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Abstract

State-of-the-art quantum simulators – ranging from ultracold atoms and trapped
ions to Rydberg arrays and superconducting qubits – have rapidly evolved into pow-
erful platforms for investigating complex quantum many-body phenomena. In this
thesis, we discuss various models and their static and non-equilibrium properties that
can be realized on near-term quantum devices. We conduct comprehensive studies
on the phases of these models, spanning novel symmetry-protected topological and
critical gapless phases in one dimension to the non-equilibrium behavior of localized
excitations in one-dimensional quantum chains and extended one-dimensional quan-
tum objects embedded in a two-dimensional quantum magnet. On the technical side,
we employ extensive tensor network simulations to validate our findings and intro-
duce new algorithms to determine the lifetime of edge excitations emerging in the
symmetry-protected topological phase of fermionic chains. Furthermore, we propose
a new variational ansatz to directly search for these novel edge modes in the topo-
logical phase. By integrating analytical tools and tensor network simulations, this
thesis contributes to the roadmap for establishing quantum simulators as promising
tools for investigating complex quantum systems.
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Introduction

“It always seems impossible until
it’s done.”

— Nelson Mandela

In the era of noisy quantum computers, the underlying quantum systems are rapidly
developing with an increasing number of available qubits. Although the individual
components are increasingly controlled, the overall error in the qubit gates is still
too large to implement fault-tolerant digital quantum computing and quantum al-
gorithms, such as Shor’s factoring algorithm [1]. Instead, recent advances in fabrica-
tion and measurement techniques allow the use of these noisy quantum computers
as direct simulators for highly correlated quantum matter, in line with the ideas
originally proposed by Feynman in 1982 [2]. Examples of such quantum simulators
can be ultracold atoms in optical lattices [3–7], Rydberg arrays [8–10], or collective
excitations in superconducting islands coupled by Josephson junctions [11–16].

In this context, the quantum system forming the simulator is designed to mimic the
behavior of a different complex quantum system. Measuring this simulator allows us
to gain insights into complex processes that are inaccessible to classical computers.
One aspect of this is the study of exotic phases of matter that have not yet been
experimentally observed in natural systems. Realizing these phases could help gain
a deeper understanding of their properties and has been successfully employed in
the past [17, 18]. When driven to a specific phase, a quantum simulator can also
serve as a building block for more complicated scenarios or even the realization of a
quantum computer that is more robust than existing platforms [19, 20].

Another interesting aspect is the non-equilibrium properties of complex quantum
systems following a local or global quench [21]. On general grounds, it is conjec-
tured that generic quantum systems should thermalize locally such that the time
average of any local observable approaches its thermal equilibrium value [22]. How-
ever, there are several exceptions to this general rule [23–27], and identifying new
mechanisms to prevent local thermalization is an active area of research. Although
the dynamical behavior of a many-body quantum system is notoriously complicated
owing to the large entanglement created, a quantum simulator can naturally be used
to follow the time trajectory of a quantum system, an idea that has been success-
fully demonstrated in recent studies [10, 28–30]. Thus, designing and characterizing
new promising models that can realize novel phases of matter or show non-trivial
many-body dynamics on a state-of-the-art quantum platform is a thriving quest.

In this thesis, we contribute to this quest by studying the static and dynamic proper-
ties of various lattice models in one and two dimensions. To this end, we propose two
one-dimensional lattice models that realize two different novel phases of quantum
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2 INTRODUCTION

matter: a symmetry-protected topological phase of fermions exhibiting a fraction-
alized fermion in the ground state manifold, and a critical phase that serves as a
building block for a topological quantum computer in two dimensions. We intro-
duce two algorithms that allow us to study the coherence time of this fractionalized
fermion at finite temperatures, an important question for future experimental ap-
plications, and to variationally search for new localized long-lived modes in generic
models. Additionally, we explore the non-equilibrium behavior of a straight domain
wall, a one-dimensional quantum object embedded in a two-dimensional quantum
magnet, and discuss a new mechanism that prevents local thermalization of the
many-body quantum state.

This thesis is organized as follows: In the first part, Theoretical Background, we
provide a short survey of one-dimensional lattice models, including the general defi-
nitions and possible phases of matter occurring in such quantum chains in Chapter 1,
and an introduction to tensor networks in Chapter 2, which are the main numerical
tool used throughout this thesis. In the second part, Results, the results of this thesis
are presented in Chapters I–VI with the following content:

The first model discussed in Chapter I is motivated by cold-atom experiments and
realizes a symmetry-protected topological phase of fermionic chains. This phase has
two unpaired Majorana zero modes localized at the edge, which could be used to
realize nearly fault-tolerant quantum computation. Despite recent claims [31], there
is no convincing evidence for the experimental realization of this novel phase [32]
in solid-state systems. The approach proposed in this thesis circumvents the typical
problems that arise in traditional implementations but comes with its own diffi-
culties. In particular, it is necessary to fine-tune some parameters at the edges to
achieve a symmetry-protected topological phase. Moreover, the model exhibits gap-
less density-wave excitations that may couple to the Majorana zero modes at higher
energies. Our results have been published in [33].

The second model presented in Chapter II is inspired by recent advances in the
fabrication of superconducting islands connected by Josephson junctions and aims
to realize the tricritical Ising model. This exotic phase is an example of a critical
theory in which multiple phases compete, leading to a rich particle content in the low-
energy theory. In particular, one of the particles emerging in the low-energy theory
can be used to build two-dimensional topologically ordered matter with non-Abelian
anyonic excitations that can be used as a fault-tolerant quantum computer [34]. Our
results have been published in [35].

In Chapter III we study the dynamics of the transverse-field Ising model in two
dimensions, and in particular, of a straight domain wall state. We find that the
non-equilibrium behavior is highly influenced by the emergence of a one-dimensional
phase transition of the domain wall embedded in the two-dimensional quantum mag-
net. The dynamics of the two-dimensional quantum Ising model, which are highly
limited in terms of system size for numerical simulations, can be explored using
state-of-the-art Rydberg atom platforms. A realization on a Rydberg atom simula-
tor would further allow the study of more complicated scenarios, such as a curved
domain wall or bubbles, which are currently not accessible in numerical simulations.
Our results have been published in [36].

In Chapter IV, we revisit the symmetry-protected topological phase of unpaired Ma-
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jorana zero modes, a subject also addressed in Chapter I. Specifically, we study the
influence of temperature on the stability of these edge-localized modes. To achieve
this, we develop a new tensor-network algorithm that allows us to study the interplay
between temperature and interactions on the lifetime of the Majorana zero modes.
In particular, we find that these modes exhibit a finite, but still orders of magnitude
larger lifetime than any bulk excitation. Based on the exact diagonalization results,
we conjecture that this prolonged lifetime is due to an extended degeneracy in the
many-body spectrum that emerges in the symmetry-protected topological phase.
These findings demonstrate that, if realized in an experimental setup, the Majorana
zero modes are resilient over long time scales, even at intermediate temperatures, al-
lowing operations to be performed on them. Our results have been published in [37].

Finally, we discuss two yet unpublished extensions of the results from Chapter IV,
namely: In Chapter V we return to the class of models that realizes the symmetry-
protected topological phase of unpaired Majorana zero modes while conserving the
particle number, also considered in Chapter I. Specifically, we apply our algorithm to
study the lifetimes of the emergent Majorana zero modes. We find that the lifetime
of the Majorana zero modes is drastically reduced at intermediate temperatures in
the presence of a gapless mode, which is always present in this class of models. In
Chapter VI, we propose a variational approach to identify long-lived edge excitations
in fermionic models. In contrast to earlier approaches, such as in [38], the ansatz is
tailored to respect all constraints for proper Majorana operators and thus lives in
the correct variational manifold.

All additional data, including the unpublished results from Chapters IV and VI,
presented in this thesis are publicly available under [39].
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CHAPTER 1
Phases Of Quantum Matter in

One Dimension

One-dimensional quantum systems exhibit behavior that is distinct from that of
their higher-dimensional counterparts. While two- and three-dimensional metals are
often described by the concept of a Fermi liquid, a phase with long-lived fermionic
quasiparticles [40–43], the one-dimensional analog is the Tomonaga-Luttinger liq-
uid [44–47]. In a Tomonaga-Luttinger liquid, the fundamental excitations are collec-
tive charge and spin waves that can move independently from each other, also known
as the charge-spin separation of the microscopic degrees of freedom. In addition to
the characteristics of metallic phases, gapped phases are notably distinct, as one-
dimensional systems are prohibited from breaking continuous symmetries owing to
the Mermin-Wagner-Hohenberg theorem [48–50]. Consequently, all gapped phases
either in a trivial phase with a unique ground state, break a finite symmetry group,
such as a Z2 parity symmetry, or form a non-trivial symmetry-protected topological
phase where the ground state degeneracy depends on the topology of the underlying
quantum system [51–54].

The special behavior of one-dimensional models is rooted in the fact that every
position in the chain has a unique predecessor and successor, which allows for the
definition of a natural order that is absent in higher dimensions. Consequently,
quantum fluctuations are greatly enhanced owing to the reduced number of neighbors
and entanglement monogamy [55, 56]. Additionally, the reduced connectivity and
existence of a unique order allow for the formulation of powerful tools to solve one-
dimensional quantum systems, both analytically [57–59] and numerically [60–64].
The reduced connectivity also leads to a fundamental equivalence between bosons,
fermions, and spins. This allows for rewriting every local model as a spin model
with each spin described by a finite-dimensional Hilbert space, ℋloc ≅ C𝑑. While
this mapping is exact in the case of fermions, bosonic particles are only described
effectively owing to the infinite-dimensional local Hilbert space of bosons.

The first part of this chapter, Section 1.1, introduces the general concepts of quan-
tum chains, including the construction of the many-body Hilbert space and the
operators acting on it. This general introduction is followed by a more detailed dis-
cussion of possible gapped phases of matter in Section 1.2 and gapless phases of
matter in Section 1.3. The following Section 1.4 reviews of the concept of quantum
entanglement and how the different phases of matter lead to different footprints in

7



8 CHAPTER 1. PHASES OF QUANTUM MATTER IN ONE DIMENSION

the structure of entanglement. In last Section 1.5, the concepts of strong zero mode
and almost strong zero mode are introduced. This concept extends the notion of
Majorana Zero Modes, which are fractionalized fermions localized at the edge of a
finite-sized quantum chain, to the entire many-body spectrum.

1.1 Quantum Spin Chains
Spin chains form the foundation of all models and their phases discussed in the
results of this thesis. Therefore, understanding the notation and basic properties of
these quantum mechanical systems is important and will be discussed in this sec-
tion. To start, Subsection 1.1.1 gives a general definition of the many-body Hilbert
space of spin chains, followed by the definition of the algebra of operators acting on
this Hilbert space in Subsection 1.1.2, the Hamiltonian in Subsection 1.1.3, and the
definition of symmetries and their implications in Subsection 1.1.4. Subsection 1.1.5
explains the duality between bosons, fermions, and spins, which are the typical de-
grees of freedom encountered in physical systems. This is followed by Subsection 1.1.6
which discusses the consequences of closing the chain to a ring by introducing pe-
riodic boundary conditions in the underlying quantum system. Finally, this section
concludes in Subsection 1.1.7 with a discussion of the experimental platforms that
allow the realization of quantum chains.

1.1.1 Many-Body Hilbert Space

The quantum spin chain is constructed by taking a chain of 𝑁 sites indexed by
ℐ = {1, … , 𝑁} and associating a copy of the same Hilbert space1 of dimension 𝑑,
ℋ𝑗

loc ≅ C𝑑, to each lattice site, as illustrated in Fig. 1.1. The full many-body Hilbert

1 2 3 … 𝑁

ℋ1
loc ℋ2

loc ℋ3
loc ℋ𝑁

loc 1𝑢

1𝑙

2𝑢

2𝑙

3𝑢

3𝑙

…
𝑁𝑢

𝑁𝑙

(a) (b)

Figure 1.1: Examples of (quasi-)one dimensional lattice systems. (a) Simple spin chain of
local quantum systems placed along a line. Each site is associated with a local Hilbert space
ℋloc. (b) Quasi-one-dimensional system forming a ladder. The ladder is equivalent to the
chain in (a) with ℋloc = ℋ𝑢 ⊗ ℋ𝑙 where the sites 𝑢 and 𝑙 are blocked into a super-site.

space of the quantum spin chain is then given by the direct tensor product of the
local Hilbert spaces

ℋ =
𝑁

⨂
𝑗=1

ℋ𝑗
loc , dim(ℋ) = 𝑑𝑁 . (1.1)

Note that in a real physical system, the different sites 𝑗 are separated by a physical
length 𝛼, where 𝑥𝑗 = 𝑗𝛼 denotes a real physical coordinate.
By choosing an appropriate basis in the local Hilbert space, a many-body basis
can be generated based on the tensor product in Eq. (1.1). Let the local basis be

1The requirement that every copy ℋ𝑗
loc is isomorphic to the same Hilbert space ℋloc is not

necessary in general but is sufficient for this thesis.



1.1. QUANTUM SPIN CHAINS 9

enumerated by an integer number 𝑚 ∈ {1, … , 𝑑} such that |𝑚⟩ ∈ ℋloc, a general
state |𝜓⟩ ∈ ℋ of the many-body Hilbert space is given by

|𝜓⟩ = ∑
{𝑚}

𝜓𝑚1,…𝑚𝑁
|𝑚1, … , 𝑚𝑁⟩ , 𝜓𝑚1,…𝑚𝑁

∈ C , (1.2)

where
|𝑚1, … , 𝑚𝑁⟩ ≔ |𝑚1⟩ ⊗ ⋯ ⊗ |𝑚𝑁⟩ . (1.3)

1.1.2 Many-Body Operators

A many-body operator is a linear map acting on the previously defined Hilbert space

𝑂̂ |𝜓⟩ ∈ ℋ ∀ |𝜓⟩ ∈ ℋ . (1.4)

Analogous to the construction of a generic many-body state, a general operator can
be expressed as a sum of products of local operators that act exclusively within the
local Hilbert space ℋ𝑗

loc. Thus, it is beneficial to first define the operator algebra for
a single spin described by ℋloc. Since ℋloc ≅ C𝑑, the set of all operators on ℋloc is
given by the set of all complex 𝑑 × 𝑑 matrices, denoted by Mat(C, 𝑑, 𝑑). In the local
basis |𝑚⟩ ∈ ℋloc, the operator 𝑂̂ can be written as

𝑂̂ = ∑
𝑛,𝑚

𝑂𝑚,𝑛 |𝑚⟩ ⟨𝑛| , (1.5)

where the matrix elements are defined by

𝑂𝑚,𝑛 = ⟨𝑚|𝑂̂|𝑛⟩ ∈ C . (1.6)

Given a state |𝜓⟩ ∈ ℋloc and an operator 𝑂̂ acting on ℋloc, the expectation value
of the operator with respect to the state |𝜓⟩ is defined in the local basis as

⟨𝜓|𝑂̂|𝜓⟩ = ∑
𝑚,𝑛

̄𝜓𝑚𝑂𝑚,𝑛𝜓𝑛 , |𝜓⟩ =
𝑑

∑
𝑚=1

𝜓𝑚 |𝑚⟩ . (1.7)

The complex transpose of an operator 𝑂̂ is defined by

𝑂̂† = ∑
𝑚,𝑛

𝑂̄𝑛,𝑚 |𝑚⟩ ⟨𝑛| , (1.8)

where ̄𝑧 = 𝑎−𝑖𝑏 denotes the complex conjugate of the complex number 𝑧 = 𝑎+𝑖𝑏. An
operator that is invariant under complex transpose, 𝑂̂† = 𝑂̂, is called a Hermitian
operator. Since

⟨𝜓|𝑂̂|𝜓⟩ = ⟨𝜓|𝑂̂†|𝜓⟩ ,

the expectation value of a Hermitian operator ⟨𝜓|𝑂̂|𝜓⟩ is a real number. There-
fore, Hermitian operators are naturally associated with the physical properties of a
quantum system.

Together with the Frobenius scalar product

⟨𝑂̂, 𝐾̂⟩ = 1
𝑑

Tr [𝑂̂†𝐾̂] = 1
𝑑

∑
𝑗,𝑘

𝑂̄𝑗𝑘𝐾𝑗𝑘 , (1.9)
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the algebra of all linear maps naturally forms a Hilbert space itself. Using this scalar
product, it is possible to construct 𝑑2 orthogonal, normalized and Hermitian basis
operators 𝜎𝛼, such that every operator can be expanded as

𝑂̂ =
𝑑2

∑
𝛼=1

𝑂𝛼𝜎𝛼 , 𝑂𝛼 ∈ C .

Typically, 𝜎1 is set as the identity on ℋloc.

For example, consider a spin-1/2 degree of freedom with local Hilbert space dimen-
sions 𝑑 = 2. In this case, the local Hilbert space is described by only two state which
are typically denoted by the spin-up and spin-down state

|1⟩ ≅ |↓⟩ , |2⟩ ≅ |↑⟩ . (1.10)

An orthonormal and Hermitian basis for operators acting on this spin-1/2 Hilbert
space is given by the Pauli matrices

𝜎𝑥 = (0 1
1 0

) , 𝜎𝑦 = (0 −𝑖
𝑖 0

) , 𝜎𝑧 = (1 0
0 −1

) (1.11)

together with the identity 1, as can be checked by explicitly evaluating the Frobenius
scalar product, Eq. (1.9), between all operator pairs

1
2

Tr [𝜎𝛼𝜎𝛽] = 𝛿𝛼,𝛽 , 𝜎𝛼, 𝜎𝛽 ∈ {1, 𝜎𝑥, 𝜎𝑦, 𝜎𝑧} .

Embedded in the many-body spin chain, an operator acting only on the Hilbert
space ℋ𝑗

loc of the 𝑗th site is defined by

𝑂̂𝑗 ≔ 1⊗1⊗ ⋯ ⊗ 1⏟⏟⏟⏟⏟⏟⏟
𝑗−1 times

⊗ 𝑂̂ ⊗ 1⊗ ⋯ ⊗ 1⏟⏟⏟⏟⏟
𝑁−𝑗 times

,

where 𝑂̂ denotes a single-site operator, as defined above. Note that operators acting
on different sites 𝑗 ≠ 𝑘 are naturally commuting

[𝑂̂𝑗, 𝐾̂𝑘] ≔ 𝑂̂𝑗𝐾̂𝑘 − 𝐾̂𝑘𝑂̂𝑗 = 0 . (1.12)

The local Hermitian basis 𝜎𝛼
𝑗 can be used to construct a full basis of many-body

operators
𝜎{𝛼} = 𝜎𝛼1

1 𝜎𝛼2
2 … 𝜎𝛼𝑁

𝑁 ≔ 𝜎𝛼1 ⊗ 𝜎𝛼2 ⊗ ⋯ ⊗ 𝜎𝛼𝑁 . (1.13)

This basis naturally forms an orthonormal basis set of Hermitian operators with
respect to the many-body generalization of the Frobenius scalar product

⟨𝜎{𝛼}, 𝜎{𝛽}⟩ = 1
𝑑𝑁 Tr [𝜎𝛼1𝜎𝛽1] … Tr [𝜎𝛼𝑁𝜎𝛽𝑁] = 𝛿𝛼1,𝛽1

… 𝛿𝛼𝑁,𝛽𝑁
,

where Tr(𝜎𝛼𝜎𝛽) = 𝑑𝛿𝛼,𝛽 was used. A generic many-body operator can now be ex-
pressed in terms of the many-body operator basis, Eq. (1.13), as

𝑂̂ = ∑
{𝛼}

𝑂𝛼𝜎{𝛼} . (1.14)

The complex transpose, expectation value, and other properties are naturally ex-
tended from single-site operators to many-body operators.
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An important concept for many-body operators is the interaction range of a given
operator 𝑂̂. This range is defined as the length of a connected subset of indices on
which the operator 𝑂̂ acts non-trivially while acting only with the identity on the
complement. For example, consider the operator 𝑀̂ = 𝑂̂𝑗𝑂̂𝑗+𝑙 which is the product
of two local operators acting on sites 𝑗 and 𝑗 + 𝑙. The interaction range of this
operator is 𝑙 + 1.

1.1.3 Hamiltonian

The Hamiltonian 𝐻 of the quantum spin chain of 𝑁 sites is a special Hermitian
operator that defines all the physical properties of the quantum spin chain. The
Hamiltonian measures the energy of a given quantum state ⟨𝜓|𝐻|𝜓⟩ = 𝐸. Analogous
to classical Hamiltonian mechanics, the quantum Hamiltonian is responsible for the
time evolution of spin systems. Typically, the Hamiltonian is required to be local
and includes only interactions that decay sufficiently rapidly with distance.
The models considered in this thesis have a stronger requirement that the Hamilto-
nian consists only of finite-range interactions. In this case, 𝐻 can be written as

𝐻 =
𝑁

∑
𝑗=1

ℎ𝑗 , (1.15)

where ℎ𝑗 acts non-trivially only in a finite region around the 𝑗th site. The interaction
radius is independent of the system size when 𝑁 is sufficiently large.

For a given many-body quantum state |𝜓⟩, the Schrödinger equation describes how
this state evolves over time

𝑖𝜕𝑡 |𝜓⟩𝑡 = 𝐻 |𝜓⟩𝑡 . (1.16)

Solving the Schrödinger equation is equivalent to find the eigenstates |𝑛⟩ and eigen-
values 𝐸𝑛 of the Hamiltonian 𝐻 defined by

𝐻 |𝑛⟩ = 𝐸𝑛 |𝑛⟩ , 𝐸0 ≤ 𝐸1 ≤ … ≤ 𝐸max . (1.17)

Because the Hamiltonian only has interaction terms of finite size, the energy is
bounded (𝐸0 > −∞ and 𝐸max < ∞) for a finite chain.
If unique, the state with the lowest energy |Ω⟩ is called the ground state of the
Hamiltonian. In this case, the system-size-dependent spectral gap is defined as the
difference in energy between the ground state and first excited state

Δ(𝑁) ≔ 𝐸1(𝑁) − 𝐸0(𝑁) . (1.18)

In the thermodynamic limit, this quantity becomes

lim
𝑁→∞

Δ(𝑁) =
⎧{
⎨{⎩

Δ > 0

0
. (1.19)

If the many-body gap is finite in this limit, the system is said to be gapped, whereas
for Δ(𝑁) approaching zero, the system is called gapless. The existence of a many-
body gap strongly influences the structure of ground-state correlations, as it has
been shown that the correlation functions of any pair of local operators decay expo-
nentially [65, 66].
Conversely, the low-energy regime of a gapless system is typically characterized
by a conformal field theory, in which the correlation functions decay according to
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universal power laws. These exponents are determined exclusively by the algebraic
structure of the underlying conformal field theory [67]. See Subsection 1.3.3 for
further details.

If the ground state in the thermodynamic limit becomes degenerate, as in the case
of symmetry breaking or topological degeneracy, the gap must be defined between
the energy difference of the ground-state multiplet and the first true excited state.

1.1.4 Symmetries

Symmetries play a crucial role for the properties of a quantum system, such as
the existence of non-trivial observables that are invariant under time evolution,
Eq. (1.16), or the existence of degeneracies in the energy spectrum. A symmetry is
a group 𝐺 that acts globally2 on the quantum spin chain through unitary or anti-
unitary3 representations 𝑔 → 𝑈(𝑔) on the many-body Hilbert space ℋ [68]. The
action of the symmetry group preserves the Hamiltonian 𝐻 of the spin chain

[𝐻, 𝑈(𝑔)] = 0 , ∀𝑔 ∈ 𝐺 , (1.20)

ensuring that the eigenstates of the Hamiltonian form irreducible representations of
the group 𝐺. An irreducible representation is a subspace that contains no smaller
subspace mapped into itself under the action of 𝐺.

Correspondingly, the Hamiltonian decomposes into smaller blocks [69]

𝐻 =
⎛⎜⎜⎜
⎝

𝐻1 0 0 … 0
0 𝐻2 0 … 0
⋮ ⋱ ⋮

⎞⎟⎟⎟
⎠

,

where each block 𝐻𝛼 = 𝑉𝛼 ⊗ 𝑅𝛼 contains a part 𝑉𝛼 that carries the non-trivial
irreducible representation of the symmetry group and 𝑅𝛼 which transforms trivially
under 𝐺, called the degeneracy space. The space 𝑉𝛼 is completely fixed by the group
representation labeled by the main quantum number 𝛼

|𝛼, 𝛽⟩ ∈ 𝑉𝛼 , 𝑈(𝑔) |𝛼, 𝛽⟩ = ∑
𝛽′

𝑢𝛼
𝛽,𝛽′(𝑔) |𝛼, 𝛽′⟩ ∈ 𝑉𝛼 ,

where 𝛽 enumerates the basis of the representation 𝑉𝛼. As 𝑅𝛼 has no further restric-
tion, every eigenstate of the Hamiltonian satisfies 𝐻 |𝛼, 𝛽⟩ ⊗ |𝑛⟩ = 𝐸𝛼,𝑛 |𝛼, 𝛽⟩ ⊗ |𝑛⟩,
where |𝑛⟩ ∈ 𝑅𝛼. The energy 𝐸𝛼,𝑛 is independent of the secondary quantum num-
ber 𝛽. This leads to the emergence of energy multiplets in the spectrum when
dim(𝑉𝛼) > 1.

If all elements of the group commute with each other, that is, [𝑔, 𝑔′] = 0, the group is
called an Abelian group; otherwise, it is non-Abelian. The irreducible representations
of an Abelian group are one-dimensional and have the general form

𝑢𝛼(𝑔) = 𝑒𝑖𝜑𝛼(𝑔) , 𝜑𝛼(𝑔) ∈ [0, 2𝜋) . (1.21)
2 A unitary 𝑈 that acts on all constituents of the spin chain is called a global unitary. By contrast,

if the unitary 𝑈 acts only on a few sites of the spin chain, it is called a local unitary transformation.
If the spin chain is invariant under an extensive group 𝐺 of local unitaries, then this group is called
a gauge symmetry. In this thesis, only symmetries of global groups are considered.

3An anti-unitary transformation is the concatenation of a unitary transformation and complex
conjugation.
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In this case, every eigenstate of the Hamiltonian can be chosen as a simultaneous
eigenstate of the entire group 𝑈(𝑔) with eigenvalue exp(𝑖𝜑𝛼(𝑔)). A non-Abelian
group allows for higher-dimensional representations, and thus, a greater dimensional
reduction.

The symmetries encountered in this thesis are Abelian and represented by point-wise
operations of the form

𝑈(𝑔) =
𝑁

∏
𝑗=1

𝑢𝑗(𝑔) (1.22)

where 𝑢𝑗(𝑔) ≠ 1 is a unitary that acts only on the local Hilbert space ℋ𝑗
loc. The

conservation of the total spin moment ̂𝑁 = ∑𝑗 𝜎𝑧
𝑗 of a spin-1/2 quantum chain is

an example of such a point-wise symmetry given by

𝑈(𝑔) = 𝑒𝑖𝑔𝑁̂ =
𝑁

∏
𝑗=1

𝑒𝑖𝑔𝜎𝑧
𝑗 , 𝑔 ∈ [0, 2𝜋) .

1.1.5 Bosons and Fermions

There is a natural equivalence between fermions and bosons with spin degrees of free-
dom. The necessary mappings are discussed in this subsection, starting with the case
of bosons. For bosons, this requires truncating the full infinite-dimensional bosonic
Hilbert space to include only a finite number of states. In the case of fermions, the
mapping requires a non-local unitary transformation of the fermionic Hilbert space.
While the mapping of bosons to spins can be readily extended to higher dimensions,
the fermionic mapping results in long-range Hamiltonians, gauge theories, or the
need for auxiliary sites [70–72].

The mappings presented in this subsection are used throughout the results presented
in Chapters I–VI to efficiently simulate the models using tensor network algorithms
formulated for spin chains.

Bosons

The many-body Hilbert space of a chain populated by bosons is constructed using
bosonic ladder operators 𝑏†

𝑗 and 𝑏𝑗 , which create and annihilate a bosonic particle at
site 𝑗. These ladder operators fulfill the Canonical Commutation Relations (CCR)

[𝑏𝑗 , 𝑏†
𝑘] = 𝛿𝑗,𝑘 , (1.23)

and the number operator counting the total occupation of particles at site 𝑗 is defined
as

𝑛̂𝑗 = 𝑏†
𝑗𝑏𝑗 , [𝑛̂𝑗 , 𝑏𝑗 ] = −𝑏𝑗 . (1.24)

The local Hilbert space ℋ𝑗
loc at site 𝑗 is constructed as the eigenstates of the Her-

mitian operator 𝑛̂𝑗.

For simplicity, consider first a single bosonic site described by only one pair of ladder
operators 𝑏 and 𝑏†.
Given the existence of a vacuum state, 𝑏 |0⟩ = 0, and the commutation relations of
the operator 𝑛̂ with 𝑏 and 𝑏†, it can be shown that the spectrum of 𝑛̂ is the set of
all natural numbers [42]

𝑛̂ |𝑛⟩ = 𝑛 |𝑛⟩ , 𝑛 ∈ N ∪ {0} .
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The ladder operators act on these eigenstates as

𝑏 |𝑛⟩ =
√

𝑛 |𝑛 − 1⟩ , 𝑏† |𝑛⟩ =
√

𝑛 + 1 |𝑛 + 1⟩ .

The many-body Hilbert space is a direct tensor product of 𝑁 copies of the local
bosonic Hilbert space, similar to Eq. (1.1).

The resulting many-body Hilbert space has a structure that is very similar to that of
the spin chains discussed previously. In particular, the operators acting on different
sites commute naturally. Given that the bosonic Hilbert space cannot be finite [73],
the bosonic chain effectively represents a spin chain with 𝑑 → ∞. Therefore, map-
ping the bosonic chain to a spin chain with a finite number of local states requires
truncation of the local Hilbert spaces to allow for a maximal occupation. There are
multiple ways to perform such truncation, two of which are presented below.

The first truncation is natural in the dilute limit, with only a few strongly interacting
bosonic particles populating the chain. In this case, the Hamiltonian 𝐻 typically
involves a Hubbard-like interaction term [74]

𝐻Hubbard = 𝑉Hubbard ∑
𝑗

𝑛̂𝑗(𝑛̂𝑗 − 1) (1.25)

that penalizes large occupations when the interaction becomes the dominant energy
scale of 𝐻. Consequently, only a few states with low occupations play a role in the
ground state. This allows an effective description of the bosonic chain as a spin chain
with a local Hilbert space dimension 𝑑 by including only the vacuum state |0⟩ and
𝑑−1 additional bosons in the local Hilbert space. In the extreme limit 𝑉Hubbard → ∞,
the only allowed states are the vacuum state |0⟩ and one additional boson |1⟩. This
situation is called a hardcore boson and is equivalent to a spin-1/2 degree of freedom.

While this first mapping works well in the dilute limit, the second mapping targets
the opposite limit of a macroscopic number of bosons in the chain. This situation
naturally occurs in an array of superconducting patches connected by Josephson
junctions, also known as Josephson Junction Array (JJA) [75]. Each of these islands
is described by a macroscopic condensation of Cooper pairs [75–77]. In this scenario,
it is useful to define the reference state |0⟩ as the ground state of the superconducting
island at site 𝑗. The number operator 𝑛̂𝑗 is redefined to measure the difference in
occupation with respect to the reference state |0⟩.
Further, it is useful to define the vertex operators exp(±𝑖𝜑𝑗) by

𝑒−𝑖𝜑𝑗 = ( ̂𝑁𝑗 )
− 1

2 𝑏𝑗 , 𝑒𝑖𝜑 = 𝑏†
𝑗 ( ̂𝑁𝑗 )

− 1
2 (1.26)

where ̂𝑁𝑗 is the number operator that measures the absolute number of Cooper
pairs on the 𝑗th island. The vertex operators acting on different islands naturally
commute. The commutator of operators at the same island becomes in the limit of

̂𝑁𝑗 → ∞
[𝑒−𝑖𝜑𝑗 , 𝑒𝑖𝜑𝑗 ] = ( ̂𝑁𝑗 )

−1
𝑏𝑗𝑏†

𝑗 − ( ̂𝑁𝑗 − 1)
−1

𝑏†
𝑗𝑏𝑗 = 0 .

Similar, the commutator of the vertex operator and the relative number operator 𝑛̂𝑗
is calculated as

[𝑛̂𝑗, 𝑒±𝑖𝜑𝑗 ] = ±𝑒±𝑖𝜑 . (1.27)

This equation indicates the interpretation of 𝜑𝑗 as the canonical conjugated operator
of 𝑛̂𝑗. It is important to note that owing to the discrete nature of the spectrum of 𝑛̂𝑗,
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the commutator [𝜑𝑗, 𝑛̂𝑗] is ill-defined, and only its exponential form has a rigorous
definition [78–80]. Similar to the Hubbard interaction in Eq. (1.25), JJAs have a
term penalizing large differences of the number of Cooper pairs with respect to the
average filling

𝐻C = 𝑉C ∑
𝑗

𝑛̂2
𝑗 .

Again, for 𝑉C being large compared to the natural energy scale of the JJA, one can
truncate the effective Hilbert space to only allow for 𝑚 additional excess bosons. In
this case, the local Hilbert space dimension is 𝑑 = 2𝑚 + 1.

Fermions

Spinless fermions populating the chain are described by their ladder operators 𝑎†
𝑗

and 𝑎𝑗 . These operators create and annihilate a local fermion at site 𝑗, similar to
the bosonic case discussed previously4. In contrast to the bosonic ladder operators
which fulfilled the CCR (1.23), the fermionic operators have to fulfill the Canonical
Anti-Commutation Relations (CAR)

{𝑎𝑗 , 𝑎†
𝑘} = 𝛿𝑗,𝑘 , (1.28)

with all other combinations being zero. Here, { ̂𝐴, 𝐵̂} = ̂𝐴𝐵̂ + 𝐵̂ ̂𝐴 denotes the anti-
commutator of the two operators ̂𝐴 and 𝐵̂. The CAR from (1.28) encodes the fun-
damental anti-symmetric properties of fermionic wave functions and is rooted in the
Pauli principle [40, 42, 81] which states that two fermions cannot occupy the same
quantum state. In fact, using the CAR it is found

(𝑎†
𝑗)2 = (𝑎𝑗)2 = 0 .

As a consequence, the local Hilbert space at site 𝑗 can only consists out of two
possible states: The fermionic vacuum state |0⟩𝑗 and the single occupied state |1⟩𝑗
with

𝑎†
𝑗 |0⟩𝑗 = |1⟩𝑗 , 𝑎𝑗 |1⟩𝑗 = |0⟩𝑗 .

These are the only two eigenstates of the fermionic number operator 𝑛̂𝑗 = 𝑎†
𝑗𝑎𝑗 ,

which follows from

(𝑛̂𝑗)2 = 𝑎†
𝑗𝑎𝑗𝑎†

𝑗𝑎𝑗 = 𝑎†
𝑗{𝑎𝑗 , 𝑎†

𝑗}𝑎𝑗 − (𝑎†
𝑗)2(𝑎𝑗)2 = 𝑛̂𝑗

⇒ 𝑛̂𝑗(𝑛̂𝑗 − 1) = 0 .

If there is only a single fermionic site, the total Hilbert space comprises only two
states, and can be naturally identified with the Hilbert space of a spin-1/2 degree
of freedom5

|0⟩ ≅ |↓⟩ , |1⟩ ≅ |↑⟩ . (1.29)

This identification of states also implies a representation of the ladder operators 𝑎
and 𝑎† in terms of the Pauli matrices

𝑎† = 1
2

(𝜎𝑥 + 𝑖𝜎𝑦) ≔ 𝜎+ , 𝑎 = 1
2

(𝜎𝑥 − 𝑖𝜎𝑦) ≔ 𝜎−

4Typically, fermions are electrons that also carry a spin degree of freedom. This requires an
additional index for the ladder operators. The spinless case is chosen to reduce the complexity of
the notation.

5The identification is not unique and other choices are equally valid and appear in the literature.
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obeying the correct anti-commutation relations, and the Pauli matrix 𝜎𝑧 measures
the parity of the fermionic site

̂𝑝 ≔ −𝜎𝑧 = 𝑒𝑖𝜋𝑛̂ = 1−2𝑛̂ .

At the level of the states, this mapping is readily extended to the full many-body
quantum chain by performing the identification from Eq. (1.29) for all basis states
in the occupation basis. This identification implies the mapping of the local fermion
number operator

𝑛̂𝑗 = 1
2

(1+𝜎𝑧
𝑗 ) , (1.30)

similar to the case of one fermionic site. Performing the same extension from the
single site to the chain for the creation and annihilation operators

̃𝑎†
𝑗 = 1

2
(𝜎𝑥

𝑗 + 𝑖𝜎𝑦
𝑗 ) ≔ 𝜎+

𝑗 , ̃𝑎𝑗 = 1
2

(𝜎𝑥
𝑗 − 𝑖𝜎𝑦

𝑗 ) ≔ 𝜎−
𝑗 (1.31)

results in operators that commute on different lattice sites. Consequently, the ̃𝑎(†)
𝑗

operators do not fulfill the CAR from (1.28), and they do not represent proper
fermionic operators on the quantum chain.

To define operators which have the proper anti-commuting properties, it is necessary
to dress the improper ladder operators (1.31) by a non-local unitary

𝑎(†)
𝑗 = 𝒥𝑗 ̃𝑎(†)

𝑗 = ∏
𝑘<𝑗

𝑒𝑖𝜋𝑛̂𝑗 ̃𝑎(†)
𝑗 = ∏

𝑗<𝑘
(−𝜎𝑧

𝑗 ) ̃𝑎(†)
𝑗 . (1.32)

This transformation is known as the Jordan-Wigner transformation [82], where 𝒥𝑗 is
the Jordan-Wigner string operator that measures the partial parity of the sub-chain
to the left of site 𝑗. A detailed derivation can be found in Appendix B.

The string operators have the properties

𝒥†
𝑗 = 𝒥𝑗 , 𝒥2

𝑗 = 1 , 𝒥𝑗+1 = 𝒥𝑗𝑒𝑖𝜋𝑛̂𝑗 , (1.33)

which are useful for mapping local fermionic models to local spin models. For exam-
ple, all the nearest neighbor terms for 𝑗 < 𝑁 are mapped to the spin chain according
to

𝑎†
𝑗𝑎𝑗+1 + h.c. = 𝜎+

𝑗 𝜎−
𝑗+1 + h.c. = 1

2
(𝜎𝑥

𝑗 𝜎𝑥
𝑗+1 + 𝜎𝑦

𝑗 𝜎𝑦
𝑗+1)

𝑎†
𝑗𝑎†

𝑗+1 + h.c. = 𝜎+
𝑗 𝜎+

𝑗+1 + h.c. = 1
2

(𝜎𝑥
𝑗 𝜎𝑥

𝑗+1 − 𝜎𝑦
𝑗 𝜎𝑦

𝑗+1) .

If the system has periodic boundary conditions, the operators connecting the first
and last site of the chain acquire an additional term that depends on the global
parity [83] of the fermionic chain and is given by

̂𝑃 =
𝑁

∏
𝑗=1

𝑒𝑖𝜋𝑛̂𝑗 =
𝑁

∏
𝑗=1

(−𝜎𝑧
𝑗 ) . (1.34)

The corresponding term in the Hamiltonian reads

𝑎†
𝑁𝑎1 + h.c. = ̂𝑃 (𝜎+

1 𝜎−
𝑁 + 𝜎−

1 𝜎+
𝑁) ,

and similar for 𝑎†
𝑁𝑎†

1.



1.1. QUANTUM SPIN CHAINS 17

An important consequence of the existence of the Jordan-Wigner string is that a
term like

𝐻sp = 𝑉sp ∑
𝑗

𝑎†
𝑗 + 𝑎𝑗

is forbidden, as it violates the principle of locality. Loosely speaking, the term 𝑎𝑗 +𝑎†
𝑗

is sensitive to the existence of a fermion, even if the fermion is infinitely far away.
Consequently, the only allowed terms in the Hamiltonian are operators involving an
even number of fermionic operators, and the fermionic parity of the entire chain is
an unbreakable symmetry in all systems. In contrast, such a term is not forbidden
in bosonic chains, and it is a common feature that appears, for example, in Rydberg
systems [8–10]. Because the parity is a fundamental symmetry of fermionic chains,
the extra parity operator ̂𝑃 that appears in fermionic chains with periodic boundary
conditions can be incorporated into the boundary condition of the states on the spin
chain, as the model can be solved separately in the even and odd parity sectors.

Based on the fermionic operators 𝑐𝑗 it is possible to define a set of two independent
Majorana operators

𝛾𝑗,𝑎 = 𝑐𝑗 + 𝑐†
𝑗 , 𝛾𝑗,𝑏 = 𝑖 (𝑐𝑗 − 𝑐†

𝑗) . (1.35)

These Majorana operators are Hermitian 𝛾†
𝑗,𝛼 = 𝛾𝑗,𝛼, squaring to the identity 𝛾2

𝑗,𝛼 =
1, and fulfill the anti-commutation relation

{𝛾𝑗,𝛼, 𝛾𝑘,𝛽} = 2𝛿𝛼,𝛽𝛿𝑗,𝑘 . (1.36)

Rather than expressing the Majorana operators through the fermionic operators 𝑐𝑗,
one can alternatively begin with a pair of independent Majorana operators, 𝛾𝑗,𝑎
and 𝛾𝑗,𝑏. By pairing one 𝑎 and 𝑏 Majorana on the same site 𝑗 results in a local
two-dimensional fermionic Hilbert space described by the fermion

𝑐𝑗 =
𝛾𝑗,𝑎 − 𝑖𝛾𝑗,𝑏

2
. (1.37)

The occupation of this fermionic degree of freedom is measured by the local parity

̂𝑝𝑗 = 𝑒𝑖𝜋𝑛̂𝑗 = 𝑖𝛾𝑗,𝑎𝛾𝑗,𝑏 . (1.38)

with the global parity of the state given by a product over all sites 𝑗

̂𝑃 =
𝑁

∏
𝑗=1

(𝑖𝛾𝑗,𝑎𝛾𝑗,𝑏) . (1.39)

This construction is not limited to the pairing of two Majorana operators at the same
site. In fact, any pairing of two independent Majorana operators can be chosen to
construct the fermionic many-body Hilbert space. While the local parity operators
may change for different pairings, the global parity operator is independent of the
pairing and is always given by Eq. (1.39).

A particularly interesting scenario is the pairing of Majorana operators, which results
in two unpaired Majorana operators localized at the opposite edges of the chain. In
this case, the chain forms a symmetry-protected topological phase [84], which is the
subject of Subsection 1.2.3.
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1.1.6 Translation Invariance and Fourier Transformation

To reduce the complexity of the notation, this subsection assumes that the quantum
system describes either fermionic or bosonic particles populating a ring with 𝑁
lattice sites. This type of geometry can be modeled by imposing (twisted) periodic
boundary conditions on the quantum states. Let 𝛽(†)

𝑗 be either a set of fermionic or
bosonic creation and annihilation operators building the many-body Hilbert space,
and let ̂𝑇 be the many-body operator that shifts each lattice site by one, as shown
in Fig. 1.2.

1 2 3 4 …

…

ℋ1
loc ℋ2

loc ℋ3
loc ℋ4

loc

̂𝑇 ̂𝑇 ̂𝑇 ̂𝑇

̂𝑇
𝑁 1 2 3 …

…

ℋ𝑁
loc ℋ1

loc ℋ2
loc ℋ2

loc

Figure 1.2: Action of the shift operator ̂𝑇 on a quantum system defined on a ring geometry.

Consequently, acting with ̂𝑇 on any quantum state on the ring 𝑁 times should result
in the same many-body quantum state, up to a global phase. Since the basis states
are defined as repeated actions of the creation operators on the vacuum, this can be
achieved by imposing that ̂𝑇 acts on the lattice operators as

̂𝑇 𝛽𝑗 ̂𝑇 † = 𝛽𝑗+1 , for 𝑗 < 𝑁
̂𝑇 𝛽𝑁 ̂𝑇 † = 𝑒𝑖𝜑𝛽1 .

(1.40)

The angle 𝜑 is known as the twisting angle. If the Hamiltonian of such a ring with
twisted boundary conditions commute with the shift operator ̂𝑇

[ ̂𝑇 , 𝐻] = 0 ,

the Hamiltonian is called translational invariant, and the eigenstates of the Hamil-
tonian can be selected as the simultaneous eigenstates of the shift operator ̂𝑇. This
is known as Bloch’s theorem [43, 85].

The eigenstates of the shift operator ̂𝑇 can be created from the lattice creation and
annihilation operators after applying the Fourier transformation

𝛽𝑘 ≔ 1√
𝑁

𝑁
∑
𝑗=1

𝑒−𝑖𝑘𝛼 𝑗𝛽𝑗 , (1.41)

where 𝛼 is the length scale separating two adjacent lattice sites6. By calculating the
adjoint action of the shift operator and using Eq. (1.40) these operators are found
to be invariant under the action of ̂𝑇 for special values of the momentum 𝑘

̂𝑇 𝛽𝑘𝑛
̂𝑇 † = 𝑒𝑖𝑘𝑛𝛼𝛽𝑘𝑛

𝑘𝑛 = 2𝜋𝑛 + 𝜑
𝛼𝑁

, 𝑛 = 0, … , 𝑁 − 1 .
(1.42)

Thus, the twisting angle can be used to investigate different sets of momentum
states.

6The Fourier transformation is a unitary transformation that respects the canonical (anti)-
commutations. Therefore, the new operators 𝛽𝑘 are proper bosons or fermions.
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If the system is translation-invariant, the contribution of the twist angle vanishes in
the thermodynamic limit, and the bulk properties are independent of the twisting
angle. There are two special twisting angles, 𝜑 = 0 resulting in standard periodic
boundary conditions, and 𝜑 = 𝜋 resulting in anti-periodic boundary conditions. The
inverse transformation from the momentum operators to the position operators is
given by

𝛽𝑗 = 1√
𝑁

∑
𝑘𝑛

𝑒𝑖𝑘𝑛𝛼 𝑗𝛽𝑘𝑛
, (1.43)

where the sum runs over all allowed momenta from the set in Eq. (1.42).

The twisting angle can be implemented by starting from a Hamiltonian with periodic
boundary conditions 𝜑 = 0 and applying a magnetic field through the ring, as shown
in Fig. 1.3. A particle (boson or fermion) encircling the magnetic field acquires a

𝑡

𝑡

𝑡

𝑡

𝑡
𝑡

𝐵⃗

𝑡
𝑡

𝑡

𝑡

𝑡

𝑡
1 𝑡

2 𝑡

3
𝑡

4

𝑡
5

𝑡
6

𝑡7𝑡
8

𝑡

9
𝑡

10

𝑡
11

𝑡 12
𝑡𝑒𝑖𝜑

Figure 1.3: A quantum system defined on a ring of 12 lattice sites. The particles can tunnel
from site 𝑗 to 𝑗 + 1 with strength 𝑡 and the tunneling from site 12 to site 1 has an additional
complex phase owing to the presence of a magnetic field 𝐵⃗. This is highlighted in light red,
with an arrow indicating the direction of tunneling.

geometric phase proportional to the magnetic flux [86, 87]. This geometric phase can
be introduced in the Hamiltonian by modifying every term that leads to a current
of particles through the bond (𝑁, 1), known as the Peierls substitution [88, 89]. For
example, a single particle tunneling term becomes

−𝑡 (𝛽†
𝑁𝛽1 + h.c.) → −𝑡 (𝑒𝑖𝜑𝛽†

𝑁𝛽1 + h.c.)

and the single particle Hamiltonian

𝐻 = −𝑡
𝑁−1
∑
𝑗=1

(𝛽†
𝑗 𝛽𝑗+1 + h.c.) − 𝑡 (𝑒𝑖𝜑𝛽†

𝑁𝛽1 + h.c.)

is invariant under the action of ̂𝑇 defined in Eq. (1.40). The Fourier transform (1.41)
is straightforwardly extended to the case of the ring being populated by multiple
independent fermionic or bosonic species, with each species labeled by an additional
flavor index 𝜎 ranging from 1 to 𝑀. In this case, the Fourier transform acts inde-
pendently on each flavor.
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As an example, consider a generic non-interacting Hamiltonian quadratic in the 𝛽𝜎,𝑗
variables

𝐻 =
𝑁

∑
𝑗=1

𝑁
∑
𝑙=1

∑
𝜎,𝜏

𝛽†
𝜎,𝑗ℋ𝜎,𝜏(𝑗 − 𝑙)𝛽𝜏,𝑙 , ℋ𝜎,𝜏(𝑟) = ℋ𝜏,𝜎(−𝑟) , (1.44)

where 𝜎 and 𝜏 denote the flavor indices ranging from 1 to 𝑀. The matrix-valued
function ℋ(𝑟) also encodes the twisted boundary conditions such that 𝐻 commutes
with the shift operator ̂𝑇.
Passing to the Fourier basis, this Hamiltonian becomes

𝐻 = ∑
𝑘𝑛

∑
𝜎,𝜏

𝛽†
𝜎,𝑘𝑛

ℋ𝜎,𝜏(𝑟)𝛽𝜏,𝑘𝑛
, ℋ𝜎,𝜏(𝑘𝑛) =

𝑁−1
∑

𝑟=−𝑁+1
ℋ𝜎,𝜏(𝑟)𝑒−𝑖𝑘𝑛𝛼 𝑟

which defines the Hermitian Bloch Hamiltonian ℋ(𝑘𝑛). The Hamiltonian is block di-
agonal in the momentum basis, and by further diagonalizing the Bloch Hamiltonian,
this quadratic model becomes

𝐻 = ∑
𝑚

∑
𝑘𝑛

𝜖𝑚(𝑘𝑛)𝛽†
𝑚,𝑘𝑛

𝛽𝑚,𝑘𝑛
(1.45)

which defines the energy-momentum dispersion relation of the 𝑚th band 𝜖𝑚(𝑘𝑛).

Now, assuming a single flavor model 𝑀 = 1. If the system is loaded with 𝑛B bosons,
the many-body ground state would be formed by placing all bosons in the single
particle state with momentum minimizing the energy

𝑘min = argmin(𝜖(𝑘)) .

This naively indicates the formation of a Bose-Einstein condensate [90]. However, the
condensation of all 𝑛B in the state of minimal energy is not stable against interactions
or temperature. For example, adding a small but finite interaction term to Eq. (1.44),
the interacting ground state of the bosonic system is instead a Tonks–Girardeau
gas [91, 92].

If the system is instead populated by 𝑛F fermions, the many-body ground state
is obtained by successively filling the 𝑛F lowest energy levels based on the Pauli
exclusion principle [81]. The last occupied energy 𝜖F is called the Fermi energy, and
the momenta with 𝜖(𝑘F) = 𝜖F forming the Fermi surface. Assuming 𝜖(−𝑘) = 𝜖(𝑘),
the Fermi surface only consists of the two points {−𝑘F, 𝑘F} and 𝑘F is called the
Fermi momentum, which is related to the density 𝜈 = 𝑛F/𝑁 of fermions by

𝑘F = 𝜋 𝑛F
𝛼𝑁

= 𝜋 𝜈
𝛼

. (1.46)

The derivative of the dispersion relation of the fermions at the Fermi momentum
defines the Fermi velocity

𝑣F = 𝜖(𝑘)
𝜕𝑘

∣
𝑘=𝑘F

. (1.47)

Similar to the case of bosons, this Fermi surface is not stable against small interac-
tions, and the interacting ground state forms instead a Tomonaga-Luttinger liquid,
which will be discussed in more detail in Subsection 1.3.1.

Unless stated otherwise, the length scale 𝛼 is assumed to be one, which simplifies
the notation throughout the remainder of this thesis.
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1.1.7 Experimental Realizations

Although fairly simple to formulate as a mathematical theory, realizing a one-
dimensional fermion or boson gas can be quite challenging owing to the intrinsically
three-dimensional nature of every material. In a traditional condensed matter sys-
tem, this requires strong confinement of the particles in two of the three dimensions,
with the effective low-energy theory being one-dimensional [47, 93]. Examples in-
clude the fabrication of nanowires [94–96] of small diameters or carbon tubes [97].
While it has been demonstrated that such a system has the characteristics of one-
dimensional quantum matter [98–101], recent developments have made it possible
to directly formulate quasi-one-dimensional many-body systems in an artificial way,
allowing for precise control of microscopic parameters.

The most prominent methods are the use of cold atoms with either bosonic or
fermionic statistics loaded into an optical lattice [3–7]. These artificial lattice sys-
tems allow for high control of the interactions [102, 103], leading to the realization
of highly interacting bosonic models [104], artificial fluxes with periodic boundary
conditions [105, 106] and more. In particular, the model considered in Chapter I is
inspired by these cold atom experiments to realize a topological phase with unpaired
Majorana states localized at the edge.
Another promising approach is the use of highly excited Rydberg states of atoms that
are optically confined to one dimension [8–10]. The strong interaction of atoms in the
excited states while the atoms in the ground state are nearly non-interacting leads
to a natural realization of Ising-like Hamiltonians, which are important in the study
of many-body scars [26, 27] and the dynamical behavior of quantum matter [30]. A
particular application is discussed in Chapter III, where the dynamic melting of a
domain wall state is studied.

Instead of directly using fermions or bosons, a different approach is to realize them as
effective excitations in composite systems. For example, the elementary excitations
of superconductors are related to the creation and annihilation of Cooper pairs
and thus obey bosonic statistics. This inspired the construction of arrays of small
superconducting islands coupled by Josephson junctions, leading to the exchange of
Cooper pairs between different superconducting islands in the array. With advanced
fabrication methods and precise design of JJAs, it is possible to realize various
strongly interacting bosonic many-body Hamiltonians [11–16]. The model proposed
in Chapter II is inspired by these recent experimental improvements and adds a
promising candidate to the existing literature for observing the tricritical Ising phase;
see also Subsection 1.3.3.
In the case of fermions, a promising approach is to connect single quantum dots [107–
110] or to place single magnetic atoms, called adatoms, to form a chain on the
surface of a superconductor [111–113]. These adatoms form low-energy bound states
in the gap of the host superconductor [114, 115] which leads to the formation of
one-dimensional fermionic bands in the chain geometry.

1.2 Gapped Phases
The previous section introduced the basic notion necessary to describe a quantum
many-body system on a chain. A crucial part of this description is the Hamiltonian 𝐻
which defines the static and dynamic features of this quantum chain. These features
are highly influenced by the existence or absence of a finite many-body gap Δ as
defined in Eqs. (1.18) and (1.19). This section aims to provide a short summary of
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the possible phases of matter that can be realized by a one-dimensional quantum
chain with a finite many-body gap.

Physically, the existence of a finite gap implies that every local excitation has a finite
mass bounded from below by the gap Δ. As a result, the gap introduces a natural
length scale known as the correlation length of the system

𝜉 = 1
Δ

,

and ground state correlations on the size of this correlation length are exponentially
decaying [65, 66]

𝐶𝑂,𝐾(𝑗, 𝑘) ≔ ⟨𝑂̂𝑗𝐾̂𝑘⟩ − ⟨𝑂̂𝑗⟩ ⟨𝐾̂𝑘⟩ ∼ 𝑒−|𝑗−𝑘|/𝜉

|𝑗 − 𝑘|
. (1.48)

The existence of a finite correlation length, and the associated exponential clustering
of correlations, implies that the ground state resembles a product state on length
scales larger than 𝜉. Indeed, by defining a renormalization procedure that blocks
neighboring sites into a super-site, similar to the Kadanoff block-spin transforma-
tion [116], it has been demonstrated that every ground state on a quantum chain
flows to a product state in the presence of this length scale 𝜉 [117, 118]. In contrast
to quantum matter in higher dimensions, there is no possibility of a hidden topolog-
ical order that is stable under this renormalization flow in quantum chains. From a
quantum information perspective, this statement is equivalent to the existence of a
short-range quantum circuit that, when applied to the quantum chain, results in a
trivial product state [119].

However, this general statement overlooks the potential symmetries that may influ-
ence the quantum system, and the situation becomes more intriguing when these
symmetries are considered. Throughout this section, the main object of interest is
a quantum chain of 𝑁 sites, either populated by bosons, fermions, or spins, which
is described by the many-body Hamiltonian 𝐻. The Hamiltonian is assumed to be
invariant under a global symmetry group 𝐺 as explained in Subsection 1.1.4

𝑈(𝑔)𝐻𝑈(𝑔)† = 𝐻 ∀ 𝑔 ∈ 𝐺 , 𝑈(𝑔)†𝑈(𝑔) = 𝑈(𝑔)𝑈(𝑔)† = 1 .

The representation 𝑈(𝑔) is acting point-wise by (anti-)unitary transformations on
the quantum chain

𝑈 = 𝐾̂
𝑁

∏
𝑗=1

𝑢𝑗 ,

and 𝐾̂ is either the identity or time-reversal operator, with 𝑈 being unitary or anti-
unitary, respectively [68]. The local unitary 𝑢𝑗 only acts non-trivially on the local
Hilbert space ℋ𝑗

loc and with an identity on every other site 𝑘 ≠ 𝑗.

A gapped quantum chain invariant under a group 𝐺 can be in one of three different
phases: A trivial phase in which the ground state is unique and forms a trivial
representation of the symmetry group, a symmetry-broken phase with a degenerate
ground state, and a Symmetry-Protected Topological Phase (SPTP) in which the
degeneracy of the ground state depends on the topology of the chain itself.

This section begins with a short review of symmetry-broken states in Subsection 1.2.1
focusing on finite Abelian symmetry groups, which are of special importance for
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quantum models in one dimension. For example, the models considered in Chap-
ters II and III exhibit a phase with spontaneously broken Z2 symmetry. A more
general review of this topic, including also higher dimensions, can be found in [120].
This is followed by a brief discussion of SPTPs in Subsection 1.2.2. More details on
this topic can be found, for example, in [121, 122]. A special instance of an SPTP,
the Kitaev chain, is discussed in detail in Subsection 1.2.3. This phase is of particular
interest as it appears in the Chapters I, IV, V, and VI.

1.2.1 Spontaneous Symmetry Broken Phases

The Mermin-Wagner-Hohenberg theorem [48–50] prohibit the possibility of spon-
taneously breaking a continuous symmetry group in one-dimensional quantum sys-
tems, except at fine-tuned points [123].
An example of this is the conservation of particles in typical fermionic chains with
the symmetry group 𝐺 being the U(1) group generated by the total number of
fermions

𝑈(𝜙) = 𝑒𝑖𝜑𝑁̂ , 𝜑 ∈ [0, 2𝜋) .

Based on the Mermin-Wagner-Hohenberg theorem, every ground state has a fixed
number of fermions, and even the presence of attractive interactions does not lead
to an instability, formation of Cooper pairs, and superconductivity [75–77].
While the Mermin-Wagner-Hohenberg theorem prevents the spontaneous breaking
of a continuous group, it allows the quantum chain to break finite symmetry groups.
In the simplest scenario, the symmetry group is Abelian, with all group elements
commuting with each other, which is assumed in the following. Every finite Abelian
group can be generated by one element ̂𝑃 and is given by

Z𝑀 ≔ Z/𝑀Z ≔ { ̂𝑃 𝑘 , 𝑘 = 0, … , 𝑛 − 1 ∶ ̂𝑃 𝑀 = 1} . (1.49)

From ̂𝑃 𝑀 = 1, the possible eigenvalues of the generator ̂𝑃 are found as

̂𝑃 |𝑝⟩ = 𝑒−𝑖 2𝜋
𝑀 𝑝 |𝑝⟩ , 𝑝 = 0, … 𝑀 − 1 . (1.50)

These eigenstates form the irreducible representations of the group Z𝑀.

In the simplest non-trivial case, 𝑀 = 2, the group consists of only two elements: The
identity 1 and one additional non-trivial element ̂𝑃 2 = 1. A model implementing
such a Z2 symmetry is the Transverse Field Ising Model (TFIM) [83, 124, 125].
Assuming open boundary conditions, the TFIM describes a chain of 𝑁 spin-1/2
degrees of freedom interacting through the Hamiltonian

𝐻Ising = −𝐽
𝑁−1
∑
𝑗=1

𝜎𝑥
𝑗 𝜎𝑥

𝑗+1 − 𝑔
𝑁

∑
𝑗=1

𝜎𝑧
𝑗 . (1.51)

Here, 𝜎𝛼 denotes the Pauli matrices defined in Eq. (1.11). The Pauli matrix 𝜎𝑥

transforms odd under adjoint application of the 𝜎𝑧 matrix

𝜎𝑧𝜎𝑥𝜎𝑧 = −𝜎𝑥 . (1.52)
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Based on this transformation property, it is found that the TFIM has a global
symmetry given by the parity of spins in the spin-up state7

̂𝑃 =
𝑁

∏
𝑗=1

(−𝜎𝑧
𝑗 ) , 𝑃 2 = 1 , ̂𝑃𝐻Ising

̂𝑃 = 𝐻Ising . (1.53)

This operator forms the representation of the non-trivial element that generates the
Z2 symmetry group of the TFIM. Because the Hamiltonian commutes with ̂𝑃, the
eigenstates of 𝐻Ising can be chosen as states with a fixed parity of spins in the spin-up
state. A suitable set of basis states is given by

̂𝑃 |𝑠1, … , 𝑠𝑁⟩ = (−1)∑𝑁
𝑗=1(𝑚𝑗−1) |𝑠1, … , 𝑠𝑁⟩ , 𝑚𝑗 =

⎧{
⎨{⎩

1 , for 𝑠𝑗 =↓

2 , for 𝑠𝑗 =↑

and every eigenstate of 𝐻 is a linear combination of these states with a fixed parity
eigenvalue.

Consequences of Spontaneously Symmetry Breaking

If a given model spontaneously breaks the finite symmetry group Z𝑀, the ground
state is 𝑀 times degenerated in the thermodynamic limit. The set of states form-
ing the ground-state manifold is denoted by GS. This set forms an 𝑀-dimensional
Hilbert space, with every element being a valid ground state of 𝐻. A simple basis of
GS is given by states which are transformed into each other by applying the operator

̂𝑃
̂𝑃 |Ω𝑛⟩ = |Ω𝑛+1⟩ , 𝑛 = 0, … 𝑀 − 1 , 𝑀 ≅ 0 . (1.54)

Because the operator ̂𝑃 is a global product of 𝑁 local unitary operators, the states
defined by this equation are macroscopically distinct

Since the Hamiltonian 𝐻 is assumed to contain only interactions of finite range, an
operator such as ̂𝑃 which acts on all sites at the same time, can only be generated
in perturbation theory at an order equal to the system size itself. Thus, projecting
the Hamiltonian to GS gives at any finite system size

𝐻GS ≈ 𝐴𝑒−𝐵𝑁( ̂𝑃 + ̂𝑃 †) , (1.55)

with two constants 𝐴 and 𝐵 of order one. As expected, the true eigenstates for any
finite system size are the symmetric states invariant under the action of ̂𝑃, with a
gap that closes exponentially fast with 𝑁.

The symmetry restoring states can be written in terms of the states defined in
Eq. (1.54) as

|𝜔𝑝⟩ = 1√
𝑀

𝑀−1
∑
𝑚=0

𝑒𝑖 2𝜋
𝑀 𝑚𝑝 |Ω𝑚⟩ = 1√

𝑀

𝑀−1
∑
𝑚=0

𝑒𝑖 2𝜋
𝑀 𝑚𝑝 ̂𝑃 𝑚 |Ω0⟩ (1.56)

with eigenvalue
̂𝑃 |𝜔𝑝⟩ = 𝑒−𝑖 2𝜋

𝑀 𝑝 |𝜔𝑝⟩
7 The transformation in Eq. (1.52) requires only the symmetry operator to be a product of all 𝜎𝑧

𝑗

leaving out an undefined global phase. As the non-trivial symmetry operator 𝑃̂ should square to the
identity, this fixes the global phase to a simple sign. The reason to choose the sign as in Eq. (1.52)
is to be consistent with the Jordan-Wigner transformation and the fermionic parity operator; see
also Eq. (1.34).



1.2. GAPPED PHASES 25

as required in Eq. (1.50). One way to detect whether a system spontaneously breaks
symmetry is to define a local order parameter

𝑂̂ =
𝑁

∑
𝑗=1

̂𝑜𝑗 , 𝑂̂† = 𝑂̂ , (1.57)

where ̂𝑜𝑗 acts only on a small neighborhood of site 𝑗.
The operators ̂𝑜𝑗 have to transform non-trivially under the action of the symmetry
operator

̂𝑃 † ̂𝑜𝑗
̂𝑃 = 𝑒𝑖𝜑 ̂𝑜𝑗 , 𝜑 ≠ 0 . (1.58)

As a consequence, this operator has a zero expectation value with respect to any
symmetric state

⟨𝑝|𝑂̂|𝑝⟩ = ⟨𝑝| ̂𝑃 †𝑂̂ ̂𝑃 |𝑝⟩ = 𝑒𝑖𝜑 ⟨𝑝|𝑂̂|𝑝⟩ = 0 (1.59)

and the operator 𝑂̂ is not allowed to appear in the perturbation series at any order.
This statement is also true for the local operators ̂𝑜𝑗 that appear in the sum of 𝑂̂.

Since the basis states of Eq. (1.54) are not symmetric, they are allowed to have a
non-trivial expectation value

⟨Ω𝑚|𝑂̂|Ω𝑛⟩
𝑁

𝑁→∞
−−−−→ 𝛿𝑚,𝑛 𝑐𝑚 .

Here, it is assumed that 𝑂̂ is diagonal in the symmetry-breaking basis. By adding a
small symmetry breaking perturbation to the Hamiltonian

𝐻sb = ℎ𝑂̂ ,

the ground-state degeneracy splits, and the state minimizing ℎ𝑐𝑚 is selected as the
true ground state of the slightly perturbed system. Imagine turning off the pertur-
bation after selecting the symmetry-breaking ground state. Because the coupling to
the other states is exponentially small, Eq. (1.55), the system remains frozen in this
symmetry-broken state for 𝑁 sufficiently large.
Another way to formulate this is to consider a preparation protocol that attempts
to steer the system into one of the symmetric ground states. However, these states
are fragile, and a small fluctuation or imperfection in the preparation protocol leads
to the collapse of the system in one of the symmetry-breaking states.

Although the expectation value of the order parameter 𝑂̂ evaluated with respect
to the symmetry-restoring states is zero, their relation to the basis that breaks
the symmetry, Eq. (1.56), can be used to probe the spontaneous breaking of the
symmetry directly on the symmetry-restoring basis. For this, assume that in the
thermodynamic limit

⟨Ω𝑚| ̂𝑜𝑗|Ω𝑛⟩ = 𝛿𝑚𝑛𝑐𝑚

independent of the site8 𝑗. Since the operators ̂𝑜𝑗 are acting locally, their correlation
function separates for large distances with respect to the symmetry-broken states

⟨Ω𝑚| ̂𝑜𝑗 ̂𝑜𝑘|Ω𝑛⟩
|𝑗−𝑘|→∞
−−−−−→ ∑

𝑛
⟨Ω𝑚| ̂𝑜𝑗|Ω𝑛⟩ ⟨Ω𝑛| ̂𝑜𝑗|Ω𝑚⟩ = 𝑐2

𝑚 . (1.60)

This result is based on inserting a resolution of the identity between the two op-
erators ̂𝑜𝑗 and ̂𝑜𝑘 and exploiting the fact that the states outside the ground-state

8This is the typical case as the lattice Hamiltonian is assumed to be translational invariant in
the thermodynamic limit.
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manifold are separated by an energy gap Δ and thus only contribute to an expo-
nential background decay [65].
Calculating the correlation function of the ̂𝑜𝑗 operators in the symmetry restoring
basis results in a long distance limit of

⟨𝜔𝑝| ̂𝑜𝑗 ̂𝑜𝑘|𝜔𝑝⟩ = 1
𝑀

∑
𝑚,𝑛

𝑒−𝑖 2𝜋
𝑀 (𝑚−𝑛)𝑝 ⟨Ω𝑚| ̂𝑜𝑗 ̂𝑜𝑘|Ω𝑛⟩

|𝑗−𝑘|→∞
−−−−−→ 1

𝑀

𝑀−1
∑
𝑚=0

𝑐2
𝑚 , (1.61)

which modifies the general behavior described by Eq. (1.48). The onset of a constant
limit is also known as an off-diagonal long-range order [126] which can serve as a
tool to detect spontaneous symmetry breaking.

Spontaneous Symmetry Breaking in the Transverse Field Ising Model

Again, consider the TFIM introduced in Eq. (1.51). There are two simple limits that
allow for a direct solution of the model. For 𝐽 = 0, the TFIM model reduces to

𝐻Ising = −𝑔
𝑁

∑
𝑗=1

𝜎𝑧
𝑗 . (1.62)

The ground state is unique and found by minimizing all 𝜎𝑧
𝑗 individually

|Ω⟩ = |↑, … , ↑⟩ , 𝐻 |Ω⟩ = −𝑔𝑁 |Ω⟩ . (1.63)

This state is also an eigenstate of the parity operator ̂𝑃 with an eigenvalue depending
on the total size of the chain

̂𝑃 |Ω⟩ = (−1)𝑁 |Ω⟩ .

On the other hand, for 𝑔 = 0 the TFIM becomes

𝐻Ising = −𝐽
𝑁−1
∑
𝑗=1

𝜎𝑥
𝑗 𝜎𝑥

𝑗+1

and there are two ground states defined by the eigenstates of the 𝜎𝑥
𝑗 operator

|±⟩ ≔ 1√
2

(|↑⟩ ± |↓⟩)

|Ω±⟩ = |±, … , ±⟩ , 𝐻 |Ω±⟩ = −𝐽(𝑁 − 1) |Ω±⟩ .
(1.64)

The two states |Ω±⟩ are not eigenstates of the parity operator ̂𝑃 but get transformed
into each other by

̂𝑃 |Ω+⟩ = |Ω−⟩ , (1.65)

and are thus the two states forming the symmetry-broken local basis from Eq. (1.54).
The two symmetry restoring states are, following Eq. (1.56),

|𝜔𝑒/𝑜⟩ = 1√
2

(|Ω+⟩ ± |Ω−⟩)

̂𝑃 |𝜔𝑒/𝑜⟩ = ± |𝜔𝑒/𝑜⟩ .
(1.66)

These states are linear combinations of macroscopically distinct product states, as
discussed in the general setting. A suitable order parameter is given by the total
magnetization in 𝑥 direction

𝑂̂ = 1
𝑁

𝑁
∑
𝑗=1

𝜎𝑥
𝑗 (1.67)
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which transforms under the action of the parity operator as

̂𝑃 𝑂̂ ̂𝑃 = −𝑂̂ .

The expectation value of this order parameter with respect to the symmetry broken
basis |Ω±⟩ is given by

⟨Ω±|𝑂̂|Ω±⟩ = ±1 , ⟨Ω±|𝑂̂|Ω∓⟩ = 0 . (1.68)

This follows from the expectation value of the local 𝜎𝑥
𝑗 operator and the fact that

|Ω±⟩ is a product state of eigenstates of 𝜎𝑥

⟨Ω±|𝜎𝑥
𝑗 |Ω±⟩ = ⟨±|𝜎𝑥|±⟩ = ±1 .

Using this result, the expectation value with respect to the symmetry restoring basis
|𝜔𝑒/𝑜⟩ is straight forward to evaluate

⟨𝜔𝑒/𝑜|𝑂̂|𝜔𝑒/𝑜⟩ =
⟨Ω+|𝑂̂|Ω+⟩ + ⟨Ω−|𝑂̂|Ω−⟩

2
= 1 − 1

2
= 0 (1.69)

which equals zero, as expected from Eq. (1.59). The two point correlation function
of the local 𝜎𝑥

𝑗 operators gives a non-trivial result

2 ⟨𝜔𝑒/𝑜|𝜎𝑥
𝑗 𝜎𝑥

𝑘 |𝜔𝑒/𝑜⟩ = ⟨Ω+|𝜎𝑥
𝑗 𝜎𝑥

𝑘 |Ω+⟩⏟⏟⏟⏟⏟⏟⏟
=1

+ ⟨Ω−|𝜎𝑥
𝑗 𝜎𝑥

𝑘 |Ω−⟩⏟⏟⏟⏟⏟⏟⏟
=1

= 2 . (1.70)

For finite values of 𝑔 > 0, the ground states of the TFIM are no longer given by the
product states in Eq. (1.64), but are dressed with short-range correlations. However,
it was found that the ground state remains double-degenerated for all 𝑔 < 𝐽. In
general, these quantum corrections lead to a reduction of the order parameter in the
symmetry broken basis

| ⟨Ω±|𝑂̂|Ω±⟩ | ≔ 𝑚(𝑔) ≤ 1 . (1.71)
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Figure 1.4: (a) Magnetization 𝑚(𝑔) from Eq. (1.71) for varying the transverse field through
the quantum phase transition at 𝑔 = 𝐽. (b) Correlation function ⟨𝜎𝑥

𝑗 𝜎𝑥
𝑘⟩ for the two selected

points 𝑔 = 0.9𝐽 and 𝑔 = 1.1𝐽. In the symmetry-broken region (𝑔 = 0.9𝐽), the ground states
are selected as the symmetry-respecting ground states, as in Eq. (1.72). The purple line
denotes the squared value of the magnetization 𝑚(0.9𝐽)2 referred from panel (a).

Figure 1.4(a) shows the magnetization curve of the TFIM. For small values of 𝑔/𝐽,
the magnetization is close to 1 as predicted by Equations (1.68) and (1.70), and
by approaching the quantum phase transition at 𝑔 = 𝐽 it starts to drop to zero.
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Similar, the quantum corrections lead to an exponential decay at short distance for
the correlation functions in the symmetry restoring basis before reaching the plateau
value

⟨𝜔𝑒/𝑜|𝜎𝑥
𝑗 𝜎𝑥

𝑘 |𝜔𝑒/𝑜⟩ ≈ 𝑒−𝜆|𝑗−𝑘| + |𝑚(𝑔)|2 (1.72)

where the decay constant 𝜆 is related to the spectral gap of the system [65] and 𝑚(𝑔)
is the magnetization value from Eq. (1.71). This expected behavior of the correlation
function in the symmetry-restoring basis is shown in Fig. 1.4(b) for 𝑔 = 0.9𝐽 (red
dots). After a transient short-distance exponential decay, the correlation function
reaches a plateau value equal to 𝑚(0.9𝐽)2 ≈ 0.66 (purple line).

For 𝑔 > 𝐽 the TFIM has a unique symmetric ground state, compare also the 𝐽 = 0
limit in Eqs. (1.62) and (1.63). In this case, the expectation value of the order
parameter must be zero, as shown in Fig. 1.4(a), and the correlation functions de-
cay exponentially without reaching a non-zero plateau value. This is illustrated in
Fig. 1.4(b) for 𝑔 = 1.1𝐽 (blue dots). At exactly 𝑔 = 𝐽 the TFIM undergoes a smooth
quantum phase transition, and the model is described by the critical Ising model,
which is a conformal field theory with correlations that decay algebraically. A more
detailed discussion of this critical point can be found in Subsection 1.3.3.

In conclusion, a symmetry-broken state can be detected by a local order parame-
ter 𝑂̂ that acquires a non-trivial value for symmetry-broken states but is zero for
symmetry-restoring states. This is done by varying the parameters of the system
and monitoring the onset of a non-trivial value for ⟨𝑂̂⟩ or equivalently, the onset
of an off-diagonal long-range order in the correlation functions. The next subsec-
tion discusses a different scenario for finite symmetry groups in one dimension: a
Symmetry-Protected Topological Phase. In contrast to symmetry breaking, the dif-
ferent (topological) phases of such a system cannot be distinguished by a local order
parameter and differ only in terms of global properties.

1.2.2 Symmetry Protected Topological Phases

In mathematics, topology classifies the properties of a system that remain invariant
under continuous deformations, also known as topological invariants. Continuous
deformations include any form of local change, such as stretching and deformation,
but exclude any rapid changes, such as cutting or gluing. One of the most famous
examples of this is the transformation of a cup into a donut (torus). During this
transformation, the number of holes, also known as the genus, remains unchanged.
However, further transformation of the torus into a figure eight with two holes re-
quires gluing the torus together at some point.

In condensed matter physics, the concept of describing the properties of physical
systems under the paradigm of topology was introduced by David J. Thouless, F.
Duncan M. Haldane, and J. Michael Kosterlitz [127]. They adapted the mathemati-
cal concepts to explain phenomena, such as quantum Hall states or superfluid phase
transitions. Nowadays, topological properties are ubiquitous in modern condensed
matter physics. One example is the use of topological quantum matter as the basis
for quantum computers. The idea behind this concept is the existence of a new type
of collective low-lying energy excitation present in these quantum states, known as
anyons9. The braiding of anyons can lead to logical quantum gatters and thus a po-

9The name anyon originates from their exchange statistics. While bosons and fermions have
either commuting or anti-commuting statistics, an anyon can have any possible exchange statistics.
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tential universal gate set. Microscopically, an anyon arises from the fractionalization
of the underlying microscopic degrees of freedom over a large distance [128, 129].
This makes these quasi-particles very robust against local perturbations, fully in line
with the ideas of topology presented previously. Moreover, the existence of anyons
leads to long-range order in the correlations of the quantum state. The existence of
this hidden topological order makes it impossible to smoothly deform this quantum
state into a product state [119]. Examples of such topological ordered states are the
Moore-Read state [130, 131] closely related to the fractional quantum Hall state at
𝜈 = 5/2 [132] or general quantum spin liquids [133, 134].

In the presence of global symmetries, it is possible to define a Symmetry-Protected
Topological Phase (SPTP). The SPTP shares some similarities with a topologically
ordered state, such as the dependency of the ground state degeneracy on the bound-
ary conditions of the physical system and the existence of zero-energy excitations
emerging on the surface between two different SPTPs. However, unlike the topolog-
ically ordered state, an SPTP does not have non-trivial anyonic excitations and no
intrinsic topological order. The simplest form of an SPTP is that of a topological
insulator, which is very similar to an ordinary insulator described by two bands with
a finite energy gap Δ separating the valence band, which is completely filled with
fermions, from the conductance band, which is completely empty. In an SPTP, the
system hosts gapless states that are exponentially localized to its surface under open
boundary conditions. The existence of such gapless surface states is also linked to a
topological index 𝜈 ∈ Z or 𝜈 ∈ Z𝑚 defined for the bulk of the system. This is known
as the bulk-edge correspondence [135]. In the case of non-interacting fermionic mod-
els, a full classification in any dimensions was achieved [136, 137] according to the
ten symmetry classes defined by A. Altland and M. Zirnbauer [138]. Interactions
can have dramatic effects on the non-interacting classification [139] making it diffi-
cult to find a simple general classification for arbitrary dimensions. An exception is
given by one-dimensional systems, where a full classification of interacting SPTPs
has recently been achieved [52, 54].

Su-Schrieffer-Heeger Model

A simple example of a model allowing for the existence of a non-trivial SPTP is
the Su–Schrieffer–Heeger Model (SSHM) [140], which will reappear as an effective
model in Chapter IV.
The SSHM was proposed to describe the electronic ground state of polyacetylene, a
polymer chain consisting of alternating double and single electronic bonds between
the carbon atoms, as shown in Fig. 1.5(a). This alternating structure motivates
the formulation of a non-interacting lattice Hamiltonian 𝐻SSH shown in Fig 1.5(b).
The Hamiltonian consists of an alternating structure of hopping amplitudes between
neighboring lattice sites and reads

𝐻SSH = −𝑡
𝑁

∑
𝑗=1

(1 + (−1)𝑗 𝛿) 𝑐†
𝑗𝑐𝑗+1 + h.c. = −

⌊ 𝑁
2 ⌋

∑
𝑗=1

𝑣 𝑎†
𝑗𝑏𝑗 + 𝑤 𝑏†

𝑗𝑎𝑗+1 + h.c. (1.73)

assuming periodic boundary conditions. The second equal sign follows after enlarging
the unit cell to include two neighboring lattice sites followed by the identification

𝑎𝑗 ≔ 𝑐2𝑗−1 , 𝑏𝑗 ≔ 𝑐2𝑗

𝑣 ≔ 𝑡(1 − 𝛿) , 𝑤 ≔ 𝑡(1 + 𝛿) .

In the following, ̃𝑁 = ⌊𝑁
2 ⌋ denotes the number of unit cells in the system. The SSHM
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Figure 1.5: (a) Structure of Polyacetylene, which consists of alternating double and single
bonds of carbon atoms. An additional hydrogen atom is attached to each carbon atom.
(b) Lattice structure of the SSHM given by the Hamiltonian in Eq. (1.73). The dotted
ellipse denotes an enlarged unit cell that includes two neighboring sites. This defines two
independent fermionic species, 𝑎 and 𝑏 for the odd and even sites of the original lattice.

is symmetric under an anti-unitary transformation, which acts on the fermionic
creation/annihilation operators as

Γ̂𝑎𝑗Γ̂† = 𝑎†
𝑗 , Γ̂𝑏𝑗 Γ̂† = −𝑏†

𝑗 , Γ̂𝑖Γ̂† = −𝑖 . (1.74)

This symmetry, also known as chiral or sublattice symmetry, can be seen as a com-
bined action of a time-reversal operation followed by an interchange between par-
ticles and holes. Following the classification of SPTPs [136, 137], the SSHM is in
class AIII, which is characterized by an integer topological index 𝜈 ∈ Z known as
the winding number [141].

The non-interacting nature of the SSHM allows for diagonalization in the momentum
basis, as discussed in Subsection 1.1.6. Using Eq. (1.43) the SSHM becomes

𝐻SSH =
𝑁̃

∑
𝑛=0

(𝑎†
𝑘𝑛

𝑏†
𝑘𝑛

) ℋSSH(𝑘𝑛) (𝑎𝑘𝑛

𝑏𝑘𝑛

) , 𝑘𝑛 = 2𝜋
̃𝑁
𝑛

ℋSSH(𝑘) = ( 0 −𝑣 − 𝑤𝑒−𝑖𝑘

−𝑣 − 𝑤𝑒𝑖𝑘 0
) = 𝑑𝑥(𝑘)𝜎𝑥 + 𝑑𝑦(𝑘)𝜎𝑦 .

(1.75)

After diagonalizing the 2 × 2 Bloch Hamiltonian ℋSSH(𝑘), the two bands are de-
scribed by the energy-momentum dispersion relations

𝜖(𝑘)± = ±√𝑑𝑥(𝑘)2 + 𝑑𝑦(𝑘)2 = ±√𝑣2 + 𝑤2 + 2𝑣𝑤 cos(𝑘) . (1.76)

The chiral symmetry of Eq. (1.74) is represented in the momentum basis by the
matrix 𝛾 = 𝜎𝑧 which anti-commutes with ℋSSH(𝑘)

𝛾ℋSSH(𝑘)𝛾 = −ℋSSH(𝑘) . (1.77)

Chiral symmetry requires that for every eigenstate with energy 𝜖(𝑘) a second eigen-
state with energy −𝜖(𝑘) exists, and the dispersion relation is mirror-symmetric with
respect to zero energy.
As shown in Fig. 1.6, the two bands are well separated by a finite gap Δ = |𝑣 − 𝑤|
except for 𝑣 = 𝑤 where the two bands touch each other. At this point, the system
undergoes a quantum phase transition.
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Figure 1.6: Band structure of the SSHM. The band structure is shifted by 𝜋 with respect to
Eq. (1.76) to place the band minimum at 𝑘 = 0.

Both bands have ̃𝑁 number of available states. Thus, filling the system with 𝑛F =
⌊𝑁/2⌋ = ̃𝑁 number of fermions results in an insulating state with a unique ground
state for either 𝑣 < 𝑤 or 𝑣 > 𝑤.

Next, consider the same system with open boundary conditions. The SSHM can still
be exact diagonalized by finding new single particle orbitals as linear combinations
of the original fermions

𝐻SSH =
𝑁̃

∑
𝑛=1

𝜖𝑛 (𝑐†
+,𝑛𝑐+,𝑛 − 𝑐†

−,𝑛𝑐−,𝑛) , 𝑈†𝑈 = 𝑈𝑈† = 1

𝑐+,𝑛 =
𝑁̃

∑
𝑗=1

̄𝑈2𝑗−1,𝑛 𝑎𝑗 + ̄𝑈2𝑗,𝑛 𝑏𝑗 , 𝑐−,𝑛 =
𝑁̃

∑
𝑗=1

̄𝑈2𝑗−1,𝑛+𝑁̃ 𝑎𝑗 + ̄𝑈2𝑗,𝑛+𝑁̃ 𝑏𝑗 ,
(1.78)

where the chiral symmetry of Eq. (1.74) again forces the bands to be symmetric
around zero energy. As shown in Fig. 1.7(a) and (b), the system has a finite gap
separating the two bands. This results in an insulating phase for 𝑣 ≠ 𝑤 at half-filling
with 𝑛F = ̃𝑁.
However, for 𝑤 < 𝑣, the ground state is unique, whereas for 𝑤 > 𝑣, two additional
single-particle states are present in the gap at exactly zero energy. The existence of
these additional states also reduces the number of states in the valence and conduc-
tance band by one.
Because occupying these states does not require additional energy, the half-filled
chain has a doubly degenerate ground state in which either of the two zero-energy
states is occupied. Furthermore, the zero energy states have a wave function which
is exponentially localized to the two boundaries of the system and only involve one
of the two species 𝑎 or 𝑏

𝑐0,1 =
𝑁̃

∑
𝑗=1

𝜑𝑎
𝑗 𝑎𝑗 , 𝑐0,2 =

𝑁̃
∑
𝑗=1

𝜑𝑏
𝑗𝑏𝑗

𝜑𝑎
𝑗 = 𝒩𝑒−𝜆𝑗 , 𝜑𝑏

𝑗 = 𝒩𝑒−𝜆(𝑁̃−𝑗) ,

(1.79)

as shown in Fig. 1.7(c). The appearance of these edge localized zero energy modes
is connected to a topological bulk index known as the winding number 𝜈 ∈ Z [141]

𝜈 = 1
2𝜋

𝜋

∫
−𝜋

d𝑘
𝑑𝑥(𝑘)𝜕𝑘𝑑𝑦(𝑘) − 𝜕𝑘𝑑𝑥(𝑘)𝑑𝑦(𝑘)

𝑑𝑥(𝑘)2 + 𝑑𝑦(𝑘)2 ∈ Z (1.80)
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Figure 1.7: Eigenenergies of the SSHM with open boundary conditions for ̃𝑁 = 30 unit
cells for the topological trivial regime with 𝑤 = 𝑣/2, panel (a), and the topological non-
trivial regime with 𝑤 = 2𝑣, panel (b). Panel (c) displays the single-particle wave functions,
Eq. (1.79), of the zero-energy modes for 𝑤 = 2𝑣 with the color matching the state in panel
(b). As both states have only support on one of the two species 𝑎 or 𝑏, only the non-zero
component is shown.

which for the SSHM evaluates to

𝜈 =
⎧{
⎨{⎩

0 , for 𝑣 > 𝑤

1 , for 𝑣 < 𝑤
. (1.81)

This winding number measures how often the vector ⃗𝑑(𝑘) = (𝑑𝑥(𝑘), 𝑑𝑦(𝑘))𝑇 defined
in Eq. (1.75) winds around the origin when varying 𝑘, as shown in Fig. 1.8. Because
the energy bands are given as the norm of this vector 𝜖± = ±| ⃗𝑑(𝑘)|, crossing the
origin is equivalent to a gap closing, and thus, a quantum phase transition occurs.
Furthermore, the chiral symmetry from Eq. (1.77) forces the vector ⃗𝑑(𝑘) to be in a
two-dimensional plane. Consequently, the winding number can only be changed by
either closing the gap or breaking the chiral symmetry.

𝑑𝑥

𝑑𝑦

𝑣
𝑤

(a) 𝜈 = 1

𝑑𝑥

𝑑𝑦

𝑣
𝑤

(b) 𝜈 = 0

Figure 1.8: Path traced out by the planar vector function ⃗𝑑(𝑘) = (𝑑𝑥(𝑘), 𝑑𝑦(𝑘))𝑇 for 𝑘 ∈
[−𝜋, 𝜋) for the topologically non-trivial regime 𝑣 < 𝑤, panel (a), and the topologically
trivial regime 𝑣 > 𝑤, panel (b). The origin is indicated by a large white circle.

Breaking the chiral symmetry is achieved by adding a small 𝜎𝑧 contribution to the
momentum Hamiltonian ℋSSH(𝑘) in Eq. (1.75)

ℋ′(𝑘) = ℋSSH(𝑘) + 𝛿𝜎𝑧 . (1.82)
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In real space, this term corresponds to a staggered potential

𝐻pot = 𝛿
𝑁̃

∑
𝑗=1

(𝑎†
𝑗𝑎𝑗 − 𝑏†

𝑗𝑏𝑗) . (1.83)

Since the edge localized state have only support on one of the two species 𝑎 or 𝑏,
such a term directly lifts the degeneracy of the edge mode leading to a splitting
proportional to the coupling 𝛿

Δ = 2𝛿 , (1.84)

as demonstrated in Fig. 1.9. It is now possible to merge the previous zero-energy
states with the valence and conductance bands, and the previous topological non-
trivial phase can be deformed into a trivial state without closing the bulk gap.
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Figure 1.9: Splitting of the zero energy states under the influence of the staggered potential
from Eq. (1.83) for ̃𝑁 = 100 unit cells and 𝑤 = 2𝑣 for (a) fixed 𝛿 = 0.3𝑣 and (b) for varying
𝛿/𝑣 ∈ [0, 1].

The SSHM in Eq. (1.73) allows only one pair of zero-energy edge modes. By adding
longer-ranged terms that respect the chiral symmetry from Eq. (1.74), it is possible
to achieve larger winding numbers 𝜈, and thus a larger number of zero-energy states.
In Fig. 1.10 this is shown exemplary for the deformed SSHM

𝐻′
SSH = 𝐻SSH − 𝑤2

𝑁̃−2
∑
𝑗=1

𝑏†
𝑗𝑎𝑗+2 + h.c. (1.85)

where, for the correct choice of parameters, the system has four zero-energy states.

In general, topological insulators and SPTPs are very fragile, as small symmetry-
breaking perturbations remove the gapless edge states, destroying the topological
order. However, there is one physical system in one dimension that allows for a robust
SPTP that cannot be destroyed by any physical deformation of the Hamiltonian that
preserves the gap. As discussed in Subsection 1.1.5, the fermionic parity ̂𝑃 is a global
Z2 symmetry which can only be broken by non-local operators such as a term that
creates/annihilates a single fermion

𝐻 = Ω ∑
𝑗

𝑐𝑗 + 𝑐†
𝑗 .

Such a term violates the law of locality because a fermion placed at +∞ is sensitive
to the action of this Hamiltonian at −∞ owing to the anti-commutation relations
obeyed by fermions. Therefore, an SPTP protected by fermionic parity is stable
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Figure 1.10: (a) Energy spectrum of the deformed SSHM according to Eq. (1.85) around zero
energy for 𝑤 = 2𝑣 and 𝑤2 = 3𝑣 for open boundary conditions and 𝑁 = 100 unit cells. There
are four zero-energy states corresponding to the four states that are exponentially localized at
the edge. At half-filling, two of the four zero-energy states are occupied, leading to a ground-
state degeneracy of (4

2) = 6. (b) Corresponding path of the planar vector (𝑑𝑥(𝑘), 𝑑𝑦(𝑘)) for
the deformed SSHM with the same parameters as in (a). The path encircles the origin (red
dot) twice while going from 𝑘 = −𝜋 to 𝑘 = 𝜋 leading to a winding number of 𝜈 = 2.

against all local perturbations and can be considered a truly topologically ordered
phase in one dimension. To see the physical consequences of this SPTP, the next
subsection discusses a simple model Hamiltonian realizing this non-trivial SPTP:
the Kitaev chain model [84].

1.2.3 Kitaev Chain and Unpaired Majorana Zero Modes

In his seminal paper [84] of 2001, Alexei Kitaev demonstrated that a chain populated
by spinless fermions, described by the creation/annihilation operators 𝑐(†)

𝑗 allows for
the existence of a non-trivial topological SPTP protected by the fermionic parity

̂𝑃 =
𝑁

∏
𝑗=1

̂𝑝𝑗 =
𝑁

∏
𝑗=1

𝑒𝑖𝜋𝑛̂𝑗 =
𝑁

∏
𝑗=1

(1 − 2𝑛̂𝑗) . (1.86)

The key ingredient for the realization of this phase is to include a p-wave coupling
term 𝑐†

𝑗𝑐†
𝑙 + h.c. between the fermions, which explicitly breaks the conservation of

particles down to a residual Z2 parity symmetry.
A particular simple model Hamiltonian meeting all the requirements is given by the
Kitaev chain model

𝐻Kitaev =
𝑁−1
∑
𝑗=1

(−𝑤 𝑐†
𝑗𝑐𝑗+1 − Δ𝑝 𝑐†

𝑗𝑐†
𝑗+1 + h.c.) − 𝜇

2

𝑁
∑
𝑗=1

̂𝑝𝑗 . (1.87)

Since any phase of the pairing coupling Δ𝑝 can be removed by a redefinition of
the fermionic operators [84], and the sign of the chemical potential can be flipped
𝜇 → −𝜇 by a particle-hole transformation 𝑐†

𝑗 → 𝑐𝑗 , it is sufficient to consider all
parameters to be positive 𝜇, 𝑤, Δ𝑝 ≥ 0.

To understand the behavior of this model and the appearance of the SPTP, it is
useful to rewrite the Hamiltonian using the Majorana fermions defined in Eq. (1.35).
For the sake of completeness, the definition is restated here

𝛾𝑗,𝑎 = 𝑐𝑗 + 𝑐†
𝑗 , 𝛾𝑗,𝑏 = 𝑖 (𝑐𝑗 − 𝑐†

𝑗) . (1.88)
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In terms of the Majorana operators, the Kitaev chain model in Eq. (1.87) becomes

𝐻Kitaev = − 1
2

𝑁−1
∑
𝑗=1

[(𝑤 + Δ𝑝) 𝑖𝛾𝑗,𝑏𝛾𝑗+1,𝑎 − (𝑤 − Δ𝑝) 𝑖𝛾𝑗,𝑎𝛾𝑗+1,𝑏]

− 𝜇
2

𝑁
∑
𝑗=1

𝑖𝛾𝑗,𝑎𝛾𝑗,𝑏 .
(1.89)

Sweet Spot Limits

Consider the limit 𝑤 = Δ𝑝 = 0. The Hamiltonian simply reduces to

𝐻Kitaev = −𝑖𝜇
2

𝑁
∑
𝑗=1

𝛾𝑗,𝑎𝛾𝑗,𝑏 = −𝜇
2

𝑁
∑
𝑗=1

(1 − 2𝑐†
𝑗𝑐𝑗) (1.90)

and the original fermions defined by 𝑐𝑗 diagonalizing the Hamiltonian. The ground
state is given as the state where every local parity ̂𝑝𝑗 is evaluated to 1 which is
the empty fermionic vacuum state. Local excitations are simply given by placing a
fermion somewhere in the chain with an energy cost of Δ = 2𝜇 as the local parity
changes from 1 → −1.

Another particular simple limit is given by 𝑤 = Δ𝑝 and 𝜇 = 0 for which the Hamil-
tonian becomes

𝐻Kitaev = −𝑤
𝑁−1
∑
𝑗=1

𝑖𝛾𝑗,𝑏𝛾𝑗+1,𝑎 . (1.91)

Instead of pairing the Majorana operators sharing the same site index 𝑗, the Hamil-
tonian is diagonalized by pairing the Majorana operators on adjacent sites. This
leads to the definition of new fermions for 𝑗 = 1, … , 𝑁 − 1

𝐻Kitaev = −𝑤
𝑁−1
∑
𝑗=1

(1 − 2𝑓†
𝑗 𝑓𝑗 )

𝑓𝑗 = 1
2

(𝛾𝑗,𝑏 − 𝑖𝛾𝑗+1,𝑎) = 𝑖
2

(𝑐𝑗 − 𝑐†
𝑗 − 𝑐𝑗+1 − 𝑐†

𝑗+1) .
(1.92)

The Hamiltonian probes the local parity of the new 𝑓𝑗 fermions given by

𝑒𝑖𝜋𝑓†
𝑗 𝑓𝑗 = (1 − 2𝑓†

𝑗 𝑓𝑗 ) = 𝑖𝛾𝑗,𝑏𝛾𝑗+1,𝑎 . (1.93)

Thus, the ground state is given by the vacuum of all 𝑓𝑗 fermions, with excitations
describing particle-hole pairs defined on neighboring lattice sites. At the boundaries,
there are two Majorana operators 𝛾1,𝑎 and 𝛾𝑁,𝑏 that do not appear in 𝐻Kitaev and
commute with the Hamiltonian. Pairing these two edge Majorana operators into the
non-local fermion

𝑓𝐸 = 1
2

(𝛾𝑁,𝑏 − 𝑖𝛾1,𝑎) = 𝑖
2

(𝑐𝑁 − 𝑐†
𝑁 − 𝑐†

1 − 𝑐1)

results in a zero-energy excitation. The two Majorana edge operators are also known
as Majorana Zero Mode (MZM).
As a result, there are two degenerated ground states

|Ω𝑒⟩ = 𝑓𝐸

𝑁−1
∏
𝑗=1

𝑓𝑗 |0⟩ , |Ω𝑜⟩ = 𝑓†
𝐸 |Ω𝑒⟩ .
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There is no local bulk observable that can distinguish between the two ground states,
as they only differ in the occupation of the non-local fermion 𝑓𝐸.

There is an alternative way to interpret the double degeneracy of the ground state.
For this, consider the global parity operator ̂𝑃 from Eq. (1.39) and rewrite it in
terms of the new fermionic operators

̂𝑃 =
𝑁

∏
𝑗=1

(𝑖𝛾𝑗,𝑎𝛾𝑗,𝑏) = 𝑖𝛾1,𝑎
̃𝑃 𝛾𝑁,𝑏 , ̃𝑃 =

𝑁−1
∏
𝑗=1

𝑒𝑖𝜋𝑓†
𝑗 𝑓𝑗 . (1.94)

The operator ̃𝑃 measures the parity of the bulk of the chain and is the same for both
degenerated ground states |Ω𝑒/𝑜⟩. Thus, the parity operator projected on the ground
state manifold fractionalizes to the ends of the chain with only the occupation of
the non-local fermion 𝑓𝐸 defining the parity of the ground state

̂𝑃 = −𝑖𝛾1,𝑎𝛾𝑁,𝑏 = ̂𝑃𝐿
̂𝑃𝑅 . (1.95)

The two operators ̂𝑃𝐿 = 𝑖𝛾1,𝑎 and ̂𝑃𝑅 = 𝛾𝑁,𝑏 defined by this equation individually
commute with the Hamiltonian. Because they are also fermionic in nature and anti-
commute { ̂𝑃𝐿, ̂𝑃𝑅} = 0, they form two independent symmetries of the system. The
existence of this pair of anti-commuting symmetries also requires the ground state
to be doubly degenerate.

Considering the trivial limit of 𝑤 = Δ𝑝 = 0 given by Eq. (1.90), the total parity
operator fractionalizes to

̂𝑃 = ̂𝑝1
̃𝑃 ̂𝑝𝑁 .

The two local parities ̂𝑝1 and ̂𝑝𝑁 that appear at the edge commute again with
the Hamiltonian. However, they are bosonic, commute with each other, and do not
lead to independent symmetries. Consequently, the ground state has no non-trivial
protected degeneracy. The two atomic limits (𝑤 = Δ𝑝 = 0 and 𝑤 = Δ𝑝, 𝜇 = 0) are
illustrated in Fig. 1.11.

𝛾𝑎 𝛾𝑏

𝑐

vs.

Trivial Topological

Figure 1.11: Sketch of the two atomic limits 𝑡 = Δ𝑝 = 0 (trivial) and 𝜇 = 0, 𝑡 = Δ𝑝
(topological). The fermion 𝑐 is the result of pairing two independent Majorana operators
𝛾𝑎 (red) and 𝛾𝑏 (green). In a many-body setup, it is either possible to pair the Majorana
operators on site, leading to the trivial limit of Eq. (1.90), or between adjacent sites, which
results in the topological limit represented by Eq. (1.91). In the latter case, two unpaired
Majorana operators exist at the left and right ends of the chain, which form a non-local
fermion shared between the two endpoints.
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By closing the chain to a ring, the Hamiltonian contains an additional contribution
−𝑤 𝑖𝛾𝑁,𝑏𝛾1,𝑎 and the zero mode disappears from the spectrum. The ground state
becomes unique, with a well-defined fermionic parity.

General Parameters

Away from the sweet points defined above in Eq. (1.90) and Eq. (1.91), it is found
that the ground-state degeneracy and the existence of the fractionalized fermionic
excitation are stable for all 𝜇 < 2𝑤 and Δ𝑝 > 0. For 𝜇 > 2𝑤 the ground state is
unique. The two regions are separated by a critical line for 𝜇 = 2𝑤, as illustrated
in Fig. 1.12(a). The Hamiltonian is still diagonalized by particle-hole excitations
similar to Eq. (1.92)

𝐻Kitaev =
𝑁

∑
𝑛=1

𝐸𝑛𝑓†
𝑛𝑓𝑛 + 𝐸0 , (1.96)

where 𝐸0 is an irrelevant constant. The 𝑓𝑗 are general linear combinations of the
annihilation and creation operators

𝑓𝑛 =
𝑁

∑
𝑗=1

𝑈𝑛,𝑗𝑐𝑗 + 𝑉𝑛,𝑗𝑐
†
𝑗 .

The 𝑁 × 𝑁 matrices 𝑈 and 𝑉 can be combined to form a unitary 2𝑁 × 2𝑁 matrix

𝒲 = (𝑈 𝑉
̄𝑉 ̄𝑈

) , 𝒲†𝒲 = 𝒲𝒲† = 1 .

The conditions imposed by 𝒲 being unitary on the matrices 𝑈 and 𝑉 are required
for the 𝑓𝑛 fermions to have the correct anti-commutation relations. A detailed cal-
culation [84] shows that for 𝜇 < 2𝑤, one of the fermionic operators in Eq. (1.96) has
an energy approximately equal to zero 𝐸1 ≈ 0. Moreover, this fermion 𝑓1 = Γ𝑎 −𝑖Γ𝑏
is a non-local object, as it is the result of pairing two Majorana operators which are
exponentially localized to the edges given by

Γ𝑎 = 𝒩
𝑁

∑
𝑗=1

(𝜌𝑗
+ − 𝜌𝑗

−) 𝛾𝑗,𝑎 , Γ𝑏 = 𝒩′
𝑁

∑
𝑗=1

(𝜌𝑁−𝑗+1
+ − 𝜌𝑁−𝑗+1

− ) 𝛾𝑗,𝑏

𝜌± =
𝜇 ± √𝜇2 − 4𝑤2 + 4Δ2

𝑝

2(𝑤 + Δ𝑝)
, |𝜌±| < 1 ,

(1.97)

The two constants 𝒩 and 𝒩′ ensure the normalization Γ2
𝛼 = 1, see also Appendix C

for a derivation. These Majorana operators are the MZM in the topological regime
of the Kitaev chain.
Similar to the topological atomic limit 𝑤 = Δ𝑝 and 𝜇 = 0, the projection of the
fermionic parity operator on the low-energy subspace results in a fractionaliza-
tion [53] similar to Eq. (1.95)

̂𝑃 ≈ 𝑖Γ𝑎Γ𝑏 = ̂𝑃𝐿
̂𝑃𝑅 . (1.98)

Because the Majorana operators are localized to the edge, it is expected that the two
anti-commuting operators ̂𝑃𝐿 and ̂𝑃𝑅 implement independent symmetries, thereby
forcing the existence of a double-degenerated ground state. Crossing the quantum
phase transition for 𝜇 = 2𝑤, the fractionalization of the parity operator into two
independent fermionic-like symmetries becomes trivial, and the double degeneracy
vanishes. In this sense, the SPTP is protected by the fermionic parity operator ̂𝑃.
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Topological Invariant

To formulate a topological index for the bulk, consider the Kitaev chain Hamiltonian
with periodic boundary conditions. In the Fourier basis, the Hamiltonian becomes

𝐻Kitaev = 1
2

∑
𝑘

Ψ†
𝑘𝑛

ℋBdG(𝑘𝑛)Ψ𝑘𝑛
, 𝑘𝑛 = 2𝜋

𝑁
𝑛 , 𝑛 = 0, … , 𝑁 − 1 (1.99)

where Ψ†
𝑘𝑛

= (𝑐†
𝑘𝑛

, 𝑐−𝑘𝑛
) is known as the Nambu spinor and

ℋBdG(𝑘) = 𝑑𝑧(𝑘)𝜎𝑧 + 𝑑𝑦(𝑘)𝜎𝑦

𝑑𝑧(𝑘) = 𝜇−2𝑤 cos(𝑘) , 𝑑𝑦(𝑘) = −2Δ𝑝 sin(𝑘)
(1.100)

is the Bogoliubov-de-Gennes (BdG) Hamiltonian [43, 126, 142, 143]. Note that the
BdG Hamiltonian formally has a chiral symmetry very similar to the SSHM from
Eq. (1.75) given by the chiral operator

̂𝛾 = 𝜎𝑥 . (1.101)

Acting on the Nambu spinor, this operator interchanges the holes defined at momen-
tum 𝑘 with the particles defined at momentum −𝑘 and can again be interpreted as a
combined particle-hole and time-reversal transformation acting on spinless fermions.
It is this pairing induced by the p-wave coupling 𝑐†

𝑗𝑐†
𝑗+1 + h.c. that is responsible

for the occurrence of the non-trivial SPTP. A direct diagonalization of the BdG
Hamiltonian ℋBdG = 𝑊𝐷𝑊 † results in

𝐻Kitaev = ∑
𝑘

𝐸(𝑘)𝑓†
𝑘𝑓𝑘 , 𝑓𝑘 = 𝛼(𝑘)𝑐𝑘 + 𝛽(𝑘)𝑐†

−𝑘

𝐸(𝑘) = √𝑑𝑧(𝑘)2 + 𝑑𝑦(𝑘)2 = √(2𝑤 cos(𝑘) − 𝜇)2 + 4|Δ𝑝|2 sin(𝑘)2 .
(1.102)

The ground state is defined as the vacuum of the new 𝑓𝑘 quasi-particles, which
are particle-hole pairs of the original fermions. The energy-momentum dispersion
relation 𝐸(𝑘) obeys a gap Δ = |2𝑤 − 𝜇| separating the quasiparticle excitations
from the ground state, as shown in Fig. 1.12(b).
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Figure 1.12: (a) Energy spectrum of the Kitaev chain model in Eq. (1.87) for 𝑤 = Δ𝑝 and
varying the chemical potential 𝜇 from 0 to 3𝑤. The gap between the ground state (red
line) and the quasi-particle continuum (purple) closes at 2𝑤 = 𝜇. (b) Energy-momentum
dispersion relation of the Bogoliubov quasi-particles.
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To define a topological bulk index, consider the two special points10 𝑘 = 0 and 𝑘 = 𝜋.
The BdG Hamiltonian at these points reads

ℋBdG(0) = (𝜇 − 2𝑤)𝜎𝑧 = 𝑚0𝜎𝑧

ℋBdG(𝜋) = (𝜇 + 2𝑤)𝜎𝑧 = 𝑚𝜋𝜎𝑧 .

The corresponding contribution to the Kitaev chain Hamiltonian is given by

𝐻Kitaev = ∑
𝑘𝑛≠0,𝜋

𝐸(𝑘𝑛)𝑓†
𝑘𝑛

𝑓𝑘𝑛
+ 𝑚0𝑐†

0𝑐0 + 𝑚𝜋𝑐†
𝜋𝑐𝜋 .

The ground state |Ω⟩ is defined as the state that is annihilated by all operators that
annihilate a quasi-particle with a positive excitation energy. In particular, focusing
on 𝑤, 𝜇 ≥ 0, the ground state is annihilated by the 𝑐𝜋 operator since 𝑚𝜋 ≥ 0

𝑐𝜋 |Ω⟩ = 0 .

The same is found for the 𝑘 = 0 contribution for the trivial region 𝜇 > 2𝑤 as 𝑚0 > 0
in this case. Consequently, the ground state does not have a mode at 𝑘 = 0 and
𝑘 = 𝜋.
However, in the topological regime 𝜇 < 2𝑤 the sign of 𝑚0 changes, and the ground
state is annihilated by the 𝑐†

0 operator. Thus, in the topological regime, the 𝑘 = 0
mode is occupied.

Taking the remaining 𝑁 − 2 contributions with 𝑘 ≠ 0, 𝜋 into account, the ground
state in both cases is given by

|Ω⟩ = (𝑐†
0)𝑝0 ∏

𝑘≠0,𝜋
𝛽(−𝑘)𝑐†

𝑘 |0⟩ , 𝑝𝜋 =
⎧{
⎨{⎩

0 for 𝜇 > 2𝑤

1 for 𝜇 < 2𝑤
. (1.103)

The quasiparticles for 𝑘 ≠ 0, 𝜋 are always a superposition of the creation and anni-
hilation operators independent of 𝜇 > 2𝑤 or 𝜇 < 2𝑤. Because 𝑁 was chosen to be
an even number, the action of the annihilation operators on the fermionic vacuum
therefore always leads to a state that is a superposition of even-parity states.

A similar result is found for negative 𝜇 where 𝑚𝜋 changes sign and 𝑚0 is negative.
As a consequence, the parity of the ground state only depends on the relative sign
of the two 𝑚0 and 𝑚𝜋 parameters

⟨Ω| ̂𝑃 |Ω⟩ = sign(𝑚0𝑚𝜋)

where sign(𝑎) denotes the sign of the number 𝑎. This parameter dependent parity
allows for the definition of a topological Z2 invariant given by

𝑄 = sign(𝑚0𝑚𝜋) (1.104)

with 𝑄 = −1 indicating a topological non-trivial phase [84].
10 For periodic boundary conditions 𝑘 = 0 is always an allowed momentum, while 𝑘 = 𝜋 only

appears in the set of allowed momenta for 𝑁 even, compare Eq. (1.42). This is why 𝑁 is fixed, even
at the beginning of this subsection.
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Some Consequences of Majorana Zero Modes

If the system is in the topological phase with a pair of MZM, it has various effects
on its physical properties. First, the 𝑘 = 0 mode is only a valid momentum mode
for periodic boundary conditions. If the system obeys anti-periodic boundary con-
ditions 𝑐𝑗+𝑁 = −𝑐𝑗, this mode merges with the trivial 𝑓𝑘 excitations of the model.
Consequently, the parity of the ground state in the topological regime is different
for anti-periodic boundary conditions compared to periodic boundary conditions.
The two cases can be connected using general twisted boundary conditions, as dis-
cussed in Subsection 1.1.6,

𝑐𝑗+𝑁 = 𝑒𝑖𝜑𝑐𝑗 , 𝜑 ∈ [0, 2𝜋)

implemented by deforming the two contributions to the Hamiltonian

𝑐†
𝑁𝑐1 → 𝑒𝑖𝜑𝑐†

𝑁𝑐1 , 𝑐†
𝑁𝑐†

1 → 𝑒𝑖𝜑𝑐†
𝑁𝑐†

1 .

Note that the Kitaev chain Hamiltonian at arbitrary twisting angles 𝐻Kitaev(𝜑) is
not translation invariant ̂𝑇 𝐻Kitaev(𝜑) ̂𝑇 † ≠ 𝐻Kitaev(𝜑) because of the complex p-
wave pairing term. However, translation invariance is restored for 𝜑 = 0, 𝜋, that
is, for periodic or anti-periodic boundary conditions. This breaking of translation
invariance allows for a gap closing, which occurs at 𝜑 = 𝜋/2. At this point, a single
state from the continuum touches zero energy, as shown in Fig. 1.13(a), and the
parity of the ground state changes. This phenomenon is known as a parity switch
and is related to the well-known 4𝜋 Josephson current [95, 144].
In contrast, if the system is topologically trivial and the 𝑚0 mode is not occupied,
the ground states at periodic and anti-periodic boundary conditions have the same
parity, and there is no level crossing by twisting the boundary conditions, as shown
in Fig. 1.13(b).
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Figure 1.13: Energy spectrum of the Kitaev chain plotted against the twisting angle 𝜑 for
𝑤 = Δ𝑝 = 𝜇 in panel (a), and 𝑤 = Δ𝑝, 𝜇 = 3𝑤 in panel (b). In both cases, 𝑁 = 100.

Another interesting property is the existence of non-local end-to-end correlations in
the topological region for the single-particle correlation function ⟨Ω𝑒/𝑜|𝑐1𝑐†

𝑗 |Ω𝑒/𝑜⟩.
For simplicity consider the case 𝑤 = Δ𝑝 for which the expression of the MZM in
Eq. (1.97) can be written as a simple exponential

Γ𝑎 = 𝒩
𝑁

∑
𝑗=1

𝑒−𝜆(𝑗−1)𝛾𝑗,𝑎 , Γ𝑏 = 𝒩
𝑁

∑
𝑗=1

𝑒−𝜆(𝑁−𝑗+1)𝛾𝑗,𝑏 , 𝜆 = − log (∣ 𝜇
2𝑤

∣) (1.105)
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with normalization 𝒩2 = 𝑒2𝜆 − 1. The fermionic operator 𝑐𝑗 can be expanded in
terms of the 𝑓𝑛 operators diagonalizing the Kitaev Hamiltonian

𝑐𝑗 = 𝐴 (Γ𝑎𝑒−𝜆𝑗 − 𝑖Γ𝑏𝑒−𝜆(𝑁−𝑗+1)) + ̃𝑐𝑗

where ̃𝑐𝑗 = ∑𝑁
𝑛=2 𝜓𝑛(𝑗)𝑓𝑛 +𝜉𝑛(𝑗)𝑓†

𝑛 collects the contribution from the gapped quasi-
particles and 𝐴 is a constant.
Using this expansion in the correlation function is evaluated as

⟨Ω𝑒/𝑜|𝑐1𝑐†
𝑗 |Ω𝑒/𝑜⟩ =2𝐴2𝑒−𝜆(𝑁−𝑗+2) ⟨Ω𝑒/𝑜|𝑖Γ𝑎Γ𝑏|Ω𝑒/𝑜⟩

+ 𝐴2 (𝑒−𝜆(𝑗+1) + 𝑒−𝜆(2𝑁−𝑗+1))
+ ⟨Ω𝑒/𝑜| ̃𝑐1 ̃𝑐𝑗|Ω𝑒/𝑜⟩ .

The second line of this equation vanishes for 𝑗 ≫ 1 and 𝑁 ≫ 1 and the third line
is a correlation function that only involves gapped quasi-particles and thus should
decay exponentially as exp(−Δ𝑗) where Δ is the gap of the system.
The expectation value of the first line is nothing but the global parity, following
Eq. (1.98). Taking the 𝑗 → 𝑁 limit, results in a non-local correlation function whose
revival depends on the parity of the ground state

lim
𝑗→𝑁

⟨Ω𝑒/𝑜|𝑐1𝑐†
𝑗 |Ω𝑒/𝑜⟩ = 2𝐴2𝑒−2𝜆𝑃𝑒/𝑜 , 𝑃𝜎 =

⎧{
⎨{⎩

1 for 𝜎 = 𝑒

−1 for 𝜎 = 𝑜
. (1.106)

This behavior is illustrated in Fig. 1.14.
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Figure 1.14: Single particle correlation function ⟨𝑐1𝑐†
𝑗⟩ between the first site and the 𝑗th site

for 𝑤 = Δ𝑝 and 𝜇 = 1.6𝑤. The blue (red) line is the correlation with respect to the even (odd)
parity ground state, and the black line is an exponential of the form 𝑓(𝑗) = 𝐴 exp(−𝜆(𝑁 −𝑗))
with 𝜆 = − log(𝜇/(2𝑤)) ≈ 0.22 as predicted by Eq. (1.106). In the inset, a zoom around the
right edge of the chain is shown, highlighting the relative 𝜋 phase of the revival between the
two ground states. The early transient decay is due to the overlap of the edge operator with
bulk excitations, and the drop in the correlation function in the odd-parity sector is due to
the relative sign change in the revival of the correlator.

By taking the Jordan-Wigner transformation, as defined in Eq. (1.32), the Kitaev
chain is transformed to a Transverse Field XY Model (TFXYM). For open boundary
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conditions, the equivalence is given by

𝐻Kitaev ≅
𝑁−1
∑
𝑗=1

𝐽𝑥𝜎𝑥
𝑗 𝜎𝑥

𝑗+1 + 𝐽𝑦𝜎𝑦
𝑗 𝜎𝑦

𝑗+1 + 𝑔
𝑁

∑
𝑗=1

𝜎𝑧
𝑗

𝐽𝑥 = −
𝑤 + Δ𝑝

2
, 𝐽𝑦 = −

𝑤 − Δ𝑝

2
, 𝑔 = 𝜇

2
.

(1.107)

In particular, for 𝐽𝑦 = 0, this model reduces to the TFIM discussed in Subsec-
tion 1.2.1. Similar to the TFIM, the TFXYM shows a spontaneous breaking of the
Z2 symmetry given by the spin parity operator

̂𝑃 =
𝑁

∏
𝑗=1

(−𝜎𝑧
𝑗 )

for |𝑔| < |𝐽𝑥 + 𝐽𝑦|. Under the Jordan-Wigner transformation, the topological phase
appearing in the fermionic model at 𝜇 < 2𝑤 is mapped to the symmetry-breaking
phase of the TFXYM. The two degenerate fermionic ground states are mapped to
the symmetry-restoring basis defined in Eq. (1.66) in the ground-state manifold.
This equivalence also allows the definition of a new order parameter for the Kitaev
model by considering the 𝜎𝑥

𝑗 correlation function in the TFXYM. Again, similar
to the TFIM, the TFXYM shows off-diagonal long range order in the correlation
function of the Pauli-X operators

lim
|𝑗−𝑘|→∞

⟨𝜎𝑥
𝑗 𝜎𝑥

𝑘⟩ = 𝑚(𝑔)2 ,

where the expectation value is taken with respect to the symmetry-restoring basis,
as in Eq. (1.72).
By performing the inverse Jordan-Wigner transformation, the correlation function
of the Pauli-X operators becomes a string order parameter

lim
|𝑗−𝑘|→∞

𝑖 ⟨𝛾𝑗,𝑏

𝑘−1
∏

𝑙=𝑗+1
𝑒𝑖𝜋𝑛̂𝑙𝛾𝑘,𝑎⟩ = 𝑚(𝑔)2 . (1.108)

While the correlation function in the TFXYM is related to the existence of a local
observable, the string operator is a highly non-local observable probing the global
structure of the ground state.

For periodic boundary conditions, the ground state of the Kitaev chain is unique,
whereas the TFXYM still exhibits double degeneracy stemming from symmetry
breaking. This is not a paradox, since the Jordan-Wigner transformation of the
periodic Kitaev chain is sensitive to the total parity of the chain by the mapping of
the operators

𝑖𝛾𝑁,𝑏𝛾1,𝑎 ≅ − ̂𝑃𝜎𝑥
𝑁𝜎𝑥

1 , 𝑖𝛾𝑁,𝑎𝛾1,𝑏 ≅ − ̂𝑃𝜎𝑦
𝑁𝜎𝑦

1 .

The Kitaev chain with an even parity is thereby mapped to the TFXYM with
anti-periodic boundary conditions with an additional projection to the even parity
sector, and the Kitaev chain at odd parity to the TFXYM with periodic boundary
conditions projected onto the odd-parity sector. In both cases, the ground states are
unique. Note that the symmetry-breaking basis, defined in Eq. (1.64) are not allowed
in the fermionic picture because they represent a superposition of two fermionic
states with different parities.

It was found that the topological ground-state degeneracy is stable against the addi-
tion of interactions to the Kiteav chain [145–148]. In general, these interactions spoil
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the possibility of performing an exact diagonalization of the Hamiltonian, and the
system has to be solved numerically using, for example, tensor network algorithms,
as introduced in Chapter 2.
If the model is in the SPTP, it is still possible to define a non-trivial MZM wave
function in terms of the overlap between the two degenerate ground states, existing
for open boundary conditions, with the single Majorana operator

Γ𝑎,𝑗 = 1
2

(⟨Ω𝑒|𝛾𝑗,𝑎|Ω𝑜⟩ + ⟨Ω𝑜|𝛾𝑗,𝑎|Ω𝑒⟩) (1.109)

that is found to exhibit localization towards the edge of the system [149]. In contrast
to the Kitaev chain, where the MZM is a many-body operator that commutes with
the full Hamiltonian, the MZM in Eq. (1.109) is only guaranteed to exist in the
degenerate ground-state manifold in the presence of interactions. A generalization
of the concept of MZM in this case is presented in Section 1.5.

For periodic boundary conditions, the integrability-breaking nature of general inter-
actions spoils the definition of the topological invariant in terms of the Bogoliubov
Hamiltonian at the two momenta 𝑘 = 0, 𝜋. However, it is found that the parity of the
ground state interchanges by twisting the boundary conditions with a gap closing
at 𝜑 = 𝜋/2, similar to the non-interacting case.
Figure 1.15 demonstrates this for the Kitaev-Hubbard Model (KHM) [148], a mini-
mal extension of the Kitaev chain with nearest neighbor Hubbard like interactions

𝐻KH = 𝐻Kitaev + 𝑈
𝑁

∑
𝑗=1

̂𝑝𝑗 ̂𝑝𝑗+1 . (1.110)
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Figure 1.15: Ground state energy of the KHM in the even (𝑃 = +1) and odd (𝑃 = −1) parity
sectors plotted against the twisting angle 𝜑. For both plots, 𝑁 = 50, 𝑤 = Δ𝑝 and 𝜇/𝑤 = 1.6.
In panel (a), 𝑈/𝑤 = 0.6 places the model in a non-trivial SPTP with a degenerate ground-
state manifold. As the twisting angle is varied from 0 to 2𝜋, the many-body gap closes at
𝜑 = 𝜋/2 and 𝜑 = 3𝜋/2, which is accompanied by a change in the parity of the ground state.
In panel (b), the interaction is chosen as 𝑈/𝑤 = 2 which results in a trivial phase with no
gap closing.

Some Words on Experimental Realizations

The non-local nature of the fermion state 𝑓𝐸 leads to intrinsic resilience against
noise. This motivates the formulation of a topological quantum memory based on
the two parity states [84, 150, 151]. As Majorana fermions are also an example of



44 CHAPTER 1. PHASES OF QUANTUM MATTER IN ONE DIMENSION

non-Abelian anyons [152], coupling multiple chains in the topological regime can be
used to define a set of logical gates that transform the global state of the system.
However, a realization of the Kiteav chain in a real condensed matter system turns
out to be complicated and has not been convincingly achieved so far.

There are multiple challenges: the Kiteav chain requires a spinless fermionic gas in
a one-dimensional wire and p-wave superconducting correlations. The standard way
of creating a spinless one dimensional fermionic gas is by using a semiconductor
nanowire with a strong spin-orbit coupling, often of Rashba type [153, 154], and
a strong magnetic field orthogonal to the direction of the wire [95, 96, 152, 155].
The spin-orbit coupling breaks the spin degeneracy by locking the spin with mo-
mentum, and the magnetic field results in the opening of the gap between these two
bands, as shown in Fig. 1.16. By projecting onto the lower band, the effective low-
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Figure 1.16: (a) Spin-orbit coupling 𝛼 results in the formation of two bands with locked spin
and momentum, where red represents a spin-down and blue a spin-up state. The two bands
touch at 𝑘 = 0 and the system has no gap. (b) Introducing a magnetic field perpendicular
to the locked spin states leads to the opening of a gap at 𝑘 = 0 proportional to the magnetic
field. Around zero momentum, the spin states are mixed; however, for large momenta, the
spin-momentum locking is preserved. By projecting the model on the lower band, an s-wave
superconducting coupling between the spin-up and spin-down states becomes an effective
p-wave coupling of (𝑘, −𝑘) spinless modes.

energy theory describes a gas of spinless fermions. In a final step, the semiconductor
nanowire is coupled with a host s-wave superconductor, which serves as a reservoir
for Cooper pairs and induces s-wave superconducting correlations in the semicon-
ductor nanowire through the proximity effect [152, 156, 157]. In the effective spinless
low-energy theory, this s-wave correlation becomes a p-wave correlation as required
for the Kitaev chain. This setup has some problems, as the interface between the
nanowire and host superconductor can lead to the creation of trivial Andreev bound
states with signatures similar to true MZMs [158]. In addition, the host supercon-
ductor requires a large critical field to survive the strong magnetic fields necessary
to open a sufficiently large gap.

Alternative approaches include placing adatoms on a host superconductor [111–113]
or quantum dots [107–109] where recently a Kitaev chain with 𝑁 = 2 sites was
realized [159]. It has even been theoretically proposed that a topological phase with
unpaired MZMs can appear in strongly interacting nanowires without coupling to
a superconductor [33, 160–164]. The main idea is to replace the p-wave coupling
term with a coherent pair-hopping term between two fermionic species [160], but no
term that induces a direct transmission between the two species. Therefore, the total
symmetry group of the system is U(1) × Z2 consisting of the total particle number
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of the two species and a sub-species parity symmetry.
Consequently, the parity symmetry is not as robust as in the Kitaev chain, and these
models require fine-tuning of the parameters [165]. In Chapter I, a model inspired
by recent cold atom experiments [106] is proposed, which implements the required
symmetry group by an artificial flux imposing twisted boundary conditions along the
short direction of a fermionic tube. The additional U(1) also leads to the existence of
gapless density excitations, which may spoil the stability of the MZM away from the
ground-state manifold. This question is addressed in Chapter V. However, if such a
system is in the topological phase, the MZM has the same properties as the Kitaev
chain [166].

1.3 Gapless Phases
The previous Section 1.2 focused on possible gapped phases of quantum matter in one
dimension. As a reminder, the many-body gap Δ is defined as the difference in energy
between the ground-state manifold and the first excited state in the thermodynamic
limit. The existence of a finite gap Δ > 0 implies a finite correlation length 𝜉 = 1/Δ
on which the correlation function of local operators decays exponentially ⟨𝑂̂𝑗𝐾̂𝑘⟩ ∼
exp(−|𝑗 − 𝑘|/𝜉) [65, 66]. This exponential decay implies that quantum fluctuations
occur mainly at length scales below 𝜉.

If the gap vanishes, the correlation length diverges, 𝜉 → ∞, resulting in the absence
of any characteristic length scale other than the overall size of the system. Conse-
quently, fluctuations can manifest at any length scale, with the system becoming
self-similar. This phenomenon causes the correlation functions to decay at a rate
slower than exponential. Indeed, self-similarity causes the correlation functions to
follow an algebraic decay.

This section provides a brief review of the possible gapless phases of matter in
one-dimensional chains. The first Subsection 1.3.1 begins with an introduction to
Tomonaga-Luttinger Liquids (TLLs), an important class of models describing a large
variety of gapless one-dimensional interacting models, and the solution of this model
using the bosonization technique. In particular, the low-energy properties of the
models proposed in Chapters I and II are partially described by such a TLL. In
the second Subsection 1.3.2, a deformation of the TLL is considered. Based on
the system parameters, this deformation leads to the opening of a spectral gap.
The methods described in this subsection are also used in similar models to obtain
analytical insights into the phases in Chapters I and II, and the phase transition is
again encountered in Chapter III. The final Subsection 1.3.3 will review the basics
of conformal field theory, a powerful tool for understanding gapless phases in one-
dimensional quantum matter.

1.3.1 Luttinger Liquid and Bosonization

In two and higher dimensions, interacting fermions usually form a Fermi liquid char-
acterized by a stable Fermi surface with a sharp momentum cutoff in the fermionic
distribution function [40]. The situation is drastically different for interacting one-
dimensional fermionic chains. In this case, the Fermi surface of a non-interacting
system consists of only two points at the Fermi momenta ±𝑘F; see also the discus-
sion at the end of Subsection 1.1.6. This leads to a large phase space for resonant
scattering processes. As a consequence, the Fermi surface collapses even for infinites-
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imal small interactions and the fermion distribution function becomes

𝑛(𝑘) ∼ |𝑘 − 𝑘F|𝛿

at zero temperature, with an interaction-dependent exponent.

Effective Field Theory

The starting point is a ring of 𝑁 sites separated by the physical length 𝛼 and
populated by spinless fermions defined by the annihilation (creation) operators 𝑎(†)

𝑗 .
The properties of the quantum ring are described by the non-interacting quadratic
Hamiltonian, compare also Eq. (1.45),

𝐻 = ∑
𝑘

𝜖(𝑘)𝑎†
𝑘𝑎𝑘 , 𝜖(−𝑘) = 𝜖(𝑘) (1.111)

where the operator 𝑎𝑘 is the Fourier transform of 𝑎𝑗 as defined in Eq. (1.43)

𝑎𝑗 ≔ 1√
𝑁

∑
𝑘

𝑒𝑖𝑘 𝑗𝛼𝑎𝑘 . (1.112)

The chain is loaded with 𝑛F number of fermions, which fill the dispersion relation
up to the two Fermi momenta ±𝑘F related to the density 𝜈 = 𝑛F/𝑁 by

𝛼𝑘F = 𝜋𝑛F
𝑁

≔ 𝜋𝜈 . (1.113)

The main goal is to find an effective theory that describes the low-energy, long-
wavelength excitations of this general model. These long-wavelength excitations are
of particle-hole type, involving only states close to the Fermi energy 𝜖F = 𝜖(𝑘F).
There are two possible types of particle-hole excitations: the first type excites a
fermion from a particle state to a hole state at the same site of the Fermi surface
resulting in a momentum transfer of 𝑄 ≈ 0, while the second type involves a particle-
hole pair from across the two Fermi points with a momentum transfer of 𝑄 ≈ 2𝑘F.
Both processes are illustrated in Fig. 1.17.
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Figure 1.17: Approximation of the lattice model using a linear dispersion relation. The two
particle-hole excitations represent the two possible low-energy excitations.
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By linearizing the dispersion relation for momenta close to the two Fermi points
|𝑘 ± 𝑘F| ≤ Λ ≪ 𝑘F

𝜖±(𝑘) = 𝑣F (±𝑘 − 𝑘F) + 𝒪 ((𝑘 ± 𝑘F)2)

𝑣F ≔ 𝜕𝜖(𝑘)
𝜕𝑘

∣
𝑘F

(1.114)

it is derived that the energy of a particle-hole excitation with momentum |𝑞| ≤ Λ
depends only linearly on the relative momentum

Δ𝐸𝑞 ≔ 𝜖(𝑘1) − 𝜖(𝑘2) ≈ 𝑣F (𝑘1 ± 𝑘2) = 𝑣F𝑞 . (1.115)

In this equation, the minus sign refers to a particle-hole excitation around the same
Fermi point, and the plus sign refers to an excitation across the two Fermi points.

To describe the long-wavelength properties, it is sufficient to project the quadratic
non-interacting Hamiltonian (1.111) on the states with |𝑘 ± 𝑘F| ≤ Λ

𝐻 ≈ ∑
|𝑞|≤Λ

𝑣F𝑞𝑎†
𝑞−𝑘F

𝑎𝑞−𝑘F
− 𝑣F𝑞𝑎†

𝑞+𝑘F
𝑎𝑞+𝑘F

≈ ∑
|𝑞|≤Λ;𝑟=𝑅,𝐿

𝜖𝑟𝑣F 𝑞 𝑐†
𝑟,𝑞𝑐𝑟,𝑞

𝑐𝑟,𝑞 = 𝑎𝑞−𝜖𝑟𝑘F
, 𝜖𝑟 =

⎧{
⎨{⎩

+1 for 𝑟 = 𝑅

−1 for 𝑟 = 𝐿
,

which implicitly defines the left/right-moving fermions 𝑐𝑟,𝑞. This approximately re-
produces the correct low-energy excitations of the original model. To simplify the
model further, the allowed momenta are expanded to positive and negative infinity.
By this, the model becomes the Tomonaga-Luttinger Liquid (TLL) [44–47] model
of two left and right moving spinless fermions with linear dispersion relation and
described by the Hamiltonian

𝐻TLL = ∑
𝑞;𝑟=𝑅,𝐿

𝜖𝑟𝑣F 𝑞 𝑐†
𝑟,𝑘𝑐𝑟,𝑘 . (1.116)

The ground state |Ω⟩ of the TLL is the filled Fermi sea, a state where all negative
eigenstates are occupied by an infinite number of fermions

𝑐†
𝑅,−|𝑞| |Ω⟩ = 𝑐†

𝐿,|𝑞| |Ω⟩ = 0 .

The linearization process is illustrated in Fig. 1.17.

The projection of the long-wavelength degrees of freedom is equivalent to taking
the continuum limit defined by sending the separation between two sites to zero,
𝛼 → 0, while keeping the total length of the chain constant, 𝐿 ≔ 𝛼𝑁 = const. This
limit is understood to be taken at the end of the calculation, but with 𝛼 fixed at
every intermediate step. As only the slow varying modes are contributing to the
properties of the system, the left and right moving fermionic lattice operators can
be approximated by smooth varying operator valued functions

1√
𝛼

𝑐𝑟,𝑗 ≈ 𝜓𝑟(𝑥𝑗) , 𝑥𝑗 = 𝑗𝛼 .
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In this projected space, the bare operators can be represented by the continuum
fields as

1√
𝛼

𝑎𝑗 = 1√
𝐿

∑
𝑘

𝑒𝑖𝑘 𝛼𝑎𝑘 ≈ 1√
𝐿

∑
|𝑞|≤Λ

𝑒−𝑖𝑘F 𝛼𝑒𝑖𝑞,𝛼𝑎𝑞−𝑘F
+ 𝑒𝑖𝑘F 𝛼𝑒𝑖𝑞,𝛼𝑎𝑞+𝑘F

≈ (𝑒−𝑖𝑘F𝑥𝑗𝜓𝑅(𝑥𝑗) + 𝑒𝑖𝑘F𝑥𝑗𝜓𝐿(𝑥𝑗)) .
(1.117)

By performing the continuum limit, the sums in the Hamiltonian become an integral

𝛼 ∑
𝑗

… →

𝐿/2

∫
𝐿/2

d𝑥 …

and the Fourier transformation is modified to

𝑐𝑟,𝑘 = 1√
𝐿

𝐿/2

∫
−𝐿/2

d𝑥 𝑒−𝑖𝑘𝑥𝜓𝑟(𝑥) , 𝜓𝑟(𝑥) = 1√
𝐿

∑
𝑘

𝑒𝑖𝑘𝑥𝑐𝑟,𝑘 . (1.118)

The continuum version of the TLL reads in position space

𝐻TLL = −𝑖𝑣F

𝐿/2

∫
−𝐿/2

d𝑥 {𝜓†
𝑅(𝑥)𝜕𝑥𝜓𝑅(𝑥) − 𝜓†

𝐿(𝑥)𝜕𝑥𝜓𝐿(𝑥) } , (1.119)

and the density operator of the left and right moving fermions can be written as11

𝜌𝑟(𝑥) ≔ 𝜓†
𝑟(𝑥)𝜓𝑟(𝑥) . (1.120)

Note that the projection on long-wavelength excitations relies heavily on the exis-
tence of a linear regime in the energy-momentum dispersion relation 𝜖(𝑘). As such,
it is expected to fail in the flat-band limit or if the interactions become comparable
to the bandwidth of the system. In this case, the effects of non-linearity must be
incorporated into the low-energy description [167].

Bosonization of the Tomonaga-Luttinger Liquid

The operator which creates particle-hole pairs of right (𝑟 = 𝑅) or left (𝑟 = 𝐿)
moving fermions of momentum 𝑞 ≠ 0 in the TLL model (1.116) is given by the
Fourier components of the local density operator 𝜌𝑟(𝑥)

𝜌†
𝑟,𝑞 = ∑

𝑘
𝑐†

𝑟,𝑘+𝑞𝑐𝑟,𝑘 . (1.121)

The zero momentum (𝑞 = 0) density operator can be identified with the total number
of fermions added (missing) from the TLL vacuum

𝜌†
𝑟,0 ≔ ̂𝑁𝑟 , ̂𝑁𝑟 |Ω⟩ = 0 . (1.122)

Because the dispersion relation of the TLL model is linear, the states created by
applying 𝜌𝑟,𝑞 to the vacuum state |Ω⟩ depend only on the momentum 𝑞. Therefore,

11Formally, the product of two continuum operators at the same point 𝑥 is ill-defined and needs
some sort of regularization, which is implicitly assumed throughout this section.
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they can be interpreted as stable quasi-particle excitations for each value of −∞ <
𝑞 < ∞.
The commutator of the 𝜌𝑟,𝑞 operators, projected to the vacuum state |Ω⟩, is given
by

[𝜌†
𝑟,𝑞, 𝜌†

𝑟′,−𝑝] = −𝛿𝑟,𝑟′𝛿𝑞,𝑝
𝜖𝑟𝑞 𝐿
2𝜋

. (1.123)

This result shows that the particle-hole operators have, up to a trivial normalization,
the commutation relations of bosonic ladder operators, as in Eq. (1.23). By rescaling,
it is possible to define proper bosonic ladder operators for 𝑞 ≠ 0

𝑏†
𝑞 = ( 2𝜋

𝐿|𝑞|
)

1/2 ⎧{
⎨{⎩

𝜌†
𝑅,𝑞 , 𝑞 > 0

𝜌†
𝐿,𝑞 , 𝑞 < 0

, 𝑏𝑞 = ( 2𝜋
𝐿|𝑞|

)
1/2 ⎧{

⎨{⎩

𝜌†
𝑅,−𝑞 , 𝑞 > 0

𝜌†
𝐿,−𝑞 , 𝑞 < 0

. (1.124)

Furthermore, it can be shown that the operators in Eq. (1.124) form a complete set
that can be used to span the full many-body Hilbert space of the TLL [58]. This
implements the idea of rewriting the TLL Hamiltonian and fermionic operators 𝜓𝑟(𝑥)
in terms of these particle-hole excitations.

By calculating the commutator

[𝑏𝑞, 𝐻] = 𝑣F|𝑞|𝑏𝑞

it is shown that the Hamiltonian (1.116) is equivalently expressed in the bosonic
variables as12

𝐻TLL ≅ ∑
𝑞≠0

𝑣F|𝑞|𝑏†
𝑞𝑏𝑞 = ∑

𝑞≠0
𝜔𝑞𝑏†

𝑞𝑏𝑞 (1.125)

because both representations have the same set of commutation relations with the
bosonic ladder operators 𝑏𝑞. This result demonstrates that the TLL describes a set
of uncoupled harmonic oscillators with a frequency 𝜔𝑞 = 𝑣F|𝑞|.

Instead of working with the momentum ladder operators 𝑏𝑞, it is convenient to
change the variables by introducing two conjugated fields [𝜑̂(𝑥), Π̂(𝑦)] = 𝑖𝛿(𝑥 − 𝑦)
defined in terms of the ladder operators as

𝜑̂(𝑥) = −𝑖𝜋
𝐿

∑
𝑞≠0

(𝐿|𝑞|
2𝜋

)
1/2 𝑒−𝑖𝑞𝑥

𝑞
(𝑏†

𝑞 + 𝑏−𝑞)

Π̂(𝑥) = 1
𝐿

∑
𝑞≠0

(𝐿|𝑞|
2𝜋

)
1/2

𝑒−𝑖𝑞𝑥sign(𝑞) (𝑏†
𝑞 + 𝑏−𝑞) .

(1.126)

Physically, these two fields measure the fluctuations in the local density and the
current in the quantum wire

− 1
𝜋

𝜕𝑥𝜑̂(𝑥) = 𝜌𝑅(𝑥) + 𝜌𝐿(𝑥) , Π̂(𝑥) = 𝜌𝑅(𝑥) − 𝜌𝐿(𝑥) . (1.127)
12 The bosonization formula for the TLL Hamiltonian (1.125) neglects the total charging effects

of the wire proportional to 𝑁2
𝑟 /𝐿, which is subleading in 1/𝐿. While crucial for studying the

finite-size effect, this contribution is irrelevant in the thermodynamic limit.
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In terms of these field variables, the bosonization of the Hamiltonian becomes

𝐻TLL = 𝑣F
2𝜋

𝐿/2

∫
−𝐿/2

d𝑥 (𝜋Π̂(𝑥))
2

+ (𝜕𝑥𝜑̂(𝑥))2

= 𝑣F
2𝜋

𝐿/2

∫
−𝐿/2

d𝑥 (𝜕𝑥
̂𝜗(𝑥))

2
+ (𝜕𝑥𝜑̂(𝑥))2 ,

(1.128)

where in the second line, the field 𝜕𝑥
̂𝜗(𝑥) ≔ 𝜋Π̂(𝑥) is defined. In this form, the

Hamiltonian is self-dual by interchanging 𝜑̂ and ̂𝜗 and represents the Hamiltonian
of a massless bosonic field in one dimension with the speed of sound given by 𝑣F.

Similar to the bosonization formula for the Hamiltonian itself, it is possible to derive
an operator identity connecting the fermionic fields to the bosonic variables in form
of a vertex operator [47, 59]

𝜓𝑟(𝑥) =
̂𝑈𝑟√

2𝜋𝛼
𝑒−𝑖(𝜖𝑟𝜑̂(𝑥)− ̂𝜗(𝑥)) . (1.129)

The operator ̂𝑈𝑟 is known as the Klein operator and removes a fermion from the
Fermi sea that is equally spread throughout the entire system. The Klein operators
are unitary ̂𝑈†

𝑟 ̂𝑈𝑟 = ̂𝑈𝑟 ̂𝑈†
𝑟 = 1 have the following commutation relations

{ ̂𝑈†
𝑟 , ̂𝑈𝑟′} = 𝛿𝑟,𝑟′ , { ̂𝑈𝑟 , ̂𝑈𝑟′} = 0 , for 𝑟 ≠ 𝑟′ , [ ̂𝑁𝑟 , ̂𝑈𝑟′] = −𝛿𝑟,𝑟′

̂𝑈𝑟′

ensuring the correct anti-commutation relations of fermionic operators of different
species and ensuring the correct commutation with the total density operator

[ ̂𝑁𝑟 , 𝜓𝑟′(𝑥)] = −𝛿𝑟,𝑟′𝜓𝑟′(𝑥) .

The equation for the bosonization of the non-interacting Hamiltonian (1.128), the
identity for the local density and current (1.127) and the operator identity for the
fermionic fields (1.129) completes the bosonization of the non-interacting model.

Calculation of Correlation Functions

The bosonization formula in Eq. (1.129) can be used to calculate the correlation
functions of the fermion field 𝜓𝑟(𝑥). First, the correlation function of the bosonic
fields at large distances is given by [47, 59]

⟨𝜑̂(𝑥)𝜑̂(𝑦)⟩ = ⟨ ̂𝜗(𝑥) ̂𝜗(𝑦)⟩ ∼ −1
2

log (|𝑥 − 𝑦|
𝛼

) . (1.130)

The off-diagonal correlator ⟨𝜑̂(𝑥) ̂𝜗(𝑦)⟩ = −𝑖sign(𝑥−𝑦)𝜋/4 is a constant [47] and will
be ignored in the following. Next, for a quadratic Hamiltonian of the form given in
Eq. (1.128), the following identity holds [47, 59]

⟨𝑒𝑖𝛼 ̂𝜙(𝑥)𝑒𝑖𝛽 ̂𝜙(𝑦)⟩ = 𝛿𝛼+𝛽,0𝑒𝛼2⟨ ̂𝜙(𝑥) ̂𝜙(𝑦)⟩ , (1.131)

and similar for the other combinations of bosonic fields. Thus, the fermionic corre-
lator can be calculated to

⟨𝜓𝑟(𝑥)𝜓†
𝑟′(𝑦)⟩ ∼ 𝛿𝑟,𝑟′

1
2𝜋𝛼

⟨𝑒−𝑖(𝜖𝑟𝜑̂(𝑥)− ̂𝜗(𝑥))𝑒𝑖(𝜖𝑟𝜑̂(𝑥)− ̂𝜗(𝑥))⟩

∼ 𝛿𝑟,𝑟′
1

2𝜋𝛼
𝑒⟨𝜑̂(𝑥)𝜑̂(𝑦)⟩𝑒⟨ ̂𝜗(𝑥) ̂𝜗(𝑦)⟩ ∼ 𝛿𝑟,𝑟′

1
2𝜋

1
|𝑥 − 𝑦|

.
(1.132)
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Interactions

A typical interaction which can be added to the non-interacting model of Eq. (1.111)
is a Fermi-Hubbard density-density interaction

𝐻𝑉 = 𝑉
𝑁

∑
𝑗=1

𝑛̂𝑗 𝑛̂𝑗+1 . (1.133)

To bosonizes this interaction, the density operator 𝑛̂𝑗 is projected on the long-
wavelength degrees of freedom

𝑛𝑗 ≈ 𝛼 {𝜌𝑅(𝑥𝑗) + 𝜌𝐿(𝑥𝑗) + 𝑒−2𝑖𝑘F𝑥𝑗𝜓†
𝑅(𝑥𝑗)𝜓𝐿(𝑥𝑗) + 𝑒2𝑖𝑘F𝑥𝑗𝜓†

𝐿(𝑥𝑗)𝜓𝑅(𝑥𝑗)}

≈ 𝛼 [− 1
𝜋

𝜕𝑥
̂𝜙(𝑥𝑗) + 1

𝛼𝜋
cos(2 ̂𝜙(𝑥𝑗) − 2𝑘F𝑥𝑗)] .

(1.134)

With help of this equation, the Fermi-Hubbard interaction becomes

𝐻𝑉 = 𝐻𝑉 ,0 + …

𝐻𝑉 ,0 = 𝑉 𝛼

𝐿/2

∫
−𝐿/2

d𝑥 (𝜌𝑅(𝑥) + 𝜌𝐿(𝑥))2 − 2 cos(𝑘F𝛼)𝜌𝑅(𝑥)𝜌𝐿(𝑥)
(1.135)

where the ellipsis collects all the terms which are irrelevant13, and the limit 𝑥𝑗 ≈ 𝑥𝑗+1
is taken.

The only remaining relevant contribution 𝐻𝑉 ,0 is quadratic in the density operators
and can readily be bosonized using Eq. (1.127)

𝐻𝑉 ,0 =

𝐿/2

∫
𝐿/2

d𝑥 𝑔4 + 𝑔2
(2𝜋)2 (𝜕𝑥𝜑̂(𝑥))2 + 𝑔4 − 𝑔2

(2𝜋)2 (𝜕𝑥
̂𝜗(𝑥))

2
(1.136)

with the two parameters

𝑔2 = 2𝑉 𝛼(1 − cos(𝜋𝜈)) , 𝑔4 = 2𝑉 𝛼 ,

which is expressed in terms of the density 𝛼𝑘F = 𝜋𝜈 using Eq. (1.113). In fact, it
can be shown [47] that these are the only possible relevant interactions in the TLL
model at low-energies14.

Since the interaction is quadratic in the bosonic variables, the interacting TLL
Hamiltonian becomes

𝐻TLL + 𝐻𝑉 ≈ 𝑢
2𝜋

𝐿/2

∫
𝐿/2

d𝑥 𝐾 (𝜕𝑥
̂𝜗(𝑥))

2
+ 1

𝐾
(𝜕𝑥𝜑̂(𝑥))2 (1.137)

13 One of these irrelevant terms is a contribution oscillating with cos(4𝑘F𝑥), arising from an
Umklapp process. For generic densities, this term oscillates rapidly and averages to zero. However,
for half-filling, the oscillation vanishes, and this term leads to a potentially relevant interaction that
is similar to the interaction discussed in Subsection 1.3.2.

14 In the standard notation, the relevant low-energy interactions are the forward scattering of
𝑟 type fermions (𝑔4-process) and density-density interactions involving fermions of both species
(𝑔2-process).
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which is again describing a free bosonic field, but with modified parameters

𝐾2 = 2𝜋 + 𝑔4 − 𝑔2
2𝜋 + 𝑔4 + 𝑔2

, 𝑢2 = 𝑣2
F

(2𝜋)2 ((2𝜋 + 𝑔4)2 − 𝑔2
2) . (1.138)

The parameter 𝐾 is known as the Luttinger parameter.

The form of the interacting TLL in Eq. (1.137) is expected to be universal. Inde-
pendent of the microscopic nature of the interactions, the only effective parameters
entering the description of the long-wavelength behavior of the quantum wire are
the velocity of the sound waves 𝑢 and the Luttinger parameter 𝐾. If the wire is
dominated by repulsive interactions, then 𝐾 < 1, and for attractive interactions
𝐾 > 1. The non-interacting point 𝐾 = 1 separates the two regimes.

Using the quadratic nature of the TLL Hamiltonian, the correlation functions of the
fermionic fields can directly be calculated

⟨𝜓𝑟(𝑥)𝜓†
𝑟′(𝑦)⟩ ∼ 𝛿𝑟,𝑟′

1
2𝜋𝛼

( 𝛼
|𝑥 − 𝑦|

)
𝐾+1/𝐾

2

(1.139)

similar to the non-interacting case in Eq. (1.132). Thus, the interacting ground
state has algebraically decaying fermionic correlation functions, with the interaction
tuning the decay constant.

Multi Flavor Bosonization

The bosonization can be extended along the above-discussed lines to cases with
fermions carrying additional flavor quantum numbers, such as spin or fermions on a
ladder [47]. In this case, all objects that appeared previously now carry an additional
flavor index 𝑠. For example, the TLL Hamiltonian in the case of 𝑛 flavors becomes

𝐻TLL =
𝑛

∑
𝑠=1

𝑢𝑠
2𝜋

𝐿/2

∫
𝐿/2

d𝑥 𝐾𝑠 (𝜕𝑥
̂𝜗𝑠(𝑥))

2
+ 1

𝐾𝑠
(𝜕𝑥𝜑̂𝑠(𝑥))2

with all density-density interactions involving the same flavor type already absorbed
in the flavor-dependent Luttinger parameter 𝐾𝑠 and sound velocity 𝑢𝑠. In contrast to
the spinless (single-flavor) case, where a generic interaction results in the universal
TLL Hamiltonian, a multi-flavor fermionic system allows for additional possible
relevant interactions.

𝑉𝑟

𝑎

𝑏
…

Figure 1.18: Ladder system of two spinless fermions 𝑎 and 𝑏. Each species is described by a
TLL, and both wires are coupled with a rung density-density interaction 𝑉𝑟.

For this, consider a two-leg ladder, as shown in Fig. 1.18. The fermions on the upper
leg are denoted by 𝑎𝑗, and those populating the lower leg are denoted by 𝑏𝑗. The



1.3. GAPLESS PHASES 53

density operator associated with the 𝑎 (𝑏) species is denoted by 𝑛̂𝑎
𝑗 (𝑛̂𝑏

𝑗). Assuming
the Luttinger parameters and sound velocity of the two species to be equal, the
ladder system is described by the TLL Hamiltonian

𝐻Ladder,0 = 𝑢𝑠
2𝜋

∑
𝑠=𝑎,𝑏

𝐿/2

∫
𝐿/2

d𝑥 𝐾 (𝜕𝑥
̂𝜗𝑠(𝑥))

2
+ 1

𝐾
(𝜕𝑥𝜑̂𝑠(𝑥))2 . (1.140)

A new intra-species interaction possible in this ladder setup is a density-density rung
interaction

𝐻rung = 𝑉𝑟

𝑁
∑
𝑗=1

𝑛̂𝑎
𝑗 𝑛̂𝑏

𝑗 . (1.141)

Going through the bosonization process, the continuum version of the rung interac-
tion becomes

𝐻rung ≈

𝐿/2

∫
−𝐿/2

d𝑥 𝑔1
(2𝜋)2 𝜕𝑥𝜑̂𝑎(𝑥)𝜕𝑥𝜑̂𝑏(𝑥) + 2𝑔2

(2𝜋𝛼)2 cos (2𝜑̂𝑎(𝑥) − 2𝜑̂𝑏(𝑥)) + … ,

𝑔1 = (2𝜋)2𝑉𝑟𝛼 , 𝑔2 = 𝑉𝑟𝛼 ,
(1.142)

where the ellipsis denotes irrelevant contributions. While the first term is quadratic
in the bosonic fields and can thus be absorbed in a redefinition of the Luttinger
parameters, the second term represents a new interaction that is not quadratic in
the bosons. By passing to the bonding and anti-bonding variables15

𝜑̂± = 1√
2

(𝜑̂𝑎(𝑥) ± 𝜑̂𝑏(𝑥)) , ̂𝜗± = 1√
2

( ̂𝜗𝑎(𝑥) ± ̂𝜗𝑏(𝑥)) , (1.143)

the full interacting ladder Hamiltonian becomes

𝐻Ladder = ∑
𝑠=±

𝑢𝑠
2𝜋

𝐿/2

∫
−𝐿/2

d𝑥 𝐾𝑠 (𝜕𝑥
̂𝜗(𝑥))

2
+ 1

𝐾𝑠
(𝜕𝑥𝜑̂(𝑥))2

+

𝐿/2

∫
−𝐿/2

d𝑥 2𝑔2
(2𝜋𝛼)2 cos (2

√
2𝜑̂−(𝑥)) ,

(1.144)

with the new parameters

𝑢2
± = 𝑢𝐾 ( 𝑢

𝐾
± 𝑔2

𝜋𝛼2 ) , 𝐾2
± = 𝑢𝐾

𝑢
𝐾 ± 𝑔2

𝜋𝛼2
.

Equation (1.144) shows that the bonding (charge) sector separates from the anti-
bonding (spin) sector with different sound velocities and Luttinger parameters.
While the bonding sector is described by a pure TLL, the anti-bonding sector has an
additional cosine interaction. This perturbed TLL with an additional cosine poten-
tial is also known as the sine-Gordon model [168]. The next subsection 1.3.2 discusses
when this perturbation becomes relevant and opens a gap in the spectrum.

15 If the two legs of the ladder represent the two spin states of an electron, the bonding sector
measures the charge excitations, and the anti-bonding sector measures the spin excitations.
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1.3.2 Sine-Gordon Model and Opening of a Gap

The starting point is the sine-Gordon model for 𝐿 → ∞ of one bosonic field defined
by

𝐻 = 𝑢
2𝜋

∫d𝑥𝐾 ( ̂𝜗(𝑥))
2

+ 1
𝐾

(𝜑̂(𝑥))2 + 2𝑔
(2𝜋𝛼)2 cos (2

√
2𝜑̂(𝑥)) . (1.145)

As discussed in the previous subsection, this model, for example, describes the low-
energy effective field theory of excitations in the anti-bonding sector of an interacting
ladder system. The non-quadratic nature of the model precludes a direct solution.
To determine whether the cosine potential is a relevant perturbation of the TLL
leading to the opening of a gap can be answered for small values of 𝑔 in terms of a
renormalization group flow.
The main idea is that the for 𝑔 = 0, the model is free and correlations of the vertex
operator are algebraic functions

𝑅(𝑥 − 𝑦) = ⟨𝑒𝑖𝑎
√

2 ̂𝜑(𝑥)𝑒−𝑖𝑎
√

2 ̂𝜑𝑦⟩ ∼ ( 𝛼
|𝑥 − 𝑦|

)
𝑎2𝐾

. (1.146)

This correlator is invariant under the rescaling of the physical length scale, 𝛼′ =
𝛼𝑒𝛿𝑙, which induces an equivalent rescaling of the positions 𝑥′ = 𝑒𝛿𝑙𝛼. By adding a
small interaction 𝑔, it can be studied how this property of the correlation function
remains unchanged. In particular, if the interaction is irrelevant, the properties of the
model at long distances should be similar to those of the unperturbed TLL model
with possible renormalized Luttinger parameters, 𝐾′. However, if the interaction
is relevant, the quantum field becomes pinned to the classical minima of the cosine
potential at long distances ⟨𝜑̂(𝑥 → ∞)⟩ ≈ 𝜑0 and the system has a finite gap. In this
case, the correlation function in Eq. (1.146) decays exponentially and is no longer
scale invariant.
Studying the influence of a small 𝑔 requires an expansion of the exact correlation
function in orders of 𝑔. This is typically performed using the Euclidean path integral
formalism [40], and details can be found in [47]. After a lengthy calculation, the
expansion of the correlation function up to second order in 𝑔 is given by

𝑅(𝑥 − 𝑦) = 𝑒−𝑎2𝐾𝐹(𝑥−𝑦) ⎛⎜
⎝

1 + 𝑎2𝐹(𝑥 − 𝑦) 𝑔2𝐾2

2𝜋2𝑢2

∞

∫
𝛼

d𝑟
𝛼

( 𝑟
𝛼

)
3−4𝐾⎞⎟

⎠

where 𝐹(𝑥 − 𝑦) is the bosonic correlation function

𝐹(𝑥 − 𝑦) = 2
𝐾

⟨𝜑̂(𝑥)𝜑̂(𝑦)⟩ .

For small 𝑔, this becomes

𝑅(𝑥 − 𝑦) ≈ 𝑒−𝑎2𝐾eff𝐹(𝑥−𝑦) , 𝐾eff = 𝐾 − 𝑔2𝐾2

2𝜋2𝑢2

∞

∫
𝛼

d𝑟
𝛼

( 𝑟
𝛼

)
3−4𝐾

which is of the same form as for 𝑔 = 0 in Eq. (1.146), but with 𝐾eff replacing 𝐾.
Requiring the correlation function to stay invariant under a rescaling of the length
scale 𝛼 → 𝛼′ = 𝛼𝑒𝛿𝑙 for small 𝛿𝑙 ≪ 1, it is found that the coupling parameters 𝐾
and 𝑔 have to transform according to

𝐾(𝛼′) = 𝐾(𝛼) − 𝑔(𝛼)2𝐾(𝛼)2

2𝜋2𝑢2 𝛿𝑙 , 𝑔(𝛼′)2 = 𝑔(𝛼)2 (1 + (4 − 4𝐾(𝛼))𝛿𝑙) .
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Defining the dimensionless coupling 𝑦 = 𝑔/(𝜋𝑢) and 𝜌 = 2(𝐾 − 1), and assuming
𝑦, 𝜌 ≪ 1, this transformation implies the renormalization flow equations

d𝜌(𝑙)
d𝑙

= −𝑦(𝑙)2 , d𝑦(𝑙)
d𝑙

= −𝜌(𝑙)𝑦(𝑙) (1.147)

which defines the coupling parameters at the scale 𝛼(𝑙) = 𝛼0𝑒𝑙.

The renormalization flow has the following interpretation: if the cosine potential is
an irrelevant perturbation of the TLL, the coupling 𝑦(𝑙) should flow to zero at a
length scale 𝑙⋆. Because the flow of 𝜌(𝑙⋆) stops when 𝑦(𝑙⋆) = 0, the system behaves
similarly to an unperturbed TLL with a renormalized Luttinger parameter 𝐾(𝑙⋆) at
distances greater than 𝑙⋆.
However, if the perturbation is relevant, the coupling 𝑦(𝑙) increases and eventually
violates the assumption of 𝑦 ≪ 1 and the flow breaks down for 𝑦(𝑙⋆) ∼ 1. In the
strong coupling limit with |𝑦| → ∞, the true ground state has to be an approximate
eigenstate of the 𝜑̂(𝑥) operator with eigenvalue minimizing the cosine potential,

𝑦 cos(𝜑̂) |𝜑0⟩ ≈ 𝑦 cos(𝜑0) |𝜑0⟩ , 𝑦 cos(𝜑0) < 0 ,

By expanding the quantum field around this semi-classical value 𝜑̂(𝑥) = 𝜑0 + 𝛿𝜑̂,
the cosine potential can be approximated by

𝑦𝑢
2𝜋𝛼2 ∫d𝑥 cos(

√
8𝜑̂(𝑥)) ≈ 2𝑦𝑢

𝜋𝛼2 ∫d𝑥 𝛿𝜑̂2(𝑥) .

Thus, the sine-Gordon model becomes a massive bosonic field with a gap Δ ∼
𝑢√𝑦/𝛼.

The gap of the system also flows under renormalization according to Δ(𝑙) = 𝑒𝑙Δ(𝑙 =
0). Using 𝑦(𝑙⋆) ∼ 1 as the scale of where the strong coupling limit becomes valid,
the gap at the original scale with 𝑙 = 0 is given by

Δ(𝑙 = 0) = 𝑒−𝑙⋆Δ(𝑙) ∼ 𝑒−𝑙⋆ 𝑢
𝛼

√𝑦(𝑙⋆) ∼ 𝑒−𝑙⋆Δ0 .

Returning to the renormalization equations (1.147), the flow trajectories are shown
in Fig. 1.19. If 𝜌 > 0 and |𝑦| < 𝜌, the coupling 𝑦 flows to zero, and the sine-Gordon
model is effectively a gapless free boson. However, for |𝑦| > 𝜌 and 𝜌 < 0, 𝑦 ≠ 0, the
coupling 𝑦 always flows to the strong coupling limit. The line 0 < 𝜌 = |𝑦| is a special
line with the parameters flowing to the self-dual point of 𝜌 = 𝑦 = 0.

In the case of interacting fermions on the quantum ladder, the sine-Gordon model
describes the anti-bonding sector

√
2𝜑̂− = ̂𝜑𝑎(𝑥) − 𝜑̂𝑏(𝑥). A pinning of the field

𝜑̂− = 𝜑0 implies an ordering of the relative density 𝜌−(𝑥) = 𝜌𝑎(𝑥) − 𝜌𝑏(𝑥) of the 𝑎
and 𝑏 fermions in the ladder [47]

𝜌−(𝑥) ∼ 𝜌0 cos(2𝑘F𝑥 − 2𝜑0) .

This ordering breaks the translation invariance of the lattice but not the other
global symmetry of the system. In particular, the global U(1) symmetry is unbroken
even with strong attractive interactions, in accordance with the Mermin-Wagner-
Hohenberg theorem [48–50].

In Chapters I and II extensions of the sine-Gordon model appear as effective descrip-
tions of the ground state. By performing a renormalization group analysis similar to
the one presented here, relevant parameters are identified for a first classification of
the phase diagram.
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Figure 1.19: Flow field of the renormalization equations (1.147). The red-colored region
flows to the gapless point with 𝑦 = 0. The blue-colored region flows to the strong coupling
limit. The violet-colored region first flows towards weak coupling, but ultimately flows to
the strong coupling limit, similar to the blue region.

1.3.3 Basics of Conformal Field Theory

The TLL discussed in the previous subsection is an example of a Conformal Field
Theory (CFT) [67]. A CFT is a gapless quantum model that is invariant under the
large class of conformal transformations. On the two-dimensional Euclidean world
sheet, which generally describes one-dimensional quantum matter, the conformal
group is generated by an infinitely large algebra. Let 𝑧 = 𝑥 + 𝑖𝑦 the complex,
holomorphic coordinate of the two-dimensional world sheet, and ̄𝑧 = 𝑥 − 𝑖𝑦 the
(independent) anti-holmorphic variable, every holomorphic function 𝑓(𝑧) generates
a proper conformal transformation

𝑤 = 𝑓(𝑧) and 𝑤̄ = ̄𝑓( ̄𝑧) , 𝜕 ̄𝑧𝑓(𝑧) = 𝜕𝑧
̄𝑓( ̄𝑧) = 0 .

Simple examples of conformal transformations are rotation and scaling with 𝑓(𝑧) =
𝜁𝑧 with 0 ≠ 𝜁 ∈ C, or translations 𝑓(𝑧) = 𝑧 + 𝑎.

The conformal group induces a representation on the quantum fields of the theory,
which also has an infinite number of generating operators. In general, this set of
operators is very restricted and is known as the Virasoro algebra [67, 169]. The
existence of the Virasoro algebra allows the extraction of many exact statements
regarding the low-energy theory of the quantum system. For example, it is found
that the theory can be described in terms of highly symmetric quantum fields, known
as primary fields ̂𝜓𝑛(𝑧, ̄𝑧) and every other quantum field can be generated from these
primary fields by the application of the Virasoro algebra.

At the level of correlation functions, conformal invariance is reflected by special
transformation rules of the correlator under conformal symmetry. Taking a simple
scaling 𝑤 = 𝑏𝑧 with 𝑏 ∈ R, the correlation function of a set of operators transforms
as

⟨𝜓1(𝑧1, ̄𝑧1) … 𝜓𝑛(𝑧𝑛, ̄𝑧𝑛)⟩ = |𝑏|Δ1 … |𝑏|Δ𝑛 ⟨𝜓1(𝑏𝑧1, 𝑏 ̄𝑧1), … , 𝜓𝑛(𝑏𝑧𝑛, 𝑏 ̄𝑧𝑛)⟩
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where Δ𝑛 is the scaling dimension of the quantum field 𝜓𝑛. For a two point function,
this is already enough to be completely fixed to

𝐺(𝑧1, 𝑧2) ≔ ⟨𝜓1(𝑧1, ̄𝑧1)𝜓2(𝑧2, ̄𝑧2)⟩ = 𝛿Δ1,Δ2

𝐶12
|𝑧1 − 𝑧2|2Δ1

.

Every 𝑛-point function is generally a homogeneous function, which is further fixed
by invariance under additional conformal transformations.
Because every quantum field can be generated from the primary fields in a CFT,
the scaling dimensions of such descendants are fixed by the scaling dimension of the
primary field and the algebraic structure of the Virasoro algebra. In addition to the
scaling dimensions, the Virasoro algebra defines the central charge 𝑐, which is an
anomaly of the quantum field theory. This number has no influence on the structure
of the correlation functions, but its existence permits the ground state to be invariant
under the full conformal group. The central charge appears, for example, in the final
size correction of the energy density or in the entanglement structure of the ground
state, as discussed in Subsection 1.4.2.

Thus, one of the main aspects of a CFT is identifying the primary fields and their
associated scaling dimensions as well as the central charge 𝑐. In the following, three
simple examples that are important for this thesis are presented.

Free Boson

The TLL encountered in Subsection 1.3.1 is described by a free bosonic field with
a Hamiltonian given by Eq. (1.137). This theory is gapless and thus invariant un-
der conformal transformations [169] as discussed above. However, the correlation
function of the bosonic field 𝜑̂(𝑧, ̄𝑧) is logarithmic

⟨𝜑̂(𝑧, ̄𝑧)𝜑̂(𝑤, 𝑤̄)⟩ ∼ − log ((𝑧 − 𝑤)( ̄𝑧 − 𝑤̄)) ,

compare also Eq. (1.130), and the bosonic field is not a primary field. By taking the
holomorphic derivative, the correlation function becomes algebraic and one finds

⟨𝜕𝑧𝜑̂(𝑧, ̄𝑧)𝜕𝑤𝜑̂(𝑤, 𝑤̄)⟩ ∼ 1
(𝑧 − 𝑤)2

and similar for the anti-holomorphic derivative. Thus, the primary fields are 𝜕𝑧𝜑̂(𝑧, ̄𝑧)
and 𝜕 ̄𝑧𝜑̂(𝑧, ̄𝑧) both with scaling dimension Δ = 1. In addition, it is found that every
vertex operator 𝑒𝑖𝑎𝜑̂(𝑧, ̄𝑧) is a primary field with a scaling dimension 𝐾𝑎2/4 and the
free boson has infinitely many primary fields. To complete the CFT data, the central
charge is 𝑐 = 1 [67, 169].

Critical Ising model

Another simple CFT is the critical Ising model. The critical Ising model emerges
in the transverse field Ising model discussed in Subsection 1.2.1 at the interface
between the two gapped phases at 𝐽 = 𝑔. This CFT has a central charge of 𝑐 = 1/2.
In contrast to the free bosonic field, the Ising CFT has only two non-trivial primary
fields. The first is the energy density 𝜖 which has a scaling dimension of Δ𝜖 = 1
and the second field is the local magnetization 𝜎, which has a scaling dimension
of Δ𝜎 = 1/8. Under the Z2 symmetry of the Ising model, the energy operator
𝜖 transforms trivially, whereas the magnetization 𝜎 changes sign. In terms of the
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macroscopic theory, this transformation implies the following identification of the
microscopic variables with the primary fields

𝜖 ∼ 𝜎𝑥
𝑗 𝜎𝑥

𝑗+1 +
𝜎𝑧

𝑗 + 𝜎𝑧
𝑗+1

2
, 𝜎 ∼ 𝜎𝑥

𝑗 .

Based on this identification, it is expected that the correlation function of the Pauli-
X operators decay as

⟨𝜎𝑥
𝑗 𝜎𝑥

𝑘⟩ ∼ 1
|𝑗 − 𝑘|2Δ𝜎

= 1
|𝑗 − 𝑘|1/4 . (1.148)

This expected decay behavior is shown in Fig. 1.20.

|j − k|
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∼ 1

|j − k|1/4

Figure 1.20: 𝜎𝑥
𝑗 correlation function in the Ising model at the critical point 𝐽 = 𝑔.

An explicit effective low-energy Hamiltonian describing the critical Ising model is
the 𝜑̂4 theory. In particular, the Ising model appears at the massless point 𝑔 = 0 of
the Hamiltonian

𝐻 = ∫d𝑥 (𝜕𝑥𝜑̂(𝑥))2 + 𝑔𝜑̂(𝑥)2 + 𝜆𝜑̂(𝑥)4 , (1.149)

where 𝜑̂(𝑥) is real quantum field, and 𝜆 > 0. The Z2 Ising symmetry is implemented
by the transformation 𝜑̂(𝑥) → −𝜑̂(𝑥) which leaves the Hamiltonian invariant.

In a semi-classical picture, the potential 𝑉 (𝜑) = 𝑚2𝜑2 +𝜆𝜑4 is minimized by 𝜑 = 0,
if 𝑔 > 0, which is invariant under Ising symmetry. In the quantum picture, the ground
state obeys 𝜑̂(𝑥) |0⟩ ≈ 0 which is a unique symmetry-respecting state. For 𝑔 < 0,
the potential has two minima at 𝜑± = ±√−2𝜆/𝑔, which are transformed into each
other by the Ising symmetry. At the quantum level, these two minima correspond
to two ground states with the property 𝜑̂(𝑥) |𝜑±⟩ ≈ 𝜑± |𝜑±⟩, and the system breaks
the Ising symmetry. At 𝑔 = 0, the two minima merge at 𝜑 = 0 and the critical Ising
model emerges. The two primary fields are given in this representation as 𝜖 = 𝜑̂2

and 𝜎 = 𝜑̂ and are relevant perturbations of the critical Ising model.

Tricritical Ising Model

Adding a 𝜑̂6 term to the low-energy effective Hamiltonian in Eq. (1.149)

𝐻 = ∫d𝑥 (𝜕𝑥𝜑̂(𝑥))2 + 𝑔𝜑̂(𝑥)2 + 𝜆𝜑̂(𝑥)4 + 𝜆2𝜑̂(𝑥)6 , (1.150)
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Figure 1.21: Sketch of the TCI phase diagram. At the purple dashed line 𝜆 = 0, the blue and
red lines are the symbolic lines where the model has a critical Ising transition and FOPT,
respectively. (a) For 𝜆 > 0 and 𝑔 < 0 there are two minima of the potential 𝑉 (𝜑) that break
the Ising symmetry. (b) Crossing the blue line, the two minima merge at 𝑔 = 0 forming a
unique symmetry restoring minimum at 𝜑 = 0. At 𝑔 = 0, the model becomes the critical
Ising model. (c) For 𝜆, 𝑔 < 0, the model also breaks Ising symmetry with two local minima.
(d) By crossing the red line, a FOPT, the two minima increase in energy, and the minimum
at 𝜑 = 0 becomes the new global minimum. At the point where the blue and red lines merge
(𝑔 = 𝜆 = 0), a triple point emerges, with three different minima merging, hosting the TCI
model.

where 𝜆2 > 0 and 𝑔, 𝜆 ∈ R, allows for a richer phase diagram. A semi-classical
analysis of the minima structure of the potential 𝑉 (𝜑) reveals that, for 𝜆 > 0, the
system behaves similarly to the Ising case. In particular, for 𝑔 > 0 the system has a
unique, symmetry-respecting minimum, whereas for 𝑔 < 0 there are two minima 𝜑±
that break Ising symmetry. At 𝑔 = 0, the two minima merge and the critical Ising
model emerges.

The situation is different when 𝜆 < 0. For 𝑔 < 𝑔𝑐, the potential still exhibits two
minima at 𝜑± ≠ 0. However, by approaching the point 𝑔𝑐, these two minima increase
in energy, and at 𝑔 = 𝑔𝑐 the potential has three minima at 𝜑± and 𝜑0 = 0. A further
increase in 𝑔 leads to 𝜑0 being the unique symmetry-restoring ground state, with
the previous minima 𝜑± becoming local minima with higher energy. This form of
transition is called a First-Order Phase Transition (FOPT) with no CFT emerging
at 𝑔 = 𝑔𝑐. The phase diagram is sketched in Fig. 1.21. At the point 𝑔 = 𝜆 = 0, the
three local minima merge, and the Tricritical Ising (TCI) model emerges [170]. As a
CFT, this model has a central charge of 𝑐 = 7/10 and four non-trivial primary field
operators: two energy operators 𝜖 and 𝜖′ and two magnetization operators 𝜎 and 𝜎′.
For example, the scaling dimension of the magnetization 𝜎 is given by Δ𝜎′ = 3/40.

In Chapter II, a model based on Josephson Junction arrays is presented that realizes
a combination of the free bosonic field and the TCI model.
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1.4 Entanglement
The previous Sections 1.2 and 1.3 discussed the different phases that appear in
one-dimensional quantum matter and introduced tools to determine the phase of a
given model. These tools include local observables, such as the order parameter for
symmetry-broken phases and the algebraic decay of correlation functions for gapless
phases. This section introduces another tool that can be used to gain additional
insights into the state of a quantum chain: quantum entanglement.
Quantum entanglement is a resource that defines how different regions of a quantum
mechanical system are correlated with each other and is one of the key properties of
quantum matter that distinguishes it from classical systems. This correlation results
in uncertainty about the state of sub-region 𝐴 after measuring the state of the rest of
the system. The remaining part of the quantum state defined on 𝐴 is described by a
density matrix 𝜌 which defines the distribution of the possible states of the reduced
system. Although similar to a classical thermodynamic ensemble, this distribution
has some fundamentally different properties [171–177].

As bosons and fermions are equivalent to spins in one-dimensional systems, see
Subsection 1.1.5, this section focuses mainly on the case of spin chains.

1.4.1 Reduced Density Matrix and Entanglement Spectrum

Consider a spin chain with a local Hilbert space dimension dim(ℋloc) = 𝑑 and
length 𝑁. The indices of the chain are denoted by ℐ = {1, … , 𝑁}. The chain can
either describe a chain with open boundary conditions at the end or closed to a ring
with periodic (twisted) boundary conditions.
Splitting the set of indices ℐ into two consecutive parts 𝐴 and 𝐵

ℐ = 𝐴 ∪ 𝐵 , 𝐴 ≔ {1, … , 𝑙} , 𝐵 ≔ {𝑙 + 1, … 𝑁} . (1.151)

defines a bipartition of the chain. The length of the bipartition is measured as
the length of sub-region 𝐴 given by |𝐴| = 𝑙. In the case of open boundaries, this
bipartition cuts the chain along the bond (𝑙, 𝑙 + 1), whereas for a ring, it results in
two cuts at (𝑁, 1) and (𝑙, 𝑙 + 1), as shown in Fig. 1.22.

1 … 𝑙 𝑙 + 1 … 𝑁

𝐴 ≔ 𝐵 ≔

𝑁 1

𝑙 + 1 𝑙

≕ 𝐴𝐵 ≔

(a) (b)

Figure 1.22: Bipartition on a one-dimensional chain. (a) Cutting an open chain at the bond
(𝑙, 𝑙 + 1). (b) Cutting a ring at two bonds (𝑁, 1) and (𝑙, 𝑙 + 1). In both cases, the two
constituents have lengths |𝐴| = 𝑙 and |𝐵| = 𝑁 − 𝑙.

The bipartition (1.151) induces a decomposition of the many-body Hilbert space as

ℋ = ℋ𝐴 ⊗ ℋ𝐵 ,
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where the states defined on ℋ𝐴 have support only on the sites contained in sub-
region 𝐴 and are similar for ℋ𝐵. A generic many-body quantum state |𝜓⟩ ∈ ℋ can
be represented with respect to this bipartition as

|𝜓⟩ = ∑
𝑎,𝑏

Ψ𝑎,𝑏 |𝜓𝐴
𝑎 ⟩ ⊗ |𝜓𝐵

𝑏 ⟩ =
𝛼max

∑
𝛼=1

𝜎𝛼 | ̃𝜓𝐴
𝛼 ⟩ ⊗ | ̃𝜓𝐵

𝛼 ⟩ . (1.152)

where |𝜓𝐴(𝐵)
𝑎(𝑏) ⟩ forms an orthonormal basis set on the two sub-Hilbert spaces ℋ𝐴 and

ℋ𝐵. This equation is known as the Schmidt decomposition [61, 178, 179] and the
singular values 𝜎𝛼 are positive and real. The second equal sign in Eq. (1.152) is ob-
tained by performing a Singular-Value Decomposition (SVD), see also Appendix A,
on the coefficient matrix Ψ = 𝑈Σ𝑉 † followed by absorbing the unitiaries 𝑈 and 𝑉 in
a redefinition of the basis states |𝜓𝐴

𝑎 ⟩ and |𝜓𝐵
𝑏 ⟩. Assuming the state to be normalized

⟨𝜓|𝜓⟩ = 1, it follows Tr[Ψ†Ψ] = ∑𝛼 𝜎2
𝛼 = 1.

The bipartition ℐ = 𝐴 ∪ 𝐵 in Eq. (1.151) allows for the definition of the reduced
density matrix 𝜌𝐺 where 𝐺 = 𝐴, 𝐵, which is obtained by forming the pure density
matrix 𝜌 = |𝜓⟩ ⟨𝜓| followed by tracing out the states of the Hilbert space defined on
the complementary part ̄𝐺 = ℐ ∖ 𝐺

𝜌𝐺 = Tr ̄𝐺 [|𝜓⟩ ⟨𝜓|] = ∑
𝑎,𝑎′

(𝜌𝐺)𝑎,𝑎′ |𝜓𝐺
𝑎 ⟩ ⟨𝜓𝐺

𝑎′ | . (1.153)

Using the Schmidt decomposition (1.152), the reduced density matrix in equa-
tion (1.153) can be written in terms of the coefficient matrix Ψ as

𝜌𝐴 = ΨΨ† = 𝑈Σ2𝑈† , 𝜌𝐵 = Ψ†Ψ = 𝑉 Σ2𝑉 †

and the two reduced density matrices are connected by a unitary transformation

𝜌𝐴 = 𝑊𝜌𝐵𝑊 † , 𝑊 = 𝑈𝑉 † .

Based on this equivalence, the remainder of this section considers only the reduced
density matrix of region 𝐴. Since the reduced density matrix is positive definite, it
is possible to define an entanglement Hamiltonian

𝜌𝐴 ≅ exp (−𝐻ent) . (1.154)

Following this definition, the quantum fluctuations in the remaining quantum state
on region 𝐴 described by the reduced density matrix 𝜌𝐴 are interpreted as thermal
fluctuations of a thermal ensemble described by the entanglement Hamiltonian at
temperature 𝑇 = 1 [180]16. The entanglement spectrum 𝜆𝛼 is defined by the eigen-
values of the entanglement Hamiltonian. Using equation (1.152), the entanglement
spectrum is related to the singular values of the quantum coefficient matrix Ψ by

0 ≤ 𝜎𝛼 = exp(−𝜆𝛼/2) . (1.155)

Note that the reduced density matrix and the entanglement Hamiltonian have the
same symmetries as the quantum state |Ψ⟩. In particular, let 𝑈 = ∏𝑗 𝑢𝑗 be a global
unitary Abelian symmetry operator consisting of the product of local unitaries, and

16This is to be understood only as an analogy as quantum fluctuations are fundamentally different
from thermal fluctuations.
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let 𝑈 |𝜓⟩ = 𝑒𝑖𝜙 |𝜓⟩ for some phase 𝜙. The reduced density matrix of |𝜓⟩ becomes
block diagonal and can be written as

𝜌𝐴 = ∑
𝑛

∑
𝑎,𝑎′

(𝜌𝑛
𝐴)

𝑎,𝑎′ |𝜓𝐴
𝑛,𝑎⟩ ⟨𝜓𝐴

𝑛,𝑎′ | .

The states |𝜓𝐴
𝑛,𝑎⟩ form representations of the symmetry 𝑈𝐴 = ∏𝑗∈𝐴 𝑢𝑗

𝑈𝐴 |𝜓𝐴
𝑛,𝑎⟩ = 𝑒𝑖𝜙𝑛 |𝜓𝐴

𝑛,𝑎⟩ .

Properties of the Entanglement Hamiltonian

The entanglement Hamiltonian provides deep insights into the correlations of the
many-body quantum state |𝜓⟩ and can be used to determine the different phases of
a quantum spin chain [181]. For example, if the chain is described by a CFT, the
low-energy part of the entanglement spectrum becomes universal and is completely
determined by the universal properties of the CFT [182, 183].
If the state |Ψ⟩ is the ground state of a gapped Hamiltonian, the entanglement Hamil-
tonian becomes concentrated at the boundary of the bipartition [184]. Although not
universal in general for gapped states, the existence of additional degeneracies in the
spectrum can be used to detect SPTPs that where discussed in Subsection 1.2.2 [51–
54]. For example, consider the SPTP phase of unpaired MZM emerging in spinless
fermionic chains subjected to p-wave superconducting correlations [84] as discussed
in Subsection 1.2.3. Since the two MZMs are localized at the opposite edges of the
chain, their existence is reflected in a fractionalization of the fermionic parity oper-
ator

̂𝑃 =
𝑁

∏
𝑗=1

̂𝑝𝑗 ≈ ̂𝑃𝐿
̂𝑃𝑅 , { ̂𝑃𝐿, ̂𝑃𝑅} = 0 .

The parity symmetry of the Hamiltonian induces the same symmetry on the entan-
glement Hamiltonian which can be written in general as

𝐻ent = ∑
𝛼

(𝜆𝛼,+1 |𝛼, +1⟩ ⟨𝛼, +1| + 𝜆𝛼,−1 |𝛼, −1⟩ ⟨𝛼, −1|)

where |𝛼, 𝑝⟩ denotes the eigenstate of 𝐻ent with parity 𝑝. In [53] it was shown that
the fractionalization of the parity operator is a generic feature of this SPTP of
fermionic quantum chains, and leads to an exact double degeneracy of the entan-
glement spectrum 𝜆𝑛,+1 = 𝜆𝑛,−1, whereas this degeneracy is absent if the system is
trivial. Figure 1.23 shows the entanglement spectrum for the KHM from Eq. (1.110),
repeated here for completeness

𝐻KH =
𝑁−1
∑
𝑗=1

(−𝑤 𝑐†
𝑗𝑐𝑗+1 − Δ𝑝 𝑐†

𝑗𝑐†
𝑗+1 + h.c.) − 𝜇

2

𝑁
∑
𝑗=1

̂𝑝𝑗 + 𝑈
𝑁−1
∑
𝑗=1

̂𝑝𝑗 ̂𝑝𝑗+1 , (1.156)

where 𝑐(†)
𝑗 annihilates (creates) a spinless fermion at site 𝑗. This model enters the

SPTP for the correct choice of parameters; see also Figure (1) of [148]. In gen-
eral, such degeneracy can also appear for symmetry-broken states if the entangle-
ment Hamiltonian is calculated with respect to the symmetry-restoring basis from
Eq. (1.56). However, the degeneracy can be removed by passing to the symmetry-
breaking basis.

In Chapter I the double degeneracy of the entanglement spectrum is used to identify
the non-trivial SPTP in an interacting fermion ladder.
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Figure 1.23: The first twenty values of the entanglement spectrum of the KHM, Eq. (1.156),
measured at half the system size. In both panels, the size of the chain is 𝑁 = 100 and 𝑤 = Δ𝑝,
𝜇 = 1.6𝑤 with 𝑈 = 2𝑤 in panel (a), and 𝑈 = 0.6𝑤 in panel (b). The eigenvalues are labeled
by the parity of the eigenstate of the entanglement Hamiltonian, with blue denoting an even
parity and red denoting an odd parity of the state. The large interaction in panel (a) leads
to the formation of an insulating trivial state with a unique ground state and no degeneracy
in the entanglement Hamiltonian. In contrast, the interaction in panel (b) is chosen to place
the system in the fermionic SPTP, leading to a doubly degenerate entanglement spectrum.

1.4.2 Entanglement Entropy and Boundary Law

Various measures of entanglement can be defined based on the entanglement Hamil-
tonian and the entanglement spectrum. These measures are scalars that can be
used to quantify the entanglement between two sub-regions and can be used as a
tool for distinguishing different phases of matter. As a prominent example, the von-
Neumann entanglement entropy, or simply entanglement entropy in the following,
of the sub-region 𝐺 is defined by

𝑆(𝐺) = − Tr [𝜌𝐺 log (𝜌𝐺)] =
𝛼m𝑎𝑥

∑
𝛼=1

𝜆𝛼 𝑒−𝜆𝛼 , (1.157)

where the second equation follows from rewriting the sum in terms of the entan-
glement spectrum 𝜆𝛼 introduced in Eq. (1.155). For the bipartition considered in
Eq. (1.151), it follows from the unitary equivalence of the two reduced density ma-
trices 𝜌𝐴 and 𝜌𝐵 that the entanglement entropy of both subsystems is equal

𝑆(𝐴) = 𝑆(𝐵) .

Consequently, the entanglement entropy depends only on the length of the subsystem
|𝐴| = 𝑙 and the total length of the chain 𝑁. In this case, the entanglement entropy
is denoted by 𝑆(𝑙).

The entanglement entropy is maximized by a many-body state with a flat distri-
bution of possible Schmidt vectors along a given cut (𝑙, 𝑙 + 1). For a quantum spin
chain of length 𝑁 with local Hilbert space dimension 𝑑, a flat distribution of Schmidt
values, Eq. (1.152), means

𝜎𝛼 = 𝑑−𝑙 ,

where the state |𝜓⟩ is assumed to be normalized, and 𝑙 ≤ 𝑁/2. This follows from the
fact that the coefficient matrix Ψ in Eq. (1.152) has a maximum rank of 𝑑𝑙. Inserting
this flat entanglement spectrum into the formula of the entanglement entropy (1.157)
gives

𝑆(𝐴) = 𝑙 log(𝑑) . (1.158)
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It was conjectured by D. Page [185], and later proven [186–188], that a normalized
quantum state drawn randomly from the full many-body Hilbert space ℋ has an
entanglement entropy close to this maximal possible value, at least if 1 ≪ 𝑙 ≪ 𝑁/2.
Thus, a random quantum many-body state has an entanglement entropy which is
expected to growth with the length of the subsystem 𝐴

𝑆(𝐴) ∼ |𝐴| . (1.159)

It is expected that the eigenstates of a many-body Hamiltonian from the middle of
the spectrum behave chaotically and therefore realize this volume law, except for
special cases [25]. In contrast, the ground states and low-lying excitations of a typical
one-dimensional Hamiltonian exhibit vastly different behaviors for the entanglement
spectrum and, thus, the entanglement entropy. As introduced in Subsection 1.1.3, a

𝐴 ≔ 𝐵 ≔

Figure 1.24: Bipartition of a quantum chain, similar to Fig. 1.22(a). The blue lines represent
the entanglement between pairs of spins in the ground state of a short-range Hamiltonian,
with the opacity denoting its strength. The contribution to the entanglement entropy of
spins close to the cut is larger than that of spins that are more distant.

typical Hamiltonian 𝐻 in one-dimensional quantum chains can either have a spectral
gap Δ > 0 or be gapless and described by a CFT [67].
If the spectrum has a finite gap, the ground state is only short-range correlated,
with all correlation functions decaying exponentially [65, 66]. The property of being
only short-range correlated also implies that such a ground state has only short-
range entanglement [52, 54, 119, 189, 190], where the entanglement through a cut
at (𝑙, 𝑙 + 1) can only be created by spins that are close to the cut, as illustrated in
Fig. 1.24.

As a consequence, the entanglement entropy converges to a constant with respect
to the size of the sub-region 𝐴

𝑆(𝑙) ≈ const , for 1 ≪ 𝑙 ≪ 𝑁 . (1.160)

This is known as the boundary law of entanglement entropy [191–193] because 𝑆(𝑙)
is not proportional to the volume of the block 𝐴, as in the case of a random state, but
rather to the size of the boundary 𝜕𝐴, which is a simple constant in one-dimensional
systems. It also demonstrates that the states realizing the ground states of gapped
Hamiltonians are very special and different from the vast majority of generic states
in the many-body Hilbert space, a situation visualized in Fig. 1.25.

Taking as an example the TFIM introduced in Eq. (1.51)

𝐻Ising = −𝐽
𝑁−1
∑
𝑗=1

𝜎𝑥
𝑗 𝜎𝑥

𝑗+1 − 𝑔
𝑁

∑
𝑗=1

𝜎𝑧
𝑗 .

As discussed in Subsection 1.2.1, the TFIM is in a gapped phase with a unique
ground state for 𝑔/𝐽 > 1. This results in an entanglement entropy that initially
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ℋ

𝑆(𝑙) ∼ const
Figure 1.25: The states fulfilling the boundary law of entanglement Eq. (1.160) only occupy
a small region in the full many-body Hilbert space.

increases with the length 𝑙 of sub-region 𝐴 until it reaches a system-size-independent
plateau, as demonstrated in Fig. 1.26(a).

If the Hamiltonian is gapless and the low-energy sector is described by a CFT, the
entanglement entropy violates the boundary law (1.160). However, the violation is
in the weakest possible way by adding only a logarithmic correction [194, 195]

𝑆(𝑙) ≈ 𝑐 ⋅ 𝑛cut
6

log (𝑑(𝑙, 𝑁)
𝑛cut

) + 𝑠0 . (1.161)

Here, 𝑐 is the central charge of the underlying CFT, and 𝑛cut is the number of cuts
necessary to perform the bipartition ℐ = 𝐴 ∪ 𝐵, with 𝑛cut = 1 for an open chain, as
shown in Fig. 1.22(a), and 𝑛cut = 2 for a ring, as shown in Fig. 1.22(b). The function
𝑑(𝑙, 𝑁) is called the chord distance

𝑑(𝑙, 𝑁) = 2𝑁
𝜋

sin ( 𝜋
𝑁

𝑙) , (1.162)

which appears when mapping the CFT from a plane on a finite cylinder [195].

Figure 1.26(b) shows the entanglement entropy for the TFIM at the critical point
𝑔 = 𝐽. At this point, the low-energy part of the spectrum is described by a CFT
with a central charge of 𝑐 = 1/2, known as the critical Ising model. By plotting the
entanglement entropy against the chord distance, the different system sizes collapse
to the universal logarithmic law (1.161) with the correct prefactor of 1/12 = 1/2⋅1/6.

The reason for the boundary law in Eq. (1.160) for gapped ground states or the
logarithmic law in Eq. (1.161) for a CFT lies in the structure of the entanglement
spectrum. For a random quantum state, the distribution of the Schmidt values 𝜎𝛼
and thus the distribution of the entanglement spectrum, is nearly flat, while the
Schmidt values are expected to decay exponentially in the case of ground states.
The crucial difference between the gapped and gapless cases is that the Schmidt
values for a gapped system decay rapidly and become nearly system-size-independent
with non-universal values. However, for a gapless chain, the entanglement spectrum
becomes dense for 𝑁 → ∞ with a universal structure encoding further data of the
underlying CFT [182, 183].

1.4.3 Excited States and Higher Dimensions

The final part of this section considers the generalization of the ideas presented
previously to higher dimensions and excited states. For excited states, one finds that
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Figure 1.26: Entanglement entropy of the transverse field Ising model plotted against the
chord distance 𝑑(𝑙, 𝑁) from Eq. (1.162). (a) For 𝑔/𝐽 = 1.2 the model is gapped with a
unique ground state. As expected, the entanglement entropy converges to a small constant
for all system sizes. (b) For 𝑔 = 𝐽 the model is gapless with the long wavelength fluctuations
being described by the critical Ising model with a central charge 𝑐 = 1/2. In this case the
entanglement entropy follows the universal logarithmic behavior of Eq. (1.161). The light-
blue curve is a fit by the eye with 𝑠0 ≈ 0.24.

low-lying excitations have an entanglement entropy that grows logarithmically [196,
197] in the length of block 𝐴 similar to the entanglement entropy of a critical system
in Eq. (1.161). This result is based on the idea that a low-lying excitation can be
generated by the application of local operators from the ground state [64, 198], which
is similar to the Fourier sum proposed by Bijl, Feynman, and Cohen [199–201].

In higher dimensions, some of the ideas presented previously have appropriate coun-
terparts. The bipartition considered in a 𝐷-dimensional quantum many-body system
is typically a region 𝐴 with volume |𝐴| and a closed boundary of length |𝜕𝐴|, as
illustrated in Fig. 1.27. A result which directly generalizes to the 𝐷 dimensional case
is the volume law of Eq. (1.159) for random states [185–188]

𝑆(𝐴) ∼ |𝐴| .

The boundary law for gapped systems is more subtle. Here it was conjectured, and
proven for the related quantity of the mutual information, that the entanglement
entropy of a gapped quantum many-body system fulfills the modified boundary
law [189, 191–193, 202, 203]

𝑆𝐴 ≈ 𝐶|𝜕𝐴| + 𝑛𝐵
2

log (|𝜕𝐴|) , (1.163)

where 𝑛𝐵 represents the number of Goldstone bosons [204–206] appearing in sym-
metrically broken systems in 𝐷 ≥ 2 dimensions. For gapless systems, it was conjec-
tured, and actually proven for Fermi surfaces [207, 208], that the area law obtains a
multiplicative logarithmic correction [192]

𝑆𝐴 ∼ log(|𝐴|)|𝜕𝐴| .

Another exotic behavior that is absent in one dimension is the formation of topolog-
ically ordered states [128, 129]. These states are gapped phases without symmetry
breaking. Thus, they follow the boundary law in Eq. (1.163) with 𝑛𝐵 = 0. However,
these states also allow for fractionalized quasi-particles with non-trivial braiding
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𝐴

𝐵

Figure 1.27: Bipartition on a two-dimensional lattice defined by the area shaded in blue,
separating region 𝐴 from 𝐵. The boundary of region 𝐴 is 𝜕𝐴.

statistics, also known as anyons [128, 129]. As a result, the boundary law is cor-
rected by a negative constant 𝛾topo, which depends only on the possible anyons of
the topological ground state [209]. On the level of the entanglement Hamiltonian,
this amounts to an additional universal boundary theory living on the virtual cut
separating region 𝐴 from 𝐵 [210] and investigating the properties of this boundary
theory can help in understanding the topological nature of the phase [211, 212].

1.5 Almost Strong Zero Mode
Subsection 1.2.3 discusses the appearance of MZMs in the topological regime of
the Kitaev chain model. These MZMs, denoted by Γ𝑎/𝑏, are Majorana operators
exponentially localized to the edges of the chain, as expressed in Eq. (1.97), and
represent a non-local fermionic degree of freedom 𝑐𝐸 = Γ𝑎 − 𝑖Γ𝑏.
The existence of a non-local fermion leads to a double degeneracy of the ground
state in the Kitaev chain. Moreover, based on the exact commuting properties of
the MZMs [Γ𝛼, 𝐻Kitaev] = 0, the degeneracy is not limited to the ground state but
applies to the entire spectrum. Any eigenstate of the system with a given parity
can be created from one of the two ground states using arbitrary applications of
the Bogoliubov quasi-particle creation operators 𝑓†

𝑛 defined in Eq. (1.96). Owing to
the non-interacting nature of the Kitaev Hamiltonian, these quasi-particles are not
influenced by the occupation of the fractionalized fermion 𝑐𝐸 = Γ𝑎 − 𝑖Γ𝑏.
At finite interactions, the quasi-particles begin to interact, and the MZM hybridizes
with the bulk. If these interactions do not drive the system through a quantum phase
transition, the ground state remains topologically degenerate. However, this is not
necessarily the case for higher-excited states.

The aim of this section is to provide a brief introduction to the concepts of the
Strong Zero Mode (SZM) and Almost Strong Zero Mode (ASZM), which will be the
main topic of Chapters IV–VI. While the SZM is a generalization of the Majorana
Zero Modes (MZMs) found in the Kitaev chain, the ASZM is the smooth connection
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of the SZM to interacting, non-integrable systems. The basic setting is a quantum
chain of 𝑁 lattice sites populated by spinless fermions described by a many-body
Hamiltonian that only commutes with the fermionic parity17

̂𝑃𝐻 ̂𝑃 = 𝐻 , ̂𝑃 =
𝑁

∏
𝑗=1

𝑒𝑖𝜋𝑛̂𝑗 ,

defining a Z2 symmetry.

1.5.1 Strong Zero Modes – Definitions and Results

A Strong Zero Mode (SZM) is a Hermitian operator Γ acting on the many-body
Hilbert space ℋ of the quantum chain which has the following properties [213–220]

C.1 Normalizability: Γ2 = 1

C.2 Anti-commutation with the parity operator: {Γ, ̂𝑃 } = 0

C.3 Localized at position 𝑗

C.4 Commuting with the Hamiltonian for 𝑁 → ∞: [𝐻, Γ] = 𝑅̂, ||𝑅̂|| ∼ 𝑒−𝜆𝑁

Condition C.1 and C.2 implies that Γ is a Majorana operator connecting a state
with a given parity 𝑝 with a state of flipped parity ̄𝑝 = −𝑝 and the two states are
orthogonal

⟨𝜓𝑝|Γ|𝜓𝑝⟩ = 0 .

The localization property C.3 requires that there exists a local operator ̂𝑜𝑗 acting
only at site 𝑗 which can be expanded as

̂𝑜𝑗 = 𝐴(𝑁)Γ + ∑
𝑛

Φ𝑛,𝑗𝑂̂𝑗 , lim
𝑁→∞

𝐴(𝑁) = 𝐴 > 0 (1.164)

where 𝑂̂𝑗 together with Γ form a complete set of operators acting on the many-body
Hilbert space ℋ. Assuming this set to be orthogonal with respect to the Frobenius
scalar product from Eq. (1.9)

⟨𝑂̂𝑘, 𝑂̂𝑗⟩ ≔ 1
dim(ℋ)

Tr [𝑂̂𝑘𝑂̂†
𝑗] = 𝛿𝑗,𝑘 , ⟨Γ, 𝑂̂𝑗⟩ = 0 , (1.165)

the constant 𝐴(𝑁) can be obtained by calculating

𝐴(𝑁) = ⟨ ̂𝑜𝑗, Γ⟩ .

The final condition C.4 imposes a pairing of eigenstates of odd and even parity.
Given an eigenstate |𝑛, 𝑝⟩ with energy 𝐸𝑛 and of parity 𝑝 it follows

𝐻Γ |𝑛, 𝑝⟩ = Γ𝐻 |𝑛, 𝑝⟩ − [𝐻, Γ] |𝑛, 𝑝⟩ = 𝐸𝑛Γ |𝑛, 𝑝⟩ − 𝑅̂ |𝑛, 𝑝⟩
𝑁→∞
−−−−→ 𝐸𝑛Γ |𝑛, 𝑝⟩ .

(1.166)

Thus, in the thermodynamic limit 𝑁 → ∞, the state Γ |𝑛, 𝑝⟩ ≔ |𝑛, ̄𝑝⟩ is a valid
eigenstate of opposite parity ̄𝑝 = −𝑝 with the same energy 𝐸𝑛 and the spectrum of
𝐻 consists of two degenerated towers.

17 The ideas presented in this section generalize to arbitrary finite-symmetry groups Z𝑛. The
case 𝑛 = 2 was chosen to reduce the complexity of the notation and also because of its connection
the Majorana Zero Modes (MZMs) of Subsection 1.2.3.
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Figure 1.28: First ten excitation energies of the Kitaev chain model, Eq. (1.167), for (a) in
the SPTP with 𝜇 = 𝑤, and (b) in the trivial phase with 𝜇 = 3𝑤. The energies are sorted
with respect to the parity 𝑃 of the corresponding eigenstate, with red (blue) representing
states of odd (even) parity.

Take as an example the Kitaev chain model in Eq. (1.87) with 𝑤 = Δ𝑝, repeated
here for completeness

𝐻Kitaev = −𝑤
𝑁−1
∑
𝑗=1

(𝑐†
𝑗 − 𝑐𝑗) (𝑐𝑗+1 + 𝑐†

𝑗+1) − 𝜇
2

𝑁
∑
𝑗=1

̂𝑝𝑗 . (1.167)

If |𝜇| < 2𝑤 the chain is in an SPTP. Figure 1.28 shows the eigenstates of the Kitaev
chain for a parameter point in the SPTP (panel (a)) and for a parameter in the trivial
phase (panel (b)). While the trivial region has no degeneracy in the spectrum, the
energies in the topological regime are degenerate for all states owing to the existence
of the two edge-localized Majorana operators. Focusing on the left end of the chain
and sending 𝑁 → ∞, the relevant operator is given by

Γ𝑎 = 𝒩
∞

∑
𝑗=1

𝑒−𝜆𝑗𝛾𝑗,𝑎 , 𝜆 = − log (∣ 𝜇
𝑤

∣) , 𝒩2 = 𝑒2𝜆 − 1 . (1.168)

which commutes with 𝐻Kitaev and is localized to the left edge of the chain with

𝛾1,𝑎 = 𝒩Γ𝑎 + ( ̃𝑐1 + ̃𝑐†
1) . (1.169)

The fermion operator ̃𝑐𝑗 is a linear combination of all the gapped Bogoliubov quasi-
particle states and was defined below Eq. (1.105). Since the normalization constant
𝒩 is finite in the thermodynamic limit, Γ𝑎 is a valid SZM localized to the left edge
of the chain18.

In the remainder of the section it is assumed that the SZM, if existent, is localized
to the left site of the chain such that

𝛾1,𝑎 = 𝐴Γ + ̃𝑐1 + ̃𝑐†
1 (1.170)

holds, with ̃𝑐1 representing the contributions from bulk excitations, similar to the
Kitaev chain example.

18 Note that an equal conclusion is possible for the right edge of the system by replacing Γ𝑎 with
Γ𝑏 and 𝛾1,𝑎 with 𝛾𝑁,𝑏.
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Autocorrelation function

The existence of the SZM and the induced towers of degenerate eigenstates have
strong implications for the dynamics of specific operators. A useful tool in this con-
text is the Autocorrelation Function (ACF), a physical property that, for example,
appears in the study of response functions [221, 222]. The ACF of an operator 𝑂̂
with respect to the energy eigenstate |𝑛, 𝑝⟩ of parity 𝑝 is defined as

𝐶𝑛,𝑝(𝑂̂, 𝑡) ≔ ⟨𝑛, 𝑝|𝑂̂𝑂̂†(𝑡)|𝑛, 𝑝⟩ (1.171)

where 𝑂̂(𝑡) = 𝑒𝑖𝑡𝐻𝑂̂𝑒−𝑖𝑡𝐻 denotes the Heisenberg time evolution. In the following,
it is assumed that the operator 𝑂̂ anti-commutes with the parity symmetry ̂𝑃 and
that only overlaps of the type ⟨𝑛, 𝑝|𝑂̂|𝑚, ̄𝑝⟩ with ̄𝑝 = −𝑝 are non-zero.
Inserting a resolution of the unity 1 = ∑𝑟 ∑𝑝=±1 |𝑟, 𝑝⟩ ⟨𝑟, 𝑝|, the equation for the
ACF becomes

𝐶𝑛,𝑝(𝑂̂, 𝑡) = ∑
𝑟

∣⟨𝑛, 𝑝|𝑂̂|𝑟, ̄𝑝⟩∣
2

𝑒𝑖𝑡(𝐸𝑛,𝑝−𝐸𝑟,𝑝̄) . (1.172)

For a generic operator and state |𝑛, 𝑝⟩ a large number of matrix elements ⟨𝑛, 𝑝|𝑂̂|𝑟, ̄𝑝⟩
are non-zero, and the sum in Eq. (1.172) results in a fast exponential decay 𝐶𝑛,𝑝(𝑡) ∼
𝑒−𝑡/𝜏 with the lifetime 𝜏 of the order of unity, owing to the incoherent addition of
all these terms. The situation is different if an SZM exists, where ⟨𝑛, 𝑝|Γ|𝑛, ̄𝑝⟩ = 1
and 𝐸𝑛,𝑝 − 𝐸𝑛,𝑝̄ = Δ𝐸𝑛 ∼ 𝑒−𝜆𝑁 holds. In this case, the ACF for Γ evaluates to

𝐶𝑛,𝑝(Γ, 𝑡) = |⟨𝑛, 𝑝|Γ|𝑛, ̄𝑝⟩|2 𝑒𝑖𝑡Δ𝐸𝑛 + ∑
𝑛≠𝑟

|⟨𝑛, 𝑝|Γ|𝑟, ̄𝑝⟩|2 𝑒𝑖𝑡(𝐸𝑛,𝑝−𝐸𝑟,𝑝̄)

𝑁→∞
−−−−→ 1 + ̃𝐶𝑛,𝑝(𝑡) ,

(1.173)

where ̃𝐶(𝑛, 𝑝)(𝑡) ∼ 𝑒−𝑡/𝜏 collects all 𝑟 ≠ 𝑛 contributions that add up incoherently.
It is found that the ACF saturates to one in the long-time limit, independent of the
state |𝑛, 𝑝⟩.

The single state ACF defined in Eq. (1.171) is extended to finite temperatures by

𝐶𝛽(𝑂̂, 𝑡) = 1
𝒵(𝛽)

∑
𝑛

∑
𝑝=±1

𝑒−𝛽𝐸𝑛,𝑝ℛ (𝐶𝑛,𝑝(𝑂̂, 𝑡)) ≔ ⟨𝑂̂|𝑂̂(𝑡)⟩𝛽 . (1.174)

Here, 𝛽 = 1/𝑇 is the inverse temperature, ℛ(𝑧) denotes the real part of the complex
number 𝑧 and ⟨ ̂𝐴|𝐵̂⟩𝛽 is the finite temperature scalar product of operators [221–223]

⟨ ̂𝐴|𝐵̂⟩𝛽 = 1
2 Tr 𝑒−𝛽𝐻 Tr [𝑒−𝛽𝐻 { ̂𝐴†, 𝑂̂}] , { ̂𝐴†, 𝑂̂} ≔ ̂𝐴†𝑂̂ + 𝑂̂ ̂𝐴† . (1.175)

Calculating the temperature dependent ACF for the SZM follows directly from
Eq. (1.173)

lim
𝑁→∞

𝐶𝛽(Γ, 𝑡) = 1 + ̃𝐶𝛽(𝑡)⏟
∼𝑒−𝑡/𝜏

𝑡→∞
−−−→ 1 . (1.176)

It is found that the long-time limit is independent of the temperature of the sys-
tem. For finite sizes, the equation exhibits long-time oscillations induced by the
exponentially small finite-size splitting between the two parity towers.

Using the relation between the SZM and the edge Majorana operator 𝛾1,𝑎 from
Eq. (1.170) together with Eq. (1.176), the long time limit of the ACF for 𝛾1,𝑎 becomes

lim
𝑁→∞

𝐶𝛽(𝛾1,𝑎, 𝑡) = |𝐴|2 + ̃𝐶𝛽(𝑡)⏟
∼𝑒−𝑡/𝜏

𝑡→∞
−−−→ |𝐴|2 , (1.177)



1.5. ALMOST STRONG ZERO MODE 71

where ̃𝐶𝛽(𝑡) collects all contributions from bulk excitations. Figure 1.29 shows the
ACF for infinite temperature 𝛽 = 0 of the edge Majorana operators 𝛾1,𝑎 and 𝛾1,𝑏
for the Kitaev chain in the topological and trivial regimes, respectively. In the topo-
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Figure 1.29: ACF at infinite temperature of the two edge Majorana operators 𝛾1,𝑎 and 𝛾1,𝑏
with 𝑤 = Δ𝑝 for 𝜇/𝑤 = 1.6 (topological) in panel (a) and 𝜇/𝑤 = 2.6 (trivial) in panel (b).
The purple line in panel (a) represents the theoretical limit lim𝑡→∞ 𝐶𝛽=0(𝛾1,𝑎, 𝑡) = 𝒩2.

logical regime, 𝛾1,𝑎 receives a finite contribution from the SZM, thereby satisfying
Eq. (1.170), while 𝛾1,𝑏 only has contributions from bulk excitations. As illustrated
in Fig. 1.29(a), within this regime, the ACF of 𝛾1,𝑏 shows a rapid exponential decay
on a timescale approximately equal to 𝑡⋆ ∼ 𝑤. Conversely, the ACF of 𝛾1,𝑎 stabilizes
at a constant value determined by 𝒩2 defined in Eq. (1.168). By contrast, in the
trivial regime, Fig. 1.29(b), the ACF for either of the two Majorana operators decays
exponentially at times of 𝑡⋆ ∼ 𝑤.

1.5.2 Away from Integrability

The existence of the SZM has only been demonstrated in integrable systems [84, 224].
In this case, the SZM can always be related to the MZMs that appear if the model is
in a non-trivial SPTP. Adding small terms that break the integrability preserves the
topological order, as long as no quantum phase transition is crossed. This implies a
stable degeneracy of the ground-state manifold with two ground states of opposite
degeneracy |Ω𝑒/𝑜⟩. Consequently, the ACF still saturates in the zero temperature
limit (𝛽 → ∞) to a constant value for 𝑡 → ∞. To arrive at this conclusion, note that
the finite temperature scalar product from Eq. (1.175) projects on the ground-state
manifold for 𝛽 → ∞

⟨ ̂𝐴, 𝑂̂⟩𝛽=∞ = ⟨Ω𝑒| ̂𝐴†𝑂̂ + 𝑂̂ ̂𝐴†|Ω𝑒⟩ + ⟨Ω𝑜| ̂𝐴†𝑂̂ + 𝑂̂ ̂𝐴†|Ω𝑜⟩
4

,

and the operator 𝛾𝑎,1 can be written as

𝛾𝑎,1 = 𝐴 (|Ω𝑒⟩ ⟨Ω𝑜| + |Ω𝑜⟩ ⟨Ω𝑒|) + ̃𝛾𝑎,1 ,

where ̃𝛾𝑎,1 collects contributions from the higher excited states. Combining the two
equations leads to

𝐶𝛽=∞(𝛾1,𝑎, 𝑡) = |𝐴|2 + …

where the ellipses denote incoherent contributions from higher-excited states.

In contrast to the integrable case, the degeneracy of the ground state does not
imply the degeneracy of the higher excited states. In general, the ACF becomes
zero 𝐶𝛽(𝛾1,𝑎, 𝑡⋆) ≈ 0 at a finite coherence time 𝑡⋆. One limit often considered in
the literature is the infinite temperature limit, where the finite-temperature scalar
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product in Eq. (1.175) is reduced to the Frobenius scalar product in Eq. (1.165). In
this limit, it was found that the coherence time of the edge Majorana operator 𝛾1,𝑎
becomes finite, but still exceeds the coherence time of any bulk operator by orders of
magnitude if the system is in a topologically non-trivial SPTP. It was conjectured
that in this case the system has only an Almost Strong Zero Mode (ASZM) Γ
which fulfills the conditions C.1–C.3 of the SZM but only nearly commutes with the
Hamiltonian [214]

[Γ, 𝐻] = 𝐸 , ||𝐸|| ∼ 𝑒−𝑛⋆

where 𝑛⋆ denotes a constant proportional to the integrable breaking term. This is
related to the existence of an emergent U(1) symmetry, leading to long coherence
times 𝑡⋆ ∼ 𝑒𝑛⋆ and the ASZM is given by a local unitary rotation of 𝛾1,𝑎.

Mapping to Single Particle Dynamics

An alternative approach for understanding the behavior of an ASZM was proposed
by Yates et al. [217, 218] who mapped the Heisenberg time evolution to the dy-
namics of a single particle on a semi-infinite chain. This mapping is based on the
generation of a series of operators that are orthogonal with respect to the finite-
temperature scalar product, Eq. (1.175). The series of operators is generated using
the Lanczos algorithm [221] applied to the commutator ℒ(𝑂̂) ≔ [𝐻, 𝑂̂], which is the
generator of the Heisenberg time evolution. In this basis, the commutator becomes
a tri-diagonal matrix, where the non-zero elements in this matrix can be interpreted
as the tunneling weights of a non-interacting artificial Hamiltonian.

Before considering the case of a system with an ASZM, consider a general one-
dimensional chain described by the Hamiltonian 𝐻. The aim is to calculate the ACF
of a generic operator 𝑂̂. Without loss of generality, assume that the operator is
Hermitian 𝑂̂† = 𝑂̂ and normalized ⟨𝑂̂|𝑂̂⟩𝛽 = 1. By setting 𝒪0 = 𝑂̂, 𝒪−1 = 0 and
𝑏0 = 0, the Lanczos algorithm iteratively generates the new basis operators 𝒪𝑛 by
the sequence

̂𝐴𝑛 ≔ ℒ𝒪𝑛−1 − 𝑏𝑛−1𝑂𝑛−2 ,

𝑏𝑛 = √⟨ ̂𝐴𝑛| ̂𝐴𝑛⟩𝛽 ,

𝒪𝑛 = ̂𝐴𝑛/𝑏𝑛 .

(1.178)

Note that 𝒪𝑛 is an hermitian (anti-hermitian) operator if 𝑛 is even (odd) and the
superoperator ℒ is hermitian as a map from operators to operators

⟨ℒ𝑂̂|𝑊̂⟩𝛽 = ⟨𝑂̂|ℒ𝑊̂⟩𝛽 .

The orthogonality is readily checked by induction.

The time evolved operator 𝑂̂(𝑡) can be expanded in this orthogonal basis19

𝑂̂(𝑡) =
∞

∑
𝑛=0

𝜑𝑛(𝑡)𝑖𝑛𝒪𝑛 , 𝜑𝑗(0) = 𝛿𝑗,0 . (1.179)

By identifying the Lanczos operators with a single-particle basis 𝑖𝑛𝒪𝑛 ≅ |𝑛⟩, the
superoperator ℒ can be written in terms of an artificial single-particle Hamiltonian

𝐻sp =
∞

∑
𝑛=0

𝑖𝑏𝑛+1 |𝑛 + 1⟩ ⟨𝑛| + h.c. . (1.180)

19 The reason to choose the factor 𝑖𝑛 is that the combination 𝑖𝑛𝒪𝑛 is a hermitian operator and
𝜑𝑛(𝑡) can be chosen as real valued functions.
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Under this mapping, the seed operator 𝑂̂ becomes the boundary state |0⟩. Thus, the
ACF becomes the time-evolution of a wave-package localized at the first site of the
artificial single-particle chain

𝐶𝛽(𝑂̂, 𝑡) = 𝜑0(𝑡) = ⟨0|𝑒−𝑖𝑡𝐻sp |0⟩ . (1.181)

The complexity of the Heisenberg time evolution is now hidden in the exact sequence
of the Lanczos coefficients 𝑏𝑛, which is highly dependent on the seed operator 𝑂̂,
the Hamiltonian 𝐻 and the inverse temperature 𝛽.

It is useful to recast the exponential Eq. (1.181) in terms of the Edge Density of
States (EDOS) defined as

𝜈𝐸
𝛽 (𝜔) = ⟨0|𝛿(𝜔 − 𝐻sp|0⟩ . (1.182)

Using the EDOS, the ACF becomes a simple integral

𝐶𝛽(𝑂̂, 𝑡) =
∞

∫
−∞

d 𝜔 𝜈𝐸
𝛽 (𝜔) cos(𝜔𝑡) . (1.183)

For infinite temperatures, the artificial Hamiltonian 𝐻sp has been extensively studied
in the context of quantum chaos and scrambling [223]. There it was found that the
Lanczos sequence follows a universal growth [222, 223]

𝑏𝑛 ≈ 𝐴 𝑛
log(𝑛)

+ 𝑏0 (1.184)

for generic non-integrable one-dimensional systems and large 𝑛. In case of integrable
systems, the growth of the Lanczos coefficients becomes sub-linear or even saturates
to a constant

𝑏𝑛 ≈ 𝐴𝑛𝛿 + 𝑏0 , 𝛿 < 1 . (1.185)

In the artificial Hamiltonian 𝐻sp, the universal growth results in an exponentially
fast delocalization of wave packages originally localized to the first lattice site [222];
thus, the ACF for generic operators and models decays rapidly.

Lanczos Series for Almost Strong Zero Modes

After discussing the general case, consider again a fermionic chain possessing an
ASZM represented by 𝛾1,𝑎. In particular, consider the case of infinite temperature
(𝛽 = 0). In this limit, Yates et al. [217, 218] found that the artificial single-particle
Hamiltonian calculated with respect to 𝛾1,𝑎 obeys a staggering of the hopping am-
plitudes 𝑏𝑛

𝑏𝑛 ≈ ℎ𝑛 + (−1)𝑛ℎ̃𝑛 (1.186)

with ℎ𝑛 following the universal law in Eq. (1.184) for non-integrable systems and
Eq. (1.185) for integrable systems [217]. The staggered component ℎ̃𝑛 is positive
for small 𝑛, eventually decays to zero, and changes sign for some 𝑛⋆. Compared to
Subsection 1.2.2, particularly Eq. (1.73), the artificial single-particle Hamiltonian
represents an SSHM in a topological non-trivial SPTP of length 𝑛⋆ dressed with a
background increase in the tunneling amplitudes and attached to a conducting semi-
infinite reservoir. However, when calculating the single-particle Hamiltonian based
on the (trivial) Majorana operator 𝛾1,𝑏 only a trivial staggering was found, and the
artificial single-particle Hamiltonian is in a trivial phase.
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In contrast to a pure SSHM in the topological limit, which supports exponentially
localized edge modes, the attachment to a conducting semi-infinite chain leads to
a finite overlap between the left edge state and the metallic bulk states. Originally
pinned to exactly zero energy, this hybridization leads to a continuum energy states
that are close to zero and the EDOS from Eq. (1.182) can be written as

𝜈𝐸
𝛽=0 = 𝐴 𝛾/𝜋

𝜔2 + 𝛾2 + (1 − 𝐴) ̃𝜈(𝜔) , (1.187)

where ̃𝜈(𝜔) denotes an incoherent background. This behavior is demonstrated in
Fig. 1.30 in the simple case of attaching an SSHM of length 𝑛⋆ to a homogeneous
semi-infinite chain described by

𝐻 =
𝑛⋆−1
∑
𝑗=1

−𝑣𝑎†
𝑗𝑏𝑗 − 𝑤𝑏†

𝑗𝑎𝑗+1 + h.c. − 𝑣𝑎†
𝑛⋆𝑏𝑛⋆ − 𝑣𝑏†

𝑛⋆𝑎𝑛⋆

− 𝑢𝑏†
𝑛⋆𝑐𝑛⋆+1 − 𝑢𝑐†

𝑛⋆+1𝑏𝑛⋆ − 𝑢
∞

∑
𝑗=𝑛⋆+1

𝑐†
𝑗𝑐𝑗+1 + h.c. .

(1.188)

Based on this general consideration, it is found that the ACF of 𝛾1,𝑎 decays expo-
nentially, where the lifetime 𝜏 is defined by the width parameter 𝛾 of the Lorentzian
peak in the EDOS

𝐶𝛽=0(𝛾1,𝑎, 𝑡) ∼ 𝐴𝑒−𝑡/𝜏 , 𝜏 = 1/𝛾 .

In this picture, the limit of an SZM is understood as 𝛾 → 0 and the EDOS becomes
𝜈𝐸

𝛽=0(𝜔) ∼ 𝐴𝛿(𝜔).
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Figure 1.30: Edge density of states, Eq. (1.182), evaluated for an SSHM of 𝑛⋆ = 6 unit cells
attached to a homogeneous lead. In panel (a), 𝑤 = 2𝑣 places the SSHM in a non-trivial
SPTP with zero-energy states. The coupling to the lead with 𝑢 = 1.5𝑣 results in a sharp
peak around zero energy. In panel (b), 𝑤 = 0.5𝑣 with the SSHM being trivial, without any
zero-energy states. As a consequence, the coupling to the lead with 𝑢 = 0.75𝑣 has no special
features around zero energy.

Consider as an example the KHM as defined in Eq.(1.110), with 𝑤 = Δ𝑝 given by

𝐻KH =
𝑁−1
∑
𝑗=1

−𝑤 (𝑐†
𝑗 − 𝑐𝑗) (𝑐𝑗+1 + 𝑐†

𝑗+1) + 𝑈 ̂𝑝𝑗 ̂𝑝𝑗+1 − 𝜇
2

𝑁
∑
𝑗=1

̂𝑝𝑗 . (1.189)

Figure 1.31(a) shows the Lanczos series of the KHM for 𝑈 = 0.3𝑤, 𝜇 = 0.2𝑤, and
varying system sizes. After an early increase that is almost linear, and thus compat-
ible with the universal law in Eq. (1.184), the coefficients 𝑏𝑛 saturate to a plateau
value that is linearly dependent on the system size. This behavior is generally ex-
pected for a non-integrable Hamiltonian [223]. In addition to this overall shape, the
series shows a clear staggering, as shown in Eq. (1.186) for small values of 𝑛; see also
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Figure 1.31: (a) Lanczos series of the KHM from Eq. (1.189) for 𝑈/𝑤 = 0.3, 𝜇/𝑤 = 0.2 and
varying the system size from 𝑁 = 10 to 𝑁 = 16. The inset plot shows a zoom of the first
third values of the series. (b) Calculated EDOS from the different Lanczos series in panel
(a).

the inset of Fig. 1.31(a). This staggering resembles the situation expected for the
existence of an ASZM discussed above for the finite SSHM in the topological regime,
attached to a semi-infinite conducting chain. In the EDOS associated with the differ-
ent Lanczos series shown in Fig. 1.31(a), this staggering leads to the emergence of a
sharp Lorentzian peak around zero energy that is dressed with a non-universal inco-
herent background, see Eq. (1.187). While the background has a strong dependence
on the system size, the central Lorentzian peak converges for 𝑁 ≥ 12, as shown in
Fig. 1.31(b).
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Figure 1.32: (a) EDOS calculated from the Lanczos series of the KHM, Eq. (1.189), for
various values of the interaction 𝑈 at a fixed chemical potential 𝜇/𝑤 = 0.2 and size 𝑁 = 16.
(b) ACF Reconstructed from the EDOS in panel (a).

Figure 1.32(a) shows different EDOS obtained from the KHM at a fixed system size
𝑁 = 16 and chemical potential 𝜇 = 0.2𝑤, but varying the interaction 𝑈. All values
shown here are in the SPTP. Correspondingly, for every value of 𝑈 the EDOS has
a sharp Lorentzian peak, see Eq. (1.187), around zero energy, and thus, an emer-
gent ASZM. The width of the Lorentzian peak increases with increasing interaction
strength. This increase leads to a faster decay of the ACF, and thus a shorter life-
time of the ASZM. Figure 1.32(b) shows the ACF reconstructed from the EDOS
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following Eq. (1.183). After an initial transient decay at time scales of 𝑡 ∼ 𝑤, which
is completely determined by the incoherent part of the EDOS, the ACF saturates
to an intermediate plateau value before decaying to zero at a time scale 𝑡⋆ ∼ 1/𝛾.

Finally, note that the Lanczos series 𝑏𝑛 requires calculations with matrices of size
22𝐿, except for models that are quadratic in the fermionic operators. At infinite
temperature, the scalar product in Eq. (1.175) can be reduced to the Frobenius
scalar product in Eq. (1.165), and the calculation of the Lanczos series requires only
the computation of commutators and traces. For generic temperatures, it is further
necessary to calculate the full diagonalization of the Hamiltonian to gain access to
the density matrix 𝜌(𝛽) = exp(−𝛽𝐻)/ Tr(exp(−𝛽𝐻)). Because this is extremely
expensive, previous studies have focused on the infinite-temperature case.

In Chapter IV, the concepts presented in this section are combined with a tensor
network ansatz to extend the previously obtained results to finite temperatures.
The temperature-dependent coherence time aids in understanding how the ASZM
connects to the zero-temperature limit [37].



CHAPTER 2
Tensor Networks

The many-body Hilbert space ℋ of the quantum chain, as defined in the previous
chapter, has a total dimension that grows exponentially with the system size 𝑁. This
renders a direct calculation of the ground state of a generic many-body Hamiltonian
for larger systems impossible, except for special integrable cases [57, 225]. On the
other hand, as explained in Section 1.4, the ground state of a typical Hamiltonian
has only very limited correlation between any two parts of the system. This is re-
flected in the boundary law of entanglement in Eq. (1.160), which states that the
entanglement of a bipartition must saturate to a constant for the ground state of
a gapped Hamiltonian. Compared to generic states, which have maximal possible
entanglement, the class of states fulfilling the boundary law is a tiny corner in the
full many-body Hilbert space.

In this perspective, tensor networks [61, 118] are a class of variational ansatz states
that directly target this tiny corner of the boundary law entangled quantum states.
By limiting the range of correlations of any bipartition, the tensor network reduces
the exponential number of free parameters to a number that is linear in the system
size at a fixed bond dimension, which controls the expressive power of the tensor
network.
Furthermore, the special structure of the tensor networks allows the formulation
of efficient contraction algorithms for calculating observables. This is required to
formulate variational optimization and obtain a faithful approximation of the true
quantum ground state [60–62]. Shortly after the formulation of tensor-network ansatz
states for gapped one-dimensional systems, the idea was extended to ground states
of gapless one-dimensional chains [226, 227], two-dimensional lattice systems [228,
229], dynamics [63, 230–232] and many more. Recently, the idea of using correlations
between subsystems as an approximation resource was extended to fields outside
of quantum mechanics, with applications of tensor networks to non-linear partial
differential equations [233, 234] or even in financial marketing [235, 236]. However,
tensor networks not only serve as a numerical tool but also provide analytical insights
into the structure of highly correlated quantum states, allowing for the classification
of quantum matter in low dimensions [52–54, 118].

The topic of this chapter is to give a brief introduction to tensor networks as a tool
to solve numerical problems for one-dimensional quantum states, and is organized
as follows: The first Section 2.1 discusses the construction of tensor network states,
and in particular, the Matrix Product States (MPSs), for quantum systems in one
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dimension, together with some important properties. In the second Section 2.2, the
general correlation and entanglement structure of MPSs are discussed. This is fol-
lowed by a short discussion of the Density-Matrix Renormalization Group (DMRG)
algorithm in Section 2.3, which minimizes the energy of a finite-size Hamiltonian in
the class of MPS to obtain approximations of the ground state. Finally, Section 2.4
concludes with a discussion on alternative tensor networks.

2.1 Tensor Network Description of Spin Chains
A tensor generalizes the concepts of scalars and vectors to higher dimensions. On
a practical level, a tensor can be considered as a collection of complex numbers
ordered in a multi-dimensional array 𝐶𝑖1,…,𝑖𝑛

, where each index 𝑖𝑙 runs from 1 to 𝑑𝑙.
The number 𝑛 of indices 𝑖𝑙 denotes the rank of the tensor 𝐶, and the total number
of elements is 𝐷 = ∏𝑛

𝑙=1 𝑑𝑙. For example, a scalar is a zero-rank tensor, a vector is
a rank-1 tensor, and a matrix is a rank-2 tensor.

In the context of the quantum spin chains discussed in the previous Chapter 1, such
a tensor appears as the coefficients Ψ𝑠1,…,𝑠𝑁

of a generic quantum state

|𝜓⟩ = ∑
𝑠1,…,𝑠𝑁

Ψ𝑠1,…,𝑠𝑁
|𝑠1, … , 𝑠𝑁⟩ . (2.1)

This quantum tensor is of rank 𝑁, the length of the chain, and has a total dimension
of 𝑑𝑁 where 𝑑 is the dimension of the local Hilbert space.

A common way to represent tensors and contractions among them is in the form
of a graphical representation, as introduced by R. Penrose already in 1971 [237]. In
this representation, a tensor is denoted by a 2d geometric object (square, triangle,
or circle), and each index 𝑖𝑙 is an open leg attached to this object. The contraction
of two tensors over a shared index is denoted by joining the two open links that
represent this index. For example, a simple matrix-matrix multiplication becomes

𝐶𝑗𝑘 = ∑
𝛼

𝐴𝑗𝛼𝐵𝛼𝑘 = 𝐴 𝐵
𝛼𝑗 𝑘 . (2.2)

While the notation may not be useful for simple matrix algebra, it becomes use-
ful, especially when handling and manipulating larger networks of tensors. A more
complicated example is the contraction of three tensors, each of rank-3, into a new
tensor

𝐷𝑗𝑘𝑙 = ∑
𝛼,𝛽,𝛾

𝐴𝑗,𝛽,𝛼𝐵𝛼,𝛾,𝑘𝐶𝛽,𝑙,𝛾 =
𝐴 𝐵

𝐶

𝛼

𝛽 𝛾

𝑗 𝑘

𝑙

. (2.3)

Here, the convention is used to label tensors counter-clockwise. When the summation
index is clear from the context, it will be omitted in the following.

In addition to the process of contracting a network of tensors into a single tensor,
the inverse operation of decomposing a tensor into a network of tensors is equally
important. By fusing the individual indices of a tensor into two super-indices, such a
decomposition can be inferred from standard matrix decompositions. For example,
consider the Schmidt decomposition discussed in Subsection 2.2.1. At the level of
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the quantum tensor, the Schmidt decomposition is an Singular-Value Decomposition
(SVD) of the form

Ψ𝑠1,…,𝑠𝑁
= Ψ(𝑠1,…,𝑠𝑗),(𝑠𝑗+1,…𝑠𝑁) =

𝛼max

∑
𝛼=1

𝑈(𝑠1,…,𝑠𝑗),𝛼𝜎𝛼
̄𝑉(𝑠𝑗+1,…,𝑠𝑁),𝛼 (2.4)

with the two isometries 𝑈 and 𝑉, and where the singular values are real positive
definite numbers 𝜎𝛼 > 0. In this case, the isometry condition means that 𝑈†𝑈 = 1,
but 𝑈𝑈† is not necessarily the identity, but rather a projection operator on a sub-
Hilbert space; see also Appendix A for more details about the SVD. In the graphical
notation, this decomposition is written as

Ψ
…

𝑠1 𝑠𝑁

= 𝑈 Σ 𝑉 †

(𝑠1, … , 𝑠𝑗) (𝑠𝑗+1, … , 𝑠𝑁)

. (2.5)

The isometries are denoted by triangles, and the isometric property reads in the
graphical notation

= , = , (2.6)

where, by convention, the tensors in the lower row are complex conjugated, and the
identity is represented as a simple line 1 ≔ .

Given the high-dimensional quantum tensor Ψ, a tensor network is a low-rank ap-
proximation of this tensor, achieved by representing Ψ as a contraction network of
lower-rank tensors 𝑀𝑗. The simplest example is a truncation of the Schmidt decom-
position by restricting the sum in Eq. (2.4) to only include the 𝛼′

max < 𝛼max largest
Schmidt values

Ψ𝑠1,…,𝑠𝑁
≈ Ψ̃𝑠1,…,𝑠𝑁

=
𝛼′

max

∑
𝛼=1

𝑈(𝑠1,…,𝑠𝑗),𝛼𝜎𝛼
̄𝑉(𝑠𝑗+1,…,𝑠𝑁),𝛼 .

Compared to the original 𝑑𝑁 numbers required to store Ψ, the truncated tensor
Ψ̃ requires only (𝑑𝑗 + 𝑑𝑁−𝑗 + 1)𝛼′

max numbers to be stored, and the error of this
approximation is given by the infidelity

𝜖 = 1 − ⟨𝜓| ̃𝜓⟩ = 1 −
𝛼max

∑
𝛼=𝛼′

max+1
𝜎2

𝛼 . (2.7)

For generic states, the Schmidt values have a flat distribution [185–188], and this
truncation requires 𝛼′

max to be of the order of the original 𝛼max to have a small trun-
cation error, and a significant compression is not possible. However, as discussed in
Section 1.4, the ground states of a typical Hamiltonian have an exponential decay of
the Schmidt values with respect to any bipartition of the system, and the truncation
is expected to yield a good approximation, even if 𝛼′

max ≪ 𝛼max.

Furthermore, by iteratively performing this truncation for each bipartition of the
ground state and storing the truncated isometries, as shown in Fig. 2.1, the expo-
nentially large quantum tensor Ψ is decomposed into smaller rank-3 tensors, each
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Ψ

s1 s2 s3 s4 s5

= Ψ

(s2, s3, s4, s5)s1

SVD

≈

s1 (s2, s3, s4, s5)

=

s1

Ψ̃(2,3,4,5)

s2 s3 s4 s5

=

s1

Ψ̃(2,3,4,5)

s2 (s3, s4, s5)

SVD

≈

s1 s2
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SVD
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SVD
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Figure 2.1: Decomposition of a rank-5 quantum tensor Ψ𝑠1,𝑠2,𝑠3,𝑠4,𝑠5
into an MPS. After

performing the SVD on a given bipartition, the singular values are then truncated.

containing at most 𝑑(𝛼′
max)2 elements. The exponential decay of the Schmidt values

ensures that this low-rank approximation closely approximates the original full-rank
tensor Ψ in terms of the infidelity defined in Eq. (2.7), thereby enabling an efficient
compression to merely 𝒪 (𝑁) parameters. Instead of compressing a known ground
state, this exponential reduction of parameters motivates the use of such a tensor
network of rank-3 tensors as a variational ansatz for the ground states. The prop-
erties of this class of tensor network states are the topic of the remainder of this
section.

2.1.1 Matrix Product State of Finite Systems

Matrix Product States (MPSs) are a class of variational many-body states where
the quantum tensor Ψ is represented as a contraction over rank-3 tensors1

|𝜓({𝑀𝑘})⟩ ≅ Ψ({𝑀 𝑗})
…

𝑠1 𝑠𝑁

= 𝑀1 𝑀2 … 𝑀𝑁

𝑠1 𝑠2 𝑠𝑁

. (2.8)

The ≅ sign means that the right-hand side is only the numerical tensor that must
be contracted with the local basis |𝑠1, … , 𝑠𝑁⟩ to give a proper quantum state. By
fixing the physical index 𝑠𝑗 = 𝑠 ∈ {1, … , 𝑑}, the set of matrices 𝑀 𝑗,𝑠 has dimension
𝜒𝑗−1 × 𝜒𝑗 with the convention 𝜒0 = 𝜒𝑁 = 1. The quantity 𝜒 = max𝑗(𝜒𝑗) is called
the bond dimension of the MPS, and the total number of parameters is of the order
𝒪 (𝑁𝜒2).

The MPS not only achieves a reduction in the parameters but also allows for an
efficient evaluation of expectation values. By performing the contraction of the net-
work in the correct order, as shown in Fig. 2.2, expectation values of local observables
⟨𝜓({𝑀 𝑗})| ̂𝑜𝑘|𝜓({𝑀 𝑗})⟩ have a complexity of 𝒪 (𝑁𝜒3𝑑).

1The boundaries are of rank-2, but by attaching a dummy one-dimensional index to them, they
also become tensors of rank-3.
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(a)

(b)

= = = . . . =

= = . . . =

Figure 2.2: Contraction representing the norm of an MPS. (a) Contracting the network start-
ing from the left and alternatively absorbing a tensor from the upper and lower layers. This
contraction sequence leads to a boundary tensor of maximal 𝜒2 elements and the complexity
is 𝒪 (𝑁𝜒3𝑑). (b) First contracting all tensors in the upper and lower layer individually leads
to two rank-N tensors with 𝑑𝑁 elements and the complexity is 𝒪 (𝑑𝑁).

Gauge Freedom of Matrix Product States

Given a set of rank-3 tensors 𝑀 𝑗, the many-body state they represent as an MPS
is not unique. In fact, performing the transformation

𝐵𝑗,𝑠 = 𝑋−1
𝑗−1𝑀 𝑗,𝑠𝑋𝑗 , 𝑋𝑗 ∈ GLC(𝜒𝑗) (2.9)

for a set of invertible matrices 𝑋𝑗, the tensors 𝐵𝑗 generate the same MPS. Here,
GLC(𝜒𝑗) denotes the set of all invertible 𝜒𝑗 × 𝜒𝑗 complex matrices. This transfor-
mation is illustrated in Fig. 2.3.

…

𝑋1 𝑋−1
1 𝑋2 𝑋−1

2

= …

𝐵1 𝐵2 𝐵3

= …

Figure 2.3: Gauge freedom of an MPS. Originally, the MPS is given by the 𝑀 𝑗 tensors, which
are represented by the blue squares. By inserting a resolution of the identity 1 = 𝑋𝑗𝑋−1

𝑗
at every link, the MPS is given by the 𝐵𝑗 = 𝑋−1

𝑗−1𝑀 𝑗𝑋𝑗 tensors, which are represented by
orange squares.

Consequentially, not all parameters of the MPS are independent, and the dimension
of the MPS manifold, denoted as ℳ𝒫𝒮(𝑁, {𝜒𝑗}, 𝑑), is

dim (ℳ𝒫𝒮(𝑁, {𝜒𝑗}, 𝑑)) = 𝑑
𝑁

∑
𝑛=1

𝜒𝑛−1𝜒𝑛 −
𝑁−1
∑
𝑛=1

𝜒2
𝑛 .

Canonical Gauge

The existence of the gauge freedom allows to choose a representation of the MPS
that is of particular use in practical calculations: the mixed canonical gauge [61, 62,
238]. In this gauge, the MPS is written as a set of left/right isometric tensors with
an orthogonality center at position 𝑗

Ψ
…

𝑠1 𝑠𝑁

= … 𝑀 𝑗

𝑠𝑗−2 𝑠𝑗−1 𝑠𝑗 𝑠𝑗+1 𝑠𝑗+2

… . (2.10)
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The left (right) isometries are represented by left (right) pointing red shaded trian-
gles, a convention used for the rest of this thesis, and fulfill the condition

= , = . (2.11)

The canonical gauge can be obtained from a general representation given by a set of
rank-3 tensors 𝑀 𝑗 by iteratively performing a QR decomposition. Starting from the
left (right), the tensors 𝑀 𝑗 are decomposed into an isometry and a residual tensor by
fusing the left (right) index with the physical leg. The left (right) isometry replaces
the tensor at position 𝑗, and the residual tensor is absorbed in the next tensor to the
left (right) of site 𝑗. The entire procedure is illustrated in Fig. 2.4. This procedure

=

=

=

Figure 2.4: Gauging of a general MPS. Starting from the left, the first tensor 𝑀1 = 𝑄1𝑅
is decomposed in a left isometry 𝑄1, which carries the physical index 𝑠1, and a residual
tensor 𝑅. The residual tensor is contracted with the next MPS tensor 𝑀2, and the result is
decomposed again in a left isometry 𝑄2 which carries the left link and physical link, and a
residual link tensor 𝑅. This procedure is repeated until the target site 𝑗. By performing the
same steps from the right, the final MPS is in the mixed canonical form.

can also be used to shift the orthogonality center from position 𝑗 to position 𝑘 by
subsequently performing a QR decomposition of the current orthogonality center in
the direction of the new target position, keeping the isometry, and absorbing the
residual tensor with the next tensor in line.

Representing an MPS in the mixed canonical form allows for fast evaluation of local
observables. Taking the example of a local operator ̂𝑜𝑗, by moving the orthogonality
center to position 𝑗, the expectation value is given by

⟨𝜓| ̂𝑜𝑗|𝜓⟩ = ̂𝑜 (2.12)

owing to the isometric properties of the triangles left and right of the orthogonality
center. In particular, by setting ̂𝑜 = 1, the norm of an MPS is simply given by the
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Frobenius norm of the orthogonality center 𝑀 𝑗

⟨𝜓|𝜓⟩ =
𝑑

∑
𝑠=1

Tr [(𝑀 𝑗,𝑠)† 𝑀 𝑗,𝑠] .

Reduced Density Matrix

The left and right isometries in Eq. (2.10) can be interpreted as a transformation
of the basis from the physical indices to the virtual space. Therefore, the mixed
canonical form can be interpreted as a tri-partition

|𝜓⟩ = ∑
𝛼1,𝛼2,𝑠𝑗

(𝑀 𝑗)𝑠𝑗

𝛼1,𝛼2
|𝜑𝐿

𝛼1
⟩ ⊗ |𝑠𝑗⟩ ⊗ |𝜑𝑅

𝛼2
⟩ ,

where the two set of states |𝜑𝐿(𝑅)
𝛼 ⟩

|𝜑𝐿
𝛼⟩ ≅ … 𝛼

𝑠1 𝑠𝑗−1

, |𝜑𝑅
𝛼 ⟩ ≅ …𝛼

𝑠𝑗+1 𝑠𝑁

(2.13)

are defined on the lattice sites to the left (right) of site 𝑗 and are orthonormal by
the properties of the isometries.

This partition allows for an efficient calculation of the reduced right density matrix,
introduced in Subsection 1.4.1, at the cut (𝑗, 𝑗 + 1)

𝜌𝑅 = ∑
𝛼,𝛽

∑
𝜌,𝑠𝑗

(𝑀 𝑗)𝑠𝑗

𝜌,𝛼
(𝑀̄ 𝑗)𝑠𝑗

𝜌,𝛽
|𝜑𝑅

𝛼 ⟩ ⟨𝜑𝑅
𝛽 | ≅

𝑀 𝑗

𝑀̄ 𝑗
. (2.14)

Consequently, the entanglement spectrum and entanglement entropy can be effi-
ciently calculated for an MPS by performing an eigenvalue decomposition of the
𝜒 × 𝜒 Hermitian matrix 𝜌𝑅 obtained solely from the orthogonality center.

2.1.2 Matrix Product Operator

The construction of the MPS is based on a low-rank approximation of the quantum
tensor Ψ which appears in the expansion of a general quantum state |𝜓⟩ in the local
basis 2.1. Similar to the expansion of a general quantum state, a general many-body
quantum operator 𝑂̂ can be expanded as a weighted sum in an operator basis, as
discussed in Subsection 1.1.2

𝑂̂ = ∑
𝛼1,…𝛼𝑁

𝑂𝛼1,…,𝛼𝑁
𝜎𝛼1 ⊗ 𝜎𝛼2 ⊗ ⋯ ⊗ 𝜎𝛼𝑁 . (2.15)

The operators 𝜎𝛼 are Hermitian and orthonormal with respect to the Frobenius
scalar product Tr[𝜎𝛼𝜎𝛽] = 𝑑𝛿𝛼,𝛽, and the index 𝛼 runs from 1, … , 𝑑2. In this formu-
lation, the operator 𝑂̂ can be interpreted as a many-body quantum state |𝑂⟩ with
local Hilbert space dimension 𝑑2 and the local basis2 |𝛼⟩

𝑂̂ = ∑
𝛼1,…𝛼𝑁

𝑂𝛼1,…,𝛼𝑁
𝜎𝛼1 ⊗ |𝛼1, … , 𝛼𝑁⟩ .

2 Interpreting operators as states within a Hilbert space is also referred to as the Third Quan-
tization [239]. Operators that act on other operators are called super-operators. The commutator
ℒ𝐴 |𝐵⟩ = |[𝐴, 𝐵]⟩ is an example of such a super-operator.
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This allows to express the expansion tensor 𝑂𝛼1,…,𝛼𝑁
directly as an MPS with 𝑁

legs
𝑂̂ ≅ 𝑂({𝑀 𝑗})

…
𝛼1 𝛼𝑁

= 𝑀1 𝑀2 … 𝑀𝑁

𝛼1 𝛼2 𝛼𝑁

.

A more common way to represent the operator is in the form of a Matrix Product
Operator (MPO). For this, the local basis is written explicitly as a map on the local
Hilbert space

𝜎𝛼 = ∑
𝑠,𝑠′

(𝜎𝛼)𝑠,𝑠′ |𝑠⟩ ⟨𝑠′| ≅ 𝜎

𝛼

𝑠 𝑠′

and the weights (𝜎𝛼)𝑠,𝑠′ are absorbed into the MPS tensors 𝑀 𝑗 defining the new
rank-4 tensors

𝑊 𝑗

𝑠′

𝑠

= (𝑊 𝑗)𝑠,𝑠′ = ∑
𝛼

𝑀 𝑗
𝛼 (𝜎𝛼)𝑠,𝑠′ = 𝑀 𝑗

𝜎
𝑠 𝑠′

.

The full MPO form of the many-body operator is given by

𝑂̂ ≅ 𝑊 1 𝑊 2 … 𝑊 𝑁

𝑠1 𝑠2 𝑠𝑁

𝑠′
1 𝑠′

2 𝑠′
𝑁

. (2.16)

In this form, the application of an MPO to an MPS is a simple tensor network

𝑂̂ |𝜓⟩ ≅
𝑀1 𝑀2 … 𝑀𝑁

𝑊 1 𝑊 2 … 𝑊 𝑁

𝑠1 𝑠2 𝑠𝑁

= 𝑀̃1 𝑀̃2 … 𝑀𝑁

𝑠1 𝑠2 𝑠𝑁

(2.17)

which defines the new MPS tensors 𝑀̃ 𝑗. If the bond dimensions of the MPS and
MPO are denoted as 𝜒𝜓 and 𝜒𝑂, respectively, the bond dimension of the resultant
MPS is generally given by 𝜒 = 𝜒𝜓𝜒𝑂. To maintain the bond dimension of the
resulting MPS at 𝜒𝜓, the MPS–MPO product must be truncated [62]. In Chapter I,
this MPO-MPS product, together with a truncation based on the reduced density
matrix [240] is employed to generate the Lanczos series of the commutator algebra
for the almost strong zero modes, as described in Section 1.5.

Matrix Product Operator of a Local Hamiltonian

As discussed in Section 1.1, a typical Hamiltonian 𝐻 has only interactions that are of
finite range. Moreover, the number of independent interactions in the Hamiltonian
is small, and the MPO representation of 𝐻 has a small bond dimension. A general
strategy for building an MPO representation of a Hamiltonian is in terms of a finite
state machine [241–243], which is briefly reviewed in Appendix E.
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Taking the Transverse Field Ising Model (TFIM) from Eq (1.51) as an example

𝐻Ising = −𝐽
𝑁−1
∑
𝑗=1

𝜎𝑥
𝑗 𝜎𝑥

𝑗+1 − 𝑔
𝑁

∑
𝑗=1

𝜎𝑧
𝑗 .

The MPO representation is given by

𝑊 𝑗 =
⎛⎜⎜⎜
⎝

1 −𝐽𝜎𝑥 −𝑔𝜎𝑧

0 0 𝜎𝑥

0 0 1

⎞⎟⎟⎟
⎠

, 𝑊 1 = (1 −𝐽𝜎𝑥 −𝑔𝜎𝑧) , 𝑊 𝑁 =
⎛⎜⎜⎜
⎝

−𝑔𝜎𝑧

𝜎𝑥

1

⎞⎟⎟⎟
⎠

.

(2.18)
The action in the vertical direction of the MPO is defined by the operators appearing
in the matrix 𝑊 𝑗.

Similar to the MPS, every MPO has a gauge degree of freedom, as defined in
Eq. (2.9). This gauge freedom can be used to transform every MPO into an upper-
triangular structure, as in Eq. (2.18), called the canonical form of the MPO [244].

2.1.3 Uniform Matrix Product States

The previous subsections focused mainly on the case of finite-size systems. To study
the pure bulk properties of a system, it is useful to formulate the MPS ansatz
directly in the thermodynamic limit. In the case of a translation invariant state |𝜓⟩,
a reasonable ansatz is to repeat the same rank-3 tensor 𝑀 infinitely many times

|𝜓(𝑀)⟩ ≅ … 𝑀 𝑀 𝑀 𝑀 𝑀

𝑠𝑗−2 𝑠𝑗−1 𝑠𝑗 𝑠𝑗+1 𝑠𝑗+2

… , (2.19)

called a Uniform Matrix Product State (uMPS) [63, 232, 245, 246].

Similar to the finite case, a uMPS possess a gauge degree of freedom

𝐵𝑠 = 𝑋𝑀𝑠𝑋−1 ,

which can be exploited to obtain a canonical form of the uMPS

|𝜓(𝐴𝐿, 𝐴𝐶, 𝐴𝑅)⟩ ≅ … 𝐴𝐿 𝐴𝐿 𝐴𝐶 𝐴𝑅 𝐴𝑅

𝑠𝑗−2 𝑠𝑗−1
𝑠𝑗 𝑠𝑗+1 𝑠𝑗+2

… , (2.20)

which defines the quantum state |𝜓(𝐴𝐿, 𝐴𝐶, 𝐴𝑅)⟩ in terms of three matrices; the left
isometry 𝐴𝐿, the right isometry 𝐴𝑅 and the orthogonality center 𝐴𝐶. Translation
invariance is ensured by imposing the pull-through equations

𝐴𝐿 𝐴𝐶 = 𝐴𝐶 𝐴𝑅 . (2.21)
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Transfermatrix

The most important object in the context of uMPS is the transfer matrix 𝒯𝐿 defined
as

𝒯𝐿 ≔
𝑑

∑
𝑠=1

𝐴𝑠
𝐿 ⊗ ̄𝐴𝑠

𝐿 ≔ 𝒯L = . (2.22)

In fact, all properties of the uMPS can be derived from the transfer matrix. The
transfer matrix can be interpreted as a map from the left to the right indices. As
such, the eigenvalue decomposition of 𝒯𝐿 is given as

𝒯𝐿 = ∑
𝑛≥0

𝜆𝑛 |𝑅𝑛⟩ ⟨𝐿𝑛| = 𝑅 𝜆 𝐿 (2.23)

where the left and right eigenvectors |𝐿𝑛⟩ and |𝑅𝑛⟩ form a biorthogonal basis
⟨𝐿𝑛|𝑅𝑚⟩ = 𝛿𝑛,𝑚. In the graphical representation, the left and right eigenvectors
are represented by a rank-3 tensor, and the eigenvalues are collected in the diagonal
matrix 𝜆.
For a generic uMPS, there exists exactly one eigenstate 𝜆0 = 1 and |𝜆𝑛| < 1 for all
the remaining eigenvalues [118, 238]. The left eigenvector |𝐿0⟩ is the identity acting
on the left indices, and the right eigenvector |𝑅0⟩ is the reduced density matrix 𝜌𝐿 of
the left semi-infinite system acting on the right indices. The remaining eigenvalues
define the correlation structure of the uMPS, see Subsection 2.2.2 for more details,
and are related to the spectrum of local excitations [247].

There is an exception to the uniqueness of the largest eigenvalue of the transfer
matrix. If the uMPS can be written as the sum of individual uMPS

|𝜓⟩ = ∑
𝑛

𝜇𝑛 |𝜑𝑛⟩ ,

the transfer matrix becomes block diagonal, and multiple eigenvalues with |𝜆𝑛| = 1
can emerge. This situation appears, for example, if the states |𝜑𝑛⟩ spontaneously
break a symmetry, while |𝜓⟩ is a symmetry-restoring state, as discussed in Subsec-
tion 1.2.1. For illustration, consider the translation invariant state given by

|𝜓⟩ = 1√
2

(|⋯ ↑↓↑↓ …⟩ + |⋯ ↓↑↓↑ …⟩)

which is an equal linear combination of the two product states |𝜑1(2)⟩ with an alter-
nating order of spin-1/2 in the up and down states. The two states are not translation
invariant, and the state |𝜑2⟩ can be obtained from |𝜑1⟩ and vice versa by shifting
each lattice site by one unit. Because |𝜓⟩ is translationally invariant, it can be rep-
resented by a uMPS with bond dimension 𝜒 = 2, and the transfer matrix is given
by

𝒯𝐿 =
⎛⎜⎜⎜⎜⎜⎜
⎝

0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

⎞⎟⎟⎟⎟⎟⎟
⎠

.

This transfer matrix has eigenvalues 𝜆𝑛 = {1, −1, 0, 0}, and thus, there exist two
eigenvalues of magnitude one.
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The definition of the uMPS can be naturally extended to allow for larger unit cells
and translation invariance over the unit cell. In the previous example, the states |𝜑𝑛⟩
are translation invariant over two sites. In this case, it is natural to define a uMPS
with a two-sited unit cell defined by {𝐴𝑗

𝐿, 𝐴𝑗
𝐶, 𝐴𝑗

𝑅} for 𝑗 = 1, 2. The total transfer
matrix of the state |𝜑𝑛⟩ over a full unit cell is now a simple scalar, 𝒯𝐿 = 1.

The transfer matrix can also be defined for the right isometries 𝐴𝑅, with properties
similar to those of 𝒯𝐿. However, in this case, the left eigenvector with the largest
eigenvalue is the reduced density matrix of the semi-infinite right half of the system,
and the right eigenvector is the identity. The transfer matrix can also be extended
to include an additional operator insertion, ̂𝑜, on the physical leg

𝒯𝑂
𝐿 =≔

𝑑
∑

𝑠,𝑠′=1
( ̂𝑜)𝑠′,𝑠𝐴𝑠′

𝐿 ⊗ ̄𝐴𝑠
𝐿 = ̂𝑜 (2.24)

which appears, for example, in the calculation of correlation functions as boundary
operators or for string operators in general.

Fidelity per Site

The existence of the gauge freedom in the uMPS raises the interesting question of
how one can decide whether two sets of tensors generate the same uMPS. In fact,
the fundamental theorem of translational invariant matrix product states that two
uMPS are the same if and only if their tensors are related by a general gauge trans-
formation [238]. Consider two uMPS generated by {𝐴𝐿, 𝐴𝐶, 𝐴𝑅} and {𝐵𝐿, 𝐵𝐶, 𝐵𝑅},
the fundamental theorem implies that their mixed transfer matrix

𝒯̃𝐿 =
𝑑

∑
𝑠=1

𝐴𝑠
𝐿 ⊗ 𝐵̄𝑠

𝐿 (2.25)

has the same spectral properties as 𝒯𝐿, which is the transfer matrix defined only
with 𝐴𝐿. In particular, if the two uMPS are the same, the mixed transfer matrix
𝒯̃𝐿 has exactly one eigenvalue of size one, and all others have a magnitude smaller
than one.
On the other hand, if the two uMPS are not the same, the largest eigenvalue will
be strictly less than one |𝜆0| < 1. This motivates the definition of the log-fidelity
density3

ℱ = − log(|𝜆0|) . (2.26)

It was shown, that this quantity has a universal behavior for states close to a quan-
tum phase transition [248, 249], and is used in Chapter II to determine the phase
transition in the phase diagram of the Tricritical Ising (TCI) model.

Note that the same conclusions also hold when (𝐴𝐿, 𝐵𝐿) is replaced with (𝐴𝑅, 𝐵𝑅).
3 One way to understand this quantity is by considering two finite MPS, |𝜓(𝐴𝐿)⟩ and |𝜓(𝐵𝐿)⟩,

of length 𝑁 generated by the 𝐴𝐿 and 𝐵𝐿 tensors placed at every site. A direct calculation of the
fidelity of this finite system shows that ⟨𝜓(𝐴𝐿)|𝜓(𝐵𝐿)⟩ ≈ 𝑒−𝑁ℱ for 𝑁 → ∞.
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2.2 Entanglement and Correlations
The previous section introduced MPSs as a class of many-body states characterized
by a number of parameters that scale linearly with the system size. In contrast to
the exponentially large number of parameters required to describe a generic state in
the many-body Hilbert space, this raises the question of what class of states an MPS
can represent. It has been shown that MPS exhibit a highly restricted correlation
structure [118, 238], similar to that of the ground states of typical Hamiltonians. Con-
sequently, it has been demonstrated that every MPS with a finite bond dimension
𝜒 is the unique ground state of a gapped Hamiltonian with only finite-range inter-
actions [238, 250]. Consequently, the ground state of any arbitrary one-dimensional
lattice model with a spectral gap can be approximated by an MPS with an error
𝜖(𝜒) that becomes exponentially small as 𝜒 → ∞ [251, 252], regardless of the system
size. Even for gapless models, good approximations can be found; however, the bond
dimension 𝜒(𝜖, 𝑁) required to achieve an error of 𝜖 also depends on the system size.

This section discusses some of the basic entanglement and correlation properties
of general MPS and demonstrates why MPS are good approximations of general
ground states for one-dimensional quantum matter.

2.2.1 Entanglement Properties

Consider an MPS of bond dimension 𝜒 and length 𝑁 in the mixed canonical gauge
described by a set of left and right isometries and an orthogonality center at position
𝑗, as defined in Eq. (2.10). The right reduced density matrix of the bipartition
(𝑠1, … , 𝑠𝑗) ∪ (𝑠𝑗+1, … , 𝑠𝑁) is given solely in terms of the center tensor

𝜌𝑅 = ∑
𝛼,𝛽

∑
𝜌,𝑠𝑗

(𝑀 𝑗)𝑠𝑗

𝜌,𝛼
(𝑀̄ 𝑗)𝑠𝑗

𝜌,𝛽
|𝜑𝑅

𝛼 ⟩ ⟨𝜑𝑅
𝛽 | ≅

𝑀 𝑗

𝑀̄ 𝑗
, (2.27)

compare also Eq. (2.14). The entanglement spectrum can be obtained from the
diagonalization of the 𝜒 × 𝜒 matrix 𝜌𝑅, and the entanglement entropy is simply
given by

𝑆(𝑗) = − Tr [𝜌𝑅 log(𝜌𝑅)] = −
𝜒

∑
𝑛=1

𝜆𝑛𝑒−𝜆𝑛 (2.28)

where 𝜆𝑛 are the entanglement spectrum values of 𝜌𝑅, and the notation of Subsec-
tion 2.2.1 is used. Because 𝜌𝑅 is a 𝜒 × 𝜒 Hermitian matrix, the size of the entangle-
ment spectrum is at most 𝜒.

Maximizing the entanglement entropy requires a flat distribution of 𝜆𝑛, and the
matrix 𝜌𝑅 which maximes 𝑆(𝑗) is given by

𝜌𝑅 = 1
𝜒
1 .

As a consequence, the entanglement entropy of such a bipartition is bounded from
above by a size independent constant

𝑆(𝑗) ≤ log(𝜒) (2.29)
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for every MPS of bond dimensions 𝜒. Compared to the boundary law of entanglement
for gapped ground states from Eq. (1.160)

𝑆(𝑗) ≈ const ≔ 𝑆0 , 1 ≪ 𝑗 ≪ 𝑁 ,

the upper bound for the MPS entanglement is similar to the general boundary law.
As long as 𝜒 is sufficiently large, it is expected that the MPS can approximate
any ground state with 𝑆0 < log(𝜒). Further increasing the bond dimensions leads to
exponentially small corrections, as the additional states correspond to highly excited
states in the entanglement Hamiltonian.

In the case of a ground state of a gapless Hamiltonian with open boundary condi-
tions, the entanglement entropy has a logarithmic correction, see also Eq. (1.161).
The maximal entanglement entropy for system of size 𝑁 is obtained at half-system
size and reads

𝑆(𝑁/2) ≈ 𝑐
6

log (2𝑁
𝜋

) .

By using the upper bound (2.29), it is found that the bond dimension of an MPS
has to scale with the system size to achieve the same precision for all system sizes

𝜒(𝑁) ∼ 𝑁𝑐/6 .

Therefore, for models with a small central charge 𝑐, the required bond dimension to
reach a desired precision is relatively small, even for large chains. For example, the
TFIM at the critical point realizes a Conformal Field Theory (CFT) with 𝑐 = 1/2.
Thus, obtaining a ground state with the same precision as that for a length 𝑁1 for
𝑁2 = 10𝑁1 requires a bond dimension 𝜒2 which is only 1.2 times larger than the
bond dimension 𝜒1.

However, if the central charge is large, the required bond dimension to obtain rea-
sonable results quickly grows out of size. In Chapter II, the central charge at the
phase transition is 𝑐1 = 1 + 1/2 and 𝑐2 = 1 + 7/10, corresponding to a critical Ising
and TCI model, together with a background gapless boson field. In this case, mak-
ing the system ten times bigger would require a scaling of the bond dimension of
𝜒2/𝜒1 ≈ 1.8 in the first case and 𝜒2/𝜒1 ≈ 1.9 in the second case. This large scaling
limits the achievable system size to a few unit cells.

2.2.2 Correlation Functions

This subsection discusses the general correlation properties of MPSs in the bulk. For
simplicity, a uMPS is considered an ansatz. The uMPS is described by the set of
three matrices {𝐴𝐿, 𝐴𝐶, 𝐴𝑅}, where 𝐴𝐿 (𝐴𝑅) is a left (right) isometry and 𝐴𝐶 is a
center tensor; see also Section 2.1.3.
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For a pair of local operators 𝑂̂𝑗 and 𝐾̂𝑗+𝑙, the correlation function is given by

⟨𝑂̂𝑗𝐾̂𝑗+𝑙⟩ = … 𝑂 … 𝐾 …

𝑙 − 1

= 𝑂 𝐾𝒯L

𝑙 − 1

.

(2.30)

To go from the first line to the second, the isometric properties (2.11) are used, and
𝒯L is the transfer matrix from Eq. (2.22).

Inserting the eigenvalue decomposition from Eq. (2.23) of the transfer matrix, this
becomes

⟨𝑂̂𝑗𝐾̂𝑗+𝑙⟩ = ∑
𝑛≥0

𝜆𝑙−1
𝑛 𝛼𝑂

𝑛 𝛽𝐾
𝑛 ,

where the weights are defined as

𝛼𝑂
𝑛 ≔ 𝑂 𝑅 𝑛 , 𝛽𝐾

𝑛 ≔ 𝐿 𝐾𝑛 .

The two rank-3 tensors 𝑅 and 𝐿 collect all right and left eigenvectors of 𝒯L with
eigenvalues 𝜆𝑛 and are introduced in Eq. (2.23). It should be noted that these eigen-
vectors are not uniquely defined. Assuming no degeneracies in the transfer matrix
spectrum, they can be redefined by arbitrary complex numbers

|𝑅̃𝑛⟩ = 𝑧 |𝑅𝑛⟩ , |𝐿̃𝑛⟩ = 1
𝑧

|𝐿𝑛⟩ ,

in the notation of Eq. (2.23). However, because the transformation is reciprocal
between the left and right eigenvectors, the combination 𝑐𝑂,𝐾

𝑛 ≔ 𝛼𝑂
𝑛 𝛽𝐾

𝑛 is gauge
invariant. The complex number 𝑐𝑂,𝐾

𝑛 are called the form factors of the correlation
function4.

Putting everything together, and splitting the 𝜆0 = 1 contribution from the sum,
the correlation function becomes

⟨𝑂̂𝑗𝐾̂𝑗+𝑙⟩ = 𝑐𝑂,𝐾
0 + ∑

𝑛>0
𝑒− |𝑙−1|

𝜉𝑛 𝑐𝑂,𝐾
𝑛 , 𝜉𝑛 = − 1

log(𝜆𝑛)
. (2.31)

4 If there are degeneracies in the spectrum, the transformation is generally a complex matrix
that is block diagonal in the degenerate subspaces. Because the rank-3 tensor 𝐿 transforms with
the inverse of the transformation 𝑅, the combination appearing in the correlation function is still
gauge invariant. However, the form factors 𝑐𝑂,𝐾

𝑛 are not well-defined individually in the degenerate
subspace.
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The 𝑛 = 0 contribution, 𝑐𝑂,𝐾
0 , is the product of the expectation values ⟨𝑂⟩ ⟨𝐾⟩,

and the correlation lengths are strictly positive, 𝜉𝑛 > 0. For long distances, the
correlation function is given by the smallest correlation length 𝜉𝑛⋆

for which the
form factor 𝑐𝑂,𝐾

𝑛⋆
is non-zero

⟨𝑂̂𝑗𝐾̂𝑗+𝑙⟩
𝑙→∞
−−−→ 𝑐𝑂,𝐾

0 + 𝑒− 𝑙
𝜉𝑛⋆ 𝑐𝑂,𝐾

𝑛⋆
. (2.32)

By choosing 𝑂̂ = 𝐾̂†, this behavior can be used to extract information about the
gap in the spectrum of local excitations generated by the operator 𝑂̂. This strategy
is used in Chapter II to explicitly target the gap of a specific low-energy sector that
was otherwise hidden in a gapless spectrum of charge excitations.

In practice, the calculation of the left and right eigenvectors of the transfer matrix
is performed by solving the two equations

𝒯L |𝑅𝑛⟩ = 𝜆𝑛 |𝑅𝑛⟩ , 𝒯𝑇
L |𝐿𝑛⟩ = 𝜆𝑛 |𝐿𝑛⟩

independently of each other, where 𝒯𝑇
L is the transpose of 𝒯L obtained by swapping

the left and right indices in Eq. (2.22)

𝒯𝑇
L ≔ 𝒯𝑇

L = .

To calculate the form factors 𝑐𝑂,𝐾
𝑛 , it is necessary to correctly identify the cor-

rect pairs of left and right eigenvectors. Moreover, if the spectrum is degener-
ated, re-biorthogonalization is required to ensure the correct orthogonality relations
⟨𝑅𝑛|𝐿𝑚⟩ = 𝛿𝑛,𝑚.

Correlation length in critical systems

Equation (2.32) states that every MPS (finite or in the thermodynamic limit) always
has a finite correlation length given by the largest eigenvalue of the transfer matrix
𝒯L which is smaller than one. While this gives good approximations of gapped
states, a critical system has a divergent correlation length 𝜉 → ∞. For the transfer
matrix, a dense spectrum ranging from one to zero is required. Every finite-bond-
dimension approximation necessarily introduces an artificial correlation length 𝜉(𝜒)
which diverges for 𝜒 → ∞ in a universal way [253]

𝜉(𝜒) ∼ 𝜒𝜅 ,

where the exponent 𝜅 decreases monotonically with the central charge [254].

In a finite system, this is not a problem as long as the artificial correlation length
is larger than the system size. For an infinite system, this scaling limit cannot be
reached, and the finite bond dimension acts as a relevant perturbation of the CFT.
However, the system is expected to behave as practiced by the CFT for scales smaller
than the correlation length but much larger than one. To measure the critical expo-
nents, it is therefore necessary to increase the bond dimension to have 𝜉(𝜒) ∼ 104

such that the universal algebraic decay can be fitted using linear regression.
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2.2.3 Symmetries in Tensor Networks

If the quantum many-body state |𝜓⟩ is symmetric under a global symmetry group
𝐺, the tensors forming the MPS have a non-trivial representation of this symmetry
group [69]. Assuming, similar the Subsection 1.1.4, that the global symmetry ̂𝑈(𝑔)
for 𝑔 ∈ 𝐺 is Abelian and generated by a product of local unitary operators 𝑢̂𝑗 as

̂𝑈(𝑔) =
𝑁

∏
𝑗=1

𝑢𝑗(𝑔) .

If the state |𝜓⟩ is invariant under 𝑈

𝑒𝑖𝜑(𝑔) |𝜓⟩ = ̂𝑈 |𝜓⟩ = ∑
𝑠1,…,𝑠𝑁

Ψ𝑠1,…,𝑠𝑁

𝑁
∏
𝑗=1

𝑢𝑗 |𝑠1, … , 𝑠𝑁⟩ ,

the quantum tensor has to fulfill the equation

Ψ𝑠1,…,𝑠𝑁
= 𝑒−𝑖𝜑(𝑔) ∑

𝑠′
1,…,𝑠′

𝑁

Ψ𝑠′
1,…,𝑠′

𝑁

𝑁
∏
𝑗=1

(𝑢𝑗)𝑠𝑗,𝑠′
𝑗

.

Expressing the tensor Ψ by an MPS as in (2.8), this implies that every tensor 𝑀 𝑗

has to transform according to

𝑀 𝑗

𝑠𝑗

= 𝑀 𝑗𝑢̃𝑗−1 𝑢̃†
𝑗

𝑢𝑗

𝑠𝑗

⋅ 𝑒−𝑖𝜑𝑗 (2.33)

where ∑𝑁
𝑗=1 𝜑𝑗 = 𝜑(𝑔) and the arrows on the links indicate whether the unitary

acting on that link must be conjugated. The matrix 𝑢̃𝑗 forms a representation of
the global symmetry group 𝐺 acting on the horizontal legs. Typically, one chooses
𝜑1 = 𝜑(𝑔) and 𝜑𝑗 = 0 for all 𝑗 ≠ 1.

Because the irreducible representations of an Abelian group are one dimensional,
the tensors 𝑀 𝑗 decomposes into independent blocks

𝑀 𝑗 = ⨁
𝛼

𝛿𝛼 ⊗ 𝑅𝛼

where 𝛿𝛼 is a tensor carrying the one-dimensional irreducible representations on its
links, and 𝑅𝛼,𝑗 is a degeneracy tensor that transforms trivially under the symmetry
group. In particular, the representations acting on 𝛿𝛼 are given by

𝑢̃𝛼
𝑗−1(𝑔) = 𝑒𝑖𝜑𝑙

𝛼(𝑔) , 𝑢̃𝛼
𝑗 (𝑔) = 𝑒𝑖𝜑𝑟

𝛼(𝑔) , 𝑢𝛼
𝑗 (𝑔) = 𝑒𝑖𝜑𝑑

𝛼(𝑔) ,

as in Eq. (1.21). The invariance equation (2.33) requires that

𝜑𝑙
𝛼(𝑔) + 𝜑𝑟

𝛼(𝑔) − 𝜑𝑑
𝛼(𝑔) − 𝜑𝑗(𝑔) = 0 .

This can easily be extended to tensors with arbitrary number of legs, and also to
non-Abelian symmetries, where the symmetry tensor 𝛿𝛼 can carry non-trivial higher-
dimensional representations [255]. In this case, the invariance Equation (2.33) is still
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valid and requires all the representations on the links of the symmetry tensor 𝛿𝛼 to
combine to the trivial representation.

The existence of symmetries in the tensor network can be used to reduce the compu-
tational time for algorithms for tensor networks, as each block of the tensor can be
handled separately. As an example, consider the case of a Z2 symmetry representing,
for example, the parity symmetry of a fermionic chain. In this case, there are only
two irreducible representations represented by 𝜑(𝑔) = 0 and 𝜑(𝑔) = 𝜋, resulting in
two independent blocks. If both blocks are approximately equally sized, there is an
expected speedup of at least two for every operation.

2.3 Numerical Minimization of Matrix Product States
The previous section introduced the MPS as a low-rank approximation of the full
quantum tensor Ψ. This low-rank approximation is controlled by the amount of
possible entanglement for a fixed bond dimension 𝜒 in the state, making MPS very
similar to the typical ground states of many-body Hamiltonians in one dimension.
This section discusses how actual ground-state approximations in terms of an MPS
are found numerically, mainly in the context of finite-size systems and the famous
DMRG [60, 62] algorithm.

Density Matrix Renormalization Group

The starting point is a quantum chain of size 𝑁 and local Hilbert space dimension 𝑑,
described by a Hamiltonian 𝐻 containing only finite-range interactions. As discussed
in Subsection 2.1.2, this Hamiltonian can be represented as an MPO

𝐻̂ ≅ 𝑊 1 𝑊 2 … 𝑊 𝑁

𝑠1 𝑠2 𝑠𝑁

𝑠′
1 𝑠′

2 𝑠′
𝑁

of bond dimension 𝜒𝐻. The aim is to find the best approximation of the ground
state of 𝐻 within the class of quantum states |𝜓⟩ represented by an MPS of bond
dimension 𝜒𝜓

|𝜓⟩ ≅ 𝑀1 𝑀2 … 𝑀𝑁

𝑠1 𝑠2 𝑠𝑁

.

The best approximation of the ground state obtained by using such an MPS is
obtained by finding the variational minimum of the energy functional

𝐸({𝑀 𝑗, 𝑀𝑗}) ≔ ⟨𝜓|𝐻|𝜓⟩
⟨𝜓|𝜓⟩

(2.34)

with respect to the MPS tensors 𝑀 𝑗 and their complex conjugated 𝑀𝑗. Formulated
in this way, the variational minimization is a global optimization of all 𝒪 (𝑁𝜒2

𝜓)
parameters of the MPS. This global optimization is very expensive and suffers from
the large gauge freedom of the MPS.

One way to solve this problem is to use the mixed canonical gauge in combination
with a fixed-point iteration. The resulting algorithm is known as the Density-Matrix
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Renormalization Group (DMRG), and was originally introduced by S. White in
1992 [60]. Using the canonical gauge serves two purposes: first, it largely reduces the
redundancy in the ansatz, and second, the fixed-point iteration is formulated as a
local eigenvalue problem of a small Hermitian matrix in the canonical gauge.

The denominator of the energy functional from Eq. (2.34) can be discarded by
restricting to all states of norm ⟨𝜓|𝜓⟩ = 1, and the minimization problem can be
restated using a Lagrange multiplier

𝐸({𝑀 𝑗, 𝑀𝑗}, 𝜆) ≔ ⟨𝜓|𝐻|𝜓⟩ − 𝜆 (⟨𝜓|𝜓⟩ − 1) . (2.35)

By writing the MPS in the mixed canonical form with the orthogonality center 𝑀 𝑗

at site 𝑗, this energy functional becomes in the graphical notation

𝐸 =

… 𝑀 𝑗 …

… …

… 𝑀𝑗 …

−𝜆

𝑀 𝑗

𝑀𝑗

−1 . (2.36)

As discussed in Eq. (2.13), the left/right isometries define an effective reduced basis
set for the spins at sites (1, … , 𝑗−1) and (𝑗+1, … , 𝑁). By keeping this basis fixed, the
global minimization problem reduces to a local problem with the energy functional
of Eq. (2.36) only depends on 𝑀 𝑗 and 𝜆.

The tensor 𝑀 𝑗 that minimizes this local problem is found by taking the derivative
of Eq. (2.36) with respect to the conjugated tensor 𝑀𝑗 and setting the result to zero.
In the graphical notation, this becomes

𝑀 𝑗

𝐻𝑗
eff = 𝜆≔

𝑀 𝑗… 𝑀 𝑗 …

… …

… …

. (2.37)

This equation is an eigenvalue problem with respect to the linear operator 𝐻𝑗
eff

acting on the orthogonality center 𝑀 𝑗, and can be interpreted as the full many-body
eigenvalue problem projected into the basis defined by the left and right isometries.
Further, the Lagrange multiplier requires 𝑀 𝑗 to be normalized

𝑀 𝑗

𝑀𝑗

= 1 .

The tensor minimizing the local optimization problem is therefore the normalized
eigenvector of 𝐻𝑗

eff with the smallest eigenvalue 𝜆0, and by replacing the old orthog-
onality center with this optimal solution, the whole MPS gets lowered in energy.

To find the global optimum, the projection on the local basis is performed iteratively
for every site 𝑗 ∈ {1, … , 𝑁}. In particular, the steps are as follows:

1. Initialize the MPS, for example, in a random state, 𝑗 = 1, and 𝜎 = +1.
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2. Move the orthogonality center to 𝑗.

3. Solve the local problem with respect to the projected Hamiltonian 𝐻𝑗
eff, and

obtain the lowest eigenvector 𝑀̃ 𝑗.

4. Replace the old orthogonality center with the optimal local solution 𝑀 𝑗 → 𝑀̃ 𝑗.

5. If 𝑗 = 𝑁, set 𝜎 = −1, else if 𝑗 = 1, set 𝜎 = 1.

6. Set 𝑗 → 𝑗 + 𝜎 and repeat from Step 2.

Because the energy is lowered in every step, this procedure iteratively moves towards
a minimum of the energy functional in Eq. (2.34). Performing one full circle from
𝑗 = 1 to 𝑗 = 𝑁 and back to 𝑗 = 1 is called a full sweep, and performing a total
number of 𝑁Sweep sweeps is the DMRG algorithm.
To be precise, the sweeping presented here is the single-site DMRG, where only
one site of the MPS is optimized at every step [256]. The overall complexity of the
single-site DMRG is 𝒪 (𝜒𝐻𝜒3

𝜓𝑑 + 𝜒2
𝐻𝜒2

𝜓𝑑2). This algorithm is prone to becoming
stuck in a local minimum, and it is necessary to include educated noise terms to
improve convergence [256].

In a similar fashion, it is possible to define a two-site DMRG by considering the local
problem with respect to two neighboring sites in the MPS. Contracting two neigh-
boring tensors into a super-block spanning over two sites enlarges the variational
subspace from 𝜒2𝑑 → 𝜒2𝑑2. This allows for better convergence, but the additional
factor of 𝑑 also increases the computational complexity, and the two-site algorithm
is expected to be 𝑑-times slower. After the optimal two-site tensor is found, it has
to be decomposed into two single site tensors to restore the shape of the MPS

𝑀 𝑗,𝑗+1

𝑠𝑗 𝑠𝑗+1

≈ 𝐴𝑗
𝐿 𝑀 𝑗+1

𝑠𝑗 𝑠𝑗+1

.

This decomposition can be performed, for example, using the SVD. An exact de-
composition would lead to a connecting link between 𝐴𝐿

𝑗 and 𝑀 𝑗+1 of size 𝑑𝜒. This
allows for either dynamically increase the bond dimension, or to truncate the sin-
gular values back to the 𝜒 most relevant ones5. To achieve better convergence or
allow for a dynamical increase in the bond dimension in the single-site DMRG, it is
necessary to implement a subspace expansion [69, 257] that allows for an interpola-
tion between the single-site and two-site algorithms, followed by a truncation of the
singular values of the enlarged matrix, similar to the two-site scheme.

The DMRG can also be formulated without choosing the mixed canonical gauge.
In this case, only optimizing a single tensor while keeping the rest fixed can be
interpreted as a projection of the full Hamiltonian onto a general, non-orthonormal
basis. The non-orthogonality renders the eigenvalue problem from Eq. (2.37) into a
generalized eigenvalue problem of the form

𝐻𝑗
eff |𝑀 𝑗⟩ = ̂𝑁 𝑗 |𝑀 𝑗⟩ ,

where ̂𝑁 𝑗 is the norm matrix. Such a generalized eigenvalue problem is more difficult
to solve numerically. Choosing the mixed-orthogonal form for the MPS therefore
leads to a much simpler and stable numerical problem.

5 Truncating the singular values of this super-block tensor is equivalent to truncating the reduced
density matrix of the cut (𝑗, 𝑗+1). Therefore, the algorithm selects the most relevant density matrix
contribution to the ground state, explaining the name Density-Matrix Renormalization Group.



96 CHAPTER 2. TENSOR NETWORKS

Infinite Systems

The sweeping procedure of the DMRG only works in finite-sized systems, and find-
ing the variational optimal uMPS that minimize a Hamiltonian directly in the ther-
modynamic limit is not simple. Because the energy is extensive, operating in the
thermodynamic limit always leads to an infinite energy ⟨𝜓|𝐻|𝜓⟩ = ∞ for generic
quantum states. This infinity arises from the existence of a finite energy density 𝑒
associated with the state |𝜓⟩, and a proper variational minimization aims to min-
imize this density instead of the total (infinite) energy of |𝜓⟩. If |𝜓⟩ is an uMPS,
this energy density can be calculated using only the right eigenvector of the transfer
matrix 𝒯𝐿 defined in Eq. (2.22) [258]. By removing the density contribution from
the Hamiltonian 𝐻̃ = 𝐻 −𝑒 ∑∞

𝑗=1 1, it is possible to define a proper variational mini-
mization of the uMPS6 This algorithm is called Variational Uniform Matrix Product
State (VUMPS), and it operates directly on the manifold of all uMPS [63, 232]. Be-
cause VUMPS ensures that the uMPS is translation invariant at every iteration, it
is more evolved than the simple DMRG algorithm, and an in-depth discussion is
out of reach for this thesis. A detailed explanation of VUMPS can be found, for
example, in [258].

In Chapters II and III, the VUMPS is used to find the ground states of one-
dimensional models directly in the thermodynamic limit, allowing for the deter-
mination of the general phase diagram of the models considered in these chapters.

2.4 Other Tensor Networks
The previous sections introduced the MPS, which is a class of variational ansatz
states. Based on their entanglement structure, this class is identified as a good
approximation of the ground states of gapped Hamiltonians in one dimension. In
other scenarios, such as gapless states or higher dimensions, the MPS is prone to
failure because the entanglement in the ground state rapidly outgrows the possible
entanglement captured by the MPS. This section briefly discusses the extensions of
the MPS to more general tensor network states that can capture the entanglement
in higher dimensions.

A straightforward generalization of the MPS, which shares most of its properties,
is in the form of a Tree Tensor Network (TTN) [259–261]. This is a state with a
hierarchical structure that mimics the renormalization flow from the microscopic to
the macroscopic scale, as shown in Fig. 2.5(a) for a sketch. The main advantage of
the structure of the TTN is that it preserves the local nature of Hamiltonians in
arbitrary dimensions, as shown in Fig. 2.5(b) in two dimensions. In contrast, using an
MPS for the simulation of a two-dimensional quantum system leads to long-ranged
interactions in the linear index of the MPS. Furthermore, the TTN has the property
that by removing one tensor from the network, the remaining part decomposes into
unconnected pieces. This property, which is also shared with the MPS, allows for
the definition of a mixed canonical gauge similar to the MPS. Therefore, calculating
local observables using a TTN is efficient, and sweeping algorithms that minimize
the energy can be defined in analogy to the DMRG algorithm for MPS.

6Formally, this sum is infinite, and the expression should be considered as shifting a finite size
Hamiltonian, and taking the thermodynamic limit of expectation values of this finite-size Hamilto-
nian with the uMPS.
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(a) (b)

Figure 2.5: (a) A binary TTN for a two-dimensional system. Every tensor has a unique
parent tensor (going up in the tree) and two child tensors, except for the layer connecting
to the physical lattice. (b) Top-down view of the physical lattice and how the TTN fuses
two sites into one super-site, alternating in the x and y directions.

In the past, TTN were successfully applied to approximate the ground state of highly
correlated quantum systems in two dimensions [260–265], and recently, to simulate
the dynamics of quantum matter [36, 266–268]. A TTN is also used in Chapter III
to simulate the dynamics of a two-dimensional TFIM. However, the renormalization
character of the tree leads to a significant increase in computational complexity.
Consider a binary tree in which each tensor has a unique parent node and two child
nodes, as illustrated in Fig. 2.5(a). The tensors in the higher layers are rank-3 tensors,
where each leg has the dimension 𝜒, the bond dimension of the TTN. Performing
a decomposition of such a tensor, either with SVD or QR decomposition, has a
complexity of 𝒪 (𝜒4). The same decomposition scales only 𝒪 (𝜒2𝑑) in the case of the
MPS, and the expected increase in the computational time by a factor of 𝜒 limits
the reachable bond dimensions for the TTN. However, recent developments in the
overall performance of modern graphics cards have allowed the limits to be pushed,
allowing the study of complex quantum systems in two dimensions. See also [268]
for a recent survey on TTN on graphics cards.

Although TTN are quite successful for certain two-dimensional models, they are
not the perfect ansatz state to simulate general two-dimensional ground states.
This is because of the boundary law of entanglement 𝑆(𝐴) ∼ 𝜕𝐴 expected in two-
dimensions [189, 191–193, 202, 203], see also Subsection 1.4.3 The TTN cannot
reproduce this scaling, as cutting the single connection at the top of the tree divides
the two-dimensional lattice into two halves, and the bond dimension 𝜒 must scale
exponentially with the system size to capture the boundary law. A more direct ap-
proach is to place a tensor at every site of the underlying lattice, and connect these
tensors along nearest neighbor, also known as a Projected Entangled Pair States
(PEPS) [228, 229] Cutting along a closed line now breaks a number of links that
is proportional to the length of this line. Every broken link contributes a maximal
amount of entanglement, and this ansatz reproduces the boundary law. Compared to
the TTN and MPS, the PEPS has loops that spoil the existence of a canonical form.
Consequently, the contraction of a PEPS network is not efficient, and additional ap-
proximations are necessary. However, recent advances [269, 270] have demonstrated
that PEPSs are powerful numerical tools for simulating two-dimensional quantum
matter.
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CHAPTER I. MAJORANA ZERO MODES IN FERMIONIC WIRES

COUPLED BY AHARONOV-BOHM CAGES

I.3 Summary
Realizing the fermionic Symmetry-Protected Topological Phase (SPTP) supporting
unpaired Majorana fermions localized to the edge of a quantum chain remains an
open problem and has not been convincingly achieved to date. As explained in Sub-
section 1.2.3, the typical setup requires breaking the particle number conservation
in an effective spinless fermionic wire. This is achieved, for example, by creating
semiconductor-superconductor heterostructures in a strong magnetic field [95, 96,
152, 155].

𝑎 𝑏

𝑐

𝑑

−𝐽

−𝐽𝑒𝑖Φ −𝐽

−𝐽

Φ

𝑎

𝑏
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𝑑

⊗

⊗
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⊗

(𝑎) (𝑏)

Figure I.1: (a) Single diamond defined by the Hamiltonian ℎ♦. (b) Ladder system defined
by coupling the diamonds along one direction.

In this study, we follow an alternative approach that does not require a host su-
perconductor to induce p-wave superconducting correlations in nanowires. Earlier
works [160, 162, 166, 271] discovered that the same SPTP can be engineered by a
global U(1) ×Z2 symmetry, where the U(1) is the conservation of the total particle
number and Z2 is a partial parity. The idea of this realization is to engineer a ladder
system with coherent pair-hopping between the two fermionic species described by
the 𝑎(†) and 𝑏(†) fermionic ladder operators. A minimal Hamiltonian is given by [160]

𝐻 =
𝑁−1
∑
𝑗=1

−𝑡 𝑎†
𝑗+1𝑎𝑗 − 𝑡 𝑏†

𝑗+1𝑏𝑗 + 𝑊 𝑎†
𝑗𝑎†

𝑗+1𝑏𝑗+1𝑏𝑗 + h.c. . (I.1)

From a mean-field perspective, one species plays the role of the superconductor,
with the pair-hopping term playing the role of p-wave pair creation and annihilation.
The Hamiltonian (I.1) has the desired U(1) ×Z2 symmetry, where the total particle
number 𝑁tot = 𝑁𝑎 + 𝑁 𝑏 and the partial parity of one of the two species 𝑃𝑎 =
(−1)𝑁𝑎 are conserved. As long as there is no single particle hopping 𝑎†

𝑗𝑏𝑘 + h.c.
between the two legs of the ladder, this model can be driven into the SPTP with
emergent Majorana Zero Modes (MZMs). However, the existence of the additional
U(1) symmetry leads to the existence of gapless density wave excitations, which can
be seen from the effective low-energy field theory as described in Subsection 1.3.1.

In contrast to earlier studies that depended on the desired symmetry group emerg-
ing through perturbative methods, our study introduces an exact engineering ap-
proach using the negative interference of complex hopping amplitudes, resulting in
Aharonov-Bohm Cages [272, 273]. The fundamental component is a four-site dia-
mond, as illustrated in Fig. I.1(a), which is pierced by a magnetic flux Φ. As the



I.3. SUMMARY 103

fermions encircle the magnetic flux, they acquire a geometric phase, as detailed in
Subsection 1.1.6. The Hamiltonian that characterizes this diamond is given by

ℎ♦ = −𝐽 (𝑎†𝑐 + 𝑐†𝑏 + 𝑏†𝑑 + 𝑒𝑖Φ𝑑†𝑎 + h.c.) . (I.2)

The transition amplitude for a fermion initially located at the 𝑎 site to the 𝑏 site is
given by

⟨𝑏|𝑎(𝑡)⟩ ≔ ⟨0|𝑏 𝑒−𝑖ℎ♦𝑡𝑎†|0⟩ = |sin (2𝐽𝑡 cos (Φ/2))|2 .

When Φ is set to 𝜋, this transition becomes zero for all times 𝑡.

Building on this result, by arranging 𝑁 of such diamonds on a line pierced by a
flux Φ = 𝜋 as illustrated in Fig I.1(b), there is no single-particle transition from
any 𝑎𝑗 fermion to any 𝑏𝑘 fermion. This remains true even when adding general
inter-species coupling terms, such as nearest-neighbor tunneling or density-density
interactions. The coupled wire system has a global U(1) × U(1) symmetry, and the
desired breaking to a U(1) × Z2 group is achieved by adding generic inter- and
intra-particle interactions on the 𝑐 and 𝑑 fermions.

In the present study, we demonstrated that this model simplifies to an extended ver-
sion of the pair-hopping Hamiltonian in Eq. (I.1) when considered in a perturbative
limit. The desired pair-hopping term emerges in the fourth order in the perturba-
tion series. Through a renormalization group analysis of the bosonized Hamilto-
nian, we discovered that the model supports the formation of an SPTP with MZMs
when the parameters are appropriately chosen. This expectation is confirmed using
Density-Matrix Renormalization Group simulations and by verifying the fingerprints
presented in Subsection 1.2.3 of unpaired edge-localized Majorana operators.

In the final part of our study, we extended the analysis to the full four-wire model,
illustrating the presence of the SPTP within a broader parameter range without
resorting to perturbative arguments The existence of this extended region allows the
proposed model to be realized using synthetic dimensions on cold atom platforms.
However, it remains uncertain whether the MZMs manifest solely in the ground
state or form an almost strong zero mode, as discussed in Section 1.5. Specifically,
it is unclear how the gapless mode couples to the Majorana operators at higher
energies, thereby reducing their lifetime. First results on this issue are presented in
Chapter V, where the methodology developed in Chapter IV is applied to the class
Hamiltonians that realize this SPTP in a number-conserving setup, determining the
lifetime of Majorana operators localized at the edges.
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We devise a number-conserving scheme for the realization of Majorana Zero Modes in an interact-
ing fermionic ladder coupled by Aharonov-Bohm cages. The latter provide an efficient mechanism
to cancel single-particle hopping by destructive interference. The crucial parity symmetry in each
wire is thus encoded in the geometry of the setup, in particular, its translation invariance. A generic
nearest-neighbor interaction generates the desired correlated hopping of pairs. We exhibit the pres-
ence of an extended topological region in parameter space, first in a simplified effective model via
bosonization techniques, and subsequently in a larger parameter regime with matrix-product-states
numerical simulations. We demonstrate the adiabatic connection to previous models, including
exactly-solvable ones, and we briefly comment on possible experimental realizations in synthetic
quantum platforms, like cold atomic samples.

I. MOTIVATION

In the last decade, the quest for topological states of
matter has arguably been one of the driving directions
in condensed matter physics [1–3], partially motivated
also by their envisioned usage as platforms for quantum
computation [4]. Among all possible topological states,
Majorana Zero Modes (MZM) are one of the simplest
examples realizing an anyonic excitation, i.e., not obey-
ing either fermionic or bosonic statistics [4–6]. Despite
them being conceptually quite simple, an ongoing quest
is being pursued towards an unambiguous measurement
of their existence. While they do not enable a univer-
sal set of gates, they have been proposed to serve as a
topological protected quantum memory [7, 8].

Stemming from the cornerstone paper by Kitaev [9],
most efforts have focused on a one-dimensional realisa-
tion of Majorana Zero Modes via coupling some semi-
conducting nanowire to a bulk superconductor [10–16].
The superconductor serves as a reservoir inducing p-wave
superconductivity into the nanowire via the proximity ef-
fect resulting in an effective breaking of the U(1) sym-
metry of number conserving down to a residual fermionic
parity symmetry Z2.

In recent years, alternative proposals for realizing
MZMs without breaking the number conservation were
put forward [17, 18]. These schemes are based on the
field-theoretical observation that a minimal U(1) × Z2
model of two (fermionic) Luttinger liquids coupled ex-
clusively by a pair-hopping term indeed leads to the
same topological signatures [19]. Noticeably, even some
exactly solvable instances were found [20, 21], giving
deep insights into the nature of this phase. Moreover,
a number-conserving scheme is particularly appealing for
synthetic quantum matter platforms like cold atoms [22].
However, a perfect cancellation of single-particle tun-
nelings between the chains is needed to ensure the Z2

protection of MZMs. In previous works, this was only
achievable in an approximate fashion via some perturba-
tive suppression. Here, we present an alternative scheme
which makes use of exact interference terms of com-
plex hopping amplitudes, also known as Aharonov-Bohm
Cages [23, 24], and perfectly cancels all single-particle
poisoning. These cages are arranged in a translation in-
variant sequence across the two target fermionic chains,
and a generic nearest-neighbor interaction term enables
the sought-after correlated hopping of particles.

The paper is structured as follows: First in section II
we introduce our model which involves four spinless
fermionic species. After discussing the basic proper-
ties of that model, we integrate out two of these spin-
less fermions using a Schrieffer-Wolff (SW) transforma-
tion [25], and show that the obtained effective Hamil-
tonian falls in the same class as those of previous pro-
posals. This effective Hamiltonian is first investigated
in section III by using bosonization [26, 27], in order to
find the most favorable parameter regime for realizing
the MZM phase. In this section we also review the ba-
sic indicators used for detecting the MZM phase: The
non-local behavior of the end-to-end correlation function
together with a relative sign between the ground-states
of the two parity sectors and the exact double degener-
acy of the entanglement spectrum [28]. Next, in section
IV, we show numerical results using tensor network tech-
niques [29], exhibiting all defining features of the MZM
phase, not only for the effective model, but also for the
full four-flavor setup in regimes very far from the pertur-
bative expansion conducted before. Finally, in section V
we summarize our findings and give a short outlook of
open questions.
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II. MODEL INTRODUCTION

Let us consider two (lattice) wires a and b, popu-
lated by spinless fermions, and connected to each other
via additional sites c and d in a rhomboidal configura-
tion pierced by a π-phase, as described by the following
Hamiltonian:

H♢ = −J
∑

j

(
a†

jcj + c†
jbj + b†

jdj − d†
jaj + h.c.

)
(1)

= −J
√

2
∑

j

(
a†

jmj + b†
jpj + h.c.

)
, (2)

where α(†)
j annihilates (creates) a fermion in the site of

kind α = a, b, c, d at the j-th lattice position, and p =
(c + d)/

√
2 (m = (c − d)/

√
2) are the (anti-)symmetric

superposition of the intermediate modes. For the sake
of simplicity, we picked up a gauge where the whole π-
phase has been collected on a single link: however, any
redistribution along the rhombi would, of course, lead to
the same Aharonov-Bohm caging effect in the end. As
made explicit by Eq. (2), indeed, destructive interference
prohibits single-particle motion between the (decorated)
wires, i.e., the two charges

N± = (Na +Nm) ± (N b +Np) , (3)

with Nα =
∑

j n
α
j =

∑
j α

†
jαj , are separately conserved

and denoted as the U (1)± symmetries in the following.
In order to let Majorana physics emerge, we need to

partially break the U (1)− associated to the N− charge
into a residual Z2 symmetry for each dressed chain.
We could naturally achieve it by considering nearest-
neighbour density-density interaction terms of the kind:

Hint =
L−1∑
j=1

[
V1

(
nc

jn
c
j+1 + nd

jn
d
j+1

)
+ V2

(
nc

jn
d
j+1 + nd

jn
c
j+1

)]
=

L−1∑
j=1

[
V1 + V2

2
(
np

j + nm
j

) (
np

j+1 + nm
j+1

)
+ V1 − V2

2

(
p†

jmj +m†
jpj

) (
p†

j+1mj+1 +m†
j+1pj+1

)] (4)

which does not preserve Np and Nm (but still pre-
serves their parity) away from the fine-tuned point
V1 = V2. The residual unbroken symmetry is actually
(Z4)−/(Z2)+, since the parity of the conserved overall
population fixes the parity of the relative population, too:
as a convention, we decide to look at the parity in the
dressed a chain, i.e.,

P = eiπ(Na+Nm) = e
iπ
2 N+e

iπ
2 N− . (5)

Actually, we show in App. C that our model is adiabati-
cally connected to a regime where the U (1)+ symmetry is
further broken and the residual group is an even simpler
Z2 ×Z2, i.e., the same symmetry class as two individual
Majorana chains. Later we will abuse this relation to de-
rive the signatures of the topological regime in the single
particle correlation functions.

Any additional generic intra-wire Hamiltonian Hα=a,b

and any Hamiltonian of the kind

Hc,d =
∑

j

[
µ(nc

j + nd
j ) (6)

+t∥(c†
jcj+1 + d†

jdj+1) + t⊥(c†
jdj+1 + d†

jcj+1) + h.c.
]

acting on the intermediate sites would still fall in the
same U(1)+×(Z2)− symmetry class. We initially set t∥ =
t⊥ = 0 for the sake keeping most calculations analytically
feasible, but in App. A we provide some estimate on their

utility for making the desired topological signatures even
more evident.

A pictorial sketch of the generic Hamiltonian,

H = Ha +Hb +Hc,d +H♢ +Hint , (7)

is given in Fig. 1b. Once we integrate out the intermedi-
ate sites (c, d) via a Schrieffer-Wolff Transformation along
the lines of Ref. [25], we are left with a low-energy de-
scription of the dressed wires (a, b), illustrated in Fig. 1c:

Heff = H̃a + H̃b + Unn
∑

j

(na
j + nb

j)(na
j+1 + nb

j+1)

−
∑

j

(
W1 a

†
ja

†
j+1bj+1bj +W2 b

†
ja

†
j+1bj+1aj+

+W3 b
†
ja

†
jaj+1bj+1 + h.c.

)
.

(8)

The form of Eq. (8) allows for a direct comparison with
the model of Ref. [17] and the exactly solvable one of
Ref. [20], as discussed in App. C. The two pair-hopping
terms have rather different effects: The inter-chain one,
W1, embodies the original Kitaev-chain model per each
wire separately, and it is indeed the one responsible for
the desired topological effect [17, 19, 20]. The intra-
chain one, W2 and W3, instead promotes a (pseudo-)spin-
density wave ordering in the wire-label degree of freedom,
as we will discuss after considering the bosonized version
of the Hamlitonian (8) below Eq. (13). The attainable
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Figure 1: Pictorial representation of the main Hamilto-
nians of this work: (a) Translation invariant coupling of
the two wires, a, b, via the rhombi-Hamiltonian H♢ encom-
passing a π flux, here denoted via a single hopping with
opposite sign to the rest (dashed line); (b) Full model of
Eq. (7), with intra-chain hopping elements (black), inter-
chain ABC hoppings (blue) as in panel (a), and bubbles
indicating the density-density interactions; (c) Effective low
energy model of Eq. (8), with the blue arrows standing for
the correlated inter-chain pair hopping, and the red/orange
ones for the cross-correlated hopping terms. From the mi-
croscopic derivation one finds W1 = W2 and W3 = 0, how-
ever we considered all three couplings for comparison to the
exact solvable model of [20], see App. C.

couplings with the presented microscopic derivation are:

W1
µ

= W2
µ

=
(
J

µ

)4 8µ(V2 − V1)
(2µ+ V1)(2µ+ V2) ,

Unn

µ
=

(
J

µ

)4 8(µ(V1 + V2) + V1V2)
(2µ+ V1)(2µ+ V2) ,

(9)

and W3 = 0. Due to the similar effect of W2 and W3,
we set W3 = 0 for the rest of the main text. We will
show in the following, via a combination of field-theory
calculations and numerical simulations, that W2 = W1

does not impair the formation of the wished topological
order, at least in an extended region of the parameter
space.

The dressed Hamiltonians H̃α (α = a, b) read

H̃α = Hα+t
(
J

µ

)2 ∑
j

[
(α†

jKα,j + h.c.) − 2t
µ

K†
α,jKα,j

]
,

(10)
where we used the abbreviation for the commutator
Kα,j := [Hα, αj ]/t. Eq. (10) is formulated for generic
one-particle Hamiltonians Ha and Hb. For making con-
crete statements we will fix them to (Ha = Hb

∼= Hα):

Hα =
∑

j

(
−t(α†

jαj + h.c.) + Uαn
α
j n

α
j+1

)
. (11)

In this case the commutator Kα,j amounts to a sim-
ple renormalization of the bare parameters in (11) along
with some three-body interactions, density-supported
and next-nearst-neighbour hoppings. From renormaliza-
tion point of view these terms can be safely considered
to be less relevant. Therefore we decide to drop them
henceforth to keep the model simpler, and leave details
for the interested reader in App. B.

III. BOSONIZATION

We now proceed with a field-theoretical analysis of
the toy Hamiltonian (8) via bosonization along the no-
tation of Ref. [26]. After having introduced density and
phase fluctuating fields, φα and ϑα, for both fermionic
species, α = a, b, and their (anti-)symmetric combina-
tions φ± = 1/

√
2(φa ± φb) (same for ϑ±), we find the

following Hamiltonian:

Hbos =
∑
τ=±

vτ

2

∫
dxKτ (∂xϑτ (x))2 + 1

Kτ
(∂xφτ (x))2

+β1

∫
dx cos

(√
8πϑ−(x)

)
+ β2

∫
dx cos

(√
8πφ−(x)

)
,

(12)

where Kτ and vτ denote the Luttinger parameter and
Fermi velocity in the τ = ± sectors, and we already
dropped less relevant terms (see App. B), including those
becoming resonant only at half-filling. We notice that a
similar bosonized Hamiltonian appears when considering
spinful fermions with anisotropic spin interactions [30],
and moreover with β2 = 0 in other discussions of number-
preserving models for Majorana zero modes [17, 19].

Besides an ordinary Tomonaga-Luttinger liquid in the
symmetric (charge) sector, τ = +, which is therefore
always gapless, the anti-symmetric (spin) sector, τ = −,
exhibits a a double Sine-Gordon interaction with bare
couplings and scaling dimensions:

β1 ∝ W1 , ∆β1 = 2
K−

; β2 ∝ W2 − Unn , ∆β2 = 2K− .

(13)
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It is therefore apparent that a gap will arise whenever
K− ̸= 1 [31]: while for K− < 1 the φ− field is pinned and
the phase is trivially a charge-density-wave or singlet-
pairing, depending on the sign of the β2 coupling [32],
the β1 term causes instead the appearance of unpaired
Majorana edge modes for K− > 1 [19]. Furthermore, the
refermionization argument for K− = 2 given in Ref. [19]
also shows that this mode has to be identified with single
particle transitions from one of the two chains to the
other.

Therefore, one expect certain overlaps like
⟨Ωoo| a†

jbj |Ωee⟩ to be nonzero at the edges with a
exponential decay to a possible non-zero bulk value.
Otherwise said, the degenerate ground-states in the
topological phase are related to the ground-states of two
independent Kitaev-Majorana chains, once projected on
a fixed total charge N+ [20]. Thus, using the standard
classification of topological insulators, one expect two
pairs of MZM to be present in the system, for the uncon-
strained model, corresponding to the two independent
Kitaev-Majorana chains. However, after fixing the total
particle number we do not observe 4 = 2 × 2 Majorana
modes, but – depending on the total parity P+ – only
two out of the four possible combinations.

The picture of two unconnected chains is particularly
useful to get grasp of some fundamental behaviour of
single-particle correlation functions, which we will em-
ploy as fingerprint of the desired edge physics. Let us
consider the (four) ground-states to be connected to

|Ωee⟩ = |Ω⟩ , |Ωoo⟩ = c†
a,Ec

†
b,E |Ω⟩ , if N+ even ,

|Ωoe⟩ = c†
a,E |Ω⟩ , |Ωeo⟩ = c†

b,E |Ω⟩ , if N+ odd ,
(14)

with |Ω⟩ being the vacuum of the theory, and cα,E the
fermionic operator formed by two Majorana edge modes,
cα,E = γα,L − iγα,R, {γα,r , γβ,s} = 2δα,βδs,r. The mode
expansion reads

αj = A
(
γα,Le

−(j−1)/ℓ − iγα,Re
−(L−j)/ℓ

)
+ . . . (15)

with . . . denoting the (gapped) excitations of the system,
ℓ the correlation length, and A being a normalization
factor. For each single chain then holds

⟨ΩP | a1a
†
j |ΩP ⟩ ∼ iA2e−(L−j)/ℓ ⟨ΩP | γLγR |ΩP ⟩ + G̃(j)

= −PA2e−(L−j)/ℓ + G̃(j)
(16)

where P = ± for the even/odd sector, and G̃(j) is the
exponentially decaying correlation function coming from
the residual (gapped) excitations of the spectrum. In sec-
tion IV we will use this exponential revival of the end-to-
end correlation function together with this characteristic
relative sign between the two parity sectors as one of the
indicators for having a MZM phase. Closely related to
that behavior of the correlation function is the vanish-
ing of the energy gap between the two parity sectors:

∆E = |E− − E+| ∼ e−2L/l. A second indicator is pro-
vided by studying the entanglement spectrum [33], which
should be exactly double degenerate in the case of being
in a Majorana-like phase [28].

While working at fixed particle number might circum-
vent the formation of a charge gap by forbidding hy-
bridisation of different fillings (as it is indeed the case
in our setup), the spin sector remains instead gapped
(see App. B).Therefore, we expect an exponentially de-
caying behavior to the middle of the system, followed
by an exponential revival with a π phase difference be-
tween the two ground-states. The same holds true for
matrix elements of inter-chain operators like the so-called
Majorana wave-function [20], ⟨Ωee| ajb

†
j |Ωoo⟩. Since the

characteristics is similar for both observables, we decide
to only present results for the single particle correlation
functions. This is also motivated from the fact that, in
a generic interacting model, the overlap ⟨Ωee| ajb

†
j |Ωoo⟩

may have a non-zero bulk value, making it harder to
uniquely identify the edge contribution. This problem is
absence for the single particle correlation function, since
⟨aj⟩ is fundamentally zero.

In order to determine the most favourable regime of
the microscopic parameters for achieving the topologi-
cal phase, we consider the perturbative RG equations
(strictly valid only around K− ≈ 1) [32]:

dβ1
dl = 2

(
1 − 1

K−

)
β1

dβ2
dl = 2(1 −K−)β2

dK−
dl = 4π2A

v2
−

(
β2

1
1
K−

− β2
2K

3
−

)
.

(17)

We now have to integrate these differential equations
starting from the bare values of K− and βj on the orig-
inal lattice couplings, Eq. B17 (see App. B for details).
Thereby we get a rough estimation of the phase diagram,
presented in Fig. 2: The exact position of the phase
boundaries is (highly) depending on the non-universal
constant A.

Interestingly, anyway, both the very asymmetric role
played by W2 and the strikingly almost straight critical
lines in the (W1,W2, Uα = 0)-plane can be predicted by
the equation

|W1| = DW2 (sgn(W2) − C) . (18)

with two non-universal constants D and C. This equa-
tion represents the linearized version of the criticality
condition found in [30], see also appendix B 1 for more
details.

By inspecting Fig. 2, we notice that, in the absence of
intra-wire interactions (Uα = 0), the line W1 = W2 = W
dictated by Eq. (9) is well inside the topological phase
for W < 0, while no definite conclusion can be reached
on the boundary for W > 0. Noticeably, for Uα < 0
the bare parameters for the RG-flow are sensibly pushed
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(a)

(b)

Figure 2: RG-based estimates of the phase diagram of
the bosonized Hamiltonian (12) at ν = 1/3 in different,
orthogonal planes, according to the flow equations (17):
magenta refers to the dominance of β1 (topological
phase), while yellow indicates the dominance of β2
(trivial CDW/SDW phase). (a) W1 − W2 plane with
Unn = Uα = 0: The blue line, W1 = W2 = W , indicates
the effective Hamiltonian 9, for which the prediction
depends strongly on cutoff details and, possibly, further
orders in the flow. (b) W − Uα plane with Unn = 0: by
choosing a finite negative Uα, we can move deep inside
the topological phase, where RG predictions are unam-
biguous, as represented by the shift from the green to
the blue star. The latter set of parameters is what is
used in the main text for the most simulations.

away from the boundary, thus making the topological
phase observable also for W > 0, see Fig. 2b.

We stress here that the extra terms in Hc,d of Eq. (6)
are foreseen to contribute to stabilize the topological
phase, too. Including non-vanishing couplings t∥ and t⊥,
indeed, a regime with W1 > W2 can be achieved, which
pushes the model deeper into the topological region even
for Uα = 0, as can be seen from Fig. 2a (see App. A for
more details).

IV. NUMERICAL RESULTS

Next, we validate the cut-off dependent predictions of
bosonization against unbiased numerical simulations on
the lattice, performed via Matrix Product States (MPS)

not only for the effective Hamiltonian (8), but also for
the full model (7), i.e., without introducing any pertur-
bative description. We focus on two pristine indicators of
the emergence of unpaired Majorana modes at the edges,
i.e., i) finite end-to-end single-particle correlations with
an exponential decay in the bulk, with relative π-phase
between the two parity sectors, and ii) double-degeneracy
of the entanglement spectrum, dictated by the Z2 pro-
tecting symmetry.

We conduct our numerical investigations at a fixed
density of ν = N+/(2L) = 1/3, so that additional res-
onances arising at half-filling are avoided. As an exem-
plary parameter set for the effective model we choose

W

J
= 0.5, Uα

J
= −0.7, Unn

J
= 0.0 (19)

with a chain of length L = 256 and N+ = 170 fermions in
the system. The specific choice of Unn = 0 was made to
simplify the number of parameters to a minimum, with-
out affecting the qualitative picture, as we verified for a a
wide range of Unn. Indeed, from a RG point of view, the
operator coupled to Unn only has a minimal influence by
slightly detuning the bare Luttinger parameter K− and
decreasing the bare coupling strength β2 of the bosonized
Hamiltonian, see App. B. Moreover, this choice is always
reachable, at least in this fourth-order effective Hamilto-
nian description, by suitably tuning the bare interaction
parameters V1 and V2 relative to µ and J .

Figure 3: Single particle correlation function ⟨a1a†
k⟩ be-

tween the leftmost site of the chain and the k-th one. The
magenta and blue lines are representing the expectation
value to the ground-state in the parity sector P = ±. The
black line displays a simulation with neglecting the parity
conservation allowwing a superposition between the two dif-
ferent sectors. The inset zooms around the right edge of the
chain, revealing the relative π phase between the recovery of
the correlation function in the two parity sectors.

First, Fig. 3 illustrates the decay of the single-particle
terms ⟨a1a

†
x⟩± with correlation length ℓ ≈ 7.35 and

their strong revival at the opposite edge r ≈ ∓0.5, with
the sign depending on the parity sector, as discussed in
Sec. III and predicted in Eq. (16). The quantity r is
thereby defined as the amplitude of an exponential fit
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performed on both ends of the correlation function. Ig-
noring the underlying Z2 symmetry in the DMRG simu-
lation results into a pure exponential decay, indicating an
equal weighted superposition of the two (nearly) degen-
erated ground-states of the two parity sectors, see black
line in Fig. 3. Such scenario is confirmed by examining
the parity expectation value in this setup, ⟨P ⟩ ≈ 0. This
is an expected behavior, since DMRG favors the least
entangled ground-state [34–36].

(a)

(b)

Figure 4: Entanglement spectrum for a bipartition cutting
the system exactly in the middle for a system with 256 sites
at filling ν = 1/3. (a) The system being in the Majorana-
like phase with W1/t = W2/t = 0.5, Uα/t = −0.7 and
Unn/t = 0. The spectrum was extracted from the ground-
state found in the even parity sector, however taking the
odd parity sector ground-state is analogous. (b) The system
being in the trivial state with W1/t = 0.3, W2/t = 0.7 and
Uα/t = Unn/t = 0. The spectrum was extracted from the
true ground-state given by the odd parity sector.

Second, Fig. 4a shows the entanglement spectrum [33],
i.e., − lnλ2

j with λj the Schmidt values of a L/2 biparti-
tion of the system, as a function of the quantum numbers
δN+ = n+ −N+/2 and P− = (−1)na . On one hand, the

perfect double-degeneracy between the two parity sectors
is a clear fingerprint of the symmetry protected topolog-
ical nature of the anti-symmetric channel (τ = −) [28].
On the other hand, the parabolic shape (with particle-
hole symmetry) indicates the gapless nature of the sym-
metric channel (τ = +) [37, 38], with the curvature giving
back a Luttinger parameter K+ ≃ 0.97 [39], pretty close
to the bare value of Eq. (B17), K(bare)

+ ≃ 0.85.

Figure 5: Scaling of the energy difference between and
inside the parity sectors for the parameter set W1/J =
W2/J = 0.5 , Uα/J = −0.7 , Unn = 0 for lengths from
16 to 80 sites and a filling of ν = 1/3, i.e., ne = 2L/3 par-
ticles. The degeneracy split closes exponentially in system
size, with a decay length roughly equal to twice the single-
particle correlation length l since this splitting originates
in the exponential small overlap between the two Majorana
wave-functions localized at the two ends of the chain [9].
On the other hand, the energy gap to the first excited state
vanishes as 1/L originating from the discretization of the
momentum in a finite size system as expected for a well-
behaved Luttinger Liquid [32] having a linear dispersion
relation.

Noticeably, from Fig. 5 it can be seen that, even in the
presence of this gapless channel, the energy difference
between the even and the odd sector vanishes exponen-
tially, as one would expect for a system with two topolog-
ical ground-states. The finite-size gap inside each parity
sector, instead, vanishes algebraically with ≃ L−1 as ex-
pected for a standard Luttinger liquid with a linear dis-
persion relation ϵ+(q) = v+|q|. Additionally, in App. C
we show that an adiabatic path exists between our effec-
tive model and the exactly solvable one of Ref. [20]. In
this article, a path is called adiabatic if the U(1) × Z2
symmetry group is preserved all along that path and the
single particle gap, as defined by the antisymmetric sec-
tor, stays finite. This is analogous to requiring that we
observe a finite correlation length of the single particle
correlation function smaller than the system size along
that path. Constructing such a path requires the inser-
tion of some extra operators, but its cartoon projection
in the W1 − W2 − Unn parameter-space is illustrated as
a dashed line in Fig. 8. The energy gap, extracted via
fitting the exponential decay of single-particle correlation
in the bulk, is plotted in Fig. 9a, and is evidently non-
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vanishing.
In the same Appendix C, we also demonstrate numeri-

cally the adiabatic connection to the two uncoupled Ma-
jorana chains by further breaking the residual conserva-
tion of the total particle number down to a total parity
and only requiring a residual global symmetry group of
Z2 ×Z2.

After reporting the topological fingerprints found in
the effective model, we also studied the full model of
Eq. (7) with the single particle Hamiltonians fixed ac-
cording to Eq. (11) and showed that the topological phase
persists once the full four-flavor Hilbert-space is taken
into account. For this, we studied at the same indica-
tors as reported above, namely the non-local correlation
functions with the characteristic relative sign between the
two parity sectors as predicted by Eq. (16) and the dou-
ble degeneracy of the low lying entanglement spectrum.
As a warm-up we treated the model with a set of param-
eters deep inside the perturbative regime of the effective
Hamiltonian. The results are reported in the appendix
E, where we indeed find the full model to have non-local
correlation functions as expected. Nonetheless, the pa-
rameters in this regime are not so appropriate to exper-
imental realizations with interaction strengths of several
orders of magnitude in difference.

However, we can do better by going away from the per-
turbative regime. Indeed, we showed that the Majorana-
like phase is not bounded to the perturbative regime, but
is considerably extended to a more realistic parameters,
where we find a double degenerated entanglement spec-
trum and non-local correlation functions for a large range
of parameters.

As an example consider Fig. 6a. In this figure we com-
puted the average degeneracy of neighboring Schmidt val-
ues of the low lying entanglement spectrum for a cut at
half of the system of length L = 60:

λ̄ = 1
n

n∑
j=1

|λ2j−1 − λ2j | (20)

computed by fixing the following set of parameters:

ne = 80 , µ/J = 2 , V1/J = −1
V2/J = 1.25 , t∥ = 0.1t , t⊥ = 0
t/J =∈ [0.1, 0.5] , Uα/J ∈ [−0.5, 0] .

Noticeably, there seems to be an overall separatrix region
of nearly vanishing λ̄ between two regions having a finite
splitting between the neighboring entanglement values.
Along that set of parameters we expect the Majorana-
like phase to appear: This is confirmed by the end-to-end
correlation function showing the characteristic π-phase
revival, see Fig. 6b as one example. Furthermore, we
stress here that this result is not sensitive to the concrete
choice of the chemical potential and the filling. We have
explicitly checkt it for all µ/J ∈ [2, 5] and also for ne =
40, which corresponds to the 1/3 filling in the effective
model.

(a)

(b)

Figure 6: Analysis of the full model. (a) Logarithm of the
average degeneracy of neighboring Schmidt values of the low
lying entanglement spectrum from Eq. 20 taking n = 4.
Taking the logarithm was motivated to highlight values near
to 0. (b) One example end-to-end correlation function plot-
ted for t = and Uα = (green star in panel (a)). The inset
shows a zoom onto the last few sites showing the relative π
phase for the revival of the both symmetry sectors.

As a final remark we want to discuss possible experi-
mental platforms. We emphasize that the crucial ingredi-
ent in realizing our proposal is the cylindrical like struc-
ture defined by the rhombi-Hamiltonian H♢, Eq. (1).
The requirement of having periodic boundary conditions
along one direction together with imprinting a effective
phase is usually a hard task in physical set-ups. Recently
this task was achieved by using the internal degrees of
freedom of cold atoms as synthetic dimensions and im-
printing arbitrary gauge fluxes to the atoms [40, 41]. To-
gether with the good controllability of hopping transi-
siont by loading the cloud of atoms to an optical lat-
tice [42–45] and the reliability of species with sizable
nearest-neighbor interactions such as polar atoms [46–
48] suggest cold atoms as the perfect platform, but also
other synthetic platforms could be valid However, a con-
crete realization goes beyond the scope of this article.
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V. CONCLUSION & OUTLOOK

Motivated by the ongoing search for an unambiguous
detection of topological Majorana zero modes, we have
put forward a new number conserving realization of a
Majorana-like phase. Our proposal uses the geometry of
the underlying lattice together with the Aharonov-Bohm
effect to achieve exact cancellation of all possible single
particle processes and only allow for pair transitions.

Starting from a perturbative analysis, we found clear
fingerprints of a Majorana-like phase with Majorana zero
modes being present in an extended parameter regime.
We also showed that this is still true in the full model
far away from the perturbative regime, thus rising the
hope for realizations using synthetic dimensions in a cold
atom platform. Due to the large amount of possible pa-
rameters to tune, we postpone the development of a con-
crete scheme together with an experimentally reachable
parameter space to future work.

Among the important open questions for all possible
quasi-one dimensional number conserving set-ups, the
influence of finite temperature on the Majorana Zero
Modes plays an important role. To be concrete, it is
unclear how possible higher order terms in the bosoniza-
tion may couple the symmetric gapless sector to the an-
tisymemtric gapped sector hosting the Majorana Zero
Modes. Such effects could lead to a much smaller life-
time of the MZM than expected from the limit of two
unconnected Kitaev-Majorana chains. This will be the
subject for future investigations.
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Appendix A: Derivation of the Effective Hamiltonian

In this Appendix, we briefly recall the basics of the
Schrieffer-Wolff (SW) transformation in the version of
Ref. [25], which we used to derive the effective model of
Eqs. (8)-(9). Furthermore, we discuss the effect of the ex-
tra terms (t∥, t⊥) of Eq. (6), showing that they may lead
to an even more convenient regime for the topological
phase to arise.

In the SW formalism, the Hamiltonian is considered
to be divided between a block-diagonal non-interacting
part H0 with a clear energy-scale separation, and some
small interaction V , i.e.:

H =H0 + V ,

H0 =PPH0PP + PQH0PQ ,

V =PPV PQ + PQV PP + PQV PQ ,

where H = P ⊕ Q denotes the division of the Hilbert
space such that

∥PPH0PP∥ ≪∥PQH0PQ∥ ,
∥V ∥ ≪(∥PQH0PQ∥ − ∥PPH0PP∥) ,

in the sense that all eigenvalues from the P subspace are
much smaller than the eigenvalues from the Q subspace,
and that the matrix elements of the V operator are much
smaller than the energy separation between the two sub-
spaces. We recall that a possible term PPV PP can be set
to 0 w.l.o.g.. The target SW transformation is a rotation
X of the Hilbert space, such that the Hamilton operator
is brought back to a block-diagonal form under its action:

H ′ = X−1(H0 + V )X = PPH
′PP + PQH

′PQ . (A1)

The desired effective low-energy Hamilton operator is
then given by

Heff = PPH
′PP . (A2)

While X, and thus Heff, are only known exactly for a
few special cases, there exists a perturbative solution in
terms of powers of the interaction V , with terms in the
typical form:

Ô(n) = PPV

(
PQ

1
E0 − PQH0PQ

PQV

)n

PP , (A3)

and variations thereof, especially in case the original low-
energy subspace is not exactly degenerate, i.e., if not all
states in P share the same eigenvalue E0 under H0. Any-
way, we can easily identify the Green operator Ĝ(ω) re-
stricted to the high energy space Q and evaluated at E0:

ĜQ(E0) = PQ
1

E0 − PQH0PQ
PQ , (A4)

a fact which will come handy in the following.
In our specific setup, we chose

H0 = Hc,d +Hint , (A5)

i.e., the Hamiltonian acting on the auxiliary sites.
Thereby, it is easy to identify the low-energy space P
as the one containing all states with empty c and d sites,
while the high-energy configurations Q are all the re-
maining ones with at least one fermion placed on these
auxiliary sites. As a consequence, E0 = 0 and the energy
separation is of the order of µ. As long as t∥ = t⊥ = 0, H0
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is already diagonal in the Fock basis, and this allows for
an exact evaluation of ĜQ(E0), leading to the compact
expressions of Eqs. (8)-(9).

If we now include such terms, i.e. t∥, t⊥ ̸= 0, this is not
true anymore since a fermionic excitation on the c and
d states is now allowed to delocalize across the auxiliary
sites. Fortunately, we can still evaluate ĜQ(E0) if we
restrict for a moment to the case in which at most one
fermionic state in the c and d sites can be occupied. The
matrix elements of this operator decay exponentially in
real space. This in turn leads to an additional exponen-
tially decaying hopping in the a, b chains of the form:

Ht,exp =
∑
j,l,α

−t′αγ|j−k|
α α†

jαk + h.c. , γα < 1 ,

t′α = 2J2√
µ2 − 4(t∥ ± t⊥)2 ,

γα = 1
2(t∥ ± t⊥)

{
µ−

√
µ2 − 4(t∥ ± t⊥)2

} (A6)

where the −(+) holds for α = a(b). However, the fourth-
order term in the Schrieffer-Wolff transformation, which
generates the desired pair hopping term, requires to deal
with two fermions on the c, d sites, and therefore to solve
the full interacting problem. However an analytic solu-
tion is not that easy any more. Anyway, in the limit of
t∥, t⊥ ≪ µ (consistently with all other energy-scales of
the setup), one can treat them as small perturbations
and compute the Green operator perturbatively. The
sizeable diagonal elements are responsible for the gener-
ation of the pair hopping terms, while the off-diagonal
contributions are again exponentially suppressed. We fi-
nally arrive at the expression:

W ′
j = W (1 + (t∥, t⊥)Γj(t∥, t⊥)T ) + O(t4∥, t4⊥) , (A7)

where Γj are 2 × 2 matrices, depending on all other
parameters, with Γ1 ̸= Γ2, which allows for detuning
W1 ̸= W2. In Fig 7 some examples for Wj(t∥, t⊥) are
shown. Moreover, a third pair coupling operator is gen-
erated:

HW3 = (t∥, t⊥)Γ3(t∥, t⊥)T
∑

j

a†
jaj+1b

†
jbj+1 +h.c. . (A8)

This was also one of the reasons to consider the slightly
more general toy model of equation (8) where one finds
the relation W3 = (t∥, t⊥)Γ3(t∥, t⊥)T . The possibility
of detuning W1 relative to W2 and also the generation
of W3 shifts the effective model near to the vicinity of
the exactly solvable model [20], for which the relation
W2 = W3 = W1/2 holds. Comparing to figure 7, indeed,
we see that introducing t∥ increases W1 relative to W2
and also introduces a positive W3.

Appendix B: Bosonization Details

In this Appendix, we provide the details of the deriva-
tion of the bosonized low-energy theory and its bare cou-

(a)

(b)

Figure 7: Dependence of the effective Parameters W1, W2
and W3 for (a) t⊥/t = 0 and (b) t⊥/t = 0.5. The other
parameters are chosen to be V1/t = 1, V2/t ≈ −0.83.

plings in terms of the microscopic parameters. The start-
ing point is the effective Hamiltonian of Eq. (8). In order
to keep the equations simple, we start here by using the
simplified single chain Hamiltonian from the main text:

H̃α =
∑

j

(
−t(α†

jαj + h.c.) + Uαn
α
j n

α
j+1

)
. (B1)

However, towards the end of this appendix we will shortly
discuss additional operators which are generated by the
Schrieffer-Wolff transformation. The first step is to
rewrite the lattice annihilation/creation operators α(†) in
terms of two (slowly-varying) envelope functions ψR/L,α

defining the right/left moving fields:

αj =
√
a

(
ψα,R(xj)eikFxj + ψα,L(xj)e−ikFxj

)
. (B2)

The “continuum” position xj is defined as xj := aj, with
a the lattice spacing, in terms of which we will express all
quantities (like lengths, energies, etc.) in the following.
The Fermi momentum is defined by kF = Nπ

2La , with N
being the number of fermions and L the number of lat-
tice sites in the system. In order to formulate a theory
in the continuum, we send a → 0 while keeping con-
stant the product akF := δ = πν, as well as all energies



10

ta, Uαa, . . . This also amounts to replacing sums by in-
tegrals according to the rule a

∑
j →

∫
dx. Henceforth,

we will also remove any residual explicit dependence on
the lattice spacing by appropriately rescaling the fields
and the coupling constants for better readability.

The next step is the assumption of linearity for the
fermionic dispersion relation near the (two) Fermi points.
The right and left moving fields become thus indepen-
dent from each other, and the free fermion Hamiltonian
is written as H0 =

∑
α=a,b

∫
dxh0,α(x):

h0,α(x) = −ivF

[
ψ†

α,R(x)∂xψα,R(x) − ψ†
α,L(x)∂xψα,L(x)

]
(B3)

where vF = 2t sin(δ) defines the Fermi velocity. The
independent left/right moving fields are then rewritten
in terms of vertex operators of continuous bosonic fields
φα(x) and ϑα(x), describing respectively the density and
phase fluctuations:

ψα,σ = ηα,σ√
2π

exp
(
−i

√
π (ϑα + sσφα)

)
,

nα(x) :=ψ†
α,Rψα,R + ψ†

α,Lψα,L = − 1√
π
∂xφα(x) ,

∂xϑα(x, t) = − ∂vFtφα(x, t) ,
(B4)

with sσ = +1 if σ = R (and −1 for L), and the latter
relation defined in the Heisenberg picture with explicit
time-dependent operators. It is particularly useful to re-
call also the expression for the current densities:

Jα
σ (x) = − 1√

4π
∂x {φα(x) + sσϑα(x)} (B5)

The Klein factors ηα,σ, forming a Clifford algebra (i.e.,
{ηα,σ, ηβ,ρ} = 2δα,βδσ,ρ), are essential to obtain the cor-
rect anti-commuting behavior of the fermionic opera-
tors [27]. However, thanks to the particle-number pre-
serving character of the Hamiltonian, we can simply
treat them as simple hermitian matrices and reorder their
strings to be the same in all terms: henceforth, we con-
sider to have already performed such a reordering and
drop all Klein factors from our formulas.

Subsequently, we rewrite the different lattice operators
in terms of the bosonic fields, according to the dictionary
presented in Eqs.(B4)-(B5), and taking care of normal
ordered products along standard procedures [32]. One
major consequence is that, in most cases, the algebra
amounts to directly summing the exponents appearing in
equation (B4) when dealing with products of ψ(†) fields.
Since all terms turns out to be diagonal in the bosonic
fields, and we are considering identical (a, b) species, it
is convenient to resort to symmetric and anti-symmetric
combinations of the fields:

φ±(x) = 1√
2

(φa(x) ± φb(x)) . (B6)

The free Hamiltonian and the intra-chain interactions are

thereby well-known to be mapped to a quadratic form:

H0 =
∑
τ=±

vτ

2

∫
dxKτ (∂xϑτ (x))2 + 1

Kτ
(∂xφτ (x))2

,

(B7)
with vτ and Kτ the Fermi velocity and the so-called Lut-
tinger parameter in each sector. These are equal to vF

and 1 in the free case, and get renormalized by the inter-
actions. Indeed, the representation of the lattice number
operator reads

α†
jαj/a = . . . ≈ nα(x) +Oα

CDW +Oα†
CDW (B8)

with Oα
CDW = ψ†

α,R(xj)ψα,L(xj)e−i2kFxj accounting for
charge density waves. By integrating their product on
neighbouring sites over the whole lattice, all oscillating
terms will average out unless we are at half-filling, and
we are left with:

Uα

∑
j

nα
j n

α
j+1 −→ Uα

∫
dx (Jα

R + Jα
L )2 − 2 cos(2δ)Jα

RJ
α
L

= 1
2π

∫
dx gU,ϑ (∂xϑα)2 + gU,φ (∂xφα)2

(B9)

with the following coefficients:

gU,ϑ = Uα cos(2δ) ,
gU,φ = Uα(2 − cos(2δ)) .

(B10)

By applying the same procedure to the total unit-cell
interaction, the inter-chain terms give rise to an extra
Sine-Gordon interaction involving the field φ−, originat-
ing from scattering terms of the form:

Ô(x) = ψ†
a,R(x)ψa,L(x)ψ†

b,L(x)ψb,R(x) + h.c. . (B11)

The bosonized expression reads

Hnn −→ 1
2π

∑
τ=±

∫
dx gnn,ϑ,τ (∂xϑτ )2 + gnn,φ,τ (∂xφτ )2

− Unn cos(2δ)
π2

∫
dx cos

(√
8πφ−

)
(B12)

with coefficients:
gnn,ϑ,+ = −gnn,φ,− = gnn,ϑ,− = Unn cos(2δ) ,
gnn,φ,+ = Unn(4 − cos(2δ))

(B13)

Finally, we can also translate the pair-hopping terms by
similar algebra, and obtain

HW1 −→ −2 sin2(δ)W1
π2

∫
dx cos

(√
8πϑ−

)
, (B14)

HW2 −→ 1
2π

∑
τ=±

τ

∫
dx gW,ϑ(∂xϑτ )2 + gW,φ(∂xφτ )2

+ W2
π2

∫
dx cos

(√
8πφ−

)
(B15)



11

with coefficients:

gW,ϑ = 2W2 sin2(δ) ,
gW,φ = 2W2 cos2(δ) .

(B16)

Noticeably, the two kinds of pair-hoppings give rise to
Sine-Gordon terms for the two conjugate bosonic fields:
it will be the one in ϑ− which will be responsible for the
topological phase, while the one in ϕ− is already present
with other types of density interactions between the two
chains. The Sine-Gordon term involving ϕ− favors the
formation of either a spin density wave or charge density
wave, depending on the sign of the coupling [32].

By putting all these contributions together, we get to
Eq. (12) with the bare couplings of the low-energy the-
ory expressed in terms of those of the microscopic lattice
Hamiltonian:

κτ = 1
2π (πvF + gU,φ + gnn,φ,τ + τgW,φ) ,

ξτ = 1
2π (πvF + gU,ϑ + gnn,ϑ,τ + τgW,ϑ) ,

K2
τ = ξτ

κτ
, v2

τ = 4κτξτ ,

β1 = −2W1 sin2(δ)
π2 , β2 = W2 − cos(2δ)Unn

π2 .

(B17)

In order to determine the actual phase the system will
end up into, such bare couplings should be analysed from
the renormalization group (RG) perspective, i.e., by in-
tegrating out short-distance degrees of freedom and re-
taining the long-distance ones only, thus moving from a
full quantum action to a low-energy effective one.

1. RG Flow

The RG-flow is controlled by the flow parameter l, rep-
resenting the effective momentum cutoff in terms of the
overall ultra-violet one via ΛUV/Λ ≃ 1 + dl. At first-
order, the equations for the Sine-Gordon couplings βk,
with k = 1, 2, are determined by their scaling dimension
∆k:

dβk(l)
dl = (2 − ∆k)βk(l) . (B18)

If a coupling flows to ∞ for l → ∞, then the theory ac-
quires a gap, and the coupling is dubbed relevant: this
happens if ∆k < 2. One should actually stop the flow
when the value overcomes the cut-off, and could then es-
timate thereby the value of the gap. If instead the scal-
ing dimension is large, ∆k > 2, the coupling is irrelevant,
since it flows to 0 and disappears from the effective the-
ory. The limiting case, ∆k = 2, the coupling is labeled as
marginal, and higher orders are required to find out its
actual behaviour. In our Eq. (12) we find the common
result ∆1 = 2/K− and ∆2 = 2K− [32]: while K+ does
not flow at all, and the symmetric sector remains gapless

in all cases, we should resort to higher orders of pertur-
bation theory to inspect the flow of K−, at least around
K− ≈ 1

dK−
dl = 4π2A

v2
−

(
β2

1
1
K−

− β2
2K

3
−

)
(B19)

where A is some cutoff depending constant. No addi-
tional contribution to the flow of the βk couplings is
generated at second order, and thus the set of equa-
tions (B18)-(B19) is consistent.

Similar RG flow equations have been studied in the
past, and it has been shown that all points on the plane
defined by

v−
π

√
A

(K− − 1) − |β2| + |β1| = 0 (B20)

flow to a critical model [30]. Upon inserting the bare
values of K− and βj in terms of the original lattice cou-
plings, Eq. B17, and linearising the dependence of v− and
K− on small W2 values, the criticality condition can be
recast, for Unn = 0, as

|W1| = DW2 (sgn(W2) − C) (B21)

with two non-universal constants D = π2/(2 sin2 δ) and
C = cos(2δ)/(π2√

A) (in the case of Uα = 0). Therefore,
we expect a pretty different behaviour depending on the
sign of W2, while a symmetry in W1 should appear. For
example, inserting all numbers we would expect a slope
α+ = 1 (α− = −1/3) in the case of W2 > 0 (W2 < 0)
which perfectly matches the observed slope in Fig. 2a.
The same equation can also be used to predict the be-
havior of the critical lines in the W1 = W2 = W and Uα

phase diagram of figure 2b. However, the equations are
not compact and easy to write. But for the choice of the
non-universal constant A used for the numerical integra-
tion one finds a leading-order linear behavior for W < 0
and a quadratic leading-order for W > 0 matching the
numerical observations.

We tested these predictions by numerically integrating
the differential equations (B18)-(B19) starting from the
bare values of the couplings, up to a point where one
of the two βk coupling constants reach a certain cut-off
value βk(l∗) = c. This indicates the formation of a spec-
tral gap of one or the other kind, which can be estimated
according to ∆ ∼ e−l∗ . The precise predictions depend
on the non-universal constant A appearing in the flow
equations, too: Nevertheless, we can use them for a rough
estimation of the phase diagram, presented in Fig. 2. The
(asymmetric) linearity of the boundaries is evidently kept
up to fairly large values of the W couplings.

2. Two Kitaev Chains

In the context of the adiabatic connection between our
model and the situation of two independent Kitaev chains
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(which will be deepened in App. C), it is worth briefly
mentioning the bosonization of the pair-hopping operator
acting equally on the two chains:

H∆ =
∑
j,α

∆α†
jα

†
j+1 + h.c. . (B22)

By using the recipe exposed above, one finds:

H∆ −→ −g∆
∑

α

∫
dx cos(

√
4πϑα(x))

∼
∫

dx cos(
√

2πϑ+(x)) cos(
√

2πϑ−(x))
(B23)

with g∆ = 2∆ sin(δ)/π. In a situation where the
ϑ− field is already locked, as in the topological phase
through the HW1 operator, H∆ is basically the operator
cos(

√
2πϑ+(x)). The scaling dimension of this operator

is given by ∆ = (2K+)−1, i.e., as long as K+ > 1/4,
this operator becomes relevant and gaps out the charge
sector.

3. Irrelevance of Additional Effective Terms

As promised at the beginning of this long Appendix,
we want to justify our assumption of dropping all the ad-
ditional terms which appear in the effective single chain
Hamiltonians H̃α. As a starting point, the single chain
Hamiltonians of the full model are chosen as the usual
spinless Fermi-Hubbard Hamiltonian consisting of a hop-
ping term and a nearest-neighbor interaction term:

Hα =
∑

j

(
−t(α†

jαj + h.c.) + Uαn
α
j n

α
j+1

)
. (B24)

The commutators Kα,j = [Hα, αj ]/t can be readily com-
puted to be:

Kα,j = αj+1 + αj−1 − Uα

t
(αjn

α
j+1 + nα

j−1αj) (B25)

and inserted into Eq. (10): while α†
jKα,j + h.c. will

only redefine the effective values of t and U , the
product Kα,jKα,j will also generate three-body terms
(nj−1 nj nj+1).

In general, the lowest order of an operator consisting of
N fermionic densities is given in bosonization by a power-
N operator ∼ (∂xφα)N . The scaling dimension of these
operators can be shown to be ∆N = N , i.e., their flow
equations are of the form dβN/dl = (2 − N)βN . Thus,
these operators become surely irrelevant for all N ≥ 3.
In addition to these N -power operators, also some higher
harmonic cosine terms might appear, i.e. cos(n

√
4πφα).

However, their scaling dimension is a monotonic increas-
ing function of n, meaning that the most relevant oper-
ator is given by the first harmonic n = 1. Nevertheless,
with increasing interaction strength these higher harmon-
ics might become relevant, if K± ≪ 1: however, this is
by far not the scenario we are considering in this paper.

Figure 8: Relation of the parameter space of Eq. (8)
to some related works in the literature: the model of
Ref. [17] spans the red line at W2 = W3 = Unn = 0;
the effective model in Eq. 9 spans the magenta plane
at W2 = W1, W3 = 0; while the black dot indicates
the exactly solvable model of Ref. [20] at W2 = W3 =
Unn = W1/2. However, since the latter lives in a higher
dimensional space, this is to be understand as a car-
toon, rather than an exact statement.

Appendix C: Adiabatic Connection to Exactly
Solvable Models

In this Appendix, we provide details about the two
paths in parameter space we chose for illustrating the adi-
abatic connection between our effective model in Eq. (8)
and i) the exactly solvable one of Ref. [20], or ii) the setup
with two uncoupled non-interacting Majorana chains. In
Fig. 8 we also show a cartoon picture of how all the differ-
ent number-conserving models of this article are related.
For the first one, whose non-vanishing gap is plotted in
Fig. 9a, we chose

Hext =
∑

j;α=a,b

(
−t α†

j+1αj + µ

2 (nα
j + nα

j+1)

− Uα n
α
j n

α
j+1 − Ur

2 (na
jn

b
j + na

j+1n
b
j+1)

− Unn (na
j + nb

j)(na
j+1 + nb

j+1)

−W1 b
†
jb

†
j+1aj+1aj

+W2 a
†
jaj+1b

†
jbj+1 +W3 a

†
jaj+1b

†
j+1bj

+h.c.
)

(C1)

where h.c. acts over every term which is not already ex-
plicitly hermitian. In the Hamiltonian above, the chemi-
cal potential µ half of the strength for the very first and
very last site compared to the bulk sites and compared
to eq. (8) an additional interaction term between the two
chains Ur is introduced. This is necessary in order to
solve the model exactly at the special point considered
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in [20]. However, we explicitly checked that the existence
of the Majorana-like phase does not depend on the low-
ering of the onsite potential for the first and last site, as
one would expect for a topological phase.

The path (setting t = 1 for fixing the energy scale)

γ(s) = (W2(s),W3(s), Uα(s), Ur(s))
= (0.8 − 0.4s, 0.4s,−0.7 + 0.3s,−0.8s)

(C2)

with W1 = 0.8, Unn = −0.4, and µ = 4 kept constant,
stretches from s = 0 at our model to s = 1 at 1

4Hλ=0.8
in the notation of Ref. [20].

For the second case, we define a simple linear interpo-
lation, s ∈ [0, 1], between the two limiting cases:

H(s) = (1 − s)Heff + s(Hkitaev,a +Hkitaev,b) (C3)

with Heff the one in Eq. (8) and Hkitaev,α the Majorana
chain for the α = a, b species defined at the sweet spot:

Hkitaev,α = −t
∑

j

(
α†

j − αj

) (
αj+1 + α†

j+1

)
= −t

∑
j

(
α†

jαj+1 + α†
jα

†
j+1 + h.c.

) (C4)

The correlation length extracted from the single parti-
cle correlation functions stays finite along the interpo-
lation path, as shown in Fig. 9b. The big drop in the
beginning can be explained by the charge sector gapping
out. This is supported by looking at the entanglement
entropy (not shown here) which becomes asymptotically
constant instead of following the logarithmic law of crit-
ical systems [50]. This behavior is expected since adding
the pair potential terms allows for coupling of states with
all possible particle numbers.

The existence of such an adiabatic connection, pre-
serving the time-reversal symmetry and a (Z2)+ × (Z2)−
subgroup of the full symmetry group U(1)+ × (Z2)− of
our model, is instrumental to understand and categorise
the topological phase. Breaking the U(1) symmetry leads
to a four fold degeneracy, differently from the case of
preserving the U(1) symmetry. This can be understood
by recognizing that the four ground-states split into two
ground-states for each parity of the total particle number.
By conserving the total paritcle number, and therefore
fixing the parity, we restrict the model to one of the two
subspaces having either a even partiy (Ntot mod 2 = 0) or
odd parity. This results in an effective two fold ground-
state degeneracy as observed in the DMRG simulations,
see Fig. 5.

Since the model we are dealing in this work is of in-
teracting nature and the interaction is crucial to obtain
the desired Majorana-like phase, it should be noted that
the general Z classification of non-interacting fermionic
systems in spatial dimension one breaks down to a Z8
classification presence of interactions and time reversal
symmetry, as was shown in Ref. [51]. As long as we only
couple two chains by the effective Hamiltonian (8) such
a distinction is not relevant.

0.0 0.2 0.4 0.6 0.8 1.0
s

0

1

2

3

4

5

6

l

(a)

0.0 0.2 0.4 0.6 0.8 1.0

s

0

2

4

6

8

l

(b)

Figure 9: Fitted single particle correlation length l for the
single chain correlation function ⟨a1a†

l ⟩ along the two paths
of the appendix C. (a) Interpolation between the effective
model and the exactly solvable model of [20] via the path
γ(s). (b) Linear interpolation between the effective model
with L = 100, ν = 1/3, W1 = W2 = 0.5, Uα = −0.7,
Unn = 0. We chose different starting points of the effec-
tive model in both adiabatic paths. This was motivated
by finding the shortest connection between our effective
model and the target model. However, we explicitly checked
that the effective model was in both cases in the Majorana-
like phase, and that all other fingerprints of the MZM are
present along the paths.

Appendix D: Entanglement Spectrum Analysis

In this Section we briefly discuss the form of the en-
tanglement spectrum within the topological phase, as de-
picted in Fig. 4a. From the bosonization analysis of our
model we learned that the symmetric and antisymmet-
ric sectors of the Hilbert space decouple. A similar de-
coupling is therefore also expected for the entanglement
spectrum and the states corresponding to the Schmidt
decomposition:

ϵδN,P,j = −2 log(λδN,P,j) != ϵδN,j . (D1)

Here, λδN,P,j denotes the Schmidt values labeled by two
quantum numbers associated to the symmetric (δN) and
antisymmetric sector (P ), namely the excess charge with
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respect to average filling and the parity of one of the
dressed chains. Since the symmetric sector is gapless
and the anti-symmetric one is in a gapped topological
phase, we expect that the spectrum will show distinctive
features of both.

The gapless charge sector is indeed displaying the uni-
versal behavior with entanglement levels arranged in
parabolas as a function of the quantum number δN ,
whose details are determined by the underlying confor-
mal field theory [37, 38].

This special form of the entanglement spectrum is also
useful for extracting the Luttinger parameter K+, which
was also used in the main text [39]:

⟨(N+,l − ⟨N+,l⟩)2⟩ = K+
2π log

(
2L
π

sin(π/Ll)
)
.

Moreover, the curvature of the parabolas is also mainly
determinated by the Luttinger parameter K+ by [38]:

− log(λ(δN+)2) ∼ K+
2 (δN+)2 .

However, the exact numerical values of the entanglement
spectrum and all correct degeneracies are hard to extract,
since they are subject of strong finite bond dimension
effects [37] and using the formula connecting the total
number fluctuation to the Luttinger parameter is more
stable.

The topological character of the gapped anti-
symmetric sector is dictating the presence of two copies
of each level, transforming differently under the parity.
This is in perfect agreement with the results of Ref. [28],
and the degeneracy represents the fractionalization of the
fermionic parity operator at the end of a finite subsystem,
as more generally known for symmetry-protected topo-
logical phases [52]. Comparing the results for the system
in the topological phase, Fig. 4a, with results form the
system being in the trivial phase, Fig. 4b, we indeed find
that the parabolas originating from the gapless charge
sector are still present, however the non-trivial double
degeneracy between the two different parity sectors is
gone.

Appendix E: The Full Model in the Perturbative
Regime

In this Section we report the results found for the
full model deep inside the perturbative regime. The
Schrieffer-Wolff transformation used for deriving the ef-
fective Hamiltonian (9) is valid in the limit of µ (the
chemical potential on the c and d states) being the dom-
inant energy scale. Together with requiring the resulting
parameters of the effective model defined by the rela-
tion (9) being in the topological regime gives some addi-
tional constrains on the parameters of the full model.

For example, targeting the effective parameters Unn ≈
0, W ≈ t/1.4 and Uα = −0.5t while fixing

µ/J = 5 , V1/J = −1 , V2/J = 1.25 , t = 0.01

leads to W/J ≈ 0.007 and Uα/J ≈ −0.005. Thus, the
intra-wire interaction Uα is several orders of magnitude
smaller than the interactions on the c and d states (V1
and V2), which are not constrained to be small since they
act exclusively on the c and d subspace. Further, we used
t∥ = 0.05 together with t⊥ = 0. This should lead to a
slightly detuningW1 > W2 favoring the topological phase
as expected from appendix A. The results for a simula-
tion of a system with 60 sites and a filling of ne = 40
(ν = 1/3 in the effective model) are shown in Fig. 10.
First looking at the density profiles in Fig 10b, one sees
a slightly decrease of the population on the a and b sites
compared to the effective model. However, this is ex-
pected due to the additional c and d states. Now looking
at the end-to-end correlation function in Fig. 10a, one
sees the same characteristic behavior as in the effective
model. I.e., an exponential decay towards the middle of
the system together with an exponential revival show-
ing a relative sign between the two parity sectors. Re-
markably, the energy gap (correlation length) of the full
four-flavor model seems to be larger (smaller) than in
the effective model. This can be explained by the addi-
tional terms in the Hamiltonian 8 which are discarded
in the numerical simulations of the effective model, as
discussed below Eq. 10.

(a)

(b)

Figure 10: Comparison of the results for the full model
with couplings described in the text versus the effective
model for a L = 60 system: (a) single-particle correlations,
(b) local density of a single species. Results obtained for the
sites b are analogous.
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Appendix F: Deviation from perfect π-flux

In this section we shortly address the effects of hav-
ing a small deviation from a perfect π flux Φ = π − ϵ
through the rhombi building the chain, Fig. 1a. This
change amounts to adding a pertubation term to H♢ ac-
cording to

H♢(ϵ) = H♢ + δH(ϵ)

δH(ϵ) = J
∑

j

iϵ d†
jaj + h.c. . (F1)

Perfect cancellation of single-particle processes etween
the (dressed) a and b wires only occurs at perfect π-flux.
δH(ϵ) therefore explicitly breaks the exact Z2 symme-
try representing the fermionic parity in each (dressed)
wire, and with it also the protection of the Majorana
edge modes. Intuitively, we would expect the two parity
ground-states to hybridize and to form a ground-excited
doublet, split by an energy amount proportional to the
deviation from π-flux.

By performing the Schrieffer-Wolff transformation sim-
ilar to A it is possible to find the induced perturbation
on the effective model (8) to lowest order

δHeff(ϵ) = iϵJ2

µ3

∑
j

(
a†

jbj − b†
jaj

)
(F2)

which makes evident its Z2-breaking character. This
leads to a direct coupling between the two parity sectors

⟨Ω+|δHeff(ϵ)|Ω−⟩ ∝ ϵ (F3)

and thus to a mixing of these states to form the true
ground- and first-excited-state, with an energy splitting
proportional to ϵ.

While the above concerns an homogeneous violation
of the π-flux condition, another interesting question re-

volves around a single flux impurity at site j

Ôj = gpa
†
jbj + h.c. .

Cheng et al. [19] showed using bosonization that Ôj be-
comes irrelevant as long as j is deep inside the bulk.
However, approaching the boundaries j = 0 or j = L
the operator Ôj essentially becomes the Majorana-mode
operator of the left/right site of the system resulting ex-
actly in the above mentioned coupling between the two
ground-states (F3).

We therefore expect that, the larger is the window
around the edges for wich the π-flux condition can be
exactly implemented, the smaller will be the splitting
and thus the larger the lifetime of the Majorana bound
states.

Verifying these statements numerically is technically
very tedious. As mentioned in section IV, even in the
ideal case of Φ = π, the DMRG calculations would tend
to select an equal-weighted superposition of the two sec-
tors if the parity-conservation are not imposed at the
tensor level. As a consequence, the edge-to-edge revival
of correlations gets shadowed, as in Fig. 3, also features in
the entanglement spectrum get lost, which are the main
effects expected from a π-flux violation. Furthermore,
the symmetry-breaking energy split proportional to ϵ gets
masked by the overall gapless nature of the model, which
dictates a finite-size closing of the gap as L−1. This limits
quite serverly the accessible system sizes and/or the max-
imal value of the π-flux violation according to ϵ ≪ L−1.

A more reasonable way to study the fate of the Majo-
rana modes in the presence of a π-flux violation would
be to look at dynamical observables, like the auto-
correlation function of an operator having a finite overlap
with the Majorana edge modes[53]. This approach would
be independent of imposing symmetries to the tensors
and would give a direct access to the lifetime of the Ma-
jorana edge modes. However, studying dynamical quan-
tities goes beyond the scope of this paper and is left for
future studies.
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II.2 Data Availability
The simulation combined infinite and finite Matrix Product State (MPS) simula-
tions based on the ITensor.jl [274] library. The code and final results are publicly
available on ZENODO under [275]. The bare wave functions are stored on the PGI-
8 backup data server at Forschungszentrum Jülich. Upon request, the data can be
made available by the Institute for Optimal Quantum Control.

II.3 Summary
The standard Ising model has two phases: a Z2 symmetry broken phase and an un-
ordered phase. Both phases are separated by a continuous phase transition of second
order, described by the critical Ising model, see also Subsection 1.3.3. By extending
the Ising model to allow for a First-Order Phase Transition (FOPT) between the
two phases, a tricritical point emerges at the parameter where the continuous tran-
sition line merges with the FOPT line; see Subsection 1.3.3. At this point, multiple
competing phases become critical, and new physics emerge.

This Tricritical Ising (TCI) model, generally described by a conformal field theory,
has a rich particle content, with one of the fields being related to non-Abelian anyons
in two-dimensional topologically ordered quantum matter [276] and fault-tolerant
quantum computation [34] by coupling copies of the TCI model in a two-dimensional
wire array. This coupling is designed to gap out all unwanted low-energy excitations,
leaving only the field related to the non-Abelian anyons. A strategy we have recently
employed to realize a Kalmayer-Luttinger spin liquid in a triangular lattice [277].
Moreover, it was conjectured that the TCI model can be used to observe emergent
supersymmetry [278, 279].

Despite the rich physics expected at the TCI phase transition, there has been no
experimental realization to date, to the best of our knowledge. In the present study,
we propose a promising approach for experimentally accessing this exotic phase
transition. The proposed quantum simulator is based on Josephson Junction Arrays
(JJAs), where recent advances in the fabrication process [12, 13, 280–282] allow
for the necessary high control of the coupling parameters to tune the system into
the TCI transition. Furthermore, the JJA forms a natural platform for the direct
simulation of strongly interacting bosonic field theories [168].

The main idea is to engineer the low-energy theory of the JJA to become a triple
sine-Gordon model

𝐻eff ≈ ∫d𝑥 (𝜕𝑥𝜑̂(𝑥))2 +
3

∑
𝑛=1

𝜇𝑛 cos (
√

2𝑛𝜑̂(𝑥)) (II.1)

which has the same universality behavior as the standard 𝜑̂6 theory [283–285] from
Eq. (1.150).

The basic building block used in the quantum ladder is designed to mimic this
multi-frequency sine-Gordon model with individual control over the 𝜇𝑛 amplitudes.
In particular, this element consists of two superconducting islands joined by three
individual Josephson junctions with transparencies 𝑇1 = 𝑇3 and 𝑇2, with an addi-
tional flux piercing the two loops formed by the triple junction, as shown in Figure
1(a) of the publication. Let 𝜑 be the difference in the superconducting phase of the
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two islands and Δ the gap of the bulk superconductor, the energy-phase relation of
the triple junction is given by [286]

𝑉𝐽(𝜑) = − Δ ⎛⎜
⎝

√1 − 𝑇1 sin (𝜑 − Φ
2

)
2

+ √1 − 𝑇2 sin (𝜑
2

)
2

+√1 − 𝑇1 sin (𝜑 + Φ
2

)
2
⎞⎟
⎠

.

This potential is symmetric under the transformation 𝜑 → −𝜑 mod 2𝜋 which im-
plements the Z2 Ising symmetry. The non-sinusoidal character of this potential ul-
timately leads to the desired form of the low-energy theory in Eq. (II.1).

This is explicitly seen by performing an expansion in a Fourier sum

𝑉𝐽(𝜑) = ∑
𝑛

𝜇𝑛 cos(𝑛𝜑)

where each potential, cos(𝑛𝜑), represents the tunneling of 𝑛 Cooper pairs from one
island to the other, and the coefficients depend on the three free parameters 𝑇1, 𝑇2
and Φ.

In the limit of no charging effect, the quantum mechanical state of the triple junction
is completely defined in terms of the classical potential landscape of 𝑉𝐽(𝜑), and in
particular, the local and global minima defined by

𝜑min(𝑇1, 𝑇2, Φ) = argmin
𝜑∈[0,2𝜋)

(𝑉𝐽(𝜑)) . (II.2)

If there is only one global minima 𝜑min = 0, the triple junction is in an unordered
symmetry-restoring phase. On the other hand, if the solution space is double degen-
erated with 𝜑min,1 = −𝜑min,2 mod 2𝜋, the triple junction spontaneously breaks the
Ising symmetry. The transitions between the unordered phase and the symmetry-
broken phase are classified either as a second-order transition of Ising criticality,
where the two degenerate minima merge, or as a FOPT, where the minimum 𝜑 = 0
raises in energy and the two local minima become the new global minima. This
semi-classical analysis leads to Figure 2 of our publication, which displays the single-
particle Cooper-pair current ̂𝐽 (2𝑒)

⟂ ∼ sin(𝜑) through the triple junction as an order
parameter.

In a final step, we extended this semi-classical analysis to a full quantum ladder
model by repeating the triple junction, coupling them with single Josephson junc-
tions, and adding general charging effects between the two legs of the ladder. The full
quantum chain is shown in Figure 1(b) of our publication. A first bosonization study
of the model revealed that the anticipated multi-frequency sine-Gordon model from
Eq. (II.1) emerges, along with an additional uncoupled Tomonaga-Luttinger Liquid
(TLL), as a low-energy representation of the model. While the TLL characterizes
the long-wavelength behavior of excitations in the total density, the multi-frequency
sine-Gordon model describes excitations between the two legs of the ladder, akin to
the anti-bonding sector in Eq. (1.143). Through a renormalization group analysis of
the model, we identified a set of parameters for which the quantum ladder might
exhibit a TCI point.

We verified these findings by an extensive numerical study of the quantum ladder
model using Uniform Matrix Product State (uMPS). By measuring the local order
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parameter ̂𝐽 (2𝑒)
⟂ , we identified the bulk phases of the quantum ladder. The semi-

classical phase diagram was qualitatively reproduced, as illustrated in Figure 3(a)
of our publication. By further analyzing the transitions between the ordered and
disordered phases, we identified the first-order transition line and the continuous
Ising transition line, and extrapolated them to the point 𝑝⋆ in the parameter space,
where the two lines merge. Measuring the central charge, extracted from small finite-
size MPS simulations with periodic boundary conditions, through the merging point
reveals that the central charge is 𝑐 ≈ 1 + 1/2 on the Ising site, becomes 𝑐 ≈ 1 + 7/10
at 𝑝⋆ and then rapidly drops to 𝑐 ≈ 1, as shown in Figure 3(e) of our publication.
Because the low-energy theory predicts a background gapless TLL with a central
charge of 𝑐 = 1, this behavior leads to the conclusion that the remaining part of the
low-energy theory enters the TCI phase, as expected.

However, it was not possible to measure the critical exponents of primary fields,
such as the magnetization. The main challenge is the large bond dimension required
to extract good data. A rough estimate given by the correlation length directly ex-
tracted for the anti-bonding sector using the technique described in Subsection 2.2.2
suggests that a bond dimension of approximately 𝜒 ∼ 20000 is required to observe
the algebraic decay over a few hundred lattice sites. This is mainly rooted in the
large central charge and poor scaling of the correlation length with the bond dimen-
sion. Performing extended simulations at this huge bond dimension is beyond the
scope of the present work.
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Modern hybrid superconductor-semiconductor Josephson junction arrays are a promising platform
for analog quantum simulations. Their controllable and non-sinusoidal energy/phase relation opens
the path to implement nontrivial interactions and study the emergence of exotic quantum phase
transitions. Here, we propose the analysis of an array of hybrid Josephson junctions defining a
2-leg ladder geometry for the quantum simulation of the tricritical Ising phase transition. This
transition provides the paradigmatic example of minimal conformal models beyond Ising criticality
and its excitations are intimately related to Fibonacci non-Abelian anyons and topological order in
two dimensions. We study this superconducting system and its thermodynamic phases based on
bosonization and matrix-product-states techniques. Its effective continuous description in terms of
a three-frequency sine-Gordon quantum field theory suggests the presence of the targeted tricritical
point and the numerical simulations confirm this picture. Our results indicate which experimental
observables can be adopted in realistic devices to probe the physics and the phase transitions of the
model. Additionally, our proposal provides a useful one-dimensional building block to design exotic
topological order in two-dimensional scalable Josephson junction arrays.

The rapid advances in the fabrication of superconduct-
ing/semiconducting heterostructures [1, 2] allow for the
realization of Josephson junction arrays (JJAs) with un-
precedented tunability of their physical parameters [3–
5]. State-of-the-art electron beam lithography and etch-
ing techniques enable the realization of superconducting
(SC) arrays with exquisite geometrical precision and scal-
ability. Epitaxial growth consents to create pristine in-
terfaces between a semiconducting substrate and SC is-
lands, thus providing the possibility of controlling these
setups through voltage gates. These fabrication develop-
ments are flanked by remarkable advances in measure-
ment techniques which include microwave spectroscopy
to study the strongly correlated systems emerging in
Josephson junction chains [6–8] and transport measure-
ments to investigate the intricate thermodynamic proper-
ties of these systems [3–5, 8, 9]. Such progresses brought
JJAs right back into the arena of analog quantum simula-
tion platforms, where they started their journey decades
ago. The simultaneous tunability of the junction trans-
parencies [2, 10–13] and magnetic fluxes opens indeed the
path to tailor models of interest, among which quantum
field theories (QFTs) and integrable models [6, 14–16].
In particular, the experimental achievement of multicrit-
ical points, with peculiar conformal field theories (CFTs)
associated with them [17], becomes within reach [18].

∗ These authors contributed equally to this work.

In this work, we formulate a blueprint for the quantum
simulation of the tricritical Ising (TCI) CFT in a tunable
Josephson junction ladder. The reasons for interest in
this model are multiple. It constitutes the simplest ex-
ample of CFT beyond the Ising model, and its particle
content includes excitations that share the same fusion
properties of Fibonacci non-Abelian anyons. Successfully
implementing this model will open the way to engineer
exotic topological order in 2D arrays in the spirit of the
wire constructions of Refs. [19–22]. Moreover, the TCI
model stands as a strong potential candidate to observe
the emergence of supersymmetry [23–25]. Notably, to
our knowledge, no experimental realization of a quan-
tum TCI phase transition in 1D has ever been observed,
nor have its critical exponents been measured.

Indeed, the quantum simulations of CFTs beyond the
Ising universality class face both experimental and theo-
retical challenges: the most recent theoretical proposals
rely on advanced constructions based on Majorana modes
[22, 24–28], extended Hubbard models with staggering
potentials [29, 30] or nontrivial mappings between micro-
scopic lattice operators and the field content of the CFTs
[31]. In this context, the main mechanism to achieve a
TCI point is to consider platforms like Rydberg atom
systems [32, 33] and ultracold atoms in tilted optical su-
perlattices [34] that are described by discrete models with
a continuous Ising phase transition turning into a first-
order phase transition (FOPT) at the tricritical point.

JJAs offer a direct way to implement the scaling limit
of interacting bosonic QFTs [15, 18]. In the following we
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Figure 1. (a) Two E-shaped SC islands are connected through
three parallel junctions. An out-of-plane magnetic field (red
arrows) dictates the Aharonov-Bohm phases Φ1 and Φ2 along
the two loops. The external junctions are controlled by elec-
trostatic gates at potential VG1, VG3 which vary the carrier
density in the surrounding semiconductor. This triple JJ ele-
ment allows us to control the potential (2) at each rung of the
ladder geometry (b). The fluxes of the triple JJ elements are
staggered along the ladder [39]. Mutual rung capacitances
and the island self-capacitances determine the electrostatic
interactions V⊥ and EC .

present a ladder system that embodies a three-frequency
sine-Gordon model and can be tuned to naturally flow
towards the TCI point at low energy. The chosen ladder
geometry offers an alternative construction compared to
previous works on SC chains [16, 18] (see also the lad-
der construction in Ref. [6]), and opens a path towards
2D devices with exotic properties [33]. To achieve our
goal, we utilize a blend of analytical techniques, including
mean field analysis and bosonization [35], complemented
by numerical results based on variational uniform matrix
product states (VUMPS) [36–38].

The triple Josephson junction.- The building block of
our 1D construction consists of two E-shaped SC islands
facing each other and grown on a semiconducting sub-
strate [Fig. 1(a)]. Schematically, we model this element
as three parallel Josephson junctions (JJs) [39] where An-
dreev bound states induced in the semiconductor mediate
the Cooper pair tunneling [40, 41]. For simplicity, we as-
sume that each junction is defined by a single transport
channel with transparency Tp ∈ [0, 1] (p = 1, 2, 3) and
energy/phase relation [40]:

E(p)
J (φ) = −∆

√
1− Tp sin

2 (φ/2) , (1)

See also Refs. [13, 42] for alternative realizations. In
Eq. (1), φ is the phase difference between the two is-
lands and ∆ is the SC gap induced by proximity in the
semiconducting substrate. High-transparencies Tp lead
to coherent tunneling events of multiple Cooper pairs [43]
corresponding to higher harmonics contribution, cos(nφ)
with n > 1, to the dispersion (1). In the triple JJ geome-
try, the amplitudes of such events can be tuned by insert-
ing two magnetic fluxes in the resulting loops [Fig. 1(a)]
[39].

We set Φ1 = Φ2 = Φ and identical transparencies
(T1 = T3) for the external junctions, controlled using
electrostatic gates [Fig. 1(a)]. With these constraints,

the exchange of the SC islands, φ → −φ, corresponds
to the required Z2-symmetry for the multicritical Ising
physics, which is reflected in the odd current/phase rela-
tion of the triple JJ. Multiple channels in the junctions or
unequal plaquette areas may explicitly break this sym-
metry [39], hindering the observation of critical features
whenever the corresponding energy gaps are larger than
the experimentally achievable energy resolution due to
the finite size L and the temperature. In the symmetric
setup, the total Josephson potential can be expanded as

VJ (φ) =
∑
n∈N

µn(X) cos (nφ). (2)

The Fourier coefficients µn [39] depend on the values of
the external parameters X = (T1 cos (Φ), T1 sin (Φ), T2)
which span a solid cylinder.

We will use many copies of this triple JJ to build a 1D
ladder geometry, thus promoting the phase difference φ
to a position-dependent field. In light of this, a prelim-
inary mean-field analysis allows us to qualitatively un-
derstand the onset of a TCI point by investigating the
potential VJ (φ) as a function of X. In a semiclassical pic-
ture, a tricritical point arises when three potential min-
ima merge [44–46]. In the landscape defined by VJ(φ)
with φ ∈ (−π, π], for any T2, there exists a point (T1,Φ)c
where this merging occurs and VJ(φ) is approximated by
a φ6 local potential, see Fig. 2. This suggests the first
connection to the TCI model and its Ginzburg-Landau
(GL) formulation [44–46].

1D model.- We design a 1D quantum simulator to
achieve a TCI point by arranging a set of identical triple
JJs with potential VJ in parallel, as depicted in Fig. 1(b),
to implement a multiple-frequency sine-Gordon model at
low energies. The Hamiltonian of the JJ ladder is:

Ĥ =
L−1∑
j=0

[ ∑
α=a,b

(
ECN̂

2
α,j − EJ cos (φ̂α,j+1 − φ̂α,j)

)

+ V⊥ N̂a,jN̂b,j + VJ (φ̂a,j − φ̂b,j)

]
,

(3)

where φ̂α,j represents the phase operator of the j-th is-
land on the leg α ∈ {a, b}. Along the legs, the SC is-
lands are connected through JJs in a standard sinusoidal
regime with Josephson energy EJ . This energy scale
can vary from EJ ≃ h 50 GHz [11] down to EJ = 0
for completely depleted junctions. The dynamics of the
SC phases in Eq. (3) is dictated by charging effects,
described by the charge operators N̂α,j , canonically con-
jugated to the SC phases, [N̂α,j , e

iφ̂α,j ] = −eiφ̂α,j . We
consider in particular an on-site electrostatic repulsion
EC and a rung repulsive interaction V⊥.

To obtain the rung potentials VJ in Eq. (3), the pat-
tern of magnetic fluxes in the system must be carefully
considered: a uniform magnetic field breaks time-reversal
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III

I

II

Figure 2. Given φmin the global minimum of VJ in Eq. (2),
we depict |sin (φmin)| in the parameter space at T2 = 0.6.
Regions I and III correspond to Z2-symmetric configurations
with φmin = 0, π respectively. Region II presents two degener-
ate minima. Inset: the transition between region I and II can
be either discontinuous with three degenerate minima (yellow
line) or continuous with the merging of the two minima in
φmin = 0. The red dot labels a tricritical point where a three-
well potential VJ = g2φ

2 + g4φ
4 + φ6 approximates Eq. (2).

The dashed line corresponds to g4 = 0.

invariance driving the system into Meissner chiral phases
[47–53] and does not fulfill the Z2-symmetry on each
rung. We consider instead staggered fluxes alternating
at each triple JJ [Fig. 1 (b)]. This choice yields the
local effective potential (2) and avoids additional fluxes
between subsequent rungs [39].

The aimed multi-frequency sine-Gordon model
emerges when the rung potentials VJ and the Joseph-
son energy EJ dominate over the charging effects
EC and V⊥. In this Josephson-dominated regime,
the system lies away from Mott insulating phases
[50, 54, 55] and phase localization due to charge
disorder [56–58] is strongly irrelevant. The effects
of disorder in the potential VJ are discussed in [39].
In the continuum limit, the low-energy physics of
the Cooper pairs can be described through bosoniza-
tion [35] by introducing dual fields (θ̂α(x), φ̂α(x)) for
each leg α, with

[
θ̂α(y), φ̂β(x)

]
= −iπδαβΘ(y − x).

N̂α,j/a ≈ −∂xθ̂α(x)/π represents the charge of the island
j = x/a and a the lattice spacing.

By defining the customary charge c and spin s sectors,
φ̂c/s(x) = (φ̂a(x)± φ̂b(x)) /

√
2, the Hamiltonian (3) is

approximated by [39]:

Ĥ =
∑
q=c,s

uq

∫
dx

2π

[
Kq (∂xφ̂q)

2
+

1

Kq

(
∂xθ̂q

)2
]

+

∫
dx

a

3∑
n=1

µn cos
(√

2nφ̂s

)
. (4)

Eq. (4) describes the two branches of the model as Lut-
tinger liquids (LLs), with Luttinger parameters Kc/s ≈
π
√
EJ/ (2EC ± V⊥) [47, 50]. The rung potential VJ af-

fects only the spin branch and yields the targeted multi-
ple sine-Gordon interactions. The three potential terms
in Eq. (4) must be relevant in the renormalization group
sense and induce order in the phase φ̂s, driving the spin
sector away from the LL phase. This sets the constraint
Ks > 9/4, which, indeed, is fulfilled for sufficiently large
Josephson energies, when the semiclassical description is
most accurate. Higher harmonics in Eq. (2), instead, are
neglected as less relevant and characterized by smaller
amplitudes [39].

The interplay of the three sine-Gordon terms µn yields
nontrivial phase transitions [18, 59, 60] between the low-
energy massive phases of the spin sector. In particular,
an Ising critical line meets a FOPT in a tricritical point
characterized by the TCI CFT with central charge c =
7/10 [18, 60].

Observables and results.- We study the phase dia-
gram of our model by using the variational uniform ma-
trix product state ansatz (VUMPS), [36–38], to find the
ground state of the Hamiltonian (3) in the thermody-
namic limit. The VUMPS is based on a two-site elemen-
tary cell representing two SC islands on the same rung.
The local Hilbert space is constructed from the charge
basis defined by N̂α=a/b,j . For numerical purposes, we
truncate its basis by introducing a cutoff, |Nα,j | < Nmax,
with Nmax ≥ 6 [39].

We set EC/EJ = 0.4 and V⊥/EJ = 0.65, correspond-
ing to Ks ≈ 8. This favours the clean emergence of
the transition lines as the interactions are strongly rel-
evant, yielding sizeable energy gaps in the spin sector.
The Fourier components µn in Eq. (2) are determined
from Eq. (1) with a SC gap ∆/EJ = 50 and T2 = 0.6,
consistent with Fig. 2.

We identify the phases of the model with labels I, II
and III as in Fig. 2, and, to distinguish them, we employ
the local order operator Ĵ (2e)

⊥ (x) = sin
(√

2φ̂s(x)
)

repre-
senting the single-particle contribution to the rung cur-
rent. In the VUMPS simulations, the symmetry-broken
phase II is signaled by a finite ⟨Ĵ (2e)

⊥ ⟩ [Fig. 3(a)], and it
aligns with the mean-field predictions in Fig. 2. The sym-
metric phases I and III broaden away from the semiclas-
sical limit due to the dominant scaling behavior of the
first-harmonic interaction. The order parameter allows
us to investigate the boundary between the disordered
phase I and the ordered phase II: a neat jump in ⟨Ĵ (2e)

⊥ ⟩
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Figure 3. (a): Expectation value of the order parameter Ĵ
(2e)
⊥ at T2 = 0.6. Green stars mark a discontinuity of the log-

fidelity per site [Eq. (5)] denoting the FOPT between phases I and III, consistently with the mean-field picture. (b): FOPT
discontinuity of exp (−F) and ⟨Ĵ(2e)

⊥ ⟩ between phases II and I at X2 = 0.52 [cut b) in panel (a)]. (c): singular behavior of
the fidelity susceptibility χF and order parameter along the cut c) at X2 = 0, both indicating a second-order phase transition.
(d): collapse of the correlation length ξs at X2 = 0 for five values of the bond dimension D by employing a finite-entanglement
scaling [39, 61]. (e): critical exponent β obtained by fitting ⟨Ĵ(2e)

⊥ ⟩ as a function of X1 for 0.42 < X2 < 0.49 and bond dimension
D = 600 (blue dots). Two plateaux appear close to the Ising (βIS = 1/8) and TCI (βTCI = 1/24) predictions. The central
charge (empty symbols), derived from finite-size DMRG simulations [39], increases from c ≃ 1 + 1/2 to c ≃ 1 + 7/10 before
dropping to c ≃ 1.

marks a FOPT for X2 = T1 sin (Φ) ≳ 0.475 [Fig. 3(b)],
while a continuous change in the region |X2| ≲ 0.475
indicates the onset of a second-order transition, as exem-
plified for X2 = 0 in Fig. 3(c).

This picture is confirmed by the analysis of the ground
state fidelities [62–65]. Given the abrupt change of the
ground state |ψ (X)⟩ across the FOPT, the average log-
fidelity per site [64]

F (X, δ) = − lim
N→∞

1

N
log (⟨ψ(X− δ)|ψ(X+ δ)⟩) , (5)

displays a clean discontinuity [Fig. 3(b)], at fixed δ. On
the other hand, across the lower cut the fidelity suscep-
tibility χF = F/δ2 shows a more gradual singular be-
haviour and exhibits the typical peak of a second-order
phase transition in Fig. 3(c).

The universal collapse of the spin correlation length ξs
according to finite entanglement scaling ansatz [39, 61]

confirms that the continuous phase transition lies within
the Ising universality class, see Fig. 3(d): for X2 = 0,
we located the critical point X1c and extrapolated the
infinite bond dimension estimate of the critical exponent
ν = 1.0(1), matching the CFT prediction νIS = 1. Addi-
tionally, our analysis reveals the scaling of the effective
magnetization [39] ⟨Ĵ (2e)

⊥ ⟩ ∼ |X1 −X1c|β , with the criti-
cal exponent β compatible with the Ising value βIS = 1/8
for |X2| < 0.43 [Fig. 3(e)].

The latter confirms also the onset of the TCI point
joining the Ising phase transition and the FOPT: by in-
creasing X2 above 0.43, β decreases and, at X2 ∼ 0.46,
it exhibits a plateau close to the expected TCI value
βTCI = 1/24 [Fig 3(e)]. Further increasing X2 results
in a vanishing β, as expected for a FOPT. The error bars
in Fig. 3(e) do not account for finite entanglement effects,
accentuated by the massless LL in the charge sector with
c = 1 throughout the entire phase diagram. Despite this,
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we observe a good convergence in scaling features away
from the critical point.

Finally, along the transition line for X2 > 0.42, finite-
size density-matrix renormalization group (DMRG) sim-
ulations reveal in Fig. 3(e) the non-monotonic behavior
of the central charge c [29, 66], consistently with the pres-
ence of the TCI CFT (c−1 = 7/10) amid the Ising regime
(c−1 = 1/2) and the FOPT (c−1 = 0). Finite size effects
yield large central charge estimates as expected and shift
the tricritical point to larger X2 relative to the β = βTCI.

Experimental observables.- Transport features can be
used to explore the phase diagram of the model. Indeed,
the thermal conductance across 1D systems at criticality
is proportional to the central charge c of the related CFT
at low temperature T [67, 68]: GQ =

πk2
BTc
6ℏ . In our

model, symmetric and symmetry-broken phases exhibit
c = 1 due to the charge sector, while along the transition
line, the additional contribution of the spin sector yields
the behaviour shown in Fig. 3(e).

In thermal transport experiments [69, 70], heat cur-
rents will be dominated by the QFT collective modes for
temperatures considerably below the SC gap (∼ 2K for
Al). Finite size and temperature will affect the profile
of the heat conductance as a function of the system pa-
rameters. Nevertheless, a non-monotonic behavior of GQ

across the second-order phase transition line and in prox-
imity of the TCI point would provide strong evidence of
the emergence of the related CFTs.

Furthermore, as the rung currents exhibit quasi long-
range order at the phase transitions, the power spectrum
of their noise provides a probe to detect the critical lines
and measure the scaling dimension of the order parame-
ter. Additionally, microwave spectroscopy of JJAs [6–8]
allows for the study of the excitation spectra of the sys-
tem and can be used to verify the predictions of the TCI
CFT spectra [46, 71–74]

Conclusions.- We designed a JJ ladder to realize
a quantum simulator for the tricritical Ising CFT.
Our construction is based on the properties of hy-
brid semiconducting-superconducting JJs and their non-
sinusoidal energy/phase relation. In particular, we en-
gineered a triple JJ that allows us to tune the higher
harmonics and we adopted them to realize the physics of
a multi-frequency sine-Gordon QFT [60].

We used bosonization and tensor-networks simulations
to investigate this JJA. Our analysis showed the pres-
ence of an ordered phase and highlighted the existence
of a critical Ising plane connected to a first-order transi-
tion along a tricritical Ising line within a three-parameter
space.

Our construction does not require the introduction of
strong and fine-tuned interactions and relies on the ad-
justments of parameters that can be controlled in hybrid
state-of-the-art platforms.

Our study poses the basis for further explorations

of the connection between nontrivial interacting CFTs
and hybrid JJ systems characterized by high harmon-
ics terms. The ladder we devised, in particular, pro-
vides a tool to engineer systems with exotic topological
order in two-dimensional setups: an array of these tricrit-
ical systems opens the way to realize Fibonacci topolog-
ical superconductors [21, 22] with universal non-Abelian
anyons.

Acknowledgements.- We thank L. Banszerus, A. Cap-
pelli, C. Marcus, G. Mussardo, C. Schrade and S.
Vaitiekenas for fruitful discussions. We acknowledge sup-
port from the Deutsche Forschungsgemeinschaft (DFG)
project Grant No. 277101999 within the CRC network
TR 183 (subprojects B01 and C01). L.M. and M.B. are
supported by the Villum Foundation (Research Grant
No. 25310). N.T. and M.R. are further supported by
the DFG under Germany’s Excellence Strategy - Cluster
of Excellence Matter and Light for Quantum Computing
(ML4Q) EXC 2004/1 – 390534769. The authors grate-
fully acknowledge the Gauss Centre for Supercomputing
e.V. (www.gauss-centre.eu) for funding this project by
providing computing time through the John von Neu-
mann Institute for Computing (NIC) on the GCS Super-
computer JUWELS at the Jülich Supercomputing Cen-
tre (JSC) (Grant NeTeNeSyQuMa) and the FZ Jülich for
JURECA (institute project PGI-8) [75]. Data and Code
are available at [76].

[1] P. Krogstrup, N. L. B. Ziino, W. Chang, S. M. Albrecht,
M. H. Madsen, E. Johnson, J. Nygård, C. M. Marcus,
and T. S. Jespersen, Nat. Mater. 14, 400 (2015).

[2] J. Shabani, M. Kjaergaard, H. J. Suominen, Y. Kim,
F. Nichele, K. Pakrouski, T. Stankevic, R. M. Lutchyn,
P. Krogstrup, R. Feidenhans’l, S. Kraemer, C. Nayak,
M. Troyer, C. M. Marcus, and C. J. Palmstrøm, Phys.
Rev. B 93, 155402 (2016).

[3] C. G. L. Bøttcher, F. Nichele, M. Kjaergaard, H. J.
Suominen, J. Shabani, C. J. Palmstrøm, and C. M. Mar-
cus, Nat. Phys. 14, 1138 (2018).

[4] C. G. L. Bøttcher, F. Nichele, J. Shabani,
C. J. Palmstrøm, and C. M. Marcus, arXiv
10.48550/arXiv.2210.00318 (2022).

[5] C. G. L. Bøttcher, F. Nichele, J. Shabani, C. J. Palm-
strøm, and C. M. Marcus, Physical Review B 108,
10.1103/physrevb.108.134517 (2023).

[6] M. T. Bell, B. Douçot, M. E. Gershenson, L. B. Ioffe,
and A. Petković, C. R. Phys. 19, 484 (2018).

[7] R. Kuzmin, R. Mencia, N. Grabon, N. Mehta, Y.-H. Lin,
and V. E. Manucharyan, Nat. Phys. 15, 930 (2019).

[8] S. Mukhopadhyay, J. Senior, J. Saez-Mollejo, D. Puglia,
M. Zemlicka, J. Fink, and A. P. Higginbotham, Nature
Phys. 19, 1630 (2023).

[9] K. Cedergren, R. Ackroyd, S. Kafanov, N. Vogt, A. Shnir-
man, and T. Duty, Phys. Rev. Lett. 119, 167701 (2017).

[10] M. Kjaergaard, H. J. Suominen, M. P. Nowak, A. R.
Akhmerov, J. Shabani, C. J. Palmstrøm, F. Nichele, and
C. M. Marcus, Phys. Rev. Appl. 7, 034029 (2017).



6

[11] L. Casparis, M. R. Connolly, M. Kjaergaard, N. J. Pear-
son, A. Kringhøj, T. W. Larsen, F. Kuemmeth, T. Wang,
C. Thomas, S. Gronin, G. C. Gardner, M. J. Manfra,
C. M. Marcus, and K. D. Petersson, Nature Nanotech-
nology 13, 915 (2018).

[12] C. Ciaccia, R. Haller, A. C. C. Drachmann, T. Linde-
mann, M. J. Manfra, C. Schrade, and C. Schönenberger,
Phys. Rev. Res. 5, 033131 (2023).

[13] L. Banszerus, W. Marshall, C. W. Andersson, T. Linde-
mann, M. J. Manfra, C. M. Marcus, and S. Vaitiekėnas,
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Supplemental materials for “Quantum simulation of the tricritical Ising model in
tunable Josephson junction ladders”

I. TRIPLE JOSEPHSON JUNCTION ELEMENT

A. Higher harmonics expansion

In this section, we briefly analyze the decomposition of the energy-phase relation of the triple JJ into harmonic
terms µn that we introduced in Eq. (2) of the main text. Assuming that each semiconducting/superconducting
junction is described by a single quantum channel, the potential of triple JJ element

VJ (φ) = −∆

(√
1− T1 sin

2

(
φ− Φ1

2

)
+

√
1− T2 sin

2

(
φ

2

)
+

√
1− T3 sin

2

(
φ+Φ2

2

))
, (S1)

can be expanded as VJ =
∑
n µn cos (nφ), where φ is the SC phase difference of the two islands and ∆ the supercon-

ducting gap induced in the semiconducting layer of the hybrid system. To maintain the reflection symmetry φ→ −φ,
we impose Φ1 = Φ2 = Φ and T1 = T3. The full expression of µn involves the elliptic integrals

µn =

∫ π

−π

dφ

π
VJ (φ) cos (nφ), (S2)

which do not have an elementary analytical solution. However, for small transparencies Ti ≪ 1, we can approximate
them as follows:
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(S3)

In this limit, it is evident that the potential VJ is mostly determined by the first harmonic term cosφ with µ1 < 0,
as long as the magnetic flux is such that cosΦ > 0. Numerical evaluation of the integrals (S2) shows that this is true
also in the large transparencies limit.

The situation is different if we consider fluxes such that cosΦ < 0. In particular, one can fine-tune the external
parameters to make µ1 vanish. Moreover, for Φ = 2π/3 and T1 = T2 both µ1 and µ2 vanish as a consequence of
destructive interference of tunneling events of one and two Cooper pairs through the three junctions. In this case only
triplet of Cooper pairs can jump between the two SC islands with amplitude |µ3|. One can also check that, in the
considered geometry, the contribution µ4 is always at least one order of magnitude smaller than the other terms as
showed in Fig. S1. Therefore, given the ability of controlling both the transparencies of the hybrid junctions through
external gates and the magnetic flux piercing the two loops, we can tune independently the ratios between the first
three harmonics amplitudes in Eq. (S1). In particular, the results discussed in the main text require that only the
transparencies of the external junctions, T1 and T3, need to be tuned, whereas T2 does not qualitatively affect the
appearance of the tricritical Ising point. This constitutes an advantage for experimental realizations since we envision
that the external junctions can more easily be controlled via electrostatic gates.

Importantly, our approximations hold when each junction is sufficiently shorter than the (diffusive) coherence length
of the superconducting regions induced in the semiconductor, allowing coherent tunneling process. This is achieved in
[1] with a length of 150 nm. The width of the junction, instead, mostly affects the amount of active quantum channels
in the junction: the limit of single-channel junction has been experimentally investigated in hybrid nanowire devices,
with widths of about 100 nm [2, 3].
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Figure S1. The amplitudes of the first four harmonics µn with n = 0, 1, . . . , 4 as a function of the triple JJ parameters. The
white lines mark the boundary of the symmetry-broken regime. We set T2 = 0.6 and the SC gap ∆ induced by proximity in
the semiconductors is fixed at ∆ = 50 in units of EJ and does not influence the ratio between the µ coefficients (S2).

B. Multichannel case

In the case of several transport channels in each of the junctions, the Josephson energy-phase relation is given by
the sum of the related contributions:

E(p)
J = −

Mp∑
i=1

∆

√
1− T

(i)
p sin2 (ϕ/2), (S4)

where T (i)
p represents the transparency of the ith channel in the JJ p, and Mp is the number of channels in the

junction. For disordered multichannel junctions, these transport coefficients T (i)
p follow a bimodal distribution [4],

with a few high-transparency channels resulting in a nonsinusoidal current response. A complete generalization of our
results to the multichannel case goes beyond the scope of this supplemental section. However, a qualitative analysis
of its effects is needed. In particular, one essential feature of our triple JJs element is the symmetry between the two
external junctions.

Experimental results for wide junctions (with width W ≃ 2− 3µm) in gate-tunable device showed that the nonsi-
nusoidal effects are overall well-approximated by one JJ with M∗ high-transparency channels with the same average
T ∗, such that the current phase relation reads [1, 5]

I (φ) =
e∆M∗T ∗

ℏ
sin (φ)√

1− T ∗ sin2 (φ/2)
. (S5)

Therefore, the nonlinear function in Eq. (1) in the main text well approximates the energy-phase relation also in
the multichannel case. Equation (S5) represents a phenomenological approximation that effectively described the
behavior of past experimental platforms [1], but it does not capture comprehensively the multichannel case.
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(a) (c)

(b)

Figure S2. (a) and (b) illustrate the two configurations of nonuniform magnetic fluxes essential for preserving time-reversal
invariance in the effective ladder description. In configuration (a), the fluxes are staggered within consecutive triple Josephson
junction (JJ) elements, while in (b), the Φint = −2Φ condition is implemented in the plaquettes of the effective ladder. Panel
(c) shows the physical realization of configuration (a) achieved through a snake geometry and the insertion of a line with a
tunable external current Iext.

In such approximation, one can assume that the external voltage gate VG affects only the number of channels M∗

and not the average transparency T ∗, which mildly varies among the junctions [1]. In this case, the symmetry between
the external JJs is lifted by the weak finite difference between the two average transparencies T ∗

1 − T ∗
3 ̸= 0, which is

almost independent of the voltage gates VG1 and VG3. However, tuning the number of open channels M∗
1 and M∗

3 via
the voltage gates provides a way to mitigate this explicit symmetry breaking. Finally, potential asymmetries in the
magnetic fluxes cause a splitting in energy of the minima of the potential VJ which is linear in Φ1 − Φ3. However,
this effect can also be used to mitigate the asymmetry caused by the mismatch of the transparencies T ∗

1 ̸= T ∗
3 and

restore the degeneracy of the minima of VJ .
Alternatively, as briefly mentioned in the main text, the non-sinusoidal current/phase relation can effectively be

obtained by substituting each of the junctions with two sinusoidal multichannel JJs in series [6, 7]. For the external
links, the effective transmissions Tp,eff with p = 1, 3 will depend on the critical currents flowing through such JJs and
indeed can be tuned by external electrostatic gates.

II. LADDER: FURTHER DETAILS

A. Staggered magnetic fluxes

Interacting bosons on a ladder with uniform magnetic fields exhibit are characterized by the onset of several chiral
many-body phases, including the Meissner phase. For our purposes the onset of the Meissner effect may be detrimental,
because it breaks the emergent Lorentz invariance in the QFT and may compete with the phases and critical points
discussed in the main text.

Additionally, to obtain a quantum simulation of the three-frequency sine-Gordon model, each rung triple JJ must
be characterizes by the same VJ . This condition is, in the general case, fulfilled only by staggered patterns of magnetic
fluxes.

We present two viable flux configurations which are schematically represented in Fig. S2(a) and (b). The solution (a)
relies on the parity property of the local potential VJ under Φ → −Φ and enables the engineering of a ladder geometry
where the magnetic flux between two subsequent rungs, thus the related Aharonov-Bohm phase Φint, vanishes. This
preserves time-reversal invariance in the effective QFT. However, this approach leads to the experimental challenge
of controlling nonuniform magnetic fields along the ladder.

A convenient construction to realize the configuration (a) in experimental devices is depicted in Fig. S2(c). To
stagger the magnetic fluxes within two subsequent triple JJ elements, we design the ladder in a ’snake’ configuration
and control the magnetic field by introducing a current Iext through the line schematically represented in Fig. S2.
Alternatively, a local control of multiple fluxes can be achieved with the techniques adopted by modern quantum
processors based on transmon qubits [8].

An alternative flux configuration, Fig. S2(b) results in the same potentials VJ on each rung and relies on compensat-
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ing the magnetic fluxes of the triple JJs with opposite fluxes in the ladder plaquettes, thus setting Φint = −2Φ between
each rung. The possibility of introducing additional integer fluxes in each loop, thus replacing Φint → Φint + 2π may
also offer an alternative to implement the configuration (b) with uniform magnetic fluxes. To tune the system at the
tricritical point in this scenario, however, it is required to known a priori the parameter T2 of the ladder: the critical
flux of the trijunctions depends indeed on T2; therefore, its knowledge is necessary to designing superconducting
circuits with a correct ratio between the areas of the loops inside the trijunctions and the areas of the loops between
the ladder rungs to obtain the desired tunneling phases at constant magnetic field.

B. Disorder

In the hybrid solid-state devices we consider, disorder is limited by the accurate epitaxial growth and lithographic
techniques employed for their fabrication. Nevertheless, a certain amount of disorder is unavoidable due to the typical
etching procedures adopted to define the Josephson junctions and it may prevent the emergence of the targeted many-
body phases. In our physical device we envision two potential sources of disorder: (a) disordered-induced charges on
the superconducting islands, and (b) disorder in the junction transmissions. Given the large values of the Luttinger
parameter Ks, we expect to be protected against the charge disorder (a) that results in irrelevant operators in the
low-energy limit of the model. On the other hand, the disorder (b) translates into a disordered local potential VJ ,
Eq. (2) in the main text, and requires a more careful analysis.

In our proposal, we assume that the transmission T2 of the central junction cannot be controlled, making it the
primary source of this kind of disorder. A random distribution of T2 maintains the Z2-symmetry of the ladder, while
inducing random variations in the parameters µn in Eq. (2) of the main text. When assuming Gaussian random
disorder, we can give a rough estimate of the threshold over which disorder dominates over the features studied in
our model by comparing their standard deviations with the typical gaps observed in the system.

In particular, when considering the gapped symmetry-broken phase, the impact of disorder can be estimated in the
following way. Given a certain amount of disorder δT2/T2, we compare the energy scale ∆δT2/T2 with the mass of the
solitons interpolating between the two minima of VJ in the related field theory, which provides a good approximation
of the spin gap ∆s. In the semiclassical approach, the local potential VJ approximately assumes the typical double
well form g2φ

2 + g4φ
4, within the ordered phase II (g2 < 0). By following standard calculations [9], we determine the

soliton mass to be

Ms =
2
√
2

3

|g2|3/2

g4

√
EJ , (S6)

where we accounted for the Luttinger kinematics renormalization in spin sector (see the next subsection). The
stability of the ordered phase hinges on whether the energy scale of the disorder in T2 remains below Ms and ∆s. By
considering the input values of our simulations, we derive that a 10% disorder in T2 constitutes the threshold over
which the ordered phase is obscured, possibly leading to glassy physics phenomena. Similar results are obtained by
comparing the disorder energy scale with the numerical gaps derived from the transfer matrix eigenvalues within the
spin sector (see Sec. IV ).

Notably, however, such effects can be mitigated by increasing the Josephson energy scale EJ along the legs of the
ladder, thus Ms ∼ ∆s. Larger values of EJ decrease indeed the occurrence of phase slips in the 1D system.

In recent experimental systems with long JJ chains [10], characterized by more than 30000 JJs, the estimated
disorder in the Josephson energies was below 10%. In this context, carefully engineered ladders with a smaller
number of junctions fabricated to specifically observe the physics of the TCI should allow us to achieve the most
favorable energy hierarchy for mitigating disorder effects and observe the many-body phases discussed in the main
text.

A further useful fabrication aspect to emphasize in order to optimize the construction of the ladder device is the
following: suitable amplitudes and large energy scales for the higher harmonics in the potential VJ can be achieved
by constructing triple junctions with a wider central junction with many low transmission channels, such that we
approximate its energy-phase relation with the standard sinusoidal form EJ2 cosφ. By enlarging the size of the
middle junctions, on one side we decrease the impact of geometric imperfections leading to disorder of the kind (b)
and, on the other, we increase the energy gaps that characterize the gapped phases in our model, thus improving the
resilience of the phase diagram against disorder.

Regarding the critical features of the ladder, they will remain clean below a characteristic disorder length that
decreases with increasing disorder δT2. If this disorder lengthscale becomes considerably smaller than the system size,
however, unexpected critical scaling phenomena may emerge. A comprehensive understanding of disorder in conformal
field theory (CFT) remains elusive, as does a systematic theoretical framework for its treatment. Nevertheless, we
can apply symmetry reasoning to our system and make use of the Harris criterion [11] to provide qualitative insights.
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According to the Harris criterion, a random quenched disorder that preserves the conformal symmetry becomes
relevant only if it couples with a local operator of the CFT with scaling dimension D < 1 [11]; concerning disorder with
a Gaussian distribution in general one-dimensional quantum systems, instead, the renormalization group analysis of
Giamarchi and Schultz [12] shows that disorder is relevant if the related operator has dimension D < 3/2. At
the TCI point, the disorder in T2 does not couple with the odd magnetizations σ and σ′, which explicitly break
the Z2-symmetry. This fact ensures the preservation of the ordered phase in the low-energy limit, preventing the
system from losing long range order, analogously to what happens in the Ising CFT. Moreover, the disorder in T2
couples with the less relevant thermal deformation ϵ, with scaling dimension 1/5. This implies that weak disorder
introduces an additional lengthscale in the system, which diverges for clean systems and must be sufficiently large to
observe criticality; the TCI features can be observed for distances below this disorder lengthscale, whereas observables
extending over this length will present features typical of disordered and gapped systems. To our knowledge, thermal
disorder in TCI CFT has not been studied yet, in neither the classical nor the quantum case.

C. Bosonization

In this section, we will review the main steps of the connection between the lattice Hamiltonian in (3) in the main
text and the three-frequency sine-Gordon quantum field theory. At low temperature KBT < ∆c each SC island of
our lattice corresponds to a condensate of Nc Cooper pairs with gap ∆c and a well defined complex order parameter,
the SC phase φ̂α,j . The residual charge around Nc is represented by the operator N̂α,j dual to the SC phase. In the
long wavelength limit, we can use an effective continuum description in terms of the Bose fields θ̂α(x) and φ̂α(x) [13],
fulfilling commutation relations: [

θ̂α(y), φ̂β(x)
]
= −iπδαβΘ(y − x) , (S7)

where Θ indicates the Heaviside step function. The weak interactions case EC , V⊥, ≪ EJ we considered allows us

to neglect fast-oscillating contributions in the Cooper-pair density and write N̂α,j ≈ −a∂xθ̂α(x)
π

, with j = xa. In
the harmonic approximation for the Josephson interaction along the legs, the low-energy lattice Hamiltonian can be
written as

Ĥ =
∑
α=a,b

[
EJ
2

∫
dx a (∂xφ̂α (x))

2
+
ECa

π2

∫
dx
(
∂xθ̂α (x)

)2]
+
V⊥a

π2

∫
dx
(
∂xθ̂a(x)

)(
∂xθ̂b(x)

)

+
3∑

n=1

µn
a

∫
dx cos (n (φ̂a − φ̂b)). (S8)

By rotating the fields φ̂c/s(x) = (φ̂a(x)± φ̂b(x)) /
√
2 and the corresponding dual ones θ̂c/s(x), we obtain the Hamil-

tonian (4) in the main text with the perturbative relations

Kc/s = π

√
EJ

(2Ec ± V⊥)
and uc/s = a

√
EJ (2EC ± V⊥). (S9)

In general, a finite intra-leg capacitance CL among adjacent islands leads to a long range interaction stemming from
the inverse capacitance matrix [14] with screening length λ = a

√
CL/Cg, where Cg is the self capacitance. However,

this may be ignored as long as one is interested in the physics of modes with energies lower than uc/s/λ.
From a perturbative point of view the plasma frequency of the spin sector us/a = Λ ≃

√
EJ (2Ec − V⊥) defines a

UV cut-off that allows us to define the dimensionless coupling µ̃n = µn/Λ in the sine-Gordon Euclidean action,

S [φs(x, τ)] =
1

2π

∫
dxdτ Ks

(
(∂τφs)

2
+ (∂xφs)

2
)
−

3∑
n=1

µ̃n
a2

∫
dxdτ cos

(√
2nφs

)
, (S10)

where we have rescaled the imaginary time τ → usτ . The operators Ôn = cos
(√

2nφ̂s
)

correspond to primaries of
the unperturbed free boson c = 1 theory with scaling dimensions

∆n =
n2

2Ks
. (S11)
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Figure S3. Connected part of the correlation functions of the total density operator N̂tot,j =
(
N̂a,j + N̂b,j

)
taken at a random

position in the phase-diagram [X1 ≈ −0.3 and X2 ≈ 0.47] with T2 = 0.6. The red line is the result of a fit by a function
f(j) = Kc/π

2j−α. The fit result α ≈ 2 well reproduces the predictions from bosonization theory, and also the obtained
Luttinger parameter is close to the prediction from perturbation theory: Kpert

c ≈ 2.61.

Therefore, such operators drive the LL to a massive phase, namely they are relevant, only when ∆n < 2 inferring the
lower bound Ks > 9/4 considered in the main text to make On≤3 relevant.

Note that the charge sector remains massless as there is no sine-Gordon potential for φ̂c. We checked the validity
of this statement in our lattice simulation. In the LL liquid phase the density correlation functions is expected to
show the following power-law decay

⟨ρ̂tot(x)ρ̂tot(y)⟩ ∼
2

π2
⟨∂xθc(x, τ) ∂yθc(y, τ)⟩ =

Kc

π2

1

|x− y|2
. (S12)

In the ladder model, the operator ρ̂tot(x) corresponds to the total rung density offset N̂tot,j − ⟨N̂tot,j⟩ with N̂tot =

N̂a,j + N̂b,j . We explicitly checked the decay of Eq. (S12) for each point of the phase diagram by fitting a power-law
decay [Fig. S3]. The so found Kc parameters are in a good agreement with the perturbative approximations given by
Eq. (S9). This confirms the validity of the field theoretical approach in the low energy regime of the ladder.

On the other hand, the spin sector (S10) is subject to the different relevant interactions in Eq. (S10) which tend to
order the SC phase difference φ̂s. In Ref. [15] the author shows that this quantum field theory flows to a tricritical
Ising point with central charge c = 7/10 for suitable values of the coupling constants µ. Despite the absence of any
non-perturbative mappings between our lattice operators and the massless excitations of this field theory, we can
exploit the Ginzburg-Landau representation of the TCI CFT to gain insight about this relation.

The operator content of the CFT is split in the odd and even sector with respect to the Z2-symmetry and is
characterized by 6 primary fields: the identity I, four relevant operators σ, ϵ σ′, ϵ′ (∆ < 2) and one irrelevant
(∆ > 2) operator. The Ginzburg-Landau Lagrangian representation of the TCI corresponds to [9]

L =
Ks

2π
φs

(
∂2x +

∂2τ
u2s

)
φs − λ2 : φ2

s : −λ4 : φ4
s : −λ6 : φ6

s :, (S13)

where :: indicates the normal ordering with respect to the tricritical point CFT. In the mean-field limit Ks ≫ 1, we
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can build an approximate mapping bewteen local operators in our theory and the primary fields (see also Ref. [16]),

φs(x) → σ(x),
(
hσ, h̄σ

)
=

(
3

80
,
3

80

)
: φ2

s(x) : → ϵ(x),
(
hϵ, h̄ϵ

)
=

(
1

10
,
1

10

)
: φ3

s(x) : → σ′(x),
(
hσ′ , h̄σ′

)
=

(
7

16
,
7

16

)
: φ4

s(x) : → ϵ′(x),
(
hϵ′ , h̄ϵ′

)
=

(
3

5
,
3

5

)
,

(S14)

which implies the expansion of the local order operator Ĵ⊥ in terms of the most relevant operator σ close to the
critical point,

Ĵ⊥(x) = sin
(√

2φ̂s(x)
)
∼ φ̂s(x) + . . .→ σ(x) + . . . (S15)

In the previous expansion the dots indicate less relevant operator contributions.

III. CHARGE BASIS

For the numerical simulations, we formulated the Hamiltonian (3) from the main text in the charge basis. In this
basis the operator N̂α,j is diagonal and defines how the number of Cooper pairs differs from the average occupation
on the island (α, j):

N̂α,j = diag (. . . ,−2,−1, 0, 1, 2, . . . ) . (S16)

Using this choice, it is easy to show that eiφ̂α,j must to be of the form

eiφ̂α,j =


. . .

0 1
0 1

0 1
. . .


α,j

≡ Σ̂−
α,j (S17)

for the commutator [N̂ , Σ̂−] = −Σ̂− to hold. Further, in order to represent these operators in our simulations, we
have to truncate the number of possible charge states

N̂α,j = diag (−Nmax . . . ,−2,−1, 0, 1, 2, . . . Nmax) , (S18)

i.e. we adopt a truncated local Hilbert-space of dimension 2Nmax + 1 per each SC island. We can control the error
caused by this truncation by varying Nmax until we reach convergence in all observables. Alternatively, we can measure
the probability ⟨P̂nα,j⟩ of finding an excitation n on the island (α, j). By ensuring that Nmax is large enough to have
negligible weight ⟨P̂Nmax

α,j ⟩ < ϵ we can claim to be converged in Nmax. In practice we found that Nmax = 8 gives

⟨P̂Nmax
α,j ⟩ ∼ 10−9. The Hamiltonian used for the simulation finally reads Ĥ =

L∑
j=0

ĥj,j+1 with:

ĥj,j+1 =
∑
α=a,b

[
Ec

(
N̂α,j

)2
− EJ

2

(
Σ̂+
α,jΣ̂

−
α,j+1 + Σ̂−

α,jΣ̂
+
α,j+1

)]
+ V N̂a,jN̂b,j +

µ1

2

(
Σ̂+
a,jΣ̂

−
b,j + Σ̂+

b,jΣ̂
−
a,j

)
+
µ2

2

((
Σ̂+
a,j

)2 (
Σ̂−
b,j

)2
+
(
Σ̂+
b,j

)2 (
Σ̂−
a,j

)2)
+
µ3

2

((
Σ̂+
a,j

)3 (
Σ̂−
b,j

)3
+
(
Σ̂+
b,j

)3 (
Σ̂−
a,j

)3)
(S19)
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Figure S4. The gap in the spin sector ∆s is determined by tracking the second largest eigenvalue of the transfer matrix within
the spin sector λ1. The results are obtained for the three cuts shown in the main text: a) X2 = 0.6, b) X2 = 0.52 and c)
X2 = 0. The red points correspond to the gap ∆s = − log(λ1) which remains finite across the FOPTs in panel (a) and (b),
while displaying the gap-closing feature of a second-order phase transition in panel (c).

IV. FURTHER NUMERICAL EVIDENCE FOR THE TRANSITIONS

In this section, we present additional numerical indications about the different nature of the transitions across the
phase diagram. All the data in this section refer to a system with T2 = 0.6, but variations of the parameter T2 do not
affect qualitatively our results as long as T2 is sufficiently large to observe the symmetry-broken phase.

A. Hysteresis and gap jump at the first-order transition

First of all, we present additional evidence of first-order phase transitions (FOPTs) along the horizontal cuts at
X2 = 0.52 (between the disordered phase I and the ordered phase II) and at X2 = 0.6 (between phases I and III).

One significant indicator involves the distinct behavior of the lowest energy excitation in the spin sector. Its energy
corresponds to the system’s gap, which can be extracted (see Section V) from the transfer matrix spectrum as shown
in Fig. S4. By following the corresponding eigenvalue of the transfer matrix λ1, we can extract the gap of the spin
sector ∆s = − log λ1. Across a second-order phase transition, the physical gap closes and, in the numerical VUMPS
simulations, this is marked by a minimum in ∆s [panel (c)] which approaches zero by increasing the bond dimension.
Across a FOPT, instead, the spin gap remains finite [panels (a) and (b)], although it may display a discontinuity
when the mass of the spin excitations is different in the two phases. Panels (a) and (b) respectively depict the typical
behaviors of the FOPT between the two disordered phases and between phase II and phase I. In the latter case, the
related order parameter displays a very weak variation, resulting in an almost continuous behavior of ∆s.

This behavior is reflected also in the analysis of the hysteresis in the order parameter and the many-body ground
state energy, as illustrated in Fig. S5.

A discontinuity in the first derivative of the energy density is observed in the FOPT cases, which is absent in the
second-order transition at X2 = 0 and indicates the crossing of the lowest energy levels. Furthermore, by altering the
minimization procedure at each point X1 and initializing the ground state with the result from X1±δ, the variational
algorithm follows the corresponding branch, even within the opposite phase. This can be interpreted as a hysteresis
effect induced by the orthogonality of these two states around the crossing point.

Also in this case the features of the FOPT are stronger between the two disordered phases – panel S5 (b) is depicted
with a magnified energy scales with respect to panel (a). The discontinuity of the derivative ∂ε/∂X1 is around 30 EJ
in panel (a) and 22 EJ in panel (b). This is physically related to the jump of the average loop current circulating
around each triple JJs element, namely Ĵloop = ∂Ĥ/∂Φ.
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Figure S5. Energy density ε of the groundstate obtained at the three cuts from the main text: a) X2 = 0.6, b) X2 = 0.52
and c) X2 = 0. The red triangles in the case of a) and b) are obtained by minimizing the Hamiltonian H(X + δ) by starting
from one of the two groundstates left/right of the meeting point of the two branches. The minimization procedure follows these
branches instead of falling into the true ground state. The absence of such an effect for X2 = 0 is another indication for a
FOPT in the case a) and b), but a second order phase transition for c).

B. Scaling and critical exponents Ising phase transition

In this subsection, we focus on characterizing the critical exponents ν and β, which describe how the correlation
length diverges and the order parameter approaches zero across the continuous phase transitions. Concerning the
Ising line, we will consider as main example the X2 = T1 sin(Φ) = 0 cut corresponding to Fig. 3(c)-(d) of the main
text. In this case, the measured values indicate indeed that the transition belongs to the Ising universality class with
νIS = 1 and βIS = 1/8. To extract these exponents, we relied on scaling properties of three different quantities: the
log-fidelity per site F (and its susceptibility χF ), the correlation length of the spin sector ξs and the order parameter
Ĵ
(2e)
⊥ .
We determine the critical exponent ν through two different methods based on the fidelity scaling, both yielding

values near νIS = 1 [Fig. S6]. The first approach involves fitting the non-analytic behavior of the log-fidelity per
site at the critical point, showing a consistent increase towards ν = 1 as the bond dimension D grows [Fig. S6 a),
inset], although the adopted bond dimensions were not sufficient to converge to ν = 1. The second approach, instead,
provides more accurate results and relies on analyzing the divergence pattern of the fidelity susceptibility along a
horizontal cut; in this way we obtain ν = 1.00(3) [Fig. S6 b)].

To take into account finite bond dimension corrections, we employed the finite entanglement scaling discussed in
Ref. [17] for the spin correlation length ξs. Similarly to finite size effects, the finite bond dimension introduces
an artificial length scale making all correlation functions exponential decaying even at critical points. This can be
interpreted as the addition of a relevant perturbation of the underlying CFT. However, in the D → ∞ limit, the
gapless nature of the model must be restored. This artificial length scale is associated with the critical exponent κ:

ξD ∼ Dκ

and we use this relation to define the following scaling ansatz [17]

ξD = Dκf

(
D

κ
ν
|X1 −X1c|

X1c

)
, f(x) ∼

{
const , x→ 0
1
xν , x≫ 1

(S20)

where ν is the critical exponent of the correlation length in the infinite bond dimension case. We use this ansatz and
the collapse procedure explained in [18] to determine the critical point X1c and to extract the critical exponents ν
and κ discussed in the main text.

Additionally, to extract the critical exponent β we employ the scaling of the expectation value of the single-particle
current Ĵ (2e)

⊥ close to the critical point. Indeed, this operator plays the role of the Ising magnetization which is odd
under the Z2-symmetry φ̂s → −φ̂s. By fitting the expected scaling behaviour |X1 −X1c|β , we obtain the critical
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Figure S6. Extrapolation of the critical exponent ν from the scaling features of the fidelity at X2 = 0. (a): Two-parameter
fit of the relation F (X1c, δ) = a |δ|ν at bond dimension D = 1000. The extracted values of ν increase with the increasing
bond dimension (inset). (b): Fit of the fidelity susceptibility χF = b |X1 −X1c|ν−2 away from the critical point with a fixed
δ ≪ |X1 −X1c|. The plot in log-log scale is shown in the inset. The position of the critical point X1c is obtained from the
collapse of the spin correlation length (S20).

exponent β = 0.125(3) [Fig. S7] at X2 = 0, and analogous values are obtained for |X2| ≲ 0.435, as depicted in
Fig. (3)(e) in the main text.

These results collectively indicate that our findings concerning the transition from the ordered to the disordered
phase sufficiently far from the first order discontinuities are compatible with the Ising universality class with νIS = 1
and βIS = 1/8.

The critical exponents κ extracted for the spin correlation length at the second order transitions are typically smaller
than one. This implies that a considerable increase of the bond dimension is required in order to faithfully capture
the algebraic decay of correlation functions over a long distance. Taking the example of the X2 = 0 cut from the main
text with κ ≈ 0.8. The largest correlation length obtained for X2 is ξs ≈ 30 for a bond dimension of D = 1000. Using
the scaling behavior ξs ∼ D0.8 we estimate that a bond dimension D⋆ ≈ 4500 is necessary to get ξs ≈ 100 sites, and
D⋆ ≈ 18000 for ξs ≈ 300 sites.

C. Central charge

Given the separation of the two sectors in our model, in the thermodynamic limit the entanglement entropy of the
system is predicted to display a typical divergence S = cc/6 log(ξc) + cs/6 log(ξs) [19] in proximity of the second-
order phase transition, with cc/s the central charge of the charge/spin sector. However, strong finite entanglement
effects in the VUMPS simulations have a quantitative impact on the estimate of the latter and result in strong
fluctuations. Moreover, the theory of finite-entanglement corrections [17, 20, 21] is less developed than the finite-size
scaling and, in particular, doesn’t cover the case of two gapless modes sharing the same finite bond dimension in
the MPS representation. In particular, as already pointed out at the end of previous section, achieving a reliable
description of the critical correlations of the system with ξs → ∞ requires a very large bond dimension D, given the
sub-linear scaling of ξs ∼ Dκ.

For these reasons, we determined the total central charge c from finite-size DMRG simulations with periodic
boundary conditions by fitting the relation [19]

S(j) =
c

3
log (d (j, L)) + s1, (S21)
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Figure S7. The single-particle current J(2e)
⊥ plays the role of the effective magnetization at the Ising critical point, displaying

a scaling behavior |X1 −X1c|β with the fitted value β = 0.125(3) (red curve). The critical point X1c is fixed by the collapse of
ξs obtained by using Eq. (S20). The discrepancy with the numerical points is due to finite entanglement effects that shifts the
position of the critical point at finite bond dimensions.
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Figure S8. Fits of the entanglement entropy relation (S21) for L = 20 and bond dimension D = 2500 at three significant points
along the transition line. The inset shows the slow convergence of the fitted value with respect to the inverse of the bond
dimension, allowing for an extrapolation D → ∞. For X2c ≃ 0.42 (a), this interpolation yields c ≈ 0.57. At X2c ≃ 0.464 (b),
the central charge increases, c ≈ 0.74 before dropping for X2c ≃ 0.479 (c).

where S(j) is the entanglement entropy at the site j, d(j, L) = L/π sin (πj/L) is the chord distance, and s1 is a
non-universal constant.

We specifically traced the transition line where the VUMPS spin correlation length ξs is maximal and the critical
exponent β shows the CFTs predictions before vanishing at the FOPT, Fig. 3(e) in the main text. Figure S8 shows
the excellent agreement of our data with the relation (S21) at three illustrative points along this line. Finite size
effects are present in any case and lead to an overestimation of the value of the central charge. The measured estimate
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is expected to decrease by increasing the size of the finite system.

V. EXTRACTION OF CORRELATION LENGHTS

Most of the numerical results presented in this latter are obtained by the VUMPS algorithm presented in Ref. [22].
The concrete implementation uses the ITensor library [23]. This ansatz operates directly in the thermodynamic limit
by enforcing translational invarance. The class of ansatz states is characterized by the set of matrices {AσL, AσC , AσR},
with σ enumerating the physical local states. From this set of matrices, the state |ψ⟩ is represented as

|ψ⟩ =
∑
{σ}

Tr
[
. . . A

σj−2

L A
σj−1

L A
σj

C A
σj+1

R A
σj+2

L . . .
]
|. . . σj−2σj−1σjσj+1σj+2 . . .⟩ .

The matrices AσL and AσR fulfill
∑
σ(A

σ
L)

†AσL =
∑
σ A

σ
R(A

σ
R)

† = 1 and special equivariance relations to ensure the
translational invariance of the ansatz, see Fig. S9. Using the transfer-matrix of the system, defined by

|ψ⟩ = . . .

AL AC AR

σj−1 σj σj+1

. . .

AL AC

=

AC AR

a) b)

Figure S9. (a): VUMPS ansatz in the central gauge. (b): Equivariance property to ensure translational invariance

TL :=
∑
σ

AσL ⊗ ĀσL , (S22)

and the two transfer-matrices with operator insertion

T O
L :=

∑
σ,τ

Oσ,τA
σ
L ⊗ ĀτL , T K

C :=
∑
σ,τ

Kσ,τA
σ
C ⊗ ĀτC , (S23)

where z̄ denotes the complex conjugation of z, one can represent the correlation function of two arbitrary operators
Ô and K̂ as, Fig. S10:

⟨ÔjK̂j+l⟩ = ⟨1| T O
L (TL)l−1 T K

C |1⟩ =
∑
n≥0

λl−1
n αOn β

K
n =

∑
n≥0

e−
l−1
ξn cO,Kn

αOn = ⟨1 |TO|Rn⟩ , βKn = ⟨Ln|TK |1⟩ , ξn = − 1

log(λn)
.

(S24)

The second line in Eq. S24 is obtained after using the eigen decomposition of the transfer-matrix

TL =
∑
n≥0

λn |Rn⟩ ⟨Ln| , ⟨Ln|Rm⟩ = δm,n . (S25)

Using Eq. S24, it is straightforward to extract the asymptotic behavior of any correlation function

⟨ÔjK̂
†
j+l⟩ ≈ cO,Kn⋆ e

l
ξn⋆ + cO,K0 .

where n⋆ is the first n > 0 in the descending sequence λ0 > |λ1| ≥ |λ2| . . . with a non-zero operator weight cO,Kn

(assuming λn⋆ to be unique). The contribution cO,K0 equals the product of expectation values ⟨Ôj⟩ ⟨K†
j ⟩. In the

case of Ô = K̂ this asymptotic behavior can be used to extract the smallest energy gap in the excitation spectrum
generated by the operator Ô. In the main text, we applied this analysis to the current operator

Ô = Ĵ
(2e)
⊥ :=

i

2

(
Σ+

a Σ
−
b − Σ+

b Σ
−
a

)
.
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⟨ÔjK̂j+l⟩ := . . .

AL

ĀL

AL

ĀL

AL

ĀL

O . . .

AL

ĀL

AC

ĀC

K

AR

ĀR

. . .

l − 1

=

AL

O

ĀL

AC

ĀC

KTL

l − 1

Figure S10. Correlation function in the infinite system.

which can be interpreted as the magnetization order parameter in the field theory sin
(√

2φ̂s(x)
)

odd under the
φs(x) → −φs(x) symmetry transformation. Thus, Ĵ (2e)

⊥ is naturally associated to excitations in the spin-sector
exclusively.

Very similarly, one can extract the density of the logarithmic fidelity F in the thermodynamic limit from the mixed
transfer-matrix

T ϕ,ψ
L :=

∑
σ

Aϕ,σL ⊗ Āψ,σL , (S26)

where AϕL defines the state |ϕ⟩ and AψL the state |ψ⟩. Define λ0 the smallest in maginutde eigenvalue of T ϕ,ψ
L , it is

straigthforward to show:

F := − lim
N→∞

1

N
log (⟨ψ|ϕ⟩) = − log(|λ0|) .
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III.1 Authors Contribution
This project was initiated jointly by the authors after observing the long thermaliza-
tion properties of a domain-wall state in the two-dimensional quantum Ising model.
After the first numerical results, the authors jointly developed the idea of the effective
one-dimensional bosonic model and the relevant order parameters. The simulation
code was written and designed in a joint effort by the authors Niklas Tausendpfund
and Wladislaw Krinitsin. Wladislaw Krinitsin designed and analyzed the numerical
experiments for the two-dimensional quantum Ising model. Niklas Tausendpfund
designed and analyzed the numerical experiments and analytical results of the one-
dimensional model. The findings were discussed in weekly meetings. The first draft
was prepared by Wladislaw Krinitsin and later modified by all authors. Wladislaw
Krinitsin and Niklas Tausendpfund share the first authorship on this publication.

III.2 Data Availability
The simulation of the two-dimensional quantum Ising model were performed with
the publicly available Julia package TTN.jl [287]. This package, written by the au-
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thors Niklas Tausendpfund and Wladislaw Krinitsin, is based on the ITensors.jl
library [274]. The remaining code and extracted data are available on Zenodo un-
der [288].

III.3 Summary
As explained in Subsection 1.2.1, a system that spontaneously breaks the finite
group Z𝑀 has a ground state that is 𝑀 times degenerate. A natural basis used to
describe this ground-state manifold is the symmetry-broken basis of Eq. (1.54), which
transforms non-trivially under the action of the group. By joining two subsystems
realizing a different symmetry-broken ground state, an interface is generated, and
new physics can emerge.
While this interface has the character of a local particle in one-dimensional models,
it becomes an extended object in 𝑑 ≥ 2, and understanding the static and dynamic
behavior is a challenging but important task. Surprisingly, the extended nature of
the interfaces allows them to undergo phase transitions independent of the bulk.

In this work, we study the dynamics of interfaces in the two-dimensional Transverse
Field Ising Model (TFIM) on a square lattice of 𝑁𝑥 × 𝑁𝑦 sites

𝐻Ising = ∑
⟨ ⃗𝑗,𝑘⃗⟩

−𝐽𝜎𝑥
⃗𝑗 𝜎𝑥

𝑘⃗ − 𝑔 ∑
⃗𝑗

𝜎𝑧
⃗𝑗 . (III.1)

This model spontaneously breaks the Z2 parity symmetry for |𝑔| < 𝑔𝑐 ≈ 3.04𝐽 and
temperatures 𝑇 < 𝑇𝑐 ≈ 2.27𝐽. Here, ⃗𝑗 = (𝑗𝑥, 𝑗𝑦) is the two-dimensional coordinate
and ⟨ ⃗𝑗, 𝑘⃗⟩ denotes a pair of neighboring spin-1/2 degrees of freedom.
To this end, we consider a straight domain wall formed by initializing all spins for
𝑗𝑦 ≤ 𝑁𝑦/2 in the |+⟩ eigenstates of the 𝜎𝑥 operator, and for 𝑗𝑦 > 𝑁𝑦/2 in the |−⟩
eigenstate1. We selected this particular scenario to remove all additional effects, such
as curvature, that may influence the dynamics of the domain wall in a non-trivial
way and to study the isolated dynamics of the domain wall. In addition, we chose
the boundary conditions in the horizontal direction along the domain wall to be
periodic, whereas the boundary conditions orthogonal to the domain wall were fixed
to open boundary conditions.

By mapping the domain wall state onto an effective one-dimensional model, known
as a Solid-On-Solid (SOS) model, it was found [289–291] that such a domain wall
undergoes a static phase transition at 𝑔𝑟 < 𝑔𝑐 known as the roughening transi-
tion [292, 293]. The mapping assumes that the domain wall forms a well-defined
one-dimensional subsystem that decouples from the bulk of the surrounding quan-
tum magnet. By projecting the TFIM onto the relevant many-body states (see below
for details), the SOS model is derived. This model contains two competing energy
terms: a potential that pins the position of the domain wall relative to its neigh-
bors, and a term that promotes local fluctuations of the domain wall. The relative
strength of the two interaction terms is controlled by the original transverse field 𝑔.

Through a duality transformation, this model becomes the more familiar quantum
rotor model [126]. For small values of the transverse field 𝑔 < 𝑔𝑟, the pinning po-
tential dominates, and the domain wall remains a well-defined, localized object with

1 For 𝑔 = 0, a product state is formed by setting all local Hilbert spaces to |+⟩ or |−⟩ where
𝜎𝑥 |±⟩ = ± |±⟩ is the ground state of the system, compare also Subsection 1.2.1.
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only limited fluctuations in the vertical direction. As the transverse field is increased,
the fluctuations start to diverge at 𝑔 = 𝑔𝑟 and the domain wall becomes a fuzzy de-
localized object for all 𝑔 > 𝑔𝑟. Because the SOS model is dual to the quantum
rotor model, the transition at 𝑔 = 𝑔𝑟 is of the Berezinski-Kosterlitz-Thouless (BKT)
type [289, 291], a transition also found in the sine-Gordon model considered in Sub-
section 1.3.2 in the context of the Tomonaga-Luttinger Liquid (TLL), and generally
describes a gapless-to-gapped transition.

To study the dynamics of the domain wall state, we utilize large-scale tree-tensor
network [261, 266, 267] simulations; see also our recent publication [268] for a compre-
hensive survey. While computing the non-equilibrium behavior of a general quench is
notorious difficult in two-dimensional quantum systems and not possible in general
owing to the creation of large entanglement, the situation considered here is different
as we quench the system inside the same phase. This limits the amount of produced
entanglement, especially through the domain wall allowing to reach large time scales.
As a first result, we found that the imbalance defined by the expectation value of
the 𝜎𝑥 operator in the upper half minus the lower half shows long-lived pre-thermal
plateaus even for values of 𝑔 ≈ 𝐽, as shown in Figure 1(b) of our publication.

To explain the pre-thermal plateaus, we assumed that the dynamics of the domain
wall were decoupled from the dynamics of the bulk, similar to the equilibrium case
discussed above. By this, only the many-body states with exactly one domain wall
per column contribute to the dynamics Assigning a positive number 0 ≤ 𝑚𝑗 ≤ 𝑁𝑦−1
counting the position of the domain wall in the 𝑦 direction, the relevant many-body
states are given by

|𝑚1, … , 𝑚𝑁𝑥
⟩ ∈ ℋ .

The sub-Hilbert space formed by this set of states can be identified with the Hilbert
space of a bosonic chain truncated to a maximum of 𝑁𝑦 − 1 occupations; see also
Subsection 1.1.5. Projecting the Hamiltonian on this class of states leads to an SOS
model

𝐻SOS = −𝐽
𝑁𝑥−1

∑
𝑗=1

| ̂𝑁𝑗 − ̂𝑁𝑗+1| − 𝑔
𝑁𝑥

∑
𝑗=1

( ̂𝐸𝑗 + ̂𝐸†
𝑗 ) , (III.2)

where ̂𝑁𝑗 is the operator which measures the bosonic occupation of the 𝑗th site in
the chain and ̂𝐸(†)

𝑗 is the vertex operator of Eq. (1.26) that removes (inserts) a boson
at sites 𝑗

̂𝐸𝑗 |𝑚𝑗⟩ = |𝑚 − 1⟩ , ̂𝐸†
𝑗 |𝑚⟩ = |𝑚 + 1⟩

𝐸𝑗 |0⟩ = 𝐸†
𝑗 |𝑁𝑦 − 1⟩ = 0 .

The two terms appearing in Eq. (III.2) compete with each other, with the first term
pinning the occupation of neighboring sites and the second term promoting larger
local fluctuations of the bosonic particles. In the language of the domain wall, this
is exactly the competition between a smooth well-defined and a fuzzy delocalized
domain wall. The duality transformation to the quantum rotor model is given by
passing from the bosons defined on the site to new bosons defined on the link of the
original lattice. The new number operator is thereby given by

𝐿̂𝑘 ≔ ̂𝑁𝑗 − ̂𝑁𝑗+1 ,

where 𝑘 denotes the link between position 𝑗 and 𝑗 + 1. Under this transformation,
the vertex operator ̂𝐸𝑗 becomes a tunneling operator

̂𝐸𝑗 = 𝑒𝑖𝜑̂𝑘𝑒−𝑖𝜑̂𝑘+1
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of the new 𝐿̂𝑘 bosons. Here 𝜑̂𝑘 is a vertex operator canonically conjugated to the
operator 𝐿̂𝑘, see also the discussion below Eq. (1.26). The full SOS model becomes
a quantum rotor model2

𝐻SOS = −𝐽 ∑
𝑘

∣𝐿̂𝑘∣ − 2𝑔 ∑
𝑘

cos(𝜑̂𝑘 − 𝜑̂𝑘+1) .

In our study, we compared the dynamics of the two-dimensional domain wall state
with the non-equilibrium behavior of the effective one-dimensional model given by
Eq. (III.2), where we found good agreement between the results.

In particular, from the static BKT transition of the SOS model it is known that the
kink operator

𝐾(𝛼, 𝑙) = cos(𝛼(𝑁1 − 𝑁𝑙)) , 𝛼 ∈ [0, 2𝜋)
is a good order parameter for measuring the onset of this transition. It saturates to
a constant for 𝑙 → ∞ if the domain wall is well-defined for 𝑔 < 𝑔𝑟, and to zero if the
domain wall becomes fuzzy for 𝑔 > 𝑔𝑟. This behavior is understood by considering
the height of a domain wall at position 𝑗 being locked with respect to the neighbors
in the 𝑔 < 𝑔𝑟 regime, and the kink operator has a finite expectation value for long
distances. For 𝑔 > 𝑔𝑟, the divergence of the vertical fluctuations destroys this locking,
and the kink operator averages to zero.
By measuring the thermalization of the kink operator in the SOS model and the
corresponding operator in the full two-dimensional model, we observed that in both
cases, the expectation value saturates to the same constant, as shown in Figure
3 of our publication. For 𝑔 > 𝑔𝑅, the SOS model thermalizes to zero, while the
kink operator becomes ill-defined in the full two-dimensional model, indicating the
breakdown of the initial assumption that the domain-wall dynamics are independent
of the two-dimensional bulk.

It is possible to assign an artificial temperature to the system by matching the two
expectation values

⟨𝜓0|𝐻|𝜓0⟩ = Tr [𝜌(𝛽)𝐻] ,
where 𝛽 = 1/𝑇 is the inverse temperature, 𝜌(𝛽) is the canonical density matrix, and
|𝜓0⟩ is the initial domain wall state. This is used to interpret the quench and the
emergence of the pre-thermal plateaus in the full 𝑇 − 𝑔 phase diagram.

Although there is no phase transition in a one-dimensional model at any finite tem-
perature, there exists a transition temperature 𝑇𝑟(𝑔, 𝑁𝑥, 𝛼) for every finite system
size 𝑁. For 𝑇 ≪ 𝑇𝑟, the kink operator saturates to a value close to one, whereas for
𝑇 ≫ 𝑇𝑟 the kink operator averages zero. In the classical limit 𝑔 = 0, we show by an
analytical calculation that the transition temperature vanishes slower than algebraic
with the system size

𝑇𝑟(0, 𝑁𝑥, 𝛼)/𝐽 = 2 log (2(1 − cos(𝛼𝑁𝑥)
log(2)

)
−1

.

Thus, the BKT transition extends as a finite-size transition to the full 𝑇 − 𝑔 phase
diagram, implying the existence of a roughening transition at some value of (𝑇𝑟, 𝑔𝑟).
The breakdown of the single-domain wall assumption can then be interpreted as
crossing this finite-temperature BKT-like transition line into an unordered region
with unbounded vertical fluctuations.

2 The standard quantum rotor model has a potential of the form 𝐿2
𝑘 instead of an absolute value

potential. However, both models have the same symmetries and, thus, the same critical properties,
which we also verified explicitly in our publication.
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The properties of interfaces are key to understand the physics of matter. However, the study
of quantum interface dynamics has remained an outstanding challenge. Here, we use large-scale
Tree Tensor Network simulations to identify the dynamical signature of an interface roughening
transition within the ferromagnetic phase of the 2D quantum Ising model. For initial domain wall
profiles we find extended prethermal plateaus for smooth interfaces, whereas above the roughening
transition the domain wall decays quickly. Our results can be readily explored experimentally in
Rydberg atomic systems.

Introduction. The static and dynamical properties of
interfaces are fundamental to understand the physics and
to engineer the functionality of materials. Interfaces can
even undergo their own unique phase transitions inde-
pendent of the bulk matter. At a roughening transition,
first identified in models for surface growth and classical
magnetism [1–3], the nature of interfaces changes qual-
itatively from being smooth to rough. Intuitively these
different phases can be characterized by their interface
fluctuations, with small and bounded fluctuations in the
smooth phase and large, and unbound ones in the rough
phase. The theoretical analysis of effective surface-on-
surface (SOS) models revealed the Berezinski-Kosterlitz-
Thouless (BKT) nature of the transition [4, 5], which
was confirmed in numerical simulations [6]. For experi-
mental studies, the interface between liquid and crystal-
lized Helium-4 is a particularly suited model system [7].
At the involved low temperatures, however, quantum ef-
fects enter. It was found that quantum fluctuations can
cause a roughening transition at vanishing temperature
T = 0 in two-dimensional systems, but not in three di-
mensions [8, 9]. Interface properties are relevant also in a
broader scientific context beyond condensed matter. For
instance, in high-energy physics, the flux tube connecting
quarks realizes an interface that can undergo roughen-
ing [10]. Signatures of which were recently observed via
digital quantum simulation of a lattice gauge theory [11].
The exploration of such interface roughening in quantum
matter away from equilibrium has, however, remained an
outstanding challenge to date.

In this work we study the non-equilibrium signatures
of the roughening transition in the quantum Ising model.

∗ These authors contributed equally to this work.
† markus.schmitt@ur.de

Based on large-scale Tree Tensor Network simulations for
real-time evolution [12–14], we find that the underlying
quantum roughening transition is reflected in a qualita-
tive change of dynamical behavior of domain wall initial
conditions upon tuning the transverse field strength. In
particular, we identify the independent equilibration of
the interface in the smooth interface regime as an alterna-
tive cause of prethermal plateaus, which is distinct from
the known mechanisms relying on approximate conser-
vation laws or Hilbert space fragmentation [15, 16]. The
phenomenology can be readily explored in experiments
with Rydberg atomic systems [17–31].

Model. For the central objective to study the dynam-
ics of interfaces we consider the paradigmatic transverse-
field Ising model (TFIM) on a square lattice, given by

H = −J ·
∑
⟨i,j⟩

σx
i σ

x
j − g ·

∑
i

σz
i , (1)

where the first sum runs over all neighboring spin pairs.
The TFIM exhibits a ferromagnetic phase, that extends
to non-zero temperatures, with a quantum phase transi-
tion at gc/J ≈ 3.04 and a thermal transition tempera-
ture of Tc/J ≈ 2.27 at g = 0 [32]. Importantly, the 2D
quantum Ising model inherits a second quantum phase
transition point of BKT type within the ferromagnetic
phase, which is associated with a transition from smooth
to rough interfaces [9]. A suited order parameter will be
defined at a later point of this work, providing a quanti-
tative description of the transition. In the quantum do-
main, when considering the limit J ≫ g, the TFIM can
be perturbatively linked to the PXP model, which shows
strong dynamical constrains and Hilbert space fragmen-
tation, leading to a slow relaxation of various domain
wall initial conditions [13, 14, 33, 34].

For the purpose of studying the dynamics of quan-
tum interfaces, we will initialize the system with two
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oppositely polarized magnetic domains, separated by a
straight domain wall, see Fig. 1a. This is a natural choice
for experimental platforms, while not introducing any ad-
ditional effects stemming from e.g. interface curvature.
For weak enough transverse fields, i.e., within the PXP
approximation, these states remain stable due to sectors
of different interface lengths being dynamically discon-
nected from each other, preventing thermalization up to
timescales which scale exponentially with J/g 1.

In the following we depart from any such perturba-
tive limit and target the dynamics in strongly correlated
regimes g/J ∼ 1. As will be shown later, we observe pre-
thermal plateaus which cannot be explained by Hilbert
space fragmentation. Instead, this non-perturbative ef-
fect is related to the thermalization of the interface below
a roughening temperature.

Numerical methods. In order to comprehensively ex-
plore the quantum roughening dynamics, we employ a va-
riety of complementary tensor network techniques. The
simulations of the full dynamics on the 2D lattice were
performed using TTNs and the time dependent varia-
tional principle (TDVP) [12–14]. Being loop-free, TTNs
are efficiently contractable and their hierarchical struc-
ture allows for a more natural covering of the 2D lattice
than the widely used matrix product states (MPS) [36].
MPS will be used later in the text in order to solve time
evolution of an effective 1D model. Furthermore, we uti-
lize the variational uniform matrix product state algo-
rithm (VUMPS) [37–39] to study the ground-state prop-
erties of the effective model in the thermodynamic limit.
Quantum Monte Carlo (QMC) simulations [40, 41] are
employed to estimate effective temperatures correspond-
ing to the domain wall initial conditions. More details
on the aforementioned methods are given in the supple-
mentary material (SM) [35].

Interface dynamics. A first indication for the slow
thermalization dynamics is provided by the time evolu-
tion of the magnetization imbalance

I = MT −MB , (2)

with MT/B = 1
N

∑
i∈T/B σ

x
i and T/B indicating the top

and bottom halves of the system (see Fig. 1a). The im-
balance is maximal in the initial state ⟨I(t = 0)⟩ = 1
and it has to vanish in a thermal state. Fig. 1b shows
⟨I(t)⟩ for a range of transverse fields; the spatially re-
solved magnetization ⟨σx

i (t)⟩ at three time points is in-
cluded exemplarily in Fig. 1a. For the largest trans-
verse fields we expect a rapid thermalization, which is
reflected by the observed rapid drop in the imbalance
on a timescale of tJ ≈ 1. The subsequent slow decay

1 Eventual thermalization is expected to happen for transverse
fields g/J ≥ 0.2 as is revealed by an analysis of the levelspacing
statistics of a 4 × 5 system, see SM for more details [35].

Figure 1. Time evolution of a flat interface on an 8×8 lat-
tice with open boundary conditions. (a) Spatially resolved
magnetizations at times tJ = 0, 10 and 100 for a transverse
field of g/J = 0.75. The bottom three plots show (b) the
imbalance, (c) the domain wall length, and (d) the entropy
of entanglement across the initial interface for several trans-
verse fields: the color coding is indicated in the color bar to
the right. The imbalance shows the existence of long-lived
plateaus, even at transverse fields g ≈ J . All the results are
shown for three different bond dimensions χ = 181, 256, 362,
where the opacity increases with the bond dimension. For
panel (a) and (b), almost all of the data points lie on top of
each other.

of the remaining imbalance is attributed to the diffusive
approach to a finally homogeneous energy density. The
smallest field values conversely show extremely long-lived
non-thermal states, due to the aforementioned emergent
constraints [33, 34]. Noticeably, however, pre-thermal
plateaus seem to dominate the dynamics even up to in-
termediate values of the transverse fields of up to g/J ≈ 1
and timescales of Jt ≈ 10.

The fact that the domain wall length operator D =
1
2
∑

⟨i,j⟩
(
1 − σx

i σ
x
j

)
shown in Fig. 1c strongly departs

from its initial value highlights, that the existence of pre-
thermal plateaus at intermediate transverse fields can-
not be captured within the usual framework of Hilbert
space fragmentation governed by restricted domain wall
lengths. We will instead demonstrate in the following
that an effective description can be formulated in terms
of a single-domain-wall approximation.

Fig. 1 includes a convergence check of the numerical
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results with different bond dimensions up to χ = 362.
While late times and stronger transverse fields become
challenging, the prominent pre-thermal plateaus are well
within the regime of certain convergence. Most sensi-
tive to varying bond dimension is the half-system en-
tanglement entropy (Fig. 1d), when splitting the system
into two equal partitions along the initial interface, which
shows that the moderate amounts of entanglement gener-
ated up to the lifetime of the plateaus are well captured.

Effective model. In order to explain the observed non-
perturbative prethermal effects, we formulate an effec-
tive, one-dimensional model which corresponds to the
projection of Eq. (1) onto the subspace of domain wall
states with exactly one horizontal interface segment per
column (see SM for a more detailed derivation [35]),

Heff = 2J ·
∑

i

|Ni −Ni+1| − g ·
∑

i

(
Ei + E†

i

)
. (3)

Here, we introduced height operators Ni measuring
the perpendicular displacement of the domain wall, see
Fig. 2a. The raising (lowering) operators E†

i (Ei) are
the projection of the σz

i , which in the manifold of sin-
gle horizontal domain walls can only flip spins next to
the domain wall. The raising and lowering operators,
obey the commutation relations [Ei, Nj ] = Eiδi,j similar
to the standard definition used in quantum rotor mod-
els [45]. Hence, the phase operator φ defined through
Ej = exp(iφj) is canonically conjugate to the height op-
erator and the Ni can alternatively be viewed as bosonic
occupation number operators. It is important to note
that the model is not based on some low-order Schrieffer-
Wolff transformation, but instead captures the relevant
fluctuations of the initial domain wall.

The effective model (3) is also closely related to solid-
on-solid-like (SOS) models [4, 5], in which roughening ap-
pears as a Berezinskii–Kosterlitz–Thouless (BKT) tran-
sition [46]. The critical point of Heff has been argued
to be upper-bounded by the critical point of the quan-
tum rotor model [47–49]. This is noticeably below the
symmetry-breaking phase transition of the full TFIM.

Roughening is indicated by the kink operator

Kα(l) = cos(α(N1 −Nl)) , (4)

which probes the fluctuations of the interface in the di-
rection perpendicular to its initial orientation. It is a
suited order parameter, because a value of ⟨Kα(l)⟩ = 1
corresponds to a flat (smooth) interface, while a value of
⟨Kα(l)⟩ = 0 corresponds to a highly fluctuating (rough)
interface. A universal quantitative analysis would require
taking the limits limα→0 liml→∞⟨Kα(l)⟩ for the angle α
and distance l. In our numerical analysis of finite sys-
tems, we choose l = Lx maximal and we find that α = 1 is
the minimal value, that sufficiently suppresses bulk con-
tributions when considering the full TFIM, see SM [35]
for more details. From now on we will drop the depen-
dency on α and l, i.e., K ≡ Kα=1(l = Lx).

Fig. 2b shows the ground state expectation value of
the kink operator for varying g/J and different values of
the occupation number truncation Nmax, obtained using
VUMPS. The drop of ⟨K⟩ with increasing g/J clearly in-
dicates the transition from a smooth to a rough interface
regime. This drop becomes sharper as Nmax is increased,
pointing towards the existence of a phase transition –
a fit of the correlation length provides the critical value
gR/J ≈ 1.38. Further analysis strengthens the hypothe-
sis of a BKT transition in the SOS model, see the End
Matter and SM [35].

Next, we turn towards the question wether its signa-
tures survive even at non-zero temperatures T . Note that
order at T > 0 would not violate the Mermin-Wagner
theorem due to the infinite local Hilbert space dimen-
sion [50]. We consider the classical limit of the effective
model, i.e., g/J = 0, and use a transfer matrix based
method to calculate the expectation value of the kink op-
erator in the thermal state, see the End Matter and SM
for more details [35]. The thermal expectation value of
the kink operator shown in Fig. 2c exhibits an extended
regime with a clear signature of smooth interfaces at low
temperatures for system sizes up to Lx = 5 × 105. How-
ever, the turning point shifts with increasing system size
and its location behaves perturbatively as

TR/J = 2 log
(

2(1 − cos(α))Lx

log(2)

)−1
, (5)

see the inset of Fig. 2c as well as End Matter and SM [35].
Thus, in the thermodynamic limit Lx → ∞, roughening
occurs immediately for any T > 0. Nonetheless, clear
signatures of a smooth interface regime at non-zero tem-
perature survive up to very large system sizes due to the
logarithmic dependence of TR on Lx, which has especial
relevance for current experimental realizations in quan-
tum simulators.

Fig. 2d shows a sketch of the inferred phase diagram
in the full two dimensional Ising model, summarizing
all the previously discussed results: The ferromagnetic
phase encompasses an extended smooth interface regime
delimited by a roughening QPT and a system-size de-
pendent crossover at non-vanishing temperatures. We in-
clude the effective temperatures fixed by the domain wall
initial condition for the range of considered transverse
fields g/J , indicating that signatures of a smooth inter-
face regime will vanish already at field strengths below
the critical gR. Concerning the non-equilibrium dynam-
ics, this phase diagram suggests that the effective model
can thermalize in the smooth domain wall regime, imply-
ing stability of domain walls for long times. We will show
next that this prediction is even quantitatively accurate
for the full dynamics of the two-dimensional TFIM.

Dynamical signature of roughening. The effective
model covers the subspace of single domain-wall states
without bubbles or overhang. To check the validity of
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Figure 2. (a) Mapping from a domain wall state in the full two dimensional model to an effective one-dimensional bosonic
state. (b) Expectation value of the kink operator, evaluated on the groundstate of the effective model as a function of the
transverse field. Different maximal occupation numbers 4 ≤ Nmax ≤ 14 in steps of two are shown; as Nmax increases, the
kink operator starts exhibiting a jump at gR/J ≈ 1.38 corresponding to the roughening transition, see also the SM [35]. (c)
Expectation value of the kink operator, evaluated on the thermal state of the effective model in the classical limit (g = 0) as a
function of temperature. We consider chain lengths Lx ∈ [500, 512 · 103], with exponentially increasing steps. The inset shows
that the crossover temperature TR, defined by ⟨K(TR/J)⟩ = 0.5, vanishes in the thermodynamic limit as the inverse logarithm
of the system size, confirming the analytical prediction (5) which is indicated by the dashed grey line. The constant b in the
x-axis label is given by b = 2(1 − cos 1)/ log 2. Data points in (b) and (c) are represented by crosses, with a linear interpolation
between them. (d) Phase diagram of the 2D TFIM. The blue line represents the critical line separating the ferro- from the
paramagnetic phase, the red line denotes the effective temperature of the initial state based on its energy, obtained from QMC
simulations, see SM [35]. Our results point towards the existence of a roughening transition at a value of gR/J ≈ 1.38 < gc/J .
The green shaded region shows the extended smooth interface regime, present in finite systems.

this description, we plot the time-dependence of the hor-
izontal domain wall length Dx = 1/2

∑
i,j(1−σx

i,jσ
x
i,j+1)

in Fig. 3a. The small deviations of ⟨Dx⟩/Lx from one for
transverse fields up to g/J ≈ 1 support the validity of
the effective model in that regime.

We now turn to a direct comparison between the dy-
namics of the full and the effective model – the latter
simulated using MPS. In the full 2D TFIM, the opera-
tor probing the vertical position of the domain wall at
site i is given by Ni =

∑
j⊥i j/2 · (1−σx

i,jσ
x
i,j+1) with

the sum running over all lattice sites j perpendicular
to the domain wall. For a meaningful comparison with
the effective model, however, we need to account for
bulk contributions such as single spin flips away from
the domain wall. For that purpose, we define a mod-
ified kink operator KM = ⟨K⟩/⟨Kbulk⟩, where ⟨Kbulk⟩
is obtained by calculating the kink operator for a sys-
tem where the interaction along the initial domain wall
is removed, i.e., only bulk effects contribute to the time
evolution. Since the time-dependent expectation values
obtained from the full and the effective model differ in
their high frequency fluctuations, we will moreover con-
sider their running time-averages K̄(t) = 1

t

∫ t

0 dt⟨K(t)⟩
instead for the direct quantitative comparison. See the
SM for more details [35].

The time evolution of the modified kink operator in
comparison with the kink operator of the effective model
is shown in Fig. 3b. Data for the full model is restricted
to transverse fields g/J ≤ 1, since the separation of bulk
from interface effects becomes infeasible for larger fields.
We find very good quantitative agreement between these
two models, meaning that the dynamics of interfaces in
the TFIM can be understood in terms of the SOS model:

For the considered intermediate values of the transverse
field, the SOS model thermalizes within the smooth in-
terface regime (cf. Fig. 2d) and the initially flat domain
wall profile remains eternally stable. This stability of the
domain wall manifests itself in the full TFIM in the form
of prethermal plateaus with K̄M(t) > 0. In contrast to
the effective model, a subsequent decay of these prether-
mal states is to be expected in the full model, but these
timescales seem out of reach for current numerical ap-
proaches. Fig. 3c displays the late-time stationary values
of the running, time-averaged kink operator by taking
the mean over points lying in the interval tJ ∈ [20, 100],
which once more highlight the compelling quantitative
agreement between the SOS model and the TFIM. Re-
sults obtained for a 16 by 16 lattice confirm said agree-
ment for larger system sizes, without the need to suppress
temporal fluctuations via taking the running mean, see
SM [35] for more details. Finally, notice that the imbal-
ance in Fig. 1b and the kink operator in Fig. 3b exhibit
different lifetimes of the prethermal plateaus. This in-
dicates that restoring the rotational symmetries requires
longer times than the restoration of translational sym-
metry.

Discussion. Our analysis establishes a connection be-
tween the roughening transition and the relaxation dy-
namics of quantum interfaces in the 2D TFIM. The sta-
bility of domain walls in the smooth interface regime con-
stitutes a new mechanism for pre-thermalization beyond
known ones like proximity to an integrable point [15]
or Hilbert space fragmentation and quantum scars [16],
highlighting a qualitative change within the dynamical
phase diagram of the TFIM in two dimensions.

The domain wall dynamics of the quantum Ising model
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Figure 3. (a) Time evolution of the horizontal contribution to
the domain wall length divided by the horizontal lattice di-
mension. The plot shows that up until g/J = 1, each column
has approximately one horizontal domain wall for the times
considered, confirming the validity of the effective model (3)
in that regime. (b) Comparison between the effective (dashed
lines/crosses) and the full model (solid lines/circles) for the
time evolution of the kink operator. In order to filter out the
strong fluctuations of the data we show the running mean of
the kink operator. For the full model, we calculate the mod-
ified kink operator KM = ⟨K⟩/⟨Kbulk⟩. We don’t show data
for transverse fields beyond g/J = 1, as bulk and interface
contributions become increasingly difficult to disentangle. (c)
Late-time averages of the kink operators shown in (b), taken
over the interval tJ ∈ [20, 100], as functions of the trans-
verse field. The values agree well up to g/J = 1, once again
confirming the quantitative predictive power of the effective
model in that regime.

can be probed experimentally in state of the art Rydberg
atomic systems [31, 51–53]. Domain wall initial con-
ditions can be prepared via programmable locally con-
trolled light shifts. and recent experiments demonstrate
the feasibility of a transversely oriented magnetic field
of the required intermediate magnitude [31, 52]. Our
formulation of the effective model remains unchanged for
the typical anti-ferromagnetic interactions. Since the im-
balance and the kink operator are immediately accessi-
ble through snapshot measurements, we expect, that the
described phenomenology is readily accessible in current
Rydberg atom quantum simulators. An exciting prospect
would be the possibility to probe longer time scales in this
way.

Furthermore, it will be interesting to investigate other
initial domain wall configurations in the light of rough-
ening. Examples include the observed self-straightening

dynamics of a initial zig-zag configuration [31] and po-
tential implications for false vacuum decay probed via
bubble formation [54–57]. More generally, the impact of
curvature on the phenomenology of the roughening dy-
namics remains to be explored in a future work. Another
immediate question concerns the generalization to other
symmetries, since the results presented here rely on a Z2
symmetry-broken phase.
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[10] M. Lüscher, Symmetry-breaking aspects of the roughen-
ing transition in gauge theories, Nuclear Physics B 180,
317 (1981).

[11] T. A. Cochran et al., Visualizing Dynamics of
Charges and Strings in (2+1)D Lattice Gauge Theories,
arXiv:2409.17142 10.48550/arXiv.2409.17142 (2024).

[12] B. Kloss, D. R. Reichman, and Y. B. Lev, Studying dy-
namics in two-dimensional quantum lattices using tree
tensor network states, SciPost Phys. 9, 070 (2020).
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End Matter

BKT transition of the SOS Model. In this paragraph,
we demonstrate that the nature of the transition in the
effective SOS model (3) belongs to the BKT universality
class. To this end, we use the VUMPS algorithm [37–
39] to study the groundstate properties of the effective
model. This allows us to work directly in the thermo-
dynamic limit with a fixed truncation of bosonic excita-
tions Nmax ∈ 2Z. In the two-dimensional model, this is
equivalent to considering an infinitely long slab of width
Ly = Nmax + 1 with the interface oriented along the in-
finite direction. To observe the critical properties, it is
necessary to scale the results against Nmax → ∞.

In practice, we considered Nmax ≤ 14. Since the local
Hilbert space scales as dim(Hloc) = Nmax+1, a maximum
bosonic occupation of fourteen already leads to very long
simulation times of 13 × 103 seconds per iteration for a
bond dimension of χ = 600.

In contrast to continuous phase transitions described
by the Landau-Ginzburg theory, the BKT transition can-
not be detected by the divergence of any derivative of the
energy density ϵ(g), which is an analytical function of g.



8

This is demonstrated in Fig. 4a via the example of the
first and second derivative of ϵ(g). Moreover, we observe
that ϵ(g) and its derivatives are quickly converging in
Nmax.

Characteristic of the BKT transition is the exponential
divergence of the correlation length when approaching
the critical value gR,

ξ(g) = ξ0 exp
(

B√
|g − gR|

)
, for g < gR . (6)

Here, ξ0 and B are non-universal constants depending
on the model and on the observable used to extract the
correlation length. We observed the largest correlation
length for the vortex-vortex correlation function

C(l) = ⟨e−iN0eiNl⟩ l→∞−−−→ Ae− l
ξ + C∞

which is closely related to the kink operator (4). The
constant C∞ is expected to be close to one in the g < gR

region, while we expect it to vanish after the BKT tran-
sition for Nmax → ∞. In particular one has ⟨Kα(l)⟩ →
|C∞| for l → ∞. The results are displayed in Fig. 4b
for 6 ≤ Nmax ≤ 14. For increasing Nmax, the correlation
length shows a divergent behavior around g/J ≈ 1.4 with
ξ ∼ 800 for Nmax = 14.

To quantify that ξ(g) has the correct behavior ap-
proaching gR/J , we fit ξ(g) for Nmax = 14 for 1.1 <
g/J < 1.385 with higher resolution using Eq. (6). From
this fit, we obtain gR/J ≈ 1.38. In Fig. 4c we plot the log-
arithmic correlation length as a function of 1/

√
|g − gR|

for g < gR and 6 ≤ Nmax ≤ 14 using the value of gR

obtained by the fit. Increasing Nmax leads to a better
agreement between the data and the prediction for the
correlation length, which should be exact in the limit
Nmax → ∞. For lower Nmax the curve starts flatten-
ing out and thus deviating sooner, illustrating the finite
Nmax effects.

Finite temperature crossover in the classical limit. In
the classical limit g → 0 the effective model (3) contains
only commuting operators |Nj −Nj+1|. Thus, all eigen-
states are simply given by product states |{sj}⟩, fixing
the occupation on the j-th site. To study the thermody-
namic properties in this limit, it is sufficient to replace
the number operator Nj by its eigenvalues sj ∈ {0, Nmax}

Hclass({sj}) = 2J
Lx−1∑
j=1

|sj − sj+1| =
Lx−1∑
j=1

h(sj , sj+1) .

(7)
Let Vs,s′ = exp(−βh(s, s′)) be the transfermatrix of the
classical system and define the general α twisted bound-
ary vector |E(α)⟩ =

∑Nmax
s=0 eiαs |s⟩. The α twisted parti-

tion function of a chain of length Lx with open boundary

Figure 4. a) The energy density and its first two derivatives
with respect to the transverse field g, as a function of g. All
of the different order do not show any sign of non-analyticity
around the transition point, excluding the possibility of it
being a first-/second order phase transition. b) The corre-
lation length shows a divergence at g = gR when increasing
the maximal bosonic occupation number. All results are ob-
tained with a bond dimension of χ = 600 and are converged
for Nmax < 14. For the Nmax = 14, the points around the
transition are not yet fully converged showing numerical arte-
facts for g > gR. c) Fit of (6) to the data, showing the correct
BKT type divergence law of the correlation length. Increas-
ing Nmax again leads to a better agreement between the data
and the expected law. The critical transverse field obtained
from the fit for the largest Nmax = 14 is gR/J = 1.38.

conditions can be written compactly as:

Z(α) =
Nmax∑
s1=0

...

Nmax∑
sLx =0

e−βHclass({sj})−iα(s1−sLx )

= ⟨E(α)|V Lx−1|E(α)⟩ .

(8)

The standard partition function corresponds to zero
twisting, i.e., Z = Z(0). We can now write down the ex-
pectation value of the string operator ⟨Kl⟩. For simplic-
ity, we consider l = Lx, i.e., the end-to-end expectation
value. Using the twisted partition function, we obtain

⟨Kα(Lx)⟩ = Z(α)
Z(0)

The calculation can be further simplified by diagonal-
izing the transfer matrix V = UΛU†. In this case, the



9

twisted partition function can be written as

Z(α) = λLx−1
1

Nmax∑
s=0

fLx−1
n |cn(α)|2

where λ1 is the largest eigenvalue, fn = λn/λ1, and cn(α)
are the form factors obtained by calculating the overlap
between the eigenstates |ψn⟩ of V and the twisted bound-
ary vector |E(α⟩.

Numerically we found the operator ⟨Kα(Lx)⟩ to
rapidly converge in Nmax, more specifically Nmax = 200
is large enough for our analysis, see SM [35] for more
details.

It is also possible to understand the crossover behavior
analytically and derive a functional form for the transi-

tion temperature TR(Lx). Using the exact eigenvectors
and eigenvalues of the transfer matrix V of the classi-
cal model (7), we were able to find an approximation
of the end to end string operator in the limit of large
Nmax, Lx ≫ 1, and small q ≪ 1 [35]:

⟨Kα(Lx)⟩ ≈ exp (−2q(1 − cos(α)Lx) . (9)

By setting ⟨Kα(Lx)⟩ = 1/2 and solving for T/J =
−2/ log(q), we find that the transition temperature TR

should vanish logarithmically with the system size Lx:

TR(Lx)/J = 2 log
(

2(1 − cos(α))Lx

log(2)

)−1
, (10)

which has been confirmed numerically, see inset of
Fig. 2c.



Supplemental materials for “Roughening dynamics of interfaces in two-dimensional
quantum Ising model”

TREE TENSOR NETWORKS AND TIME DEPENDENT VARIATIONAL PRINCIPLE

FIG. S1. a) Visualization of a binary tree tensor network and its connectivity on a 2D lattice. Going horizontally from layer
to layer changes the direction of the connection. This is presented more clearly in b) which shows said direction as a top-down
view on the lattice, with different colors representing different layers.

We use binary tree tensor networks, see Fig. S1 a for a graphical representation thereof, in order to simulate the
dynamics of a quantum system on a two dimensional lattice. By alternating the x-/y-direction for the link connection
in each layer of the tree one can achieve a more natural cover of the lattice, see Fig. S1 b. The orientation of the tree
tensor network with respect to the lattice is such that the top node connects the two halves of the systems across the
interface. The choice of the orientation might play an important role for rotationally asymmetric initial states such as
ours. We checked the effect of that choice on the results by rotating the tensor network structure by 90 degrees. This
did not have any effect for the system sizes and bond dimensions, for the intermediate transverse fields (g/J ≤ 1)
considered.

An advantage of such a hierarchical structure lies in the fact that two spins at distance l on the two dimensional
lattice are connected by at most Ottn ∼ log l tensors, in contrast to the Omps ∼ l tensors needed in an MPS. The
absence of loops means that one can define an isometry center and thus has access to efficient algorithms such as
the TDVP algorithm [1] used here. Its 1-site version ensures that the energy and norm of the state are conserved.
However as a downside, it doesn’t allow for the bond dimension to be adapted throughout the algorithm. Thus, the
desired bond dimension needs to be encoded in the initial state from the beginning, which is done by padding the
product state with zeros. For the time step we chose dt = 0.1.

The TTN structure allows one to easily access the von Neumann entanglement entropy, by performing an SVD on
the tensor which splits the system into the desired partitions — the entanglement entropy is given in terms of the
singular values λi: S = −

∑
i λ

2
i log λ2

i .
Convergence is checked by comparing results obtained at different bond dimensions. In our case, local observables

often show rapid convergence in terms of bond dimensions, while the entanglement entropy carries information about
all higher order correlations, and is a more sensitive measure for convergence, see Fig. 1d in the main text.

We work with open boundary conditions (OBC) in both lattice directions due to the slower buildup of entanglement
compared to periodic boundary conditions (PBC). In principle, periodic boundary conditions would be preferable in
the direction parallel to the interface to reduce boundary effects.

Another consequence of the binary tree structure is that the tensors appearing in the tree are of size χ2 ×χ and thus
of the skinny-tall type, which allows for an efficient parallelization of the QR decompositions on these tensors. Since
tensor contractions are already naturally parallelizable, this means that the overall runtime of the simulations profit
substantially from GPU acceleration. In our case, we observe a speedup of around 70× over CPU performance. More
specifically, the most expensive simulation at a bond dimension χ = 362, at a time step dt = 0.1 up to tmax = 100
takes around two days on a single A100 GPU – on a CPU (Xeon Gold) the same calculation would take around 145
days.



2

EFFECTIVE MODEL

In the following section we present and motivate a derivation of the effective model. The domain wall length
operator, introduced in the main text, can be split into a horizontal and vertical component, by performing the sum
only over horizontally

Dx = 1
2

∑
i,j

(
1−σx

i,jσ
x
i,j+1

)
(S1)

or vertically

Dy = 1
2

∑
i,j

(
1−σx

i,jσ
x
i+1,j

)
(S2)

oriented bonds, respectively. With that, the transverse field Ising Hamiltonian can be rewritten as

H = 2JDx + 2JDy − g ·
∑

i

σz
i , (S3)

which coincides with the original Hamiltonian up to an irrelevant, additive constant. The effective model is introduced
as the projection onto the subspace of domain wall states that have exactly one horizontal domain wall per column,
thus fixing Dx/Lx = 1. As a consequence these states cannot exhibit overhangs or bubbles of oppositely oriented
spins within the bulk.

The vertical contribution to the domain wall length operator is determined by the difference of the vertical position
Ni, i ∈ {1, ..., Lx} of two neighboring segments

Dy ∝
∑

i

|Ni −Ni−1| , (S4)

while the absolute value reflects that the result is independent of the relative ordering in each pair.

KINK OPERATOR

The kink operator measures by how much the interface fluctuates across its length. In the case of a smooth interface,
the difference in the heights of the interface at different points of the domain wall will be close to 0, hence K = 1,
while for a rough interface, the cosine function ensures that large fluctuations add up to K = 0. This behavior is
reflected in Fig. S2 a, which shows how the kink operator stays close to K = 1 during time evolution up to tJ = 100
for small transverse fields, while for large ones it drops to zero on a timescale of 0.1 ≤ tJ ≤ 1. This as well as all
subsequent simulations in that section were performed on an 8 × 8 lattice.

Since the expectation value of the kink operator is real, we can alternatively write it as the real part of the complex
exponential instead of the cosine, i.e.

Kα(l) = exp(−i α(N1 −Nl)). (S5)

From that, the modified kink operator KM = K/Kbulk, introduced in the main text, can be understood as splitting the
bulk and interface contributions in the exponent into a sum, which in turn allows one to factor out the bulk contribution
in the calculation of the kink operator. This separation only works when neglecting cross terms introduced by the
exponential function, i.e. when the bulk and interface contributions can be clearly separated. This becomes infeasible
for transverse fields g/J > 1 as can be seen in Fig. S2b, where the kink operator first drops and then goes up again
in time for g/J ≥ 1.25. We want to stress that the observed rising of the kink operator an artifact of the method and
not a physical effect.

The angle α and distance l, appearing in the calculation of the kink operator allow to tune its sensitivity. In Fig. S2c
and d we show their influence on the time average of the running mean of the kink operator.

As expected, K → 1 for α → 0. For transverse fields g/J < 1 we observe little deviation between the results for the
effective and full model. For g/J = 1 this is not the case anymore, which is to be expected as we are approaching the
roughening transition. For the system sizes considered in this work, we found the value of α = 1.0 to provide the best
agreement between the effective and full model across all transverse fields of interest, and thus the highest sensitivity
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FIG. S2. a) Time evolution of the bare, i.e. unmodified kink operator in the 2D TFIM. b) Time evolution of the modified
kink operator for transverse fields g/J = 1, 1.25, 1.5, for both the 2D TFIM and 1D effective model. The plot shows unphysical
growth of the modified kink operator for g/J > 1, signaling the breakdown of the assumption that bulk and interface effects
can be separated. Plots c) and d) show the modified, kink operator, averaged over the interval tJ ∈ [20, 100], as a function of
c) the angle α and d) the distance l. The distance does not have much influence on how well the effective and full model agree,
which is why throughout the work we chose the largest distance possible for our lattice, i.e. l = 8. This is different for the
angle where we observe larger deviations for the largest transverse field g/J = 1. The smallest angle which showed the smallest
deviations across all values of the transverse fields considered is α = 1, which we used throughout this work.

to the roughening transition. This can be understood as smaller angles leading to an overall higher sensitivity to
boundary and unwanted bulk effects, which due to their large vertical distance from the initial interface provide a
big contribution to the kink operator, which in turn is detrimental for the system sizes considered. A larger value of
α enhances all contributions to the kink operator, while boundary effects are being ”washed” out due to the cosine
function, which will add up larger arguments to 0 due to the rapid sign changes. One thus needs to be careful to not
make the angle too large, otherwise the contributions coming from the interface will be lost as well.

Figure S2 d shows the effect of changing the distance to l – the effective and full model agree for all transverse fields
and distances l = 4, 6, 8 shown here.

Results for the kink operator on a 16 by 16 lattice are provided in Figure S3, in a similar fashion to what has been
presented in the main text for an 8 by 8 lattice. Due to the larger overall entanglement, the simulations only provide
reliable results up to a timescale of tmax = 30.

Figure S3 a) shows the domain wall length contribution coming from horizontally aligned interface lengths, normal-
ized by the length of the lattice in x-direction. Once again this confirms that up to g/J = 1, the number of domain
walls per column does not scale extensively with the vertical lattice size. The agreement between the time evolution
of the modified kink operator calculated in the full 2D and effective models is shown in Figure S3 b).

We want to emphasize that for that comparison we did not utilize the running mean of the modified kink operator
as has been done in the main text for the 8 by 8 system. This is because compared to the 8 by 8 system, the
kink operator calculated in the 16 by 16 system does not show strong temporal fluctuations, allowing for a direct
comparison.

The agreement between the two models is made even more apparent when comparing the late time plateau values
of the respective kink operators, obtained by taking the mean points within the region tJ ∈ [5, 30], see Figure S3 c).

EXACT SOLUTION OF THE CLASSICAL LIMIT AND APPROXIMATIONS

The thermodynamic properties at temperature T = 1/β of the SOS model in the classical limit g → 0 are defined
by the transfer-matrix

Vs,s′ = exp(−βh(s, s′)) = q|s−s′| , (S6)

with q = exp(−2Jβ) and s ∈ {1, . . . ,M}. Here, we have shifted the range of values for s by one with respect to
the main text and defined M = Nmax + 1 to simplify the notation in the following discussion. We are interested in
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FIG. S3. Kink operator for a 16 by 16 system, evolved up to a time of tmax = 30. a) Time evolution of the horizontal contribution
to the domain wall length divided by the horizontal lattice dimension. The plot shows that the number of horizontal domain
walls in each column does not scale extensively with the vertical system size, confirming the validity of the effective model in
that regime. (b) Comparison between the effective (dashed lines/crosses) and the full model (solid lines/circles) for the time
evolution of the kink operator. For the full model, we calculate the modified kink operator KM = ⟨K⟩/⟨Kbulk⟩. We don’t show
data for transverse fields beyond g/J = 1, as bulk and interface contributions become increasingly difficult to disentangle. (c)
Late-time averages over the interval tJ ∈ [5, 30] of the kink operators shown in (b) as functions of the transverse field. The
values agree well up to g/J = 1, once again confirming the quantitative predictive power of the effective in that regime.

evaluating the end-to-end kink correlation function given by

⟨Kα(Lx)⟩ = Z(α)
Z(0)

with the twisted partition function

Z(α) = λLx−1
1

M∑
n=1

fLx−1
n |cn(α)|2 ,

cn(α) =
M∑

s=1
eiαsψn(s) , fn = λn

λ1
,

(S7)

where |ψn⟩ =
∑M

s=1 ψn(s) |s⟩ are the eigenvectors of V and λn the corresponding eigenvalues with λ1 being the largest
eigenvalue.

The inverse of Eq. (S6) is connected to a single-particle tight-binding Hamiltonian Hsp via

Hsp = (1 − q2)V −1 − (1 + q2)1 = −q
M∑

s=1
(|s⟩ ⟨s+ 1| + h.c.) − q2 (|0⟩ ⟨0| + |M⟩ ⟨M |) , (S8)

which is a standard next nearest neighbor hopping Hamiltonian with additional edge potentials. The eigenvalue and
eigenvectors of this tight binding model are known [2]

ψn(s) = N {sin(sθn) − q sin((s− 1)θn)} , ϵn = −2q cos(θn) , (S9)



5

where |ψn⟩ =
∑

s ψn(s) |s⟩ are the eigenvectors, N a normalization factor, and the θn are defined by the roots of the
equation

sin((M + 1)θn) + q2 sin((M − 1)θn) − 2q sin(Mθn) = 0 , (S10)

with θn ∈ [0, π]. For M → ∞ and q → 0, the solutions of this equation become dense in the interval [0, π], with the
distance between two solutions vanishing as |θn+1 − θn| ∼ 1/M . In first order one finds θn = nπ/(M + 1) similar to
a homogeneous chain without the additional edge potentials.

By inverting Eq. (S8), the eigenvalues of V are given by

λn = 1 − q2

1 + q2 − 2q cos(θn) ,

while the eigenvectors are still given by ψn(s) from Eq. (S9).
From the exact expression of the eigenvalues and eigenvectors, we can now proceed to calculate the form factors

cn(α). Note that due to the reflection symmetry of the Hamiltonian (S9) one has ψn(M − s) = (−1)nψn(s) and thus
|cn(α)|2 = |cn(2π − α)|2. Thus it is sufficient to restrict the analysis to α ∈ [0, π].

Using the summation identity

M∑
s=1

eiαs sin(sθ + δ) = eiα

2i

(
ei

θ(M+1)+2δ
2 gM (α+ θ) − e−i

θ(M+1)+2δ
2 gM (α− θ)

)
, gM (x) =

sin
(

x
2M

)
sin

(
x
2
)

derived from the finite geometric sum, we find an exact expression for the form factors

|cn(α)|2/N 2 =gM (θn + α)2 + gM (θn − α)2

4
(
1 + q2 − 2q cos(θn)

)
− gM (θn + α)gM (θn − α)

2
(
cos(θn(M + 1)) + q2 cos(θn(M − 1)) − 2q cos(θnM)

)
.

(S11)

Note that cn(α) has a unique singularity at θ⋆ = α coming from the function gM (θ−α) for θ, α ∈ [0, π]. Let n⋆ be
the solution to Eq. (S10) with θn⋆

close to θ⋆.
The most dominant contribution to the twisted partition function Z(α) is thus given by the n⋆ form factor in the

large M limit

Z(α)/λLx−1
1 ≈ fLx−1

n⋆
|cn⋆

(α)|2 .

Since the distance between two solutions vanishes as 1/M in the large M limit, we expect |θn⋆ − θ⋆| ≈ δ/M , where
δ is a constant of order one and independent of α. Expanding cn⋆

for small δ/M and keeping only the dominant part,
we arrive at

|cn⋆
|2/N 2 ≈ M2

4
sin(δ/2)2

(δ/2)2 (1 + q2 − 2q cos(α)) ,

which diverges as expected for M → ∞.
Next consider the weights fn and expand them around n⋆

fn⋆ = λn

λ1
= 1 + q2 − 2q cos(θ1)

1 + q2 − 2q cos(θn⋆
) ≈ Γ

(1 − 2q
1+q2 cos(α))

.

Here, Γ = 1+q2−2q cos(θ1)
1+q2 is a α independent constant.

Assuming q small one finds in the Lx → ∞ limit

fLx−1
n⋆

≈ Γ
(

1 + 2q
1 + q2 cos(α)

)Lx

≈ Γe
2q

1+q2 cos(α)Lx .

Combining the results, we obtain for the end-to-end kink correlator

⟨Kα(Lx)⟩ = Z(α)
Z(0) ≈ 1 + q2 − 2q cos(α)

(1 − q)2 exp
(

− 2q
1 + q2 (1 − cos(α))Lx

)
≈ e−2q(1−cos(α))Lx , (S12)



6

where the last approximation is valid in the small q and large Lx limit. Note that 1 − cos(α) > 0 for α ∈ (0, π), such
that limLx→∞ ⟨Kα(Lx)⟩ = 0 for all values of α ∈ (0, π).

Fig. S4 a shows the agreement between numerical data and the analytical expectation (S12) for Lx = 512 · 103 and
Nmax = 200, confirming the approach presented here. In Fig. S4 b we numerically test the dependence of the results
on the maximal bosonic occupation number Nmax for different, color-coded system sizes, establishing that Nmax = 200
is sufficient to reliably calculate the kink operator for the system sizes considered here.

FIG. S4. a) Kink operator as a function of the temperature for system size Lx = 512 · 103 and Nmax = 200. The numerically
obtained data points agree very well with the analytical prediction (S12). b) Results for the kink operator as a function of T for
different system sizes and maximal bosonic occupation numbers. System sizes considered here lie in Lx ∈ [500, 512 · 103], with
exponentially increasing steps. The data points for Nmax = 100, 200 lie on top of each other, meaning results are converged
in the maximal bosonic occupation number. c) Dependence of the transition temperature on the angle α at Lx = 512 · 103,
following the dependence (S13) (grey, dotted line), obtained from analytical considerations on the transfermatrix.

We define the transition temperature in the classical limit by setting ⟨Kα(Lx)⟩ = 1/2, and solving for T/J =
−2/ log(q):

TR(Lx) = 2 log
(

2(1 − cos(α))Lx

log(2)

)−1
. (S13)

This relation is tested numerically by calculating the end-to-end kink correlator both as a function of the system size
for a fixed α, see inset of Fig.2 c in the main text, as well as a function of the angle α for fixed system size, see
Fig. S4 c.

THERMALIZATION AND LEVEL SPACING STATISTICS

In the main text, we implicitly assume eventual equilibration of the interface initial condition to a homogeneous
spin state. To support this claim, which is not trivial and still under debate, we provide an analysis of the level spacing
statistics of the exact eigenenergy spectrum Ei for a 4 by 5 lattice with PBC in x-direction and OBC in y-direction,
analogous to what has been done in the main text for larger system sizes. The level spacing statistics provides a way
to determine wether a system is chaotic or integrable, based on results from random matrix theory. An integrable
system is characterized by its level spacing statistics following a Poisson distribution, while for a chaotic system it
follows the one of a Gaussian orthogonal ensemble (GOE). In order to evaluate the level spacing statistics reliably,
one has to first unfold the spectrum, i.e. separate the level spacing from overall changes in the energy scale. This is
done via the relation

sn = (En+1 − En)∂n(E)
∂E

|E=En
, (S14)

where n(E) is the staircase or cumulative spectral function, returning the number of levels below or at the energy
E [3].

In Figure S5 a) we show results of the unfolded spectrum for two different transverse fields g/J = 0.15, 0.75. The
level spacing of the larger field clearly resembles the one of a GOE, indicating a chaotic system, which is true also for
the smaller transverse field, even though the peak of the distribution starts to travel towards zero level spacing. To
summarize, neither of the cases follows the level spacing distribution expected from an integrable system.



7

The mean over the distribution of ratios

r̃n = min(dn, dn−1)
max(dn, dn−1) , (S15)

with dn = En − En−1, assumes the value ⟨r̃n⟩Poisson ≈ 0.38629 or ⟨r̃n⟩GOE ≈ 0.60266 if the underlying distribution
is of Poissonian or GOE type, respectively [4]. Figure S5 b) presents this quantity as a function of the transverse
field, showing that in the considered system of finite size the underlying level spacing statistics closely follows the
chaotic one, with minimal deviations towards smaller transverse fields. Hence, we expect eventual thermalization of
the system in the non-equilibrium dynamics considered in the main text for all system sizes considered.

FIG. S5. a) Two examples of the unfolded level spacings at different g/J . The one corresponding to g/J = 0.75 clearly agrees
with the one predicted from random matrix theory for chaotic systems, while for the smaller g/J = 0.15 it starts exhibiting
features from both, i.e. the mean level spacing moves towards zero – however the characteristic peak at sn = 0 is still missing,
distinguishing it from a pure Poisson statistics. b) Mean level-spacing distribution ratio of a 4 by 5 system for different
transverse fields. Across all transverse fields considered, the ratio corresponds to a GOE distribution and hence an chaotic
system with slight deviations from that expected value at the smallest fields.

QUANTUM MONTE CARLO

The data points in the phase diagram of Fig. 2d) are obtained using the QMC loop-algorithm [5, 6] provided in
the ALPS package [7] for the critical temperatures (blue line) and using the QMC package written in Rust [8] for the
effective temperature of the initial state (red line).

The points of the blue line are obtained by finding the crossing points of the binder cumulant of the magnetization
as a function of temperature for lattice sizes L = 8, 12, 16, see Fig. S6 a.

The points of the red line correspond to the temperature associated with the initial domain wall state on an
8 × 8 lattice at a transverse field g, i.e. the temperature Tcross s.t. the energy E = Tr HρGibbs of the Gibbs state
ρGibbs = exp (−H/Tcross) corresponds to the energy of the initial state Einit, see Fig. S6 b. Note, that in order to
simulate the conditions for a domain wall state and get the correct effective temperature, we employ periodic boundary
conditions on one edge and anti-periodic boundary conditions on the other within the QMC simulation.

Data points are obtained using 5 ·104/1 ·105 samples for the critical/actual temperatures, after 1 ·104 thermalization
steps are performed. These values where chosen such that the estimated error on all the observables considered here
lies below 1%.
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IV.3 Summary
In non-interacting integrable fermionic quantum chains, the existence of a topolog-
ically protected ground-state degeneracy implies a stable degeneracy of the entire
many-body spectrum. This is associated with the existence of Majorana operators
exponentially localized to the edge of the quantum chain with an infinite lifetime,
even at infinite temperatures. As explained in Section 1.5, away from integrability,
this property is destroyed in general, and these Majorana Zero Modes (MZMs) be-
come an ASZM. Compared to the integrable case, the ASZM has a finite lifetime,
which, in principle, depends on the temperature.

The presented work extends previous studies [214, 217, 218] that considered the
ASZM exclusively at infinite temperatures by including the effect of finite tempera-
ture. In addition, this allows to study how the ASZM is connected to the MZM that
are associated with the degenerated ground-state manifold for fermionic chains in
the Symmetry-Protected Topological Phase (SPTP).

In earlier works, the ASZM was studied by mapping the Heisenberg time evolution
of the edge operator on an artificial single-particle chain. This is done by performing
a Lanczos iteration, which iteratively generates an orthonormal basis of operators,
as explained in Section 1.5. In this present study, we approximate the basis opera-
tors by a Matrix Product Operator (MPO) with a maximal bond dimension 𝜒, and
the Lanczos iteration is formulated with the help of these approximate basis states.
While previous studies used exact methods to calculate the Lanczos iteration, using
a tensor network ansatz has two major advantages. First, by using a fixed maximal
bond dimension, the number of variational parameters is only linear in the system
size compared to the exponentially many parameters in an exact approach. This
allows the study of larger system sizes, which is crucial for obtaining the system
size-converged lifetime of the ASZM. Second, the tensor network allows the tem-
perature to be included directly by using a standard tensor network algorithm for
calculating the canonical density matrix [295, 296]. Furthermore, the formulation
can be extended to a semi-infinite chain by expanding the tensor network at each
step. Although this is straightforward in the infinite temperature limit, the finite-
temperature algorithm requires a formulation of the density matrix in a semi-infinite
chain. To the best of our knowledge, such an algorithm has not yet been developed.

We apply this algorithm to the Kitaev-Hubbard Model (KHM) from Eq. (1.110)
in the topological regime. We observe that the lifetime of the ASZM increases ex-
ponentially as 𝑇 approaches zero, as shown in Figure 6(a) of our publication, and
the ASZM is smoothly connected to the MZM defined in the ground-state mani-
fold. Surprisingly, the energy scale associated with this exponential Δeff is greater
than the many-body gap Δ and depends non-trivially on the microscopic coupling
parameters, as shown in Figure 6(b) in our publication.

In the final part of our work, we show that this effective energy scale is related to
a prolonged degeneracy of the low-lying energy states in the many-body spectrum.
Specifically, we demonstrate that the excitation energies for 𝐸𝑛,𝑝 − 𝐸0 ≤ Δeff show
an extended degeneracy between the even and odd parity sectors, even away from
the ground-state manifold, as shown in Figure (8) of our publication. Although not
proven, this builds the idea of the existence of the ASZM, reflecting this extended
degeneracy.



Almost Strong Zero Modes at Finite Temperature

Niklas Tausendpfund,1, 2 Aditi Mitra,3 and Matteo Rizzi1, 2

1Forschungszentrum Jülich GmbH, Institute of Quantum Control,
Peter Grünberg Institut (PGI-8), 52425 Jülich, Germany

2Institute for Theoretical Physics, University of Cologne, D-50937 Cologne, Germany
3Center for Quantum Phenomena, Department of Physics,

New York University, 726 Broadway, New York, New York, 10003, USA
(Dated: May 22, 2025)

Interacting fermionic chains exhibit extended regions of topological degeneracy of their ground
states as a result of the presence of Majorana or parafermionic zero modes localized at the edges. In
the opposite limit of infinite temperature, the corresponding non-integrable spin chains, obtained via
generalized Jordan-Wigner mapping, are known to host so-called Almost Strong Zero Modes, which
are long-lived with respect to any bulk excitations. Here, we study the fairly unexplored territory
that bridges these two extreme cases of zero and infinite temperature. We blend two established
techniques for states, the Lanczos series expansion and a tensor network ansatz, uplifting them to the
level of operator algebra. This allows us to efficiently simulate large system sizes for arbitrarily long
timescales and to extract the temperature-dependent decay rates. We observe that for the Kitaev-
Hubbard model, the decay rate of the edge mode depends exponentially on the inverse temperature
β, and on an effective energy scale ∆eff that is greater than the thermodynamic gap of the system ∆.

I. INTRODUCTION

Fractionalization of low energy excitations is one of the
most interesting properties of topological many-body sys-
tems, with the simplest example of this being the Majo-
rana zero modes (MZMs) [1–5] that appear in fermionic
chains protected only by the fermion parity P . These
MZMs correspond to fractionalized fermions exponen-
tially localized at the edges of a finite-size system. Be-
cause of this non-local nature, a (topological) ground-
state degeneracy arises, as there is no local physical op-
erator that couples to these fractionalized fermions. The
appearance of edge modes can easily be understood in
the non-interacting limit as the model formally belongs
to the BDI symmetry class in the Altland-Zirnbauer clas-
sification [6, 7]. For finite interaction strengths, it has
been shown that the topological region – with the ap-
pearance of fractionalized edge modes within the degen-
erate ground-state manifold – persists for a wide range
of parameters [8–11].

Away from the ground-state manifold, little is known
about the spectral properties for generic interactions, and
whether stable MZMs exist even for excited states. How-
ever, this is important because it strongly affects the fi-
nite temperature lifetime of local edge excitations that
have overlap with the MZMs, and has ramifications on
practical realization of topologically protected qubits. In
the zero-temperature limit, where only the ground-state
manifold contributes to the dynamics, the topological de-
generacy leads to an infinite lifetime of these edge exci-
tations. On the other hand, at infinite temperature, the
same edge excitations were shown to have an unusually
long lifetime compared to generic bulk excitations [12–
19]. In integrable limits, this behavior can be explained
by the appearance of a Strong Zero Mode (SZM) [1, 20–
23], a generalization of the Majorana zero mode to the
full spectrum. Here, the existence of the SZM implies

a protected degeneracy of the whole spectrum and not
only of the ground-state manifold, and thus one recovers
an infinite lifetime. Away from these special limits, the
lifetime becomes strictly finite, with the edge mode of-
ten referred to as an Almost Strong Zero Mode (ASZM)
[12]. Besides some phenomenological arguments [13], it
is still an open question how the lifetime of the edge ex-
citations behaves at finite temperatures. In particular,
it is not known how the infinite lifetime emerges as the
temperature is lowered from infinity to zero.

In this work, we explore this rather unchartered ter-
ritory by employing a tensor network ansatz [24] to ap-
proximate the sequence of operators generated by the
Lanczos algorithm for Heisenberg time evolution [25, 26].
This procedure maps the operator dynamics to the time
evolution of a single-particle problem on an artificial one-
dimensional chain. Originally used to study the com-
plexity growth of time-evolved operators, this method
has been shown to be a useful tool for understanding
the emergence of these long-lived ASZMs [16, 17]. How-
ever, these earlier studies were highly limited in system
size and, most importantly, to infinite temperatures. The
formulation of the Lanczos algorithm for tensor networks
removes the limitation of small system sizes by intro-
ducing a controlled approximation given by the bond di-
mension χ of the tensor network. Moreover, an intrinsic
tensor network formulation allows for the efficient inclu-
sion of arbitrary temperatures T = 1/β, since the den-
sity matrix ρ(β) can also be approximated by a tensor
network [27]. We emphasize that in contrast to direct
integration schemes such as the time-dependent varia-
tional principle (TDVP) [28, 29], the Lanczos method
developed here converges quickly with the bond dimen-
sion in the case of a long-lived ASZM. In the former case,
the bond dimension necessarily has to grow exponentially
with time, while this is not the case for our Lanczos ap-
proach, see Appendix F 3 for details.
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As an application, we explicitly calculate the life-
time of the Majorana edge mode in the non-integrable
Kitaev-Hubbard chain [30]. We find an exponential
dependence of the lifetime on the inverse temperature
τ(β) = exp(∆effβ). However, in contrast to generic bulk
excitations where ∆eff is expected to be the energy gap
in the many-body spectrum [31], we observe a non-trivial
dependence of ∆eff on the interaction strength. In par-
ticular, we find that ∆eff is consistently larger than the
many-body gap, hinting at a degenerate structure of the
low-energy portion of the spectrum and not exclusively
of the ground state.

The paper is organized as follows: In Section II, we in-
troduce the main concepts such as the finite temperature
autocorrelation function from which the lifetime of an ex-
citation can be extracted, and the Lanczos iteration for
calculating the autocorrelation function. We also intro-
duce our algorithm for evaluating the Lanczos series ap-
proximately using tensor networks. We close this section
by reviewing the concept of ASZMs, which are the cen-
tral object studied in this paper. In Section III, we intro-
duce the Kitaev-Hubbard chain: a toy model exhibiting
an extended topological phase in its ground-state phase-
diagram. The Majorana edge modes appearing in this
topological phase serve as a perfect test for our algorithm.
Finally in Section IV, we present the numerical findings
for the lifetime of these Majorana edge modes at various
parameter points in the topological phase of the Kitaev-
Hubbard chain. We close this paper with Section V that
summarizes our findings and comments on possible ex-
tensions to other systems such as parafermions [32–34],
Floquet circuits [20, 22, 35–37] and number conserving
realizations of MZMs [34, 38–45].

II. DEFINITIONS

A. Autocorrelation functions at finite temperatures

We define the lifetime of an excitation generated by the
operator Ô by the decay of the autocorrelation function
(ACF) defined as

Cβ(Ô, t) := ⟨Ô|Ô(t)⟩β , (1)

with the temperature dependent scalar product [25, 26,
46]

⟨Â|Ô⟩β = 1
2 Tr

[
ρ(β)

{
Â†Ô + ÔÂ†

}]
. (2)

Here Ô(t) = eitHÔe−itH denotes the Heisenberg time
evolution, β = 1/T is the inverse temperature, and
ρ(β) = exp(−βH)/Tr [exp(−βH)] is the finite temper-
ature density matrix.

Let us briefly discuss the two limiting cases of Eq. (2),
namely of zero and infinite temperature. In the infinite
temperature limit β → 0, the scalar product of Eq. (2)

becomes proportional to the Frobenius scalar product on
the vector space of operators

⟨Â|Ô⟩β=0 = 1
dim(H) Tr[Â†Ô] .

The normalization is given by the dimension of the many-
body Hilbert-space H.

On the other hand, for zero temperature β → ∞, the
density matrix projects onto the ground-state manifold,
denoted by GS. Thus, the scalar product in Eq. (2) re-
duces to an equally weighted average over all ground-
states in GS:

⟨Â|Ô⟩β=∞ = 1
2 dim(GS)

∑
Ω∈GS

⟨Ω|Â†Ô + ÔÂ†|Ω⟩ .

Before closing this subsection, let us comment on the
fact that the temperature-dependent scalar product in
Eq. (2) is not a unique choice, see Appendix A. However,
our choice appears naturally in linear response theory
and directly links the ACF to a measurable quantity [25,
26].

B. Lanczos Series Evaluation of The
Autocorrelation Function

To solve the Heisenberg time evolution, and thus cal-
culate the ACF, we make use of the Lanczos algorithm
[25]. As we detail below, this generates a tri-diagonal
superoperator that can be interpreted as a single particle
hopping on a semi-infinite chain, where the sites are (or-
thonormal) operators. In fact, the edge density of states
(EDOS) of this artificial single particle problem carries
all the information about the ACF.

Defining the superoperator LÔ := [H, Ô], the Heisen-
berg time evolution can be written as

Ô(t) = eiHtÔe−iHt =
∞∑

n=0

(it)n

n! LnÔ . (3)

The Lanczos algorithm now aims at constructing an op-
erator basis On to express the time evolution in a more
efficient way. This basis is constructed to be orthonormal
with respect to the temperature dependent scalar prod-
uct defined in Eq. (2). To this end, we assume w.l.o.g.
⟨Ô|Ô⟩β = 1 and require Ô† = Ô.

To iteratively construct this new basis, we start by
setting O0 := Ô, O−1 = 0, and b0 = 0. The sequence of
orthonormal operators then reads

Ân = LOn−1 − bn−1On−2,

bn =
√

⟨Ân|Ân⟩β ,

On = Ân/bn .

(4)
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The time evolved operator Ô(t) can be expanded in this
basis with real coefficients φn(t) as

Ô(t) =
∞∑

n=0
inφn(t)On , φn(0) = δn,0 .

Further, by defining the states |n⟩ = inOn, with ⟨n|m⟩ =
δm,n, the ACF is now equivalently expressed by

Cβ(Ô, t) = φ0(t) = ⟨0|e−itHsp |0⟩ , (5)

Hsp =
∞∑

n=0
i bn+1 |n+ 1⟩ ⟨n| + h.c. , (6)

where Hsp is the artificial single particle Hamiltonian,
solely defined by the Lanczos coefficients bn[47]. In fact,
these Lanczos coefficients bn carry all the information
about the seed operator Ô used to construct the Lanczos
series, the Hamiltonian H, and the temperature through
the chosen scalar product.

Instead of computing the ACF directly by calculating
the exponential of Eq. (6), it is simpler to reconstruct the
ACF from the EDOS of the single particle Hamiltonian
Hsp, defined as

νE
β (ω) = ⟨0|δ(ω −Hsp)|0⟩ , (7)

The EDOS νE
β (ω) is connected to the ACF Cβ(Ô, t) by

a simple Fourier transform

Cβ(Ô, t) =
∫ ∞

−∞
dω νE

β (ω) cos(ωt), (8)

and equivalently carries all information about the dynam-
ics. Note that the tridiagonal structure of Hsp, Eq. (6),
with zeros on the diagonal, implies νE

β (ω) = νE
β (−ω).

In principle, to obtain the full time dynamics of a given
operator Ô, it is necessary to calculate a large number of
the Lanczos coefficients bn. To keep the computational
effort to a minimum, we need to truncate the series at
some point. This is possible because the Lanczos coeffi-
cients are expected to grow nearly linearly with n, satu-
rating at some plateau value due to finite size effects [26].
We therefore adopt a strategy similar to that used by one
of us in Ref. [16]. For this, we compute the first N coeffi-
cients of the Lanczos series explicitly. After reaching the
plateau value, we approximate the unknown values for
n > N by setting bn>N = bN . In terms of the artificial
single particle Hamiltonian, this amounts to attaching a
featureless semi-infinite homogeneous chain with a hop-
ping parameter w = ibN . This approximation also leads
to an efficient calculation of the EDOS in terms of a con-
tinued fraction as explained in Appendix D.

Note that the details of the transition to the semi-
infinite chain with uniform hopping is not that crucial,
see also Appendix F 1 for a numerical demonstration.
This can be understood in terms of the artificial Hamil-
tonian Hsp. Since we are mainly interested in the edge
properties of Hsp, changing the parameters far away from
the edge has only a small influence, as long as N is
large enough and bN is placed well inside the featureless
plateau.

C. Evaluation using a Tensor Network Ansatz

The tridiagonal form of the artificial Hsp of Eq. (6)
does not imply that the exact calculation of the Lanczos
series is an easy task overall. Indeed, since the Lanczos it-
eration involves nested commutators, the basis states On

quickly become fully dense matrices for any given sys-
tem size. The exponential growth 22L with system size
of the number of elements, limits previous studies [16, 17]
to very small system sizes and infinite temperatures. In-
cluding finite temperatures would require a full diagonal-
ization of the Hamiltonian to obtain the density matrix
ρ(β), a task impossible for L > 16. To overcome this
limitation in system size and temperature, we introduce
a tensor network approach that approximates the basis
operators On. In particular, we choose the operators On

to be represented by a matrix product operator (MPO):

On = On
1 On

2 On
3

χ χ χ

σ1 σ2 σ3

σ′
1 σ′

2 σ′
3

. . . .

Here χ is the bond dimension of the ansatz and is kept
fixed. For a given bond dimension χ, the number of ele-
ments grows algebraically with the system size O(Lχ2d2),
in contrast to the exponential growth of dense matrices.
Similarly, the HamiltonianH and the density matrix ρ(β)
can also be efficiently represented by an MPO [27, 48].
To evaluate the Lanczos iteration of Eq. (4), we have to
replace the normal matrix algebra by the corresponding
tensor network algebra. For example, the application of
the superoperator LOn = HOn − OnH can be expressed
by two MPO-MPO applications followed by subtraction
of the two resulting MPOs. In general, these tensor net-
work operations lead to an increase in the bond dimen-
sion of the final MPO. To keep the bond dimension fixed
at χ, it is therefore necessary to truncate the bond di-
mension back to the target bond dimension χ.

In this paper we choose to apply a truncation scheme
based on the singular values of the MPO. More specifi-
cally, we use the reduced density matrix approach [49],
analogously to matrix product states. Moreover, to
make the application of the superoperator as exact as
possible, we apply this truncation scheme in one shot
to the full LOn and not separately after each inter-
mediate step (i.e., HOn, OnH and their subtraction).
Let us note that this truncation scheme maximizes the
fidelity ⟨M̂ |LOn⟩0, which corresponds to the infinite-
temperature scalar product. In principle, one could also
directly optimize the fidelity obtained from the finite-
temperature scalar product via a variational optimiza-
tion.
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Algorithm 1 Lanczos Iteration
function lanczos_step(On, On−1, bn, H, β, χ)

B̂n+1 ← commutator(H, On, χ)
Ân+1 ← add(B̂n+1, −bn · On−1, χ)
bn+1 ← norm(Ân+1, β)
On+1 ← Ân+1/bn+1
return (On+1, bn+1)

end function

The complete Lanczos iteration step described by
Eq. (4) using the tensor network approach is summa-
rized in the pseudo-code 1. The core function LANC-
ZOS_STEP takes as input the current On and the previ-
ous basis operator On−1, the current Lanczos coefficient
bn, the system Hamiltonian H and the inverse tempera-
ture β together with the target bond dimension χ. The
function commutator calculates the application of L to
On in MPO form with a direct truncation of the target
bond dimension to χ, see Appendix G. Similarly, add
takes the output of commutator, subtracts bnOn−1 as a
MPO with a direct truncation and stores the result in
Ân+1. Finally norm calculates the norm of Ân+1 with
respect to the temperature dependent scalar product of
Eq. (2).

Note that the algorithm presented here can be directly
applied in the thermodynamic limit, at least for infinite
temperature where ρ = 1 independent of the system size.
For example, for a seed operator O originally localized
at the edge of a semi-infinite chain and a Hamiltonian H
with only nearest neighbor interaction, the basis opera-
tors On have a support on at most n+ 1 sites. Thus, by
growing the operator in each step, it is possible to remove
all finite size effects. For finite temperatures one needs
a good representation of the density matrix ρ(β) for an
infinite system, which is beyond the scope of this article.

D. (Almost) Strong Zero Modes

MZMs occur in gapped fermionic chains where the
number conservation is broken to a Z2 fermionic parity
symmetry. They always appear in pairs, with one MZM
at the left and the other at the right end of the chain.
The appearance of a MZM is associated with a ground-
state degeneracy of two, where the two ground-states
|Ωp⟩ have opposite parity p = ±. As they only differ in
the occupancy of the MZM, there is no local bulk oper-
ator that can distinguish between the two ground-states
and the degeneracy is topologically protected. To de-
fine the MZM, we assume that the chain is populated by
spinless fermions described by the creation/annihilation
operators c†

j/cj . Equivalently, we can define the set of
Majorana operators by cj = (γj,a − iγj,b)/2.

Now, given the two ground-states, one typically defines

the MZM as

γL :=
N∑

j=1
φjγj,a , φj := ℜ [⟨Ω+|γj,α|Ω−⟩] . (9)

Above, ℜ[z] denotes the real part of the complex num-
ber z. Here for simplicity, we focus on the left end of
the chain and assume that only the γj,a Majorana op-
erators contribute (in contrast to odd products of the
Majoranas). A typical behavior is exponential localiza-
tion with |φj | ∼ e−δj , with δ depending on the coupling
parameters of the model [1].

The existence of a MZM has strong consequences for
the ACF for γ1,a at zero temperature. As discussed in
subsection II A, the ACF reduces to an equally weighted
average over correlation functions in the ground-state
manifold, i.e.

Cβ=∞(γ1,a, t) = 1
2

∑
p=±1

ℜ
[
⟨Ωp|γ1,ae

iHtγ1,a|Ωp⟩
]
,

where we have assumed H |ΩP ⟩ = 0. From p̄ = −p, it
follows from an insertion of the identity that:

ℜ
[
⟨Ωp|γ1,ae

iHtγ1,a|Ωp⟩
]

=

| ⟨Ωp|γ1,a|Ωp̄⟩ |2+
∑

n/∈GS

| ⟨Ωp|γ1,a|n, p̄⟩ |2cos(En,P̄ t)

= |φ1|2 + C̃(t) −−−→
t→∞

|φ1|2 ,

where C̃(t) represents the incoherent part coming from
the states above the gap and is assumed to decay rapidly.
It follows C∞(γ1,a, t) → |φ1|2 for t → ∞.

In the previous discussion, the MZM was defined solely
by the properties of the ground-state manifold. The SZM
can be seen as a generalization of these ideas to the full
many-body spectrum. In this perspective, a SZM [1, 21,
32, 33, 50] is defined as an operator Γ with the following
properties

1. Hermitian: Γ† = Γ,

2. Anti-commuting with the fermionic parity:
{P,Γ} = 0,

3. Commuting with the Hamiltonian: [Γ, H] → 0 for
L → ∞.

We also require the Γ to be localized at the edge of the
system, so that the SZM has an exponentially decaying
weight on operators with support away from the edge of
the chain, similar to the MZM.

It follows that a system possessing a SZM has an exact
double degeneracy of the spectrum in the thermodynamic
limit: Every energy eigenstate of defined parity p has a
partner state of the opposite parity −p [1, 21, 32, 33, 50].
As a direct consequence, it is easy to show that for any
operator with ⟨Ô,Γ⟩β = α the long-time thermodynamic
behavior of the ACF is given by Cβ(Ô, t) → |α|2 for ar-
bitrary temperatures T = 1/β. In contrast, the existence
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of a MZM only guarantees the double degeneracy in the
ground-state manifold and thus an infinite lifetime of γ1,a

only at exactly zero temperature.
The construction of a SZM in an exact way has only

been achieved in a few cases of integrable Hamiltonian
models [1, 21]. Apart from integrability, it is still an
open question whether it is possible to find a SZM and
whether it is possible to have an exact double degeneracy
in the spectrum even in a perturbative regime [11, 51, 52].
Still, it has been found numerically [12–17] that γ1,a has
a long lifetime at infinite temperature. Unlike a SZM, in
this case the lifetime saturates with the system size and
is strictly finite in the thermodynamic limit. This behav-
ior has been linked to the existence of an ASZM. More
precisely, an ASZM shares all properties of a SZM except
that the commutator with the Hamiltonian saturates to a
non-zero operator with increasing system size [13]. This
error term then necessarily leads to a finite lifetime of
the edge excitation γ1,a.

In a pre-thermal regime, the authors of [13] connected
the appearance of such a nearly commuting operator to
an approximately conserved U(1) symmetry. In their for-
mulation, the ASZM is given by a local unitary rotation
of γ1,a. A different approach to understanding the ASZM
was proposed by Yates et al. [16, 17], who linked this be-
havior to the Lanczos series bn obtained by using γ1,a

as the seed operator. In particular they found that the
artificial single particle Hamiltonian Hsp from Eq. (6)
resembles that of a dressed Su-Schrieffer-Heeger[53, 54]
(SSH) model with a vanishing staggering:

bn = hn + (−1)nh̃n . (10)

Here hn is the positive monotonically increasing back-
ground hopping in Krylov subspace, and is expected to
be present for any generic chaotic models [26], while h̃n

is the staggered component, which becomes trivial for
some n > n⋆. This structure has a strong influence on
the possible form of the EDOS νE

β (ω), Eq. (7).
Here, we make use of the fact that the EDOS must to

be of the form

νE
β (ω) =A(β) γ(β)/π

ω2 + γ(β)2

+ [1 −A(β)] ν̃E
β (ω) ,

(11)

where ν̃E
β (ω) defines an incoherent background density

of states with a gap around zero energy. This incoherent
background leads to fast short-time dynamics, while the
asymptotic behavior is dominated by the Lorentzian line-
shape of width γ(β).

In fact, the general model of Eq. (10) can be mapped
by simple arguments to a new model consisting of a SSH
chain of length Neff attached to a semi-infinite lead with
homogeneous hopping. The Lorentzian peak results from
the hybridization of the topological edge state of the SSH
model with the gapless spectrum of the semi-infinite lead,
while the bulk modes the SSH chain give rise to sidebands
approximately described by semicircles:

2ν̃E
β (ω) = νC(E − E0) + νC(E + E0),

νC(ω) = 1
πw⋆

√
1 − ω2

(2w⋆)2 θ(2w⋆ − |ω|) .
(12)

See Appendix E for more details. We propose a sim-
ple model to capture all the dynamics of the ASZM at
short and long times, involving four fitting parameters
(A, γ,E0, w

⋆). In this model, the appearance of a narrow
Lorentzian peak is the signature of an ASZM. From the
EDOS, one can also recover the SZM limit as follows:
since the Lorentzian contributes to the ACF as e−γ(β)t,
an infinite lifetime is recovered only for γ(β) → 0. For
this case, the Lorentzian function reduces to a delta func-
tion δ(ω).

III. MODEL

The explicit model studied in this work is that of spin-
less fermions defined by the creation/annihilation opera-
tors c†

j/cj that reside on a chain of length L, and interact
according to the Kitaev-Hubbard Hamiltonian

H = −w
L−1∑
j=1

(
c†

j − cj

) (
c†

j+1 + cj+1

)

+ U
L−1∑
j=1

pjpj+1 − µ

2

L∑
j=1

pj .

(13)

Above, pj = 2c†
jcj − 1 defines the local parity of the

site j. The quadratic part of this Hamiltonian (U = 0)
consists of the usual nearest-neighbor hopping term, a
p-wave pair creation/annihilation process of neighboring
particles, and a chemical potential µ controlling the av-
erage density. For simplicity, we choose the pairing po-
tential to be equal to the hopping amplitude and denote
it by w. In order to break integrability, we introduce
a nearest-neighbor Hubbard-like interaction of strength
U . The Hamiltonian Eq. (13) commutes with the total
fermionic parity P =

∏
j pj , thus splitting the spectrum

into two towers of even and odd parity.
In terms of the Majorana operators introduced in sec-

tion II D, the Hamiltonian (13) assumes the form

H = −w
L−1∑
j=1

iγj,bγj+1,a + µ

2

L∑
j=1

iγj,aγj,b

−U
L−1∑
j=1

γj,aγj,bγj+1,aγj+1,b .

The Kitaev-Hubbard chain (13) possesses a rich phase-
diagram, sketched in Fig. 1, including an extended topo-
logical phase [9, 11, 55] characterized by a doubly degen-
erate ground-state manifold |Ωp⟩ with opposite fermion
parity p, together with the appearance of edge-localized
MZMs. While non-integrable for a generic choice of pa-
rameters, there are two exactly solvable limits. The first
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Figure 1: (a) Sketch of the different phases of the Hamiltonian in Eq. (13) following [9, 11, 55]. For small µ/w and
U/w, there exists an extended region (white) showing a topological ground-state degeneracy. Increasing either µ
or U , one observes phase transitions into topologically trivial regions. For large µ, the state is described by a triv-
ial band insulator, while for large U , one observes a transition into an incommensurate charge density wave phase,
followed by a commensurate-incommensurate transition into a Mott insulating phase. The black lines denote the
exactly solvable limits where it is possible to construct SZMs that commute with the Hamiltonian. These SZMs
disappear at the phase transitions to the trivial regions, marked by yellow stars. Along the three cuts, marked by
purple (µ/w = 0.2), red (µ/w = 0.6), and blue (µ/w = 1.2), we compute the effective energy scale ∆eff in Sec. IV B.
(b) Energy dispersion relations for U = 0 are displayed and with the identification E(k = 0) = ∆(U = 0).

limit is the non-interacting case with U = 0 where the
model becomes quadratic in terms of the Majorana oper-
ators and is equivalent to the Kitaev chain [1]. The sec-
ond limit corresponds to µ = 0 but arbitrary interaction
strengths U . In this case, the model is diagonalizable by
defining a non-local unitary transformation of the origi-
nal fermions cj , see Appendix C for more information.

In both cases one can construct a SZM analyti-
cally [1, 21]. Away from these integrable limits, this is
no longer possible. Nevertheless, the topological ground-
state degeneracy does still allow for the existence of a
MZM of the form γL =

∑N
j=1 φjγj,a, see discussion in

section II D.

IV. RESULTS

In this section, we discuss the numerical results ob-
tained for the temperature dependent Lanczos series.
Motivated by the analytical results for the SZM in the
integrable limits of the Kitaev-Hubbard chain, Eq. (13),
and the form of the MZM in the ground-state manifold,
we choose the edge Majorana operator γ1,a = c†

1 + c1 as
the seed operator for the Lanczos algorithm.

A. General behavior of the Lanczos series

We will start by considering the exemplary point
µ/w = 1.2, U/w = 0.1 to discuss the general features
observed at finite temperatures. For all results we have
chosen a fixed system size of L = 22. We have checked
that the resulting ACF has converged with respect to the
system size, see also Appendix F 1 We start by discussing

n
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b n
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⟨h
̃ n⟩
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w𝛽 = 0.8
w𝛽 = 1.4
w𝛽 = 2.0
w𝛽 = 2.35

Figure 2: Lanczos coefficients for L = 22 at various
inverse temperatures wβ = 1/T . The insert shows the
staggered component h̃n, Eq. (14), averaged over seven
sites to reduce the noise in the data.

the general behavior of the temperature dependent Lanc-
zos series. The results are obtained by using the tensor
network ansatz introduced in Sec. II C with a maximal
bond dimension of χ = 2000 for the matrix product op-
erator. See Appendix F 1 for a detailed discussion on
the convergence properties with the bond dimension. In
Fig. 2 we show the coefficients bn(β) for different inverse
temperatures β = 1/T . As a generic feature, we observe
an increase of the coefficients with respect to n indepen-
dent of β.

For small β, the increase follows a near linear behav-
ior bn ∼ n as expected for generic non-integrable sys-
tems [26], before saturating to a plateau which depends
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on the system size, see Fig. 3(a). For larger β, the in-
crease starts to deviate from this near linearity with a
slightly stronger curvature, more like a power law behav-
ior nα, a deeper analysis is left for future work. The
system size dependence is greatly reduced at lower tem-
peratures, as can be seen in Fig. 3(b). This is expected
because as the temperature is lowered, the dynamics is
projected to smaller regions of the Hilbert space.

n
0 50 100 150 200

b n

0

10

20

30

L increases

n
0 50 100 150 200

b n

5
10
15
20

(a)

(b)

Figure 3: (a) Comparison of the Lanczos series with
increasing system sizes L = 16, 18, 20, 22, 30 at infinite
temperature. The final plateau value increases with
system size. (b) The Lanczos sequence for the same L
and for wβ = 2.35. In contrast to the infinite temper-
ature sequence, the plateau value depends only weakly
on the system size, with almost no difference between
L = 22 and L = 30.

In addition to this general increase, the series is dressed
by a staggered component

h̃n := (−1)n+1(bn+1 − bn) . (14)

As can be seen by the inset of Fig. 2, for all temperatures
this staggered component becomes trivial (i.e, either neg-
ative or oscillates around zero) for n > n∗. Increasing β
has the effect of increasing h̃n, while also shifting the
point n∗ at which h̃n ≈ 0, to larger values of n. The as-
sociated artificial single particle Hamiltonian Hsp is that
of a dressed SSH chain in the topological regime with a
vanishing staggering, see also the discussion in subsec-
tion II D. We expect that at any finite temperature, the
increase in the background, hn, to have only a small in-
fluence on the lifetime of γ1,a in contrast to the staggered
component h̃n.

This can be made more rigorous by considering the
EDOS shown in Fig. 4. For all temperatures, the gen-
eral shape of the EDOS is given by a narrow Lorentzian
peak around ω = 0, with an additional incoherent back-
ground, see Eq. (11). Lowering the temperature has
two effects: First, the Lorentzian peak becomes nar-
rower, i.e. the width parameter γ(β) becomes smaller
for larger β. Secondly, the incoherent part changes its
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Figure 4: EDOS obtained from the Lanczos coefficients
at the finite temperatures shown in Fig. 2, and with the
same color codes. The left inset shows a fit of the side-
bands by the simplified model of Eq. (12). The right
inset shows a fit of the central Lorentzian peak. Both
insets are for wβ = 1.4.

form slightly. While the incoherent background shows a
two-band structure separated by an energy gap for all
temperatures, additional local extrema appear at higher
energies, on lowering the temperature. We believe that
the changes to the incoherent part of the DOS is mainly
influenced by the changes to the background values of the
Lanczos coefficients hn, while the decrease of γ(β) is di-
rectly related to the increase in the staggered component
h̃n.

Figure 5 shows the ACF (dots) obtained from the
EDOS by the Fourier transform of Eq. (8). For all tem-
peratures, one observes a transient decay at short time
scales followed by a plateau. At timescales of order
t ∼ 1/γ(β), one observes that the ACF decays further
to zero.

Next, we test our simple model for describing
the EDOS in terms of the four fitting parameters
(A, γ,E0, w

⋆), where A and γ define the properties of
the central Lorentzian and E0 and w⋆ define the incoher-
ent sidebands by approximating them with semicircles;
see Eq. (11) and Eq. (12).

The inset of Fig. 4 shows an example of this simple
four parameter fit. In particular, the left inset shows the
semi-circle approximation of the incoherent side bands,
while the right inset shows a fit to the central Lorentzian
peak.

Using the exact ACF of the simplified model

Cβ(Ô, t) = Ae−γt

+ (1 −A) 2
π

J1(2w⋆t)
2w⋆t

cos(E0t) ,
(15)

where Jα denotes the Bessel function of the first kind, we
can compare the predictions from the four parameter fit
with the ACF obtained from the Lanczos series. We find
that the simple four parameter fit faithfully catches the
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Figure 5: ACR for different temperatures with the
same color code as in Fig. 2. The dots represent the
ACF obtained from the EDOS from Fig. 4. The lines
are the analytical ACF from Eq. (15) with parameters
obtained by fitting the EDOS with the simplified model
Eq. (11) and Eq. (12).

short and long timescales of the ACF as can be seen in
Fig. 5.

B. Effective Gaps

w𝛽
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𝛾
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Figure 6: (a) An example corresponding to µ/w = 1.2
and U/w = 0.1 of the extraction of the effective gap
∆eff by fitting the lifetime to Eq. (16). (b) Effective
gaps along the three cuts µ/w = 0.2, 0.6, 1.2 as shown
in Fig. 1, and normalized by the many-body gaps for
each parameter point.

From general arguments, one expects that the lifetime

of a local excitation obeys an exponential law [31]

1
τ(β)

:= γ(β) = γ0e
−∆effβ , (16)

for large β. For a local bulk excitation, ∆eff is expected
to be the many-body gap of the system. Fig 6(a) shows
the temperature dependence of the inverse lifetime for
µ/w = 1.2 and U/w = 0.1.

The large β regime shows the expected behavior, al-
lowing a fit to be made. From this fit we obtain an effec-
tive energy gap ∆eff/w ≈ 2.7, which is significantly larger
than the many-body gap of the system (∆/w ≈ 1.09), see
Appendix F 4 for details on how the many-body gap was
obtained. To check that this is not an accidental behav-
ior of the point chosen, we performed the same analysis
along the three cuts displayed in Fig. 1. The results of
the different effective gaps are displayed in Fig. 6(b), nor-
malized by the actual many-body gap ∆ of the system.
For every parameter point we observe that the effective
gap is larger than ∆ with a non-trivial dependence on
the interaction strength U . We expect that due to the
existence of a SZM that has infinite lifetime at infinite
temperature for U = 0, ∆eff/∆ will diverge as U → 0.
The non-monotonic behavior in U where ∆eff/∆ also in-
creases at large U is intriguing and left for future study.

C. Exact Diagonalization

L
5 10 15

||
[H

,Γ
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2
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Figure 7: Commutator of the Hamiltonian H with the
low energy projected ASZM Γϵ, see Eq. (18) for µ/w =
1.2 and U/w = 0.1.

To check if the effective energy gap obtained in the
previous section is reflected in the low energy part of
the system, we study the model using exact diagonal-
ization. For a given system size L ≤ 16, we calculate
the full spectrum {|ψn,p⟩ , En,p} of the Kitaev-Hubbard
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chain, with p = ± being the parity of the state. From
this, we construct an ASZM as follows [51]

Γ =
∑

n

gn |ψn,+⟩ ⟨ψn,−| + h.c. . (17)

In the above equation, gn ∈ U(1) is a phase chosen such
that gn ⟨ψn,−|γ1,a|ψn,+⟩ ≥ 0, see also Appendix I for a
more detailed discussion on the construction.

We can similarly construct an ASZM projected on the
low energy sector by

Γϵ = Pϵ ΓPϵ

=
∑′

n

gn |ψn,+⟩ ⟨ψn,−| + h.c., (18)

with the projection operator

Pϵ |n, p⟩ =
{

|n, p⟩ , for En,p − E0,p ≤ ϵ

0 , for En,p − E0,p > ϵ
.

In Eq. (18), the primed sum means that compared to
Eq. (17), we only keep the pairs of states with a maximum
excitation energy ϵ above the ground state. From Γϵ we
can calculate the commutator with the Hamiltonian

||[H,Γϵ]||2 =
∑′

n

(En,+ − En,−)2 .

Another interesting quantity is the overlap of the Γϵ

operator with the edge operator γ1,a. This overlap is
computed with respect to the infinite temperature scalar
product, but not normalized by the dimension of the full
Hilbert space, but with the dimensionality of the pro-
jected space Pϵ.

As an example, we consider µ/w = 1.2, U/w = 0.1. In
the previous section, from the temperature dependence of
the Lanczos coefficients, we obtained an effective energy
gap of ∆eff/w ≈ 2.7. In Fig. 7 we plot the commuta-
tor of the low energy projected ASZM for even system
sizes 4 ≤ L ≤ 16. We find that for ϵ/w < 2.5 the
commutator shows an exponentially decaying behavior
with L, with approximately the same slope. This behav-
ior changes qualitatively for ϵ/w > 2.5, where the slope
is much smaller, with the commutator reaching a L in-
dependent plateau value. The behavior changes around
ϵ/w ∼ 2.5 close to the effective energy gap ∆eff/w ≈ 2.7
obtained from the temperature analysis of the Lanczos
coefficients.

Next, we consider the overlap of Γϵ with the edge op-
erator γ1,a. This overlap is plotted against the cutoff
energy ϵ in Fig. 8. If we do not impose any cutoff, i.e.,
considering the full ASZM Γ, we observe that the over-
lap decays with the system size. This is explicitly shown
in Fig. 8(c). However, by reducing the cutoff energy, we
observe that for ϵ ≲ ∆eff the value of the overlap appears
to converge with the system size. Combining the results
for the commutator ||[H,Γϵ]||2 with the results for the
overlap ⟨Γϵ |γ1,a⟩0 , we conclude that if we project the

Figure 8: Overlap of the projected ASZM Γϵ with the
edge operator γ1,a for µ/w = 1.2 and U/w = 0.1. (a)
Varying the energy cutoff ϵ over all scales. For large
enough ϵ, we observe a decay of the overlap with re-
spect to the system size. (b) A detailed plot for all
energies ϵ/w < 7, corresponding to the gray dotted
box shown in a). The effective energy gap ∆eff is high-
lighted by a purple vertical line, while the thermody-
namic many-body gap ∆ is denoted by the yellow ver-
tical line. (c) Plot of the overlap with the full ASZM Γ
for different system sizes. All three plots have the same
color code for the system size L.

system to an energy below ∆eff , we observe the emer-
gence of an operator Γϵ for which the commutator with
the Hamiltonian H vanishes exponentially in the system
size, while having a finite overlap with the edge operator
γ1,a. In that sense, Γϵ becomes a strong zero mode for
the low energy sector of the Kitaev-Hubbard chain.

V. CONCLUSIONS

An important topic both from a theoretical perspective
as well as for practical realizations of quantum memo-
ries, is understanding the stability of topologically pro-
tected edge modes when interactions are present, and
the system does not lie in the ground state sector. Our
work takes a step in this direction by interpolating be-
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tween zero temperature and infinite temperature. We
find that, quite remarkably, the topological protection in
the ground state manifold may not vanish immediately on
raising the temperature, with stable edge modes present
in an energy window which is of the order of, but system-
atically larger than the many-body gap. In arriving at
this result, we have combined two methods for studying
operator dynamics, Lanczos series expansions and ten-
sor network ansatz, thus allowing us to access dynamics
in the notoriously difficult regime of excited states, long
times, and large systems.

While the particular example studied in this work was
an interacting fermionic chain protected only by the Z2
fermion parity, the approach can be easily extended to
various other systems realizing stable edge modes. These
include parafermionic systems [32–34] protected by gen-
eral Zn symmetries and Floquet circuits, which host Ma-
jorana modes and the more exotic π modes [20, 22, 35–
37]. Another interesting direction is the study of Ma-
jorana edge modes realized by quasi-one dimensional
fermionic ladder systems with strong pair hopping be-
tween the two ladders [34, 38–40]. The topological phase
in this ladder system occurs without breaking the total
particle number conservation, opening the possibility for
experimental realizations [41–45]. This additional global
U(1) symmetry comes at the cost of gapless density fluc-
tuations [38, 56, 57] which makes the stability of these
edge modes at finite temperatures questionable.

Other future directions include understanding the pre-
cise transition from absolutely stable SZMs at low en-
ergies to unstable but long-lived ASZMs at high ener-
gies. In this regard, it may be interesting to study the
interplay of disorder and interactions, as it is possible
that disorder increases the region of the spectrum that
hosts SZMs [58], which is related to the phenomenology
of many body localization. Finally, a fruitful direction of
research is a more efficient construction of ASZMs by em-
ploying variational approaches tailored to directly target
the low energy space of a theory.
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Appendix A: Finite Temperature Scalar Product

In this paper, we consider a many-body Hilbert space
H defined on a finite chain. On this Hilbert space we
consider the set of all operators Ô : H → H. Due to
linearity, this set is itself a vector space denoted by Hop.
It is also possible to define a scalar product on Hop. A
general class of possible choices for a valid scalar product
defined for a finite temperature T = 1/β is given by [25]

⟨A|B⟩g
β := 1

Z(β)

∫ β

0
dλ g(λ) Tr

[
yβ−λA†yλB

]
. (A1)

Here

y := e−H , Z(β) = Tr
[
e−βH

]
,

and g : [0, β] → R+ is a positive function with the prop-
erties

1
β

∫ β

0
dλg(λ) = 1 , g(β − λ) = g(λ) .

There are two important choices for the function g(λ)

gS(λ) = 1
2 (δ(λ) + λ(β − λ)) ,

gW (λ) = δ(β/2 − λ),

leading to the two finite temperature scalar products:

⟨A|B⟩S
β = 1

2 Tr
[
ρ(β){A†B +BA†}

]
,

⟨A|B⟩W
β = 1

Z(β) Tr
[
e− β

2 HA†e− β
2 HB

]
.

(A2)

Above ρ(β) = e−βH/Z(β). The first choice naturally
appears in linear response theory while the second choice
is related to Wightman correlation functions [25, 26].

Appendix B: Jordan-Wigner Transformation

The Jordan-Wigner transformation [63, 64] is a non-
local unitary transformation of the Hilbert-space that
maps fermionic degrees of freedom to spins. Let H again
denote a many-body fermionic Hilbert-space generated
from the vacuum |0⟩ by the set of fermionic operators
{cj} obeying the canonical anticommutation relations.

The local Hilbert-space Hloc
j is formed by the two

states |0⟩j , which is the vacuum, and |1⟩j = c†
j |0⟩, which

hosts one fermionic particle. The Jordan-Wigner trans-
formation acts on this local Hilbert-space by identifying
the states

|0⟩j → |↓⟩j , |1⟩j → |↑⟩j ,
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together with the transformation of operators:

cj = 1
2

(
σx

j − iσy
j

)
Sj , c

†
j = 1

2
(
σx

j + iσy
j

)
Sj ,

nj = 1
2

(
σz

j + 1
)
, Sj =

∏
k<j

(−σz
k) .

Consider now the Kitaev-Hubbard chain with a general
p-wave pairing potential

H =
L−1∑
j=1

− wc†
jcj+1 − ∆c†

jc
†
j+1 + h.c.

+ U
L−1∑
j=1

pjpj+1 − µ

2

L∑
j=1

pj ,

(B1)

which reduces to Eq. (13) considered in the main text for
∆ = w.

Applying the Jordan-Wigner transformation to this
Hamiltonian leads to the XYZ spin chain in a magnetic
field

H =
L−1∑
j=1

[
Jxσ

x
j σ

x
j+1 + Jyσ

y
j σ

y
j+1 + Jzσ

z
jσ

z
j+1

]
+ g

L∑
j=1

σz
j .

(B2)

The parameters are identified using

Jx = −w + ∆
2 , Jy = −w − ∆

2 ,

Jz = U , g = −µ/2 .

Under the Jordan-Wigner transformation, the fermionic
parity P = exp(iπ

∑L
j=1 nj) becomes the product over

all σz
j .

Appendix C: Solution of the Kitaev-Hubbard chain
at µ = 0

In this appendix, we discuss the transformation to di-
agonalize the Kitaev-Hubbard chain for µ = 0. The
Hamiltonian of Eq. (13) reduces to

H =
L−1∑
j=1

− w
(
c†

j − cj

) (
c†

j+1 + cj+1

)
+Upjpj+1 .

(C1)

Using the Jordan-Wigner transformation as described in
Appendix B, this Hamiltonian becomes

H =
L−1∑
j=1

[
−wσx

j σ
x
j+1 + Uσz

jσ
z
j+1

]
. (C2)

Now performing a second Jordan-Wigner transformation
switches the role of σy

j with σz
j

fj = 1
2

(
σx

j − iσz
j

)
S ′

j , S ′
j =

∏
k<j

(−σy
k) .

With this transformation, the Hamiltonian (C2) becomes

H =
L−1∑
j=1

−w̃f†
j fj+1 − ∆̃f†

j f
†
j+1 + h.c. ,

which is again of type (B1) with zero chemical potential
and interaction. One has w̃ = w − U and ∆̃ = w + U .
This model is known to have a SZM, which for L → ∞
is

Γ = N
⌊ L+1

2 ⌋∑
k=1

(
U

w

)k−1
(f†

2k−1 + f2k−1) ,

N =
√

1 − (U/w)2 .

(C3)

Let us now rewrite this in terms of the original fermions
cj . First note that the Jordan-Wigner strings S ′

2k−1 are
given in terms of the Majorana operators cj = (γa

j −
iγb

j )/2 as

S ′
2k−1 = ik−1γa

1γ
b
2γ

a
3 . . . γ

b
2k−2 ,

which can be proven by induction. In the original
fermions, the SZM is then given by

Γ = N
⌊ L+1

2 ⌋∑
k=1

(
U

w

)k−1
Pkγ

a
2k−1 , (C4)

where Pk is the string operator

Pk = S ′
2k−1S2k−1 = ik−1γb

1γ
a
2γ

b
3 . . . γ

a
2k−2 .

Appendix D: Autocorrelation function from the
Greens function

In this appendix, we give more details on how the
EDOS can be calculated efficiently by the continued frac-
tion technique. The EDOS is defined as

νE
β (ω) = − 1

π
lim

η→0+
I

[
GE

β (ω + iη)
]
,

where I[z] is the imaginary part of a complex number z
and

GE
β (z) = −i ⟨1| 1

z 1−Hsp
|1⟩ , (D1)

is the edge Greens function of the artificial single parti-
cle Hamiltonian Hsp. This expression for the EDOS is
equivalent to the expression given in the main text of
equation (7).
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We assume the following structure of Hsp

Hsp = H0 +H1 + V + V †,

with

H0 =
N−1∑
n=1

−tn |n+ 1⟩ ⟨n| + h.c. ,

H1 =
∞∑

n=N+1
−tn |n+ 1⟩ ⟨n| + h.c.,

and V = −t⋆ |N⟩ ⟨N + 1|. The part given by H0 con-
tains all the hopping amplitudes obtained by the Lanc-
zos series bn = itn as outlined in section II B. The second
part H1 represents all the unknown hopping amplitudes
which we interpolate by choosing a suitable model, and
V represents the coupling between the two parts. As the
Lanczos coefficients typically reach a plateau value for
some n⋆, we choose tn = t⋆ = −ibN for n > N > n⋆.
Thus, we model the unknown Lanczos coefficients by a
semi-infinite homogeneous chain.

To evaluate the edge Greens function (D1) we make
use of the block inversion formula [65]

PA

(
H1 V
W H2

)−1
PA = (H1 − V H−1

2 W )−1, (D2)

with PA being a projector on the first diagonal block.
Applied to the edge Greens function one finds

iGE
β (z) =

(
z 1−H0 − |t⋆|2G̃E

β (z) |N⟩ ⟨N |
)−1

1,1 , (D3)

where G̃E
β (z) is the EDOS of H1 and can be calculated

analytically for the homogeneous chain

G̃E
β (z) = 1

4|t⋆|2
(
z +

√
z2 − 4|t⋆|2

)
. (D4)

The equation (D3) can now be evaluated by explicit
inversion. Alternatively, one can again use the block in-
version formula (D2) to further reduce the expression,
obtaining the finite continued fraction

iGE
β (z) =

1

z −
|t1|2

z −
|t2|2

z −
. . .

z − |t⋆|2G̃E
β (z)

, (D5)

which is numerically more stable and faster to com-
pute than the explicit numerical inversion of z 1−H0 −
|t⋆|2G̃E

β (z).

Appendix E: Approximate Edge Density of States
(EDOS)

In this appendix we review the continuum approxima-
tion of the artificial Hamiltonian. The discussion mainly

follows [17]. We will employ the continuum description
reviewed here to motivate the phenomenological fit of
Eq. (12).

We start from the artificial single particle Hamiltonian

H =
N∑

n=0
ibn+1 |n+ 1⟩ ⟨n| + h.c.,

which gives the Schrödinger time evolution

i∂tφn(t) = ibnφn−1(t) − ibn+1φn+1(t), (E1)

with φn(0) = δn,1. We assume the form bn = hn +
(−1)nh̃n, where the slowly varying k = 0, π components
are hn and h̃n, respectively. This allows for a splitting of
the wavefunction φn = φ0

n +(−1)nφπ
n. The k = 0, π com-

ponents of the wavefunction can now be approximated by
the envelope function

φk
n ≈ φk(an) ,

which is assumed to be smooth and to vary slowly on the
length scale of a, representing the lattice spacing between
sites n and n + 1. Introducing the Dirac spinor Ψ(x) =
(φ0(x), φπ(x))T , the Schrödinger equation (E1) can be
approximated by the Dirac-like equation

i∂tΨ = −a{h(x), i∂x}σzΨ +m(x)σyΨ, (E2)

with the mass term m(x) = 2h̃(x) + a∂xh̃(x), and h(x)
and h̃(x) are smooth approximations to hn and h̃n.

To remove the position dependence of the momentum
operator, we consider the general coordinate transforma-
tion y = y(x), with

∂xy = 1
2h(x) , y(a) = a . (E3)

The initial condition is chosen so that the chain starts
at the same point in both the original and transformed
coordinates. This transformation is bijective as long as
h(x) > 0. Defining the rescaled Dirac spinor χ =

√
hΨ,

the transformed Dirac equation reads

i∂tχ = [−ai∂yσz + m̃(y)σy]χ . (E4)

This equation now resembles a standard Dirac equation
with the position dependent mass term m̃(y) = 2h̃(y) +
∂yh̃(y)/(2h(y)).

We can now try to find a second lattice Hamiltonian
H̃sp which has the same continuum limit as given by
equation (E4). For this consider

H̃sp =
∞∑

y=0
−itn+1 |n+ 1⟩ ⟨n| + h.c., (E5)

where tn = t + (−1)nt̃n. Note that t is now a constant.
The new staggered component t̃n is again assumed to



13

vary slowly. The continuum version of the Schrödinger
equation given by H̃sp is now

i∂tχ = [−i2ta∂yσz +M(y)σy]χ , (E6)

with M(y) = 2t̃(y) + ∂y t̃(y). Since t was a constant to
start with, the momentum part has no additional position
dependence.

Comparing equations (E4) and (E6), we find both lead
to the same time evolution if we set t = 1/2 and

2t̃(y) + ∂y t̃(y) = 2h̃(y) + ∂y
h̃(y)
2h(y) . (E7)

We choose the initial condition to be t̃(a) = h̃1. In gen-
eral, this first-order differential equation has a unique
solution that completely fixes t̃(x) by the parameters of
the original model, h and h̃. An approximate solution
can be found by discarding the derivatives on both sites
of Eq. (E7)

t̃(y) = h̃(x(y)),

where x(y) is the inverse of the transformation defined
in Eq. (E3). We can now set v(y) = 1/2 − h̃(x(y)) and
w(y) = 1/2 + h̃(x(y)) such that the new lattice Hamilto-
nian H̃sp reads

H̃sp =
∑

n

v(an) |n, a⟩ ⟨n, b|

+ w(an) |n, b⟩ ⟨n+ 1, a| + h.c. .

The single particle Hamiltonian H̃sp is thus given by a
SSH chain with position dependent staggering of the hop-
ping amplitudes centered around the constant value of
1/2. Within this approximation, knowing the solution of
the Schrödinger equation for χ derived from H̃sp is equiv-
alent to knowing the solution of the original Schrödinger
equation in terms of the variables φn(t), and derived by
Hsp. Explicitly focusing on the first site, one has

C(t) = ⟨1|e−itHsp |1⟩ ≈ ⟨1|e−itH̃sp |1⟩ .

Furthermore, we find that the EDOS of Hsp is the same
as the EDOS of H̃sp.

We now consider a simple model with a constant stag-
gering up to n⋆, and with the background h increasing
linearly with n:

h(n) = α+ bn , h̃n = ρθ(n⋆ − n) .

Here one finds for the transformed variables:

y = 1
b

log
(
α+ bn

α+ b

)
+ 1,

x = 1
b

(
eb(y−1)(α+ b) − α

)
.

The transformed model describes a short SSH chain in
the topological regime v = 1/2 −ρ < w = 1/2+ρ until it

reaches the location y⋆ = y(n⋆), after which it becomes
metallic. In such a situation, the topological edge mode
in the SSH chain overlaps with the metallic bulk, leading
to edge mode leakage. This leakage leads to a broadening
of the delta peak at zero energy in the EDOS of a pure
SSH chain. In contrast, the side bands of the EDOS
describe the hybridization of the bulk bands of the SSH
chain with the metallic states of the lead, and results in
only small modifications of the density of states.

The exact EDOS of the SSH chain with hopping pa-
rameters v > 0 and w > 0 is given by

νE(ω) = w2 − v2

w2 δ(ω)Θ(w − v)

+ 1
2πωw2

√
4v2w2 − (ω2 − v2 − w2)2

×Θ(|ω| − |v − w|)Θ(|v + w| − |ω|).

(E8)

The first line of Eq. (E8) is due to the topological edge
state present for v < w, while the second line describes
the bulk contribution to the EDOS. The bulk gap of this
SSH chain is given by ∆ = |v−w|, the bands are centered
around ±Ē0 = ± max(v, w), and the bandwidth is given
by δ = min(v, w). In the large gap limit, the side bands
are well approximated by simple semi-circles

νE(ω) = A

πδ

√
1 − (|ω| − Ē0)2

δ2 , (E9)

for |v − w| ≤ |ω| ≤ |v + w|. The factor A is associated
with the spectral weight of the potential edge mode. One
has A = (v/w)2 for v < w (topological) and A = 1 for
v > w (trivial). To demonstrate this behavior, we plot
the EDOS of a short SSH chain attached to a homoge-
neous lead in Fig. 9, and compare it to the EDOS of a
semi-infinite SSH chain, Eq. (E8), and to the semi-circle
approximation of Eq. (E9).

Appendix F: Further numerical results

In this appendix we present additional numerical re-
sults.

1. Convergence Properties

To calculate the EDOS and thus the lifetime of the
edge modes at finite temperatures, we made two ap-
proximations: The truncation of the bond dimension of
the matrix product operators, and the modeling of the
unknown Lanczos coefficients by a semi-infinite homoge-
neous chain. In the following we discuss how these two
approximations influence the results.

In section II C we outlined that we approximate the
orthonormal basis operators On obtained from the Lanc-
zos series by a matrix product operator with a finite bond
dimension χ. A finite bond dimension limits the amount
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Figure 9: EDOS obtained for a short SSH chain with
v = 0.5, w = 1.5 of length L = 20 attached to a semi-
infinite homogeneous chain with hopping t = 1. The
red line is the bulk contribution of the EDOS of a semi-
infinite SSH chain with the same parameters, the or-
ange dashed line is the semi-circle approximation of the
side bands and it completely overlaps the red line of
the SSH EDOS.
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Figure 10: Lanczos coefficients bn obtained for µ/w =
0.6, U/w = 0.3, and for a system of size L = 22, for dif-
ferent bond dimensions. Panel (a) [(b)] is for an inverse
temperature wβ = 0.4 (wβ = 1.25).

of independent operators that can be present in On. As
a result, the sequence of Lanczos coefficients bn is not
precise, but only an approximation for any given value of
χ. Fig. 10 shows the Lanczos coefficients for two different
inverse temperatures tβ = 0.4 (left panel) and wβ = 1.25
(right panel), and for different bond dimensions, for the
parameters µ/w = 0.6, U/w = 0.3. At both tempera-
tures we observe that the Lanczos series becomes unsta-
ble for some value of nunstable. For larger β (smaller T )
the instabilty occurs for a smaller value of nunstable. This
can be understood by noting that a large part of the

Hilbert space has an exponentially small weight at suf-
ficiently small temperatures. Small numerical errors can
quickly accumulate and lead to instability of the Lanczos
iteration. The situation is worst at strictly zero temper-
ature, where the scalar product of Eq. (2) actually has
a large null space. It is thus a pseudo scalar product in-
stead of a real scalar product. At infinite precision, this
null space should be projected out of the Lanczos series.
However, small numerical errors can lead to large contri-
butions within this null space. Increasing the bond di-
mension χ reduces numerical errors, thereby shifting this
instability to larger values of n. This is a generic feature
obtained for every parameter combination (µ/w,U/w)
we have studied in this work.

To obtain any meaningful results from the bn, it is
therefore crucial to truncate the Lanczos series before
the instability sets in. For example, for the χ = 400 and
wβ = 0.4, one truncates the bn at n ∼ 100. However, it is
crucial that the instability occurs at a value nunstable that
is deep inside the plateau. In addition, in order to obtain
a faithful result for the lifetime, the staggered compo-
nent should already have decayed. In Fig. 11 we plot the
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Figure 11: EDOS obtained from the Lanczos series bn

from Fig. 10, with the same identification of color and
bond dimension. Panel (a) [(b)] is for wβ = 0.4 (wβ =
1.25). To obtain meaningful results, we discarded all
Lanczos coefficients for n larger than nunstable as ex-
plained in the text. The collapse of all curves demon-
strates the convergence of the EDOS with respect to
the bond dimension.

EDOS obtained from the Lanczos series in Fig. 10, by re-
moving all bn for n > nunstable. We observe that, unlike
the Lanczos series, the EDOS shows little dependence on
the bond dimension. In addition, the central peak con-
verges rapidly in the bond dimension χ, and only small
changes occur to the side bands.

This also implies that the lifetime γ(β) obtained by fit-
ting the central Lorentzian converges rapidly in χ, while
only the short-time dynamics is modified by increasing
the bond dimension.

We now discuss the second approximation, that involv-
ing the choice of the hopping parameter w for the semi-
infinite chain. In all our results we have chosen w = ibN ,
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Figure 12: EDOS obtained by varying the hopping
strength w attaching the semi-infinite lead to the fi-
nite chain, with the latter described by the numerically
obtained Lanczos coefficients bn. The different hopping
parameters w are obtained by varying the averaging
window K according to equation (F1). The Lanczos co-
efficients are obtained for µ/w = 0/6, U/w = 0.3, and
wβ = 0.4.

which is the last Lanczos coefficient before the instabil-
ity sets in. Alternately, one could have averaged over the
last K coefficients

w = i
1
K

K−1∑
k=0

bN−k . (F1)

In Fig. 12 we show the EDOS for different window
sizes K. Since all the curves lie on top of each other, we
conclude that the explicit value of w is not that important
as long as w faithfully represents the plateau value.
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Figure 13: Energy resolved relative error ϵν of the
EDOS, see Eq. (F2). Panel (a) [(b)] shows the error
for wβ = 0 (wβ = 2.45).

Finally, we demonstrate the convergence of our results
with respect to the system size L. For this, we calculate

the EDOS for the two system sizes L1 = 22 and L2 = 30
from which we extract the relative error

ϵν(ω, β) :=

∣∣∣∣∣νE
β (ω,L1) − νE

β (ω,L2)
νE

β (ω,L2)

∣∣∣∣∣ . (F2)

Fig. 13 shows this relative error for µ/w = 1.2, U/w = 0.1
and the two inverse temperatures wβ = 0.0 and wβ =
2.35. In both cases, the relative error is of order 10−2

for all energy scales. This is also reflected in the width
parameter ∣∣∣∣γ(0, L1) − γ(0, L2)

γ(0, L2)

∣∣∣∣ ≈ 0.05∣∣∣∣γ(2.35, L1) − γ(2.35, L2)
γ(2.35, L2)

∣∣∣∣ ≈ 0.007 .
(F3)

As this study is not aiming to achieve the most precise
values and due to the growth of computational resources
with system size, we present results for L = 22 as this
system size is already sufficient for extracting reasonable
numbers. A systematic study of the influence of the sys-
tem size is left for future work.

2. Wightman – Standard scalar product

wt
100 102 104

C 𝛽
(t)

0.0

0.5

1.0 Standard
Wightman

Figure 14: Comparison between the autocorrelation
function obtained using the scalar product (red) and
the Wightman scalar product (blue).

In this appendix we demonstrate that the Wightman fi-
nite temperature scalar product defined in equation (A2)
in appendix A gives qualitatively the same result as the
standard scalar product which we have exclusively used
throughout this paper. In Fig. 14 we plot the autocor-
relation function obtained for µ/w = 1.2 and U/w = 0.1
for both choices of the scalar product. Both results are
obtained for a system size of L = 22, and for the in-
verse temperature wβ = 0.4. We see that both curves
have the same overall behavior, although the standard
scalar product has a smaller plateau value at intermedi-
ate times. The lifetime τ at which the autocorrelation
functions decay to zero is qualitatively the same for both
choices of the scalar product.
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3. TDVP vs Lanczos

wt
0 5 10 15 20

C 𝛽
(t)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

wt
0 5 10 15 20

𝜖(
t)

10−10

10−8

10−6

Lanczos
TDVP

Figure 15: Comparison between the autocorrelation
function obtained from the Lanczos series (red dots)
and the TDVP algorithm (blue crosses) at infinite
temperature in the topological region (µ/w = 1.2,
U/w = 0.1). Panel (a) shows the autocorrelation func-
tion. The left panel the truncated weight of the MPO
of the TDVP simulation.
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Figure 16: Comparison between the autocorrelation
function obtained from the Lanczos series (red dots)
and the TDVP algorithm (blue crosses) at infinite tem-
perature in the Mott insulating region (µ/w = 0.2,
U/w = 1.5). Meaning of the panels are the same as in
Fig. 15.

In this appendix we compare the autocorrelation func-
tion obtained from the Lanczos series with direct inte-
gration of the Heisenberg time evolution using the time
dependent variational principle (TDVP) [28, 29]. In the
TDVP algorithm, we limit the bond dimension of the
time evolved operator γ1,a(t) to χ = 512. To compare
the TDVP with the Lanczos algorithm, we consider three
different parameter points: 1) µ/w = 1.2, U/w = 0.1, 2)
µ/w = 0.1, U/w = 1.5, and 3) µ/w = 1.5, U/w = 0.1.
For all three points we fixed L = 22 and considered in-
finite temperature (β = 0). For 1) we fixed the bond
dimension of the Lanczos series to χ = 1500, while for 2)
and 3) we used χ = 1000. The first point is in the topo-
logical region of the model, see Fig. 1, while 2) and 3)
are in the Mott insulating and trivial insulating phases,
respectively. The results are shown in Fig. 15–17.
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Figure 17: Comparison between the autocorrelation
function obtained from the Lanczos series (red dots)
and the TDVP algorithm (blue crosses) at infinite tem-
perature in the trivial insulating region (µ/w = 3,
U/w = 0.1). Meaning of the panels are the same as
in Fig. 15.

In general, we observe that the autocorrelation func-
tions are consistent, even in the trivial and Mott in-
sulating phase, where the correlation function decays
rapidly. However, at late times we observe deviations
of the TDVP results from the Lanczos series. This can
be partially explained by the finite bond dimension of
the MPO used in the TDVP algorithm, which leads to
an error that increases with the simulated time t. How-
ever, since the discarded weight, right panles of the fig-
ures 15–17, is relatively small up to the considered times,
we expect this not to be the only effect.

Another aspect may be the finite size of the system
itself. In the Lanczos algorithm, we approximated the
unknown coefficients with a semi-infinite lead. This ar-
tificially extends the system to an infinite size, removing
any kind of finite size effects from reflected excitations.
In the TDVP approach, we cannot consider an infinitely
extended chain and thus the deviation might originate
from these finite size effects.

We would also like to point out that the time required
for the TDVP simulation is linear in the time steps and
thus proportional to the final time. For the Lanczos sim-
ulation, this is not the case, since we only need to extract
a few hundred coefficients to obtain a fairly good result
for the time evolution, even at late times. This is es-
pecially important for the topological regime where we
would like to access very large times wt ∼ 103 in order
to extract the lifetime of the ASZM. For example, the
TDVP simulation in Fig. 15 needed 12 hours on a AMD
EPYC 74F3 with 24 cores. In the last steps, the time
consumption per TDVP iteration saturated around 700
seconds. A direct interpolation would give an estimate of
∼ 80 days to complete a TDVP simulation with χ = 512
up to times of wt ∼ 103. Moreover, it is certainly neces-
sary to increase the bond dimension of the TDVP ansatz
for these long times in order to obtain reasonable results.
For comparison, the Lanczos series with χ = 2000 (used
in Fig. 15–17) took only three days to compute.
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Figure 18: Energy gaps between different parity sec-
tors for µ/w = 1.2, U/w = 0.6, and for various system
sizes L. The energy difference between the two ground
states of opposite parity, vanishes exponentially with
the system size. Similarly, the energy difference be-
tween the two excited states of opposite parity, van-
ishes exponentially for smaller system sizes. The noise
for larger system sizes can be reduced by increasing the
bond dimension.

4. Gap Extraction

We extracted the gaps of the many-body spectrum of
the Kitaev-Hubbard model (13) using the density ma-
trix renormalization group (DMRG) [66, 67]. With the
DMRG we extracted the ground state of the Hamilto-
nian for the even and odd parity sectors, together with
the first excited states within each parity sector. For
the extraction of the states we chose a matrix product
state ansatz with a maximal bond dimension of χ = 200.
This allows for a good enough estimator of the gap in
the thermodynamic limit. However, we observe that for
larger system sizes the ansatz is not sufficient to cap-
ture the first excited states with very high precision, see
Fig. 18.

From the eigenstates |ψn,p⟩, one can obtain the energy
for every system size L

En,p(L) = ⟨ψn,p|H|ψn,p⟩ .

In Fig. 18 we plot the gap := |En,+1 −En,−1| between op-
posite parity sectors of the ground states n = 0, and the
first excited states n = 1, showing that this gap vanishes
exponentially in the system size L.

Next we consider the mass gap mp(L) = E1,p(L) −
E0,p(L). From general finite size scaling one expects

mp(L) = A/Lα + ∆∞, (F4)

L
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+
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w
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DMRG
Fit
Δ∞/w = 0.828

Figure 19: Energy gap between the ground state and
the first excited state in the even parity sector (red
dots) for µ/w = 1.2, U/w = 0.6. The blue line is a
fit to Eq. (F4) and the horizontal purple line represents
the thermodynamic limit of the gap ∆∞ extracted from
this fit.

which can be fitted using linear regression in combina-
tion with an integral transformation [68]. In Fig. 19 we
show that our extracted data shows the desired behavior.
By fitting this algebraic decay, we can then extract the
thermodynamic energy gap ∆∞.

Appendix G: Details on the implementation of the
truncation.

The truncation of the application of L on the MPO
On is implemented by truncating the reduced density
matrices [49] of the full network LOn = HOn − OnH.
This can easy be understood by rewriting the MPO as
a MPS by combining the domain and codomain into a
single Hilbert space. This resembles the isomorphism on
the local Hilbert space

|σ′⟩ ⟨σ| → |σ′, σ⟩ := |τ⟩ ,

which is anti-linear in the ket space, and linear in the
bra space. We denote the MPS obtained from On by
this isomorphism as |On⟩. Under this isomorphism, the
commutator L becomes a standard MPO with bond di-
mension K.

Let |Φ⟩ = L |On⟩ denote the MPS one formally obtains
by a full contraction of the network given by the right
hand side. The maximal bond dimension of |Φ⟩ is K ∗χ,
with χ being the bond dimension of |O⟩ and we would like
to determine the most optimal truncation of |Ψ⟩ back to
a bond dimension of χ. For this, we start by calculating
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the reduced density matrix of the last site:

ρL := TrL−1 [|Φ⟩ ⟨Φ|] ,

where TrL−1 is the trace over all sites 1 to L − 1. In
graphical notation

ρ4 =
Φ1 Φ2 Φ3 Φ4

Φ1 Φ2 Φ3 Φ4

= E3
Φ4

Φ4

.

This also defines the environment Ek containing all
the contractions to the left. This environment can be
computed iteratively based on the previous environment
Ek−1

Ek =
∑

τ

(Φτ
k)†Ek−1Φτ

k,

where Φτ
k is the MPS tensor on the k-th site. This density

matrix is now diagonalized, where we only keep at most
χ eigenstates

ρ = Ũ†
LDŨL ,

with ŨLŨ
†
L = 1.

The matrix Ũ†
L can be seen as the most optimal pro-

jection of the physical Hilbert space to at most χ degrees
of freedom and is the last tensor in our new truncated
MPS. We can now construct the two-site reduced den-
sity matrix, with the last site transformed into the virtual
Hilbert space

ρ3,4 =
Φ3

Φ3

Φ4

Φ4

E2

U†
4

U4

= D

U3

U†
3

,

which is again diagonalized, followed by truncation of the
eigenspace to at most χ states.

We can now continue by successively constructing the
new reduced density matrix for the sites L − 2 to L by
projecting the sites L− 1 and L onto the virtual Hilbert
space. This density matrix is again diagonalized and
truncated. We iterate until we reach the last point of
the chain, which we simply keep as the last tensor in the
new truncated MPS.

Note that the entire iteration does not require a full
contraction of L |On⟩, but only the environments, and

this can be computed efficiently. Also, the whole proce-
dure does not require an explicit transformation of the
MPO into an MPS, and one can work directly with the
MPO.

Appendix H: MPO representation of the Strong
Zero Mode in the XYZ Model

In Ref. [21], Fendley showed that the (integrable) XYZ
model without a magnetic field (i.e., Eq. (B2) with g = 0)
hosts a SZM. Here, we present a rewriting of the origi-
nal rather complicated expression in terms of a MPO
with bond dimension four and simple polynomial coeffi-
cients [69]. Without loss of generality, we set Jx = 1 and
assume Jy, Jz < 1: the SZM is then

Γ =
(
M0,α1

κ′
1,κ1

Mα1,α2
κ′

2,κ2
. . .M

αN−1,3
κ′

N
,κN

)
|{κ′

j}⟩ ⟨{κj}| , (H1)

with the operator-valued matrix Mα,α′ being

M =

JzJy 1 (J2
z − 1)σz (J2

y − 1)σy Nσx

0 Jz 1 0 Jyσz

0 0 Jy 1 Jzσy

0 0 0 1

 ,

and N 2 = (1 − J2
y )(1 − J2

z ). A graphical representation
in terms of a finite-state machine is displayed in Fig. 20.
For Jz = Jy = 0, it reduces to the familiar Γ = σx

1 for
the Ising model.

0

3

1 2

JzJy 1

1

Jz 1 Jy 1

(J2
z − 1)σz

Jyσz

(J2
y − 1)σy

Jzσy

Nσx

Figure 20: Finite state machine representation of the
SZM of the XYZ model.

Appendix I: Construction of Strong Zero Mode from
spectral data

In this appendix, we review the construction of an (al-
most) strong zero mode operator Γ from the full set of
eigenstates and eigenenergies of the Hamiltonian H [51].
Because of the parity symmetry, all eigenstates |ψn,p⟩ and
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eigenenergies En,p are labeled by their associated parity
p = ±1. A general Majorana operator can now be writ-
ten in this eigenbasis as

Γ =
∑
n,m

gn,m |ψn,+1⟩ ⟨ψm,−1| + h.c. ,

where g ∈ U(dim(H)/2) is a unitary matrix and H is the
underlying Hilbert space of the problem. This operator
anti-commutes with the parity operator and is hermitian
Γ† = Γ. Further, one has

Γ2 =
∑
n,m

(g g†)m,n |ψm,+1⟩ ⟨ψn,+1|

+(g†g)m,n |ψm,−1⟩ ⟨ψn,−1| = 1,

where the last equality follows from the g being a unitary
matrix. Plugging this ansatz into ∥[Γ, H]∥2, one finds

∥[Γ, H]∥2 =
∑
n,m

|gn,m|2(ϵn − ϵm)2 .

Assuming no degeneracies, this is minimized by gmn =
gnδn,m with gn ∈ U(1) being an arbitrary phase. The
fact that the operator is only specified up to some phases
also reflects the gauge freedom to redefine states by ar-
bitrary phases |ψ̃n,p⟩ = exp(iφn,p) |ψn,p⟩. To obtain a
gauge independent result, the phases gn must transform
in a certain way when the gauge is changed:

g̃n = e−i(φn,+1−φn,−1)gn .

We now fix the gauge of each eigenstate by calculating
the argument of the overlap with the operator γ1,a =
c1 + c†

1 = X1

αn := Arg(⟨ψn,+1|X1|ψn,−1⟩),

and redefining the states as:

|ψ̃n,+1⟩ = eiαn |ψn,+1⟩ , |ψ̃n,−1⟩ = |ψn,−1⟩ .

By fixing the phase of the eigenvectors in this way, the
transition operator |ψ̃n,+1⟩ ⟨ψ̃n,−1| becomes gauge inde-
pendent and the Majorana operator minimizing the com-
mutator with the Hamiltonian reads

Γ =
∑

n

gn |ψ̃n,+1⟩ ⟨ψ̃n,−1| + h.c. , gn ∈ U(1) . (I1)

For any choice of the phases gn, Eq. (I1) defines a valid
operator with minimal commutator. This reflects the
possibility to dress a solution with unitaries generated
by a polynomial of the Hamiltonian P (H):

Γ̃ := eiP (H) Γ e−iP (H) .

To find a unique solution, we fix the phases by requiring a
maximal overlap with the operator γ1,a. This is achieved
by setting gn = 1 for all n. If the spectrum is perfect de-
generate between the two parity sectors En,p = En, the
operator Γ has a vanishing commutator with the Hamil-
tonian. In this case, Γ is a true zero mode.
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CHAPTER V
Almost Strong Zero Mode in

Number Conserving Kitaev
Chains

In this chapter, we apply the algorithm developed in Chapter IV to the class of
Hamiltonians that realizes the Symmetry-Protected Topological Phase (SPTP) of
unpaired Majorana Zero Mode (MZM) without breaking particle conservation. For
example, the model studied in Chapter I belongs to this class. We explore how
the additional U(1) symmetry and the emergence of gapless density fluctuations
influence the behavior of the Almost Strong Zero Mode (ASZM).

V.1 Introduction
The model used in Chapter IV to test the tensor-network algorithm for extracting
the temperature-dependent lifetime of the ASZM was the Kitaev-Hubbard Model
(KHM) of spinless fermions from Eq. (1.110). This model breaks particle number
conservation owing to the creation and annihilation of pairs of spinless fermions
Δ 𝑐𝑗𝑐𝑗+1 + h.c..

Compared to the Kitaev chain in Eq. (1.87), the presence of the additional Hub-
bard interaction 𝑈𝑛̂𝑗𝑛̂𝑗+1 breaks integrability. When tuned to the correct parameter
regime, see also Fig.(1) of [148], the KHM enters a topological phase protected by
the fermionic parity ̂𝑃 with a doubly degenerate ground state and the emergence of
MZMs. As found in Chapter IV, the MZMs extend to ASZMs at finite temperatures
with long but finite lifetimes. In particular, the lifetime diverges exponentially when
approaching the zero-temperature limit.

In contrast, the model proposed in Chapter I does not break the conservation of par-
ticles, and the SPTP is instead realized by the existence of coherent pair-tunneling
between two fermionic species 𝑎 and 𝑏 described by

𝐻pair = 𝑊
𝑁−1
∑
𝑗=1

𝑎†
𝑗𝑎†

𝑗+1𝑏𝑗+1𝑏𝑗 + h.c. . (V.1)

As a result, the total symmetry group of this model is 𝐺 = U(1) × Z2, where the
U(1) is the conservation of the total density, and the Z2 is the conservation of the
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parity of the 𝑎 flavored fermions. The two conserved operators are given by

̂𝑃𝑎 = 𝑒𝑖𝜋 ∑𝑁
𝑗=1 𝑛̂𝑎

𝑗 , ̂𝑁 =
𝑁

∑
𝑗=1

𝑛̂𝑎
𝑗 + 𝑛̂𝑏

𝑗 . (V.2)

As shown by Kraus et al. [160], a simple model of two chains coupled by the pair
hopping term of Eq. (V.1) according to

𝐻 = −𝑡
𝑁−1
∑
𝑗=1

𝑎†
𝑗+1𝑎𝑗 + 𝑏†

𝑗+1𝑏𝑗 + h.c. + 𝐻pair (V.3)

can enter the SPTP with MZMs emerging at the edges for the correct choice of
parameter.

From a low-energy analysis of this class of number-conserving Kitaev chains, it
is found that local fluctuations of the total density are described by a gapless
Tomonaga-Luttinger Liquid (TLL); see also Section 1.3 for a detailed review of
the TLL. The question arises as to how this additional gapless part of the theory
influences the lifetimes of edge excitations associated with the MZM and whether
there is an ASZM in these number-conserving Kitaev chains, similar to the KHM,
or whether the MZM exists only in the ground-state manifold. This is of particular
interest if the model is realized in a dynamical way, for example, by Floquet engi-
neering as proposed by the authors of [297], or by an adiabatic preparation protocol
as proposed in [165].

To approach this question, we chose the one-parameter group of Hamiltonians pro-
posed by Iemini et al. in [166] given by

𝐻𝜆 = −4𝑤
𝑁−1
∑
𝑗=1

∑
𝛼=𝑎,𝑏

[(𝛼†
𝑗𝛼𝑗+1 + h.c.) − (𝑛̂𝛼

𝑗 + 𝑛̂𝛼
𝑗+1) + 𝜆 𝑛̂𝛼

𝑗 𝑛̂𝛼
𝑗+1]

−2𝑤𝜆
𝑁−1
∑
𝑗=1

[(𝑛̂𝑎
𝑗 + 𝑛̂𝑎

𝑗+1) (𝑛̂𝑏
𝑗 + 𝑛̂𝑏

𝑗+1) − (𝑎†
𝑗𝑎𝑗+1𝑏†

𝑗𝑏𝑗+1

+𝑎†
𝑗𝑎𝑗+1𝑏†

𝑗+1𝑏†
𝑗 − 2𝑎†

𝑗𝑎†
𝑗+1𝑏𝑗+1𝑏𝑗 + h.c.)] ,

(V.4)

where 𝑤 is an arbitrary energy scale. This group of Hamiltonians commutes with the
two symmetry operators from Eq. (V.2), and thus has the correct symmetry group
𝐺 = U(1) ×Z2.

Compared to the simpler pair-hopping Hamiltonian in Eq. (V.3) discussed by Kraus
et al. in [160], or the effective model derived in Chapter I, the Hamiltonian from
Eq. (V.4) has more complex coupling terms1. However, Iemini et al. [298] showed
that this model is in the SPTP for all 𝜆 ≤ 1, independent of the total density of
particles in the chain. Furthermore, they demonstrated that for 𝜆 = 1, the ground
state of this Hamiltonian can be solved analytically, allowing for writing down the
exact MZM emerging in the ground-state manifold.
This MZM has a finite overlap with the operator

𝑋̂1 = 𝑖 (𝑎†
1𝑏1 − 𝑏†

1𝑎1) , (V.5)

which we will use as a seed operator for the generation of the Lanczos sequence, as
discussed in Section 1.5 and Chapter IV. The phase diagram of this model is shown
in Fig. V.1.

1 See Figure (8) in our publication [33] for a sketch relating the three different models.
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Figure V.1: Phase diagram of the Hamiltonian in Eq. (V.4) following [166] as a function of
the coupling 𝜆 and the density 𝜈 ≔ (𝑁𝑎 + 𝑁 𝑏)/(2𝑁). The line 𝜆 = 1 represents an exactly
solvable line. For 𝜆 > 1, the model enters a trivial phase, while it is topological for all 𝜆 ≤ 1
and all densities 𝜈 ≠ 0, 1. The phase diagram is symmetric with respect to 𝜈 = 0.5. The
green stars represent the three parameters considered in this study.

V.2 Results
To determine whether this operator also yields an ASZM, we calculate the Lanczos
series at various temperatures, similar to the findings presented in Chapter IV.
Specifically, we compute the Lanczos series of the Hamiltonian in Eq. (V.4) at three
exemplary points, 𝜆/𝑤 = 0.6, 0.8, 1.0, for a system size of 𝑁 = 24, utilizing the
tensor network ansatz introduced in Chapter IV. For the Matrix Product Operators
(MPOs) that approximate the Lanczos operators, we selected a maximum bond
dimension of 𝜒 = 2000.

The generic properties of the obtained series are similar to the results obtained in
the case of the KHM in Chapter IV. These properties are explained in the follow-
ing using 𝜆 = 0.8𝑤. Figure V.2 shows the first 50 Lanczos coefficients for different
inverse temperatures 𝛽 = 1/𝑇. For all temperatures, the Lanczos coefficients show

n
1 20 40

b n

25

50

75

n
5 10 15

⟨h
̃ n⟩
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Figure V.2: Lanczos coefficients for 𝑁 = 24 at various inverse temperatures 𝛽 = 1/𝑇. The
inset shows the staggered component ℎ̃𝑛 from Eq. (V.7).

the universal increasing trend 𝑏𝑛 ∼ 𝑛. In contrast, for the KHM considered in Chap-
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ter IV it was found that the increase becomes slower with decreasing temperature.
This difference can be interpreted as follows: lowering the temperature effectively
projects the operator dynamics onto a low-energy Hilbert space. In the KHM, the
finite many-body gap ensures that this projection leads to a decreasing number of
states that are relevant for the dynamics. In contrast, the Hamiltonian in Eq. (V.4)
features a dense spectrum without a many-body gap, and projecting the operator
dynamics onto a low-energy Hilbert space encompasses an infinite number of states.
Consequently, the Lanczos series embodies the full complexity of a non-integrable
many-body system, aligning with the universal operator growth hypothesis [222,
223], as discussed in Section 1.5. Another difference between the Hamiltonian con-
sidered here and the KHM considered in Chapter IV is that the Lanczos series does
not saturate to a plateau value in the first 50 Lanczos coefficients. This behavior
is anticipated for any finite-size many-body Hamiltonian and is expected to persist
with a larger number of coefficients in this model as well.

In addition to this background increase, the series is dressed by a staggered compo-
nent ℎ̃𝑛 defined in Eq. (1.186), repeated here for completeness

𝑏𝑛 ≈ ℎ𝑛 + (−1)𝑛ℎ̃𝑛 , (V.6)

where ℎ𝑛 is the monotonically increasing background. To isolate the staggered com-
ponent ℎ̃𝑛, we model the background using a linear function, ℎ𝑛 ≈ 𝐴𝑛 + 𝐵, for
values of 𝑛 greater than 20. The staggering component is then approximated by

ℎ̃𝑛 ≈ (−1)𝑛+1(𝑏𝑛+1 − 𝑏𝑛 − 𝐴)/2 . (V.7)

The inset of Fig. V.2 shows the extracted staggered component. For all tempera-
tures, ℎ̃𝑛 is a decreasing function of 𝑛, which eventually becomes zero at 𝑛⋆. After
this point, the staggering component becomes trivial, that is, either negative or
oscillates around zero. Increasing 𝛽 results in an overall increase in the staggered
component, while simultaneously shifting the point 𝑛⋆, at which the staggered com-
ponent becomes trivial, to higher values of 𝑛. As discussed in Section 1.5, and also
in Chapter IV, the artificial single particle Hamiltonian associated to this Lanczos
series given by

𝐻sp =
∞

∑
𝑛=0

𝑖𝑏𝑛+1 |𝑛 + 1⟩ ⟨𝑛| + h.c. , (V.8)

see also Eq. (1.180), is that of a dressed Su–Schrieffer–Heeger Model (SSHM). Be-
cause the background is constant for all the different temperatures, the main influ-
ence on the Edge Density of States (EDOS) of this artificial single-particle Hamil-
tonian is given by the staggered component. As a reminder, the EDOS 𝜈𝐸

𝛽 (𝜔), as
defined in Eq. (1.182), represents the density of states of the artificial Hamiltonian
projected onto the first site. This density of states entirely determines the Autocor-
relation Function (ACF) of the edge operator 𝑋̂1 through Eq. (1.183)

𝐶𝛽(𝑋̂1, 𝑡) =
∞

∫
−∞

d 𝜔 𝜈𝐸
𝛽 (𝜔) cos(𝜔𝑡) . (V.9)

The EDOS is calculated from the obtained Lanczos series by applying the same
methods as in Chapter IV.
Figure V.3(a) shows the EDOS for the Lanczos coefficients of Fig. V.2. For all
temperatures, the EDOS has a sharp Lorentzian peak around zero energy, combined
with an incoherent, exponential decreasing background

𝜈𝐸
𝛽 = 𝐴(𝛽) 𝛾(𝛽)/𝜋

𝜔2 + 𝛾2 + (1 − 𝐴(𝛽)) ̃𝜈𝛽(𝜔) .
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Figure V.3: (a) EDOS obtained from the Lanczos coefficients at the finite temperatures
from Fig. V.2 with the same color codes. The inset in the middle shows a fit of the central
Lorentzian peak for 𝑤𝛽 = 1.1. (b) ACF reconstructed from the EDOS from panel (a).

Increasing 𝛽 only slightly affects the shape of the background, with the emergence
of additional sidebands at some finite energy. On the other hand, the Lorentzian
peak becomes narrower with 𝛾(𝛽) decreasing for 𝛽 → ∞. However, the initial width
𝛾(𝛽 = 0) is a few orders of magnitude smaller than that in the case of the KHM
studied in Chapter IV. Even for the largest 𝛽 considered in Fig. V.3(a), the width
parameter is only of order one. Consequently, the ASZM is extremely weak, and to
observe a long coherence time for the edge operator 𝑋̂1, Eq. (V.5), it is necessary to
reach very low temperatures.

This can be seen more directly by looking at the ACF reconstructed from the EDOS
using Eq. (V.9), as shown in Fig. V.3(b). In the infinite temperature limit 𝛽 → 0,
the ACF has only a very weak intermediate plateau after the initial transient decay
and reaches zero at time scales of order unity. Lowering the temperatures leads to
the formation of a clearer plateau; however, the smallness of 𝛾(𝛽) still leads to the
decay of the ACF after a time 𝑡⋆ ∼ 10𝑤.
The temperature dependence of the width parameter can be studied more quantita-
tively by fitting the central Lorentzian and extracting the temperature dependence
of 𝛾(𝛽). An example of such a fit is shown in the inset of Fig. V.3(a).
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Figure V.4: (a) Extraction of the effective energy gap Δeff by fitting the width parameter
to Eq. (V.10), shown for 𝜆 = 0.8𝑤. (b) Effective gaps for three different parameters 𝜆/𝑤 =
0.6, 0.8, 1.0.

Figure V.4(a) shows the extracted values of the width parameter at the simulated
temperatures. From this plot, it is clear that 𝛾(𝛽) decays exponentially with the
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inverse temperature
𝛾(𝛽) = 𝛾0𝑒−Δeff𝛽 (V.10)

similar to the case of the KHM studied in Chapter IV. Although the width remains
relatively narrow at high and intermediate temperatures, this indicates an expo-
nential divergence in the lifetime 𝜏(𝛽) = 1/𝛾(𝛽) for excitations produced by the
operator 𝑋̂1 as the temperature approaches zero. While this behavior is anticipated
for local excitations in gapped many-body Hamiltonians [299], it is not immedi-
ately clear that a similar principle applies to the gapless Hamiltonian in Eq. (V.4).
The quantity Δeff can be understood as an effective gap for the ASZM. By fitting
the exponential decay, the red line in Fig. V.4(a), this effective gap is found to be
Δeff ≈ 1.7𝑤 with 𝛾0 ≈ 1.4𝑤.
The same behavior is observed also for the other parameters, 𝜆 = 0.6𝑤 and 𝜆 = 𝑤,
and the extracted effective gaps for these three parameters are shown in Fig. V.4(b).
It is observed that Δeff has a non-trivial dependence on the coupling parameter 𝜆,
reaching its maximum for 𝜆 = 𝑤.

V.3 Conclusion
We demonstrated that the MZMs emerging in a number-conserving setup extend
to ASZM at finite temperatures. However, this ASZM is very weak compared to
their counterparts found in models that break the conservation of fermions, such as
the KHM, in the sense that their lifetime is comparable to generic bulk excitations
at large and intermediate temperatures. The main reason for the decrease of the
lifetime is probably the coupling of the MZM to the gapless charge excitations at
higher energies.

In future research, it would be interesting to extend the results presented here by
considering a broader range of parameters. Furthermore, the low-energy description
of the model predicts the MZM to appear in the anti-bonding sector, Eq. (1.143), of
the theory. Therefore, it would be worthwhile to compare the effective energy gap Δeff
with the gap directly in the anti-bonding sector. This comparison can be conducted
relatively easily using the techniques developed in Subsection 2.2.2, similar to the
results obtained in Chapter II.

Furthermore, the results presented only consider one specific bond dimension 𝜒 for
the MPO ansatz. As the computation of the Lanczos series is considerably harder
for the coupled wire system, with the bond dimension quickly reaching this limit,
considering larger bond dimensions was out of reach for this study. To strengthen the
results obtained here, it would be beneficial to examine how the lifetime depends on
the selected bond dimension. For instance, as discussed in Chapter IV, the lifetime
of the ASZM in the KHM was only marginally affected by increasing the bond
dimension of the MPO ansatz for the Lanczos operators. Here, it remains unclear
how the gapless mode impacts the convergence of the lifetime concerning the bond
dimension. Because 𝜒 = 2000 is already a large bond dimension, a first check would
be to lower the bond dimension and monitor the change in the lifetime. Performing
such a large-scale numerical simulation is left for future studies.



CHAPTER VI
Variational Ansatz for Strong

Zero Modes

In this chapter, we develop a variational ansatz that can be used to search for Strong
Zero Modes (SZMs) and Almost Strong Zero Modes (ASZMs) in arbitrary models.
The ansatz is a unitary circuit tailored to directly operate on the correct manifold
of Majorana operators.

VI.1 Introduction
Consider an open quantum chain of length 𝑁, populated by spinless fermions and
described by a Hamiltonian 𝐻 that commutes only with the fermionic parity ̂𝑃. As
detailed in Subsection 1.5.1, this Hamiltonian has a SZM if there exists a Hermitian
operator Γ that fulfills the conditions

C.1 Normalizability: Γ2 = 1

C.2 Anti-commutation with the parity operator: {Γ, ̂𝑃 } = 0

C.3 Localized at position 1

C.4 Commuting with the Hamiltonian for 𝑁 → ∞: [𝐻, Γ] = 𝑅̂, ||𝑅̂|| ∼ 𝑒−𝜆𝑁

The existence of such SZM was explicitly demonstrated in the integrable limits of
the Kitaev-Hubbard Model (KHM) by solving the linear equation

ℒ(Γ) ≔ [𝐻, Γ] = 0 (VI.1)

for an operator that meets the conditions C.1–C.3 [84, 224].

Rather than directly solving the linear equation (VI.1), the task of identifying an
SZM within a model can alternatively be formulated as a minimization problem over
the constrained set of operators

ℳ = {Γ ∶ ℋ → ℋ | Γ† = Γ , Γ2 = 1 , { ̂𝑃 , Γ} = 0} . (VI.2)

This set, referred to as the Majorana manifold hereafter, incorporates conditions C.1
and C.2, which define Γ as a Majorana operator. The cost function to be minimized
is the commutator functional

ℱ(Γ) = 1
2𝑁 Tr [ℒ (Γ)† ℒ (Γ)] = ⟨ℒ(Γ), ℒ(Γ)⟩ , Γ ∈ ℳ , (VI.3)

199
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where ⟨𝑂̂, 𝐾̂⟩ represents the Frobenius scalar product, as defined in Eq. (1.9). We
aim to find solutions that are localized to the first site of the chain to satisfy condi-
tion C.3. Because this functional represents the inner product of the left-hand side
of Eq. (VI.1), it is positive semi-definite, ℱ(Γ) ≥ 0, and is minimized by the SZM,
provided such an operator exists.

Note that condition C.1, Γ2 = 1, is important for obtaining an operator that acts
on the entire many-body Hilbert space. Let |Ω±⟩ be the two ground states of the
fermionic chain of opposite parity, dropping this condition allows for the definition
of a pseudo-Majorana operator

Γ̃ = |Ω+⟩ ⟨Ω−| + |Ω−⟩ ⟨Ω+| , (VI.4)

that minimizes Eq. (VI.3) if the model has a degenerate ground-state manifold,
as in the case of an Symmetry-Protected Topological Phase (SPTP). This pseudo-
Majorana operator anti-commutes with the parity operator, {Γ̃, ̂𝑃 } = 0, and is
Hermitian, as indicated by Γ̃† = Γ̃. Furthermore, if the degeneracy arises from an
SPTP, this operator is localized to the first site; see also the discussion at the end of
Subsection 1.2.3 and Eq. (1.109), thereby satisfying all conditions C.2–C.4. However,
when squared, it becomes the projector on the ground-state manifold, expressed as
Γ̃2 = |Ω+⟩ ⟨Ω+| + |Ω−⟩ ⟨Ω−|.

In the next section, we present a tensor-network ansatz that directly operates in the
Majorana manifold to solve the numerical minimization of the commutator func-
tional. This ansatz is motivated by the observation that the SZM in the integrable
limits of the KHM is efficiently represented by a Matrix Product Operator (MPO)
with a small, finite bond dimension; see also Appendix H of our publication [37].
Away from the integrable limits, the SZM becomes an ASZM [214, 217, 218] that
only approximately commutes with the Hamiltonian. In this case, the variational
minimization of the functional in Eq. (VI.3) should saturate to a small, constant
value ℱ0 which depends on the microscopic details of the model.

VI.2 Matrix Product Operator Ansatz
A general, but naive, MPO ansatz for the ASZM reads

Γ ≅ 𝑊 1 𝑊 2 … 𝑊 𝑁

𝑠1 𝑠2 𝑠𝑁

𝑠′
1 𝑠′

2 𝑠′
𝑁

. (VI.5)

As discussed before, the operator Γ should be a Majorana operator, and explicitly,
it should square to the identity Γ2 = 1 (condition C.1). At the level of the MPO,
this requires that the operator Γ is a special matrix product unitary [300, 301], and
changing a tensor locally can easily destroy the unitary nature of Γ.

A straightforward solution might be to drop condition C.1. The ansatz can then be
directly employed to minimize the commutator functional ℱ(Γ) from Eq. (VI.3) by
iteratively minimizing the local tensors until a fixed point is reached, akin to the
Density-Matrix Renormalization Group [60]. This method, as used in [38], has the
drawback that the operator derived from this algorithm is not necessarily required to
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act on the entire many-body Hilbert space because pseudo-Majorana operators, such
as those in Eq. (VI.4) are allowed. As a transition between the two ground states,
the operator in Eq. (VI.4) is anticipated to have a small MPO bond dimension
𝜒 = 2𝜒̃, where 𝜒̃ is the bond dimension needed to accurately represent the two
ground states |Ω±⟩, and the algorithm might erroneously converge to this operator
during minimization. Moreover, iterative minimization may not produce operators
that are necessarily localized at the edge of the chain, as required by condition C.3.

To circumvent this issue, we opted for an alternative strategy that directly incorpo-
rates all the conditions in the ansatz, albeit necessitating more sophisticated methods
to determine the minimum of the commutator functional ℱ(Γ). The idea is to se-
lecting a seed operator Γ0 ∈ ℳ and dressing it with a unitary 𝒰 that commutes
with the parity operator ̂𝑃 according to

Γ(𝒰) = 𝒰Γ0𝒰† , [𝒰, ̂𝑃 ] = 0 . (VI.6)

By construction, this operator is in the Majorana manifold, as the unitary 𝒰 pre-
serves the global properties of the seed operator Γ0. The commutation functional of
Eq. (VI.3) becomes a functional of the unitary 𝒰 and its conjugated 𝒰†

1
2

ℱ(𝒰, 𝒰†) = ⟨𝐻KH, 𝐻KH⟩ − ⟨𝐻KH𝒰Γ0𝒰†, 𝒰Γ0𝒰†𝐻KH⟩ ≥ 0 . (VI.7)

A suitable seed operator1 is given by 𝜎𝑥
1 which can be written as an exact tensor

network of bond dimension 𝜒 = 1

Γ0 = 𝜎𝑥
1 ≅ 𝜎𝑥 … . (VI.8)

Furthermore, this operator is localized to the first site of the chain, thus fulfilling
condition C.3.

The final step is to approximate the full many-body unitary 𝒰 using a circuit com-
posed of two-body unitaries. This circuit consists of 𝑛Layer layers

𝒰 =
𝑛Layer

∏
𝑙=1

𝒰𝑛Layer−𝑙+1 = 𝒰𝑛Layer
𝒰𝑛Layer−1 … 𝒰2𝒰1 ,

where each layer 𝒰𝑙 has the structure of a ladder2

𝒰𝑙 =

𝑢𝑙
1,2

𝑢𝑙
2,3

𝑢𝑙
3,4

… . (VI.9)

The two-body unitary is denoted by 𝑢𝑙
𝑗,𝑗+1, where (𝑠𝑗, 𝑠𝑗+1) is the pair of indices on

which the unitary acts. Every layer of this unitary circuit has the property of being
1 𝜎𝑥

1 becomes 𝛾𝑎
1 in the fermionic picture under Jordan-Wigner transformation.

2 It may be more natural to use a brick-wall circuit instead of the ladder structure proposed
here. However, because the seed operator in Eq. (VI.8) only acts non-trivially on the first site, most
of the unitary matrices appearing in the brick wall circuit would cancel, and the effective structure
that remains is the circuit proposed here.
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local in the sense that 𝒰𝑙𝜎𝑥
1 𝒰†

𝑙 remains localized to the first site, as long as the first
two-body unitary has a finite identity component 𝑢𝑙

1,2 = 𝑎1+ … , 𝑎 > 0. Thus, if
the circuit consists of only a finite number of layers, the ansatz in Eq. (VI.6) still
fulfills the localization condition C.3.

To ensure that the global unitary 𝑈 preserves the parity, [ ̂𝑃 , 𝒰] = 0, the local
unitary matrices are chosen to individually commute with the parity [ ̂𝑃 , 𝑢𝑙

𝑗,𝑗+1] = 0.
On the level of the tensors, this is explicitly enforced by using symmetric tensors
that transform under the parity as

𝑢𝑙
𝑗,𝑗+1

𝜎𝑧 𝜎𝑧

𝜎𝑧 𝜎𝑧

= 𝑢𝑙
𝑗,𝑗+1

as discussed in Subsection 2.2.3.

Applying this circuit to the Γ0 in Eq. (VI.8), without truncation results in an MPO
of bond dimension

𝜒 = 4𝑛Layer . (VI.10)

This allows us to control the expressible power of the ansatz by tuning the number
of layers.

In the following, we test the proposed ansatz exemplary on the KHM defined in
Eq. (1.110) for Δ𝑝 = 𝑤, similar to Chapter IV. To formulate the tensor network, it
is beneficial to consider the spin dual of the KHM obtained after using the Jordan-
Wigner transformation introduced in Subsection 1.1.5. In the spin language, the
KHM becomes

𝐻KH =
𝑁−1
∑
𝑗=1

−𝑤𝜎𝑥
𝑗 𝜎𝑥

𝑗+1 + 𝑈𝜎𝑧
𝑗 𝜎𝑧

𝑗+1 + 𝜇
2

𝑁−1
∑
𝑗=1

𝜎𝑧
𝑗 , (VI.11)

which commutes with the parity operator ̂𝑃 = ∏𝑗(−𝜎𝑧
𝑗 ).

VI.3 Exact Solution in the Integrable Limits
In the limit of 𝑈 = 0, the KHM becomes a non-interacting Kitaev chain that exhibits
an SZM for |𝜇| < 2𝑤. The SZM, after the Jordan-Wigner transformation, can be
represented by an MPO of bond dimension 𝜒 = 2 given by the tensors

𝑊 𝑗 = (
𝜇

2𝑤𝜎𝑧 𝒩𝜎𝑥

0 1
) , 𝑊 1 = ( 𝜇

2𝑤𝜎𝑧 𝒩𝜎𝑥) , 𝑊 𝑁 = (𝒩𝜎𝑥

1
) (VI.12)

in the notation of Chapter 2. Here, 𝒩 is an overall normalization constant that
ensures Γ2 = 1. The tensor network ansatz of Eq. (VI.6) should reproduce this exact
MPO with 𝑛Layer = 1, based on Eq. (VI.10). A direct calculation, see Appendix D
for the details, shows that this is true and can be achieved by parameterizing the
unitary 𝑢1

𝑗,𝑗+1 as

𝑢1
𝑗,𝑗+1 = 𝑒𝑖𝛼𝑗𝜎𝑦

𝑗 𝜎𝑥
𝑗+1 = cos(𝛼𝑗)1+𝑖 sin(𝛼𝑗)𝜎

𝑦
𝑗 𝜎𝑥

𝑗+1 (VI.13)
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where the rotation angle is defined by (𝑗 ≤ 𝑁 − 1)

tan(2𝛼𝑗)2 = 𝜌2

1 − 𝜌2 (1 − 𝜌2(𝑁−𝑗)) , 𝜌 = 𝜇
2𝑤

. (VI.14)

In the thermodynamic limit 𝑁 → ∞, the angles 𝛼𝑗 become position-independent,
and every unitary in the circuit has the same shape.

In the other integrable limit 𝜇 = 0, the SZM can be represented by an MPO with a
bond-dimension 𝜒 = 3

𝑊 𝑗 =
⎛⎜⎜⎜
⎝

0 𝜎𝑦 𝒩𝜎𝑥

− 𝑈
𝑤𝜎𝑦 0 0
0 0 1

⎞⎟⎟⎟
⎠

, 𝑊 1 = (0 𝜎𝑦 𝒩𝜎𝑥) , 𝑊 𝑁 =
⎛⎜⎜⎜
⎝

𝒩𝜎𝑥

0
1

⎞⎟⎟⎟
⎠

.

(VI.15)
Similar to the 𝑈 = 0 case, an ansatz with 𝑛Layer = 1 should be sufficient to reproduce
this MPO. Again, a direct calculation, presented in Appendix D, shows that this is
true. However, in contrast to the 𝑈 = 0 case, the unitary circuit has an alternating
structure of unitaries acting differently on the odd-even index pairs (2𝑗 − 1, 2𝑗) and
even-odd index pairs (2𝑗, 2𝑗 + 1). The two different rotations are defined by

𝑢1
2𝑗−𝑗,2𝑗 = 𝑒𝑖𝛼𝑗𝜎𝑧

2𝑗−1𝜎𝑧
2𝑗 = cos(𝛼𝑗)1+𝑖 sin(𝛼𝑗)𝜎𝑧

𝑗 𝜎𝑧
𝑗+1

𝑢1
2𝑗,2𝑗+1 = 𝑒𝑖 𝜋

4 𝜎𝑥
2𝑗𝜎𝑥

2𝑗+1 = 1√
2

(1+𝑖𝜎𝑥
𝑗 𝜎𝑥

𝑗+1) .
(VI.16)

The angles 𝛼𝑗 with 1 ≤ 𝑗 < ⌊𝑁+1
2 ⌋ defining the rotation on the odd-even index pairs

are fixed by the set of equations

tan(2𝛼𝑗)2 = 𝜌2

1 − 𝜌2 (1 − 𝜌2(⌊ 𝑁+1
2 ⌋−𝑗)) , 𝜌 = 𝑈

𝑤
. (VI.17)

Similar to 𝑈 = 0, the angles become independent of the position in the chain for
𝑁 → ∞.

VI.4 Numerical Minimization
The ansatz of Eq. (VI.6) can be used to numerical minimize the commutator func-
tional ℱ(𝒰, 𝒰†) from Eq. (VI.7). This minimization is performed directly on the
manifold of the unitaries 𝑢𝑙

𝑗,𝑗+1 using Riemannian optimization, as explained for ex-
ample in [302]. In short, Riemannian optimization uses the bare gradients ∇𝑢(†)

𝑗,𝑗+1
ℱ,

evaluated by treating the unitary 𝑢(†)
𝑗,𝑗+1 as a normal matrix, and projects them to

the tangent space of the manifold of unitary matrices. The next update step is then
determined by varying the unitary along a path in this manifold in the direction of
the projected gradient.

The unitaries 𝑢𝑙
𝑗,𝑗+1 are initialized close to the identity using

𝑢𝑙
𝑗,𝑗+1 = 𝑒𝑖𝛼𝑉 𝑙

𝑗,𝑗+1

where 𝑉 𝑙
𝑗,𝑗+1 is a random Hermitian operator acting on the two sites (𝑠𝑗, 𝑠𝑗+1) with

unit norm that commutes with the parity operator ̂𝑃, and 𝛼 ≪ 1 is a small rotation
angle.
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The bare gradients ∇𝑢(†)
𝑗,𝑗+1

ℱ are calculated using automatic differentiation [303], and
the cost function is minimized with respect to all the unitaries 𝑢𝑙

𝑗,𝑗+1 in the circuit
simultaneously. Optimizing all unitaries simultaneously requires the contraction of
the full network every time the cost function ℱ(𝒰, 𝒰†) is evaluated. This becomes
very expensive for a larger number of layers, and a strategy that optimizes the
tensors locally by fixing the rest is the preferred strategy, an approach that was
taken, for example, by the authors of [304] and [305] to find the full spectrum of a
many-body localized Hamiltonian. To demonstrate the efficiency of the ansatz, the
chains considered in this section and the number of layers are chosen to be small,
such that a full global optimization is possible. A comprehensive examination of the
ansatz and the most effective minimization strategy will be presented in a future
publication. Specifically, we minimized the ansatz with 𝑛Layer ≤ 3 for system sizes
𝑁 ≤ 18 in the integrable limits, and 𝑁 ≤ 16 in the non-integrable limits. In all
considered cases, the time required to evaluate the quantum circuit was less than 3
minutes, still allowing us to find the variational optimum within a few days.

VI.4.1 Integrable Points
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Figure VI.1: Commutator functional ℱ(𝒰, 𝒰†) from Eq. (VI.7) against the system size for
𝑈 = 0 (panel (a)) and 𝜇 = 0 (panel (b)). In panel (a) for 𝜇 = 0.8, the commutator functional
hits the sensitivity threshold set by the norms of the gradient, leading to a saturation of
the values. The lines are obtained by fitting the points with the function 𝑓(𝑁) = 𝑓0𝑒−2𝜆fit𝑁,
with the results for 𝜆fit reported in Table. VI.1.

As a first proof of concept, we test the numerical minimization of the ansatz for the
ASZM in the integrable limits of the KHM from Eq. (VI.11)

I 𝑈 = 0, |𝜇| < 2𝑤

II 𝜇 = 0, |𝑈| < 𝑤, and 𝑤 ≠ 0

In both cases, the ASZM becomes a SZM that commutes with the Hamiltonian in the
thermodynamic limit and can be represented by an MPO of small bond dimension.
For every finite system size, it is expected that the commutator cost function from
equation Eq. (VI.3) vanishes exponentially with the system size

ℱ(Γ) ∼ 𝑒−2𝜆𝑁 , (VI.18)
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where 𝜆 defines the localization length of the SZM. From the exact form of the SZM,
the localization length can be found to be

𝜆exact =
⎧{
⎨{⎩

− log ( 𝜇
2𝑤) for 𝑈 = 0

−1
2 log ( 𝑈

𝑤) for 𝜇 = 0
. (VI.19)

Because the exact MPO for both cases from Eqs. (VI.12) and (VI.15) are of bond
dimension 𝜒 < 4, it is expected that a circuit with only one layer from Eq. (VI.6) is
sufficient to represent the exact MPO. The dependency of the commutator functional
ℱ(𝒰, 𝒰†) on the system length is shown for various parameters in Figure VI.1, where
panel (a) shows the case of 𝑈 = 0 and panel (b) shows the case of 𝜇 = 0. In both
instances, the unitary circuit with a single layer was variationally minimized until the
gradient of ℱ(𝒰, 𝒰†) fell below 10−10, establishing a natural cutoff for the precision
of the commutator functional at the tenth digit.

𝜇/𝑤 𝜆exact 𝜆fit

0.8 0.91629 0.91627(7)
1.2 0.5108 0.5111(1)
1.6 0.223 0.237(3)

a)

𝑈/𝑤 𝜆exact 𝜆fit

0.4 0.458145 0.458158(6)
0.6 0.2554 0.2565(3)
0.8 0.111 0.127(3)

b)
Table VI.1: Extracted localization length of the SZM for 𝑈 = 0 (a) and 𝜇 = 0 (b) by fitting
the exponential decay of the commutator functional from Fig. VI.1.

For all parameters, the commutator functional vanishes exponentially with the sys-
tem size, as expected, up to the precision determined by the gradient convergence.
The localization length 𝜆 obtained from fitting this exponential decay is compatible
with the exact value from Eq. (VI.19), as shown in Table VI.1.

Next, we examine the distance3 between the numerically minimized tensor network
and the exact SZM given by

𝑑(Γ, Γexact) = √2 (1 − ⟨Γ, Γexact⟩) . (VI.20)

Here, Γexact is either the MPO from Eq. (VI.12) for 𝑈 = 0 or Eq. (VI.15) for 𝜇 = 0.
This distance is shown in Fig. VI.2, where panel (a) shows the case 𝑈 = 0 and
panel (b) shows the case 𝜇 = 0. For all parameters, the distance exponentially
vanishes with respect to the system size, up to the precision determined by the
gradient convergence. Performing the same analysis with an ansatz containing two
layers, 𝑛Layer = 2, reproduces the same results within numerical precision. Therefore,
the initial assumption that 𝑛Layer = 1 is sufficient to represent the exact MPO is
correct, and the results presented here clearly demonstrate that the unitary circuit
can represent the exact SZM in the integrable limits.

VI.4.2 General Case

Away from the integrable points discussed in the previous subsection, the KHM,
Eq. (VI.11), is expected to exhibit only a ASZM at generic parameter points in the

3 The distance between two operators 𝑑(𝐴, 𝐵) is induced by the Frobenius scalar product,
Eq. (1.9), and given by 𝑑(𝐴, 𝐵) = √⟨(𝐴 − 𝐵)†, (𝐴 − 𝐵)⟩. Inserting 𝐴 = Γ and 𝐵 = Γexact, and
using Γ2 = Γ2

exact = 1 and ⟨Γ, Γexact⟩ = ⟨Γexact, Γ⟩ leads to Eq. (VI.20).
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Figure VI.2: Distance between the numerical minimized tensor network and the exact MPO,
as defined in Eq. (VI.20) against the system size. Panel (a) shows the case of 𝑈 = 0 with
Γexact given by the MPO in Eq. (VI.12), and panel (b) the case of 𝜇 = 0 where Γexact is
given by the MPO from Eq. (VI.15).

SPTP. As discussed in Subsection 1.5, the existence of a ASZM implies prolonged
lifetimes of excitations generated by the edge operator 𝜎𝑥

1 , even at infinite tempera-
tures. At the level of the commutator functional from Eq. (VI.3), this suggests the
existence of an edge localized Majorana operator Γ ∈ ℳ with a finite overlap ⟨Γ, 𝜎𝑥

1 ⟩
that minimizes ℱ(Γ). In contrast to the integrable points, this minimum should be-
come independent of the system size ℱ(Γ)

𝑁→∞
−−−−→ ℱ0(𝑈, 𝜇, 𝑤), with this constant

mainly defining the lifetime of edge excitations induced by 𝜎𝑥
1 [214].

In the following discussion, we present initial results obtained by minimizing the
commutator functional in Eq. (VI.7) with respect to the unitary circuit described in
Eq. (VI.9) for various numbers of layers. For all results presented below, optimization
was performed until the gradients fell below 10−6. However, for 𝑛Layer = 3, this
threshold was not achieved for 𝑁 = 14 and 𝑁 = 16, leading to the exclusion of these
datasets from the subsequent discussion. Additionally, the chemical potential was
held constant at 𝜇 = 0.2𝑤, while the interaction parameter varied from 𝑈 = 0.2𝑤
to 𝑈 = 0.8𝑤, ensuring that all considered parameter points remained within the
SPTP.

Figure VI.3(a) presents the commutator functional of the numerically obtained Γ(𝒰)
against the number of sites 𝑁, exemplified for 𝜇 = 0.2𝑤, 𝑈 = 0.4𝑤. For every fixed
𝑛Layer, the minimal commutator obtained saturates with the system size at approx-
imately 𝑁 = 12. Compared to the exactly solvable limits shown in Fig. VI.1, this
saturation suggests that the operator we have identified is not an SZM, indicating
that edge excitations possess a finite lifetime. By fixing the number of system sites,
the commutator functional is reduced by increasing the number of layers. By plot-
ting the final value of the commutator functional against 𝑛Layer, inset of Fig. VI.3(a),
it is observed that this value converges in the number of layers. Because the unitary
circuit is local, reaching a saturation within a finite number of layers indicates that
the ASZM is localized to the edge of the system, exhibiting a finite penetration
depth.

The overlap between the numerically determined Γ((𝑈)) and the edge operator 𝜎𝑥
1 ,

as illustrated in Figure VI.3(b) for 𝜇 = 0.2𝑤, 𝑈 = 0.4𝑤, further demonstrates this
point. Similar to the commutator functional, the overlap saturates for a fixed number
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Figure VI.3: (a) Commutator functional ℱ(𝒰, 𝒰†) obtained from numerical minimization at
𝜇 = 0.2𝑤 and 𝑈 = 0.4𝑤 for an increasing number of layers in the unitary circuit. (b) Overlap
of the numerically obtained ASZM with the edge operator 𝜎𝑥

1 for the same parameter point
as in panel (a). The inset in both panels shows the convergence of the cost function (panel
(a)) and the overlap (panel (b)) with respect to the number of layers for 𝑁 = 12.
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Figure VI.4: Commutator functional ℱ(𝒰, 𝒰†) as a function of the number of layers and for
different interaction strengths at 𝜇 = 0.2𝑤 for a chain of 𝑁 = 12 sites.

of layers with respect to the system size and decreases slightly with an increase in
the number of layers, see the inset of Fig. VI.3(b). This finite overlap indicates that
Γ(𝒰) functions as a boundary operator of finite depth, allowing the edge operator
𝜎𝑥

1 to be expanded as

𝜎𝑥
1 = 𝐴Γ +

√
1 − 𝐴2 Γ̃ , 𝐴 = ⟨Γ, 𝜎𝑥

1 ⟩ ,

where Γ̃ is a remaining Majorana operator that anti-commutes with Γ. Given that
ℱ(𝜎𝑥

1 ) ∼ 𝑤2 is valid for a generic point and Γ possesses a small commutator func-
tional, it follows that the residual operator must also satisfy ℱ(Γ̃) ∼ 𝑤2 ≫ ℱ(Γ).
As a consequence, the long-time properties of the edge excitation are defined by the
ASZM Γ, and in particular the Autocorrelation Function, introduced in Section 1.5,
has the asymptotic form [214]

𝐶𝛽=0(𝜎𝑥
1 , 𝑡) ≈ 𝐴2𝑒−𝑡/𝜏 , 𝜏 = 𝐵𝑤

ℱ0(𝑈, 𝜇, 𝑤)
,

where 𝐵 is a constant of order one4.
4 The short-time dynamics of 𝜎𝑥

1 are more complex and related to the residual operator Γ̃.
However, owing to the large commutator with the Hamiltonian, this contribution decays at time
scales 𝑡⋆ ∼ 𝑤.
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The same convergence behavior in the commutator and overlap was also observed
for other interaction strengths. This is explicitly shown in Fig. VI.4, where the
commutator functional is plotted against the number of layers for various interaction
strengths for a system with 𝑁 = 12 lattice sites. For all interaction values, the
commutator becomes smaller as the number of layers increases; however, it displays
a saturating behavior. This saturation value shows a non-trivial behavior on the
interaction strength.

(a)
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Figure VI.5: (a) Dependence of the commutator functional (red circles) and overlap with
the seed operator Γ0 (blue triangles) on the interaction strength for 𝜇 = 0.2𝑤 and a chain
of 𝑁 = 12 sites. (b) Distance, Eq. (VI.21), of the numerical obtained ASZM from the seed
operator Γ0. The black line is a linear fit of the form 𝑓(𝑈) = 𝛿𝑈/𝑤 + 𝑑0 with 𝛿 = 0.97(2)
and 𝑑0 = 0.033(9).

To quantify this non-trivial dependence, we investigated how the commutator func-
tional and overlap change with the interaction strength. Figure VI.5(a) shows the
behavior of both quantities for a chain of size 𝑁 = 12 and three layers of the
quantum circuit. Both quantities have a remarkable symmetry with respect to the
interaction strength: while the logarithm commutator increases with increasing in-
teraction strength, the overlap decreases. It is observed that the distance, compare
also Eq. (VI.20), of the final ASZM Γ(𝒰) with the edge operator 𝜎𝑥

1 defined as

𝑑(Γ, 𝜎𝑥
1 ) = √2 (1 − ⟨Γ, 𝜎𝑥

1 ⟩) , (VI.21)

has a simple linear dependence on the interaction strength 𝑈

𝑑(Γ, 𝜎𝑥
1 ) = 𝛿𝑈

𝑤
+ 𝑑0 . (VI.22)

This dependency is shown in Fig. VI.5(b), together with a fit of the above linear
form. Based on the mirror symmetry of Fig. VI.5(a), a similar form can be found
for the commutator functional

ℱ(𝑈, 𝜇, 𝑤) ∼ 𝑤2𝑒− (𝐴̃(1−𝑈/𝑤)+ ̃𝑓0)2
2 ,

for the intermediate interactions considered in this study. We emphasize that this
functional behavior is incorrect for small values of 𝑈, as the commutator must vanish
exponentially with the system size when 𝑈 = 0, as shown in Eq. (VI.18).
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VI.5 Conclusion
In this chapter, we presented a variational ansatz for the SZM and ASZM. This
ansatz is based on a unitary circuit applied to a local seed operator and is tailored
for direct operation in the correct manifold of Majorana operators. We demonstrated
analytically and numerically that this ansatz is sufficient to reproduce the correct
SZM in the integrable limits of the KHM. Furthermore, we extended the analysis to
a set of generic parameter points inside the SPTP of the KHM. First initial results
were presented, showing that the ansatz can be used to search for edge-localized
Majorana operators that almost commute with the Hamiltonian. Because the value
of the commutator functional defines the lifetime of the ASZM, this ansatz can be
used to study how the lifetime changes across the phase diagram.

In future research, it would be interesting to consider a broader range of parameters
and study how the commutator functional changes as a function of 𝑈 and 𝜇 in the
entire SPTP. In particular, it would be of interest how the ASZM disappears while
approaching the phase boundaries.

Another interesting direction is to consider other models that can host more exotic
ASZM, such as a parafermionic chain with a Z3 symmetry[298, 306, 307]. The vari-
ational ansatz presented here can easily be extended to such a parafermionic chain
by simply replacing the seed operator Γ0 by an operator matching the conditions of
a parafermionic ASZM.

Finally, the results presented for the non-integrable case display convergence with
respect to the number of layers and sites. However, to obtain more conclusive results,
a comprehensive study on convergence is required. In this study, it is also possible
to consider a different form of the quantum circuit, such as replacing the two-body
unitary operators with n-body unitary operators, while keeping the number of layers
low, similar to the approach chosen by [305].





Conclusion

In this thesis, we explored various exotic phases of correlated one-dimensional quan-
tum matter. We proposed several models that can be tuned to achieve novel phases
of interest for both theoretical and experimental purposes and studied their static
properties. In addition, we examined the non-equilibrium dynamics of spatially lo-
calized objects, including edge modes in one-dimensional chains and domain walls
in two-dimensional quantum magnets. After a general introduction to the field of
one-dimensional quantum matter in the first part, we present the findings of this
thesis in Chapters I–VI.

In Chapter I, we discussed a coupled wire model of fermions that realizes the
Symmetry-Protected Topological Phase (SPTP) of unpaired Majorana Zero Modes
(MZMs) while preserving the number of total fermions. Specifically, the model con-
sists of four wires arranged around a cylinder, enabling the particles to traverse in
the short direction of the cylinder. By applying a magnetic field along the cylinder’s
long axis, tuned to induce a 𝜋-flux, fermions begin to negatively interfere along var-
ious paths around the cylinder, resulting in all single-particle tunneling processes
between two wires on opposite sides of the cylinder being precisely zero. We have
shown that introducing generic two-body interaction terms to this coupled wire sys-
tem gives rise to coherent pair tunneling processes, which mimic a p-wave pairing
potential for one of the wires. Through analytical methods and extensive numeri-
cal studies using finite-size tensor networks, we demonstrated that this wire system
transitions into the SPTP phase.

The second result presented in Chapter II explores the emergence of the Tricriti-
cal Ising (TCI) model within a network of superconducting islands interconnected
by Josephson junctions. To engineer the TCI phase, we introduced a novel triple-
junction element as a fundamental building block, which was arranged linearly to
create a full quantum ladder model. We demonstrated that the anharmonicity of
this triple junction reproduces the potential landscape necessary for the emergence
of the TCI phase. In addition, we confirmed the semi-classical expectation through
extensive numerical tensor network simulations of both finite and infinite systems.
This allowed us to demonstrate that the TCI emerges in the full quantum model.

In Chapter III, we explore the dynamic phase transition of a domain wall within a
two-dimensional quantum magnet described by the Transverse Field Ising Model.
Previous research has indicated that a domain wall, which is a one-dimensional quan-
tum object, can experience a continuous quantum phase transition in equilibrium.
Our work has demonstrated the existence of a dynamic counterpart to this equilib-
rium transition, where the domain wall remains stable during time evolution, even
over extended time scales below a critical coupling. To achieve this, we identified
an effective non-perturbative one-dimensional Hamiltonian that characterizes the
isolated dynamics of the domain wall and developed a corresponding observable to
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capture the dynamical phase transition. By extending this observable to the entire
two-dimensional quantum magnet, we have shown that below the critical coupling,
the results of the full two-dimensional and effective one-dimensional dynamics are
consistent with each other. Our study revealed a novel mechanism by which a quan-
tum many-body system can avoid thermalization up to mesoscopic timescales, with
the domain wall remaining a well-defined, one-dimensional quantum object.

In Chapter IV, we revisited the SPTP of unpaired MZMs, a topic also explored in
Chapter I. Here, we focused on examining the non-equilibrium properties of emer-
gent MZMs at finite temperatures. To this end, we considered a model that realizes
this phase by breaking the particle number conservation, in contrast to the model
considered in Chapter I. Previous research has found that within the SPTP, the
MZM, typically defined in the ground-state manifold, becomes an Almost Strong
Zero Mode (ASZM), an operator with a significantly extended but finite lifetime
compared to typical bulk operators. While earlier studies concentrated on infinite
temperatures, we developed an algorithm based on tensor-network methods to in-
vestigate the non-equilibrium properties of the ASZM at any finite temperature.
Utilizing this algorithm, we demonstrated that the ASZM is smoothly connected to
the MZM emerging in the ground-state manifold as the temperature is tuned from
infinity to zero. Additionally, through exact diagonalization, we associated the pro-
longed lifetime of the ASZM with an extended degeneracy in the energy spectrum
beyond the ground-state manifold.

In Chapters V and VI, we presented unpublished results that extend the findings
discussed in Chapter IV. Specifically, in Chapter V, we applied the tensor-network
algorithm developed in Chapter IV to a class of coupled fermionic wire models that
realize the SPTP without breaking particle conservation, similar to the model con-
sidered in Chapter I. As demonstrated in Chapter I, this class of models exhibits
additional gapless density wave excitations, raising the question of whether these
long-wavelength excitations could undermine the existence of the ASZM in these
models. We found that this class of models does indeed have an emerging ASZM;
however, unlike the standard models considered in Chapter IV, this ASZM is quite
weak at high temperatures but shows an exponential increase in lifetime with re-
spect to the inverse temperature. This allows for the observation of the MZM if the
temperature is sufficiently low, even in the presence of the gapless mode.

In Chapter VI, we introduced a general variational ansatz for the ASZM that is ap-
plicable to generic fermionic models. This ansatz is tailored to represent the relevant
variational manifold. We have shown that it can accurately reproduce the form of
the ASZM in the integrable limits, both analytically and numerically. Additionally,
we presented preliminary findings for generic, non-integrable points. These findings
reveal the presence of a localized operator that almost commutes with the Hamil-
tonian, indicating that the excitations generated by this edge operator have a long,
but finite lifetime.

In conclusion, there are multiple possible directions for extending the findings of
this thesis. Implementing the proposed models on a real physical platform would
allow for new perspectives to observe these novel phases of matter. However, be-
cause the results presented in this thesis are mainly proofs of concept, such a device
implementation would require a large-scale scan of the phase diagrams to identify
possible parameter regions that realize the desired phase that are reachable with the
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quantum simulator. Second, the results presented in Chapters V and VI are prelimi-
nary. In particular, extending the investigation from Chapter V of the lifetime of the
ASZM in the class of number-conserving Hamiltonians is important to understand
how these platforms can be used to observe this novel SPTP. On the other hand, the
variational algorithm presented in Chapter VI can be straightforwardly generalized
to more exotic cases, such as parafermions. This can be used to search for possible
Strong Zero Mode (SZM) in such models, where it is still an open question whether
such a mode can exist or not.
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APPENDIX A
Basics of Linear Algebra

This appendix provides a brief review of vector spaces and linear maps, including the
most important matrix decompositions used in the context of tensor networks. Since
all vector spaces encountered in the context of this thesis are finite dimensional, this
will be assumed throughout this appendix. For proofs and further details, the reader
is referred to some standard books on linear algebra, such as [308].

A.1 Linear Maps

A.1.1 Vector Spaces

A vector space 𝒱 over the field C is a set of vectors |𝑣⟩ ∈ 𝒱 and the properties

𝑧 |𝑣1⟩ ∈ 𝒱 , |𝑣1⟩ + |𝑣2⟩ ∈ 𝒱

for |𝑣𝑗⟩ ∈ 𝒱 and 𝑧 ∈ C. If a vector |𝑣⟩ can be expressed as a linear combination of
other vectors

|𝑣⟩ = ∑
𝑛

𝜆𝑛 |𝑣𝑛⟩ , (A.1)

it is called linear dependent. The maximal set of linearly independent vectors |𝑣𝑚⟩
for 𝑚 = 1, … , 𝑁 is called a basis of 𝒱 and 𝑁 is the dimension of 𝒱. Every vector in
𝒱 can be expressed in this basis as in Eq. (A.1) with 𝜆𝑛 ∈ C.

On the vector space 𝒱 it is possible to define an inner product

(|𝑣1⟩ , |𝑣2⟩) ∈ C

which is anti-linear in the first argument

(𝑧 |𝑣1⟩ + |𝑣2⟩ , |𝑣3⟩) = ̄𝑧 (|𝑣1⟩ , |𝑣3⟩) + (|𝑣2⟩ , |𝑣3⟩) ,

and linear in the second argument

(|𝑣1⟩ , 𝑧 |𝑣2⟩ + |𝑣3⟩) = 𝑧 (|𝑣1⟩ , |𝑣2⟩) + (|𝑣1⟩ , |𝑣3⟩) ,

where ̄𝑧 defines the complex conjugate of 𝑧. A vector space with an inner product is
called a Hilbert space.
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The existence of the inner product allows for choosing a basis which is orthonormal
with respect to this inner product

(|𝑣𝑛⟩ , |𝑣𝑚⟩) = 𝛿𝑛,𝑚 ,

and the expansion coefficients from Eq. (A.1) for a generic state |𝑣⟩ ∈ 𝒱 are given
by

𝜆𝑛 = (|𝑣𝑛⟩ , |𝑣⟩) .

This basis can be generated iteratively from 𝑁 linearly independent vectors using
general algorithms such as the Gram-Schmidt process [308, p. 88 – 91].

The space of all linear maps from 𝒱 to C is called 𝒱

⟨𝑣|𝑤⟩ ∈ C ,

which also forms a linear vector space of dimension 𝑁. Using the inner product this
set is naturally identified with 𝒱 itself

⟨𝑣1|𝑣2⟩ ≡ (|𝑣1⟩ , |𝑣2⟩) .

Given an orthonormal basis of 𝒱, this duality directly results in an orthonormal dual
basis of 𝒱 that fulfills

⟨𝑣𝑛|𝑣𝑚⟩ = 𝛿𝑛,𝑚 . (A.2)

A.1.2 Linear Maps

A linear map between two Hilbert spaces 𝒱 and 𝒲, with dimension 𝑁𝑉 and 𝑁𝑊
respectively, is a transformation

𝒜(𝛼 |𝑣1⟩ + |𝑣2⟩) = 𝛼𝒜(|𝑣1⟩) + 𝒜(|𝑣2⟩) ∈ 𝒲 .

By choosing an orthonormal basis |𝑣𝑛⟩ ∈ 𝒱 and |𝑤𝑛⟩ ∈ 𝒲 on the two Hilbert spaces,
the linear map can be expressed as

𝒜 =
𝑁𝑉

∑
𝑛=1

𝑁𝑊

∑
𝑚=1

𝐴𝑚,𝑛 |𝑤𝑚⟩ ⟨𝑣𝑛|

where 𝐴𝑚,𝑛 forms a complex 𝑁𝑊 × 𝑁𝑉 matrix. This can be naturally extended to
multi-linear maps of 𝐿 Hilbert spaces to 𝑅 new Hilbert spaces, which are defined in
the local basis as

𝒜 = ∑
𝑛1,…,𝑛𝐿

∑
𝑚1,…,𝑚𝑅

𝐴(𝑛1,…,𝑛𝐿),(𝑚1,…,𝑚𝑅) |𝑤1, … , 𝑤𝑅⟩ ⟨𝑣1, … , 𝑣𝐿|

where 𝐴(𝑛1,…,𝑛𝐿),(𝑚1,…,𝑚𝑅) forms a complex tensor, and the total number of indices
is called the tensor rank.

A.2 Matrix Decomposition
The tensors of complex multi-linear maps are the building blocks of tensor networks.
These tensors can be manipulated by decomposing them into other tensors with spe-
cial properties. This can be used, for example, to decompose a high-rank tensor into
lower-rank constituents or to define compression methods. Typically, the decom-
position is based on matrix decompositions and extended to tensors by combining
indices into super-indices.
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A.2.1 QR Decomposition

The QR decomposition [308, p. 139 – 142] is a decomposition of a rectangular matrix
𝑀 ∈ Mat(C, 𝑛, 𝑚) into an 𝑛 × 𝑛 unitary 𝑄 and an upper rectangular matrix 𝑅 of
size 𝑛 × 𝑚

𝑀 = 𝑄𝑅 , 𝑄† , 𝑄 = 𝑄𝑄† = 1 . (A.3)
In the case of 𝑛 > 𝑚, only the upper 𝑚 × 𝑚 part of the rectangular matrix 𝑅 is
non-trivial, with the remaining (𝑛−𝑚) rows being plain zeros. It is possible to define
a reduced QR decomposition by writing

𝑀 = (𝑄1 𝑄2) (𝑅1

0
) = 𝑄1𝑅1 , (A.4)

and storing only the relevant part (𝑄1, 𝑅1). Here, the two matrices 𝑄𝑗 are two
isometries of size 𝑚 × 𝑚 and (𝑛 − 𝑚) × 𝑚 for 𝑗 = 1 and 𝑗 = 2 respectively, with
𝑄𝑗𝑄†

𝑗 = 1 and 𝑄†
𝑗𝑄𝑗 ≠ 1. In particular, the matrix 𝑃𝑗 = 𝑄†

𝑗𝑄𝑗 is a projector
𝑃 2

𝑗 = 𝑃𝑗 on the subspace of the two blocks with 𝑃1 + 𝑃2 = 1 on the full 𝑛 × 𝑛 space.
For 𝑚 > 𝑛 such a decomposition is not possible if 𝑀 has full rank and 𝑄 = 𝑄1 is a
full unitary. In general, the isometry (unitary) 𝑄1 is not unique. However, by fixing
the phase of the diagonals of 𝑅1 to be on the real positive line, the QR decomposition
becomes unique.

In analogy to the QR decomposition, one can also define an LQ decomposition
𝑀 = 𝐿𝑄, where 𝐿 is a lower rectangular matrix. The LQ decomposition can be
obtained from the QR decomposition by

𝑀 = (𝑀†)† QR 𝑀†

= (𝑄𝑅)† = 𝑅†𝑄† ≔ 𝐿𝑄̃ . (A.5)

In the last step, it was used that the 𝑄† is again a unitary matrix and 𝑅† becomes
a lower rectangular matrix. Figure A.1(a) shows the QR decomposition using the
graphical notation of tensor networks introduced in Chapter2.

𝑀 = 𝑄 𝑅 = 𝐿 𝑄̃

𝑀
𝑗𝑙 𝑗𝑟

𝑗𝑑

𝑗𝑢

= 𝑀

𝑗𝑢
𝑗𝑙
𝑗𝑑

𝑗𝑟 = 𝑄 𝑅

𝑗𝑢

𝑗𝑙

𝑗𝑑

𝑗𝑟

(𝑎)

(𝑏)

Figure A.1: Graphical representation of the QR (LQ) decomposition. (a) Splitting a rectan-
gular matrix into a unitary 𝑄 and an upper (lower) triangular matrix 𝑅 (𝐿), as explained
in the text. (b) QR decomposition of a multi-linear map by grouping the indices 𝑗𝑙, 𝑗𝑢 and
𝑗𝑑 into one combined index 𝐽 = (𝑗𝑢, 𝑗𝑙, 𝑗𝑑) and treating the multi-linear map as a matrix.

The QR decomposition is generalized to multi-linear maps represented by the tensor
𝐴𝑗1,…,𝑗𝑁

. In this case, the indices are collected in two super indices 𝐽 = (𝑗𝑙1
, … 𝑗𝑙𝑛

)
and 𝐾 = (𝑗𝑘1

, … 𝑗𝑘𝑁−𝑛
) such that 𝐴𝐽,𝐾 forms a rectangular matrix that can be used

to perform the QR decomposition. Here, 𝑙𝑖 enumerates a subset of all 𝑁 indices in
an arbitrary order, and 𝑘𝑖 enumerates the remaining indices. Figure A.1(b) shows
an example of such a fusion operation for a tensor with four indices.
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A.2.2 Singular Value Decomposition

The Singular-Value Decomposition (SVD) [308, p. 209 – 220] is a decomposition of a
rectangular matrix 𝑀 ∈ Mat(C, 𝑛, 𝑚) into three matrices 𝑈, Σ and 𝑉, where 𝑈 and
𝑉 are unitary matrices of size 𝑛 × 𝑛 and 𝑚 × 𝑚 respectively, and Σ is a rectangular
matrix of size 𝑛 × 𝑚 with only real positive values on the diagonal. The non-zero
elements in Σ are called singular values 𝜎𝑗 of the matrix 𝑀 which are assumed to
be ordered 𝜎1 ≥ 𝜎2 ≥ … . The decomposition reads

𝑀 = 𝑈Σ𝑉 † .

The column vectors of 𝑈 (𝑉) are the left (right) singular vectors 𝑢𝑗 (𝑣𝑗), and the
number of non-zero singular values 𝜎𝑗 defines the rank of the matrix 𝑀.

Similar to the reduced QR decomposition defined in Eq. (A.4), it is possible to
reduce the number of stored parameters using a compact SVD. By assuming again
𝑛 > 𝑚, this reduced form is defined by

𝑀 = (𝑈1 𝑈2) (Σ1

0
) 𝑉 † = 𝑈1Σ1𝑉 † (A.6)

where Σ1 is an 𝑚 × 𝑚 diagonal matrix storing all the singular values 𝜎𝑗, and the
remaining part of the singular matrix is a (𝑛 − 𝑚) × 𝑚 matrix filled with zeros. The
two matrices 𝑈𝑗 are isometries with properties similar to those in the case of the QR
decomposition.

One way to compute the SVD is to perform two eigenvalue decompositions on the
matrices 𝐴1 = 𝑀†𝑀 and 𝐴2 = 𝑀𝑀†. The singular values are the square roots of
the eigenvalues of the two matrices 𝐴𝑗.

Truncating the singular matrix Σ1 to only contain 𝑚′ < 𝑚 singular values and
discarding the corresponding columns in 𝑈1 and 𝑉, the compressed matrix 𝑀 ′ =
𝑈 ′

1Σ′𝑉 ′ is the best low-rank approximation with respect to the Frobenius scalar
product

||𝑀 − 𝑀 ′||2 = Tr [𝑀 − 𝑀 ′] =
𝑀

∑
𝑗=𝑚′+1

𝜎2
𝑗 .

A.2.3 Eigenvalue decomposition

If for a square matrix 𝑀 ∈ Mat(C, 𝑛, 𝑛) there exists an invertable matrix 𝐽 such
that

𝐽−1𝑀𝐽 = 𝐷 (A.7)
such that 𝐷 is a diagonal matrix with complex entries, the matrix 𝑀 is called
diagonalizable, and Eq. (A.7) is called the eigenvalue decomposition. The elements
𝜆𝑗 of 𝐷 are the eigenvalue, and the columns of 𝐽 are the eigenvectors 𝑣𝑗 of 𝑀 which
fulfill

𝑀𝑣𝑗 = 𝜆𝑗𝑣𝑗 , 𝑣†
𝑗𝑣𝑘 = 𝛿𝑗,𝑘 .

There are special cases that allow for a stricter condition on the diagonalization
matrix 𝐽. If the matrix 𝑀 is Hermitian, 𝑀† = 𝑀, the matrix 𝐽 can be chosen to be
unitary 𝐽† = 𝐽−1 and the eigenvalues are real.

By discarding the smallest eigenvalues, the square matrix can be compressed, similar
to the SVD compression.



APPENDIX B
Derivation of the

Jordan-Wigner Transformation

This appendix provides details on the derivation of the Jordan-Wigner transforma-
tion, which maps local one-dimensional models of fermions to spins. For simplicity,
only the case of spinless fermions described by the annihilation (creation) operators
𝑎(†)

𝑗 is considered here. The local fermionic Hilbert space is two-dimensional and is
spanned by the occupation basis |0⟩ and |1⟩ which are the eigenstates of the fermionic
number operator 𝑛̂𝑗. On the level of many-body states, the local occupation basis
is identified with the two-dimensional Hilbert space of a spin-1/2 degree of freedom
according to

|0⟩ ≅ |↓⟩ , |1⟩ ≅ |↑⟩ ,

and the local number operator becomes

𝑛̂𝑗 = 1
2

(1+𝜎𝑧
𝑗 ) .

To derive the mapping of the fermionic ladder operators into the spin basis, consider
the improper annihilation and creation operators from Eq. (1.31)

̃𝑎†
𝑗 = 1

2
(𝜎𝑥

𝑗 + 𝑖𝜎𝑦
𝑗 ) ≔ 𝜎+

𝑗 , ̃𝑎𝑗 = 1
2

(𝜎𝑥
𝑗 − 𝑖𝜎𝑦

𝑗 ) ≔ 𝜎−
𝑗 (B.1)

This set of operators have the correct anti-commutation relation onside

{ ̃𝑎†
𝑗 , ̃𝑎𝑗} = 1 , { ̃𝑎(†)

𝑗 , ̃𝑎(†)
𝑗 } = 0

due to the commutation relations of Pauli matrices. However, they commute on
different sites and do not fulfill the Canonical Anti-Commutation Relations (CAR);
see also Eq. (1.28).

A way to restore the CAR is to dress the improper operators (B.1) by non-local
unitaries

𝑎𝑗 = 𝑈1 (𝑗) ̃𝑎𝑗 𝑈†
2 (𝑗) , 𝑎†

𝑗 = 𝑈2 (𝑗) ̃𝑎†
𝑗 𝑈†

1 (𝑗) , 𝑈†
𝑘(𝑗)𝑈𝑘(𝑗) = 𝑈𝑘(𝑗)𝑈†

𝑘(𝑗) = 1 .

By requiring that the local number operator is preserved under this dressing

𝑛𝑗 = 𝑎†
𝑗𝑎𝑗 = ̃𝑎†

𝑗 ̃𝑎𝑗 = 1
2

(1+𝜎𝑧
𝑗 ) ,
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TRANSFORMATION

it is possible to choose 𝑈2(𝑗) = 1 and 𝑈1(𝑗) = 𝑈(𝑗) as non-trivial unitaries, which
are fixed by the anti-commutation relations.

To find the correct expression for 𝑈(𝑗), consider first the anti-commutator of two
annihilation operators acting on the same site. From

{𝑎𝑗 , 𝑎𝑗} = {𝑈(𝑗) ̃𝑎𝑗 , 𝑈(𝑗) ̃𝑎𝑗} = 0

it follows
𝑈(𝑗) ̃𝑎𝑗 𝑈(𝑗) ̃𝑎𝑗 = 0 .

This equation is solved by requiring [𝑈(𝑗), ̃𝑎𝑗] = 0. Using the anti-commutator of 𝑎†
𝑗

and 𝑎𝑗 , it follows [𝑈(𝑗), ̃𝑎†
𝑗 ] = 0.

The anti-commutator of two annihilation operators at position 𝑗 and 𝑘 < 𝑗 evaluates
to

{𝑎𝑗, 𝑎𝑘} = {𝑈(𝑗) ̃𝑎𝑗, 𝑈(𝑘) ̃𝑎𝑘}
= 𝑈(𝑘) [ ̃𝑎𝑘, 𝑈(𝑗)] ̃𝑎𝑗 + 𝑈(𝑘)𝑈(𝑗) [ ̃𝑎𝑘, ̃𝑎𝑗]
+ [𝑈(𝑘), 𝑈(𝑗)] ̃𝑎𝑗 ̃𝑎𝑘 + 𝑈(𝑗) {𝑈(𝑘), ̃𝑎𝑗} ̃𝑎𝑘 ,

which follows from {𝐴𝐵, 𝐶} = 𝐴[𝐵, 𝐶]+{𝐴, 𝐶}𝐵 and [𝐴, 𝐵𝐶] = [𝐴, 𝐵]𝐶 +𝐵[𝐴, 𝐶].
Since {𝑎𝑗, 𝑎𝑘} = 0, it follows that the all the terms on the right have to vanish
individually

[𝑈(𝑗), ̃𝑎𝑘] = 0 , [𝑈(𝑗), 𝑈(𝑘)] = 0 , { ̃𝑎𝑗, 𝑈(𝑘)} = 0 .

By considering the anti-commutator of two creation operators, a similar set of equa-
tions can be derived for 𝑈†(𝑘)

The first and second equation are fulfilled by choosing the operator 𝑈𝑗 to consists
of a string of local unitaries acting to the left of site 𝑗

𝑈(𝑗) ≔ 𝒥𝑗 = ∏
𝑘<𝑗

𝑝𝑘 , 𝑝†
𝑘𝑝𝑘 = 1

and the last equation states that 𝑝𝑘 must be an operator that anti-commutes with
the local annihilation (creation) of a particle. An operator that has this sensitivity
to the change in the local occupation is the local parity of site 𝑘. By setting 𝑝𝑘 =
exp(𝑖𝜋𝑛̂𝑘) = −𝜎𝑧

𝑗 , the complete non-local mapping of the ladder operators to the
spin operators becomes

𝑎(†)
𝑗 = 𝒥𝑗 ̃𝑎(†)

𝑗 = ∏
𝑘<𝑗

𝑒𝑖𝜋𝑛̂𝑗 ̃𝑎(†)
𝑗 = ∏

𝑗<𝑘
(−𝜎𝑧

𝑗 ) ̃𝑎(†)
𝑗 . (B.2)

This is the Jordan-Wigner transformation [82]. Note that the transformation is not
unique, and other mappings are possible.



APPENDIX C
Derivation of the Majorana

Zero Modes

This appendix presents a detailed derivation of the expression of the Majorana Zero
Mode (MZM) from Eq. (1.97). The starting point is the Kitaev chain model in the
Majorana form from Eq. (1.89) given by

𝐻Kitaev =
𝑁−1
∑
𝑗=1

[𝜆𝑥 𝑖𝛾𝑗,𝑏𝛾𝑗+1,𝑎 + 𝜆𝑦 𝑖𝛾𝑗,𝑎𝛾𝑗+1,𝑏] + 𝑔
𝑁

∑
𝑗=1

𝑖𝛾𝑗,𝑎𝛾𝑗,𝑏

𝜆𝑥 = −
(𝑤 + Δ𝑝)

2
, 𝜆𝑦 =

(𝑤 − Δ𝑝)
2

, 𝑔 = −𝜇
2

.

(C.1)

A suitable ansatz for the MZM is given by the two Majorana operators

Γ𝑎 =
𝑁

∑
𝑙=1

𝜌𝑎
𝑙 𝛾𝑙,𝑎 , Γ𝑏 =

𝑁
∑
𝑙=1

𝜌𝑏
𝑙 𝛾𝑙,𝑏 (C.2)

only involving one of the two Majorana types. The normalization condition Γ2
𝛼 = 1

requires
𝑁

∑
𝑗=1

(𝜌𝛼
𝑗 )2 = 1 .

Taking the convention 𝜌𝛼
0 = 𝜌𝛼

𝑁+1 = 0, the commutator of these two operators with
the Hamiltonian of Eq. (C.1) is given by

[𝐻, Γ𝑎] = 2𝑖
𝑁

∑
𝑙=1

(𝜆𝑥𝜌𝑎
𝑙+1 − 𝑔𝜌𝑎

𝑙 − 𝜆𝑦𝜌𝑎
𝑙−1) 𝛾𝑙,𝑏

[𝐻, Γ𝑏] = 2𝑖
𝑁

∑
𝑙=1

(−𝜆𝑥𝜌𝑏
𝑙−1 + 𝑔𝜌𝑏

𝑙 + 𝜆𝑦𝜌𝑏
𝑙+1) 𝛾𝑙,𝑎 .

(C.3)

Note that the commutator of 𝐻 with either of the two operators involves only Majo-
rana operators of the other type. This is a direct consequence of the chiral symmetry
of the Hamiltonian, as expressed in Eq. (1.101). If the two Majorana operators Γ𝑎/𝑏
are zero modes of the Hamiltonian, their commutator must vanish. By Eq. (C.3)
this results in the two recursion relations

𝜉𝜌𝑎
𝑙+1 + 𝜌𝑎

𝑙 + 𝛿𝜌𝑎
𝑙−1 = 0 (C.4)

𝜉𝜌𝑏
𝑙−1 + 𝜌𝑏

𝑙 + 𝛿𝜌𝑏
𝑙+1 = 0 (C.5)

223
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where the two parameters

𝜉 = −𝜆𝑥
𝑔

, 𝛿 =
𝜆𝑦

𝑔
were defined. These recursion relations must fulfill the boundary conditions 𝜌𝛼

0 =
𝜌𝛼

𝑁+1 = 0. A way to solve a recursive equation as the two given by Eq. C.4 and C.4
is in terms of a generating function. As an example, consider the equation for Γ𝑎.
The generating function is a real valued function 𝐹(𝑥) defined by1

𝐹(𝑥) =
𝑁

∑
𝑗=1

𝜌𝑎
𝑗 𝑥−𝑗 . (C.6)

Applying the recursion from Eq. (C.4) one obtains

𝐹(𝑥) =𝜌𝑎
1𝑥−1 +

𝑁−1
∑
𝑗=2

𝜌𝑎
𝑗 𝑥−1 + 𝜌𝑎

𝑁𝑥−𝑁

(C.4)
= − (𝜉𝜌𝑎

2𝑥−1 +
𝑁−1
∑
𝑗=2

(𝜉𝜌𝑎
𝑗+1 + 𝛿𝜌𝑎

𝑗−1)𝑥−𝑗 + 𝛿𝜌𝑎
𝑁−1𝑥−𝑁)

= − (𝜉𝑥 [
𝑁

∑
𝑗=1

𝜌𝑎
𝑗 𝑥−𝑗 − 𝜌𝑎

1𝑥−1] + 𝛿
𝑥

[
𝑁

∑
𝑗=1

𝜌𝑎
𝑗 𝑥−𝑗 − 𝜌𝑎

𝑁𝑥−𝑁−1])

= − ( 𝛿
𝑥

+ 𝜉𝑥) 𝐹(𝑥) + 𝜌𝑎
1𝜉 + 𝛿𝜌𝑎

𝑁𝑥−𝑁−1 .

As the solution should be localized to the left site of the system, a reasonable ap-
proximation is 𝜌𝑎

𝑁 ≈ 0. Solving the previous equation for 𝐹(𝑥) results in

𝐹(𝑥) = 𝜌𝑎
1𝜉𝑥

𝜉𝑥2 + 𝑥 + 𝛿
= 𝜌𝑎

1𝜉𝑥
(𝑥 − 𝜌+)(𝑥 − 𝜌−)

= 𝜌1𝜉
𝜌− − 𝜌+

( 1
1 − 𝜌+/𝑥

− 1
1 − 𝜌−/𝑥

)

= 𝒩
𝑁

∑
𝑗=0

(𝜌𝑗
+ − 𝜌𝑗

−)𝑥−𝑗 ,

where 𝒩 collects all constants and the 𝜌± are the roots of the polynomial 𝑓(𝑥) =
𝜉𝑥2 + 𝑥 + 𝛿 given by

𝜌± = − 1
2𝜉

± √ 1
4𝜉2 − 𝛿

𝜉
=

𝜇 ± √𝜇2 − 4𝑡2 + 4Δ2
𝑝

2(𝑡 + Δ𝑝)
. (C.7)

A direct comparison with Eq. (C.6) gives the desired result

𝜌𝑎
𝑗 = 𝒩 (𝜌−𝑗

+ − 𝜌−𝑗
− ) . (C.8)

The constant 𝒩 is fixed by the condition Γ2
𝑎 = 1. The expression for 𝜌𝑏

𝑗 is derived
in the same way, but with the modified generating function

̃𝐹 (𝑥) =
𝑁

∑
𝑗=1

𝜌𝑏
𝑗𝑥𝑗 .

This concludes the derivation of the MZM.

1 The ansatz chosen here leads to a result which is valid for all parameters 𝜇, 𝑡, Δ𝑝 > 0.



APPENDIX D
Strong Zero Mode from

Quantum Circuit

In this appendix, the unitary quantum circuit is derived that rotates the seed op-
erator Γ0 = 𝛾𝑎

1 to the Strong Zero Mode (SZM) of the two integrable points of
the Kitaev-Hubbard Model (KHM). Under the Jordan-Wigner transformation, the
model is given by

𝐻KH =
𝑁−1
∑
𝑗=1

−𝑤𝜎𝑥
𝑗 𝜎𝑥

𝑗+1 + 𝑈𝜎𝑧
𝑗 𝜎𝑧

𝑗+1 + 𝜇
2

𝑁−1
∑
𝑗=1

𝜎𝑧
𝑗 , (D.1)

and the two integrable points are defined by

I 𝑈 = 0, |𝜇| < 2𝑤

II 𝜇 = 0, |𝑈| < 𝑤

The seed operator becomes Γ0 = 𝜎𝑥
1 under the Jordan-Wigner transformation, and

the SZM is given by

ΓI = 𝒩(𝑁)
𝑁

∑
𝑗=1

𝜌𝑗−1 (∏
𝑘<𝑗

𝜎𝑧
𝑘) 𝜎𝑥

𝑗 , 𝒩(𝑁) = √ 1 − 𝜌2

1 − 𝜌2𝑁 , 𝜌 = 𝜇
2𝑤

(D.2)

for case I [84] and

ΓII = 𝒩(𝑁)
⌊ 𝑁+1

2 ⌋

∑
𝑗=1

(−𝜌)𝑗−1 (∏
𝑘<𝑗

𝜎𝑦
2𝑘−1𝜎𝑦

2𝑘) 𝜎𝑥
2𝑗−1 ,

𝒩(𝑁) = √ 1 − 𝜌2

1 − 𝜌2⌊ 𝑁+1
2 ⌋

, 𝜌 = 𝑈
𝑤

(D.3)

for case II [224], respectively.

The aim is to find a unitary rotation represented by the quantum circuit

𝑈𝜎 =

𝑢𝜎
1,2

𝑢𝜎
2,3

𝑢𝜎
3,4

… = 𝑢𝜎
𝑁−1,𝑁𝑢𝜎

𝑁−2,𝑁−1 … 𝑢𝜎
2,3𝑢𝜎

1,2 , (D.4)
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such that Γ𝜎 = 𝑈𝜎Γ0𝑈†
𝜎 for 𝜎 either I or II. As explained in Chapter VI, the local uni-

tary matrices 𝑢𝜎
𝑗,𝑗+1 are chosen to commute with the parity operator ̂𝑃 = ∏𝑗(−𝜎𝑧

𝑗 ).
This requires that the total sum of the Pauli-X and Pauli-Y operators is conserved
when acting on a pair of Pauli operators. In particular, by representing 𝑢𝜎

𝑗,𝑗+1 as the
matrix exponential of an Hermitian operator 𝑉𝑗,𝑗+1 through

𝑢𝜎
𝑗,𝑗+1 = 𝑒𝑖𝑉𝑗,𝑗+1 ,

this operator can only be of the form

𝑉𝑗,𝑗+1 = 𝛼0 1+𝛼1𝜎𝑧
𝑗 + 𝛼2𝜎𝑧

𝑗+1 + 𝛼3𝜎𝑧
𝑗 𝜎𝑧

𝑗+1

+ 𝛼4𝜎𝑥
𝑗 𝜎𝑥

𝑗+1 + 𝛼5𝜎𝑦
𝑗 𝜎𝑦

𝑗+1 + 𝛼6𝜎𝑥
𝑗 𝜎𝑦

𝑗+1 + 𝛼7𝜎𝑦
𝑗 𝜎𝑥

𝑗+1 ,

with 𝛼𝑗 ∈ R.

D.1 Case I: 𝑈 = 0
This section considers case I where the Hubbard interaction is zero. The model from
Eq. (D.1) reduces to the Transverse Field Ising Model, and the SZM is given by
Eq. (D.2). Below, two equivalent derivations of the unitary circuit 𝑈 are presented.

D.1.1 Algebraic Derivation

As the operator ΓI from Eq. (D.2) is a sum over strings of the type (∏𝑘<𝑗 𝜎𝑧
𝑘)𝜎𝑥

𝑗 ,
the two-body unitary should encode the transformation

𝜎𝑥
𝑗

𝑢I
𝑗,𝑗+1

−−−→ 𝜉1 𝜎𝑥
𝑗 + 𝜉2 𝜎𝑧

𝑗 𝜎𝑥
𝑗+1 , 𝜉2

1 + 𝜉2
2 = 1 .

In this way, the Pauli-X operator is shifted to the right owing to the ladder structure
of the quantum circuit, generating the desired string structure.

An operator generating this transformation is given by

𝑢I
𝑗,𝑗+1 = 𝑒𝑖𝛼𝑗𝜎𝑦

𝑗 𝜎𝑥
𝑗+1 = cos(𝛼𝑗)1+𝑖 sin(𝛼𝑗)𝜎

𝑦
𝑗 𝜎𝑥

𝑗+1 (D.5)

with 𝜉1 = cos(2𝛼𝑗) and 𝜉2 = sin(2𝛼𝑗).

Applying the full unitary circuit to the seed operator Γ0 = 𝜎𝑥
1 leads to

𝑈I Γ0𝑈†
I =

𝑁−1
∑
𝑗=1

cos(2𝛼𝑗) (
𝑗−1

∏
𝑘=1

sin(2𝛼𝑘)𝜎𝑧
𝑘) 𝜎𝑥

𝑗 + (
𝑁−1
∏
𝑘=1

sin(2𝛼𝑘)𝜎𝑧
𝑘) 𝜎𝑥

𝑁 . (D.6)

Compared to the expression of the SZM in Eq. (D.2), the angles have to fulfill the
conditions

𝛾𝑗 = cos(2𝛼𝑗)
𝑗−1

∏
𝑘=1

sin(2𝛼𝑘) = 𝒩(𝑁)𝜌𝑗−1 = √ 1 − 𝜌2

1 − 𝜌2𝑁 𝜌𝑗−1 ∀ 0 < 𝑗 < 𝑁

𝛾𝑁 =
𝑁−1
∏
𝑘=1

sin(2𝛼𝑘) = 𝒩(𝑁)𝜌𝑁−1 = √ 1 − 𝜌2

1 − 𝜌2𝑁 𝜌𝑁−1 .

(D.7)

Dividing 𝛾𝑁 by 𝛾𝑁−1 results in
𝛾𝑁

𝛾𝑁−1
= tan(2𝛼𝑁−1) = 𝜌 ,
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defining the last rotation angle 𝛼𝑁−1. To find the result for the remaining 𝑁 − 2
angles, consider the relation

𝑟
∑
𝑙=0

𝛾2
𝑁−𝑙 =

𝑁−𝑟−1
∏
𝑘=1

sin(2𝛼𝑘)2 = 𝒩(𝑁)2
𝑟

∑
𝑙=0

𝜌2(𝑁−𝑙−1) ,

which can be proven by induction. Dividing this square sum by 𝛾2
𝑁−𝑟−1 results in

∑𝑟
𝑙=0 𝛾2

𝑁−𝑙

𝛾2
𝑁−𝑟−1

= tan(2𝛼𝑁−𝑟−1)2 =
∑𝑟

𝑙=0 𝜌2(𝑁−𝑙−1)

𝜌2(𝑁−𝑟−2) ,

and by setting 𝑗 = 𝑁 − 𝑟 − 1 gives the solution for all the angles for 1 ≤ 𝑗 ≤ 𝑁 − 2

tan(2𝛼𝑗)2 = 𝜌2
𝑁−𝑗−1

∑
𝑙=0

𝜌2(𝑁−𝑗−1−𝑙) = 𝜌2
𝑁−𝑗−1

∑
𝑘=0

𝜌2𝑘 ,

where the last step follows after a simple change in the summation variable 𝑘 =
𝑁 − 𝑗 − 1 − 𝑙. Putting everything together, the solution for all angles can be written
as

tan(2𝛼𝑗)2 = 𝜌2
𝑁−𝑗−1

∑
𝑘=0

𝜌2𝑘 = 𝜌2

1 − 𝜌2 (1 − 𝜌2(𝑁−𝑗)) . (D.8)

D.1.2 Derivation Using a Matrix Product Operator

An alternative derivation of the same result can be performed using tensor net-
works. The SZM Γ from Eq. (D.2) can be written as a homogeneous Matrix Product
Operator (MPO) of bond dimension 𝜒 = 2

𝑊 𝑗 = (𝜌𝜎𝑧 𝒩𝜎𝑥

0 1
) , 𝑊 1 = (𝜌𝜎𝑧 𝒩𝜎𝑥) , 𝑊 𝑁 = (𝒩𝜎𝑥

1
) (D.9)

in the notation of Chapter 2. Similar, the seed operator can be represented as a
bond dimension 𝜒 = 2 MPO by

𝑊̃ 𝑗 = (0 𝜎𝑥

0 1
) , 𝑊̃ 1 = (0 𝜎𝑥) , 𝑊̃ 𝑁 = (𝜎𝑥

1
) . (D.10)

Let contr(𝐴, 𝐵) be the operation of contracting two tensors sharing one vertical link.
The contraction of two neighboring 𝑊̃ 𝑗 tensors along the vertical direction yields

𝑊̃ 𝑗,𝑗+1 ≔ contr(𝑊 𝑗, 𝑊 𝑗+1) = (0 𝜎𝑥 ⊗ 1

0 1⊗1
) ,

and a two-body unitary acts on this contracted tensor as

𝑢I
𝑗,𝑗+1𝑊̃ 𝑗,𝑗+1(𝑢I

𝑗,𝑗+1)† = (0 𝑢I
𝑗,𝑗+1 (𝜎𝑥 ⊗ 1) (𝑢I

𝑗,𝑗+1)†

0 1⊗1
)

= (0 cos(2𝛼𝑗)1⊗1+ sin(2𝛼𝑗)1⊗𝜎𝑥

0 1⊗1
) .

The action on the left side of this equation is to be understood for every combination
of horizontal indices, and the second line uses the parameterization of the unitary
from Eq. (D.5).



228 APPENDIX D. STRONG ZERO MODE FROM QUANTUM CIRCUIT

Setting

𝑢I
𝑗,𝑗+1𝑊̃ 𝑗,𝑗+1(𝑢I

𝑗,𝑗+1)† = contr(𝑇𝑊̃ 𝑗+1) , 𝑇 = (𝐴 𝐵
𝐶 𝐷

)

defines a splitting where the new right tensor is again the generating tensor of the
seed operator Γ0, allowing the application of the next two-body unitary in the same
way. Writing out the right site of this equation, it is found

(0 𝐴 ⊗ 𝜎𝑥 + 𝐵 ⊗ 1

0 𝐶 ⊗ 𝜎𝑥 + 𝐷 ⊗ 1
) = (0 cos(2𝛼𝑗)𝜎𝑥 ⊗ 1+ sin(2𝛼𝑗)𝜎𝑧 ⊗ 𝜎𝑥

0 1⊗1
) .

This set of matrix equations is uniquely solved by

𝐴 = sin(2𝛼𝑗)𝜎𝑧 , 𝐵 = cos(2𝛼𝑗)𝜎𝑥 , 𝐶 = 0 , 𝐷 = 1 ,

and the tensor 𝑇 is the generating tensor of the Γ from Eq. (D.9) if the angles 𝛼𝑗
are chosen as in Eq. (D.8).

D.2 Case II: 𝜇 = 0
This section considers case II where the chemical potential is zero. The SZM is given
by Eq. (D.3). Below, only the algebraic derivation is presented. The derivation using
the MPO formalism is similar to that in case I.

Similar to case I, the operator ΓII in Eq. (D.3) is a sum over strings of the form
(∏𝑘<𝑙 𝜎𝑦

𝑘)𝜎𝑥
𝑙 , but the sum runs only over all odd sites 𝑙 = 2𝑗 − 1 of the chain. This

requires considering the combined action of two adjacent unitary matrices in the
circuit of Eq. (D.4) acting on sites (2𝑗 − 1, 2𝑗) and (2𝑗, 2𝑗 + 1). A possible chain of
parity conserving transformations is given by

𝜎𝑥
2𝑗−1

𝑢II
2𝑗−1,2𝑗

−−−−−→ 𝜉1 𝜎𝑥
2𝑗−1 + 𝜉2 𝜎𝑦

2𝑗−1𝜎𝑧
2𝑗

𝑢II
2𝑗,2𝑗+1

−−−−−→ 𝜉1 𝜎𝑥
2𝑗−1 + 𝜉2 𝜎𝑦

2𝑗−1𝜎𝑦
2𝑗𝜎𝑥

2𝑗+1 , (D.11)

with the constrain 𝜉2
1 + 𝜉2

2 = 1. If this chain of transformation exists, the ladder
structure ensures that the Pauli-X operator is shifted to the right by two lattice
sites while generating the desired string structure, similar to case I.

Consider the first transformation

𝜎𝑥
2𝑗−1

𝑢II
2𝑗−1,2𝑗

−−−−−→ 𝜉1 𝜎𝑥
2𝑗−1 + 𝜉2𝜎𝑦

2𝑗−1𝜎𝑧
2𝑗 .

A unitary that preforms this rotation of Pauli matrices is given by

𝑢II
2𝑗−1,2𝑗 = 𝑒𝑖𝛼𝑗𝜎𝑧

2𝑗−1𝜎𝑧
2𝑗 = cos(𝛼𝑗)1+𝑖 sin(𝛼𝑗)𝜎𝑧

2𝑗−1𝜎𝑧
2𝑗 (D.12)

with 𝜉1 = cos(2𝛼𝑗) and 𝜉2 = − sin(2𝛼𝑗).

The second transformation acting as

𝜎𝑧
2𝑗

𝑢II
2𝑗,2𝑗+1

−−−−−→ 𝜎𝑦
2𝑗𝜎𝑥

2𝑗+1 ,

is generated by the unitary matrix

𝑢II
2𝑗,2𝑗+1 = 𝑒𝑖 𝜋

4 𝜎𝑥
2𝑗𝜎𝑥

2𝑗+1 = 1√
2

(1+𝑖𝜎𝑥
2𝑗𝜎𝑥

2𝑗+1) . (D.13)
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Combining the two unitary matrices from Eqs. (D.12) and (D.13), the transformation
chain from Eq. (D.11) is obtained.

Assume that 𝑁 = 2 ̃𝑁 + 1 is odd, and the full unitary circuit of Eq. (D.4) consists
of an even number of two-body unitary transformations. The case of even sites can
be treated equivalently, but requires a slightly modified two-body unitary transfor-
mation on the last two sites. Applying the full unitary circuit to the seed operator
Γ0 = 𝜎𝑥

1 leads to

𝑈IIΓ0𝑈†
II =

𝑁̃
∑
𝑗=1

(−1)𝑗−1 cos(2𝛼𝑗) (
𝑗−1

∏
𝑘=1

sin(2𝛼𝑘)𝜎𝑦
2𝑘−1𝜎𝑦

2𝑘) 𝜎𝑥
2𝑗−1

+ (−1)𝑁̃ (
𝑁̃

∏
𝑘=1

sin(2𝛼𝑘)𝜎𝑦
2𝑘−1𝜎𝑦

2𝑘) 𝜎𝑥
2𝑁̃+1

.

(D.14)

Compared to the expression of the SZM in Eq. (D.3), the angles have to fulfill the
conditions

𝛾𝑗 = cos(2𝛼𝑗)
𝑗−1

∏
𝑘=1

sin(2𝛼𝑘) = 𝒩(𝑁)𝜌𝑗−1 = √ 1 − 𝜌2

1 − 𝜌2(𝑁̃+1)
𝜌𝑗−1 ∀ 0 < 𝑗 ≤ ̃𝑁

𝛾𝑁̃+1 =
𝑁̃

∏
𝑘=1

sin(2𝛼𝑘) = 𝒩(𝑁)𝜌𝑁̃ = √ 1 − 𝜌2

1 − 𝜌2(𝑁̃+1)
𝜌𝑁̃ . (D.15)

This set of equations is very similar to the set of equations (D.7) found in case I,
and can thus be solved in a similar manner. The solution for the angles is given by
for all 1 ≤ 𝑗 ≤ ̃𝑁

tan(2𝛼𝑗)2 = 𝜌2
𝑁̃−𝑗

∑
𝑘=0

𝜌2𝑘 = 𝜌2

1 − 𝜌2 (1 − 𝜌2(𝑁̃+1−𝑗)) . (D.16)





APPENDIX E
Matrix Product Operator from

Finite State Machines

This appendix discusses the construction of a Matrix Product Operator (MPO) for
a spin Hamiltonian consisting only interactions of finite range written as

𝐻 =
𝑀

∑
𝑘

ℎ𝑘 .

The condition that the ℎ𝑘 are interactions of finite range implies that they only act
non-trivially in a finite window of size 𝑛𝑘 of the spin chain. Consequently, it can be
written as

ℎ𝑘 = 1⊗ ⋯ ⊗ 1⊗𝑂̂1 ⊗ 𝑂̂2 ⋯ ⊗ 𝑂̂𝑛𝑘
⊗ 1⋯ ⊗ 1 (E.1)

where 𝑂̂ and 𝑂̂𝑛𝑘
are non-trivial operators acting on sites 𝑗 and 𝑛𝑘+𝑗−1, respectively.

The remaining operators between the two sites are either identity or non-trivial
operators. This string of operators can be interpreted as the transition of a machine
initialized in the state ℐ into a final state ℱ and a finite number of intermediate
states. The transitions of the machine are labeled by the operators that appear in
the string. For example, the only transition allowed from the final state ℱ is into
ℱ itself, labeled by the identity 1, and the transitions allowed from the state ℐ
are either transitions into ℐ itself, labeled by 1, or into the first non-trivial state 1
labeled by 𝑂̂1.

In this language, the string of operators can be written as the transition path

ℐ1 1
𝑂̂1

2
𝑂̂2 …𝑂̂3

ℱ
𝑂̂𝑛𝑘

1 (E.2)

where the term of Eq. (E.1) corresponds to a path through this graph, where the
transition ℐ → ℐ is taken exactly 𝑗 − 1 times. Moreover, collecting all terms in a
sum generated by this graph by starting in node ℐ and ending in ℱ of length 𝑁
generates the sum structure typical for local Hamiltonians.

By expanding this to include multiple terms, every finite-range Hamiltonian can be
expressed as such a finite-state machine. Taking the Transverse Field Ising Model
(TFIM) as an example. The TFIM is described by the Hamiltonian

𝐻Ising = −𝐽
𝑁−1
∑
𝑗=1

𝜎𝑥
𝑗 𝜎𝑥

𝑗+1 − 𝑔
𝑁

∑
𝑗=1

𝜎𝑧
𝑗 . (E.3)
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APPENDIX E. MATRIX PRODUCT OPERATOR FROM FINITE STATE

MACHINES

Applying the above described recipe, the TFIM is described by the finite state
machine with three states

ℐ1 1
𝜎𝑥

ℱ
−𝐽𝜎𝑥

1

−𝑔𝜎𝑧

. (E.4)

The direct connection of the initial ℐ and final ℱ nodes creates the transverse
field contributions, and the transition of the intermediate node 1 creates the 𝑋𝑋
interactions.

Constructing the MPO representation based on the finite state machine is straight-
forward in terms of the transition matrix associated with the transition graph of the
finite state machine. Therefore, the transition matrix is a matrix in which each col-
umn and row index represents one of the possible states of the finite state machine,
and the entries are either zero, with no allowed transition, or carry the operator
symbol of the transition. For the TFIM, the finite state machine has three internal
states, and thus, the transition matrix is a 3 × 3 matrix with entries

𝑊 =
⎛⎜⎜⎜
⎝

1 𝜎𝑥 −𝑔𝜎𝑧

0 0 −𝐽𝜎𝑥

0 0 1

⎞⎟⎟⎟
⎠

. (E.5)

By interpreting the entries of the transition matrix 𝑊 as operators acting along the
vertical direction, 𝑊 becomes the MPO tensor of the TFIM. The boundary tensors
for 𝑗 = 1 and 𝑗 = 𝑁 are thereby found by using the initial and final condition of the
finite state machine, compactly written as the vectors

𝑣ℐ =
⎛⎜⎜⎜
⎝

1
0
0

⎞⎟⎟⎟
⎠

, 𝑣ℱ =
⎛⎜⎜⎜
⎝

0
0
1

⎞⎟⎟⎟
⎠

,

with the boundary tensors given by

𝑊 1 = 𝑣𝑇
ℐ𝑊 , 𝑊 𝑁 = 𝑊𝑣ℱ .

This formalism can simply be extended to include exponentially decaying interac-
tions. Taking, for example, the TFIM with an exponential decaying interaction term

𝐻′
Ising = −𝐽

𝑁−1
∑
𝑗=1

𝑁
∑

𝑘=𝑗+1
𝜆𝑘−𝑗−1𝜎𝑥

𝑗 𝜎𝑥
𝑘 − 𝑔

𝑁
∑
𝑗=1

𝜎𝑧
𝑗 . (E.6)

The transition graph of the finite state machine is a simple extension of the graph
in Eq. (E.4) and given by

ℐ1 1
𝜎𝑥

ℱ
−𝐽𝜎𝑥

1

−𝑔𝜎𝑧

𝜆1

. (E.7)

The finite state machine is now allowed to spend arbitrary time in the intermediate
state 1, generating a long-ranged exponentially decaying interaction term.
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Using the transition matrix of this finite state machine, the MPO tensors are readily
found as

𝑊 =
⎛⎜⎜⎜
⎝

1 𝜎𝑥 −𝑔𝜎𝑧

0 𝜆1 −𝐽𝜎𝑥

0 0 1

⎞⎟⎟⎟
⎠

. (E.8)

The boundary tensors are the same as those for the standard TFIM.
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