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Abstract

This thesis introduces and systematically analyzes novel measurement-based quantum
state preparation protocols in one dimension, leveraging non-unitary dynamics, quantum
measurements, and adaptive feedback mechanisms. Additionally, a stochastic sampling-
based approach for ground state search using Projected Entangled Pair States (PEPS)
in two dimensions is investigated, further expanding the computational toolkit for sim-
ulating complex quantum states.

A central contribution is the development of a protocol that employs periodic mea-
surement and resetting of ancilla systems, explicitly applied to the preparation of the
one-dimensional Affleck-Kennedy-Lieb-Tasaki (AKLT) state. We identify an optimal re-
set interval, balancing entanglement generation and convergence speed, and demonstrate
robustness against realistic experimental noise such as dephasing.

Furthermore, this thesis introduces a self-learning adaptive measurement-feedback frame-
work within variational quantum circuits (VQCs). The proposed framework autonomously
discovers efficient, constant-depth strategies for deterministic preparation of specific
AKLT edge states, outperforming existing analytical protocols. This analysis uncov-
ers and mitigates previously unknown optimization challenges unique to measurement-
feedback-based variational quantum circuits.

The thesis also advances two-dimensional ground state search by investigating a sampling-
based optimization approach for finite PEPS. It demonstrates that PEPS representing
physically realistic states are computationally tractable within this sampling framework,
in contrast to random states, whose complexity makes them prohibitively difficult to con-
tract. To quantitatively distinguish between computationally easy and hard-to-contract
states, a novel diagnostic measure is introduced. The developed methodology is success-
fully applied to physically significant states, including chiral spin liquids and Rydberg
atom arrays with long-range interactions, highlighting its effectiveness in simulating
complex states relevant to state-of-the-art cold atom experiments.

Overall, the thesis provides methodological and conceptual insights into measurement-
based quantum state preparation, optimization landscapes, and tensor network simula-
tions.
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CHAPTER 1

Introduction

Quantum technologies have the potential to profoundly transform information process-
ing, computation, communication, and sensing. They might achieve this by harnessing
uniquely quantum mechanical phenomena, such as superposition, entanglement, and
coherence [1, 2]. Central to this transformative potential is the ability to efficiently
and reliably prepare complex quantum states. Quantum state preparation as a resource
is essential across numerous quantum computing algorithms, from resource states for
Measurement-Based Quantum Computing [3] to the preparation of topological states
for error correction [4]. Beyond its practical significance, the theoretical exploration of
quantum state preparation provides fundamental insights into quantum phases of mat-
ter, quantum resource theory, and the complexity inherent to various quantum states [5].

However, contemporary quantum devices, known as noisy intermediate-scale quantum
(NISQ) systems, face significant limitations. These include environmental decoherence
and operational imperfections, which severely constrain their capacity for reliable quan-
tum state preparation [1, 2]. Traditional state preparation protocols predominantly rely
on deterministic, unitary quantum circuits composed of local gates. Such methods typi-
cally require deep circuit structures, imposing stringent requirements on qubit coherence
times and gate fidelity [6]. Given current technological limitations, these requirements
remain challenging to fulfill.

To address these issues, alternative variational quantum state preparation methods have
emerged. These methods use parameterized quantum circuits optimized through classi-
cal feedback loops. Although variational protocols can reduce circuit complexity, they
introduce significant practical difficulties. Notably, optimization landscapes often ex-
hibit barren plateaus, characterized by exponentially diminishing gradients and non-
convex features that hinder efficient optimization [7, 8], while still suffering from circuit
depths that scale with system size. Other approaches, including adiabatic quantum state
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preparation and optimized sequences of unitary operations, similarly demand prolonged
coherence times and precise control, restricting their experimental practicality [9–11].

Recent advances suggest that measurement-based and dissipative protocols, incorpo-
rating non-unitary dynamics, may offer more robust avenues for quantum state prepa-
ration. These protocols exploit irreversible quantum operations such as measurement,
ancilla reset, or dissipation to steer quantum systems efficiently towards desired target
states. Prominent measurement-based techniques include quantum reservoir engineer-
ing, quantum state steering via ancillary systems [12–21], and adaptive measurement-
feedback protocols [22–33]. Each method involves distinct trade-offs concerning conver-
gence speed, operational complexity, robustness to noise, and feasibility for near-term
quantum hardware. A detailed comparative analysis of these methods is provided in
Chap. 4.

In our Publication [I], a protocol based on quantum state steering via periodic measure-
ment and resetting of ancillary degrees of freedom is developed and analyzed. Ancilla
systems are coherently coupled to the primary quantum system using an engineered
Hamiltonian. Periodic measurement and reset operations on the ancillas lead to non-
unitary dynamics that guide the system towards the target state. This protocol is
explicitly applied to the preparation of the spin-1 Affleck-Kennedy-Lieb-Tasaki (AKLT)
state, a symmetry-protected topological (SPT) state characterized by a frustration-free
parent Hamiltonian. Numerical results demonstrate an optimal ancilla reset interval,
balancing the rate of entanglement generation and convergence speed. Furthermore, the
protocol exhibits resilience to deviations from this ideal reset timing and the presence
of dephasing noise.

In contrast, adaptive measurement-feedback methods dynamically adjust future opera-
tions based on intermediate results, which can significantly accelerate state preparation
under ideal1 conditions.

In situations where no measurement protocol to prepare a certain quantum state is
known, self-learning methods in the literature employ greedy strategies [34, 35], where
feedback steps are optimized sequentially, based solely on immediate measurement out-
comes. Such greedy protocols, while computationally simpler, generally fail to discover
globally optimal strategies necessary for efficiently preparing quantum states. For ex-
ample, they would not be able to learn protocols like the one in Refs. [22–25, 27], where
the projective measurements are constructed in such a way as to be correctable with
local unitary gates.

Machine learning techniques, such as reinforcement learning (RL), have been proposed
to enhance the flexibility and effectiveness of adaptive measurement-feedback protocols

1Note that in current experimental implementations, real-time feedback is still out of reach.
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and could, in theory, learn protocols like the one proposed in Refs. [22–25, 27]. Despite
their promise, these methods face considerable computational and practical challenges.
These arise primarily from the complexity associated with large Hilbert spaces, limiting
their scalability beyond small quantum systems [36–39]. More details about learning
protocols can be found in Sec. 4.4.

In Publication [II], we present a novel self-learning approach integrating measurement
and conditional feedback within variational quantum circuits. We discovered a new class
of local minima related to measurement-based variational circuits and devise strategies
to overcome these challenges. This framework is applied to successfully prepare states
within the spin-1 AKLT manifold. While analytical protocols exist to statistically pre-
pare states within this manifold [27], the developed learning approach surpasses these
methods by achieving deterministic preparation of a specific AKLT state in the manifold,
for which no analytical protocol is currently known.

While measurement-feedback techniques have been extensively explored in one-dimensional
quantum systems, primarily exploiting the representation power of matrix product states
(MPS), their extension to two-dimensional quantum systems presents substantial con-
ceptual and computational challenges. Two-dimensional quantum systems host rich,
complex states, including quantum spin liquids and various topological phases, with sig-
nificant potential for quantum computing and quantum memory applications [40, 41].

To effectively study quantum state preparation in two dimensions, tensor network meth-
ods, particularly Projected Entangled Pair States (PEPS), provide powerful numerical
frameworks. PEPS naturally capture the complex entanglement structures prevalent
in two-dimensional quantum systems. Recent advances in PEPS optimization via the
time-dependent variational principle (TDVP), combined with efficient stochastic sam-
pling methods, significantly enhance their computational feasibility and accuracy [42–
44].

In Publication [III], computational complexity aspects of simulating quantum measure-
ments within the PEPS framework are thoroughly analyzed, offering a framework to
assess, in future work, the classical simulability of measurement-based state prepara-
tion protocols in two-dimensional systems2. Specifically, the complexity associated with
contracting single-layer tensor networks arising from local quantum measurements is
examined. Additionally, it is demonstrated that PEPS optimization, combined with
stochastic sampling techniques, yields a variationally rigorous and scalable numerical
strategy for finite-size quantum systems. The approach is demonstrated on physically
non-trivial states, including chiral spin liquids and Rydberg atom arrays with long-range
interactions, which are typically difficult to simulate using other methods.

2This aspect is discussed more thoroughly in the Conclusion chapter.
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Outline
This thesis is organized as follows: Chapters 2 through 6 introduce essential physical
concepts and methodological tools necessary for comprehending the presented publica-
tions. These concepts and methods are introduced with a particular emphasis on their
relevance to the Publications [I,II,III]. Subsequently, these publications are individually
discussed, providing summaries and highlighting their contextual relationship to the
thesis as a whole.

In Chap. 2, the key numerical tools employed in this thesis for simulating quantum sys-
tems are introduced, emphasizing the role of Tensor Networks. Matrix Product States
(MPS) are presented in Sec. 2.1 as a powerful tool for efficiently approximating quantum
states in 1D, particularly those satisfying the area law of entanglement. In Sec. 2.1.3, the
properties of ground states of frustration-free Hamiltonians are discussed as those are
the ones that can be prepared with the scheme presented in Publication [I]. Symmetry-
Protected Topological (SPT) phases are explored through the concept of G-injectivity
in Sec. 2.1.4, with special emphasis on their unique topological features relevant to Pub-
lication [II]. Lastly, Projected Entangled Pair States (PEPS) are introduced in Sec. 2.2
as an extension of MPS to two-dimensional systems, emphasizing their computational
challenges and the role of the Vidal gauge in efficient contractions, as discussed in Pub-
lication [III]. Note that in Sec. 2.2.1, I further investigate the role of spectral entropy
in contraction efficiency and leverage this understanding to introduce an unpublished
method that accelerates single-layer PEPS contractions by approximately 50%, which
will translate into faster ground state search code.

In Chap. 3, the Time-Dependent Variational Principle (TDVP) is introduced as a central
method for simulating the time evolution of parametrized quantum states. The general
formalism of TDVP is presented, including its derivation from the Schrödinger equation
and the resulting equations of motion for the variational parameters that can in most
cases not be solved exactly. Two major cases where solutions can be found are discussed
in detail. In Sec. 3.1, the efficient application of TDVP to MPS is presented, where
the TDVP equation can be solved approximately through a suitable parametrization
of the ansatz. This method is employed for the simulation of the state preparation
protocol in Publication [I]. In Sec. 3.2, a sampling-based approach applicable to general
ansätze such as finite PEPS and Neural Network States is introduced. This method is
central to Publication [III], where it is used for ground state search. Additionally, the
chapter discusses the advantages of the recently introduced minimum-step stochastic
reconfiguration (minSR) technique [45]. This method enables efficient optimization even
in large parameter spaces, as utilized in Publication [III]. In Sec. 3.3, challenges in
applying TDVP to finite PEPS and tensor networks are examined in the context of
real-time evolution. It is shown analytically that the variance of the gradient estimator
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scales linearly with system size for product states, leading to a proportional increase in
the required number of Monte Carlo samples. For a PEPS, the situation is found to be
significantly worse; the number of samples needed scales with the number of parameters
in the ansatz as well as with the entanglement of the PEPS. To address this, a hybrid
method is proposed that combines TEBD with simple update as a preconditioning step,
followed by a fidelity-optimized sampling refinement procedure that was not done in this
thesis due to a lack of time.

In Chap. 4, three strategies for quantum state preparation are presented: purely uni-
tary circuits (Sec. 4.1), measurement-based protocols without feedback (Sec. 4.2), and
feedback-assisted schemes (Sec. 4.3). These approaches underpin the results of Publi-
cations [I,II], which explore the role of dissipation, measurements, and adaptive control
in preparing quantum states. The chapter first discusses unitary methods, including
exact circuits for MPS. It then turns to non-unitary protocols based on measurements
and engineered dissipation, including the AKLT state preparation protocol from Pub-
lication [I], which employs a steering Hamiltonian derived from a tailored Lindbladian.
The final section focuses on feedback-based methods, highlighting adaptive strategies
developed in Publication [II] through a learning-based approach. Each method is illus-
trated with a concrete example: an MPS unitary circuit, a dissipative AKLT protocol,
and a feedback scheme using Bell measurements and G-injectivity.

In Chap. 5, the structure and training of Variational Quantum Circuits (VQCs) is exam-
ined, focusing on their application to quantum state preparation. The chapter introduces
hardware-efficient ansätze and analyzes their limitations. These include barren plateaus
(Sec. 5.1.1) and local minima (Sec. 5.1.2), which hinder scalability and optimization.
Several methods for gradient computation are presented. These include the parameter-
shift rule, finite-difference methods, and Simultaneous Perturbation Stochastic Approx-
imation (SPSA). The chapter also discusses the self-learning feedback and measurement
strategy employed in Publication [II]. Gradient evaluations in that work were performed
using custom MPS-based simulations, implemented in the package mVQE.jl [46]. Sec-
tion 5.2.3 explains how structural features of the hardware-efficient ansatz can be ex-
ploited to reduce computational costs.

In Chap. 6, key neural network architectures used in Publication [II] to represent the
parameterized feedback function are summarized. The chapter introduces Feedforward
Neural Networks (FFNs) and discusses techniques to mitigate vanishing gradients, such
as residual connections, specific activation functions (ReLU, SwiGLU), and RMS Nor-
malization. It then details Recurrent Neural Networks (RNNs), particularly Gated Re-
current Units (GRUs), and their stacked application as employed in Publication [II],
concluding with a brief overview of Transformer and Mamba architectures as potential
future directions.
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In the Conclusion in Chap. 7, the thesis’s exploration of quantum measurements for state
preparation and ground state search is summarized. It recaps key contributions from
Publications [I,II,III] and then discusses current limitations and interesting avenues for
further research.
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CHAPTER 2

Tensor Networks

Tensor networks offer a powerful framework for representing and manipulating quan-
tum many-body states by decomposing large, high-dimensional tensors into structured
networks of smaller, interconnected tensors. This decomposition enables efficient compu-
tation in otherwise intractable Hilbert spaces by exploiting the locality and entanglement
structure inherent in physical systems. Tensor networks reduce computational complex-
ity and enable intuitive visual representations of quantum states and operations. As
such, they serve as essential tools in both numerical simulation and theoretical analysis.

Graphical notation is a central feature of tensor network methods. In this representation,
tensors are depicted as nodes, and their indices are shown as connecting lines. Contract-
ing indices corresponds to joining lines, providing a compact and intuitive formalism for
tensor operations. For example, a vector is represented as:

vi = , (2.1)

and the application of a matrix A to this vector is illustrated by:

∑
i

Aj,ivi = . (2.2)

Isometries constitute an important class of tensors used in tensor network constructions.
A matrix U is called an isometry if it satisfies UU † = 1, which implies that the rows of U
are orthonormal. In graphical notation, isometries are typically represented as triangles,
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emphasizing their role as norm-preserving mappings:

UU † = =

.

(2.3)

If U is a square matrix, it is unitary, and both UU † = 1 and U †U = 1 hold. If U is
rectangular, then only UU † = 1 holds. In this case, U maps a higher-dimensional space
to a lower-dimensional one while preserving inner products in the lower-dimensional
space. These isometric mappings are fundamental to tensor network algorithms, where
they are used to truncate Hilbert spaces while retaining fidelity in physically relevant
subspaces.

Operations such as the singular value decomposition (SVD) can also be expressed in
graphical notation:

A = (2.4)

=
.

(2.5)

Throughout this thesis, diagonal matrices of the form Si,j = δi,jSi are represented as
squares, while general tensors with no special structure are depicted as circles.

This graphical formalism provides a foundation for understanding more advanced tensor
network structures, including Matrix Product States (MPS) and Projected Entangled
Pair States (PEPS), which are discussed in the following sections.
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2.1 Matrix Product States

(a)

(b)

Figure 2.1.: (a) Matrix Product States (MPS) approximate quantum states in the many-body Hilbert
space H. Increasing bond dimension χ systematically captures more states, efficiently
representing those satisfying the area law of entanglement. (b) MPS represented as a
tensor network, where each tensor Tn is connected by bonds with dimension χ. Larger χ
allows representation of states with higher entanglement.

Matrix Product States (MPS) provide a highly efficient representation for quantum
states of many-body systems, particularly one-dimensional systems, by decomposing a
general quantum state into a chain of local tensors. This representation leverages the
area law of entanglement, meaning entanglement, for many relevant states1, scales only
with the boundary between regions, allowing MPS to efficiently approximate states with
limited entanglement by spanning a small part of the Hilbert space (see Fig. 2.1a).
As a result, MPS significantly mitigate the exponential complexity inherent to quantum
many-body problems, making them a powerful computational tool within tensor network
methods.

In the context of the research presented in this thesis, MPS played a central role across
different methodologies and applications:

1Notably ground states of gapped Hamiltonians fulfill the area law [47], this is explored in more detail
in Sec. 2.1.3.
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In Publication [I], MPS were utilized within the Time-Dependent Variational Principle
(TDVP) framework (see Sec. 3.1) to simulate the dynamics of quantum systems under
the periodic quantum resetting protocols. The flexibility of MPS enabled the simulation
of state evolution and the characterization of entanglement growth. These features were
critical for identifying optimal resetting intervals and ideal mapping operators.

In Publication [II], MPS served to represent quantum states generated by variational
quantum algorithms incorporating measurement and feedback. Moreover, MPS tech-
niques facilitated efficient computation of gradients required for parameter optimization
within Variational Quantum Circuits (VQCs), as detailed in Sec. 5.2.3. This enabled
scalable numerical simulations of quantum state preparation strategies beyond tradi-
tional unitary-only methods.

In Publication [III], MPS were employed via the boundary-MPS method to efficiently
contract single-layer 2D tensor networks arising from finite-size Projected Entangled
Pair States (PEPS). This approach enabled practical computation of overlaps between
PEPS and product states in the computational basis, ψ(s) = 〈s|ψ〉, and is an important
part of the algorithm employed for the projective measurement of 2D systems.

Collectively, these applications underscore the versatility and computational advantages
of MPS, positioning them as a foundational tool throughout this research.

MPS represent quantum many-body states by decomposing the full state into a product
of local tensors:

|ψ〉 =
∑

s1,s2,...,sN

T s11 T
s2
2 . . . T sNN︸ ︷︷ ︸
ψ(s)

|s1s2 . . . sN〉, (2.6)

where each T snn is a tensor with three indices, except for the boundary tensors T1 and
TN , which have two. The contraction over internal indices, known as bond indices, is
illustrated in Fig. 2.1b. The dimension of these indices, referred to as the bond dimension
χ, controls the expressive power of the MPS. For example, product states correspond to
χ = 1. More generally, the entanglement entropy across any bipartition is bounded by
S ≤ log(χ), indicating that χ limits the amount of entanglement the MPS can efficiently
capture.

2.1.1 Orthogonal and Canonical Forms

The orthogonal form of a Matrix Product State exploits the gauge freedom inherent in
its tensor decomposition. Specifically, inserting an invertible matrix M and its inverse
on a bond index, such that T snn , T

sn+1

n+1 → T snn M−1,MT
sn+1

n+1 , leaves the overall quantum
state invariant.

Transforming an MPS into its central orthogonal form is achieved through a sequence
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(a) (b)

(c)

Figure 2.2.: Different orthonormal forms of Matrix Product States.

of QR decompositions, followed by a final singular value decomposition (SVD), as illus-
trated in Fig. 2.2. In this form, tensors act as isometries directed toward the central
tensor. Consequently, computations such as the state norm become straightforward:

〈ψ|ψ〉 =
χ∑
i=1

S2
i . (2.7)

This simplification arises because all isometric tensors to the left and right of the central
singular values S contract to the identity.

With this result in hand, reducing the bond dimension χ can be accomplished by trun-
cating the smallest singular values Si. The fidelity after truncation is:∑χnew

i=1 S2
i∑χ

i=1 S
2
i

. (2.8)

This procedure can be employed, for example, to reduce the bond dimension of an MPS
following the application of a two-body unitary gate as further discussed in Sec. 5.2.3.
By specifying a target fidelity, the singular values Si can be truncated dynamically to
achieve the desired accuracy. This method is used extensively in all my publications.

A particularly useful gauge is the canonical form. In this form, tensors are explicitly
chosen such that singular values from Schmidt decompositions across each bond are
isolated (see Fig. 2.3a). One of the strengths of the canonical form is that it allows for
efficient computation of entanglement properties. Given a bipartition of the system into
subsystems A and B, the singular values Si obtained at the cut provide the Schmidt

11



(a) (b) (c)

Figure 2.3.: Canonical form. After contracting all S matrices from the left and right towards a central
tensor, the MPS is brought into canonical form, with a well-defined orthogonality center at
the central tensor.

coefficients. The eigenvalues of the reduced density matrix ρA are then:

λi =
S2
i∑
i S

2
i

, (2.9)

and the entanglement entropy is:

S = −
∑
i

λi log(λi) . (2.10)

In two-dimensional systems, a canonical gauge analogous to the MPS orthogonal form is
not directly available. Instead, an alternative known as the Vidal gauge is employed for
finite PEPS, which exhibits a structurally similar form. In this gauge, the singular val-
ues no longer directly quantify entanglement or correlations between subsystems. Due
to the presence of loops in the PEPS network, their interpretation is more subtle. In
Publication [III], a correlation was identified between these singular values and the con-
tractibility of single-layer tensor networks in finite PEPS calculations. This relationship
is further analyzed in Sec. 2.2.1.

2.1.2 Measurement and Sampling

Projectively measuring quantum states represented by tensor networks played a major
role in all of the Publications this thesis is based on. In Publications [I,II] it was an
important tool to perform the ancilla measurements necessary for the implementation
of the state preparation algorithms. While in Publication [III] sampling from a PEPS is
an integral part of the ground state search algorithm.

Sampling from a wave function represented by an MPS involves expressing the proba-
bility distribution in terms of conditional probabilities:

P (s) = P (s1) · P (s2|s1) · P (s3|s1, s2) . . . P (sN |s1, s2, . . . , sN−1) . (2.11)

Each conditional probability can be explicitly computed from the MPS representation
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as follows:

P (s1) =
∑

s2,...,sN

|ψ(s)|2 (2.12)

= (2.13)

P (s1, s2) = (2.14)

P (s2|s1) =
P (s1, s2)

P (s1)
. (2.15)

In practice, the sampling procedure sequentially selects quantum numbers si. Initially,
the state s1 is sampled according to P (s1). Subsequently, state s2 is sampled from the
conditional probability distribution P (s2|s1), given the previously determined state s1.
This iterative process continues until all quantum numbers sN have been sampled. It is
important to note that, when the MPS is in a left-orthogonal form, all right environments
from the previous equations simplify to identities, significantly reducing computational
overhead.

2.1.3 Injectivity and Frustration-Free Hamiltonians

An Hamiltonian H =
∑

j hj is called frustration-free if its global ground state |ψg〉 also
minimizes each local term individually:

hj |ψg〉 = εmin
j |ψg〉, ∀ j, (2.16)

where εmin
j is the smallest eigenvalue of hj. In this case, the ground state energy is the

sum of the local minimal energies E =
∑

j εj, and |ψg〉 satisfies all local constraints si-
multaneously. Frustration-free Hamiltonians play a central role in tensor network theory
because their ground states admit exact, compact representations as MPS.

Moreover, many tensor network states admit the so-called parent Hamiltonian con-
struction: given an injective MPS, one can explicitly construct a local, frustration-free
Hamiltonian for which the MPS is the unique ground state.

An MPS is injective [48, 49] if each of its tensors defines an injective mapping from the
virtual (link) indices to the physical indices. More explicitly, consider an MPS tensor
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T sa,b with physical index s and link indices a, b. Injectivity requires that the mapping

Γ : Hlink → Hphys, Γ : |a, b〉 7→
∑
s

T sa,b|s〉 (2.17)

is injective.

The concept of injectivity extends naturally to MPS with finite injective length. In
such cases, injectivity is not evident from an individual tensor but emerges clearly when
multiple adjacent tensors are grouped together. The minimal number of contiguous
tensors required to form an injective mapping defines the injective length of the MPS.
For intuition, an MPS with bond dimension χ and physical dimension d has a minimal
injective length of at least dlogd χe so that the mapping can be injective.

Injectivity and finite injective length have important consequences for the structure
and physical properties of MPS. Injective MPS generally describe states with finite
correlation length and often appear as ground states of gapped local Hamiltonians.
Moreover, each injective MPS, as explained before, admits the explicit construction of
a corresponding frustration-free parent Hamiltonian [49–51]. The ground state space of
this Hamiltonian is exactly spanned by the MPS, and the injective length determines
the required interaction range.

This property is particularly relevant for the class of measurement-based preparation
protocols introduced in [19–21] and further developed in Publication [I]. States that
admit a frustration-free parent Hamiltonian allow the definition of an associated steering
Hamiltonian, which drives the system toward its ground state. As a result, a steering
Hamiltonian can be explicitly constructed for any injective state.

In practice, the resource requirements of such a measurement-based protocol depend on
the characteristics of the MPS. Specifically, the number of ancilla qudits, the structure
of the interaction terms, and the interaction range of the steering Hamiltonian scale with
both the injective length and the bond dimension.

In contrast, non-injective MPS tensors feature mappings with nontrivial kernels. Famil-
iar examples include the W-state and the GHZ state, whose MPS representations fail
to become injective regardless of how many tensors are grouped. These states exhibit
long-range correlations and belong to a fundamentally different phase, emphasizing the
structural richness beyond injective MPS.

Hence, the concepts of injectivity and injective length offer essential insight into both
the classification and the preparability of quantum states represented by MPS.
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2.1.4 SPT Phases and G-Injectivity

Figure 2.4.: In a G-Injective MPS, through an application of a Unitary UB a matrix B can be moved
between link indices.

Symmetry-protected topological (SPT) phases in one dimension play a central role in the
classification of quantum phases of matter. A prominent example is the Affleck-Kennedy-
Lieb-Tasaki (AKLT) state, whose identification as an SPT phase offers valuable insights
into the state preparation methods discussed in Publications [I,II] and whose properties
are detailed in Sec. 2.1.5.

One-dimensional symmetry-protected topological (SPT) phases are gapped quantum
states that can be distinguished from trivial product states only in the presence of
specific global symmetries [52, 53]. These phases cannot be continuously deformed into
trivial states without either closing the energy gap or explicitly breaking the protecting
symmetries. It is important to note that if the relevant symmetries are broken, an
adiabatic path connecting the SPT phase to a trivial phase becomes possible.

A characteristic feature of SPT phases is the presence of symmetry-protected edge states,
which vanish under periodic boundary conditions. These edge states are sensitive to
symmetry-breaking operations, which can destroy them even if the bulk gap remains
open.

Despite exhibiting exponential decay of correlations, typically of the form 〈OiOj〉 ∼
e−|i−j|/ξ, SPT phases display a form of hidden order that is invisible to local observables.
This topological order is instead revealed through nonlocal string order parameters,
which serve as diagnostic tools for detecting the underlying symmetry-protected struc-
ture [53]. An example of such a string order parameter is:

lim
|j−i|→∞

〈OL
i e

iπ
∑j−1
k=i+1OkOR

j 〉 6= 0 , (2.18)

indicating nonlocal correlations.

MPS naturally encode the properties of SPT phases through the concept of G-injectivity [47,
49]. An MPS tensor T [i] is called G-injective if it fulfills the symmetry relation:

UB(g)ijT
[j] = B(g)T [i]B(g)−1 , (2.19)
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Figure 2.5.: Representation of the AKLT state. Each spin-1 particle is decomposed into two spin- 12
degrees of freedom (gray circles), constrained to form a spin-1. Neighboring spin- 12 particles
form singlets (red lines), ensuring a total spin of zero across bonds.

for all group elements g of the symmetry group G. Here, UB(g) acts on the physical
indices, while B(g) acts on the virtual indices of the tensor, as depicted in Fig. 2.4. This
structure allows the MPS to capture the SPT properties of the state.

For open boundary conditions, the global ground state of a G-injective MPS is not
unique; instead, it exhibits a ground state degeneracy associated with the projective
representations of G acting on the virtual edge degrees of freedom. More precisely,
the symmetry action on the virtual level can be written as B(g)L ⊗ B(g)R on the left
and right edges, respectively. Since the Hamiltonian is symmetric under the on-site
action UB(g), and the bulk tensors satisfy the G-injectivity condition, the symmetry is
effectively pushed to the boundaries and implemented via B(g)L and B(g)R.

As a result, the edges of an SPT phase host robust zero-energy modes that transform
projectively under G. These edge states are protected by the symmetry: as long as the
global symmetry is preserved, the projective structure at the edges cannot be removed by
any local, symmetric perturbation. However, if the symmetry is explicitly broken, this
protection is lifted and the edge modes may be split or gapped out. This characteristic
edge behavior is a defining feature of one-dimensional SPT phases.

This edge projective symmetry representation is a defining feature of one-dimensional
SPT phases and encapsulates their robust boundary physics.

Moreover, G-injectivity facilitates efficient preparation of SPT states via measurement-
based protocols that have a constant circuit depth [27]. In this protocol, after fusion
measurements are performed, the target state is prepared up to some errors B in the links
of the MPS. These can all be moved to the edge using the G-injectivity (see Fig. 2.4).
This is further explored in Sec. 4.3.1.

2.1.5 The Affleck-Kennedy-Lieb-Tasaki State

The Affleck-Kennedy-Lieb-Tasaki (AKLT) model serves as a canonical example of a
one-dimensional SPT phase, specifically illustrating the Haldane phase [54]. The AKLT
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Hamiltonian is defined as:

HAKLT =
∑
i

[
1

2
Si · Si+1 +

1

6
(Si · Si+1)

2 +
1

3

]
, (2.20)

which can be expressed as a sum of projectors onto the spin-2 subspace:

HAKLT =
∑
i

P
(2)
i,i+1, (2.21)

where P (2)
i,i+1 projects the combined state of neighboring spin-1 particles onto the total

spin-2 subspace. The ground state of this Hamiltonian is the AKLT state, which has zero
energy and is characterized by the absence of spin-2 components between neighboring
sites. The AKLT MPS tensors are:

T+1 = +

√
2

3
σ+ , T 0 = −

√
1

3
σz , T -1 = −

√
2

3
σ− . (2.22)

In the AKLT state, each spin-1 particle is represented as a symmetrized pair of virtual
spin-1

2
particles. These virtual spin-1

2
degrees of freedom form singlet bonds with their

counterparts on neighboring sites, as illustrated in Fig. 2.5. This valence bond solid
structure ensures that the physical spin-1 particles are entangled in a fixed pattern that
reflects the underlying symmetry-protected topological (SPT) order.

When expressed in the computational basis, the AKLT state consists of configurations
with alternating spin quantum numbers±1 separated by zeros, |. . . ,+1, 0, . . . , 0,−1, . . .〉,
a structure that is directly evident from the matrix product state (MPS) representation
in Eq. (2.22). This structure can be revealed with the help of a string operator:

lim
|i−j|→∞

〈
Szi e

iπ
∑j−1
k=i+1 S

z
k Szj

〉
. (2.23)

Under open boundary conditions, unpaired spin-1
2
edge states emerge at both ends of the

chain. These edge modes are characteristic of the state’s symmetry-protected topological
(SPT) nature and are absent under periodic boundary conditions, consistent with the
defining features of SPT phases.

The AKLT exhibits several symmetries that underpin its topological properties. Firstly,
the MPS tensor possesses an on-site SO(3) symmetry. Within this group, the dihe-
dral subgroup D2, corresponding to π-rotations about the spin axes, enforces a doubly
degenerate entanglement spectrum [55].

Secondly, the AKLT state respects bond-centered inversion symmetry, denoted by P .
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This symmetry is implemented on the virtual spin-1
2
degrees of freedom by the operator

iσy. The presence of this symmetry implies that the AKLT chain can not be adiabat-
ically connected to a trivial product state without either breaking inversion symmetry
or closing the energy gap.

Thirdly, the AKLT state is invariant under time-reversal symmetry, represented by the
operator UT = eiπS

y
K, where K denotes complex conjugation. On the virtual level,

time-reversal acts as iσyK. Similar to the previous symmetries, time-reversal symmetry
enforces a two-fold degeneracy in the entanglement spectrum.

Moreover, the AKLT state satisfies the conditions of G-injectivity under SO(3) sym-
metry. The MPS tensors T i, constructed using spin-1

2
Pauli matrices σα, fulfill the

symmetry relation:

U(g)
(spin-1)
ij T j = V (g)(spin-1/2) T i V (g)† (spin-1/2), (2.24)

where U(g) denotes a representation of the group SO(3) acting on the physical spin-
1 indices, and V (g) is a representation of SU(2) acting on the virtual spin-1

2
indices.

This projective symmetry at the virtual level underpins the topological protection and
classification of the AKLT state [53].

In this thesis, the AKLT state was selected as a target for the state preparation pro-
tocols presented in Publications [I,II]. It serves as a minimal nontrivial SPT state that
requires a unitary quantum circuit of depth scaling linearly with the system size, making
its preparation challenging within the constraints of noisy intermediate-scale quantum
(NISQ) devices. Due to its SPT character, the AKLT state holds potential as a resource
state in measurement-based quantum computation (MBQC) [3].

Specifically, the AKLT state has been shown to support universal measurement-based
quantum computation (MBQC) when defined on certain two-dimensional lattices, such
as the honeycomb lattice [56]. In these configurations, the entanglement structure of
the AKLT state allows, through measurement, for a mapping to a cluster state. This
mapping enables the realization of arbitrary quantum computations through sequences of
adaptive measurements. These properties establish the AKLT state as a useful resource
for MBQC.

2.2 Projected Entangled Pair States
Projected Entangled Pair States (PEPS) are a natural extension of MPS to two-dimensional
quantum systems [42]. Like MPS, PEPS provide an efficient ansatz for quantum many-
body states that satisfy an area law for entanglement [57, 58]. Each lattice site is
associated with a tensor that carries one physical index and several virtual indices con-
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necting to neighboring sites. The wave function amplitude ψ(s) = ψ(s1,1, . . . , sL,L) is
obtained by contracting all virtual indices in the tensor network:

ψ(s) = . (2.25)

A fundamental difference between PEPS and MPS lies in the complexity of their contrac-
tion. Exact contraction of PEPS is computationally intractable, with a cost that scales
exponentially with system size O(D2L). Consequently, practical computations rely on
approximate contraction schemes. These can be broadly classified into two categories:
methods based on the double-layer environment approximation [59] and methods based
on sampling [43].

For infinite systems, translationally invariant iPEPS have become a widely used tool [60–
62]. The Corner Transfer Matrix Renormalization Group (CTMRG) method [41, 63, 64]
is commonly employed to contract the double-layer environment surrounding a unit cell
of tensors:

(ρRi )l,l′ = Trj 6=i
(
|ψ〉〈ψ|

)
, (2.26)

= . (2.27)

CTMRG approximates the infinite environment using corner and edge tensors, which
are iteratively computed. This approximation enables the evaluation of reduced density
matrices ρRi , which can then be used to compute expectation values. This approach
offers a favorable balance between accuracy and computational cost, particularly for
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ground states of gapped Hamiltonians on infinite lattices.

For finite systems, finite PEPS (fPEPS) are used. The contraction of fPEPS typically
relies on double-layer tensor networks [65, 66]. In this setting, both bra and ket PEPS
are contracted to evaluate observables and gradients. Each bond in the double-layer
network has dimension D2, where D denotes the virtual bond dimension of the original
PEPS. It can be shown that the contraction cost scales as O(D10) using boundary-MPS
or CTMRG methods adapted for finite systems [67]. Although iPEPS calculations suffer
from similar bad scaling, the CTMRG algorithm targets a fixed point of the reduced
density matrix in the thermodynamic limit. Since the environments are fixed points,
errors in intermediate steps can be corrected and do not accumulate as severely as in
the finite case. This makes CTMRG particularly well-suited for infinite systems, where
convergence to a translationally invariant environment allows for accurate computation
of observables even at moderate bond dimensions. In contrast, for finite systems, the
boundary effects and the absence of a true fixed point make the contraction less stable
and often more sensitive to truncation errors, especially for larger system sizes or critical
states.

To mitigate this high computational cost, sampling-based methods have been devel-
oped [43, 44, 59]. These methods estimate observables stochastically by sampling con-
figurations s = (s1,1, . . . , sL,L) from the probability distribution P (s) = |ψ(s)|2/〈ψ|ψ〉.
Each sample requires only a single-layer contraction, which is significantly more efficient
than contracting the full double-layer network2. For a more in-depth review about PEPS
the curious reader can find it in Ref. [40].

Recent studies have demonstrated the effectiveness of sampling-based optimization for
PEPS. In particular, Ref. [44] introduces a variational algorithm based on imaginary-
time evolution within the PEPS ansatz. To implement sampling-based Time-Dependent
Variational Principle (TDVP) methods [68–71], three components are essential. First, it
is necessary to sample configurations {s} from the probability distribution P (s). Second,
one must compute the wave function amplitudes ψ(s) = 〈s|ψ〉 and their gradients ∂ψ(s;θ)

∂θ
.

Third, it must be possible to efficiently evaluate ψ(s′), where s′ denotes a configuration
obtained by modifying a small subset of entries in s.

These components allow for updating the tensor parameters such that the wave function
approximately follows the imaginary-time Schrödinger equation. A key advantage of
PEPS over other variational ansätze, such as Neural Quantum States [70], is the efficient
computation of ψ(s′) using environment tensors. In contrast, for Neural Quantum States,
ψ(s′) must be evaluated separately for each term in the Hamiltonian. This results in

2Although double-layer contractions are required to sample from a PEPS, the environment bond
dimension can be kept small. Errors arising from sampling an approximate distribution can be
systematically corrected using importance sampling.
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a significant computational overhead in NQS due to the large number of wave function
evaluations required.

Sec. 3.2 presents a detailed discussion of the time evolution procedure, with particular
emphasis on the limitations of real-time evolution using PEPS in Sec. 3.3. It is shown
that sampling-based approaches for real-time evolution require a number of samples that
increases linearly with the number of parameters in the ansatz.

The following section addresses challenges associated with the core computational task
of contracting single-layer finite PEPS.

2.2.1 Contractability and Additional Unpublished Algorithmic Improvements

Contracting a single-layer PEPS 〈s|ψ〉 for a specific sample has a computational cost
that scales as O(D7) when using boundary-MPS techniques. This estimate assumes that
the boundary-MPS bond dimension satisfies Dc = O(D) [44, 72], as discussed later in
the section. Since the number of samples required for accurate estimation of observables
does not grow with D3, this approach significantly reduces the total computational cost.

However, this favorable scaling is not universal. As first demonstrated in Refs. [73, 74],
the bond dimension Dc for the boundary-MPS can increase exponentially with the linear
system size L in the case of random PEPS. Prior work by Gonzalez et al. [73] shows that
introducing a constant shift to the random tensors restores contractibility. They identify
a phase transition in the entanglement of the boundary-MPS required to contract the
single-layer PEPS.

In Publication [III], it is demonstrated that this transition corresponds to an entan-
glement transition in the quantum state represented by the PEPS. On one side of the
transition, the PEPS is as highly entangled as permitted by its bond dimension. On
the other side, the quantum state is a product state. This understanding is used in
Publication [III] to propose an improved random initialization technique for the PEPS.

To address this issue of contractibility, a diagnostic quantity referred to as the spectral
entropy Hc was introduced in Publication [III]. This entropy quantifies the contrac-
tion difficulty of single-layer PEPS and can be used to assess the feasibility of applying
sampling-based optimization methods. Furthermore, Hc could offer insight into the com-
plexity of simulating measurement-based state preparation protocols in two dimensions
and could be a starting point to transfer the knowledge gained in Publications [I,II]
from 1D into 2D. In this section, we provide insights into the interpretation of Hc and

3The error of a Monte Carlo estimate can be computed with
√

Var(O)/Ns, where Var(O) is the
variance of the observable and Ns is the number of independent samples. Notably, this expression
is independent of how the wave function is represented.
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use these insights to propose a modification to the standard contraction algorithm that
should achieve a 50% speedup in single-layer contractions.

The boundary-MPS method enables the evaluation of the wave function for a fixed
sample:

ψ(s) = , (2.28)

= , (2.29)

= Et
1M2M3M4E

b
5 . (2.30)

Here, Et
1 and Eb

5 are boundary MPS, and Mi are matrix product operators (MPOs).
The single-layer contraction is performed by sequentially applying MPOs from top to
bottom Et

i = Et
i−1Mi. Without truncation, the bond dimension of the boundary MPS

grows exponentially Dc(E
t
i ) = Di.

In practice, this growth is mitigated by truncating the bond dimension Dc, introducing
an approximation error determined by the discarded singular values. Empirically, it
has been observed in Publication [III] that relatively small values of Dc suffice. This
observation is better understood using the Vidal gauge [75, 76].

In the Vidal gauge, the tensors are transformed such that the diagonal matrices con-
taining the singular values, denoted S, are explicitly isolated. When these matrices are
contracted with the tensor along all but one of its links, the resulting tensor becomes an
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isometry with respect to the remaining free link:

(2.31)

For single-layer PEPS, this structure can be adapted as follows:

(2.32)

Using the algorithm described in [75, 77], the single-layer PEPS can be transformed into
this form for each sample:

ψ(s) = . (2.33)

In Publication [III] we demonstrate that the spectral entropy of the singular values,
defined as Hc = −

∑
i S

2
i log(S

2
i ), correlates with contraction difficulty. This can be

observed in Fig. 3,4 of the Publication.

To better understand this, one can contract the vertical singular values into the MPO
tensors. This can be done, for example, by computing their square roots and multiplying
each square root pair to the corresponding sides (marked red in Eq. 2.35). This operation
does not alter the contraction difficulty, as MPO-MPS multiplications are invariant under
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such gauge transformations. The resulting form is:

ψ(s) = , (2.34)

= Et
1
′S1M

′
2S2M

′
3S3M

′
4E

b
5
′ . (2.35)

In this structure, the diagonal matrices Si reduce entanglement4 in the boundary MPS
Et
i , while the operators M ′

i increase it. This behavior is illustrated in Fig. 2.6a, which
shows the entanglement entropy of the boundary MPS for a ground state of the J1-J2
model. The entropy increases upon application of M ′

i and decreases after the insertion
of Si. Furthermore, the increase in entropy caused by M ′

i can be estimated using the
operator bipartite entanglement entropy. This estimate is compared with the actual en-
tropy increase in Fig. 2.6b, where a strong correlation is observed despite the simplicity
of the approximation. This highlights the role of the singular value spectrum in deter-
mining contractibility. A steeper spectrum implies that the diagonal S matrices remove
entanglement from the boundary MPS, while the MPOs M ′

i increase the entanglement.
This interplay is effectively captured by the spectral entropy Hc.

In the most extreme case, if the spectrum S is given by S = [1, 0, 0, . . .], its application
effectively converts the boundary MPS into a product state. As the spectrum becomes
flatter, this effect diminishes. A completely flat spectrum, in particular, leaves the en-
tropy of the boundary MPS unchanged. In contrast, applying the MPO M ′

i generally
increases the entanglement of the boundary MPS. In the worst case, this increase can
reach log(D). As shown in Fig. 2.6b, we find that, in practice, the growth in entangle-
ment is well approximated by the operator entanglement of the MPO.

It is important to note that this observation is heuristic rather than a strict mathemat-
ical statement. While the correlation generally holds in practical settings, it might be

4Note that the entanglement in the boundary MPS Et
i is not directly related to the physical entan-

glement in the quantum state.
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Figure 2.6.: (a) Entanglement entropy of the boundary MPS during the contraction of a single-layer
PEPS. The entropy increases after the application of MPO tensors M ′

i and decreases fol-
lowing the insertion of diagonal singular value tensors Si. (b) Comparison between the
observed increase in entanglement entropy and the estimated operator bipartite entangle-
ment entropy for each MPO tensor M ′

i .

possible to devise a single-layer PEPS for which this relationship does not hold.

To consistently maintain a low-entanglement boundary MPS throughout the contraction
process, it is therefore sensible to perform the contraction in the following order:

ψ(s) = (El
1
′S1)(M

′
2S2)(M

′
3S3)(M

′
4S4)E

b
5 . (2.36)

This ordering preserves a boundary MPS with low entanglement, which can be efficiently
approximated using a small bond dimension.

In Publication [III], this gauge structure was not explicitly enforced. Instead, the PEPS
were initialized in a symmetric gauge:

ψ(s) = (El
1
′
√
S1)(

√
S1M

′
2

√
S2)(

√
S2M

′
3

√
S3)(

√
S3M

′
4

√
S4)(

√
S4E

b
5), (2.37)

and the gauge was left unchanged during optimization.

Fig. 2.7 presents the contraction error:

∆ψ(Dc, D
max
c ) =

ψ(Dmax
c )− ψ(Dc)

ψ(Dmax
c )

, (2.38)

as a function of the contraction bond dimension Dc for several gauge choices. The blue
curve corresponds to the original, unaltered gauge. The yellow points represent the
symmetric gauge used in Publication [III], which performs identically to the unchanged
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Figure 2.7.: Contraction error as a function of the bond dimension Dc for different gauges. (a) Ground
state of the J1 − J2 model at J2 = 0.58, L = 10 and D = 6. (b) Random PEPS with an
algebraically decaying spectrum Si = i−1.8. The original gauge (blue) and the symmetric
gauge used in [III] (yellow) yield nearly identical performance. A directional gauge where
singular values are multiplied from bottom to top (green) leads to a modest improvement.
(red) Further gains are achieved by first projecting the PEPS to the sample and then
applying the symmetric gauge. (violet) The best performance is obtained by contracting
each pair as (M ′

iSi) , reducing the required bond dimension by 20% for both random PEPS
and the ground state of the J1 − J2, thereby lowering contraction time by approximately
50%. In contrast, (brown) applying the singular values in the reversed order (Si−1M

′
i) leads

to the poorest performance.
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version. A modest improvement is observed when the singular value spectrum is con-
sistently multiplied in a fixed direction, specifically from bottom to top, as indicated by
the green data point.

A more substantial improvement is obtained by first projecting the single-layer PEPS for
a given sample and then applying the symmetric gauge. This approach outperforms the
symmetric gauge applied directly to the unprojected PEPS. The most effective configu-
ration is achieved using the directional scheme described earlier, where singular values
and MPOs are contracted as (M ′

iSi) at each step. This method reduces the required
bond dimension by approximately 20% to reach the same contraction error as the orig-
inal gauge. Given that the contraction cost scales as O(D4D3

c ), this should translate
into a 50% reduction in computational time. This improvement constitutes a significant
algorithmic enhancement with immediate practical implications for large-scale PEPS
simulations. In contrast, the worst performance is observed when singular values are
applied in the reversed order, (Si−1M

′
i).

It is worth noting that this analysis was also conducted for randomly initialized PEPS
across various system sizes and bond dimensions. Consistently, a comparable reduction
of approximately 20% in the effective bond dimension was observed.

Although computing the gauge is not particularly expensive, it requires iterative cal-
culations at each edge of the PEPS lattice until convergence. Specifically, this involves
singular value and eigenvalue decompositions of D×D matrices, resulting in an overall
cost of O(NiterL

2D3) where Niter are the number of iterations needed. In the examples
analyzed, it was sufficient to set Niter = 1 to achieve the 20% reduction in computational
cost.
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CHAPTER 3

Time-Dependent Variational Principle

Figure 3.1.: Illustration of a single step of the Time-Dependent Variational Principle (TDVP) as de-
scribed in Eq. (3.4). The left panel depicts the update ∆t θ̇ in parameter space Rdim(θ). The
right panel shows the corresponding evolution in Hilbert space H: the projected tangent
vector ∆t |∂θψθ̇〉 versus the true time evolution ∆t |ψ̇〉. The difference between these two
vectors quantifies the TDVP projection error.

In Publications [I,III], the time evolution of a parameterized wave function was a central
technique. To achieve this, the wave function must follow the Schrödinger equation.
The Time-Dependent Variational Principle (TDVP) [68–71] provides a systematic ap-
proach for updating the parameters θ of a variational wave function |ψ(θ)〉 such that
its evolution remains as close as possible to that dictated by the Schrödinger equation.
This chapter examines the application of TDVP to MPS (Sec. 3.1) and sampling-based
methods (Sec. 3.2) that are used for PEPS [44] and Neural Network States [70]. Fur-
thermore, in Sec. 3.3, I present unpublished results demonstrating that the number of
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samples required to accurately perform real-time evolution scales linearly with the num-
ber of parameters in the PEPS ansatz and strongly with the amount of entanglement in
the PEPS. In the same section, I propose a potential strategy to mitigate this scaling
challenge.

Note that although the first two sections of this chapter focus on imaginary-time evolu-
tion, the extension to real-time evolution is straightforward and can be implemented by
inserting a factor of the imaginary unit into Eq. (3.1).

The equations governing the evolution of the parameters θ are derived from the imaginary-
time Schrödinger equation:

|ψ̇(θ)〉 = −H |ψ(θ)〉 , (3.1)

under the constraint that the wave function remains normalized,

|ψ(θ)〉 → |ψ(θ)〉√
〈ψ(θ)|ψ(θ)〉

. (3.2)

Applying this constraint and computing partial derivatives yield:

1√
Z

[
|∂ψ
∂θ
〉 − |ψ〉 1

Z
〈ψ|∂ψ

∂θ
〉
]
θ̇ = −H |ψ〉√

Z
. (3.3)

Since this equation has no exact solution, the goal is to determine θ̇ by minimizing the
squared error:

min
θ̇

1

Z

∥∥∥∥[|∂ψ∂θ 〉 − |ψ〉 1Z 〈ψ|∂ψ∂θ 〉
]
θ̇ +H |ψ〉

∥∥∥∥2 . (3.4)

The optimal parameter update θ̇ depends on the specific variational ansatz. In general,
it is obtained by solving the following system of equations:

Gii′ = 〈
∂ψ

∂θi
| ∂ψ
∂θi′
〉 − 〈∂ψ

∂θi
|ψ〉 〈ψ| ∂ψ

∂θi′
〉 , (3.5)

Fi = 〈
∂ψ

∂θi
|H |ψ〉 − 〈∂ψ

∂θi
|ψ〉 〈H〉 , (3.6)

θ̇ = −G−1F , (3.7)

where G is the geometric tensor, and F denotes the gradient of the energy.

Depending on the ansatz, direct inversion or full storage of the geometric tensor G may
be impractical. The tensor has dimensionsNp×Np, whereNp is the number of variational
parameters. Since Np can be large, explicit handling of G is often infeasible. However,
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for an MPS as demonstrated in Sec. 3.1, G simplifies to a diagonal form when using the
correct parametrization. Additionally, Sec. 3.2 presents a sampling-based approach that
allows solving Eq. (3.4) approximately without explicitly constructing G.

3.1 For an MPS

(a)

Figure 3.2.: MPS in its orthogonal form.

As indicated previously, explicitly storing and inverting the geometric tensor G for an
MPS is computationally impractical due to its size. Specifically, for an MPS parameter-
ized directly by tensors θ = {T1, . . . , TL}, G contains L2 elements of the form 〈 ∂ψ

∂Tn
| ∂ψ
∂Tn′
〉.

Fortunately, by employing a suitable reparameterization of the MPS into its orthogonal
form (see Fig. 3.2), most of these elements can be systematically set to zero [69, 71,
78]. This reparameterization reduces the computational complexity significantly. How-
ever, the tensors An at the orthogonality center are not independent, implying that the
resulting set of differential equations must be solved sequentially.

Initially, evaluating 〈 ∂ψ
∂An
| ∂ψ
∂An′
〉 appears equally challenging. The key simplification

emerges by imposing the constraint:

0 = . (3.8)

This condition ensures that the norm of the MPS remains unchanged when evolved by
Ȧ:

Ȧn
∂ 〈ψ|ψ〉
∂An

= 〈ψ| ∂ψ
∂An

Ȧn〉 = 0 . (3.9)

Furthermore, this constraint also enforces most of the terms in G to zero:

〈 ∂ψ
∂An

Ȧn|
∂ψ

∂An′
Ȧn′〉 = δn,n′ 〈 ∂ψ

∂An
Ȧn|

∂ψ

∂An
Ȧn〉 . (3.10)
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(a) (b)

(c) (d)

Figure 3.3.: TDVP equations for an MPS. (a,c) Hn is the energy environment to evolve An, and (b,c)
Kn is the energy environment to evolve Cn.

Consequently, explicit calculation and inversion of the geometric tensor G becomes un-
necessary.

Under these conditions, one can derive the ordinary partial differential equations. These
coupled equations are typically solved using a sweeping approach, sequentially evolving
tensors An and Cn as follows:

An(∆t) = e−∆tHnAn(0) , (3.11)
Cn(∆t) = e∆tKnCn(0) , (3.12)

where Hn and Kn are defined in Fig. 3.3. This procedure can be interpreted as evolving
the An tensors forward in time and the Cn tensors backward in time. This correction is
necessary because evolving An forward in time also implicitly advances the Cn tensors.
Each Cn tensor is shared between neighboring An tensors and is therefore affected twice
when only the An tensors are updated. To compensate for this, the Cn tensors must
be explicitly evolved backward in time. This correction ensures consistency in the time
evolution of the full wave function.

Moreover, the Density Matrix Renormalization Group (DMRG) algorithm for ground
state search emerges as the imaginary-time evolution limit of these equations, corre-
sponding to ∆t→∞.
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3.2 For General Ansätze using Sampling
The previously discussed procedure for time evolution of MPS is unfortunately not
applicable to most wave function ansätze. Therefore, an alternative method known
as sampling time-dependent variational principle (sampling TDVP), also referred to as
Stochastic Reconfiguration or Quantum Natural Gradient, was developed [44, 68–71].
Alternatively, stochastic gradient descent could be employed for the determination of the
ground state; however, this method typically encounters difficulties with convergence to
local minima. Therefore, sampling TDVP has been widely adopted for optimizing Neural
Quantum States and is particularly relevant for optimizing finite projected entangled pair
states (PEPS), as demonstrated in Publication [III].

In order to be able to use this method, the wave function ansatz must satisfy three
essential conditions. First, it must allow the evaluation of the wave function amplitude
ψ(s; θ) = 〈s|ψ(θ)〉. Second, it must enable computation of the gradients with respect to
parameters, ∂ψ(s;θ)

∂θ
. Third, it must facilitate sampling from the associated probability

distribution Pψ(s) = |ψ(s)|2.

3.2.1 Expectation Values

Before evolving |ψ〉, let us first revisit how to compute expectation values with the help
of sampling:

〈O〉 = 〈ψ|Ô|ψ〉 , (3.13)

=
∑
s,s′

1

Z
ψ∗(s) 〈s| Ô |s′〉ψ(s′) , (3.14)

=
∑
s

Pψ(s)
∑
s′

〈s| Ô |s′〉 ψ(s
′)

ψ(s)︸ ︷︷ ︸
Oloc

s

, (3.15)

= 〈Oloc
s 〉s∈Pψ . (3.16)

The quantity Oloc
s denotes the local estimator of the observable Ô corresponding to the

configuration s. Its computation is practical only if the observable Ô has limited support.
In this case, the summation over configurations s′ simplifies substantially. Specifically,
only configurations s′ differing from s by a few elements within the support of Ô need
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to be considered. For example if Ô = σx then:

Oloc
s =

〈s|σx|ψ〉
〈s|ψ〉

, (3.17)

=
〈s′|ψ〉
〈s|ψ〉

. (3.18)

Hamiltonians typically have a number of terms that scale proportionally with system
size. Therefore, evaluating the expectation value of energy for each sampled configura-
tion s necessitates computing ψ(s′) multiple times, scaling with the system size. This
requirement makes computations for large systems particularly demanding, posing sig-
nificant challenges if no computational shortcuts are employed.

Fortunately, the finite PEPS ansatz employed in Publication [III] allows many interme-
diate calculations used to obtain ψ(s) to be reused when evaluating ψ(s′). This strategy
considerably reduces computational overhead and thus facilitates dealing with larger sys-
tem sizes that are very difficult to deal with when, for example, using Neural Quantum
states.

3.2.2 Evolution

Computing the geometric tensor G, defined in Eq. (3.5), exactly is typically infeasible for
most ansätze due to the requirement of summing over the entire Hilbert space. Therefore,
an approximation using Monte Carlo sampling is employed. The minimization problem
in Eq. (3.4) is reformulated to consider only the relevant sampled subspace, reducing
the dimension to the number of samples Ns:

min
θ̇

∑
s

1

Z

∥∥∥∥∥∥∥∥∥
∑
i

[
〈s|∂ψ
∂θi
〉 − 〈s|ψ〉 1

Z
〈∂ψ
∂θi
|ψ〉
]

︸ ︷︷ ︸
=:Õs,i

θ̇i + 〈s|H |ψ〉︸ ︷︷ ︸
=:Ẽloc

s

∥∥∥∥∥∥∥∥∥
2

, (3.19)

min
θ̇

∑
s

Pψ(s)

∥∥∥∥∥∥∥∥∥
∑
i

Õs,i

ψ(s)︸ ︷︷ ︸
=:Os,i

θ̇i +
Ẽloc
s

ψ(s)︸ ︷︷ ︸
=:Eloc

s

∥∥∥∥∥∥∥∥∥
2

, (3.20)

min
θ̇

1

Ns

Ns∑
k

∥∥∥∥∥∑
i

Os(k),iθ̇i + Eloc
s(k)

∥∥∥∥∥
2

s(k) ∈ Pψ(s) . (3.21)
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This method effectively solves the optimization problem within a sampled region of the
Hilbert space. The accuracy of the method thus relies on the generalization of the
obtained solution θ̇ from the sampled subset {s(k)} to the entire Hilbert space.

There are two primary strategies for solving this equation. The first, commonly employed
until recently, approximates the geometric tensor G using Ns samples:

θ̇ = −(O†O︸︷︷︸
=:G

)−1O†Eloc , (3.22)

Gi′,i =
∑
s

Pψ(s)O
∗
s,i′Os,i . (3.23)

This approach, however, is limited by the dimensions of matrix G, which are Np ×Np,
where Np is the number of parameters in the ansatz. Storing G becomes impractical for
parameter-intensive ansätze, necessitating slow iterative solvers. It is important to note
that the sampled G matrix rank is at most Ns.

Recently, Chen and Heyl [45] proposed an alternative method known as minimum-step
stochastic reconfiguration (minSR) in the context of neural quantum states. Their
method addresses computational difficulties arising for parameter-rich ansätze by lever-
aging the low rank of G when parameters outnumber samples:

θ̇ =O†(OO†︸︷︷︸
T

)−1Eloc , (3.24)

Ts,s′ =
∑
i

Os,iO
∗
s′,i . (3.25)

Here, the matrix T acts exclusively on the sampled subspace and thus has dimensions
Ns × Ns. Consequently, it is significantly more computationally efficient to store and
invert compared to the Np × Np geometric tensor G. This reduction in computational
complexity substantially improves the feasibility of simulations for larger system sizes.
The effectiveness of this method for finite PEPS has been demonstrated in Publica-
tion [III], reporting performance enhancements of up to 40%.

3.3 Real-Time Evolution of PEPS: Challenges and
Possible Solutions (Unpublished)

In this section, we investigate the feasibility of performing real-time evolution of quantum
systems using the finite PEPS formalism combined with sampling-based methods. We
analytically show that, for product states, the number of samples required scales linearly
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with system size. Furthermore, numerical results for random PEPS indicate that the
sample complexity scales linearly with the number of variational parameters and exhibits
a strong dependence on the state’s entanglement. To address this challenge, we propose
a hybrid approach that integrates the simple or full update scheme with the TDVP-based
sampling method.

Readers are encouraged to consult Sec. 2.2 beforehand, as it introduces essential PEPS-
specific concepts relevant to the discussion.

We begin with a brief overview of the two primary algorithms for PEPS time evolution
based on the Time-Evolving Block Decimation (TEBD) framework. In this setting,
time evolution is mapped onto a sequence of quantum gates applied to the PEPS. These
gate applications increase the bond dimension, necessitating a truncation step. Two
established schemes for truncation are the simple update and the full update algorithms.

The simple update algorithm for finite PEPS applies each local two-site imaginary- or
real-time evolution gate to the local tensors individually. It then uses only the diago-
nal bond-weight matrices (Schmidt coefficients) in the Vidal gauge to approximate the
surrounding environment in a mean-field manner. After applying the gate, the two-
site tensor is contracted, followed by a local SVD. The bond is truncated to the target
bond dimension by retaining the largest singular values. This method is computation-
ally efficient. However, it neglects loop correlations and introduces systematic errors
in long-range entanglement. Consequently, it is not well-suited for accurate real-time
evolution.

The full update, in contrast, approximates the environment surrounding each bond prior
to truncation. This is typically achieved using methods such as boundary matrix product
states or CTMRG. The split two-site tensors are chosen such that they maximize the
fidelity with the target evolved state. Although this method yields higher accuracy than
the simple update, it incurs significantly greater computational cost. The cost scales
unfavorably with both the bond dimension and system size. In many cases, even the
full update does not achieve sufficient accuracy, and further variational optimization is
required to maximize the fidelity between the truncated and the untruncated PEPS.

While real-time evolution with infinite Projected Entangled Pair States (iPEPS) has
advanced significantly in recent years, progress for finite PEPS has been comparatively
limited. Variational optimization strategies, such as full updates using environment ten-
sors obtained via CTMRG or boundary Matrix Product Operator (MPO) methods, have
been extensively developed for iPEPS [79–81]. These techniques have enabled simula-
tions of time dynamics in infinite systems, particularly when combined with symmetry
exploitation, such as U(1) or SU(2), to reduce computational costs and stabilize evolu-
tion [82, 83]. Time-evolving block decimation (TEBD) with simple updates remains a
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widely used method for short-time dynamics due to its computational efficiency, despite
neglecting environmental entanglement [84, 85]. Fidelity-maximizing local variational
updates provide improved accuracy and have been employed in the reliable simulation
of quantum dynamics across a range of systems. These include studies of correlation
spreading in Bose-Hubbard systems [85], critical dynamics in valence bond spin liq-
uids [82], thermal state preparation [80], global quenches in the Heisenberg model [86],
and many-body localization [87].

In contrast, real-time evolution for finite PEPS remains largely unexplored in the litera-
ture. Foundational techniques, such as Trotter decompositions for TEBD and variational
optimization, exist for finite systems and have been applied to ground state computa-
tions [79]. However, no published work to date demonstrates an efficient evolution
protocol tailored specifically for finite PEPS.

The only known attempt is by Murg et al. [88], who time-evolved an 11 × 11 lattice
of hardcore bosons. Due to the use of the full update scheme in combination with
variational optimization using sweeping, they are limited to a bond dimension of D = 4.
The poor scaling of the method is evident, as one time step required 55 hours on 2006-
era hardware. Although current hardware would reduce the wall time considerably,
the unfavorable scaling with bond dimension and system size remains a fundamental
obstacle.

This lack of development highlights a gap in the tensor network literature. Finite PEPS
are the natural ansatz for finite-sized, experimentally relevant systems. Yet, robust and
scalable algorithms for their real-time evolution are not currently available. Closing
this gap is essential for enabling accurate simulations of dynamics in realistic finite
geometries.

A natural approach is to adapt the sampling TDVP method employed in Publica-
tion [III]. However, as will be demonstrated through a simple example, this method fails
without translational invariance. Specifically, the number of samples required scales
linearly with system size. Therefore, in this chapter we propose an alternative that
combines simple update with the sampling approach.

3.3.1 Gradient Estimation Noise and its Scaling with System Size

Consider a simple example of an N -qubit product state |ψ(θ)〉 =
⊗N

i |ψi(θi)〉, evolved
under a Hamiltonian consisting of single-site operators, such as H =

∑
i σ

z
i . Although

the time evolution of this product state can be computed analytically, we demonstrate
that, under the sampling-based TDVP algorithm, the number of samples required for
a single time evolution step scales linearly with system size. This is not immediately
obvious and may seem counterintuitive.
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Two quantities are required to perform the time evolution: the energy gradient

∂ 〈H〉
∂θ

=
∂ 〈ψ(θ)|[H − 〈H〉]|ψ(θ)〉

∂θ
, (3.26)

and the geometric tensor

G =

〈
∂ψ(θ)

∂θ
|∂ψ(θ

′)

∂θ′

〉
. (3.27)

For clarity, we consider the case where each θi is a vector with components θij, where
i ∈ {1, . . . , N} is the spatial index and j ∈ {0, 1} distinguishes components of the
local parameter. The wave function is expressed such that 〈si|ψi〉 = θisi . Within the
sampling-based TDVP framework, the energy gradient is computed as follows:

Eloc
s =

〈s|H|ψ〉
〈s|ψ〉

, O(i,j),s =
〈s| ∂ψ

∂θij
〉

〈s|ψ〉
, (3.28)

∂ 〈H〉
∂θij

= 〈O∗
(i,j),s(E

loc
s − 〈Eloc

s 〉)〉s∼P (s)
. (3.29)

For product states, both O and Eloc can be computed explicitly:

〈s|ψ〉 =
N∏
i

θisi , E loc
s =

N∑
i

(1− 2si) , O(i,j),s = δj,si
1

θisi
. (3.30)

The average of the local energy reads:

〈Eloc
s 〉 =

N∑
i

(1− 2pi) , pi :=
∑
s

P (s)si = |θi1|2 , 1− pi = |θi0|2 , (3.31)

To analyze the scaling behavior of the gradient average, consider the expectation value
of the gradient estimator:

〈O∗
(i,j),s(E

loc
s − 〈Eloc

s 〉)〉 =
∑
s

P (s) δj,si
1

θi∗j

(
N∑
k

(1− 2sk)−
N∑
k

(1− 2pk)

)
, (3.32)

=
|θij|2

θi∗j
(2(pi − j)) , (3.33)

= 2 θij(pi − j) . (3.34)

In Eq. (3.32), most terms cancel out when applying the definition in Eq. 3.31. This
already reveals that the number of terms contributing to the gradient estimator scales
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linearly with N . While cancellations occur at the level of the mean, this is not the case
for the variance.

To quantify the error, we define the estimatorXi,j(s) = O(i,j),s(E
loc
s −〈Eloc

s 〉) and compute
its variance:

Var[Xi,j] = 〈X2
i,j〉 − 〈Xi,j〉2 , (3.35)

X2
i,j = δj,si

1

|θij|2

(∑
k

(1− 2sk)−
∑
k

(1− 2pk)

)2

, (3.36)

〈X2
i,j〉 = Es 6=i

[
(A+B)2

]
, (3.37)

where we define

Ai,j = 2(pi − j) , (3.38)

Bi =
∑
k 6=i

[(1− 2sk)− (1− 2pk)] . (3.39)

Since 〈Bj〉 = 0 and Var(1− 2sk) = 4pk(1− pk), we obtain

〈X2
i,j〉 = 4(pi − j)2 +

∑
k 6=i

4pk(1− pk) , (3.40)

Var[Xi,j] = 4(pi − j)2(1− |θij|2) +
∑
k 6=i

4pk(1− pk) . (3.41)

This result shows that although the estimator is localized at site i, its variance involves
a sum over all other sites k 6= i. For generic parameters pk, this sum contributes a term
that scales linearly with the system size N :

Var[Xi,j] = O(N) . (3.42)

Consequently, the number of samples required to achieve a fixed error in the gradient
estimate scales linearly with N . This result holds despite the simplicity of the underlying
system. It highlights that even in trivial cases, the Monte Carlo estimation of TDVP
gradients may lead to significant sampling overhead. Note that the same analysis can
be done for the geometric tensor, where no such scaling is encountered.
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Figure 3.4.: Number of samples Ns needed to obtain a Median noise-to-signal ratio of the gradients of
one for a PEPS with bond dimension D for different system sizes. The tensors were drawn
from a random distribution, and their open indices were multiplied by an algebraically
decaying spectrum Si = i−α with (a) α = 3 and (b) α = 10. For small α (subfigure (a)),
the number of samples Ns scales linearly with the number of parameters Np. For large α
(subfigure (b)), the PEPS is close to a product state. In this case, Ns scales linearly with
system size L2 and exhibits an offset dependent on the bond dimension. (c) Ns is plotted
against α for L = 8 and D = 4.
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Random PEPS

This analysis can also be performed numerically for random PEPS. To this end, the
noise-to-signal ratios (NSR) of the gradient components are computed as:

NSRi =
std(O∗

i,sE
loc
s )

√
Ns〈O∗

i,sE
loc
s 〉

, (3.43)

where Ns denotes the number of samples. The calculation of the NSR is stable only
when its value is significantly smaller than one. Since NSRi contains many elements,
some components may exceed one, or even diverge, and thus distort the average. To
mitigate this, the median(NSR) is used to assess the overall noisiness of the gradients.

In principle, a representative estimate of the NSR requires averaging over many indepen-
dent random PEPS. This process is computationally demanding because a large sample
size (Ns = 106) is necessary to achieve sufficient accuracy1. In this preliminary investiga-
tion, only a single random PEPS was analyzed per system size and bond dimension. To
isolate the dependence of the NSR on system size and bond dimension, the following pro-
cedure was employed. First, a PEPS tensor with bond dimension Dmax = 6 was drawn
from a Gaussian distribution and used consistently across all experiments. Second, the
open indices of the tensor were rescaled by an algebraically decaying spectrum Si = i−α

to tune the entanglement. Third, the bond dimension was truncated to the target value
D. Finally, the same tensor was repeated on an L × L lattice, with random boundary
vectors applied to the open edges. This convoluted initialization of the random PEPS
ensures that states at different system sizes exhibit similar properties. Consequently,
any observed variations in the NSR can only be weakly attributed to differences in the
initial states.

Note that in Fig. 2b of Publication [III] the relationship between α and the entanglement
of the quantum state is shown explicitly.

Fig. 3.4 shows the number of samples Ns required to achieve a median NSR of one2

for a simple Hamiltonian consisting of a sum of σz operators, as a function of various
quantities. When the entanglement is large (small α = 3 in subfigure (a)), Ns scales
linearly with the number of parameters Np. For weakly entangled states (large α = 10

in subfigure (b)), Ns scales linearly with the system size L2, and is largely independent
of bond dimension. This observation suggests that for entangled random PEPS, the
number of samples required for accurate gradient estimation scales as Ns ∼ L2D4.

This trend is further illustrated in Fig. 3.4c, where the number of samples is plotted
as a function of α for fixed system size L = 8 and various bond dimensions. At large

1With Ns = 106 the worst median NSR in our calculations was 0.1.
2In practice, a lower NSR is desirable, but a threshold of one represents the minimum acceptable value.
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α, where entanglement is low, the required number of samples is nearly independent of
bond dimension. As α decreases and entanglement increases, the number of samples
needed grows substantially. This indicates a clear relationship between entanglement
and the difficulty of computing accurate gradients for finite PEPS. In the case of L = 8

and D = 6, the number of samples required to achieve a fixed NSR increases by a factor
of approximately 250 when transitioning from weakly entangled to strongly entangled
states.

This is significantly more demanding than the linear scaling with system size observed for
product states. As such, we do not expect PEPS to perform well for real-time evolution,
where accurate gradients are required. To draw definitive conclusions, however, these
experiments should ideally be repeated for physically relevant states that are the actual
targets of real-time evolution.

It remains unclear whether this unfavorable scaling with entanglement is specific to
sampling-based PEPS or also applies to Neural Quantum States (NQS), where time
evolution is performed similarly and has demonstrated significant success in simulating
out-of-equilibrium dynamics in two dimensions [89]. It would be important to carry out
a comparable analysis for NQS to determine whether they exhibit the same sensitivity
to entanglement. This would clarify whether the observed scaling is an inherent feature
of the underlying poly-linear structure of tensor networks or a more general limitation
of variational sampling approaches.

3.3.2 Possible solutions - Hybrid-sampling TDVP approach

As discussed previously, TEBD combined with the simple update (SU), full update (FU),
or variational compression techniques such as those introduced in Ref. [88] remains the
only viable non-sampling-based approach currently in use. However, the SU and FU
methods serve as suboptimal compression schemes and often yield imprecise results.
Specifically, these methods are restricted to local truncation of the PEPS. For non-
local truncation, variational compression like in Ref. [88] remains the only available
option. While more accurate, this approach is computationally prohibitive for large bond
dimensions. In particular, Ref. [88] proposes first performing a full update, followed
by a variational optimization step that maximizes the overlap between the truncated
and untruncated states using a sweeping algorithm. This procedure involves contracting
double-layer PEPS networks with an effective bond dimension of DDTEBD, where DTEBD

is the bond dimension after TEBD evolution and before truncation.

To address these limitations, we propose using the TEBD approximation with the
SU/FU truncation scheme as an initialization step, following the approach of Ref. [88].
We then variationally optimize the PEPS to approximate the time-evolved state using
a sampling-based TDVP method. This approach is expected to be less computationally
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demanding than a full variational sweeping algorithm employed in Ref. [88].

The objective is to find the PEPS that best represents the time-evolved state |ψδt〉 =
e−iHδt |ψ〉 . The proposed method proceeds in two stages:

First, TEBD with either SU or FU is used to produce an approximate state

|ψSU/FU
δt 〉 ≈︸︷︷︸

SU/FU

Trotter(e−iHδt) |ψ〉 .

This state serves as a coarse approximation to |ψδt〉. In the second stage, this approxi-
mation is refined using a sampling-based optimization.

We consider two strategies for refinement:

1. Use sampling to optimize the PEPS parameters of |ψSU/FU
δt 〉 such that the distance

between |ψSU/FU
δt 〉 and Trotter(e−iHδt) |ψ〉 is minimized. This mimics the sweeping

procedure from Murg et al. [88] but replaces costly double-layer contractions with
sampling, which would reduce computational overhead significantly.

2. Minimize the distance between |ψSU/FU
δt 〉 and the first-order approximation |ψ〉 −

iδtH |ψ〉.

The second approach is expected to be both more accurate and more efficient. It avoids
the evaluation of terms such as 〈s|Trotter(e−iHδt) |ψ〉, which require contraction of tensor
networks with large bond dimensions. In total, this method is significantly less costly
than variational sweeping as employed in Ref. [88].

It is important to assess whether the SU or FU method provides a better approximation
of the time-evolved state compared to leaving the initial state unchanged. This condition
is satisfied only if

| 〈ψδt|ψSU/FU
δt 〉 |2 > | 〈ψδt|ψ〉 |2, (3.44)

which must be verified for each problem instance. This criterion can serve as a basis for
selecting the more computationally intensive FU algorithm over the simpler SU scheme
during initialization.

The remaining challenge lies in determining how to optimize the fidelity between two
PEPS using sampling-based techniques.
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Algorithm 1 Hybrid-Sampling TDVP of a parameterized PEPS ψ(θ)
1: function HybridTDVP(|ψ(θ)〉, H, δt)
2: |ψ(θδt)〉 ← TEBDSU/FU(|ψ(θ)〉 , H, δt)
3: argmaxθδt | 〈ψ(θδt)| [|ψ〉 − iδtH |ψ〉]|

2

4: . How the second step is performed using sampling is explained in the next
section.

5: return |ψ(θδt)〉
6: end function

3.3.3 Optimizing the Fidelity

To optimize a parameterized state |ψ(θ)〉 so that its fidelity with a target state |ψ⊕〉 is
maximized, several approaches can be considered. This section introduces a differential
equation for evolving |ψ〉 that enables such optimization using sampling, analogous to
time evolution under the Schrödinger equation.

We begin by minimizing the fidelity between normalized wave functions:

∂

∂ 〈ψ|
[〈ψ|ψ⊕〉 〈ψ⊕|ψ〉] = |ψ⊕〉 〈ψ⊕|ψ〉 . (3.45)

Gradient descent on this functional yields the differential equation:

|ψ̇〉 = |ψ⊕〉 〈ψ⊕|ψ〉 . (3.46)

However, this equation does not conserve the norm of |ψ〉, since 〈ψ|ψ̇〉 6= 0. This issue
can be addressed by adding a correction term:

|ψ̇〉 = |ψ⊕〉 〈ψ⊕|ψ〉 − |ψ〉 〈ψ|ψ⊕〉 〈ψ⊕|ψ〉 . (3.47)

If the overlap between |ψ〉 and |ψ⊕〉 is small, convergence becomes slow. This can be
mitigated by rescaling the right-hand side, for instance, by a factor | 〈ψ⊕|ψ〉 |:

|ψ̇〉 = |ψ⊕〉
〈ψ⊕|ψ〉
| 〈ψ⊕|ψ〉 |

− |ψ〉 | 〈ψ⊕|ψ〉 | . (3.48)

Alternatively, by fixing the global phase of ψ, a more natural formulation is obtained:

|ψ̇〉 = |ψ⊕〉 − |ψ〉 〈ψ|ψ⊕〉 . (3.49)

This equation becomes particularly convenient when |ψ⊕〉 = |ψ〉 − iδtH |ψ〉, yielding a
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rescaled version of the Schrödinger equation:

|ψ̇〉 = −iδt(H − 〈H〉) |ψ〉 . (3.50)

To convert this into a sampling-based update scheme, we reparameterize |ψ〉 as |ψ〉 →
|ψ(θ)〉√

〈ψ(θ)|ψ(θ)〉 and define the sampling distribution P (s) = |〈s|ψ(θ)〉|2
〈ψ(θ)|ψ(θ)〉 . The relevant quanti-

ties are then:

F loc
s :=

〈s|ψ⊕〉
〈s|ψ(θ)〉

√
〈ψ(θ)|ψ(θ)〉
〈ψ⊕|ψ⊕〉

, (3.51)

〈F loc
s 〉s∈P (s) =

〈ψ(θ)|ψ⊕〉√
〈ψ(θ)|ψ(θ)〉 〈ψ⊕|ψ⊕〉

, (3.52)

θ̇ = G−1O† (F loc
s − 〈F loc

s 〉
)
. (3.53)

Note that 〈F loc
s 〉

2

s∈P (s) gives the fidelity between the two states.

Finally, the ratio of the norms can be evaluated using the same set of samples:

〈ψ⊕|ψ⊕〉
〈ψ|ψ〉

=

〈
| 〈s|ψ⊕〉 |2

| 〈s|ψ〉 |2

〉
s∈P (s)

. (3.54)

It is important to note that sampling from P (s) provides low-variance estimators only
when |ψ〉 and |ψ⊕〉 are close. If the states differ significantly, it is advisable to either
employ an alternative probability distribution or adopt a different evolution equation.
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CHAPTER 4

State Preparation

Quantum state preparation is a central task in quantum information science. It is
essential for quantum computing, quantum simulation, and the initialization of many-
body quantum systems [5].

State preparation plays a vital role in measurement-based quantum computing (MBQC),
where computation proceeds through local measurements on an entangled resource
state [3]. It is also fundamental for quantum error correction, which requires precise
preparation of topological or stabilizer code states [4].

This chapter analyzes three main classes of quantum state preparation protocols. These
are unitary circuits, measurement-based protocols without feedback, and feedback-assisted
protocols, as illustrated in Fig. 4.1. While the analysis in this chapter focuses on one-
dimensional systems as studied in Publications [I,II], many relevant states reside in two
spatial dimensions. Extending these methods to higher-dimensional systems remains a
central challenge. In this context, the techniques developed in Publication [III] offer
a framework to assess, in future work, the classical simulability of measurement-based
state preparation protocols in two-dimensional systems.

A fundamental question in quantum many-body physics is the following: given a quan-
tum platform, which quantum states of matter can it prepare? From a resource theoretic
perspective, answering this question yields insight into both operational capabilities and
the intrinsic structure of the target state [5].

This chapter classifies state preparation methods according to the role of measurements
and feedback. The first class comprises unitary circuits. These prepare the target state
through deterministic sequences of gates. Their depth generally scales with system size
and, as such, is sensitive to noise [7, 8]. The second class involves measurement and
reset operations without feedback. These protocols exploit dissipation or ancilla mea-
surements to drive the system into the desired state [19–21]. The third class introduces
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(a)

Meas./Reset
Unitary Evo.

(b) (c)

Figure 4.1.: Illustration of the three approaches to quantum state preparation explored in this chapter.
(a) In unitary-only protocols, circuit depth typically scales poorly with system size, leading
to a high likelihood of errors during preparation. (b) Measurement-assisted state prepara-
tion, as developed in Publication [I], guides the system toward the target state regardless of
its location in Hilbert space. The initial state |↑〉⊗L

S lies entirely within the system Hilbert
space HS (green line). Unitary evolution under the steering Hamiltonian for a duration δt
(blue arrows) entangles the system with ancillas, resulting in a state within the combined
space HS ⊗ HA (light blue surface). Measurement or reset of the ancillas (red arrows)
projects the system back into HS , moving it closer to the target state. Repeated applica-
tion leads to convergence toward |ψtarget〉. (c) In feedback-based protocols, measurement
outcomes are not discarded but instead used to inform and adapt subsequent unitaries.
The unitary operation is conditioned on the result M , as autonomously learned in Publi-
cation [II].
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feedback. Here, measurement outcomes determine subsequent operations. This adap-
tivity can significantly accelerate convergence and reduce resource requirements [22–25,
27, 32, 33]. Note that these three classes are depicted in Fig. 4.1.

These approaches are governed by the constraints of quantum mechanics and must
conform to quantum channels described by completely positive trace-preserving (CPTP)
maps. The evolution of a density matrix ρ1 → ρ2 under such a channel is expressed as:

ρ2 =
∑
i

Kiρ1K
i† ,

∑
i

Ki†Ki = 1 , (4.1)

where {Ki} are Kraus operators that capture both unitary and non-unitary transforma-
tions. They are trace-preserving:

Tr(ρ2) =
∑
i

Tr
(
Kiρ1K

i†) = Tr

(
ρ1
∑
i

Ki†Ki

)
= Tr(ρ1) , (4.2)

and preserve positive definiteness:

〈ψ|ρ2|ψ〉 =
∑
i

〈ψ|KiρKi†|ψ〉 =
∑
i

〈ψi|ρ|ψi〉︸ ︷︷ ︸
≥0

≥ 0 . (4.3)

This chapter introduces three broad classes of state preparation protocols. The first class
comprises unitary-only circuits, which implement state preparation using deterministic
sequences of gates. These protocols realize special cases of CPTP maps where the
channel consists of a single unitary Kraus operator K1 = U .

The second class is explored in Publication [I] and includes measurement-based protocols
without feedback. These methods leverage the intrinsic non-unitary nature of quantum
measurements to drive the system toward a target state. In such protocols, the state is
entangled with an ancilla and then projected through measurement, effectively realizing
non-unitary operations of the form:

KM = 〈M |A USA |0〉A , (4.4)

where USA is a joint system-ancilla1 unitary, and |M〉A is the measurement outcome on
the ancilla. As the outcome is not used to condition future operations, the system evolves
under an ensemble of KM drawn randomly by quantum mechanics with a probability
of:

pi = Tr
(
KiρKi†) , (4.5)

1The subscript A/S indicates that the operator acts on the ancilla’s/system’s Hilbert space.
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forming a positive operator-valued measure (POVM). An important example of this
approach is presented in Publication [I], where a steering Hamiltonian is constructed to
implement a measurement-induced protocol for preparing the AKLT state.

The third class extends this framework by incorporating feedback. These protocols use
classical information from measurement outcomes to condition subsequent operations,
effectively implementing adaptive control. Feedback enables the design of CPTP maps
where each Kraus operator depends on a sequence of operations, such as

KM = U
(2)
S (M) 〈M |A U

(1)
SA |0〉A (4.6)

where U (2)
S (M) denotes a system unitary conditioned on the measurement result M .

Feedback-based protocols can substantially accelerate convergence, increase fidelity, and
reduce the required circuit depth. In Publication [II], such adaptive strategies are learned
automatically within variational quantum circuits, enabling preparation protocols be-
yond the reach of unitary-only or measurement-only approaches.

The remainder of this chapter provides a detailed analysis of each approach. The discus-
sion emphasizes both theoretical considerations and practical implications for near-term
quantum devices.

4.1 Unitary-only
Purely unitary approaches for state preparation are governed by well-established theo-
retical bounds and practical constraints. Sequential circuit methods can exactly prepare
all MPS using strictly local gates, though this typically requires linear circuit depth
scaling with the system size (T ∝ N) [90]; this protocol is explained in detail at the
end of this section. Alternatively, constant-depth circuits that use quasilocal gates, with
support growing (poly-)logarithmically in the system size, can approximate injective
MPS. However, converting these quasilocal gates into strictly local gates generally leads
to an exponential increase in circuit depth [91, 92].

Another viable strategy is adiabatic preparation, where a quantum system is slowly
evolved from a product state to the desired target state, leveraging guaranteed spectral
gaps typically present in topologically trivial phases (see Sec. 2.1.4). This approach
allows for preparation in a circuit depth scaling polynomially with log(N/ε) [93–95],
where ε denotes the maximum allowable error in the fidelity between the prepared state
and the target state. Specifically, for translationally invariant injective MPS, optimal
strictly local gate algorithms have achieved circuit depths of O(log(N/ε)) [32].

Note that variational methods can also be used to find quantum circuits for the prepa-
ration of target states of interest. This is further discussed in Chap. 5.
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4.1.1 Simple Unitary Preparation of an MPS State

(a)

(b)

Figure 4.2.: Preparation of an MPS with bond dimension equal to the physical dimension employing
only unitary operations. Green lines represent the MPS bond dimension, and black lines
represent the physical dimension.

This section presents the preparation of an orthogonalizable MPS using a circuit with
depth scaling linearly with the system size. The procedure begins by transforming the
MPS into its central orthogonal form, as illustrated in Fig. 4.2a. When the physical and
bond dimensions are identical, the MPS can be decomposed into gates satisfying the
following relations:

= , (4.7)

= . (4.8)

In these diagrams, green lines represent the bond indices of the tensor, while black lines
correspond to the physical indices. The labels 0 indicate that only the zeroth component
of the respective physical indices is selected, that is, the component U0,0,i,j of the tensor
is used. The unitary U1 is chosen such that it initializes the entanglement between the
left and right parts of the system through the Schmidt spectrum S. There exist many
unitaries fulfilling Eq. (4.7); the simplest to implement should be selected. For U2, since
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the right-hand side of Eq. (4.8) defines an isometry, a corresponding unitary U2 satisfying
the equation can always be constructed.

If the bond dimension χ exceeds the physical dimension d, the unitaries U1 and U2 must
act on a larger number of qudits. In this case, the number of required qudits scales as
logd(χ).

4.2 Non-unitary with Only Measurements
Quantum state preparation based on unitary operations combined with measurements,
without adaptive feedback, has emerged as a versatile framework. This approach was em-
ployed for state preparation in Publication [I]. The present section reviews foundational
theoretical proposals and recent experimental realizations of passive state preparation.
The focus lies on methods that incorporate measurements, sequential ancilla-based pro-
tocols, and engineered dissipation mechanisms.

One foundational experimental technique is heralded entanglement generation, where
measurements on ancillary systems project primary qubits into entangled states. Origi-
nally proposed for matter qubits coupled via photonic links, this approach enables prob-
abilistic yet high-fidelity creation of Bell pairs and GHZ states [96–102]. A successful
measurement outcome heralds entanglement without requiring corrective operations.

Complementary to measurement-based protocols, engineered dissipation provides a route
to quantum state preparation by constructing Lindblad operators that have the target
state as a steady state. Seminal theoretical frameworks for dissipative state engineering
were developed in Refs. [12–14]. The dissipative dynamics autonomously remove energy
and correct deviations from target states without active feedback.

The dissipative preparation of SPT phases, particularly the AKLT state, has recently
attracted significant attention. Symmetry-respecting Lindblad processes have been em-
ployed to stabilize the AKLT ground state while preserving the Z2 × Z2 symmetry [19–
21]. The frustration-free nature of the AKLT Hamiltonian, where each local term is
minimized independently, facilitates efficient local stabilization [13]. This approach is
used in Publication [I] and is further discussed in the next section.

Another avenue is simulated cooling, where the system is coupled to an actively cooled
reservoir [15–18]. These protocols offer the advantage of being applicable even when the
ground state is unknown. However, they are more challenging to implement in prac-
tice, as engineering suitable system-reservoir couplings that do not disturb the system’s
energy spectrum is difficult.

Fully passive dissipative encoding can prepare topologically ordered states, such as the
toric code. By engineering local mapping operators that detect and annihilate anyonic
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excitations, systems can be driven into topologically ordered steady states from arbitrary
initial conditions [103, 104]. Such encoders are promising for robust preparation of
quantum memories, as they naturally correct local errors during the encoding procedure.

In summary, a wide range of quantum states, from simple entangled pairs to topologically
ordered codes and SPT phases, can be prepared using combinations of unitary opera-
tions, fixed-basis measurements, and engineered dissipation without relying on adaptive
feedback. These passive strategies are particularly suited to near-term quantum devices,
where coherence times and control fidelity remain limited. In the next section, one of
these approaches is showcased.

4.2.1 Designing Lindbladians for Passive State Preparation

This section provides an intuition on how to design a Lindbladian that steers a system
into a target state, and how it can be rewritten as a Hamiltonian evolution with periodic
measurements. In Publication [I], this protocol is investigated and improved for the
AKLT case.

One example illustrating the use of measurements in state preparation is derived from
imaginary time evolution. If a random initial state |ψ0〉 is evolved under the imagi-
nary time evolution e−tH , the ground state will be reached, for sufficiently large times.
Unfortunately, this operation is not trace-preserving, as can be seen by expressing the
evolution in terms of the density matrix:

ρ̇ = −{H, ρ} (4.9)
Tr(ρ̇) = −2Tr(Hρ) . (4.10)

To preserve normalization while maintaining the structure of the evolution, an additional
term can be introduced that subtracts the energy expectation value:

ρ̇ = −{H, ρ} − 2Tr(Hρ)ρ . (4.11)

This modification results in a nonlinear differential equation, as the evolution now de-
pends explicitly on the state ρ. Implementing this process on a quantum device requires
knowledge of the evolving quantum state. This idea forms the basis of quantum imag-
inary time evolution (QITE) [105], where measurements are used to characterize2 ρ to
find the best unitary operations to implement the equation above.

To maintain linearity of the differential equation, it is necessary to abandon the require-

2The number of measurements required to characterize the quantum state depends significantly on its
entanglement. States with higher entanglement typically require exponentially more measurements
to achieve accurate characterization.
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ment of exactly following imaginary time dynamics and instead ensure that the target
state is a steady state of the evolution. This can be achieved by introducing a dissipative
term:

ρ̇ = −{H, ρ}+
∑
i

MiρM
†
i (4.12)

Tr(ρ̇) = 0 ∀ρ (4.13)

⇒ H =
1

2

∑
i

M †
iMi (4.14)

This Lindblad form is particularly useful because Ref. [21] provides a method to imple-
ment this evolution using unitaries and measurements.

To ensure convergence to the ground state, two conditions must be satisfied. The energy
must decrease during the evolution, such that Tr(Hρ̇) < 0 for all states other than the
ground state ρ⊕ = |ψ⊕〉〈ψ⊕|. Second, the ground state must be a dark state of the
evolution, satisfying ρ̇⊕ = 0.

The second condition can be met by shifting the Hamiltonian spectrum such that
H |ψ⊕〉 = 0. In this case, the evolution of the target state simplifies to:

ρ̇⊕ =
∑
i

Miρ⊕M
†
i . (4.15)

For frustration-free Hamiltonians composed of local terms, H =
∑

lOl, which can be
minimized independently, it is straightforward to construct local operators Ml such that
Ml |ψ⊕〉 = 0. This approach was first introduced by Verstraete et al. [14], who also
observed that any injective MPS possesses a frustration-free parent Hamiltonian, as
discussed in Sec. 2.1.3. Consequently, injective MPS are amenable to preparation via
this method. The protocol was subsequently analyzed in detail by Zhou et al. [19] in the
context of the AKLT state, showing that it can indeed be prepared using this dissipative
approach.

In practical implementations, the resource requirements for this measurement-based
preparation scheme are determined by the properties of the underlying MPS. Specifi-
cally, the number of ancilla qudits and the interaction range of the steering Hamiltonian
both scale with the injective length and bond dimension.

To construct the operatorsMi, one proceeds by computing the eigenvalues and eigenvec-
tors of each local Ol, and grouping them into excited |Θundesired

l,k′ 〉 and non-excited states
|Θdesired

l,k 〉 depending on their eigenvalues. Notably, 〈Θundesired
l,k |ψ⊕〉 = 0 if the Hamiltonian

is indeed frustration-free. The operators Ml are then designed to locally map the entire
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set of undesired states into the desired subspace:

Ml,α =
∑
k,k′

Cα
k,k′

∣∣Θdesired
l,k

〉〈
Θundesired
l,k′

∣∣ . (4.16)

Several degrees of freedom are available in this construction, which can be exploited
to accelerate the steering. Specifically, in Sec. 5 of Publication [I] we find that if the
mapping operators are chosen such that they commute as much as possible, this greatly
speeds up convergence.

The other condition requires that the Lindbladian evolution decreases the energy expec-
tation value for any ρ different from ρ⊕, that is, Tr(Hρ̇) < 0:∑

i

Tr
(
M †

iHMiρ
)
< Tr

(
H2ρ

)
∀ρ , (4.17)∑

i,j

Tr
(
M †

iM
†
jMjMiρ

)
<
∑
i,j

Tr
(
M †

iMiM
†
jMjρ

)
∀ρ , (4.18)

∑
i,j

Tr
([
M †

i ,M
†
j

]
MjMiρ

)
+ Tr

(
M †

j

[
M †

i ,Mj

]
Miρ

)
< 0 . (4.19)

If the operators Mi are local and act on distinct sites, all commutator terms vanish.
When two or more operators act on the same site, the inequality must be verified ex-
plicitly for each site. This verification is tractable, as it reduces to analyzing the cor-
responding local Hilbert space. Given the flexibility in choosing Mi, one can optimize
the inequality to enhance convergence. This condition, however, only ensures rapid con-
vergence in the dissipative limit. In contrast, when the dynamics are implemented via
unitary evolution with periodic measurements, the degree of commutativity among the
Mi becomes an additional relevant factor.

Ref. [21] further shows that by incorporating ancillas, the Lindbladian in Eq. (4.12) can
be rewritten as a real-time evolution with periodic measurements on the ancillas. The
joint system-ancilla evolution is governed by a Hamiltonian of the form:

HSA =
∑
l,α

MS
l,α ⊗D

A†
l,α + h.c. . (4.20)

Here, the DA†
l,α are ancilla operators that map the ancilla into an orthogonal subspace

relative to its initial state |ΦA〉.

After a time interval δt, the ancillas are reset to their initial state |ΦA〉, effectively realiz-
ing a quantum reset operation. The period δt is crucial in determining the convergence
speed of the protocol. In the weak-coupling, or Markovian, limit where δt � 1, the
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Figure 4.3.: Illustration of the steering protocol used in Publication [I]. The system is initialized in the
product state |↑〉⊗L

S . Unitary evolution under the steering Hamiltonian given in Eq. (4.20)
for a duration δt entangles the system with the ancillas. Subsequent measurement or reset
of the ancillas projects the system closer to the target state. Repeated application of this
procedure leads to convergence toward the desired state |ψt〉.

system dynamics are described by an effective Lindblad master equation:

ρ̇ = δt
∑
l,α

(
MS

l,αρM
S†
l,α −

1

2
{MS†

l,αM
S
l,α, ρ}

)
. (4.21)

This limit simplifies the dynamics but does not lead to the fastest convergence. In
the limit δt → 0, the dynamics are effectively frozen, similar to the quantum Zeno
effect. Increasing δt is therefore beneficial, up to an optimal point, as further discussed
in [I]. Stronger entanglement between the system and the ancillas enhances convergence,
although beyond a certain point, the entanglement becomes detrimental.

Furthermore, Publication [I] discusses strategies for designing the operators MS
l,α to

optimize the convergence rate.

4.3 Non-unitary with Measurement and Feedback
Adaptive measurement-feedback methods leverage past measurement results to guide fu-
ture actions, significantly improving convergence speed. A prominent example is quan-
tum error correction, where adaptive feedback enables real-time correction based on
measurement outcomes, stabilizing quantum states against decoherence. These tech-
niques form the foundation of fault-tolerant quantum computing, and are closely related
to the measurement-based protocols discussed here.

Beyond error correction, adaptive feedback methods have been effectively applied to
prepare diverse quantum states, including fracton states, Schrödinger’s cat states, and
certain non-Abelian topological orders [22–26]. Some of these states can even be created
with a single measurement round when specific algebraic criteria are satisfied [26].

The effectiveness of adaptive measurement strategies is further demonstrated by deter-
ministic constant-depth schemes that use measurements to fuse smaller resource states.
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Such schemes have achieved high fidelities experimentally, as exemplified by the prepa-
ration of the AKLT state [27]. However, theoretical analyses impose rigorous constraints
on the applicability of fusion-based methods, closely linked to the entanglement struc-
ture of the target state. Specifically, preparing MPS via fusion measurements typically
requires them to be symmetry-protected topological (SPT) phases with a flat entangle-
ment spectrum [28–30].

More broadly, adaptive quantum circuits enable constant-depth preparation of various
MPS classes, including symmetry-protected, symmetry-broken, and states with finite
Abelian, non-Abelian, or continuous symmetries [31]. For translationally invariant in-
jective MPS, adaptive measurement-based protocols can even reduce circuit depth scal-
ing from logarithmic to double logarithmic, with complexity O(log log(N/ε)), if exact
preparation is relaxed [32]. Similarly, probabilistic or approximate protocols can achieve
constant depth independent of system size, exemplified by Dicke and W-states [33].

A practical consideration for implementing feedback-based protocols is the overhead in-
troduced by measurement and classical feedback. While the discussion above assumes
idealized conditions with instantaneous feedback, current quantum hardware still faces
significant latency challenges. Active research is addressing these limitations, particu-
larly in the context of real-time quantum error correction [106–108]. For example, in
a recent experiment on real-time error correction, Google reported a QEC cycle time
of 1.1 µs and an average feedback latency of 63 µs, which corresponds to a backlog
of approximately 57 cycles [106]. These constraints currently limit the applicability of
feedback-based preparation schemes to small system sizes or require buffering and de-
layed correction strategies. However, the rapid pace of experimental progress suggests
that these latencies will decrease in the near future, enabling the implementation of
real-time feedback protocols.

4.3.1 Preparing SPT States Using Feedback and Measurements

The first example to consider in state preparation with measurements and feedback is
the GHZ state. In this protocol, a Hadamard gate is first applied to each qubit, placing
the system into a uniform superposition |+〉⊗N . Subsequently, the ZiZi+1 operators are
measured between neighboring qubits. These measurements collapse the system into a
superposition of the form 1√

2
[|s〉+ |s̄〉], where s is a random bit string and s̄ denotes its

bitwise complement. Based on the measurement outcomes, corrective σx operations are
applied to specific qubits such that |0 . . . 0〉 =

⊗
si 6=0 U

x
i |s1, . . . , sL〉 .

The second example is the protocol by Smith et al. [27] for preparing G-injective MPS.
In Publication [II], this scheme is extended using a learning-based approach that in-
corporates measurements and feedback within variational quantum circuits. As a first
application, the learning protocol is applied to the preparation of the AKLT state, for
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(a)

(b)

Figure 4.4.: Preparation of a G-injective MPS with G-injective length of two using fusion measurements
like first described by Smith et al. [27]. (a) Small versions of the state are prepared using
U1 and U2. Then, the ancillas are measured in the Bell basis, yielding one of four possible
outcomes. One outcome properly merges the two MPS, whereas the others create an error
quantified by Bi = B(Mi). If the state is G-injective, and the defects B are elements of G
then they can be moved to the edges of the lattice using Eq. (4.22).

which an analytically derived scheme by Smith et al. exists.

The key property enabling the Smith et al. protocol is that, for G-injective MPS, an
operator in the group G acting on the bond dimension can be transferred from one side
of the tensor to the other:

= . (4.22)

SPT states are examples of G-injective states, as discussed in Sec. 2.1.4, and are therefore
amenable to preparation using this scheme.

The algorithm proceeds by first preparing small segments of the target state, leaving the
MPS bond dimension (green) open (see Fig. 4.4a). This initial preparation is carried
out using the method described in Sec. 4.1.1. A Bell measurement is then performed
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on the ancillas associated with the bond dimension. This measurement merges the two
small MPS into a larger state, as illustrated in Fig. 4.4b. The resulting state reproduces
the target MPS structure up to local defects, denoted by Bi. These defects can be
systematically propagated to one end of the chain by applying local operators derived
from the G-injectivity property in Eq. (4.22). This procedure can be performed in
parallel for all sites.

Using this approach, it is possible to prepare G-injective states, and consequently SPT
states, such as the AKLT state. Although the prepared state exhibits the correct bulk
properties, it may contain random edge states. This arises because, after all correction
operations are applied, residual errors accumulate at the boundary of the MPS.

The learning algorithm developed in Publication [II] is capable of autonomously discov-
ering this preparation protocol. Furthermore, it can improve upon it by deterministically
preparing a specific edge mode of the AKLT state, a task that cannot be achieved with
the original analytic method.

4.4 Learning Non-unitary with Feedback
Autonomous learning of measurement and feedback protocols for quantum state prepa-
ration has been explored in the literature through two primary approaches.

In the first approach, reinforcement learning (RL) is used to dynamically determine
both the optimal timing of measurements and the corresponding unitary operations
conditioned on measurement outcomes. This method has demonstrated effectiveness in
simple settings, such as single-particle systems [36, 37] and two-particle systems [38, 39].
Furthermore, deep RL techniques have enabled the development of feedback strategies
in cavity QED platforms [109], and systems with nonlinear potentials under continuous
weak measurements [37]. Despite these advances, applying RL-based protocols to multi-
qubit systems remains challenging due to the increasing complexity and poor scalability
of such methods. In response to these limitations, a recent work [110] has investigated
transformer-based neural network architectures, which have shown promise in learning
robust feedback strategies from sequences of measurements, even under noisy conditions.

In the second approach, greedy optimization techniques have been proposed for the
preparation of multi-qubit states [34, 35]. These protocols optimize unitary operations
incrementally, immediately after each measurement, to maximize fidelity at each step.
Ancilla systems are coupled to the target system via unitary interactions and then
measured projectively. The corresponding unitary gates are optimized independently at
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each step:

|ψ′
i(θi, . . .)〉 = U(θi) |ψi−1(θi−1, . . .)〉 , (4.23)

θi = min
θi

loss(|ψ′
i(θi, . . .)〉) ,

P (M) = | 〈M |A |ψ
′
i(θi, . . .)〉 |2 , (4.24)

|ψi(θi, . . .)〉 =
1√
P (M)

〈M |A |ψ
′
i(θi, . . .)〉 , M ∈ P (M) .

This strategy exhibits two main limitations. First, experimental realization requires real-
time simulation of the system to optimize unitaries based on measurement outcomes,
which imposes considerable computational overhead. Second, the greedy optimization
criterion only accounts for immediate outcomes and does not take into account future
possible operations. As a result, these methods do not scale efficiently beyond a few
qubits and fail to implement more sophisticated feedback protocols, such as the determin-
istic strategy proposed by Smith et al. [27], which would involve the joint optimization
of unitaries for all possible measurement outcomes, as demonstrated in Publication [II].

Recent work [111, 112], including the approach described in Publication [II], addresses
these challenges by employing variational quantum circuits (VQCs) augmented with pro-
jective measurements and conditional feedback. In this framework, the entire feedback
strategy is optimized simultaneously, enabling the identification of optimal completely
positive trace-preserving (CPTP) maps and corresponding feedback operations:

ρ1(θ1) = U1(θ1)ρ0U
†
1(θ1) , (4.25)

ρM1 (θ1) = |0〉A〈M |ρ1(θ1)|M〉A〈0| , (4.26)

ρ2(θ1,W ) =
∑
M

U2(θ2)ρ
M
1 (θ1)U

†
2(θ2) , (4.27)

with θ2 = f(M ;W ) .

A key distinction between the greedy and our non-greedy approach lies in the optimiza-
tion strategy. In the greedy protocol, the fidelity of ρ1(θ1) with respect to the target
state is optimized first. Only after a measurement is performed is the subsequent fidelity
of ρ2(θ2) optimized, conditioned on the measurement outcome. In contrast, our method
jointly optimizes both θ1 and the feedback parameters W by directly maximizing the
fidelity of the final state ρ2(θ1,W )3. This simultaneous optimization enables the pro-
tocol to select measurements that ensure all possible outcomes yield states that can be
efficiently mapped to the target. As a result, the learned strategy is significantly more

3As a consequence of the joint optimization, the intermediate state ρ1(θ1) may have negligible overlap
with the target state. This contrasts with greedy approaches, which explicitly maximize the fidelity
of intermediate states at each step.
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flexible and capable of implementing complex state preparation protocols beyond the
scope of greedy methods.
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CHAPTER 5

Variational Quantum Circuits

Variational Quantum Circuits (VQCs) are hybrid quantum-classical algorithms where a
parameterized quantum circuit U(θ) acts on an initial state |0〉⊗N to produce a varia-
tional quantum state:

|ψ(θ)〉 = U(θ)|0〉⊗N . (5.1)

The parameters θ are optimized to minimize a classical loss function C(θ), often defined
as the expectation value of an observable O:

C(θ) = 〈ψ(θ)|O|ψ(θ)〉 . (5.2)

A common choice for U(θ) is the hardware-efficient ansatz, which is composed of alter-
nating layers of parameterized single-qubit rotations and entangling gates. Its structure
can be written as:

|ψ(θ)〉 = ……
. (5.3)

VQCs serve as the foundation for various near-term quantum algorithms, including quan-
tum state preparation, Variational Quantum Eigensolvers (VQE), Quantum Approxi-
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mate Optimization Algorithms (QAOA), and quantum machine learning tasks such as
classification and generative modeling.

Originally, the hybrid structure of VQCs was considered ideal for Noisy Intermediate-
Scale Quantum (NISQ) devices. These circuits are typically shallow, minimizing the
effects of decoherence and hardware noise. The classical optimizer performs most of
the computational work, reducing quantum resource demands. However, this appar-
ent advantage does not translate to scalability, which remains limited by fundamental
optimization challenges.

Two central obstacles are the presence of barren plateaus, which are regions of exponen-
tially vanishing gradients, and the existence of complex optimization landscapes with
numerous local minima.

In Publication [II], the expressivity of the variational ansatz is extended by incorporating
measurement and feedback operations aiming to learn a protocol of the type discussed
in Sec. 4.3. The process proceeds as follows:

ρ1(θ1) = U1(θ1)ρ0U
†
1(θ1) , (5.4)

ρM1 (θ1) = |0〉A〈M |ρ1(θ1)|M〉A〈0| , (5.5)

ρ2(θ1,W ) =
∑
M

U2(θ2)ρ
M
1 (θ1)U

†
2(θ2) , (5.6)

with θ2 = f(M ;W ) .

Initially, a parameterized unitary U1(θ1) is applied to the input state ρ0. A projec-
tive measurement is then performed, yielding an outcome M . The resulting post-
measurement state ρM1 (θ1) depends on the observed measurement outcome. A second
unitary U2(θ2) is subsequently applied, where the parameters θ2 are determined by a
feedback function f(M ;W ). This function maps the measurement outcome M to a
parameter vector θ2 based on a set of learnable parameters W .

The utility of this measurement and feedback ansatz is discussed in more detail in
Sec. 4.3. Notably, as demonstrated in Publication [II], this circuit structure introduces
a new type of local minima that is specific to feedback-based variational circuits. These
minima can be mitigated by appropriately tuning the learning rates and by regularizing
the ancillary systems used in the protocol.

61



5.1 Practical Limitations

5.1.1 Barren Plateaus

A barren plateau refers to a region in the parameter space where the gradients of the
loss function decay exponentially with the number of qubits [113]. As a result, estimat-
ing gradients from a finite number of measurements becomes infeasible. Formally, the
variance of gradient estimators scales as [113, 114]:

|∂C| ∼ e−αN , (5.7)

where N denotes the number of qubits. To maintain a constant signal-to-noise ratio,
the required number of measurements grows exponentially with N . Intuitively, barren
plateaus emerge due to the concentration of measure in high-dimensional Hilbert spaces.
Random circuits tend to explore the space uniformly, leading the output state to become
nearly orthogonal to directions along which parameters can be improved.

The occurrence of barren plateaus significantly restricts scalability, even if the employed
ansatz has sufficient expressivity. The locality of the loss function strongly influences
gradient behavior. Global loss functions, such as fidelity with respect to an N -qubit
target state, commonly lead to barren plateaus [113]. Conversely, local loss functions,
defined via subsystem overlaps, can mitigate exponential gradient decay [114] for shallow
circuits.

For sufficiently expressive ansätze approximating unitary 2-designs, gradients concen-
trate near zero due to concentration-of-measure effects [113, 115]. Even hardware-
efficient ansätze, designed explicitly for NISQ hardware, can manifest barren plateaus
when the circuit depth increases significantly1.

Several mitigation strategies exist, including the use of local or incremental loss func-
tions [114], layer-wise or problem-informed ansatz training [116], and symmetry-preserving
initialization methods [117]. These methods help but do not solve the inherent problems
of optimizing in the exponentially large Hilbert space.

Vanishing gradients are less problematic when computed using classical methods. In such
cases, gradients can be rescaled by a suitable factor without additional computational
cost. This is possible because classical gradient computation does not rely on sampling.
As a result, classical methods avoid the exponential cost associated with barren plateaus
in quantum settings, where gradients are estimated through repeated measurements.

1In hardware-efficient ansätze with local cost functions, the average gradient magnitude decays expo-
nentially with circuit depth until it reaches a minimum value. This minimum gradient magnitude
scales exponentially with the system size [113].
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The primary challenge in classical approaches lies in the representability of the wave
function. As the circuit depth increases, so does the entanglement, making the wave
function increasingly difficult to represent and optimize. The computational cost of
classical simulations scales exponentially with circuit depth due to the growing com-
plexity of the Hilbert space.

In summary, both classical and quantum gradient computations face exponential over-
heads stemming from the size of the Hilbert space. However, the source of the overhead
differs: classical methods are limited by representational complexity, whereas quantum
methods are constrained by sampling noise and the presence of barren plateaus.

5.1.2 Local Minima

In addition to barren plateaus, optimization may also fail due to the presence of numer-
ous local minima in the loss landscape. Shallow circuits are particularly susceptible to
this issue, as they are often underparameterized and lack sufficient variational freedom
to represent the target states accurately. This limitation results in a rugged optimization
landscape populated with suboptimal local minima [8, 118].

This issue was especially relevant in Publication [II], where the primary objective was
to learn shallow circuits capable of preparing quantum states efficiently. The challenge
lies in balancing the expressiveness of the circuit with the need to maintain a low depth
suitable for noise-free state preparation.

In contrast, deeper circuits may overcome local minima through increased expressivity,
but face heightened risk of barren plateaus if the ansatz is highly unstructured or strongly
entangling [114, 117]. Thus, the complexity of the optimization landscape significantly
depends on the ansatz expressivity. Underparameterized ansätze feature numerous poor-
quality minima, while overparameterized ansätze exhibit flatter landscapes with most
minima approaching global optimality [119].

To mitigate local minima, strategies include problem-inspired ansatz designs that em-
bed physical constraints and symmetries [118]. Carefully controlled overparameteriza-
tion can also smooth optimization landscapes, but must be balanced to avoid barren
plateaus [119].

5.2 Computing Gradients in VQCs

5.2.1 Finite Difference and Stochastic Approximation

Classical finite-difference methods approximate gradients numerically by evaluating the
loss function at slightly perturbed parameter values. The gradient approximation for a
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parameter θi is given by:

∂C(θ)

∂θi
≈ C(. . . , θi + ε, . . .)− C(. . . , θi − ε, . . .)

2ε
, (5.8)

where ε is a small shift. While simple, finite differences introduce truncation errors and
are sensitive to measurement noise. Specifically, the number of shots necessary scales
quadratically in ε. Choosing an optimal shift size ε is crucial and challenging [120].

In contrast, the Simultaneous Perturbation Stochastic Approximation (SPSA) method
estimates the gradient using random perturbations across all parameters simultaneously.
SPSA significantly reduces the computational overhead, requiring only two evaluations
of C per gradient estimation, independent of the parameter count. Specifically, each
iteration of SPSA involves randomly selecting a perturbation vector ∆i independently
sampled from a symmetric Bernoulli distribution, typically ∆i ∈ {±1}. The gradient
estimator is computed as:

∂C(θ)

∂θi
≈
〈
C(θ + ε∆)− C(θ − ε∆)

2ε∆i

〉
, (5.9)

where ε controls the perturbation magnitude. SPSA is robust against measurement noise
due to the stochastic averaging effect but inherently yields noisy gradient estimates.
Thus, practical implementations typically average several SPSA iterations to obtain
reliable optimization steps [121, 122].

5.2.2 Parameter-Shift Rule

The parameter-shift rule enables the exact evaluation of gradients of quantum observ-
ables on quantum hardware, up to statistical measurement noise, without relying on
finite difference approximations. It applies to parameterized gates generated by Hermi-
tian operators with eigenvalues ±1, such as the Pauli operators P . For a gate of the
form U(θi) = e−iθiP/2, the gradient of a cost function C(θ) with respect to θi is given
by [120]:

∂C(θ)

∂θi
=

1

2

[
C(. . . , θi +

π

2
, . . .)− C(. . . , θi −

π

2
, . . .)

]
. (5.10)

This expression requires two evaluations of C per parameter. Consequently, the number
of function evaluations scales linearly with the number of parameters Np, that is, as
O(Np). In typical hardware-efficient ansätze, the number of parameters scales as Np ∼
dL, where L is the system size and d is the circuit depth. The cost of a single evaluation
of C also scales linearly with d, leading to an overall scaling of O(Ld2) for the gradient
computation.
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While the method is exact in the absence of noise, it is sensitive to statistical fluctu-
ations in the measurement outcomes. This sensitivity becomes especially problematic
when the gradient magnitudes are small. In the presence of barren plateaus, where gra-
dients vanish exponentially with system size, the effective cost of obtaining meaningful
gradients increases exponentially [120].

To derive the parameter shift rule, consider a quantum circuit in which a unitary gate
U(θi) = e−iθiP/2 acts on an initial state |ψ〉, followed by a measurement of an observable
H. The expectation value of the circuit is

C(θ) = 〈ψ|U †(θi)HU(θi)|ψ〉 . (5.11)

Differentiating C(θ) with respect to θi yields

∂C(θ)

∂θi
= 〈ψ|

(
d

dθi
U †(θi)

)
HU(θi)|ψ〉+ 〈ψ|U †(θi)H

(
d

dθi
U(θi)

)
|ψ〉 . (5.12)

The derivatives of the unitary and its adjoint are:

d

dθi
U(θi) = −

i

2
PU(θi) , (5.13)

d

dθi
U †(θi) =

i

2
U †(θi)P . (5.14)

Substituting these expressions gives:

∂C(θ)

∂θi
=
i

2
〈ψ|U †(θi)PHU(θi)|ψ〉 −

i

2
〈ψ|U †(θi)HPU(θi)|ψ〉 , (5.15)

=
i

2
〈ψ|U †(θi)[P,H]U(θi)|ψ〉 . (5.16)

This expression involves the commutator of P and H. Since P has eigenvalues ±1, the
commutator can be rewritten [123] as:

[P,H] = −i
[
U †
(π
2

)
HU

(π
2

)
− U †

(
−π
2

)
HU

(
−π
2

)]
. (5.17)

Substituting this into the previous expression gives the parameter-shift rule:

∂C(θ)

∂θi
=

1

2

[
C
(
θi +

π

2

)
− C

(
θi −

π

2

)]
. (5.18)

This confirms the validity of the parameter-shift rule for gates generated by Hermitian
operators with two distinct eigenvalues, such as the Pauli matrices.
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5.2.3 Gradients via MPS

The gradients required for optimizing the feedback protocol described in Publication [III]
were computed using MPS. Custom code was developed for this purpose because the
general-purpose gradient algorithms in ITensors.jl [124] are not well-suited for perfor-
mance in specialized applications. The algorithms described below were implemented in
the package mVQE.jl [46] and used in the simulations for Publications [II].

Before addressing the gradient computation, it is necessary to describe how the quan-
tum circuit defined by the hardware-efficient ansatz in Eq. (5.3) acts on an MPS. This
evolution can be performed either exactly or approximately.

Exact

Exact evolution is possible because the CNOT gate admits a matrix product operator
(MPO) representation with bond dimension 2:

. (5.19)

Using this decomposition, the output state of the full circuit in Eq. (5.3) can be exactly
represented as an MPS with bond dimension χ = 2d/2, where d is the circuit depth.

This exact method is particularly effective for small d, where it may outperform approx-
imate approaches. The evolution consists solely of matrix multiplications, which are
computationally efficient and well-optimized on modern GPU architectures. All CNOT
gates can be applied in parallel through a single matrix multiplication. Similarly, the Ry

gates are applied via batched matrix multiplications. In contrast, approximate methods
involve repeated SVDs and QR decompositions, which are less efficient on current GPUs.
Note that gradients can be computed using any automatic differentiation engine.

Approximate

As discussed in Sec. 2.1, the bond dimension of an MPS can be reduced through trun-
cation, which maintains an orthogonal form but decreases fidelity.

Assume the state at step i is given by |ψi〉 = Ui |ψi−1〉, and the MPS is initially in left-
orthogonal form. The application of a small number of unitaries approximately preserves
this structure. The bond dimension can then be reduced by performing a left-to-right
sweep with alternating SVD and QR decompositions.

For the hardware-efficient ansatz, the evolution at each layer consists of Ry and CNOT
gates. When applying the Ry gates one can exploit that they are local and unitary and
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as such do not increase the bond dimension or shift the orthogonality center:

Ui(θi) = CNOT⊗L/2R⊗L
y (θi) , (5.20)

|ψ′
i〉 = R⊗L

y (θi) |ψi−1〉 , (5.21)

and can therefore be applied directly. However, this structure is not exploited in the
ITensors.jl [124] implementation, where the MPS is reorthogonalized after each Ry

gate application, introducing unnecessary overhead.

The second step is the application of the CNOT gates, which requires additional tensor
operations:

|ψi〉 = CNOT⊗L/2 |ψ′
i−1〉 , (5.22)

= , (5.23)

= . (5.24)

Following this step, small singular values in S can be discarded using a fidelity cutoff.
The orthogonality center is then shifted leftward by a QR decomposition.

To evaluate fidelity with a target state, all unitary layers are applied after each other:

〈ψtarget|ψ(θ)〉 = 〈ψtarget|U2d(θ2d) . . . U3(θ3)︸ ︷︷ ︸
〈ψt3|

U2(θ2)U1(θ1) |0〉 . (5.25)
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The gradient can then be computed efficiently using the resulting structure:

∂ 〈ψtarget|ψ(θ)〉
∂θ2,3

= 〈ψt3|
∂U(θ2)

∂θ2,3
|ψ1〉 , (5.26)

= 〈ψt3|CNOT⊗L/2︸ ︷︷ ︸
〈ψt′3 |

[∏
i 6=3

Ry(θ2,i)

]
∂Ry(θ2,3)

∂θ2,3
|ψ1〉 , (5.27)

= . (5.28)

The target state |ψtarget〉 is evolved backward in time, while the initial product state
|0〉 is evolved forward. Once both representations are available, gradients with respect
to all Ry gates in a specific layer can be computed by constructing the corresponding
environments.

The ITensors.jl [124] implementation does not exploit the commutativity of gates
within each layer. Moreover, it computes derivatives with respect to the CNOT gates,
which are not parametrized. These inefficiencies are addressed in the mVQE.jl [46]
implementation.
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CHAPTER 6

Neural Architectures

In this section, key neural network architectures used in Publication [II] are summarized.
These architectures are employed to represent the parametrized feedback function θ2 =
f(M ;W ), which maps the measurement outcomes M to the parameters θ2 for the next
unitary operation (see Chap. 5).

6.1 Feedforward Neural Networks
Feedforward neural networks (FFNs) form the basis of most neural network models.
They consist of sequential layers that alternate between linear transformations and non-
linear activation functions:

hl(hl−1;W l, bl) = φ
(
W lhl−1 + bl

)
, (6.1)

where φ is a nonlinear activation function, such as the sigmoid or ReLU, and W l, bl are
trainable weights and biases [125]. The universal approximation theorem states that a
single hidden layer with sufficient width can approximate any continuous function on a
compact domain [126].

In practice, several such layers are composed to form a deep neural network y =

f(x;W, b), which maps an input vector x to an output vector y. The network is trained
using a task-specific loss function. In Publication [II], the loss is defined as the fidelity
with respect to the target quantum state.

Training is performed using gradient descent. Gradients are calculated via backpropa-
gation, which recursively applies the chain rule through the computational graph.

FFNs can model complex functions and extract hierarchical features. However, deep
FFNs often suffer from vanishing gradients similar to those in VQE, which limit effective
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learning [127]. Several architectural improvements have been proposed to address this
issue.

6.2 Avoiding Vanishing Gradients
Neural networks face similar challenges as Variational quantum circuits, vanishing gradi-
ents. Deep VQCs often exhibit barren plateaus, where gradients vanish with increasing
system size [113]. Several solutions exist for NNs. However, no analogous strategy is
currently known for variational quantum circuits (see Sec. 5.1.1).

Residual Connections

Residual connections improve the training of deep networks by modifying layer outputs
as

y = x+ f(x) , (6.2)

where f is a learnable transformation such as a convolution or RNN block [128]. The
identity mapping helps preserve gradient magnitude during backpropagation, improving
stability in deep networks. Each residual connection refines the input representation by
learning a correction term f(x). This allows successive layers to focus on incremental
improvements, which facilitates convergence and gradient flow in deep architectures.

Activation Functions

The selection of activation and normalization methods strongly affects the training dy-
namics and expressivity of neural networks.

The ReLU activation function is defined as φ(x) = max(0, x). For positive inputs, it
yields a constant gradient. For negative inputs, the gradient is zero. This property
helps to mitigate the vanishing gradient problem in deep neural networks [129]. Unlike
activation functions such as the sigmoid, ReLU does not cause repeated multiplication
of small constants during backpropagation. As a result, the gradient remains stable over
many layers, facilitating effective training of deep models.

The SwiGLU activation function is a gated variant of the GLU (Gated Linear Unit),
designed to enhance expressivity through multiplicative interactions. It is often used
in the MLP blocks of transformer architectures. Given an input vector x, the SwiGLU
function is defined as:

SwiGLU(x;W,V, b, c, β) = Swishβ(xW + b)� (xV + c) , (6.3)

where W,V are learned weight matrices, b, c are learned bias vectors, and β is the
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Swish scaling parameter (typically set to 1). The function Swishβ(z) = z · σ(βz) applies
a smooth, non-monotonic gating to the input. The symbol � denotes element-wise
multiplication.

This formulation splits the linear transformation of the input into two parallel branches:
one gated via the Swish activation, and one linear. The gating mechanism allows the
model to dynamically control feature flow, effectively deciding which components of the
representation to retain or suppress. This improves model capacity, supports better
gradient flow in deep networks, and leads to faster convergence in large-scale learning
tasks [130].

Root Mean Square Normalization

Root Mean Square Normalization (RMSNorm) normalizes inputs based on their root-
mean-square magnitude:

RMS(x; γ) = γ
xi,t√

1
n

∑n
i=1 x

2
i,t

. (6.4)

Here, γ is a learnable scaling parameter. The index i runs over the feature dimension,
while t denotes the temporal or spatial position [131]. RMSNorm stabilizes training by
normalizing across features without subtracting the mean, offering lower computational
complexity than LayerNorm. By maintaining consistent input scales across layers, RM-
SNorm improves gradient flow and reduces the risk of exploding or vanishing gradients,
particularly in deep or recurrent architectures.

6.3 Recurrent Neural Networks and Gated Units
Recurrent neural networks (RNNs) extend FFNs to sequential data. They maintain a
hidden state that is updated at each time step:

ht = φ(Wxt + Uht−1 + b) , (6.5)

where φ is a nonlinear activation, andW , U , and b are trainable parameters [132]. RNNs
are well-suited to modeling data with temporal dependencies.

An RNN can be viewed as a deterministic finite-state machine. The evolution of its
hidden state is governed by the current input and internal gating. This viewpoint reveals
a structural connection to tensor networks, which are in some sense linear versions of
this.

Wu et al. [133] showed that any matrix product state (MPS) can be exactly represented
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by an RNN with linear hidden-state updates. The hidden dimension of the RNN cor-
responds to the MPS bond dimension. The sequential updates of the RNN mirror the
contraction structure of the MPS.

This structural similarity highlights a connection between RNN-based architectures and
one-dimensional quantum states described by tensor networks. The main difference lies
in the gating mechanism. While MPS updates are linear, RNNs introduce nonlinear
control.

The quantum measurement and feedback policy described by Smithet al. [27] can be
described by a finite-state machine. Therefore, RNNs are a natural choice for learning
such feedback functions. In Publication [II], RNNs are trained to map sequences of
measurement outcomes Mt to parameters for the next unitary gate sequence U(θt,d).

Despite their expressivity, vanilla RNNs often suffer from vanishing or exploding gra-
dients during training [134]. Gated architectures such as the Gated Recurrent Unit
(GRU) [135] address this issue.

A GRU uses an update gate zt and a reset gate rt defined as

zt = σ(Wzxt + Uzht−1) , (6.6)
rt = σ(Wrxt + Urht−1) , (6.7)

which control how much of the past state is retained or reset. The candidate state is
computed as

h̃t = tanh (Whxt + Uh(rt � ht−1)) , (6.8)

and the final hidden state is updated according to

ht = (1− zt)� ht−1 + zt � h̃t , (6.9)

where � denotes element-wise multiplication. This architecture enables selective mem-
ory updates and improves gradient stability across long sequences. In Publication [II],
the GRU demonstrated superior performance compared to both standard RNNs and
LSTMs.

6.4 Stacking RNNs
The RNN architecture employed in Publication [II] is illustrated in Fig. 6.1. This design
is inspired by the LLaMA 3 model [136], with the self-attention mechanism replaced
by a recurrent layer. The model was adapted to the quantum feedback setting to map
sequences of measurement outcomes to adaptive quantum gate parameters.
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Figure 6.1.: The architecture used in Publication [II] which is shown in Fig. 8 of that work. The input
measurements pass through RMS normalization, a bidirectional RNN, and SwiGLU layers,
generating the output angles θ for feedback unitaries. The grey box indicates repeated
application of these core layers up to depth D.

The architecture consists of multiple stacked layers of bidirectional or unidirectional
GRUs. Each RNN layer receives input processed by RMSNorm and outputs hidden
representations that are passed through a SwiGLU activation function. These repre-
sentations are then fed into the next RNN block in the stack. The overall depth of the
model is denoted by D, which refers to the number of such RNN-SwiGLU blocks applied
sequentially.

For bidirectional RNNs, the forward and backward passes are concatenated at each layer
to form the input for the subsequent layer. This enhances the model’s ability to extract
correlations across both left and right measurement outcomes. In contrast, unidirectional
RNNs were augmented with a one-dimensional convolution layer (kernel size 5) as the
first input layer. This convolutional preprocessing ensures that the unidirectional RNN
receives sufficient contextual information from neighboring measurements, particularly
those to the right of a given position.
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To address the vanishing gradient problem associated with training deep recurrent mod-
els, GRUs were used in place of vanilla RNNs. As mentioned in Sec. 6.3, GRUs allow for
selective memory retention and controlled forgetting, enabling the model to propagate
gradients more effectively across long sequences. Empirical comparisons with LSTM
units showed that GRUs performed better in this setting.

While the stacked RNN model demonstrated strong results for moderate system sizes, its
effectiveness diminished for longer sequences. This limitation stems from the inherent
difficulty RNNs face in modeling long-range dependencies. Consequently, alternative
architectures such as transformers or Mamba-based models are recommended for future
work to address these challenges more effectively.

6.5 Transformers and Mamba Architectures
Transformers use self-attention to model pairwise dependencies between sequence ele-
ments. Each token attends to all others, enabling global context modeling in a single
computational step [137]. The use of residual and normalization layers improves training
stability and gradient flow.

Self-attention has a quadratic cost in sequence length, which limits its scalability. This
has led to alternative designs such as Mamba, which builds on structured state-space
models.

Mamba replaces attention with input-conditioned state transitions. Its recurrence oper-
ates in linear time and memory, making it well suited for long sequences [138].

The recurrence in Mamba is linear and sequential. This structure resembles the contrac-
tion pattern of MPS. This analogy suggests applications in quantum-inspired models.
Mamba could offer a promising approach to modeling long-range correlations, such as
those encountered in Publication [II], where measurement outcomes exhibit non-local
dependencies. Its linear complexity and structural resemblance to MPS make it a natu-
ral extension of the ideas explored in earlier sections, bridging classical sequence models
with tensor-network representations.
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Summary
Quantum state preparation is a central task in quantum simulation and computation.
On noisy intermediate-scale quantum (NISQ) devices, it remains a major bottleneck due
to environmental decoherence and limited coherence times [1, 2]. Traditional unitary
approaches for state preparation typically require deep circuits (see Sec. 4.1) and high-
fidelity gates, which are challenging to implement experimentally [6, 9].

To address these limitations, this work analyzes a measurement-based protocol that em-
ploys periodically reset ancillary qubits to steer the system toward a target quantum
state. The protocol induces effective non-unitary dynamics through coherent system-
ancilla coupling combined with reset operations (see Sec. 4.2). It extends earlier stud-
ies [19, 21] by investigating finite reset intervals, moving beyond the idealized instanta-
neous reset limit.

The protocol is applied to the preparation of the Affleck-Kennedy-Lieb-Tasaki (AKLT)
state, a symmetry-protected topological (SPT) state relevant for quantum memory and
computation (see Sec. 2.1.4). Exploiting the frustration-free property of the AKLT
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Hamiltonian, local mapping operators are constructed to guide the system into the
desired state through repeated ancilla measurements and resets.

Numerical simulations using MPS and quantum trajectory methods characterize the pro-
tocol across weak-coupling (Markovian) and strong-coupling (non-Markovian) regimes.
An optimal reset interval is identified that balances rapid convergence with low entan-
glement entropy production. Furthermore, criteria for constructing effective mapping
operators based on commutation relations are introduced to improve convergence.

The protocol is shown to be robust against realistic noise sources, including dephasing.
In addition, adaptive stopping conditions based on ancilla measurement outcomes are
proposed to enhance practical implementation.

This work complements the adaptive measurement-feedback approach presented in Pub-
lication [II] by offering an analytical alternative. It eliminates the need for conditional
operations, which are currently difficult to realize on quantum hardware. Moreover,
it lays the groundwork for extending measurement-based preparation protocols to two-
dimensional systems.

In particular, it would be of interest to simulate the protocol on a honeycomb lat-
tice, leveraging insights from Publication [III]. The AKLT state on a honeycomb lattice
is known to serve as a universal resource for measurement-based quantum computa-
tion [56].

Future work should also explore the integration of variational optimization techniques,
similar to those employed in Publication [II], to enhance convergence and robustness
when analytical direction is unavailable.
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1Forschungszentrum Jülich, Institute of Quantum Control, Peter Grünberg Institut (PGI-8), 52425 Jülich, Germany
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In this theoretical investigation, we ex-
amine the effectiveness of a protocol incor-
porating periodic quantum resetting for
preparing ground states of frustration-free
parent Hamiltonians. This protocol uses
a steering Hamiltonian that enables local
coupling between the system and ancil-
lary degrees of freedom. At periodic in-
tervals, the ancillary system is reset to its
initial state. For infinitesimally short re-
set times, the dynamics can be approxi-
mated by a Lindbladian whose steady state
is the target state. For finite reset times,
however, the spin chain and the ancilla be-
come entangled between reset operations.
To evaluate the protocol, we employ Ma-
trix Product State simulations and quan-
tum trajectory techniques, focusing on the
preparation of the spin-1 Affleck-Kennedy-
Lieb-Tasaki state. Our analysis considers
convergence time, fidelity, and energy evo-
lution under different reset intervals. Our
numerical results show that ancilla system
entanglement is essential for faster con-
vergence. In particular, there exists an
optimal reset time at which the protocol
performs best. Using a simple approxima-
tion, we provide insights into how to op-
timally choose the mapping operators ap-
plied to the system during the reset pro-
cedure. Furthermore, the protocol shows
remarkable resilience to small deviations
in reset time and dephasing noise. Our
study suggests that stroboscopic maps us-
ing quantum resetting may offer advan-
tages over alternative methods, such as
quantum reservoir engineering and quan-
tum state steering protocols, which rely on
Markovian dynamics.

1 Introduction

Quantum technologies hold immense potential
for addressing significant challenges in quan-
tum simulation, communication, and informa-
tion processing. Consequently, the preparation
of fiducial quantum states and the development
of noise-resistant state preparation routines are
of paramount importance, especially for noisy
intermediate-scale quantum (NISQ) devices [1].

Quantum state preparation by means of uni-
tary quantum circuits often faces challenges due
to the required circuit complexity [2], which may
demand large circuit depths and thus require
low error rates, unattainable in the NISQ era.
Various approaches have been proposed, starting
from adiabatic techniques [3, 4, 5] and sequences
of unitary transformations [6, 7].

An alternative, and possibly more robust,
strategy implements protocols based on non-
unitary dynamics. One strategy goes under the
name of reservoir engineering [8, 9, 10, 11, 12]
and aims at designing effective master equations
whose steady state is the target state of the quan-
tum state preparation. Quantum reservoir engi-
neering has been proposed for quantum comput-
ing [11] and for robust preparation of many-body
quantum states [13, 14]. Designing Markovian
master equations, however, limits to performing
operations in the weak coupling limit, leading to
slow convergence speeds, which could be counter-
balanced by including time-dependent controls
[15].

Further strategies pursue quantum state
preparation using adaptive measurements, as for
example in Ref. [16, 17]. These protocols are
efficient, yet require the use of feedback based
on non-local measurements, which is not yet
widely accessible on current quantum platforms.
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In particular, local feedback control has only
been achieved experimentally in a few cases, and
it underperforms coherent entanglement gates
by about two orders of magnitude [18, 19, 20].
Preparing non-local states between spatially sep-
arated elements [21, 22, 23] or applying feedback
to larger lattices [24] is expected to create an even
larger gap.

A procedure for preparing quantum states
from a fiducial one, which is not adaptive and is
based solely on local operations, can be achieved
through quantum state steering via measure-
ments and reset of ancillary degrees of freedom
[25, 26, 27, 28]. It is known that for unitary
dynamics the use of ancillas can dramatically
improve the speed of unitary quantum circuits
[7, 29, 30, 31]. Likewise, coherent feedback is
known to have improved best-case scaling com-
pared to measurement-based approaches for state
preparation [32]. Here, we make use of ancilla co-
herence to accelerate dissipative dynamics, where
the ancillas act as a non-Markovian memory
within the engineered reservoir [33]. Thus, in this
study, we explore the transition from quantum
reservoir engineering to quantum state steering
via the central tool of a stroboscopic map, which
we turn from representing just an unraveling of
the Lindblad master equation to becoming the
key to go beyond.

Here, we test this idea on a protocol introduced
by Roy et al. [28] for quantum state steering into
states with frustration-free parent Hamiltonians.
Specifically, we will be investigating the AKLT
state, a spin-1 symmetry-protected topological
state (SPT) [34, 35] with spin-1

2 edge states, is
used in this study as a test case for the proposed
protocol. This state has potential applications
in the study of phases of matter and as a re-
source for Measurement-Based Quantum Com-
puting [36]. The protocol is applicable to any
state with a frustration-free parent Hamiltonian,
like for example the cluster state. In this work,
we select the AKLT state for both its simplic-
ity and its potential usefulness. In a nutshell,
we utilize measurements and resets to eliminate
undesired portions of the Hilbert space from the
available dynamical trajectories of the quantum
state. Thus, we effectively drive the system into
the target state of interest.

In order to do so, and as illustrated in Fig. 1,
the system is coupled to ancillas with a time-

independent Hamiltonian for a time period of δt.
The protocol exploits the frustration-free nature
of the parent Hamiltonian, enabling the writing
of local operators that map from locally excited
states to locally unexcited states. Coupling these
local operators to ancilla qubits results in a bias
towards the desired non-unitary dynamics if the
ancillas are reset periodically. On a different note
to previous works, we determine the convergence
time as a function of the resetting time δt, and
investigate the stroboscopic map in regimes be-
yond the Markovian limit. Note that in the weak-
coupling/Markovian limit, our protocol exhibits
similarities to the Zeno effect, as rapid successive
measurements effectively freeze the state’s evolu-
tion. However, a key difference arises in stronger
coupling regimes, where some evolution is per-
mitted, and the ancillas are reset to their initial
states, distinguishing the protocol from the Zeno
effect setup.

This study is organized as follows: In Sec. 2,
the potential of a stroboscopic map, defined as
ρ(t+ δt) = Λδt [ρ(t)], for preparing desired quan-
tum states is investigated. In Sec. 3, it is demon-
strated how the protocol can be used to steer into
the AKLT state, and a criterion for selecting op-
timal mapping operators that minimize both en-
tanglement generation and convergence times is
proposed, since the choice of mapping operators
is non-unique.

In Sec. 4, full simulations of the system and an-
cillas are conducted using Matrix Product States
(MPS) and quantum trajectories to examine the
stroboscopic map in regimes beyond the purely
Markovian limit. Furthermore, optimal measure-
ment intervals are determined, and two distinct
limits of the system’s evolution are identified:
the weak-coupling and the strong-coupling lim-
its. In the weak-coupling limit, the system ex-
hibits Markovian behavior akin to Lindblad dy-
namics, with an increased convergence speed for
larger values of δt. This behavior persists up to
a certain threshold for δt.

Conversely, in the strong-coupling limit, the
convergence rate decreases as the time between
successive measurements and resets grows. Re-
markably, a broad optimum between these two
regimes is uncovered, the position of which can
be estimated using a simplified model of com-
muting mapping operators. In Sec. 5, the sim-
plified model of commuting mapping operators
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(a) (b)

Figure 1: This figure illustrates the stroboscopic map. Subfigure (a) depicts the quantum systems evolution, where
the state is initially |↑⟩⊗L

S , which resides entirely within the system’s Hilbert space (green line). The unitary evolution
with the steering Hamiltonian for a duration of δt (blue arrows) entangles the system and the ancillas, leading the
state to occupy the combined Hilbert space HS × HA (light blue surface). Measurement or resetting of the ancillas
(red arrows) project back the state into Hs, bringing the system closer to the target state. Upon repeated application
of this procedure, the system converges to the target state |ψtarget⟩. Subfigure (b) represents the same process as a
quantum circuit.

is employed to pinpoint optimal mapping opera-
tors and to shed further light on the relationship
between minimizing the entropy generated by the
protocol and the convergence time.

Lastly, the stability of the protocol to dephas-
ing noise and the introduction of a stopping time
selection scheme based on information obtained
from the ancilla measurements is discussed in
Sec. 6.

In conclusion, our study provides valuable in-
sight into the different regimes of state prepa-
ration beyond traditional Markovian dynamics
and the potential applications of the stroboscopic
map for quantum state preparation.

2 The protocol
In this Section, we summarize the general fea-
tures of our protocol for ancilla-assisted quantum
state preparation, as illustrated in Fig. 1. The
idea has its roots in quantum reservoir engineer-
ing [8, 9, 10, 11, 12]. The dynamics are designed
such as to pull a quantum system into a target
state ρ0 as the result of the interplay between
coherent and incoherent dynamics. The target
state is thus the steady state. Assuming that the
system’s dynamics can be described by a linear
map Λ, the target state is a fixed point of the
map:

ρ0 = Λ[ρ0] . (1)

In our work, the system is a many-body system,
and the target state is a symmetry-protected
topological state. In order to benchmark our
analysis we analyze the quantum state prepara-
tion of a spin-1 chain in the AKLT state. Below
we review the general idea for generating the map
Λ and then describe the specific implementation
for the case here considered.

2.1 Time-periodic master equation

In order to generate Λ, the system S is coher-
ently coupled to an ancilla A. The ancilla A
subsequently experiences non-unitary dynamics,
characterized by a periodic resetting of its state
to a reference state. The composite Hilbert
space of the system and ancilla is denoted by
H = HS ⊗HA. The time-dependent master equa-
tion governing the density operator χ(t) in H is
represented by L(t), given as:

L(t)χ(t) = 1
iℏ [H,χ(t)] +

∑
n

δ(t− nδt)Kχ(t)

(2)

In this equation, the Hamiltonian H describes
the interaction between the system and the an-
cilla. The superoperator K, which acts periodi-
cally on the ancilla with a period of δt, is respon-
sible for resetting its state, and assumed to act on
a much faster timescale than the dynamics. Mas-
ter equations such as Eq. 2 have been explored in
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the literature to describe the dynamics of masers
pumped by beams of atoms [37, 38, 39, 40, 41]
and, more generally, in order to extend Floquet
theory to open quantum systems [42]. In some
cases, the ancilla is reset to different states as a
function of n [40].
In the context of microwave cavity quantum

electrodynamics, the operator K captures the ef-
fect of an atom interacting with the maser at
short intervals of time. When these interaction
times are much shorter than the other time scales
of the dynamics, they are approximated by ef-
fective kicks occurring at the instants tn = nδt
[39, 41]. In our case, instead, the interaction time
between the system and the ancilla stretches over
a finite interval δt, in which they become entan-
gled. These dynamics are encompassed by the
Hamiltonian

H = HS +HA +HSA (3)

whereHS andHA denote the Hamiltonian of sub-
systems S and A, respectively, and HSA their in-
teraction.
The dynamics are generated by Eq. 2, with the

additional constraint that superoperator K leads
to an instantaneous resetting of the state of the
ancilla to a reference state. The density matrix
immediately after the instant of time tn is given
by

χ(t+n ) = ρ(tn) ⊗ ϱA , (4)

where t±n = limϵ→0+ tn ±ϵ. In this equation, ϱA is
the ancilla’s reference state, and ρ(tn) is the sys-
tem’s state obtained by tracing out the ancilla
degrees of freedom from the density operator im-
mediately before the resetting:

ρ(tn) = TrA{χ(t−n )}. (5)

The protocol consists of identifying the operator
H and the superoperator K that leads to the de-
sired map Λ.
Some general considerations are in order. We

first notice that, for finite periods δt, the asymp-
totic state of the system ρSS is periodic, namely,
ρSS(t + δt) = ρSS(t). The state ρ0 is the time-
average of ρSS(t) over a period δt and the map Λ
is the one corresponding to the time-averaged dy-
namics, ρ0 =

∫ δt
0 dτρSS(τ)/δt. The limit δt → 0

leads to a time-independent master equation [39].
This master equation can be reduced to a time-
independent Born-Markov master equation for

the density matrix of the system ρ when the
ancilla-system coupling is sufficiently weak: As-
suming that J is the characteristic frequency
characterizing the system-ancilla coupling, then
the weak-coupling limit corresponds to Jδt ≪ 1
[41]. The strong-coupling limit, on the other
hand, can be characterized by limit cycles. The
latter have been discussed in microwave cavity
quantum electrodynamics [37, 38, 41] and were
instrumental in order to prepare Fock states of
a microwave resonator [43, 44]. Limit cycles in
the time-periodic master equation have been also
proposed for the quantum state preparation of
trapped ions [45] and ultracold atoms [46]. In the
following, we consider a protocol for preparing a
spin-1 chain into the AKLT state and system-
atically analyze its efficiency as a function of the
periodicity δt, ranging from the weak-coupling to
the strong-coupling limit.

2.2 Designing the system-ancilla coupling
Now, consider the density matrix χ(t). Its stro-
boscopic evolution is expressed as:

χ(t+n ) = TrA{e−iHδtχ(t+n−1)eiHδt} ⊗ ϱA . (6)

A significant challenge in quantum reservoir en-
gineering is identifying suitable Hamiltonian op-
erators H to design the target dynamics. For
a map Λ, corresponding to a Lindblad time-
independent master equation, one must identify
the Kraus operators and construct the associ-
ated Hamiltonian. This procedure is similar to
unraveling the master equation [47, 48]. A con-
venient approach is outlined in [28], which ap-
plies the von Neumann theory of measurement
to develop protocols that steer quantum systems
towards pure target states. According to this ap-
proach, HS = HA = 0 and the ancilla-system
Hamiltonian adopts the form:

HSA = J
∑
l,α

MS
l,α ⊗DA†

l,α + h.c (7)

Here the parameter J is the coupling strength,
DA†

l,α are local operators that map the ancillas into

a state orthogonal to the initial state, and MS
l,α

maps the system into the target subspace. More
specifically:

DA†
l,α = |ΦA

l,α⟩ ⟨ΦA
l,α| (8)

MS
l,α = |ψtarget

l,α ⟩ ⟨ψundesired
l,α | . (9)
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In these equations, |ΦA⟩ represents the initial an-
cilla state, and |ΦA

l,α⟩ are ancilla states chosen to

be orthogonal to the initial state ϱA = |ΦA⟩ ⟨ΦA|
the ancilla is periodically reset to. The states
|ψundesired

l,α ⟩ span the undesired subspace, while

the states |ψtarget
l,α ⟩ only need to span part of the

target subspace. The index l represents the lat-
tice site where the operator is applied, and α de-
notes the operator type. The target state is a
pure state, |ψ⟩0, and resides outside the local sub-
spaces of all the |ψundesired

l,α ⟩, rendering it a fixed

point of the dynamics ([H, ρ0 |ΦA⟩ ⟨ΦA|] = 0) and
ensuring convergence. Note that the |ψtarget

l,α ⟩ do
not need to span the entire target subspace. For
the protocol to converge to the target state, two
conditions must be met. First, the mapping op-
erators must steer out of the undesired subspace,
so that any state that is in the undesired sub-
space will be mapped to a state closer to the tar-
get state. Second, the mapping operators must
be chosen so that their effects at neighboring lat-
tice sites do not disrupt each other, as this can
potentially lead to the dynamics being trapped
in metastable states. We formalize ”not disrupt-
ing each other” as mapping operators at nearest
neighbors having a sufficiently small commuta-
tion relation (see Sec. 5). This will be demon-
strated in the next sections for the AKLT state,
where the |ψtarget

l,α ⟩ actually span only a part of
the target subspace.
Let us first consider the weak-coupling limit or

Markovian limit, Jδt ≪ 1. Then, the system’s
dynamics ρ(t) = TrA(χ(t)) can be described by
an effective Lindblad equation [39, 41, 28] :

∂tρ(t) = Jδt
∑
l,α

(
MS

l,αρ(t)MS†
l,α

− 1
2{MS†

l,αM
S
l,α, ρ(t)}

)
. (10)

where time is now rescaled by 1/J to be unitless
Jt → t. In this limit, the mapping operators be-
come effective jump operators that map into the
target state. This equation suggests, however,
that the rate of convergence towards the steady
state increases with δt, and is thus expected to
be found in the strong-coupling regime, where
Eq. 10 does not apply.
Generally, determining the optimal period δt

for the fastest convergence rate is a complex task
and often requires numerical approaches [41].
However, in a specific limit, an explicit deriva-

Figure 2: The mapping operators Mα are defined such
that all spin states resulting from the combination of
two spin-1 sites map from the spin-2 subspace to the
spin-(0,1) subspace.

tion of an expression for the fidelity evolution for
generic δt is possible. This requires constraining
the mapping operators to satisfy the commuta-
tion relations:

[MS
l,α,M

S
l′,α′ ] = 0 ∧ [MS

l,α,M
S†
l′,α′ ] = 0 ∀l ̸= l′ .

In this case, the fidelity F(t) = ⟨ψ0| ρ(t) |ψ0⟩
evolves according to:

F(t+ δt) =F(t)

+ sin(Jδt)2 ∑
l,α

⟨ψ0|MS
l,αρ(t)MS†

l,α |ψ0⟩ .

(11)

This equation demonstrates that selecting Jδt =
π
2 leads to the fastest convergence. Although it is
only possible to steer into simple quantum states
when using operators that satisfy the commuta-
tion relation above, this result offers valuable in-
sights into mapping operators that do not en-
tirely fulfill the commutation relations. Specifi-
cally, in Sec. 5 we derive mapping operators that
optimize the protocol efficiency taking this into
consideration.

Before concluding this section, it is important
to highlight a key observation. While in the
weak-coupling limit, the ancilla and system es-
sentially exist in a separable state due to the
Markovian nature of the limit [49], they become
entangled in the strong-coupling limit, revealing
the protocol’s non-Markovian nature. In this re-
gard, the quantum nature of the ancilla is crucial
to the protocol. Furthermore, the reset opera-
tion of the ancilla state is effectively a quantum
resetting [50, 51, 52].
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Figure 3: This Figure shows the convergence of the protocol for different measurement intervals δt in a system of
size Ls = 15. Figure a) compares the dynamics obtained from projectively measuring the ancillas with the effective
Lindblad dynamics (Jδt → 0). It is expected that the measurement-induced behavior matches the Lindblad dynamics
up to a factor of Jδt in time (Eq. 10), and this seems to be approximately the case for δt < π

4 . Note the rescaled
x-axis by a factor of Jδt to make the comparison to the Lindblad dynamics feasible. Figure b) shows the periodic
behavior of the energy per bond Eb(t) = 1

Ls−1 Tr [HAKLTρ(t)]. Figure c) shows the smoothed version of the energy,
where no data is displayed when the dynamics cannot be accurately computed. Lastly, Figure d) shows the average
infidelity 1 − F (ρ) = 1 −

∑4
i ⟨AKLT|i ρ |AKLT⟩i with respect to the four AKLT states.

3 Mapping Operators For The AKLT
State

The 1D spin-1 Affleck-Kennedy-Lieb-Tasaki
(AKLT) state is a relevant example for evalu-
ating the effectiveness of the stroboscopic map
in preparing quantum states. The AKLT state
is known for its symmetry-protected topologi-
cal (SPT) [34, 35] properties and spin-1

2 edge
states. It has also been proposed as a resource
in measurement-based quantum computing [36].
The AKLT state can be prepared with the stro-
boscopic map due to the frustration-free nature
of its parent Hamiltonian, which allows for the
use of local operators to map excited states to
unexcited ones.

The AKLT state is a ground state of the fol-

lowing Hamiltonian:

HAKLT =
∑

l

P 2(S⃗l + S⃗l+1)

=
∑

l

[1
2 S⃗l · S⃗l+1 + 1

6
(
S⃗l · S⃗l+1

)2
+ 1

3

]
(12)

Here, P 2
l,l+1 = P 2(S⃗l + S⃗l+1) are operators that

project two neighboring spin-1 S⃗l and S⃗l+1 into
the spin-2 subspace. Note that the Hamiltonian
was chosen to be dimensionless. Four distinct
AKLT states exist in the subspace spanned by
the (zero, one) basis, characterized by the prop-
erty P 2

l,l+1 |AKLT⟩i = 0 ∀l.
To prepare the AKLT state using a strobo-

scopic map, local operators are required to map
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from the spin-2 subspace to the spin-(0,1) sub-
space. To accomplish this, a set of operators
Mα must be defined such that all states in the
spin-2 subspace are mapped to the spin-(0,1) sub-
space (see Fig. 2). There are many different
choices for the mapping operatorsMα, but differ-
ent choices will lead to drastically different con-
vergence speeds. In the main text, we used the
mapping operators:

MS
l,1 =

[
|1, 1⟩ ⟨2, 2| + 1√

2
|1, 0⟩ ⟨2, 0| +

|1,−1⟩ ⟨2,−2|
]

l,l+1

MS
l,2 =

[
|1, 1⟩ ⟨2, 1| + 1√

2
|1, 0⟩ ⟨2, 0| +

|1,−1⟩ ⟨2,−1|
]

l,l+1
. (13)

These operators were chosen based on an ad hoc
condition, to try to conserve quantum numbers as
much as possible and thus improve experimental
realizability. This condition excludes mapping
operators that significantly change the quantum
numbers, such as mapping from angular momen-
tum 2 to -1, i.e. |1,−1⟩ ⟨2, 2|. Note that these
mapping operators are not steering into the |0, 0⟩
state, this is not an issue as long as they are steer-
ing away from all the states in the spin two sub-
space.

In the rest of this paper, we will analyze the
protocol using the mapping operators in Eq. 13.
Before concluding this section we note that the
choice of these operators is not optimal. The
mapping operators, in fact, can be further op-
timized on the basis of two important considera-
tions.

The first observation to make is that all the
states in the spin-2 subspace should be mapped
out with equal strength, leading to the imposition
of a condition that the mapping operators must
sum to the Hamiltonian:

HAKLT =
∑

l

(
MS†

l,1M
S
l,1 +MS†

l,2M
S
l,2

)
. (14)

In the limit of Jδt → 0, combining this with
Eq. 10 yields:

∂tρ(t) = − Jδt

2 {HAKLT, ρ(t)}

+ Jδt
∑
l,α

MS
l,αρ(t)MS†

l,α . (15)

The first term in Eq. 15 corresponds to imagi-
nary time evolution, while the second term maps
the state from the undesired to the desired sub-
space. When measuring the ancillas, effectively
the imaginary time evolution term is applied
when the ancillas are measured to be in the ini-
tial state |ΦA⟩, and the second term is effectively
applied when they are found to be in an excited
state. Note that the mapping operators in Eq. 13
satisfy this first condition.
The second consideration involves the commu-

tation relations of the mapping operators at dif-
ferent lattice sites. If the mapping operators sat-
isfy [MS

l,α,M
S
l′,α′ ] = 0 and [MS

l,α,M
S†
l′,α′ ] = 0 for all

l ̸= l′, the dynamics will follow a sine function,
allowing the target state to be reached after only
one measurement with Jδt = π

2 . However, it is
not possible to choose mapping operators for the
AKLT state that fulfill these commutation rela-
tions.

Instead, the convergence time can be further
optimized by minimizing the commutator be-
tween the mapping operators. The relationship
between the commutation relation and conver-
gence time is further explored in Sec. 5.

To steer a state into an AKLT state with Ls

qutrits, a total of L = 2Ls − 1 qutrits are nec-
essary. The ancillas, which are also spin ones,
are initialized/reset to the spin-up state and are
evolved according to:

DA†
l,1 = |0⟩ ⟨↑|l (16)

DA†
l,2 = |↓⟩ ⟨↑|l (17)

|ΦA⟩ = |↑↑↑ ...⟩ . (18)

where |↓⟩, |↑⟩, and |0⟩ are the eigenstates of the
spin-1 Sz operator.

4 The Stroboscopic Protocol: results
In this section, we compare the dynamics of the
stroboscopic protocol with those found in the
weak-coupling limit governed by Markovian dy-
namics, which can be described by a Lindblad
master equation. Notably, the Markovian limit
exhibits characteristics of quantum reservoir en-
gineering, providing a basis for comparing the
dynamics of the stroboscopic protocol to those
observed in reservoir engineering. Simulation re-
sults reveal two distinct limits for the δt param-
eter in the stroboscopic protocol. The first limit,
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Figure 4: The figure illustrates the convergence time, denoted as tconv. This is defined as the time it takes for the
ancillas to stop transitioning to states other than their initial spin-up state, effectively stopping their flipping into any
excited states. This marks the beginning of the linear decay of the temperature of the system. tconv is plotted as a
function of (a) the measurement interval δt and (b) the system size Ls. In panel (a), we see that tconv decreases as
Jδt increases until a minimum is reached around π

2 , while the Lindblad approximation (dashed lines) would predict
a decrease of tconv ∼ 1

δt for small δt. Panel (b) shows that tconv increases linearly with Ls at a fixed time step of
Jδt = π/2, as indicated by the gray regression line.

referred to as the weak-coupling limit, adheres to
a Lindbladian dynamic, while the second regime,
the strong-coupling limit, demonstrates conver-
gence at a slower rate. Furthermore, we identify
an intermediate regime that exhibits the fastest
convergence and resembles the exceptional case
where mapping operators commute. Note that
all simulations were performed with the help of
the AbelianSymTensor library in Fortran.

The quantum state is initialized as a chain
of alternating system and ancilla qutrits in a
product state, |ψ⟩ = |↑↑ . . .⟩. To time-evolve
the state, the Time-Dependent Variational Prin-
ciple (TDVP) algorithm [53] is employed, with
the state represented by a Matrix Product State
(MPS). After each time interval δt, the an-
cilla qutrits are measured and reset to the spin-
up state. This measurement and reset process
projects the quantum state closer to the target
state. Through repeated iterations and a suffi-
ciently small δt, the state converges to the target
state. This process is simulated using quantum
trajectories [54].

4.1 Weak-Coupling Limit

In the weak-coupling limit, where Jδt < π
4 , the

dynamics resemble those of Markovian dynam-
ics. Consequently, it is expected that the conver-

gence speed should be proportional to the mea-
surement interval, and so the convergence time
should be inversely proportional tconv ∝ 1

δt (see
Eq. 10). The Lindblad limit is compared to sim-
ulations at finite values of δt in Fig. 3(a). For
both paradigms, the energy of the AKLT Hamil-
tonian per bond, Eb(t) = 1

Ls−1 Tr [HAKLTρ(t)],
converges to the AKLT state exponentially fast.
As anticipated, for small measurement intervals
Jδt < π

4 , the evolution at finite δt matches the
solution of the effective Lindbladian for Jδt → 0.
Outside of the Markovian limit, the energy per
bond decays more slowly than predicted by the
Lindbladian but still converges to the AKLT
state.

To gain a deeper understanding of the energy
evolution for finite values of δt, one can refer
to Fig. 3(b). The yellow dashed line illustrates
the energy evolution in the absence of measure-
ments, offering insight into the convergence speed
for various δt values. This line exhibits damped
energy oscillations that would continue if mea-
surements were to cease at any point during the
protocol. The speed of convergence to the target
state is determined by the energy value at which
the damped oscillation is interrupted by measure-
ment and reset, initiating a new cycle of damped
energy oscillations that will be interrupted once
another measurement is performed.
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Two limits corresponding to different values of
δt can be observed in this damped oscillation. In
the weak-coupling limit, the energy initially de-
creases when the Hamiltonian is turned on. In
the absence of measurements, the intermediate
regime is entered, where the energy follows a si-
nusoidal pattern until it reaches saturation at
a value below the initial energy in the strong-
coupling limit. When the ancillas are reset, the
sinusoidal energy decrease starts again from the
beginning, which is different from the case with-
out measurements. The black line in Fig. 3(b),
representing the weak-coupling limit with a re-
setting interval of Jδt = 0.2π, behaves similarly
to the Lindbladian as discussed earlier. Since
the measurement interval for the black line is
fast, it is not affected by the sinusoidal nature
of the measurement-free evolution. In contrast,
larger values of δt in the intermediate regime
0.4π < Jδt < 0.6π can exploit the sinusoidal
structure to minimize the energy in each step
of the process. However, in the strong-coupling
limit 0.6π < Jδt, larger values of δt, measured
after the sinusoidal structure has already started
to increase, resulting in slower convergence times.

Fig. 3(c),(d) further demonstrates the conver-
gence behavior of the energy/infidelity for differ-
ent values of δt. Both quantities show the fastest
convergence when in the intermediate regime
with Jδtopt ≈ π

2 . This is consistent with the
observations made in the previous paragraph.

It should be noted that for values of δt in the
strong-coupling limit, accurate simulations of the
system are not possible due to technical limita-
tions. As measurements become less frequent,
the quantum state accumulates more entangle-
ment, which cannot be adequately represented
by an MPS (see Sec. 4.3). As a result, the lines
in Fig. 3(c),(d) are discontinued once these tech-
nical limitations arise.

4.2 Convergence times

To further examine the convergence behavior, we
define the convergence time as the moment when
the ancillas cease to flip into an excited state (i.e.,
any state other than the initial state |↑⟩) and in-
stead stay in their initial state. This event occurs
when the system’s excitations are insufficient to
induce transitions excitations in the ancillas, al-
lowing only the imaginary time evolution term
in Eq. 15 to act on the state. As a result, the

cessation of ancilla flipping corresponds to the
cooling of the state, leading to a reduction in
the inverse temperature of the state, denoted by
∆β(t) = t ·Jδt. Once the state is considered con-
verged, an exponential decrease in energy, char-
acterized by E(t) ∝ e−Jt·δt∆E , where ∆E is the
energy gap of the AKLT Hamiltonian, is observed
(see App. A).

Fig. 4(a) displays the convergence time for the
system as a function of δt for different system
sizes. The optimal value of δt is found to be
around Jδtopt ≈ π

2 for all sizes, corresponding to
the intermediate regime where the sinusoidal pat-
tern of the energy evolution enables faster con-
vergence. In contrast, smaller values of δt in
the weak-coupling limit and larger values in the
strong-coupling limit result in slower convergence
times due to not exploiting the sinusoidal struc-
ture. It is evident that in the weak-coupling limit,
the procedure will always converge with a con-
vergence time proportional to 1

δt (see the dotted
lines in Fig. 4(a)), as the Lindbladian guarantees
it. However, the possibility of convergence in the
strong-coupling limit remains uncertain and will
be further explored in the following section.

The energy evolution behavior in the interme-
diate regime can be further understood by con-
sidering the case where the mapping operators
commute, [MS

l,α,M
S
l+1,α′ ] = 0 (see Sec. 2). In

this case, the optimal value for δt is Jδtopt = π
2 ,

and the energy fluctuates periodically with a si-
nusoidal pattern. This observation aligns with
those made in the intermediate regime. How-
ever, if the mapping operators do not commute,
the sinusoidal behavior may be altered, leading to
slightly different convergence times in the inter-
mediate regime and a complete departure from
the commuting case when entering the strong-
coupling limit. This commutation relation plays
a significant role in finding the optimal mapping
operators (see Sec. 5).

The system’s convergence time, analyzed in
Fig. 4(b) as a function of the system size, ex-
hibits a linear increase with the size of the chain.
This observation is attributed to the delocalized
nature of the AKLT state, featuring two spin-half
edge states. Preparing the AKLT state requires
entangling the two edges of the chain, which, for a
local protocol, scales linearly with the system size
at best. Although protocols employing non-local
feedback from measurement results, as demon-
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strated in [16], can achieve non-scaling conver-
gence speeds, these methods have limitations,
such as the inclusion of non-local measurement-
based feedback, which is not yet widely accessible
on current quantum platforms. In light of this,
we focus on a minimalist solution for stabilizing
these topological states in the NISQ era.

4.3 Strong-Coupling limit

In the previous section, the strong-coupling limit
was characterized by values of δt at which the sys-
tem’s energy ceases to display a sinusoidal pat-
tern and instead approaches a constant energy
value during each iteration of the protocol. This
section focuses on examining the system’s behav-
ior under these values of δt, with particular em-
phasis on the role of entanglement entropy. En-
tanglement entropy is computed by partitioning
a quantum system into two parts, A and B, and
determining the von Neumann entropy of the re-
duced density matrix for part A. This measure
quantifies the extent of quantum correlations be-
tween subsystems and is essential for investigat-
ing properties of quantum many-body systems,
such as phase transitions and entanglement scal-
ing. In this study, attention is directed toward
the average entanglement entropy across the pure
states in different trajectories characterized by
the probabilistic ancilla measurement outcomes.

It is a priori unclear whether the protocol
will continue to converge to the AKLT state for
larger time intervals, δt, between measurements.
Fig. 3(c) demonstrates that convergence decel-
erates as δt increases, but it remains uncertain
whether the protocol will cease converging at a
finite δt. In the absence of measurements, i.e.,
δt → ∞, the system is expected not to con-
verge to the AKLT state. Moreover, in the no-
measurement scenario, the entanglement of the
quantum system is anticipated to grow ballisti-
cally until it reaches the system’s maximal en-
tropy capacity, L

2 log(3). This section investigates
if there exists a finite value of the measurement
time interval δt, at which measuring and reset-
ting the ancillas fail to reduce the system’s en-
tropy, resulting in exponentially scaling conver-
gence times with system size, as observed in the
study of the Measurement Induced Entanglement
Phase Transition (MIEPT).

Models featuring MIEPT typically have two
different elements: a measurement element that

reduces entropy and a Hamiltonian evolution or
random circuit element that increases entropy. In
our protocol, the entropy-reducing element is the
reset of the ancillas, and the entropy-increasing
element is the Hamiltonian evolution. In systems
exhibiting MIEPT, measurements can counter-
balance entanglement growth induced by Hamil-
tonian evolution up to a certain ratio between
the two elements. In such systems, if an insuffi-
cient number of measurements are performed, an
entanglement phase transition may arise, leading
to entanglement growth.

Should a phase transition manifest in the
stroboscopic protocol, it would likely material-
ize as a deviation in the entanglement growth,
potentially impeding convergence to the tar-
get state. Nonetheless, our analysis employing
the entanglement-extrapolation technique out-
lined in App. B suggests that this model does
not exhibit a phase transition. Instead, it dis-
plays characteristics of a volume law phase even
for small values of δt.

The system’s entanglement initially increases
from its initial value, reaching a maximum at a
time tmax and an entanglement entropy Smax (see
Fig. 5(a)). Subsequently, the entropy decreases
until it reaches the entanglement entropy of the
AKLT state. The AKLT state’s entropy lies be-
tween log(2) and log(4), depending on the en-
tanglement degree of the two edge states. This
pattern is observed for all values of δt, with the
sole difference being that larger values of δt yield
higher values of Smax. Our aim is to ascertain
whether there exists a value of δt for which the
system’s entanglement begins to increase bal-
listically. This effect would cause Smax to in-
crease to L

2 log(3) and would exponentially slow
down convergence to the target state. The in-
crease in entropy would also hinder our ability
to accurately simulate the system, as the max-
imum entanglement entropy that an MPS can
represent is constrained by the bond dimension
to S ≤ log(bond). Nevertheless, this limita-
tion is partially alleviated by our entanglement-
extrapolation technique, detailed in App. B.

Fig 5(b) displays the maximal entanglement
entropy reached during the evolution, Smax, for
various system sizes, Ls. The results reveal that
Smax approaches the entropy of the AKLT state
as the time step δt nears zero and increases lin-
early for large δt. As the system size expands,
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Figure 5: (a) Shows the average extrapolated entanglement S̄ for different measurement intervals δt at a system
size of Ls = 15. Simulations at large δt produce more entanglement than can be accurately represented with a bond
dimension of 100 and are thus discontinued when they no longer match simulations with a lower bond dimension.
(b) Presents the maximum entanglement reached for different δt, which are effectively the maxima of Fig. (a) for
simulations with bond dimensions of 66 (dotted line) and 100 (continuous line) (c) Shows the time required to reach
the maximal entanglement. (d) Compares the convergence time to the time taken to reach the maximal entropy. (e)
Displays the entanglement buildup rate to the maximum Smax/tmax.

Smax grows approximately linearly, indicating a
volume law phase. Additionally, the time re-
quired to reach Smax, as depicted in Fig. 5(c),
appears to increase linearly with large δt. Impor-
tantly, no lattice size-dependent discontinuity is
observed in either tmax, Smax, or their derivatives,
suggesting the absence of a phase transition. In-
triguingly, even without biasing the dynamics by
resetting the ancillas, the entanglement entropy
attains a stationary value similar to Smax ob-
served in the reset-and-measure protocol. The
only distinction to the data shown here is that
the entropy does not decrease to the target state
because the dynamics are no longer biased with-
out the reset. Nonetheless, even in this modified
protocol, there is no evidence of a phase transi-
tion.

Remarkably, the time required to reach maxi-
mal entanglement exhibits a behavior similar to
the convergence time, with a minimum around

Jδt = π
2 . For large δt, tmax can be accurately

calculated, as shorter simulations are necessary.
The same linear behavior is observed for tmax as
for the convergence time tconv when δt is large.
Specifically, tconv appears to be two to three times
larger than tmax (see Fig. 5(d)). Since tmax does
not diverge at any point, it is plausible that tconv
will not diverge either. If this trend persists for
larger δt, it would imply that the protocol con-
verges after a fixed number of measurements for
larger δt.

The analysis of the quantity Smax
Jtmax

, illustrated
in Fig. 5(e), provides valuable insights. This
quantity serves multiple purposes: it reflects the
average rate at which the system attains maximal
entanglement entropy, and it remains invariant
with respect to lattice size, suggesting the ab-
sence of a phase transition. Initially, this quan-
tity increases due to the minimum at Jδt = π

2
in tmax, but it later converges to the ratio of the
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corresponding slopes of the linear functions Smax

and tmax in the strong-coupling limit. Examining
this quantity further corroborates the conclusion
that no phase transition exists in the system, thus
emphasizing the protocol’s reliability in converg-
ing to the target state.
Simulations were performed using bond dimen-

sions of 66 and 100 to validate the findings. Ow-
ing to the necessity of executing 128 distinct tra-
jectories for each parameter set, only small bond
dimensions were employed. In particular, 13,000
simulations were required to obtain the data pre-
sented in Fig. 5(b).

5 Optimal Mapping Operators
In this section, we analyze the influence of the
choice of mapping operators Mα on the dynam-
ics and convergence time required to prepare a
target state. To ensure that the mapping opera-
tors map into the AKLT state, they must satisfy
two conditions: first, they must map away from
the five states in the spin-2 subspace and into
the spin-(0,1) subspace (see Fig. 2); second, they
must contribute to the Hamiltonian as outlined
in Eq. 14.
If the mapping operators satisfy the com-

mutation relations [MS
l,α,M

S
l′,α′ ] = 0 and

[MS
l,α,M

S†
l′,α′ ] = 0 for all l ̸= l′, the dynamics ex-

hibit a sinusoidal pattern, and the target state
can be reached after a single measurement at
Jδt = π

2 time, as discussed in Sec. 2. In prac-
tice, however, it is not feasible to satisfy these
conditions for complex target states such as the
AKLT state.
If the commutation relations are not satisfied,

the operators interfere with each other, leading
to the formation of undesired entanglement in
parts of the system orthogonal to the target state.
The relationship between entanglement growth
and convergence times is explored in the previous
section.
In order to minimize entanglement generation

and thus reduce convergence times, the goal is to
approximate the commutation relation as closely
as possible. This goal is achieved by minimizing
the commutation measure:

comm(M) =
∑

l ̸=l′,α,α′

∥[Ml,α,Ml′,α′ ]∥2

+ ∥[Ml,α,M
†
l′,α′ ]∥2. (19)

For two nearest-neighbor mapping operators that
are identical for all lattice sites, the measure sim-
plifies to:

comm(M) =∥[Ml,1,Ml+1,1]∥2 + ∥[Ml,1,Ml+1,2]∥2

+∥[Ml,2,Ml+1,2]∥2 + ∥[Ml,1,M
†
l+1,1]∥2

+∥[Ml,1,M
†
l+1,2]∥2 + ∥[Ml,2,M

†
l+1,2]∥2.

(20)

Note that all mapping operators are also con-
strained by Eq. 14.
In the previous sections, the mapping opera-

tors:

1M
S
l,1 =

[
|1, 1⟩ ⟨2, 2| + 1√

2
|1, 0⟩ ⟨2, 0| + |1,−1⟩ ⟨2,−2|

]
l,l+1

1M
S
l,2 =

[
|1, 1⟩ ⟨2, 1| + 1√

2
|1, 0⟩ ⟨2, 0| + |1,−1⟩ ⟨2,−1|

]
l,l+1

(21)

have been used. These mapping operators have
a commutation measure of comm(1M) = 18.2
which is higher than the other mapping opera-
tors we will introduce in this section. The 1M
operators were chosen for symmetry reasons be-
fore the relationship between the commutation
measure and the convergence time was found.

The effectiveness of the commutation measure
as a criterion for selecting optimal mapping op-
erators is demonstrated by analyzing a parame-
terized set of operators:

2M
S
l,1(α) =

[
|1, 1⟩ ⟨2, 2| + α |0, 0⟩ ⟨2,−1|

+ |1,−1⟩ ⟨2,−2|
]

l,l+1

2M
S
l,2(α) =

[
|1, 1⟩ ⟨2, 1| +

√
1 − α2 |1,−1⟩ ⟨2,−1|

+ |1, 0⟩ ⟨2, 0|
]

l,l+1
. (22)

Fig. 6(c) illustrates the relationship between the
convergence time and commutation measure for
different values of α. Both measures exhibit a U-
shaped pattern, with a minimum at α = 0.404.
This observation suggests that the commutation
measure can serve as a reliable indicator for se-
lecting optimal mapping operators.

To optimize the mapping operators, we em-
ployed gradient descent techniques to minimize
the commutation measure. Each mapping op-
erator was parameterized using a 4 × 5 matrix,
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Figure 6: This figure shows the convergence behavior of different mapping operators at a system size of L = 10. (a)
shows the energy per bond for four different mapping operators: the (1) blue curve represents the mapping operators
used in the rest of the paper, the (2) red curve represents an improved version of the mapping operators, the (3)
yellow curve represents mapping operators optimized to minimize the commutation measure, and the (4) gray dotted
curve represents mapping operators optimized to minimize the commutation measure while not enforcing the equation
(Eq. 14). (b) shows the entanglement entropy for the different mapping operators. (c) shows the convergence time
and the commutation measure for mapping operators 2M(α) for different values of α. The minimum value for both
measures is observed at α = 0.404, marked by a red cross in the legend of sub-figure (a) and in sub-figure (c).

where each matrix element maps a state from the
spin-2 subspace to the spin-(0,1) subspace.

The resulting optimized operators were
minimized to a commutation measure of
comm(3M) = 15.5 with the form:

α = 0.8482

3M
S
l,1 =

[
|1, 1⟩ ⟨2, 2| + |1, 0⟩ ⟨2, 1|α

+ |0, 0⟩ ⟨2, 1|
√

1 − α2

+ |1,−1⟩ ⟨2, 0| 1√
2

]
l,l+1

3M
S
l,2 =

[
|1,−1⟩ ⟨2,−2| + |1, 0⟩ ⟨2,−1|α

+ |0, 0⟩ ⟨2,−1|
√

1 − α2

+ |1, 1⟩ ⟨2, 0| 1√
2

]
l,l+1

. (23)

The table below presents the results for con-
vergence time and commutation measures associ-
ated with the three aforementioned mapping op-
erators.

comm tconv

1M 18.2 10.94
2M 16.7 9.51
3M 15.5 7.66

A significant observation is the correlation be-
tween the decrease in commutation measure and
the decrease in convergence time. The energy

evolution for these mapping operators can be
examined in Fig. 6(a). Furthermore, Fig. 6(b)
shows that mapping operators with lower com-
mutation measures produce less undesired entan-
glement, as hypothesized.

It is worth mentioning that the causal relation-
ship between the commutation relation and con-
vergence time was established only after most of
the computationally expensive simulations were
completed. In the previous section, the mapping
operators in Eq. 21 were used. They perform ap-
proximately 20% worse than the fully optimized
ones Eq. 21 but, no qualitative change between
the time evolution was found. Consequently, the
original choice of mapping operators was retained
to conserve computational resources.

An important observation is that not enforcing
the Hamiltonian constraint, as shown in Eq. 14,
allows for smaller commutation measures. How-
ever, the resulting dynamics exhibit slow con-
vergence, as shown by the black dotted line in
Fig. 6(a). This slow convergence is due to the
weak mapping of certain states in the spin-2 sub-
space to the spin-(0,1) subspace. Such cases oc-
cur when the mapping operators sum to an oper-
ator with eigenvalues unequal to one for eigenvec-
tors in the spin-2 subspace. It should be noted
that the choice of optimal mapping operators is
not unique. Several alternatives with compara-
bly small commutation measures perform equally
well; however, the simplest-looking option is pre-
sented here. It is possible to apply the same
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procedure with three mapping operators instead
of two. Nonetheless, using three mapping oper-
ators requires additional ancilla qutrits and re-
sults in higher commutation measures due to the
increased number of terms in the commutation
relation. An alternative mapping approach to
map away from the spin-2 subspace is to use dif-
ferent operators for even and odd sites. This
method results in a reduced commutation mea-
sure of comm(M) = 11.5. However, the con-
vergence rate of the operators obtained by this
approach is slow, suggesting that further condi-
tions must be satisfied for fast convergence rates.
These conditions are likely to be satisfied auto-
matically if the operators used for odd and even
sites are identical.

6 Dephasing Noise

We test the protocol’s resilience to dephasing er-
rors, which erases quantum entanglement during
the dynamics. We consider here Markovian pro-
cesses described by the Lindbladian

χ̇ = −i[H,χ] + ϵ
∑

l,α∈{↑,0,↓}

[
Pα

l χP
α†
l − 1

3χ
]
,

(24)

which affects both the system and ancillas
through a Lindbladian Here, the Pα operators
project the system and ancillas into spin-up,
spin-zero, or spin-down states.

Dephasing is implemented by performing ran-
dom projection measurements without resetting,
with probability P (ϵ) = 1−e−ϵdt applied to both
the system and the ancillas.

A metric for evaluating the performance of the
protocol is the stationary mean energy Eb =

1
k(L−1)

∑N
i=N−k Tr(Hχ(ti)), which indicates the

degree of convergence to the target state upon
reaching equilibrium (see Fig. 7(a)). For error
rates of ϵ = 0.015 and 0.030, the optimal δt re-
mains approximately π

2 . This is consistent with
the optimal δt obtained in the absence of errors,
leading to the conclusion that the optimal δt is
independent of the error rate.

It is crucial to evaluate the robustness of the
protocol against different noise levels. For this
purpose, both the infidelity and the mean energy
per bond at equilibrium are plotted against the
error rate in Fig. 7(b). Stopping the protocol

at a predetermined time when equilibrium is as-
sumed to be reached is inefficient. Instead, the
information obtained from measuring the ancillas
can be used to determine when to stop the evolu-
tion of the state, this is done in a similar fashion
to Matthies et al. [27]. The state’s evolution is
stopped when no ancillas have been measured in
an excited state for a duration of twait = 4δt, at
which point fidelity and energy per bond are mea-
sured. Importantly, extending the waiting time
would not substantially improve fidelity to the
target state, as the primary factor affecting per-
formance at large twait is the likelihood of an er-
ror occurring during the final Hamiltonian evolu-
tion. This simple selection mechanism enhances
fidelity by approximately a factor of three. This
allows the self-correcting nature of the protocol
to achieve even better fidelities, exceeding a fi-
delity of F = 0.99 at ϵ = 10−3, with the help of
the stopping time selection scheme.

Fig. 7(c) shows the average time for the sys-
tem to exhibit no ancilla flips for twait = 4δt. For
small error rates, these values converge to the
error-free convergence time discussed in Sec. 4.2.
For larger error rates, an exponential growth
with the error rate is observed. This exponential
growth is expected, as higher error rates make
it exponentially less likely to encounter a period
where no excited ancillas are measured.

7 Conclusion

In conclusion, this study investigated the poten-
tial applications of a stroboscopic map for quan-
tum state preparation, based on the periodic re-
setting of ancillary degrees of freedom. We fo-
cused on the protocol introduced by Gefen et al.
[28] for unravelling quantum state steering into
states with frustration-free parent Hamiltonians,
and went beyond the regimes discussed there.
The AKLT state was chosen as a test case due
to its simplicity, topological symmetry-protected
properties, and potential usefulness for quantum
computation. Although the protocol is applica-
ble to other states with similar features, such as
the cluster state, the investigation primarily cen-
tered on the AKLT state. This study provided
insights into different regimes dictated by the an-
cilla resetting time.

Two distinct limits of the system’s evolution
were identified: the weak-coupling limit, re-
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Figure 7: The figure demonstrates the dependencies of mean bond energy Eb, infidelity 1 − F , and convergence
time tconv on error rates ϵ and measurement time intervals δt for a system size of L = 10. In subplot (a), ϵ is held
constant at 0.015 and 0.03, while δt varies. Subplots (b) and (c) employ a fixed δt of π

2 , with ϵ serving as the variable
parameter. In (b), equilibrium values for energy per bond are calculated using Eb = 1

k(L−1)
∑N

i=N−k Tr(Hχ(ti)). The
selection scheme’s energies (red) and infidelities (black) are assessed by measuring observables after four consecutive
evolution and measurement cycles without ancilla flips. In (c), the duration required to measure four successive
cycles without any ancilla flipping is depicted for different error rates. At low error rates tconv converges to noise-free
convergence time.

sembling Markovian dynamics and described by
a Lindblad equation, and the strong-coupling
limit, characterized by increasing entanglement
entropy production. A broad optimum between
these two limits was found around Jδt ≃ π

2 , a
value identified in a simplified model of commut-
ing mapping operators. In turn, a measure of
non-commutativity was used to determine opti-
mal mapping operators: the higher such a mea-
sure is, the more entanglement entropy is pro-
duced, and the slower the convergence.

In the strong-coupling limit, despite the
evident peak of generated entanglement, we
identified no phase transition in the model.
To this end, we introduced an entanglement-
extrapolation technique and highlighted that no
lattice size dependent discontinuity emerged in
either the time to reach the peak or its value.
We, therefore, concluded that the protocol con-
verges also at large δt, albeit slower and slower.

Furthermore, we demonstrated that the pro-
tocol is resistant to dephasing noise, achieving a
fidelity F > 0.99 for an error rate of ϵ = 10−3.
The optimal resetting time remained approxi-
mately Jδt = π

2 , and the protocol exhibited a
self-correcting nature. A stopping time selection
scheme based on the ancilla measurement results
was introduced, which improved fidelity by ap-
proximately a factor of three.

It is worth noting that the recent work by
Smith et al. [16] presents a method that out-
performs the approach in preparing specifically

the AKLT state. However, their method relies
on non-local measurement-based feedback, which
is not yet widely accessible on current quantum
platforms. This work contributes to the under-
standing of alternative or complementary state
preparation methods, where the roles of measure-
ment and non-locality may be removed.

Future research directions include studying the
behavior of the protocol for different Hamiltoni-
ans and target states, as well as exploring alter-
native strategies for choosing the mapping op-
erators, such as incorporating feedback and us-
ing machine learning methods. Overall, the re-
sults can contribute to the development of noise-
resistant state preparation routines, especially in
the context of noisy intermediate-scale quantum
(NISQ) devices.
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A Imaginary time evolution
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Figure 8: The figure shows the exponential coefficient c of the energy evolution E(t) = ect+a for different values
of δt after the system has reached the convergence time tconv. A linear fit of c(δt) for Ls = 15 gives a slope of
∆̃E = −0.351 ± 0.009, which is consistent with the theoretical value for the energy gap.

This section presents an analysis of the dynamics’ evolution beyond tconv, which represents the time
when the ancillas no longer flip into an excited state. The lack of ancilla flipping effectively causes
only the imaginary time evolution term in Eq. 15 to act on the state. If this assumption holds true,
the energy gap of the AKLT Hamiltonian can be readily obtained. By comparing this energy gap
to values reported in the literature, we can confirm the accuracy of our assumption regarding the
protocol reducing to imaginary time evolution.

At tconv, the state closely approximates the AKLT state, allowing us to assume a low-temperature
thermal state:

ρ = |E0⟩ ⟨E0|
1 + e−∆Eβ0

+ |E1⟩ ⟨E1| e−∆Eβ0

1 + e−∆Eβ0
(25)

where |E1⟩ denotes the first excited state, ∆E represents the energy gap, and β0 is the inverse tem-
perature. Evolving the state with the imaginary time evolution term in Eq. 15 results in:

e− t
2 HAKLTδtρe− t

2 HAKLTδt = |E0⟩ ⟨E0|
1 + e−∆Eβ0

+ |E1⟩ ⟨E1|
1 + e∆E(β0+δt·t) (26)

E(t) = ∆E
1 + e∆E(β0+δt·t) (27)

Consequently, if β0 is sufficiently large, the energy should scale as E(t) ∝ e−∆Eδt·t. To compare this
relationship with the simulation data, the exponential factor c(δt) can be calculated by fitting the
exponential E(t) = ect+a to the energy of the trajectories after tconv. This fitting produces the data
shown in Fig. 8, which displays a linear decrease until it starts to flatten near δt = π

2 . The linear

part was fit with c(δt) ≈ −δt∆̃E + b, yielding ∆̃E = 0.351 ± 0.009. This value is consistent with the
energy gap of the AKLT Hamiltonian, ∆E = 0.3501 [56], thus corroborating our comprehension of
the dynamics.

B Entanglement extrapolation

In this section, we introduce a novel technique to extrapolate the entanglement of a Matrix Product
State (MPS). This method is crucial for determining the validity duration of an MPS simulation and
for addressing the question of whether an entanglement phase transition can be observed.
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Figure 9: (a) The entanglement is extrapolated from a bond dimension of 44 using Eq. 29. (b) The maximal
entanglement achieved in a simulation for a system size of Ls = 15 is shown. By comparing extrapolated and non-
extrapolated results, we can see that the extrapolated values at a bond dimension of 44 match the more expensive
simulation at a bond dimension of 100. (c) The same plot as in (b) is shown, but this time comparing different
system sizes Ls.

The entanglement of a quantum system can be computed by bisecting the system and performing

a Singular Value Decomposition (SVD) |ψ⟩ =
∑2L/2

i λi |ψi
L⟩ ⊗ |ψi

R⟩. Once the singular values are

obtained, the entanglement entropy can be calculated using the expression S =
∑2L/2

i λ2
i log(λ2

i ). The
tensor network technique involves retaining only the largest λi, so that the new entanglement is

pi = λ2
i∑cut

i λ2
i

S(cut) =
cut∑
i

pilog(pi). (28)

If the discarded λi are excessively large, the simulation is no longer valid.
Our approach approximates the magnitude of the discarded eigenvalues through a four-step process.

First, simulations are conducted at both small and large bond dimensions. Second, the entanglement
is computed for various cutting points at both bond dimensions. Third, the saturation entanglement
entropy is extrapolated by fitting S(cut) with cut < 0.9bondsmall:

S(cut) = Ssat tanh
(
log(cut)σ1

Ssat
+ log(cut)2σ2

Ssat

+
√
log(cut)σ3
Ssat

)
. (29)

Lastly, the resulting saturation points Ssat are compared for both bond dimensions. If they match,
the extrapolation is deemed valid, and a new extrapolation is performed with S(cut) with cut <
0.9bondlarge.
It is important to note that the magnitude of the σ1 term indicates the number of eigenvalues

needed to reach the saturation point, while the terms σ2 and σ3 slightly adjust the curvature of the
saturation curve and are nearly zero for most extrapolations. Adding more terms to the expansion
does not affect the saturation point Ssat. An example of this procedure is illustrated in Fig. 9(a).
In Fig. 9(b), the maximal entanglement achieved in the simulation Smax is presented for bond

dimensions of 44 and 100, with extrapolation both enabled and disabled. It is evident that although the
non-extrapolated values diverge, the extrapolated ones yield consistent results. Given that conducting
a simulation at bond dimension 100 is eight times more resource-intensive than at bond dimension 44,
these findings are promising.
Lastly, Fig. 9(c) displays the maximal entropy observed in the simulation for various reset intervals

δt across different lattice sizes. The values of Smax without employing the extrapolation technique

Accepted in Quantum 2024-02-24, click title to verify. Published under CC-BY 4.0. 20



0 5 10 15 20 25 30
Jt

10 2

10 1

100

E b
| . . .
|random
|00. . .
| . . .

(a)

0 5 10 15 20 25 30 35
Jt

0.0

0.5

1.0

1.5

2.0

2.5

3.0

S

(b)

Figure 10: The figure shows the measurement-induced steering of three different product states (blue: all spins
pointing upwards, green: all spins in the zero component, and red: alternating spin up and down), as well as a
random initial MPS state with a bond dimension of 44 (yellow). Panel (a) shows that states with lower initial energy
converge faster, as indicated by the smoothed energy per bond Eb. Panel (b) reveals that the average bipartite
entanglement entropy increases and then decreases for the product states but steadily decreases for the random
states, resulting in entropies between log(2) and log(4). This indicates a different mixture of the four AKLT states
based on the initial state.

begin to flatten as they approach the maximal entropy that the MPS can represent log(100). In
contrast, the extrapolated values increase linearly until their validity can no longer be verified. This
demonstrates the importance of applying the extrapolation technique to ensure the reliability of the
results.

C Different initial states
In this appendix, we explore the robustness of our results by considering four different initial states.
These states consist of: all spins pointing up (blue); all spins in the zero component (green); alternating
spin up and down (red); and a random initial MPS state with a bond dimension of 44 (yellow). As
seen in Fig. 8(a), states with lower initial energy converge faster, as expected since they are closer
to the ground state. Fig. 8(b) shows that the average bipartite entanglement entropy increases and
then decreases for the product states, but steadily decreases for the random states. This results in
entropies between log(2) and log(4), indicating a different mixture of the four AKLT states depending
on the initial state. We attribute this to the fact that the product state with all spin components in
the zero state is closer to the AKLT state in which the two edge modes are entangled.
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Summary
The efficient preparation of quantum states is a cornerstone for advancing quantum
technologies. Standard variational quantum circuits (VQCs), discussed in Chap. 5, of-
fer a learnable approach but frequently require circuit depths that scale unfavorably
with system size. As an alternative, measurement-based protocols incorporating adap-
tive feedback (Sec. 4.3) have emerged as promising approaches, potentially achieving
constant-depth preparation. However, the design of such adaptive protocols remains
a nontrivial task, and existing autonomous learning methods, including reinforcement
learning and greedy optimization, face significant scalability and optimality limitations
(see Sec. 4.4).

In Publication [II], a method that autonomously discovers efficient state preparation
strategies that exploit non-unitary quantum dynamics, surpassing purely unitary ap-
proaches (Sec. 4.1), is presented.

The key contributions and findings of this work are as follows:
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A novel measurement-based VQC architecture is developed, incorporating intermediate
projective measurements and classical feedback. This approach enables the simultaneous
learning of both the optimal unitary operations and the feedback strategies required to
steer the quantum state towards a target state.

A new class of local minima specific to measurement-based variational circuits is identi-
fied. Mitigation strategies are proposed, including the use of different update frequencies
for pre-measurement and feedback unitaries, as well as ancilla-based regularization tech-
niques. These strategies partially alleviate the newly identified optimization challenges
and build upon the broader discussion of local minima presented in Sec. 5.1.2.

The self-learning protocol is showcased by preparing the spin-1 Affleck-Kennedy-Lieb-
Tasaki (AKLT) state, a canonical example of a symmetry-protected topological (SPT)
phase (see Sec. 2.1.4). Comparison with known analytical measurement-based protocols,
such as that proposed by Smith et al. [27], reveals that the learned approach can identify
comparable solutions, often utilizing slightly shallower pre-measurement circuits.

Scalability is further addressed by extending the framework to larger system sizes through
translationally invariant VQC ansätze and the use of recurrent neural networks (RNNs)
to parameterize the adaptive feedback mechanism. This demonstrates a viable pathway
for addressing increasingly large quantum systems.

Notably, the method is capable of deterministically preparing a specific AKLT edge state
(with both edge spins up), for which no analytical deterministic low-depth protocol was
previously known. This result highlights the framework’s potential to autonomously
discover new quantum algorithms beyond existing analytical methods.

While the protocol is capable of representing efficient quantum state preparation strate-
gies, the abundance of local minima presents a significant challenge to training. This
difficulty is particularly pronounced in shallow circuits, which are desirable for imple-
mentation on near-term devices as they are less prone to noise, but are especially sus-
ceptible to underparameterization and poor optimization landscapes (see Sec. 5.1.2).
Consequently, while shallow circuits are an essential objective, their vulnerability to
local minima suggests they must be approached with caution.

Numerical simulations of quantum dynamics and gradient computations for the VQCs
are performed using matrix product state (MPS) techniques (Sec. 2.1), with gradient
evaluation strategies detailed in Sec. 5.2.3. These simulations are implemented using
the custom-developed software package mVQE.jl [46].

This publication complements the dissipative state preparation approach explored in
Publication [I] (Sec. 4.2), emphasizing adaptive measurement and feedback over purely
dissipative dynamics. It provides a robust framework for the design and optimization
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of non-unitary quantum state preparation protocols, advancing the feasibility of imple-
menting such methods on near-term quantum hardware. Future research may extend
this learning-based framework to two-dimensional quantum systems, potentially employ-
ing finite PEPS representations (Sec. 2.2) as developed in Publication [III]. This would
be particularly relevant for practical applications, as many quantum states of interest
arise in two-dimensional systems.

In particular, the extension to topological states such as the toric code presents a com-
pelling direction. These states are essential in the context of fault-tolerant quantum
computation due to their nonlocal encoding of quantum information. Adapting the
feedback-based learning framework to prepare such states could allow not only for their
accurate preparation but also for the deterministic selection of the encoded logical qubit
state. This would parallel the results achieved for the AKLT edge mode and could over-
come limitations of passive preparation protocols, which lack control over logical state
selection. However, due to the inherent long-range entanglement of topological states, a
speedup over unitary-only methods might not be feasible.

Another difficulty might be that to optimize the circuit efficiently in this setting, it may
be necessary to relax the constraint on circuit shallowness, as overly shallow ansätze are
especially prone to local minima that hinder convergence.
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rithms. He carried out all numerical simulations and analyses. He wrote the first draft of
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2Institute for Theoretical Physics, University of Cologne, 50937 Köln, Germany

This work introduces a self-learning pro-
tocol that incorporates measurement and
feedback into variational quantum cir-
cuits for efficient quantum state prepara-
tion. By combining projective measure-
ments with conditional feedback, the pro-
tocol learns state preparation strategies
that extend beyond unitary-only meth-
ods, leveraging measurement-based short-
cuts to reduce circuit depth. Using the
spin-1 Affleck-Kennedy-Lieb-Tasaki state
as a benchmark, the protocol learns high-
fidelity state preparation by overcoming a
family of measurement-induced local min-
ima through adjustments of parameter up-
date frequencies and ancilla regulariza-
tion. Despite these efforts, optimization
remains challenging due to the strongly
non-convex optimization landscapes inher-
ent to variational circuits. The approach
is extended to larger systems using trans-
lationally invariant ansätze and recurrent
neural networks for feedback, demonstrat-
ing scalability. Additionally, the success-
ful preparation of a specific AKLT state
with desired edge modes highlights the
potential to discover new state prepara-
tion protocols where none currently ex-
ist. These results indicate that integrating
measurement and feedback into variational
quantum algorithms provides a promis-
ing framework for quantum state prepa-
ration.

1 Introduction

Quantum technologies have significant potential
to address key challenges in quantum simula-
tion, communication, and information process-
ing. As such, the efficient preparation of high-

fidelity quantum states and the creation of ro-
bust state preparation protocols are critical, par-
ticularly for noisy intermediate-scale quantum
(NISQ) devices [1]. Additionally, quantum mea-
surements are becoming an integral part of many
new circuit paradigms [2, 3, 4, 5], emphasiz-
ing the importance of incorporating measure-
ment and feedback mechanisms into quantum
state preparation. In this work, we explore the
autonomous learning of variational quantum cir-
cuits with measurement and feedback for quan-
tum state preparation.

Variational quantum circuits (VQCs) [6] hold
promise for a wide range of quantum computing
applications. A parameterized quantum circuit
is constructed from gates parameterized by their
angles. Its parameters are optimized to minimize
a cost function, often infidelity, in the context
of state preparation. Preparing one-dimensional
long-range entangled quantum states using local
two-qubit variational quantum circuits (VQCs)
typically requires a circuit depth that scales lin-
early with the system size.

However, measurement-based quantum cir-
cuits can be analytically derived for constant-
depth state preparation by exploiting the non-
unitary character of quantum measurements and
the use of adaptive feedback. These methods
have been applied to a broad class of target
states, including toric code states, symmetry-
protected topological (SPT) phases, fracton
phases, and Schrödinger’s cat states [7, 8, 9,
10], as well as certain non-Abelian topologi-
cal orders [11]. Adaptive measurement strate-
gies further extend these capabilities by en-
abling the fusion of small resource states into
complex many-body targets. This approach
has led to deterministic, constant-depth proto-
cols that have been demonstrated experimentally,
for instance, in the preparation of the AKLT
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state [12]. The feasibility of such fusion-based
schemes depends on the entanglement structure
of the target state. Theoretical results iden-
tify features such as flat entanglement spectra
in SPT phases as crucial for exact prepara-
tion [13, 14, 15], and also extend to symmetry-
broken and topologically ordered phases [16]. Al-
lowing for approximate rather than exact prepa-
ration further reduces circuit complexity. For
example, translationally invariant matrix prod-
uct states can be prepared approximately with
depth scaling as O(loglog(N/ϵ)) [17], where ϵ
is the allowed error. In addition, probabilis-
tic schemes permit constant-depth preparation of
states such as Dicke and W-states by accepting
non-deterministic outcomes [18].

Incorporating these ideas, this work extends
VQCs to include non-unitary measurements and
feedback, enabling the protocol to learn funda-
mentally different state preparation techniques
than standard VQCs and potentially reducing
the required circuit depth. These measurement-
based protocols exploit the non-unitary nature of
quantum measurements to construct non-unitary
gates. However, one cannot apply non-unitary
gates directly; rather, one must design a set of
non-unitary gates that, when combined, form
a completely positive trace-preserving (CPTP)
map from which one gate is randomly ap-
plied. The challenge is to design a CPTP map
that, through the application of conditional feed-
back, ensures that the desired quantum state is
achieved regardless of the specific non-unitary
gate that is randomly selected by quantum me-
chanics. In this work, this task is learned auto-
matically using VQCs.

Despite their potential, VQCs face significant
challenges that hinder their practical implemen-
tation. One prominent problem is the occur-
rence of barren plateaus in the optimization land-
scape of deep circuits, where the gradients of the
parameters approach zero, rendering the opti-
mization process infeasible. While measurement-
based methods at shorter circuit depths may
avoid these plateaus, they introduce new opti-
mization challenges. Shallow quantum circuits,
while less prone to barren plateaus, can be diffi-
cult to optimize due to the presence of local min-
ima [19, 20]. Local minima can be partially miti-
gated in specific cases, such as the AKLT model,
by incorporating symmetry constraints into the

variational ansatz [21]. However, there is no gen-
eral strategy for addressing this issue across dif-
ferent models. In this work, additional local min-
ima that are unique to measurement-based VQCs
are discussed and mitigation strategies are dis-
cussed.

Autonomous learning of measurement and
feedback protocols for state preparation have
been studied in the literature with two different
methods.

In the first method, reinforcement learning
is used to develop a complete policy that de-
termines dynamically both when measurements
should be performed and which unitary opera-
tions should be applied based on those measure-
ments. This approach shows success in the single-
particle case [22, 23] and for two-particle sys-
tems [24, 25]. However, we note that given the
evidence presented in the papers we expect these
methods to have significant challenges when ex-
tended to multi-qubit systems.

In the second method, greedy optimization
techniques have been proposed [26, 27] to prepare
multi-qubit states. These methods periodically
optimize unitaries to maximize fidelity after each
weak measurement. More precisely some ancillas
A are introduced and coupled to the system
with unitaries and the measured projectively.
Each of these unitaries is learned indepen-
dently like: |ψ′

i(θi, ...)⟩ = U(θi) |ψi−1(θi−1, ...)⟩
with θi = minθi

loss(|ψ′
i(θi, ...)⟩, and

|ψi(θi, ...)⟩ = ⟨M |A |ψ′
i(θi, ...)⟩ sampled from

M ∈ ∥⟨M |A |ψ′
i(θi, ...)⟩∥2. This makes them

suffer from two major shortcomings. First,
implementing these methods experimentally
requires running a simulated version of the
experiment in parallel to optimize the unitary
operations on the fly depending on the measure-
ment results obtained in the experiment. Second,
the cost function used in these approaches is
inherently greedy, reacting to measurement
results rather than proactively incorporating
them into the optimization. Consequently, these
limitations hinder the preparation of states with
more than a few qubits and prevent the learning
of feedback mechanisms such as those proposed
by Smith et al. [12], where the pre-measurement
unitary circuit is designed in such a way that
after the measurement all possible resulting
states can be mapped to the target state using
two-body gates. For this, all unitaries must
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be learned at the same time for all possible
measurement outcomes, which is done in our
work.

Our learning technique can handle larger sys-
tems than the aforementioned protocols using re-
inforcement learning because it has a fixed struc-
ture (VQCs), simplifying the learning problem.
However, since our protocol is non-greedy and
learns the complete feedback step by learning all
unitaries at the same time, it can effectively learn
which CPTP map and corresponding feedback to
apply automatically, and as such can learn more
intricate protocols like the one by Smith et al.
[12].

Mixing variational circuits and measure-
ment has also been discussed in the realm
of Measurement-based quantum computing
(MBQC), where VQE can be used to de-
cide which basis to measure with during the
circuit [28].

Similar concepts have been explored in the
study of error-correcting codes, where rein-
forcement learning algorithms attempt to auto-
mate the discovery and implementation of error-
correcting protocols. The complexity of this
task forces its decomposition into subtasks that
are handled by different reinforcement learning
agents, such as the decoding of known stabilizer
codes [29, 30, 31], or the spatial deformation of
codes for better logical error rates [32]. Although
learning the complete error-correcting task simul-
taneously would be ideal, it remains highly chal-
lenging and is only accomplished with strategies
that do not scale with system size in [33] for
a small system of four qubits. This highlights
the difficulty of learning full measurement and
feedback-based protocols, which our work ad-
dresses in the context of state preparation.

During the final preparation of this
manuscript, various manuscripts were pub-
lished using a similar framework. In [34], a
similar approach is employed but without mea-
surement feedback, relying solely on projective
measurements as a non-unitary operation. In
[35, 36], the protocols largely mirror those
presented here, with minor variations, but
applied to the GHZ state. In Yan et al. [35],
the authors propose a method to experimentally
estimate the gradients of the protocol’s param-
eters on a Quantum Computer. In Alam et al.
[36], a Density Matrix Renormalization Group

(DMRG)-inspired sweeping optimization is
introduced to avoid measurement-induced local
minima in the optimization landscape. For
completeness, we have added a short analysis of
the GHZ state using our methodology in A.

However, we expect this to worsen the above-
mentioned vanilla-VQC local minima [19, 20],
which should still be present in addition to
measurement-induced ones. Our internal exper-
iments on vanilla-VQCs (inspired by Pollmann
et al. [37]) indicate indeed that sweeping does
not scale well with system size and tends to
get trapped in local minima for larger systems.
Therefore, the application of a pure sweeping ap-
proach to larger measurement-based VQCs re-
mains unclear to us and constitutes an interest-
ing direction for future research. Consequently,
we did not pursue this approach in our work, al-
though a hybrid approach could be beneficial.
Instead, we found an explanation for why the
measurement-induced local minima occur and
addressed them directly for a system size of 16
qubits.

This paper is organized as follows: In Sec. 2,
we present our self-learning protocol that inte-
grates measurement and feedback into VQCs for
efficient quantum state preparation. The pro-
tocol employs a sequence of parameterized uni-
taries and projective measurements, using feed-
back from measurement outcomes to inform sub-
sequent operations. This approach allows the
protocol to learn non-unitary state preparation
techniques that can reduce the circuit depth. In
Sec. 3 and 4, we apply our protocol to the prepa-
ration of the spin-1 AKLT state, using it as a
benchmark to evaluate the learning capabilities
of our approach, which if optimized naively is
plagued by local minima. We propose two strate-
gies to mitigate these: adjusting the parameter
update frequencies between the initial unitary
and feedback operations (detailed in Sec. 4.1),
and introducing ancilla regularization to promote
a more uniform distribution of measurement out-
comes (discussed in Sec. 4.2). In Sec. 5, we com-
pare the learned protocol to the analytically de-
rived protocol proposed by Smith et al. [12].
We analyze the similarities and differences using
quantum mutual information, highlighting how
the learned protocol can achieve similar or bet-
ter performance with potentially shallower cir-
cuits by requiring less mutual information prior
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to measurement. In Sec. 6, we extend our ap-
proach to larger systems by employing a trans-
lationally invariant ansatz and utilizing a Re-
current Neural Network (RNN) for the feedback
function. We demonstrate our protocol’s scal-
ability and discuss the RNN’s performance, but
note challenges in performing optimal corrections
for large systems. In Sec. 7, we explore the prepa-
ration of a specific AKLT state with both edge
modes in the spin-up configuration—a task for
which no known deterministic, low-depth proto-
col exists. We show that our learning protocol
can discover such a state preparation strategy,
highlighting its potential to find new protocols
where none currently exist. In conclusion, this
study shows the promise of integrating measure-
ment and feedback into variational quantum al-
gorithms to discover quantum state preparation
algorithms.

2 Protocol Description

Our protocol consists of a sequence of param-
eterized unitary transformations and projective
quantum measurements to prepare a desired tar-
get state |ψt⟩. This process is iterative, us-
ing feedback from measurement outcomes to in-
form subsequent quantum operations. Its sim-
plest form, with only one feedback round in
the ansatz, is reminiscent of error correction
and can represent state preparation protocols
like [7, 11, 8, 12, 18, 16, 13, 15]. Conversely, if the
feedback is removed completely (set it to a con-
stant), then the operation U(θ) with the addition
of measurement and reset, will be able to repre-
sent passive steering strategies like [38, 39, 40].
This emphasizes the representative capacity of
this approach. The potential of this generalized,
learnable protocol is twofold: first, to discover
methods for preparing quantum states where no
effective protocol currently is known; and second,
to identify faster and more optimal approaches
for state preparation where established protocols
are already known.

2.1 Framework

Our protocol, shown in Fig. 1(b), is described by
the following sequence of operations:

ρ1(θ1) = U1(θ1)ρ0U
†
1(θ1), (1)

ρM1 (θ1) = |0⟩A⟨M |ρ1(θ1)|M⟩A⟨0|, (2)

ρ2(θ1,W ) =
∑
M

U2(θ2)ρM1 (θ1)U †
2(θ2), (3)

with θ2 = f(M ;W )

where ρ0 is the initial state of the system, which
we will choose to be ρ0 = |0⟩SA⟨0|, U(θ) is a uni-
tary operation parameterized by θ, andM are the
measurement outcomes. The operator |0⟩A⟨M |
projects the ancilla qubits to the measured state
M which is then reset to a product state com-
posed of zeros. The feedback function f(M ;W )
with learnable parameters W is the key ingredi-
ent of the protocol as it decides on the param-
eters of subsequent unitary operations based on
previous measurement outcomes.

For a more generalized approach that can be
applied iteratively for multiple rounds of feed-
back, we extend the notation as follows:

ρMi (θ1,W2, ...,Wi) = |0⟩A⟨M |ρi|M⟩A⟨0| (4)

ρi(θ1,W2, ...,Wi) =
∑
M

Ui(θi)ρMi−1U
†
i (θi) (5)

with θi = fi(M ;Wi)

This iterative relation frames any general feed-
back protocol within our proposed scheme, where
different functions fi(M ;Wi) decide on subse-
quent unitary operations. Depending on the
ansatz it is possible to use different parameter-
ized unitaries Ui for different feedback sweeps.

The efficacy and applicability of the proposed
protocol will first be evaluated in the context of
the AKLT state preparation, demonstrating its
ability to learn feedback strategies. Specifically,
we aim to automatically reproduce the determin-
istic low-depth protocol outlined in [12], which
will be further discussed in Sec. 3.

2.2 Feedback Mechanism

The success of our protocol is critically dependent
on the function f(M ;W ), which parametrizes the
feedback loop. It maps measurement outcomes
onto new parameters for unitary transformations.
This function is vital, as it chooses subsequent
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(a) (b)

Figure 1: Illustration of the quantum feedback control protocol. (a) Depicts the hardware-efficient ansatz used
in the construction of the unitary U(θ), showcasing a series of parameterized rotation gates Ry(θi,j) arranged in
alternating layers with CNOT gates. (b) Outlines the quantum-classical feedback loop, starting with the initial state
preparation of the system S and ancilla A in |0⟩ states. The application of U(θ1) is followed by measurement, and
the measurement results M are fed into a function that outputs the parameters θ2 = f(M ;W ) for the next unitary
operation U(θ2). This loop implements the adaptive adjustment of parameters based on measurement results, which
is central to the feedback control strategy. Note that the optimal parameters {θ1,W} are learned using the gradient
descent algorithm.

quantum gates depending on the measurement
results.

For small ancilla qubit Hilbert spaces,
f(M ;W ) can be effectively represented using
a tabular approach. In this representation,
f(M ;W ) = WM , with WM being a set of learn-
able vectors, each of them storing the angles for
the parameterized unitaries that should be ap-
plied in response to a particular measurement
outcome M . This tabular method is straight-
forward and computationally manageable when
the ancilla Hilbert space remains small.

However, as the ancilla Hilbert space expands,
the tabular method becomes impractical because
of the exponential increase in the number of po-
tential measurement outcomes. For larger sys-
tems, a neural network offers a more sophisti-
cated and scalable representation for f(M ;W ).
The chosen architecture for our implementa-
tion includes both SwiGLU (Swish-Gated Linear
Unit) and bidirectional Recurrent Neural Net-
work (RNN) layers, which were chosen as they
are adept at modeling spatial correlations. These
are used in Sec. 6 to obtain a translationally in-
variant feedback ansatz and their structure is ex-
plained in detail in App. C.

3 AKLT State(s)

The 1D spin-1 Affleck-Kennedy-Lieb-Tasaki
(AKLT) states [41] provide a useful benchmark
for evaluating the learning capabilities of our
protocol. These states are well-known for their
symmetry-protected topological (SPT) proper-

ties, characterized by two spin-1
2 edge states [42,

43].

The presence of these two free spin-1
2 edge

states results in a four-fold degeneracy of the
AKLT state. Furthermore, the AKLT state
has been proposed as a valuable resource for
measurement-based quantum computing [44]. If
just local unitaries are employed, the prepara-
tion time scales linearly with the system size:
by using also measurements, Smith et al. have
shown that a protocol with depth independent
from the system size is possible [12]. This con-
sists of preparing small AKLT states and fusing
them using measurement and deterministic feed-
back based on the measurement outcomes. This
method is deeply rooted in the exact representa-
tion of AKLT states as matrix product states.

The analytically derived protocol in [12] can
prepare a random state in the manifold spanned
by the four AKLT states within a single round
of measurement and feedback. Thus, our first
task will be to try to learn an equivalent protocol
without any prior knowledge of [12], to better
understand the challenges faced by the learning
algorithm.

Under the restriction of using a single round
of measurements, the fidelity to the AKLT man-
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ifold, spanned by |ψi⟩, can be computed via:

F (θ1,W ) =
4∑
i

⟨ψi|S ρ2(θ1,W ) |ψi⟩S (6)

=
4∑
i

∑
M

∥⟨ψi|S U
(S)
2 (θ2) ⟨M |A U

(SA)
1 (θ1) |0⟩SA∥

2

with θ2 = f(M ;W ) (7)

where U
(SA)
1 (θ) represents a hardware-efficient

ansatz (see Fig. 1(a)), and U
(S)
2 (θ) is a similar

ansatz acting only on the system qubits. Ide-
ally, the feedback operation would use an ansatz
identical to U1

SA; however, implementing this
approach with a short circuit depth after mea-
surement introduces insurmountable local min-
ima. This issue commonly arises in shallow VQCs
when the initial wave function is not a prod-
uct state, making optimization highly challeng-

ing. Therefore, instead of replicating U
(SA)
1 , a

simpler ansatz using only two-qubit gates is se-
lected for the feedback step. Further details are
provided in App. D.
For the sake of simplicity, we have first re-

stricted ourselves to just employing tabular feed-
back f(M ;W ) = WM as it offers fewer possible
points of failure than the use of a Neural Net-
work, which we later analyze in Sec. 6. The
objective is to optimize this protocol by min-
imizing the infidelity. We employ a gradient
descent approach, specifically using the ADAM
optimizer [45], for this purpose. However, a
straightforward application of this optimization
method leads to entrapment in local minima, as
do other commonly used optimization methods
like Natural Gradient, LBFGS, and gradient-free
methods. These local minima are distinct both
from the barren plateaus encountered in long and
wide circuits and from local minima encountered
in shallow circuits [19, 20]. To circumvent this
class of local minima specific to feedback proto-
cols, we implement two novel strategies as de-
scribed in Sec. 4.1 and Sec. 4.2.
Note that in this work the spin-1 is mapped to

qubits with the mapping |+⟩ → |10⟩, |0⟩ → |00⟩
and |−⟩ → |01⟩ as done also in [12], as it reduces
entanglement between the two spin 1

2 , without af-
fecting the properties of the final state. Other en-
coding choices are also possible and may impact
the circuit’s efficiency, as discussed in Ref. [46],
where various mappings were analyzed in the
context of Trotterization.

4 Local minima and how to avoid them

During the optimization process, it was observed
that the probability distribution P (M ; θ) =
TrS [⟨M |Aρi(θ)|M⟩A] for measuring the ancillas
in a particular bit-string M in the z-base tends
to favor a specific value of M ′. This results in
P (M ; θ) = δ(M,M ′) being a delta function, so
that when the ancillas are measured, they al-
ways give the same measurement resultM ′. This
results in the measurement operation having no
effect on the quantum state, indicating that the
optimization algorithm effectively found a way to
bypass the measurement operation and as such
the feedback altogether.

This can be quantified by the Shannon en-
tropy H or the harder-to-compute entanglement
entropy S, defined as:

ρA1 = TrS(U1(θ1)|0⟩SA⟨0|U †
1(θ1)) (8)

P (M) = ⟨M | ρA1 |M⟩ (9)
H = −

∑
M

P (M)log2(P (M)) (10)

S = −TrA[ρA1 log(ρA1 )] . (11)

Both of them turn out to be small, or even zero,
at the local minima encountered along a naive
minimization of the loss function in Eq. 6, as can
be seen in the orange curve in Fig. 2(b). In the
next two sections, two strategies to mitigate local
minima are discussed.

4.1 Different update frequencies

We conjecture that the extreme sharpening of the
measurement probability distribution P (M) oc-
curs due to an imbalance between the intrinsic
learning rates of the initial unitary U1(θ1) and
of the feedback U2(θ2), with the latter being too
slow. The first attempt to improve the optimiza-
tion involves therefore an ad-hoc increase of the
update frequency of the W parameters that de-
fine the feedback.

Our reasoning is based on the following consid-
eration: in order to achieve a pure state at the
end of the protocol, either there is a single pos-
sible measurement outcome P (M) = δM,M ′ (and
thus H = 0) or the feedback process has to distill
the mixed state ρM1 =

∑
M |ψ(M)⟩ ⟨ψ(M)| (with

|ψ(M)⟩S = ⟨M |A U1 |0⟩SA) (H ̸= 0) into a pure
state through conditional feedback. It is much
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easier to fulfill the first condition than the sec-
ond one. As a consequence, if the feedback part
of the protocol is updated too slowly, it may ap-
pear convenient for the optimizer to simply tune
U1(θ1) to prepare the best possible state where
the ancillas are in a product state and the ac-
tion of the measurement is irrelevant. Otherwise
stated, either all the information extracted from
the system using the measurement needs to be
effectively used to reduce the mixedness of the fi-
nal state, or else the optimization algorithm will
decide to reduce how much the system and an-
cillas are entangled. This would also favor H to
settle mostly on integer values of H, as it is easier
to fully use an ancilla or not use it at all. To ad-
dress this issue, the rate of learning of the param-
eters of the feedback operation can be increased
relative to that of the parameters of the initial
unitary. This adjustment can be implemented
in several ways: here, we choose to update the
parameters of the feedback operation more fre-
quently, as described in Alg. 1.

Algorithm 1 Optimization algorithm that up-
dates the feedback parameters W more fre-
quently than the initial unitary parameters θ1.
This approach aims to help the feedback mecha-
nism to adapt more rapidly, preventing the opti-
mization process from ignoring the measurement
and feedback steps that lead to local minima.

function update parameters(θ1,W , loss)
θnew

1 ← ADAM update(θ1,∇θ1 loss(θ1,W ))
W new ←W
for 1 to update freq do

W new ←
ADAM update(W new,∇W loss(θ1,W

new))
end for
return θnew

1 ,W new

end function

To test the hypothesis, in Fig. 2 the feedback
protocol is optimized for the AKLT state with 16
physical qubits and 8 ancilla qubits for different
update frequencies of the feedback step. The sys-
tem size 16 is chosen as it is large enough that
every optimization run gets trapped in local min-
ima, making this system size a compelling chal-
lenge for analysis.

If the update frequency of the feedback param-
eters is set to 0 (see blue line in Fig. 2), they
are not updated at all. Consequently, the pre-
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Figure 2: Influence of feedback update frequency on lo-
cal minima encountered during the optimization of the
feedback protocol to prepare any of the four AKLT states
with a system size of 16 and 8 ancillas, configured in a
repeating ASSSSA pattern where A stands for ancilla
and S for the system. Every epoch, the gradient is cal-
culated using all possible measurement outcomes. The
parameters of the feedback operation are updated more
frequently using gradients. The label ”freq=100..5” in-
dicates that the update frequency decreases linearly from
100 to 5 over 104 epochs. (a) Infidelity to the AKLT
states: higher update frequencies prevent the protocol
from getting trapped in local minima. (b) Shannon
entropy H of the measurement probability distribution
P (M) and entanglement entropy between the ancilla
and the system before measurement at the end of the op-
timization process (indicated by the star marker): higher
update frequencies result in higher Shannon and entan-
glement entropies. Note that the entanglement entropy
between the ancilla and the system was computed at the
end of the optimization only once as it is expensive to
calculate.

measurement unitaries are forced to prepare an
ancilla state that, when measured, does not affect
the final state, resulting in H = 0.

With the standard approach, updated fre-
quency equal to one, the optimization gets
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trapped in a local minimum with H = 1, cor-
responding to one bit of information contained
in the ancilla distribution. The entanglement en-
tropy S between system and ancilla at the end of
the optimization is also one, confirming that one
bit of information is extracted from the system
with the measurement.
Higher update frequencies for the feedback pa-

rameters lead to improved infidelities and both
higher Shannon entropy H and entanglement en-
tropy S, which lie close to each other, show-
ing that our initial conjecture seems to be cor-
rect. The low entropy is caused by the pre-
measurement unitary trying to bypass the mea-
surement step. And interestingly the Shannon
entropy mostly settles to integer values, showing
that as expected these are atractors of the opti-
mization dynamics.
The most effective protocol with this strategy

is achieved by initially setting the update fre-
quency to 100 and then linearly decreasing it to
5 over the first 104 epochs achieving the high-
est value of H and showing that high update
frequencies are mostly important at the begin-
ning of the optimization process. The optimal
update frequency should be chosen such that
the feedback operation parameters are close to
minW loss(θ1,W ).

4.2 Ancilla Regularization
Another approach to prevent the measurement
distribution from becoming trapped in local min-
ima, characterized by H = 0, involves encour-
aging broader exploration of the solution space.
This is achieved by regularizing the distribution
P (M), by adding a term to the loss function that
encourages a more uniform probability distribu-
tion. The regularization term lR(M ; θ) is defined
as follows:

d(M ; θ) = 1 + log2(P (M ; θ))
Na

(12)

lR(M ; θ) =


0 if − c < d < c

(d(M ; θ) + c)2 if d < −c
(d(M ; θ)− c)2 if c < d

(13)

lR(θ) = 1
2Na

∑
M

lR(M ; θ) (14)

where the distance d(M) tells us how far the mea-
surement sample M is from having the proba-

bility 2−Na where Na is the number of ancillas.
The window width c was chosen so that if lR = 0
then maxM P (M)

minM P (M) < r with c = log2(r)
2Na

. In our ex-
periments, the ratio r = 2 is chosen, ensuring
that when lR(θ) = 0, the largest and smallest
measurement probabilities differ by a factor of
at most two. This promotes a near-uniform dis-
tribution of measurement results, mitigating the
risk of the protocol becoming trapped in low-H
regions that cannot effectively utilize feedback.

Fig. 3 shows the effect of adding the regular-
ization term to the loss function during optimiza-
tion. With the regularization enabled, the Shan-
non entropy directly takes its maximal value of
H = Na. With a feedback update frequency of 1
the infidelity reaches a local minimum with lower
infidelity than without regularization.

When the update frequency is doubled to 2 or
higher, entrapment in local minima occurs less
frequently, showing the effectiveness of the regu-
larization procedure. However, even though less
frequently and at lower infidelities local minima
can still appear. The optimization with an up-
date frequency of 10 in Fig. 3(a) is a good ex-
ample. The reason for the improvement can be
correlated to the high Shannon and entanglement
entropies reached due to the regularization.

Note that choosing a large update frequency
does not provide significant additional benefits
in avoiding local minima, but it does cause the
optimization to take much longer to converge.

5 Comparing learned and reference
protocol
In this section, the similarities and differences be-
tween the learned and the analytically derived
protocol by Smith et al. [12] are examined. The
primary tool for characterizing the feedback pro-
tocol is the analysis of intermediate states us-
ing quantum mutual information between two
qubits:

I(j, j′) =S(ρRi ) + S(ρRj′)− S(ρRj,j′) (15)
ρRj =Trj̄(|ψ⟩⟨ψ|), (16)

where Trj̄ traces out the entire system other than
the j-th qubit. This quantity measures the extent
to which two qubits are entangled when the rest
of the system is traced out. Furthermore, we ex-
amine whether the learned feedback on a certain
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Figure 3: Same optimization like in Fig. 2 but with the
ancilla regularization turned on.

qubit pair only depends on the measurement out-
comes of the qubits on its left/right correctability.

The analytically derived protocol begins by
preparing small AKLT states whose boundaries
are entangled with adjacent ancillas. This is
shown in Fig. 4(a), where the mutual informa-
tion of that state reveals 6x6 blocks of strong
entanglement. The ancillas are then measured in
the Bell basis (see Fig. 4(b)), where the boundary
conditions of the small AKLT states are merged.
This process introduces defects into the AKLT
state that depend on the measurement results.
These defects, which can not be seen in the mu-
tual information, can then be corrected during
the feedback step (see Fig. 4(c)), allowing the
system to randomly reach any of the four AKLT
states.

The learned approach, on the other hand, is
not limited to the block structure of the analyt-
ically derived protocol. While it learns a sim-
ilar structure, it exhibits greater flexibility by
generating entanglement beyond the 6x6 sub-

lattice. This additional flexibility can become
particularly valuable when preparing other quan-
tum states, as the learned protocol can exploit
this ability to improve its performance.

Notably, the learned protocol needs to gen-
erate less mutual information prior to measure-
ment (see Fig. 4(d)) compared to the analytically
derived one. The analytically derived protocols
feedback gates are restricted to the creation or
removal of excitations in the AKLT state in the
feedback step. A comparable mutual informa-
tion pattern emerges when the learned protocol
is constrained to the same correction gates. Inter-
estingly, this shows not only that there are many
(almost equivalent) variants of the protocol, but
also that most of them require less mutual infor-
mation before measurement than the analytically
derived protocol.

In Fig. 4(g), both the learned and analyti-
cally derived protocol initially exhibit a maxi-
mum mutual information length, Ī(d), of 6 be-
fore measurement, reflecting the presence of well-
structured, localized patches of mutual informa-
tion generated by short-range unitaries. After
measurement, the mutual information decays ex-
ponentially, similar to the AKLT state. This
behavior demonstrates how both protocols effec-
tively fuse these localized patches into a unified
state, transforming short-range correlations into
exponentially decaying ones.

Finally note that the smaller mutual infor-
mation is consistent across all learned proto-
cols, making them easier to implement using
hardware-efficient approaches at a smaller cir-
cuit depth of 7. If, instead of learning the pro-
tocol from scratch, one attempts to replicate
the analytically derived protocol by maximizing
f(θ) = ⟨0|U smith†

1 U learned
1 (θ) |0⟩, a circuit depth

of 8 is required. Note that the minimum theoret-
ical circuit depth to entangle the system S and
ancilla A arranged in the pattern ASSSSA is 6.

Another aspect of interest is whether the feed-
back is left- or right-correctable. This prop-
erty implies that the feedback parameters θi,j2 =
f(M1, . . . ,Mj−1) depend only on measurements
from one side. For example, this is the case for
the analytically derived protocol of Smith et al.
[12]. To test if the learned protocol is left cor-
rectable, we examine how the pre-measurement
unitary U1(θ1), which is initially learned without
any constraints on left correctability, can be cor-
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Figure 4: Mutal Information I(j, j′) between different sites of the quantum state after the three operations in the
protocol for the analytically derived protocol (a,b,c) and the learned protocol (d,e,f), where the white lines signify
that the corresponding qubit is an ancilla. First, both ancillas and system are initialized in the |0⟩ state and the first
unitary is applied U |0⟩A |0⟩S (a, d). Then a measurement is performed ⟨M |A U |0⟩A |0⟩S (b, e). Finally, the resulting
state is corrected conditionally on the measurement outcome US(M) ⟨M |A USA |0⟩S |0⟩A. (g) Is the averaged mutual
information Ī(d) = 1

N(d)
∑

j′ I(j, j′ ± d) at distance d for both the analytically derived and learned protocol.

rected with left correctable feedback. We do this
by constraining a new feedback unitary U2(θ′

2)
to be learned under the requirement of being left
correctable (see App. E). The results indicate
that U1 is indeed left correctable, even though
no such constraint is explicitly applied during its
training. Furthermore, this is the case for all pro-

tocols found in this work.

6 Periodic Ansatz & RNN

The ansatz presented in this section seeks to
autonomously learn a translationally invariant
strategy with the help of Recurrent Neural Net-
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Figure 5: Figure (a) presents the optimization of the protocol for a system size of Ns = 16, utilizing a translationally
invariant ansatz for the pre-measurement unitary U1, with an RNN serving as the feedback function. The ADAM
optimizer’s learning rate was reduced from 10−3 to 10−5 after 105 epochs. Figure (b) shows the RNN performance
following re-initialization, with the angles of the pre-measurement unitary frozen. The RNN was trained concurrently
on system sizes Ns = [8, 12, 16, 20, 24, 28, 32], and the curve was smoothed with a running mean as the raw data
was noisy. The blue curve shows the training for a unidirectional RNN and the orange curve for a bidirectional RNN.
The gradient is calculated every epoch for 144 measurement outcomes. In Figure (c), instead of the infidelity the
infidelity per site 1− F 1/Ns is plotted to be able to compare system sizes meaningfully. The red points indicate the
infidelity reached when only optimizing unitaries, removing the ancillas and measurements, the blue points indicate
the performance of the RNN feedback on 1,000 measurement outcomes. In contrast, the orange points show further
optimization of the feedback angles by minimizing the infidelity until convergence only for the 1,000 measurement
outcomes. This comparison reveals that although the RNN does not learn the optimal feedback strategy, it performs
well for small system sizes, and the learned strategy successfully extrapolates to larger sizes, even though better
performance was hoped for.

works (RNN) to prepare the four-fold AKLT
state manifold. The advantage of this approach
lies in its ability to be trained on a set of fixed sys-
tem sizes and subsequently extrapolated to larger
ones. This ansatz builds upon the methods intro-
duced in previous sections but incorporates two
key modifications. First, the ansatz is modified
so that the angles of the pre-measurement uni-
tary are set to repeat with a periodicity of six,
i.e., θi,j = θ[i,j mod 6]. This is a natural choice as
the qubits repeat in the ancilla qubit A and sys-
tem qubit S pattern ASSSSA. Second, the feed-
back mechanism is designed to be system-size in-
dependent by replacing the tabular feedback ap-
proach with an RNN f . The RNN architecture
comprises five layers, alternating between Gated
Recurrent Units (GRUs) to propagate measure-
ment information spatially and Swish-Gated Lin-
ear Units (SwiGLUs) to process information lo-
cally. For these experiments, we selected a hid-
den dimension of dh = 60. Additional architec-
tural details can be found in App. C.

The optimization procedure for Ns = 16,
combining the translationally invariant pre-
measurement unitary U1 with bidirectional RNN-
based feedback, is illustrated in Fig. 5(a). Using
the translationally invariant ansatz introduces lo-

cal minima that trap the optimization process.
To mitigate this, the optimization was repeated
three times until a successful run avoided these
local minima. Once the process escapes the local
minima, further optimization requires only ad-
justing the learning rate when necessary. The
procedure was halted upon reaching a sufficiently
low infidelity of 10−6.
However, the protocol at this stage is limited

to the system size Ns = 16 since the RNN has not
yet generalized to other sizes. To address this, we
freeze the pre-measurement unitary angles and
reinitialize the RNN. The RNN was then trained
simultaneously on a range of system sizes, Ns =
[8, 12, 16, 20, 24, 28, 32], using the following loss
function:

|ψNs(M)⟩ = ⟨M |A U1(θ1) |0⟩⊗Ns
S |0⟩⊗Na

A

(17)
PNs(M) = ⟨ψNs(M)|ψNs(M)⟩ (18)

F (M,Ns;W ) = | ⟨ψtarget|U2(θ2 = f(M ;W )) |ψNs(M)⟩ |2

PNs(M)
(19)

loss(θ) = 1− 1
N (Ns)

∑
Ns

⟨F (M,Ns;W )1/Ns⟩M∈PNs (M).

(20)
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This loss function averages over sampled mea-
surement results at different system sizes, and
uses the fidelity per site in order to avoid system
size artifacts.

Initially, a unidirectional RNN was employed,
as analysis using the algorithm in App. E in-
dicated that the protocol was left-correctable.
However, as shown in Fig. 5(b), the unidirec-
tional RNN yielded poor performance. Surpris-
ingly, no clear explanation has been identified for
this underperformance. Only after switching to
a bidirectional RNN did the model achieve sat-
isfactory results, with average infidelity across
all trained system sizes reducing to 3 · 10−3 af-
ter 9 · 105 epochs. During training, as a test,
the learning rate was adjusted to a cosine sched-
ule [47] at 2.9·105 epochs, which further improved
performance and was kept as a result. The op-
timization was ultimately halted at epoch 9 · 105

even though the loss was still decreasing as the
training time became prohibitively long. At the
last epoch, the infidelity at each system size was
assessed individually and plotted in Fig. 5(c).

In this analysis, we use the infidelity per site,
defined as 1 − F 1/Ns , instead of the total infi-
delity as the figure of merit. This choice reflects
the exponential scaling of fidelity with system
size and allows for a more meaningful compar-
ison across different Ns. For example, even when
preparing a product state using single-site uni-
taries a modest constant per-site error will lead
to a fidelity that decays exponentially with Ns,
F = (1 − ϵ)Ns . Using fidelity when comparing
different system sizes would mask the actual per-
site performance of the protocol. Note here that
for small ϵ the infidelity grows linearly with sys-
tem size 1 − F = 1 − (1 − ϵ)Ns ≈ ϵNs. The re-
sulting protocol whose performance can be seen
in Fig. 5(c), prepares states with infidelities that
grow exponentially with system size and the per-
formance deteriorates faster than expected for
larger system sizes.

To better understand what is causing the poor
performance the correction angles were further
optimized for 1,000 values of M to find the best
possible feedback for them.

It is observed that the infidelity per site for
the optimal correction hardly scales with system
size. This indicates that the RNN could still be
improved, but nonetheless, it gives good perfor-
mance for system sizes that are small enough. In

Fig. 5(b) one can see that the average infidelity is
still decreasing, but due to the expense of the gra-
dient calculations and the many steps required,
the RNN was not optimized until convergence.

The slow convergence could be due to vanish-
ing gradients caused by the RNN architecture.
It is possible that other architectures like Trans-
formers [48] or Mamba [49], which have better
gradient flow could learn faster. This is left for
future investigations.

7 Other states/ a specific AKLT state

In this section, we shift the focus from the ran-
dom preparation of AKLT states to the consis-
tent production of a specific AKLT state. With-
out loss of generality, our target is the AKLT
state with both edge modes in the spin-up con-
figuration. This is a challenging task as there is
no known deterministic short-circuit protocol for
this purpose.

The study of this particular state prepara-
tion serves two important purposes. Firstly, it
demonstrates the feasibility of deterministic state
preparation using feedback mechanisms. Sec-
ondly, it highlights the potential for discover-
ing novel protocols through learning-based ap-
proaches. Currently, the Smith et al. protocol
remains the most effective method for this oper-
ation, achieving the desired spin-up edge mode
state with a 50% probability, through repeated
AKLT state preparations. This is the case as
initially each of the 4 AKLT edge states can
be prepared with 25% probability and the edges
can easily flipped simultaneously like |↑↑⟩ ↔
|↓↓⟩ , |↓↑⟩ ↔ |↑↓⟩.

We optimize the protocol for the preparation
of a single AKLT state using the methodology
described in Sec. 4.2. Fig. 6(a) shows that the
optimization process often gets trapped in local
minima, as evidenced by the different results of
different random seeds. To mitigate this issue,
alternative strategies were investigated; however,
these approaches did not yield significant im-
provements in the final fidelities. Interestingly,
one optimization run achieves low infidelity due
to a favorable random seed (see the violet line
in Fig. 6(a)). This ”lucky” run was obtained by
adding gradually decreasing random noise to the
parameters (θ1,W ) during the optimization pro-
cess. This demonstrates the potential for high-
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Figure 6: (a) Infidelity evolution during protocol optimization for preparing the AKLT state with both edge modes
in the spin-up state. Blue, orange, and green lines represent optimizations with different initial seeds. The violet
line shows a particularly successful ”lucky” run that achieved significantly lower infidelity, likely due to finding a
more optimal path in the parameter space. This demonstrates the potential for high-fidelity state preparation
when favorable parameters are found. (b-d) Mutual Information I(j, j′) between different sites of the quantum
state after each operation in the learned protocol. White lines indicate ancilla qubits. (b) After applying the
first unitary: U1 |0⟩A |0⟩S , where both ancillas and system are initialized in the |0⟩ state. (c) After measurement:
⟨M |A U1 |0⟩A |0⟩S . (d) After the feedback step: U2(θ2 = f(M ;W )) ⟨M |A U1 |0⟩S |0⟩A, resulting in the prepared
AKLT state with spin-up edge modes.

fidelity state preparation when advantageous pa-
rameter configurations are found nad the im-
portance of further improving optimization tech-
niques. Consequently, this ”lucky” protocol war-
rants further analysis.

Fig. 6(b) shows the mutual information of
the intermediate state before the ancilla mea-
surement in the ”lucky” protocol. The mutual
information shows a distinctive behavior com-
pared to the one observed in previous sections.
In particular, the right side of the chain shows
weak mutual information before the measure-
ment. Fig. 6(c) shows that entanglement does
not fully propagate through the chain until af-
ter the measurement. This observation suggests
a greater reliance on measurements for entangle-
ment propagation in this protocol than for the
simpler optimization objective of the previous

sections. The difference between the pre- and
post-measurement mutual information distribu-
tions highlights the critical role of quantum mea-
surement in this more complex protocol.

The protocol was found to be left/right cor-
rectable which is surprising. The random prepa-
ration of any of the 4 AKLT states was expected
to be left correctable as the analytically derived
protocol is left correctable. But for this protocol,
we expected that the feedback gates would need
to be dependent on both the left and right sides.

8 Conclusion

A self-learning protocol for quantum state prepa-
ration is presented that integrates measurement
and feedback in variational quantum circuits. By
incorporating projective measurements and con-
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ditional feedback, the protocol learns efficient
state preparation strategies beyond unitary-only
methods, especially where measurement-based
shortcuts reduce circuit depth.

Using the 1D spin-1 AKLT states as a bench-
mark, the protocol successfully learned a feed-
back mechanism to prepare these states with high
fidelity. Notably, the learned approach required
less mutual information prior to measurement
than the analytically derived protocol of Smith et
al., indicating a potential for shallower circuits.

To address local minima during optimization,
two strategies were implemented: adjusting pa-
rameter update frequencies to balance learning
rates between the initial unitary and feedback
operations, and introducing ancilla regularisation
to promote uniform measurement results. These
strategies effectively mitigated local minima and
improved the performance of the feedback mech-
anism.

The protocol was extended to larger systems
using a translationally invariant approach and
a recurrent neural network (RNN) for feedback.
While the RNN did not fully capture optimal
corrections for large systems, it performed well
for smaller sizes and showed some potential for
generalization, even though better extrapolation
performance was expected.

The preparation of a specific AKLT state with
both edge modes in the spin-up configuration was
also explored - a task for which no known deter-
ministic, low-depth protocol exists. The results
demonstrated the possibility of learning such a
protocol, highlighting the potential of the ap-
proach to discover new state preparation meth-
ods.

Moreover, a significant potential application
of our work lies in addressing open questions in
the classification of phases of matter via finite-
depth unitaries and feedback. Previous works,
such as [50, 18], have introduced the concept of
classifying quantum phases using measurement
and feedback protocols. However, certain ques-
tions remain unresolved—for instance, whether
all two-dimensional topological phases become
trivial when feedback is added. It is suspected
that some, like the Fibonacci anyon phase, re-
main non-trivial even with feedback. Our algo-
rithm provides a framework that could be used
to explore these questions numerically.

A practical consideration for implementing

our protocol regards the overhead introduced by
measurement and classical feedback. While our
simulations assume ideal conditions with instan-
taneous feedback, current hardware presents sig-
nificant latency challenges. Active research is ad-
dressing this challenge, particularly in the con-
text of quantum error correction [51, 52, 53].
For instance, in a recent experiment on real-time
quantum error correction [51], Google reports a
QEC cycle time of 1.1 µs, with a real-time de-
coder achieving an average feedback latency of
63 µs—corresponding to a backlog of approxi-
mately 57 cycles. These constraints currently
limit the applicability of feedback-based proto-
cols to small system sizes or require buffering
and delayed correction strategies. Nevertheless,
the rapid pace of experimental progress suggests
that these latencies will be reduced in the near
future, enabling real-time feedback as envisioned
in our approach.

In conclusion, the incorporation of measure-
ment and feedback into variational quantum al-
gorithms offers a promising framework for quan-
tum state preparation. This approach addresses
optimization challenges but does not completely
solve them and extends quantum state prepara-
tion tools by exploiting the non-unitary effects
of measurements. Future work should focus on
using these learning techniques to design proto-
cols with multiple rounds of feedback since most
analytical protocols rely on only one round of
measurements, and we see potential in the multi-
round approach, which we imagine will be partic-
ularly useful in the presence of errors. Another
important extension of this work is the imple-
mentation of such a protocol in an experiment,
once measurement-based feedback becomes avail-
able. We envision further fine-tuning the mea-
surement protocol in the experiment using rein-
forcement learning techniques so that it can learn
to mitigate errors present on real hardware.

Code and simulation data— All simulations
were performed using the MPS formalism to rep-
resent the wave function; the code and result-
ing data are available on Zenodo [54]. The Julia
library mVQE.jl [55], developed specifically for
these simulations, uses the ITensors.jl [56] library
as its backbone.

Note added.— During the final stages of
preparing this manuscript, we became aware of
related work by Alam et al. [36] and Yan et al.
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[35], which employs a variational ansatz similar
to the one presented here. Additional details on
the distinctions between the two approaches have
been included in the Introduction.
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[33] Thomas Fösel, Petru Tighineanu, Talitha
Weiss, and Florian Marquardt. “Rein-
forcement learning with neural networks
for quantum feedback”. Phys. Rev. X 8,
031084 (2018).

[34] Yigal Ilin and Itai Arad. “Dissipative vari-
ational quantum algorithms for gibbs state
preparation”. IEEE Transactions on Quan-
tum Engineering (2024). url: https://doi.
org/10.1109/TQE.2024.3511419.

[35] Yuxuan Yan, Muzhou Ma, You Zhou,
and Xiongfeng Ma. “Variational locc-
assisted quantum circuits for long-range en-
tangled states”. Phys. Rev. Lett. 134,
170601 (2025).

[36] Faisal Alam and Bryan K Clark. “Learn-
ing dynamic quantum circuits for efficient
state preparation” (2024). url: https://
doi.org/10.48550/arXiv.2410.09030.

[37] Frank Pollmann, Vedika Khemani, J Igna-
cio Cirac, and Shivaji Lal Sondhi. “Efficient
variational diagonalization of fully many-
body localized hamiltonians”. Physical Re-
view B 94, 041116 (2016). url: https://
doi.org/10.1103/physrevb.94.041116.

[38] Daniel Alcalde, Felix Motzoi, Tommaso
Calarco, Giovanna Morigi, and Matteo
Rizzi. “Quantum state preparation via en-
gineered ancilla resetting”. Quantum 8,
1299 (2024). url: https://doi.org/10.
22331/q-2024-03-27-1299.

[39] Sthitadhi Roy, JT Chalker, IV Gornyi,
and Yuval Gefen. “Measurement-
induced steering of quantum sys-
tems”. Physical Review Research 2,
033347 (2020). url: https://doi.org/10.
1103/physrevresearch.2.033347.

[40] Anne Matthies, Mark Rudner, Achim
Rosch, and Erez Berg. “Programmable adia-
batic demagnetization for systems with triv-
ial and topological excitations”. Quantum 8,
1505 (2024).

[41] Ian Affleck, Tom Kennedy, Elliott H. Lieb,
and Hal Tasaki. “Rigorous results on
valence-bond ground states in antiferromag-
nets”. Phys. Rev. Lett. 59, 799–802 (1987).

[42] Ruben Verresen, Roderich Moessner, and

Frank Pollmann. “One-dimensional sym-
metry protected topological phases and
their transitions”. Physical Review B 96,
165124 (2017). url: https://doi.org/10.
1103/PhysRevB.96.165124.

[43] Frank Pollmann and Ari M Turner. “De-
tection of symmetry-protected topological
phases in one dimension”. Physical review b
86, 125441 (2012). url: https://doi.org/
10.1103/PhysRevB.86.125441.

[44] Gavin K Brennen and Akimasa Miyake.
“Measurement-based quantum computer in
the gapped ground state of a two-body
hamiltonian”. Physical review letters 101,
010502 (2008). url: https://doi.org/10.
1103/PhysRevLett.101.010502.

[45] Diederik P Kingma and Jimmy Ba.
“Adam: A method for stochastic optimiza-
tion” (2014). url: https://doi.org/10.
48550/arXiv.1412.6980.

[46] Nicolas PD Sawaya, Tim Menke, Thi Ha
Kyaw, Sonika Johri, Alán Aspuru-Guzik,
and Gian Giacomo Guerreschi. “Resource-
efficient digital quantum simulation of d-
level systems for photonic, vibrational, and
spin-s hamiltonians”. npj Quantum Infor-
mation 6, 49 (2020). url: https://doi.org/
10.1038/s41534-020-0278-0.

[47] Ilya Loshchilov and Frank Hutter. “Sgdr:
Stochastic gradient descent with warm
restarts” (2016). url: https://doi.org/10.
48550/arXiv.1608.03983.

[48] A Vaswani. “Attention is all you need”.
Advances in Neural Information Processing
Systems (2017). url: https://doi.org/10.
48550/arXiv.1706.03762.

[49] Albert Gu and Tri Dao. “Mamba: Linear-
time sequence modeling with selective state
spaces” (2023). url: https://doi.org/10.
48550/arXiv.2312.00752.

[50] Nathanan Tantivasadakarn, Ashvin Vish-
wanath, and Ruben Verresen. “Hierarchy of
topological order from finite-depth unitaries,
measurement, and feedforward”. PRX
Quantum 4, 020339 (2023). url: https://
doi.org/10.1103/prxquantum.4.020339.

[51] Rajeev Acharya, Dmitry A Abanin, Laleh
Aghababaie-Beni, Igor Aleiner, Trond I An-
dersen, Markus Ansmann, Frank Arute,
Kunal Arya, Abraham Asfaw, Nikita As-
trakhantsev, et al. “Quantum error cor-

Accepted in Quantum 2025-06-30, click title to verify. Published under CC-BY 4.0. 17



rection below the surface code threshold”.
Nature (2024). url: https://doi.org/10.
1038/s41586-024-08449-y.

[52] Laura Caune, Luka Skoric, Nick S Blunt,
Archibald Ruban, Jimmy McDaniel,
Joseph A Valery, Andrew D Patter-
son, Alexander V Gramolin, Joonas
Majaniemi, Kenton M Barnes, et al.
“Demonstrating real-time and low-latency
quantum error correction with super-
conducting qubits” (2024). url: https:
//doi.org/10.48550/arXiv.2410.05202.

[53] Volodymyr V Sivak, Alec Eickbusch, Bap-
tiste Royer, Shraddha Singh, Ioannis Tsiout-
sios, Suhas Ganjam, Alessandro Miano,
BL Brock, AZ Ding, Luigi Frunzio, et al.
“Real-time quantum error correction be-
yond break-even”. Nature 616, 50–
55 (2023). url: https://doi.org/10.1038/
s41586-023-05782-6.

[54] Daniel Alcalde Puente and Matteo Rizzi.
“Simulations performed to produce figures
presented in this work”. Zenodo (2025).

[55] Daniel Alcalde Puente. “Implementa-
tion of measurement and feedback based
varaitional circuits”. https://github.com/
danielalcalde/mVQE (2025).

[56] Matthew Fishman, Steven R. White, and
E. Miles Stoudenmire. “The ITensor Soft-
ware Library for Tensor Network Cal-
culations”. SciPost Phys. Codebases-
Page 4 (2022).

[57] Jülich Supercomputing Centre. “Jureca:
Data centric and booster modules imple-
menting the modular supercomputing ar-
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A The Greenberger–Horne–Zeilinger State

0.00 0.25 0.50 0.75 1.000.0

0.2

0.4

0.6

0.8

1.0

p

Figure 7: Success probability p as a function of the regularization parameter λ for two different optimization methods
for the preparation of the 6 qubit GHZ state. The blue data points correspond to the standard ADAM optimizer, while
the orange data points represent the optimizer with ancilla regularization and an update frequency of 5. The error
bars indicate the standard deviation over 50 independent optimization runs. As λ increases, the success probability
improves for both methods, with the ancilla-regularized approach consistently achieving higher success rates across
all values of λ.

To validate our claims regarding local minima, we analyzed the simpler GHZ state, for which an effi-
cient feedback protocol is known [58]. Due to its simplicity, the optimization process was significantly
faster compared to the AKLT state, allowing us to perform statistical analysis on the optimization
methods presented in this work. The infidelity used to optimize the GHZ state preparation protocol
is defined as:

l(θ;M) = 1− F (θ;M) (21)

= 1− 1
2

∣∣(⟨00..|+ ⟨11..|) |ψ(θ;M)⟩
∣∣2

= 1− 1
2

∣∣ ⟨00..|ψ(θ;M)⟩
∣∣2 − 1

2
∣∣ ⟨11..|ψ(θ;M)⟩

∣∣2 − Re (⟨00..|ψ(θ;M)⟩ ⟨ψ(θ;M)|11..⟩) .

The first two terms in the fidelity introduce two local minima corresponding to the trivial product states
|00..⟩ and |11..⟩. The last term reaches its minimum at the GHZ state, argminψ Re (⟨00..|ψ⟩ ⟨ψ|11..⟩) =
|GHZ⟩. As discussed in previous sections, measurement-based variational quantum circuits often
encounter difficulties due to local minima induced by underutilization of the ancilla qubits. If these
two local minima are not suppressed, finding the target state becomes challenging. To address this
issue, we introduce a parameter λ to attenuate the impact of the local minima and redefine the loss
function as follows:

l(θ;M) =
(

1− λ

2

)
− 1− λ

2
∣∣ ⟨00..|ψ(θ;M)⟩

∣∣2 − 1− λ
2

∣∣ ⟨11..|ψ(θ;M)⟩
∣∣2 − Re (⟨00..|ψ(θ;M)⟩ ⟨ψ(θ;M)|11..⟩) .

(22)

For λ = 0, the loss function reduces to the standard infidelity, while for λ = 1, it exclusively retains
the last term. We conducted 50 optimization trials for various values of λ using a small system size
of Ns = 6, where the optimizations were completed within a few minutes. Both a standard ADAM
optimizer and an enhanced version incorporating ancilla regularization with an update frequency of
5 were employed. As expected, higher values of λ resulted in fewer occurrences of local minima, and
the proposed local minima avoidance strategies improved convergence by reducing the likelihood of
becoming trapped in suboptimal solutions. For λ = 0 the local minima present are the product states
|00..⟩ and |11..⟩ and for λ = 1 the local minima are defined by having two or more smaller GHZ states
that are not entangled with each other.
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Figure 8: Same optimization as in Fig. 3, but instead of using the infidelity as a cost function the energy is optimized.
In panel (a) the energy is plotted against optimization epochs and in panel (b) the fidelity is computed for the same
optimization runs.

This confirms the insight we obtained from studying the AKLT. It also confirms our suspicion that
the choice of the loss function is an important factor in which local minima are present and how
strongly they attract the optimizer.
We note however that the difference between the use of our local minima avoidance minima and

standard ADAM is not as large as the one seen for the AKLT. This might be due to the smaller system
sizes that were used for this analysis, which are less prone to local minima, but are easier to perform
statistics on.

B Optimizing the Energy
In the main text, infidelity was employed as a metric to evaluate how accurately a given protocol
approximates the AKLT state. In this appendix, the focus shifts to examining the effects of optimizing
the energy instead of the infidelity. The Hamiltonian used for this purpose consists of two components:

H = M1→1/2H
1
AKLT +

[
1−M1→1/2M

†
1→1/2

]
(23)

The first term corresponds to the spin-1 AKLT Hamiltonian mapped to a spin-1/2 representation using
the operator M1→1/2. The second term is a projector onto the forbidden computational subspace. It
enforces that the two spin-1/2 particles form a valid spin-1 state in the ground state.
When energy is used as the objective function, the optimization landscape becomes significantly

more complex. As shown in Fig. 8, only one optimization run successfully converged to a local
minimum. By contrast, employing fidelity as the objective led to successful convergence in nearly all
optimization runs, as illustrated in Fig. 3.
Using infidelity as the figure of merit results in a landscape where only the target state acts as an

attractor. In contrast, energy-based optimization renders all eigenstates attractors. This increases
the number of local minima and complicates the optimization process. Therefore, when fidelity is
available, it is generally preferable to avoid using energy as the objective.
From a classical optimization perspective, fidelity also provides computational advantages. Its

gradients are typically less costly to evaluate. The energy gradient takes the form

⟨∂ψ(θ)
∂θ
|H |ψ⟩ , (24)

whereas the gradient of the fidelity is given by

⟨ψtarget|ψ(θ)⟩ ⟨∂ψ(θ)
∂θ
|ψtarget⟩ . (25)
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In most cases, the target state |ψtarget⟩ exhibits much lower entanglement than H |ψ⟩. Consequently,
fidelity gradients can be computed more efficiently than energy gradients when using Matrix Product
States.

C Recurrent Neural Network
The Recurrent Neural Network (RNN) structure used in this work is illustrated in Fig. 9. This
architecture is derived from the Llama 3 model [59], with the self-attention mechanism replaced by
an RNN.
The RNN was selected for its ability to capture spatial dependencies necessary for inferring feedback

gates from measurement outcomes. Both a bidirectional RNN as well as a unidirectional RNN were
used. Note that when using a unidirectional RNN the first layer was switched from a Linear layer to a
1D Convolution with filter size 5, in order to make sure that the RNN could see enough measurement
results to its right.
To mitigate the vanishing gradient problem often encountered in RNN training, a Gated Recurrent

Unit (GRU)[60] was employed. GRUs address vanishing gradients by controlling how information is
updated and forgotten, thus enabling effective learning over extended sequences. Long Short-Term
Memory (LSTM) units were also considered, but they demonstrated inferior performance compared
to GRUs.
Despite its strengths, the RNN architecture has limitations. Specifically, it struggles with long-range

dependencies, reducing its effectiveness for large system sizes compared to transformer-based models.
Transformer architectures, which rely on self-attention, may offer better gradient flow, particularly
for long sequences. Future work could explore transformer or mamba-based models to potentially
enhance performance.

RNN: left→ right RNN: right→ left

RMS Norm

+

Linear

Linear

SwiGLU

RMS Norm

+

Linear

aθ =

Ns

d
e

p
th

M=[0,1,0,0,0,0,1,0]

Figure 9: The architecture of the Recurrent Neural Network (RNN) used in this work. The input measurements pass
through RMS normalization, a bidirectional RNN, and SwiGLU layers, generating the output angles θ for feedback
unitaries. The grey box indicates repeated application of these core layers up to depth D.
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Figure 10: (a) Plot showing the minimally obtained infidelity when trying to learn a target state prepared by a
hardware-efficient ansatz as a function of circuit depth d for different initial wave functions with entropies S0. The
teacher-student approach was used, where the teacher circuit was used to generate the target state, and the student
circuit attempted to replicate it. (b) Infidelity as a function of circuit depth with the teacher circuit depth fixed
at dt = 3. The plot shows that infidelity decreases with increasing student circuit depth, but at a slow rate. (c)
Diagram of the feedback ansatz used, showing the gate structure capable of representing any two-qubit gate at a
depth of five.

D Feedback Unitaries

Deciding on the optimal ansatz for the feedback step of the protocol is a nontrivial task. The goal is
to use an ansatz that avoids creating long-range entanglement, ensuring that any observed long-range
entanglement is entirely due to the measurement process.

To achieve this, a short hardware-efficient ansatz with a structure similar to that depicted in Fig. 1
is ideal. However, short ansätze of this type are prone to numerous local minima [19, 20]. States that
are close in Hilbert space may be significantly distant in parameter space, complicating optimization.
This becomes specifically difficult when the initial state the variational circuit is applied on carries
some entanglement. This was observed when trying to learn the feedback but is laid out here with
the help of a simple toy problem.

This can be demonstrated by generating two random parameter sets, θ for the teacher and θ′ for
the student, and attempting to optimize maxθ′ ⟨ψ0|U(θ)†U(θ′) |ψ0⟩ for various depths. Although a
minimum exists at θ′ = θ, the ability of the optimization algorithm to locate it depends on the
prevalence of local minima in the loss landscape.

Figure 10(a) illustrates this calculation for a hardware-efficient ansatz, where the initial state |ψ0⟩ is
a random MPS with bipartite entropy S0 and a system size of eight qubits. When the initial entropy
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is S0 = 0, the teacher-student infidelity remains close to zero across all circuit depths, indicating an
absence of significant local minima in the loss landscape. However, for initial states with nonzero
entropy, such as in the feedback protocol where |ψ0⟩S = ⟨M |A U1 |0⟩S,A, the figure demonstrates
that increasing circuit depth helps reduce the number of local minima, but the improvement is not
substantial. The initial entropy of the quantum state has a significant impact on the complexity of
the loss landscape.

To evaluate the difficulty of reproducing a quantum state prepared at a specific depth, the teacher
circuit depth is fixed at dt = 3. As shown in Fig. 10(b), for S0 ̸= 0 the infidelity decreases with
increasing student circuit depth, but only slowly. These two plots provide insight into the complexity
of the loss landscape for shallow circuits with entangled initial states, indicating that such circuits are
not suitable if the initial state has some entanglement.

To optimize the circuit effectively, a greater circuit depth would be required, which is undesirable in
this context. The aim is to demonstrate that entanglement is primarily propagated by the measurement
process, rather than by the unitary gates. Therefore, to avoid creating excessive entanglement, an
alternative approach was adopted. Instead of using a standard hardware-efficient ansatz, a sparsely
connected ansatz was employed (see Fig. 10). This ansatz utilizes a two-body gate:

CiRX(θ) =


1 0 0 0
0 1 0 0
0 0 cos

(
θ
2

)
sin

(
θ
2

)
0 0 sin

(
θ
2

)
cos

(
θ
2

)
,

 (26)

that can interpolate between the CNOT and the identity gate. The ansatz is capable of representing
any two-qubit gate at a depth of five, which was used in all experiments. Notably, the teacher-student
infidelity for a depth of five is indeed zero.

E Left correctability of the Protocol

In this section, the method used to determine if a protocol’s feedback can be corrected with information
from only one direction is presented. This is relevant as for example in the protocol of Smith et al.
[12] only information from one side is necessary to establish the feedback gates. Using the technique
described here, it was confirmed that all protocols developed in this work are indeed left correctable.

The feedback angles are first determined for a specific measurement outcomeM . Then, the stability
of these angles is assessed by modifying individual bits in the measurement outcome and observing
the resulting changes in the feedback angles.

The algorithm proceeds as follows: given a measurement outcomeM , the optimal feedback angles θ
are determined. Subsequently, M is modified by flipping a specific bit, indicated by ‘index‘, resulting
in a new measurement outcome M ′. The new set of feedback angles θ′ is then determined for M ′.
The difference ∆θ between θ and θ′ serves as an indicator of whether the feedback mechanism can be
corrected using information from a single direction. As an example this procedure was done for the
AKLT and plotted in Fig. 11.
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Algorithm 2 Feedback Correctability Check
function left correctable(index)
|ψ1⟩ ← U1 |0⟩
M ← sampleA(|ψ1⟩)
θ ← maxθ [⟨ψtarget|U2(θ) ⟨M | |ψ1⟩]
M ′ ← flipbit(M, index)
θ′ ← maxθ

[
⟨ψtarget|U2(θ) ⟨M ′| |ψ1⟩ − λ

∑
i,j=index(θi,j − θ′

i,j)2
]

∆θ = |θ − θ′|
return ∆θ

end function

1 2 3 4 5 6 7 8
j

0.0

0.5

1.0

1.5
flip site

Figure 11: Figure showing the difference in feedback angles, ∆θ, for each site j after flipping a specific bit in the
measurement outcome. The black vertical line represents the site where the bit was flipped.
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Summary
Projected Entangled Pair States (PEPS) provide a natural tensor network ansatz for
representing ground states of local many-body Hamiltonians in two spatial dimen-
sions. By construction, they obey the boundary law scaling of entanglement entropy
(Sec. 2.2). Translation-invariant infinite PEPS (iPEPS) have seen substantial method-
ological progress and are now widely applied to a variety of physical systems [60, 62,
140]. In contrast, a comparably robust and standardized framework is still lacking for
finite PEPS [43, 65, 67].

The simulation of finite PEPS presents several distinct computational challenges. Con-
tractions of the double-layer tensor network scale as O(D10)1, making large bond dimen-

1Although iPEPS calculations suffer from similar unfavorable scaling, the CTMRG algorithm targets
a fixed point of the reduced density matrix in the thermodynamic limit. This structure allows for
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sions computationally prohibitive. Sampling-based methods using single-layer contrac-
tions can reduce the computational cost to O(D7) under favorable conditions. Despite
this advantage, the broader applicability of finite PEPS is limited not by the expressivity
of the ansatz but by the absence of reliable and efficient algorithms for general quan-
tum states. Key aspects such as numerical stability and the cost of evaluating physical
observables remain insufficiently characterized. Moreover, the approximations required
for tensor network contractions often prevent rigorous variational guarantees for ground
state energy estimates. Extensions to systems with long-range interactions have received
limited attention and remain an open area of investigation.

This work introduces several methodological advances to address these limitations. A
reformulation of the time-dependent variational principle (TDVP), originally developed
for neural quantum states [45], is adapted to enhance the stochastic optimization of
finite PEPS (Sec. 3.2).

The computational complexity of sampling from finite PEPS via single-layer contrac-
tions is analyzed. This analysis reveals an entanglement phase transition in the quantum
states2 represented by random PEPS. On one side of the transition, random positive ten-
sors exhibit product-state behavior in the thermodynamic limit. On the other side, the
PEPS realize the maximal entanglement permitted by the ansatz, and the cost of sam-
pling increases exponentially with system size. In contrast, structured quantum states
of physical interest typically exhibit lower contraction complexity than random PEPS.
A practical diagnostic, the spectral entropy, is introduced to predict contraction diffi-
culty. This quantity enables targeted acceleration of single-layer contractions. Sec. 2.2.1
demonstrates computational speedups of approximately 50%.

The framework is validated through applications to physically relevant models. Simula-
tions are performed for a gapped Hamiltonian supporting a chiral spin-liquid ground
state, which remains a challenging case for PEPS-based methods [141, 142]. The
sampling-based approach is also shown to accommodate long-range interactions, as
demonstrated by simulations of interacting Rydberg atom arrays.

The variational nature of the PEPS ansatz is preserved through controlled approxima-
tions, which support the derivation of rigorous upper bounds on ground state energies.

Future research should aim at a systematic comparison between various approaches for
ground state calculations in two-dimensional quantum systems. These include different
variants of PEPS, neural quantum states (NQS) [70], tree tensor networks (TTNs) [143–

more flexibility in dynamically adjusting the environment dimensions, which can mitigate some of
the associated computational cost.

2Note that in previous works such as Refs. [73, 74], the entanglement phase transition was identified
in the boundary MPS used for contractions of random single-layer PEPS, not in the quantum state
itself.
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145], and augmented TTNs [146]. A clear understanding of the optimal choice of method
for different problem classes remains unclear.

Future research should also explore the preparation of two-dimensional quantum states
using finite PEPS to represent the evolved state. Previous work presented in this thesis
has focused exclusively on one-dimensional systems [I,II], where matrix product state
(MPS) representations were employed. With recent advancements in finite PEPS meth-
ods, it may become feasible to simulate measurement-based feedback algorithms in two
dimensions and to evaluate their effectiveness in preparing nontrivial topological states.

Another promising direction is the application of this framework to time-dependent and
out-of-equilibrium quantum dynamics. In Sec. 3.3.2, we propose a method to reduce the
number of required Monte Carlo samples to a manageable level, although we do not test
it due to a lack of time.

Author’s Contribution
Daniel Alcalde Puente contributed to the conceptual development and the implemen-
tation of the computational strategies. He designed the code structure, optimized its
performance, and conducted all numerical experiments on the contractibility of both
random and physically motivated PEPS. He was one of the two main contributors,
alongside Erik Weerda, to the analysis of these results. Although not directly involved
in the numerical study of Chiral Spin Liquids or Rydberg atom arrays (Sec. V.b and
V.c), he participated in discussions regarding the feasibility of their contractibility. He
contributed approximately one-third of the manuscript writing.

Data Availability
The implementation of the algorithms presented in this work is available in the Ju-
lia packages QuantumNaturalfPEPS.jl [147] and QuantumNaturalGradient.jl [148].
These packages provide a flexible interface for implementing arbitrary local Hamiltoni-
ans. All scripts used to generate the results in this work, along with the corresponding
simulation data, are available on Zenodo [149].
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Projected entangled pair states (PEPS) on finite two-dimensional lattices are a natural ansatz
for representing ground states of local many-body Hamiltonians, as they inherently satisfy the
boundary law of entanglement entropy. In this paper, we propose the optimization of PEPS via an
improved formulation of the time-dependent variational principle (TDVP), namely the minimum-
step stochastic-reconfguration scheme recently introduced for neural quantum states. We further
discuss possible numerical issues that might arise in such a sampling-based approach. In this con-
text, we investigate the entanglement properties of random PEPS and find an entanglement phase
transition. We note that on one side of this transition, we can identify positive random tensors as
product states. To demonstrate the power of the framework described in this paper, we apply the
PEPS to study the notoriously challenging chiral spin liquids. Moreover, we exhibit our approach’s
capability to naturally handle long-range interactions by exploring the phase diagram of Rydberg
atom arrays with long-range interactions. We further provide parallelized easy-to-use code, allowing
the straightforward application of our method to general Hamiltonians composed of local interaction
terms.

I. INTRODUCTION

Understanding the ground state properties of inter-
acting many-body systems remains a challenging topic
in condensed matter physics. Tensor network meth-
ods [1–3] have emerged as a particularly fruitful ap-
proach to address this problem. These methods originate
from the development of the density-matrix renormaliza-
tion group [4] and the subsequent analysis using insights
from quantum information theory [5–7]. In two spa-
tial dimensions, the most natural tensor network ansatz
for ground state studies are the projected entangled-pair
states (PEPS) [8]. PEPS are particularly suitable as they
inherently satisfy a boundary-law scaling of the entangle-
ment entropy.

In recent years the translation-invariant infinite PEPS
(iPEPS) have been the subject of substantial method
development [9–13], establishing iPEPS as a standard
tool for the investigation of ground state properties in
two dimensions and allowing for an increasingly wide
scope of applicability [14–27]. On finite lattices, several
PEPS studies with different algorithms have been per-
formed [28–31], including some utilizing gradient-based
approaches [32–34]. However, no standard numerical ap-
proach has been established so far due to various numer-
ical challenges. In parallel to these efforts, a completely
different approach to the PEPS on finite systems was de-
veloped based on the statistical evaluation of expectation
values using sampling [35]. Later, gradient-based opti-
mization methods [36, 37] have been used in conjunction
with these sampling techniques. These have been applied

∗ Both first authors have contributed equally.

successfully to paradigmatic models of frustrated mag-
netism [38–40]. A particularly promising development
for large-scale calculations using the sampling-based ap-
proach has been the development of a highly paralleliz-
able method for directly generating samples from the
PEPS state vector [41].

In this work, we investigate several aspects of sampling
methods for finite PEPS. We emphasize that the most ef-
fective gradient-based optimization scheme, which relies
on the time-dependent variational principle (TDVP) [42–
45] can be implemented more efficiently by incorporat-
ing recent developments from the neural network lit-
erature [46], where it is also referred to as Stochastic
Reconfiguration. Moreover, we demonstrate that de-
spite using multiple approximations in numerical com-
putations, the sampling-based PEPS approach can re-
main variational, as highlighted in [47]. Consequently, it
enables the determination of rigorous upper bounds for
the ground state energy. We demonstrate that the com-
monly employed, albeit formally less rigorous, approxi-
mation method yields estimates that closely align with
the strictly variational results, yet it offers significantly
enhanced computational efficiency.

Next, we examine the computational complexity as-
sociated with contracting single-layer tensor networks, a
crucial step in the sampling-based finite PEPS frame-
work. Our analysis reveals several findings. First, we
demonstrate that random PEPS undergo an entangle-
ment phase transition, coinciding with a complexity tran-
sition previously identified in random single-layer tensor
networks [48]. On one side of this entanglement transi-
tion we find the random positive PEPS, in essence, to
be product states. Further, the computational difficulty
of contractions encountered in physically motivated sce-
narios is significantly lower than the worst-case scenarios
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identified in random tensor networks [48]. We find that
the entanglement present in the quantum state does not
dictate the contractibility of its samples. Additionally,
we identify a quantity that effectively serves as a pre-
dictor for the contraction complexity of physical PEPS
samples.

Finally, we move to the applications of the finite PEPS
for challenging physical situations. We show that we can
successfully apply the proposed finite PEPS framework
to a gapped Hamiltonian hosting a chiral spin-liquid as
its ground state, a situation that has been notoriously
difficult for PEPS. Further, we point out that the finite
PEPS sampling framework can treat very conveniently
certain long-range interactions, which can be extremely
challenging in alternative approaches. We utilize this to
study the phases of a model with long-range interacting
Rydberg-atom arrays and point out further possible
applications.

The paper is organized as follows: In Sec. II, we present
the sampling framework for Projected Entangled Pair
States (PEPS) and introduce an improved approach to
implementing the time-dependent variational principle
(TDVP) within this sampling framework. In Sec. III, we
detail the numerical methods employed and address as-
pects related to variational upper bounds and the approx-
imations involved in PEPS calculations. Sec. IV is dedi-
cated to analyzing the complexity associated with tensor
network contractions in sampling-based PEPS computa-
tions. Finally, in Sec. V, we apply the developed finite
PEPS methods to several models, including chiral spin
liquids and Rydberg atom arrays.

II. FINITE PEPS AND SAMPLING

Projected Entangled Pair States (PEPS) provide a
powerful ansatz for studying quantum many-body sys-
tems on finite lattices of size Lx × Ly. As they satisfy
the boundary law of entanglement entropy in two dimen-
sions, they are well-suited for representing ground and
low-energy states of local Hamiltonians.

The fundamental building blocks of finite PEPS are
local tensors, which are defined on each lattice site

T [x, y] = T[x, y] . (1)

Every local tensor has a single physical index (bold line),
labeling a basis of its local physical Hilbert space of di-
mension d, as well as a set of virtual indices (horizon-
tal and vertical lines) of dimension D that connect to
the local tensors on neighboring sites. Within the PEPS

ansatz, we express the coefficient tensor of the many-
body state as the contraction of all virtual indices, illus-
trated as connected legs, of the local tensors

|Ψ⟩ =
∑
{S}

Ψ(S) |S⟩ , |S⟩ = |s(1,1) . . . s(Lx,Ly)⟩

Ψ(S) =
(2)

Here, S denotes a single many-body configuration, and
the red dots signify that we fixed the index at position
(x, y) to a certain value s(x,y).

To calculate expectation values with finite PEPS, one
in principle has to perform a contraction of a double-
layer tensor network, in which one layer corresponds to
the bra- and the other to the ket-vector. However, the ex-
act contraction of a two-dimensional double-layer tensor
network is computationally hard, such that schemes to
perform the contraction approximately have to be used
in practice, see e.g. [30], which can still be challenging.

One alternative to this has been pioneered by Wang
et al. [35], who demonstrated that one can use sampling
techniques to statistically approximate expectation val-
ues of finite PEPS. In this framework, only the contrac-
tion of single-layer tensor networks is necessary, which
can result in substantially cheaper numerical calcula-
tions. A very similar sampling-based approach is also
employed in methods using the neural quantum state
ansatzes [44]. To optimally make use of the statistical
approach for ground-state calculations, we only need to
be able to perform a few numerical operations. Firstly,
in order to evaluate expectation values

⟨Ô⟩ = ⟨Ψ|Ô|Ψ⟩
⟨Ψ|Ψ⟩

=
∑

S

|Ψ(S)|2

⟨Ψ|Ψ⟩︸ ︷︷ ︸
pΨ(S)

· ⟨S|Ô|Ψ⟩
Ψ(S)︸ ︷︷ ︸

Oloc(S)

⟨S| Ô |Ψ⟩ =
∑
S’

OS’SΨ(S’),

(3)

we need to be able to generate samples S from the state-
vector according to pΨ(S), and further be able to calcu-
late the coefficient Ψ(S) of the many-body state vector
for a given sample. Secondly, to optimize the ansatz (fi-
nite PEPS or neural quantum state) one needs the abil-
ity to calculate the gradient ∂Ψθ(S)

∂θ of each state vector
coefficient w.r.t. its underlying variational parameters,
which we label as θ and suppress in the expressions in
general. For the PEPS these variational parameters are
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the entries in the local tensors, which results, e.g., in

∂Ψθ(S)
∂T [3, 2] = . (4)

In Sec. III we discuss the numerical techniques to perform
these necessary tasks and highlight in particular that, for
local lattice models, the calculation of (energy) expecta-
tion values can be done in a distinctly more efficient way
as compared to e.g. neural quantum states.

A. Reformulation of the imaginary-time
Schrödinger equation for sampling techniques

To optimize the PEPS, a gradient-based scheme is
used. Specifically, the time-dependent variational prin-
ciple (TDVP) [42–45] is employed. It governs the evo-
lution of parameters θ in a variational wave function
|Ψ(θ)⟩ to ensure that the state vector evolves according
to the Schrödinger equation as close as possible. Here, we
are specifically interested in the use of the TDVP in the
sampling-based approach for the evolution according to
the imaginary-time Schrödinger equation. We note that,
while we discuss the use for ground state search here,
the same approach could be in principle used to simulate
real-time evolution. We comment on related difficulties
in App. C.

We derive the equations for the evolution of the pa-
rameters θ by simple manipulation of the imaginary-time
Schrödinger equation

|Ψ̇(θ)⟩ = −H |Ψ(θ)⟩ (5)
∂ |Ψ(θ)⟩
∂θ

θ̇ = −H |Ψ(θ)⟩ (6)∑
i

∂ ⟨S|Ψ(θ)⟩
∂θi︸ ︷︷ ︸
ÕS,i

θ̇i = − ⟨S|H|Ψ⟩︸ ︷︷ ︸
Ẽloc

S

∀ S (7)

Õ θ̇ = Ẽloc. (8)

Note that if we write Eq. (5) with an explicit normaliza-
tion for |Ψ⟩ we obtain an additional term.

If the number of parameters is smaller than the di-
mension of the Hilbert space the above equations will
in general not have an exact solution. Instead, we are
looking for the best approximation of a solution in the
parameter space

min
θ̇

∑
S

∥∥∥∥∥∑
i

ÕS,iθ̇i − Ẽloc
S

∥∥∥∥∥
2

. (9)

Instead of finding the best approximation on the entire
Hilbert space, we use Monte Carlo sampling to find a so-
lution on the relevant, sampled part of the Hilbert space
whose dimension is the number of samples Ns

min
θ̇

∑
S

pΨ(S)

∥∥∥∥∥∥∥∥∥∥
∑

i

ÕS,i

Ψ(S)︸ ︷︷ ︸
=:OS,i

θ̇i − Ẽloc
S

Ψ(S)︸ ︷︷ ︸
=:Eloc

S

∥∥∥∥∥∥∥∥∥∥

2

. (10)

Conventionally this is solved by defining a matrix G
which is approximated on the samples drawn

θ̇ = (O†O︸︷︷︸
=:G

)−1O†Eloc (11)

Gi′,i =
∑

S

pΨ(S)O∗
S,i′OS,i (12)

Unfortunately, the matrix G has dimensions Np × Np,
where Np denotes the number of parameters in the
ansatz. For parameter-intensive ansätze such as finite
PEPS, where Np = LxLyD

4d, storing G becomes infea-
sible. Consequently, slow iterative solvers are typically
employed. Importantly, the rank of the sampled G ma-
trix is at most the number of samples, Ns.

Recently, in the context of neural quantum states,
an alternative method referred to as minimum-step
stochastic-reconfguration (minSR) was proposed by
Chen and Heyl [46]. It addresses the issue that arises
for ansatzes with large numbers of parameters. Their
method works by leveraging the low rank of G in the
scenario where there are more parameters than samples

θ̇ =O†(OO†︸︷︷︸
T

)−1Eloc (13)

TSS’ =
∑

i

OS,iO
∗
S’,i. (14)

Here, the matrix T is only considered on the sampled
subspace of the Hilbert space and hence has dimensions
Ns × Ns. Thus, it is significantly more manageable to
store it and compute its pseudoinverse. In Fig. 1 we
show that, when we apply this technique to finite PEPS,
it substantially increases the efficiency of solving the lin-
ear system (8) for θ̇, which is necessary in every opti-
mization step. The fraction of the total compute time of
the ground state search with finite PEPS varies substan-
tially for different use cases, but to get some idea of the
speedup our code was timed for the J1-J2 model using
both methods.

We observe up to a 40% speedup in total compute
time, and a 39 times faster solving of the TDVP equa-
tion for L = 16 PEPS. With higher bond dimensions and
large system sizes yielding the most gains. Note that
these percentages were computed by comparing a Krylov
method to solve Eq. (11) and an eigenvalue decomposi-
tion method to solve Eq. (13).
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Figure 1. Speedup of employing minSR vs a Krylov-based
iterative solver for different bond dimensions for system sizes
L = 8, 16 with Ns = 1000 during the optimization. (black) Is
the total time quotient ttotal[krylov]

ttotal[minSR] . (red) The quotient time
for the solvers tsolver[krylov]

tsolver[minSR]
.

III. METHODS

When employing the PEPS on a finite lattice in the
sampling-based framework, we use several numerical
tools, which are summarized in this section. We further
comment on the approximations made in the sampling-
based PEPS scheme by comparing energies to true vari-
ational upper bounds to the ground state energy, which
can be obtained at a higher cost.

A. On the boundary MPS method

In order to contract finite two-dimensional tensor net-
works, we use the boundary-MPS method [8, 30]. This
method can be applied to single-layer tensor networks,
as they appear in Eq. (3), as well as to double-layer net-
work contraction, which is more costly, as we discuss be-
low. We label the local tensors on a finite square lattice
of size Lx × Ly by their positions in the lattice T [x, y]
and assume that they have an identical bond dimen-
sion D for each of their virtual indices. The entries in
the local tensors are the parameters of the PEPS ansatz
θ = {T [1, 1], ..., T [Lx, Ly]}. The central objects of this
contraction algorithm are the boundary-MPS environ-
ments, which approximate the contraction of a set of
rows of the network starting from a boundary. We will,
for completness, discuss here an example of an approx-
imate contraction using boundary-MPS for the upper-
most rows. The boundary-MPS environment can be re-
cursively defined so that it approximates the contraction
of the i uppermost rows of the tensor network as an MPS

of bond dimension Dc:

Eu[i] :=
E u[i]1 E u[i]2 E u[i]Ly

Eu[i] ≈

Eu[i− 1]1 Eu[i− 1]2 Eu[i− 1]Ly

T [i, 1] T [i, 2] T [i, Ly]

.

(15)

In the second row, the approximation indicates that we
employ an MPS–MPO multiplication to truncate the
bond dimension of the resulting MPS from DcD back to
Dc. For this task, several algorithms have been developed
in the past [49, 50]. Here, we employ the density matrix
algorithm [50]. For the initial boundary MPS on the top,
the uppermost row of local tensors is used. Of course,
a boundary-MPS can be defined completely analogously
for the approximate contraction for the lowermost rows
up to row j, which we refer to as El[j]. These boundary-
MPS can be combined to approximate the contraction of
the network from both sides

tTr
[∏

x,y

T [x, y]
]

≈ Eu[i] · El[i+ 1], ∀ i ∈ [1, Lx − 1].

(16)

where tTr is the tensor trace over all indices not shown
explicitly. As mentioned above, the boundary-MPS algo-
rithm can be used both for single- as well as for double-
layer tensor networks with different computational costs.
Specifically, for the application in the double layer case
the cost scales as O(D3

cD
4) + O(dD2

cD
6) [30], while

for a single layer the dominant scaling is O(D3
cD

3) +
O(D2

cD
4). Let us note that the bond dimension of the

boundary-MPS Dc used in practical calculations should
be increased whenever more accurate results are needed.
Specifically, one can decide on Dc dynamically by set-
ting a fixed value for the maximal truncated weight, cf.
App. A for an analysis of the impact of different choices
of the maximal truncated weight. Due to this analysis,
in the following, a maximal truncated weight of 10−4 was
used. We refer to Sec. IV for a discussion of the possible
problems and usability of the boundary-MPS algorithm
for different single-layer situations. Lastly, we mention
that the boundary-MPS are also used for the calculations
of gradients, which are necessary for optimization.
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B. On reusing environments and the convenient
treatment of long-range interactions

When using the boundary-MPS algorithm to compute
the components of Eq. (3), it is often possible to reduce
the computational cost by avoiding the repeated calcula-
tion of boundary-MPS environments. For local operators
that act non-trivially only on a limited number of sites,
the sum in

Oloc(S) =
∑
S’

OS’S
Ψ(S’)
Ψ(S) , (17)

is restricted to configurations S’ that differ from S only
by a few modified elements within the support of Ô.
Consequently, a significant computational advantage of
PEPS, compared to neural quantum ansätze, lies in the
ability to reuse precomputed environments for Ψ(S) on
lattice sites outside the support of Ô.

If the operator Ô acts non-locally, reusing boundary-
MPS environments becomes less effective. However, if Ô
is diagonal in the computational basis, Oloc(S) in Eq. (17)
becomes independent of Ψ(S). In this case, no additional
computations are required. This property is particularly
advantageous in Sec. V C, where it facilitates the treat-
ment of long-range interactions in Rydberg atom arrays.

This approach can also be applied when the operator
is not entirely diagonal. For instance, consider a Hamil-
tonian consisting of long-range Heisenberg interactions.
The terms of this Hamiltonian can be divided into three
sets: one diagonal in the X-basis, one in the Y -basis,
and one in the Z-basis. To evaluate the expectation val-
ues of the operators in each set, one can transform the
PEPS into the corresponding diagonal basis by a global
spin rotation. In a diagonal basis, the calculations be-
come straightforward. Note, that one has to sample in-
dependently for each of the transformed PEPS. Hence,
this procedure becomes less effective if the Hamiltonian
consists of more sets of operators that do not share a
common diagonalizing basis.

C. On Numerical Stability

The method used to contract single-layer samples of
finite PEPS, Ψ(S), involves numerous MPS-MPO mul-
tiplications. To ensure numerical stability during these
operations, each tensor (Eu/l[i])j of the environment is
normalized. This is achieved by dividing the tensor by
a factor fij such that its largest entry equals one. This
normalization prevents the elements of the tensors from
becoming out of range for machine precision under suc-
cessive contractions. Alongside the normalized environ-
ment, we store fi =

∑
j ln(fij). The complete environ-

ment can then be reconstructed by multiplying by exp(fi)
at the end of the process.

Numerical stability is also critical when evaluating ex-
pressions of the form Ψ(S′)

Ψ(S) , which frequently appear in

Eq. (3). In this case, we improve stability by comput-
ing exp (ln (Ψ(S′)) − ln (Ψ(S))) instead, thereby avoiding
potential numerical inaccuracies in direct division.

D. On Direct Sampling

The evaluation of Eq. (3) additionally requires the gen-
eration of samples that follow the probability distribution
of the PEPS state pΨ(S) = |Ψ(S)|2

⟨Ψ|Ψ⟩ . We employ here a
scheme that directly generates samples from the PEPS
state vector [41]. This direct-sampling scheme has several
substantial benefits with respect to Markov-chain-based
ones [36]. Firstly, it avoids autocorrelation problems and
the necessity for problem-dependent update schemes, as
the samples are sampled independently of each other.
Secondly, for the same reason, the sample generation can
be parallelized.

It is worth noting that a double-layer tensor network
needs to be contracted when employing the direct sam-
pling scheme. However, this can be done with a small
contract bond dimension Dc ∼ D, while for expectation
values with double-layers a larger contract bond dimen-
sion Dc ∼ D2 needs to be chosen. Thus, for small D
the double-layer contractions in the direct sampling al-
gorithm are not a dominant contributor to the total com-
putational time due to the other computations necessary
for finite PEPS optimizations. In the case of large D,
the double-layer environments can be computed asyn-
chronously. This will make them slightly outdated, but
since these errors are corrected using importance sam-
pling, their accuracy can be easily monitored by mak-
ing sure that the statistical error for the energy is small
enough. We further comment on this and summarize the
direct-sampling scheme in App. B.

E. On Variational Upper Bound to the Ground
State Energy

The estimator of Eq. (3) defines a variational up-
per bound for the ground state energy, provided that a
consistent numerical value is assigned to Ψ(S). How-
ever, for efficiency in numerical calculations (to reuse
boundary-MPS), we may use L− 1 different approxima-
tions for Ψ(S), depending on which boundary-MPS we
use. We denote these different approximations Ψ(S)i :=
Eu[i] · El[i + 1]. Consequently, the energy expectation
value obtained in this manner does not strictly serve as
a variational upper bound.

Nevertheless, as long as these different approximations
are very close to each other, we can expect to obtain a
good approximation of the energy expectation value that
is not far from the upper bound. It is possible to obtain a
variational bound on the energy by restricting ourselves
to a single approximation Ψ(S)i throughout the calcula-
tion of the expectation value, which is computationally
significantly more demanding. To evaluate the accuracy
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of the efficient, non-variational scheme, we compare the
expectation value obtained in this way to the one ob-
tained to give a variational bound. This method was also
used in Ref. [47] to establish variational upper bounds for
PEPS.

As an example, the variational energy for the ground
state of the J1-J2 model with J2 = 0.58 and L = 10
was calculated using a bond dimension D = 6 PEPS and
Ψ(S)i=5, with a contraction cutoff of 10−4 (which trans-
lates to Dc ≈ 12) and 105 samples. The same samples
were used for both methods. The fast, inexact method
yielded ⟨H⟩ = −187.856 ± 0.036, while the upper bound
calculation produced ⟨H⟩bound = −187.805 ± 0.027.

To estimate the error between these two values, the ele-
mentwise difference of the sampled Eloc was computed as
⟨Eloc

bound(S) − Eloc(S)⟩S∈pΨ
= 0.051 ± 0.013. This result

suggests that during optimization, the ansatz exploited
variations in Ψ(S)i to lower the energy. However, the
error is minor, affecting only the fifth significant digit. A
more detailed analysis is provided in Appendix A.

IV. CONTRACTION COMPLEXITY ISSUES IN
SAMPLING PEPS

A central mathematical task in the sampling-based
schemes for finite PEPS is the contraction of single-layer
tensor networks. These single-layer networks emerge in
the calculation of the wave-function amplitude of a single
many-body configuration Ψ(S) = ⟨S|Ψ⟩ as well as in the
evaluation of local estimators Ôloc(S) = ⟨S| Ô |Ψ⟩ /Ψ(S).
However, it was recently discussed in the context of
random tensor networks that the contraction of these
single-layer tensor networks with the iterative MPS-
MPO approach described in Sec. II, can be a task of
drastically varying complexity [48].

In this section, we are going to analyze the situation
first for random PEPS and then focus on the use case for
finite PEPS calculations, which involve non-random ten-
sors. We first find that the complexity transition found
by Schuch et al. [48] corresponds to an entanglement
transition of the random PEPS. We then demonstrate
that the complexity of contracting the single-layer tensor
networks that appear in non-random situations, such as
the ground state search of a physical model, is generically
less problematic than the ones encountered for random
PEPS. We point out that, therefore, the naive random
PEPS as a starting point of a PEPS optimization should
be avoided.

Note that similar analyses have been done in the con-
text of random quantum circuits [51].

A. Tools for the analysis of contraction complexity

1. Contraction complexity indicators

When contracting a two-dimensional single-layer
tensor network, as necessary to obtain Ψ(S), with the
boundary-MPS method described in Sec. III A, we can
define several quantities that are helpful in the analysis.
Firstly, we can fix a maximal truncation error ϵtrunc
that we allow within the truncation of the MPS-MPO
product. We define the boundary-MPS bond dimension
Dc(ϵtrunc), which is necessary to achieve this truncation-
accuracy ϵtrunc in every step. This quantity can be
used to indicate the computational difficulty of the
single-layer contraction.

We further want to define a quantity that can illustrate
the convergence of the scalar value ψ of the contraction of
the single-layer tensor network as a function of the cutoff
boundary-MPS bond dimension Dc. For this, we define

∆ψ(Dc, D
max
c ) = ψ(Dmax

c ) − ψ(Dc)
ψ(Dmax

c ) , (18)

where Dmax
c is choosen to be substantially larger than Dc

(Dmax
c ≫ Dc). This quantity ∆ψ(Dc, D

max
c ), which we

refer to as the relative contraction error of ψ, can be used
to establish suitable contract bond dimension Dc, to be
used in practical calculations. It can additionally be em-
ployed to visualize the convergence behavior of different
single-layer tensor networks.

2. Geometric Entanglement

The geometric entanglement per site, denoted as SG,
quantifies the entanglement in a quantum many-body
system on a per-site basis. It has previously been used in
the MPS context as a tool to visualize phase transitions
in [52]. It is defined using the maximum fidelity Λmax
between a given pure normalized quantum state |ψ⟩ and
the set of all product states |ϕ⟩:

Λmax = max
|ϕ⟩

|⟨ϕ|ψ⟩|2 ,

SG(|ψ⟩) = − 1
N

log2 Λmax . (19)

This maximum fidelity measures how close the state |ψ⟩
is to being fully separable, and the per-site geometric
entanglement SG provides a straightforward to compute
measure of the entanglement in the quantum state which
is zero in the case of a product state and one in the
case of a maximally entangled state. An efficient scheme
to compute the geometric entanglement is described in
Sec. D.
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3. Spectral properties in Vidal gauge

Generically, tensor networks enjoy so-called gauge free-
dom, from the fact that for every index of the tensor net-
work that is contracted, we can insert a pair of invertible
matrices M · M−1 = I without changing the result of
the contraction. In loop-free tensor networks, this gauge
freedom plays a crucial role, but even in the context of
PEPS a particular gauge choice, which we refer to as Vi-
dal gauge is often used in the context of studies using the
simple-update technique for optimization[53, 54]. This
gauge choice can be achieved numerically on PEPS with
the use of several algorithms [53, 55]. In the Vidal gauge
the PEPS is represented in a form such that in addition
to the local tensors, we have diagonal, non-negative ma-
trices Λ on all bonds of the network. The tensors are
gauged in such a way as to fulfill a isometry condition if
the adjacent bond matrices are absorbed into the local
tensors

. (20)

This condition holds in all directions. Inspired by the fact
that for an MPS in the Vidal gauge, the bond matrices
carry the Schmidt coefficients [56] we choose to study
the properties of the bond matrices of our PEPS in the
Vidal gauge. Specifically, we will use the average spectral
entropy

Hspec = 1
Nb

∑
i∈bonds

Hi
spec,

Hi
spec =

∑
k

|Sk|2 log(|Sk|2),
(21)

where Sk are the entries of the bond matrices of the PEPS
in the Vidal gauge. We will see in the following sections
that this average spectral entropy can be related to the
difficulty of contracting the samples of a PEPS.

B. Random PEPS

We begin our analysis from random PEPS since their
wave function amplitudes Ψ(S) for any sample S corre-
spond to the random two-dimensional tensor networks

investigated in [48]. A central result of that study is
that the complexity of the contraction of a Haar-random
two-dimensional tensor network with the boundary-MPS
method can be changed when shifting the mean value of
the random tensors λ towards positive entries. At a mean
value of λ = 1/D, where D denotes the bond dimension
of the local tensors in the two-dimensional network, the
complexity of the approximate contraction changes dras-
tically. The change in complexity is measured e.g. with
the bipartite entropy of the boundary MPS used for the
contraction or equivalently the boundary MPS bond di-
mension necessary.

We are now investigating the properties of random
PEPS to see if we can find a physical quantity that serves
as a predictor for the complexity of contracting its sam-
ples. As a first step, we are going to again shift the
mean of the entries of the random PEPS by λ and ex-
amine its entanglement via the geometric entanglement,
cf. Sec. IV A 2. The results are shown in Fig. 2(a). We
notice that at large shifts λ, the geometric entanglement
becomes very small and the random PEPS represent es-
sentially a product state. By extrapolation in system
size, we show that in infinite systems this seems to be
the case. If we now decrease the shift λ we notice an
increase in the geometric entanglement. At the value of
λ = 1/D, we find a transition in the geometric entangle-
ment, when scaling the size of the system under consider-
ation. At shift values below this transition, we find that
the geometric entanglement plateaus to a value set by
the system size. The value of the plateau converges to 1
(the maximum geometrical entanglement) as the system
size grows.

This suggests that random PEPS go through an
entanglement phase transition (as measured here by the
geometric entanglement) as a function of the value of the
mean-value shift λ which coincides with a complexity
transition for the task of contracting the corresponding
samples as established in [48].

This drastic change in the computational difficulty of
contracting the random-single-layer networks suggests an
important question. Is such a transition in the difficulty
of the contraction a generic feature, when changing the
tensors of the network? This is an important, practi-
cal consideration for sampling-based PEPS calculations
because we will continuously manipulate the PEPS ten-
sors during the ground state search. In this ground state
search procedure, should one expect to generically hit a
complexity phase transition, at which point the calcula-
tion of observables becomes very hard and the method
stops working in practice?
We investigate this question in several steps. First, we
are again considering random PEPS, which we now ma-
nipulate in a different way. Instead of shifting the mean
value of the entries, as done previously, we multiply the
virtual legs of every local tensor in the PEPS with diag-
onal matrices S(α)i,j = δi,j1/iα, whose entries decay as
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Figure 2. Geometrical entanglement Sg for random finite PEPS with bond dimension D = 4 and different system sizes for (a) a
normally distributed tensor shifted by a constant λ and (b) a normally distributed tensor with algebraically decaying diagonal
matrices Si,j = δi,j1/iα multiplied on each nonphysical link. The bottom left inset in (a) shows the dynamically determined
contracted bond dimension Dc of the boundary MPS with a cutoff of 10−4 at different system sizes for λ = 0, where the dashed
line represents the maximal possible bond dimension for an MPS of size L. The top right inset in (a) presents Sg versus system
size, demonstrating that the geometrical entanglement approaches zero in the infinite system size limit, indicating that the
PEPS collapses into a product state.

a function of α

T (α) = (S(α)⊗4)T ; T (α) = T S(α)

S(α)

S(α)

S(α)

. (22)

We show the geometric entanglement of the result-
ing PEPS as a function of the decay-parameter α in
Fig. 2(b). We observe a smooth increase of the geometric
entanglement as the decay-parameter α decreases. This
suggests a smooth entanglement-crossover as a function
of α and stands in stark contrast to the entanglement
transition shown in Fig. 2(a). We take this as first,
tentative evidence that the drastic complexity transition
observed for random tensors with a shifted mean λ is
not generic.

Furthermore, we point out, that the contraction com-
plexity of samples of a PEPS state vector cannot be en-
tirely due to its entanglement properties. To illustrate
this, we consider a PEPS |ϕ⟩, made up of a single-layer
network to which we attach physical legs, without con-

necting them to the single layer.

|ϕ⟩ = (23)

In this construction, every basis vector of the resulting
many-body state vector has the same coefficient. Such a
situation represents a product state, such that there is no
entanglement for any bipartition. However, if we choose
a single layer in the above construction that is hard to
contract, every sample of this PEPS is hard to contract
even though the PEPS represents a product state.

C. Towards physical PEPS

We now move to investigate PEPS that are obtained
during the ground state search of generic physical
models. We aim to find a way to characterize and
predict the contraction complexity of the samples of the
PEPS obtained in these scenarios.

To start we consider the ground state PEPS approxi-
mation obtained for the J1 − J2 model, cf. benchmarks
in Sec. V. We will now describe a way to create from
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Figure 3. (a) The relative contraction error, ∆ψ(Dc, D
max
c = 200) is plotted against the contraction dimension Dc for various

values of β, with which the Vidal spectra were modified modified as {S}bonds 7→ {Sβ}bonds. The energy of the resulting states is
also recorded. (b) The contraction dimension Dc, geometrical entanglement Sg, and average spectral entropy Hspec are plotted
as functions of β. The results show that Hspec is correlated with Dc, whereas Sg does not exhibit a direct correlation with Dc.
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Figure 4. Different quantities calculated during the optimization of a PEPS initialized (solid line) with a shift λ = 2 and
(dashed line) an algebraically decaying spectrum α = 1.5. (a) Energy per site ⟨H⟩/L2 versus optimization iterations. (b)
Evolution of the contraction bond dimension Dc (black), geometrical entanglement Sg (red), and spectral entanglement Hs

(blue) during the optimization. (c) Contract environment Dimension Dc for randomly sampled finite PEPS that was either
shifted or multiplied times an algebraic decaying spectra plotted against its geometrical entanglement.

this ground-state PEPS a family of low-energy PEPS,
which is well suited for our study of the contraction com-
plexity. We choose to represent the ground state PEPS
in the Vidal gauge, cf. Sec. IV A 1, which allows us to
generate from it a set of new PEPS by the following pro-
cedure. We can take the set of spectra on the bonds of
the ground state PEPS in the Vidal gauge and take them
to the power of β,

{S}bonds 7→ {Sβ}bonds, (24)

such that for every choice of β we obtain a unique new
PEPS. For the family of PEPS that we have obtained
in this way we now investigate the contraction com-
plexity with the use of the relative contraction error
∆ψ(Dc, D

max
c ). In Fig. 3(a) we show for several choices

of β, that such a manipulation yields PEPS with different

contraction complexities for their samples. In fact it is
quite clear from Fig. 3(a), that a manipulation that flat-
tens the spectra (β < 1) yields a PEPS whose samples
are more difficult to contract. Conversely, a steepening
of the spectrum (β > 1) yields PEPS whose samples are
cheaper to contract. This suggests that the spectrum in
the Vidal gauge might be related to the contraction com-
plexity of physical PEPS. Remarkably, all of the PEPS
that we generate in this way are energetically close to the
ground state, even if the contractability of their samples
varies drastically.

For this reason, we choose this family of low-energy
PEPS, parameterized by the single parameter β, and
try to find a quantity that can predict how difficult it
is to contract the samples of a given PEPS. In Fig. 3(b)
we show several candidate quantities as a function of β
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as well as the cutoff boundary-MPS bond dimension Dc

which is necessary to maintain an error of ϵtrunc = 10−4

during the contraction procedure. We first point out
that the geometric entanglement does not seem to be
a good predictor of the cost of the single-layer contrac-
tions, as might have been conjectured based on the in-
vestigations of random PEPS in the previous section. In
fact for small β the cutoff bond dimension Dc increases,
while the geometric entanglement decreases. This should
further be taken as evidence that random PEPS do not
generically share properties with physical PEPS. How-
ever, motivated by the fact that a manipulation of the
Vidal-spectra of the PEPS seems to have a large impact
on the contractability of their samples, cf. Fig. 3(a), we
also consider the average spectral entropy Hspec of the
PEPS at different β in the Vidal gauge. Fig. 3(b) shows
that this quantity seems to be correlated with the diffi-
culty of contraction.

In order to further substantiate the above finding that
the spectral properties in the Vidal gauge are strongly
correlated with the cost of contracting samples of a phys-
ical PEPS, we look at another family of PEPS, namely
those obtained during the ground state search with imag-
inary time evolution, cf. Sec. II A. To this end, we have
performed two optimization runs with different initial
tensors. We have chosen a set of mean-shifted random
tensors (λ = 2) as a starting PEPS, as well as a set
of random PEPS that were manipulated according to
Eq. (22) with α = 1.5. Fig. 4 shows the results of these
two ground-state searches. Fig. 4(a) shows the energy of
the PEPS during the optimization. We find that both
optimizations converge to a similar energy. However, the
random tensors manipulated according to Eq. (22) serve
as a more effective initial choice for the PEPS. This ap-
proach leads to convergence in fewer iteration steps. Ad-
ditionally, each iteration step is faster to compute due to
the lower contraction dimension Dc.

This is a direct consequence of the relation between ge-
ometrical entanglement Sg and contract bond dimension
Dc for the shifted tensors. In Fig. 4(c) these two quanti-
ties are plotted against each other for different values of
shift λ and algebraic decay α. One can see that to ob-
tain a state distinct from the product state for the shifted
initialization, a large contract bond dimension is needed,
while for the algebraic decaying random PEPS, this is
not the case.

More importantly, we find again that the average spec-
tral entropy Hspec is strongly correlated with the contrac-
tion cost of the samples of the PEPS during the optimiza-
tion. This is true for both choices of initial tensors. We
close this section by concluding that, firstly, the com-
plexity/entanglement phase transition as they can occur
in random tensors-network/PEPS does not seem to be a
generic feature of low energy PEPS of physical models,
which can be considered as a validation of the applica-
bility of the sampling PEPS methods. Secondly, we find
that the spectral properties of the PEPS in the Vidal
gauge are correlated with the contraction difficulty of its

samples.

V. APPLICATIONS

Now that we have set contraction complexity issues
on firm(er) grounds, we proceed to use the finite PEPS
framework discussed in Sec. II to investigate several chal-
lenging situations. We start by considering the well-
studied J1−J2 model [40, 57, 58] and use this as a start-
ing point to compare the finite PEPS results to those of
tree-tensor-network [3, 59–61] in the light of the different
entanglement scaling of the two ansätze. We then move
to an investigation of a Hamiltonian hosting a chiral spin
liquid as its ground state; a notoriously difficult quantum
state for PEPS [62, 63]. This has so far not been inves-
tigated with finite PEPS, but recently experienced ad-
vances with infinite PEPS optimized variationally with
the help of automatic differentiation [21]. Finally, we
show how powerful the described method can be for sys-
tems with long-range interactions by applying it to de-
scribe ground states of Rydberg atom arrays [64, 65], a
very prominent platform for quantum simulation.

A. Entanglement scaling and comparison to Tree
Tensor Networks: J1 − J2-model

This section aims to demonstrate that finite PEPS op-
timized from scratch using sampling TDVP can represent
the ground states of the J1-J2 model on the square lattice

Ĥ = J1
∑
⟨i,j⟩

S⃗iS⃗j + J2
∑

⟨⟨i,j⟩⟩

S⃗iS⃗j . (25)

Previous studies have extensively analyzed the ability
of finite PEPS to capture the different phases of this
model [38–40]. Here, we verify certain points of the es-
tablished phase diagram and benchmark a specific point
against TTNs (tree tensor networks) computed using
[66].

We find the expected patterns of the local magnetiza-
tion, as shown in Fig. 5(a). In the Néel antiferromagnetic
phase, we find a checkerboard pattern, while at large val-
ues of J2/J1 we find a stripe-ordered pattern. In the in-
termediate region, we find vanishing local magnetization.
Let us note that the magnitude of the local magnetiza-
tion is smaller at the edges of the system due to the im-
pact of a smaller number of neighbors and, hence, larger
quantum fluctuations dressing the order.

To assess how the accuracy of finite PEPS scales with
system size and bond dimension, we refer to Fig. 5(b).
In this figure, the variance per site is plotted against the
expectation value of the energy for both tree tensor net-
works and finite PEPS as is often done in the Neural
Quantum state literature [67]. Linear extrapolation to
the zero-variance limit shows the estimated energy value
for trees and PEPS match. We note that to reach the
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Figure 5. (a) Average magnetization per site for three distinct
phases of the J1-J2 phase diagram. (b) Variational energies
plotted against energy variances at J2/J1 = 0.58 for system
sizes L = 8 and L = 16. The data points shown as circles
correspond to PEPS states with bond dimension D = 8, op-
timized using a cutoff of 10−4, and subsequently evaluated
with a more stringent cutoff of 10−6. Each point represents
a PEPS state at specific iterations during optimization: iter-
ations {350, 410, 490, 650, 790, 870, 1250, 1710, 1950, 3000,
4000} for L = 8, and {830, 1100, 1500, 2420, 4000, 9020}
for L = 16. A detailed analysis determining the appropri-
ate cutoff value is provided in App. A. Data points repre-
sented by crosses indicate Tree Tensor Network (TTN) results
with bond dimensions D = {50, 100, 150, 200, 250, 300, 350}
for L = 8 and D = {50, 100, 150, 200} for L = 16. Dashed
lines indicate linear fits employed for extrapolating energies
to the zero-variance limit.

regime of truly linear relations between energy and vari-
ance, larger bond dimensions might need to be consid-
ered, especially for the tree tensor networks on larger
systems.

PEPS fulfill the boundary law of entanglement entropy
and are thus a good ansatz for any system size. In con-
trast, TTN, which does not fulfill the boundary law, re-
quires a drastically increasing bond dimension to cap-
ture the same amount of entanglement as a PEPS at
larger system sizes. However, they can still be an effec-
tive ansatz in smaller systems.

As expected, at a small system size of L = 8, TTNs
with bond dimension 300 achieve 45% lower energies than
PEPS with bond dimension 8, taking the extrapolated
energy Emin as a reference value ⟨H⟩TTN300−Emin

⟨H⟩PEPS8−Emin
= 0.45.

However, at a larger system size of L = 16, this trend re-
verses due to the more favorable entanglement scaling of
the PEPS ansatz. In this case, the PEPS ansatz attains
39% lower energy, with ⟨H⟩PEPS8−Emin

⟨H⟩TTN200−Emin
= 0.39.

It is important to note that the bond dimension for the
tree tensor networks with L = 16 was limited to D = 200
due to the memory constraints of the V100 GPU with 32
GB of memory.

B. Chiral spin liquid

Several recent experiments have made strides toward
the realization of chiral topological many-body quantum
states on quantum simulation platforms [68–70]. These
pioneering works involve very few atoms and substantial
efforts are being employed towards realizations with in-
creasing numbers of constituents. For this effort, a faith-
ful simulation of the experimental situation on classical
computers - the generation of so-called digital twins- is
crucial for benchmarking purposes. The finite PEPS are
the natural candidate for this task, as they share the
expected entanglement scaling of the chiral topological
states [71], that are targeted in the experiments.

As a proof of principle, we examine the Hamiltonian
proposed by Nielsen et al. [72],

Ĥ = J1
∑
⟨i,j⟩

S⃗iS⃗j + J2
∑

⟨⟨i,j⟩⟩

S⃗iS⃗j + iλ
∑
□

(Pijkl − P−1
ijkl),

(26)
which has a chiral spin liquid ground state at J1 =
2 cos(0.06π) cos(0.14π), J2 = 2 cos(0.06π) sin(0.14π) and
λ = 2 sin(0.06π). The operator Pijkl is defined for all pla-
quettes of the system and acts as cyclic permutations on
the local Hilbert spaces. The corresponding terms in the
Hamiltonian explicitly break time-reversal symmetry.

Recent works using an iPEPS ansatz have shown that
in the thermodynamic limit, chiral topological ground
states of local Hamiltonians [21, 25] can be successfully
approximated using the iPEPS ansatz if variational opti-
mization is employed [11–13, 73]. For finite system sizes,
as relevant for the next generation of mesoscopic cold-
atom experiments, however, such a numerical demonstra-
tion is to this date lacking. We show that with the ap-
proach for the finite PEPS detailed in this paper, we can
indeed find chiral topological states as ground states.

To start, we show in Fig. 6(a) the extrapolation of
the energy density against the variance, cf. Sec. V A,
for a 16 × 16 square lattice with open boundary condi-
tions. The estimated energy expectation value of ⟨H⟩ =
−0.9697 ± 0.0005 is quite close to the result obtained
for infinite systems using translationally invariant infinite
PEPS where it is found numerically to be close to −1 [21].
One can get even closer to the expectation value found in
the thermodynamic limit by extracting the energy expec-
tation value for the bulk of the finite PEPS. For the terms
of the Hamiltonian corresponding to the center 8 × 8 lat-
tice sites of our 16 × 16 lattice, we obtain an energy of
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Figure 6. Results for the chiral spin liquid. (a) Energy extrapolation using the variance of the results for different bond
dimensions. (b) Illustration of observables on a 16 × 16 lattice. On the vertices, we show the local magnetization, which is
homogeneously very small (m2 ≈ 7 · 10−5). On the edges, we show the current. We find a current on the edge of the lattice
with preferred chirality.

Ebulk = −0.99335 ± 0.00439. Next, we focus on local ob-
servables that could act as local order parameters. We
plot mi = |⟨S⃗i⟩| for all sites of the lattice in Fig. 6(b).
We find that the local magnetization becomes very small
m2 ≈ 7 · 10−5, suggesting vanishing magnetization in the
state.

To briefly investigate the chiral nature of the state,
we focus on its edge. For chiral topological states on
finite systems with open boundary conditions, we expect
chiral behavior at the edges, as demonstrated e.g. in [61,
74]. In [75], it was shown that for Mott insulators, loop
currents around triangles can be shown to have the form

Iij,k ∼ rij

|rij |
S⃗i · (S⃗j × S⃗k), (27)

where Iij,k denotes the current contribution of the loop
current around the triangle consisting of sites i, j and k
along the edge connecting site i and j. This quantity is
promising for our investigation as the triple-product is in-
variant under SU(2) spin rotations, which is required for
its expectation value not to vanish for the chiral spin liq-
uid. The Hamiltonian in Eq. (26) contains next-nearest
neighbor spin interactions (which can be interpreted as
perturbatively arising from next-nearest neighbor hop-
ping terms in an underlying fermionic model). Thus,
in order to investigate the contribution of the loop cur-
rent in our quantum state, we sum over all triangles of
our system, consisting of two pairs of nearest neighbors
and one pair of next-nearest neighbors. The results are
shown in Fig. 6(b). We find that the circulating currents
in the bulk cancel out, such that no net current is found,
while at the edges, such a cancellation does not happen,
such that a chiral current around the edge emerges, as
expected.

C. Rydberg atom arrays and long-range
interactions

Long-range interactions are present in many different
scenarios of interest in modern condensed matter- or
atomic physics. Prominent examples include Coulomb-
interactions (UC ∼ 1

r ) in ab initio electron systems,
dipolar-interactions in cold quantum gases (Ud ∼ 1

r3 ) [76]
as well as van-der-Waals interaction in Rydberg atom ar-
rays (UvdW ∼ 1

r6 ) [64, 65].
Traditionally, the treatment of such long-range interac-

tions in the context of tensor-network methods (specif-
ically in two dimensions) has been challenging in non-
sampling-based approaches. This is because, for a sys-
tem of n sites, the evaluation of every single term ne-
cessitates an evaluation of the order of n2 terms, each
one of which might be hard to evaluate depending on the
specific method used. Therefore, in almost all cases, in-
teractions have been truncated to a few neighbors. One
can make substantial progress by employing projected
entangled-pair operator methods [77, 78], which come at
the cost of approximating the long-range interaction.

In stark contrast to these challenges, within the
sampling-based approach used in this paper, the eval-
uation of long-range interactions becomes trivial, as long
as the interaction is diagonal in the computational basis.
As already briefly noted in Sec. III A, the evaluation of
the expectation value of any operator Ôdiag diagonal in
the computational basis, requires no additional numeri-
cal calculations beyond the wave function amplitude for
every sample

⟨S| Ôdiag |Ψ⟩ = OSSΨ(S). (28)

This is true irrespective of how local the operator in ques-
tion acts, which is why we can treat these long-range
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Figure 7. Results on the Rydberg atom arrays. We show
the energy of the configurations we found for the fixed detun-
ing ∆ = 3 and various values of Rb. We highlight the local
Rydberg-density patterns for the different phases below.

interactions cheaply, which we exploit in the following.
Additionally, the direct sampling procedure does not rely
on a specific update scheme for generating the relevant
samples of a state vector. The approach used in this pa-
per is ideally suited for the investigation of models with
long-range interactions in the finite PEPS framework.

To demonstrate this, and keeping with the theme of
digital twins of current cold atom experiments, we are
investigating the phases of a Rydberg atom array on a
square lattice. Such a system can be described by

Ĥ = 1
2

∑
i

σx
i −∆

∑
i

ni+
∑
i ̸=j

1
((ri − rj)/Rb)6ninj , (29)

where the local Hilbert spaces on the square lattice are
spanned by {|g⟩ , |r⟩}, where |g⟩ denotes a local atom in
the ground state, while |r⟩ indicates it being in an ex-
cited (Rydberg-)state. We use the Rabi-frequency Ω, the
coupling constant of the first term, to fix the energy scale
by setting it to unity together with the lattice distance.

This situation has recently been explored experimen-
tally [65] as well as in numerical studies [33, 79]. One of
the central conclusions of one of the numerical studies has
been the importance of the treatment of long-range tails
of the Rydberg interactions [33]. This finding strongly
suggests a reconsideration of studies on Rydberg atom
arrays on various lattice geometries in with methods that
can treat these long-range interactions faithfully.

We investigate a slice of the phase diagram at fixed
detuning ∆ = 3 whilst varying the Rydberg-blockade ra-
dius Rb. In Fig. 7, we show that several charge-density
type phases, as well as disordered configurations, emerge.

At small Rb we find a checkerboard-state, that transi-
tions into a striated phase (Rb ≈ 1.4 − 1.45), in which
the density of the checkerboard pattern is modulated. At
Rb = 1.5 a homogeneous square phase emerges that even-
tually melts (via an intermediary phase) into a quantum
disordered phase at Rb = 1.9. These results are consis-
tent with the phase diagram obtained in [33]. In addition
to the local Rydberg densities, we show the expectation
values of the energy for the different ground states of the
Rydberg atom array model. As expected, the slope of the
energy density becomes flatter as the overall density of
Rydberg excitations becomes smaller at a larger blockade
radius Rb.

These results demonstrate that sampling-based finite
PEPS calculation can be used comparatively easily to
study particular models of long-range interacting Ryd-
berg atom arrays. This makes it possible to investigate
the phase diagram for these models on other lattice ge-
ometries [80] and aspect ratios as well as to study the in-
fluence of finite-size effects on the stabilization of phases.
Particularly interesting for these investigations are the
situations in which the Rydberg models are proposed to
host topologically ordered ground states [81, 82].

VI. CONCLUSIONS AND DISCUSSION

In this work, we have discussed a framework for making
use of sampling methods for finite PEPS calculations. To
this end, we have pointed out how to solve the equations
for the optimization more efficiently using an approach
from the neural network community called minSR [46].
We further have pointed out that variational bounds can
be obtained using the finite PEPS in the sampling ap-
proach - which we then proceeded to use to verify that the
standard approximations made are highly accurate. We
then moved on to discuss complexity issues that might
arise in this approach and have given a tentative quantity
of the physical PEPS, that is correlated with the contrac-
tion complexity of its samples and have introduced a new
initialization strategy based on these considerations. Fi-
nally, we applied the finite PEPS in the context of a chiral
spin liquid and of long-range interacting Rydberg atom
arrays. We have pointed out that certain long-range in-
teractions can be treated trivially in the sampling PEPS
approach.

This demonstration on Rydberg atom arrays opens the
door to the accurate numerical study of a multitude of re-
lated situations from frustrated geometries and topologi-
cal order in Rydberg atoms [81, 82], to phases of dipolar
gases in cold atom platforms [76], and Nitrogen-vacancy
centers [83, 84]. One crucial application of this is the
generation of digital twins of state-of-the-art quantum
simulation platforms, which plays an important role in
benchmarking these powerful experiments.

We note that a technique recently proposed in the
context of iPEPS, for treating bra- and ket-layer sepa-
rately [85] might be useful to reduce computational cost
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in the double-layer boundary-MPS during the direct sam-
pling procedure.

An important work for the future is an extensive
comparison between the different methods, like different
flavours of PEPS, NQS [44], TTNs [3, 59, 60], augmented
TTNs [86], etc., for ground states calculations of two di-
mensional quantum systems.

Another area worth exploring further is how the single-
layer contractability relates to the entanglement in the
state represented by the finite PEPS. We suspect that
given an entanglement entropy S, there exists a finite
PEPS that will minimize the hardness of contracting its
samples.

Algorithm and open source code. An implementation
of the algorithms discussed here is available as open
source libraries [87, 88]. Parts of them are making use
of the ITensor library [89, 90]. All scripts used to gen-
erate the data for this analysis, along with the resulting
simulation data, are available on Zenodo [91].

VII. ACKNOLEDGEMENTS

The authors thank Niklas Tausendpfund for generating
the tree-tensor-network data used for comparison with
the package TTN.jl [66].

This work was partially funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foun-
dation) via Project-ID 277101999 – CRC network TRR
183 (“Entangled states of matter”) and under Ger-
many’s Excellence Strategy – Cluster of Excellence Mat-
ter and Light for Quantum Computing (ML4Q) EXC
2004/1 – 390534769, and by the Horizon Europe pro-
gramme HORIZON-CL4-2023-DIGITAL-EMERGING-
01-CNECT via the project 101135699 (SPINUS)
and Horizon Europe programme HORIZON-CL4-
2022-QUANTUM-02-SGA via the project 101113690
(PASQuanS2.1). E. L. W. thanks the Studienstiftung des
deutschen Volkes for support. D.A. acknowledge fund-
ing by the German Federal Ministry of Education and
Research (BMBF) for support under the thematic pro-
gramme “Quantum technologies – from the basics to the
market”, project number 13N16202 “Noise in Quantum
Algorithms (NiQ)”.

The authors gratefully acknowledge the Gauss Centre
for Supercomputing e.V. (www.gauss-centre.eu) for fund-
ing this project by providing computing time through
the John von Neumann Institute for Computing (NIC)
on the GCS Supercomputer JUWELS [92] (Grant NeTe-
NeSyQuMa) and the FZ Jülich for computing time on
JURECA [93] (institute project PGI-8) at Jülich Super-
computing Centre (JSC).

[1] R. Orús, A practical introduction to tensor networks:
Matrix product states and projected entangled pair
states, Annals of Physics 349, 117 (2014).

[2] J. I. Cirac, D. Pérez-García, N. Schuch, and F. Ver-
straete, Matrix product states and projected entangled
pair states: Concepts, symmetries, theorems, Rev. Mod.
Phys. 93, 045003 (2021).

[3] P. Silvi, F. Tschirsich, M. Gerster, J. Jünemann,
D. Jaschke, M. Rizzi, and S. Montangero, The Tensor
Networks Anthology: Simulation techniques for many-
body quantum lattice systems, SciPost Phys. Lect. Notes
, 8 (2019).

[4] S. R. White, Density matrix formulation for quantum
renormalization groups, Phys. Rev. Lett. 69, 2863 (1992).

[5] U. Schollwöck, The density-matrix renormalization group
in the age of matrix product states, Annals of Physics
326, 96 (2011), january 2011 Special Issue.

[6] J. Eisert, M. Cramer, and M. B. Plenio, Colloquium:
Area laws for the entanglement entropy, Rev. Mod. Phys.
82, 277 (2010).

[7] N. Laflorencie, Quantum entanglement in condensed
matter systems, Physics Reports 646, 1 (2016), quantum
entanglement in condensed matter systems.

[8] F. Verstraete and J. I. Cirac, Renormalization al-
gorithms for quantum-many body systems in two
and higher dimensions (2004), arXiv:cond-mat/0407066
[cond-mat.str-el].

[9] J. Jordan, R. Orús, G. Vidal, F. Verstraete, and J. I.
Cirac, Classical simulation of infinite-size quantum lat-
tice systems in two spatial dimensions, Phys. Rev. Lett.
101, 250602 (2008).

[10] P. Corboz, T. M. Rice, and M. Troyer, Competing states
in the t-j model: Uniform d-wave state versus stripe
state, Phys. Rev. Lett. 113, 046402 (2014).

[11] P. Corboz, Variational optimization with infinite pro-
jected entangled-pair states, Phys. Rev. B 94, 035133
(2016).

[12] L. Vanderstraeten, J. Haegeman, P. Corboz, and F. Ver-
straete, Gradient methods for variational optimization of
projected entangled-pair states, Phys. Rev. B 94, 155123
(2016).

[13] H.-J. Liao, J.-G. Liu, L. Wang, and T. Xiang, Differ-
entiable programming tensor networks, Phys. Rev. X 9,
031041 (2019).

[14] H. J. Liao, Z. Y. Xie, J. Chen, Z. Y. Liu, H. D. Xie, R. Z.
Huang, B. Normand, and T. Xiang, Gapless spin-liquid
ground state in the s = 1/2 kagome antiferromagnet,
Phys. Rev. Lett. 118, 137202 (2017).

[15] I. Niesen and P. Corboz, Emergent haldane phase in
the s = 1 bilinear-biquadratic heisenberg model on the
square lattice, Phys. Rev. B 95, 180404 (2017).

[16] J.-Y. Chen, L. Vanderstraeten, S. Capponi, and D. Poil-
blanc, Non-abelian chiral spin liquid in a quantum an-
tiferromagnet revealed by an ipeps study, Phys. Rev. B
98, 184409 (2018).

[17] S. S. Chung and P. Corboz, Su(3) fermions on the hon-
eycomb lattice at 1

3 filling, Phys. Rev. B 100, 035134
(2019).

[18] B. Ponsioen, S. S. Chung, and P. Corboz, Period 4 stripe
in the extended two-dimensional hubbard model, Phys.
Rev. B 100, 195141 (2019).

[19] H.-Y. Lee, R. Kaneko, L. E. Chern, T. Okubo, Y. Yamaji,



15

N. Kawashima, and Y. B. Kim, Magnetic field induced
quantum phases in a tensor network study of kitaev mag-
nets, Nature communications 11, 1639 (2020).

[20] O. Gauthé, S. Capponi, M. Mambrini, and D. Poilblanc,
Quantum spin liquid phases in the bilinear-biquadratic
two-su(4)-fermion hamiltonian on the square lattice,
Phys. Rev. B 101, 205144 (2020).

[21] J. Hasik, M. Van Damme, D. Poilblanc, and L. Vander-
straeten, Simulating chiral spin liquids with projected
entangled-pair states, Phys. Rev. Lett. 129, 177201
(2022).

[22] M. Peschke, B. Ponsioen, and P. Corboz, Competing
states in the two-dimensional frustrated kondo-necklace
model, Phys. Rev. B 106, 205140 (2022).

[23] B. Ponsioen, S. S. Chung, and P. Corboz, Superconduct-
ing stripes in the hole-doped three-band hubbard model,
Phys. Rev. B 108, 205154 (2023).

[24] B. Ponsioen, S. S. Chung, and P. Corboz, Superconduct-
ing stripes in the hole-doped three-band hubbard model,
Phys. Rev. B 108, 205154 (2023).

[25] E. L. Weerda and M. Rizzi, Fractional quantum hall
states with variational projected entangled-pair states:
A study of the bosonic harper-hofstadter model, Phys.
Rev. B 109, L241117 (2024).

[26] J. Hasik and P. Corboz, Incommensurate order with
translationally invariant projected entangled-pair states:
Spiral states and quantum spin liquid on the anisotropic
triangular lattice, Phys. Rev. Lett. 133, 176502 (2024).

[27] P. Schmoll, J. Naumann, J. Eisert, and Y. Iqbal, Bathing
in a sea of candidate quantum spin liquids: From the
gapless ruby to the gapped maple-leaf lattice (2024),
arXiv:2407.07145 [cond-mat.str-el].

[28] V. Murg, F. Verstraete, and J. I. Cirac, Variational study
of hard-core bosons in a two-dimensional optical lattice
using projected entangled pair states, Phys. Rev. A 75,
033605 (2007).

[29] V. Murg, F. Verstraete, and J. I. Cirac, Exploring frus-
trated spin systems using projected entangled pair states,
Phys. Rev. B 79, 195119 (2009).

[30] M. Lubasch, J. I. Cirac, and M.-C. Bañuls, Unifying pro-
jected entangled pair state contractions, New Journal of
Physics 16, 033014 (2014).

[31] M. Lubasch, J. I. Cirac, and M.-C. Bañuls, Algorithms
for finite projected entangled pair states, Phys. Rev. B
90, 064425 (2014).

[32] M. Scheb and R. M. Noack, Finite projected entangled
pair states for the hubbard model, Phys. Rev. B 107,
165112 (2023).

[33] M. J. O’Rourke and G. K.-L. Chan, Entanglement in the
quantum phases of an unfrustrated rydberg atom array,
Nature Communications 14, 5397 (2023).

[34] J. Gray, quimb: A python package for quantum informa-
tion and many-body calculations, Journal of Open Source
Software 3, 819 (2018).

[35] L. Wang, I. Pižorn, and F. Verstraete, Monte carlo sim-
ulation with tensor network states, Phys. Rev. B 83,
134421 (2011).

[36] W.-Y. Liu, S.-J. Dong, Y.-J. Han, G.-C. Guo, and L. He,
Gradient optimization of finite projected entangled pair
states, Phys. Rev. B 95, 195154 (2017).

[37] W.-Y. Liu, H. Zhai, R. Peng, Z.-C. Gu, and G. K. Chan,
Accurate simulation of the hubbard model with finite
fermionic projected entangled pair states, arXiv preprint
arXiv:2502.13454 (2025).

[38] W.-Y. Liu, S. Dong, C. Wang, Y. Han, H. An, G.-C. Guo,
and L. He, Gapless spin liquid ground state of the spin- 1

2
J1 − J2 heisenberg model on square lattices, Phys. Rev.
B 98, 241109 (2018).

[39] W.-Y. Liu, Y.-Z. Huang, S.-S. Gong, and Z.-C. Gu, Accu-
rate simulation for finite projected entangled pair states
in two dimensions, Phys. Rev. B 103, 235155 (2021).

[40] W.-Y. Liu, S.-S. Gong, Y.-B. Li, D. Poilblanc, W.-Q.
Chen, and Z.-C. Gu, Gapless quantum spin liquid and
global phase diagram of the spin-1/2 j1-j2 square antifer-
romagnetic heisenberg model, Science Bulletin 67, 1034
(2022).

[41] T. Vieijra, J. Haegeman, F. Verstraete, and L. Van-
derstraeten, Direct sampling of projected entangled-pair
states, Phys. Rev. B 104, 235141 (2021).

[42] S. Sorella, M. Casula, and D. Rocca, Weak binding be-
tween two aromatic rings: Feeling the van der waals at-
traction by quantum monte carlo methods, The Journal
of chemical physics 127, 014105 (2007).

[43] J. Haegeman, J. I. Cirac, T. J. Osborne, I. Pižorn, H. Ver-
schelde, and F. Verstraete, Time-dependent variational
principle for quantum lattices, Physical review letters
107, 070601 (2011).

[44] G. Carleo and M. Troyer, Solving the quantum many-
body problem with artificial neural networks, Science
355, 602 (2017).

[45] L. Vanderstraeten, J. Haegeman, and F. Verstraete,
Tangent-space methods for uniform matrix product
states, SciPost Phys. Lect. Notes , 7 (2019).

[46] A. Chen and M. Heyl, Empowering deep neural quantum
states through efficient optimization, Nature Physics 20,
1476 (2024).

[47] W.-Y. Liu, S.-J. Du, R. Peng, J. Gray, and G. K.-L.
Chan, Tensor network computations that capture strict
variationality, volume law behavior, and the efficient rep-
resentation of neural network states, Physical Review
Letters 133, 260404 (2024).

[48] J. Chen, J. Jiang, D. Hangleiter, and N. Schuch,
Sign problem in tensor network contraction (2024),
arXiv:2404.19023 [quant-ph].

[49] E. M. Stoudenmire and S. R. White, Minimally entangled
typical thermal state algorithms, New Journal of Physics
12, 055026 (2010).

[50] I. P. McCulloch, From density-matrix renormalization
group to matrix product states, Journal of Statistical Me-
chanics: Theory and Experiment 2007, P10014 (2007).

[51] M. McGinley, W. W. Ho, and D. Malz, Measurement-
induced entanglement and complexity in ran-
dom constant-depth 2d quantum circuits (2024),
arXiv:2410.23248.

[52] R. Orús and T.-C. Wei, Visualizing elusive phase tran-
sitions with geometric entanglement, Physical Review B
82, 155120 (2010).

[53] S.-J. Ran, W. Li, B. Xi, Z. Zhang, and G. Su,
Optimized decimation of tensor networks with super-
orthogonalization for two-dimensional quantum lattice
models, Phys. Rev. B 86, 134429 (2012).

[54] S. S. Jahromi and R. Orús, Universal tensor-network al-
gorithm for any infinite lattice, Phys. Rev. B 99, 195105
(2019).

[55] J. Tindall and M. Fishman, Gauging tensor networks
with belief propagation, SciPost Phys. 15, 222 (2023).

[56] G. Vidal, Efficient classical simulation of slightly entan-
gled quantum computations, Phys. Rev. Lett. 91, 147902



16

(2003).
[57] P. Chandra and B. Doucot, Possible spin-liquid state at

large s for the frustrated square heisenberg lattice, Phys.
Rev. B 38, 9335 (1988).

[58] E. Dagotto and A. Moreo, Phase diagram of the frus-
trated spin-1/2 heisenberg antiferromagnet in 2 dimen-
sions, Phys. Rev. Lett. 63, 2148 (1989).

[59] Y.-Y. Shi, L.-M. Duan, and G. Vidal, Classical simula-
tion of quantum many-body systems with a tree tensor
network, Phys. Rev. A 74, 022320 (2006).

[60] L. Tagliacozzo, G. Evenbly, and G. Vidal, Simulation
of two-dimensional quantum systems using a tree tensor
network that exploits the entropic area law, Phys. Rev.
B 80, 235127 (2009).

[61] M. Gerster, M. Rizzi, P. Silvi, M. Dalmonte, and S. Mon-
tangero, Fractional quantum hall effect in the interacting
hofstadter model via tensor networks, Phys. Rev. B 96,
195123 (2017).

[62] T. B. Wahl, H.-H. Tu, N. Schuch, and J. I. Cirac, Pro-
jected entangled-pair states can describe chiral topologi-
cal states, Phys. Rev. Lett. 111, 236805 (2013).

[63] J. Dubail and N. Read, Tensor network trial states for
chiral topological phases in two dimensions and a no-
go theorem in any dimension, Phys. Rev. B 92, 205307
(2015).

[64] H. Labuhn, D. Barredo, S. Ravets, S. De Léséleuc,
T. Macrì, T. Lahaye, and A. Browaeys, Tunable two-
dimensional arrays of single rydberg atoms for realizing
quantum ising models, Nature 534, 667 (2016).

[65] S. Ebadi, T. T. Wang, H. Levine, A. Keesling, G. Se-
meghini, A. Omran, D. Bluvstein, R. Samajdar, H. Pich-
ler, W. W. Ho, et al., Quantum phases of matter on
a 256-atom programmable quantum simulator, Nature
595, 227 (2021).

[66] N. Tausendpfund, W. Krinitsin, M. Schmitt, and
M. Rizzi, TTN.jl – A tree tensor network library for cal-
culating groundstates and solving time evolution (0.1),
Zenodo.

[67] Y. Nomura, Helping restricted boltzmann machines with
quantum-state representation by restoring symmetry,
Journal of Physics: Condensed Matter 33, 174003 (2021).

[68] L. W. Clark, N. Schine, C. Baum, N. Jia, and J. Simon,
Observation of laughlin states made of light, Nature 582,
41 (2020).

[69] J. Léonard, S. Kim, J. Kwan, P. Segura, F. Grusdt,
C. Repellin, N. Goldman, and M. Greiner, Realization
of a fractional quantum hall state with ultracold atoms,
Nature 619, 495 (2023).

[70] P. Lunt, P. Hill, J. Reiter, P. M. Preiss, M. Gałka, and
S. Jochim, Realization of a laughlin state of two rapidly
rotating fermions, Phys. Rev. Lett. 133, 253401 (2024).

[71] M. Haque, O. Zozulya, and K. Schoutens, Entanglement
entropy in fermionic laughlin states, Phys. Rev. Lett. 98,
060401 (2007).

[72] A. E. Nielsen, G. Sierra, and J. I. Cirac, Local models
of fractional quantum hall states in lattices and physical
implementation, Nature communications 4, 2864 (2013).

[73] J. Naumann, E. L. Weerda, M. Rizzi, J. Eisert,
and P. Schmoll, An introduction to infinite projected
entangled-pair state methods for variational ground
state simulations using automatic differentiation, SciPost
Phys. Lect. Notes , 86 (2024).

[74] S. Banerjee, W. Zhu, and S.-Z. Lin, Electromagnetic sig-
natures of a chiral quantum spin liquid, npj Quantum

Materials 8, 63 (2023).
[75] L. N. Bulaevskii, C. D. Batista, M. V. Mostovoy, and D. I.

Khomskii, Electronic orbital currents and polarization in
mott insulators, Phys. Rev. B 78, 024402 (2008).

[76] T. Lahaye, C. Menotti, L. Santos, M. Lewenstein, and
T. Pfau, The physics of dipolar bosonic quantum gases,
Reports on Progress in Physics 72, 126401 (2009).

[77] M. J. O’Rourke, Z. Li, and G. K.-L. Chan, Efficient rep-
resentation of long-range interactions in tensor network
algorithms, Phys. Rev. B 98, 205127 (2018).

[78] M. J. O’Rourke and G. K.-L. Chan, Simplified and im-
proved approach to tensor network operators in two di-
mensions, Phys. Rev. B 101, 205142 (2020).

[79] R. Samajdar, W. W. Ho, H. Pichler, M. D. Lukin, and
S. Sachdev, Complex density wave orders and quantum
phase transitions in a model of square-lattice rydberg
atom arrays, Phys. Rev. Lett. 124, 103601 (2020).

[80] R. Samajdar, W. W. Ho, H. Pichler, M. D. Lukin, and
S. Sachdev, Quantum phases of rydberg atoms on a
kagome lattice, Proceedings of the National Academy of
Sciences 118, e2015785118 (2021).

[81] R. Verresen, M. D. Lukin, and A. Vishwanath, Prediction
of toric code topological order from rydberg blockade,
Phys. Rev. X 11, 031005 (2021).

[82] G. Semeghini, H. Levine, A. Keesling, S. Ebadi, T. T.
Wang, D. Bluvstein, R. Verresen, H. Pichler, M. Kali-
nowski, R. Samajdar, A. Omran, S. Sachdev, A. Vish-
wanath, M. Greiner, V. Vuletić, and M. D. Lukin, Prob-
ing topological spin liquids on a programmable quantum
simulator, Science 374, 1242 (2021).

[83] J. Randall, C. Bradley, F. Van Der Gronden, A. Galicia,
M. Abobeih, M. Markham, D. Twitchen, F. Machado,
N. Yao, and T. Taminiau, Many-body–localized discrete
time crystal with a programmable spin-based quantum
simulator, Science 374, 1474 (2021).

[84] J. Cai, A. Retzker, F. Jelezko, and M. B. Plenio, A large-
scale quantum simulator on a diamond surface at room
temperature, Nature Physics 9, 168 (2013).

[85] J. Naumann, E. L. Weerda, J. Eisert, M. Rizzi, and
P. Schmoll, Variationally optimizing infinite projected
entangled-pair states at large bond dimensions: A split-
ctmrg approach (2025), arXiv:2502.10298.

[86] T. Felser, S. Notarnicola, and S. Montangero, Effi-
cient tensor network ansatz for high-dimensional quan-
tum many-body problems, Phys. Rev. Lett. 126, 170603
(2021).

[87] D. Alcalde Puente, E. L. Weerda, and K. Schröder, Quan-
tum natural finite peps, Will be available after publica-
tion and before that, upon request. (2025).

[88] D. Alcalde Puente, Quantum natural gradient,
https://github.com/danielalcalde/QuantumNaturalGradient.jl
(2025).

[89] M. Fishman, S. R. White, and E. M. Stoudenmire, The
ITensor Software Library for Tensor Network Calcula-
tions, SciPost Phys. Codebases , 4 (2022).

[90] M. Fishman, S. R. White, and E. M. Stoudenmire, Code-
base release 0.3 for ITensor, SciPost Phys. Codebases , 4
(2022).

[91] D. Alcalde Puente, E. L. Weerda, K. Schröder, and
M. Rizzi, Data for "efficient optimization and concep-
tual barriers in variational finite projected entangled-pair
states", 10.5281/zenodo.15046369 (2025).

[92] Jülich Supercomputing Centre, JUWELS Cluster and
Booster: Exascale pathfinder with modular supercom-



17

puting architecture at JSC, J. Large-Scale Rec. Fac. 7,
A183 (2021).

[93] Jülich Supercomputing Centre, JURECA: Data centric
and booster modules implementing the modular super-
computing architecture at JSC, J. Large-Scale Res. Fac.
7, A182 (2021).

[94] A. J. Ferris and G. Vidal, Perfect sampling with unitary
tensor networks, Phys. Rev. B 85, 165146 (2012).

[95] W. Krinitsin, N. Tausendpfund, M. Rizzi, M. Heyl, and
M. Schmitt, Roughening dynamics of interfaces in two-
dimensional quantum matter (2024), arXiv:2412.10145
[quant-ph].

[96] M. Schmitt and M. Heyl, Quantum many-body dynamics
in two dimensions with artificial neural networks, Physi-
cal Review Letters 125, 100503 (2020).

Appendix A: Sampling-based PEPS schemes can yield a variational upper bound on the energy

To further investigate the effect of different approximations of the wave function amplitude Ψ(S) on the variational
upper bound of the ground state energy, we compare the energy estimates obtained using two different computational
approaches. As described in the main text, the faster method reuses the environments computed during boundary-
MPS contraction to evaluate the local estimator Eloc(S), whereas the slower, variational approach enforces a consistent
wave function approximation, ensuring a strict upper bound for the ground state energy.
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Figure 8. (a) For a set of 104 samples at L = 10 the energy was computed for different cutoffs in two different ways: (blue)
the faster way, which takes advantage of the environments to compute the Ψ(S) needed to compute Eloc(S), and (orange) the
slower way which always uses the same environments to compute an upper bound for the ground state energy. Note that the
same samples were used for all calculations. The lowest variational energy value was used as the offset for the plot. (b) The
energy vs variance plot for L = 16 is displayed in Fig. 5(b) but calculated to a different accuracy using the different cutoffs for
105 samples using the fast approximate method.

Figure 8(a) presents the results for a set of 104 samples, showing the energy deviation from the lowest obtained
variational energy as a function of the contraction cutoff. For very small cutoffs (10−7 to 10−5), both methods
yield nearly identical energy estimates, suggesting that the approximation error is negligible in this regime. As the
cutoff increases, deviations increase polynomially in the cutoff, with the fast method producing slightly lower energy
estimates than the upper-bound method. This indicates that the ansatz indeed exploits inconsistencies in the wave
function approximations to achieve artificially lower energy values.

Notably, at a cutoff of 10−4, the same value used during optimization, the strict variational calculation achieves its
lowest value. Since ⟨S|Ψ(cutoff)⟩ = Eu[i](cutoff) ·El[i+1](cutoff) was indirectly optimized using the cut environments
E it makes sense that its energy would perform best.

These results highlight the importance of choosing an appropriate contraction cutoff: while excessively tight cutoffs
increase computational cost without significant accuracy gains, too loose a cutoff compromises the variational nature
of the ansatz. The optimal choice depends on balancing these factors to ensure efficient yet reliable energy estimates.

An alternative approach for estimating an upper bound to the ground state energy involves a different, unbiased
estimator that is computationally less demanding. Specifically, the method proposed at the end of Sec. III B can be
utilized. In this approach, the expectation values of the Hamiltonian terms are evaluated on a rotated basis where
the Hamiltonian terms become diagonal. As a result, the computation of Eloc(S) becomes independent of the wave
function, eliminating the need for different approximations of Ψ(S)i and the errors that come with them.
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This estimator is unbiased because the finite PEPS was not optimized using this method, ensuring that the opti-
mization process could not exploit discrepancies between the different wave functions. The unbiased estimator yields
⟨H⟩ = −187.907 ± 0.042, which is in agreement with the other estimates. This consistency suggests that the approxi-
mations employed are sufficiently accurate to prevent significant deviations between different approximation schemes.
Consequently, the use of additional methods appears unnecessary unless there is a reason to question the validity of
the primary method.

More practical than generating expensive variational upper bounds is to vary the cutoff and see if energy and
variance converge. For example, the PEPS states presented in Fig. 8(b) were optimized using a cutoff value of 10−4.
However, evaluating the energies obtained with this cutoff reveals discrepancies with the Tree Tensor Network (TTN)
results, indicating inaccurate ground-state energies. This discrepancy disappears once the accuracy is increased. This
observation underscores the necessity for meticulous care in PEPS calculations. In particular, ensuring sufficient
accuracy in environment approximations is crucial to prevent the ansatz from exploiting numerical errors introduced
during truncation.

Appendix B: Direct sampling of PEPS

The direct-sampling scheme generates a many-body configuration S with a probability p(S), which serves as an
approximation of pΨ(S) = |Ψ(S)|2

⟨Ψ|Ψ⟩ . The discrepancy between p(S) and pΨ(S) can be corrected using importance
sampling, as will be discussed later.

To proceed, we introduce the shorthand notation Si := {si,1, . . . , si,Ly } to represent the collection of local configu-
rations on the i-th row. This allows us to express the probability of a configuration as

p(S) = p(S1)
Ly−1∏
i=1

p(Si+1|S<i+1), (B1)

where p(Si|S<i) represents the conditional probability given the configurations on the uppermost i− 1 rows, denoted
by S<i = {S1, . . . ,Si−1}.

We generate each of the probabilities in Eq. (B1) sequentially, beginning with p(S1). This probability corresponds
to the reduced density matrix of the topmost row of the PEPS, denoted as ρ[1]. As this step involves tracing out all
degrees of freedom except those on the first row, an approximate contraction of the double-layer tensor PEPS network
for all rows except the first is required.

To achieve this, we define Dl[i] as the double-layer contraction of the i lowermost rows, computed using the
boundary-MPS method described above (cf. Fig. 9). In practice, we truncate the bond dimension of Dl[i] to Ddouble

c .
Additional comments on this double-layer boundary can be found at the end of this section.

An approximation of the reduced density matrix for the first row can thus be expressed as

ρ[1] = Tu[1] ·Dd[2] · (Tu)∗[1]

= Dl[2]1 Dl[2]2 Dl[2]Ly

T ∗[1, 1] T ∗[1, 2] T ∗[1, Ly]

T [1, 1] T [1, 2] T [1, Ly]

,
(B2)

where Tu[i] represents the product of all local PEPS tensors in the i-th uppermost row, as illustrated in the equation
above.
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≈ Dl[2]

Figure 9. Illustration of the conditional reduced density matrix for the second row ρS1 [2] used in the direct sampling scheme.
The spin configurations of the first row are fixed to configurations S1, which is illustrated by the colored dots. The physical
legs of the second row are left open (on the support of ρS1 [2]), while all physical legs on the lower rows are traced out. The
contraction of the two lowermost rows, on which the physical indices are traced out, are in our calculation approximated by a
boundary-MPS Dl[2].

It is noteworthy that this reduced-density matrix possesses a one-dimensional structure. Consequently, efficient
methods for sampling MPS wavefunctions can be directly applied to generate samples S1 from the probability distri-
bution p(S1) [94]. This established MPS technique resembles the direct-sampling approach for PEPS discussed here,
as the probability p(S1) is similarly expressed as a product of conditional probabilities, analogous to Eq. (B1), which
are evaluated sequentially from left to right (or vice versa).

We now proceed to the generation of the conditional probabilities p(Si|S<i), which are derived from the conditional
reduced density matrix ρS<i

[i] of the i-th row, as illustrated in Fig. 9. The support of ρS<i
[i] consists of the degrees

of freedom on the i-th row, while all degrees of freedom on the rows above are fixed to the configurations S<i.
To construct this conditional reduced density matrix, we combine the i uppermost rows using the boundary-MPS

method, resulting in

Tu
S<i

[i] : = TS<i
[i]1 TS<i

[i]2 TS<i
[i]Ly

≈

T [i, 1] T [i, 2] T [i, Ly]

T [i− 1, 1] T [i− 1, 2] T [i− 1, Ly]

T [1, 1] T [1, 2] T [1, Ly]

,

(B3)
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where the bond dimension is truncated to Ds to ensure computational efficiency. Note that in practice, Ds can be
chosen to be significantly smaller than Dc. All truncations are performed using the algorithm described in [50].

All rows below the i-th one are traced out, which is represented using the double-layer boundary-MPS Dl[Lx − i].
This approach allows for an efficient and stable computation of the conditional probabilities required for the sampling
procedure. With these objects, we can express the conditional reduced density matrix ρS<i

[i] as

ρS<i [i] = Tu
S<i

[i] ·Dl[i+ 1] · (Tu
S<i

)∗[i], (B4)

which has the same form as Eq. (B2) such that we can again use the sampling algorithms for MPS to obtain the
conditional probability p(Si|S<i) from it. This is summarized in Alg. 1.

Algorithm 1 Sampling algorithm
function sample(T,Dl;Dc, Ds)

Eu[0]← 1
for i = 1, . . . , L do

Tu
S<i

[i]← mul(T [i, :], Eu[i− 1];Ds)
Si ← sample(Tu

S<i
[i], Dl[i+ 1])

Tproj[i]← proj(T [i, :], Si)
Eu[i]← mul(Eu[i− 1], Tproj[i];Dc)

end for
return S, Eu

end function

We close this summary of the direct sampling procedure with a few comments. Firstly, the direct sampling procedure
involves the calculation of boundary-MPS approximation for double layers of PEPS. However, as was noted in [41],
we can get away with taking small values for the environment bond dimension Ddouble

c ∼ D of this double-layer
boundary-MPS. Additionally, these double-layer environments have to be calculated only once and can then be
reused to generate an arbitrary number of samples for the corresponding PEPS. Due to this fact, the calculation of
the double-layer boundary-MPS for small enough D only accounts for a small fraction of the computational time used.

Secondly, as mentioned at the beginning of this section, the fact that we obtain any sample S with a probability
p(S) which is an approximation of the actual probability pΨ(S) can be corrected for with an additional factor of pΨ(S)

p(S)
in Eq. (3). Note that once we have a sample S we can obtain Ψ(S) needed for pΨ(S) accurately with a single layer
contraction.

The computation of double-layer environments becomes increasingly demanding for larger bond bond dimensions,
taking up a sizable share of the computational time for D ≥ 7. This issue can be mitigated by computing the
double-layer environments asynchronously. This approach generates samples using previously computed double-layer
environments while updated environments are simultaneously computed. Although asynchronous generation intro-
duces slight inaccuracies due to outdated environments, these deviations are corrected through importance sampling.
Moreover, the magnitude of these errors can be continuously monitored by evaluating the statistical error of the
energy, ensuring that statistical biases remain within acceptable limits. In practice for a L = 16 D = 8 PEPS with
2000 samples, the double layer environments will lag 5 optimization steps behind while not causing any significant
change in the error metrics.

Appendix C: Real-Time Evolution

The equations introduced in Sec. II A can, in principle, be applied to real-time evolution. However, two major
challenges prevent achieving high-fidelity results in practice.

The first challenge arises from the typically linear growth of entanglement entropy during real-time evolution. PEPS
inherently obey an area-law scaling of entanglement entropy and are limited to modest bond dimensions, generally
ranging from 1 to 10, due to computational constraints. Consequently, accurate simulations over long time intervals
are usually infeasible. Exceptions occur in special cases where entanglement entropy grows sublinearly, such as the
domain-wall dynamics recently examined in Ref. [95].

The second challenge relates to the number of samples required for accurately solving the TDVP equations. In
optimization scenarios, the fidelity of individual evolution steps is less critical, provided convergence to the correct
state is eventually achieved. In contrast, real-time evolution is highly sensitive to fidelity losses, which accumulate
exponentially over multiple steps. Ensuring high-fidelity evolution steps thus requires a substantial number of samples,
often several orders of magnitude larger than the number of variational parameters. Schmidt et al. [96], for instance,
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used around 106 samples for an ansatz with roughly 103 parameters. A PEPS with moderate system size (L = 10)
and bond dimension (D = 6) contains substantially more parameters (Np ≈ 105). Therefore, meeting the sampling
requirements in practical scenarios is expected to be a significant computational challenge.

Appendix D: Efficient computation of geometric entanglement

Several methods exist to compute the geometric entanglement for finite PEPS. In this study, a two-step approach
is employed. The first step provides an approximate product state that maximizes the overlap

Λmax = max
|ϕ⟩

|⟨ϕ| Ψ⟩|2 ,

SG(|ψ⟩) = − 1
N

log2 Λmax , (D1)

while the second step refines this initial approximation.
To efficiently approximate the optimal state |ϕ⟩ =

⊗L2

i=1 |ϕi⟩, a sampling-based strategy is utilized. Rather than
sampling directly from |Ψ⟩ in the z-basis, the same algorithm is used, but now the spins are sequentially optimized
to maximize the overlap with the conditional reduced density matrix. This selection is performed iteratively by
minimizing

min
|ϕj⟩

⟨Ψ| (
j⊗

i=1
|ϕi⟩ ⟨ϕi|) |Ψ⟩ . (D2)

After obtaining this initial approximation, the overlap |⟨ϕ| Ψ⟩|2 can be further optimized through a sweep across all
|ϕi⟩. During this sweep, each |ϕi⟩ is individually optimized by maximizing its overlap, allowing for efficient reuse of
previously computed environments.



CHAPTER 7

Conclusion

This thesis has investigated how quantum measurements can be utilized for quantum
state preparation and ground state search. By exploiting non-unitary dynamics and
incorporating adaptive feedback, the developed methods address key challenges associ-
ated with the preparation of complex quantum states, particularly within the constraints
of noisy intermediate-scale quantum (NISQ) devices. These contributions enhance the
prospects for scalable quantum state preparation by providing new algorithmic tools for
quantum information processing.

This chapter presents a summary of the main contributions of the thesis and outlines
several directions for future research.

A central contribution, presented in Publication [I], is the development and theoretical
analysis of a dissipative protocol for preparing the one-dimensional Affleck-Kennedy-
Lieb-Tasaki (AKLT) state. By incorporating engineered ancilla measurement and reset,
the protocol operates beyond the idealized Markovian regime. It identifies an optimal
finite measurement and reset interval that balances entanglement generation and con-
vergence rate. The protocol also exhibits robustness against realistic dephasing noise,
indicating its potential for experimental implementation.

Another key result, detailed in Publication [II], is the introduction of a self-learning
framework that integrates projective measurements and adaptive classical feedback into
variational quantum circuits (VQCs). This approach autonomously discovers efficient
constant-depth preparation protocols for specific AKLT edge states, including new de-
terministic solutions. The study also identifies a new class of local minima specific to
feedback-based VQCs and proposes strategies to mitigate the challenges they present to
optimization.

Publication [III] introduces methodological advances for ground state search using fi-
nite PEPS by analyzing the complexity of performing projective measurements on both
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random and physically motivated quantum states. This analysis informs the design of
improved initialization strategies for variational optimization. In particular, the spectral
entropy Hc is proposed as a diagnostic tool to quantify the difficulty of tensor contrac-
tions. This thesis continues the analysis in Sec. 2.2.1, demonstrating that insights into
Hc enable targeted acceleration of single-layer contractions required for sampling.

The results presented in this thesis suggest several promising directions for future re-
search. The dissipative protocol introduced in Publication [I], initially developed for
Hamiltonian dynamics, could be adapted to gate-based architectures. Additionally, it
may benefit from optimization techniques such as the variational quantum eigensolver
(VQE). A natural extension of this work involves the preparation of two-dimensional
states using the finite PEPS ansatz from Publication [III].

Particular attention should be given to topological states such as the toric code. These
states could potentially be prepared using both passive protocols, as developed in Publi-
cation [I], and active feedback-based methods described in Publication [II]. The passive
protocol is expected to prepare the desired state accurately, although it lacks control
over the encoded logical qubits. In contrast, the feedback-based approach may offer a
strategy for accelerating the selection of a specific logical qubit state, similar to how it
enabled the deterministic selection of an edge mode in the AKLT case.

However, the preparation of topological states presents a greater challenge. In the AKLT
case, the presence of short-range entanglement simplifies the selection of edge modes. For
topological states, where long-range entanglement is inherent, such selection is expected
to be significantly more difficult. Furthermore, the applicability of shallow-circuit active
learning techniques in two dimensions remains an open question due to the optimization
difficulties already observed in one-dimensional systems.

Another avenue for future research is the real-time evolution of finite PEPS for the
characterization of out-of-equilibrium dynamics. In Sec. 3.3, we showed that the number
of samples needed to compute accurate gradients scales linearly with the number of
parameters in the ansatz as well as with the entanglement of the quantum state. It
remains to be clarified whether this unfavorable scaling with entanglement is specific
to sampling-based PEPS or also affects Neural Quantum States (NQS), where time
evolution is implemented in a similar manner and has demonstrated significant success
in simulating out-of-equilibrium dynamics in two dimensions [89]. It would be important
to carry out a comparable analysis for NQS to determine whether they exhibit the
same sensitivity to entanglement. This would clarify whether the observed scaling is
an inherent feature of the underlying poly-linear structure of tensor networks or a more
general limitation of variational sampling approaches.

A further avenue for future research is the proposed hybrid TEBD-sampling approach
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for real-time PEPS evolution (Sec. 3.3.2), as it could greatly reduce the sampling over-
head. In addition, translationally invariant PEPS offer a promising ansatz for homo-
geneous systems and may reduce computational cost. Lastly, future research should
aim at a systematic comparison between various approaches for ground state search in
two-dimensional quantum systems. These include different variants of PEPS, neural
quantum states (NQS) [70], tree tensor networks (TTNs) [143–145], and augmented
TTNs [146]. A clear understanding of the optimal choice of method for different Hamil-
tonians remains unclear and should be investigated.

In summary, this thesis has introduced new protocols for quantum state preparation,
algorithmic improvements for PEPS optimization, and conceptual insights into the role
of measurements and feedback in variational quantum algorithms. Together, these con-
tributions provide a foundation for continued progress toward the efficient preparation
and simulation of complex quantum systems.
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