumor 

Tis Carcinoma in situ mit rein lepidischem Wachstum bis 3 cm 

für Adenokarzinom und Plattenepithelkarzinom in situ 

T1mi minimal invasives Adenokarzinom Solitäres Adenokarzinom 

nicht mehr als 3 cm in der größten Ausdehnung, mit einem 

überwiegend lepidischen Wachstumsmuster und nicht mehr 

als 5 mm invasivem Anteil 

T1a Tumor bis einschließlich 1 cm in größter Ausdehnung 

T1b Tumor mehr als 1 cm und bis einschließlich 2 cm in größter 

Ausdehnung 

T1c Tumor mehr als 2 cm und bis einschließlich 3 cm in größter 

Ausdehnung 

T2 Tumor mehr als 3 cm, aber nicht mehr als 5 cm in größter 

Ausdehnung oder Tumor mit wenigstens einem der 

folgenden Kennzeichen: 

• Tumor befällt Hauptbronchus, 2 cm oder weiter distal der 

Carina ohne Befall der Carina 

• Tumor infiltriert viszerale Pleura 
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• assoziierte Atelektase oder obstruktive Entzündung bis 

zum Hilus, entweder Teile der Lungen oder die ganze Lunge 

einnehmend 

T2a Tumor bis einschließlich 4 cm 

T2b Tumor mehr als 4 cm und bis einschließlich 5 cm 

T3 Tumor mehr als 5 cm, aber nicht mehr als 7 cm in größter 

Ausdehnung oder Tumor mit direkter Infiltration einer der 

folgenden Strukturen: Pleura parietalis,Brustwand 

(eingeschlossen Sulcus superior-Tumoren), Nervus 

phrenicus, 

T4 Tumor größer als 7 cm oder Tumor jeder Größe mit 

Infiltration wenigstens  

einer der folgenden Strukturen: Zwerchfell, Mediastinum, 

Herz, große Gefäße,  

Trachea, N. laryngealis recurrens, Ösophagus, 

Wirbelkörper, Carina; vom  

Primärtumor getrennte(r) Tumorknoten in einem anderen 

Lappen derselben Seite 

                                                                                                                                                                                                                                                                                                                                                                                                 

Der Status der regionären Lymphknoten wird durch die N-Kategorie beschrieben. Beim 

Bronchialkarzinom werden hierbei die intrathorakalen, die supraklavikulären sowie die 

Skalenuslymphknoten bewertet. Die Tumorstreuung in alle sonstigen Lymphknotenstationen 

wird demgegenüber als Fernmetastasen klassifiziert. Tabelle 2 gibt einen Überblick über die 

N-Klassifikation des Bronchialkarzinoms.10        

 

Tab. 2: Die N-Kategorie 13               

N-Kategorie Erläuterung 

Nx regionale Lymphknoten können nicht beurteilt werden 

N0 keine regionären Lymphknotenmetastasen 

N1 Metastase(n) in ipsilateralen peribronchialen und/oder 

ipsilateralen Hilus- oder intrapulmonalen Lymphknoten 

(einschließlich eines Befalls durch direkte Ausbreitung des 

Primärtumors) 
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N2 Metastase(n) in ipsilateralen mediastinalen und/oder 

subkarinalen Lymphknoten 

N3 Metastase(n) in kontralateralen mediastinalen, 

kontralateralen Hilus-, ipsi- oder kontralateralen Skalenus- 

oder supraklavikulären Lymphknoten 



In Fällen mit sogenannter Mikrometastasierung, also Lymphknotenmetastasen, die eine Größe 

von mehr als 0,2cm nicht überschreiten, kann die zusätzliche Kennzeichnung durch die 

Hinzufügung eines „(mi)“, z.B. pN1(mi) oder pN2(mi) erfolgen. 

 

Die M-Kategorie beschreibt den Fernmetastasen- Status. 

 

Tab. 3: Die M-Kategorie 14                                                                      

M-Kategorie Erläuterung 

M0 keine Fernmetastasen 

M1 Fernmetastasen  

M1a vom Primärtumor getrennte Tumorherde in einem 

kontralateralen Lungenlappen oder Tumor mit Pleura- oder 

Perikardmetastasen oder mit malignem Pleura- oder 

Perikarderguss  

M1b eine extrathorakale Metastase in einem Organ (dies schließt 

auch die Beteiligung eines nicht regionalen Lymphknotens 

ein 

M1c multiple extrathorakale Metastasen in einem oder mehreren 

Organen 

 

Ergänzend wird bei der Kategorie M1b die Lokalisation der Metastase als Kürzel mit 

angebenden:  

• Pulmonal:PUL 

• Ossär: OSS 

• Hepatisch: HEP 

• Hirn: BRA 

• Lymphknoten, die nicht zu den regionären Lymphkonten zählen: LYM 

• Knochenmark: MAR 

• Pleural/Perikardial: PLE 
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• Peritoneal: PER 

• Adrenal: ADR 

• Hautmetastasen: SKI 

• Andere Lokalisationen: OTH  

Pleurale oder perikardiale Ergüsse werden in der Regel als M1a klassifiziert, da der Großteil 

pleuraler oder perikardialer Ergüsse durch den Tumor bedingt werden und Tumorzellen 

enthalten. In Einzelfällen können jedoch mikroskopische Untersuchungen des Pleura- oder 

Perikardergusses wiederholt auf Tumorzellen negativ bleiben. Ist die Ergussflüssigkeit ist nicht 

blutig und es entwickelt sich kein Exsudat sollte eine in der klinischen Beurteilung eine M0 

Klassifizierung erfolgen.  

Die TNM-Klassifikation gilt für alle nicht-kleinzelligen Karzinome der Lunge und der zentralen 

Bronchien. Sie erleichtert den Vergleich von Ergebnissen klinischer Studien und die 

Auswertung von Registern.  

Demgegenüber ist beim kleinzelligen Bronchialkarzinoms die TNM-Klassifikation nur bedingt 

geeignet. Man spricht hier stattdessen von “Limited Stage” (LS-SCLC), bei der sich die 

Ausdehnung auf eine Lungenhälfte und angrenzende Lymphknoten beschränkt, 

beziehungsweise von “Extensive Stage” (ES-SCLC), wenn der Tumor weiter ausgebreitet ist.10 

 

2.3 Bildgebende Diagnostik des Bronchailkarzinoms 

 Bildgebende Staging-Untersuchungen  

In der Diagnostik des Lungenkarzinoms kommen drei Verfahren, die jeweils mit ionisierender 

Strahlung arbeiten, im klinischen Alltag zum Einsatz. Die Thoraxübersichtsaufnahme, die 

Computertomographie (CT) und die Positronen-Emissions-Tomographie (PET). Letztere wird 

üblicherweise mit der CT in einem (PET/CT)-Gerät kombiniert verwendet.  

Eine weitere Methode von zentralem Stellenwert ist die Magnetresonanztomographie (MRT) 

die ohne ionisierende Strahlung erfolgt. Gleiches gilt für die seltener und ergänzend zum 

Einsatz kommende Thoraxsonographie. Diese beiden Verfahren werden im Rahmen der 

Staging-Diagnostik des Lungenkarzinoms für spezielle Fragestellungen, wie beispielsweise 

Hirnmetastasen, Sulcus-superior Tumoren, Beurteilung einer möglichen Infiltration von 

Brustwand oder Mediastinum etabliert.  

Grundsätzlich gilt das bildgebende Untersuchungen unter Verwendung von ionisierenden 

Strahlen (Röntgenstrahlen, radioaktive Isotope) nur bei Patienten durchgeführt werden, wenn 

ein im Strahlenschutz entsprechend fachkundiger Arzt vor der Untersuchung die 

rechtfertigende Indikation für den Einsatz ionisierender Strahlung nach § 83 des 

Strahlenschutzgesetzes (StrlSchG) bestätigt hat. Dies beinhaltet insbesondere die Prüfung, 

dass der gesundheitliche Nutzen gegenüber dem Strahlenrisiko überwiegt.  
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Besteht der Verdacht auf ein Lungenkarzinom mit Therapieoption sollen laut Leitlinie folgende 

bildgebenden Staging-Untersuchungen durchgeführt werden: 

Initialial sollte ein Diagnostisches CT des Thorax und Abdomen (Oberbauch und Becken) mit 

Kontrastmittel durchgeführt werden. 

Bei kurativer Behandlungsintention im klinischen Stadium IB–IIIB und im metastasierten 

Stadium IVA mit M1B (solitäre Metastase) soll auch bei negativem klinischem 

Untersuchungsbefund eine Untersuchung auf extrathorakale Metastasen mittels MRT des 

Gehirns und Ganzkörper-FDG-PET/CT erfolgen. Falls aus medizinischen  

Gründen, z. B. diabetischer Stoffwechsellage, eine FDG-PET-Untersuchung nicht  

durchgeführt werden kann, ist eine Untersuchung auf extrathorakale Metastasen entweder 

mittels Knochenszintigrafie plus CT Abdomen oder Knochenszintigrafie plus Sonografie 

Abdomen oder Ganzkörper-MRT indiziert.10  

 

 Konventionelle Thoraxübersichtsaufnahme  

Bei Thoraxerkrankungen ist generell die konventionelle Röntgen-Übersichtsaufnahme in zwei 

Ebenen (p.a. und latearl) das am häufigsten eingesetzte, initiale radiologische Verfahren. 

Damit werden Bronchialkarzinome entweder als Zufallsbefund oder aufgrund unspezifischer 

Symptome wie Husten, Auswurf, Haemoptoe, Fieber, Schmerzen, Dyspnoe, Gewichtsverlust, 

Leistungsknick und paraneoplastischer Symptome detektiert. Periphere Lungenkarzinome 

stellen sich, falls abgrenzbar, direkt als Rundherd oder Raumforderung dar. Zentrale 

Karzinome sind demgegenüber teils nur indirekt als Atelektase oder Mediastinalverbreiterung 

abgrenzbar. Mitunter kann auch ein (meist unilateraler) Pleuraerguss der einzige Hinweis auf 

ein Bronchialkarzinomkarzinom sein.10  

Bei der Detektion eines symptomatischen Bronchialkarzinoms erreicht die konventionelle 

Röntgenbildgebung jedoch nur eine Sensitivität von 77-80%.15 Daher besteht die 

Basisdiagnostik des Bronchialkarzinom-Screenings meist aus einer Low-Dose-

Computertomographie und/oder einer Bronchioskopie.  

Wird im Rahmen des Screenings der V.a. Bronchialkarzinom gestellt, kommen im Rahmen 

des Stagings weitere Bildgebungen zum Einsatz. Hierbei sind drei Verfahren von zentralem 

Stellenwert. Die Computertomographie (CT), die Positronen-Emissions-Tomographie (PET), 

welche überwiegend in Kombination mit der CT in einem Gerät eingesetzt wird (PET/CT) und 

die Magnetresonanztomographie (MRT). Letztere ist bei der Detektion von Hirnmetastasen 

führend. Für spezielle Fragestellungen (z.B. Beurteilung einer möglichen Infiltration von 

Brustwand oder Mediastinum) kann neben der MRT, eine dedizierte Thoraxsonographie 

erfolgen.10 
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 Technische Grundlagen der Computertomographie  

Die Computertomographie (CT) hat sich bei vielen Pathologien als Goldstandard der 

diagnostischen Bildgebung durchgesetzt.16  Sowohl zur Beurteilung des Lungenparenchyms 

an sich, als auch bei der Detektion kleiner Lungenrundherde erweist sich das CT als 

sensitivster gegenüber der konventionellen Röntgenuntersuchung und des MRT.17, 18   

Die Computertomographie ermöglicht unter anderem eine axiale und überlagerungsfreie 

Darstellung der Körperschichten aus einem 3D-Rohdatensatz. Die zentrale 

Untersuchungseinheit eines CT-Geräts wird als Gantry bezeichnet und besteht grundsätzlich 

aus Röntgenquelle und Detektorring, welche sich gegenüberstehen und um die Patientenliege 

rotieren. 

Während der Rotation werden aus dem Fokus der Röntgenröhre fächerartig Röntgenstrahlen 

emittiert, die auf den Untersuchungskörper treffen, diesen durchdringen und in 

abgeschwächter Form vom Detektor erfasst werden. 

Für die Bildkonstruktion wird der sogenannte Schwächungskoeffizient aus dem Verhältnis von 

Primärintensität und Intensitätsschwächung durch das Untersuchungsobjekt ermittelt. Dieser 

ist somit abhängig von Dicke, Dichte sowie Ordnungszahl des Untersuchungsmediums. 

Grundsätzlich wird für die Erstellung eines vollständigen Bildes, der darzustellende Körper aus 

möglichst vielen Richtungen bestrahlt und auf diese Weise eine Vielzahl verschiedener 

Schwächungskoeffizienten bestimmt, welche zusammen ein räumliches Schwächungsprofil 

ergeben. Bei modernen CT-Geräten entsendet die Röntgenröhre kontinuierlich aus 360° einen 

Fächerstrahl, dessen Signale permanent vom Detektor erfasst werden und deren Summation 

eine 3D-Gesamtprojektion ergibt.  

Hierbei besteht die Hauptfunktion des Detektors darin, die analogen Signale der 

verschiedenen Röntgenintensitäten in elektrische Impulse und somit digitale Signale 

umzuwandeln. Im Anschluss erfolgt die Bildrekonstruktion durch computerbasierte 

Anwendung verschiedener mathematischer Funktionen an allen aus der Resorptionsanalyse 

der Strahlen entstehenden Projektionen (Fourier Transformation).  

Dabei errechnet der Computer durch die Profile der verschiedenen Graustufen, welches die 

Differenzierung von Flächen hoher Dichte (bspw. Knochen oder Kontrastmittel) und Flächen 

geringer Dichte (bspw. Flüssigkeit oder Weichteile) ermöglicht. Darüber hinaus ist es möglich 

zwei- und dreidimensionale Rekonstruktionen in Form eines Querschnittsbildes zu erstellen, 

deren Schichtdicke variabel festgelegt werden kann. 

Im Vergleich zum herkömmlichen Röntgenbild lassen sich so auch dichteähnliche Strukturen 

räumlich differenzieren und es kommt nicht zu Überlagerungseffekten. 

Das CT-Bild erlaubt die exakte Messung von Größen und anatomische Zuordnung von 

Strukturen, da jeder Bildpunkt dreidimensional aufgenommen ist. 



19 
 

Die Anwendung verschiedener Berechnungsalgorithmen erlaubt die Variation des 

Bildkontrastes und somit eine Anpassung an das Untersuchungsziel.  

Durch die Einführung der Spiral-CT und Verwendung mehrzeiliger Detektoren konnten im 

Rahmen der technischen Weiterentwicklung der Untersuchungstechnik die benötigte Scanzeit 

verkürzt und die Artefaktanfälligkeit reduziert werden. Bei heutzutage in der klinischen Praxis 

angewendeten Spiral-Computertomographen rotiert die Gantry unter kontinuierlichem 

Tischvorschub mit Hilfe der sogenannten Schleifringtechnik in einer helixförmigen Bewegung 

um die Körperlängsachse des Patienten.    

Hierdurch ist es möglich in einer Atemanhaltephase (25-30 Sekunden) große 

Volumendatensätze zu akquirieren und dabei Doppelregistrierungen, sowie artifizielle 

Verschleierung oder Überspringung anatomischer Details zu vermeiden. Die Geschwindigkeit 

des Scanvorgangs konnte durch die Verwendung mehrzeiliger Detektoren weiter erhöht 

werden. Dabei sind die Detektoren nebeneinander in axialer Richtung angeordnet und ihre 

Signale werden während der Datenauswertung kombiniert.19 

Vor der Entwicklung der Mehrzeilen-Computertomographie musste bei der Verwendung der 

Einzeilen-CT ein Kompromiss zwischen Scandauer und Auflösung eingegangen warden. 

Hierbei waren noch relativ große Kollimierungen (5-8 mm) nötig, um einen Thorax oder ein 

Abdomen in der Zeit einer physiologischen Atemphase darzustellen. Dieses Problem des 

Missverhältnisses zwischen axialer Auflösung und Auflösung in z-Richtung konnte durch die 

MSCT-Technik weitgehend gelöst werden20. Die moderne Untersuchung mit bis zu 256- und 

320-MSCT erlaubt, aufgrund der zusätzlich verkürzten Gantryrotationszeit mit bis zu 0,33 s, 

die Aufnahme ganzer Organsysteme in wenigen Sekunden.  

Hierdurch wurde es unter anderem möglich, den Kontrastmittelbolus im Rahmen von 

Mehrphasenuntersuchungen (z.B. CT-Angiographie der Leber) besser auszunutzen.  

Eine verkürzte Untersuchungszeit ist vor allem bei Patienten mit Polytrauma, Dyspnoe sowie 

bei unkooperativen Patienten, Kindern und bei der Darstellung des Herzens vorteilhaft.21 

Ein Thoraxscan mit einer Länge von Durchschnittlich 35 cm kann mit einem modernen 124-

Zeiler in weniger als 4 Sekunden durchgeführt werden und erreicht dabei eine theoretische 

minimale Schichtdicke von bis zu 0,6 mm.22   

Die CT ist sowohl für die Detektion (Screening) als auch für die Ausbreitungsdiagnostik des 

Bronchialkarzinoms (Staging) von zentralem Stellenwert.10  

 

 CT im Rahmen des Bronchialkarzinom-Screenings 

Das CT ist die sensitivste bildgebende Methode, um ein Lungenkarzinom nachzuweisen. 

Demgegenüber ist die Spezifität geringer, da entzündliche Prozesse im Lungenparenchym 

teils nicht sicher differenziert werden können. Die radiologischen Merkmale eines 

Bronchialkarzinoms können ein breites Spektrum aufweisen, welches vom typischen 
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spikulierten Rundherd über glatt begrenzte Rundherde bis hin zu infiltrativen Prozessen 

reichen kann. Letztere können teilweise radiologisch nicht eindeutig von entzündlichen 

Infiltraten unterschieden werden. Die Spezifität der CT-Untersuchung steigt, wenn Merkmale 

eines malignen Prozesses vorliegen, wie beispielsweise die Infiltration benachbarter 

Strukturen oder ein Metastasennachweis.  

Besteht bei einem Patienten durch unspezifische Symptome der fragliche Verdacht auf ein 

Bronchialkarzinom wird daher primär eine CT-Untersuchung mit niedriger Strahlenexposition 

ohne Kontrastmittel, auch „low-dose CT“ genannt, empfohlen. Bei normalem Habitus des 

Patienten sollte bei dieser Untersuchung eine effektive Strahlendosis von 1,3 mSv nicht 

überschritten werden. Dies reicht aus, um pulmonale Rundherde als Hochkontrastläsion im 

Lungenparenchym zu detektieren.  

Werden im Rahmen eines solchen Screenings suspekte Läsionen gefunden oder besteht 

schon primär der dringende klinische Verdacht auf ein Lungenkarzinom, wird eine Volldosis-

CT-Untersuchung des Thorax und Abdomens in venöser Kontrastmittelphase zum Staging 

empfohlen. Diese eignet sich im Vergleich zur Niedrigdosis-CT besser, um 

Weichteilstrukturen, mediastinale Lymphknoten sowie Infiltration benachbarter Strukturen zu 

erkennen. Zusätzlich wird zur Steigerung der Spezifität die Kombination mit einer FDG-PET 

entsprechend der S3-Leitlinie empfohlen.10  

Werden im Rahmen von CT-Untersuchungen, die aufgrund sonstiger Indikationen 

durchgeführt werden, inzidentelle Lungenrundherde nachgewiesen, können die sogenannten 

Fleischer-Kriterien oder die neueren Lung-RADS Kriterien das weitere Vorgehen vorgeben. 

Bei den Fleischner-Kriterien handelt es sich um einen Konsensus über das Management von 

Lungenläsionen, der im Jahr 2005 von der Fleischner Society erarbeitet wurde und 

fortwährend erneuert wird. Seither bestimmen die initiale Knotengröße, die Wachstumsrate 

sowie Risikofaktoren für Malignität das Ausmaß und Methodik des anschließenden 

diagnostischen Schemas. Beispielsweise wird bei inzidentell diagnostizierten, soliden Knoten 

einer Größe ≤ 6 Millimeter im Durchmesser in einer Routineuntersuchung und bei nicht-

vorliegenden Risikofaktoren, von einer weiteren Nachkontrolle abgesehen. Liegt bei gleicher 

Knotengröße jedoch ein anamnestisches Hochrisikoprofil vor, wird eine Folgeuntersuchung 

nach 12 Monaten empfohlen. Als weitere Beispiele erfordern Knoten zwischen 6 und 8 

Millimetern im Durchmesser zwei Folgeuntersuchungen über einen Zeitraum von 24 Monaten. 

Bei Knoten ab einer Größe von 8 mm wird nach 3 Monaten die bioptische Gewinnung von 

Tumorgewebe oder eine ergänzende FDG-PET/CT-Untersuchung durchgeführt. Einen 

Überblick über die aktuellen Empfehlungen der Fleischner Society zum diagnostischen 

Management pulmonaler Rundherde geben die Tabellen 4 und 5: 
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Tab. 4: Empfehlungen der Fleischner Society 2017, solide Rundherde; niedriges Risiko vs.  

hohes Risiko 23 

  

 

 

Tab.5: Empfehlungen der Fleischner Society 2017 für, subsolide Rundherde23 
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 CT im Rahmen des Bronchialkarzinom-Stangings 

Sofern keine Kontraindikationen bestehen, wird im Rahmen der Ausbreitungsdiagnostik bei 

Lungenkarzinom-Patienten eine CT-Untersuchung des Thorax und Abdomens in venöser 

Kontrastmittelphase, welche 50 Sekunden nach Bolustracking in der Aorta descendens 

gefahren wird.  Hierbei beträgt der Schwellenwert bei dem die Bildgebung gestartet wird ca. 

50 HU. 

Mit dieser Bildgebung von Thorax und Abdomen wird ein Großteil der häufigen 

Metastasierungsorte des Bronchialkarzinoms abgedeckt. Hierzu zählen u.a. lokoregionäre 

Lymphknoten sowie Metastasen in Leber, Nebennieren und der Lunge selbst.  

Als diagnostische Lücke dieser Untersuchung verbleiben Hirnmetastasen, 

Knochenmetastasen sowie zum Teil auch unspezifischen Lymphknotenmetastasen für die 

jeweils geringere Sensitivität besteht. 

Diese drei Arten von Metastasen sind zwar auch in der CT-Untersuchung detektierbar, jedoch 

ist die Sensitivität insbesondere bei kleinen Läsionen relativ gering. Beispielsweise von 

Knochenmetastasen ohne Destruktion der Knochen-Cortikalis. Darüber hinaus werden 

Schädel, Halswirbelsäule und Appendikularskelett routinemäßig nicht miterfasst. Hierfür ist 

eine Ganzkörperbildgebung erforderlich. Diese erfolgt vor einem möglichen Einsatz lokaler 

Verfahren wie Operation oder Strahlentherapie, ggf. in multimodalen Therapiekonzepten, 

mittels FDG-PET/CT.  

Zum Ausschluss von Hirnmetastasen wird in Deutschland bei vermutetem oder 

nachgewiesenem Bronchialkarzinom und bestehender Therapieoption eine MRT-

Untersuchung des Schädels empfohlen, auch wenn keine neurologischen Symptome 

bestehen.10.  

In einer für diese Empfehlung mit ausschlaggebenden Metaanalyse von Li et. al., wies die 

cMRT mit ca. 77% eine deutlich höhere Sensitivität für Hirnmetastasen auf als die cCT (im 

Rahmen der FDG-PET/CT) mit ca. 21%.24  

 

 Technische Grundlagen der 18-F-Fluordesoxyglucose-

Positronenemissionstomographie/Computertomographie (FDG-

PET/CT) 

Bei der Positronen-Emissions-Tomographie (PET) werden radioaktiv markierte Biomoleküle 

(Tracer) eingesetzt, deren Verteilung im menschlichen Körper mit einer PET-Kamera 

aufgezeichnet werden kann. F18-Desoxyglukose (FDG), ein mit radioaktivem Fluor markiertes 

Zuckermolekül, wird bis zu einer bestimmten Stufe wie normaler Zucker verstoffwechselt. Die 

moderne, integrierte PET/CT kombiniert die hohe Sensitivität eines PET-Vollringscanners mit 

der sehr guten morphologischen Auflösung der CT. 
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Die Anwendbarkeit von FDG in der Krebsdiagnostik basiert auf der Tatsache, dass 

Krebszellen, deren Wachstum entreguliert ist, im Vergleich zu gesunden Zellen einen deutlich 

erhöhten Glukose-Metabolismus aufweisen. Das FDG reichert sich in den „entarteten“ 

Krebszellen verstärkt an. Im späteren PET-Bild hebt sich der Tumor dadurch vom 

umliegenden, gesunden Gewebe ab10. 

Hauptvorteile der metabolischen FDG-PET gegenüber morphologischem CT, sind die höhere 

Empfindlichkeit, insbesondere gegenüber Knochenläsionen und die bessere 

Differenzierbarkeit kleiner mediastinaler Lymphknotenmetastasen.25 

 

Abbildung 3 zeigt eine osteolytische Knochenmetastase des rechten Os iliums bei einem an 

NSCLC erkrankten Patienten im CT- (oben) und FDG-PET/CT-Bild. 
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Abb. 3: Knochenmetastase eines NSCLC im rechte OS ilium, im konventionellen CT und im 

FDG-PET/CT. Der Pfeil markiert die Läsion mit beginnender osteolytischer Destruktion der 

medialen Kortikalis. Die Bilder stammen aus dem Archiv der Uniklinik Köln. Die in der 

morphologischen CT-Untersuchung schwer detektierbare Knochenläsion ist in der FDG-PET 

sicher abgrenzbar und als Knochenmetastase zu diagnostizieren. 

 

Der Beispielfall verdeutlicht exemplarisch die Effektivität des FDG-PET/CT bei der Detektion 

von Knochenmetastasen. Zwar ist die osteolytische Läsion in dem vorliegenden CT-Bild durch 

die partielle Arrosion der angrenzenden Kortikalis und lokal aufgehobene 

Knochenbinnenstruktur erkennbar, jedoch wird deutlich das mitunter noch subtilere 

Knochenmetastasen selbst erfahrenen Untersuchern entgehen könnten.   

Eine Metaanalyse von 17 Studien zeigte, dass die vom FDG-PET/CT erreichte gepoolte 

Sensitivität und Spezifität für den Nachweis von Knochenmetastasen beim NSCLC 92 % bzw. 

98% beträgt. Damit ist diese Methode nicht nur der konventionellen CT sondern auch anderen 

alternativen Methoden, wie der Knochenszintigraphie mit einer Sensitivität: 86% und Spezifität: 

88% überlegen.26 

Auch bei der Detektion von Nebennierenmetastasen, die beim Bronchialkarzinom häufig sind, 

ist die FDG PET/CT eine sehr nützliche Methode und der konventionellen CT-Bildgebung bei 

der Differenzierung von benignen und malignen Nebennierenläsionen ohne Lipidanteile 

überlegen.27 Die frühzeitige Erkennung von Nebennierenmetastasen ist von entscheidender 
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Bedeutung, da die Resektion einer Oligometastase der Nebenniere bei NSCLC nachweislich 

das langfristige krankheitsfreie Überleben verbessert28. 

Neben ihrer Bedeutung bei der Ermittlung des M-Status hat die PET/CT auch Vorteile bei der 

Beurteilung des T- und N-Stadiums. So konnte in Studien gezeigt werden, dass das integrierte 

FDG-PET/CT-Bilder im Vergleich zu morphologischen CT-Bildern bei der Beurteilung des 

mediastinalen Lymphknotenstatus (N-Status) sowie der räumlichen Zuordnung und der 

Möglichkeit, Atelektase von Tumorgewebe zu unterscheiden (T-Stadium) sensitiver ist.29, 30, 31  

Abbildung 4 verdeutlicht die erleichterte Indentifizierbarkeit von mediastinalen 

Lymphknotenmetastasen der FDG-PET/CT im Vergleich zur morphologischen CT.



26 
 

 

Abb. 4: mediastinale Lymphknotenmetastasen eines NSCLC-Patienten im konventionellen CT 

und im FDG-PET/CT. Die Bilder stammen aus dem Archiv der Uniklinik Köln 
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Nachteile der PET/CT im Vergleich zur CT oder MRT sind die schlechtere Verfügbarkeit, 

höheren Kosten und relativ hohe Strahlenbelastung. Hinzu kommen Limitierungen der 

diagnostischen Aussagekraft bei der Differenzierung entzündlicher Prozesse und Auswertung 

sehr kleiner intrapulmonaler Läsionen durch Limitationen in der Ortsauflösung.32 

 

 Dual-Energy-Computertomographie (DECT) 

Neben der konventionellen CT stellt die moderne Dual-Energy-Computertomographie (DECT) 

eine neuartige CT-Methode dar, die in verschiedenen klinischen Studien einen möglichen 

Zusatznutzen bei der Charakterisierung von pulmonalen Läsionen aufzeigen konnte. Es 

zeichnet sich ab, dass die mit dieser Technik gewonnen zusätzlichen physiologischen 

Bildinformationen sowie Informationen zur Perfusion potentiell prognostische und prädiktive 

Bedeutung haben könnten.     

 Technische Grundlagen der Dual-Energy-CT 

Der Begriff Dual-Energy-Technik (DECT) umfasst verschiedene Konfigurationen von 

Röntgenstrahler und Detektorsystem. Hiervon werden wiederum zwei Konfigurationen als 

True-Dual-Energy bezeichnet. In der ersten dieser Anordnungen, der sogenannten Dual-

Source-CT, werden zwei gleiche Strahlenquellen sowie zwei Detektoren verwendet, die 

jeweils um 90° in Rotationsrichtung versetzt, im rotierenden Teil des Gantry angeordnet sind.33 

Das jeweils zugehörige Detektorpaar ist dabei der entsprechenden Röntgenröhre 

gegenübergestellt (Abb.7). Die Anordnung bietet Vorteile bei einigen klinischen 

Fragestellungen. Da die beiden Röntgenquellen nicht notwendigerweise mit verschiedenen 

Energien betrieben werden müssen, kann beispielsweise bei adipösen Patienten die 

angewandte Strahlendosis erhöht und die Bildqualität verbessert werden.  

Das Betreiben der Röntgenstrahler mit gleicher Energie ermöglicht außerdem eine höhere 

zeitliche Auflösung als es mit einer Singel-Source-CT möglich ist. Das Dual-Source CT 

benötigt für die Aufnahme einer Einzelschicht nur eine Viertelumdrehung (90°), im Gegensatz 

zur Single-Source, die eine halbe Umdrehung benötigt. Hierdurch wird eine höhere zeitliche 

Auflösung von ≤ 83 ms erreicht34. Damit eignet sich diese Technik besonders auch für 

kardiovaskuläre Aufnahmen, bei denen die zeitliche Auflösung die Bildqualität bestimmt. 

Im Dual-Energy Modus werden zwei Dual-Source-Modules mit unterschiedlicher 

Röntgenenrgie betrieben, sodas in einer Rotation zwei Datensätze mit unterschiedlicher 

Röntgendosis (Dual-Energy) akquiriert warden. 
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Abb. 5: Aufbau eines Dual-Source Dual-Energy-CT 

 

Das sogenannte KV-Switching Verfahren ist die zweite „echte“ Methode der Dual-Energy-

Akquisition.35 Hierbei wird eine speziell ansteuerbare Röntgenröhre verwendet, die in 

definierten Zeitabständen stufenweise die Röntgenenergie variieren kann (Abb. 8). Im 

Rahmen der Dual-Energy Aufnahmetechnik werden hierfür zwei Energiestufen verwendet. 

Technisch wären zwar auch mehrere Stufen möglich, was sich jedoch negativ auf die 

Ortsauflösung auswirkt und damit klinisch nicht angewendet wird. 

 

Abb. 6:  Aufbau eines KV-Switching-Systems; niedrige Energie: schwarz, hohe Energie: grau 

gepunktet 
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Es existieren zwei weitere technische DECT-Ansätze, mit jeweils nur einer Röntgenquelle 

ohne verstellbare Energiestufen. Der Aufbau entspricht somit zunächst dem eines 

Computertomographen der 3. Generation.36 Jedoch werden anstelle des konventionellen 

UFC- oder Xenon-Detektors ein quantenzählender Detektor, entweder ein Sandwich-Detektor 

oder ein Split-Filter-Detektor verwendet.  

Bei einem Dual-Layer-Detektor handelt es sich um einen zweilagigen Detektor (Abb 9.). Die 

obere, patientennahe Schicht fängt das gesamte eintreffende Energiespekturm auf und misst 

den am Detektor erzeugten Strom. Durch die erste Schicht erfolgt de facto eine 

Strahlenaufhärtung. Diese unter Schicht erhält also ein deformiertes Strahlenspektrum und 

misst hierbei wiederum die eintreffende „zweite“ Energie.37,38 

 

Abb. 7:  Aufbau eines Sandwichdetektor-Systems      

 

Bei der Split-Filter-Technologie verwendete Detektor ist in der Mitte halbiert, wobei die 

Oberfläche einer Seite mit einem strahlaufhärtendem Material besetzt ist und die 

niederenergetischen Photonen abfängt (Abb. 8).39-41       
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Abb. 8:  Aufbau eines Split-Filter Detektorsystems                                                                                                                                           

 

 Dual-Energy CT zur Charakterisierung maligner 

Lungenläsionen 

Verschiedene Studien konnten zeigen, dass Dual-Energy-Bilddatensätze zusätzliche 

Informationen enthalten, welche neue Möglichkeiten für die erweiterte Diagnostik und 

Subtypbestimmung maligner pulmonaler Läsionen eröffnen.   

Beispielsweise gelang es Deniffel et. al. im Rahmen einer retrospektiven Studie mittels 

Bildanalyse von CT-Scans, die mit einem Dual-Layer-Spektral-CT durchgeführt wurden, 

Lungenmetastasen verschiedenen Primärtumoren zuzuordnen. Evaluiert wurden in dieser 

Studie Lungenmetastasen von 130 Tumorpatienten von insgesamt 11 verschieden 

Primärtumorentitäten. Im Rahmen der Studie zur Charakterisierung von Lungenmetastasen 

und Zuordung zum Primätumor wurden die quantitativen Iodkonzetrationswerte (IC-Werte) 

und die konventionellen CT-Werte (HU) der Läsionen extrahiert und anhand des Messwertes 

im Lumen der thorakalen Aorta genormt. Hierbei gelang es signifikante Unterschiede der IC-

Werte und HU-Werte für Lungenmetastasen von Nierenkarzinomen, Mammakarzinomen, 

Kolonkarzinomen und Plattenepithelkarzinomen des Hals-Nasen-Ohren-Traktes aufzuzeigen. 

Auf Grundlage des IC-Wertes allein wurden außerdem signifikante Unterschiede zwischen 

Lungenmetastasen von Kolonkarzinomen, Osteosarkomen, Adenkarzinomen der 

Bauchspeicheldrüse und Urothelkarzinomen beobachtet.42  

In einer anderen Studie untersuchten Schmid-Bindert et al. die Korrelation zwischen 

maximalem standardisierten Aufnahmewert (SUVmax) in der FDG-PET/CT und der 

maximalen jodbedingten Abschwächung (iodine–related attenuation: IRA) in der DECT bei 
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Patienten mit nicht-kleinzelligem Lungenkrebs (NSCLC) und kleinzelligem Lungenkrebs 

(SCLC). Hierbei wiesen Läsionen des NSCLC eine stärkere Korrelation von SUVmax und IRA 

auf als Läsionen des SCLC. Erstmalig eröffnet sich hiermit eine Möglichkeit der nicht-invasiven 

Differenzierung dieser beiden Unterformen des Bronchialkarzinoms ohne Biopsie und 

histopathologischer  Befundung.43  

 

 Physikalische Grundlagen der 

Magnetresonanztomographie (MRT) 

Bei der MRT werden die Wasserstoffatome des Körpers genutzt, um ein Bild zu generieren. 

Die Atomkerne von Wasserstoff bestehen aus einem einzigen Proton. Diese Protonen 

besitzen einen Eigendrehimpuls, den sogenannten Kernspin. Da Protonen eine positive 

Ladung tragen, wird durch diesen Eigendrehimpuls ein magnetisches Dipolmoment induziert44.  

Im Körper liegen diese Dipolmomente normalerweise ungeordnet vor. Wird nun ein externes 

Magnetfeld angelegt, richten sich die Dipole parallel oder antiparallel zu den Feldlinien des 

externen Magnetfeldes aus. Dabei nehmen mehr Protonen die energetisch bessere parallele 

Ausrichtung an. Die Summe dieser parallel angeordneten Dipolmomente kann von außen als 

so genannte Längsmagnetisierung gemessen werden. Bei der Ausrichtung entlang der 

Längsachse des Magnetfeldes rotieren die Protonen außerdem mit einem konstanten 

Anstellwinkel um die Längsachse des Magnetfeldes. Diese Bewegung wird Präzession 

genannt (Abbildung 5). Die Frequenz mit der die Protonen um diese Achse rotieren, heißt 

Präzessions- oder Lamorfrequenz und ist abhängig von der Stärke des angelegten 

Magnetfeldes (B0) und der stoffspezifischen Konstanten (y). 

 



32 
 

                                                                      

Abb. 9:  Präzessionsbewegung und Kernspin 

 

Abb. 9 zeigt wie durch die äußere Anlage eines externen Magnetfeldes, die Ausrictung der 

Protonen mit ihrem Dipolmoment entsteht, die parallel oder antiparallel zu dem Magnetfeld 

ausfällt. Dabei rotieren sie um die eigene Achse (Kernspin) und um die Achse des 

magnetischen Feldes (Präzession).45  

H+, Wasserstoffatom; B0, magnetische Flussdichte. Normalerweise rotieren die Protonen 

dabei phasenversetzt. Wird nun zusätzlich ein magnetisches Wechselfeld eingeschaltet 

(Hochfrequenzimpuls (HF-Impuls), richten sich mehr Protonen antiparallel aus.  

Hierdurch wird die Längsmagnetisierung reduziert. Der HF-Impuls führt dazu, dass die 

Protonen phasengleich präzidieren und es entsteht eine Magnetisierung in 

Transversalrichtung.46 Der Winkel zwischen dem neu entstehenden Hauptvektor der 

Magnetisierung und dem Richtungsvektor des homogenen Magnetfeldes wird als Flipwinkel 

bezeichnet. Wird das magnetische Wechselfeld wieder abgeschaltet kehren die Protonen in 

ihren Ausgangszustand zurück (Relaxation). Dabei senden die Protonen selbst wieder ein 

elektromagnetisches Hochfrequenzsignal aus, das außerhalb vom Körper gemessen werden 

kann. Dieses Signal ist abhängig von der Geschwindigkeit, mit der sich die 

Längsmagnetisierung erneut aufbaut und die Transversalmagnetisierung abnimmt. 

Zeitkonstanten mit denen die Geschwindigkeit dieser Prozesse beschrieben werden sind die 

Spin-Gitter-Relaxationszeit (T1-Zeit, Längsrelaxation) und die Spin-Spin-Relaxationszeit (T2-

Zeit, Transversalrelaxation).47   
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Da während eines Relaxationsprozesses nur sehr kleine magnetische Signale entstehen, 

werden die Protonen mehrfach angeregt. Mehrere hintereinandergeschaltete 

Anregungsimpulse werden als Sequenz bezeichnet. Die sog. Repetitionszeit (time to 

repetition, TR) gibt dabei an, wie schnell zwei Anregungen aufeinander folgen. Die Echozeit 

(time to echo, TE) gibt an, wie viel Zeit zwischen Anregung und Signalaufnahme vergeht. 

Um aus den generierten Daten ein Bild zu erzeugen, müssen die aufgezeichneten 

Hochfrequenzsignale in ihre Einzelfrequenzen zerlegt werden. 

Der komplexe mathematische Prozess, der dies ermöglicht, wird nach seinem Erstbeschreiber 

Fourier-Transformation genannt45. Wie sich ein Gewebe im Bild letztendlich darstellt, hängt 

von den Gewebeparametern (T1-Zeit, T2-Zeit, Protonendichte), den Sequenzparametern (TE, 

TR) und der verwendeten Sequenz ab.44  

Um einzelne Bereiche oder Schichten des Körpers gezielt darstellen zu können, muss es 

möglich sein, nicht alle Spins des Körpers gleichermaßen anzuregen. Dies wird durch das 

Prinzip der Ortskodierung möglich: Der HF-Impuls enthält nur ein kleines Frequenzspektrum. 

Da durch den HF-Impuls nur die Wasserstoffatome optimal angeregt werden, deren 

Lamorfrequenz dem HF-Impuls entspricht und die Lamorfrequenz direkt von der Stärke des 

externen Magnetfeldes abhängt, erlaubt das Zuschalten von Gradientenfeldern nur Spins einer 

bestimmten Schicht des Körpers anzuregen. Durch Zuschalten von Gradientenfeldern entlang 

jeder der drei Raumachsen können somit Spins an jedem Punkt des Körpers selektiv angeregt 

warden.45 

 

 Magnetresonanztomographie im Rahmen des 

Bronchialkarzinom-Stagings 

Beim Staging des Bronchialkarzinoms wird die MRT wegen ihres der CT überlegenen 

Weichteilkontrastes zur Detektion bzw. für den  Ausschluss von Hirnmetastasen verwendet10. 

Hirnmetastasen können bei NSCLC-Patienten in 20-40 % der Fälle auftreten.  

Bei inzidentell gefundenen Hirnmetastasen ist das Bronchialkarzinom bei Erwachsenen der 

häufigste Primärtumor mit in ca. 50 % der Fälle.48  

Vor diesem Hintergrund wird der Stellenwert dieser Modalität für das Staging.  Im Rahmen der 

Hirnmetastasensuche sollten MR-Sequenzen vor und nach Kontrastmittelgabe angefertigt 

warden.10  

In einer Metaanalyse von Li et. al. aus dem Jahr 2017 wies die cMRT eine deutlich höhere 

Sensitivität (ca. 77%) für Hirnmetastasen auf als die cCT (ca. 21%).49  

In der Abbildung 6 werden Hirnmetastasen eines Patienten mit Bronchialkarzinom in 

Kontrastmittel-gestützter CT- bzw. MRT-Bildgebung gegenübergestellt. Bei diesem 

beispielhaft ausgewählten Patienten wurde im Rahmen des Stagings die übliche Darstellung 

von Thorax und Abdomen, aufgrund bekannter zervikaler Lymphknotenmetastasen und 
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Knochenmetastasen der Halswirbelsäule und Schädelbasis, um eine CT-Untersuchung des 

Halses in venöser Phase ergänzt. In den hierbei erfassten basalen Hirnabschnitten sind 

Hirnmetastasen erkennbar. Die vergleichend dargestellten MRT-Bilder wurden in diesem Fall 

11 Tage nach der CT Untersuchung angefertigt, sodass die intermodale Vergleichbarkeit der 

Läsionen gegen ist. 
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Abb. 10: Hirnmetastasen eines Bronchialkarzinoms. Links (A, C) CT in venöser 

Kontrastmittelphase; Rechts: MRT (B, D) nach Kontrastmittelapplikation (FLAIR-Sequenz). 

Pfeil 1 (A, B):  Ca. 1,4 cm große Metastase im Kleinhirn links mit Korrelat in der CT und MRT. 

Pfeil 2 (D): ca. 0,6 cm große Metastase des Kleinhirn rechts, nur in der MRT Untersuchung 

abgrenzbar. Die Bilder stammen aus dem Archiv der Uniklinik Köln. 

 

Das obige Bildbeispiel verdeutlicht die bessere Sichtbarkeit der Hirnmetastasen und damit die 

Überlegenheit der MRT gegenüber der Kontrastmittel-gestützen CT Untersuchung. An dieser 

Stelle sollte zusätzlich erwähnt werden, dass im Rahmen der PET-CT nur ein natives Schädel-

CT angefertigt wird, dessen Sensitivität für Hirnmetastasen noch geringer ist, als die der cCT 

mit Kontrastmittel (Abb.10). Daher ist diese Untersuchung für einen sicheren 

Metastasenausschluss nicht ausreichend.  

Eine weitere Limitation der FDG-PET stellt der physiologisch hohe FDG-Uptake des Gehirns 

dar, sodas kleine Hirnmetastasen auf Grund des Hintergrundsignals nicht abgegrenzt warden 

können.  

Neben dem Ausschluss von Hirnmetastasen kann die MRT zur Beurteilung der 

Lokalausdehnung von Sulcus-Superior-Tumoren (Pancoast-Tumoren) sowie bei 

Lungentumoren mit Mediastinalinfiltration oder Spinalkanalinfiltration eingesetzt werden.  

Verschiedene Studien konnten in diesem Zusammenhang zeigen, dass dynamische MRT-

Untersuchungsprotokolle des Thorax, während fortgesetzter Atmung, bei der Beurteilung einer 

Infiltration des Mediastinums, der oberen Thoraxapertur und der Brustwirbelsäule der CT 

überlegen sind.50-52  

Außerdem kommt die MRT im Rahmen des M-Stagings bei der Differentialdiagnostik von 

fokalen Leberläsionen und Nebennierenläsionen zum Einsatz.10 

 

2.4  Diagnosesicherung und invasive Staging-Untersuchungen des 

Bronchialkarzinoms 

 Bronchoskopie und Nadelaspirationsverfahren 

Die wichtigste Methode zur Diagnosesicherung eines zentral gelegenen Bronchialkarzinoms 

ist die Bronchoskopie.10 Hierbei handelt es sich um eine endoskopische Methode zu 

Untersuchung der Trachea und Bronchien. Grundsätzlich werden die starre und die flexible 

Bronchoskopie unterschieden. Bei einem starren Bronchoskop handelt es sich um ein 

röhrenförmiges Instrument, meist aus Edelstahl, über das verschiede (starre oder flexible) 

Optiken, Zangen oder andere Werkzeuge eingeführt werden können. Außerdem erfolgt über 

dieses Rohr auch die Beatmung des Patienten. Die Einführung des starren Bronchoskops 

selbst kann nur nach Narkose erfolgen. Im Gegensatz hierzu erfordert die flexible 
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Bronchoskopie lediglich eine Sedierung. Ein flexibles Bronchoskop besteht aus einem 

biegsamen, dünnen Schlauch. Dieser enthält in seinem Inneren verschiede Elemente:  

Lichtleiter, mit deren Hilfe das Licht einer externen Quelle bis an die Spitze des Endoskops 

transportiert wird, Arbeitskanal sowie Verbindungskabel zur Bildübertragung zwischen den 

CCD-Chips an der Spitze und außerhalb des Gerätes.53 

Die Bronchoskopie erreicht insbesondere bei zentral gelegenen Bronchialkarzinomen hohe 

diagnostische Sicherheit.54, 55  

Demgegenüber erreicht dieses Verfahren bei der diagnostischen Sicherung peripherer 

Lungenrundherde in einer Metaanalyse aus 18 Studien von Mondonie et. al, nur eine 

Erreichbarkeit der Läsionen von ca. 53%56. Aus diesem Grund ist bei peripher gelegenen 

Läsionen die transthorakale CT-gesteuerte Biopsie eine häufig angewandte Alternative.  

Im Rahmen der Bronchoskopie stehen verschiedene Möglichkeiten der Gewebesicherung zur 

Verfügung. Bei zentralen gut sichtbaren und einfach zu erreichenden Tumoren wird meist 

unter Verwendung bronchoskopischer Werkzeuge (Bürste, Nadel, Katheter, Zange) 

makroskopisch gesichertes Material gefördert. Bei peripheren Läsionen erfolgt die 

Materialsicherung mittels Feinnadelbiopsie.10 Das in diesem Kontext gängige Verfahren ist die 

mittels endobronchialer Sonographie (EBUS) gesteuerte, transbrochiale Nadelaspiration 

(TBNA).  

Bei der EBUS-TBNA wird die Biopsienadel Ultraschall-gesteuert durch die Bronchialwand in 

das peribronchiale Gewebe eingeführt und anschließend durch Anlegen eines kräftigen Sogs, 

Gewebe aspiriert.57  

Die bronchoskopische transbronchiale Nadelaspiration hat eine geringe eingriffsbezogene 

Letalität. Zu den Hauptkomplikationen zählen, insbesondere bei der Biopsie peripher 

gelegener Tumoren, leichte Hämorrhagien und ein Pneumothorax mit einer Häufigkeit von 1-

4%.  

Patienten mit Verdacht auf zentrales Lungenkarzinom mit einem Durchmesser von mehr als 2 

cm sollten grundsätzlich einer Bronchoskopie zugeführt warden.10 

Eine eng verwandte Methode die zur Materialsicherung ösophagusnaher, intrapulmonaler 

Läsionen eingsetzt wird ist die transösophageale EUS-FNA (endoskopische Ultraschall-

gesteuerte Feinnadelaspiration). Dieses Verfahren erreichte in einer Metaanalyse von 

Korevaar D et. al., eine diagnostische Ausbeute von durchschnittlich 90%.58   

 

 Transthorakale Lungenbiopsie 

Bei einem peripher gelegenen, > 1 cm großen Lungentumor und Indikation zur nicht-

chirurgischen Biopsie, kann die transthorakale Lungenbiopsie (TTLB) eingesetzt werden. Bei 

nicht-pleuraständigen, peripheren Tumoren und negativer bronchoskopischer Biopsie ist die 

CT-gesteuerte TTLB die Methode der Wahl.10  Bei diesem Verfahren wird eine ausreichend 
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dimensionierte Hohlnadel, meist nach örtlicher Betäubung der Einstichstelle, seltener in 

Regional- oder Allgemeinanästhesie (Narkose), durch die Haut gezielt bis an die  pulmonale 

Läsion vorgeschoben. Hierbei erfolgt die Positionskontrolle meist mittels 

Computertomographie. Bei einem pleuraständigen Tumor wird zwischen Ultraschall- 

gesteuerter und CT-gesteuerter Lagekontrolle abgewogen.  

Sobald die Hohlnadel mit ihrer Spitze im suspekten Bereich platziert ist, wird über die 

Hohlnadel eine Stanznadel eingeführt und hierüber erfolgt das Ausstanzen von Gewebe für 

die histologische Untersuchung. Die Gewebsstanze ist hierbei in der Regel 1 oder 2 cm lang 

und hat einen Durchmesser von 19-23 Gauge.59 

Zur Abklärung suspekter Raumforderungen werden bei dieser Methode diagnostische 

Sensitivitäten um 90% beschrieben.60-62 Insbesondere bei peripheren pulmonalen Läsionen 

von weniger als 3 cm Durchmesser bestehen höhere Sensitivitäten als bei der Bronchoskopie 

und die transthorakale Lungenbiopsie ist zu empfehlen.  

Der Pneumothorax, die häufigste Komplikation nach TTLB, kann eine Thoraxdrainage 

erforderlich machen und tritt in Deutschland in 10-30 % der Fälle auf, wobei der Großteil der 

iatrogenen hervorgerufenen Pneumothoraces nur geringen Ausmaßes sind und rein 

konserviert kontrolliert werden. In der Regel wird eine vollständige Resorption innerhalb von 

einer Woche beobachtet.10 

Nationale multizentrische Erhebungen oder große Querschnittsanalysen in Vereinigten 

Königreich (5444 Biopsien), Japan (9783 Biopsien), Korea (10568 Biopsien) und den 

Vereinigten Staaten (15865 Biopsien) berichteten Pneumothorax-Raten von 15,0-35,0 % und 

Raten von Pneumothorax, der eine Thoraxdrainage erforderte, von 3,1-6,6 %.63-66 

In einer Metaanalyse von Holty et al. lag die Rate schwerwiegender Komplikationen, bei der 

CT-gesteuerten Lungenbiopsie bei ca. 0,3%.67 Zu diesen berichteten Komplikationen gehören 

Blutungen, Pneumomediastinum, drainagepflichtiger Spannungspneumothorax, 

Herzbeuteltamponade und Hämomediastinum.67, 68 Eine andere Metanalyse von Gu et al. 

berichtete von schwerwiegenden Komplikationen in 2 von 1.299 Fällen (0,15%).69, 70 

 

 Videoassistierte Thorakoskopie 

Der Begriff „Thorakoskopie“ bezeichnet die Endoskopie im Inneren des Brustkorbs.71, 72 Mit der 

technischen Weiterentwicklung erweiterte sich das Indikationsspektrum dieser Methode. In 

den Jahren 1992-2002 wurde die Video-assistierte Thorakoskopie (VATS)  vornehmlich für 

diagnostische Eingriffe wie Pleuro-/Mediastinoskopie und Lungen-/Mediastinal-

/Pleuralbiopsien und kleinere chirurgische Interventionen, wie Sympathektomie, 

Splanchnikoektomie, Pneumothorax Chirurgie oder Nuss Operation, eingesetzt. Ab dem Jahr 

2003 erweiterte sich dieses Indikationsspektrum jedoch auch um größere chirurgische 

Eingriffe, wie Lob-, Thym-, Oesophag-, Pneumektomie.72 In einer Studie von Kaiser et al., kam 
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es bei 10% der Patienten zu Komplikationen.73 In anderen Studien lag die Komplikationsrate 

im Bereich zwischen 3,7-4,3%.74–76 In einer multizentrischen Studie von Downey et al. lag die 

Komplikationsrate bei 10%. Dabei wurden keine intraoperativen Komplikationen beobachtet. 

Die allgemeine postoperative Mortalität lag bei 2%.77 In einer weiteren Studie von Imperatori 

et al. (2008) war ein länger andauerndes Luftleck die häufigste Komplikation, welches in 4,7% 

der Fälle auftrat. Zu wichtigen weiteren Komplikation von VATS zählen Blutungen (0,5-1,9%), 

postoperative Wundinfektion (6%), postoperative Schmerzen und Rezidive dieser 

Komplikationen (0,26-0,5%).76  

Grundsätzlich ist ein Vorteil dieses Verfahrens, dass es bei sehr kleinen isolierten Befunden 

möglich sein kann, den Tumor in sano zu exzidieren. Hierdurch kann diese eigentlich 

diagnostische Methode in passenden Fällen direkt zur Therapie verwendet warden.72, 75 

 

2.5  Biologische Heterogenität des nicht kleinzelligen Bronchialkarzinoms 

und therapeutische Implikationen bei KRAS-Mutation 

Die Zellteilungsrate der Tumorzellen des NSCLC ist langsamer als die des SCLC. Die 

Tumorverdopplungszeit des NSCLC beträgt ohne therapeutische Intervention im Schnitt 180-

300 Tage, im Vergleich hierzu beträgt sie beim SCLC nur 10-50 Tage. Die Effektivität der 

herkömmlichen Zytostatika ist daher beim NSCLC im Vergleich zum SCLC geringer.  

Die primäre Strategie beim nicht-kleinzelligen Bronchialkarzinom ist daher die Operation. Im 

Frühstadium Ia bis IIb (bis T3N0 oder T2N1, entspricht ca. 25% der NSCLC), ist oft eine 

kurative Therapie durch Resektion des Primärtumors mit Lobektomie, evtl. mit Bilobektomie 

und mediastinaler Lymphadenektomie möglich. Ist der Tumor im Frühstadium ungünstig 

gelegen oder bereits weit ausgedehnt und keine OP möglich, oder wird die OP durch den 

Patienten abgelehnt, so ist eine Radiotherapie mit 60-70 Gy eine Alternative zur OP.  

In einigen Fällen ist es hilfreich, vor der OP eine neoadjuvante Radiotherapie, Chemotherapie 

oder kombinierte Radiochemotherapie durchzuführen, um den Tumor zu verkleinern 

(sogenanntes down staging) und besser oder überhaupt operieren zu können. 

Bei fortgeschrittenerem Stadium IIIa bis IIIb (bis T4N2 oder jedes TN3, ca. 25% der NSCLC) 

ohne Metastasen ist primär keine OP angezeigt. Als Therapiestandard gilt heute (seit 2019) 

eine sequenzielle Radiochemotherapie. Als Erstlinientherapie kommen Kombinationen aus 

den Substanzen Cisplatin, Carboplatin, Docetaxel, Gemcitabin, Pemetrexed oder 

Bevacizumab infrage. Ergänzend dazu ist eine Antikörpertherapie möglich. Seit Ende 2005 ist 

in Deutschland Erlotinib, ein Tyrosinkinasehemmer, zugelassen, welcher den 

Wachstumsfaktor HER1 blockiert und die Prognose verbessern kann. Alternativ kann Gefitinib 

eingesetzt werden. Weitere Substanzen (z.B. Pralsetinib) befinden sich in klinischer Prüfung. 
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Bei fortgeschrittenen Tumoren mit KRAS-G12C-Mutation kann der KRAS-Inhibitor Sotorasib 

als Monotherapie eingesetzt werden. Nach erfolgloser Chemotherapie ist eine 

Zweitlinientherapie mit Checkpoint-Inhibitoren wie Atezolizumab, Durvalumab oder 

Pembrolizumab möglich.78, 79  

Die Entwicklung dieser Medikamentengruppe der Biologika folgte der Entdeckung einer 

großen Anzahl verschiedener histologenetischer Untergruppen des NSCLC. Der genetische 

Code der Tumorzellen der verschiedenen Untergruppen weist jeweils spezifische molekulare 

Abweichungen auf. Diese werden durch Veränderungen im Zellgenom bedingt (Mutationen, 

Amplifikationen, Translokationen u.a.). Die Genomvariationen führen zur Ausprägung 

charakteristischer Oberflächenmerkmale. Diese Merkmale an der Zelloberfläche sind der 

therapeutische Ansatzpunkt der Biologika.80  

Diese Medikamentengruppe nimmt im komplexen Therapieschema des NSCLC bereits eine 

wichtige Rolle ein und wird gezielt gegen verschiedene Genomvariationen, den sogenannten 

Treibermutationen, eingesetzt, um das Tumorwachstum zu inhibieren. Dabei kommen sie 

individualisiert teils in frühen, teils auch in fortgeschrittenen Tumorstadien zum Einsatz. 

Daher sollte vor Beginn der medikamentösen Therapie ermittelt werden, ob und welche der, 

für die individualisierte Therapie, relevanten Genomvarianten vorliegt.10  

Abbildung 11 gibt eine Übersicht über die bisher bekannten und bestimmbaren Mutationen, 

Amplifikationen und Translokationen, die das entkoppelte Wachstum eines NSCLC bedingen 

können. 
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Abb. 11:  Häufigkeit der bekannten das Tumorwachstum treibenden Genomvarianten beim 

NSCLC81 

 

Es stellte sich heraus, dass es sich bei der sogenannte KRAS-Mutation um die beim NSCLC 

häufigste Treibermutation handelt. Im Folgenden wird diese Genomvariante näher erläutert 

und ihre therapeutischen Implikationen dargestellt. 

 Genetische Grundlagen der KRAS-Mutation 

Das sogenannte Rat-Sarcoma (RAS) ist das am häufigsten mutierte Onkogen bei malignen 

Erkrankungen des Menschen. Hierbei stellt das Kirsten-Rat-Sarcom (KRAS) die am häufigsten 

mutierte RAS-Isoform dar.  

Die KRAS-Mutationen liegen bei ca. 35% der Patienten mit NSCLC vor.82 

Dabei ist die KRAS-Mutation häufiger bei Adenokarzinomen (20-40 %) und seltener (∼5 %) 

bei Plattenepithel-NSCLC.83, 84  
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Beim NSCLC tritt die KRAS-Mutation bei Nikotinabusus häufiger auf als bei Nichtrauchern mit 

ca. 30 % im Vergleich zu ca. 11 % und kommt im westlichen Raum im Vergleich zum 

asiatischen öfter  vor mit 26 % im Vergleich zu 11 %.85 

Seit sich die große Bedeutung bei der Entstehung und dem Progress von Krebserkrankungen 

abzeichnet, widmen sich zahlreiche Studien dem besseren Verständnis von KRAS.  

Die genauere Erforschung der molekularen Struktur des an GDP-gebundenen Proteins, für 

welches das mutierte KRAS-Gen codiert, führte zur Entwicklung erster Medikamente 

(Biologica), deren Wirksamkeit sowohl in Monotherapie als auch in Kombinationsschemata 

belegt werden konnte und bereits im klinischen Alltag Anwendung finden.  

Insbesondere bei KRAS G12-C-Inhibitoren wie AMG510 (Sotorasib) und MRTX849 

(Adagrasib), die in klinischen Studien ermutigende Ergebnisse erzielt haben.  

AMG510 war das erste Medikament, das auf die spezifische Mutation KRAS G12C abzielte 

und wurde im Jahr 2021 für den klinischen Einsatz zugelassen. 

Das auf dem kurzen Arm von Chromosom 12 (12p11.1-12p12.1) lokalisierte KRAS wurde 

erstmals im Jahr 1982 aus menschlichen Bronchialkarzinomzellen isoliert.86 

Die Struktur von RAS-Gene besteht aus vier Exons, die auf die gesamte Länge von etwa 30 

kb DNA verteilt sind. Das KRAS-Gen kodiert für zwei eng verwandte Protein-Isoformen, KRAS-

4B und KRAS-4A, die aus 188 bzw. 189 Aminosäuren bestehen, was auf das unterschiedliche 

Clipping des vierten Exons zurückzuführen ist.87 

Der Begriff KRAS wird im Allgemeinen als KRAS-4B bezeichnet, da die mRNA, die für KRAS-

4B kodiert, in den Zellen den bei weiten größten Anteil ausmacht.88  

Die Kristallstruktur von RAS besteht aus sechs Beta-Strängen und fünf Alpha-Helices, die zwei 

Hauptdomänen bilden: eine katalytische Domäne, die G-Domäne und eine hypervariable 

Region (HVR). Die G-Domäne besteht aus drei Regionen: Switch I, Switch II und der P-

Schleife, die Guaninnukleotide bindet und die Signalübertragung durch Wechselwirkung mit 

Effektoren aktiviert. Die HVR umfasst das CAAX-Motiv, das mit der Membranlokalisierung 

zusammenhängt.89 

Was die Funktion betrifft, so ist RAS eine Art membrangebundenes regulatorisches Protein 

(G-Protein), das Guanin-Nukleotid bindet und zur Familie der Guanosintriphosphatasen 

(GTPasen) gehört [90]. RAS fungiert als binärer Schalter zwischen Guanosindiphosphat 

(GDP)/Triphosphat (GTP), der wichtige Signaltransduktionen von aktivierten 

Membranrezeptoren zu intrazellulären Molekülen steuert.91 Der binäre Schalter wird 

hauptsächlich durch zwei Arten von regulatorischen Proteinen bestimmt: Guaninnukleotid-

Austauschfaktoren (GEFs) wie Son of Sevenless (SOS) und GTPase-aktivierende Proteine 

(GAPs) wie Neurofibromin 1 (NF1)92. Im inaktiven Ruhezustand liegt KRAS üblicherweise an 

GDP gebunden vor. Dies ist auf die intrinsische GTPase-Aktivität von KRAS zurückzuführen, 

die in der Lage ist, GTP zu GDP zu hydrolysieren.93 Wenn die Zellen relevante Stimuli erhalten, 
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wie z. B. die Interaktion von EGF und EGFR, scheint der KRAS-GDP-Komplex in Anwesenheit 

von GEFs eine verringerte Affinität von KRAS zu GDP zu haben. In diesem Zustand wird GDP 

durch GTP ersetzt, das eine höhere Affinität und eine etwa 10-fach höhere zelluläre 

Konzentration als GDP besitzt.94 Die KRAS-GTP-Bindung führt zu einer veränderten 

Konformation in den Schaltern I und II der G-Domäne, woraufhin KRAS aktiviert wird und als 

Monomer oder Dimer an seine nachgeschalteten Moleküle bindet. Hierdurch werden 

wiederum eine Reihe von Signalkaskaden aktiviert. Im Gegensatz dazu fördern GAPs die 

Bindung zwischen GDP und KRAS, indem sie die GTPase-Aktivität von KRAS verstärken und 

so den inaktiven Zustand von KRAS aufrechterhalten (Abb. 12).95 

 

Abb. 12:  Funktion von KRAS. FTase: Farnesyltransferase; GGTase: 

Geranylgeranyltransferase; RCE1: RAS-                                                converting enzyme 1; 

ICMT: Isoprenylcysteincarboxylmethyltransferase; PDEδ: Phosphodiesterase δ86 
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Das aktivierte KRAS-Protein kann ein breites Spektrum nachgeschalteter Signalwege 

aktivieren.96 Abbildung 13 veranschaulicht die Regulierung der KRAS-Aktivierung und 

Signaltransduktion. 

 

 

Abb. 13:  Regulierung der KRAS-Aktivierung und Signaltransduktion86                                                                                                                                                       

 

Das Muster der Aktivierung von KRAS hängt von der Membranlokalisierung und der 

Aktivierung benachbarter Membranrezeptoren ab. Im Ruhezustand bindet KRAS mit GDP. 

Wenn extrazelluläre Wachstumsfaktoren, wie EGF Signale an die Rezeptoren binden, 

interagiert SOS, eine Art GEF (guanine [nucleotide] exchange factor), mit dem KRAS-GDP-

Komplex, was zur Freisetzung von GDP und zum Ersatz von GTP führt. Die Bindung von GTP 

und KRAS führt zu strukturellen Veränderungen von Schalter I und Schalter II und damit zur 

Aktivierung von KRAS. Im Gegensatz dazu verstärken die GAPs die intrinsische GTPase-

Aktivität von KRAS, um die Reaktion zu beschleunigen, bei der GTP zu GDP hydrolysiert wird. 

Der KRAS-Zyklus zwischen aktivierter und inaktivierter Konformation fungiert als fein 

regulierter molekularer Schalter, der mehrere Signalkaskaden steuert. Hierzu zählen 

insbesondere der RAF-MEK-ERK-Weg, der die Proliferation steuert und der PI3K-AKT-mTOR-

Weg, der das Zellüberleben fördert. Die weiteren dargestellten Signalwege sind für das KRAS-
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abhängige Tumorwachstum, die Endozytose sowie die Organisation des Zytoskeletts 

verantwortlich.97  

 

 Therapeutische Implikationen eines postiven KRAS-

Mutationsstatus    

KRAS spielt eine zentrale Rolle bei der Signaltransduktion von Tumorzellen und steht somit in 

direktem Zusammenhang mit der Entstehung und Entwicklung von Tumoren.  

Seit 40 Jahren ist die therapeutische Ansteuerbarkeit der KRAS- Mutation wissenschafliches 

Forschungsziel. 

Diese Bestrebungen blieben jedoch zunächst erfolglos und die Forschung konzentrierte sich 

zunächst auf andere wichtige Moleküle des KRAS-Signalwegs, wie bspw. RAF, ERK und 

MEK. Somit waren KRAS-gesteuerte Tumoren jedoch nicht greifbar. KRAS-mutierte Tumoren 

sind heterogen, was die zum Teil geringe Wirksamkeit unspezifischer KRAS-Inhibitoren 

erklärt. Selektive Inhibitoren, die auf spezifische KRAS-Mutationen abzielen, werden dringend 

benötigt, um die verschiedenen Funktionen der KRAS-Mutation im Einklang mit den 

Anforderungen der Präzisionsonkologie wirksam zu hemmen86. 

Für die spezifische Mutation KRAS G12C konnten jedoch in jüngerer Zeit wesentliche 

Fortschritte bei der Entwicklung direkt wirksamer Medikamente gemacht werden.  

Im Gegensatz zu anderen KRAS-Mutationen, wie KRAS G12D und G12V, kann KRAS G12C 

alternative Interaktionen mit seinen nachgeschalteten Effektoren durch einen aktiven Zyklus 

zwischen dem GDP-gebundenen und dem GTP-gebundenen Zustand aufrechterhalten.98  

Dieser Unterschied ermöglicht es, durch Reaktion mit Cysteinresten, KRAS G12C, in seiner 

inaktiven Konformation zu sperren. 

Die Thiolgruppe im Cysteinrest bildet eine Disulfidbrücke mit Cystein 12 und führt so zur 

spezifischen und langanhaltenden Inhibition von KRAS G12C.99  

Das Medikament, das sich diese Strategie zunutze macht heißt Sotorasib (AMG510) und 

wurde im Januar 2022 in der europäischen Union zugelassen.  

Es handelt sich hierbei um den ersten, bei Menschen einsetzbaren, kovalenten KRAS G12 C-

Inhibitor, der selektiv und irreversibel an das mutierte Protein bindet und es im inaktivierten, 

GDP-gebundenen Zustand halt.100 Die Wirksamkeit von Sotorasib in Monotherapie wurden 

(Phase I/II) -Studie von Hong D.S. et. al. und Li L.T., bei bereits vortherapierten NSCLC-

Patienten mit vorliegender KRAS G12C -Mutation und lokal fortgeschrittenem oder 

metastasierten Tumorstadium gezeigt. Bei diesen Patienten wurde durch den Einsatz von 

Sotorasib eine mediane Dauer des Therapieansprechens von ca. 10 Monaten sowie eine 

mediane progressionsfreie Überlebenszeit von 6,8 Monaten erreicht. Die mediane Zeit bis zum 

objektivierbaren Therapieansprechen betrug ca. 1,4 Monate.101  
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Sotorasib ist heute bereits fester Bestandteil der NSCLC-Therapie und ist Mittel der Wahl bei 

erwachsenen Patienten mit positivem KRAS (G12C)-Mutationsstatus und wird bei 

fortgeschrittenen Tumoren als Monotherapie eingesetzt.86 

Ein weiterer KRAS(G12C)-Inhibitor, Adagrasib (MRTX849) wurde im im November 2023 von 

der European Medicines Agency (EMA) zugelassen. Es bindet wie Sotorasib ebenfalls 

irreversibel und selektiv an die sogenannte „switch II-Tasche“ des KRAS-Proteins und fixiert 

dieses ebenfalls im GDP-gebundenen inaktiven Zustand. Bei längerer Halbwertszeit (24h vs. 

5,5h), höherer oraler Bioverfügbarkeit und weitreichender Gewebsverteilung, deuten 

präklinische Daten darauf hin, dass Adagrasib die Blut-Hirn-Schranke überwinden kann. Die 

bereits gesammelten klinischen Daten, belegen, als entscheidender Vorteil gegenüber 

Sotorasib, die antitumorale Wirkung des Medikaments bei Hirnmetastasen.  

Aufgrund der zunehmenden Relevanz eines positiven KRAS-Status im Hinblick auf das 

therapeutische Vorgehen, steigt auch der Stellenwert der diagnostischen Sicherung.102  

 

2.6  Radiomic/Radiogenomic beim Bronchialkarzinom    

Das Diagnostikfeld der Radiogenomik ist ein relativ neuer Ansatz der Krebsdiagnostik, der 

eine Bewertung und Vorhersage der molekularen Grundlagen von Tumorzellen anhand von 

Bildgebungsphänotypen bzw. radiologischen Merkmalen der Tumorläsionen ermöglicht. Mit 

dieser Methode lassen sich Assoziationen zwischen radiologischen Merkmalen und 

molekularen Merkmalen auf genomischer, transkriptomischer und proteomischer Ebene 

herstellen.103  

 Grundlagen der Radiomic/Radiogenomic    

Einer der grundlegenden Aspekte für das Verständnis der Krebspathobiologie ist die 

Korrelation genomischer Veränderungen mit dem Krebs-Phänotyp. Vor diesem Hintergrund 

konnten durch Forschungsfortschritte der DNA- und RNA-Analyse von Krebszellen, bereits 

schon eine Vielzahl direkter Verbindungen zwischen genomischen Daten, Tumortypen und 

bildmorphologischen Veränderungen gefunden werden. 

Die Radiomic ergänzt die traditionelle Krebsbildgebung, die der Eckpfeiler der 

Krankheitsdiagnose, der Stadieneinteilung, der Bestrahlungsplanung und der Überwachung 

war, durch quantitative Aspekte. Es handelt sich hierbei im Wesentlichen um eine Methode 

zur Bewertung von bildgebenden Biomarkern.104 Unter dem Begriff „Bildmerkmale“ im 

Zusammenhang mit Radiomics versteht man nicht das vom menschlichen Auge gesehene 

visuelle Bild, sondern Bilddaten, die dem menschlichen Auge möglicherweise verborgen 

bleiben. Hierbei kann es sich z.B. um quantitative Formmerkmale, komplexe 

mehrdimensionale Muster, feinste Grauabstufungen, Homogenität, Heterogenität, interpixel-

Relationen, Texturen oder spektrale Eigenschaften in einer Region of Interest (ROI) handeln. 
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Die Bestimmung des Mittelwerts der Signalwerte innerhalb einer ROI ist ein Beispiel für eine 

einfache statistische Auswertung, die bereits fest in den klinischen Workflow integriert ist. 

Durch Identifikation und Analyse radiomischer Bildmerkmale werden sogenannte 

radiomischen Features erstellt, die die biologischen Bildmerkmale statistisch beurteilbar 

machen.  

Mithilfe von maschinellem Lernen können diese anschließend in der Auswertung mit 

Zielparametern verknüpft werden. Auf diese Weise kann beispielsweise die Ausprägung der 

intratumoralen genetischen Heterogenität, verschlüsselt in eine Radiomics-Signatur, in 

Zusammenhang mit Therapieansprechen oder Prognose gebracht werden. Bestimmte 

Features könnten demnach spezifisch für bestimmte Pathologien, z.B. Tumorentitäten sein.  

Die Kombination der Radinomic und der genomischen DNA- und RNA-Analyse mit den auf 

genomisch-transkriptomisch-proteomischer Ebene zugrundeliegenden Merkmalen wird als 

"Radiogenomic" bezeichnet, ein neuartiger Ansatz, mit dem sich die biologischen Grundlagen 

von Bildgebungsphänotypen identifizieren lassen.105 

Angesichts der hohen Verfügbarkeit von Bildgebungsdaten bei Patienten mit 

Bronchialkarzinom, war diese spezifische Krebsart bereits von Beginn an im Fokus von 

Radiomic- und Radiogenomic-Studien.103   

Um ausgewählte Bereiche bzw. Volumina aus medizinischen Bilddatensätzen einer 

mathematischen Transformation zugänglich zu machen und in verwertbare Daten 

umzuwandeln, ist eine Kette aufeinander folgender Arbeitsschritte nötig. Diese Abfolge von 

Arbeitsschritten wird als „Radiomics-Pipeline“ bezeichnet.106  

Abbildung 14 dient der übersichtlichen/schematischen Darstellung dieser einzelnen 

Arbeitsschritte, welche anschließend kurz erläutert werden.       
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Abb. 14:  Typischer Arbeitsablauf einer radiomischen Analyse: 1. Auswahl der 

Bildgebungsmodalität. 2. Segmentierung des Volumens von Interesse (VOI). 3. Selektion 

radiomischer Merkmale. 4. Training und Validierung des „machine learning“-Modells99      

 

Der erste Schritt ist die Definition des Problems auf klinischer Ebene. Eine erfolgreiche 

Anwendung von Radiomics und „Mashine Learning“ ist in erster Linie von einer soliden, 

klinisch sinnvollen Formulierung des klinischen Anwendungsfalls abhängig. Bei der 

Betrachtung verschiedener Anwendungsfälle ist es von größter Bedeutung, die endgültige 

Auswahl passender Fälle nicht nur nach ihrer klinischen Stichhaltigkeit abzuwägen, sondern 

stattdessen eine realistische Betrachtung einer angemessenen Datenmenge anzustellen, die 

für ein effizientes Training des maschinellen Lernalgorithmus erforderlich ist, um ein robustes, 

präzises und allgemein gültiges Modell zu erstellen.107  

Letzteres gilt besonders, wenn es sich bei den Eingabedaten um medizinische Bilder handelt, 

die grundsätzlich dynamisch sind und häufig, beispielsweise aufgrund der 

Informationsdarstellung oder des Fehlens von allgemein angenommenen standardisierten 

Aufnahmeprotokollen, intrinsische Variabilität aufweisen.108 Der Rohdatensatz medizinischer 

Bilder, aus statistischer Sicht die sogenannte Grundwahrheit muss robust sein, leicht zu 

beschaffen sein und möglichst wenig von menschlicher Interpretation abhängen. Bei der 

Analyse radiologischer Bilder ist letzteres in der Regel jedoch unvermeidlich und sollte daher 

von Expertengremien erstellt werden, um die Auswirkungen der Interobserver-Variabilität zu 

minimieren. 

Bei der Identifizierung aussagekräftiger potenzieller Datenquellen, die für die radiogenomische 

Analyse herangezogen werden können, sollte spezifisches Fachwissen berücksichtigt werden. 

Bisherige Forschungsansätze zeigten deutlich, dass bei der gewählten Bildgebung eher 
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Robustheit der Bildinformationen, wie in der CT gegenüber hoher Vielfalt der Bildmerkmale, 

wie in der MRT, zu bevorzugen sind. Standard-Bildgebungsverfahren sind ebenfalls 

vorzuziehen, da sie einfacher zu beschaffen sind und ein größeres Potential für die klinische 

Anwendbarkeit bieten.103 

Grundsätzlich sind alle modernen Bildgebungsmodalitäten der radiomischen Analyse 

zugänglich. Computertomographie (CT), Kernspintomographie (MRT), Positronen-Emissions-

Tomographie (PET) und Einzelphotonen-Emissions-Computertomographie (SPECT) sind 

einige der klinischen Modalitäten, die häufig zur Extraktion von Texturmerkmalen eingesetzt 

werden. Die Vielfalt der Scanner ermöglicht ein breites Spektrum an Aufnahme- und 

Bildrekonstruktionsprotokollen, so dass im Rahmen der Datenerfassung, dem nächsten 

Arbeitsschritt der Radiomics-Pipeline, eine Standardisierung dieser Protokolle erforderlich 

ist.109 Die Herausforderung der Standardisierung von Daten besteht darin, die aufgrund 

technischer Details entstehenden, numerischen Variationen von Texturmerkmalen zu 

minimieren, da diese fälschlicherweise mit biologischen Effekten in Verbindung gebracht 

werden können. Aus diesem Grund folgen die Aufnahmeprotokolle, die Segmentierung von 

Geweben und die Berechnung radiomischer Merkmale genauen Richtlinien.110, 111 

Nach Generierung und Auswahl geeigneter radiologischer Bilder, ist die Segmentierung einer 

der zentralen und zeitaufwendigsten Arbeitsschritte für die Berechnung von Texturmerkmalen. 

Es gibt viele Herausforderungen im Zusammenhang mit der Segmentierung, einschließlich 

einer hohen benutzerabhängigen Variabilität, der sogenannten „inter-reader variability“. Selbst 

bei Verwendung automatisierter Algorithmen mit künstlicher Intelligenz (KI) handelt es sich bei 

der Segmentierung um einen zeitaufwendigen Arbeitsschritt, da ein Eingreifen durch einen 

Radiologen zur Korrektur und Validierung der Ergebnisse erforderlich ist. Es wird empfohlen, 

dass zwei oder mehr Reader die Segmentierung durchführen, um subjektive Meinungen über 

die genauen Grenzen auszugleichen.  

Außerdem gilt es nur Merkmale für die finale Analyse auszuwählen, die möglichst 

unempfindlich gegenüber verbleibenden diskreten Unterschieden bei der Definition der 

„radiomic signature“ sind. Nach der Definition eines Volumens von Interesse (VOI) durch einen 

Auswerter im Rahmen der Segmentierung, erfolgt die Berechnung radiomischer Merkmale. 

Solche Merkmale können Forminformationen, Signalintensitäten, Heterogenität oder 

texturbezogene Informationen von Geweben innerhalb des VOI widerspiegeln112. 

Ein kritischer Aspekt, welcher sich im Rahmen einer radiomischen Analyse ergibt, besteht 

darin, dass mitunter die Anzahl der verfügbaren Patienten weitaus geringer ist als die Anzahl 

der Bildgebungsmerkmale, die wir von jedem einzelnen Patienten extrahieren können. 

Daher ist es nötig eine große Patientenkohorte aufzustellen, um einen Datensatz zu erhalten, 

der die natürliche Variabilität in ausreichendem, statistisch aussagekräftigen Maß 

wiederspiegelt. Dies wiederum ist problematisch, da eine Radiomics-Studie nur Bilddatensätze 
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einer Bildgebungsmodalität von gleichbleibend guter Bildqualität verwenden kann und es mit 

hohem Aufwand verbunden ist ausreichende Patientenzahlen zu akquirieren. Der Prozess zur 

Ermittlung des perfekten Gleichgewichts zwischen der Anzahl der Merkmale und der 

entsprechenden Modellleistung wird als Merkmalsauswahl (Feature Selection) bezeichnet und 

ist der nächste wesentliche Schritt der „Radiomics-Pipeline“. Zur Lösung des 

Dimensionalitätsproblems werden verschiedene statistisch-mathematische Methoden 

eingesetzt, darunter „Filter“-, „Wrapper“- und „Embedded“-Methoden, die im Wesentlichen 

darauf abzielen, die stabilsten und informativsten Merkmale für das Modelltraining 

auszuwählen. Diese endgültig für das Training verwendeten Merkmale werden als „radiomic 

signature“ bezeichnet. Die statistische Zuverlässigkeit der Merkmale sollte auf verschiedenen 

Ebenen bewertet werden, hierzu zählen die sogenannte Robustheit (robustness), zeitliche und 

räumliche Stabilität (temporal and spatial stability) und Reproduzierbarkeit (reproducibility). Ein 

typischer Arbeitsablauf in der ersten Phase erlaubt es beispielsweise, nur stabile Merkmale zu 

übermitteln. Eine sogenannte „Null- oder Fast-Null-Varianz“-Methode entfernt dabei 

unbrauchbare Merkmale. Eine anschließende Korrelationsanalyse entfernt redundante 

Merkmale und schließlich werden anspruchsvolle statistische Methoden wie Minimum 

redundancy feature selection (mRMR) oder Recursive feature elimination (RFE) verwendet, 

um die „radiomic signature“ fertig zu stellen.103 

Im finalen Schritt werden Modelle des maschinellen Lernens trainiert und validiert, um klinische 

Ergebnisse vorherzusagen oder Patienten anhand von genomischen oder molekularen 

Merkmalen zu klassifizieren. 

Bei einem Datenumfang von ca. 100 - 1000 Patienten, wie in diesem Projekt, sollten die 

radiomischen Merkmale mit klassischen Algorithmen des maschinellen Lernens (ML) 

untersucht werden. Hierzu zählen unter anderem „logistic regression“, „naïve Bayes“, „random 

forests“, „support vector machines“ und „boosted trees“. Nach Abschluss der Trainingsphase 

wird der Algorithmus ausgewählt, der bei der Vorhersage bis dahin unbekannter Daten, aus 

dem sogenannten Validierungssatz (validation set), die besten Ergebnisse erzielt113. 

 

 Mutationsprädiktion durch Radiomics/Radiogenomics beim 

NSCLC 

Es existieren bereits einige Studien, die demonstrieren, dass die radiomische bzw. 

radiogenomische Analyse potentiell eine relevante prognostische und prädiktive Rolle für 

Patienten mit NSCLC spielen könnte. Speziell bei Patienten mit Bronchialkarzinom sind die 

häufigsten Modalitäten, die in Studien verwendet werden, CT und FDG PET/CT, da sie im 

Rahmen der klinischen Routinediagnostik eine führende Rolle spielen. 

In einer Studie von Li et al. wurden subsolide Knoten von 154 Patienten mit pulmonalem 

Adenokarzinom untersucht, die zuvor einer vollständigen Exom-Sequenzierung unterzogen 
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worden waren. Die radiogenomische Analyse ergab, dass ein höherer Anteil solider 

Komponenten in den subsoliden Knoten mit einer signifikant höheren Mutationshäufigkeit in 

EGFR und KRAS korrelierte. Die Ergebnisse deuteten an, dass diese Gene die Progression 

von pulmonalen Adenokarzinomen bedingen und auf diese Weise vorhergesagt werden 

können114. In einer anderen Studie zeigten Shu Li et. al., dass die radiogenomische Analyse 

erfolgreich zur Vorhersage des Mutationsstatus der Subtypen des epidermalen 

Wachstumsfaktor-Rezeptors (EGFR) bei NCLC-Patienten eingesetzt werden kann. Genauer 

gelang es, die Bildmerkmale der Rezeptor-Subtypen 19Del und L858R zu unterscheiden115. 

Zhou et al. zeigten einen Zusammenhang zwischen CT-Hounsfield-Dämpfungsmessungen 

(Hounsfield attenuation) und EGFR-Expression. Sie stellten fest, dass das Vorhandensein 

unregelmäßiger Ränder und umgebender milchglasartiger Trübungen (ground-glass 

opacities) positiv mit der EGFR-Expression korrelierte116.  

In einer Studie von Rizzo et al. wurde gezeigt, dass die EGFR-Mutation mit CT-Merkmalen wie 

dem Vorhandensein eines Bronchopneumogramms, Pleura-Retraktion, kleiner Läsionsgröße 

und dem Fehlen einer Fibrose assoziiert ist. Im Gegensatz dazu wurde die ALK-Mutation mit 

vorhandenem Pleuraerguss in Verbindung gebracht. Eine runde Form, unspezifische Knoten 

in vom Tumor betroffenen Lappen und Raucheranamnese waren Variablen, die mit einer 

KRAS-Mutation in Verbindung standen117. 

In weiteren, unserem Projekt ähnlichen Ansätzen, sammelten beispielsweise Gevaert et al. 

Indizien dafür, dass das Vorhandensein eines Bronchopneumogramms innerhalb der 

Tumorläsion mit einer Überexpression des KRAS-Onkogens zusammenhängen könnte118. 

Weiss et al. zeigten in diesem Zusammenhang auf, dass die radiogenomischen Merkmale 

„Lower kurtosis“ und „positive skewness“ signifikant mit einem postiven KRAS-Mutationsstatus 

korrelieren119. 

                                                                                          

2.7 Fragestellungen und Ziel der Arbeit 

Ziel dieser Arbeit war es festzustellen ob mit Hilfe radiogenomischer Analyse der DECT-

Bildmerkmale eine Klassifikation einer NSCLC-Läsion im Hinblick auf den KRAS-Stauts 

möglich ist, um so auch das Potential für die klinische Anwendbarkeit beurteilen zu können. 

Um dies zu erreichen, wurde versucht, eine optimierte, auf radiologische DECT-Bildmerkmale 

anwendbare Pipeline für maschinelles Lernen (ML) zu entwickeln, zu trainieren und zu testen. 

Mit den erbrachten Ergebnissen sollte beurteilt warden, ob diese Methode das Potential hat, 

als Alternative invasiver Methoden, klinisch eingesetzt zu werden. 
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3. Material und Methoden  

3.1 Ethikvotum  

Für diese monozentrische, retrospektive Studie lag seitens der Ethik-Kommission der  

Universität zu Köln ein positives Ethikvotum vor (Aktenzeichen 2019-19-1196).  

3.2 Patienten 

Geeignete Patienten wurden retrospektiv aus der bestehenden onkologischen Datenbank der 

Uniklinik Köln zusammengestellt. Bei den eingeschlossnen CT-Datensätzen, handelte es sich 

um CTs aus der retrospektiven Auswertung ab Ethikvotum bis zum 01.05.2019.  

Die primären Einschlusskriterien waren ein Patientenalter von ≥ 18 Jahren, das Vorliegen 

eines histopathologisch gesicherten nicht-kleinzelligen Bronchialkarzinoms sowie 

Therapienaivität zum Zeitpunkt der ausgewerteten initialen Bildgebung. 

Darüber hinaus musste eine genetische Subtypanalyse vorliegen aus der die Treibermutation 

des Tumors hervor ging. Bei geeigneten Patienten wurden abschließend die CT-Datensätze 

der initialen Bildgebung identifiziert, auf Vollständigkeit überprüft und die Position etwaiger 

Lungenrundherde bzw. Raumforderungen unter Hinzuziehung der vorliegenden 

radiologischen Berichte korreliert.  

Die auf diese Weise akquirierte Kohorte umfasste insgesamt 212 Patienten mit einem NSCLC, 

58 Patienten hiervon mit KRAS-Mutation. Bei insgesamt 58 dieser Patienten wies das NSCLC 

eine KRAS-Mutation auf.  

Im Rahmen der durchgeführten Analyse wurden Patienten mit nodulären pulmonalen Läsionen 

mit einem Durchmesser im Weichteilfenster von  ≤ 30 mm (Nodules) und Läsionen von > 30 

mm Durchmesser (Masses) separat ausgewertet, unter der Annahme das sich die 

radiologischen Bildeigenschaften und somit auch die radiomischen Features voneinander 

abweichen könnten. Auf diese Weise sollte ermittelt werden ob sich die Analysemethode für 

eine der beiden Kategorien besser eignet. Abb. 15 zeigt ein Beispiel für die Segmentierung 

eines Lungenrundherdes (Durchmesser  ≤ 3 cm ) ohne Kontakt zur Pleura.  
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Abb. 15: Exemplarisch NSCLC-Patient mit Lungentumor im rechten Oberlappen (< 3 cm) mit 

diskreten Ausläufern zur Pleura, ohne Zeichen einer direkten Pleurainfiltration (cT2aNxMx) 

 

Insgesamt wurden 61 Patienten mit Lungenrundherden (Nodules) analysiert, hierbei lag in 17 

Fällen eine KRAS-Mutation vor. Bei den restlichen 151 Patienten waren die entsprechenden 

Lungenraumforderungen (Masses) im Durchmesser größer als 3 cm, hierunter befanden sich 

41 KRAS-positive Fälle.   

Der Begriff „Lungenläsionen“ wird im weiteren Verlauf ebenfalls verwendet und fasst alle 

analysieren „Nodules“ und „Masses“ zusammen. 
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Abb.16: Beispiel für eine Läsion (> 3 cm) mit direktem breitbasigen Kontakt der Pleura (cT3 

Nx Mx) 

3.3 Bildakquisition 

Der CT-Datensatze umfasste Aufnahmen von verschiedenen CT-Geräten. IQon Spectral CT 

(75 Patienten); Philips Brilliance 64 – CT (64 Patienten); Philips CT 6000 iCT (33 Patienten); 

Simens Somatom Dual Source-CT (19 Patienten), Simens Biograph mCT (9 Patienten), 

Simens Definition Flash-CT (6 Patienten) und GE Bright Speed 16 (6 Patienten).  

Exemplarische und häufige Scanparameter eines eingeschlossenen CTs waren: Rückenlage, 

inspirierender Atemanhalt, Rotationszeit ca. 0,33 sec, Kollimation ca. 64 × 0,625 mm; Matrix 

ca. 512 × 512; Rohrspannung 120 kVp; Röhrenstrom, 200 mA; Pitch, 0,9; Sichtfeld, 200 bis 

300 mm; Rekonstruktionsintervall, 1 mm; Fusionskernel: YA und L, Schichtdicke, 0,6 mm, 1 

mm, 2 mm; Voxel-Abstand (X- und Y-Richtung), 0,68-0,87 mm.  

Darüber hinaus waren alle eingeschlossenen CT kontrastmittelgestützt mit einem 

Körpergewicht-angepassten Bolus (Dosierung ca. 0,2-0,4g Jod / kg Körpergewicht) aus 

jodiertem Kontrastmittel (Accupaque, 350 mg J/ml), der über eine periphere Vene mit einer 

Flussrate von ca. 3,5 mL/s verabreicht wurde, gefolgt von einer Kochsalzlösung von 30 mL. 

Die Bolus-Tracking-Technik mit einer Verzögerung von 50 Sekunden nach Erreichen des 

Schwellenwertes von 150 HU in der Aorta descendens, um Scans des Thorax in venöser 

Phase zu erhalten.  

Für alle CT-Bilddaten wurde ein Standard-Lungenfenster und Standard-Weichteilfenster 

ausgewählt. In einer Subgruppe wurden die mittels Dual-Energy-CT-Technik, genauer der 
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hybrid-iterativen Spektralrekonstruktionsmethode (Spectral, Filter B, Level 3, Philips 

Healthcare), Jodkarten (IM) rekonstruiert und erfasst. 

 

3.4 Segmentierung 

Im Rahmen der vorliegenden Studie wurden die Primärläsionen der NSCLCs der 

eingeschlossenen Patienten, in Zusammenschau mit den vorliegenden radiologischen 

Befunden, durch den Doktoranden 3-dimensinoal segmentiert. Zunächst wurde die 

Lokalisation der malignen Läsionen den radiologischen Berichten entnommen und im CT-Bild 

aufgesucht. Mit Hilfe einer proprietären Forschungssoftware  „Mint Lesion Research“ (Mint 

Medical GmbH) wurde die Fläche der Läsionen in jeder einzelnen Bildschicht in der sie sichtbar 

waren, manuell umrandet. Die Segmentierungen wurden von einem zweiten unabhängigen 

Radiologen mit mehr als 5 Jahren Erfahrung in der CT-Bildgebung doppelt überprüft und 

gegebenenfalls angepasst. Die Segmentierungen wurden so durchgeführt, dass 

Tumorkomponenten vollständig erfasst waren, wohingegen die Inklusion von angrenzendem, 

nicht betroffenen Lungengewebe bzw. unmittelbar angrenzenden mediastinalen Strukturen 

oder Thoraxwand im Falle von zentralen bzw. peripheren Tumoren vermieden wurde. 
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Abb 17. Eine Visualisierung von zwei CT-Bildern, die eine erfolgreiche Segmentierung (oben 

links) und ein fehlerhaftes Bild (unten rechts), das nach der visuellen Analyse ausgeschlossen 

wurde. 

 

3.5 Präprozessierung und Merkmalsextraktion  

Nach der manuellen Segmentierung mit „Mint Lesion Research“ (mint lesion research, Mint 

Medical GmbH) und Erfassung der ROI (Region of Interest), erfolgte der Datenexport . Die 

ursprüngliche Läsionskontur wurde auf den Lungenmetastasenbildern skizziert. Einige 

Segmentierungsergebnisse sind exemplarisch in Abb. 15 dargestellt.  

Im Anschluss wurden die Datensätze der Segmentierung exportiert und mit „PyRadiomics” 

analysiert. Hierbei handelt es sich um ein sogenntes „Open-Source-Python-Package” für die 

Extraktion von Radiomics-Merkmalen aus 2D- und 3D-Bildern und binären Masken. Mit dieser 

Methode lassen sich phänotypische Merkmale in der medizinischen Bildgebung durch den 

Einsatz automatisierter Algorithmen zu quantifizieren. 

Insgesamt wurden auf diese weise in unserer Studie 105 radiomische Merkmale aus den CT-

Bildern jedes Patienten extrahiert, darunter die Intensitätsmerkmale des Tumors, Formen, 

Texturen, Wavelets und Gabor-Merkmale. Zu den Intensitätsmerkmalen gehörten Statistiken 

erster Ordnung, die aus dem Histogramm aller Tumorvoxel-Intensitätswerte berechnet 

werden. Die Formmerkmale spiegen die Form und Größe des Tumorbereichs wider. Die 

Texturmerkmale lieferten Informationen über die relativen Positionen der verschiedenen 

Graustufen im Bild, einschließlich der Grey Level Co-occurrence Matrix und der Grey Level 

Run Length Matrix. Wavelet-Merkmale umfassten Intensitäts- und Texturmerkmale, die aus 

der Wavelet-Transformation des Originalbildes abgeleitet wurden. Zu den erfassten Gabor-

Merkmalen gehörten Multiskalen- und Multidirektions-Gabor-Magnituden-Texturdarstellung 

und die Gabor-Phasen-basierte Texturdarstellung.  
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Abb. 18: Flowchart des Preprocessing von Segmentierung bis Training  

 

Anschließend wurden die Segmentierungen durch computergesteuerte statistische Kontrolle 

nochmals überprüft, um die Konstanz der relevanten Volumina, zwischen „Input“-Läsion und 

Rekonstruktion („Output-Läsion“) zu gewährleisten. 

Basierend auf den realen und artifiziellen bzw. segmentierten ROIs wurden  volumetrisch 

Hounsfield Unit Dämpfung (HU), Joddichte (ID [mg/ml]) sowie Texturfeatures erster Ordnung 

bestimmt. Zu diesen zählen u.a. die Merkmale Entropie, Kurtosis, Schiefe, Gleichmäßigkeit 

und Einheitlichkeit der positiven Pixel (UPP) und der Mittelwert der positiven Pixel (MPP). Die 

berechneten Daten wurden im CSU-Format als strukturierter Datensatz exportiert und in 

Excel-Format konvertiert. 

Hierfür wurden die Radiomics-Merkmale aus den eingegebenen 3D-rekonstruierten Läsionen 

mit einem einzigen Codierungsnetzwerk („encoder network“) extrahiert. Zur 

Veranschaulichung ist ein Modell dieses Prozesses in Abbildung 16 dargestellt. 

Die Größe der analysieten Voxel betrug 1,00 x 1,00 x 1,00 mm. Die hierbei vom 

Kodierungsnetzwerk aus jedem Block (e_2 bis e_5, siehe Abb. 16) extrahierten Bildmerkmale 

wurden verwendet, um die sogenannten „Region Maps“ zu erstellen. Das Decoder-Netzwerk 

(„decoder network“), das mit jedem Block (e_2 bis e_5) verbunden ist, wurde ebenfalls zur 

Erstellung der Region-Maps eingesetzt. Die auf diese Weise erstellten Region-Maps (Ausgang 

von o_1 bis o_4) wurden in eine sogenannte Verlustfunktion („loss function“) substituiert und 
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der sogenannte Verlustwert berechnet. Die Ergebnisse (Outputs) umfassten das tiefste 

Encodernetz (deepest encoder network) (e_1 bis e_5) und das tiefste Decoder-Netzwerk 

(deepest decoder network) (d_5-1 bis d_5-4) und hiermit die von o_4 erstellte Region Map. 

Außerdem hatte jeder Block eine Gehäuseeinheit und alle Blöcke außer e_1 enthielten eine 

Dropout-Schicht (Dropout 3D) vor der finalen Faltungsschicht (convolutional layer). In dem 

angewendeten Modell sind Encoder und Decoder durch Verkettung verbunden. Die 

Abstimmung der Hyperparameter des Modells wurde manuell von Datenwissenschaftlern des 

Universitätsklinikums Köln durchgeführt. 

 

 

Abb. 19:  Architektur des verwendeten verschachtelten dreidimensionalen (3D) vollständig 

verbundenen „Convolutional network“. Die Verbindungen sind durch die roten Kreise 

gekennzeichnet, wobei der Encoder und der Decoder durch Verkettung verbunden sind 

 

3.6  Mermalsauswahl und Ranking  

Im Anschluss an die Extraktion der Bildmerkmale erfolgte die Unterteilung in Subgruppen. 

Die extrahierten Features-Gruppen, umfassten: 

1. Formbasiert (shape-based): In dieser Gruppe sind Descriptoren für dir 

dreidimensionale Größe und Form der ROI (Region of Interest). Diese Merkmale sind 

unabhängig von der Graustufenintensitätsverteilung in der ROI und werden daher nur 

aus dem nicht abgeleiteten Bild (non-derived image) berechnet. 
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2. „Firstorder features“:  Features erster Ordnung beschreiben die Verteilung der Voxel-

Intensitäten innerhalb der durch die sogenannte Maske definierten Bildregion durch 

allgemein verwendete und grundlegende Metriken. 

3. „Grey level cooccurence matrix“ (22 Merkmale): Eine Graustufen-Co-Occurrence-

Matrix (GLCM) beschreibt die gemeinsame Wahrscheinlichkeitsfunktion zweiter 

Ordnung einer durch die Maske eingeschränkten Bildregion. Bestimmte Elemente 

dieser Matrix geben an, wie oft die Kombination zweier Ebenen (i und j) in zwei Pixeln 

im Bild vorkommt, die durch einen Abstand von δ Pixeln entlang des Winkels θ 

voneinander getrennt sind. 

4. Grey level dependence matrix: Eine Graustufenabhängigkeitsmatrix (GLDM) 

quantifiziert Graustufenabhängigkeiten in einem Bild. Eine Graustufenabhängigkeit ist 

definiert als die Anzahl der miteinander verbundenen Voxel im Abstand δ, die vom 

zentralen Voxel abhängig sind. Ein Nachbarvoxel mit der Graustufe (j) gilt als abhängig 

vom Zentralvoxel mit der Graustufe (i), wenn |i-j|≤α. In einer 

Graustufenabhängigkeitsmatrix P(i,j) beschreibt das (i,j)-te Element die Anzahl, wie oft 

ein Voxel mit Graustufe i mit j abhängigen Voxeln in seiner Nachbarschaft im Bild 

erscheint. 

5. Grey level run length matrix: Eine Graustufenabhängigkeitsmatrix (GLDM) quantifiziert 

Graustufenabhängigkeiten in einem Bild. Eine Graustufenabhängigkeit ist definiert als 

die Anzahl der miteinander verbundenen Voxel im Abstand δ, die vom zentralen Voxel 

abhängig sind. Ein Nachbarvoxel mit der Graustufe (j) gilt als abhängig vom 

Zentralvoxel mit der Graustufe (i), wenn |i-j|≤α. In einer Graustufenabhängigkeitsmatrix 

P(i,j) beschreibt das (i,j)-te Element die Anzahl, wie oft ein Voxel mit Graustufe i mit j 

abhängigen Voxeln in seiner Nachbarschaft im Bild erscheint. 

6. Grey level size zone matrix: Eine Graustufen-Größen-Zone (GLSZM) quantifiziert die 

Graustufenbereiche in einem Bild. Eine Graustufenzone ist definiert als die Anzahl der 

zusammenhängender Voxel, die die gleiche Graustufenintensität aufweisen. Ein Voxel 

gilt als zusammenhängend, wenn der Abstand nach der Unendlichkeitsnorm 1 beträgt 

(26 zusammenhängende Bereiche in 3D, bzw. 8 zusammenhängende Bereiche in 2D). 

Im Gegensatz zu GLCM und GLRLM ist die GLSZM drehungsunabhängig, wobei nur 

eine Matrix für alle Richtungen im ROI berechnet wird. 

7. Neighbouring Grey tone difference Matrix: Eine Grautondifferenzmatrix quantifiziert die 

Differenz zwischen einem Grauwert und dem durchschnittlichen Grauwert seiner 

Nachbarn im Abstand δ. Die Summe der absoluten Differenzen für den Grauwert i wird 

in der Matrix gespeichert. 
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Im Rahmen dieser Studie wurden insgesamt 105 verschiede Bildmerkmale aller 

Lungenläsionen analysiert. Viele der als Prädiktoren verwendeten Bildmerkmale (Radiomic-

Features) wiesen eine starke statistische Korrelation zu einander auf, z.B. liefert der maximale 

Durchmesser eine analoge Information wie maximaler Radius, hingegen ist das Merkmal 

Homogenität eine von der Größe unabhöngige Information. 

Dies erfordert eine Auswahl der statistisch relevantesten Merkmale, um Kollinearität zu 

vermeiden, die Dimensionalität zu gewährleisten und das Rauschen („noise“) zu minimieren. 

Hierfür wurden 4 Methoden verwendet.  

1. Die erste Methode zur Untersuchung der statistischen Abhängigkeit zwischen Merkmal 

und KRAS-Mutationsstatus war ein ANOVA f –Test zur Darstellung der linearen 

Abhängigkeit der beiden Variablen. 

2. Die zweite Methode, die angewendet wurde, war „Mutual Information“. Hierbei werden 

durch Verwendung von Entropie nicht nur lineare, sondern verschiedene statistische 

Abhängigkeiten erfasst. 

3. Die dritte Methode, die angewendet wurde, ist die Berechnung der sogenannten AUC 

(area under the curve). Hierbei wird ein bestimmter Schwellenwert einem Merkmal 

zugeordnet (True positive Rate). 

4. Extreme gradient boosting (XGBoost) ist eine Open-Source-Bibliothek, die eine 

effiziente und effektive Implementierung des Gradient-Boosting-Algorithmus bietet. 

Aus den durch die vier Methoden ermittelten Ergebnissen, wurden jeweils die Merkmale mit 

den geringsten Korrelationswerten selektiert. Die statistisch aussagekräftigsten 10% der 

Merkmale wurden in vier Gruppen zur sogenannten Kreuzvalidierung (Cross Validation) 

eingeteilt. Diese Kreuzvalidierung ist statistische Methode zur Schätzung der 

Leistungsfähigkeit eines Vorhersagemodells. 

Mithilfe dieser Modellvalidierungstechnik wurde im Rahmen dieser Studie beurteilt, wie die 

Ergebnisse einer statistischen Analyse auf einen unabhängigen Datensatz verallgemeinert 

werden können. Grundsätzlich umfasst die Kreuzvalidierung ein sogenanntes „Resampling“- 

und „Sample-Splitting“, Verfahren bei denen verschiedene Teile der Daten zum Testen und 

Trainieren eines Modells in verschiedenen Iterationen verwendet werden. Sie wird häufig in 

Situationen verwendet, in denen das Ziel die Vorhersage ist und man abschätzen möchte, wie 

genau ein Vorhersagemodell in der Praxis funktionieren wird. Sie kann auch dazu verwendet 

werden, die Qualität eines angepassten Modells und die Stabilität seiner Parameter zu 

bewerten.  
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3.7 Modellbasierte Mutationsprädiktion (Classification) 

Ausgangspunkt für die Klassifikation waren die im Rahmen der Merkmalsselektion und des 

Merkmalsrankings erstellten vier Merkmalsgruppen (Feature-Sets). Hierfür wurden nur 

Merkmale mit ausreichender statistischer Korrelation ausgewählt (> 0,8).  Die hierfür 

verwendeten Methoden waren der “ANOVA-f-Test“, „Mutiual Information“, „Area under the 

Curve“ und „Instant Gradient Boosting“. 

Die Merkmalsgruppen (Feature-Sets) wurden im Rahmen der inneren 

Kreuzvalidierungsschleife für das Training des sogenannten „Klassifizierers“ (Ensemble 

Classifier) verwendet.  

Dieser setzt sich aus mehreren Sätzen verschiedener radiomischer Merkmale, den 

sogenannten Klassifikatoren, zusammen. Die Klassifikatoren des Ensembles führen jeweils 

eine Klassifizierung der ungesehenen Instanz, bzw. einer dem System bislang unbekannten 

malignen Lungenläsion, durch. Ihre Vorhersagen werden kombiniert und bilden 

zusammengenommen ein statistisches Abstimmungs- bzw. Wertungssystem, den Ensemble 

Classifier. 

Um die Effektivität des Trainings des Ensemble Classifiers zu erhöhen, wurde eine weitere 

Methode Namens „Grint search“ eingesetzt. Hierbei werden mehrere Klassifikationsmethoden 

und Parameter zur Verfügung gestellt und diese in allen möglichen Kombinationen getetstet. 

Hierbei handelt es sich um einen sogenannten „brute Force“-Ansatz, welcher durch den hohen 

Datendurchlauf gute Ergebnisse erreichen kann. 

Hierfür wurden insgesamt 4 verschiedene statistische Klassifikationssysteme verwendet: 

1. Logistische Regression: Es handelt sich hierbei um ein statistisches Modell, das die 

Wahrscheinlichkeit des Eintretens eines Ereignisses modelliert, indem die 

logarithmische Wahrscheinlichkeit für das Ereignis eine Linearkombination aus einer 

oder mehreren unabhängigen Variablen ist. Bei der Regressionsanalyse (logistische 

Regression oder „Logit-Regression“ erfolgt die Schätzung der Parameter eines 

logistischen Modells (der Koeffizienten in der Linearkombination)120. 

2. „Random forest“: Es handelt sich um eine Ensemble-Lernmethode für Klassifizierung 

und Regression, die im Rahmen der Trainingsphase eingesetzt wird und durch 

Konstruktion einer Vielzahl von „Entscheidungsbäumen“ funktioniert. Bei 

Klassifizierungsaufgaben ist der sogenannte Output von Radom Forest, diejenige 

Merkmalsklasse die von den meisten „Entscheidungsbäumen“ ausgewählt wird. Bei 

Regressionsaufgaben wird der Mittelwert oder die durchschnittliche Vorhersage der 

einzelnen Bäume angegeben121,122.   

3. „k-Nearest Neighbors“-Klassifikation (k-NN): Hierbei handelt es sich um eine 

nichtparametrisch überwachte Lernmethod die für die Klassifizierung radiomischer 

Merkmale verwendet wird. Bei der k-NN-Klassifikation ist das erbrachte statistische 
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Ergebnis die Ausgabe einer Klassenzugehörigkeit. Ein Objekt wird durch ein 

Pluralitätsvotum seiner Nachbarn klassifiziert, wobei das Objekt der Klasse zugeordnet 

wird, die unter seinen nächstgelegenen Nachbarn („k“) am häufigsten vorkommt. 

Hierbei ist der Wert „k“ eine, normalerweise kleine, positive ganze Zahl. Ist k = 1, so 

wird das Objekt der Klasse dieses seinen nächsten Nachbarn zugeordnet123. 

4. „Extreme Gradient Boosting“ (XGB-Classifier): Dies ist ein leistungsfähiger und weit  

verbreiteter Gradient-Boosting-Algorithmus, der zur Lösung vieler verschiedener 

Probleme des maschinellen Lernens eingesetzt wird. Es handelt sich um eine 

Implementierung von Gradient Boosting, die speziell auf Effizienz und Skalierbarkeit 

ausgelegt ist. Mathematisch gesehen ist XGBoost eine Ensemble-Lernmethode, die 

die Vorhersagen mehrerer schwacher Modelle kombiniert, um eine starke Vorhersage 

zu erstellen. Die schwachen Modelle in XGBoost sind Entscheidungsbäume, die mit 

Gradient Boosting trainiert werden. Das bedeutet, dass der Algorithmus bei jeder 

Iteration einen Entscheidungsbaum an die Residuen der vorherigen Iteration anpasst. 

Die Ergebnisse dieser Klassifizierungsmethoden wurden ebenfalls in vier Kategorien 

ausgewertet:  

1. Precision 

2. Recall 

3. F1-Score 

4. Balanced Accuracy 

Im nächsten Schritt wurde aus den vier „CrossValidation-Sets“ die Anzahl richtig bestimmter 

und falsch bestimmter Fälle in einer sogenannten „Confusion Matrice“ aufsummiert. Im 

Anschluss wurden aus der Summe der „CrossValidation-Sets“ die viel versprechensten 

Kombinationen („Pipelines“) ausgewählt, welche in den Kategorien „Precision“ (Präzision), 

„Recall“ (Reproduzierbarkeit), „F1-Score (F1-Wert)“ und „Balanced Accuracy“ (balancierte 

Genauigkeit) die besten Werte erreichten. 

Für jede dieser Gruppen der „inner Crossvalidation“ wurde das beste Modell, aus den 

statistisch robustesten Merkmalen, selektiert und zu dem statistisch stärksten möglichen 

Ensemble Classifier zusammengefügt. Diese wurdes im Anschluss erneut an den Gruppen 

der „outer Crossavalidation“ getestet (vergleiche Abbildung 19). 
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Abb. 20: Visualisierung der angewandten Pipeline des maschinellen Lernens einschließlich 

der beiden Auswertungspfade,unter Verwendung eines einzelnen Klassifikationsmodells oder 

eines Ensemble-Klassifikators (A). Für die Modellentwicklung, werden die Trainingsdaten in 

eine 5-fache Kreuzvalidierung aufgeteilt, bei der eine Vielzahl von Merkmalen, 

Merkmalsselektoren und Klassifikatoren getestet und mithilfe der Rastersuche optimiert 

werden (B). wird nur angewendet auf unausgewogenen Datensätzen angewandt. 

 

3.8 Stratifizierte Datenaufteilung  

Insgesamt wurden ca. 75% der Bilddatensätze (entspricht 159 Patienten) für das Training der 

radiomischen Analysesoftware verwendet.  Die verbleibenden ca. 25% der Bilddatensätze 

(entspricht 53 Patienten) wurden, nach Abschluss der Trainingsphase, für die Testung der 

radiomischen Analysesoftware verwendet.  

In der Testungsphase entschied der Ensemble Classifier, auf Grundlage des bis zu diesem 

Zeitpunkt absolvierten „Machine learnings“, ob eine neu vorgestellte, unbekannte Läsion einen 

positiven KRAS-Mutationsstatus aufweist oder nicht. 

Die Prädiktion wurde mit dem jeweils vorliegenden, molekulargenetisch gesicherten 

Mutationsstatus verglichen und so eine Erfolgsquote ermittelt. 
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Die Tabelle (Tab.6) zeigt die Verteilung der Patienten auf die inneren und äußeren Cross 

Validation. 

 

Tab. 6: Charakterisierung und KRAS-Status der Läsion und deren Verteilung auf die Gruppen 

der inneren und äußeren CV 

  ÄUßERE 
KREUZVAIDIERUNGSSCHLEIFE 

INNERE 
KREUZVAIDIERUNGSSCHLEIFE  

  Läsions- 
anzahl 

Klasse Läsions- 
anzahl 

Training Testung Training Testung 

GANZE 
KOHORTE 

212 KRAS 
neg. 

154 116, 116, 115, 
115 

38, 38, 39, 39 87, 87, 87, 87 29, 29, 29, 29 

   KRAS 
pos. 

58 43, 43, 44, 44 15, 15, 14, 14 32, 32, 32, 33 11, 11, 11, 10 

   Gesamt 212 159 53 119/120 39/40 

KNOTEN 61 KRAS 
neg. 

44 29, 30, 29 15, 14, 15 19, 20, 19 10, 9, 10 

   KRAS 
pos. 

17 11, 11, 12 6, 6, 5 7, 7, 8 4, 4, 3 

   Gesamt 61 40 21 26/27 13/14 

MASSEN 151 KRAS 
neg. 

110 73, 73, 74 37, 37, 36 48, 49, 49 25, 24, 24 

   KRAS 
pos. 

41 27, 28, 27 14, 13, 14 18, 18, 18 9, 9, 9 

   Gesamt 151 101 50 66/67 33/34 

FILTER L 89 KRAS 
neg. 

61 41, 40, 41 20, 21, 20 27, 27, 28 14, 14, 13 

   KRAS 
pos. 

28 43, 43, 44, 44 15, 15, 14, 14 32, 32, 32, 33 11, 11, 11, 10 

   Gesamt 89 60 29 39/40 19/20 
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FILTER YA 44 KRAS 
neg. 

31 21, 20, 21 10, 11, 10 14, 14, 14 7, 7, 7 

   KRAS 
pos. 

13 8, 9, 9 5, 4, 4 5, 5, 6 3, 3, 2 

   Gesamt 44 29/30 14/15 19/20 9/10 

WF 212 KRAS 
neg. 

154 116, 116, 115, 
115 

38, 38, 39, 39 87, 87, 87, 87 29, 29, 29, 29 

   KRAS 
pos. 

58 43, 43, 44, 44 15, 15, 14, 14 32, 32, 32, 33 11, 11, 11, 10 

   Gesamt 212 159 53 119/120 39/40 

LF 212 KRAS 
neg. 

154 116, 116, 115, 
115 

38, 38, 39, 39 87, 87, 87, 87 29, 29, 29, 29 

  KRAS 
pos. 

58 43, 43, 44, 44 15, 15, 14, 14 32, 32, 32, 33 11, 11, 11, 10 

  Gesamt 212 159 53 119/120 39/40 
 

3.9 Subgruppenanalyse 

Insgesamt bestand die Patientenkohorte aus 212 Patienten mit histologisch gesichertem 

Befund eines NSCLC. Bei insgesamt 58 dieser Patienten wiesen die Tumorzellen in der 

vorrausgegangenen molekulargenetischen Auswertung einen positiven KRAS-Mutaionsstatus 

auf. Entsprechend lag bei 154 Patienten ein negativer KRAS-Mutationsstatus vor. 

Im Rahmen der durchgeführten radiomischen Analyse wurden Patienten in sechs 

verschiedene Subgruppen eingeteilt. Der Ansatz der separaten radiomischen Analyse 

verschiedener Untergruppen beruht auf der Annahme, dass sich die Prädiktionsleistung unter 

bestimmten Voraussetzungen verbessert werden kann. Beispielsweise weisen 

Lungenrundherde ohne Kontakt zur Pleura in Bezug auf ihre radiologischen Bildmerkmale im 

Vergleich zu Lungenraumforderungen mit Pleurakontakt, starke Unterschiede auf.  

In dieser Studie wurden insgesamt die 61 Patienten mit Nodules (Durchmesser ≤ 30 mm) 

untersucht, hiervon waren 17 Patienten KRAS-positiv. Insgesamt ware weitere 151 Patienten 

mit Mass-Läsionen (Durchmesser > 30 mm) enthalten, unter denen sich insgesamt 41 KRAS-

positive Fälle befanden. Neben einem Analyselauf der alle Läsionen umfasste, wurden die 
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Subgruppen Nodules und Masses, jeweils zusätzlich separat analysiert. Außerdem wurden in 

weiteren Subgruppenanalysen alle Fälle verwendet und dabei Fensterung bzw. Kernel der 

vorliegenden CT-Bilder verändert.    

Die sechs Subgruppen waren: 

 

1. „Whole cohort LT“: Umfasst die Auswertung gesamten Kohorte mit allen Läsionen, 

jeweils mit initialer Verwendung von CT-Bildern im Lungenfenster. Als Lungenfenster 

bezeichnet man eine Form der Kontrastoptimierung in der Computertomographie, bei 

der die Darstellung der Lunge verbessert wird. Dabei wurde im Rahmen dieser Studie 

ein Fensterzentrum von -600 HU und eine Fensterbreite von 1.500 HU gewählt. 

2. „Whole cohrort WF“: Umfasst die Auswertung gesamten Kohorte mit allen Läsionen, 

jeweils mit initialer Verwendung von CT-Bildern im Weichteilfenster. Als 

Weichteilfenster bezeichnet man eine Form der Kontrastoptimierung in der 

Computertomographie, bei die Darstellung der Weichteile verbessert wird. Dabei 

wurde im Rahmen dieser ein Fensterzentrum von 40 HU und eine Fensterbreite von 

350 HU gewählt.  

3. „Nodules“: Lungenrundherde mit einem Durchmesser ≤ 3 cm.  

4. „Masses“: Tumorraumforderungen mit einem Durchmesser > 3 cm.   

5. „FILTER YA“: Ausgewählte Lungenrundherde im Lungenfenster unter Anwendung des 

vorgefertigten Rekonstruktionsfilters Kernel „YA“ 

6. „FILTER L“: Ausgewählte Lungenrundherde im Lungenfenster unter Anwendung des 

vorgefertigten Rekonstruktionsfilters Kernel „L“ 

 

Kernel „YA“ und Kernel „L“ ähneln jeweils den, im klinischen Alltag standardisiert zur 

Bildrekonstruktion verwendeten, Kerneleinstelllungen „Siemens B20“ bzw. „Siemens B70“.  

Für alle 212 zur Verfügung stehenden Fälle wurden die Rohdaten der CT-Projektion 

(„Sinogrammdaten“) jedes Scans gesammelt. Anschließend wurde jeweils für beide 

Subgruppen (YA und L) nur der größte repräsentative Lungenrundherd ohne Pleurakontakt 

ausgewählt und in die Studie aufgenommen. Die verwendeten Kernel-Filter oder auch 

Faltungsalgorithmen verändern die Frequenzinhalte der Projektionsdaten vor der 

Rückprojektion während der Bildrekonstruktion in einem CT-Scann. Dieser Prozess korrigiert 

das Bild, indem er die Unschärfe reduziert. Untersucht wurde der Einfluss des verwendeten 

Kernels auf die radiomischen Bildfeatures. 

Hierbei erzeugt der Kernel „L“ ein Bild mit erhöhter Konturschärfe und stärkerem Kontrast 

zwischen Läsion und Parenchym, während der Kernel „YA“ ein „weicheres“ Bild erzeugt und 

Gewebeinhomogenität und Unterschiede der Kontrastmittelanreicherung innerhalb Läsion 
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selbst erkennbar macht. Abb. 20 verdeutlicht den Einfluss des Kernels auf das CT-Bild der 

ROI. 

 

Abb. 21: Beispielhafte Knotenregion bei verschiedenen CT-Bildbedingungen; vier Dosisstufen, 

zwei Kernel YA und L. (Verwendetes Dosislevel für Studieneinschluss: 100%) 

 

4. Ergebnisse 

4.1 Patienten 

In die Studie wurden insgesamt 212 Patienten mit NSCLC eingeschlossen. Hiervon waren 112 

männlich und 100 weiblich. Das Durchschnittsalter der Patienten zum Zeitpunkt der bei 

Erstdiagnose lag bei ca. 64,1 ± 9,9 Jahren. Das Durchschnittsalter der Männer lag bei 64,3 ± 

10,6 Jahren, dass der Frauen bei 63,9 ± 9,4 Jahren. Der jüngste Patient war bei Erstdiagnose 

24,1 Jahre alt, der älteste 84,9 Jahre. 75% der Patienten waren zum Zeitpunkt der 

Erstdiagnose älter als 57 Jahre. Bei 183 (ca. 87%) Patienten lag ein Adenokarzinom vor, bei 

25 (ca. 12,40%) der Patienten ein Plattenepithelkarzinom, bei 2 Patienten (ca. 1,1%) ein 

neuroendokrines Karzinom, bei weiteren 2 Patienten (ca. 1,1 %) war das NSCLC gering 

differenziert und keinem Subtyp eindeutig zuzuordnen (vgl. Abb. 21). 
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Abb. 22:  Verteilung der histopathologischen NSCLC-Subtypen innerhalb der Patientenkohorte 

 

Zum Zeitpunkt der Erstdiagnose lag beim Hauptteil der Patienten das Tumorstadium cT4 vor, 

insgesamt 92 Patienten (ca. 44%). Bei 34 Patienten (ca. 16%) lag das cT3 Stadium vor. 36 

Patienten (ca. 17%) befanden sich zum Zeitpunkt der Erstdiagnose im cT2 Stadium und 40 

Patienten (ca. 19%) im T-Stadium 1, 14% in 1b und 5% in 1a.  

 

 

Abb. 23: Häufigkeit der verschieden T-Stadien bei Erstdiagnose innerhalb der 

Patientenkohorte 
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Bei Erstdiagnose wurden bei 86% (182 Patienten) Metastasen gesichert. Hierbei wurden bei 

einem Hauptanteil, insgesamt 61% (128 Patienten), sowohl Lymphknoten- als auch 

hämatogene Fernmetastasen (N+ M+) diagnostiziert. Lediglich in 13% der Fälle (28 Patienten) 

lagen bei Erstdiagnose ausschließlich Lymphknotenmetastasen (N+ M0) vor. In 12% der Fälle 

(26 Patienten) lagen ausschließlich Fernmetastasen ohne Nachweis von 

Lymphknotenmetastasen vor (N0 M+). Bei weiteren 14 % (30 Patienten) fanden sich keine 

Metastasen (N0 M0) (vgl. Abb 20.). 

 

 

Abb. 24: Häufigkeit der verschiedenen Metastasierungsstadien bei Erstdiagnose innerhalb der 

Patientenkohorte 

 

4.2 Vergleich der Datensätze und statistische Analyse 

 Parameter der Merkmalsextraktion 

Bevor die Daten in eine “Machine Learning-Pipeline” eingespeist wurden, wurden die 

sogenannten Maskeninformationen der radiomische Merkmalsextraktion, von Mermalen, die 

mit Standardparametern extrahiert, und Merkmalen, die mit den optimierten internen 

Parametern extrahiert wurden, verglichen. Hiermit sollte sichergestellt werden, dass die Wahl 

der Merkmalsextraktionsparameternicht zu wesentlichen Unterschieden führt.  

Beispielsweise zeigte das Merkmal “original_shape_VoxelVolume” bei diesem Vergleich 

insgesamt eine mittlere Volumenabnahme von 1 % mit einer Standardabweichung von 3 %, 

wenn es mit den optimierten internen Parametern extrahiert wurde. Auch beim Vergleich des 
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Merkmals “original_shape_Sphericity” wurde, unter Verwendung der optimierten Parameter, 

im Vergleich ein mittlerer Verlust von -0,01 % mit einer Standardabweichung von 2,6 % 

festgestellt. 

4.3 Ergebnisse der Feature-Testung 

Alle in diese Studie eingeschlossenen CT-Datensätze wurden klinikintern an verschiedenen 

CT-Geräten am Uniklinikum Köln (UKK) generiert. Insgesamt kamen hierbei 7 verschiedene 

CT-Gerätemodelle des Instituts für Radiologie, der Nuklearmedizin und der MVZ Radiologie 

zum Einsatz. Tabelle 7 zeigt, wie viele Patienten an den jeweiligen Geräten untersucht wurden. 

 

Tab. 7: Übersicht der CT-Scanner mit Anzahl der jeweils eingeschlossenen Patienten. 

 

 

 

 

 

 

Die in dieser Studie analysierten NSCLC-Läsionen entsprachen jeweils den Primärtumoren in 

der Lunge. Die Identifikation und Beschreibung der Lokalisation wurde jeweils durch 

radiologische Fachärzte vorgenommen. Die Lokalisation der Läsionen verteilte sich innerhalb 

des Patientenkollektivs wie folgt:   

20,3% (43 Patienten) im linken Oberlappen, 36,8% (78 Patienten) im rechten Oberlappen, 

6,1% (13 Patienten) im Mittellappen, 9,0% (19 Patienten) im linken Unterlappen, 14,2% (30 

Patienten) im rechten Unterlappen, weitere 3,8% (8 Patienten) waren links hilär und 9,9% (21 

Patienten) rechts hilär (vgl. Abb. 24). 

 

Gerätename Anzahl untersuchter Patienten 

CT2iQ 76 

Brilliance 64 64 

iCT 36 

Simens Somatom Force 20 

Simens Biograph 8 

Simens Definition Flash 4 

GE Bright Speed 4 
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Abb.25: Verteilung der segmentierten NSCLC-Läsionen in Bezug auf Lokkalisation 

 

Insgesamt wurden 105 radiomische Bildmerkmale der Rundherde und 

Lungenraumforderungen ausgewertet. Die einzelnen Merkmale wurden anhand ihrer 

„Performance“ (statistischen Leistungsstärke) unter Anwendung von ANOVA-f-Test, „Mutual 

Information“, AUC (area under the curve) und Extreme gradient boosting (XGBoost) selektiert 

und eine Rangordnung erstellt.  

In Abbildung 25 wird die statistische „Performance“ eines einzelnen beispielhaft ausgewählten 

radiomischen Merkmals „original_firstorder_10Percentile“ in diesen vier Kategorien der „outer 

Crossvalidation“ veranschaulicht. 
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Abb. 26: Boxplot zur Veranschaulichung der statistischen Leistungsstärke des radiomischen 

Merkmals „original_firstorder_ 10.Percentile“ 

 

Nach Abschluss der „Feature-Selection“ und des „Feature-Rankings“ erfolgte im Rahmen der 

„Classification“ die „inner Crossvalidation“. Hierbei wurde mit Hilfe der vorselektierten, 

statistisch stärksten Merkmalen ein „Ensemble classifier“ erstellt und dieser im Anschluss 

erneut an einer der Gruppen der „outer Crossvalidation“ getestet (siehe auch Abbildung 19). 

 

4.4 Modellbasierte Mutationsprädiktion 

Die Ergebnisse des „Ensemble classifier“ wurden wiederum in vier statistischen Kategorien 

ausgewertet („Precision“, „Recall“, „F1-Score“ und „Balanced Accuracy“). In Tabelle 8 sind 

exemplarisch die Ergebnisse dargestellt, die der „Ensemble Classifier“ bei der Testung der 

ersten der vier „Crossvalidation“-Gruppen erzielt hat. 
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Tab. 8: Ergebnis-Übersicht des „Ensemble classifiers“ in den Kategorien „Precision“, „Recall“, 

„F1-Score“ und „Balanced Accuracy“ zur Differenzierung von einer nicht vorliegenden KRAS-

Mutation (noKRAS) und Vorhandensein einer KRAS-Mutation (KRAS) 

Classifier Class Precision Recall F1-

Score 

b.acc. 

score 

AUC accuracy 

score 

VotingClassifier 

noKRAS 

(n=37) 0,694 0,676 0,685 0,449 0,342 0,549 

VotingClassifier 

KRAS 

(n=14) 0,2 0,21 0,207 0,549 0,342 0,549 

 

Anhand dieser Ergebnisse wurde jeweils eine „Confusion Matrix“ erstellt. Exemplarisch 

entspricht Tabelle 4 der Matrix der in Tabelle 3 dargestellten Ergebnisse der ersten der vier 

„outer CV-Groups“ (siehe Tab. 9). 

 

Tab. 9: Ergebnis-Übersicht der Classification als “Confusion-Matrix” 

vorhergesagter KRAS-Stauts 
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In der Matrix steht die Ziffer 1 für das Vorliegen einer KRAS-Mutation (KRAS +) und die Ziffer 

0 steht für das Fehlen der KRAS-Mutation (KRAS -). Entsprechend lässt sich aus der Matrix 

ablesen, dass der „Ensembel classifier“ bei insgesamt 3 Fällen aus der ersten Gruppe der 

„outer Crossvalidation“ richtig klassifiziert wurden, das heißt sie wurden als KRAS-positiv 

vorhergesagt und es lag tatsächlich ein entsprechend positiver KRAS-Status („true positive 

rate“) vor. Darüber hinaus wurde bei 25 Patienten das Fehlen der Mutation bzw. ein KRAS-

negativer Mutationsstatus richtig vorhergesagt („true negative rate“). Insgesamt wurde initial 
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bei 12 Fällen ein positiver KRAS-Status vorhergesagt, obwohl keine Mutation vorlag („false 

positive rate“). Entsprechend wurde bei 11 Fällen ein negativer KRAS-Status vorhergesagt, 

obwohl in Wahrheit KRAS vorlag („false negativ rate“).  Die Testung wurde im Anschluss an 

den drei weiteren „Crossvalidation-Gruppen“ durchgeführt und jeweils für die verschiedenen 

Subgruppen wiederholt. Die Gesamtergebnisse der einzelnen Untergruppen sind in der 

Übersichtstabelle (Tab. 10) dargestellt. 

 

Tab. 10: Ergebnis-Übersicht des „Ensembel classifiers“ bei der Merkmalsprädiktion der 

verschiedenen Subgruppen 

Subgroup 

 

Balanced 

Accuracy 

 

F1-Score 

 

Sensitivity 

 

Specificy 

Area under 

the curve 

Whole (LF) 0,45 +/- 0,05 0,13 +/- 0,03 0,10 +/- 0,03 0,79 +/- 0,08 0,44 +/- 0,08 

Whole (WT) 0,47 +/- 0,04 0,19 +/- 0,08  0,17 +/- 0,07 0,77 +/- 0,03 0,38 +/-0,07 

Nodule 0,59 +/- 0,02 0,34 +/-0,08 0,29 +/- 0,15 0,88 +/- 0,12 0,66 +/- 0,01 

Mass 0,53 +/- 0,02 0,16 +/- 0,05 0,10 +/- 0,04 0,95 +/- 0,03 0,57 +/- 0,01 

Kernel YA 0,61 +/- 0,14 0,39 +/- 0,28 0,45 +/- 0,32 0,77 +/- 0,13 0,74 +/- 0,15 

Kernel L 0,45 +/- 0,06 0,18 +/- 0,17 0,22 +/- 0,24 0,69 +/- 0,12 0,46 +/- 0,04 

 

Es wurde im Einzelnen die jeweilige Prädiktion des Programms mit dem tatsächlichen, im 

Vorfeld pathologisch gesicherten Mutationsstatus verglichen.  

Im Lungenfenster erreichte die radiomische Analyse aller Läsionen der 58 KRAS-positiven 

Fälle eine AUC von 0.44 (± 0.08) und eine Balanced Accuracy von 0.45 (± 0.05). Die Analyse 

aller Läsionen im Weichteilfenster erreichte eine AUC von 0.38 (± 0.07) und eine Balanced 

Accuracy von 0.47 (± 0.04). Aufgrund der Diversität der radiologischen Bildeigenschaften 

wurden „Nodules“ und „Masses“, in einem zusätzlichen Analyselauf, getrennt voneinander 

ausgewertet.   

Hierbei war die Vorhersagekraft des Modells für Nodules (≤ 30 mm) stärker mit einer AUC von 

0.66 (± 0.01), bzw. eine Balanced Accuracy von 0.59 (± 0.02).   

Im Vergleich ergab die Analyse der Masses (Lungentumore > 3 cm) eine AUC von 0.57 (± 

0.01), die Balanced Accuracy lag bei 0.53 (±0.02).  

Die Vorhersagekraft des radiomischen Analysemodells wurde zusätzlich nach Veränderung 

des Kernels der CT-Bilder (Kernel YA und L) getestet. Bei der Anwendung des Kernels YA 

erreichte die radiomische Analyse aller Läsionen eine AUC von 0.74 (±0.15) und eine 

Balanced Accuracy von 0.61 (±0.14). Im Vergleich wurde bei der Anwendung des Kernels L 

eine schwächere AUC von 0.46 (±0.04) und eine Balanced Accuracy von 0.45 (±0.06) erreicht. 
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5. Diskussion 

5.1 Erreichte Prädiktionsgenauigkeit und Vergleich mit Vorstudien 

Das Bronchialkarzinom ist weltweit die häufigste krebsbedingte Todesursache.1-2 Nicht-

kleinzellige Lungenkarzinome (NSCLC) machen 80% aller primären Bronchialkarzinome aus.5 

Der Entwicklung eines invasiven Adenokarzinoms, der häufigsten Subgruppe des NSCLC, 

kann eine genetische Mutation in den Genen des viralen Onkogenhomologes zugrunde liegen, 

welche für das monomere G-Protein K-RAS (Kirsten rat sarcoma viral oncogene homolog) 

codieren5, 8. Diese daher als KRAS-Mutation bezeichnete Veränderung liegt bei bis zu 30% 

der Patienten mit NSCLC vor.87, 88 Das Vorliegen dieser Mutation hat, insbesondere bei 

fortgeschrittenem klinischen Stadium 4, einen wichtigen Stellenwert für die Therapie. Die 

Erforschung der Gen-Mutation und des an GDP-gebunden KRAS-Proteins führte zur 

Entwicklung mehrerer Medikamente (Biologica), deren Wirksamkeit sowohl in Monotherapie 

als auch in Kombinationsschemata belegt werden konnte.89-91  

Beim NSCLC kann KRAS in verschiedenen Submutaionsformen vorliegen. Die häufigste 

somatische KRAS-Mutation ist hierbei mit ca. 42% das sogenannte KRAS G12C (Mutation 

von Guanin zu Thyminan der Kodierungsposition 34), gefolgt von KRAS G12V (Mutation von 

Glycin zu Valin) mit ca. 21 % und KRAS G12D (Mutation von Glycin zu Asparaginsäure) mit 

ca. 17 %. Andere Punktmutationen in Codon 12 wie G12A/R/S sind selten. 

Bislang ist nicht bekannt ob der Submutationsstatus Auswirkungen auf die radiogenomischen 

Bildmerkmale hat.  

In diesem Projekt wurde bei Patienten mit positive KRAS-Status diesbezüglich nicht 

weitergehend differnziert, wodurch die Aussagekraft des Modells möglicherweise negativ 

beeinflusst worden sein könnte. In zukünfigen Projekten könnte eine getrennte Analyse der 

verschieden Submutationen erfolgen um die Ergebnisse zu verbessern.   

Um den KRAS-Mutationstatus zu bestimmen ist bislang eine Gewinnung von Probegewebe 

unumgänglich.   

Für die Gewinnung einer histologiechen Gewebeprobe stehen verschiedene Methoden zur 

Verfügung, jedoch handelt es sich hierbei um invasive Eingriffe, die je nach Vorerkrankungen 

und Allgemeinzustand mit für den Patienten nicht unerheblichen gesundheitlichen Risiken 

verbunden sind.124  

Vor diesem Hintergrund besteht großes Interesse an der Erforschung nicht-invasiver 

radiologischer Verfahren zur Prädiktion des Mutationsstatus, welche invasive Methoden in 

Zukunft ersetzen könnten. 

In dieser Arbeit wurde ein Radiomics-basierter Ansatz zur effizienten Erkennung bzw. 

Prädiktion eines positiven KRAS-Mutationsstatus bei Patienten mit nicht kleinzelligem 

Lungenkrebs (NSCLC) untersucht.  
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Das Projekt steht damit in einer Reihe weiter Radiomics-Studien, welche bereits das Potential 

von Machine-Learning-Modellen, basierend auf radiologischen Bildern extrahierten Radiomics 

Features, bei der Differenzierung des Treibermutationsstatus aufzeigen konnten.125 

Das übergeordnete Ergebnis dieser Studie ist, dass das anwendete Modell, basierend auf den, 

aus Dual-Energy-CT-Bilddatensätzen extrahierten Radiomics Features, Vorhersagen 

bezüglich des KRAS Mutationsstatus in moderatem Umfang ermöglicht. Die hierbei erreichte 

statistische Genauigkeit war jedoch nicht hoch genug, um eine verlässliche klinische 

Anwendbarkeit, im Sinne einer Alternative zu Biopsie und Genomanalyse, aufzuzeigen. 

Im Detail betrachtet, erreichte der schichtbasierte Radiomics-Ansatz am 

Validierungsdatensatz von insgesamt 58 KRAS positiven Patienten, eine statistisch nicht 

signifikante AUC von 0.44 (± 0.08) und eine Balanced Accuracy von 0.45 (± 0.05) bei der 

Analyse aller Läsionen im Lungenfenster. 

Die Analyse aller Läsionen im Weichteilfenster erreichte eine AUC von 0.38 (± 0.07) und eine 

Balanced Accuracy von 0.47 (± 0.04). Dieses Vorgehen bestätigt, dass CT-Filter radiomisch 

Bildmerkmale beeinflussen. Hierbei scheint das Weichteilfenster für das angewandte Machine-

Learning-Modell geringfügig besser geeignet zu sein.    

In einem zweiten Analyselauf erfolgte die Aufteilung aller Läsionen nach Fleischner-Krieterien 

in „Nodules“ (noduläre pulmonale Läsionen mit einem Durchmesser von ≤ 30 mm gemessen 

im Weichteilfenster) und „Masses“ (pulmonale Raumforderungen mit einem Durchmesser von 

> 30 mm gemessen im Weichteilfenster).  

Ziel dieses Vorgehens war es die Heterogenität innerhalb des Datensatzes zu reduzieren und 

zu prüfen, ob hierdurch eine verbesserte Vorhersage des Mutationsstatus erreicht werden 

konnte. 

Durch die separate Auswertung wurde die Vorhersagekraft des Modells für „Nodules“ auf eine 

AUC von 0.66 (± 0.01) gesteigert. Die Balanced Accuracy war 0.59 (± 0.02). Im Vergleich 

ergab die Analyse für „Masses“ eine AUC von 0.57 (± 0.01), die Balanced Accuracy lag bei 

0.53 (± 0.02). 

Die beim Vergleich dieser Kategorien sichtbare Überlegenheit der Vorhersagekraft bei 

„Nodules“, begrüntet sich möglicherweise durch eine geringere Variabilität der radiologischen 

Bildmerkmale und radiomischen Features. Beispielsweise weisen größere pulmonale 

Raumordnungen häufiger zentral nekrotische Anteile sowie eine insgesamt sehr variable 

Tumorinteraktion mit umgebendem, nicht-pulmonalen Gewebe (bspw. Pleura) auf, wodurch 

die radiologischen Bildmerkmale mitunter erheblich variieren. Ebenfalls liegt auf histologischer 

Ebene bei fortgeschrittenen Tumorstadien häufiger eine stärkere Tumorheterogenität und 

Entdifferenzierung der Zellen vor (höheres G-Stadium), was die Variabilität der radiomischen 

Features ebenfalls erhöhen könnte.  
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In einer weiteren Subgruppenanalyse wurde die Vorhersagekraft des radiomischen Modells in 

Abhängikeit der Bildrekonstruktion (Bildfenster) im Unterschied der verwendeten Kernel YA 

und L analysiert. Dieses Vorgehen wurde gewählt, weil bekannt ist, dass der bei der 

Bildrekonstruktion verwendete Kernel die Radiomic Features beeinflusst.  

Bei der Anwendung des Kernel YA bei der Bildrekonstruktion erreichte die radiomische 

Analyse aller Läsionen eine AUC von 0.74 (± 0.15) und eine Balanced Accuracy von 0.61 (± 

0.14). Im Vergleich wurde bei der Anwendung des Kernel L eine schwächere AUC von 0.46    

(± 0.04) und eine Balanced Accuracy von 0.45 (± 0.06) erreicht. Dies ist ein Indiz dafür, das 

ein Kernel mit geringerer Konturschärfe und geringerem Kontrast (Kernel YA) für den 

gewählten Ansatz besser geeignet ist. 

Eine mögliche Erklärung für diesen signifikanten Unterschied ist, dass das mit Kernel „YA“ 

rekonstruierte „weichere“ Bild, feine Gewebeinhomogenitäten und Unterschiede der 

Kontrastmittelanreicherung innerhalb Läsion besser zur Geltung bringt und sich so die 

radiomischen Bildmerkmale besser differenzieren lassen.  

Zudem könnte der Unterschied durch einen homogeneren Bildeindruck aufgrund eines 

angemesseneren Signal-Rausch-Verhältnisses (SNR) erklärt warden. 

Im Vergleich mit ähnlich angelegten Studien fällt unser Ergebnis aber insgesamt etwas 

schwächer aus. Beispielsweise erreichten Moreno et. al. durch radiomisch Analyse im 

Rahmen eines ähnlichen Machine-Learning-Modells eine Vorhersagegenauigkeit für KRAS 

bei NSCLC mi einer AUC von 0,65-0,71.126  Vor dem Hintergrund der aktuellen Studienlage ist 

jedoch bekannt, dass die Radiomics-Ergebnisse zwischen Studien teilweise nur sehr 

eingeschränkt vergleichbar sind. Hauptgründe sind vorwiegend Größenunterschiede der 

verwendeten Datensätze sowie Unterschiede der angewendeten Radiomics-IT-Workflows. 

Unsere Radiomics-Studie entspricht in vielen Punkten einem robusten Studiendesign. Hierzu 

zählen das Management fehlender/unvollständiger Daten sowie die Preprocessing-Schritte. 

Diese umfassen die Anwendung von Filtern, Datennormalisierung, Feature-Extraktion und -

Selektion, die Datensatzkonstruktion in Trainings-, Validierungs- und Testdaten sowie den 

Ausgleich von Klassenimbalancen.  

Insgsamt wurde auf diese Weise sichergestellt, dass das Vorgehen den Empfehlungen der 

Image Biomarker Standardisation Initiative entsprach.  

In unserer Studie wurden „Radiomics-Features“ aus CT-Bildern von insgesamt 212 NSCLC-

Patienten der Uniklinik Köln extrahiert. Jeweils lag vor Studieneinschluss die histopathologisch 

gesicherte Diagnose eines NSCLCs sowie der Mutationsstatus vor. Bei insgesamt 58 

Patienten lag ein positiver KRAS-Status, bei entsprechend 154 Patienten ein negativer KRAS-

Status vor.  
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Die CT-Datensätze wurden in eine proprietäre Software zur onkologischen Nachbeobachtung 

übertragen (mint lesion research, Mint Medical GmbH). Alle enthaltenen Lungenläsionen 

wurden manuell segmentiert.   

Anschließend wurden die Segmentierungen nochmals von einem Radiologen überprüft, um 

die Konstanz der relevanten Volumina zwischen beiden Rekonstruktionen zu gewährleisten.  

Im nächsten Schritt wurden aus den vorbearbeiteten Datensätzen insgesamt 105 

verschiedene radiomische Bildmerkmale (bspw. Entropie, Kurtosis, Schiefe, Gleichmäßigkeit, 

Einheitlichkeit der positiven Pixel (UPP), etc.) ermittelt. 

Für die Prädiktion des Mutationsstatus wurden diese „Radiomic Features“ aller Fälle in „innere“ 

und „äußere“ Kreuzvalidierungs-Gruppen eingeteilt. Mit Hilfe der „inner Crossvalidation“ wurde 

der „Ensemble Classifier“ erstellt und anschließend an den Gruppen der „outer Crossvaldation“ 

trainiert und getestet.  

Im Anschluss erfolgte zusätzlich die Unterteilung und separate Analyse verschiedener 

Subgruppen, um herauszuarbeiten welche Grundbedingungen die Vorhersagekraft des 

Modells beeinflussen.  

Nach Abschluss der Trainingsphase wurde getestet, wie gut das Machine-Learning-Modell bei 

neuen, bzw. unbekannten Läsionen den KRAS-Mutationsstatus vorhersagen konnte. 

Es wurde im Einzelnen die jeweilige Prädiktion des Programms mit dem tatsächlichen, im 

Vorfeld histopathologisch gesicherten, Mutationsstatus verglichen. 

 

5.2 Kohortengröße und Datenheterogenität als limitierende Faktoren des 

prädiktiven Modells 

Eine Limitation dieser Studie liegt vor allem in dem verwendeten, relativ kleinen Datensatz von 

insgesamt 58 Lungenkarzinomen mit KRAS-Mutation. Hierbei stellten bei der Analyse 

insbesondere die Inhomogenität der CT-Daten hinsichtlich der heterogenen Tumorstadien (cT 

Stadium) eine Limitation dar. 

Auch wenn für das Training des Machine-Learning-Modells getrennte Trainings-, Validierungs- 

und Testdatensätze verwendet wurden, wäre es aussagekräftiger, wenn das trainierte Modell 

an einem unabhängigen Datensatz aus einer anderen Quelle getestet worden wäre, dies hätte 

die Generalisierbarkeit des Modells beweisen können. Diese Einschränkung könnte im 

Rahmen künftiger Arbeiten angegangen werden, wenn mehr Daten zur Verfügung stehen, die 

den Anforderungen der Studie entsprechen. 

Die retrospektive Selektion geeigneter Probanden aus dem Archiv der Uniklinik Köln war 

anspruchsvoll, da Patienten mit der Erstdiagnose eines NSCLCs insbesondere bei der 

Anfertigung der CT-Doiagnose häufig schon extern eine Firstline-Therapie erhalten hatten und 

nicht als therapienaiv gewertet und so nicht eingeschlossen werden konnten.  
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Trotz einer intensiven Suche war es schwierig anhand der Informationen im RIS-System eine 

ausreichende Anzahl geeigneter Patienten zu rekrutieren. Insgesamt war die Gesamtzahl der 

Patienten bzw. CT-Datensätze zwar ausreichend für ein suffizientes Training des 

radiomischen Modell, jedoch ist anzunehmen, das umfangreichere Datensätze die Ergebnisse 

verbessern könnten. Zukünftige Studien sollten daher möglichst hohen Patientenzahlen 

generieren, um die Vorhersagekraft des Modells zu erhöhen. Hierfür könnte sich insbesondere 

eine multizentrische Studie eignen. 

Die aufgrund des retrospektiven Studiencharakters bestehende Heterogenität der Daten kann 

als weiterer möglicher Grund für die, im Vergleich zu oben genannten Studien, geringere 

prädiktive Genauigkeit angesehen werden. Diese erstreckt sich zum einen auf die 

eingeschlossenen Karzinome selbst, zum anderen auf technische Parameter wie den 

Einschluss von Untersuchungen mit Verwendung verschiedener Faltungskerne (Filter) bzw. 

CT-Scannertypen. 

Dabei wäre für die bessere Verallgemeinbarkeit des KI-Modells eine homogene Datenakquise 

und -archivierung als Grundlage wünschenswert.  

Da die Studienergebnisse zum Teil stark divergieren, ist der Ausblick dieser Methhode unklar. 

Bei zunehmender Anwendung von Radiogenomics scheint jedoch eine Leistungssteigerung 

des Systems weiterhin möglich. 

Im Zuge der Digitalisierung werden weltweit exponentiell immer mehr medizinische Bilddaten 

sowie digitalisierte klinische Informationen archiviert. Einhergehend steigt das Potential für 

Akquisition größerer Datensätze und aussagekräftigere retrospektive Studien.  

Das The Cancer Imaging Archive (TCIA) ist hier erwähnenswert, das Informationen aus 

medizinischer Bildgebung, klinische und histologische Daten, bis hin zu genomischen Daten 

in einem Open-Access-Setting anbietet. 

 

 Heterogenität bei Karzinomen 

Ein weiterer Faktor, der die Analyse der CT-Datensätze negativ beeinflusst haben könnte, 

besteht darin, dass sich die überwiegende Anzahl der Patienten unseres Kollektivs zum 

Zeitpunkt der Erstdiagnose bereits in einem weit fortgeschrittenen Tumorstadium befand, wie 

c T4 bzw. Stadium IIIb/IV.  

Diese fortgeschrittenen Stadien gehen häufig mit einer fortgeschrittenen histopathologischen 

Heterogenität und Entdifferenzierung der Tumorzellen (Grading: G ≥ 3) einher.127 Es ist 

wahrscheinlich das dies auch zu einer stärkeren Diversität der Bildmerkmale führt. An dieser 

Stelle kommt hinzu, dass die Genauigkeit der manuell durchgeführten Segmentierung der 

Läsionen bei Infiltration von Umgebungsstrukturen abnimmt, da zum Teil keine klare 

Abgrenzbarkeit bzw. Grenze zwischen infiltriertem und gesundem Gewebe bildgebend 

möglich ist. 
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Ein weites Indiz, welches diesen Zusammenhang belegt, ist die Überlegenheit der 

Vorhersagekraft unseres Modells bei nodulären pulmonalen Läsionen mit einem Durchmesser 

im Weichteilfenster von ≤ 30 mm (Nodules) im Vergleich mit größeren Raumforderungen > 30 

mm (Masses). Die kleineren Läsionen, meist ohne direkte Infiltration von Nachbarorganen, 

beispielsweise der Pleura, Thoraxwand oder Mediastinum, sind häufig mit früheren 

Tumorstadien assoziiert und scheinen, den Ergebnissen unserer Studie zufolge, 

charakteristischere Bildmerkmale für einen positiven KRAS-Mutationsstatus zu enthalten. Vor 

diesem Hintergrund wäre ein zukünftiger Studienansatz, welcher sich auf die Analyse von 

kleineren Lungenkarzinomen beschränkt, von Interesse für die weiterführende Validierung 

unseres Radiomics-Ansatzes. 

Bei NSCLC-Fällen mit KRAS-positivem Mutationsstatus kommen Ko-Mutationen und 

genetische Subtypen vor, die beispielsweise die Ergebnisse einer Immuntherapie 

beeinflussen. In einer Studie aus dem Jahr 2015 beschrieben Skoulidis und Kollegen drei 

große Untergruppen von KRAS-mutierten Adenokarzinomen. Durch Analyse von 

Genexpressionsprofilen und gleichzeitig auftretenden genomischen Veränderungen zeigten 

sie Unterschiede in biologischer Struktur, Immunprofilen und therapeutischer Anfälligkeit128. 

Die drei wichtigsten KRAS-mutierten Untergruppen wurden durch Ko-Mutationen in 

STK11/LKB1 (KL-Untergruppe), TP53 (KP-Untergruppe) und CDKN2A/B-Inaktivierung sowie 

eine geringe Expression des Transkriptionsfaktors NKX2-1 (TTF1) (KC-Untergruppe) definiert. 

Die KP-Untergruppe der Patienten mit einer Ko-Mutation in TP53 zeigte in Studien 

beispielsweise eine höhere Tumormutationslast und Merkmale einer Entzündungsreaktion mit 

erhöhter Expression von ko-stimulatorischen (d. h. CD28) und ko-inhibitorischen Signalen, 

einschließlich PD-L1.   

Während mehrere präklinische und klinische Studien Patienten mit KRAS-mutiertem NSCLC 

und TP53-, STK11-, KEAP1- oder CDKN2A-Komutationen beschrieben haben, gab es bisher 

keine Arbeit, die die Auswirkungen bzw. Unterschiede des KRAS-Subtyps in Bezug auf die 

radiologischen Bildfeatures untersucht hat.129-131 

In diesem Zusammenhang ist es denkbar, dass die Heterogenität den Untergruppen von 

KRAS-mutierten NSCLCs die Ergebnisse unseres Projektes negativ beeinflusste. 

Das Patienten-Kollektiv dieser Studie umfasste Patienten mit verschiedenen 

Treibermutationen und bei der begrenzten Anzahl KRAS-positiver Patienten erfolgte vorab 

keine Differenzierung der einzelnen genetischen Subgruppen dieser Mutation. 

 

 Heterogenität bei CT-Scannern und 

Rekonstruktionsparametern 

In einer weiteren Subgruppenanalyse wurde die Vorhersagekraft des radiomischen Modells 

nach Bildrekonstruktion mit Kernel YA und L untersucht.  
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Dieses Vorgehen wurde gewählt, weil bekannt ist, dass CT-Kernel die Radiomics-Merkmale 

beeinflussen. Auf diese Weise sollte ermittelt werden, mit welchem der beiden Kernel sich 

bessere Vorhersagewerte aus einer homogenen Datengruppen erzielen lassen. 

So wurde Bei der Anwendung des Filtertyps YA erreichte die radiomische Analyse aller 

Läsionen eine AUC von 0.74 (± 0.15) und eine Balanced Accuracy von 0.61 (± 0.14).  

Im Vergleich wurde bei der Anwendung des Filtertyps L eine schwächere AUC von 0.46                       

(± 0.04) und eine Balanced Accuracy von 0.45 (± 0.06).  

Die unter Verwendung des Kernels YA erreichte Genauigkeit ist jedoch ebenfalls nicht 

ausreichend, um eine sichere klinische Anwendbarkeit, wie beispielweise als Alternative einer 

histopathologischen Auswertung, zu gewährleisten.  

Aufgrund der herausfordernden Patientenrekrutierung und der Notwendigkeit auf über einen 

langen Zeitraum archivierte CT-Datensätze zurückgreifen zu müssen, war es auch nicht 

möglich nur Patienten einzuschließen, die an nur einem einzigen CT-Gerätemodell untersucht 

wurden. Erschwerend kam hinzu, dass die archivierten Datensätze von insgesamt sieben 

verschiedenen CT-Gerätemodellen erhoben worden waren.  

In diesem Zusammenhang zeigte eine Studie von Mackin et. al., dass eine statistische 

relevante Variabilität radiomischer Bildmerkmale besteht, wenn CT-Bilder verschiedener CT-

Scanner (Geräte) für die Berechnung verwendet werden. Die Schlussfolgerung besagter 

Studie, die CT-Bilder von 20 NSCLC Patienten untersuchte, war darüber hinaus, dass diese 

„Inter-Scanner“-Variabilität, in ihrer Größenordnung mit der pathophysiologischen Variabilität 

dieser Merkmale in CT-Bildern von NSCLC-Tumoren vergleichbar ist.132 Diese Unterschiede 

zwischen den Scannern sollten berücksichtigt und ihre Auswirkungen in zukünftigen 

Radiomics-Studien minimiert werden.  

Technisch ideal wäre dabei ein Ansatz, bei dem nur Datensätze eines einzigen Gerätes 

herangezogen würden. 

Aber, wie bereits oben erwähnt, ist für die breite klinische Anwendung und 

Entscheidungsfindungen vorrangig ein robuster Radiomics-Ansatz erforderlich, der 

weitgehend unempfindlich gegenüber den Variablen des verwendeten Bildgebungsprotokolls 

und CT-Scannermodells ist. 

Bei der Planung dieses Projektes wurde von der Annahme ausgegangen, dass die Radiomics-

Analyse, auch im Zusammenhang mit genomischen Daten, ein geeignetes Instrument zur 

objektiven und quantitativen radiologischen Bildauswertung darstellt.  

Die Zuverlässigkeit („Robustness“) dieser Methode in Bezug auf Variabilität der 

Segmentierung ist jedoch noch nicht nachgewiesen worden.  

Beispielsweise wurde in Studien beobachtet, dass radiomische Merkmale von Bildartefakten, 

welche in klinisch angefertigten CT-Bildern nicht selten sind, beeinflusst warden.133 Darüber 

hinaus hängt die Reproduzierbarkeit radiomischer Merkmale von der Segmentierung der 
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Tumorläsion (ROI) ab, welche wiederum von verschiedenen medizinischen Wissenschaftlern 

vorgenommen und deren absolute Reproduzierbarkeit angezweifelt werden muss. 

 

5.3 Methodische Limitationen von Radiomics 

Aus klinischer Sicht sollte die Robustheit in Bezug auf die Segmentierungsvariabilität 

sichergestellt sein, bevor radiomische Bildmerkmale in die klinische Routinebeurteilung von 

Patienten mit nicht-kleinzelligem Lungenkarzinom (NSCLC) Einzug erhalten. 

In einer Studie von Belfiore et. al. wurde die Robustness radiomischer Merkmale in Bezug auf 

die ROI-Segmentierung bei der präoperativen CT von NSCLC bewertet.  

Die Ergebnisse zeigten, dass nur bestimmte Merkmale robust waren und einen hohen „Intra-

Class Correlation Coefficient (ICC) aufwiesen. Gleichwohl wurde eine große Anzahl von 

Merkmalen identifiziert die vulnerabel gegenüber der Segmentierung waren und einen 

niedrigen ICC aufwiesen. Es zeichnete sich außerdem ab, dass die Segmentierungsvariabilität 

bei der manuellen Abgrenzung steigt, je größer der Tumor ist134. 

Vor diesem Hintergrund muss im Rahmen dieser Projektarbeit insbesondere die Objektivität 

und Reproduzierbarkeit der Segmentierung kritisch hinterfragt werden. Perspektivisch sollte, 

aufgrund der hohen Vulnerabilität, diesem Schritt höchste Priorität zugeordnet werden und 

Expertenkonsens bezüglich der genauen ROI-Definition bestehen. Moderne automatische 3D-

Segmentierungstools könnten hierbei hilfreich sein. 

Perspektivisch könnte die höhere Zuverlässigkeit der Segmentierung kleinerer NSCLC-Herde 

die klinische Anwendbarkeit des Modells bei entsprechenden Läsionen beschleunigen.  

Die generelle Gültigkeit von radiomischer Modelle, wird zwar in zahlreichen aktuellen 

Projekten so wie auch in dieser Arbeit vorausgesetzt, ist jedoch wissenschaftlich noch nicht 

hinreichend bewiesen. Verschiedene Studien haben gezeigt, dass Einschränkungen 

hinsichtlich der Reproduzierbarkeit (Reproducibility) und Wiederholbarkeit (Repeatability) 

radiomischer Merkmale bestehen. 

Eine systematische Übersichtsstudie von Traverso et. al, fasste die Ergebnisse von insgesamt 

41 Studien zusammen. Diese untersuchten jeweils speziell die Wiederholbarkeit und 

Reproduzierbarkeit radiomischer Bildmerkmale hauptsächlich anhand von NSCLC-Fällen. 

Das Fazit der Übersichtsstudie war, dass die Wiederholbarkeit und Reproduzierbarkeit von 

Radiomerkmalen in unterschiedlichem Maße von Verarbeitungsdetails abhängt. Hierzu zählen 

z. B. Einstellungen für die Bilderfassung, der Bildrekonstruktionsalgorithmus, die digitale 

Bildvorverarbeitung und die zur Extraktion von Radiomerkmalen verwendete Software. 

Merkmale erster Ordnung waren insgesamt reproduzierbarer als Texturmerkmale und 

sogenannte Shape-Metrics (Formmerkmale). Die Entropie wurde durchweg als eines der 

stabilsten Merkmale erster Ordnung angegeben. Weder bei Shape noch bei den 
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Texturmerkmalen konnte ein Konsens erzielt werden. Die Merkmale Coarseness („Grobheit“) 

und Kontrast gehörten zu den am wenigsten reproduzierbaren Merkmalen.128 

Die Qualität zukünftiger Projekte könnte hinsichtlich Details der Software zur 

Merkmalsextraktion, der digitalen Vorverarbeitung sowie Anpassung des Cutoff-Werts zur 

Identifikation stabiler Merkmale, verbessert werden.  

Es ist anzunehmen, dass die Vorhersagekraft des Modells gesteigert werden könnte, wenn, 

hinsichtlich Reproduzierbarkeit und Wiederholbarkeit, ausschließlich statistisch stabile 

Merkmale verwendet werden. 

 

5.4 Schlussfolgerung 

Abschließend lässt sich festhalten, dass es im Rahmen dieser Studie nicht gelang mit Hilfe 

des verwendeten radiomischen Analysemodells, eine klinische Anwendbarkeit zur nicht-

invasiven Charakterisierung von KRAS-positiven NSCLC-Lungentumoren zu demonstrieren. 

Im Vergleich zu ähnlichen Studienansätzen, waren die erzielten Ergebnisse dieses Projektes 

für die Vorhersagekraft für den KRAS-Mutationsstatus schwächer und nicht signifikant.  

Die prädiktive Kraft des Modells war, möglicherweise aufgrund einer zu großen Heterogenität 

sowohl bei den Lungenraumforderungen, als auch bei technischen Scanparametern, 

insuffizient. In anschließenden Subgruppen-Analysen erreichte das Radiomics-Modell teils 

bessere Vorhersagegenauigkeit, deren Großenordnung den Ergebnissen themenverwandter 

Studien ähnelt.  

Um Ergebnisse des Radiomic-Modells weiter zu verbessern sollten künftige Studien größere 

Datensätze verwenden um aussagekräftige Subgruppen mit homogenerem Phänotyp bilden 

und analysieren zu können. Eine solche Aufteilung könnte beispielsweise anhand des T-

Stadiums oder der genetischen KRAS-Subgruppe erfolgen. 

Insgesamt wurde durch dieses Projekt besonders die multifaktorielle Anfälligkeit CT-basierter 

radiomischer Bildmerkmale deutlich. 

Jedoch kann geschlussfolgert werden, dass grundlegend weitere Schritte zur Optimierung des 

Radiomic-Modells nötig sind, um eine ausreichende statistische Zuverlässigkeit der 

Radiomics-basierten Vorhersage des Mutationsstatus bei NSCLC zu erreichen. 
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