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Abstract

The numerical study of quantum matter in two dimensions plays an important role in

both conventional condensed matter systems and cold atom experiments. In this thesis,

we explore the use of two-dimensional tensor networks — specifically, tensor product

states — for this task. These states are alternatively referred to as projected entangled-

pair states. We present complementary results of methodological advances for tensor

product states, together with applications of these states in both finite and infinite lattice

systems. On the methodological side, we introduce an accurate and computationally

efficient algorithm for the contractions of the relevant two-dimensional tensor networks

alongside practical schemes to achieve more efficient optimization of tensor product

states. Additionally, we apply the methods of two-dimensional tensor networks to models

describing several physical situations, including spin systems, Josephson junction arrays,

the bosonic Harper-Hofstader model relevant for cold-atom platforms with synthetic

gauge fields, as well as Rydberg atom arrays. The results of this thesis thus contribute

to demonstrating and improving the versatility of tensor product states as a framework

for addressing complex questions in two-dimensional quantum matter.
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CHAPTER 1

Introduction

In 1972, P. W. Anderson coined the phrase “more is different” to highlight that large

collections of interacting components of a physical system can give rise to collective

phenomena that can be qualitatively different and in practice unpredictable from the

properties of the system’s components alone [1]. Understanding these emergent col-

lective phenomena in systems of electrons, atoms, or molecules governed by the laws of

quantum mechanics is one of the central objectives of modern condensed matter physics.

Among the various fascinating phenomena that arise in the collective behaviour of many-

component condensed matter systems, some of the most striking examples include Bose-

Einstein condensation and superfluidity, superconductivity, and topological order [2, 3,

4, 5].

A variety of theoretical approaches have been employed to gain insight into various

aspects of these physical phenomena. One particularly fruitful method has been the

construction of quantum state ansätze. These are simple, physically motivated quantum

states that capture the essence of underlying physics while retaining a simple, tractable

form. Prominent examples of such ansätze include the quantum state proposed by

Bardeen, Cooper, and Schrieffer (BCS) to explain superconductivity or Laughlin’s state

for the fractional quantum Hall effect [6, 7, 8].

Due to their simple form, these quantum states do not capture every microscopic detail

of a given physical system- for instance, lattice defects in a piece of superconducting alu-

minum or particular impurities in a sample of Gallium Arsenide exhibiting the quantum

Hall effect. More importantly, however, their simplicity enables the derivation of general

macroscopic physical properties. For example, the energy gap of a superconductor or

the Hall conductivity of the fractional quantum Hall effect can be understood through

these states, making them a powerful tool for describing the fundamental nature of these

phenomena.
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As such, the use of quantum state ansätze can also be seen in the context of a broader

aim of theoretical physics: on one hand, to improve the accuracy of our quantitative

understanding of physical systems; on the other, to express the description of nature in

simpler conceptual terms.

Systematic Approach to the Construction of Quantum State Ansätze:

The Tensor Network Program

The famous examples of quantum state ansätze mentioned above were each motivated

by physical insight into the specific systems they were supposed to describe. Around

the turn of the 21st century, however, a different, more systematic approach to quan-

tum state ansätze began to emerge, building on ideas connected to the density matrix

renormalization group method [9]. This approach gave rise to the ansätze known as the

tensor network states. The general program of the development of these tensor network

states can be understood as research towards answering the following question:

Can we systematically construct useful quantum state ansätze, which are of

simple enough structure to be efficiently manipulated, while at the same time

being expressive enough to describe the low-energy physics of the effective

models used in condensed matter physics?

A large part of the significant advances in this tensor network program can be attributed

to the incorporation of concepts and perspectives from quantum information theory [10].

In particular, the analysis of the entanglement scaling of low-energy quantum states of

the typically local models describing much of condensed matter physics has allowed

the construction of a variety of suitable, new ansätze. By assembling these states as

networks of simple tensors, physicists have been able to systematically construct generic

quantum states that fulfill the desired entanglement properties. Prominent examples of

such tensor network states include matrix product states for one-dimensional systems

and tensor product states — also known as projected entangled-pair states — for higher

dimensions [11, 12]. Other important constructions include the multiscale entanglement

renormalization ansätze or tree tensor network states [13, 14].

All of the tensor network states mentioned above fulfill the central aim of the ten-

sor network program to varying degrees. Their simple network structure enables both

structural insight and efficient computational manipulation. These states allow for the

calculation of local observables, correlation functions, quasi-particle excitations, and en-

tanglement quantities, and thus help to make detailed predictions about the low-energy

behaviour of physical models.
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However, the techniques for the practical application of these tensor network states

have not reached equal levels of sophistication and utility across all ansätze. Specifically,

while significant progress has been made in the development of analytical and numerical

methods for the tensor network program in two dimensions, it is not yet on par with

the wealth of established, well-tested, and almost universally applicable techniques that

have been produced for one dimensional tensor network states like the matrix product

states.

Topic and Structure

In this thesis, we aim to advance the tensor network program in two dimensions by

focusing on the paradigmatic tensor network states for this setting: the tensor product

states. To this end, we present practical computational schemes and novel, efficient

algorithms tailored to this ansatz. In addition, we apply the tensor product states in

challenging and experimentally relevant scenarios, demonstrating the versatility of this

ansatz class in previously unexplored situations. The content of this thesis is structured

as follows.

In Part I we provide relevant background and introduce the tensor product state

framework. Concretely, we start in Chap. 2 by defining the tensor product states and

the relevant related concepts. Afterwards, we contrast the tensor product states with

their one-dimensional counterparts, the matrix product states. In Chap. 3 we then high-

light illustrative examples and some structures that can be used in the tensor product

states. Lastly, we review some of the numerical tools for the tensor product states in

Chap. 4.

Part II contains a presentation of the results obtained in the context of this thesis.

We start with the application of the tensor product states, in the thermodynamic limit,

to the bosonic Harper-Hofstadter model in Chap. 5. This model describes interacting

bosonic particles on a lattice subject to a perpendicular magnetic field, and to date of

publication has not been investigated using tensor product states. It is of particular

interest as it is relevant to current efforts in cold atom experiments aimed at preparing

fractional quantum Hall states. However, representing these chiral, topological quantum

states using tensor product states has proven very difficult in the past, as we discuss

in Sec. 3.2.4 of Part I. Despite that, using state-of-the-art gradient-based optimization,

cf. Sec. 4.2.2, for the translation invariant tensor product states, we were able to success-

fully identify parameter regimes stabilizing the desired fractional quantum Hall states
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in the thermodynamic limit.

The two following chapters concern the application of this gradient-based optimization

framework for spin models. In Chap. 6, we investigate a model based on a construction

of coupled wires and discuss the possibility of it hosting a chiral spin liquid as its ground

state. After this, we present an investigation of the spin-1
2
Heisenberg model on the

generalized maple-leaf lattice in Chap. 7 and consider the possibility of spin liquid ground

states in this scenario.

We then turn to the presentation of methodological results in the context of tensor

product states. As we discuss in Sec. 4.1, a central bottleneck for the application of

infinite tensor product states is the contraction of the corresponding tensor networks.

In Chap. 8, we present a modification of the corner transfer matrix renormalization

group (CTMRG) algorithm that is conventionally used for this task. Our proposed

algorithm maintains the high accuracy of the CTMRG scheme while drastically reducing

the computational cost.

Next, we move from the context of infinite tensor product states, which has been

the setting of the previous chapters, to the treatment of tensor product states on finite

lattices in Chap. 9. Here, we propose efficient optimization schemes and analyze the

difficulty of contracting the corresponding tensor networks in this use case. We also

demonstrate the utility of the presented finite tensor product state framework in several

situations, particularly for describing the quantum states in Rydberg atom arrays.

A different approach based on using two-dimensional tensor networks is pursued in

addition to the tensor product states in Chap. 10. Here we investigate a model describ-

ing Josephson junction arrays on a dice lattice in a perpendicular magnetic field and

use, among other methods, a tensor network representation of the partition function to

investigate the phases of this system.

Lastly, we present practical computational schemes and a pedagogical introduction

into the framework of gradient-based ground state search using infinite tensor product

states in Chap 11.

We discuss the results obtained in this thesis in Chap. 12.
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Part I.

BACKGROUND
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CHAPTER 2

Basics for Tensor Product States

In this chapter, we will introduce the tensor product states. To do so, we introduce some

fundamental definitions and corresponding notation in Sec. 2.1. With these definitions,

we will proceed to discuss the tensor product states and the elementary concepts asso-

ciated with them in Sec. 2.2. Finally, we discuss the justifaction for the tensor product

state ansatz in the context of quantum many-body physics in Sec. 2.3 and close this

section with a brief comparison of the tensor product states and their one-dimensional

counterparts, the matrix product states in Sec. 2.4.

2.1 Definitions, Notations, and Fundamental Oper-

ations

The central objects of interest in the study and application of tensor networks are the

eponymous tensors. In this section, we will briefly introduce the relevant definitions

and fundamental operations used in this thesis. Further, to keep track of more complex

expressions, it is often helpful to introduce a graphical representation for the mathemat-

ical objects and operations under consideration. Therefore, we will present the graphical

representations alongside our discussion of the basic definitions1.

2.1.1 Multi-Dimensional Arrays

We start by considering tensors as multi-dimensional arrays of numbers, essentially gen-

eralizing the picture of vectors (one-dimensional arrays of numbers) and matrices (two-

1These basic definitions and notations have been covered in some detail in many reviews [15, 16, 17,
18, 19, 20].
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dimensional arrays of numbers). As such, the elements of the tensor T can be indexed

by a set of integers i1, . . . , in and its corresponding entries are usually real- (or complex)

numbers

Ti1...in ∈ R (or C). (2.1)

We graphically illustrate a tensor by a shape (here a circle) with the number of legs

corresponding to the number of indices used to label its elements

Ti1i2...in = Ti1

i2

in

in−1

. .
.

,

T = T
. .
.
.

(2.2)

Whenever an index on a leg of the tensor is shown explicitly, this indicates that we fixed

this index to a specific number. Hence, by labeling all legs of the shape representing the

tensor, we obtain a scalar entry of the tensor.

The dimensionality of the array of numbers, or equivalently the number of integers n

we are using to index the entries of the tensor, is referred to as the rank of the tensor.

Every one of the indices im that we are using in the labeling of the entries of our tensor

T can take the values in the set of the first |im| integers {1, . . . , |im|}. We say this index

has dimension |im|. The choice of indexing the elements of the tensor T with a set of n

indices i1, . . . , in, each of them of dimension |i1|, . . . , |in|, is of course not unique. Rather
one can combine two indices ik and il to a new index jkl

Ti1i2...in = T̃(i1,i2)...in = T̃j12...in

Ti1

i2

in

in−1

. .
.

=
T̃

in

in−1

j12 = (i1, i2) . .
.

.
(2.3)

As indicated in the above equation this new index jkl enumerates the set of possible tuples

13



(ik, il) of the values of ik and il and hence has dimension |jkl| = |ik| × |il|. Analogously,
one can combine even more indices into one. Equivalently, one can also reverse this

procedure and separate an single index j of dimension |j| = n1 × n2, where n1, n2 ∈ N

into two indices i1 and i2 of dimension |i1| = n1 and |i2| = n2 respectively. Beyond

combining and separating indices of a tensor, we can also change the order of the set of

indices that we use to label the entries of the tensor

Ti1i2...in = T̃i2i1...in

Ti1

i2

in

in−1

. .
.

= T̃

in

in−1

i2

i1

. .
.

.

(2.4)

In light of this, the property of the rank of the tensor T and the dimension of its indices

are properties of our choice of labeling we made for it. What remains invariant under

the combination and separation of indices, as well as under permutation of the order of

indices, however, is the product of the dimensions of all indices |i1| × · · · × |in| used to

label the tensor.

A most elementary operation that can be used with matrices and vectors is their

multiplication, e.g.

(MN)ik =
∑

j

MijNjk = Oik,

(Mv)i =
∑

j

Mijvj = wi.
(2.5)

We extend the graphical notation introduced above by illustrating the sum over a com-

mon index of matrices or vectors by a leg that is connected on both ends to a matrix or

vector, such that we obtain for the examples above

Mi N k = Oi k ,

Mi v = wi .

(2.6)

In this spirit, we can define a product of two tensors T and S, referred to as a contraction,

by specifying a set of indices on each of the two tensors that have equal dimension and

14



=A

B

D

C

E

N

Figure 2.1.: Graphical representation of a contraction of a set of five tensors.

summing over these indices

∑

k

Ti,j,k,lSk,m,n = Ui,j,l,m,n,

Ti

j

l

S n

m

= Ui

j l

m

n

.

(2.7)

It is clear that one can get, e.g., the standard matrix multiplication in this form by re-

stricting to rank-two tensors and possibly permuting the order of the indices beforehand.

Other common operations are traces of matrices or partial traces of tensors, e.g.

Tr(M) =
∑

i

Mii = M ,

(pTri(T ))k =
∑

i

Ti,i,k = T

k

.

(2.8)

The utility of the graphical notation introduced above becomes obvious once we are

treating more complex contractions of multiple tensors. Such a network of tensors over

which a contraction is performed is commonly referred to as a tensor network. An

example of a tensor network is shown in Fig. 2.1. The advantage of this graphical

representation is that the structure of the contraction is apparent, while it becomes

increasingly hard to track in an equation using the index expression.

In the tensor network literature, we often find an additional notation for the contrac-

tion of a tensor network called the tensor trace. Here, all indices that are contracted in

the tensor network are suppressed, and only the ones that remain after the contraction

are shown. We note that this notation suppresses the concrete pairing of the contracted

indices, which are assumed to be known from the context or the graphical representa-
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M → M̃ = Ũ S Ṽ † → U S V †

Figure 2.2.: Singular value decomposition of a higher rank tensor. The legs of the tensor
M are grouped such that the resulting object M̃ is a matrix. The SVD
is performed on the matrix M̃ , after which the legs are separated again to
yield an SVD of the original tensor.

tion. For example, we could denote the elements of the tensor network in Fig. 2.1 using

the tensor trace notation

tTr(AiBkCDEj) = Nijk. (2.9)

It is worth mentioning that the computational cost of contracting a tensor network

will generically depend strongly on the order in which the different sums over indices are

performed. While finding the optimal contraction order in general is a hard problem [21],

for tensor networks appearing in algorithms used in practice, we can, in most instances,

easily find such an optimal contraction order.

2.1.2 Factorizations

In many applications, it is crucial to be able to factorize the tensors at hand. In the

study of linear algebra, a multitude of possible factorizations are known for matrices,

among which the QR-decomposition, polar decomposition, eigenvalue decomposition,

and the singular value decomposition (SVD) are prominent examples.

These matrix factorizations can be easily extended to the realm of tensors. This works

simply by permuting and combining the indices of the tensors, which we aim to decom-

pose, until we have reached the form of a rank-two tensor, or a matrix. We can then

apply the factorizations in this matrix form and afterwards reverse the permutation and

combination of indices, such that we end up with the index structure of the tensor we

started with. This procedure is illustrated in Fig. 2.2 for the example of an SVD.

The SVD is a factorization that is of particular importance to the tensor network

methods studied in this thesis. A SVD can be performed on any rectangular matrix

M ∈ Matn×m of size n×m

M = USV †, (2.10)

and factorizes the matrix into a matrix U of size n×min(n,m) composed of orthonormal

columns, matrix V † of size min(n,m)×m and made up of orthonormal rows as well as

a diagonal matrix S with non-negative entries, which are refered to as singular values.
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As U and V are made up of orthonormal columns, they fulfill U †U = 1 and V †V = 1

and are unitary in the case of quadratic matrices.

The central importance of the SVD in the tensor network program derives from the

fact that it can be used to generate optimal, low-rank approximations of matrices. This

works by truncating the matrix S in the SVD to the k largest singular values, set-

ting all others to zero, which we denote S(k). The resulting rank-k-approximation of

the matrix M

M (k) = US(k)V † (2.11)

is optimal as measured by any unitarily invariant norm [22], e.g. the Frobenius norm

||M −M (k)||F ≤ ||M −N ||F , ∀ N ∈ {W ∈ Matn×m|rank(W ) = k}. (2.12)

We will illustrate how this matrix factorization is related to approximations of quan-

tum states and their entanglement in Sec. 2.3, where it is referred to as the Schmidt-

decomposition. In almost all tensor network algorithms discussed in this thesis, cf.

Chap. 2.3, we will make use of this decomposition.

2.1.3 Linear Maps

Oftentimes, in the context of quantum mechanics, it can be useful to keep track of some

additional structure when talking about the tensors in our tensor networks. Specifi-

cally, to distinguish between (ket-) vectors and (bra-) dual-vectors and maps between

these objects, we can reinterpret the arrays of numbers, which we have so far called

tensors, as representations of more general, linear maps between vector spaces. The

multi-dimensional arrays then emerge from these linear maps with the choice of a spe-

cific basis for the vector spaces. This can help to keep our notation clearer and avoid

ambiguities.

To this end, we remind ourselves of the isomorphism Hom(V,W ) ∼= Matm,n between

linear maps Hom(V,W ) from vector space V toW , and n×m-matrices Matm,n, where n

and m are the dimensions of the vector spaces V and W respectively. This isomorphism

establishes that upon choosing an arbitrary basis for V and W , we can use the matrices

Matm,n to represent the linear maps between the two vector spaces. This picture is eas-

ily extended to the multi-dimensional arrays of numbers we have considered before, by

choosing for the vector spaces V and W an additional tensor product substructure, e.g.

V = V1 ⊗ ...⊗ Vk. Here we proclaimed that V is a tensor product space of k individual

vector spaces V1, ..., Vk. While we can represent any vector in this tensor product space

V as a standard vector of dimension n = dim(V1) · ... · dim(Vk), we can always reshape
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it into a different form, e.g. a k-dimensional array. This is achieved by separating the

single index into k different ones, each of which is of the dimension of one of the cor-

responding vector spaces Vi in the tensor product of V = V1 ⊗ ... ⊗ Vk. Naturally, this

extends also to matrices mapping between these tensor product spaces, such that we can

describe them as the multi-dimensional objects introduced as tensors in the perspective

discussed in Sec. 2.1.1.

To introduce relevant notation, we examine a linear map between tensor product

spaces (colloquially called a tensor)

T : V1 ⊗ V2 −→ W1 ⊗W2, |v1⟩ ⊗ |v2⟩ 7→ |w1⟩ ⊗ |w2⟩ , (2.13)

where |vi⟩ ∈ Vi, |wi⟩ ∈ Wi for i ∈ {1, 2}. In this context, we refer to the space V1 ⊗ V2

as the domain of T , while the space W1 ⊗W2 is referred to as the codomain.

We can express this map2 in the slightly different form

T =
∑

a,b,c,d

T ab
cd |a⟩ |b⟩ ⟨c| ⟨d| ; |a⟩ ∈ W1 |b⟩ ∈ W2, ⟨c| ∈ V ∗

2 , ⟨d| ∈ V ∗
1 , (2.14)

where we additionally suppress the explicit notation of the tensor products. Notice

that in the above equation, we have introduced a convention for distinguishing indices

corresponding to vector spaces from those corresponding to dual-vector spaces. For

T ∈ W1 ⊗W2 ⊗ V ∗
2 ⊗ V ∗

1 , we distinguish between vector spaces and dual-vector spaces

by writing the indices of vector spaces as superscript, while writing the ones from the

dual-vector spaces as subscript. This can be useful to avoid ill-defined contractions and,

additionally, can be used to remind ourselves that the dual-vectors transform contragre-

dient to the vectors under basis transformations.

In order to graphically represent the additional mathematical structure that we in-

troduced for the tensors above, we will highlight the legs corresponding to the subscript

indices in the tensor with a directionality pointing into the tensor. Superscript indices

2By the isomorphism Hom(V,W ) ∼= W ⊗ V ∗ we can move spaces V from domain to codomain and
vice versa.
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will be illustrated with a directionality out of the tensor

T ab
cd = Ta

b

c

d

. (2.15)

An object that is frequently used in the context of tensor product states is the conju-

gate tensor of the tensor T from Eq. (2.14). We denote this conjugate tensor as

T̄ =
∑

e,f,g,h

T̄ ef
gh |e⟩ |f⟩ ⟨g| ⟨h| ; |e⟩ ∈ V1 |f⟩ ∈ V2, ⟨g| ∈ W ∗

2 , ⟨h| ∈ W ∗
1

with T̄ ef
gh = (T hg

fe)
∗.

(2.16)

Finally, we mention that all of the manipulations of the tensors we have discussed in

Sec. 2.1.1 and 2.1.2, such as combining and seperating indices, their permutation as well

as factorizations carry over into the framework if linear maps.

On the Relation of the Different Conventions

Let us stress that one can easily switch between expressions written in the notation of

arrays and those of linear maps and vector spaces. For example, take an expression

written in the notation of linear maps, with arrows on the legs of the tensors in the

graphical notation. By just eliminating all arrows on the legs in the graphical notation

and writing all indices as subscripts, we obtain the corresponding expression in the

notation of multi-dimensional arrays. Conversely, if we want to promote an expression

written in the notation of multi-dimensional arrays to an expression of linear maps, we

just have to choose which indices label vector spaces and which label dual vector spaces

for every tensor in the network in the form of Eq. (2.14). This has to be done in a way

such that every contraction in the tensor network includes a vector and a dual vector.

Graphically, this just amounts to putting arrows on every leg of the graphical expres-

sions in a consistent way, meaning equal indices on both sides of the equation need to

be given arrows in the same direction.

In this thesis, we mostly drop the arrows on the graphical representations if the

corresponding equations shown do not explicitly involve bra- or ket notation.
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2.2 Basics of tensor product states

After having introduced the definitions and some of the properties of the mathematical

objects useful for our discussion, we will, in this section, describe the basics of tensor

product states, focusing exclusively on a two-dimensional setting. We further restrict

the discussion to quantum states of bosonic degrees of freedom, noting that for the

treatment of fermions, additional techniques have to be employed to account for the

anti-commutation relations of fermions [17, 23, 24, 25, 26, 27, 28]. Tensor product

states were originally introduced by Verstraete and Cirac in 2004 [12] and are part of

the family of many-body states referred to as tensor network states [16, 18, 19]. All

of these tensor network states are fundamentally state vectors in a many-body Hilbert

space. A general state vector in such a many-body Hilbert space can be written as

|ψ⟩ =
∑

s1,...,sN

Cs1,...,sN |s1 . . . sN⟩ , (2.17)

where the indices si ∈ {1, . . . , d} of the coefficient tensor Cs1,...,sN label the basis states of

a d-dimensional local Hilbert space Hi. The many-body Hilbert space H is the tensor

product of N of these local Hilbert spaces

H =
N⊗

i=1

Hi. (2.18)

The central problem of a quantum mechanical description in a many-body problem is

the dimensionality of the many-body Hilbert space dim(H ) = dN , which grows expo-

nentially with the number of constituents N in the system under consideration. The

strategy of tensor network states in general and tensor product states in particular is

to build the rank N coefficient tensor Cs1,...,sN from a collection of lower rank tensors.

This is computationally advantageous as it drastically reduces the number of indepen-

dent coefficients in the coefficient tensor of the many-body state vector. Remarkably,

such a reduction in the number of parameters can be physically justified in the study

of low-energy states of local quantum many-body systems, as we shall discuss in Sec. 2.3.

For the construction of the tensor product states [12, 29] we start with its fundamental
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building block, the local tensor

A =
∑

α,β,γ,δ,p

Apαβ
γδ |p⟩ |α⟩ |β⟩ ⟨γ| ⟨δ| .

Apαβ
γδ = Aα

β

γ

δ

p

.

(2.19)

While the index p labels the basis of one of the local Hilbert spaces of the many-body

Hilbert space under consideration, the Greek letters label indices that correspond to

virtual spaces. We refer to all vector spaces associated with the local tensor, which are

not a local Hilbert space of the physical system, as virtual spaces. The dimension of

these virtual spaces is denoted by χB, and we refer to this dimensionality as the bond

dimension. The tensor product states are then defined by a contraction over the virtual

indices of many local tensors

|ψTPS⟩ =
∑

{si}
tTr

[∏

i

A[i]si
]
|{si}⟩ .

tTr

[∏

i

A[i]si
]
= A[x,y]

sx,y

A[x+1,y]

sx+1,y

A[x-1,y]

sx−1,y

A[x-1,y+1]

sx−1,y+1

A[x,y+1]

sx,y+1

A[x+1,y+1]

sx+1,y+1

A[x+1,y-1]

sx+1,y−1

A[x,y-1]

sx,y−1

A[x-1,y-1]

sx−1,y−1

. . .

. . .

. . .

. . .

. . .

. . .

...
...

...

...
...

...

= Csi...sN

(2.20)

Note that the tensor trace, as defined in Sec. 2.1.1, is used to contract all virtual indices
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A[9]A[8]A[7]

(b)

Figure 2.3.: (a) Illustration of 2 × 2 unit cell for a translation-invariant tensor product
state on a square lattice. This structure of two independent local tensors is
repeated throughout the lattice to achieve the infinite tensor product state.
(b) Illustration of a tensor product state defined on a small 3 × 3 lattice
with open boundary conditions. The tensors on every site can be chosen
independently, and the local tensors on the boundary have a smaller rank.

of the tensors A[i], as illustrated graphically. We specify the tensor A[i] with the label

of the physical Hilbert space it attaches to, to highlight that, in principle, every local

tensor can be chosen independently on every site. At this point, we further note that

the number of independent coefficients in the coefficient tensor of the many-body state

vector is reduced from a number dN exponential in the number of constituents, to Ndχ4
B,

which is linear in the number of constituents of our system. We may already superficially

observe that a many-body state defined in this form is natural from the perspective that

its coefficient tensor has some correspondence to the local lattice structure on which the

quantum system is set. In the above definition of the tensor product state, we have used

the square lattice as a canonical example, but we stress that indeed the definition can

be analogously carried out on other lattices in two dimensions.

Within the general definition of the tensor product states, we gave in Eq. (2.20), it is

useful to distinguish two different cases for practical use:

2.2.1 Infinite Tensor Product States

The infinite tensor product states are defined in the thermodynamic limit, meaning

on infinite two-dimensional lattices [29]. To obtain an ansatz with a finite number of

variational parameters, we usually restrict to translation-invariant states. To construct
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these translation-invariant states, we define a unit cell of local tensors of size Lx × Ly,

which we repeat periodically on the infinite lattice.

When performing calculations with the infinite tensor product states, the structure

of the unit cell is often associated with the targeting of specific kinds of ground states.

With an alternating unit cell, as illustrated in Fig. 2.3a, one could, for example, target a

quantum state with antiferromagnetic order, while for a state with ferromagnetic order,

a single repeating tensor is sufficient. It is worth highlighting that the tensor product

states, defined in this way, have only a constant number of independent parameters in

their coefficient tensor.

Let us stress that the infinite tensor product states are particularly appealing as

a tool for investigations of ground state phase diagrams of two-dimensional quantum

many-body systems, as they offer a pathway for numerical calculations directly in the

thermodynamic limit. On the other hand, the infinite nature of this ansatz poses some

particular challenges, e.g., for the contraction of the tensor network, which is generically

required for the calculation of observables. A set of numerical techniques for this task

is introduced in Chap. 4 of this thesis. We further note that the infinite tensor product

states are the main theoretical approach employed in this thesis, and we refer to publi-

cations [P1,P2,P3] for application of these quantum states and to publications [P4,P6]

for methodological investigations.

2.2.2 Finite Tensor Product States

In case the model of interest is defined on a finite lattice, as might be interesting for

mesoscopic systems or for digital twins of cold atom experiments, the scheme of em-

ploying tensor product states works by defining an individual local tensor for every site

on the lattice. Special care has to be given to the tensors located at the boundary of

a finite lattice when we define a tensor product state with open boundary conditions.

Here, as these lattice sites have a limited number of nearest neighbors, we employ lower

rank tensors as illustrated in Fig. 2.3b.

The finite tensor product states have received renewed interest as a numerical tool,

after it has been shown that an approach based on sampling techniques can be employed

to great effect [30, 31, 32, 33]. In publication [P5], we investigate some conceptual

questions regarding this sampling approach and further apply it, among other things, to

the study of long-range interacting Rydberg atom arrays.
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2.2.3 Gauge Freedom in Tensor Product States

As the formulation of the tensor product states involves the contraction of several local

tensors, there is an additional freedom we have in manipulating the corresponding ex-

pressions without changing the resulting states. This is, in this context, referred to as

gauge freedom. Concretely, this freedom can be illustrated by noting that we can insert

into a matrix multiplication of two matrices A,B ∈ Matn×n(C), a suitable invertible

matrix M ∈ GLn×n(C) and its inverse M−1 without changing the result

AB = (AM)(M−1B) = ÃB̃. (2.21)

In complete analogy, whenever we sum over a common index in a tensor network con-

traction, we may insert a matrix and its inverse without changing the result

DC

A B

=

DC

A B

M1

M−1
1

M2

M−1
2

M3M−1
3

M4M−1
4

=

D̃C̃

Ã B̃

, (2.22)

where the new tensors Ã, B̃, C̃ and D̃ are obtained by absorbing their neighboring in-

vertible matrices in analogy to Eq. (2.21). As illustrated by the above equation, this

gauge freedom defines different sets of tensors that are related to one another by gauge

transformations and yield the same result upon contraction. It is clear that these gauge

transformations can be applied to the coefficient tensors of many-body quantum states

if we represent them as a tensor network.

In the study of loop-free tensor network states, like matrix product states or tree-tensor

networks, particular gauge choices, referred to as canonical gauges, can be utilized in

numerical calculations as well as in analytical considerations to great effect [15, 16]. In

contrast to this, for tensor product states, an analogous canonical gauge does not exist,

in the most general setting3.

3We note, however, that approaches towards defining useful subclasses of tensor product states where
such canonical gauges are possible are actively pursued [34, 35].
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2.2.4 Norm and Observables

In order to use the tensor product states for the investigation of the ground states of

quantum many-body systems, it is critical to be able to evaluate physical observables,

e.g., expectation values of local operators. For this, it is useful to introduce some ad-

ditional concepts. Given a tensor product state, we define for each local tensor A a

double-layer tensor

Aδ′γ′ αβ
β′α′ γδ :=

∑

p

Āδ′γ′

β′α′pA
pαβ

γδ

=A
Ā

A

.

(2.23)

With this tensor at hand, we can express the norm of the tensor product state as

⟨ψTPS|ψTPS⟩ = tTr

[∏

i

A[i]

]
, (2.24)

where the product runs over all local sites in the lattice. For the expression of local

observables, we additionally define the double layer tensor with local operator Ô

(AÔ)
δ′γ′ αβ

β′α′ γδ :=
∑

p,p′

Āδ′γ′

β′α′p′Ô
p′
pA

pαβ
γδ

=AÔ

Ā

A

Ô

(2.25)
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Hence, the expression for the expectation value of a local observable can be written as

⟨ψTPS|Ôi|ψTPS⟩
⟨ψTPS|ψTPS⟩

=
tTr
[∏

j ̸=i A[j]AÔ[i]
]

tTr
[∏

j A[j]
]

=

A A A A A

A A A A A

A A A A

A A A A A

A A A A A

AÔ

...

...

. . . . . .

A A A A A

A A A A A

A A A A

A A A A A

A A A A A

A

...

...

. . . . . . ,

(2.26)

where we have suppressed the index labeling the sites in the graphical notation. The

expressions given above for the calculations of norms and observables highlight the struc-

ture of these equations. However, they are generically very difficult to evaluate exactly,

and we refer to Chap. 4 for the elaboration on how to perform computations with these

expressions in a numerical setting.

2.2.5 Projected Entangled-Pair Picture

In the literature that utilizes or studies tensor product states in two-dimensional set-

tings, they are oftentimes referred to as projected entangled-pair states [19, 12]. This

name remains, most likely for historical reasons, quite popular. However, this name

also hints at a particular procedure that can be used to construct tensor product states

and can highlight some of their properties, as well as some philosophically interesting

observations on long-range entanglement and projective measurements.

To review the projected entangled-pair state construction, we start by introducing a

maximally entangled state

|EP⟩ = 1√
2
(|00⟩+ |11⟩) = 1√

2

∑

s1,s2

δs1s2 |s1s2⟩ , (2.27)

which we exemplify here for a spin-1
2
system, but can be analogously defined on larger
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local Hilbert spaces. Given such an entangled-pair state |EP⟩ we proceed by decomposing

its coefficient tensor into two parts

δs1s2 =
∑

λ

δs1λδ
λs2 =

δ

s1

δ

s2

. (2.28)

We can now assign one of these entangled-pair states to every edge of the lattice on

which we want to define the tensor product state. The two spins that make up the

entangled pair on one of the edges are associated with the vertices of the edge. The

resulting state, where e labels the edges of the lattice

|ϕEP⟩ =
∏

e

|EP⟩e , (2.29)

is graphically illustrated in Fig. 2.4a.

In order to assemble a tensor product state from this rather simple state |ϕEP⟩, we
define a linear map

P : Vup ⊗ Vright ⊗ Vdown ⊗ Vleft −→ Vphys (2.30)

P =
∑

P p
σlσdσrσu

|p⟩ ⟨σl| ⟨σd| ⟨σr| ⟨σu| (2.31)

for every site of the lattice on which we want to set up our tensor product state. In the

above equation we gave, for concreteness, an example for the square lattice but stress the

fact that this construction works analogously, independent of a specific lattice structure

or its dimensionality.

At this point, we make use of the decomposition shown in Eq. (2.28). This allows

us to construct exactly the object we defined as the local tensor, cf. Eq. (2.19) when

introducing the tensor product states

A =
∑

λ,p

∑

σ

P p
σlσdσrσu

δλlσ1δλdσsδσr
λr
δσu

λu

︸ ︷︷ ︸
=:A

pλlλd
λrλu

|p⟩ |λl⟩ |λd⟩ ⟨λr| ⟨λu| , (2.32)

which we graphically represent in Fig. 2.4b. It is clear that if we apply such projectors
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(a)

P

A =

(b)

Figure 2.4.: (a) Graphical representation of the state |ϕEP⟩ on the square lattice. We
show one entangled pair state for every edge of the lattice. (b) Construction
of the local tensor of the tensor product state with the use of the linear map
that projects from the virtual to the physical spaces.

onto every site of the lattice in question, we end up with a tensor product state

|ψTPS⟩ =
∏

i

P [i]
∏

e

|EP⟩e =
∑

{si}
tTr

[∏

i

A[i]si
]
|{si}⟩ . (2.33)

We close this brief intermezzo on the projected entangled-pair construction of the tensor

product state by first noting that if we restrict to a one-dimensional lattice, the resulting

quantum states are the famous matrix-product states [11, 36].

Secondly, we note that in the state |ϕEP⟩ it is by construction clear that correlation

between degrees of freedom on the vertices only exists for nearest neighbors. This results

in a boundary law for the entanglement entropy, cf. sect. 2.3, for this state. We only

state this to note that the linear maps P , which we apply to |ϕEP⟩ to obtain our tensor

product state |ψTPS⟩ cannot increase the rank of a reduced density matrix of the state,

and hence also the resulting tensor product state fulfills a boundary law.

Lastly, we highlight that this construction of the tensor product states gives an ex-

ample of a remarkable fact of quantum states, namely that we can produce quite com-

plicated, possibly long range correlated states from very simple, short range correlated

states, like |ϕEP⟩, by simply acting on these states with projecting linear maps.
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Figure 2.5.: Illustration of a lattice that is partitioned into a region A which contains all
sites within the red boundary, and a region B, which contains the rest of the
lattice. The sites corresponding to the boundary ∂A of A are highlighted in
red. They are separated from the region B by a lattice distance of one.

2.3 Ground States as Tensor Product States

In Sec. 2.2 we have defined the tensor product states and discussed some of the basic

notions associated with these states, like double-layer tensors or the projected entangled-

pair picture. In this section, we are going to examine the rather pressing question, why

and under which conditions the tensor product states should be useful in the study of

quantum many-body systems. After all, when restricting to tensor product states, the

number of independent parameters that are used in the coefficient tensor of the many-

body state vector is reduced from exponential to linear in the number of constituents

of the many-body system under consideration. Such a drastic reduction in descriptive

freedom should be well justified. In this section, we outline the conceptual underpinnings

for the use of the tensor product states in the description of ground states of gapped,

local Hamiltonians in two dimensions.

To justify the use of tensor network methods, we will consider a viewpoint on cor-

relations in quantum many-body systems that is inspired by concepts from quantum

information theory [10, 37]. In this context, a central question is to ask how the entan-

glement between the degrees of freedom in the region of subsystem A ⊂ (A ⊔ B) and

the rest of the system B scales4 when we increase the size of the region A, cf. Fig. 2.5.

4Here, the property of interest is the scaling in the asymthotic limits where both regions A and B are
large.
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Entanglement Entropy

Before discussing this further, we will briefly mention the relevant concepts [38]. Con-

sider the Hilbert space of the many-body system we aim to study

H = HA ⊗ HB, (2.34)

which we take to be made up of two subsystems A and B. We can express a completely

general state vector of this Hilbert space as

|ψ⟩ =
∑

i,j

Cij |i⟩A ⊗ |j⟩B , (2.35)

where the set {|i⟩A} is a basis of HA, whereas {|j⟩B} is a basis of HB. With the goal in

mind of quantifying the entanglement between the subsystems of regions A and B, we

can perform a singular value decomposition of the coefficient tensor of the above state

vector

Cij =
∑

kk′

U i
kS

kk′V † j
k′ , (2.36)

with Skk′ = Skδ
kk′ diagonal with entries Sk. This allows us to obtain a basis in which

the above state vector is expressed as

|ψ⟩ =
l∑

k=1

Sk |k⟩A ⊗ |k⟩B , (2.37)

with |k⟩A =
∑

i U
i
k |i⟩A and |k⟩B =

∑
j V

† j
k′ |j⟩B. We notice that in this representation,

the sum can be restricted to run only over the l non-zero singular values of the coefficient

tensor Cij. This representation is sometimes referred to as the Schmidt decomposition.

The procedure with which we quantify the entanglement between the two subsystems

works by tracing out the degrees of freedom on one of the subsystems and considering

the corresponding reduced density matrix

ρA = TrB(|ψ⟩ ⟨ψ|) =
∑

k

S2
k |k⟩A ⟨k|A = CC†. (2.38)

In case the state |ψ⟩ contains quantum correlation between the two subsystems A and B,

averaging over the states of subsystem B in this way converts these quantum correlations

into statistical weight of the reduced density matrix. For pure states, the distribution of

the resulting statistical weight can be used to quantify the entanglement, e.g., via the
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von-Neumann entanglement entropy

SvN(ρA) := −Tr(ρA ln(ρA)) = −
l∑

k=1

S2
k log(S

2
k). (2.39)

With these concepts at hand, let us briefly expand on the role of the singular value

decomposition (SVD), cf. Sect. 2.1.2, for the low rank approximation of quantum states.

We know that the SVD decomposition allows us to construct the optimal low-rank

approximation of a matrix via the truncation of its smallest singular values5. For a

quantum state of a composite system made up of A and B, this optimal low rank

approximation means truncation of its Schmidt values in the Schmidt decomposition

in Eq. (2.37). However, we can see from Eq. (2.39), that this reduction of the rank

of the coefficient tensor Cij of the quantum state reduces the entanglement between

subsystems A and B, as measured by the von-Neumann entanglement entropy. We infer

that only quantum states that are weakly entangled between subsystems A and B, and

hence only contain a few large Schmidt values in their Schmidt decomposition, can be

accurately represented in a low-rank approximation.

2.3.1 Boundary Law of the Entanglement Entropy

We will now apply the concepts related to quantifying entanglement to ground states of

quantum many-body systems to understand their entanglement structure.

For many purposes, the ground states of local Hamiltonians with a gap above the

ground state energy in their spectrum are an interesting starting point. For such a

Hamiltonian, we generically expect its ground state to fulfill the so-called boundary

law of entanglement entropy [15, 10]. This means that the entanglement between the

degrees of freedom in a connected area A and the rest of the system, as measures by the

entanglement entropy, scale as the size of the boundary |∂A| 6 of the region A

SvN(ρA) ∼ |∂A|. (2.40)

This is remarkable for a few reasons. First of all, it suggests that these ground states of

gapped, local Hamiltonians are not as entangled as would have been possible. Secondly,

5How good this approximation is, is measured by the weight of the truncated singular values:
||M −M (k)||F = ||U(S − S(k))V †||F = ||(S − S(k))||F .

6When speaking of the boundary |∂A| of region A, in the context of quantum lattice models, we mean
those sites within A, that have a lattice distance of length one connection to a site in region B;
∂A := {j ∈ A|∃k ∈ B with dist(j, k) = 1}. When referring to the size of this boundary |∂A| we
count the number of lattice sites in ∂A.
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the boundary law for the entanglement entropy that these ground states fulfill is not

at all a generic property of states in the many-body Hilbert space. A generic random

state from the many-body Hilbert space will instead fulfill a scaling of the entanglement

entropy with the volume of region A (volume law)[39, 40].

In what follows, we will give a non-rigorous set of arguments that should make the

boundary law for ground states of (gapped), local Hamiltonians plausible [20, 38]. For

any state to minimize the energy of the local terms of the Hamiltonian, it is generically

necessary to exhibit strong local quantum correlations. Conversely, for the degrees of

freedom of the system that are far apart, compared to the range of interaction in the

local Hamiltonian, little energetic benefit is gained from strong correlations. Further, the

concept of entanglement monogamy [41, 42] implies that the degrees of freedom which

are strongly entangled with a few other degrees of freedom in their vicinity to minimize

the energy, cannot also be strongly entangled with additional degrees from which they

are spatially further separated. If, in addition, the Hamiltonian under consideration is

gapped, we further know from the exponential clustering of correlations [43] that the

degrees of freedom can only be substantially correlated within a finite correlation length.

These quite general and heuristic arguments for gapped, local Hamiltonians suggest

that the correlations between the degrees of freedom in a connected subsystem A and

the rest of the system B are mainly located wherever A and B are spatially close. This

is the case at the boundary ∂A of subsystem A, cf. Fig. 2.5. Thus, we expect that under

these circumstances, the entanglement entropy will scale as a function of the size of the

boundary. Let us note that if the local Hamiltonian is not gapped, the boundary law

can be weakly violated in some cases, as we discuss in Sec. 2.3.2.

The boundary law of entanglement entropy has been proven to be a property of ground

states in several situations, most notably for gapped, local Hamiltonians in one dimen-

sion with a non-degenerate ground state [44]. In two or more dimensions, such a general

statement is not available. Results obtained so far require additional assumptions about

the density of states in the system under consideration [45]. For more in-depth discus-

sions on further cases of proven boundary law, see [10, 37]. While there is no rigorous

proof yet7, we still expect, for the heuristic reasons sketched above, the boundary law

to be a generic feature of the ground state of gapped, local Hamiltonians even in higher

dimensions.

The tensor product states, which we have introduced in Sec. 2.2, fulfill the area law of

entanglement entropy by construction. This can be easily seen with the tools introduced

7We also note that there is no known counterexample.
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above8. We can first write every tensor product state in the form of Eq. (2.35).

|ψTPS⟩ =
∑

i,j

Cij
TPS |i⟩A ⊗ |j⟩B , (2.41)

where we know, due to the structure of the tensor product state, that we can decompose

the coefficient tensor as

Cij
TPS = Ãi

vB̃
vj. (2.42)

The matrix Ãi
v is the contraction of all local tensors in region of subsystem A, while

B̃vj corresponds to the contraction of all local tensors in the rest of the system. After

the contraction over all local tensors within one connected region, the physical indices

that are open are combined into one index (i and j), while all open virtual indices from

the boundary of the region are combined into the index v, such that

Ã :V ∂A
virt −→ V A

phys, B̃ : (V B
phys)

∗ −→ V ∂A
virt

V ∂A
virt =

⊗

k∈∂A
Vvirt[k], V A

phys =
⊗

l∈A
Vphys[l], V B

phys =
⊗

l∈B
Vphys[l].

(2.43)

We will in the following assume that the dimensions of all local physical spaces Vphys[l]

on the sites l of the lattice are identical and that the same is true for all virtual spaces

Vvirt[k]. From the fact, that the dimension of V A
phys grows exponentially with the volume

of the region A, while the dimension of V ∂A
virt grows exponentially with the boundary of

the region A, we conclude that in the limit of a large region A, the rank of the matrix

Ãi
v is limited by the dimension of the virtual space at the boundary, dim(V ∂A

virt) =

dim(Vvirt)
|∂A|. Hence, we can conclude from the Schmidt decomposition that there are

at most dim(Vvirt)
|∂A| singular values of Cij

TPS. This allows us to give an upper bound on

the entanglement entropy

SvN(A) = −
dim(Vvirt)

|∂A|∑

k=1

(STPS
k )2 log((STPS

k )2)

≤ −
dim(Vvirt)

|∂A|∑

k=1

1

dim(Vvirt)|∂A| log(
1

dim(Vvirt)|∂A| ) = |∂A| log(dim(Vvirt)),

(2.44)

which scales as the size of the boundary of the region A. Hence, the tensor product

states fulfill the boundary law of entanglement entropy. Since at zero temperature, all

8Alternatively, it can be concluded from the construction of the tensor product states as projected
entangled-pair states, as we noted in Sec. 2.2.5.
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connected correlations are due to entanglement, this correct scaling of the entanglement

entropy can be used to justify that the tensor product states will be a good variational

ansatz to describe the ground states of local Hamiltonians9.

2.3.2 Remarks on and beyond the Boundary Law

It is, of course, also worthwhile to ask under which conditions the ground states of local

Hamiltonians do not fulfill a boundary law for the entanglement entropy. In fact, in

two dimensions, the list of examples of such boundary-law-violating behaviour is quite

limited. The known examples involve gapless fermion systems (free fermions or Fermi-

liquids or even non-Fermi liquids [47]) with a Fermi-surface which are known to display

a logarithmic violation10 to the area law [49, 50, 51]

SFermi(A) ∼ |∂A| log(A). (2.45)

Interestingly, disorder effects can ”smear out” the Fermi surface and restore boundary

law behaviour [52, 53]. If the analog of a Fermi surface is constructed for bosons, these

can also give rise to a logarithmic violation of the boundary law [54].

The gapless systems with a Fermi surface (or its bosonic analog) are, however, not

representative of all gapless systems. Indeed, for other generic kinds of gapless systems

like systems with spontaneously broken global symmetries, the boundary law is expected

to hold, with only subdominant corrections

SSSB(A) ∼ α|∂A|+ nG

2
log(|∂A|), (2.46)

where nG labels the number of Goldstone modes present in the system [37, 55].

Further, we can even give examples of quantum states that can be constructed explic-

itly as a tensor product state with diverging correlation length that fulfill the boundary

law of entanglement entropy. For example, the short-range resonating valence bond state

on the square lattice is known to have algebraically decaying dimer-dimer correlations,

but has an exact representation as a bond-dimension three tensor product state [56, 57,

58, 59] and hence fulfills the boundary law of entanglement entropy. We introduce the

9We note, however, that there exist states with a boundary-law, which cannot be efficiently represented
as a tensor product state [46].

10Swingle and Senthil have even conjectured, that in two spatial dimensions such a logarithmic violation
of the area law might be the strongest form of area law violation for local systems [48].
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tensor product state representation of this state in Sec. 3.2.2 and numerically investigate

its correlation length in Sec. 4.3.1. We note that further examples of this kind are known

[58, 60].

We close this section by mentioning, that even in situations where there are violations

of the boundary law, like for gapless free fermions, the tensor product states might still

be an efficient ansatz [61], in the sense that the bond dimension necessary to archive a

certain precision grows only as a power law11.

2.4 2 ̸= 1: Tensor Product and Matrix Product States

In many ways, the tensor product states (TPS) generalize the well-established matrix

product states (MPS) [15, 19] to two dimensions. The coefficient tensor of the many-

body state vector for a MPS is constructed analogously to Eq. (2.20) for one dimension

and is given by

tTr

[∏

i

Asi [i]

]
=

A[i]

si

A[i+1]

si+1

A[i-1]

si−1

A[i+2]

si+2 .

(2.47)

However, the physics of two-dimensional quantum systems can be, in many ways, dif-

ferent and more complex than its one-dimensional counterpart. So it might not be

surprising that not all of the lessons learned for the paradigmatic one-dimensional ten-

sor network states, the matrix product states, translate directly to their two-dimensional

generalizations, the tensor product states. To highlight this fact, we will list and discuss

a few prominent examples of the differences between matrix product states and tensor

product states in this section.

The most computationally relevant difference between one- and two-dimensional quan-

tum states expressed as MPS or TPS, respectively, is that for MPS, the double-layer

tensor networks that appear for the calculations of norms or observables are efficiently

contractible. Specifically, this means that the cost for the contraction of expectation

values for an MPS scales as O(Ndχ3) for finite MPS or O(dχ3) in the case of translation

invariant, infinite MPS [15]. Here χ is the bond dimension of the MPS while d is the

11While analogous statements in one dimension [62, 63] have been exploited in numerical calculations,
in two dimensions this is substantially more expensive and hence this statement has (to date) to be
taken as a conceptual one.
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dimension of the physical Hilbert space. For TPS, the exact calculation of observables

is, in general, exponentially hard as it involves the contraction of two-dimensional ten-

sor networks. To illustrate this, consider a finite two-dimensional tensor network on a

square lattice of size L×L. After having contracted half of the sites in the square lattice

(and assuming all of these sites are connected), the resulting contracted tensor has at

least the number of open indices that it takes to perform the shortest cut to achieve an

equal bipartition of the lattice. In this case, the resulting tensor would have L open legs.

Hence, just storing this tensor requires memory that scales exponentially in L12.

Going one step beyond this, a central difference between MPS and TPS is that MPS

are finitely correlated13. Even further, the finite correlation length of a translation-

invariant MPS can be exactly calculated efficiently [15]. The fact that an MPS is finitely

correlated is implied if it fulfills a property called injectivity14 [65]. Injectivity also implies

that we can construct a gapped, local Hamiltonian (so-called parent Hamiltonian) of

which the MPS is the unique ground state [65].

While a completely analogous notion of injectivity can be defined for TPS, it no longer

implies that the TPS has a finite correlation length [66]. Indeed, even for the task of cal-

culating the correlation length of a TPS exactly no known efficient method exists15. In

fact, on can construct TPS that have infinite correlation length and algebraically decay-

ing correlations [58] and can even find this behaviour in physically motivated cases as we

explore for the short-range resonating valence bond state [56, 57, 58, 59], cf. Sec. 3.2.2,

numerically in Sec. 4.3.1. The fact that TPS can have an infinite correlation length also

complicates the question of them being ground states of gapped, local Hamiltonians.

While we can, for injective TPS, still construct local parent Hamiltonians, these can be

gapless [66].

Another conceptual difficulty that appears for TPS is that the question of whether

the translation-invariant TPS built from two different local tensors represents the same

quantum state is, in general, undecidable. This means that there cannot exist an algo-

rithm that resolves this question in a systematic way [67]. Answering this question is

12We note that the complexity class of the general task of contracting TPS has been studied and found
to be computationally hard [64].

13MPS are generically finitely correlated [65], meaning they have a finite correlation length ξ. At most,
they are a superposition of a finite number of finitely correlated states.

14We call an MPS injective if there exists a finite number L, such that after contracting L adjacent
local tensors of the MPS, the resulting tensor can be seen as an injective map from the virtual to
the physical space.

15We can, however, extract it numerically in an approximate fashion, as we discuss in Sec. 4.3.1.
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only possible for certain subsets of the TPS [19, 68, 69]. For MPS, on the other hand,

this question is settled in full generality by the fundamental theorem of MPS [19].

A physical phenomenon that is excluded in one-dimensional quantum systems is that

of intrinsic topological order. To qualitatively understand this, consider that we can

generically use a MPS to represent the ground state of a gapped, local Hamiltonian.

When using a MPS to represent a quantum state, however, its short-range entangled

nature makes the representation of intrinsic topological order impossible [20, 70, 71].

However, in two dimensions, this behaviour is possible, with the canonical example

being the toric code model [72]. It turns out that the ground state of this paradig-

matic model can be constructed exactly as a TPS. Moreover, not only can TPS exactly

represent the ground state of the toric code tensor, but one can even link the global

phenomena of topological order to virtual symmetries of the local tensors of the TPS.

We will discuss this in Sec. 3.2.3
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CHAPTER 3

Tensor Product States: Structure and Examples

Tensor product states are a very versatile tool for the study of ground states of local

many-body Hamiltonians. This is because these states are well-suited for numerical

studies with the use of modern computing machinery, as we discuss in Chap. 4. At

the same time, since they are built up from simple local tensors, tensor product states

allow for structural insights into many-body states, as well as for the construction of

illustrative examples.

In this chapter, we first briefly introduce the incorporation of symmetries in tensor

networks and the impact on the structure of the local tensor in Sec. 3.1. Afterwards,

we move to the construction of several illustrative examples of tensor network states in

Sec. 3.2. Among these, we specifically treat the short-range resonating valence bond

states and the toric code states, which we already mentioned in the previous chapter

and which will serve as example states for numerical procedures in Chap. 4.

3.1 Symmetries in Tensor Networks

In situations where a global symmetry is present, it can be useful to consider state vec-

tors or general tensor networks that are invariant under the action of a certain symmetry

group G [16, 73, 74, 75, 76]. In a quantum system, in such a case, the Hamiltonian com-

mutes with the corresponding symmetry operator. This means we can simultaneously

diagonalize these operators and hence label the eigenstates of the Hamiltonian with the

eigenvalues of the symmetry operator.

It is possible to guarantee that a state vector (or a general tensor network) is invariant

under the symmetry of the group G by choosing the tensors from which the network is

built to be invariant under the same symmetry action [74]. As an example, we can enforce

that the local tensors of a tensor product state are invariant under the application of
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unitary representations Ug,Wg of every element g ∈ G

A W †
g

W †
g

Wg

Wg

Ug

= A (3.1)

where the dual spaces transform contragredient to the vector spaces. The state vector

|ψTPS⟩ resulting from the contraction of the virtual indices is then guaranteed to be

invariant under the global, on-site action of the symmetry group G, as the action on the

virtual indices cancels out

⊗iUg[i] |ψTPS⟩ = |ψTPS⟩ . (3.2)

Here i indexes the sites of the lattice. Beyond the guarantee of a certain symmetry of

the tensor network, the enforcement of a symmetry on the level of a local tensor can also

be exploited computationally. This is because the physical and virtual spaces V can be

decomposed into a direct sum of irreducible representations V a of the group G

V ∼=
⊕

a

daV
a. (3.3)

We label the number of times the irreducible V a appears in the decomposition as da.

In the familiar case of a matrix, such a decomposition results in a block structure, in

which only states from identical sectors of the irreducible representations can couple to

each other, while all other matrix elements are zero. For higher rank tensors, such a

decomposition of the spaces of the local tensor also results in an internal block structure

of the tensors, allowing us to store and manipulate only a reduced number of parameters

[74]. This sparse tensor structure can hence result in more efficient computations.

We note that we make use of these techniques in Chap. 10 when describing a

U(1)-symmetric partition function as a tensor network.

3.2 Examples of Tensor Product States

We will now present a few concrete examples of tensor product states, highlighting some

of the remarkable properties these states can exhibit. These examples further allow us
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to emphasize the general strategies used in constructing specific tensor product states.

3.2.1 Simplest Examples

The simplest example of quantum states that can be explicitly expressed as tensor prod-

uct states are trivial product states |ψ⟩ =⊗i |ϕi⟩, where i labels the local Hilbert spaces
from which the many-body Hilbert space is built. Product states are tensor product

states of bond dimension one, such that the local tensors just encode the coefficients of

the local, single-particle state, and the multiplication of the local tensors becomes just

a simple multiplication of numbers.

Going one step beyond the trivial product states, we can construct the

Greenberger–Horne–Zeilinger (GHZ) state

|ψGHZ⟩ =
1√
2

(
⊗i |0i⟩+⊗i |1i⟩

)
(3.4)

in the tensor product state language [20]. As the canonical example in two dimensions,

let us consider such a state on the infinite square lattice, in which case we can use a

single translational invariant local tensor of the form

Aα

β

γ

δ

p

=




1 if p = α = β = γ = δ

0 otherwise
, (3.5)

where p labels the basis of the local Hilbert space {|0⟩ , |1⟩} and the Greek indices label

an identical basis for the virtual spaces. The resulting tensor product state thus has bond

dimension χB = 2. Let us note that we ignore the normalization of the state here, which

needs to be taken into account for the calculation of observables, cf. Sec. 2.2.4. The

reason this local tensor results in the GHZ-state upon contraction of all virtual indices

is that its only non-zero entries are for identical values of virtual and physical indices.

Hence, the only way to obtain a non-vanishing many-body coefficient, cf. Eq. (2.20),

is to choose the local, physical configurations to be either all |0⟩ or all |1⟩, such that

the contraction contains a contribution, where only non-vanishing elements of the local

tensors are multiplied.
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3.2.2 Resonating Valence-Bond States

A more intricate construction of a prominent quantum state as a tensor product state

is the short-range resonating valence bond (RVB) state [56, 57]. We already mentioned

in the previous chapter that this state on the square lattice is an example of a tensor

product state that hosts algebraically decaying quantum-dimer correlations [59]. The

RVB state was originally proposed as a ground state candidate for the Heisenberg model

on the triangular lattice [56]. Although it has since been shown that the ground state

for this model is a state with 120◦-order [77, 78], the RVB states remain of interest as

examples of spin-liquid states [79].

The construction of the RVB state as a tensor product state works by translating the

local properties of the state into the structure of the local tensors. The RVB state is

defined by an equal-weight superposition of all possible dimer coverings of the lattice

|ψRVB⟩ = + + + . . . (3.6)

where the dimers are singlets for two neighboring spin-1
2
degrees of freedom. In the

above illustration, we show these singlets as encircled sites of the lattice.

The construction as a tensor product state1 is easiest in the framework of the projected

entangled-pair picture of the tensor product states, which we discussed in Sect. 2.2.5. In

the projected entangled-pair construction of the short-range RVB state [58], the starting

point is again a product state of entangled pairs, specifically, we cover the bonds of the

lattice, cf. Fig. 2.4a, with states of the form

|EPRVB⟩ = |↑↓⟩ − |↓↑⟩+ |00⟩ . (3.7)

We thus will end up with a bond dimension three tensor product state as the virtual

spaces are spanned by {|↑⟩ , |↓⟩ , |0⟩}. Given the covering of the lattice with the virtual

state in this way, we proceed by acting on the virtual degrees of freedom on every lattice

site with a projector, cf. Eq. (2.33), to create the RVB state. It is within this projector

that we encode the local structure of the RVB state. Concretely, the relevant local

structure is that for every dimer covering of the lattice, every physical spin is part of

1Note that we again ignore the normalization of the state here.
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exactly one singlet. We can thus define the projectors by giving their non-zero entries

P s
000s = P s

00s0 = P s
0s00 = P s

s000 = 1 for s ∈ {↑, ↓}, (3.8)

and recall that the superscript index corresponds to the physical Hilbert space, whereas

the subscript indices correspond to the virtual indices. These projectors have a simple

interpretation. They assign a non-zero contribution only in case exactly one of the four

virtual spins on a given lattice site is in a state |↑⟩ or |↓⟩, which is then translated one-

to-one to the local physical degree of freedom. At the same time, the remaining three

virtual degrees of freedom have to be in state |0⟩. Together with the virtual states on

each bond given in Eq. (3.7), this is exactly the local rule which, if enforced on every

site, results in the RVB state.

To illustrate why this works, it is useful to imagine two neighboring sites i and j

on the lattice and the possible configurations that result upon the application of these

projectors. The entangled-pair state |EPij
RVB⟩, which is defined on the edge connecting

the two lattice sites we are considering, is a superposition of two parts. One which is

a singlet and one which is |00⟩. The above projectors will take the singlet contribution

and translate it one-to-one to the two physical sites, while simultaneously only allowing

for configurations of |00⟩ on all other entangled pairs that connect sites i and j to the

rest of the lattice sites. At the same time, the projectors will take the contribution |00⟩
to the virtual entangled-pair between our two lattice sites i and j, and project such

that exactly one of the remaining entangled pairs for each of the two lattice sites that

connects to the rest of the lattice is part of a singlet. Thus, we end up with a physical

state in which for every resulting configuration, every physical spin is part of one singlet.

As we gave all non-zero elements in the projectors the same value, we end up with an

equal-weight superposition of these dimer coverings as we desired.

In the case of the RVB state, the representation as a tensor product state has some

practical advantages. For example, the usual expression of the state as an equal-weight

superposition of all singlet coverings has the downside that the singlet coverings are

an over-complete basis and are not orthogonal. This can make practical calculations

more difficult, whereas, e.g., the identification that the short-range RVB state hosts

algebraically decaying correlation functions can be easily done in the numerical tensor

product state framework as we demonstrate in Sect. 4.3.1. Furthermore, once we have

expressed a state as a tensor product state, we can also use this to construct parent

Hamiltonians, which host these states as ground states [80, 81]2.

2We note that the parent Hamiltonians can be complicated and involve many-spin interaction terms.
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P□

S+

(a) (b)

Figure 3.1.: (a) Illustration of the star and plaquette operators of the toric code Hamilto-
nian and their support. (b) Illustration of a product state with closed loops
and open “strings”. Here, the filled circles represent a |1⟩ configuration of
the local spin, while an empty circle represents a |0⟩ configuration. We find
that configurations with open strings of |1⟩ are not ground states of the star
operators on the ends of the strings.

3.2.3 Toric Code Ground State

An intrinsically topologically ordered state that can be easily constructed as a finite-

bond-dimension tensor product state is the ground state of the toric code Hamiltonian

[20, 72, 58, 82]. This Hamiltonian is conventionally defined on a square lattice with the

local spin-1
2
degrees of freedom on the edges of the lattice. The terms of the Hamiltonian

HTC = −
∑

{+}
S+ −

∑

{□}
P□. (3.9)

consist of two kinds of operators3. The first kinds are the so called star operators

S+ = σz
1+σ

z
2+σ

z
3+σ

z
4+ which act on the four local spin-1

2
Hilbert spaces surrounding a ver-

tex of the square lattice. Further, we have the plaquette operators P□ = σx
1□σ

x
2□σ

x
3□σ

x
4□

that act on the local Hilbert spaces which are located on the edges surrounding a pla-

quette of the square lattice. We illustrate this in Fig. 3.1a.

We find that all terms in the Hamiltonian commute with each other, which allows

us to construct a ground state explicitly [72]. This ground state can be written as the

3The sums in this notation run over all vertices and plaquettes of the square lattice.
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equal-weight superposition of “closed-loop” product states |Ci⟩

|ψTC⟩ =
∑

i

|Ci⟩ . (3.10)

A “closed-loop” product state is a product state in z-basis, in which all local, physical

spin-configurations |1⟩ are on edges that form closed loops. Such a closed loop is illus-

trated in Fig. 3.1b, and a more detailed explanation of the construction of this ground

state can be found in App. A.

Tensor Product Representation of the Ground State

The “closed-loop” property of the ground state of the toric code Hamiltonian defines a

strict, local rule for the ground state. While the “closed-loop” property itself is not a

local property, it is however equivalent to having an even number of adjacent edges with

a configuration |1⟩ at every local vertex of the square lattice, or alternatively, no strings

of |1⟩ ending at any vertex.

Such a local rule can oftentimes be used to explicitly construct quantum states as

tensor product states by encoding these local rules into the local tensors.

We will now define a set of tensors [82] that encode these local rules, such that upon

contraction of the corresponding tensor network, we obtain a finite coefficient of the

many-body state vector only for configurations that follow the local rules. We start by

defining a rank-three tensor, which we shall associate with every edge and hence with

every physical degree of freedom of the square lattice

Ep
αβ =

βα

p
=




1 if α = β = p

0 otherwise
. (3.11)

Here the label p ∈ {0, 1} indexes the basis of the local spin-1
2
Hilbert space on the edge,

while the indices α ∈ {0, 1} and β ∈ {0, 1} label the basis of the virtual Hilbert spaces,

which we choose here to be two-dimensional as well. This tensor corresponds to the

picture of the presence (local configuration |1⟩) or absence (local configuration |0⟩) of a
string on an edge. The information about the configuration of the local spin on this edge

is transported via a one-to-one correspondence to the virtual indices. The only non-zero

entries of this edge tensor correspond to index configurations where physical and virtual

indices take the same value.

To enforce the local rule that no string can end in a vertex in the ground state, we
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can define a rank-four tensor associated with every vertex

V αβγδ = γα

β

δ

=




1 if (α + β + γ + δ)mod 2 = 0

0 otherwise
, (3.12)

where the indices α, β, γ, δ label the basis states of the virtual spaces this operator acts

on. As it is only non-zero for configurations of the virtual indices that correspond to an

even number of strings on the adjacent edges, this tensor enforces the local rule of the

toric code ground state. A tensor trace over all virtual indices of these tensors yields

the coefficients for the toric code ground state, because after contraction of the network,

only configurations of the physical spins that fulfill the ground state rules are non-zero,

and all have the same amplitude

|ψTC⟩ =
∑

{s}
tTr
(∏

i

∏

j

V [i] ∗ Esj [j]
)
|{s}⟩ . (3.13)

Here, the index i runs over all vertices of the lattice, while j indexes all edges, and the

contracted virtual indices of the tensors are suppressed.

This construction illustrates that tensor product states can represent topologically or-

dered states [58, 82]. However, as they are built from easy-to-examine local components,

tensor product states allow for insight into the role of symmetry in topologically ordered

states as well as the stability of topological order, which we will discuss in the following.

We briefly note that the structure of this tensor network is slightly different from the

structure of the generic tensor product state construction presented in Sec. 2.2. How-

ever, the tensor network discussed above can be easily rearranged exactly into the generic

form of a tensor product state [83].

Virtual Symmetry and Topological Order of the Toric-Code Tensor Network

The tensors defined above, from which we can build the toric code ground state, are in-

variant under the application of σz operators to all their virtual links
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simultaneously [20, 84]

Zvirt(E) := (σz ⊗ σz)(E) = E,

(σz) δ
β (σ

z) γ
αE

p
γδ = Ep

αβ

(3.14)

and

Zvirt(V ) :=(σz ⊗ σz ⊗ σz ⊗ σz)(V ) = V,

(σz)αα′(σz)ββ′(σ
z)γγ′(σ

z)δδ′V
α′β′γ′δ′ =




(−1)(α+β+γ+δ)mod 2 = 1 if (α + β + γ + δ)mod 2 = 0

0 otherwise.

(3.15)

The action of the of the σz operators on the two-dimensional virtual spaces is the familiar

σz |0⟩ = |0⟩ , σz |1⟩ = − |1⟩. As this action on the virtual legs of the toric-code tensors

squares to the identity, we say that they possess a virtual Z2-symmetry. This virtual

symmetry is intimately related to the topological order [19, 20, 84, 85] of the ground

state of the toric code Hamiltonian, as we show in the following. As a first step in this

direction, we note that, as we can transform every individual tensor in the ground state

tensor network — leaving the state invariant — we may also transform all tensors that

lie within a certain area, cf. Fig. 3.2a. As (σz)2 = 1, all σz operators that lie within

our transformed area A are canceled and the only operators that remain are those on

the boundary of A, cf. Fig. 3.2b. Hence, we know that the state is invariant under the

application of σz on the virtual boundary of any connected area. Note that this is less

obvious than the virtual Z2-symmetry of the individual tensors shown above. This is

because in this case, the individual tensors at the boundary of region A do change under

the application of the σz-operators on the boundary of an area, but the state we obtain

upon contraction does not.

Upon application of σz onto the virtual boundary of our designated connected region

A, we pull the σz operators onto the edge tensors they act on. We notice that due to

the definition of the edge tensors E, we can pull this operator to the physical space [20,

84]

(σz) α′
α Ep

α′β = (σz)pqE
q
αβ. (3.16)

Hence, we find that our toric-code ground state |ψTC⟩ is also invariant under the appli-
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Figure 3.2.: Illustration of the toric code ground state as a tensor product representa-
tion. We do not show the arrows on the legs of tensors for better visibility.
The filled circles correspond to the edge tensors E, the non-filled circles
correspond to the vertex tensors V , while the pink tensors (matrices) repre-
sent the σz matrices.(a) Virtual symmetries of the tensors are applied to all
tensors in the area A. (b) Since the applied matrices square to the identity,
we can remove them from the inner indices of area A while a single instance
remains on the boundary. (c) Illustration of the property of the edge tensor
E, which allows us to pull a σz matrix from the virtual to the physical leg.
(d) Illustration that, as we can pull the σz matrices to the physical index
of the edge tensors, we have a relation between the virtual symmetry of the
local tensors and the invariance under application of Wegner-Wilson loops.
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cation of closed loops of σz operators on the physical legs of the tensors

tTr
(∏

i,j

V [i] ∗ Esj [j]
)
= tTr

([ ∏

i∈A,j∈A
Zvirt(V [i]) ∗ Zvirt(E

sj [j])

] ∏

k ̸∈A,l ̸∈A
V [k] ∗ Esl [l]

)

= tTr
([ ∏

k∈∂A
(σz)slskE

sk [k]
] ∏

i,j ̸∈∂A
V [i] ∗ Esj [j]

)
.

(3.17)

This is illustrated in Fig. 3.2d. These are examples of Wegner-Wilson loops

Wloop =
∏

i∈loop
σz
i . (3.18)

These Wegner-Wilson loops are related to one of the hallmarks of topological order, the

topological ground state degeneracy, meaning the degeneracy of multiple ground states

depending on the topology of the manifold on which we define our Hamiltonian.

Take, for example, the Hamiltonian of Eq. (3.9) defined on a torus. It is useful

to consider again the construction of the ground state of the toric code, by making

sure it is an eigenstate of each mutually commuting, independent operator, namely the

plaquette and star operators, cf. App. A. On a plane, these operators supply a number

of eigenvalues equal to the dimensionality of the many-body Hilbert space. However,

this is no longer true if we consider the system on a torus [72], as on the torus we have

two additional relations

1 =
∏

{□}
P□

1 =
∏

{+}
S+,

(3.19)

where the product runs over all plaquettes and vertices respectively, and implies that

one of the plaquette- and one of the star-operators is no longer independent. Hence, the

number of eigenvalues we obtain from star- and plaquette-operators to label the states

of the many-body Hilbert space is reduced to 2Ne−2 = 2Ne/4, where Ne refers to the

number of edges on our lattice. The dimensionality of our many-body Hilbert space on

the torus is, however, still 2Ne . Given the fact that the eigenvalues we are using for

labeling are the eigenvalues of mutually commuting terms of the Hamiltonian, we find

that the energy spectrum of the Hamiltonian is four-fold degenerate. This includes the

ground states.
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A set of operators that can be used to give additional quantum numbers to label these

degenerate states are the Wegner-Wilson loops we found above4. Namely, those which

correspond to loops that wind around the non-trivial cycles of the torus. While these

operators still commute with the Hamiltonian, they do not correspond to a virtual Z2-

symmetry of our tensor network construction, as they do not define a loop that encloses

a well-defined area; hence, their application can change the state.

Let us stress once more, that within the tensor network representation of the ground

state of the toric code, we can relate the phenomenology of topological order — specifi-

cally the ground state degeneracy — to a property of the local tensors of our network,

namely their virtual symmetry.

To further highlight the importance of this virtual symmetry for the topological order,

let us note that the stability of the topological order of our state is destroyed if we slightly

break the virtual symmetry [86]. However, the virtual symmetry of the tensor product

state by itself is not enough to guarantee that the state is topologically ordered. For that,

an additional requirement referred to as G-injectivity is necessary [85]. Nevertheless, it

can be useful for numerical simulations targeting topologically ordered states to enforce

a virtual symmetry on the local tensor of the tensor product state ansatz, in complete

analogy to what we discussed in Sec. 3.1. By just choosing the physical space to be

constructed from only degenerate, trivial irreducible representations on which we act

only with the identity, Eq. 3.1 enforces a virtual symmetry.

We close this section by noting that the creation of the ground state of the toric

code Hamiltonian in this section is an example of a more general type of construction.

The conceptual framework for using local rules that lead to global topological order,

when constructing the local tensors of the tensor product state, can be generalized to

all non-chiral topological orders [85, 82, 87, 88].

3.2.4 Chiral Topological Ordered States

A class of states, for which the treatment using the tensor product state is more intricate,

are chiral topological states exemplified by band insulators with a non-trivial Chern

number [89]. It took roughly ten years after the tensor product states had been proposed

for the first examples of these states to be constructed. This was done independently

by Wahl et al. [90] and Dubail and Read [91]. In these works, it was shown that

4Wloop is built from σz operators, so it trivially commutes with the star operators. We defined Wloop

on closed loops, which implies that the support of Wloop and any of the plaquette operators of the
toric code share either zero or two sites, which means they commute.
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by using Gaussian fermionic tensor product states [92], one can in fact construct such

chiral topological states for free fermions as tensor product states. However, it was

simultaneously pointed out that these tensor product states cannot be ground states of

gapped, local Hamiltonians.

To understand this in qualitative terms, let us highlight an argument from the paper

by Wahl et al. [90]: Let us assume we had found such a free fermion tensor product

state. This should allow us to construct a local, frustration-free parent Hamiltonian for

which the tensor product state in question is a ground state [66]. Concretely, this means

that all terms hi in the parent Hamiltonian H =
∑

i hi have to annihilate our tensor

product state. Since the terms in the Hamiltonian are local, and we want a gapped, free

fermion Hamiltonian, the terms must be of the form hi = b†ibi, with bi being a quasi-

particle operator acting on a local region. This means, however, that the corresponding

Wannier functions are localized, which is in conflict with the presence of a non-zero

Chern number [93, 94].

This, however, leaves open a plethora of questions of both analytic and numerical

nature. For example, how generalizable are these results for interacting fermions or

bosons? This is of critical importance for the use of tensor product states for the study

of strongly correlated systems like fractional Hall states. Here, numerical insight is even

more important, e.g., in the quantitative understanding of realistic scenarios for their

realization in larger, next-generation cold atom experiments [95, 96]. However, this

directly leads to an additional practical question for numerical approaches using tensor

product states. If we are using a tensor product state ansatz to investigate a local

Hamiltonian, for which a ground state candidate could be a chiral topological state with

gapped excitations, can we hope to obtain useful results?

These questions have been approached for quasi-parent Hamiltonians recently [97], as

well as in our publication [P1], where we study this for the more experimentally relevant

bosonic Harper-Hofstadter model. In fact it is demonstrated and discussed that tensor

product states can yield useful insights in these scenarios, while also having to deal with

subtle, unphysical features in the correlation functions.
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CHAPTER 4

Computational techniques for Tensor Product States

The internal structure of the tensor product states is the key to the numerical techniques

for practical calculations using these states. In this chapter, we will introduce some of

these methods used in numerical computations and derive some of the critical formulas

of the tensor product state framework. Specifically, we first discuss the numerical tech-

niques for the contraction of the two-dimensional tensor networks in Sec. 4.1. Building

on this, we describe and discuss the approaches to find the optimal ground state approx-

imation within the tensor product state ansatz class in Sec. 4.2. Lastly, in Sec. 4.3 we

discuss the techniques for tensor product states that go beyond local observables and

discuss correlation functions and entanglement spectra. We mainly focus on techniques

for infinite tensor product states in this section and refer to the publication [P5] for some

additional explicit discussion of these states on finite lattices.

4.1 Contraction

As we discussed in Sec. 2.2.4, calculations of observables for tensor product states re-

quire the contractions of two-dimensional tensor networks. For tensor networks with

one-dimensional structure, as they appear in the context of matrix product states, we

can reduce their contraction to a succession of matrix multiplications that can be per-

formed efficiently. Due to this lack of one-dimensional structure, contractions of the

two-dimensional tensor networks associated with tensor product states are much harder,

as already explored in Sec. 2.4. For a tensor product state on a finite lattice, this means,

e.g., that such contractions require storing tensors with exponentially many entries in

the linear system size. Furthermore, for infinite translation-invariant tensor product

states, an exact contraction is thus generically impossible. Due to the difficulty of the

contraction, we will, for numerical calculations, make use of the approximation schemes
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for the contractions. For contractions in the context of tensor product states on finite

lattices with open boundary conditions, the boundary-matrix product state method is

commonly used [12, 98]. We introduce this method, as well as related methods for fi-

nite lattices, in the publication [P5]. In the context of infinite tensor product states,

the approximate contraction of the associated two-dimensional tensor networks is usu-

ally performed by either of two general approaches. The first set of approaches can be

called scale-transformation methods, which perform coarse-graining procedures on the

two-dimensional tensor network like the tensor network renormalization group (TRG)

[99, 100, 101, 102] or tensor network renormalization (TNR) [103]. In contrast, the

second set of approaches is a family of effective-environment methods, such as a ver-

sion of the variational uniform matrix product state (VUMPS) algorithm [104, 105] or

the corner transfer matrix renormalization group (CTMRG) [106, 107, 108, 109, 110,

111, 112]. The CTMRG algorithm will be introduced in Sec. 4.1.1. A reformulation of

the CTMRG algorithm that has a more favorable computational scaling has been the

subject of the publication [P4].

4.1.1 Corner Transfer Matrix Renormalization Group

In this thesis, the corner transfer matrix renormalization group (CTMRG) algorithm is

the central tool for numerical calculations using infinite tensor product states. While

the primary use of this algorithm is the computation of local observables and, by ex-

tension, energies of local Hamiltonians, the effective tensors generated for this task are

used frequently in calculations of other quantities, such as correlation lengths and en-

tanglement spectra, cf. Sec. 4.3.1 and Sec. 4.3.2. In addition, the CTMRG algorithm

allows for the efficient calculation of energy gradients by leveraging its convergence to a

fixed point, as we discuss in Sec. 4.2.3. This is critical for the ground state search using

infinite tensor product states. In this section, we will describe the CTMRG algorithm as

applicable to a single-site unit cell tensor product state ansatz. Applications of the algo-

rithm to larger unit cell ansatzes [109] are straightforward and are discussed, e.g., in [P6].

The idea behind the CTMRG [106, 107, 108] is the use of effective environment ten-

sors that describe the impact of certain parts of the surroundings of a lattice site on the

observables (or, equivalently, the reduced density matrix) on that particular site. As is

illustrated in Fig. 4.1, we define two essential types of effective environment tensors. The

T -tensors describe half-infinite rows and columns of the square lattice of double-layer

tensors, cf. Sec. 2.2.4, while the C-tensors describe quadrants of the infinite lattice.

These effective environment tensors are defined with a particular bond dimension, re-
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Figure 4.1.: Illustration of the concept of the CTMRG effective environment tensors.
For the double-layer tensor network associated with an expectation value
of a local observable on the central site, we approximate the network en-
vironment of that site using effective environment tensors. The bold lines
highlight the virtual indices with bond dimension χE.

ferred to as the environment-bond dimension χE. This is the dimension of the virtual

indices, with which the effective environment tensors connect to each other and should

be seen as a refinement parameter in numerical calculations. We label the set of all the

environment tensors for the local tensor A of the tensor product state as

e(A) = {Cul, Cur, Cdl, Cdr, Tl, Td, Tr, Tu}, (4.1)

where all of the environment tensors depend on A as well. With these tensors, we can

then express the expectation value of a local observable as

⟨ψTPS|Ôi|ψTPS⟩
⟨ψTPS|ψTPS⟩

≈ AÔ

Cdl Td Cdr

Cul Tu Cur

TrTl A

Cdl Td Cdr

Cul Tu Cur

TrTl . (4.2)

Observables with support on multiple sites can be computed completely analogously

with the use of more effective environment tensors surrounding the support1.

1Note, that for this case the normalization of the state vector used in Eq. (4.2) has to be adjusted to
use the same effective environment tensors to cancel out their individual normalizations.
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Conceptually, the accurate approximation of local observables using the effective envi-

ronment tensors at a finite environment bond dimension χE, assumes a physical situation

in which the reduced density matrix of a local site i only depends on the degrees of free-

dom in the vicinity of that site i. This is the case for tensor product states of small

correlation length. Hence, a representation of the reduced density matrix using small

bond dimension environment tensors yields a good approximation. As the correlation

length of the state increases, however, so does the environment bond dimension required

for an accurate approximation. In the extreme case, for tensor product states with

infinite correlation length and algebraically decaying connected correlation functions,

the approximation using finite environment bond dimensions actually yields an artificial

finite correlation length. In these situations, a scaling analysis will be necessary, cf.

Sect. 4.3.1.

The CTMRG algorithm [108, 110, 111] is used to numerically generate the effective

environment tensors for a given tensor product state2. The algorithm works by iteratively

updating the effective environment tensors by absorbing parts of the infinite tensor

network into them until convergence is reached. A single CTMRG iteration step c is

described by the function

c(A, ei(A)) = ei+1(A), (4.3)

and the fixed point condition describes the situation in which the algorithm converges

c(A, e∗(A)) = e∗(A). (4.4)

Different conditions for the numerical convergence are used in practice, which we discuss

below. A single iteration of the CTMRG algorithm in Eq. (4.3) is itself composed of

four parts, known as moves, one for each direction

c = cu ◦ cr ◦ cd ◦ cl. (4.5)

In the following, we discuss a left move cl, noting that the other directional moves cd, cr, cu

work analogously. During the left move, only the environment tensors describing the

2Note that there are several variants for this algorithm. The original algorithm was formulated for
local tensors, which are invariant under permutation of indices [106, 107]. This version can be
particularly useful if one wants to make use of the lattice symmetries of the problem at hand. Here
we present the more general formulation of the algorithm that does not rely on lattice symmetries
[108].
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lattice environment to the left of site i are modified

cl(e(A)) = {C ′
ul, Cur, C

′
dl, Cdr, T

′
l , Td, Tr, Tu}. (4.6)

The left move cl works by first absorbing a column of the infinite tensor network into

the effective environment tensors describing the left part of the infinite lattice

Cdl

Cul

Tl 7−→ A

Cdl Td

Cul Tu

Tl =:

C̃dl

C̃ul

T̃l . (4.7)

Notice that the column of the infinite tensor network we absorb in the above step is

already represented using the effective environment tensors. This first operation results

in new environment tensors C̃ul, T̃l and C̃dl, where the environment bond dimension has

been increased to χE · χ2
B. As we aim to converge the effective environment tensors at

a fixed environment bond dimension χE the next step is to use a set of projectors to

truncate the bond dimension from χE · χ2
B back to χE

C̃dl

C̃ul

T̃l 7−→

C̃dl

C̃ul

T̃l =:

C ′
dl

C ′
ul

T ′
l . (4.8)

This concludes the left move. We describe how to obtain a useful set of projectors below.

After analogous moves towards the bottom, right, and top directions, we have updated

all environment tensors and concluded a single CTMRG iteration. Equations (4.7) and

(4.8) can be interpreted as a power-method scheme to identify a finite bond dimension

approximation of the dominant eigenvector of a column of the tensor network shown in

Fig. 4.1. From this perspective, the converged CTMRG environments are a set of tensors

that can be used to assemble approximations of the dominant left and right eigenvectors

of a column and row of the tensor network simultaneously. Only once this is the case
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will the CTMRG algorithm converge.

Defining Accurate Projectors

A part of the CTMRG algorithm critical for its success is using well-chosen projectors

in Eq. (4.8). The projectors truncate the virtual spaces on the effective environment

tensors to subspaces thereof. Choosing the relevant subspaces for this truncation is

critical. To identify these relevant subspaces and construct the projectors accordingly

as introduced in [111], we define a matrix M , build as an explicit contraction of two

tensors ρu and ρd over the virtual spaces we aim to truncate. The tensors ρu and ρd

are chosen such that the matrix M represents the parts of our network surrounding the

virtual space to be truncated

M = ρd · ρu =

ρu

ρ
d

=

A

A

Cdl

Tl

Td

Cul Tu

Tl

. (4.9)

The insertion of well-chosen projectors to truncate to the relevant subspace should

change this matrix M as little as possible

M =

ρu

ρ
d

≈

ρu

ρ
d

(4.10)

to achieve a good low-rank approximation. To this end, we can perform a singular value

decomposition of the matrix M = USV †, which can be used to write the identity on the

virtual spaces we want to truncate as

1 = ρuρ
−1
u ρ−1

d ρd = ρuM
−1ρd = ρuV S

−1U †ρd. (4.11)
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The basis, identified by the singular value decomposition of M , can then be used to

truncate the rank of the identity in Eq. (4.11) and thus obtain the projectors3 that give

an optimal low-rank approximation of the matrix M4

Pd = = ρuV
√
S̃−1 =

ρu V

√
S̃-1

,

Pu = =
√
S̃−1U †ρd =

ρ
d U †

√
S̃-1

.

(4.12)

In the equations above, we denote the truncated singular values as S̃. The number of

singular values kept when truncating to S̃ is the chosen environment bond dimension

χE
5. The projectors constructed in this fashion can be used during a left move of a

CTMRG iteration. Analogous projectors need to be defined for the down, right, and up

moves of the CTMRG iteration. Let us mention that the construction of the projectors

we have shown above can be made more accurate by constructing the matrix M from

different choices ρu and ρd representing even larger parts of the network environment of

the virtual space we aim to truncate. A commonly used version of the projectors [111]

is obtained by choosing

ρd · ρu =

A A

A A

Cdl

Tl

Td Td Cdr

Tr

Tr

CurTuCul Tu

Tl

. (4.13)

3While strictly speaking only the multiplication Pu · Pd is a projector, the individual objects Pu and
Pd are colloquially referred to as projectors as well.

4This is optimal, since we obtain a low rank approximation equivalent to the truncated SVD of M :
ρd(PdPu)ρu = ρd(ρuV S̃−1U†ρd)ρu = (USV †)V S̃−1U†(USV †) = US̃V †.

5We note that the tensors Pu and Pd in Eq. (4.12) truncate from a space of dimension χEχ
2
B to a space

of size χE . Hence, for typical values of χB we are only keeping a small percentage of the singular
values, such that the use of iterative SVD solvers can be helpful in reducing computational time, as
is demonstrated in [P6].
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While the projectors resulting from Eq.(4.13) are more accurate, their construction is

also computationally more expensive. To distinguish between these projectors, we refer

to those based on Eq.(4.13) as full -projectors, while calling those based on Eq. (4.9)

half -projectors.

Remarks on the CTMRG Algorithm

A few annotations are needed when using the CTMRG algorithm for numerical tasks in

quantum many-body physics. Firstly, we need to establish which requirements should

be set in practice for considering the algorithm as converged. Here, we can use several

strategies, the least stringent of which is to calculate the value of a local observable

after each CTMRG iteration and consider the algorithm to be converged once this local

observable has converged to a given accuracy. This can have the downside, however, that

not all observables that one might want to calculate, especially non-local ones like, e.g.,

correlation functions, converge equally fast. Hence, a more common approach is to look

for convergence in the effective environment tensors themselves. For example, we can

require the singular values of the C-tensors to be converged to some accuracy. Going

one more step beyond this, we can even require the environment tensors to converge

element-wise [113, 114][P6]. To achieve an element-wise convergence, we need to fix

the freedom that is present in the singular value decomposition when constructing the

projectors

M = USV † = (UΓ)S(Γ†V †) (4.14)

where Γ are diagonal unitaries6. For practical purposes this freedom of the SVD can

be fixed, by choosing Γ, such that the largest magnitude entry of every singular vector

in U is a positive real number7. This element-wise convergence is not necessary for

the accurate determination of expectation values, but is very useful when calculating

gradients, cf. Sect. 4.2.3.

Further, let us mention that the CTMRG algorithm defined here on the square lattice

can, however, be applied successfully to problems of many-body physics on other two-

dimensional lattices. While extensions of the CTMRG algorithm, which work directly

on other lattice geometries have been proposed [115, 116, 117], an alternative procedure

is to map the tensor product state ansatz from a non-square lattice onto a square lat-

tice, such that using the square-lattice CTMRG algorithm becomes possible [118, 119].

Alternatively, we can work directly with a square lattice tensor product state ansatz on

6They can in principle be block-diagonal if degenerate singular values are present.
7If the largest magnitude entry is not unique, we can fix the first one of these degenerate entries of
the singular vectors.
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a non-square lattice. These approaches are described for several lattices in [P6].

Lastly, we note that the computational complexity of the CTMRG algorithm scales

as O(χ3
Eχ

6
B). This scaling is due to the projectors [111], where the construction of the

matrix M in Eq. (4.9) and the subsequent SVD thereof are the dominant contributors.

It is the aim of our publication [P4] to reduce the complexity of the CTMRG algorithm

without sacrificing its accuracy. To achieve this, we define new environment tensors,

treating the two layers of the double-layer tensor network separately.

4.2 Ground State Determination

Identifying the optimal approximation of the ground state of a quantum many-body

Hamiltonian using a tensor product state ansatz

min
A

⟨ΨTPS(A)| Ĥ |ΨTPS(A)⟩
⟨ΨTPS(A)|ΨTPS(A)⟩

, (4.15)

where A represents the variational parameters contained in the local tensors, is a difficult

task that is crucial for the utility of the tensor product state ansatz class. The approaches

used for ground state search using tensor product states can be broadly put into two

categories. For one, we can use a Trotterized imaginary time evolution [29, 120, 121,

122] to obtain a ground state approximation as we briefly outline in Sec. 4.2.1. The

alternative to this procedure is to use gradient-based ground state search [123, 124, 125,

30, 126, 31], which will be the focus of this thesis. We introduce the gradient-based

optimization for infinite tensor product states in Sec. 4.2.2 and discuss how to efficiently

compute the gradient within the CTMRG framework in Sec. 4.2.3. We further mention

how to use the gradient information during the optimization to perform approximate

second-order optimization in Sec. 4.2.4 and point to challenges and efficient procedures

for this ground state search in Sec. 4.2.5. In the context of tensor product states on

finite lattices, we discuss an alternative gradient-based optimization procedure based on

the time-dependent variational principle [127, 128, 31] in our publication [P5].

4.2.1 Trotterized Imaginary Time Evolution

Most early approaches to identifying optimal ground state approximations with tensor

product states have been based on Trotterized imaginary time evolution [29, 120, 121].

These approaches are based on the fact that every state |Ψ⟩ that has a non-zero overlap

with the ground state |Ψ0⟩ of the system can be transformed into the ground state by
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an imaginary time evolution

|Ψ0⟩ = lim
τ→∞

e−τH |Ψ⟩
||e−τH |Ψ⟩ || . (4.16)

In practice, the imaginary time evolution is performed using two approximations. Firstly,

the imaginary time evolution operator is approximated using the Suzuki-Trotter decom-

position

e−τH =
(
e−δτH

)n
, e−δτH ≈

∏

⟨i,j⟩
Ui,j =

∏

⟨i,j⟩
e−δτhij , (4.17)

which we exemplify here for the case of a Hamiltonian with nearest neighbor interactions

H =
∑

⟨i,j⟩ hij. Using this representation of the imaginary time evolution operator, we

apply the local operators e−δτhij ≈ 1 − δτhij to the tensor product state one after an-

other8. Applying such a local operator will increase the bond dimension corresponding

to the edge between site i and j. To keep the tensor product state at a fixed bond

dimension, a truncation scheme is used to reduce the bond dimension of the edge be-

tween site i and j. This truncation represents the second practical approximation of the

imaginary time evolution. It can be done using what is known as a simple update [29,

120], where the truncation is performed using a singular value decomposition of only

the tensors associated with site i and j. The more computationally expensive but more

accurate alternative truncation scheme, is known as the full update [121, 122]. It im-

proves the accuracy of the approximate imaginary time evolution by using the CTMRG

environment tensors to account for the lattice environment of the bond between site i

and j when performing the truncation.

The central problem with the approaches using the Trotterized imaginary time evo-

lution is not the Trotterization of the imaginary time evolution operator [123]. This

approximation can be made more accurate by decreasing the imaginary time evolution

step δτ . The more severe approximation is done when we truncate the bond dimension

on a single bond after applying e−δτhij ≈ 1 − δτhij. In this step, we identify new local

tensors for sites i and j, which are chosen to be a good approximation locally. However,

this does not imply that these new tensors represent a state that is optimally truncated

globally after applying all local operators corresponding to a full imaginary time evo-

lution step. Despite this, these schemes (especially the simple update) are being used

due to their comparatively low computational cost, allowing for a large bond dimension

in the ansatz. The computational complexity of the simple update algorithm scales as

8For small matrices hij , we can of course also compute the matrix exponential exactly.
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O(dχz
B) with d referring to the local Hilbert space dimension and z to the number of

nearest neighbors to each lattice site [129].

4.2.2 Gradient Based Optimization

An alternative to the Trotterized imaginary time evolution for the ground state search

is using the energy gradient with respect to the variational parameters in the infinite

tensor product state ansatz

∇E(A) = ∂

∂A

⟨ΨTPS(A)| Ĥ |ΨTPS(A)⟩
⟨ΨTPS(A)|ΨTPS(A)⟩

. (4.18)

This approach holds great promise for accurate ground state determination. To under-

stand this, suppose the gradient with respect to the variational parameters in the infinite

tensor product state can be calculated. In that case, we can update the variational pa-

rameters of the state in a way that guarantees a global improvement of the ansatz, which

is in stark contrast to the update of parameters in the approaches based on Trotterized

imaginary time evolution. It is generally found that the gradient-based optimization

schemes yield better ground state approximations for a tensor product state ansatz at

a given bond dimension, as demonstrated, e.g., in [P6].

However, calculating the energy gradient with respect to the variational parameters

of the infinite tensor product state ansatz is a challenging task. This is because the

energy is a highly non-linear function of the variational parameters (the entries in the

local tensors) in the ansatz9 due to the periodically repeating unit cell of tensors, cf.

Sec. 2.2. Additionally, we cannot evaluate the energy expectation value of a given in-

finite tensor product state exactly, and approximation schemes, such as the CTMRG,

need to be employed, cf. Sec 4.1.1. In the pioneering works [123, 124], the evaluation

of the infinite terms that formally appear in the energy gradient was consolidated into

a large but finite number of tensor network diagrams within a certain approximate con-

traction method, e.g., the CTMRG. These works proved the utility of gradient-based

optimization schemes by demonstrating that for a tensor product state of a fixed bond

dimension, lower energies can be achieved with this method, and more importantly, the

properties of challenging, correlated ground states of frustrated magnetic models could

be represented correctly. In a later work [125], it was pointed out that the computation

9This difficulty might be considered the reason that it took more than ten years after the introduction of
the tensor product state ansatz [12] that a gradient-based scheme for these states was first proposed
[123]
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of the gradient can be performed in an automated fashion, without the need to evaluate

large numbers of specific tensor network diagrams with the use of automatic differen-

tiation. Automatic differentiation is already a prominent tool, e.g., in the context of

machine learning, and we give an introduction to automatic differentiation in Sec. 2.4

as well as App. A-D of [P6].

4.2.3 The Gradient at the CTMRG Fixed-Point

As mentioned above, the calculation of the energy gradient in the context of infinite

tensor product states is fundamentally connected to an approximation scheme for cal-

culating the energy expectation value, as this task cannot be done exactly. For the

calculation of the energy expectation value, we can use the effective environment tensors

that can be generated from the local tensors of the tensor product state ansatz using

the CTMRG algorithm, as described in Sec. 4.1.1. All of these effective environment

tensors will thus depend on the variational parameters of the ansatz, and hence have

to be taken into account when the gradient is calculated. This, in principle, requires

taking the derivative via the chain rule through the entire iterative steps of the CTMRG

algorithm [125]. However, it is possible to avoid this because the CTMRG algorithm

reaches convergence at a fixed point [125, 113], where every further iteration reproduces

the same effective environment tensors

e∗(A) = c(A, e∗(A)). (4.19)

As mentioned in the remarks on the CTMRG in Sec. 4.1.1 special care has to be taken to

fix the freedom inherent to the SVD to arrive at a true fixed point where the effective en-

vironment tensors are converged element-wise. The algorithmic steps for the calculation

of the energy, once the fixed point is reached, are illustrated as a computational graph

in Fig. 4.2. There we denote the function that calculates the energy expectation value

from the local tensors A, the Hamiltonan H and the converged effective environment

tensors e∗(A) as

⟨H⟩ = E(e∗(A), A,H). (4.20)

Using that at the fixed point, the effective environment tensors will be reproduced in-

finitely often, we can write the energy gradient as

∂⟨H⟩
∂A

=
∂E
∂A

+
∂E
∂e∗

∞∑

n=0

(
∂c

∂e∗

)n
∂c

∂A
. (4.21)
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Figure 4.2.: Computational graph of the CTMRG procedure for calculating the energy
density at fixed point. Taken from [P6].

This equation formally requires only the calculation of a single Jacobian of the CTMRG

iteration function c10 at the fixed point from which the entire gradient can be created by

an infinite sum. In practice, summing up a finite number of the above terms converges

the gradient to a given accuracy.

4.2.4 Approximate Second Order Optimization

When optimizing the tensor product state based on the information we obtain from the

energy and the gradient, several schemes have been designed to additionally make use of

this information gathered in the previous optimization steps. One prominent example

of these schemes, the Broyden–Fletcher–Goldfarb–Shanno (BFGS) method, which is

used as the optimization workhorse in this thesis, is a version of the quasi-Newton

methods. In the following, we will briefly outline the idea for the quasi-Newton methods

for optimization, following mostly [133, 134].

In quasi-Newton methods, we construct a local, quadratic model mk of the energy

landscape around a certain set of ansatz-parameters Ak (in the case of a tensor product

10A single CTMRG iteration c is a composition of simple tensor network contractions, for which the
evaluation of the Jacobian is simple, as well as the computation of singular value decomposition for
which the same is also possible [130, 131, 132].
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state, the entries in the local tensors) at optimization step k

mk(p) = Ek +∇ETp+
1

2
pTBkp. (4.22)

The model is constructed such that it reproduces the energy and the gradient at the

ansatz-parameters Ak: mk(0) = Ek, ∇mk(0) = ∇Ek. The exact calculation of the

Hessian is prohibitively expensive, as it requires us to take the derivative of every one

of the possibly large number of components in the gradient. For this reason, we choose

for the matrix Bk an appropriate symmetric, positive definite approximation of the

Hessian. With these properties, such a model has a minimizer pk = −B−1
k ∇E, which

we use as a search direction to find a new set of parameters Ak+1 = Ak + αpk using

a line search algorithm to find a suitable number α. Now the approach taken by the

quasi-Newton methods is to calculate the energy Ek+1 and the gradient ∇Ek+1 at the

new parameters Ak+1 and to choose Bk+1 from information at the last parameter points

Ak. Concretely, we impose that the model mk+1 centered around the new parameter

points Ak+1, reproduce the gradient at the last parameter point Ak = Ak+1 − αkpk

∇mk+1(−αkpk) = ∇Ek+1 − αkBk+1pk
!
= ∇Ek, (4.23)

or equivalently

Bk+1 (Ak+1 − Ak)︸ ︷︷ ︸
=:sk

= ∇Ek+1 −∇Ek︸ ︷︷ ︸
=:yk

. (4.24)

From this requirement, we can construct an updated symmetric, positive definite

approximation of Bk+1 if sTk yk > 011. However, the requirement in Eq. (4.24), together

with enforcing the fact that Bk+1 should be symmetric and positive definite, does not

completely fix the solution Bk+1. The different schemes for choosing Bk+1 define the

different flavors of quasi-Newton methods. The most commonly used choice to obtain

the update Bk+1 is the BFGS method. This method additionally requires the inverse of

Bk+1 to be as close as possible to the inverse of Bk [134].

4.2.5 Challenges and Efficient Procedures for Gradient-Based Optimization

In many cases, the optimization using gradient-based schemes is straightforward, in that

the norm of the gradient ||∇E|| mainly decreases throughout the optimization iterations.

A certain value for the norm of the gradient is then taken as a termination condition for

the optimization. Choosing termination conditions for the optimization that require a

11This can be ensured by using an appropriate line-search procedure that determines αk [133]
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(a) (b)

Figure 4.3.: (a) Energy per unit cell of the infinite tensor product states (bond dimension
χB = 4) during the gradient-based optimization of the Kitaev model on the
honeycomb lattice [135]. We find a plateau in the energy around iteration
100, where the states have anti-ferromagnetic order, as is illustrated in the
inset. In the final optimized state, no local magnetization is present. (b)
Norm of the gradient of the energy during the optimization. We highlight
the gradient norms that, if used as convergence criteria, lead to qualitatively
different ground state approximations.

smaller gradient norm leads to more accurate, but qualitatively similar approximations

in these cases. However, we point out that in some settings, we might find plateaus

during the optimization on which the energy seems to have converged and the gradient

has become small. An example of such a behavior can occur when optimizing the

tensor product states as the ground state of the Kitaev-honeycomb model [135], which

is shown in Fig. 4.3. The final state using the convergence condition ||∇E|| < 10−5 yields

a vanishing magnetization, as is expected for the model. However, around iteration step

100, we already find a plateau in the energy, cf. Fig. 4.3a, where the gradient norm

becomes smaller than ||∇E|| < 10−4, cf. Fig. 4.3b. If we investigate the properties of the

states associated with this plateau, we find that they are anti-ferromagnetically ordered,

as we illustrate in the inset of Fig. 4.3a. This example demonstrated the necessity for

quite stringent convergence criteria as well as the usefulness of additional optimization

steps even if the state seems to have converged.

In addition to the challenges intrinsic to the gradient-based optimization discussed

above, problems in the optimization can arise when inaccurate approximations are taken

in the calculation of the energy expectation value via the CTMRG. This is because such

approximations can be exploited during the optimization, yielding suboptimal tensor
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product state approximations of the ground state. The accuracy of the energy approxi-

mation with the CTMRG at a fixed environment bond dimension χE, however, depends

on the properties of the tensor product state in question. Concretely, it depends on

the correlation length ξ of the state, which we will discuss in more detail in Sec. 4.3.1.

The correlation length of the state might change drastically throughout the optimization

procedure. It is thus advisable not to fix the environment bond dimension χE for the

entire optimization procedure but to choose χE dynamically depending on the state.

This can be done, e.g., by tracking the norm of the discarded singular values in SVD

ϵ = ||S − S̃|| used to construct the truncation of the environment bond dimension and

choosing χE dynamically such that the truncation is done with a fixed accuracy, e.g.

ϵ < 10−4 [P6].

Further, we highlight that to improve the efficiency of the gradient-based ground state

search, we can reuse results from previous optimization steps. Specifically, during the

later stages of the optimization, the tensor product state usually changes only slightly

in every optimization step. However, the effective environment tensors must be com-

puted for every state during the optimization using the CTMRG algorithm. A way to

significantly reduce the number of CTMRG iterations necessary to compute the effec-

tive environment tensors is to use the effective environment tensors from the previous

optimization step as a starting point [P6].

4.3 Beyond Local Observables

Representing a quantum state as a tensor product state allows us to access information

about the state beyond the local observables. For example, correlation functions can

be accessed numerically and analysed with extrapolation schemes [136, 137] as we will

discuss in Sec. 4.3.1. It is also possible to access the Fourier transform of the correlation

function, the static structure factor [124, 138, 139, 140], for which we briefly describe

the simplest approach in the App. of [P3]. Similar numerical approaches also allow

for the calculation of low-lying excited states and their momentum resolved spectra

[113, 138, 139, 140]. Beyond that, the bulk-boundary correspondence for tensor product

states [141], whose derivation we discuss in detail in Sec. 4.3.2, allows us to investigate

entanglement quantities, such as the entanglement spectrum [142, 143].
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4.3.1 Transfer Matrix and Correlation Functions

Obtaining correlation functions and correlation lengths when using infinite tensor prod-

uct states can be done numerically with the effective tensors generated with the CTMRG

algorithm, cf. Sec. 4.1.1. This always involves finite environment bond dimension ap-

proximations. A straightforward, efficient way of obtaining these results exactly is not

known for tensor product states12. We can express the correlation function along a

Cartesian direction at some distance for a completely translation-invariant tensor prod-

uct state as

⟨ψTPS| Ô[r⃗]Ô[r⃗ + ke⃗y] |ψTPS⟩ = AÔ

Cdl Td

Cul Tu

Tl

k − 1

A

Td

Tu

AÔ

Td Cdr

Tu Cur

Tr

= ⟨Bleft| (TA)
k−1 |Bright⟩ .

(4.25)

Let us note that in practical calculations, this expression should be properly normalized,

similar to Eq. (4.2). Beyond the evaluation of the above formula, we can also analyze the

transfer matrix TA of the tensor product state. It is defined as a column of double-layer

local tensors. For numerical calculations TA is expressed using the effective CTMRG

environment tensors shown in Eq. (4.25) and therefore inherits the environment bond

dimension χE as a refinement parameter. If we are interested in the correlation length

ξ of our state, which governs the large-distance decay of the connected-correlation func-

tions

⟨Ô[r⃗]Ô[r⃗ + ke⃗y]⟩c = ⟨Ô[r⃗]Ô[r⃗ + ke⃗y]⟩ − ⟨Ô[r⃗]⟩⟨Ô[r⃗ + ke⃗y]⟩, (4.26)

we can perform an eigenvalue decomposition of the transfer matrix

⟨Ô[r⃗]Ô[r⃗ + ke⃗y]⟩ = ⟨Bleft|
(∑

i

|li⟩ (λi)l−1 ⟨ri|
)
|Bright⟩

= ⟨Bleft|li⟩ (λ1)k−1
∑

i

(
λi
λ1

)k−1

⟨ri|Bright⟩ .
(4.27)

12This stands in contrast to the case of translational invariant MPS, where the correlation length can
be obtained from the leading gap of the transfer-matrix. Further, the computation of correlation
functions only involves tensor networks, which can be contracted exactly and efficiently [15].
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(a) (b)

Figure 4.4.: (a) Largest magnitude eigenvalues of the transfer matrix are shown as a
function of the inverse environment bond dimension 1/χE for the short-range
RVB state on a square lattice. (b) Extrapolation of the inverse correlation
length 1

ξ
= − log(λ2

λ1
) against the negative logarithm of a subleading gap

[136]. The extrapolation is consistent with an infinite correlation length.

The gap between the leading and first subleading eigenvalues dictates the decay of the

connected correlation function at large distances, as the contribution from the leading

eigenvalue cancels with the unconnected part. We thus obtain the correlation length

ξ = − 1

log(
λ2
λ1

)
accurately if bond-dimension χE is large enough to approximate the transfer

matrix TA well. However, for states with very large or even infinite correlation lengths,

an approximation at small, finite χE will induce an artificial correlation length into

the system which depends on the value of χE. We illustrate this in Fig. 4.4a, which

shows the first eigenvalues of the tensor product state transfer matrix for the short-

range RVB state on the square lattice [15], which we discussed in Sect. 3.2.2. We see

that at all values of χE the correlation length will be finite, while increasing for larger

χE. In these cases, it may be required to use an extrapolation scheme to extract reliable

information [136, 137]. One example of this is to extrapolate the size of the first gap in

the transfer matrix-spectrum against subleading gaps, which are expected to vanish as

well in a system of infinite correlation length. An example of such a procedure is shown

in Fig. 4.4b. We find that the correlation length for the short-range RVB state on the

square lattice indeed becomes infinite.

From this we can conclude that while tensor product states can represent states with

infinite correlation length and algebraically decaying correlation functions, in numeri-

cal calculations this comes at the price of necessitating diverging environment bond-
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dimensions13. This makes it necessary to use extrapolations.

4.3.2 Bulk-Boundary Correspondence: Entanglement Spectrum and Renyi

Entropies

Within the framework of tensor product states, we can construct the reduced density ma-

trix for system bipartitions. This is of interest for the analysis of entanglement quantities

such as entanglement entropies (and their topological corrections) or the entanglement

spectrum. Remarkably, it is possible to construct the reduced density matrix for a tensor

product state in such a form that it becomes an example of a so-called bulk-boundary

correspondence [141]. Concretely, this means that we can express the reduced density

matrix for a region A in terms of operators acting on the virtual boundary of the tensor

product state on region A, as we show in the following. That such an expression in terms

of boundary operators might be possible follows already from our previous discussion in

Sect. 2.3.1, where we discussed the boundary law property of the tensor product states.

The central argument to show the boundary law property of these states was that the

rank of the reduced density matrix of a region A is limited by the dimension of the

virtual space on the boundary of the region A. Deep connections between the spectrum

of the reduced density matrix and properties of the physics on the boundary have also

been conjectured by Li and Haldane [142, 143]. They noticed that for fractional Hall

states, the spectrum of the reduced density matrix is related to the low-lying physical

spectrum of the boundary theories for these states.

To construct the bulk-boundary formula for the reduced density matrix, we need to

fix the notation and the setting. Here we mainly follow the construction of [141]. We

consider a tensor product state on a (finite) cylinder, which we partition into two small

cylinders by a cut along the periodic direction of the cylinder. This cut leaves open

the virtual indices along the cut, cf. Fig 4.5. Let us call the collection of all physical

indices on the left part of the cylinder SL = {s1,1, ..., s1,Nh
, s2,1, ..., s2,Nh

, ..., sl,1, ..., sl,Nh
}

and analogously define SR for the collection of all physical indices on the right. The

open virtual indices, which connect the two cylinders along the cut, are referred to as

Λ. With this collection of indices, we can proceed to define the elements of the tensor

networks on the left and right sides of the bipartition14. We call these elements LSLΛ for

13The fact that any approximation of the connected correlation function at finite χE will yield a finite
correlation length is to be expected already from the form of Eq. (4.25). This formula is very similar
to an expectation value of an MPS, which always yield a finite correlation length.

14Notice the slightly unusual directionality of the legs on the cut, which we choose for later notational
convenience.
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s1,1 s4,1

s1,4 s4,4

|ΨL⟩

Λ

s5,1 s8,1

s5,4 s8,4

|ΨR⟩
Figure 4.5.: Illustration of a bipartition of a tensor product state on a finite cylinder.

|ψL⟩ is defined as a state on the physical degrees of freedom of the left part
of the cylinder and the virtual degrees of freedom on the cut. The collective
virtual degrees of freedom on the cut are labeled by Λ. We define |ψR⟩, the
state on the right part of the cylinder, completely analogously.

the left-hand side and analogously for the right part RSRΛ. They can be seen as elements

of the (multi-leg) vectors |ψL⟩ =
∑

SLΛ
LSLΛ |SL⟩ |Λ⟩ and |ψR⟩ =

∑
SRΛR

SRΛ |SR⟩ |Λ⟩
that we show in Fig. 4.5. With this notation, we can write the tensor product state

vector as

|ψ⟩ =
∑

Λ

⟨Λ| ⟨Λ| |ψL⟩ |ψR⟩

=
∑

SLSR

∑

Λ

LSLΛRSRΛ |SLSR⟩ .
(4.28)

In case we fix a physical configuration SL or SR, we can also define state vectors purely

on the virtual spaces

|LSL⟩ =
∑

Λ

LSLΛ |Λ⟩ , |RSR⟩ =
∑

Λ

RSRΛ |Λ⟩ . (4.29)

We now investigate the reduced density matrix for the left part of the cylinder in this
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setting

ρL = TrR[|ψ⟩ ⟨ψ|]
=
∑

SR

⟨SR|
∑

SLS̃RS′
LS̃

′
R

∑

ΛΛ′

LSLΛRS̃RΛ |SLS̃R⟩ ⟨S′
LS̃

′
R| (LS′

LΛ
′
)∗(RS̃′

RΛ′
)∗ |SR⟩

=
∑

SLS
′
LSR

∑

Λ,Λ′

LSLΛRSRΛ |SL⟩ ⟨S′
L| (LS′

LΛ
′
)∗(RSRΛ′

)∗.

(4.30)

The first thing to notice from this is that we can rewrite much of this expression in terms

of the purely virtual state vectors of Eq. (4.29) and their corresponding density matrices

σL =
∑

SL

|LSL⟩ ⟨LSL| , σR =
∑

SR

|RSR⟩ ⟨RSR | . (4.31)

This rewriting leads us to the form

ρL =
∑

SLS
′
L

∑

ΛΛ′

LSLΛ |SL⟩ ⟨S′
L| (LS′

LΛ
′
)∗ ⟨Λ| σR |Λ′⟩

=
∑

SLS
′
L

|SL⟩ ⟨(LSL)∗| σR |(LS′
L)∗⟩ ⟨S′

L| .
(4.32)

At this stage, we already have a form exhibiting some of the properties we set out to

find. ρL can be seen as a map that first maps from the physical space on the left part of

the cylinder to the virtual space on the cut. There, the operator σR is applied, which is

defined purely on the virtual boundary, and the result is mapped back to the physical

space afterward. However the mapping from physical to virtual space
∑

S′
L
|(LS′

L)∗⟩ ⟨S′
L|

is not yet an isometry as the states |LS′
L⟩ are not orthonormal. This can be achieved by

moving to a different basis

|χΓ⟩ =
∑

SL

⟨Γ| 1√
σL

|LSL⟩ |SL⟩ . (4.33)

Note that because σL is a density matrix and hence positive-semidefinite, we can define

a unique square root of this matrix. |Γ⟩ labels an orthonormal basis on the range15 of

15The space orthogonal to the kernel of a matrix.
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σL, while |χΓ⟩ is an orthonormal basis on the physical space as well16. We find that after

we perform this basis change

ρL =
∑

SLS
′
L

∑

ΓΓ′

|χΓ⟩ ⟨χΓ|SL⟩︸ ︷︷ ︸
= ⟨LSL| 1√

σL
|Γ⟩

= ⟨Γ∗|
( 1√

σL

)T |(LSL)∗⟩

⟨(LSL)∗| σR |(LS′
L)∗⟩ ⟨S′

L|χΓ′⟩ ⟨χΓ′ |

=
∑

ΓΓ′

|χΓ⟩ ⟨Γ∗|
( 1√

σL

)T
σT
LσRσ

T
L

( 1√
σL

)T |Γ′∗⟩ ⟨χΓ′ |

=
∑

ΓΓ′

|χΓ⟩ ⟨Γ∗|
√
σT
LσR

√
σT
L |Γ′∗⟩ ⟨χΓ′| ,

(4.34)

where we have used that
∑

SL
|(LSL)∗⟩ ⟨(LSL)∗| = σT

L . By identifying the isometries

U =
∑

Γ |χΓ⟩ ⟨Γ∗|, we finally obtain the desired bulk-boundary form for the reduced

density matrix

ρL = U
√
σT
LσR

√
σT
LU

†. (4.35)

This form is remarkable for several reasons. Firstly, as the isometries do not change the

spectrum of the reduced density matrix17, and hence we have found a set of operators on

the virtual boundary of the tensor product states that share the spectrum of the density

matrix. This can be used for numerical purposes, as computing properties of reduced

density matrices for large regions A would be challenging otherwise due to the exponen-

tial growth of the physical Hilbert space. Secondly, it is interesting from a conceptual

point of view, that we can calculate the exact expectation value of any observable in

the domain of ρL by mapping it to the virtual boundary and subsequently evaluating it

with the boundary-operators ⟨O⟩ = Tr(ρLO) = Tr(
√
σT
LσR

√
σT
L(U

†OU)).

16

⟨χΓ′ |χΓ⟩ =
∑

SL,S′
L

⟨Γ| 1√
σL

|LS′
L⟩ ⟨LSL | 1√

σL
|Γ′⟩ ⟨S′

L|SL⟩

=
∑

SL

⟨Γ| 1√
σL

σL
1√
σL

|Γ′⟩ = δΓΓ′ .

17The rank of the reduced density matrix is capped at the dimension of the virtual space.
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Entanglement Spectrum

We now discuss the application of this formula for the numerical calculation of the en-

tanglement spectrum for a tensor product state of interest. The entanglement spectrum

[142, 143] refers to the spectrum of the entanglement Hamiltonian HE, which we define

via

ρL = exp(−HE), (4.36)

such that by taking the negative logarithm of the eigenvalues of ρL we can obtain the

spectrum of HE. Using the translation-invariant infinite tensor product states, it is most

convenient to treat a system on a finite-circumference cylinder of infinite length. This is

because we can easily represent σL and σR approximately using the effective environment

tensors from the CTMRG algorithm discussed in Sect. 4.1.1 in this situation. As the

T -tensors resulting from the CTMRG algorithm are an approximation of an infinite strip

of local double-layer tensors of the state

Tr ≈ . . . , (4.37)

we can approximate

σR =

. . .

. . .

. . .

. . .

≈

Tr

Tr

Tr

Tr

, (4.38)

as a matrix product operator (MPO) built from the T -tensors with periodic boundary

conditions [97]. For the entanglement spectrum, we are interested in two quantities.

Firstly, the logarithm of the eigenvalues of ρL and secondly, the momentum eigenvalue

that we can associate with the corresponding eigenvector in translationally invariant

settings. For these quantities, it is possible to focus on σT
LσR instead, which is more

73



Tl

Tl

Tl

Tl

Tr

Tr

Tr

Tr

(a)

=

(b)

Figure 4.6.: (a) Illustration of σT
LσR in MPO form. We fold open the virtual indices cor-

responding to bra- and ket-layer to perform the multiplication. (b) Trans-
lation operator, generating the momenta along the cylinder in MPO form.

convenient since we have numerical access to an approximation of σL and σR. This is

possible as they are related to each other by a similarity transform

σT
LσR =

√
σT
L

(√
σT
LσR

√
σT
L

)
1√
σT
L

(4.39)

and hence have identical eigenvalues. Of course, the eigenvectors are not identical; how-

ever, they share the same momentum eigenvalue. To see this, let us consider an eigenvec-

tor of σT
LσR, which we refer to as |γ⟩. The corresponding eigenvector of

√
σT
LσR

√
σT
L that

shares the same eigenvalue is 1√
σT
L

|γ⟩. Since 1√
σT
L

is translation invariant by construc-

tion, it commutes with the translation operator, and we thus obtain the same momentum

eigenvalue as for |γ⟩. Consequently, whenever we are interested in the properties of the

entanglement spectrum for numerical purposes, we consider σT
LσR, the MPO form of

which we illustrate in Fig. 4.6a. For completeness, let us note that the translation oper-

ator, from which we generate the momentum eigenvalue, can also be written in the form

of an MPO, which we show in Fig. 4.6b.

With the description of σT
LσR at hand, we can proceed to use iterative eigen-solvers to

obtain the largest eigenvalues and eigenvectors of ρL, which correspond to the smallest

eigenvalues of HE, which is commonly of interest. Let us mention that the setup on a

cylinder of finite circumference leads to discrete values of the momenta of the entangle-

ment spectrum. This can be used as an advantage for cases in which we want to access

the counting of edge modes to identify certain states through the entanglement spec-
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trum, as we do in publication [P1,P2]. Let us further mention that we can also set up

σT
LσR directly in the thermodynamic limit by defining it in a translation-invariant man-

ner as an MPO without periodic boundary conditions [144]. Using MPS techniques [104,

145], we can subsequently calculate excited states at fixed momenta for this MPO. This

procedure gives us access to the low-lying entanglement spectra at arbitrary momenta

due to the infinite size of the system. This comes with the consequence of losing the

ability to use counting properties for edge spectra in this case, which rely on a discrete

structure of momentum space. Again, we use this technique in the analysis performed

in publication [P1].

Rényi Entropies

We can also use the bulk-boundary formula for the reduced density matrix ρL to access

Rényi entropies.

Sα(ρL) =
1

1− α
log(Tr(ραL)). (4.40)

We can again use the formula for the reduced density matrix of eq. (4.35) to express

Rényi-entropies. Let us consider the second Rényi-entropy for the bipartition of a cylin-

der

S2(ρL) =− log(Tr(ρ2L))

=− log(Tr(σT
LσRσ

T
LσR)).

(4.41)

We can numerically evaluate this formula by using the approximation from Eq. (4.38),

allowing us to represent the σ-matrices using our CTMRG environment tensors [83].

This allows us to express the trace in the equation for the second-Rényi entropy as

Tr(σT
LσRσ

T
LσR) = ... ... ... ...

Tl Tr Tl Tr

Tl Tr Tl Tr

Tl Tr Tl Tr

=

D

D

D

...
, (4.42)
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Figure 4.7.: Scaling of the second Rényi entropy for a bipartition on a cylinder, as a
function of the cylinder circumference. We can identify the topological en-
tanglement entropy by scaling the cylinder circumference to zero.

where the trace is implemented by connecting virtual indices in the horizontal direction.

The second equality in Eq. (4.42) uses an eigendecomposition of the operator

Tl Tr Tl Tr = D

U -1

U

. (4.43)

The form of Eq. (4.42) is convenient to evaluate Eq. (4.41) for situations of large and

variable cylinder circumferences L18 [83], as it only requires us to evaluate powers of a

diagonal matrix. Note that at large cylinder circumferences, the trace is dominated by

the largest magnitude eigenvalues, such that is sufficient to only consider these.

This construction of the Rényi-entropies can be useful in the calculation of universal

topological corrections, referred to as topological entanglement entropy [146, 147], to

these Rényi-entropies. This topological entanglement entropy γ had been introduced as

a universal correction to the non-universal boundary law scaling of the von Neumann

entanglement entropy S(L) ∼ αL−γ, but it has been shown to be identical for all Rényi-

18In practical calculations, we might have a representation of ρL which is not normalized. We can easily
account for this by dividing ρL by a factor of Tr(ρL)

2 = Tr(σT
LσR)

2 in this eq. (4.41).
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entropies for non-chiral states [148]. As an example, we show in Fig. 4.7 the evaluation

of the second Rényi entropy for a numerically optimized ground state of the toric code

Hamiltonian. Fitting the boundary law scaling to the second Rényi entropy allows us

to estimate the topological entanglement entropy19 [83].

Comment on Numerical Approximations and Refinement

When we employ the above schemes for numerical calculations, it is important to realize

that this will involve numerical approximations, which we will briefly discuss here20.

The central approximation in the evaluation of the entanglement quantities discussed

above is the representations of σL and σR with the use of the CTMRG tensors. Since

we use finite bond dimension approximations of these objects, a careful convergence

check in the bond dimension used for the approximation is advisable. We further note

that an additional approximation can stem from using the T -tensors, calculated using

the CTMRG algorithm. This algorithm is performed on a planar geometry, and its

resulting tensors T -tensors are then used on a cylindrical geometry.

19We note that this procedure can be difficult, as a typically small correction needs to be fitted from
linear behaviour at large cylinder circumferences, which can lead to inaccuracies.

20Usually in numerical calculations, tensor product states are themselves approximations of ground-
states of Hamiltonians. Here we only discuss the approximations for the entanglement quantities of
a given tensor product state.
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CHAPTER 5

Fractional quantum Hall states with variational

projected entangled-pair states: A study of the

bosonic Harper-Hofstadter model

Authors: Erik Lennart Weerda, Matteo Rizzi

Year: 2024

Journal: Physical Review B (Letter)

Volume / Issue: 109/24

DOI: 10.1103/PhysRevB.109.L241117

5.1 Summary and Context

In this publication, we investigate the Harper-Hofstadter model, describing mobile bosonic

particles in an external magnetic field. The model is relevant to current cold atom ex-

periments [149, 150, 151, 152, 153], setting out to realize and study fractional quantum

Hall states [8, 95, 96].

The investigation of the model has been performed using infinite projected entangled-

pair states, which are alternatively referred to as infinite tensor product states and are

the subject of Part I of this thesis. With this numerical approach, we studied the phase

diagram of the Harper-Hofstadter model for multiple values of the magnetic flux as

a function of the chemical potential. Several regions of the phase diagram realizing

fractional Hall states were identified. For these states, we studied the bulk correlation

functions, cf. Sec. 4.3.1, and their edge spectrum via the entanglement spectrum [142,
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143]. For this, we employed the bulk-boundary correspondence [141] of the tensor prod-

uct states, which we discuss in Sec. 4.3.2. We find a chiral edge spectrum, which upon

discretization of the momenta yields the degeneracy counting according to the partition

of integers expected for the Laughlin state [8].

This publication’s impact in the context of this dissertation can be viewed as twofold.

Firstly, it establishes that with the help of variational optimization, infinite tensor prod-

uct states can be used to study chiral topological states of matter in realistic mod-

els. This task had proven to be prohibitively difficult using conventional optimization

schemes using Trotterized imaginary time evolution. In addition, due to no-go theo-

rems [91, 90] in related situations, the applicability of the tensor product states was in

question, cf. Sec. 3.2.4, and only specially constructed quasi-parent Hamiltonians [154,

97] of such chiral topological states had been studied using the tensor product states.

Secondly, as the tensor product states provide a unique perspective from the thermody-

namic limit, the results from this publication shed light on the stability of the fractional

Hall states when finite-size effects are removed. This is relevant for the prospects of

realizing such states in larger, next-generation cold atom experiments. Consequently,

the publication contributes a demonstration of the scope of applicability of the tensor

product states for chiral topological states and new insights into the phase diagram of

the Harper-Hofstadter model in the thermodynamic limit.

5.2 Authors Contribution

E. L. Weerda carried out the research for this project with supervision from M. Rizzi. He

performed all calculations, analysed the results, and wrote the manuscript with feedback

from M. Rizzi.
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CHAPTER 6

Triangular lattice models of the Kalmeyer-Laughlin

spin liquid from coupled wires

Authors: Tingyu Gao, Niklas Tausendpfund, Erik Lennart Weerda,

Matteo Rizzi and David F. Mross

Year: 2025

Journal: Arxiv Preprint

Volume / Issue: arXiv:2502.13223

DOI: 10.48550/arXiv.2502.13223

6.1 Summary and Context

In this preprint, we construct a local spin model, such that it hosts a Kalmayer-Laughlin

chiral spin liquid [155] as its ground state. Local models of this kind are a crucial first

step towards the realization of such phases.

The construction of the local models works by coupling one-dimensional spin-chains in

the gapless phase, such that left- and right-moving modes on adjacent chains gap out and

isolated directional modes remain on the boundary. This construction yields a spin model

on a triangular lattice, which we subsequently study for a set of parameters that have

not been fine-tuned. We perform numerical analysis of the resulting model on various

quasi-one-dimensional geometries (thin cylinders) using matrix product state methods

[104, 156]. These investigations reveal properties such as, e.g., spin pumping upon flux

insertion through the cylinder and entanglement spectrum signatures that hint at the

presence of the desired chiral spin liquid. In addition, we use the infinite tensor product
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states, cf. Part I of this thesis, to investigate the model in the thermodynamic limit of

a truly two-dimensional setting. We find a state with vanishing local magnetization as

the ground state of the ansatz used. We employ the bulk boundary correspondence of

the tensor product states, discussed in Sec. 4.3.2, to investigate the boundary spectrum

of the states via the entanglement spectrum [142, 143]. We can identify the counting of

the degeneracy of the momentum modes according to the partition of integers, expected

for a Kalmayer-Laughlin chiral spin liquid.

In the context of this thesis, this preprint presents an investigation of exotic quantum

matter using the infinite tensor product states. The lattice model at hand required

careful ground state search using variational optimization and advanced analysis using

the entanglement spectrum.

6.2 Authors Contribution

E. L. Weerda carried out the numerical analysis of the lattice model in the two-dimensional

setting using the infinite tensor product states. He further contributed to the discussion

about the rest of the numerical analysis. He also wrote the section of the manuscript

describing the two-dimensional analysis of the model using tensor product states. He

was involved in discussions on the clarity of the writing of the remaining sections of the

manuscript.

6.3 Odds and Ends

In addition to what is reported in the preprint above, we have since performed additional

calculations on this model. In this section, we detail the results of these investigations.

First, we have optimized the infinite tensor product state using an additional ansatz.

It is identical to the one we illustrate in Fig. 14 of the preprint; however, we drop the rela-

tion between the local tensors A and B, which is shown on the right of Fig. 14. Using this,

less restrained ansatz, we have identified an additional low-energy phase of the model.

This additional phase has finite local magnetizations that are anti-ferromagnetically

aligned between tensors A and B, and the magnetizations lie in the XY-plane. We refer

to this phase as the XY-phase. We can compare the energies of this XY-phase and the

desired chiral spin liquid in Fig. 6.1a.

Let us comment on these numerical results, focusing first on the results for the XY-
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(a) (b)

Figure 6.1.: (a) Energy density for the chiral spin liquid and the XY-phase for different
bond dimensions. The solid lines correspond to a fit of f(χB) = c0 + c1(

1
χB

)c2

to the data and should be treated as a guide to the eye. (b) Difference in
the energy density of the chiral spin liquid and the XY-phase. We show
again a fit of the previous form as a guide to the eye.

phase. These numerical results were obtained using gradient-based optimization using

the full projectors. We first optimized up to a gradient of ||∇E|| < 10−4 using en-

vironment bond dimensions χE = (80, 120, 140, 196) for the optimization of the local

bond dimensions χB = (4, 5, 6, 7) and evaluated the energy using environment bond

dimensions χE = (120, 150, 200, 230). After the gradient threshold above was reached,

we continued with the optimization until terminating the optimization at states with

corresponding gradient norm ||∇E|| = (4.28×10−5, 5.32×10−5, 8.28×10−5, 1.33×10−4).

Next, we give some details on the numerical results for the chiral spin liquid phase.

The gradient-based numerical optimization of states in this phase is particularly chal-

lenging due to the unphysical tails in the correlations that are, e.g., described in our

publication [P1]. This means that a very large number (∼ 200) of CTMRG iterations

are necessary to converge the CTMRG environments, which leads to a substantial com-

putational time necessary for every optimization step (∼ 24h at χB = 7). We again

performed the optimization, as we did for the XY-phase, using full projectors. We have

used environment bond dimensions χE = (120, 150, 160, 142) during the optimization

for bond dimensions χB = (4, 5, 6, 7). The reason we choose a smaller environment

bond dimension for χB = 7 is to avoid unnecessarily time-consuming optimization steps.

However, to be sure of the energy values, we choose the environment bond dimensions

χE = (150, 180, 220, 230) to evaluate the energy expectation values of the last states
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of the optimization. For bond dimension χB = 4 and χB = 5, we have reached the

threashold of ||∇E|| < 10−4, while for χB = 6 and χB = 7 we have not reached this

threashold, suggesting that these states are less well converged than their counterparts

in the XY-phase. We have then continued with the optimization until terminating with

states of gradient norms ||∇E|| = (3.58× 10−5, 4.82× 10−5, 1.27× 10−4, 3.97× 10−4).

From these results, we find a very close competition between the energies of the chiral

spin liquid phase and the XY phase. Due to this extremely close competition and the

fact that the energy values of both the chiral spin liquid for χB = 6 and χB = 7 are

likely to change in the 4’th or 5’th significant digit upon further optimization, we can

not definitively conclude that either of the two phases is the ground state of the model.

However, let us note that it can be argued that the general trend of a decreasing energy

difference with increasing bond dimension suggests that the chiral spin liquid could be

the ground state of the model if one removes the constraints of finite bond dimension

from the ansatz. The difference as a function of bond dimension is shown in Fig. 6.1b.

Therefore, further optimization using a more efficient algorithm, like the split-CTMRG

described in publication [P4], will be performed in the future to obtain more conclusive

results. Additionally, we mention that a more careful choice of model parameters could

help achieve a larger gap in the energy density of the competing phases.

The data shown and the corresponding optimized tensors can be found in [157].
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Bathing in a sea of candidate quantum spin liquids:

From the gapless ruby to the gapped maple-leaf

lattice

Authors: Philipp Schmoll*, Jan Naumann*,

Erik Lennart Weerda, Jens Eisert, Yasir Iqbal

Year: 2025
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Volume / Issue: arXiv:2407.07145
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*Both first authors have contributed equally.

7.1 Summary and Context

In this publication, we studied a spin-1
2
Heisenberg antiferromagnet on the generalized

maple-leaf lattice. By varying the Heisenberg couplings Jg on one of the symmetry

inequivalent links of the maple-leaf lattice from zero towards one and beyond, we obtain

a parameterized interpolation of the isotropic Heisenberg antiferromagnet from the Ruby

(Jg = 0) to the maple-leaf lattice (Jg = 1). This model of frustrated magnetism has

attracted particular interest, as several materials exhibit the maple-leaf lattice structure

[158, 159, 160, 161, 162], and theoretical investigations have suggested the possibility of

this model hosting a quantum spin liquid as the ground state [163].
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This model was studied using the tensor product states introduced in Part I of this

thesis. Specifically, a spiral tensor product state ansatz [164] was generalized to this

non-Bravais lattice and employed in the numerical calculations. Using this approach,

we calculated the ground state energies and average local magnetizations, which were

used as a magnetic order parameter. The extrapolation of these quantities, in particular

the magnetic order parameter, showed an extensive non-magnetic parameter regime of

Jg for the model extending from the Ruby to the maple-leaf point and beyond. For

parameter values of Jg > 1.2, a magnetically ordered phase and a dimer phase were

identified. We studied the stability of the non-magnetic regime to an additional external

magnetic field. The presence of a stable plateau at zero magnetization was observed at

the maple-leaf point, whereas on the ruby lattice, the external magnetic field immediately

leads to a finite magnetization. Furthermore, static structure factors at the Ruby lattice

and maple-leaf point were studied. In light of these results, the possibility of different

quantum spin liquid results was discussed.

In the context of this thesis, this study represents the application of the infinite tensor

product state framework to a highly challenging model of frustrated magnetism. The

study offers a complementary perspective from tensor networks in the thermodynamic

limit to alternative methods applied to this scenario, like density-matrix renormalization

group and neural quantum states [165], pseudo-fermion functional renormalization group

[163], and coupled cluster methods [166]. As such, this study contributes to the numerical

insights into this highly complex scenario of frustrated magnetism.

7.2 Authors Contribution

E. L. Weerda was involved in generalizing the spiral ansatz used in the publication to

non-Bravais lattices and contributed to the computational approach of the structure

factor. He proposed computational strategies to achieve smooth convergence across the

parameters studied in the publication. He was involved in the discussions of the results.
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CHAPTER 8

Variationally optimizing infinite projected

entangled-pair states at large bond dimensions:

A split corner transfer matrix renormalization group

approach

Authors: Jan Naumann*, Erik Lennart Weerda*,

Jens Eisert, Matteo Rizzi, Philipp Schmoll

Year: 2025

Journal: Physical Review B

Volume / Issue: 111 / 23

DOI: 10.1103/PhysRevB.111.235116

*Both first authors have contributed equally.

8.1 Summary and Context

The central method used in this thesis is the class of quantum states called the projected

entangled pair states, which are alternatively referred to as tensor product states, cf.

Part I.

In this work, we propose an alternative method for the contraction of infinite ten-

sor product states. The proposed scheme modifies the well-established corner transfer

matrix renormalization group (CTMRG) algorithm [106, 107, 108, 109, 110, 111, 112],

which we discuss in Sec. 4.1.1. Our novel approach addresses a key issue in the pursuit of
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highly accurate numerical calculations using infinite tensor product states, namely, the

unfavorable scaling of the computational cost as a function of bond dimension. The con-

ventional CTMRG algorithm scales as O(χ6
Bχ

3
E), leading to an overall scaling of O(χ12

B )

under the conventional assumption χE ∼ χ2
B. This scaling eventually prohibits the use

of unconstained tensor product states with bond dimension χB > 8 for variational op-

timization, as the computational time required becomes impractical. This presents a

limiting factor on the amount of entanglement that can be encoded in variationally opti-

mized tensor product states and hence limits the accuracy that can be achieved with this

ansatz class for challenging physical situations. To address this issue, we propose the

split-CTMRG algorithm. It reduces the computational scaling of the CTMRG algorithm

by defining environment tensors for bra- and ket- layers of the double layer contraction

separately. This reduces the rank of the environment tensors, and consequently leads to

a more favorable computational scaling O(χ10
B ), which can be further reduced to O(χ9

B)

with additional approximations. We numerically analysed our split CTMRG method,

finding that we can preserve the accuracy of the CTMRG algorithm. This is achieved

with carefully chosen schemes for the truncation of the environment bond dimension in

the split CTMRG algorithm.

Hence, this publication presents a methodological advance for the tensor product

states, the central approach used in this thesis. It promises to push the limits of accurate

variational ground state investigations using the tensor product states.

8.2 Authors Contribution

E. L. Weerda was one of the two authors who developed the split-CTMRG algorithm.

Additionally, he analysed the scaling advantage and devised the benchmarks to assess

the accuracy and efficiency of the split-CTMRG algorithm in practice. Further, he wrote

the majority of the manuscript.
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Konrad Schröder, Matteo Rizzi

Year: 2025

Journal: Physical Review B
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*Both first authors have contributed equally.
†This publication has been choosen as an Editors’ Suggestion.

9.1 Summary and Context

In this publication, we investigate conceptual and methodological aspects of projected

entangled-pair states, alternatively referred to as tensor product states, on finite lattices.

We discuss the unique advantages and explore several challenging applications of this

method.

After the first proposal of the tensor product states [12], the most used flavor of this

class of quantum states were the translationally invariant infinite tensor product states

[29], for which a plethora of methods were developed, cf. Part I of this thesis, and the

scope of applications of this method has steadily grown. In contrast to this, the appli-

cation of tensor product states to finite lattices has been significantly less explored due

to various numerical challenges. However, a sampling-based framework for the tensor
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product states on finite lattices has recently shown significant progress towards greater

utility of this approach [30, 31, 32, 33]. To add to this progress, in this work we pro-

pose the use of a more efficient formulation of the time-dependent variational principle

(TDVP) [127, 167, 168, 169, 31] for ground state search in the sampling context. This

formulation has been used in the neural quantum state community under the name of

minimum-step stochastic-reconfguration [170]. Further, we investigate the role of the

difficulty of the contraction of samples of finite tensor product states, identifying an

entanglement phase transition for random tensor product states and proposing a predic-

tive quantity for the sample contracability of physically relevant tensor product states.

In addition to the conceptual results, in this publication, we show the power of this

approach for tackling state-of-the-art problems in many-body physics from chiral spin

liquids [154] to long-range interacting Rydberg atom arrays [171, 172]. An open-source

implementation of the finite tensor product state techniques used in these investigations

is provided alongside this publication.

In the context of this thesis, this publication thus presents a methodological contri-

bution to the sampling-based framework for finite tensor product states, complementing

advances made in the context of infinite tensor product states. Further, this publication

points out the great utility of this finite tensor product state framework for the investi-

gation of states of matter accessible in cold atom experiments, in particular those with

long-range interacting Rydberg atom arrays, which is now actively pursued further.

9.2 Authors Contribution

E. L. Weerda initialized the project, motivated by the use of the finite tensor product

states for investigations of long-range interacting Rydberg arrays. He contributed to

the conceptual development of the computational strategies and the design of the code

structure. He was one of the two major contributors to the analysis of the contractibility

of both random and physically motivated tensor product states. He was the driving

force in the choice of applications and the analysis of the results. Further, he wrote the

majority of the manuscript.
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CHAPTER 10

Josephson Junction Arrays on the Dice Lattice at

Frustration f = 1
3

10.1 Introduction

Josephson junction arrays (JJAs) have long been an interesting experimental platform for

many-body physics [173]. Recent technological advances have made electrically tunable

Josephson Junction arrays possible, in which Josephson- and charging energies can be

manipulated within a single sample [174, 175, 176, 177, 178], driving renewed interest

towards this platform.

In this chapter, we present some of the results of an ongoing study of the physics

of these JJAs on a dice lattice geometry. The dice lattice is illustrated in Fig. 10.1a.

In addition to this geometry for the JJAs, we consider the presence of a perpendicular

magnetic field. We describe this situation using the following model

H = −EJ

∑

⟨i,j⟩
cos(ϕj − ϕi − Aij︸ ︷︷ ︸

θij

) +
1

2

∑

i

ECn
2
i . (10.1)

The first term describes the Josephson energy, resulting from the gauge-invariant phase

difference (GIPD) θij between two adjacent superconducting islands. The GIPD is a sum

of the phase difference ϕj − ϕi on superconducting islands of the JJA, and the integral

over the vector potential Aij =
2π
Φ0

∫ r⃗j
r⃗i
A⃗(r)dr⃗, where Φ0 =

h
2e

is the flux quantum.

The second term in the Hamiltonian describes the charging energy of the JJAs. Here,

we work with the simplest approximation using a purely local repulsive interaction be-

tween the charge carriers (Cooper-pairs) on the individual superconducting islands.

We will investigate this model for a magnetic flux through every rhombus of the dice
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(a) (b)

Figure 10.1.: (a) Illustration of the dice lattice. The unit cell vectors are shown in red.
Within every unit cell, we have one site with 6 nearest neighbors (called a
hub) and two sites with 3 nearest neighbors (called rims). (b) Illustration
of the gauge choice used in this study to achieve frustration f = 1

3
. The

arrows indicate the directionality associated with the gauge integrals for
the edges that border every hub. This gauge choice leads to a minimal
magnetic unit cell, that is identical to the unit cell without any frustration.

lattice that is precisely one-third of the flux quantum Φ0. We label this fraction of the

flux quantum as the frustration parameter f , which can be expressed as the directed

sum over a rhombus of the lattice

f =
1

2π

∑

rhombus

Aij. (10.2)

The particular gauge choice for the values of Aij which we will use in these investiga-

tions and that achieves f = 1
3
, is illustrated in Fig. 10.1b. The dice lattice has attracted

substantial interest in the past for the case of frustration f = 1
2
. At this frustration,

it hosts completely flat bands for a tight-binding model [179, 180]. This motivated a

number of studies on the interaction-dominated phases in related models [181, 182].

The model in Eq. (10.1) was previously analysed in the classical case of EC = 0

(where it is just a frustrated XY-model) by Korshunov [183] for frustration f = 1
3
, and

we will describe some of his results in the following. In this context, we say we have

a vortex in a plaquette of the lattice if the spin configuration rotates by 2π around a

plaquette, such that
∑

plaquette θij = 2π(1 − f). First, we expect the ground states of
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the model to have a vortex density of one vortex per every three rhombi of the dice

lattice. Of the states with this vortex density, we can identify the ground states as those

vortex configurations in which the rhombi with vortices do not share any edges of the

lattice. We give an illustration of examples of such vortex configurations in Fig. 10.5.

These vortex configurations are the ground states of the model, as this allows us to

choose θij =
π
3
for the edges around the vortices – minimizing the energy on these bonds

subject to the vortex restriction. All other terms in the Hamiltonian can be minimized

by simply choosing θij = 0. In these ground-state vortex configurations, every hexagon

of the dice lattice, which is made up of three rhombi, contains exactly one vertex.

These insights about the ground states can be used to derive a few simple consequences

[183]. First of all, we can calculate the ground state energy explicitly: As we can account

for all edges of the lattice by considering those adjacent to the three fold-connected rims

of the lattice, and because every rim will be adjacent to one vortex, we obtain an energy

contribution per rim of erim = (2 cos(π
3
) + cos(0))EJ = 2EJ , which leads to a ground

state energy per site of e = eUC/NUC = 4EJ/3, as we have two rims and three sites per

unit cell.

Additionally, this explicit construction allows us to relate the different ground states

of this model to those of the triangular lattice antiferromagnetic Ising model (TLAIM)

[183]. To see this, consider only the 6-fold connected hubs of the dice lattice, which form a

triangular lattice. We can associate anti-parallel Ising spins to every connection between

the hubs on this triangular lattice that does not cross a vortex, and parallel Ising spins

to those that do1. Indeed, we find that by this mapping, the vortex configurations of the

ground state are mapped to configurations of the Ising spins on the triangular lattice

in which two bonds per triangle are anti-parallel and one is parallel2. Thus, the ground

states of our model at EC = 0 can be associated with the ground state configurations

of this Ising model. This is particularly interesting as the residual, zero temperature

entropy of this Ising model is known to be sTLAIM ≈ 0.323 [184]3.

Korshunov further analyzed (by another mapping to a solid-on-solid model) that due

to the entropic effect of this extensive number of ground state configurations, the free

energies of the fluctuations about different ground state configurations are not large

enough to lead to the selection of a single vortex pattern at finite temperature due to

order by disorder [185]. Instead, he predicted the system to stay disordered. However, at

the same time, he conjectured that the system would display a finite helicity modulus at

low temperatures, which would be destroyed due to the dissociation of half-vortices [183,

1It can be helpful to consider Fig. 10.5 again to verify this mapping.
2Recall that we have exactly one vortex per hexagon in the ground state configurations.
3Note that we have set kB = 1 throughout this chapter.
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186] at finite temperature. These half vortices appear as excitations of the ground state

configurations and can be located, e.g., at positions of three adjacent rhombi forming a

hexagon without any vortex.

Let us note that this is different from the behavior found in unfrustrated XY mod-

els. In the unfrustrated case, the important excitations are integer vortices that are

confined at low temperature. Their deconfinement is associated with the Berezin-

skii–Kosterlitz–Thouless (BKT) transition, which destroys the algebraic decay of the

phase correlations (quasi-long-range order) and the associated finite helicity modulus.

In JJAs, these transitions from a quasi-long-range ordered state to a disordered state

at high temperatures describe the transition from a superconducting to a normal state.

In the conventional case, the confinement of integer vortices is associated with 2e-

superconductivity. If, however, we are in a situation where no 2e-superconductivity

is present, e.g., because it is destroyed by domain walls between half vortices, but the

half-vortices are confined to pairs such that a finite helicity modulus develops anyway

[186], we can refer to this as a 4e-superconducting state. Such 4e-superconducting states

have long been of interest in several different contexts, from the cuprates to supercon-

ducting wire networks [187, 188, 189, 190].

10.2 Thermodynamic Investigation

We begin our discussion by numerically investigating the thermodynamic properties of

the model of the Josephson junction arrays, cf. Eq. (10.1), at vanishing charging energy

EC = 0. To this end, we will approximate the partition function of the model

Z =
∑

j

exp (−βEj) =

∫
Dϕ exp (−βH({ϕ})), (10.3)

∫
Dϕ =

∏

i

∫ π

−π

dϕi

2π
, (10.4)

as a two-dimensional tensor network. We describe how to construct the tensor network

representation of the partition function [191, 192, 193] and mention the computational

tools used here in App. B.

We start by computing the free energy density, as a logarithm of the partition function

f = F/N = − 1
βN

ln(Z), which we show in Fig. 10.2a. We find a monotonic decrease of

the free energy density towards lower temperatures, without any hints of discontinuous

points.
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(a) (b)

(c) (d)

Figure 10.2.: (a) Free energy density as a function of temperature. We find a smooth
behaviour without signs of discontinuities. (b) Difference of the entropy
density at frustration f = 1

3
and f = 0. We find that this difference tends

towards the value of sTLAIM ≈ 0.323 at low temperatures. (c) Energy
density as a function of temperature. Again, we find a smooth behaviour
tending towards the exactly known value at T = 0. (d) Specific heat per
site as a function of temperature. We find a bump at T/EJ ∼ 0.24.

The derivative of the free energy density can be used to represent the entropy density

s = − ∂f

∂T
. (10.5)

Here we are interested in particular in the entropy due to the many degenerate ground

state configurations identified by Korshunov [183]. However, in addition to the discrete

nature of the different ground-state vortex configurations, the model contains entropy

contributions from the continuous nature of the phase variables. We conjecture that at

zero temperature, the entropy density at frustration f = 1
3
is the sum of the contribution

from the continous variables and an additional entropy due to the extensive ground

state vortex configurations. The contribution due to the continuous variables should be
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(a) (b)

Figure 10.3.: Correlation function C(r) as a function of distance at T = 0.17 (a) and
T = 0.3 (b). The correlation function is evaluated along the horizontal
direction, cf. Fig. 10.1a, on the hubs of the dice lattice. We find exponential
decay at both temperatures.

identical to the entropy at f = 0 where no additional discrete contribution to the entropy

exists. As we discussed in the introduction, these ground state vortex configurations

can be identified with the ground states of the triangular lattice antiferromagnetic Ising

model [183]. We thus expect the following form of the entropy

sf=1/3(T = 0) = sTLAIM(T = 0) + sf=0(T = 0). (10.6)

The data shown in Fig. 10.2b is consistent with this expectation, which can be seen

as an example of the complex interplay of discrete and continuous effective variables of

frustrated XY-models at low temperatures.

The expectation value of the energy density can be accessed as a function of temper-

ature by taking derivatives of the logarithm of the partition function

e = E/N =
1

NZ

∑

j

Eje
−βEj = − 1

N

∂

∂β
ln(Z(β)). (10.7)

We show the energy density as a function of temperature in Fig. 10.2c, which moves

towards the exactly known value e0 = −4EJ/3 at zero temperature [183]. While the nu-

merical values appear to suggest a smooth function for the energy density, it is noticeable

that the slope changes slightly around T/EJ ∼ 0.24.

Such a change of slope should lead to a clearly visible feature in the specific heat per
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site

c =
∂e

∂T
, (10.8)

which we show in Fig. 10.2d. Indeed, we find a bump in the specific heat at around

T/EJ ∼ 0.24. Such a bump in the context of XY-models in two dimensions can signal

the presence of a BKT transition. The bump in the specific heat occurs slightly above

the critical temperature TBKT, where most of the vortices unbind. In this temperature

range above TBKT a large change in the energy of the system occurs as a function of

temperature, due to the vortex unbinding [194].

The hallmark of the BKT transition is that, while no spontaneous symmetry breaking

can occur at the critical point due to the Mermin-Wagner theorem [195], correlation

functions decay algebraically at temperatures below the transition, signalling so-called

quasi-long-range order [194]. To investigate this, we compute the correlation functions4

C(r) = ⟨cos(ϕr − ϕ0)⟩ (10.9)

of our model for temperatures above and below the bump in the specific heat. In

Fig. 10.3, we show the correlation functions for T/EJ = 0.17 and T/EJ = 0.3. Both

of these functions show an exponential decay as a function of distance, indicating a

non-conventional behaviour.

We can, however, identify an algebraic decay when we investigate the correlation

functions of two times the phase difference as a function of distance

C2(r) = ⟨cos(2(ϕr − ϕ0))⟩. (10.10)

In Fig. 10.4, we show the decay of C2(r) again both for for T/EJ = 0.17 and T/EJ = 0.3.

We find that while C2(r) still decays exponentially at T/EJ = 0.3 it decays algebraically

at T/EJ = 0.17. This can be concluded from the data shown in Fig. 10.4a by noting

that the increase of the relevant approximation parameter χE — the environment bond

dimension — leads to algebraic behaviour on larger scales.

Let us stress the fact that an algebraic decay of C2(r) below a BKT-transition is by

itself not special, and would indeed be present in a model without a magnetic field at

f = 0 as well. What is special is that at the same temperature, the simple correlation

function C(r) decays exponentially as a function of distance. Let us further note that

4We note that in the numerical computation we performed, the disconnected part of the correlation
functions vanishes by construction. Hence, the above correlation functions are equal to the connected
correlation functions.
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(a) (b)

Figure 10.4.: Correlation function C2(r) as a function of distance at T = 0.17 (a) and
T = 0.3 (b). The correlation function is evaluated along the horizontal
direction, cf. Fig. 10.1a, on the hubs of the dice lattice. We find exponential
decay at T = 0.3, while at T = 0.17 we find an algebraic decay. We identify
the algebraic decay by increasing the environment bond dimension, which
increases the distance on which the decay remains algebraic.

the algebraic decay of C2(r) is consistent with the conclusion of Korshunov that at low

temperatures, a finite helicity modulus will develop. These results thus show that the

quasi-long-range phase coherence of a 2e-superconductor, namely C(r), is not present

in the state, while the 4e-phase coherence is.

Lastly, we mention that the results obtained here suggest a critical temperature of

0.17 < TBKT < 0.24, which is consistent with the finding of Fazio and Cataudella [196]

of TBKT ∼ 0.2 using Monte-Carlo techniques. A precise determination of the critical

temperature requires an extensive scaling analysis, cf. [191], and is left for future work

on this project.

10.3 Influence of Finite EC

After numerically studying the behaviour of the model for the JJAs, cf. Eq. (10.1),

at vanishing EC but at finite temperature T , we now turn to an investigation of the

behaviour of the model at zero temperature but finite charging energy.

While the model at EC = 0 can be considered as a purely classical model, cf. Sec. 10.2,

in the presence of a finite charging energy, this is no longer the case. For the quantum

mechanical treatment, we represent the model in the charge basis, in which the operator
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n̂i takes on the diagonal form

n̂i =




. . .

−2

−1

0

1

−2
. . .




. (10.11)

This operator counts the number of charges on a superconducting island relative to a

mean value.

From the first Josephson relation, we can derive that in the charge basis, the expo-

nential of the phase operator takes the form

eiϕ̂i =




. . .

0 1

0 1

0 1

0 1

0
. . .




, (10.12)

from which we can construct the first term of the Hamiltonian as

cos(ϕ̂k − ϕ̂j − Ajk) =
1

2
(eiAjkeiϕ̂ke−iϕ̂j + e−iAjkeiϕ̂je−iϕ̂k). (10.13)

This gives us the commutators as [n̂i, e
iϕ̂i ] = −eiϕ̂i , and somewhat non-rigorously5 allows

us to identify the number and phases as canonically conjugate variables [n̂i, ϕ̂j] = iδij.

We will investigate this situation using the tensor product states, which we introduced

in Part I of this thesis. We use a square lattice tensor product state ansatz for the

quantum state, as illustrated in Fig. 10.6. The unit cell is chosen to be of size 3 × 6.

This unit cell size, in the choice of gauge shown in Fig. 10.1b, allows for periodic phase

configurations that realize both the stripe- as well as the honeycomb- vortex pattern

5Ignoring that ϕ̂ is not well defined as ϕ is only defined modulo 2π. Hence, rigorously, we can only
define periodic functions of ϕ̂.
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(a) (b)

Figure 10.5.: Illustration of the two different periodic vortex configurations which we
focus on in this section. The presence of a vortex is illustrated with a black
rhombus, while the white rhombi do not contain a vortex. a) Shows the
stripe-vortex pattern, while b) illustrates the honeycomb-vortex pattern.

that were identified as periodic ground state vortex-configurations at EC = 0 [183] and

are illustrated in Fig. 10.5. Whenever we are performing numerical computations, we

will need to truncate to finite-dimensional local Hilbert spaces in the charge basis. This

truncation needs to be chosen differently as a function of EC , to truncate only local

charge configurations that are qualitatively irrelevant for the ground states.

10.3.1 Small EC

From the form of the operators n̂i, it is clear that the presence of a finite charging energy

will energetically disfavor local charge configurations that differ from the mean charge

occupation per site. Hence, for larger EC the ground state of the model for the JJAs

will include a smaller number of local charge fluctuations. At the same time, from the

non-rigorous commutation relation [n̂i, ϕ̂j] = iδij is becomes clear that this suppression

of local charge fluctuation will lead to phase fluctuations about the classical phase value

ϕi on every site.

We expect that this effect will lift the degeneracy of the multitude of classical ground

states at EC = 0 [183] and select those classical states with the most favorable energy

landscape around the classical state, due to the phase fluctuations.

100



Figure 10.6.: Illustration of the square lattice TPS ansatz used on the dice lattice. While
the underlying dice lattice is shown in back, the TPS tensors are shown
in green. We only highlight the connectivity of the virtual bonds and
suppress the leg corresponding to the local Hilbert space on every site.
Notice that due to the different connectivity of hubs and rims on the dice
lattice, some interactions between neighbors on the dice lattice become
next-nearest neighbor interactions for the square lattice ansatz.

Zero-Point Energy

The lifting of the ground-state degeneracy at small EC can be studied by considering

the zero-point energy due to the quantum fluctuations required by the commutation

relation [n̂i, ϕ̂j] = iδij.

By expanding the phase operators ϕ̂ = ϕ0 + φ̂ about the classical minima at EC = 0,

we obtain to quadratic order

H ≈ E0 −
EJ

2

∑

⟨i,j⟩
cos(θ0ij)(φ̂j − φ̂i)

2 +
EC

2

∑

i

n̂2
i , (10.14)

where we denote the classical ground state value of the GIPD as θ0ij. We recall from

the introduction of this chapter that this value θ0ij is either π
3
if the edge in question is

adjacent to a vortex, and zero otherwise [183]. The sum of the resulting linear terms in

the expansion vanishes6 as is expected for an expansion about a classical ground state.

Fourier transforming the variables on each sublattice results in the form

H ≈ E0 −
EJ

2

∑

k,α,β

φ̂−k,αD(k)αβφ̂k,β +
EC

2

∑

k,α

n̂−k,αn̂k,α, (10.15)

6For every vortex adjacent to a site, we get two non-zero contributions to linear order for that site.
These two linear contributions are sin(π3 ) and sin(−π

3 ) = − sin(π3 ) as the GIPD around the vortex
are π

3 with a fixed directionality.
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with α and β being sublattice indices. By diagonalizing the matrix D(k), which is

already diagonal in k, in the sublattice space we obtain

H ≈ E0 −
EJ

2

∑

k,b

φ̂−k,bΓ(k)bbφ̂k,b +
EC

2

∑

k,b

n̂−k,bn̂k,b, (10.16)

with b now labeling the bands of the energy dispersion. This can be recast into a form

of decoupled harmonic oscillators by introducing

X̂1
k,b =

φ̂k,b + φ̂−k,b√
2

, X̂2
k,b =

φ̂k,b − φ̂−k,b

i
√
2

, P̂ 1
k,b =

n̂k,b + n̂−k,b√
2

, P̂ 2
k,b =

n̂k,b − n̂−k,b

i
√
2
(10.17)

such that after identifying

m =
2

EC

, ω2
k,b =

−EJECΓ(k)bb
4

(10.18)

we obtain

H ≈ E0 +
∑

k,b,σ

1

2m
(P̂ σ

k,b)
2 +

1

2
mω2

k,b(X̂
σ
k,b)

2. (10.19)

We can define ladder operators for every k, b, σ:

âk,b,σ =

√
mωk,b

2
X̂σ

k,b + i

√
1

2mωk,b

P̂ σ
k,b, (10.20)

â†k,b,σ =

√
mωk,b

2
X̂σ

k,b − i

√
1

2mωk,b

P̂ σ
k,b, (10.21)

to get the desired form

H ≈ E0 +
∑

k,b,σ

ωk,b(â
†
k,b,σâk,b,σ +

1

2
)

︸ ︷︷ ︸
=:δE

. (10.22)

By moving to an integral over the Brillouin zone and accounting for the size and number

of sites per unit cell, we can evaluate the zero-point energy correction per site as

δE

N
=
δE

A

VUC

NUC

=
∑

b,σ

1

(2π)2

∫

BZ

d2k

√
−ECEJΓbb(k)

4
. (10.23)

For the case of the stripe ordered vortex pattern, we can define a small unit cell size,
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identical to the one shown in Fig. 10.1a with the unit cell vectors a⃗1 =

(√
3

0

)
and

a⃗2 =

(√
3/2

3/2

)
. This allows us to find the three bands of the dispersion, and the

following expressions:

Γ(k)11 = −2 (10.24)

Γ(k)22 = −3 +
√

(1 + 2τ(k)τ ∗(k) (10.25)

Γ(k)33 = −3−
√
(1 + 2τ(k)τ ∗(k) (10.26)

with

τ(k) =
1

2
(eiky + ei(

√
3

2
kx− 1

2
ky)) + e−i(

√
3

2
kx+

1
2
ky). (10.27)

By performing the integral over the Brillouin zone we hence obtain a energy per site for

the stripe ordered vortex pattern

estriped = e0 +
1.77878

2

√
ECEJ , (10.28)

which we show in addition to the expectation values obtained with the tensor product

states in Fig. 10.7a.

We find a consistent behaviour at small EC/EJ , with the energies from the tensor

product states being slightly lower. This is to be expected, as these states do not

presuppose a classical ground state. The tensor product state simulations have been

performed with a local Hilbert space dimension d = 37 and using bond dimension7

χE = 3.

We can also perform the same analysis for the honeycomb-vortex pattern. This results

in

ehoneycomb = e0 +
1.77445

2

√
ECEJ , (10.29)

which leads us to conclude that the honeycomb-vortex pattern is slightly preferred en-

ergetically by the zero-point quantum fluctuations.

Using the tensor product states, we can target different quantum states that share the

phase configurations of different periodic classical ground states8. These are either the

7This small bond dimension can be justified by noting that at small EC/EJ , the system is very
little entangled as it will be in the form of a classical ground state, dressed with small quantum
fluctuations.

8We can choose different seeds for the optimization to find the different classical ground states. Al-
ternatively, we can apply local phase-rotations Rj(θ) = eiθn̂j to switch between states of different
local phase configurations.
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(a) (b)

Figure 10.7.: (a) We show the energy density of the model for the JJAs based on the
zero-point energy analysis (orange line) for the stripe ordered vortex config-
uration. In addition, we show energy values obtained for this configuration
from the tensor product states. We find a good agreement between the
tensor product states and the zero-point energy results at small EC/EJ .
(b) Energy difference ∆e between periodic ground states corresponding to
the honeycomb- and striped vortex patterns. We show both the result from
the comparison of the zero-point energies (green line), expected to be accu-
rate at small EC/EJ , as well as the results from the TPS (grey dots). We
find that with increasing EC/EJ , the honeycomb pattern becomes more
energetically favored. The TPS calculations were done with local Hilbert
space dimension d = 19 and bond dimension χB = 4.

phase configurations corresponding to the striped or honeycomb vortex configuration.

This allows us to compare their energies at larger values of EC/EJ , where the results

from the zero-point energy calculations might no longer be accurate. The result is

shown in Fig. 10.7b. Indeed, we also find a small energy splitting between the classical

configurations, which increases as a function of EC . The periodic quantum states, with

the lowest energy in this comparison, again correspond to the honeycomb vortex pattern,

also in the range of larger values of EC/EJ . From this, we conclude that at small EC/EJ

the honeycomb vortex lattice is a ground state candidate. More importantly, we find

that the scale of the energy splitting between the different ground states is quite small

∆e/EJ ∼ 10−3EC/EJ .

10.3.2 Large EC

If we continue to increase the value of EC , we expect to find a critical value of Ecrit
C /EJ

at which we enter a Mott phase of the charge carriers, in which the phase configuration
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becomes completely disordered. To estimate this critical charging energy, we again

employ the tensor product states. As an order parameter for the Mott transition, we

define the average expectation value of the operator eiϕ̂i throughout the unit cell, and

similarly define the average variance throughout the unit cell as

⟨eiϕ̂⟩UC =
1

nUC

∑

i∈unit cell

|⟨eiϕ̂i⟩|, ⟨∆n⟩UC =
1

nUC

∑

i∈unit cell

√
⟨n2

i ⟩ − ⟨ni⟩2. (10.30)

We show these quantities as a function of EC/EJ in Fig. 10.8. We find a kink in the

average variance at roughly the same value of EC/EJ at which ⟨eiϕ̂⟩UC vanishes. We

hence estimate a critical charging energy for the Mott transition Ecrit
C /EJ = 2.57± 0.02.

Figure 10.8.: Average variance and order parameter throughout the unit cell. We find
that ⟨eiϕ̂⟩UC vanishes at the same point that ⟨∆n⟩UC has a kink, indicating
a transition to a Mott phase. The solid lines serve as a guide to the eye.
The computations were performed using bond dimension χB = 4 and local
Hilbert space dimension d = 9.

10.3.3 A Discussion on the Possible Phase Diagram

We conclude this chapter with a summary and a few conjectural remarks about the

nature of the phase diagram. At EC = 0 and finite temperature, we have verified the

phase structure proposed by Korshunov. We identified a quasi-long-range ordered phase

characterized by an algebraic decay of C2(r) and exponential decay of C(r) below the

BKT-transition, indicating a 4e-superconductor.

At T = 0 we have found that quantum phase-fluctuations induced by finite EC favor

the periodic honeycomb-pattern over the striped -pattern of vortices. However, with a
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Tc/EJ ∼ 10−3

EC/EJ

Mott

disorder

T/EJ

Tc/EJ ∼ 0.2

Ecrit
C /EJ ∼ 2.57

?

Figure 10.9.: Illustration of the conjectured phase structure.

very small difference in energy. We further identified the critical value Ecrit
C /EJ at which

the system enters a Mott phase.

Temperature-induced phase fluctuations do not lead to any vortex-ordering at EC = 0

and finite temperature due to entropic protection of the degenerate ground states [183].

However, at T = 0 and finite EC the lack of such entropic protection leads us to conclude

that most likely an ordered vortex lattice will emerge with a 2e-superconducting phase.

However, the stability of this vortex lattice state to finite temperature at small EC is

not completely clear. The entropic contribution of the many disordered ground states

at EC = 0 and T = 0 can be associated with the residual zero-temperature entropy

of the triangular lattice anti-ferromagnetic Ising model s0TLAIM [183]. Hence, at finite

temperature, due to this entropy contribution of the many-disordered ground states,

we could expect to reenter the 4e-superconducting phase and the vortex lattice to be

destroyed around Tc =
∆e(EC)
sTLIM

. At this temperature, the entropic contribution dominates

the energy-splitting ∆E(EC), cf. Fig. 10.7b, due to finite EC .

It should be noted that this critical temperature Tc at finite EC might even be lower

than the above estimate. This is because the vortex lattice could be destroyed by domain

walls, whose energy penalties could be overcome at lower finite temperatures by their

entropic contributions to the free energy.

From these results, we can conjecture that the 4e-superconducting phase is stable at

finite values of EC/EJ , excluding at the very lowest temperature where a vortex lattice

state might emerge.

To close, let us comment on the physical relevance of the sketched phase diagram.

First, the influence of small values of EC/EJ is important to study in general as a
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possible perturbation that might be present in an experimental realization of JJAs that

aim to study the case of EC = 0. As such, it is helpful to understand the impact of a

small finite charging energy on the phase structure. Additionally, with the emergence

of the electrically tunable JJAs [174, 175, 176, 177, 178], the phase diagram at finite

EC/EJ can be studied in a single sample, which motivates the theoretical study of the

phase diagram in this case.

Data

The data shown in this chapter is available in [197].
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11.1 Summary and Context

In this publication, we present a practically minded introduction to variational opti-

mization of infinite projected entangled pair states, alternatively referred to as infinite

tensor product states, using automatic differentiation (AD).

To this end, we review the basic notions of infinite tensor product states, cf. part I of

this thesis, and introduce the corner transfer renormalization group algorithm (CTMRG),

cf. Sect. 4.1.1. We give an extensive introduction to AD, a tool from the machine learn-

ing community that we use to obtain the energy gradient in the context of infinite tensor

product states [125]. We point out how to achieve a modified (element-wise) convergence

of the CTMRG in practice, to be able to make use of the fixed-point of the CTMRG to
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calculate the energy gradient efficiently [113]. In addition to this, we provide a set of

useful practical suggestions to increase the stability and efficiency of the variational op-

timization of infinite tensor product states in this framework. Finally, we point out how

to use the presented framework for infinite tensor product states on various non-square

lattices and provide benchmark results for the comparison to other methods. An open-

source implementation of the discussed concepts is provided alongside the publication.

In the context of this thesis, this publication should be seen as a contribution to the

emerging framework of using AD in the context of ground state calculations with tensor

product states. By focusing on practical aspects and methods to achieve a stable and

efficient ground state search scheme, this publication adds a useful complement to the

existing literature. The practical hints to make use of the fixed-point properties of the

CTMRG for this purpose present an additional practical contribution. By comparing

and discussing various benchmarks on several lattices, we also help to assess the power

of the approach in several situations.

11.2 Authors Contribution

E. L. Weerda was one of the two major contributors to the practical insights presented

in this publication and produced approximately half of the benchmarking results. He

wrote a major part of the manuscript, in particular the sections concerning automatic

differentiation and its efficient application for infinite TPS.
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CHAPTER 12

Discussion

To conclude this thesis, we now discuss the content presented and the results obtained

in a larger context. A major field of research in the study of condensed matter systems

is concerned with the investigation of phenomena occurring when the systems’ degrees

of freedom are confined to two dimensions. Such two-dimensional settings are being

studied both in the context of real materials and cold atom experiments for their promise

of fascinating physical phenomena [198, 199, 200, 201].

The role of quantitative, numerical investigations is important in such situations, for

example, to identify promising experimental parameters for the realization of particular

phases of matter and to characterize their features and experimental signatures. Fur-

ther, the effect of additional unwanted contributions to the Hamiltonians describing real

experiments that go beyond idealized theoretical models can be studied numerically to

assess their impact. In the context of cold atom experiments, the ability to perform

faithful numerical calculations is crucial to create so-called “digital twins” of partic-

ular cold atom setups, which is useful for the calibration and benchmarking of these

experiments.

The considerations above have motivated the development of a number of numerical

approaches for these tasks, among which the tensor network states have proven partic-

ularly versatile and effective [15, 16, 17]. However, the techniques for the application of

tensor networks in the two-dimensional setting are still in a stage of continuous devel-

opment.

The results obtained in the context of this thesis can be categorized as methodolog-

ical contributions towards the improvement of the toolkit of tensor networks in two

dimensions, as well as applications thereof to a set of different physical scenarios.

To contribute to this effort of improving the methodological techniques, we have pre-
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sented several results that were developed in the context of this thesis. We have pro-

posed the split-CTMRG algorithm, cf. Chap. 8, which enables more efficient numerical

calculations by reducing the dominant computational scaling involved in ground state

calculations using the infinite tensor product states, cf. Sec. 2.2.1.

We hope that this algorithm, together with the practical schemes highlighted in

Chap. 11 will contribute to the utility of the infinite tensor product states in partic-

ularly challenging physical situations where large bond-dimensions are necessary to un-

derstand the low-energy behaviour. This is particularly important to understand the

phase structure in the thermodynamic limit in the presence of many competing phases.

As examples of such situations, where a precise understanding of the phase structure

can be important, we mention doped Hubbard models or models relevant for materials

that might host spin-liquids as ground states [199, 202, 203].

Bridging the gap between method development and application was the goal of our

investigations using the tensor product states on finite lattices, cf. Chap. 9. Here, we

aimed to improve the efficiency of the optimization used for the tensor product states

and to clarify the role of the difficulty of the contractions in the sampling framework for

these states on finite lattices. However, we also demonstrated the particular utility of

the tensor product states on finite lattices to serve, e.g., as “digital twins” for Rydberg

atom array experiments.

In a complementary effort to the methodological developments, we have also applied

the toolkit of the tensor product states to several challenging situations like spin systems

in Chap. 6 and Chap. 7, models of Josephson junction arrays in Chap. 10, and a model

of mobile bosonic particles on a lattice subject to a magnetic field in Chap. 5. Here, we

would especially like to highlight that the infinite tensor product state method applied

gives an important perspective from the thermodynamic limit in two dimensions. As

such, it allows us to minimize the impact of finite size effects on the phase structure of

the studied models. This is of particular interest, e.g., to understand to what degree

exotic phases like the fractional quantum Hall states, which have now been observed in

cold-atom experiments, are stabilized by the small finite size of the current experiments

[95, 96]. It is important to study this question to understand if we can hope to identify

and study these states also in the larger-scale future experiments. The investigation

carried out to answer this question in Chap. 5 approached this question for the first

time using the infinite tensor product states. The utilization of the state-of-the-art

optimization techniques allowed for the treatment of these chiral topological phases using
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the infinite tensor product state, cf. Sec. 3.2.4, thus offering the desired perspective from

the thermodynamic limit.

In conclusion, we hope that the presented methodological and applied results of this

thesis can be seen as helpful contributions towards the general tensor network program

discussed in the introduction, cf. Chap. 1, and hence enable a deeper understanding of

two-dimensional quantum matter using tensor networks.
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APPENDIX A

The Toric Code Tensor Product State

A.1 Construction of the Ground State

The crucial feature of the Hamiltonian [72]

HTC = −
∑

{+}
S+ −

∑

{□}
P□, (A.1)

is that all its terms are mutually commuting. This is obvious for the star- and plaquette-

operators among themselves and remains true for commutators of star and plaquette op-

erators because they can only have a shared support of either zero or two local Hilbert

spaces, such that they commute, since σxσz = −σzσx. This wealth of operators commut-

ing with the Hamiltonian (as they commute with all its terms individually) significantly

aids in the explicit construction of the many-body ground state [72] of this Hamiltonian,

because it mandates that such a many-body ground state be also the ground state of

every term individually.

Starting with a star operator S+ = σz
1+σ

z
2+σ

z
3+σ

z
4+, we notice that this operator has

eigenvalues ±1. The eigenstates corresponding to the eigenvalue +1 are product states

in the z-basis, that have an even number (0,2,4) of local |1⟩ configurations on the sup-

port of S+. The eigenstates corresponding to the eigenvalues −1 are the product states

with odd numbers (1,3). It follows that the ground states of the star operator terms

in the toric code Hamiltonian are quite degenerate. Every product state in the z-basis

that fulfills the ”even-number” rule for the four spins on the surrounding edges of every

vertex is a ground state of all star operators. A feature of these many degenerate ground

states of the star operators is that we find edges on which we have a local configuration

|1⟩ will always form paths of closed loops due to the “even number” rule. Any open
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path, as illustrated in Fig. 3.1b, will immediately break this rule, and such a state is

hence no longer a ground state of the star operators.

Now it remains to choose the linear combination from these many ground states such

that they also represent eigenstates of the plaquette operators. We can achieve this by

taking an equal weight superposition of all allowed “closed-loop” product states |Ci⟩

|ψTC⟩ =
∑

i

|Ci⟩ , (A.2)

where i labels all the “closed-loop”-configurations. To verify that this is in fact an

eigenstate of the plaquette operators, we simply note that every plaquette operator maps

one configuration that fulfills the “closed-loop” rule to a different one, as it changes the

value of either zero or two spins on the support of any star-operator. Hence, if we take

the equal-weight superposition of all such configurations, we have in fact

P□
∑

i

|Ci⟩ =
∑

i

|Ci⟩ ∀ □, (A.3)

such that we have identified a ground state of HTC.
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APPENDIX B

Partition function of XY-models a a tensor network

In this appendix, we aim to illustrate the representation of the partition function of an

XY-model as a two-dimensional tensor network. Here we outline a particular version of

the construction of the partition function based on the works [192, 193], which aimed

to improve the original formulation [191]. Note that representations of the partition

function using tensor networks have been explored in the context of discrete variables

[204, 205] but also have been pushed towards Heisenberg models [206, 207].

Once such a representation of the partition function is achieved, we can use many of

the techniques for contraction, calculation of local observables and correlation functions,

that have been introduced in Chap. 4 also in this classical context, by simply replacing

the double layer tensors used in the context of quantum states by the single layer tensors

resulting from the following procedure.

We start with the definition of the partition function of an XY-model on an arbitrary

two-dimensional lattice

Z =
∑

i

exp (−βEi) =

∫
Dϕ exp (−βH({ϕ})), (B.1)

∫
Dϕ =

∏

i

∫ π

−π

dϕi

2π
, (B.2)

where we integrate over the classical variables located on the vertices of the lattice. We

consider a Hamiltonian

H({ϕ}) = −J
∑

⟨i,j⟩
cos (ϕj − ϕi − Aij), (B.3)

with Aij := 2π
Φ0

∫ j

i
A⃗ds⃗ as the integral over the vector potential A⃗ along the path from
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vertex i to vertex j. With this definition, the argument of the cosine becomes gauge

invariant with the transformations A⃗′ = A⃗+ Φ0

2π
∇⃗χ(r) and ϕ(r)′ = ϕ(r) + χ(r).

For the construction [192, 193] we describe here, we will reorder the Hamiltonian by

organizing it as a sum over plaquettes of the lattice which we label by p

H({ϕ}) = −J
2

∑

p∈plaquettes

∑

⟨i,j⟩∈e(p)
cos (ϕj − ϕi − Aij), (B.4)

and where e(p) is the tuple of edges bordering the plaquete p. The factor 1
2
comes from

the fact that every edge belongs to two plaquettes. Thus, altogether we write

Z =
∏

i

∫ π

−π

dϕi

2π

∏

p

exp
(βJ
2

∑

⟨i,j⟩∈e(p)
cos (ϕj − ϕi − Aij)

)

︸ ︷︷ ︸
=:Wp

. (B.5)

Consider the Boltzmann factors Wp associated with one plaquette p. Our goal is now

to build up the partition function from objects defined for every plaquette. It can be

useful to think of the object Wp as a tensor with four continuous indices as scetched in

Fig. B.1. We can express Wp as

Wp(ϕ1, ϕ2, ϕ3, ϕ4) = exp (
βJ

2

∑

⟨i,j⟩∈e(p)
cos (ϕj − ϕi − Aij))

= exp(
βJ

2

[
cos (ϕ2 − ϕ1 − A12) + cos (ϕ3 − ϕ2 − A23)

+ cos (ϕ4 − ϕ3 − A34) + cos (ϕ1 − ϕ4 − A41)
]
).

(B.6)

We will now use the identity

exp (x cos (ϕk − ϕl)) =
∞∑

n=−∞
In(x) exp (in(ϕk − ϕl)) (B.7)

to rewrite

Wp(ϕ1, ϕ2, ϕ3, ϕ4) =
∞∑

n1,n2,n3,n4=−∞
In1

(
βJ

2

)
In2

(
βJ

2

)
In3

(
βJ

2

)
In3

(
βJ

2

)
×

e−i
[
n1(ϕ1−ϕ2)+n2(ϕ2−ϕ3)+n3(ϕ3−ϕ4)+n4(ϕ4−ϕ1)

]
×

e−i
(
n1A12+n2A23+n3A34+n4A41

)
.

(B.8)
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ϕ1 ϕ2

ϕ3ϕ4

f = 1
2π

∑
□ Aij

A12

A23

A34

A41

Figure B.1.: Illustration of the plaquette tensor Wp with four continuous indices
ϕ1, ϕ2, ϕ3, ϕ4.

To obtain a tensor network of objects with discrete indices, it is useful to calculate

the Fourier transform of the product of Boltzmann factors Wp, which is, as the variables

ϕ are compact, now a tensor with discrete indices amenable to truncation

Pm1m2m3m4 :=
4∏

i=1

∫
dϕi

2π
Wp(ϕ1, ϕ2, ϕ3, ϕ4)e

−i(m1ϕ1+m2ϕ2+m3ϕ3+m4ϕ4)

=
∑

n1,n2,n3,n4

In1In2In3In4e
−i
(
n1A12+n2A23+n3A34+n4A41

)
×

4∏

i=1

∫
dϕi

2π
ei
[
ϕ1(−n1+n4−m1)+ϕ2(−n2+n1−m2)+ϕ3(−n3+n2−m3)+ϕ4(−n4+n3−m4)

]
,

(B.9)

which, after performing the integrals
∫
dϕ/(2π)eiϕn = δn,0 one by one leads to

Pm1m2m3m4 =
∞∑

n4=−∞
In4−m1In4−m1−m2In4−m1−m2−m3In4×

ei
(
(m1−n4)A12+(m1+m2−n4)A23+(m1+m2+m3−n4)A34−n4A41

)
δm1+m2+m3+m4,0.

(B.10)

We find that the structure of Pm1,m2,m3,m4 is such that we obtain only non-zero entries

in the tensor if the Fourier variables (or U(1)-charges) m1,m2,m3,m4 are conserved on

the level of the plaquette. However, no restriction has been made for the transport of

U(1) charges in the loop of the plaquette; rather, all of these contributions are summed

here (sum over n4). This fact stands in contrast to the conservation of U(1)-charge at
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Figure B.2.: Illustration tensor-network structure of the partition function of the dice
lattice. We obtain a vertex-plaquette lattice, where the vertices (green)
are δ-tensors, while the plaquette tensors (blue) have the form, shown in
Eq. B.10. We included the unit-cell vectors of the dice lattice (red) for
clarity.

each vertex of the lattice in the conventional construction [191] of the partition function.

To use the discrete plaquette tensors P to rewrite the partition function in Eq. B.5,

we need to account for the fact that multiple plaquettes of the lattice will contain the

same variable ϕi if these plaquettes are adjacent to the same vertex i of the lattice.

We illustrate this by considering one of the integrals of the partition function over the

variable ϕ and assume that three plaquettes are bordering this vertex

∫
dϕ

2π
W1({ϕ}1, ϕ)W2({ϕ}2, ϕ)W3({ϕ}3, ϕ) =

∫
dϕ

2π

3∏

i=1

∫
dϕ1δ(ϕ− ϕi)×

W1({ϕ}1, ϕ1)W2({ϕ}2, ϕ2)W3({ϕ}3, ϕ3)

where we denote with {ϕ}i all variables of Wi that we are not integrating over in the
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above equation. Now we can use the identities

δ(ϕ− ϕj) =
1

2π

∑

m∈Z
e−im(ϕ−ϕj) =

1

2π

∑

m∈Z
U †
m(ϕ)Um(ϕj), with Um(ϕj) = e−imϕj ,

δn,m =

∫
dϕ

2π
Um(ϕ)U

†
n(ϕ)

(B.11)

to rewrite the above equation

∫
dϕ

2π
W1({ϕ}1, ϕ)W2({ϕ}2, ϕ)W3({ϕ}3, ϕ) =

1

(2π)3

∑

m1,m2,m3∈Z
δm1+m2+m3,0

3∏

i=1

P̃i({ϕ}i,mi),

(B.12)

where we use the tilde in P̃i({ϕ}i,mi) to stress that here we have only Fourier trans-

formed one of the continuous indices of the plaquette Boltzmann tensor. From this form

we see that the integral over the continuous, periodic variable ϕ can be rewritten as a

contraction of the discrete indices of P̃i and a three-leg tensor δm1+m2+m3,0 that ensures

the conservation of U(1)-charges at the vertex.

By repeating this procedure for all integrals over the variables at the vertices of the

lattice, the partition function of Eq B.5 becomes

Z ∼ tTr

[∏

i

δ[i]
∏

p

P [p]

]
, (B.13)

again with i labeling the vertices of the lattice and p labeling the plaquettes. As every

tensor in this tensor network conserves the U(1)-charges, the entire tensor network is

invariant. We explicitly exploit this fact in the calculations to reduce memory load and

improve efficiency, as discussed in Sec. 3.1.

We notice that the tensor-trace above involves δ-tensors on the vertices as well as

plaquette tensors P in the plaquettes of the lattice in question. Hence, the structure

formed by the tensors is what we will call the vertex-plaquete lattice. For the dice lattice,

a drawing of this vertex-plaquete lattice is shown in Fig. B.2.

As an example to see how to obtain the free energy from the tensor network repre-

sentation of the partition function using the CTMRG algorithm introduced in Sec. 4.1

see e.g. [206].
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B.1 Reductio ad Quadratum

In order to contract this tensor network on the vertex-plaquette lattice with the con-

traction algorithms described in Chap. 4, we need to map it to the square lattice.

One way of achieving this involves first decomposing the six-leg δ-tensors, correspond-

ing to the hub-vertices of the dice lattice as

δn1+n2+n3+n4+n5+n6,0 =
2nmax∑

k,l=−2nmax

δn5+n6,kδn1+n4,−k+lδn2+n3,−l, (B.14)

where nmax labels the truncated value we use in our tensor network. Using this decom-

position we transform the tensor network from the original one, shown in Fig. B.3a to

that shown in Fig. B.3b, where the six-leg tensor was replaced by two three leg tensors

and a four leg tensors, which we illustrate in a darker green.

The next step of our mapping to the square lattice involves splitting two of the three

plaquette tensors in the unit cell with a decomposition (e.g., a SVD) into two tensors.

This operation takes us from Fig. B.3b to Fig. B.3c, where we show the tensors resulting

from the decomposition in a darker blue.

At this point, we can group the tensors, which we illustrate in Fig. B.3d to get a

resulting square lattice tensor network with a unit cell of size 2× 3.

B.2 Details regarding the Numerical Results

For the numerical simulations shown in Fig. 10.2, we have chosen a local bond dimension

of 41 for the local plaquette tensor P of the tensor network for the partition function.

This corresponds to restricting the discrete indices in the plaquette tensor, cf. Eq. B.10,

to m ∈ {−20, . . . , 0, . . . , 20}.
We perform the contraction of the tensor network for the partition function approxi-

mately using the CTMRG algorithm discussed in Chap.4. For that, we have to choose

a finite environment bond dimension χE. In the results shown in Fig. 10.2 we use

χE = 251. To assess the degree of convergence in this environment bond dimension, we

present the relative difference to the free energy calculated at χE = 201 in Fig. B.4a.

We find a relative difference on the order of ∆f/EJ ≈ 10−5.

In order to investigate the convergence of our calculation in the cutoff of the local

plaquette tensor P , we have repeated the calculation again with a cutoff corresponding

to m ∈ {−15, . . . , 0, . . . , 15} with a fixed environment bond dimension of χE = 251. We
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(a) (b)

(c) (d)

Figure B.3.: Here we show intermediate steps of the mapping from the plaquette-vertex
lattice of the partition function to a square lattice geometry. Once we have
the network in a square lattice form, we can apply the numerical techniques
described in Chap. 4.
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(a) (b)

Figure B.4.: a) Relative difference of the free energy density from the partition function
for environment bond-dimension χE = 251 and χE = 201. A bond dimen-
sion of 41 was used for the local plaquette tensors P . b) Relative difference
of the free-energy density from a partition function with plaquette tensors
of local bond dimension 41, as compared to those with local bond dimension
31. An environment bond dimension of χE = 251 was used.

show the relative difference in the free energy obtained for the two choices of cutoffs in

Fig. B.4b. We find a relative difference on the order of ∆f/EJ ≈ 10−5.

Let us note that we only show results for temperatures above T/EJ = 0.1. This is

because we have experienced a sudden and drastic change in the convergence behaviour

of the CTMRG algorithm at lower temperatures. We could imagine that this is related

to the complexity phase transition for contracting two-dimensional tensor networks, as

was observed in [208] and was investigated in the context of finite TPS also in publication

[P5].
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