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Quantum computing devices can now perform sampling tasks that, according to complexity-theoretic
and numerical evidence, are beyond the reach of classical computers. This raises the question of how one
can efficiently verify that a quantum computer operating in this regime works as intended. In 2008, Shep-
herd and Bremner proposed a protocol in which a verifier constructs a unitary from the comparatively
easy-to-implement family of so-called /QP circuits and challenges a prover to execute it on a quantum
computer. The challenge problem is designed to contain an obfuscated secret, which can be turned into
a statistical test that accepts samples from a correct quantum implementation. It was conjectured that
extracting the secret from the challenge problem is NP-hard, so that the ability to pass the test constitutes
strong evidence that the prover possesses a quantum device and that it works as claimed. Unfortunately,
about a decade later, Kahanamoku-Meyer found an efficient classical secret-extraction attack. Bremner,
Cheng, and Ji very recently followed up by constructing a wide-ranging generalization of the original pro-
tocol. Their IQP Stabilizer Scheme has been explicitly designed to circumvent the known weakness. They
also suggested that the original construction can be made secure by adjusting the problem parameters. In
this work, we develop a number of secret-extraction attacks that are effective against both new approaches
in a wide range of problem parameters. In particular, we find multiple ways to recover the 300-bit secret
hidden in a challenge data set published by Bremner, Cheng, and Ji. The important problem of finding an
efficient and reliable verification protocol for sampling-based proofs of quantum advantage thus remains

opern.
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L. INTRODUCTION

A central challenge in the field of quantum advantage is
to devise efficient quantum protocols that are both classi-
cally intractable and classically verifiable, while minimiz-
ing the experimental effort required for an implementation.
The paradigmatic approach satisfying these first conditions
is to solve public key cryptography schemes using Shor’s
algorithm. However, the quantum resources required in
the cryptographically secure regime are enormous, using
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thousands of qubits and millions of gates (see, e.g.,
Refs. [1,2]). Reducing the required resources, interactive
proofs of computational quantumness have been proposed,
which make use of classically or quantum secure crypto-
graphic primitives [3—5]. Again, however, their implemen-
tation requires arithmetic operations, putting the advantage
regime far beyond the reach of current technology [6].

A different approach to demonstrations of quantum
advantage has focused on simple protocols based on sam-
pling from the output of random quantum circuits [7—12].
These require a significantly smaller amount of qubits and
gates, and seem to be classically intractable even in the
presence of noise on existing hardware [13—16]. However,
they are not efficiently verifiable (for a discussion, see Ref.
[17]) and present-day experiments are already outside of
the regime in which the samples can be efficiently checked.

The key property that makes random quantum sampling
so much more feasible compared to cryptography-based
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approaches is their apparent lack of structure in the sam-
pled distribution. At the same time, this is also what seems
to thwart classical verifiability. Yamakawa and Zhandry
[18] have made significant progress by showing that there
are also highly unstructured NP-problems based on ran-
dom oracles, which can be efficiently solved by a quantum
computer and checked by a classical verifier. Conversely,
one may wonder whether it is possible to introduce just
enough structure into random quantum circuits to make
their classical outputs efficiently verifiable while keeping
the resource requirements low [19-21]. An early and influ-
ential idea of this type dating back to 2008 is that of
Shepherd and Bremner [19].

Shepherd and Bremner proposed a sampling-based
scheme based on so-called instantaneous quantum
polynomial-time (IQP) circuits. In the IQP paradigm, one
can only execute gates that are diagonal in the X basis.
They designed a family of IQP circuits based on quadratic
residue codes (QRCs) the output distribution of which has
high weight on bit strings x € [} that are contained in
a hyperplane s’x = 0 mod 2. The normal vector s € F}
may be chosen freely but its value is not apparent from
the circuit description. In this way, a verifier can design a
circuit that hides a secret s. The verifier then challenges a
prover to produce samples such that a significant fraction
of them lie in the hyperplane orthogonal to s. At the time,
the only known way to efficiently meet the challenge was
for the prover to collect the samples by implementing the
circuit on a quantum computer. More precisely, Shepherd
and Bremner conjectured that it was an NP-hard problem
to recover the secret from the circuit description. They
challenged the community to generate samples that have
high overlap with a secret 244-bit string—corresponding
to a 244-qubit experiment [22].

Unfortunately, in 2019, Kahanamoku-Meyer [23]
solved the challenge and recovered the secret string. The
paper provided evidence that the attack has only quadratic
running time for the QRC construction.

Recently, Bremner, Cheng, and Ji [24] have made new
progress on this important problem. They propose a wide-
ranging generalization of the construction—the /QP Stabi-
lizer Scheme—which circumvents Kahanamoku-Meyer’s
analysis. They also conjecture that an associated com-
putational problem—the Hidden Structured Code (HSC)
problem—cannot be solved efficiently classically for some
parameter choices and pose a challenge for an IQP exper-
iment on 300 qubits, corresponding to a 300-bit secret.
Finally, they also extend the QRC-based construction to
parameter regimes in which Kahanamoku-Meyer’s ansatz
fails.

Here, we show that the scheme is still vulnerable to
classical cryptanalysis by devising a number of secret-
extraction attacks against obfuscated IQP circuits. Our first
approach, the Radical Attack instantly recovers the 300-
bit secret of the challenge from the circuit description. We

analyze the Radical Attack in detail and give conditions
under which we expect the ansatz to work. The theory is
tested on 100 000 examples generated by a software pack-
age provided as part of Ref. [24] and is found to match the
empirical data well. We also observe that for the Extended
QRC construction, the Radical Attack and the approach of
Kahanamoku-Meyer complement each other almost per-
fectly, in the sense that for every parameter choice, exactly
one of the two works with near certainty.

In Sec. V, we sketch a collection of further approaches
for recovering secrets hidden in IQP circuits. Concretely,
we propose two extensions of Kahanamoku-Meyer’s idea,
which we call the Lazy Linearity Attack and the Double
Meyer. The Double Meyer Attack is effective against the
Extended QRC construction for all parameter choices and
we expect that its running time is at most quasipolynomial
on all instances of the IQP Stabilizer Scheme. Finally, we
introduce Hamming’s Razor, which can be used to iden-
tify redundant rows and columns of the matrix that were
added as part of the obfuscation procedure. For the chal-
lenge data set, this allows us to recover the secret in an
alternative fashion and we expect it to reduce the load on
further attacks in general.

The important problem of finding cryptographic obfus-
cation schemes for the efficient classical verification of
quantum circuit implementations therefore remains open.

We begin by setting up some notation in Sec. II, then
recall the IQP Stabilizer Scheme in Sec. 11, describe and
analyze the Radical Attack in Sec. IV, and sketch further
exploits in Sec. V.

II. NOTATION AND DEFINITIONS

We mostly follow the notation of Ref. [24]. This
means using boldface for matrices M and column vectors
v (though basis-independent elements of abstract vector
spaces are set in lightface). We write M; for the ith col-
umn of a matrix and v; for the ith coefficient of a column
vector. By the support of a set S C I}, we mean the union
of the supports of its elements:

suppV={ie[l,m]|3IvelV, v;#0}L
We use e’ for the standard basis vector (e’); = §;. The all-
ones vector is 1 and for a set S, 1g is the “indicator function
on S,” i.e., the ith coefficient of 15 is 1 if i € S and 0 else.
The Hamming weight of a vector v € Fy is [V| := 3,1,y Vi

A. Symmetric bilinear forms

Compared to Ref. [24], we use slightly more geometric
language. The relevant notions from the theory of sym-
metric bilinear forms, all standard, are briefly recapitulated
here.

Let V be a finite-dimensional vector space over a field
F, endowed with a symmetric bilinear form S(-,-). The
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orthogonal complement of a subset W C V'is
Wi={x e V| Bx,w) =0 Ywe W.

The radical of V is rad V = V'N V*, which is the space
comprising elements x € V' such that the linear function
B(x, -) vanishes identically on V. The space V is nondegen-
erate if rad V' = {0}. In this case, for every subspace W C
V, we have that dim W+ + dim W = dim V. The subspace
W is isotropic if W C W*. The above dimension formula
implies that isotropic subspaces W of a nondegenerate
space V satisfy dim W < % dim V.

Let {p}*_| be a basis of V. Expanding vectors x,y € V
in the basis,

B.y) =B b,y ",
i J

= cd; B (b7,6V) = ¢'Md,

g

where ¢, d € F¥ are column vectors containing the expan-
sion coefficients of x and y, respectively, and the matrix
representation M of 8 has elements

M; =B (b, 67).

A vector x € V lies in the radical if and only if its coeffi-
cients c lie in the kernel of M.
Now assume that V' C ™. The standard form on F” is

xy) =x"y =) xy.
i=1

The standard form is nondegenerate on F” but will in gen-
eral be degenerate on subspaces. Let H be an m x k matrix
and let W = range H C V be its column span. The restric-
tion of the standard form to W can then be “pulled back”
to ¥ by mapping ¢, d € F* to

(He,Hd) = (He) (Hd) = ¢/ (H'H) d = ¢’Ga,

where G = H'H is the Gram matrix associated with H.
We frequently use the fact that in this context,

dekerG < HderadW. (1)

III. THE IQP STABILIZER SCHEME

A. Hiding a secret string in an IQP circuit

The IQP Stabilizer Scheme of Shepherd and Bremner,
described here following the presentation in Ref. [24], uses
the tableau representation of a collection of m Pauli matri-
ces on n qubits as an m X 2n binary matrix. Since IQP

circuits are diagonal in the X basis, we restrict to X -type
Pauli matrices, which are described by m x n matrices
with elements in IF,. The tableau matrix H € [F}'™" deter-
mines an IQP Hamiltonian 4/ = } 1, (I']; cp XjH” ), with
associated IQP circuit w’ defined in terms of a phase
w. Choosing w = €™/, Shepherd and Bremner observe
that the full stabilizer tableau of the state @’ |0) can be
expressed in terms of H and use this fact to find IQP cir-
cuits the output distributions of which have high weight
on a subspace S = {x : (x,s) = 0} determined by a secret
string s.

This is ingeniously achieved as follows. For s € [/,
obtain Hg from H by multiplying its ith row with (Hs);.
Let C; := range H;. Fix some gmax € N. A vector s € [} is
called a secret of H if

(1) the co-dimension of the radical g := dimCs —
dimrad Cy < gmax and

(2) the radical is doubly even, i.e., for all x € radCs,
x| =0 mod 4

Given an IQP tableau H with secret s, Shepherd and
Bremner show that

Pr [(x,8) = 0= 32 #2 4 1), @

x<Dyg

where Dy (x) = |(x|w"|0)|? is the output distribution of
o™ . A classical verifier can then efficiently identify sam-
ples from the correct distribution by computing their mean
overlap with the secret string s.

B. Stabilizer construction

We briefly recap the specifics of how Bremner, Cheng,
and Ji [24] construct a pair (H, s), comprising a generator
matrix H and a corresponding secret s. Before obfuscation,
the matrix H is of the following form:

n
<t D>
g d
t+—> >
YNENS 3 H
my F D 0 :
s (3)
m Rs
my A B C
v V_
<t D>
m2—|—w

Essentially, the blocks are chosen uniformly at random,
subject to the following constraints:

(1) D is an m; x d matrix. Its range is a d-dimensional
doubly even isotropic subspace of F3'. These
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constraints are equivalent to

ID;/=0 mod4 (=1,...,d), D'D=0,
rankD = d. 4)

(2) Fisan m; x g matrix. It generates a g-dimensional
space that is nondegenerate and orthogonal to
range D with respect to the standard form on F}'".
These constraints are equivalent to

rank F'F = g, D’F = 0. (5)

(3) There exists a secret s € I} such that the inner prod-
uct between s and the rows of H is nonzero exactly
for the first m; rows:

Hs = 1[1 ..... mi]- (6)

(4) Finally, Rg= (A |B| C) are “redundant rows,”
chosen such that Rgs = 0 and

rank H = n. 7
Further comments:

(a) Introducing notation not used in Ref. [24], we split
R, into submatrices Ry = (A | B | C) according to
F;=FaF el <

(b) It will turn out that the parameter

wi=n—g-—m

plays a central role for the performance of the Rad-
ical Attack. It may be described as measuring the
degree to which the matrix (B | C) is “wide” rather
than “tall.”

(¢) The range of Hy is the code space Cs. The range of
D is its radical rad Cs C Cs. The range of F is a sub-
space that is complementary to the radical within the
code space.

(d) The rank constraint in Eq. (7) implies that

rankC=n—g —d. )

(e) There are some subtleties connected to the way in
which the redundant rows are generated according
to Ref. [24] and the various versions of the software
implementation provided: for more details, see the
Appendix.

The parameters n (number of qubits), m (terms in the
Hamiltonian), and g (log of the power of the statistical
test) are supplied by the user, while m; and d are chosen
randomly. The precise way in which m; and d are to be
generated does not seem to be specified in the paper, so we

take guidance from the reference implementation provided
in Ref. [25]. Their sample_parameters () function
(found in 1ib/construction.py) fixes these num-
bers in a two-step procedure. First, preliminary values of
my/2 and d are sampled according to binomial distribu-
tions, with parameters roughly given as

m1/2~Bin<N~ %,p :o.3>,

d~Bin(N:V12_gJ,p:o.75). 9)

The values are accepted if they satisfy the constraints

n—g=>d=>w. (10)
We are not aware of a simple description of the distribution
conditioned on the values passing the test. Empirically, we
find that for the challenge parameters

n =300, m=360, g=4, (11
the following values are attained most frequently:
my =102, d=238 = my =258, w=38.
12)

Given (H, s), obfuscation is then performed as H < PHQ,
s < Q~!'s using a random invertible matrix Q and a
random (row) permutation P.

Bremner, Cheng, and Ji pose the following conjecture.

Conjecture 1 (Hidden Structured Code (HSC) problem
[24]). For certain appropriate choices of n, m, and g, there
exists an efficiently samplable distribution over instances
(H, s) from the family H,, ., so that no polynomial-time
classical algorithm can find the secret s given n, m, and
H as input, with high probability over the distribution on
Houmg-

C. Extended QRC construction

In the original QRC construction of Shepherd and Brem-
ner [19], (F | D) is chosen as a ¢ x (¢ + 1)/2 QRC with
prime g such that ¢ +1 mod 8 = 0. Then, the all-ones
vector 1,, which is guaranteed to be a code word of a QRC,
is appended as the first column of (F | D). Next, rows are
added that are uniformly random, except for the first entry,
which is 0. This ensures that there is a secret s = e;. The
resulting matrix is then obfuscated as above.

In the Extended QRC construction, additional redun-
dant columns are added, essentially amounting to a non-
trivial choice of C, in order to render the algorithm
of Kahanamoku-Meyer ineffective. Letting » = (¢ + 1)/2,
Bremner, Cheng, and Ji propose to add ¢ redundant rows
to achieve m = 2¢q and add a redundant C block to achieve
a width » satisfyingr <n < g +r.
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ALGORITHM 1. Radical Attack.

1: function RADICALATTACK(H)

22 G+ H'H

3: K <+ a column-generating matrix for ker G
4: S < the support of the columns in HK

5: Solve the [Fo-linear system Hs = 1g

6: return s

7: end function

IV. THE RADICAL ATTACK

The starting point of the attack was the empirical obser-
vation that H'H for the challenge-generator matrix has
a much larger kernel (dimker H'H = 34) than would be
expected for a random matrix of the same shape (about 1).
This observation gave rise to the Radical Attack, summa-
rized in Algorithm 1.

We have tested this ansatz against instances created by
the software package provided by Bremner, Cheng, and Ji.
For the parameters (n,m,g) = (300,360, 4), used for the
challenge data set, the secret is recovered with probabil-
ity about 99.85%. The challenge secret itself can be found
using a mildly strengthened version.

We will analyze this behavior theoretically in Sec. IV A,
report on the numerical findings in Sec. IV B, and, in Sec.
IV C, explain why the challenge Hamiltonian requires a
modified approach.

A. Performance of the attack

The analysis combines three ingredients:

(1) We will show that, with high probability, H(ker G)
is a subspace of the radical rad Cs. Because H and
thus G = H'H are known, this means that we can
access elements of the radical in a computationally
efficient way.

(2) We will then show that the intersection of H(ker G)
with the radical is expected to be relatively large.

These two statements follow as Corollary 1 from a
structure-preserving normal form for obfuscated genera-
tor matrices of the form given in Eq. (3), described in
Lemma 1.

(3) In Lemma 2, we argue that one can expect that the
nonzero coordinates that show up in this subspace
coincide with the obfuscated coordinates 1. .. m;.

1. A normal form for generator matrices

Recall the notion of elementary column operations on
a matrix, as used in the context of Gaussian elimination.
Over [F,, these are (1) exchanging two columns and (2)
adding one column to another one. Performing a sequence
of column operations is equivalent to applying an invert-
ible matrix from the right. We will map the generator
matrix H to a normal form using a restricted set of col-
umn operations. These column operations preserve the
properties of the blocks of H described in Sec. III.

To introduce the normal form, split H into blocks as

Aoa A a F . D
H=(A|B|C), A.=(A>, B.=(B>,

~ 0
e (1)
We say that an elementary column operation is directed to
the left if it

(a) adds a columns of C to another column in (A | B |
&)

(b) adds a column of B to another column in (A | B)

(c) adds a column of A to another column in A, or

(d) permutes two columns within one block

The first part of the following lemma lists properties that
are preserved under such column operations. The second
part describes two essential simplifications to H that can
still be achieved.

Lemma 1 (Normal form). Assume H' results from H by
a sequence of column operations that are directed to the
left. Then:

(1) If H is a block matrix of the form given in Eq. (3)
and fulfills the conditions in Egs. (5)~7), then the
same is true for H'.

(2) It holds that:

range(F' | D') = range(F | D),
range D' = range D,
range(B’' | C') = range(B | C).

There is a sequence of column operations directed to the
left such that:

(3) Ifrange(B | C) = F;?, then A’ = 0.
(4) In any case, dimker B’ > w.

Proof. Claims (1) and (2) follow directly from the def-
initions. Least trivial is the statement that the condition in
Eq. (5) is preserved, so we make this one explicit. Con-
sider the case in which the ith column of B is added to the
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jth column of A. This will change F — F' = F + D; (e/)’.
But then, by Eq. (4),

(F)'F =F'F+¢D/F+FD;(e/) +¢ D/D;(¢/)"
=F'F.

Claim (3) is now immediate. Assuming the range con-
dition, every column of A can be expressed as a linear
combination of columns in (B | C). Therefore, A may be
eliminated by column operations directed to the left.

To prove claim (4), choose a basis {b’ f:l for range BN

range C. Using column operations within BandC, respec-
tively, we can achieve that the first £ columns of B and
of C are equal to b',...,b*. The first £ columns of B
can then be set to zero by subtracting the corresponding
columns of C. Using Eq. (8) and the trivial bound on
dim(range B N range C),

k = dim(range B N range C) > rank B + rank C — m;,
= (rank B —d) +n —g — my,

so that the kernel of the resulting matrix B’ satisfies

dimkerB' =d —rankB+k>n—g—m =w.

2. Accessing elements from the radical

As alluded to at the beginning of this section, the normal
form implies that H(ker G) is expected to be a subspace of
rad Cs, which is fairly large. More precisely, we have the
following.

Corollary 1. We have that:

(1) If range(B | C) = F5?, then H(kerG) C ((radCy)
®0).
(2) Inany case, dim(rad Cs N H(ker G)) > w.

Proof. By Lemma 1 and Eq. (1), the advertised state-
ments are invariant under column operations directed to
the left.

Ifrange(B | C) = IFZ”, we may thus assume that A = 0,
which gives

F'F 0 0
G=| 0 BB B'C
0 C'B C'C

Because F’F has full rank, ker G = 0 @ (ker(B | C)). But
elements of this space are mapped into rad Cs under H. This
proves the first claim.

From the block form given in Eq. (3) and the fact
that D is nondegenerate, it follows that H embeds 0 &

(kerB) ® 0 C ker G into radCs. Claim (2) then follows
from dimkerB > n — g —my, which we may assume
since the claim is invariant under column operations
directed to the left. |

If we model B and C as random matrices with elements
drawn uniformly from 5, the probability that range(B |
C) = [F}? can be estimated from the well-studied theory
of random binary matrices. Indeed, in the limit £ — oo, the
probability p(w) that a random binary £ x (k 4+ w) matrix
has rank less than £ is given by

oo

pwy=1- ] (1-27)

i=w+1
(cf. Ref. [26, Thm 3.2.1]). This expression satisfies

27 < pw) <27 lim p(w)2¥ =1 (13)
w—> 00

and one may verify on a computer that 27" is an excellent
multiplicative approximation to p(w) already for w =~ 7.
Thus, interestingly, the value of w governs the behavior of
both parts of Corollary 1.

3. Reconstructing the support from random samples

We proceed to the third ingredient of the anal-
ysis—asking whether the support of the numerically
obtained elements of the radical is likely to be equal to
the obfuscated first m; coordinates.

Lemma 2. Let V be a subspace of F". Take k elements
{Vi}f?=1 from V uniformly at random. The probability that
supp({vi}le) # supp V is no larger than m, 2.

Proof. Letj € supp V. We can find a basis b’/ of V' such
that exactly b' is nonzero on the j th coordinate. Therefore,
for each j, exactly half the elements of /" are nonzero on j.
Thus, the probability that j is not contained in the support
of the vectors is 27%. The claim follows from the union
bound. |

To apply the lemma to the situation at hand, let us again
adopt a simple model in which the blocks of H are repre-
sented by uniformly random matrices. Under this model,
we expect supp range D = [m,] to hold if d > log, m; and,
in turn, supp H(ker G) = supprangeD if w > log, m;.
Again, the probability of failure decreases exponentially in
the amount by which these bounds are exceeded. For the
reference values in Eq. (12), log, m; ~ 6.67.

While it is highly plausible that the uniform random
model accurately captures the distribution of H(ker G),
this is less obvious for D, which is constrained to have dou-
bly even, orthogonal, and linearly independent columns.
Nonetheless, it will turn out that the predictions made
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based on this model fit the empirical findings very well.
This suggests that in the choice of D, full support on [m,] is
attained at least as fast as suggested by the random model.
We leave finding a theoretical justification for this behavior
as an open question [27].

The factor m,; in the probability estimate of Lemma 2
comes from a union bound and is tight only in the unre-
alistic case in which for every possible choice of {v}~_,
at most one element is missing from the support. A less
rigorous, but plausibly more realistic, estimate of the error
probability is obtained if we assume that the coefficients v;
of random elements v of V" are distributed independently.
In this case, the error probability is (1 — 27%)”1 rather than
m12*k.

4. Global analysis

Combining the various ingredients, we can estimate the
probability of recovering the secret given w. If all condi-
tions are modeled independently (rather than using more
conservative union bounds), the result is

Prob[success | w] =~ (1 — p(w))(1 —27")"1(1 — 2-dym
(14)

A number of simplifying approximations are possible. The
approximate validity of some of these steps, such as drop-
ping the “4-1” in the exponent in the following displayed
equation, are best verified by graphing the respective
curves on a computer.

From Eq. (13),

Prob[success | w] & (1 —27")™*1 (] —274)m

~ (1 o 27W)m1(1 o 27d)ml'

Next, we argue that the dependence on d can be neglected.
Indeed, the constraints in Eq. (10) enforce d > w, so that
the success probability differs significantly from 1 if and
only if w is small. Now recall from Eq. (9) that, conditioned
on w, the value of d is sampled from a binomial distribution
with expectation value

E[d|w]%%ml_g

=2 +3(+ )
) —8W 8g m-—n

and then postselected to satisfyn — g > d > w.

For (n,m,g) = (300,360,4) and w < 20, the expecta-
tion value E[d | w] & 0.375w + 20 is sufficiently far away
from the boundaries imposed by the constraint that the
effects of the postselection may be neglected. Then, in
this parameter regime, we expect d ~ w + 20, so that
274 g2,

Hence

Prob[success | w] & (1 —27%)™ = (1 — 27 W)wtetm=n

A (1 —27")stm=n,

The final expression is a sigmoid function that reaches the
value 1/2 at

wip = —log, (1 —2"/€" ") ~ 6.3

and we therefore predict that the probability of success of
the Radical Attack transitions from 0 to 1 around a value
of w between 6 and 7.

B. Numerical experiments for the stabilizer
construction

We have sampled 2, 100000 instances of H for m =
360, n = 300, and g = 4 (for the computer code and the
raw data, see Ref. [28]). Only in 154 cases did the Radical
Attack fail to uncover the secret.

Given the number of approximations made, the theo-
retical analysis turns out to give a surprisingly accurate
quantitative account of the behavior of the attack. This
is visualized in Fig. 1. In particular, the transition from
expected failure to expected success around wy, > 6.3 can

10
> 0.8
E
So06f
o
o
a
2 04l
S
& 02k —— Prediction
’ | 95%-acceptance region
® Data
0'0 B 1 1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18
w
FIG. 1. The probability of success of the Radical Attack given

the “excess width” w of the matrix (B | C). The solid sigmoidal
curve is the simplified theoretical estimate Prob[success | w] &
(1 —27")8*tm="_ The red dots represent empirical success proba-
bilities for all values of w for which failures have been observed
during 100 000 numerical runs. Each vertical bar is the accep-
tance region of a test for compatibility with the theory prediction
at significance level o = 5%. The plot is truncated at w = 18, as
this is the largest value for which RADICALATTACK() has failed
at least once to recover the correct secret in the experiment. The
mean value of w is about 32.3 and more than 96% of all instances
were associated with a value of w exceeding 18. The simplified
theoretical analysis reproduces the behavior of the algorithm in
a quantitatively correct way, including predicting the transition
from likely failure to likely success at around w = 6.
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be clearly seen in the data. Consistent with the theory, no
failures were observed for instances with w > 18.

1. Uncertainty quantification for the numerical
experiments

Because many of the predicted probabilities are close to
0 or 1, finding a suitable method of uncertainty quantifica-
tion is not completely trivial.

Commonly, when empirical findings in the sciences are
compared to theoretical predictions, one computes a con-
fidence interval with coverage probability (1 — «) for the
estimated quantity and checks whether the theory predic-
tion lies within that interval. Operationally, this furnishes
a statistical hypothesis test for the compatibility between
data and theory at significance level « (i.e., the probability
that this method will reject data that is in fact compatible
is at most o). However, among the set of all hypothesis
tests at a given significance level, some are more pow-
erful than others, in the sense that they reject more data
sets. The common method just sketched turns out to be of
particularly low power in our setting.

Indeed, consider the extreme case in which the hypoth-
esis is X ~ Binom(N,p = 0). Then, a single instance of a
nonzero outcome X; = 1 is enough to refute the hypothesis
at any significance level. In other words, the acceptance
region for the empirical probability p = |{i | X; = 1}|/N
is just {0}. On the other hand, the statistical rule of
three states that if no successes have been observed in
N attempts, a 95%-confidence region needs to have size
about 3/N.

Happily, for testing compatibility with the predicted
parameter of a binomial distribution, there is a uniformly
most powerful unbiased (UMPU) test [29, Chapter 6.2].
The vertical bars in Fig. 1 represent the resulting accep-
tance region. We reiterate that this test is much more strin-
gent than the more common approach based on confidence
intervals would be.

C. The challenge data set

In light of the very high success rate observed on ran-
domly drawn examples, it came as a surprise to us that
an initial version of our attack failed for the challenge
data set that the authors provided in Ref. [25]. Fortunately,
Bremner, Cheng, and Ji were kind enough to publish the
full version-control history of their code [25]. The chal-
lenge was added with commit d485£9. Later, commit
930£c0 introduced a bug fix in the row-redundancy rou-
tine. Under the earlier version, there was a high probability
of the range(B | C) = ]Fg"2 condition failing. In this case,
elements of ker G would not necessarily correspond to ele-
ments of the radical. However, in the challenge data set, the
doubly even part of H(ker G) is contained in the radical.
A minimalist fix—removing all singly even columns from
the generator matrix for H(ker G)—suffices to recover the

hidden parameters:

g=4, d=35 m =96,

and the secret

$ = cyCxXfXKXLxXu3YWND2fSzf
+YKtZJIJFLWY1J012rBaoOA5zVWRSKA=,

given here as a base64-encoded binary number. The string
has since been kindly confirmed by Bremner, Cheng, and
Ji as being equal to the original secret.

D. Application to the Extended Quadratic Residue
Code construction

The Radical Attack performs even better against the
QRC construction with parameters

q+1

q € {103,127,151,167,223}, r=-——

5

m=2q, n=r-+gq

recommended by Bremner, Cheng, and Ji as most resilient
against the Kahanamoku-Meyer approach (see Sec. 111 C).
In 20000 runs, we have found not a single instance in
which the Radical Attack fails for these parameter choices
(for the code and raw data, see Ref. [28]).

The Extended QRC construction does not fix n to  + ¢
but, rather, allows for all values between » and ¢ + r. This
raises the possibility that there is a parameter regime in
which both the Linearity Attack and the Radical Attack
fail. We explore this possibility in Fig. 2. We find that
the Radical Attack succeeds with high probability for
n 2 g+ 13. As discussed after Corollary 1, this matches
the regime in which we expect

10t ———n
- 08 Radical Attack
£ N
3 N
S 06f Linearity Attack
o
3 — g=103
w
g 04F — g=127
é — g=151
02 J q=167
0.0
1 1 1 1 1 1 1 1 1

50 75 100 125 150 175 200 225 250
Number of qubits n

FIG. 2. The performance of the Radical Attack and the Lin-
earity Attack [23] on the updated QRC construction of Bremner,
Cheng, and Ji [24], using 100 random instances per point. The
Linearity-Attack data are from Ref. [24, Fig. 3b]. The two
approaches are seen to complement each other almost perfectly.
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(1) the rank of the added row redundancy to satu-
rate such that the condition range(B|C) = F5? of
Corollary 1 is satisfied and

(2) the parameter w =n — g — 1 to exceed log, m; =
log, g, which for the choices of ¢ = 103,127, 151,
167 is given by log, ¢ = 7

Let us also note that the QRC code is guaranteed to
have the 1p,,) = 1, vector as a code word and, hence,
it is guaranteed to have full support on the obfuscated
coordinates.

Comparing this performance with the Linearity Attack,
we find only a very slim region around n =~ g 4 13 in
which there exist instances that cannot be solved by either
attack with near certainty. This motivates the exploration
of further cryptanalytic approaches in Sec. V, where we
will indeed present two algorithms—the Lazy Linear-
ity Attack and the Double Meyer, both building on the
approach of Kahanamoku-Meyer [23]—that will eliminate
the remaining gap.

V. FURTHER ATTACKS

The IQP Stabilizer Scheme features a large number of
degrees of freedom that may allow an algorithm designer

to exhibit a variety of further approaches that might aid
the cryptanalysis of obfuscated IQP circuits. Because the
goal is to give an attacker a wide set of tools that may be
adapted to any particular future construction, we focus on
breadth and, as compared to Sec. IV, put less emphasis on
rigorous arguments.

A. The Lazy Linearity Attack

We begin by slightly extending the Linearity Attack to
what we call the Lazy Linearity Attack, summarized in
Algorithm 2. In addition to the IQP tableau H, this routine
requires additional input parameters that we call the ambi-
tion A, the endurance E, and the significance threshold

&th-

1. Analysis

We start by briefly recapitulating why the Linearity
Attack of Kahanamoku-Meyer [23] is effective. Essen-
tially, it is based on the following property of the kernel
of the Gram matrix G4 for vectors d € [F}.

Lemma 3. For d € 3, let Gq := HIHq4. The following
implication is true:

to evade any given exploit. The purpose of this section is Hd eradC; = s € ker(Ga). (15)
ALGORITHM 2. Lazy Linearity Attack.

1: function LAZYLINEARITYATTACK(H, g, A, F)
2: while ¢ < E do
3: Draw a uniformly random d < 3
4: Gq + HIHq4
5: if dim ker G4 < A then
6: for x € ker G4 do
7: if rad range(Hy) # {0} and doubly-even and rank(HIHy) < gy, then
8: return x and exit.
9: end if

10: end for

11: end if

12: e+—e+1

13: end while
14: return “fail”

15: end function
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Proof. By definition, it holds that Hyd € rad C; if and
only if
d’H/He =d’"H'He =0 VecT;. (16)
Because s — Hj is linear, the above means that every ele-
ment Hd € rad Cs of the radical gives rise to a set of linear
equations (one for each e € %) for the secret s. These
equations can be compactly written as
d'H'H; =0 H!Hgs = 0.
a7

& HHgs=0 <

In the Linearity Attack, the strategy is now to pick d at
random. Then, with probability

| rad Cs | Zdim rad Cg

— 78
|Cs| - 2dim Cs =275

(18)

d lies in the radical of Cy and we get a constraint on s. If
the kernel of Gy is typically small, one can iterate through
all candidates for C and check the properties of the true
Cs, namely, that rad Cs is doubly even and that its is given
by g.

Since the rows of H are essentially random, we expect
that Hy has around m/2 rows that are linearly indepen-
dent. In the original scheme of Shepherd and Bremner
[19], n =~ m/2, and we thus expect dimker(Gq) € O(1).
More precisely, Bremner, Cheng, and Ji show that indeed
Eq4[dimker Gq] > n — m/2. Thus, the running time of the
Linearity Attack scales exponentially with » — m/2. In the
new challenge of Bremner, Cheng, and Ji, » = 300 and
m = 360, so that n — m/2 = 120, meaning that ker G4 is
so large that this simple approach is no longer feasible.

In fact, for n — m/2 > 0, the kernel of Hq (which is
contained in ker Gq) will already be nontrivial. But the rel-
evant part of the kernel of G4 in which the secret is hiding
is independent of n so long as g + d < n and only requires
that d has zero entries in the obfuscated coordinates of F.
Thus, we expect that dimker G4 is roughly independent
of the event s € ker G4. We can thus allow ourselves to
ignore large kernels in the search for s, if we are less ambi-
tious about exploring those very large kernels, boosting the
success probability.

More precisely, we expect that (H;,d) = 1 with proba-
bility 1/2. Thus, the number of rows mq of Hg will follow
a binomial distribution

mg ~ Bin(N ~m,p =0.5), (19)
with mean m/2 and standard deviation /m/2. Since most
rows of H are linearly independent and we expect the val-
ues of (H;, d) to be only weakly correlated, we thus expect

the dimension of the kernel to be given by dim(ker Hyq) ~
n — mg, which is roughly Gaussian around n — m/2 with
standard deviation /m/2 (for a more precise statement,
see Ref. [26, Theorem 3.2.2]).

For the Lazy Linearity Attack, the relevant parameter
determining the success of the attack is the probability
of observing a small kernel in the tail of the distribution
over kernels of Hq, induced by the random choice of d.
As discussed above, this probability decreases exponen-
tially with n — m/2 = g + w + i, where we have defined
the imbalance

. my — nmy
= 5 (20)
Let the cumulative distribution function of the Gaussian
distribution with mean p and standard deviation o be
given by C,,, : R — [0, 1]. Then, the expected endurance
required for the Lazy Linearity Attack with ambition 4 to
succeed is given by
¢
E~—ruw— 21
Cn—m/2,ﬁ/2(‘4)

In numerical experiments, we find our predictions to be
accurate up to a constant offset in the predicted mean of
dim(ker H) [see Fig. 3(a)]. In particular, the dimension of
ker G/ ker H is independent of n, which is indeed evidence
that there is no correlation between the size of the kernel
of G and whether or not it contains a secret.

2. Application to the Extended QRC construction

Applying the Lazy Linearity Attack to the Extended
QRC construction, we find that it succeeds with a near-unit
success rate until n — m/2 ~ 10, with parameters 4 = 8
and £ = 1000. Combined with the Radical Attack, we are
now able to retrieve the secrets for all proposed parameters
of the Extended QRC construction (see Fig. 4). For the
Extended QRC construction, m; = m,, which means that
i = 0 and hence the success probability of the Lazy Lin-
earity Attack decreases exactly with w + g and the tunable
parameters of the method.

B. The Double Meyer Attack

In the previous section, we have discussed how to
exploit statistical fluctuations to avoid having to search
through large kernels. But as m — n/2 increases, this
strategy will eventually fail to be effective. We thus
present another ansatz, the Double Meyer Attack, stated as
Algorithm 3. It reduces the size of the kernel, essentially
by running several Linearity Attacks at once.

1. Analysis

At a high level, the Double Meyer examines the ele-
ments of the intersection of the kernels of several Gy,
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FIG. 3.

(a) The dimension of ker(Gq) (green) for the QRC construction with ¢ = 103 and m = 2¢ for 100 random instances and

1000 random choices of d per point. The shaded areas represent one standard deviation. This is compared to the simplified theoretical
prediction n — m/2 (pink). The dotted line designates the minimum observed value of dim(ker Gq). The original Linear Attack runs
in time roughly exponential in the green curve, whereas the “lazy” approach reduces this to about the exponential of the dotted one.
Finally, the violet line depicts ker(Gq)/ ker(Hg). The fact that it does not depend on n is compatible with the expectation that the
probability of finding the secret s in the kernel of any given Gram matrix Gq is roughly independent of the size of the kernel. (b) The
dimension of ﬂie[k] ker(Gy:) (green) for the QRC construction with ¢ = 103, n =g+ r,r = (g + 1)/2,m = 2g. We have used 100

random instances and 1000 random choices of d', . . ., d* per point. The simple theoretical prediction of 27¥*!(n — m/2) (dotted pink)

is seen to be in good agreement with the numerical experiments.

where the d’ are uniformly distributed random vectors [30].
Since the events Hyd’ € rad C, are independent for different
i’s, we have that

Prise()kerGy | =@ =2% (22
ie[k]
10
08 Lazy Linearity
E Attack
8 o6l .~
e Radical Attack
a
A — =
o 04 q=103
%’ — g=127
— g=151
0.2 q
q=167
00 1 1 L 1 1 1 1 1 1
50 75 100 125 150 175 200 225 250

Number of qubits n

FIG. 4. The performance of the Lazy Linearity Attack (solid
lines) with ambition 4 = 8, endurance £ = 1000, and signifi-
cance threshold gy, = 1, and the Radical Attack (dashed lines)
for values of ¢ = 103, 127, 151, and 167, with 100 instances per
point. Compared to Fig. 2, we find that the “lazy” approach has
extended the range of n for which the Linear Attack recovers
the secret with near certainty. The shift is sufficient that the two
algorithms now cover the entire parameter range.

At the same time, we expect dim(ﬂie[k] ker Ggi) ~
271 (m — n/2). To see this, observe that the kernel of
G4 decomposes as ker Gy = ker Hy: + radrange(Hy:).
For random vectors d’, we then expect rad range(Hy:) to
be independent identically distributed random subspaces,
while the kernels of Hy: are correlated, since every pair of
ker Hyqi, ker Hy> shares half the rows. Thus, the intersec-
tion of radrange Hy: decays exponentially with &, while
the intersection (), ker Hy: decreases much faster, as
n—(1—-2"%m. Altogether, the intersection decomposes
into sums of intersections (for k = 2)

2
ﬂ ker G4 = (ker Hy1 4 radrange(Hy1)) N (ker Hye
i=1

+ radrange(H2)), (23)

where the exponential decay as 2% stemming from the last
term dominates the scaling.

Choosing k ~ logn is sufficient to reduce the kernel
dimension to O(1). Moreover, g needs to be of order
O(log n) in order to maintain a sample-efficient verification
test for the challenge. Thus, 2¢¢ € 200°€°™) j e the Dou-
ble Meyer Attack is expected to run in at most quasipoly-
nomial time, for any choice of n, m. However, even moder-
ate values of g will make this approach infeasible in prac-
tice. For the challenge data set, we expect that good param-
eter choicesare k = 6,4 = 3,and E > 28 = 2% ~ 10722,
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ALGORITHM 3. Double Meyer Attack.
1: function DOUBLEMEYER(H, &k, gin, A, F)
2: while ¢ < E do
3: for i € [k] do
4: Draw a uniformly random d* « %
5: Ggi + Hz;i Hy:
6: G (GT|GdTi)T
7: end for
8: if dim ker G < A then
9: for x € ker G4 do
10: if rad range(Hy) # {0} and doubly-even and rank(HLHy) < gy, then
11: return x and exit.
12: end if
13: end for
14: end if
15: e<—e+1

16: end while
17: return “fail”

18: end function

though we have not spent enough computational resources
to have recovered a secret in this regime.

We observe that slack between the threshold rank gy,
and the true g often leads to a misidentified secret. This
is explained by vectors v € ﬂie[k] ker Hyi, the image of
which under H has low Hamming weight [Hv| < gy, — g.
This corresponds to rows of H that can be mapped to
s = gq — g unit vectors e!, ... e that are linearly inde-
pendent of the first m; rows of H. These vectors may be
absorbed into F, adding s nontrivial columns to it, while
adding a zero row to D, which keeps its range doubly even.
The alternative secrets v found in this way are also observ-
able in the sense that they satisfy Pryp,[{x,v) =0] =
(2=@*+9/2 1 1)/2. In order to find the “true” secret, one
should therefore run the attack for increasing values of gy
and halt as soon as a valid secret is found.

The low-Hamming-weight vectors identified above
inform the final ansatz of this paper, Hamming’s Razor,
presented in Sec. V C.

2. Application to the Extended QRC construction

We find that the Double Meyer Attack recovers the
secrets of the Extended QRC construction with near cer-
tainty in all parameter regimes proposed by Bremner,
Cheng, and Ji. For the QRC construction, g = 1 and hence
the running time of the Double Meyer Attack is just given
by 2*. Choosing k=6, gn =1, E =38, and 4 = 1000
is sufficient to recover the secret in all of 100 random
instances of the Extended QRC construction for all values
ofn € [r,q+r]and g € {103, 127,151, 167}.

3. Further improvements

As stated, the Double Meyer draws vectors d’ uniformly
at random, in the hope that Hgd’ € rad Cs. But there might
be more efficient ways of obtaining vectors d' satisfy-
ing this condition. For instance, under the assumptions
of Corollary 1(1), any element d of H(ker(H'H)) has
this property. Adding such vectors to the collection of
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instances of d’ therefore provides additional constraints for
s at essentially no computational cost.

In particular, this modification of the Double Meyer
would break a variant of the construction that Bremner
et al. [31] have proposed as an initial reaction to the
preprint of this paper with parameters -AB-type zero
-concat_D -concat_C1 asimplemented in commit
7d3bd3 of their GitHub repository [32].

C. Hamming’s Razor

In this section, we describe a method that allows one
to “shave off” certain rows and columns from H with-
out affecting the code space C;. Such redundancies can
be identified given a vector d € [} such that Hd has low
Hamming weight. The method comes in two varieties:
the simpler Singleton Razor, discussed first, and the more
general Hamming’s Razor proper.

1. The Singleton Razor

Let us agree to call i € [m] a singleton for H if there is a
solution to Hd = e'.

We discuss the idea based on the unobfuscated picture
of Eq. (3). Assume that supp range D = [m;]. Then, there
is no singleton among the first m; coordinates, because €’
is not orthogonal to range D, while all vectors in the range
of (F | D) are. Thus, knowing a singleton i, one may trim
away the ith row of H without affecting the code space.
Alternatively, one can perform a coordinate change on [}
that maps the corresponding preimage d to e” and then
drop the nth column of H. In fact, both operations may
be combined, without changing Cs.

The generator matrix H of the challenge data set affords
69 singletons. All singletons do indeed belong to redundant
rows [28]. The second part of Lemma 4 below suggests an
explanation for this surprisingly high number.

2. Hamming’s Razor

We now generalize the singleton idea to higher Ham-
ming weights. The starting point is the observation that
range C can be expected to contain vectors of much lower
Hamming weight than range (F | D). This will lead to a
computationally efficient means for separating redundant
from nonredundant rows.

The following lemma collects two technical prepara-
tions.

Lemma 4. Let M be an m x (m — h) binary matrix cho-
sen uniformly at random. The probability that the minimal
Hamming weight of any nonzero vector in the range of M
is smaller than k is exponentially small in k; — &, where

anNh

k= A .
: Inm+2 log,m

More precisely and more strongly, the probability is no
larger than e *%=h for

ki1 —Dlnk_

koo = lim ki k= kg 4 izt = DIk
i—00 lnm+2
1 m

A=—+In—>0. 24
koo+nkoo> (24)

Conversely, let M be any binary matrix the range of which
has co-dimension 4. For S C [m], let Vs C [F%' be the sub-
space of vectors supported on S. Then, range M has a
nontrivial intersection with Vs if S| > A.

Proof. Let v be a random vector distributed uniformly
in ', Then, as long as k < m/2,

Prv| <K= <Z>2m < k(’Z)2m =

K<k

Pr[ min |v| < k:| < k<m>2h.
0#verange M k

Using the standard estimate In () < k(Inm + 1) — kInk,
the logarithm of the bound is

(k) :=k(lnm+1) — (k—1)Ink—hln2.

The function /(k) is concave, negative at £k = 0, positive at
k = m/2, and thus has a zero in the interval [0, m/2]. What
is more, /(k) = 0 if and only if

In2 (k=1 Ink
Inm+1 Inm+1

Because the right-hand side is monotonous in £, the recur-
sive formula in Eq. (24) defines an increasing sequence
k; of lower bounds to the first zero. As a nondecreasing
sequence on a bounded set, the limit point ko, is well
defined. Due to concavity, /(k) is upper bounded by its
first-order Taylor approximations. The claim then follows
by expanding around k = k.

The converse statement is a consequence of the standard
estimate

dim(range M N V) > dimrange M + dim Vg — m.
[ |

Choose a set S C [m] and let H\g be the matrix obtained
by deleting all rows of H the index of which appears in S.
Let S; = S N [m] be the intersection of S with the “secret
rows” and let S, = SN [m; + 1,m;] be the intersection
with the redundant rows. Then, d € ker H if and only if

supp(Hgd) C S; and  supp(Red) C S>.

Now model (F | D) as a uniformly random matrix. Lemma
4 applies with m = m; and h = m; — g — d, giving rise to
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ALGORITHM 4. Hamming’s Razor.

1: function HAMMINGRAZOR(H, p, F)

2: S+ 0.

3: for _c [E]do

4: Draw a random vector d € 5" with entries d; <— Bin(Fa, p).
5: H[d] + diag(d)H.

6: K < a column-generating matrix for ker H[d].

7: Append the support of the columns of HK to .S.

8: end for

9: Solve the F'a-linear system Hs = 1gc
10: return s

11: end function

an associated value of k. If |S|| < ks, then, up to an
exponentially small probability of failure, the first con-
dition can be satisfied only if Hgd = 0. Therefore, each
nonzero element d € ker Hys identifies supp(Hd) as a set
of redundant rows, which can be eliminated as argued in
the context of the Singleton Attack.

This observation is useful only if it is easily possible to
identify suitable sets S and nonzero vectors d in the associ-
ated kernel. Here, the second part of Lemma 4 comes into
play. If |S;| > my — (n — g — d), then by the lemma and
Eq. (8), there exists a nonzero d such that supp(Cd) C 5.

This suggests that we should construct S by including
each coordinate i € [m] with probability p, chosen such
that pmy > my — (n — g — d) and pm; < k. For the chal-
lenge parameters, these requirements are compatible with
the range [0.01, 0.13] for p.

In fact, one can base a full secret-extraction method
on this idea (see Algorithm 4). Repeating the procedure
for a few dozen random S turns out to reveal the entire
redundant row set, and thus the secret, for the challenge
data [28]. The attack may be sped up by realizing that
the condition on |S;| has been chosen conservatively. The
first part of Lemma 4 states that the smallest Hamming
weight that occurs in the range of Hy is about k... But
a randomly chosen S, of size larger than k, is unlikely
to be the support of a vector in range Hy unless |S;| gets
close to the much larger second bound in the lemma.
This optimization, for a heuristically chosen value of
p = 0.25, is used in the sample implementation provided
with this paper [28] and recovers the secret with high
probability.

VI. DISCUSSION AND CONCLUSION

In this work, we have exhibited a number of approaches
that can be used to recover secrets hidden in obfuscated
IQP circuits.

As a reaction to a preprint version of this paper, Brem-
ner, Cheng, and Ji have modified their proposal to evade
the attacks described here. A first update (communicated
privately) led to our improved Double Meyer, as sketched
in Sec. V B 3. As of September 2024, the authors have pro-
vided us with a version of their protocol in which we have
not found a weakness [33].

It may be instructive to compare the situation to the more
mature field of classical cryptography, which benefits from
a large public record of cryptographic constructions and
their cryptanalysis. New protocols can thus be designed to
resist known exploits and be vetted against them. In partic-
ular, most cryptographic protocols actually in use are not
rigorously proven to be secure. Instead, trust in them is
based on a long and public history of constructions, as well
as successful and unsuccessful attempts at attacking them.
The well-documented story of differential cryptanalysis
provides an instructive example.

In this light, we consider the high-level contributions of
our paper to be the following. (1) It shows potential users
of crytpographically backed-up demonstrations of quan-
tum advantage that previous proposals have been broken
repeatedly, so that their security should not be taken for
granted. (2) The fact that we have not yet been able to
identify an efficient attack against the latest version of the
protocol should raise one’s trust in that version of the pro-
posal, compared to a protocol that has not been the subject
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of a public security review. (3) Our attacks clarify prop-
erties of the IQP-based protocol that make it amenable
to classical attacks as well as a collection of cryptana-
Iytic techniques exploiting those properties. These tools
can guide and must be taken into account by designers of
future constructions.

At the same time, our cryptanalysis still has two impor-
tant consequences on IQP-based verified quantum advan-
tage using the construction of Bremner et al. [24]. First,
our Double Meyer attack remains valid for all instances
and has quasipolynomial running time 2~ (log? n) , given the
verification condition that the signal 278 remains inverse-
polynomially large. This is a significant improvement over
the previous state of the art, which was an exponential-
time algorithm. Second, in order to circumvent our attacks,
Bremner et al. [33] have had to significantly increase the
problem or “key” size from the original challenge data
with parameters n = 300, m = 360, and g = 4 ton = 700
qubits, m = 1200 Hamiltonian terms, and a verification
signal of g = 10. It is therefore an interesting open prob-
lem to compare the implementation cost of this scheme
to other resource-efficient schemes that come with prov-
able security guarantees based on well-studied classical
assumptions [5,6].

We emphasize that, in our judgment, the problem of
finding ways to efficiently certify the operation of near-
term quantum computing devices is an important one and
the idea of using obfuscated quantum circuits remains
appealing. More generally, the story of IQP-based verified
quantum advantage and our contribution to it illustrates
that results that exhibit weaknesses in published construc-
tions should not cause the community to turn away but,
rather, should serve as sign posts guiding the way to more
resilient schemes. We remain curious whether the security
of the new construction of Bremner et al. [24] holds up to
further scrutiny by the community.
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APPENDIX: IMPLEMENTATION DETAILS

While running the software package provided with Ref.
[24] tens of thousands of times, we found a number of
extremely rare edge cases that were not explicitly handled.

In particular, the sample_parameters () and the
sample_D() functions would very rarely return incon-
sistent results. Rather straightforward corrections are pub-
lished in Ref. [28].

Another possible discrepancy between the procedure
described in the main text of Ref. [24] and their software
implementation concerns the generation of the “redundant
rows.” The issue is a little more subtle than the first two,
so we briefly comment on it here.

In the paper, the relevant quote is

“Therefore, up to row permutations, the first » — » rows of
R, are sampled to be random independent rows that are
orthogonal to s and lie outside the row space of Hy”

(emphasis ours). The computer implementation is given
by the add_row_redundancy () function in 1ib/
construction.py—in particular, by these lines:

s_null_space = s.reshape((1, -1)).

null_space()

full _basis = row_space_H_s

for p in s_null_space:

if not check_element (full_basis.T, p):

full_basis = np.concatenate
((full_basis, p.reshape(l,
axis=0)

-1)),

R_s = full_basis([r:]
# guarantee that rank(H) = n

At this point, the first # — » rows of R are not “random
independent.” The behavior of this piece of code depends
on the detailed implementation of the null_space ()
function, which we do not directly control. While the
obfuscation process will later add randomness, we caution
that the same random invertible matrix Q acts both on R
and on H;. Any relation between these two blocks that is
invariant under right multiplication by an invertible matrix
will therefore be preserved. As a mitigation of this pos-
sible effect, we suggest adding an explicit randomization
step, such as

s_null_space=rand_inv_mat
(s_null_space.shape[0], seed=rng)
@s_null_space

020314-15



DAVID GROSS and DOMINIK HANGLEITER

PRX QUANTUM 6, 020314 (2025)

to the routine (though in practice, we did not observe
different behavior between these two versions).

The code published in Ref. [28] contains three imple-
mentations of the add_row_redundancy () function.
The version used to create the challenge data (cf. Sec.
IV C), the one published with Ref. [24], and finally the
one with the explicit extra randomization step added.
The numerical results reported in the main text of this
paper were generated by the third routine, though we
have also include 20000 runs performed with the sec-
ond version [28]. The effectiveness of the Radical Attack
does not seem to differ appreciatively between these two
implementations.
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