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1. Zusammenfassung

Das Kirsten Rat Sarcoma viral oncogene homolog (KRAS) ist eine haufig vorkommende
Mutation bei nicht-kleinzelligem Lungenkrebs (NSCLC) und beeinflusst das Fortschreiten der
Krankheit sowie die Therapiestrategie. In dieser Studie wurde eine Pipeline fir maschinelles
Lernen (ML) auf radiologische Bildmerkmale angewendet, die aus internen CT-Bildern aus
dem Archiv der Uniklinik Kéln extrahiert wurden, mit dem Ziel KRAS-Mutationen bei NSCLC-
Patienten zu identifizieren.

Zundchst wurden zwei seperate Datensatze gebildet und mit statistischen Tests und
Techniken zur Dimensionalitatsreduktion analysiert. AnschlieRend wurde die vorgeschlagene
ML-Pipeline auf beide Datenséatze angewandt, wobei eine flinffache Kreuzvalidierung auf dem
Trainingssatz (70/30-Train/Test-Split) durchgefiihrt wurde, bevor sie auf dem anderen
Datensatz validiert wurde.

Die Ergebnisse zeigen, dass sich die radiologischen Merkmale zwischen den beiden
Datensatzen signifikant unterscheiden (Mann-Whitney-U-Test, p-Wert<0,05), obwohl die
Methoden zur Merkmalsextraktion identisch sind, was darauf hindeutet, dass eine erfolgreiche
Ubertragbarkeit des Modells schwierig zu erreichen sein kénnte. Dies wurde bei den externen
Tests deutlich (externer F1-Score=0,38). Oversampling- und Undersampling-Techniken
wurden angewandt, um die positiven und negativen KRAS-Félle auszugleichen, aber sie
halfen nicht, eine bessere Klassifizierung des Vorhandenseins von KRAS-Mutationen zu
erreichen. Im Allgemeinen ist die Genauigkeit der KRAS-Vorhersage aufgrund der nur
maRigen Ergebnisse (hochster Test F1-Score=0,62) fur die klinische Anwendung nicht
ausreichend.

In zukunftigen Arbeiten kdnnte die Komplexitdt der KRAS-Mutation untersucht werden, da
Submutationen im Behandlungsprozess eine Rolle zu spielen scheinen. Grolere
multizentrische Datenséatze mit ausgeglichenem Tumorstadium (T-Stadium), einschlieBlich
Multiscanner-Datenséatzen, scheinen fir die Erstellung robuster Vorhersagemodelle

erforderlich zu sein.



2. Einleitung

2.1Epidemiologie und Pathogenese des nicht-kleinzelligen
Bronchialkarzinoms

Mit ca. 1,8 Millionen dokumentierten Todesfallen pro Jahr ist das Bronchialkarzinom weltweit
die haufigste krebsbedingte Todesursache mit ca. 18,0% aller Krebstode.! Jahrlich kommt es
in der Bundesrepublik Deutschland nach der letzten verdffentlichten Schatzungen des Robert
Koch-Instituts Berlin fir das Jahr 2019 zu etwa 59.221 Neuerkrankungen, davon etwa 35.675
Manner und 23.546 Frauen.? Das Bronchialkarzinom ist damit nach Prostatakrebs bei
Mannern und Brustkrebs bei Frauen die zweithaufigste Krebsart. Bei Frauen hat das
Bronchialkarzinom in Deutschland sowie weltweit nach dem Mammakarzinom und dem
Colonkarzinom die 3.-héchste Inzidenz und ist die 2.-haufigste Krebstodesursache. Beim
Mann ist es die haufigste krebsbedingte Todesursache und hat nach dem Prostata-CA die 2.-
hochste Inzidenz.:?
Das Rauchen stellt den wichtigsten Risikofaktor flr das Bronchialkarzinom dar. Es sind tber
7.000 Chemikalien im Tabakrauch bekannt, davon sind mehr als 250 Toxine gesichert
krebserregend. Dazu gehoren polyzyklische aromatische Kohlenwasserstoffe (PAKS),
Cadmium und Beryllium (toxische Metalle), Cyanwasserstoff, Kohlenmonoxid und Ammoniak.®
Weitere kausale Faktoren bestehen in der Exposition gegentuber kanzerogenen Chemikalien
wie Radon, Asbest, Arsen sowie Feinstaub.*
AuBerdem kann eine genetische Pradisposition der Entstehung des Bronchialkarzinoms
zugrunde liegen.
Die beispielsweise in Tabakrauch enthaltenen Schadstoffe schadigen dabei die Zellen des
respiratorischen Epithels. Im Laufe der Zeit wird die Mutationsrate durch den andauernden
epithelialen Reparaturbedarf und die erhdhte Zellteilungsrate gesteigert. SchlieZlich gelingt es
den kdrpereigenen Reparaturmechanismen nicht mehr diese Schaden auszugleichen.®
Bei dieser Kanzerogenese des NSCLC entstehen dann durch unkontrollierte Zellteilung
lokalisierte Tumorherde bzw. —knoten.®
Die folgende Abbildung des Robert-Koch-Instituts gibt die Verteilung der Lungentumoren nach

Geschlecht und histologischem Typ wieder.
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Abb. 1: Verteilung der histologischen NSCLC-Subtypen nach Geschlecht 2

Im Hinblick auf die histologischen Subtypen des nicht kleinzelligen Bronchialkarzinoms
(NSCLC), wird der haufigste Subtyp, das Adenokarzinom, in Deutschland, in ca. 40%
der Falle diagnostiziert. Rund 25% entfallen auf das Plattenepithelkarzinom, knapp
20% auf das kleinzellige Lungenkarzinom (SCLC). Bei weiteren ca. 10% der Tumore
ist eine sichere histologische Zuordnung nicht méglich.

Das pulmonale Adenokarzinom entsteht meist in peripheren Lungenabschnitten durch
unkontrollierte Zellteilung glandularer Zellen des Bronchialepithels und lasst sich
seinerseits in verschiedene Subtypen unterteilen. Einige hiervon, wie beispielsweise
das invasiv muzingse und das solide Adenokarzinom der Lunge produzieren Muzin,
wahrend andere Varianten, wie das lepidische Adenokarzinom der Lunge keine
Schleimproduktion aufweisen.® Im Vergleich zum Plattenepithelkarzinom, der
zweithaufigsten Unterformen des NSCLC, weist das Adenokarzinom ein langsameres
Wachstum auf und wird durchschnittlich in friheren Tumorstadien diagnostiziert.”
Der Kkleinzellige Typ (SCLC) wird, wegen der charakteristischen kleinen
spindelférmigen Tumorzellen mit hyperchromatischem Zellkern bei wenig Zytoplasma,
auch als Haferzellkarzinom oder ,Oat Cell Carcinoma“ bezeichnet. Die Zellen liegen
meist einzeln oder im lockeren Zellverband. Immunhistochemisch zeichnen sie sich
u.a. durch die Expression von Creatinkinase 7 und 18 aus. Der Zellteilungszyklus ist
schneller als der des NSCLC, was insgesamt eine schlechtere Prognose bedingt.
AulRerdem typisch sind eine zentrale Lage innerhalb der Lunge und das Auftreten

paraneoplastischer Syndrome durch ektope Hormonausschittung.?
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Abbildung 2 gibt eine schematische Ubersicht der Entstehung von Adenokarzinomen
(der haufigsten Unterform des NSCLC) und des SCLC aus Zellen des respiratorischen
Epithels.
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Abb. 2: Entstehung des Adenokarzinoms (NSCLC) und SCLC aus Zellen des respiratorischen
Epithels °

Aus neuroendokrinen Zellen entwickeln sich SCLC, aus Clara-Zellen entstehen
Adenokarzinome. Alveolarzellen Typ Il kdnnen sowohl SCLC als auch Adenokarzinom
hervorbringen. Hierbei ist erganzend anzumerken, dass sowohl histologische
Mischpopulationen aus Adenokarzinom-Zellen als NSCLC und SCLC-Zellen, als auch die
sekundare Transformation von Adenokarzinomen zu einem SCLC in der Literatur beschrieben

warden.®

2.2Klassifikation des Bronchialkarzinoms
Die Klassifikation der Tumoren und ihr Ausbreitungsgrad stellen ein zentrales Instrument in
der Diagnose und Behandlung von Lungenkarzinomen dar. Den bei der Diagnostik und
Therapie des Bronchialkarzinoms getroffenen Entscheidungen liegt die klinische Klassifikation
der Tumoren anhand ihrer Ausbreitung zugrunde. Betrachtet werden lokale, regionale und

Tumorstreuung fernab der priméaren Lokalisation.
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Diese sogenannte TNM-Klassifikation des Bronchialkarzinoms ist somit ein zentrales Element

in der Diagnose und Behandlung des Bronchialkarzinoms (T = Primartumor; N = Lyphknoten;

M = Fernmetastasen).

Die T-Kategorie beschreibt den Primartumor in seiner lokalen Ausdehnung. Hierbei warden,

entsprechend der Einteilung der 9. Version fur Bronchialkarzinom des American joint

committee on cancer (AJCC), insgesamt 12 verschiedene Kategorien fir das NSCLC

unterschieden. Diese werden in der folgenden Tabelle (Tab.1) dargestellt:

Tab. 1: Die T-Klassifikation %12

T-Kategorie Erlauterung

TX Primartumor kann nicht beurteilt werden oder Nachweis von
malignen Zellen im Sputum oder bei Bronchialspilungen,
jedoch Tumor radiologisch oder bronchoskopisch nicht
sichtbar.

TO Kein Anhalt flr Primartumor

Tis Carcinoma in situ mit rein lepidischem Wachstum bis 3 cm
fur Adenokarzinom und Plattenepithelkarzinom in situ

T1imi minimal invasives Adenokarzinom Solitares Adenokarzinom
nicht mehr als 3 cm in der gréf3ten Ausdehnung, mit einem
Uberwiegend lepidischen Wachstumsmuster und nicht mehr
als 5 mm invasivem Antelil

Tla Tumor bis einschliel3lich 1 cm in grof3ter Ausdehnung

T1b Tumor mehr als 1 cm und bis einschlie3lich 2 cm in grof3ter
Ausdehnung

Tlc Tumor mehr als 2 cm und bis einschlie3lich 3 cm in grof3ter
Ausdehnung

T2 Tumor mehr als 3 cm, aber nicht mehr als 5 cm in grof3ter

Ausdehnung oder Tumor mit wenigstens einem der
folgenden Kennzeichen:

» Tumor befallt Hauptbronchus, 2 cm oder weiter distal der
Carina ohne Befall der Carina

» Tumor infiltriert viszerale Pleura

13



» assoziierte Atelektase oder obstruktive Entzundung bis

zum Hilus, entweder Teile der Lungen oder die ganze Lunge

einnehmend
T2a Tumor bis einschliel3lich 4 cm
T2b Tumor mehr als 4 cm und bis einschlief3lich 5 cm
T3 Tumor mehr als 5 cm, aber nicht mehr als 7 cm in grof3ter

Ausdehnung oder Tumor mit direkter Infiltration einer der
folgenden  Strukturen:  Pleura  parietalis,Brustwand
(eingeschlossen  Sulcus  superior-Tumoren), Nervus

phrenicus,

T4 Tumor grolRer als 7 cm oder Tumor jeder Grof3e mit
Infiltration wenigstens

einer der folgenden Strukturen: Zwerchfell, Mediastinum,
Herz, grol3e Gefalde,

Trachea, N. laryngealis recurrens, Osophagus,
Wirbelkdrper, Carina; vom

Primartumor getrennte(r) Tumorknoten in einem anderen

Lappen derselben Seite

Der Status der regiondren Lymphknoten wird durch die N-Kategorie beschrieben. Beim
Bronchialkarzinom werden hierbei die intrathorakalen, die supraklavikuldren sowie die
Skalenuslymphknoten bewertet. Die Tumorstreuung in alle sonstigen Lymphknotenstationen
wird demgegeniiber als Fernmetastasen klassifiziert. Tabelle 2 gibt einen Uberblick tiber die

N-Klassifikation des Bronchialkarzinoms.©

Tab. 2: Die N-Kategorie

N-Kategorie Erlauterung

NX regionale Lymphknoten kénnen nicht beurteilt werden

NO keine regionédren Lymphknotenmetastasen

N1 Metastase(n) in ipsilateralen peribronchialen und/oder

ipsilateralen Hilus- oder intrapulmonalen Lymphknoten
(einschliel3lich eines Befalls durch direkte Ausbreitung des

Primartumors)
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N2 Metastase(n) in ipsilateralen mediastinalen und/oder
subkarinalen Lymphknoten
N3 Metastase(n) in kontralateralen mediastinalen,

kontralateralen Hilus-, ipsi- oder kontralateralen Skalenus-

oder supraklavikularen Lymphknoten

In Fallen mit sogenannter Mikrometastasierung, also Lymphknotenmetastasen, die eine Gro3e

von mehr als 0,2cm nicht Uberschreiten, kann die zusatzliche Kennzeichnung durch die

Hinzufugung eines ,(mi)*, z.B. pN1(mi) oder pN2(mi) erfolgen.

Die M-Kategorie beschreibt den Fernmetastasen- Status.

Tab. 3: Die M-Kategorie

M-Kategorie Erlauterung

MO keine Fernmetastasen

M1 Fernmetastasen

Mla vom Primartumor getrennte Tumorherde in einem
kontralateralen Lungenlappen oder Tumor mit Pleura- oder
Perikardmetastasen oder mit malignem Pleura- oder
Perikarderguss

M1b eine extrathorakale Metastase in einem Organ (dies schliel3t
auch die Beteiligung eines nicht regionalen Lymphknotens
ein

Mlc multiple extrathorakale Metastasen in einem oder mehreren
Organen

Ergadnzend wird bei der
angebenden:

* Pulmonal:PUL

* Ossar: OSS

* Hepatisch: HEP

* Hirn: BRA

Kategorie M1b die Lokalisation der Metastase als Kirzel mit

* Lymphknoten, die nicht zu den regiondren Lymphkonten zahlen: LYM

* Knochenmark: MAR
« Pleural/Perikardial: PLE

15



* Peritoneal: PER

» Adrenal: ADR

» Hautmetastasen: SKi

* Andere Lokalisationen: OTH

Pleurale oder perikardiale Erglisse werden in der Regel als M1a klassifiziert, da der Grof3teil
pleuraler oder perikardialer Erglisse durch den Tumor bedingt werden und Tumorzellen
enthalten. In Einzelféallen kénnen jedoch mikroskopische Untersuchungen des Pleura- oder
Perikardergusses wiederholt auf Tumorzellen negativ bleiben. Ist die Ergussflissigkeit ist nicht
blutig und es entwickelt sich kein Exsudat sollte eine in der klinischen Beurteilung eine MO
Klassifizierung erfolgen.

Die TNM-Klassifikation gilt fuir alle nicht-kleinzelligen Karzinome der Lunge und der zentralen
Bronchien. Sie erleichtert den Vergleich von Ergebnissen klinischer Studien und die
Auswertung von Registern.

Demgegentiber ist beim kleinzelligen Bronchialkarzinoms die TNM-Klassifikation nur bedingt
geeignet. Man spricht hier stattdessen von “Limited Stage” (LS-SCLC), bei der sich die
Ausdehnung auf eine Lungenhdlfte und angrenzende Lymphknoten beschrankt,

beziehungsweise von “Extensive Stage” (ES-SCLC), wenn der Tumor weiter ausgebreitet ist.*°

2.3Bildgebende Diagnostik des Bronchailkarzinoms

2.31. Bildgebende Staging-Untersuchungen

In der Diagnostik des Lungenkarzinoms kommen drei Verfahren, die jeweils mit ionisierender
Strahlung arbeiten, im klinischen Alltag zum Einsatz. Die Thoraxibersichtsaufnahme, die
Computertomographie (CT) und die Positronen-Emissions-Tomographie (PET). Letztere wird
Ublicherweise mit der CT in einem (PET/CT)-Gerat kombiniert verwendet.

Eine weitere Methode von zentralem Stellenwert ist die Magnetresonanztomographie (MRT)
die ohne ionisierende Strahlung erfolgt. Gleiches gilt fur die seltener und erganzend zum
Einsatz kommende Thoraxsonographie. Diese beiden Verfahren werden im Rahmen der
Staging-Diagnostik des Lungenkarzinoms fir spezielle Fragestellungen, wie beispielsweise
Hirnmetastasen, Sulcus-superior Tumoren, Beurteilung einer mdglichen Infiltration von
Brustwand oder Mediastinum etabliert.

Grundsatzlich gilt das bildgebende Untersuchungen unter Verwendung von ionisierenden
Strahlen (Rontgenstrahlen, radioaktive Isotope) nur bei Patienten durchgefiihrt werden, wenn
ein im Strahlenschutz entsprechend fachkundiger Arzt vor der Untersuchung die
rechtfertigende Indikation fiir den Einsatz ionisierender Strahlung nach 8 83 des
Strahlenschutzgesetzes (StrlISchG) bestatigt hat. Dies beinhaltet insbesondere die Priifung,

dass der gesundheitliche Nutzen gegentiber dem Strahlenrisiko Uberwiegt.
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Besteht der Verdacht auf ein Lungenkarzinom mit Therapieoption sollen laut Leitlinie folgende
bildgebenden Staging-Untersuchungen durchgefihrt werden:

Initialial sollte ein Diagnostisches CT des Thorax und Abdomen (Oberbauch und Becken) mit
Kontrastmittel durchgefuhrt werden.

Bei kurativer Behandlungsintention im klinischen Stadium IB-IIIB und im metastasierten
Stadium IVA mit M1B (solitare Metastase) soll auch bei negativem Kklinischem
Untersuchungsbefund eine Untersuchung auf extrathorakale Metastasen mittels MRT des
Gehirns und Ganzkorper-FDG-PET/CT erfolgen. Falls aus medizinischen

Griunden, z. B. diabetischer Stoffwechsellage, eine FDG-PET-Untersuchung nicht
durchgefuhrt werden kann, ist eine Untersuchung auf extrathorakale Metastasen entweder
mittels Knochenszintigrafie plus CT Abdomen oder Knochenszintigrafie plus Sonografie
Abdomen oder Ganzkorper-MRT indiziert.1°

2.3.2. Konventionelle Thoraxibersichtsaufnahme

Bei Thoraxerkrankungen ist generell die konventionelle Rontgen-Ubersichtsaufnahme in zwei
Ebenen (p.a. und latearl) das am haufigsten eingesetzte, initiale radiologische Verfahren.
Damit werden Bronchialkarzinome entweder als Zufallsbefund oder aufgrund unspezifischer
Symptome wie Husten, Auswurf, Haemoptoe, Fieber, Schmerzen, Dyspnoe, Gewichtsverlust,
Leistungsknick und paraneoplastischer Symptome detektiert. Periphere Lungenkarzinome
stellen sich, falls abgrenzbar, direkt als Rundherd oder Raumforderung dar. Zentrale
Karzinome sind demgegeniber teils nur indirekt als Atelektase oder Mediastinalverbreiterung
abgrenzbar. Mitunter kann auch ein (meist unilateraler) Pleuraerguss der einzige Hinweis auf
ein Bronchialkarzinomkarzinom sein.°

Bei der Detektion eines symptomatischen Bronchialkarzinoms erreicht die konventionelle
Rontgenbildgebung jedoch nur eine Sensitivitit von 77-80%.'° Daher besteht die
Basisdiagnostik des Bronchialkarzinom-Screenings meist aus einer Low-Dose-
Computertomographie und/oder einer Bronchioskopie.

Wird im Rahmen des Screenings der V.a. Bronchialkarzinom gestellt, kommen im Rahmen
des Stagings weitere Bildgebungen zum Einsatz. Hierbei sind drei Verfahren von zentralem
Stellenwert. Die Computertomographie (CT), die Positronen-Emissions-Tomographie (PET),
welche Uberwiegend in Kombination mit der CT in einem Gerat eingesetzt wird (PET/CT) und
die Magnetresonanztomographie (MRT). Letztere ist bei der Detektion von Hirnmetastasen
fuhrend. Fur spezielle Fragestellungen (z.B. Beurteilung einer mdglichen Infiltration von
Brustwand oder Mediastinum) kann neben der MRT, eine dedizierte Thoraxsonographie

erfolgen.®
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2.3.3. Technische Grundlagen der Computertomographie
Die Computertomographie (CT) hat sich bei vielen Pathologien als Goldstandard der
diagnostischen Bildgebung durchgesetzt.’® Sowohl zur Beurteilung des Lungenparenchyms
an sich, als auch bei der Detektion kleiner Lungenrundherde erweist sich das CT als
sensitivster gegenliber der konventionellen Réntgenuntersuchung und des MRT.":18
Die Computertomographie ermdglicht unter anderem eine axiale und Uberlagerungsfreie
Darstellung der Korperschichten aus einem 3D-Rohdatensatz. Die zentrale
Untersuchungseinheit eines CT-Gerats wird als Gantry bezeichnet und besteht grundsatzlich
aus Rontgenquelle und Detektorring, welche sich gegeniberstehen und um die Patientenliege
rotieren.
Wahrend der Rotation werden aus dem Fokus der Rontgenréhre facherartig Rontgenstrahlen
emittiert, die auf den Untersuchungskérper treffen, diesen durchdringen und in
abgeschwachter Form vom Detektor erfasst werden.
Fir die Bildkonstruktion wird der sogenannte Schwachungskoeffizient aus dem Verhéltnis von
Primarintensitat und Intensitatsschwéchung durch das Untersuchungsobjekt ermittelt. Dieser
ist somit abh&ngig von Dicke, Dichte sowie Ordnungszahl des Untersuchungsmediums.
Grundsatzlich wird flr die Erstellung eines vollstandigen Bildes, der darzustellende Kdrper aus
mdoglichst vielen Richtungen bestrahlt und auf diese Weise eine Vielzahl verschiedener
Schwachungskoeffizienten bestimmt, welche zusammen ein raumliches Schwachungsprofil
ergeben. Bei modernen CT-Geréaten entsendet die Rontgenréhre kontinuierlich aus 360° einen
Facherstrahl, dessen Signale permanent vom Detektor erfasst werden und deren Summation
eine 3D-Gesamtprojektion ergibt.
Hierbei besteht die Hauptfunktion des Detektors darin, die analogen Signale der
verschiedenen Rontgenintensitaten in elektrische Impulse und somit digitale Signale
umzuwandeln. Im Anschluss erfolgt die Bildrekonstruktion durch computerbasierte
Anwendung verschiedener mathematischer Funktionen an allen aus der Resorptionsanalyse
der Strahlen entstehenden Projektionen (Fourier Transformation).
Dabei errechnet der Computer durch die Profile der verschiedenen Graustufen, welches die
Differenzierung von Flachen hoher Dichte (bspw. Knochen oder Kontrastmittel) und Flachen
geringer Dichte (bspw. Flissigkeit oder Weichteile) ermdglicht. Dartiber hinaus ist es moglich
zwei- und dreidimensionale Rekonstruktionen in Form eines Querschnittsbhildes zu erstellen,
deren Schichtdicke variabel festgelegt werden kann.
Im Vergleich zum herkdmmlichen Rontgenbild lassen sich so auch dichtedhnliche Strukturen
raumlich differenzieren und es kommt nicht zu Uberlagerungseffekten.
Das CT-Bild erlaubt die exakte Messung von Grdl3en und anatomische Zuordnung von

Strukturen, da jeder Bildpunkt dreidimensional aufgenommen ist.

18



Die Anwendung verschiedener Berechnungsalgorithmen erlaubt die Variation des
Bildkontrastes und somit eine Anpassung an das Untersuchungsziel.

Durch die Einfihrung der Spiral-CT und Verwendung mehrzeiliger Detektoren konnten im
Rahmen der technischen Weiterentwicklung der Untersuchungstechnik die bendétigte Scanzeit
verklrzt und die Artefaktanfalligkeit reduziert werden. Bei heutzutage in der klinischen Praxis
angewendeten Spiral-Computertomographen rotiert die Gantry unter kontinuierlichem
Tischvorschub mit Hilfe der sogenannten Schleifringtechnik in einer helixférmigen Bewegung
um die Korperlangsachse des Patienten.

Hierdurch ist es mdglich in einer Atemanhaltephase (25-30 Sekunden) groR3e
Volumendatensatze zu akquirieren und dabei Doppelregistrierungen, sowie artifizielle
Verschleierung oder Uberspringung anatomischer Details zu vermeiden. Die Geschwindigkeit
des Scanvorgangs konnte durch die Verwendung mehrzeiliger Detektoren weiter erhoht
werden. Dabei sind die Detektoren nebeneinander in axialer Richtung angeordnet und ihre
Signale werden wahrend der Datenauswertung kombiniert.°

Vor der Entwicklung der Mehrzeilen-Computertomographie musste bei der Verwendung der
Einzeilen-CT ein Kompromiss zwischen Scandauer und Auflésung eingegangen warden.
Hierbei waren noch relativ grof3e Kollimierungen (5-8 mm) noétig, um einen Thorax oder ein
Abdomen in der Zeit einer physiologischen Atemphase darzustellen. Dieses Problem des
Missverhaltnisses zwischen axialer Auflosung und Auflésung in z-Richtung konnte durch die
MSCT-Technik weitgehend geltst werden?. Die moderne Untersuchung mit bis zu 256- und
320-MSCT erlaubt, aufgrund der zuséatzlich verklrzten Gantryrotationszeit mit bis zu 0,33 s,
die Aufnahme ganzer Organsysteme in wenigen Sekunden.

Hierdurch wurde es unter anderem moglich, den Kontrastmittelbolus im Rahmen von
Mehrphasenuntersuchungen (z.B. CT-Angiographie der Leber) besser auszunutzen.

Eine verkirzte Untersuchungszeit ist vor allem bei Patienten mit Polytrauma, Dyspnoe sowie
bei unkooperativen Patienten, Kindern und bei der Darstellung des Herzens vorteilhaft.?!

Ein Thoraxscan mit einer Ladnge von Durchschnittlich 35 cm kann mit einem modernen 124-
Zeiler in weniger als 4 Sekunden durchgefiihrt werden und erreicht dabei eine theoretische
minimale Schichtdicke von bis zu 0,6 mm.??

Die CT ist sowohl fir die Detektion (Screening) als auch fir die Ausbreitungsdiagnostik des

Bronchialkarzinoms (Staging) von zentralem Stellenwert.°

2.3.4. CT im Rahmen des Bronchialkarzinom-Screenings
Das CT ist die sensitivste bildgebende Methode, um ein Lungenkarzinom nachzuweisen.
Demgegentiber ist die Spezifitdt geringer, da entziindliche Prozesse im Lungenparenchym
teils nicht sicher differenziert werden koénnen. Die radiologischen Merkmale eines
Bronchialkarzinoms konnen ein breites Spektrum aufweisen, welches vom typischen
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spikulierten Rundherd (ber glatt begrenzte Rundherde bis hin zu infiltrativen Prozessen
reichen kann. Letztere kdnnen teilweise radiologisch nicht eindeutig von entzindlichen
Infiltraten unterschieden werden. Die Spezifitat der CT-Untersuchung steigt, wenn Merkmale
eines malignen Prozesses vorliegen, wie beispielsweise die Infiltration benachbarter
Strukturen oder ein Metastasennachweis.

Besteht bei einem Patienten durch unspezifische Symptome der fragliche Verdacht auf ein
Bronchialkarzinom wird daher primér eine CT-Untersuchung mit niedriger Strahlenexposition
ohne Kontrastmittel, auch ,low-dose CT“ genannt, empfohlen. Bei normalem Habitus des
Patienten sollte bei dieser Untersuchung eine effektive Strahlendosis von 1,3 mSv nicht
Uberschritten werden. Dies reicht aus, um pulmonale Rundherde als Hochkontrastlasion im
Lungenparenchym zu detektieren.

Werden im Rahmen eines solchen Screenings suspekte Lasionen gefunden oder besteht
schon primér der dringende klinische Verdacht auf ein Lungenkarzinom, wird eine Volldosis-
CT-Untersuchung des Thorax und Abdomens in vendser Kontrastmittelphase zum Staging
empfohlen. Diese eignet sich im Vergleich zur Niedrigdosis-CT besser, um
Weichteilstrukturen, mediastinale Lymphknoten sowie Infiltration benachbarter Strukturen zu
erkennen. Zuséatzlich wird zur Steigerung der Spezifitdt die Kombination mit einer FDG-PET
entsprechend der S3-Leitlinie empfohlen.1°

Werden im Rahmen von CT-Untersuchungen, die aufgrund sonstiger Indikationen
durchgefiihrt werden, inzidentelle Lungenrundherde nachgewiesen, kdnnen die sogenannten
Fleischer-Kriterien oder die neueren Lung-RADS Kriterien das weitere Vorgehen vorgeben.
Bei den Fleischner-Kriterien handelt es sich um einen Konsensus lUber das Management von
Lungenlasionen, der im Jahr 2005 von der Fleischner Society erarbeitet wurde und
fortwahrend erneuert wird. Seither bestimmen die initiale Knotengrél3e, die Wachstumsrate
sowie Risikofaktoren flr Malignitat das Ausmafl und Methodik des anschliel3enden
diagnostischen Schemas. Beispielsweise wird bei inzidentell diagnostizierten, soliden Knoten
einer GroRe < 6 Millimeter im Durchmesser in einer Routineuntersuchung und bei nicht-
vorliegenden Risikofaktoren, von einer weiteren Nachkontrolle abgesehen. Liegt bei gleicher
KnotengréfRe jedoch ein anamnestisches Hochrisikoprofil vor, wird eine Folgeuntersuchung
nach 12 Monaten empfohlen. Als weitere Beispiele erfordern Knoten zwischen 6 und 8
Millimetern im Durchmesser zwei Folgeuntersuchungen ber einen Zeitraum von 24 Monaten.
Bei Knoten ab einer Gré3e von 8 mm wird nach 3 Monaten die bioptische Gewinnung von
Tumorgewebe oder eine ergadnzende FDG-PET/CT-Untersuchung durchgefihrt. Einen
Uberblick tber die aktuellen Empfehlungen der Fleischner Society zum diagnostischen

Management pulmonaler Rundherde geben die Tabellen 4 und 5:
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Tab. 4: Empfehlungen der Fleischner Society 2017, solide Rundherde; niedriges Risiko vs.

hohes Risiko %3

Empfehlungen 2017 -
Solide Rundherde

solitar:
<6 mm:

6-8 mm:

>8 mm:
multiple:
<6 mm:

6 -8 mm:

>8 mm:

niedriges Risiko:
- kein Follow-Up

- Follow-Up-CT nach 6-12

Monaten, weiteres
Follow-Up nach 18-24
Monaten erwagen

- Follow-Up-CT nach 3
Monaten/PET/Biopsie
erwagen

- kein Follow-Up

- Follow-Up-CT nach 3-6
Monaten, weiteres
Follow-Up nach 18-24
Monaten erwagen

- Follow-Up-CT nach 3-6
Monaten, weiteres
Follow-Up nach 18-24
Monaten erwagen

hohes Risiko:

- CT nach 12 Monaten
optional

- Follow-Up-CT nach 6-
12 Monaten, bei
Befundpersistenz
weiteres CT nach 18-24
Monaten

siehe niedriges Risiko

- Follow-Up-CT nach 12
Monaten optional

- Follow-Up-CT nach 3-6
Monaten, bei
Befundpersistenz
weiteres CT nach 18-24
Monaten

- Follow-Up-CT nach 3-6
Monaten, bei
Befundpersistenz
weiteres CT nach 18-24
Monaten

Tab.5: Empfehlungen der Fleischner Society 2017 fir, subsolide Rundherde?

Empfehlungen 2017 -
Subsolide Rundherde

solitdr, rein subsolide:
- < 6 mm: kein Follow-
Up-CT

-2 6 mm: initiales

Jahre fur insgesamt 5
Jahre

Follow-Up-CT nach 6-12
Monaten, dann CT alle 2

solitér, teilsolide:
- < 6 mm: kein Follow-
Up-CT

- 26 mm: Follow-Up-CT
nach 3-6 Monaten, bei
Befundpersistenz und
solider Komponente < 6
mm jahrliche CT-
Kontrollen fir 5 Jahre

multiple, subsolide:

- <6 mm: Follow-Up-CT
nach 3-6 Monaten, bei
unverandertem Befund
CT nach 2 und 4 Jahren
erwagen

- 26 mm: Follow-Up-CT
nach 3-6 Monaten,
weitere Diagnostik
basierend auf Risikoprofil
des dominanten Nodulus




2.3.5. CT im Rahmen des Bronchialkarzinom-Stangings
Sofern keine Kontraindikationen bestehen, wird im Rahmen der Ausbreitungsdiagnostik bei
Lungenkarzinom-Patienten eine CT-Untersuchung des Thorax und Abdomens in vendser
Kontrastmittelphase, welche 50 Sekunden nach Bolustracking in der Aorta descendens
gefahren wird. Hierbei betragt der Schwellenwert bei dem die Bildgebung gestartet wird ca.
50 HU.
Mit dieser Bildgebung von Thorax und Abdomen wird ein Grofdteil der haufigen
Metastasierungsorte des Bronchialkarzinoms abgedeckt. Hierzu z&hlen u.a. lokoregionare
Lymphknoten sowie Metastasen in Leber, Nebennieren und der Lunge selbst.
Als  diagnostische  Licke  dieser  Untersuchung verbleiben  Hirnmetastasen,
Knochenmetastasen sowie zum Teil auch unspezifischen Lymphknotenmetastasen fiir die
jeweils geringere Sensitivitat besteht.
Diese drei Arten von Metastasen sind zwar auch in der CT-Untersuchung detektierbar, jedoch
ist die Sensitivitat insbesondere bei kleinen L&sionen relativ gering. Beispielsweise von
Knochenmetastasen ohne Destruktion der Knochen-Cortikalis. Darlber hinaus werden
Schédel, Halswirbelsaule und Appendikularskelett routinemafig nicht miterfasst. Hierfur ist
eine Ganzkorperbildgebung erforderlich. Diese erfolgt vor einem mdglichen Einsatz lokaler
Verfahren wie Operation oder Strahlentherapie, ggf. in multimodalen Therapiekonzepten,
mittels FDG-PET/CT.
Zum Ausschluss von Hirnmetastasen wird in Deutschland bei vermutetem oder
nachgewiesenem Bronchialkarzinom und bestehender Therapieoption eine MRT-
Untersuchung des Schadels empfohlen, auch wenn keine neurologischen Symptome
bestehen.°,
In einer fur diese Empfehlung mit ausschlaggebenden Metaanalyse von Li et. al., wies die
cMRT mit ca. 77% eine deutlich h6here Sensitivitat fir Hirnmetastasen auf als die cCT (im
Rahmen der FDG-PET/CT) mit ca. 21%.%*

2.3.6. Technische Grundlagen der 18-F-Fluordesoxyglucose-
Positronenemissionstomographie/Computertomographie  (FDG-

PET/CT)
Bei der Positronen-Emissions-Tomographie (PET) werden radioaktiv markierte Biomolekile
(Tracer) eingesetzt, deren Verteilung im menschlichen Korper mit einer PET-Kamera
aufgezeichnet werden kann. F18-Desoxyglukose (FDG), ein mit radioaktivem Fluor markiertes
Zuckermolekdl, wird bis zu einer bestimmten Stufe wie normaler Zucker verstoffwechselt. Die
moderne, integrierte PET/CT kombiniert die hohe Sensitivitat eines PET-Vollringscanners mit

der sehr guten morphologischen Auflésung der CT.
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Die Anwendbarkeit von FDG in der Krebsdiagnostik basiert auf der Tatsache, dass
Krebszellen, deren Wachstum entreguliert ist, im Vergleich zu gesunden Zellen einen deutlich
erhohten Glukose-Metabolismus aufweisen. Das FDG reichert sich in den ,entarteten®
Krebszellen verstarkt an. Im spateren PET-Bild hebt sich der Tumor dadurch vom
umliegenden, gesunden Gewebe ab'®.

Hauptvorteile der metabolischen FDG-PET gegentber morphologischem CT, sind die hdhere
Empfindlichkeit, insbesondere gegentber Knochenldsionen und die bessere

Differenzierbarkeit kleiner mediastinaler Lymphknotenmetastasen.®

Abbildung 3 zeigt eine osteolytische Knochenmetastase des rechten Os iliums bei einem an
NSCLC erkrankten Patienten im CT- (oben) und FDG-PET/CT-BIld.
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Abb. 3: Knochenmetastase eines NSCLC im rechte OS ilium, im konventionellen CT und im
FDG-PET/CT. Der Pfeil markiert die Lasion mit beginnender osteolytischer Destruktion der
medialen Kortikalis. Die Bilder stammen aus dem Archiv der Uniklinik KdéIn. Die in der
morphologischen CT-Untersuchung schwer detektierbare Knochenlasion ist in der FDG-PET

sicher abgrenzbar und als Knochenmetastase zu diagnostizieren.

Der Beispielfall verdeutlicht exemplarisch die Effektivitdt des FDG-PET/CT bei der Detektion
von Knochenmetastasen. Zwar ist die osteolytische Lasion in dem vorliegenden CT-Bild durch
die partielle Arrosion der angrenzenden Kortikalis und lokal aufgehobene
Knochenbinnenstruktur erkennbar, jedoch wird deutlich das mitunter noch subtilere
Knochenmetastasen selbst erfahrenen Untersuchern entgehen kénnten.

Eine Metaanalyse von 17 Studien zeigte, dass die vom FDG-PET/CT erreichte gepoolte
Sensitivitdt und Spezifitat fir den Nachweis von Knochenmetastasen beim NSCLC 92 % bzw.
98% betragt. Damit ist diese Methode nicht nur der konventionellen CT sondern auch anderen
alternativen Methoden, wie der Knochenszintigraphie mit einer Sensitivitat: 86% und Spezifitat:
88% uberlegen.?®

Auch bei der Detektion von Nebennierenmetastasen, die beim Bronchialkarzinom héaufig sind,
ist die FDG PET/CT eine sehr nutzliche Methode und der konventionellen CT-Bildgebung bei
der Differenzierung von benignen und malignen Nebennierenlasionen ohne Lipidanteile

Uberlegen.?’ Die friihzeitige Erkennung von Nebennierenmetastasen ist von entscheidender
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Bedeutung, da die Resektion einer Oligometastase der Nebenniere bei NSCLC nachweislich
das langfristige krankheitsfreie Uberleben verbessert?.

Neben ihrer Bedeutung bei der Ermittlung des M-Status hat die PET/CT auch Vorteile bei der
Beurteilung des T- und N-Stadiums. So konnte in Studien gezeigt werden, dass das integrierte
FDG-PET/CT-Bilder im Vergleich zu morphologischen CT-Bildern bei der Beurteilung des
mediastinalen Lymphknotenstatus (N-Status) sowie der raumlichen Zuordnung und der
Mdoglichkeit, Atelektase von Tumorgewebe zu unterscheiden (T-Stadium) sensitiver ist.2? 39 3t
Abbildung 4 verdeutlicht die erleichterte Indentifizierbarkeit von mediastinalen

Lymphknotenmetastasen der FDG-PET/CT im Vergleich zur morphologischen CT.
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Abb. 4: mediastinale Lymphknotenmetastasen eines NSCLC-Patienten im konventionellen CT
und im FDG-PET/CT. Die Bilder stammen aus dem Archiv der Uniklinik K&In




Nachteile der PET/CT im Vergleich zur CT oder MRT sind die schlechtere Verfugbarkeit,
hoheren Kosten und relativ hohe Strahlenbelastung. Hinzu kommen Limitierungen der
diagnostischen Aussagekraft bei der Differenzierung entzindlicher Prozesse und Auswertung

sehr kleiner intrapulmonaler Lasionen durch Limitationen in der Ortsauflésung.3?

2.3.7. Dual-Energy-Computertomographie (DECT)
Neben der konventionellen CT stellt die moderne Dual-Energy-Computertomographie (DECT)
eine neuartige CT-Methode dar, die in verschiedenen klinischen Studien einen mdglichen
Zusatznutzen bei der Charakterisierung von pulmonalen L&sionen aufzeigen konnte. Es
zeichnet sich ab, dass die mit dieser Technik gewonnen zusatzlichen physiologischen
Bildinformationen sowie Informationen zur Perfusion potentiell prognostische und pradiktive

Bedeutung haben kénnten.

2.3.8. Technische Grundlagen der Dual-Energy-CT

Der Begriff Dual-Energy-Technik (DECT) umfasst verschiedene Konfigurationen von
Rontgenstrahler und Detektorsystem. Hiervon werden wiederum zwei Konfigurationen als
True-Dual-Energy bezeichnet. In der ersten dieser Anordnungen, der sogenannten Dual-
Source-CT, werden zwei gleiche Strahlenquellen sowie zwei Detektoren verwendet, die
jeweils um 90° in Rotationsrichtung versetzt, im rotierenden Teil des Gantry angeordnet sind.*?
Das jeweils zugehorige Detektorpaar ist dabei der entsprechenden Réntgenréhre
gegenlbergestellt (Abb.7). Die Anordnung bietet Vorteile bei einigen klinischen
Fragestellungen. Da die beiden Réntgenquellen nicht notwendigerweise mit verschiedenen
Energien betrieben werden missen, kann beispielsweise bei adiptésen Patienten die
angewandte Strahlendosis erhdht und die Bildqualitat verbessert werden.

Das Betreiben der Rontgenstrahler mit gleicher Energie ermdglicht auf3erdem eine hohere
zeitliche Auflésung als es mit einer Singel-Source-CT mdglich ist. Das Dual-Source CT
bendtigt fur die Aufnahme einer Einzelschicht nur eine Viertelumdrehung (90°), im Gegensatz
zur Single-Source, die eine halbe Umdrehung bendétigt. Hierdurch wird eine héhere zeitliche
Auflésung von < 83 ms erreicht®. Damit eignet sich diese Technik besonders auch fir
kardiovaskulare Aufnahmen, bei denen die zeitliche Auflosung die Bildqualitat bestimmt.

Im Dual-Energy Modus werden zwei Dual-Source-Modules mit unterschiedlicher
Roéntgenenrgie betrieben, sodas in einer Rotation zwei Datensétze mit unterschiedlicher

Roéntgendosis (Dual-Energy) akquiriert warden.
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Abb. 5: Aufbau eines Dual-Source Dual-Energy-CT

Das sogenannte KV-Switching Verfahren ist die zweite ,echte” Methode der Dual-Energy-
Akquisition.*® Hierbei wird eine speziell ansteuerbare RoOntgenrohre verwendet, die in
definierten Zeitabstanden stufenweise die Rontgenenergie variieren kann (Abb. 8). Im
Rahmen der Dual-Energy Aufnahmetechnik werden hierfiir zwei Energiestufen verwendet.
Technisch waren zwar auch mehrere Stufen moglich, was sich jedoch negativ auf die

Ortsauflésung auswirkt und damit klinisch nicht angewendet wird.

Abb. 6: Aufbau eines KV-Switching-Systems; niedrige Energie: schwarz, hohe Energie: grau

gepunktet
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Es existieren zwei weitere technische DECT-Anséatze, mit jeweils nur einer Réntgenquelle
ohne verstellbare Energiestufen. Der Aufbau entspricht somit zundchst dem eines
Computertomographen der 3. Generation.*® Jedoch werden anstelle des konventionellen
UFC- oder Xenon-Detektors ein quantenzahlender Detektor, entweder ein Sandwich-Detektor
oder ein Split-Filter-Detektor verwendet.

Bei einem Dual-Layer-Detektor handelt es sich um einen zweilagigen Detektor (Abb 9.). Die
obere, patientennahe Schicht fangt das gesamte eintreffende Energiespekturm auf und misst
den am Detektor erzeugten Strom. Durch die erste Schicht erfolgt de facto eine
Strahlenaufhéartung. Diese unter Schicht erhélt also ein deformiertes Strahlenspektrum und

misst hierbei wiederum die eintreffende ,zweite” Energie.3":38

Abb. 7: Aufbau eines Sandwichdetektor-Systems

Bei der Split-Filter-Technologie verwendete Detektor ist in der Mitte halbiert, wobei die
Oberflache einer Seite mit einem strahlaufhartendem Material besetzt ist und die

niederenergetischen Photonen abfangt (Abb. 8).3%4
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Abb. 8: Aufbau eines Split-Filter Detektorsystems

2.3.9. Dual-Energy  CT  zur  Charakterisierung maligner
Lungenlasionen

Verschiedene Studien konnten zeigen, dass Dual-Energy-Bilddatensatze zusatzliche
Informationen enthalten, welche neue Mdglichkeiten fir die erweiterte Diagnostik und
Subtypbestimmung maligner pulmonaler Lasionen eréffnen.
Beispielsweise gelang es Deniffel et. al. im Rahmen einer retrospektiven Studie mittels
Bildanalyse von CT-Scans, die mit einem Dual-Layer-Spektral-CT durchgefuhrt wurden,
Lungenmetastasen verschiedenen Primartumoren zuzuordnen. Evaluiert wurden in dieser
Studie Lungenmetastasen von 130 Tumorpatienten von insgesamt 11 verschieden
Primartumorentitaten. Im Rahmen der Studie zur Charakterisierung von Lungenmetastasen
und Zuordung zum Primatumor wurden die quantitativen lodkonzetrationswerte (IC-Werte)
und die konventionellen CT-Werte (HU) der L&sionen extrahiert und anhand des Messwertes
im Lumen der thorakalen Aorta genormt. Hierbei gelang es signifikante Unterschiede der IC-
Werte und HU-Werte fur Lungenmetastasen von Nierenkarzinomen, Mammakarzinomen,
Kolonkarzinomen und Plattenepithelkarzinomen des Hals-Nasen-Ohren-Traktes aufzuzeigen.
Auf Grundlage des IC-Wertes allein wurden aufl3erdem signifikante Unterschiede zwischen
Lungenmetastasen von Kolonkarzinomen, Osteosarkomen, Adenkarzinomen der
Bauchspeicheldriise und Urothelkarzinomen beobachtet.*?
In einer anderen Studie untersuchten Schmid-Bindert et al. die Korrelation zwischen
maximalem standardisierten Aufnahmewert (SUVmax) in der FDG-PET/CT und der

maximalen jodbedingten Abschwachung (iodine—related attenuation: IRA) in der DECT bei
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Patienten mit nicht-kleinzelligem Lungenkrebs (NSCLC) und kleinzelligem Lungenkrebs
(SCLC). Hierbei wiesen Lasionen des NSCLC eine starkere Korrelation von SUVmax und IRA
auf als Lasionen des SCLC. Erstmalig erdffnet sich hiermit eine Moglichkeit der nicht-invasiven
Differenzierung dieser beiden Unterformen des Bronchialkarzinoms ohne Biopsie und

histopathologischer Befundung.*?

2.310. Physikalische Grundlagen der
Magnetresonanztomographie (MRT)

Bei der MRT werden die Wasserstoffatome des Kérpers genutzt, um ein Bild zu generieren.
Die Atomkerne von Wasserstoff bestehen aus einem einzigen Proton. Diese Protonen
besitzen einen Eigendrehimpuls, den sogenannten Kernspin. Da Protonen eine positive
Ladung tragen, wird durch diesen Eigendrehimpuls ein magnetisches Dipolmoment induziert*4,
Im Korper liegen diese Dipolmomente normalerweise ungeordnet vor. Wird nun ein externes
Magnetfeld angelegt, richten sich die Dipole parallel oder antiparallel zu den Feldlinien des
externen Magnetfeldes aus. Dabei nehmen mehr Protonen die energetisch bessere parallele
Ausrichtung an. Die Summe dieser parallel angeordneten Dipolmomente kann von auf3en als
so genannte Langsmagnetisierung gemessen werden. Bei der Ausrichtung entlang der
Langsachse des Magnetfeldes rotieren die Protonen auferdem mit einem konstanten
Anstellwinkel um die Langsachse des Magnetfeldes. Diese Bewegung wird Prazession
genannt (Abbildung 5). Die Frequenz mit der die Protonen um diese Achse rotieren, heifdt
Prazessions- oder Lamorfrequenz und ist abhdngig von der Starke des angelegten

Magnetfeldes (B0) und der stoffspezifischen Konstanten (y).
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Abb. 9: Prazessionsbewegung und Kernspin

Abb. 9 zeigt wie durch die duRere Anlage eines externen Magnetfeldes, die Ausrictung der
Protonen mit ihrem Dipolmoment entsteht, die parallel oder antiparallel zu dem Magnetfeld
ausfallt. Dabei rotieren sie um die eigene Achse (Kernspin) und um die Achse des
magnetischen Feldes (Prazession).*®

H+, Wasserstoffatom; BO, magnetische Flussdichte. Normalerweise rotieren die Protonen
dabei phasenversetzt. Wird nun zuséatzlich ein magnetisches Wechselfeld eingeschaltet
(Hochfrequenzimpuls (HF-Impuls), richten sich mehr Protonen antiparallel aus.

Hierdurch wird die Langsmagnetisierung reduziert. Der HF-Impuls fiihrt dazu, dass die
Protonen phasengleich prazidieren und es entsteht eine Magnetisierung in
Transversalrichtung.*® Der Winkel zwischen dem neu entstehenden Hauptvektor der
Magnetisierung und dem Richtungsvektor des homogenen Magnetfeldes wird als Flipwinkel
bezeichnet. Wird das magnetische Wechselfeld wieder abgeschaltet kehren die Protonen in
ihren Ausgangszustand zurlck (Relaxation). Dabei senden die Protonen selbst wieder ein
elektromagnetisches Hochfrequenzsignal aus, das aufRerhalb vom Korper gemessen werden
kann. Dieses Signal ist abhéngig von der Geschwindigkeit, mit der sich die
Langsmagnetisierung erneut aufbaut und die Transversalmagnetisierung abnimmt.
Zeitkonstanten mit denen die Geschwindigkeit dieser Prozesse beschrieben werden sind die
Spin-Gitter-Relaxationszeit (T1-Zeit, LAngsrelaxation) und die Spin-Spin-Relaxationszeit (T2-

Zeit, Transversalrelaxation).*’
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Da wahrend eines Relaxationsprozesses nur sehr kleine magnetische Signale entstehen,
werden die Protonen mehrfach angeregt. Mehrere hintereinandergeschaltete
Anregungsimpulse werden als Sequenz bezeichnet. Die sog. Repetitionszeit (time to
repetition, TR) gibt dabei an, wie schnell zwei Anregungen aufeinander folgen. Die Echozeit
(time to echo, TE) gibt an, wie viel Zeit zwischen Anregung und Signalaufnahme vergeht.

Um aus den generierten Daten ein Bild zu erzeugen, muissen die aufgezeichneten
Hochfrequenzsignale in ihre Einzelfrequenzen zerlegt werden.

Der komplexe mathematische Prozess, der dies ermdglicht, wird nach seinem Erstbeschreiber
Fourier-Transformation genannt*®. Wie sich ein Gewebe im Bild letztendlich darstellt, hangt
von den Gewebeparametern (T1-Zeit, T2-Zeit, Protonendichte), den Sequenzparametern (TE,
TR) und der verwendeten Sequenz ab.*

Um einzelne Bereiche oder Schichten des Kdrpers gezielt darstellen zu kdnnen, muss es
moglich sein, nicht alle Spins des Koérpers gleichermal3en anzuregen. Dies wird durch das
Prinzip der Ortskodierung maglich: Der HF-Impuls enthélt nur ein kleines Frequenzspektrum.
Da durch den HF-Impuls nur die Wasserstoffatome optimal angeregt werden, deren
Lamorfrequenz dem HF-Impuls entspricht und die Lamorfrequenz direkt von der Stérke des
externen Magnetfeldes abhéngt, erlaubt das Zuschalten von Gradientenfeldern nur Spins einer
bestimmten Schicht des Korpers anzuregen. Durch Zuschalten von Gradientenfeldern entlang
jeder der drei Raumachsen kénnen somit Spins an jedem Punkt des Korpers selektiv angeregt

warden.*®

2.311. Magnetresonanztomographie im Rahmen des
Bronchialkarzinom-Stagings

Beim Staging des Bronchialkarzinoms wird die MRT wegen ihres der CT uberlegenen
Weichteilkontrastes zur Detektion bzw. fiir den Ausschluss von Hirnmetastasen verwendet®.
Hirnmetastasen kdnnen bei NSCLC-Patienten in 20-40 % der Falle auftreten.
Bei inzidentell gefundenen Hirnmetastasen ist das Bronchialkarzinom bei Erwachsenen der
haufigste Primartumor mit in ca. 50 % der Falle.*®
Vor diesem Hintergrund wird der Stellenwert dieser Modalitat fir das Staging. Im Rahmen der
Hirnmetastasensuche sollten MR-Sequenzen vor und nach Kontrastmittelgabe angefertigt
warden.0
In einer Metaanalyse von Li et. al. aus dem Jahr 2017 wies die cMRT eine deutlich hohere
Sensitivitat (ca. 77%) fur Hirnmetastasen auf als die cCT (ca. 21%).%°
In der Abbildung 6 werden Hirnmetastasen eines Patienten mit Bronchialkarzinom in
Kontrastmittel-gestiitzter CT- bzw. MRT-Bildgebung gegenibergestellt. Bei diesem
beispielhaft ausgewahlten Patienten wurde im Rahmen des Stagings die ubliche Darstellung

von Thorax und Abdomen, aufgrund bekannter zervikaler Lymphknotenmetastasen und
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Knochenmetastasen der Halswirbelsaule und Schadelbasis, um eine CT-Untersuchung des

Halses in vendser Phase ergdnzt. In den hierbei erfassten basalen Hirnabschnitten sind

Hirnmetastasen erkennbar. Die vergleichend dargestellten MRT-Bilder wurden in diesem Fall
11 Tage nach der CT Untersuchung angefertigt, sodass die intermodale Vergleichbarkeit der

Lasionen gegen ist.

A




Abb. 10: Hirnmetastasen eines Bronchialkarzinoms. Links (A, C) CT in venoser
Kontrastmittelphase; Rechts: MRT (B, D) nach Kontrastmittelapplikation (FLAIR-Sequenz).
Pfeil 1 (A, B): Ca. 1,4 cm grol3e Metastase im Kleinhirn links mit Korrelat in der CT und MRT.
Pfeil 2 (D): ca. 0,6 cm groRe Metastase des Kleinhirn rechts, nur in der MRT Untersuchung

abgrenzbar. Die Bilder stammen aus dem Archiv der Uniklinik Kdln.

Das obige Bildbeispiel verdeutlicht die bessere Sichtbarkeit der Hirnmetastasen und damit die
Uberlegenheit der MRT gegeniiber der Kontrastmittel-gestiitzen CT Untersuchung. An dieser
Stelle sollte zusatzlich erwéahnt werden, dass im Rahmen der PET-CT nur ein natives Schadel-
CT angefertigt wird, dessen Sensitivitat fir Hirnmetastasen noch geringer ist, als die der cCT
mit Kontrastmittel (Abb.10). Daher ist diese Untersuchung fir einen sicheren
Metastasenausschluss nicht ausreichend.

Eine weitere Limitation der FDG-PET stellt der physiologisch hohe FDG-Uptake des Gehirns
dar, sodas kleine Hirnmetastasen auf Grund des Hintergrundsignals nicht abgegrenzt warden
kénnen.

Neben dem Ausschluss von Hirnmetastasen kann die MRT zur Beurteilung der
Lokalausdehnung von  Sulcus-Superior-Tumoren  (Pancoast-Tumoren) sowie bei
Lungentumoren mit Mediastinalinfiltration oder Spinalkanalinfiltration eingesetzt werden.
Verschiedene Studien konnten in diesem Zusammenhang zeigen, dass dynamische MRT-
Untersuchungsprotokolle des Thorax, wahrend fortgesetzter Atmung, bei der Beurteilung einer
Infiltration des Mediastinums, der oberen Thoraxapertur und der Brustwirbelsaule der CT
Uberlegen sind.5%-%2

AuBerdem kommt die MRT im Rahmen des M-Stagings bei der Differentialdiagnostik von

fokalen Leberlasionen und Nebennierenlasionen zum Einsatz.*°

2.4 Diagnosesicherung und invasive Staging-Untersuchungen des

Bronchialkarzinoms

241. Bronchoskopie und Nadelaspirationsverfahren
Die wichtigste Methode zur Diagnosesicherung eines zentral gelegenen Bronchialkarzinoms
ist die Bronchoskopie.’® Hierbei handelt es sich um eine endoskopische Methode zu
Untersuchung der Trachea und Bronchien. Grundsatzlich werden die starre und die flexible
Bronchoskopie unterschieden. Bei einem starren Bronchoskop handelt es sich um ein
rohrenférmiges Instrument, meist aus Edelstahl, Gber das verschiede (starre oder flexible)
Optiken, Zangen oder andere Werkzeuge eingefiihrt werden kénnen. Aul3erdem erfolgt Uber
dieses Rohr auch die Beatmung des Patienten. Die Einfiihrung des starren Bronchoskops

selbst kann nur nach Narkose erfolgen. Im Gegensatz hierzu erfordert die flexible
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Bronchoskopie lediglich eine Sedierung. Ein flexibles Bronchoskop besteht aus einem
biegsamen, dinnen Schlauch. Dieser enthalt in seinem Inneren verschiede Elemente:
Lichtleiter, mit deren Hilfe das Licht einer externen Quelle bis an die Spitze des Endoskops
transportiert wird, Arbeitskanal sowie Verbindungskabel zur BildUbertragung zwischen den
CCD-Chips an der Spitze und auRerhalb des Gerates.*

Die Bronchoskopie erreicht insbesondere bei zentral gelegenen Bronchialkarzinomen hohe
diagnostische Sicherheit.>* %°

Demgegentiber erreicht dieses Verfahren bei der diagnostischen Sicherung peripherer
Lungenrundherde in einer Metaanalyse aus 18 Studien von Mondonie et. al, nur eine
Erreichbarkeit der Lasionen von ca. 53%°°. Aus diesem Grund ist bei peripher gelegenen
Lasionen die transthorakale CT-gesteuerte Biopsie eine haufig angewandte Alternative.

Im Rahmen der Bronchoskopie stehen verschiedene Moglichkeiten der Gewebesicherung zur
Verfugung. Bei zentralen gut sichtbaren und einfach zu erreichenden Tumoren wird meist
unter Verwendung bronchoskopischer Werkzeuge (Birste, Nadel, Katheter, Zange)
makroskopisch gesichertes Material geférdert. Bei peripheren Lasionen erfolgt die
Materialsicherung mittels Feinnadelbiopsie.'° Das in diesem Kontext gangige Verfahren ist die
mittels endobronchialer Sonographie (EBUS) gesteuerte, transbrochiale Nadelaspiration
(TBNA).

Bei der EBUS-TBNA wird die Biopsienadel Ultraschall-gesteuert durch die Bronchialwand in
das peribronchiale Gewebe eingefiihrt und anschlieBend durch Anlegen eines kréftigen Sogs,
Gewebe aspiriert.>’

Die bronchoskopische transbronchiale Nadelaspiration hat eine geringe eingriffsbezogene
Letalitat. Zu den Hauptkomplikationen zahlen, insbesondere bei der Biopsie peripher
gelegener Tumoren, leichte Hamorrhagien und ein Pneumothorax mit einer Haufigkeit von 1-
4%.

Patienten mit Verdacht auf zentrales Lungenkarzinom mit einem Durchmesser von mehr als 2
cm sollten grundsatzlich einer Bronchoskopie zugefiihrt warden.°

Eine eng verwandte Methode die zur Materialsicherung 6sophagusnaher, intrapulmonaler
Lasionen eingsetzt wird ist die transdsophageale EUS-FNA (endoskopische Ultraschall-
gesteuerte Feinnadelaspiration). Dieses Verfahren erreichte in einer Metaanalyse von

Korevaar D et. al., eine diagnostische Ausbeute von durchschnittlich 90%.%8

24.2, Transthorakale Lungenbiopsie
Bei einem peripher gelegenen, > 1 cm grofRen Lungentumor und Indikation zur nicht-
chirurgischen Biopsie, kann die transthorakale Lungenbiopsie (TTLB) eingesetzt werden. Bei
nicht-pleurastandigen, peripheren Tumoren und negativer bronchoskopischer Biopsie ist die
CT-gesteuerte TTLB die Methode der Wahl.1® Bei diesem Verfahren wird eine ausreichend
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dimensionierte Hohlnadel, meist nach ortlicher Betdubung der Einstichstelle, seltener in
Regional- oder Allgemeinanasthesie (Narkose), durch die Haut gezielt bis an die pulmonale
Lasion  vorgeschoben. Hierbei erfolgt die  Positionskontrolle  meist  mittels
Computertomographie. Bei einem pleurastidndigen Tumor wird zwischen Ultraschall-
gesteuerter und CT-gesteuerter Lagekontrolle abgewogen.

Sobald die Hohlnadel mit ihrer Spitze im suspekten Bereich platziert ist, wird Uber die
Hohlnadel eine Stanznadel eingefiihrt und hierliber erfolgt das Ausstanzen von Gewebe fir
die histologische Untersuchung. Die Gewebsstanze ist hierbei in der Regel 1 oder 2 cm lang
und hat einen Durchmesser von 19-23 Gauge.%°

Zur Abklarung suspekter Raumforderungen werden bei dieser Methode diagnostische
Sensitivitaten um 90% beschrieben.®®2 Insbesondere bei peripheren pulmonalen Lasionen
von weniger als 3 cm Durchmesser bestehen hdhere Sensitivitaten als bei der Bronchoskopie
und die transthorakale Lungenbiopsie ist zu empfehlen.

Der Pneumothorax, die haufigste Komplikation nach TTLB, kann eine Thoraxdrainage
erforderlich machen und tritt in Deutschland in 10-30 % der Falle auf, wobei der Grol3teil der
iatrogenen hervorgerufenen Pneumothoraces nur geringen AusmafRes sind und rein
konserviert kontrolliert werden. In der Regel wird eine vollstandige Resorption innerhalb von
einer Woche beobachtet.?

Nationale multizentrische Erhebungen oder grol3e Querschnittsanalysen in Vereinigten
Kdnigreich (5444 Biopsien), Japan (9783 Biopsien), Korea (10568 Biopsien) und den
Vereinigten Staaten (15865 Biopsien) berichteten Pneumothorax-Raten von 15,0-35,0 % und
Raten von Pneumothorax, der eine Thoraxdrainage erforderte, von 3,1-6,6 %.53-56

In einer Metaanalyse von Holty et al. lag die Rate schwerwiegender Komplikationen, bei der
CT-gesteuerten Lungenbiopsie bei ca. 0,3%.%” Zu diesen berichteten Komplikationen gehdren
Blutungen, Pneumomediastinum, drainagepflichtiger Spannungspneumothorax,
Herzbeuteltamponade und Hamomediastinum.®” ¢ Eine andere Metanalyse von Gu et al.

berichtete von schwerwiegenden Komplikationen in 2 von 1.299 Fallen (0,15%).%% 7°

243. Videoassistierte Thorakoskopie

Der Begriff ,Thorakoskopie“ bezeichnet die Endoskopie im Inneren des Brustkorbs.” 2 Mit der
technischen Weiterentwicklung erweiterte sich das Indikationsspektrum dieser Methode. In
den Jahren 1992-2002 wurde die Video-assistierte Thorakoskopie (VATS) vornehmlich far
diagnostische  Eingriffe ~ wie  Pleuro-/Mediastinoskopie  und  Lungen-/Mediastinal-
/Pleuralbiopsien und kleinere chirurgische Interventionen, wie Sympathektomie,
Splanchnikoektomie, Pneumothorax Chirurgie oder Nuss Operation, eingesetzt. Ab dem Jahr
2003 erweiterte sich dieses Indikationsspektrum jedoch auch um grof3ere chirurgische
Eingriffe, wie Lob-, Thym-, Oesophag-, Pneumektomie.’? In einer Studie von Kaiser et al., kam
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es bei 10% der Patienten zu Komplikationen.” In anderen Studien lag die Komplikationsrate
im Bereich zwischen 3,7-4,3%.74% In einer multizentrischen Studie von Downey et al. lag die
Komplikationsrate bei 10%. Dabei wurden keine intraoperativen Komplikationen beobachtet.
Die allgemeine postoperative Mortalitat lag bei 2%.77 In einer weiteren Studie von Imperatori
et al. (2008) war ein langer andauerndes Luftleck die haufigste Komplikation, welches in 4,7%
der Falle auftrat. Zu wichtigen weiteren Komplikation von VATS zahlen Blutungen (0,5-1,9%),
postoperative Wundinfektion (6%), postoperative Schmerzen und Rezidive dieser
Komplikationen (0,26-0,5%)."°

Grundsatzlich ist ein Vorteil dieses Verfahrens, dass es bei sehr kleinen isolierten Befunden
mdoglich sein kann, den Tumor in sano zu exzidieren. Hierdurch kann diese eigentlich

diagnostische Methode in passenden Fallen direkt zur Therapie verwendet warden.”? 7

2.5 Biologische Heterogenitat des nicht kleinzelligen Bronchialkarzinoms
und therapeutische Implikationen bei KRAS-Mutation

Die Zellteilungsrate der Tumorzellen des NSCLC ist langsamer als die des SCLC. Die
Tumorverdopplungszeit des NSCLC betragt ohne therapeutische Intervention im Schnitt 180-
300 Tage, im Vergleich hierzu betragt sie beim SCLC nur 10-50 Tage. Die Effektivitat der
herkdbmmlichen Zytostatika ist daher beim NSCLC im Vergleich zum SCLC geringer.
Die primare Strategie beim nicht-kleinzelligen Bronchialkarzinom ist daher die Operation. Im
Frihstadium la bis IIb (bis T3NO oder T2N1, entspricht ca. 25% der NSCLC), ist oft eine
kurative Therapie durch Resektion des Primartumors mit Lobektomie, evtl. mit Bilobektomie
und mediastinaler Lymphadenektomie mdéglich. Ist der Tumor im Frihstadium unginstig
gelegen oder bereits weit ausgedehnt und keine OP mdglich, oder wird die OP durch den
Patienten abgelehnt, so ist eine Radiotherapie mit 60-70 Gy eine Alternative zur OP.
In einigen Fallen ist es hilfreich, vor der OP eine neoadjuvante Radiotherapie, Chemotherapie
oder kombinierte Radiochemotherapie durchzufiihren, um den Tumor zu verkleinern
(sogenanntes down staging) und besser oder Uberhaupt operieren zu kénnen.
Bei fortgeschrittenerem Stadium llla bis I1llb (bis T4AN2 oder jedes TN3, ca. 25% der NSCLC)
ohne Metastasen ist primar keine OP angezeigt. Als Therapiestandard gilt heute (seit 2019)
eine sequenzielle Radiochemotherapie. Als Erstlinientherapie kommen Kombinationen aus
den Substanzen Cisplatin, Carboplatin, Docetaxel, Gemcitabin, Pemetrexed oder
Bevacizumab infrage. Erganzend dazu ist eine Antikdrpertherapie maglich. Seit Ende 2005 ist
in Deutschland Erlotinib, ein Tyrosinkinasehemmer, zugelassen, welcher den
Wachstumsfaktor HER1 blockiert und die Prognose verbessern kann. Alternativ kann Gefitinib

eingesetzt werden. Weitere Substanzen (z.B. Pralsetinib) befinden sich in klinischer Prifung.
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Bei fortgeschrittenen Tumoren mit KRAS-G12C-Mutation kann der KRAS-Inhibitor Sotorasib
als Monotherapie eingesetzt werden. Nach erfolgloser Chemotherapie ist eine
Zweitlinientherapie mit Checkpoint-Inhibitoren wie Atezolizumab, Durvalumab oder
Pembrolizumab moglich.’® 7°

Die Entwicklung dieser Medikamentengruppe der Biologika folgte der Entdeckung einer
grol3en Anzahl verschiedener histologenetischer Untergruppen des NSCLC. Der genetische
Code der Tumorzellen der verschiedenen Untergruppen weist jeweils spezifische molekulare
Abweichungen auf. Diese werden durch Veranderungen im Zellgenom bedingt (Mutationen,
Amplifikationen, Translokationen u.a.). Die Genomvariationen fiihren zur Auspréagung
charakteristischer Oberflachenmerkmale. Diese Merkmale an der Zelloberflache sind der
therapeutische Ansatzpunkt der Biologika.®°

Diese Medikamentengruppe nimmt im komplexen Therapieschema des NSCLC bereits eine
wichtige Rolle ein und wird gezielt gegen verschiedene Genomvariationen, den sogenannten
Treibermutationen, eingesetzt, um das Tumorwachstum zu inhibieren. Dabei kommen sie
individualisiert teils in friihen, teils auch in fortgeschrittenen Tumorstadien zum Einsatz.
Daher sollte vor Beginn der medikamentdsen Therapie ermittelt werden, ob und welche der,
fur die individualisierte Therapie, relevanten Genomvarianten vorliegt.°

Abbildung 11 gibt eine Ubersicht Uber die bisher bekannten und bestimmbaren Mutationen,
Amplifikationen und Translokationen, die das entkoppelte Wachstum eines NSCLC bedingen

kdnnen.
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Therapierelevante Genomvarianten des NSCLC
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Abb. 11: Haufigkeit der bekannten das Tumorwachstum treibenden Genomvarianten beim
NSCLC8!

Es stellte sich heraus, dass es sich bei der sogenannte KRAS-Mutation um die beim NSCLC
haufigste Treibermutation handelt. Im Folgenden wird diese Genomvariante naher erlautert

und ihre therapeutischen Implikationen dargestellt.

2.51. Genetische Grundlagen der KRAS-Mutation
Das sogenannte Rat-Sarcoma (RAS) ist das am haufigsten mutierte Onkogen bei malignen
Erkrankungen des Menschen. Hierbei stellt das Kirsten-Rat-Sarcom (KRAS) die am haufigsten
mutierte RAS-Isoform dar.
Die KRAS-Mutationen liegen bei ca. 35% der Patienten mit NSCLC vor.8?
Dabei ist die KRAS-Mutation haufiger bei Adenokarzinomen (20-40 %) und seltener (~5 %)
bei Plattenepithel-NSCLC.83 84
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Beim NSCLC tritt die KRAS-Mutation bei Nikotinabusus haufiger auf als bei Nichtrauchern mit
ca. 30 % im Vergleich zu ca. 11 % und kommt im westlichen Raum im Vergleich zum
asiatischen ofter vor mit 26 % im Vergleich zu 11 %.%

Seit sich die grof3e Bedeutung bei der Entstehung und dem Progress von Krebserkrankungen
abzeichnet, widmen sich zahlreiche Studien dem besseren Verstandnis von KRAS.

Die genauere Erforschung der molekularen Struktur des an GDP-gebundenen Proteins, fir
welches das mutierte KRAS-Gen codiert, fihrte zur Entwicklung erster Medikamente
(Biologica), deren Wirksamkeit sowohl in Monotherapie als auch in Kombinationsschemata
belegt werden konnte und bereits im klinischen Alltag Anwendung finden.

Inshesondere bei KRAS G12-C-Inhibitoren wie AMG510 (Sotorasib) und MRTX849
(Adagrasib), die in klinischen Studien ermutigende Ergebnisse erzielt haben.

AMG510 war das erste Medikament, das auf die spezifische Mutation KRAS G12C abzielte
und wurde im Jahr 2021 fur den klinischen Einsatz zugelassen.

Das auf dem kurzen Arm von Chromosom 12 (12p11.1-12p12.1) lokalisierte KRAS wurde
erstmals im Jahr 1982 aus menschlichen Bronchialkarzinomzellen isoliert.&

Die Struktur von RAS-Gene besteht aus vier Exons, die auf die gesamte Lange von etwa 30
kb DNA verteilt sind. Das KRAS-Gen kodiert fur zwei eng verwandte Protein-Isoformen, KRAS-
4B und KRAS-4A, die aus 188 bzw. 189 Aminosauren bestehen, was auf das unterschiedliche
Clipping des vierten Exons zuriickzufiihren ist.®’

Der Begriff KRAS wird im Allgemeinen als KRAS-4B bezeichnet, da die mRNA, die fir KRAS-
4B kodiert, in den Zellen den bei weiten groRten Anteil ausmacht.®

Die Kristallstruktur von RAS besteht aus sechs Beta-Strangen und finf Alpha-Helices, die zwei
Hauptdomanen bilden: eine katalytische Doméne, die G-Doméane und eine hypervariable
Region (HVR). Die G-Doméane besteht aus drei Regionen: Switch |, Switch Il und der P-
Schleife, die Guaninnukleotide bindet und die Signallibertragung durch Wechselwirkung mit
Effektoren aktiviert. Die HVR umfasst das CAAX-Motiv, das mit der Membranlokalisierung
zusammenhangt.®®

Was die Funktion betrifft, so ist RAS eine Art membrangebundenes regulatorisches Protein
(G-Protein), das Guanin-Nukleotid bindet und zur Familie der Guanosintriphosphatasen
(GTPasen) gehort [90]. RAS fungiert als binérer Schalter zwischen Guanosindiphosphat
(GDP)/Triphosphat  (GTP), der wichtige Signaltransduktionen von  aktivierten
Membranrezeptoren zu intrazellularen Molekilen steuert.®* Der binare Schalter wird
hauptsachlich durch zwei Arten von regulatorischen Proteinen bestimmt: Guaninnukleotid-
Austauschfaktoren (GEFs) wie Son of Sevenless (SOS) und GTPase-aktivierende Proteine
(GAPs) wie Neurofibromin 1 (NF1)%. Im inaktiven Ruhezustand liegt KRAS Ublicherweise an
GDP gebunden vor. Dies ist auf die intrinsische GTPase-Aktivitat von KRAS zurtickzufthren,

die in der Lage ist, GTP zu GDP zu hydrolysieren.®® Wenn die Zellen relevante Stimuli erhalten,
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wie z. B. die Interaktion von EGF und EGFR, scheint der KRAS-GDP-Komplex in Anwesenheit
von GEFs eine verringerte Affinitdt von KRAS zu GDP zu haben. In diesem Zustand wird GDP
durch GTP ersetzt, das eine hohere Affinitdit und eine etwa 10-fach hohere zellulare
Konzentration als GDP besitzt.%* Die KRAS-GTP-Bindung fihrt zu einer veranderten
Konformation in den Schaltern | und Il der G-Doméne, woraufhin KRAS aktiviert wird und als
Monomer oder Dimer an seine nachgeschalteten Molekile bindet. Hierdurch werden
wiederum eine Reihe von Signalkaskaden aktiviert. Im Gegensatz dazu férdern GAPs die
Bindung zwischen GDP und KRAS, indem sie die GTPase-Aktivitat von KRAS verstarken und
so den inaktiven Zustand von KRAS aufrechterhalten (Abb. 12).%°
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Abb.  12: Funktion von KRAS. FTase: Farnesyltransferase; GGTase:
Geranylgeranyltransferase; RCE1: RAS- converting enzyme 1;

ICMT: Isoprenylcysteincarboxylmethyltransferase; PDES: Phosphodiesterase 68
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Das aktivierte KRAS-Protein kann ein breites Spektrum nachgeschalteter Signalwege
aktivieren.®® Abbildung 13 veranschaulicht die Regulierung der KRAS-Aktivierung und

Signaltransduktion.

Ca2¢®
@ @ ESF PDGF

O s A (\GRcP 6 ; FGF

—
7/

\ \/ L/ \\,CAMP

SHP2 %‘;—/’—
% @Caz*\__’ _— \—/"\ sos GRB . S

KRAS KRAS

RALGDS \_/7 —~

; 1 PLCe
| (TiAm1) RAY |
"
RAL RAL ! > PIP2 /_\PIP3 /l\
GDP
<117 £ RAC ““RACH MEK 'd PIP2 DAG + IP3
/ l NG " Gop Lerp n AKT l l
PLD Rac TBK1 ERK / l \\'
NF-xB mTOR BAD PKC  Ca2+

CcDC42
Endocytosis " - l
) X X BCL-X Second messenger
*Cell suivival
*Cell cycle progression Apoptosis

*Cell polarity and movement
*Actin cytoskeletal organization
svesicular and nuclear transpore

Abb. 13: Regulierung der KRAS-Aktivierung und Signaltransduktion®®

Das Muster der Aktivierung von KRAS hangt von der Membranlokalisierung und der
Aktivierung benachbarter Membranrezeptoren ab. Im Ruhezustand bindet KRAS mit GDP.
Wenn extrazellulare Wachstumsfaktoren, wie EGF Sighale an die Rezeptoren binden,
interagiert SOS, eine Art GEF (guanine [nucleotide] exchange factor), mit dem KRAS-GDP-
Komplex, was zur Freisetzung von GDP und zum Ersatz von GTP fuhrt. Die Bindung von GTP
und KRAS fuhrt zu strukturellen Veranderungen von Schalter | und Schalter 1l und damit zur
Aktivierung von KRAS. Im Gegensatz dazu verstarken die GAPs die intrinsische GTPase-
Aktivitat von KRAS, um die Reaktion zu beschleunigen, bei der GTP zu GDP hydrolysiert wird.
Der KRAS-Zyklus zwischen aktivierter und inaktivierter Konformation fungiert als fein
regulierter molekularer Schalter, der mehrere Signalkaskaden steuert. Hierzu z&hlen
insbesondere der RAF-MEK-ERK-Weg, der die Proliferation steuert und der PI3K-AKT-mTOR-
Weg, der das Zelluberleben fordert. Die weiteren dargestellten Signalwege sind fir das KRAS-
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abhangige Tumorwachstum, die Endozytose sowie die Organisation des Zytoskeletts

verantwortlich.%’

2.5.2. Therapeutische Implikationen eines postiven KRAS-
Mutationsstatus

KRAS spielt eine zentrale Rolle bei der Signaltransduktion von Tumorzellen und steht somit in
direktem Zusammenhang mit der Entstehung und Entwicklung von Tumoren.
Seit 40 Jahren ist die therapeutische Ansteuerbarkeit der KRAS- Mutation wissenschafliches
Forschungsziel.
Diese Bestrebungen blieben jedoch zunéchst erfolglos und die Forschung konzentrierte sich
zunachst auf andere wichtige Molekile des KRAS-Signalwegs, wie bspw. RAF, ERK und
MEK. Somit waren KRAS-gesteuerte Tumoren jedoch nicht greifbar. KRAS-mutierte Tumoren
sind heterogen, was die zum Teil geringe Wirksamkeit unspezifischer KRAS-Inhibitoren
erklart. Selektive Inhibitoren, die auf spezifische KRAS-Mutationen abzielen, werden dringend
bendtigt, um die verschiedenen Funktionen der KRAS-Mutation im Einklang mit den
Anforderungen der Prazisionsonkologie wirksam zu hemmen?®®,
Fur die spezifische Mutation KRAS G12C konnten jedoch in jlingerer Zeit wesentliche
Fortschritte bei der Entwicklung direkt wirksamer Medikamente gemacht werden.
Im Gegensatz zu anderen KRAS-Mutationen, wie KRAS G12D und G12V, kann KRAS G12C
alternative Interaktionen mit seinen nachgeschalteten Effektoren durch einen aktiven Zyklus
zwischen dem GDP-gebundenen und dem GTP-gebundenen Zustand aufrechterhalten.®®
Dieser Unterschied ermdglicht es, durch Reaktion mit Cysteinresten, KRAS G12C, in seiner
inaktiven Konformation zu sperren.
Die Thiolgruppe im Cysteinrest bildet eine Disulfidbriicke mit Cystein 12 und fuhrt so zur
spezifischen und langanhaltenden Inhibition von KRAS G12C.%°
Das Medikament, das sich diese Strategie zunutze macht heil3t Sotorasib (AMG510) und
wurde im Januar 2022 in der europaischen Union zugelassen.
Es handelt sich hierbei um den ersten, bei Menschen einsetzbaren, kovalenten KRAS G12 C-
Inhibitor, der selektiv und irreversibel an das mutierte Protein bindet und es im inaktivierten,
GDP-gebundenen Zustand halt.}?° Die Wirksamkeit von Sotorasib in Monotherapie wurden
(Phase I/ll) -Studie von Hong D.S. et. al. und Li L.T., bei bereits vortherapierten NSCLC-
Patienten mit vorliegender KRAS G12C -Mutation und lokal fortgeschrittenem oder
metastasierten Tumorstadium gezeigt. Bei diesen Patienten wurde durch den Einsatz von
Sotorasib eine mediane Dauer des Therapieansprechens von ca. 10 Monaten sowie eine
mediane progressionsfreie Uberlebenszeit von 6,8 Monaten erreicht. Die mediane Zeit bis zum

objektivierbaren Therapieansprechen betrug ca. 1,4 Monate.!0!
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Sotorasib ist heute bereits fester Bestandteil der NSCLC-Therapie und ist Mittel der Wahl bei
erwachsenen Patienten mit positivem KRAS (G12C)-Mutationsstatus und wird bei
fortgeschrittenen Tumoren als Monotherapie eingesetzt.®

Ein weiterer KRAS(G12C)-Inhibitor, Adagrasib (MRTX849) wurde im im November 2023 von
der European Medicines Agency (EMA) zugelassen. Es bindet wie Sotorasib ebenfalls
irreversibel und selektiv an die sogenannte ,switch |lI-Tasche® des KRAS-Proteins und fixiert
dieses ebenfalls im GDP-gebundenen inaktiven Zustand. Bei langerer Halbwertszeit (24h vs.
5,5h), hoherer oraler Bioverfligbarkeit und weitreichender Gewebsverteilung, deuten
préaklinische Daten darauf hin, dass Adagrasib die Blut-Hirn-Schranke tberwinden kann. Die
bereits gesammelten klinischen Daten, belegen, als entscheidender Vorteil gegeniber
Sotorasib, die antitumorale Wirkung des Medikaments bei Hirnmetastasen.

Aufgrund der zunehmenden Relevanz eines positiven KRAS-Status im Hinblick auf das
therapeutische Vorgehen, steigt auch der Stellenwert der diagnostischen Sicherung.1%?

2.6 Radiomic/Radiogenomic beim Bronchialkarzinom
Das Diagnostikfeld der Radiogenomik ist ein relativ neuer Ansatz der Krebsdiagnostik, der
eine Bewertung und Vorhersage der molekularen Grundlagen von Tumorzellen anhand von
Bildgebungsphanotypen bzw. radiologischen Merkmalen der Tumorlasionen erméglicht. Mit
dieser Methode lassen sich Assoziationen zwischen radiologischen Merkmalen und
molekularen Merkmalen auf genomischer, transkriptomischer und proteomischer Ebene

herstellen.103

2.6.1. Grundlagen der Radiomic/Radiogenomic

Einer der grundlegenden Aspekte fir das Verstdndnis der Krebspathobiologie ist die
Korrelation genomischer Veranderungen mit dem Krebs-Phanotyp. Vor diesem Hintergrund
konnten durch Forschungsfortschritte der DNA- und RNA-Analyse von Krebszellen, bereits
schon eine Vielzahl direkter Verbindungen zwischen genomischen Daten, Tumortypen und
bildmorphologischen Veranderungen gefunden werden.

Die Radiomic erganzt die traditionelle Krebsbildgebung, die der Eckpfeiler der
Krankheitsdiagnose, der Stadieneinteilung, der Bestrahlungsplanung und der Uberwachung
war, durch quantitative Aspekte. Es handelt sich hierbei im Wesentlichen um eine Methode
zur Bewertung von bildgebenden Biomarkern.'®* Unter dem Begriff ,Bildmerkmale* im
Zusammenhang mit Radiomics versteht man nicht das vom menschlichen Auge gesehene
visuelle Bild, sondern Bilddaten, die dem menschlichen Auge moéglicherweise verborgen
bleiben. Hierbei kann es sich z.B. um quantitative Formmerkmale, komplexe
mehrdimensionale Muster, feinste Grauabstufungen, Homogenitét, Heterogenitat, interpixel-

Relationen, Texturen oder spektrale Eigenschaften in einer Region of Interest (ROI) handeln.
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Die Bestimmung des Mittelwerts der Signalwerte innerhalb einer ROI ist ein Beispiel fur eine
einfache statistische Auswertung, die bereits fest in den klinischen Workflow integriert ist.
Durch Identifikation und Analyse radiomischer Bildmerkmale werden sogenannte
radiomischen Features erstellt, die die biologischen Bildmerkmale statistisch beurteilbar
machen.

Mithilfe von maschinellem Lernen kénnen diese anschlieBend in der Auswertung mit
Zielparametern verknipft werden. Auf diese Weise kann beispielsweise die Auspragung der
intratumoralen genetischen Heterogenitat, verschlisselt in eine Radiomics-Signatur, in
Zusammenhang mit Therapieansprechen oder Prognose gebracht werden. Bestimmte
Features kdnnten demnach spezifisch fur bestimmte Pathologien, z.B. Tumorentitaten sein.
Die Kombination der Radinomic und der genomischen DNA- und RNA-Analyse mit den auf
genomisch-transkriptomisch-proteomischer Ebene zugrundeliegenden Merkmalen wird als
"Radiogenomic" bezeichnet, ein neuartiger Ansatz, mit dem sich die biologischen Grundlagen
von Bildgebungsphéanotypen identifizieren lassen.®

Angesichts der hohen Verfugbarkeit von Bildgebungsdaten bei Patienten mit
Bronchialkarzinom, war diese spezifische Krebsart bereits von Beginn an im Fokus von
Radiomic- und Radiogenomic-Studien.%®

Um ausgewéhlte Bereiche bzw. Volumina aus medizinischen Bilddatensatzen einer
mathematischen Transformation zugénglich zu machen und in verwertbare Daten
umzuwandeln, ist eine Kette aufeinander folgender Arbeitsschritte nétig. Diese Abfolge von
Arbeitsschritten wird als ,Radiomics-Pipeline” bezeichnet.1%

Abbildung 14 dient der Ubersichtlichen/schematischen Darstellung dieser einzelnen

Arbeitsschritte, welche anschlielBend kurz erlautert werden.
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Abb. 14: Typischer Arbeitsablauf einer radiomischen Analyse: 1. Auswahl der
Bildgebungsmodalitat. 2. Segmentierung des Volumens von Interesse (VOI). 3. Selektion

radiomischer Merkmale. 4. Training und Validierung des ,machine learning“-Modells®

Der erste Schritt ist die Definition des Problems auf klinischer Ebene. Eine erfolgreiche
Anwendung von Radiomics und ,Mashine Learning“ ist in erster Linie von einer soliden,
klinisch sinnvollen Formulierung des Klinischen Anwendungsfalls abhangig. Bei der
Betrachtung verschiedener Anwendungsfalle ist es von grof3ter Bedeutung, die endgiltige
Auswahl passender Félle nicht nur nach ihrer klinischen Stichhaltigkeit abzuwé&gen, sondern
stattdessen eine realistische Betrachtung einer angemessenen Datenmenge anzustellen, die
fur ein effizientes Training des maschinellen Lernalgorithmus erforderlich ist, um ein robustes,
prazises und allgemein guiltiges Modell zu erstellen.%’

Letzteres gilt besonders, wenn es sich bei den Eingabedaten um medizinische Bilder handelt,
die grundsatzlich dynamisch sind und haufig, beispielsweise aufgrund der
Informationsdarstellung oder des Fehlens von allgemein angenommenen standardisierten
Aufnahmeprotokollen, intrinsische Variabilitat aufweisen.'®® Der Rohdatensatz medizinischer
Bilder, aus statistischer Sicht die sogenannte Grundwahrheit muss robust sein, leicht zu
beschaffen sein und moglichst wenig von menschlicher Interpretation abhangen. Bei der
Analyse radiologischer Bilder ist letzteres in der Regel jedoch unvermeidlich und sollte daher
von Expertengremien erstellt werden, um die Auswirkungen der Interobserver-Variabilitdt zu
minimieren.

Bei der Identifizierung aussagekraftiger potenzieller Datenquellen, die fur die radiogenomische
Analyse herangezogen werden kdnnen, sollte spezifisches Fachwissen bericksichtigt werden.

Bisherige Forschungsansatze zeigten deutlich, dass bei der gewahlten Bildgebung eher
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Robustheit der Bildinformationen, wie in der CT gegeniiber hoher Vielfalt der Bildmerkmale,
wie in der MRT, zu bevorzugen sind. Standard-Bildgebungsverfahren sind ebenfalls
vorzuziehen, da sie einfacher zu beschaffen sind und ein gré3eres Potential fiir die klinische
Anwendbarkeit bieten.1%3

Grundsatzlich sind alle modernen Bildgebungsmodalitaten der radiomischen Analyse
zuganglich. Computertomographie (CT), Kernspintomographie (MRT), Positronen-Emissions-
Tomographie (PET) und Einzelphotonen-Emissions-Computertomographie (SPECT) sind
einige der klinischen Modalitaten, die haufig zur Extraktion von Texturmerkmalen eingesetzt
werden. Die Vielfalt der Scanner ermdglicht ein breites Spektrum an Aufnahme- und
Bildrekonstruktionsprotokollen, so dass im Rahmen der Datenerfassung, dem nachsten
Arbeitsschritt der Radiomics-Pipeline, eine Standardisierung dieser Protokolle erforderlich
ist.1%® Die Herausforderung der Standardisierung von Daten besteht darin, die aufgrund
technischer Details entstehenden, numerischen Variationen von Texturmerkmalen zu
minimieren, da diese félschlicherweise mit biologischen Effekten in Verbindung gebracht
werden kénnen. Aus diesem Grund folgen die Aufnahmeprotokolle, die Segmentierung von
Geweben und die Berechnung radiomischer Merkmale genauen Richtlinien, 1% 111

Nach Generierung und Auswahl geeigneter radiologischer Bilder, ist die Segmentierung einer
der zentralen und zeitaufwendigsten Arbeitsschritte fiir die Berechnung von Texturmerkmalen.
Es gibt viele Herausforderungen im Zusammenhang mit der Segmentierung, einschlieflich
einer hohen benutzerabhangigen Variabilitat, der sogenannten ,inter-reader variability“. Selbst
bei Verwendung automatisierter Algorithmen mit kiinstlicher Intelligenz (KI) handelt es sich bei
der Segmentierung um einen zeitaufwendigen Arbeitsschritt, da ein Eingreifen durch einen
Radiologen zur Korrektur und Validierung der Ergebnisse erforderlich ist. Es wird empfohlen,
dass zwei oder mehr Reader die Segmentierung durchfiihren, um subjektive Meinungen Uber
die genauen Grenzen auszugleichen.

AuBerdem gilt es nur Merkmale fir die finale Analyse auszuwahlen, die moglichst
unempfindlich gegentiber verbleibenden diskreten Unterschieden bei der Definition der
,radiomic signature” sind. Nach der Definition eines Volumens von Interesse (VOI) durch einen
Auswerter im Rahmen der Segmentierung, erfolgt die Berechnung radiomischer Merkmale.
Solche Merkmale kénnen Forminformationen, Signalintensitdten, Heterogenitdt oder
texturbezogene Informationen von Geweben innerhalb des VOI widerspiegeln!!2,

Ein kritischer Aspekt, welcher sich im Rahmen einer radiomischen Analyse ergibt, besteht
darin, dass mitunter die Anzahl der verfugbaren Patienten weitaus geringer ist als die Anzahl
der Bildgebungsmerkmale, die wir von jedem einzelnen Patienten extrahieren kénnen.

Daher ist es nétig eine grof3e Patientenkohorte aufzustellen, um einen Datensatz zu erhalten,
der die natirliche Variabilitat in ausreichendem, statistisch aussagekraftigen Mal

wiederspiegelt. Dies wiederum ist problematisch, da eine Radiomics-Studie nur Bilddatensatze
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einer Bildgebungsmodalitat von gleichbleibend guter Bildqualitat verwenden kann und es mit
hohem Aufwand verbunden ist ausreichende Patientenzahlen zu akquirieren. Der Prozess zur
Ermittlung des perfekten Gleichgewichts zwischen der Anzahl der Merkmale und der
entsprechenden Modellleistung wird als Merkmalsauswahl (Feature Selection) bezeichnet und
ist der nachste wesentliche Schritt der ,Radiomics-Pipeline“. Zur Ldsung des
Dimensionalitatsproblems werden verschiedene statistisch-mathematische Methoden
eingesetzt, darunter ,Filter*-, ,Wrapper“- und ,Embedded“-Methoden, die im Wesentlichen
darauf abzielen, die stabilsten und informativsten Merkmale fir das Modelltraining
auszuwahlen. Diese endgiiltig flr das Training verwendeten Merkmale werden als ,radiomic
signature® bezeichnet. Die statistische Zuverlassigkeit der Merkmale sollte auf verschiedenen
Ebenen bewertet werden, hierzu zahlen die sogenannte Robustheit (robustness), zeitliche und
raumliche Stabilitat (temporal and spatial stability) und Reproduzierbarkeit (reproducibility). Ein
typischer Arbeitsablauf in der ersten Phase erlaubt es beispielsweise, nur stabile Merkmale zu
Ubermitteln. Eine sogenannte ,Null- oder Fast-Null-Varianz“-Methode entfernt dabei
unbrauchbare Merkmale. Eine anschlieBende Korrelationsanalyse entfernt redundante
Merkmale und schlie3lich werden anspruchsvolle statistische Methoden wie Minimum
redundancy feature selection (MRMR) oder Recursive feature elimination (RFE) verwendet,
um die ,radiomic signature” fertig zu stellen.103

Im finalen Schritt werden Modelle des maschinellen Lernens trainiert und validiert, um klinische
Ergebnisse vorherzusagen oder Patienten anhand von genomischen oder molekularen
Merkmalen zu klassifizieren.

Bei einem Datenumfang von ca. 100 - 1000 Patienten, wie in diesem Projekt, sollten die
radiomischen Merkmale mit klassischen Algorithmen des maschinellen Lernens (ML)
untersucht werden. Hierzu zahlen unter anderem ,logistic regression®, ,naive Bayes*, ,random
forests®, ,support vector machines” und ,boosted trees“. Nach Abschluss der Trainingsphase
wird der Algorithmus ausgewahlt, der bei der Vorhersage bis dahin unbekannter Daten, aus

dem sogenannten Validierungssatz (validation set), die besten Ergebnisse erzielt!3,

2.6.2. Mutationspradiktion durch Radiomics/Radiogenomics beim
NSCLC

Es existieren bereits einige Studien, die demonstrieren, dass die radiomische bzw.
radiogenomische Analyse potentiell eine relevante prognostische und pradiktive Rolle fir
Patienten mit NSCLC spielen kdnnte. Speziell bei Patienten mit Bronchialkarzinom sind die
haufigsten Modalitaten, die in Studien verwendet werden, CT und FDG PET/CT, da sie im
Rahmen der klinischen Routinediagnostik eine fiihrende Rolle spielen.
In einer Studie von Li et al. wurden subsolide Knoten von 154 Patienten mit pulmonalem

Adenokarzinom untersucht, die zuvor einer vollstandigen Exom-Sequenzierung unterzogen
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worden waren. Die radiogenomische Analyse ergab, dass ein hoherer Anteil solider
Komponenten in den subsoliden Knoten mit einer signifikant hheren Mutationshaufigkeit in
EGFR und KRAS korrelierte. Die Ergebnisse deuteten an, dass diese Gene die Progression
von pulmonalen Adenokarzinomen bedingen und auf diese Weise vorhergesagt werden
konnen!!*, In einer anderen Studie zeigten Shu Li et. al., dass die radiogenomische Analyse
erfolgreich zur Vorhersage des Mutationsstatus der Subtypen des epidermalen
Wachstumsfaktor-Rezeptors (EGFR) bei NCLC-Patienten eingesetzt werden kann. Genauer
gelang es, die Bildmerkmale der Rezeptor-Subtypen 19Del und L858R zu unterscheident?®,
Zhou et al. zeigten einen Zusammenhang zwischen CT-Hounsfield-Dampfungsmessungen
(Hounsfield attenuation) und EGFR-Expression. Sie stellten fest, dass das Vorhandensein
unregelmaBiger R&ander und umgebender milchglasartiger Tribungen (ground-glass
opacities) positiv mit der EGFR-Expression korrelierte!1®,

In einer Studie von Rizzo et al. wurde gezeigt, dass die EGFR-Mutation mit CT-Merkmalen wie
dem Vorhandensein eines Bronchopneumogramms, Pleura-Retraktion, kleiner Lasionsgrofl3e
und dem Fehlen einer Fibrose assoziiert ist. Im Gegensatz dazu wurde die ALK-Mutation mit
vorhandenem Pleuraerguss in Verbindung gebracht. Eine runde Form, unspezifische Knoten
in vom Tumor betroffenen Lappen und Raucheranamnese waren Variablen, die mit einer
KRAS-Mutation in Verbindung standen*?’.

In weiteren, unserem Projekt &hnlichen Ansatzen, sammelten beispielsweise Gevaert et al.
Indizien dafiir, dass das Vorhandensein eines Bronchopneumogramms innerhalb der
Tumorlasion mit einer Uberexpression des KRAS-Onkogens zusammenhangen konntel's,
Weiss et al. zeigten in diesem Zusammenhang auf, dass die radiogenomischen Merkmale
,Lower kurtosis® und ,positive skewness* signifikant mit einem postiven KRAS-Mutationsstatus

korrelieren®?®.

2.7Fragestellungen und Ziel der Arbeit
Ziel dieser Arbeit war es festzustellen ob mit Hilfe radiogenomischer Analyse der DECT-
Bildmerkmale eine Klassifikation einer NSCLC-L&sion im Hinblick auf den KRAS-Stauts
maoglich ist, um so auch das Potential flr die klinische Anwendbarkeit beurteilen zu kénnen.
Um dies zu erreichen, wurde versucht, eine optimierte, auf radiologische DECT-Bildmerkmale
anwendbare Pipeline fur maschinelles Lernen (ML) zu entwickeln, zu trainieren und zu testen.
Mit den erbrachten Ergebnissen sollte beurteilt warden, ob diese Methode das Potential hat,

als Alternative invasiver Methoden, klinisch eingesetzt zu werden.
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3. Material und Methoden

3.1Ethikvotum
Fir diese monozentrische, retrospektive Studie lag seitens der Ethik-Kommission der
Universitat zu Kaéln ein positives Ethikvotum vor (Aktenzeichen 2019-19-1196).

3.2Patienten
Geeignete Patienten wurden retrospektiv aus der bestehenden onkologischen Datenbank der
Uniklinik KdIn zusammengestellt. Bei den eingeschlossnen CT-Datensatzen, handelte es sich
um CTs aus der retrospektiven Auswertung ab Ethikvotum bis zum 01.05.2019.
Die primaren Einschlusskriterien waren ein Patientenalter von = 18 Jahren, das Vorliegen
eines histopathologisch  gesicherten nicht-kleinzelligen  Bronchialkarzinoms sowie
Therapienaivitdt zum Zeitpunkt der ausgewerteten initialen Bildgebung.
Darlber hinaus musste eine genetische Subtypanalyse vorliegen aus der die Treibermutation
des Tumors hervor ging. Bei geeigneten Patienten wurden abschlieRend die CT-Datensatze
der initialen Bildgebung identifiziert, auf Vollstandigkeit Uberprift und die Position etwaiger
Lungenrundherde bzw. Raumforderungen unter Hinzuziehung der vorliegenden
radiologischen Berichte korreliert.
Die auf diese Weise akquirierte Kohorte umfasste insgesamt 212 Patienten mit einem NSCLC,
58 Patienten hiervon mit KRAS-Mutation. Bei insgesamt 58 dieser Patienten wies das NSCLC
eine KRAS-Mutation auf.
Im Rahmen der durchgefuhrten Analyse wurden Patienten mit noduléren pulmonalen Lasionen
mit einem Durchmesser im Weichteilfenster von < 30 mm (Nodules) und Lasionen von > 30
mm Durchmesser (Masses) separat ausgewertet, unter der Annahme das sich die
radiologischen Bildeigenschaften und somit auch die radiomischen Features voneinander
abweichen kdnnten. Auf diese Weise sollte ermittelt werden ob sich die Analysemethode flr
eine der beiden Kategorien besser eignet. Abb. 15 zeigt ein Beispiel fir die Segmentierung

eines Lungenrundherdes (Durchmesser < 3 cm ) ohne Kontakt zur Pleura.
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Abb. 15: Exemplarisch NSCLC-Patient mit Lungentumor im rechten Oberlappen (< 3 cm) mit

diskreten Auslaufern zur Pleura, ohne Zeichen einer direkten Pleurainfiltration (cT2aNxMx)

Insgesamt wurden 61 Patienten mit Lungenrundherden (Nodules) analysiert, hierbei lag in 17
Fallen eine KRAS-Mutation vor. Bei den restlichen 151 Patienten waren die entsprechenden
Lungenraumforderungen (Masses) im Durchmesser gréRer als 3 cm, hierunter befanden sich
41 KRAS-positive Falle.

Der Begriff ,Lungenlasionen wird im weiteren Verlauf ebenfalls verwendet und fasst alle

analysieren ,Nodules” und ,Masses® zusammen.
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Abb.16: Beispiel fur eine Lasion (> 3 cm) mit direktem breitbasigen Kontakt der Pleura (cT3
Nx Mx)

3.3Bildakquisition
Der CT-Datensatze umfasste Aufnahmen von verschiedenen CT-Geraten. |Qon Spectral CT
(75 Patienten); Philips Brilliance 64 — CT (64 Patienten); Philips CT 6000 iCT (33 Patienten);
Simens Somatom Dual Source-CT (19 Patienten), Simens Biograph mCT (9 Patienten),
Simens Definition Flash-CT (6 Patienten) und GE Bright Speed 16 (6 Patienten).
Exemplarische und haufige Scanparameter eines eingeschlossenen CTs waren: Riickenlage,
inspirierender Atemanhalt, Rotationszeit ca. 0,33 sec, Kollimation ca. 64 x 0,625 mm; Matrix
ca. 512 x 512; Rohrspannung 120 kVp; Rohrenstrom, 200 mA; Pitch, 0,9; Sichtfeld, 200 bis
300 mm; Rekonstruktionsintervall, 1 mm; Fusionskernel: YA und L, Schichtdicke, 0,6 mm, 1
mm, 2 mm; Voxel-Abstand (X- und Y-Richtung), 0,68-0,87 mm.
Daruber hinaus waren alle eingeschlossenen CT kontrastmittelgestitzt mit einem
Kdrpergewicht-angepassten Bolus (Dosierung ca. 0,2-0,4g Jod / kg Koérpergewicht) aus
jodiertem Kontrastmittel (Accupaque, 350 mg J/ml), der Uber eine periphere Vene mit einer
Flussrate von ca. 3,5 mL/s verabreicht wurde, gefolgt von einer Kochsalzlésung von 30 mL.
Die Bolus-Tracking-Technik mit einer Verzdogerung von 50 Sekunden nach Erreichen des
Schwellenwertes von 150 HU in der Aorta descendens, um Scans des Thorax in vendser
Phase zu erhalten.
Fir alle CT-Bilddaten wurde ein Standard-Lungenfenster und Standard-Weichteilfenster
ausgewahlt. In einer Subgruppe wurden die mittels Dual-Energy-CT-Technik, genauer der
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hybrid-iterativen Spektralrekonstruktionsmethode (Spectral, Filter B, Level 3, Philips

Healthcare), Jodkarten (IM) rekonstruiert und erfasst.

3.4Segmentierung
Im Rahmen der vorliegenden Studie wurden die Primarlasionen der NSCLCs der
eingeschlossenen Patienten, in Zusammenschau mit den vorliegenden radiologischen
Befunden, durch den Doktoranden 3-dimensinoal segmentiert. Zunéchst wurde die
Lokalisation der malignen Lasionen den radiologischen Berichten entnommen und im CT-Bild
aufgesucht. Mit Hilfe einer proprietdren Forschungssoftware ,Mint Lesion Research* (Mint
Medical GmbH) wurde die Flache der L&sionen in jeder einzelnen Bildschicht in der sie sichtbar
waren, manuell umrandet. Die Segmentierungen wurden von einem zweiten unabhangigen
Radiologen mit mehr als 5 Jahren Erfahrung in der CT-Bildgebung doppelt Gberprift und
gegebenenfalls angepasst. Die Segmentierungen wurden so durchgefiihrt, dass
Tumorkomponenten vollstandig erfasst waren, wohingegen die Inklusion von angrenzendem,
nicht betroffenen Lungengewebe bzw. unmittelbar angrenzenden mediastinalen Strukturen

oder Thoraxwand im Falle von zentralen bzw. peripheren Tumoren vermieden wurde.
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Abb 17. Eine Visualisierung von zwei CT-Bildern, die eine erfolgreiche Segmentierung (oben
links) und ein fehlerhaftes Bild (unten rechts), das nach der visuellen Analyse ausgeschlossen

wurde.

3.5Praprozessierung und Merkmalsextraktion

Nach der manuellen Segmentierung mit ,Mint Lesion Research® (mint lesion research, Mint
Medical GmbH) und Erfassung der ROI (Region of Interest), erfolgte der Datenexport . Die
urspringliche Lasionskontur wurde auf den Lungenmetastasenbildern skizziert. Einige
Segmentierungsergebnisse sind exemplarisch in Abb. 15 dargestellt.

Im Anschluss wurden die Datensatze der Segmentierung exportiert und mit ,PyRadiomics”
analysiert. Hierbei handelt es sich um ein sogenntes ,,Open-Source-Python-Package” fur die
Extraktion von Radiomics-Merkmalen aus 2D- und 3D-Bildern und bindren Masken. Mit dieser
Methode lassen sich phénotypische Merkmale in der medizinischen Bildgebung durch den
Einsatz automatisierter Algorithmen zu quantifizieren.

Insgesamt wurden auf diese weise in unserer Studie 105 radiomische Merkmale aus den CT-
Bildern jedes Patienten extrahiert, darunter die Intensitatsmerkmale des Tumors, Formen,
Texturen, Wavelets und Gabor-Merkmale. Zu den Intensitatsmerkmalen gehérten Statistiken
erster Ordnung, die aus dem Histogramm aller Tumorvoxel-Intensitatswerte berechnet
werden. Die Formmerkmale spiegen die Form und Gro3e des Tumorbereichs wider. Die
Texturmerkmale lieferten Informationen Uber die relativen Positionen der verschiedenen
Graustufen im Bild, einschlieBlich der Grey Level Co-occurrence Matrix und der Grey Level
Run Length Matrix. Wavelet-Merkmale umfassten Intensitéts- und Texturmerkmale, die aus
der Wavelet-Transformation des Originalbildes abgeleitet wurden. Zu den erfassten Gabor-
Merkmalen gehorten Multiskalen- und Multidirektions-Gabor-Magnituden-Texturdarstellung

und die Gabor-Phasen-basierte Texturdarstellung.
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Tumor segmentation Feature extraction
(212 NSCLC patients) (105 features)
Group 1 Training
Intensity features ] set
(n=159)
Group 2
Shape features
+ _—
Group 3
Texture features
Group 4 Tes;t
— se
Wavelet features
(n=53)
Group 5
Gabor features

Abb. 18: Flowchart des Preprocessing von Segmentierung bis Training

AnschlieRend wurden die Segmentierungen durch computergesteuerte statistische Kontrolle
nochmals Uberpriift, um die Konstanz der relevanten Volumina, zwischen ,Input“-Lasion und
Rekonstruktion (,Output-Lasion®) zu gewahrleisten.

Basierend auf den realen und artifiziellen bzw. segmentierten ROIs wurden volumetrisch
Hounsfield Unit Dampfung (HU), Joddichte (ID [mg/ml]) sowie Texturfeatures erster Ordnung
bestimmt. Zu diesen zé&hlen u.a. die Merkmale Entropie, Kurtosis, Schiefe, Gleichmafigkeit
und Einheitlichkeit der positiven Pixel (UPP) und der Mittelwert der positiven Pixel (MPP). Die
berechneten Daten wurden im CSU-Format als strukturierter Datensatz exportiert und in
Excel-Format konvertiert.

Hierfur wurden die Radiomics-Merkmale aus den eingegebenen 3D-rekonstruierten Lasionen
mit einem einzigen Codierungsnetzwerk (,encoder network®) extrahiert. Zur
Veranschaulichung ist ein Modell dieses Prozesses in Abbildung 16 dargestellt.

Die GroRRe der analysieten Voxel betrug 1,00 x 1,00 x 1,00 mm. Die hierbei vom
Kodierungsnetzwerk aus jedem Block (e_2 bis e_5, siehe Abb. 16) extrahierten Bildmerkmale
wurden verwendet, um die sogenannten ,Region Maps® zu erstellen. Das Decoder-Netzwerk
(,decoder network®), das mit jedem Block (e_2 bis e_5) verbunden ist, wurde ebenfalls zur
Erstellung der Region-Maps eingesetzt. Die auf diese Weise erstellten Region-Maps (Ausgang

von o_1 bis 0_4) wurden in eine sogenannte Verlustfunktion (,loss function“) substituiert und
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der sogenannte Verlustwert berechnet. Die Ergebnisse (Outputs) umfassten das tiefste
Encodernetz (deepest encoder network) (e_1 bis e_5) und das tiefste Decoder-Netzwerk
(deepest decoder network) (d_5-1 bis d_5-4) und hiermit die von o_4 erstellte Region Map.
AuRerdem hatte jeder Block eine Gehéauseeinheit und alle Blécke aul3er e_1 enthielten eine
Dropout-Schicht (Dropout 3D) vor der finalen Faltungsschicht (convolutional layer). In dem
angewendeten Modell sind Encoder und Decoder durch Verkettung verbunden. Die
Abstimmung der Hyperparameter des Modells wurde manuell von Datenwissenschaftlern des

Universitatsklinikums Koéln durchgefihrt.
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Abb. 19: Architektur des verwendeten verschachtelten dreidimensionalen (3D) vollstandig
verbundenen ,Convolutional network”. Die Verbindungen sind durch die roten Kreise

gekennzeichnet, wobei der Encoder und der Decoder durch Verkettung verbunden sind

3.6 Mermalsauswahl und Ranking
Im Anschluss an die Extraktion der Bildmerkmale erfolgte die Unterteilung in Subgruppen.
Die extrahierten Features-Gruppen, umfassten:
1. Formbasiert (shape-based): In dieser Gruppe sind Descriptoren fir dir
dreidimensionale Grof3e und Form der ROI (Region of Interest). Diese Merkmale sind
unabhangig von der Graustufenintensitatsverteilung in der ROl und werden daher nur

aus dem nicht abgeleiteten Bild (non-derived image) berechnet.
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.Firstorder features”: Features erster Ordnung beschreiben die Verteilung der Voxel-
Intensitaten innerhalb der durch die sogenannte Maske definierten Bildregion durch
allgemein verwendete und grundlegende Metriken.

,Grey level cooccurence matrix“ (22 Merkmale): Eine Graustufen-Co-Occurrence-
Matrix (GLCM) beschreibt die gemeinsame Wahrscheinlichkeitsfunktion zweiter
Ordnung einer durch die Maske eingeschréankten Bildregion. Bestimmte Elemente
dieser Matrix geben an, wie oft die Kombination zweier Ebenen (i und j) in zwei Pixeln
im Bild vorkommt, die durch einen Abstand von & Pixeln entlang des Winkels 6
voneinander getrennt sind.

Grey level dependence matrix: Eine Graustufenabhangigkeitsmatrix (GLDM)
quantifiziert Graustufenabhangigkeiten in einem Bild. Eine Graustufenabhéngigkeit ist
definiert als die Anzahl der miteinander verbundenen Voxel im Abstand &, die vom
zentralen Voxel abhangig sind. Ein Nachbarvoxel mit der Graustufe (j) gilt als abhangig
vom  Zentralvoxel mit der Graustufe (i), wenn Ji-j|<a. In  einer
Graustufenabhangigkeitsmatrix P(i,j) beschreibt das (i,j)-te Element die Anzahl, wie oft
ein Voxel mit Graustufe i mit j abhangigen Voxeln in seiner Nachbarschaft im Bild
erscheint.

Grey level run length matrix: Eine Graustufenabhangigkeitsmatrix (GLDM) quantifiziert
Graustufenabhangigkeiten in einem Bild. Eine Graustufenabhangigkeit ist definiert als
die Anzahl der miteinander verbundenen Voxel im Abstand O, die vom zentralen Voxel
abhangig sind. Ein Nachbarvoxel mit der Graustufe (j) gilt als abhéngig vom
Zentralvoxel mit der Graustufe (i), wenn |i-j|<a. In einer Graustufenabhangigkeitsmatrix
P(i,j) beschreibt das (i,j)-te Element die Anzahl, wie oft ein Voxel mit Graustufe i mit j
abhangigen Voxeln in seiner Nachbarschaft im Bild erscheint.

Grey level size zone matrix: Eine Graustufen-Gré3en-Zone (GLSZM) quantifiziert die
Graustufenbereiche in einem Bild. Eine Graustufenzone ist definiert als die Anzahl der
zusammenhangender Voxel, die die gleiche Graustufenintensitat aufweisen. Ein Voxel
gilt als zusammenhéangend, wenn der Abstand nach der Unendlichkeitsnorm 1 betréagt
(26 zusammenh&ngende Bereiche in 3D, bzw. 8 zusammenhangende Bereiche in 2D).
Im Gegensatz zu GLCM und GLRLM ist die GLSZM drehungsunabhangig, wobei nur
eine Matrix fur alle Richtungen im ROI berechnet wird.

Neighbouring Grey tone difference Matrix: Eine Grautondifferenzmatrix quantifiziert die
Differenz zwischen einem Grauwert und dem durchschnittlichen Grauwert seiner
Nachbarn im Abstand &. Die Summe der absoluten Differenzen fur den Grauwert i wird

in der Matrix gespeichert.
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Im Rahmen dieser Studie wurden insgesamt 105 verschiede Bildmerkmale aller
Lungenlasionen analysiert. Viele der als Pradiktoren verwendeten Bildmerkmale (Radiomic-
Features) wiesen eine starke statistische Korrelation zu einander auf, z.B. liefert der maximale
Durchmesser eine analoge Information wie maximaler Radius, hingegen ist das Merkmal
Homogenitat eine von der GréRe unabhdngige Information.

Dies erfordert eine Auswahl der statistisch relevantesten Merkmale, um Kollinearitat zu
vermeiden, die Dimensionalitat zu gewahrleisten und das Rauschen (,noise®) zu minimieren.

Hierfur wurden 4 Methoden verwendet.

1. Die erste Methode zur Untersuchung der statistischen Abhangigkeit zwischen Merkmal
und KRAS-Mutationsstatus war ein ANOVA f —Test zur Darstellung der linearen
Abhangigkeit der beiden Variablen.

2. Die zweite Methode, die angewendet wurde, war ,Mutual Information®. Hierbei werden
durch Verwendung von Entropie nicht nur lineare, sondern verschiedene statistische
Abh&ngigkeiten erfasst.

3. Die dritte Methode, die angewendet wurde, ist die Berechnung der sogenannten AUC
(area under the curve). Hierbei wird ein bestimmter Schwellenwert einem Merkmal
zugeordnet (True positive Rate).

4. Extreme gradient boosting (XGBoost) ist eine Open-Source-Bibliothek, die eine
effiziente und effektive Implementierung des Gradient-Boosting-Algorithmus bietet.

Aus den durch die vier Methoden ermittelten Ergebnissen, wurden jeweils die Merkmale mit
den geringsten Korrelationswerten selektiert. Die statistisch aussagekraftigsten 10% der
Merkmale wurden in vier Gruppen zur sogenannten Kreuzvalidierung (Cross Validation)
eingeteilt. Diese Kreuzvalidierung ist statistische Methode zur Schatzung der
Leistungsfahigkeit eines Vorhersagemodells.

Mithilfe dieser Modellvalidierungstechnik wurde im Rahmen dieser Studie beurteilt, wie die
Ergebnisse einer statistischen Analyse auf einen unabhéangigen Datensatz verallgemeinert
werden kdnnen. Grundsatzlich umfasst die Kreuzvalidierung ein sogenanntes ,Resampling®-
und ,Sample-Splitting“, Verfahren bei denen verschiedene Teile der Daten zum Testen und
Trainieren eines Modells in verschiedenen Iterationen verwendet werden. Sie wird haufig in
Situationen verwendet, in denen das Ziel die Vorhersage ist und man abschatzen mdchte, wie
genau ein Vorhersagemodell in der Praxis funktionieren wird. Sie kann auch dazu verwendet
werden, die Qualitat eines angepassten Modells und die Stabilitdt seiner Parameter zu

bewerten.
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3.7Modellbasierte Mutationspradiktion (Classification)

Ausgangspunkt fiur die Klassifikation waren die im Rahmen der Merkmalsselektion und des
Merkmalsrankings erstellten vier Merkmalsgruppen (Feature-Sets). Hierfir wurden nur
Merkmale mit ausreichender statistischer Korrelation ausgewéhlt (> 0,8). Die hierfur
verwendeten Methoden waren der “ANOVA-f-Test”, ,Mutiual Information“, ,Area under the
Curve“ und ,Instant Gradient Boosting®“.

Die Merkmalsgruppen (Feature-Sets)  wurden im Rahmen der inneren
Kreuzvalidierungsschleife fur das Training des sogenannten ,Klassifizierers® (Ensemble
Classifier) verwendet.

Dieser setzt sich aus mehreren Sétzen verschiedener radiomischer Merkmale, den
sogenannten Klassifikatoren, zusammen. Die Klassifikatoren des Ensembles fuhren jeweils
eine Klassifizierung der ungesehenen Instanz, bzw. einer dem System bislang unbekannten
malignen Lungenlasion, durch. Ihre Vorhersagen werden kombiniert und bilden
zusammengenommen ein statistisches Abstimmungs- bzw. Wertungssystem, den Ensemble
Classifier.

Um die Effektivitat des Trainings des Ensemble Classifiers zu erh6hen, wurde eine weitere
Methode Namens ,Grint search” eingesetzt. Hierbei werden mehrere Klassifikationsmethoden
und Parameter zur Verfigung gestellt und diese in allen moéglichen Kombinationen getetstet.
Hierbei handelt es sich um einen sogenannten ,brute Force“-Ansatz, welcher durch den hohen
Datendurchlauf gute Ergebnisse erreichen kann.

Hierflr wurden insgesamt 4 verschiedene statistische Klassifikationssysteme verwendet:

1. Logistische Regression: Es handelt sich hierbei um ein statistisches Modell, das die
Wahrscheinlichkeit des Eintretens eines Ereignisses modelliert, indem die
logarithmische Wahrscheinlichkeit fir das Ereignis eine Linearkombination aus einer
oder mehreren unabhangigen Variablen ist. Bei der Regressionsanalyse (logistische
Regression oder ,Logit-Regression® erfolgt die Schatzung der Parameter eines
logistischen Modells (der Koeffizienten in der Linearkombination)#.

2. ,Random forest“: Es handelt sich um eine Ensemble-Lernmethode fir Klassifizierung
und Regression, die im Rahmen der Trainingsphase eingesetzt wird und durch
Konstruktion einer Vielzahl von ,Entscheidungsbdumen® funktioniert. Bei
Klassifizierungsaufgaben ist der sogenannte Output von Radom Forest, diejenige
Merkmalsklasse die von den meisten ,Entscheidungsbaumen® ausgewahlt wird. Bei
Regressionsaufgaben wird der Mittelwert oder die durchschnittliche Vorhersage der
einzelnen Baume angegeben!?1122,

3. ,k-Nearest Neighbors“-Klassifikation (k-NN): Hierbei handelt es sich um eine
nichtparametrisch tberwachte Lernmethod die fur die Klassifizierung radiomischer

Merkmale verwendet wird. Bei der k-NN-Klassifikation ist das erbrachte statistische
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Ergebnis die Ausgabe einer Klassenzugehorigkeit. Ein Objekt wird durch ein
Pluralitatsvotum seiner Nachbarn klassifiziert, wobei das Objekt der Klasse zugeordnet
wird, die unter seinen nachstgelegenen Nachbarn (,k“) am haufigsten vorkommt.
Hierbei ist der Wert ,k“ eine, normalerweise kleine, positive ganze Zahl. Ist k = 1, so
wird das Objekt der Klasse dieses seinen nachsten Nachbarn zugeordnet'?,

4. ,Extreme Gradient Boosting“ (XGB-Classifier): Dies ist ein leistungsfahiger und weit
verbreiteter Gradient-Boosting-Algorithmus, der zur Losung vieler verschiedener
Probleme des maschinellen Lernens eingesetzt wird. Es handelt sich um eine
Implementierung von Gradient Boosting, die speziell auf Effizienz und Skalierbarkeit
ausgelegt ist. Mathematisch gesehen ist XGBoost eine Ensemble-Lernmethode, die
die Vorhersagen mehrerer schwacher Modelle kombiniert, um eine starke Vorhersage
zu erstellen. Die schwachen Modelle in XGBoost sind Entscheidungsbaume, die mit
Gradient Boosting trainiert werden. Das bedeutet, dass der Algorithmus bei jeder
Iteration einen Entscheidungsbaum an die Residuen der vorherigen Iteration anpasst.

Die Ergebnisse dieser Klassifizierungsmethoden wurden ebenfalls in vier Kategorien

ausgewertet:
1. Precision
2. Recall
3. F1-Score

4. Balanced Accuracy

Im nachsten Schritt wurde aus den vier ,CrossValidation-Sets” die Anzahl richtig bestimmter
und falsch bestimmter Falle in einer sogenannten ,Confusion Matrice“ aufsummiert. Im
Anschluss wurden aus der Summe der ,CrossValidation-Sets“ die viel versprechensten
Kombinationen (,Pipelines®) ausgewahlt, welche in den Kategorien ,Precision“ (Prazision),
.Recall“ (Reproduzierbarkeit), ,F1-Score (F1-Wert)* und ,Balanced Accuracy“ (balancierte
Genauigkeit) die besten Werte erreichten.

Fir jede dieser Gruppen der ,inner Crossvalidation® wurde das beste Modell, aus den
statistisch robustesten Merkmalen, selektiert und zu dem statistisch starksten maoglichen
Ensemble Classifier zusammengeflgt. Diese wurdes im Anschluss erneut an den Gruppen

der ,outer Crossavalidation® getestet (vergleiche Abbildung 19).
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Abb. 20: Visualisierung der angewandten Pipeline des maschinellen Lernens einschliellich
der beiden Auswertungspfade,unter Verwendung eines einzelnen Klassifikationsmodells oder
eines Ensemble-Klassifikators (A). Fir die Modellentwicklung, werden die Trainingsdaten in
eine b5-fache Kreuzvalidierung aufgeteilt, bei der eine Vielzahl von Merkmalen,
Merkmalsselektoren und Klassifikatoren getestet und mithilfe der Rastersuche optimiert

werden (B). wird nur angewendet auf unausgewogenen Datensatzen angewandt.

3.8 Stratifizierte Datenaufteilung
Insgesamt wurden ca. 75% der Bilddatenséatze (entspricht 159 Patienten) fur das Training der
radiomischen Analysesoftware verwendet. Die verbleibenden ca. 25% der Bilddatensatze
(entspricht 53 Patienten) wurden, nach Abschluss der Trainingsphase, fir die Testung der
radiomischen Analysesoftware verwendet.
In der Testungsphase entschied der Ensemble Classifier, auf Grundlage des bis zu diesem
Zeitpunkt absolvierten ,Machine learnings®, ob eine neu vorgestellte, unbekannte Lasion einen
positiven KRAS-Mutationsstatus aufweist oder nicht.
Die Pradiktion wurde mit dem jeweils vorliegenden, molekulargenetisch gesicherten
Mutationsstatus verglichen und so eine Erfolgsquote ermittelt.
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Die Tabelle (Tab.6) zeigt die Verteilung der Patienten auf die inneren und &uf3eren Cross

Validation.

Tab. 6: Charakterisierung und KRAS-Status der Lasion und deren Verteilung auf die Gruppen

der inneren und aufleren CV

AURERE INNERE
KREUZVAIDIERUNGSSCHLEIFE | KREUZVAIDIERUNGSSCHLEIFE
Lasions- | Klasse | Lasions- | Training Testung Training Testung
anzahl anzahl

GANZE 212 KRAS 154 116, 116, 115, | 38,38,39,39 | 87, 87,87, 87 | 29, 29, 29, 29
KOHORTE neg. 115

KRAS 58 43,43,44,44 | 15,15,14,14 | 32,32,32,33 | 11,11, 11,10

pos.

Gesamt | 212 159 53 119/120 39/40
KNOTEN | 61 KRAS a4 29, 30, 29 15, 14, 15 19, 20, 19 10,9, 10

neg.

KRAS 17 11, 11,12 6,6,5 7,7,8 4,4,3

pos.

Gesamt | 61 40 21 26/27 13/14
MASSEN | 151 KRAS 110 73,73,74 37,37, 36 48, 49, 49 25, 24, 24

neg.

KRAS 41 27,28, 27 14,13, 14 18, 18, 18 999

pos.

Gesamt | 151 101 50 66/67 33/34
FILTERL |89 KRAS 61 41, 40, 41 20, 21, 20 27,27, 28 14,14, 13

neg.

KRAS 28 43,43,44,44 | 15,15,14,14 | 32,32,32,33 | 11,11,11,10

pos.

Gesamt | 89 60 29 39/40 19/20
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FILTERYA | 44 KRAS 31 21, 20, 21 10, 11, 10 14, 14,14 7,7,7
neg.
KRAS 13 8,99 5,4,4 5,56 3,3,2
pos.
Gesamt | 44 29/30 14/15 19/20 9/10

WF 212 KRAS 154 116, 116, 115, | 38, 38,39,39 | 87, 87,87, 87 | 29, 29, 29, 29
neg. 115
KRAS 58 43,43,44,44 | 15,15,14,14 | 32,32,32,33 | 11,11, 11,10
pos.
Gesamt | 212 159 53 119/120 39/40

LF 212 KRAS 154 116, 116, 115, | 38,38,39,39 | 87, 87,87,87 | 29, 29, 29, 29
neg. 115
KRAS 58 43,43,44,44 | 15,15,14,14 | 32,32,32,33 | 11,11,11,10
pos.
Gesamt | 212 159 53 119/120 39/40

3.9Subgruppenanalyse

Insgesamt bestand die Patientenkohorte aus 212 Patienten mit histologisch gesichertem
Befund eines NSCLC. Bei insgesamt 58 dieser Patienten wiesen die Tumorzellen in der
vorrausgegangenen molekulargenetischen Auswertung einen positiven KRAS-Mutaionsstatus
auf. Entsprechend lag bei 154 Patienten ein negativer KRAS-Mutationsstatus vor.

Im Rahmen der durchgefuhrten radiomischen Analyse wurden Patienten in sechs
verschiedene Subgruppen eingeteilt. Der Ansatz der separaten radiomischen Analyse
verschiedener Untergruppen beruht auf der Annahme, dass sich die Préadiktionsleistung unter
bestimmten Voraussetzungen verbessert werden kann. Beispielsweise weisen
Lungenrundherde ohne Kontakt zur Pleura in Bezug auf ihre radiologischen Bildmerkmale im
Vergleich zu Lungenraumforderungen mit Pleurakontakt, starke Unterschiede auf.

In dieser Studie wurden insgesamt die 61 Patienten mit Nodules (Durchmesser < 30 mm)
untersucht, hiervon waren 17 Patienten KRAS-positiv. Insgesamt ware weitere 151 Patienten
mit Mass-Léasionen (Durchmesser > 30 mm) enthalten, unter denen sich insgesamt 41 KRAS-

positive Félle befanden. Neben einem Analyselauf der alle L&asionen umfasste, wurden die
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Subgruppen Nodules und Masses, jeweils zuséatzlich separat analysiert. Auf3erdem wurden in
weiteren Subgruppenanalysen alle Falle verwendet und dabei Fensterung bzw. Kernel der
vorliegenden CT-Bilder verandert.

Die sechs Subgruppen waren:

1. ,Whole cohort LT*: Umfasst die Auswertung gesamten Kohorte mit allen Lasionen,
jeweils mit initialer Verwendung von CT-Bildern im Lungenfenster. Als Lungenfenster
bezeichnet man eine Form der Kontrastoptimierung in der Computertomographie, bei
der die Darstellung der Lunge verbessert wird. Dabei wurde im Rahmen dieser Studie
ein Fensterzentrum von -600 HU und eine Fensterbreite von 1.500 HU gewabhlt.

2. ,Whole cohrort WF*: Umfasst die Auswertung gesamten Kohorte mit allen Lasionen,
jeweils mit initialer Verwendung von CT-Bildern im Weichteilfenster. Als
Weichteilfenster bezeichnet man eine Form der Kontrastoptimierung in der
Computertomographie, bei die Darstellung der Weichteile verbessert wird. Dabei
wurde im Rahmen dieser ein Fensterzentrum von 40 HU und eine Fensterbreite von
350 HU gewanhilt.

.Nodules®: Lungenrundherde mit einem Durchmesser < 3 cm.

.Masses“: Tumorraumforderungen mit einem Durchmesser > 3 cm.

.FILTER YA*: Ausgewahlte Lungenrundherde im Lungenfenster unter Anwendung des
vorgefertigten Rekonstruktionsfilters Kernel ,YA*

6. ,FILTER L“ Ausgewahlte Lungenrundherde im Lungenfenster unter Anwendung des

vorgefertigten Rekonstruktionsfilters Kernel ,L*

Kernel ,YA* und Kernel ,L“ ahneln jeweils den, im klinischen Alltag standardisiert zur
Bildrekonstruktion verwendeten, Kerneleinstelllungen ,Siemens B20“ bzw. ,Siemens B70“.
Fur alle 212 zur Verfligung stehenden Falle wurden die Rohdaten der CT-Projektion
(»Sinogrammdaten®) jedes Scans gesammelt. AnschlieBend wurde jeweils fir beide
Subgruppen (YA und L) nur der grofite reprasentative Lungenrundherd ohne Pleurakontakt
ausgewahlt und in die Studie aufgenommen. Die verwendeten Kernel-Filter oder auch
Faltungsalgorithmen verédndern die Frequenzinhalte der Projektionsdaten vor der
Ruckprojektion wahrend der Bildrekonstruktion in einem CT-Scann. Dieser Prozess korrigiert
das Bild, indem er die Unschérfe reduziert. Untersucht wurde der Einfluss des verwendeten
Kernels auf die radiomischen Bildfeatures.

Hierbei erzeugt der Kernel ,L“ ein Bild mit erhdhter Konturscharfe und starkerem Kontrast
zwischen Lasion und Parenchym, wahrend der Kernel ,YA® ein ,weicheres® Bild erzeugt und

Gewebeinhomogenitat und Unterschiede der Kontrastmittelanreicherung innerhalb L&sion
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selbst erkennbar macht. Abb. 20 verdeutlicht den Einfluss des Kernels auf das CT-Bild der
ROI.

Kernel YA (,,smooth®) Kernel (,,sharp”)

i 12

5>0% 25% 10%6 100%

Dose Level

Abb. 21: Beispielhafte Knotenregion bei verschiedenen CT-Bildbedingungen; vier Dosisstufen,

zwei Kernel YA und L. (Verwendetes Dosislevel fur Studieneinschluss: 100%)

4. Ergebnisse

4.1 Patienten
In die Studie wurden insgesamt 212 Patienten mit NSCLC eingeschlossen. Hiervon waren 112
mannlich und 100 weiblich. Das Durchschnittsalter der Patienten zum Zeitpunkt der bei
Erstdiagnose lag bei ca. 64,1 + 9,9 Jahren. Das Durchschnittsalter der M&nner lag bei 64,3 +
10,6 Jahren, dass der Frauen bei 63,9 + 9,4 Jahren. Der jungste Patient war bei Erstdiagnose
24,1 Jahre alt, der alteste 84,9 Jahre. 75% der Patienten waren zum Zeitpunkt der
Erstdiagnose élter als 57 Jahre. Bei 183 (ca. 87%) Patienten lag ein Adenokarzinom vor, bei
25 (ca. 12,40%) der Patienten ein Plattenepithelkarzinom, bei 2 Patienten (ca. 1,1%) ein
neuroendokrines Karzinom, bei weiteren 2 Patienten (ca. 1,1 %) war das NSCLC gering

differenziert und keinem Subtyp eindeutig zuzuordnen (vgl. Abb. 21).
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/ Patientenkollektiv 1
= Adenokarzinom 86%
u Plattenepithelkarzinom 12%

Neuroendokrines Karzinom 1%

wenig differenziert 1%

L

Abb. 22: Verteilung der histopathologischen NSCLC-Subtypen innerhalb der Patientenkohorte

Zum Zeitpunkt der Erstdiagnose lag beim Hauptteil der Patienten das Tumorstadium cT4 vor,
insgesamt 92 Patienten (ca. 44%). Bei 34 Patienten (ca. 16%) lag das cT3 Stadium vor. 36
Patienten (ca. 17%) befanden sich zum Zeitpunkt der Erstdiagnose im cT2 Stadium und 40
Patienten (ca. 19%) im T-Stadium 1, 14% in 1b und 5% in la.

| T-Stadium bei Erstdiagnose
mla 5%
u1b 14%
H2a 8%
2b 9%
m3 16%
4 44%

 unbestimmt j

Abb. 23: Haufigkeit der verschieden T-Stadien bei Erstdiagnose innerhalb der
Patientenkohorte

67




Bei Erstdiagnose wurden bei 86% (182 Patienten) Metastasen gesichert. Hierbei wurden bei
einem Hauptanteil, insgesamt 61% (128 Patienten), sowohl Lymphknoten- als auch
hamatogene Fernmetastasen (N+ M+) diagnostiziert. Lediglich in 13% der Falle (28 Patienten)
lagen bei Erstdiagnose ausschlie3lich Lymphknotenmetastasen (N+ MO) vor. In 12% der Falle
(26  Patienten) lagen ausschlieBlich  Fernmetastasen ohne  Nachweis von
Lymphknotenmetastasen vor (NO M+). Bei weiteren 14 % (30 Patienten) fanden sich keine
Metastasen (NO MO) (vgl. Abb 20.).

Metastasierungsstatus bei Erstdiagnose

Lymph- u. Fernmetastasen

14%
- Nur Lymphknotenmetastasen

Nur Fernmetastasen

Keine Metastasen

Abb. 24: Haufigkeit der verschiedenen Metastasierungsstadien bei Erstdiagnose innerhalb der
Patientenkohorte

4.2Vergleich der Datensatze und statistische Analyse

4.2.1. Parameter der Merkmalsextraktion

Bevor die Daten in eine “Machine Learning-Pipeline” eingespeist wurden, wurden die
sogenannten Maskeninformationen der radiomische Merkmalsextraktion, von Mermalen, die
mit Standardparametern extrahiert, und Merkmalen, die mit den optimierten internen
Parametern extrahiert wurden, verglichen. Hiermit sollte sichergestellt werden, dass die Wahl
der Merkmalsextraktionsparameternicht zu wesentlichen Unterschieden flhrt.

Beispielsweise zeigte das Merkmal “original_shape_VoxelVolume” bei diesem Vergleich
insgesamt eine mittlere Volumenabnahme von 1 % mit einer Standardabweichung von 3 %,

wenn es mit den optimierten internen Parametern extrahiert wurde. Auch beim Vergleich des

68



Merkmals “original_shape_Sphericity” wurde, unter Verwendung der optimierten Parameter,
im Vergleich ein mittlerer Verlust von -0,01 % mit einer Standardabweichung von 2,6 %

festgestellt.

4.3Ergebnisse der Feature-Testung
Alle in diese Studie eingeschlossenen CT-Datensatze wurden klinikintern an verschiedenen
CT-Geraten am Uniklinikum Kéln (UKK) generiert. Insgesamt kamen hierbei 7 verschiedene
CT-Geratemodelle des Instituts fir Radiologie, der Nuklearmedizin und der MVZ Radiologie

zum Einsatz. Tabelle 7 zeigt, wie viele Patienten an den jeweiligen Geraten untersucht wurden.

Tab. 7: Ubersicht der CT-Scanner mit Anzahl der jeweils eingeschlossenen Patienten.

Geratename Anzahl untersuchter Patienten
CT2iQ 76
Brilliance 64 64
iCT 36
Simens Somatom Force 20

Simens Biograph
Simens Definition Flash
GE Bright Speed

Die in dieser Studie analysierten NSCLC-Lasionen entsprachen jeweils den Prim&rtumoren in
der Lunge. Die lIdentifikation und Beschreibung der Lokalisation wurde jeweils durch
radiologische Fachérzte vorgenommen. Die Lokalisation der Lasionen verteilte sich innerhalb
des Patientenkollektivs wie folgt:

20,3% (43 Patienten) im linken Oberlappen, 36,8% (78 Patienten) im rechten Oberlappen,
6,1% (13 Patienten) im Mittellappen, 9,0% (19 Patienten) im linken Unterlappen, 14,2% (30
Patienten) im rechten Unterlappen, weitere 3,8% (8 Patienten) waren links hilar und 9,9% (21
Patienten) rechts hilar (vgl. Abb. 24).
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® Anzahl

Abb.25: Verteilung der segmentierten NSCLC-Lasionen in Bezug auf Lokkalisation

Insgesamt  wurden 105 radiomische  Bildmerkmale der Rundherde  und
Lungenraumforderungen ausgewertet. Die einzelnen Merkmale wurden anhand ihrer
.Performance” (statistischen Leistungsstarke) unter Anwendung von ANOVA-f-Test, ,Mutual
Information®, AUC (area under the curve) und Extreme gradient boosting (XGBoost) selektiert
und eine Rangordnung erstellt.

In Abbildung 25 wird die statistische ,Performance” eines einzelnen beispielhaft ausgewahlten
radiomischen Merkmals ,original_firstorder_10Percentile” in diesen vier Kategorien der ,outer

Crossvalidation“ veranschaulicht.
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Abb. 26: Boxplot zur Veranschaulichung der statistischen Leistungsstarke des radiomischen

Merkmals ,original_firstorder_ 10.Percentile”

Nach Abschluss der ,Feature-Selection“ und des ,Feature-Rankings” erfolgte im Rahmen der

,Classification“ die ,inner Crossvalidation“. Hierbei wurde mit Hilfe der vorselektierten,

statistisch starksten Merkmalen ein ,Ensemble classifier” erstellt und dieser im Anschluss

erneut an einer der Gruppen der ,,outer Crossvalidation® getestet (siehe auch Abbildung 19).

4.4Modellbasierte Mutationspradiktion

Die Ergebnisse des ,Ensemble classifier* wurden wiederum in vier statistischen Kategorien

ausgewertet (,Precision®, ,Recall”, ,F1-Score“ und ,Balanced Accuracy®). In Tabelle 8 sind

exemplarisch die Ergebnisse dargestellt, die der ,Ensemble Classifier* bei der Testung der

ersten der vier ,Crossvalidation“-Gruppen erzielt hat.
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Tab. 8: Ergebnis-Ubersicht des ,Ensemble classifiers* in den Kategorien ,Precision, ,Recall’,
.F1-Score” und ,Balanced Accuracy“ zur Differenzierung von einer nicht vorliegenden KRAS-
Mutation (noKRAS) und Vorhandensein einer KRAS-Mutation (KRAS)

Classifier Class Precision | Recall |F1- b.acc. AUC |accuracy
Score |score score
noKRAS
VotingClassifier | (n=37) |0,694 0,676 |0,685 0,449 0,342 | 0,549
KRAS
VotingClassifier | (n=14) |0,2 0,21 |0,207 0,549 0,342 10,549

Anhand dieser Ergebnisse wurde jeweils eine ,Confusion Matrix“ erstellt. Exemplarisch
entspricht Tabelle 4 der Matrix der in Tabelle 3 dargestellten Ergebnisse der ersten der vier
souter CV-Groups® (siehe Tab. 9).

Tab. 9: Ergebnis-Ubersicht der Classification als “Confusion-Matrix”

vorhergesagter KRAS-Stauts
0 1
n
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i 1 11 3

In der Matrix steht die Ziffer 1 fir das Vorliegen einer KRAS-Mutation (KRAS +) und die Ziffer
0 steht fur das Fehlen der KRAS-Mutation (KRAS -). Entsprechend lasst sich aus der Matrix
ablesen, dass der ,Ensembel classifier” bei insgesamt 3 Fallen aus der ersten Gruppe der
»outer Crossvalidation® richtig klassifiziert wurden, das heil3t sie wurden als KRAS-positiv
vorhergesagt und es lag tatsachlich ein entsprechend positiver KRAS-Status (,true positive
rate”) vor. Darliber hinaus wurde bei 25 Patienten das Fehlen der Mutation bzw. ein KRAS-

negativer Mutationsstatus richtig vorhergesagt (,true negative rate®). Insgesamt wurde initial
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bei 12 Féllen ein positiver KRAS-Status vorhergesagt, obwohl keine Mutation vorlag (,false
positive rate“). Entsprechend wurde bei 11 Fallen ein negativer KRAS-Status vorhergesagt,
obwohl in Wahrheit KRAS vorlag (,false negativ rate®). Die Testung wurde im Anschluss an
den drei weiteren ,Crossvalidation-Gruppen® durchgefiihrt und jeweils flir die verschiedenen
Subgruppen wiederholt. Die Gesamtergebnisse der einzelnen Untergruppen sind in der
Ubersichtstabelle (Tab. 10) dargestellt.

Tab. 10: Ergebnis-Ubersicht des ,Ensembel classifiers* bei der Merkmalspradiktion der

verschiedenen Subgruppen

Subgroup Balanced Area under
Accuracy F1-Score Sensitivity Specificy the curve
Whole (LF) 0,45 +/-0,05 |0,13 +/-0,03 0,10 +/-0,03 |0,79 +/- 0,08 | 0,44 +/- 0,08
Whole (WT) 0,47 +/- 0,04 |0,19 +/- 0,08 |0,17 +/- 0,07 |0,77 +/- 0,03 | 0,38 +/-0,07
Nodule 0,59 +/- 0,02 |0,34 +/-0,08 |0,29 +/- 0,15 |0,88 +/- 0,12 |0,66 +/- 0,01
Mass 0,53 +/- 0,02 |0,16 +/- 0,05 |0,10 +/- 0,04 |0,95 +/- 0,03 |0,57 +/- 0,01
Kernel YA 0,61 +/-0,14 |0,39 +/- 0,28 |0,45 +/-0,32 |0,77 +/- 0,13 |0,74 +/- 0,15
Kernel L 0,45 +/- 0,06 |0,18 +/- 0,17 |0,22 +/- 0,24 |0,69 +/- 0,12 | 0,46 +/- 0,04

Es wurde im Einzelnen die jeweilige Pradiktion des Programms mit dem tatsachlichen, im
Vorfeld pathologisch gesicherten Mutationsstatus verglichen.

Im Lungenfenster erreichte die radiomische Analyse aller Lasionen der 58 KRAS-positiven
Féalle eine AUC von 0.44 (+ 0.08) und eine Balanced Accuracy von 0.45 (+ 0.05). Die Analyse
aller Lasionen im Weichteilfenster erreichte eine AUC von 0.38 (£ 0.07) und eine Balanced
Accuracy von 0.47 (£ 0.04). Aufgrund der Diversitat der radiologischen Bildeigenschaften
wurden ,Nodules® und ,Masses", in einem zusatzlichen Analyselauf, getrennt voneinander
ausgewertet.

Hierbei war die Vorhersagekraft des Modells fir Nodules (< 30 mm) starker mit einer AUC von
0.66 (x 0.01), bzw. eine Balanced Accuracy von 0.59 (£ 0.02).

Im Vergleich ergab die Analyse der Masses (Lungentumore > 3 cm) eine AUC von 0.57 (=
0.01), die Balanced Accuracy lag bei 0.53 (x0.02).

Die Vorhersagekraft des radiomischen Analysemodells wurde zusétzlich nach Veranderung
des Kernels der CT-Bilder (Kernel YA und L) getestet. Bei der Anwendung des Kernels YA
erreichte die radiomische Analyse aller Lasionen eine AUC von 0.74 (x0.15) und eine
Balanced Accuracy von 0.61 (x0.14). Im Vergleich wurde bei der Anwendung des Kernels L

eine schwachere AUC von 0.46 (£0.04) und eine Balanced Accuracy von 0.45 (x0.06) erreicht.
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5. Diskussion

5.1Erreichte Pradiktionsgenauigkeit und Vergleich mit Vorstudien
Das Bronchialkarzinom ist weltweit die haufigste krebsbedingte Todesursache.'? Nicht-
kleinzellige Lungenkarzinome (NSCLC) machen 80% aller primaren Bronchialkarzinome aus.®
Der Entwicklung eines invasiven Adenokarzinoms, der haufigsten Subgruppe des NSCLC,
kann eine genetische Mutation in den Genen des viralen Onkogenhomologes zugrunde liegen,
welche fur das monomere G-Protein K-RAS (Kirsten rat sarcoma viral oncogene homolog)
codieren® 8, Diese daher als KRAS-Mutation bezeichnete Veranderung liegt bei bis zu 30%
der Patienten mit NSCLC vor.8” 8 Das Vorliegen dieser Mutation hat, insbesondere bei
fortgeschrittenem klinischen Stadium 4, einen wichtigen Stellenwert fiir die Therapie. Die
Erforschung der Gen-Mutation und des an GDP-gebunden KRAS-Proteins fuhrte zur
Entwicklung mehrerer Medikamente (Biologica), deren Wirksamkeit sowohl in Monotherapie
als auch in Kombinationsschemata belegt werden konnte.8%-°1
Beim NSCLC kann KRAS in verschiedenen Submutaionsformen vorliegen. Die haufigste
somatische KRAS-Mutation ist hierbei mit ca. 42% das sogenannte KRAS G12C (Mutation
von Guanin zu Thyminan der Kodierungsposition 34), gefolgt von KRAS G12V (Mutation von
Glycin zu Valin) mit ca. 21 % und KRAS G12D (Mutation von Glycin zu Asparaginsaure) mit
ca. 17 %. Andere Punktmutationen in Codon 12 wie G12A/R/S sind selten.
Bislang ist nicht bekannt ob der Submutationsstatus Auswirkungen auf die radiogenomischen
Bildmerkmale hat.
In diesem Projekt wurde bei Patienten mit positive KRAS-Status diesbeziglich nicht
weitergehend differnziert, wodurch die Aussagekraft des Modells mdglicherweise negativ
beeinflusst worden sein konnte. In zuklnfigen Projekten kénnte eine getrennte Analyse der
verschieden Submutationen erfolgen um die Ergebnisse zu verbessern.
Um den KRAS-Mutationstatus zu bestimmen ist bislang eine Gewinnung von Probegewebe
unumganglich.
Fur die Gewinnung einer histologiechen Gewebeprobe stehen verschiedene Methoden zur
Verflgung, jedoch handelt es sich hierbei um invasive Eingriffe, die je nach Vorerkrankungen
und Allgemeinzustand mit fir den Patienten nicht unerheblichen gesundheitlichen Risiken
verbunden sind.*?*
Vor diesem Hintergrund besteht grol3es Interesse an der Erforschung nicht-invasiver
radiologischer Verfahren zur Prédiktion des Mutationsstatus, welche invasive Methoden in
Zukunft ersetzen konnten.
In dieser Arbeit wurde ein Radiomics-basierter Ansatz zur effizienten Erkennung bzw.
Pradiktion eines positiven KRAS-Mutationsstatus bei Patienten mit nicht kleinzelligem
Lungenkrebs (NSCLC) untersucht.

74



Das Projekt steht damit in einer Reihe weiter Radiomics-Studien, welche bereits das Potential
von Machine-Learning-Modellen, basierend auf radiologischen Bildern extrahierten Radiomics
Features, bei der Differenzierung des Treibermutationsstatus aufzeigen konnten.?®

Das Ubergeordnete Ergebnis dieser Studie ist, dass das anwendete Modell, basierend auf den,
aus Dual-Energy-CT-Bilddatensétzen extrahierten Radiomics Features, Vorhersagen
bezlglich des KRAS Mutationsstatus in moderatem Umfang ermaoglicht. Die hierbei erreichte
statistische Genauigkeit war jedoch nicht hoch genug, um eine verlassliche klinische
Anwendbarkeit, im Sinne einer Alternative zu Biopsie und Genomanalyse, aufzuzeigen.

Im Detall betrachtet, erreichte  der  schichtbasierte Radiomics-Ansatz  am
Validierungsdatensatz von insgesamt 58 KRAS positiven Patienten, eine statistisch nicht
signifikante AUC von 0.44 (+ 0.08) und eine Balanced Accuracy von 0.45 (+ 0.05) bei der
Analyse aller Lasionen im Lungenfenster.

Die Analyse aller Lasionen im Weichteilfenster erreichte eine AUC von 0.38 (x 0.07) und eine
Balanced Accuracy von 0.47 (x 0.04). Dieses Vorgehen bestétigt, dass CT-Filter radiomisch
Bildmerkmale beeinflussen. Hierbei scheint das Weichteilfenster flir das angewandte Machine-
Learning-Modell geringfligig besser geeignet zu sein.

In einem zweiten Analyselauf erfolgte die Aufteilung aller Lasionen nach Fleischner-Krieterien
in ,Nodules* (nodulare pulmonale Lasionen mit einem Durchmesser von < 30 mm gemessen
im Weichteilfenster) und ,Masses” (pulmonale Raumforderungen mit einem Durchmesser von
> 30 mm gemessen im Weichteilfenster).

Ziel dieses Vorgehens war es die Heterogenitat innerhalb des Datensatzes zu reduzieren und
zu prifen, ob hierdurch eine verbesserte Vorhersage des Mutationsstatus erreicht werden
konnte.

Durch die separate Auswertung wurde die Vorhersagekraft des Modells fur ,Nodules” auf eine
AUC von 0.66 (x 0.01) gesteigert. Die Balanced Accuracy war 0.59 (x 0.02). Im Vergleich
ergab die Analyse fur ,Masses* eine AUC von 0.57 (£ 0.01), die Balanced Accuracy lag bei
0.53 (+ 0.02).

Die beim Vergleich dieser Kategorien sichtbare Uberlegenheit der Vorhersagekraft bei
.Nodules®, begriintet sich mdglicherweise durch eine geringere Variabilitat der radiologischen
Bildmerkmale und radiomischen Features. Beispielsweise weisen grolRere pulmonale
Raumordnungen haufiger zentral nekrotische Anteile sowie eine insgesamt sehr variable
Tumorinteraktion mit umgebendem, nicht-pulmonalen Gewebe (bspw. Pleura) auf, wodurch
die radiologischen Bildmerkmale mitunter erheblich variieren. Ebenfalls liegt auf histologischer
Ebene bei fortgeschrittenen Tumorstadien haufiger eine starkere Tumorheterogenitat und
Entdifferenzierung der Zellen vor (h6heres G-Stadium), was die Variabilitdt der radiomischen

Features ebenfalls erhdhen konnte.
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In einer weiteren Subgruppenanalyse wurde die Vorhersagekraft des radiomischen Modells in
Abhangikeit der Bildrekonstruktion (Bildfenster) im Unterschied der verwendeten Kernel YA
und L analysiert. Dieses Vorgehen wurde gewahlt, weil bekannt ist, dass der bei der
Bildrekonstruktion verwendete Kernel die Radiomic Features beeinflusst.

Bei der Anwendung des Kernel YA bei der Bildrekonstruktion erreichte die radiomische
Analyse aller Lasionen eine AUC von 0.74 (x 0.15) und eine Balanced Accuracy von 0.61 (+
0.14). Im Vergleich wurde bei der Anwendung des Kernel L eine schwachere AUC von 0.46
(x 0.04) und eine Balanced Accuracy von 0.45 (£ 0.06) erreicht. Dies ist ein Indiz dafir, das
ein Kernel mit geringerer Konturscharfe und geringerem Kontrast (Kernel YA) fur den
gewahlten Ansatz besser geeignet ist.

Eine mogliche Erklarung fur diesen signifikanten Unterschied ist, dass das mit Kernel ,YA®
rekonstruierte ,weichere Bild, feine Gewebeinhomogenitdten und Unterschiede der
Kontrastmittelanreicherung innerhalb Lasion besser zur Geltung bringt und sich so die
radiomischen Bildmerkmale besser differenzieren lassen.

Zudem konnte der Unterschied durch einen homogeneren Bildeindruck aufgrund eines
angemesseneren Signal-Rausch-Verhaltnisses (SNR) erklart warden.

Im Vergleich mit ahnlich angelegten Studien féallt unser Ergebnis aber insgesamt etwas
schwécher aus. Beispielsweise erreichten Moreno et. al. durch radiomisch Analyse im
Rahmen eines ahnlichen Machine-Learning-Modells eine Vorhersagegenauigkeit fur KRAS
bei NSCLC mi einer AUC von 0,65-0,71.1% Vor dem Hintergrund der aktuellen Studienlage ist
jedoch bekannt, dass die Radiomics-Ergebnisse zwischen Studien teilweise nur sehr
eingeschrankt vergleichbar sind. Hauptgriinde sind vorwiegend GrofRRenunterschiede der
verwendeten Datensétze sowie Unterschiede der angewendeten Radiomics-IT-Workflows.
Unsere Radiomics-Studie entspricht in vielen Punkten einem robusten Studiendesign. Hierzu
zahlen das Management fehlender/unvollstandiger Daten sowie die Preprocessing-Schritte.
Diese umfassen die Anwendung von Filtern, Datennormalisierung, Feature-Extraktion und -
Selektion, die Datensatzkonstruktion in Trainings-, Validierungs- und Testdaten sowie den
Ausgleich von Klassenimbalancen.

Insgsamt wurde auf diese Weise sichergestellt, dass das Vorgehen den Empfehlungen der
Image Biomarker Standardisation Initiative entsprach.

In unserer Studie wurden ,Radiomics-Features® aus CT-Bildern von insgesamt 212 NSCLC-
Patienten der Uniklinik KoIn extrahiert. Jeweils lag vor Studieneinschluss die histopathologisch
gesicherte Diagnose eines NSCLCs sowie der Mutationsstatus vor. Bei insgesamt 58
Patienten lag ein positiver KRAS-Status, bei entsprechend 154 Patienten ein negativer KRAS-

Status vor.
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Die CT-Datenséatze wurden in eine proprietéare Software zur onkologischen Nachbeobachtung
Ubertragen (mint lesion research, Mint Medical GmbH). Alle enthaltenen Lungenlasionen
wurden manuell segmentiert.

AnschlieBend wurden die Segmentierungen nochmals von einem Radiologen tberprift, um
die Konstanz der relevanten Volumina zwischen beiden Rekonstruktionen zu gewébhrleisten.
Im nachsten Schritt wurden aus den vorbearbeiteten Datensatzen insgesamt 105
verschiedene radiomische Bildmerkmale (bspw. Entropie, Kurtosis, Schiefe, GleichméaRigkeit,
Einheitlichkeit der positiven Pixel (UPP), etc.) ermittelt.

Fir die Pradiktion des Mutationsstatus wurden diese ,Radiomic Features® aller Falle in ,innere*
und ,auldere” Kreuzvalidierungs-Gruppen eingeteilt. Mit Hilfe der ,inner Crossvalidation* wurde
der ,Ensemble Classifier” erstellt und anschlieRend an den Gruppen der ,outer Crossvaldation”
trainiert und getestet.

Im Anschluss erfolgte zusatzlich die Unterteilung und separate Analyse verschiedener
Subgruppen, um herauszuarbeiten welche Grundbedingungen die Vorhersagekraft des
Modells beeinflussen.

Nach Abschluss der Trainingsphase wurde getestet, wie gut das Machine-Learning-Modell bei
neuen, bzw. unbekannten Lasionen den KRAS-Mutationsstatus vorhersagen konnte.

Es wurde im Einzelnen die jeweilige Pradiktion des Programms mit dem tatsachlichen, im

Vorfeld histopathologisch gesicherten, Mutationsstatus verglichen.

5.2KohortengroRe und Datenheterogenitat als limitierende Faktoren des
pradiktiven Modells

Eine Limitation dieser Studie liegt vor allem in dem verwendeten, relativ kleinen Datensatz von
insgesamt 58 Lungenkarzinomen mit KRAS-Mutation. Hierbei stellten bei der Analyse
insbesondere die Inhomogenitat der CT-Daten hinsichtlich der heterogenen Tumorstadien (cT
Stadium) eine Limitation dar.
Auch wenn fur das Training des Machine-Learning-Modells getrennte Trainings-, Validierungs-
und Testdatensatze verwendet wurden, ware es aussagekraftiger, wenn das trainierte Modell
an einem unabhangigen Datensatz aus einer anderen Quelle getestet worden wére, dies hatte
die Generalisierbarkeit des Modells beweisen koénnen. Diese Einschrankung kénnte im
Rahmen kiinftiger Arbeiten angegangen werden, wenn mehr Daten zur Verfiigung stehen, die
den Anforderungen der Studie entsprechen.
Die retrospektive Selektion geeigneter Probanden aus dem Archiv der Uniklinik Kéln war
anspruchsvoll, da Patienten mit der Erstdiagnose eines NSCLCs insbesondere bei der
Anfertigung der CT-Doiagnose haufig schon extern eine Firstline-Therapie erhalten hatten und

nicht als therapienaiv gewertet und so nicht eingeschlossen werden konnten.
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Trotz einer intensiven Suche war es schwierig anhand der Informationen im RIS-System eine
ausreichende Anzahl geeigneter Patienten zu rekrutieren. Insgesamt war die Gesamtzahl der
Patienten bzw. CT-Datensatze zwar ausreichend fir ein suffizientes Training des
radiomischen Modell, jedoch ist anzunehmen, das umfangreichere Datensatze die Ergebnisse
verbessern kénnten. Zukilnftige Studien sollten daher méglichst hohen Patientenzahlen
generieren, um die Vorhersagekraft des Modells zu erhéhen. Hierfir kdnnte sich inshesondere
eine multizentrische Studie eignen.

Die aufgrund des retrospektiven Studiencharakters bestehende Heterogenitat der Daten kann
als weiterer moglicher Grund fur die, im Vergleich zu oben genannten Studien, geringere
pradiktive Genauigkeit angesehen werden. Diese erstreckt sich zum einen auf die
eingeschlossenen Karzinome selbst, zum anderen auf technische Parameter wie den
Einschluss von Untersuchungen mit Verwendung verschiedener Faltungskerne (Filter) bzw.
CT-Scannertypen.

Dabei wére fur die bessere Verallgemeinbarkeit des KI-Modells eine homogene Datenakquise
und -archivierung als Grundlage wiinschenswert.

Da die Studienergebnisse zum Teil stark divergieren, ist der Ausblick dieser Methhode unklar.
Bei zunehmender Anwendung von Radiogenomics scheint jedoch eine Leistungssteigerung
des Systems weiterhin moglich.

Im Zuge der Digitalisierung werden weltweit exponentiell immer mehr medizinische Bilddaten
sowie digitalisierte klinische Informationen archiviert. Einhergehend steigt das Potential fur
Akquisition gréRerer Datensatze und aussagekréftigere retrospektive Studien.

Das The Cancer Imaging Archive (TCIA) ist hier erwahnenswert, das Informationen aus
medizinischer Bildgebung, klinische und histologische Daten, bis hin zu genomischen Daten

in einem Open-Access-Setting anbietet.

5.21. Heterogenitat bei Karzinomen

Ein weiterer Faktor, der die Analyse der CT-Datensatze negativ beeinflusst haben koénnte,
besteht darin, dass sich die Uberwiegende Anzahl der Patienten unseres Kollektivs zum
Zeitpunkt der Erstdiagnose bereits in einem weit fortgeschrittenen Tumorstadium befand, wie
¢ T4 bzw. Stadium Ilb/IV.
Diese fortgeschrittenen Stadien gehen haufig mit einer fortgeschrittenen histopathologischen
Heterogenitat und Entdifferenzierung der Tumorzellen (Grading: G 2 3) einher.’?’ Es ist
wahrscheinlich das dies auch zu einer starkeren Diversitat der Bildmerkmale fuhrt. An dieser
Stelle kommt hinzu, dass die Genauigkeit der manuell durchgefiihrten Segmentierung der
Lasionen bei Infiltration von Umgebungsstrukturen abnimmt, da zum Teil keine klare
Abgrenzbarkeit bzw. Grenze zwischen infiltriertem und gesundem Gewebe bildgebend
maoglich ist.
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Ein weites Indiz, welches diesen Zusammenhang belegt, ist die Uberlegenheit der
Vorhersagekraft unseres Modells bei nodularen pulmonalen Lasionen mit einem Durchmesser
im Weichteilfenster von < 30 mm (Nodules) im Vergleich mit gréf3eren Raumforderungen > 30
mm (Masses). Die kleineren Lasionen, meist ohne direkte Infiltration von Nachbarorganen,
beispielsweise der Pleura, Thoraxwand oder Mediastinum, sind haufig mit friheren
Tumorstadien assoziiert und scheinen, den Ergebnissen unserer Studie zufolge,
charakteristischere Bildmerkmale fiir einen positiven KRAS-Mutationsstatus zu enthalten. Vor
diesem Hintergrund ware ein zuklnftiger Studienansatz, welcher sich auf die Analyse von
kleineren Lungenkarzinomen beschrankt, von Interesse fur die weiterfihrende Validierung
unseres Radiomics-Ansatzes.

Bei NSCLC-Fallen mit KRAS-positivem Mutationsstatus kommen Ko-Mutationen und
genetische Subtypen vor, die beispielsweise die Ergebnisse einer Immuntherapie
beeinflussen. In einer Studie aus dem Jahr 2015 beschrieben Skoulidis und Kollegen drei
groBe Untergruppen von KRAS-mutierten Adenokarzinomen. Durch Analyse von
Genexpressionsprofilen und gleichzeitig auftretenden genomischen Veranderungen zeigten
sie Unterschiede in biologischer Struktur, Immunprofilen und therapeutischer Anfalligkeit'?8.
Die drei wichtigsten KRAS-mutierten Untergruppen wurden durch Ko-Mutationen in
STK11/LKB1 (KL-Untergruppe), TP53 (KP-Untergruppe) und CDKN2A/B-Inaktivierung sowie
eine geringe Expression des Transkriptionsfaktors NKX2-1 (TTF1) (KC-Untergruppe) definiert.
Die KP-Untergruppe der Patienten mit einer Ko-Mutation in TP53 zeigte in Studien
beispielsweise eine hohere Tumormutationslast und Merkmale einer Entziindungsreaktion mit
erhdhter Expression von ko-stimulatorischen (d. h. CD28) und ko-inhibitorischen Signalen,
einschlieR3lich PD-L1.

Wahrend mehrere praklinische und klinische Studien Patienten mit KRAS-mutiertem NSCLC
und TP53-, STK11-, KEAP1- oder CDKN2A-Komutationen beschrieben haben, gab es bisher
keine Arbeit, die die Auswirkungen bzw. Unterschiede des KRAS-Subtyps in Bezug auf die
radiologischen Bildfeatures untersucht hat.12%-131

In diesem Zusammenhang ist es denkbar, dass die Heterogenitat den Untergruppen von
KRAS-mutierten NSCLCs die Ergebnisse unseres Projektes negativ beeinflusste.

Das Patienten-Kollektiv dieser Studie umfasste Patienten mit verschiedenen
Treibermutationen und bei der begrenzten Anzahl KRAS-positiver Patienten erfolgte vorab

keine Differenzierung der einzelnen genetischen Subgruppen dieser Mutation.

5.2.2. Heterogenitat bei CT-Scannern und
Rekonstruktionsparametern
In einer weiteren Subgruppenanalyse wurde die Vorhersagekraft des radiomischen Modells

nach Bildrekonstruktion mit Kernel YA und L untersucht.
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Dieses Vorgehen wurde gewahlt, weil bekannt ist, dass CT-Kernel die Radiomics-Merkmale
beeinflussen. Auf diese Weise sollte ermittelt werden, mit welchem der beiden Kernel sich
bessere Vorhersagewerte aus einer homogenen Datengruppen erzielen lassen.

So wurde Bei der Anwendung des Filtertyps YA erreichte die radiomische Analyse aller
Lasionen eine AUC von 0.74 (+ 0.15) und eine Balanced Accuracy von 0.61 (+ 0.14).

Im Vergleich wurde bei der Anwendung des Filtertyps L eine schwéchere AUC von 0.46
(x 0.04) und eine Balanced Accuracy von 0.45 (+ 0.06).

Die unter Verwendung des Kernels YA erreichte Genauigkeit ist jedoch ebenfalls nicht
ausreichend, um eine sichere klinische Anwendbarkeit, wie beispielweise als Alternative einer
histopathologischen Auswertung, zu gewéabhrleisten.

Aufgrund der herausfordernden Patientenrekrutierung und der Notwendigkeit auf Gber einen
langen Zeitraum archivierte CT-Datensatze zuriickgreifen zu missen, war es auch nicht
moglich nur Patienten einzuschlie3en, die an nur einem einzigen CT-Geratemodell untersucht
wurden. Erschwerend kam hinzu, dass die archivierten Datensadtze von insgesamt sieben
verschiedenen CT-Geratemodellen erhoben worden waren.

In diesem Zusammenhang zeigte eine Studie von Mackin et. al., dass eine statistische
relevante Variabilitdt radiomischer Bildmerkmale besteht, wenn CT-Bilder verschiedener CT-
Scanner (Gerate) fur die Berechnung verwendet werden. Die Schlussfolgerung besagter
Studie, die CT-Bilder von 20 NSCLC Patienten untersuchte, war dariiber hinaus, dass diese
.Inter-Scanner“-Variabilitat, in ihrer GréRenordnung mit der pathophysiologischen Variabilitat
dieser Merkmale in CT-Bildern von NSCLC-Tumoren vergleichbar ist.**? Diese Unterschiede
zwischen den Scannern sollten bertcksichtigt und ihre Auswirkungen in zukinftigen
Radiomics-Studien minimiert werden.

Technisch ideal ware dabei ein Ansatz, bei dem nur Datensatze eines einzigen Gerates
herangezogen wiirden.

Aber, wie bereits oben erwéahnt, ist fir die breite klinische Anwendung und
Entscheidungsfindungen vorrangig ein robuster Radiomics-Ansatz erforderlich, der
weitgehend unempfindlich gegeniber den Variablen des verwendeten Bildgebungsprotokolls
und CT-Scannermodells ist.

Bei der Planung dieses Projektes wurde von der Annahme ausgegangen, dass die Radiomics-
Analyse, auch im Zusammenhang mit genomischen Daten, ein geeignetes Instrument zur
objektiven und quantitativen radiologischen Bildauswertung darstellt.

Die Zuverlassigkeit (,Robustness®) dieser Methode in Bezug auf Variabilitdt der
Segmentierung ist jedoch noch nicht nachgewiesen worden.

Beispielsweise wurde in Studien beobachtet, dass radiomische Merkmale von Bildartefakten,
welche in klinisch angefertigten CT-Bildern nicht selten sind, beeinflusst warden.*** Darlber

hinaus héangt die Reproduzierbarkeit radiomischer Merkmale von der Segmentierung der
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Tumorlasion (ROI) ab, welche wiederum von verschiedenen medizinischen Wissenschaftlern

vorgenommen und deren absolute Reproduzierbarkeit angezweifelt werden muss.

5.3Methodische Limitationen von Radiomics
Aus klinischer Sicht sollte die Robustheit in Bezug auf die Segmentierungsvariabilitat
sichergestellt sein, bevor radiomische Bildmerkmale in die klinische Routinebeurteilung von
Patienten mit nicht-kleinzelligem Lungenkarzinom (NSCLC) Einzug erhalten.
In einer Studie von Belfiore et. al. wurde die Robustness radiomischer Merkmale in Bezug auf
die ROI-Segmentierung bei der praoperativen CT von NSCLC bewertet.
Die Ergebnisse zeigten, dass nur bestimmte Merkmale robust waren und einen hohen ,Intra-
Class Correlation Coefficient (ICC) aufwiesen. Gleichwohl wurde eine grof3e Anzahl von
Merkmalen identifiziert die vulnerabel gegeniiber der Segmentierung waren und einen
niedrigen ICC aufwiesen. Es zeichnete sich aul3erdem ab, dass die Segmentierungsvariabilitat
bei der manuellen Abgrenzung steigt, je groRer der Tumor ist3*,
Vor diesem Hintergrund muss im Rahmen dieser Projektarbeit insbesondere die Objektivitat
und Reproduzierbarkeit der Segmentierung kritisch hinterfragt werden. Perspektivisch sollte,
aufgrund der hohen Vulnerabilitat, diesem Schritt héchste Prioritat zugeordnet werden und
Expertenkonsens beziiglich der genauen ROI-Definition bestehen. Moderne automatische 3D-
Segmentierungstools kdnnten hierbei hilfreich sein.
Perspektivisch kdnnte die hohere Zuverlassigkeit der Segmentierung kleinerer NSCLC-Herde
die klinische Anwendbarkeit des Modells bei entsprechenden Lasionen beschleunigen.
Die generelle Giltigkeit von radiomischer Modelle, wird zwar in zahlreichen aktuellen
Projekten so wie auch in dieser Arbeit vorausgesetzt, ist jedoch wissenschaftlich noch nicht
hinreichend bewiesen. Verschiedene Studien haben gezeigt, dass Einschrankungen
hinsichtlich der Reproduzierbarkeit (Reproducibility) und Wiederholbarkeit (Repeatability)
radiomischer Merkmale bestehen.
Eine systematische Ubersichtsstudie von Traverso et. al, fasste die Ergebnisse von insgesamt
41 Studien zusammen. Diese untersuchten jeweils speziell die Wiederholbarkeit und
Reproduzierbarkeit radiomischer Bildmerkmale hauptsachlich anhand von NSCLC-Fallen.
Das Fazit der Ubersichtsstudie war, dass die Wiederholbarkeit und Reproduzierbarkeit von
Radiomerkmalen in unterschiedlichem Maf3e von Verarbeitungsdetails abhangt. Hierzu zahlen
z. B. Einstellungen fir die Bilderfassung, der Bildrekonstruktionsalgorithmus, die digitale
Bildvorverarbeitung und die zur Extraktion von Radiomerkmalen verwendete Software.
Merkmale erster Ordnung waren insgesamt reproduzierbarer als Texturmerkmale und
sogenannte Shape-Metrics (Formmerkmale). Die Entropie wurde durchweg als eines der

stabilsten Merkmale erster Ordnung angegeben. Weder bei Shape noch bei den
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Texturmerkmalen konnte ein Konsens erzielt werden. Die Merkmale Coarseness (,Grobheit")
und Kontrast gehorten zu den am wenigsten reproduzierbaren Merkmalen.?8

Die Qualitat zukilnftiger Projekte konnte hinsichtlich Details der Software zur
Merkmalsextraktion, der digitalen Vorverarbeitung sowie Anpassung des Cutoff-Werts zur
Identifikation stabiler Merkmale, verbessert werden.

Es ist anzunehmen, dass die Vorhersagekraft des Modells gesteigert werden kdnnte, wenn,
hinsichtlich Reproduzierbarkeit und Wiederholbarkeit, ausschlieZlich statistisch stabile

Merkmale verwendet werden.

5.4Schlussfolgerung
AbschlieRend lasst sich festhalten, dass es im Rahmen dieser Studie nicht gelang mit Hilfe
des verwendeten radiomischen Analysemodells, eine klinische Anwendbarkeit zur nicht-
invasiven Charakterisierung von KRAS-positiven NSCLC-Lungentumoren zu demonstrieren.
Im Vergleich zu ahnlichen Studienansatzen, waren die erzielten Ergebnisse dieses Projektes
fur die Vorhersagekraft fir den KRAS-Mutationsstatus schwécher und nicht signifikant.
Die pradiktive Kraft des Modells war, mdglicherweise aufgrund einer zu grol3en Heterogenitét
sowohl bei den Lungenraumforderungen, als auch bei technischen Scanparametern,
insuffizient. In anschlieBenden Subgruppen-Analysen erreichte das Radiomics-Modell teils
bessere Vorhersagegenauigkeit, deren GrofRenordnung den Ergebnissen themenverwandter
Studien ahnelt.
Um Ergebnisse des Radiomic-Modells weiter zu verbessern sollten kiinftige Studien gréRere
Datensatze verwenden um aussagekraftige Subgruppen mit homogenerem Phanotyp bilden
und analysieren zu kénnen. Eine solche Aufteilung kénnte beispielsweise anhand des T-
Stadiums oder der genetischen KRAS-Subgruppe erfolgen.
Insgesamt wurde durch dieses Projekt besonders die multifaktorielle Anfalligkeit CT-basierter
radiomischer Bildmerkmale deutlich.
Jedoch kann geschlussfolgert werden, dass grundlegend weitere Schritte zur Optimierung des
Radiomic-Modells nétig sind, um eine ausreichende statistische Zuverlassigkeit der

Radiomics-basierten Vorhersage des Mutationsstatus bei NSCLC zu erreichen.
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