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Abstract

Let X be a compact normal complex space of dimension » and L be a holomorphic line bundle
on X. Suppose that ¥ = (X, ..., Xy) is an £-tuple of distinct irreducible proper analytic
subsets of X, T = (11, ..., T¢) is an £-tuple of positive real numbers, and let Hg(X, L?) be

the space of holomorphic sections of L? := L®? that vanish to order at least t; p along ¥,
1 <j <€ IfY C X isanirreducible analytic subset of dimension 7, we consider the space
HY(X|Y, LP) of holomorphic sections of L?|y that extend to global holomorphic sections in
Hg) (X, LP). Assuming that the triplet (L, X, t) is big in the sense that dim H(? (X, LP)~ p",
we give a general condition on Y to ensure that dim Hé) (XY, LP) ~ p™.When L is endowed
with a continuous Hermitian metric, we show that the Fubini-Study currents of the spaces
H(()) (XY, LP) converge to a certain equilibrium current on Y. We apply this to the study
of the equidistribution of zeros in Y of random holomorphic sections in H(? (X|Y,LP) as
p — o0.
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1 Introduction

Let X be a compact complex manifold of dimension n. If L is a holomorphic line bundle over
X we let L := L®P and denote by H’(X, L) the space of global holomorphic sections of
L?. The line bundle L is called big if its Kodaira-litaka dimension is equal to the dimension
of X (see [37, Definition 2.2.5]). One has that L is big if and only if the volume of L

Volx (L) := limsupn! p~"dim H(X, L?) > 0
p—>00

(see [37, Theorem 2.2.7]). By the Ji-Shiffman/Bonavero/Takayama criterion [37, Theorem
2.3.30], L is big if and only if it admits a strictly positively curved singular Hermitian metric
h (see Sect. 2.1 for definitions).

Let Y C X be a complex submanifold of dimension m. To understand “how many"
sections of L?|y are restrictions to Y of global sections in H 0(X, LP), Hisamoto considers
in [32] the space HOX|Y,LP):={S|y : S € HY(X, L")} and the restricted volume

Volxy (L) := limsupm! p~™" dim H*(X|Y, L”).

p—>0X0

He studies the asymptotics of the restricted Bergman kernels of the spaces HO(X|Y, LP)
when L is endowed with a smooth Hermitian metric /, and obtains formulas for Volxy (L)
in terms of the Monge-Ampere measure related to an equilibrium metric associated to h
along Y.

Let now X be a compact normal complex space of dimension n and L be a holomorphic
line bundle over X. Suppose ¥ = (X1, ..., X¢) is an £-tuple of distinct irreducible proper
analytic subsets of X and T = (ty, ..., 7¢) is an £-tuple of positive real numbers. In [17]
we studied the spaces of holomorphic sections of L? that vanish to order at least 7; p along
Yjforall j =1,..., £ Motivated by [32], in this paper we consider in addition an analytic
subset Y C X of dimension m and the spaces Hg (XY, L?) of sections of L”|y which extend
to global holomorphic sections of L? on X having the above vanishing properties. We study
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algebraic and analytic objects associated to Hg (XY, L?), especially the asymptotic growth
of their dimension, and the asymptotics of their Bergman kernels, Fubini-Study currents
and potentials. We also study the equidistribution of zeros of random sequences of sections
{sp € HY(X|Y,LP)}p>1, a8 p — 0.

More precisely, in analogy to [17], we consider in this paper the following setting:

(A) X is a compact, irreducible, normal (reduced) complex space of dimension 1, Xyeg
denotes the set of regular points of X, and Xj,g denotes the set of singular points of X.

(B) L is a holomorphic line bundle on X.

©) 2 =(Zy,..., Xp) is an £-tuple of distinct irreducible proper analytic subsets of X
such that ¥; ¢ Xy, forevery j € {1,..., £}. We set

14

(D) T = (11, ..., T¢) is an £-tuple of positive real numbers such that t; > 7, for every
Jokefl, ... £} with ; C %.

(E) Y is an irreducible proper analytic subset of X of dimension m such that
Y ¢ Xging UZY U A,

where A = A(L, X, 7) is the analytic subset of X defined in (3.2).

For p > 1, let H(?(X|Y, LP?) be the space of sections S € HO(Y, L?|y) which extend to
a holomorphic section of L” on X that vanishes to order at least 7; p along ¥;,1 < j < £.
Set

_{rjp iftipeN l<j<t, p>1, (1.1)

YT\ gpl+1 ifrpgN
where |r| denotes the greatest integer < r € R. Then
HY(X|Y,LP) = HY(X|Y,LP, £,7) == {S|y : S € H)(X, L")} c H'(Y,L”]y), (1.2)
where

H)(X,LP) = H)(X,L",2,7) :={S € H'(X, L") : ord(S,Z;) > tj p, 1 < j <0},
(1.3)
and ord(S, Z) denotes the vanishing order of S along an irreducible analytic subset Z of X,
z ¢ Xsing~
To measure the asymptotic growth of the dimension of these spaces, we define the restricted
volume of L relative to Y with vanishing along (X, ) by

) dim H)(X|Y, LP)
Voly v (L) :=limsup ——————.

pooo p"/m] 14

Note that, when ¥ = X, Hg(X|X, LP) = Hg(X, LP?) are the spaces defined in (1.3),
which were introduced and studied in [17]. We recall from [17] the following:

Definition 1.1 We say that the triplet (L, X, t) is big if

, dim HJ(X, LP)
Voly x.:(L) = limsup —————
' p—00 p"/n'
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In [17, Theorem 1.6] we gave a complete characterization of big triplets (L, X, 7), in
analogy to the Ji-Shiffman/Bonavero/Takayama criterion for big line bundles. We recall this
characterization in Sect. 3.1. Our first main result here is the following:

Theorem 1.2 Let X, L, X, t verify assumptions (A)-(D), and assume that (L, X, T) is big
and X is a Kihler space. Then Voly 5, (L) > 0 for any analytic subset Y C X that verifies
(E). More precisely, if Y verifies (E) then there exist constants C > 0, po € N such that

dim H)(X|Y,L?) = Cp™, ¥ p > po.

Theorem 1.2 shows that if Y verifies (E) the dimension of the restricted spaces
H(?(X |Y, L?) of sections of L? vanishing along (X, t) has the largest possible asymp-
totic growth pd™Y "as soon as the dimension of the “global" spaces Hé) (X, L?) grows like
pdimX The proof of Theorem 1.2 is given in Sect. 3.

Our next result deals with the asymptotics of the Bergman kernel functions and Fubini-
Study currents associated to the spaces Hé) (X|Y,LP).Let X, Y, L, ¥, t verify assumptions
(A)-(E), and assume in addition that there exists a Kédhler form @ on X and that 4 is a singular
Hermitian metric on L. We fix a smooth Hermitian metric 4y on L and write

a:=ci(L, hy), h=hoe >, (1.5)

where ¢ € LY(X, ") is called the (global) weight of h relative to hg. The metric h is called
bounded, continuous, resp. Holder continuous, if ¢ is a bounded, continuous, resp. Holder
continuous, function on X.

Let H(Oz) (X,LP) = H(02)(X, L?, h?, ®") be the Bergman space of L2-holomorphic sec-
tions of L7 relative to the metric 47 := h®P and the volume form " on X, endowed with
the inner product

wl’l

(S, 8, = /X(S, S Y pr

n!’
and set [|S|7 := (S, S),.
We assume in the sequel that the metric % is bounded. Then h|y = holye_z‘/"y is a well
defined singular metric on L|y and we have
H(X|Y,LP) C HQ, (Y, L[y, h”|y, o™ |y).
We use the notation

HE o) (X|Y, LP) = HY o, (X|Y, LP, 5, 7, h?, &™) := HJ(X|Y, LP)

when we consider the space H(()) (XY, L?) with the inner product induced by 2?7 |y and o™ |y.
Let Prf , ypy be the Bergman kernel function and Fubini-Study current of the Bergman

space H(()),(z) (XY, L") defined in (2.4) and (2.7)—(2.8). Then

1 I ‘ 1
;yg =c (L, h)y + 5dd‘ log P) =aly +dd°p) , where ¢} = ¢ly + -— log P, .

2p
B o (1.6)
Here d¢ := ﬁ (0 — 9), so dd® = - 39. We call the function (pg the global Fubini-Study
potential of yg . We obtain here the following result on the convergence of the Fubini-Study

currents.
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Theorem 1.3 Let X, Y, L, X, t verify assumptions (A)-(E), and assume that (L, X, ©) is big
and there exists a Kdihler form w on X. Let h be a continuous Hermitian metric on L and
o, (p; be defined in (1.5),(1.6). Then there exists a weakly o|y-plurisubharmonic function

(pgl on Y such that

1 : :
(pg — (pqu, > pr =aly +dd‘go§ — Teg =aly +dd‘g0,§], as p — oo, (1.7)

in L\(Y, @™|y), respectively weakly on Y. Moreover, if h is Holder continuous then there
exist a constant C > 0 and po € N such that

1
/|¢§—¢;|wmgcﬂ, forall p > po. (1.8)
Y p

Definition 1.4 The current T, e{{ from Theorem 1.3 is called the equilibrium current associated
to(Y,L, h, 2, 7).

Theorem 1.3 is proved in Sect.4. The study of the Fubini-Study currents associated to
various Bergman spaces of holomorphic sections is motivated by a foundational result of Tian
[44] (see also [37, Theorem 5.1.4]), who showed that in the case of a positive line bundle
(L, h) onaprojective manifold X the corresponding Fubini-Study forms y,,/p — c1(L, h) as
p — o0 in the ¥ *°-topology. This result was generalized in [11, Theorem 5.1] to the case of
a singular metric 7 whose curvature is a Kahler current, by showing that in this case y,, /p —
c1(L, h) in the weak sense of currents. It was further generalized to the case of arbitrary
sequences of line bundles on compact normal Kéhler spaces in [14]. The case of non-positively
curved Hermitian metrics & on big line bundles over projective manifolds was treated in [3,
4] by considering the equilibrium metric associated to &, constructed by analogy to extremal
plurisubharmonic functions. Previously, Bloom [6, 7] (cf. also Bloom-Levenberg [8]) pointed
out the role of the extremal plurisubharmonic functions in the equidistribution theory for
random polynomials. More generally, equilibrium metrics with prescribed singularities on a
line bundle are introduced and studied in [42] (see also [18, Theorem 3]).

We conclude this paper with an application of Theorem 1.3 to the study of the distribution
of zeros in Y of random sections in the spaces H(? (2)(X |Y, LP) as p — oo. To this end, we
consider the projective space

XY = PHp ) (XY, LP), d, :=dim Hg ,, (XY, L?) — 1.
We identity Hg o (XIY, LP) = C4*! by using an orthonormal basis, and we let op = a)g’g

be the Fubini-Study volume on XZ induced by this identification. Here and in the sequel

wrs denotes the Fubini-Study form on a projective space PV. We also consider the product
probability space

o0
(XL, 000) = [ [ X, o)
p=1

Theorem 1.5 Let X, Y, L, X, t verify assumptions (A)-(E), let h be a singular Hermitian
metric on L, and assume that (L, ¥, t) is big and there exists a Kihler form w on X.

(i) If h is continuous then — [s, = 0] — Te); as p — oo, in the weak sense of currents
p

onY, forog-a.e. {sp}p>1 € Xgo
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(ii) If h is Holder continuous then there exists a constant ¢ > 0 with the following property:
For any sequence of positive numbers {Ap}p>1 such that

.. Ap
lim inf
p—>oo log p

> (1 +m)c,

there exist subsets E, C Xg such that, for all p sufficiently large,
(a) Up(Ep) <cp" CXP(—M;/C),
(b) if sp € X))\ E, we have

1 y chp
Ly =01 =78, 9)| = =L Il

forany (m — 1, m — 1)-form ¢ of class € on Y.
In particular, the last estimate holds for ooc-a.e. {sp}p>1 € Xgo provided that p is large
enough.

Theorem 1.5 shows that, as soon as the triplet (L, X, ) is big, the normalized zeros of
random holomorphic sections in H(()) (X|Y, LP) restricted to suitable analytic subsets ¥ C X,
distribute as p — oo to the equilibrium current Te’(’1 constructed in Theorem 1.3. The proof
of Theorem 1.5 is given in Sect. 5.

If (X, L) is a polarized projective manifold Shiffman-Zelditch [43] showed how Tian’s
theorem can be applied to obtain the distribution of the zeros of random holomorphic sections
of HO(X, LP). Dinh-Sibony [29] used meromorphic transforms to obtain an estimate on the
speed of convergence of the zeros (see also [28] for the non-compact setting). The result
of [43] was generalized to the case of singular metrics in [11] and further to the case of
sequences of line bundles over normal complex spaces in [14] (see also [12, 26]). In the
latter situation, the equidistribution of zeros is considered for general classes of probability
measures on the spaces of sections in [1, 2]. The case of common zeros of random k-tuples
of sections was considered in [15, 16]

2 Preliminaries

We introduce here some notation and we recall a few notions and results that will be used
throughout the paper.

2.1 Compact complex manifolds and analytic spaces

Let X be a compact complex manifold and w be a Hermitian form on X. If T is a positive
closed current on X we denote by v(7, x) the Lelong number of T at x € X (see e.g.
[23]). A function ¢ : X — R U {—o0} is called quasi-plurisubharmonic (quasi-psh) if it
is locally the sum of a plurisubharmonic (psh) function and smooth one. Let & be a smooth
real closed (1, 1)-form on X. A quasi-psh function ¢ is called a-plurisubharmonic («-psh)
if @ +dd°p > 0 in the sense of currents. We denote by PSH(X, «) the set of all @-psh
functions on X. The Lelong number of an «-psh function ¢ at a point x € X is defined by
v(p, x) :=v(a +ddyp, x).

Since in general the 33-lemma does not hold on X, we consider the 33-cohomology and
in particular the space H alél (X, R) (see e.g. [10]). This space is finite dimensional, and if «
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is a smooth real closed (1, 1)-form on X we denote its d9-cohomology class by {a} 3. If X
is Kihler then H, ' (X, R) = H'"'(X, R) and we write {a};5 = {a}.

Definition 2.1 A positive closed current 7' of bidegree (1, 1) on X is called a Kcihler current
if T > ew for some & > 0. A class {a},5 is called big if it contains a Kihler current.

Definition 2.2 A quasi-psh function ¢ on X is said to have analytic singularities if there
exists a coherent ideal sheaf .# C O and ¢ > 0 such that ¢ can be written locally as

m
c
=3 log(YIfi1) + v, @1
Jj=1
where f1, ..., fn are local generators of the ideal sheaf .# and ¢ is a smooth function. If
c is rational, we furthermore say that ¢ has algebraic singularities. Note that {p = —oo} is

the support of the subscheme V (.#) defined by .#.

Definition 2.3 A quasi-psh function ¢ on X is said to have almost analytic (resp. almost
algebraic) singularities if the following hold:

(i) {¢ = —oo} is an analytic subset of X,

(ii) ¢ is smooth on X \ {¢ = —o0},

(iii) there exists a proper modification o : X — X, obtained as a finite composition of
blow-ups with smooth center and with blow-up locus contained in {¢ = —oo}, such that
¢ o o has analytic (resp. algebraic) singularities on X.

If A is an analytic subset of X, we say that ¢ has almost analytic (resp. almost alge-
braic) singularities in A if ¢ has almost analytic (resp. almost algebraic) singularities and
{p = —o0} C A.

If L is a holomorphic line bundle on X and A’ is a singular Hermitian metric on L,
written AL = h{)‘e’z‘/’ where h% is smooth and ¢ is a quasi-psh function, we say that 2 has
(almost) analytic (resp. algebraic) singularities if ¢ has (almost) analytic (resp. algebraic)
singularities. A current 7 = « + dd“p, where « is a smooth real closed (1, 1)-form on X
and ¢ is a quasi-psh function, is said to have (almost) analytic (resp. algebraic) singularities
if ¢ has (almost) analytic (resp. algebraic) singularities.

Suppose that {«a},7 is big. By Demailly’s regularization theorem [22] (see also [25, The-
orem 3.2]), one can find a Kidhler current 7' € {a},5 with almost algebraic singularities. The
non-Kdéhler locus of {a},7 is defined in [10, Definition 3.16] as the set

Enk ({o}yg) = [ {E+(T) : T € {a},5 Kihler current }, (2.2)
where £, (T) = {x € X : v(T, x) > 0}. Then, by Demailly’s regularization theorem [22],
E,x ({a}ag) = m {E+(T) : T € {a},7 Kihler current with almost algebraic singularities },

hence E, K({oz} 35) is an analytic subset of X. It is shown in [10, Theorem 3.17] that there
exists a Kéhler current 7' € {a},7 with almost algebraic singularities such that

EL(T) = EnK({a}aﬁ)-

Let now X be a complex space. We write X = Xpeg U Xsing, Wwhere Xreg and Xy are the
sets of regular and singular points of X. We denote by PSH(X) the set of all psh functions
on X, and by PSH(X, ) the set of all «-psh functions on X, where « is a smooth real closed
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9 Page8of23 D.Coman et al

(1, 1)-formon X (see e.g. [14, 17] for the definitions). If X has pure dimension n, we consider
currents on X as defined in [20]. We denote by [Z] the current of integration along a pure
dimensional analytic subset Z C X.If T is a current of bidegree (1, 1) on X so that every
x € X has a neighborhood U such that T = dd“v on U for some v € PSH(U), then T is
positive and closed, and we say that v is a local potential of 7. A Kéhler form on X is a
current 7' as above whose local potentials v extend to smooth strictly psh functions in local
embeddings of X to Euclidean spaces. We call X a Kihler space if X admits a Kihler form
(see also [30, p. 346], [38, Section 5]). Hermitian forms on X are defined in a similar way
by means of local embeddings (see e.g. [14, 17]).

A function u : X — [—o0, +00) is called weakly psh, resp. weakly a-psh, if it is psh,
resp. a-psh, on X, and it is locally upper bounded on X. If u is weakly psh, resp. weakly
a-psh, then u is locally integrable on X and ddu > 0, resp. & + dd“u > 0, in the sense of
currents on X (see [20, Theorem 1.10]). When X is compact, a function p : X — Ris called
Holder continuous if, locally, it is Holder continuous with respect to the metric induced by
the Euclidean distance by means of a local embedding of X into CV.

If (L, h) is a singular Hermitian holomorphic line bundle over X, the curvature current
c1(L, h) of h is defined as in the case when X is smooth (see [14], [21]). We say that & is
positively curved, resp. strictly positively curved, if ci(L,h) > 0, resp. c1(L, h) > ew for
some & > 0 and some Hermitian form w on X.

2.2 Bergman kernel functions and Fubini-Study currents

Let X be as in (A), Y be as in (E), w be a Hermitian form and (L, /) be a singular Hermitian
holomorphic line bundle on X such that the metric % is bounded. Since X is compact, the
space H(X, L) is finite dimensional. The metric / induces by restriction a singular metric
hly on L|y and we have c;(L|y, hly) = c1(L, h)|y.

Let H(Oz)(Y, L) = H(Oz)(Y, Ly, hly, ®™|y) be the Bergman space of Lz—holomorphic
sections of L|y relative to the metric 4|y and the volume form @™ /m! on Y, endowed with

the inner product

wm
h —— .

(8,8 = / (8,8 (2.3)
Y m!

Let V be a subspace of H(Oz)(Y, L), r =dimV,and Sy, ..., S, be an orthonormal basis
of V. The Bergman kernel function P = Py of V is defined by

P(x) =Y 18,0, 18,0 = (S;(x), Sj), x €Y. (2.4)
j=1

Note that this definition is independent of the choice of basis. Let U be an open set in ¥
such that L has a local holomorphic frame ey on U. Then |ey |, = e %V, S; = s;ey, where
oy € L*U), sj € OyU). It follows that

)
log Py =log (Y Is;%) = 29, 2.5)
j=1

which shows that log P € L (Y, 0™ |y).
The Kodaira map determined by V is the meromorphic map given by

D=0y :Y ->P(V*), d(x)={SeV:Sx) =0}, xe¥\Bs(V), 2.6)
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where a point in P(V*) is identified with a hyperplane through the origin in V and Bs(V) =
{x eY: Sx)=0,VS € V}is the base locus of V. We define the Fubini-Study current
y =yv of V by

y 1= ®*(wrs), @7

where wgg denotes the Fubini-Study form on P(V*). Then y is a positive closed current of
bidegree (1, 1) on Y, and if U is as above we have

1 c . 2
y lu= 5dd log(zl|s]'| ) 2.8)
J:
Hence by (2.5),
1 )
y :cl(L,h)Iy—i—Edd‘ log P. 2.9)

Letnow X, Y, L, ¥, 7 verify assumptions (A)-(E) and Hg(X |Y, LP) be the space defined
in (1.2). Since /1 is abounded metric on L we have H)(X|Y, L) C H(%)(Y, LPly, h?|y, @™|y).
The Bergman kernel function Ppy and Fubini-Study current ypy of H(())(X |Y, LP) are called
the restricted partial Bergman kernel function, resp. restricted partial Fubini-Study current,
of the space of sections that vanish to order 7 p along X. We have the following variational

principle:
P) (x) = max {|S(x)|§p LS e HY(XIY, LP), S| = 1}, xev, (2.10)

where || ||; denotes the norm given by the inner product in H(Oz) (Y, LP|y, hPly, o™ |y).

2.3 L2-extension theorem for vector bundles

We will need the following variant of the Ohsawa-Takegoshi-Manivel L? extension theorem
[36, 40] due to Hisamoto [32, Theorem 1.4] (see also [24, 34, 39])

Theorem 2.4 Let X be a projective manifold, Y C X a complex submanifold, w a Kdahler
formon X, and let E — X be a holomorphic vector bundle with a smooth Hermitian metric
hE. Then there exist positive constants N = N(Y, X, hg, ), C = C(Y, X), such that the
following holds:

Let L — X be a holomorphic line bundle with a singular Hermitian metric hye=>? such
that its curvature satisfies c1(L, hy) +dd®¢ > Nw. Then for any sections € H*(Y, E®Q L)
with fy |s|2e’2‘/’de,y < 00, there exists a section’s € HO(X, E ® L) such that 5|y = s
and

[ e avax < c [ 1P av,.y,

X Y

where |s| denotes the norm of s relative to the smooth metric hg @ hy.

3 Dimension of restricted spaces of sections vanishing along
subvarieties

We start by recalling here the characterization of big triplets (see Definition 1.1) by means
of divisorizations that was obtained in [17]. We then prove Theorem 1.2.
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9 Page100f23 D.Coman etal

3.1 Big triplets and divisorizations

The characterization of big triplets (L, X, t) relies on the following consequence of Hiron-
aka’s theorem on resolution of singularities:

Proposition 3.1 [17, Proposition 1.4] Let X and ¥ verify assumptions (A) and (C). Then
there exist a compact complex manifold X of dimension n and a surjective holomorphic map
7:X—> X, given as the composition of finitely many blow-ups with smooth center, with the
following properties:

(1) There exists an analytic subset X; C X such thatdim X, <n—2, X, C Xsing U >y
Xsing C Xz, Zj C Xy zfdlmE <n-—2 E; =7 YXy) is a divisor in X that has only
normal crossings, and 1 - X \ Ex — X\ X5 is a biholomorphism.

(1) There exist (connected) smooth complex hypersurfaces f)l, e, ig in X which have
only normal crossings, such that n(i,-) = X;. Moreover, ifdim X; = n — 1 then ij is the
final strict transform of ¥, and if dim X; < n — 2 then s j is an irreducible component of
Ex.

(i) If F — Xisa holomorphlc line bundle and S € H°(X, F) then ord(S, ¥ ; i) =
ord(w*S, E jhforall j=1,..., ¢

Definition 3.2 [17, Deﬁmtlon 1.5] If X T, s = (21, .. f)g) verify the conclusions of
Proposition 3.1, we say that (X T, E) is a divisorization of (X, %).

The following analog of Ji-Shiffman’s criterion for big line bundles [33, Theorem 4.6]
(see also [9], [37, Theorem 2.3.30]) was obtained in [17, Theorem 1.6]:

Theorem 3.3 Let X, L, X, T verify assumptions (A)-(D). The following are equivalent:

1) (L, X, 7) is big;

(ii) For every divisorization (X T, E) of (X, E) there exists a singular Hermman metric
h* on w*L such that ¢\ (w*L, h*) — Zf 1 Tj [Zj] is a Kdhler current on X (see Definition
2.1);

(iii) There exist a divisorization (i , 7T, f) of (X, X) and a singular Hermitian metric h*
on w* L such that ¢\ (w*L, h*) — Zﬁ':l tj[flj] is a Kdhler current on f;

(iv) There exist po € N and ¢ > 0 such that dim Hé)(X, LP) > cp" forall p > po.

Given a triplet (L, X, t) and a divisorization (i T, f) of (X, X), we consider the coho-

mology class
4

Or = Orzri=a(mL) =Y 1{E)5. 3.1)
j=1
where ¢y (w*L) is the first Chern class of 7*L and {2 }a5 € H i (X R) is the class of the

current of integration along ZA . We have the following simple lemma whose proof is left to
the interested reader.

Lemma 3.4 In the above setting, the following are equivalent:
@) There exists a singular Hermitian metric h* on w*L such that ¢i(7*L,h*) —
ZK 1T [E | is a Kdéihler current on X

(ii) The class ©5 € Halgl (X, R) is big.
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3.2 Non-Kahler loci and blow-ups

We will need certain results regarding the non-Kéhler locus of big cohomology classes. The
proofs are included for the convenience of the reader.

Lemma3.5 Let (X, w) be a compact Hermitian manifold and {a} 5 € Ha%] (X, R) be a big
cohomology class. Then there exists ¢ > 0 such that if n is a smooth real closed (1, 1)-form
on X withn > —ew then {& + n}y3 is big and Eyg ({a + 77}35) C Enx ({“}35)'

Proof Let T € {a},5 be a Kihler current such that E4(T) = E,x ({a},5) and T > dw
forsome § > 0.If ¢ < dandn > —ew then T + n € {a + n},5 is a Kihler current and
Enx ({o +n}y3) C E4(T + 1) = E(T). O

Lemma3.6 Let (X, w) be a compact Hermitian manifold and o : X — X be a finite
composition of blow-ups with smooth center with final exceptional divisor E. If {a}y3 €

Halél (X, R) is a big cohomology class then o*{at} 5 € Ha%l (X,R) is big and

E.x (a*{a}ag) co! (E,,K({a}ag)) UE.

Proof Tt is well known that there exist @ > 0 and a Hermitian metric /2 on the line bundle
0% (E) determined by E such that & := o*w — an is a Hermitian form on X, where n =
c1(O3(E), h) (see e.g. [14, Lemma 2.2]). Let s be the canonical section of 03 (E). Then, by
the Lelong-Poincaré formula, [E] = n 4+ dd€log |s|;.

We fix a Kihler current 7' € {a},5 such that E{ (T) = Ek ({a},3) and T > S for some
§>0.ThenT :=o*T — San > S is a Kihler current on X. We have

S:=0*T +8add®log|s|, =T + sa[E] > 8.

So § € o*{a},7 is a Kihler current. Note that o : X \ E — X\ Z is a biholomorphism,
where Z is a analytic subset of X of codimension > 2 such that £ = o~1(2). Since Lelong
numbers are biholomorphically invariant and the function log |s|; is smooth on X \ E, we
infer that £, (S) C o~ (E4(T)) UE. O

3.3 Bonavero’s Morse inequalities

Bonavero’s singular holomorphic Morse inequalities [9] have the following consequence
which will be needed in the proof of Theorem 1.2.

Proposition 3.7 Let (L, h) be a singular Hermitian holomorphic line bundle over a compact
Hermitian manifold (X, ) of dimension n, such that h has almost algebraic singularities in
an analytic subset A C X and ¢1(L, h) > ew on X, where ¢ > 0. IfY C X is a (connected)
complex submanifold of dimension m such thatY ¢ A, we have as p — oo that

m.,m

m
dim HY, (V. LP|y WPy, o™ |y) = 2 / 1LY+ o(p™) = - F
m! Jy\a

/ ™ +o(p™).
Y

Proof Note that / defines a singular Hermitian metric h|y on L|y, since ¥ ¢ A. Leto :
X — X be a proper modification as in Definition 2.3 such that the metric & := o*h on
L := oL has algebraic singularities. Fix a Hermitian form @ on X such that & > o*w,
and let Y be the strict transform of ¥ under o. Then Y is a complex submanifold of X of
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dimension m. Since ¥ ¢ o1 (A) we see that 7 induces a singular metric 71|)7 on Z|,7 which
has algebraic singularities. Moreover,

HY (Y, LPly, Py, o™ |y) = HY, (Y, LP |3, 1P|y, 0™ |§) D HY, (Y, LP |3, P |3, &" ).

If Z C A is the blow-up locus of o then o - X \ E — X \ Z is a biholomorphism,
where E = 0~1(Z) is the final 1 exceptional d d1v1sor Thus o : ¥ \ O‘_I(A) — Y \ Ais a
biholomorphism. Note that on Y \ o~ 1(A), h|Y is smooth and cl(L|Y, h| ) >o0*w > 0.
Therefore, by [9] we have as p — oo that

m

. S ol TP ~ )4 >
dim HY, (Y, L |3, kP 3. &™) = = | ci(Llg. hly)" + o(p™
m‘ Y\O’I(A)
m
=2 e + o™,
m: Jy\a

3.4 Proof of Theorem 1.2

Let us start by introducing the analytic subset A C X from hypothesis (E). We set
A=A, 2, 1) := ﬂ {rr(E,,K( )) (X T, E) is a divisorization of (X, E)} (3.2)

Here ®, € Ha%] (?, R) is defined in (3.1) and it is a big class by Theorem 3.3, since the
triplet (L, X, 7) is big. ~ _
Condition (E) implies that we can fix a divisorization (X, w, ) of (X, X) such that

Y ¢ Xging U =Y U (Enk (Or)). (3.3)

We have that 7 : X \ Ex — X \ Xy is a biholomorphism (see Proposition 3.1). Let Y be
the final strict transform of ¥, and set L := 7*L, SV := Uf_l ;.

Lemma 3.8 There exists a compact complex manifold X of dimension n and a surjective
holomorphic map 7 X > X given as the composition of finitely many blow-ups with
smooth center, such that 7:X \ E—> X \ - Zisa biholomorphism, where ZcXis
an analytic subset ofdlmemmn <n-—2and E = n_l(Z) is the final excepnonal divisor.
Moreover, the strict transform Y of Yisa (connected) complex submamfold of X of dimension
m, and Y Eﬂ, E have simultaneously only normal crossings, where E,, denotes the union
of the strict transforms under T of the irreducible components of E.

Proof We apply Hironaka’s theorem on the embedded resolution of singularities [5, Theorems
10.7and 1.6]to Y UE; C X. O

Set

4
L=#L £=E.....3) =V:=J%;

where & j is the strict transform of b ;j under 7. By [17, Corollary 3.4] we have

H)(X,LP, =, 1) = H)(X, L, S, 1) Z H)(X,L?, =, 1), forall p > 1. (3.4)
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~

HY(X|Y,LP, %, 1), for all

12

Lemma3.9 H)(X|Y,L?,$,7) = HYX|Y,L?, %, 1)
p=>1L

Proof The linear map 7* : HOX,LP) —> HO()?, Z”), S — 7*S, is bijective with inverse
7, s HO(X, LP) — HO(X, LP) defined as follows: if S € HO(X, LP), set 7, S = S, where

= (rr_l)*(glg\En) e HY(X\ X, L?|x\x,) extends to a section in HO(X, LP) since X
is normal and dim X, < n — 2 [31, p. 143]. By [17, Corollary 34], * H0 (X, L”) —
Ho (X LP) is an 1som0rphlsm We define a linear map F : H0 (XY, Ll’) — HO(XlY LP)
as follows: if s € HO (X|Y,L?) then s = S|y for some S € HO (X, L?), and we set
F(s) =n*S IY It is easy to see that Fi Tis well defined and bijective. In a similar manner we
show that H)(X|Y, L?) = H)(X|Y, L?). o

Proofof Theorem 1.2 We use the nOtatlon and set-up introduced above, 80 n(? ) =Y,
ﬂ(E ) = Xj, n(Y) = Y n(E ) = Z Let @ be aHermman form on X. Since Y ver-
ifies (3.3) it follows that ¥ ¢ E,,K(® )u $Y hence Y ¢ 7' (Eux(©x)) U SV, By

Lemma 3.6 we have that the class 7*0, € H U (X R) is big and

Y ¢ Enx (7°05) USV. (3.5)
Let now
©:=c1 (L) - Z rj{fj}ag € Halél (X, R), (3.6)
j=1

where ¢ (Z) is the first Chern class of L and {f i}a3 € H lil ()A( R) is the class of the current
aa

of integration along E Using (3.1) we infer that O = ﬂ*()n + {R};3, for some positive
closed current R of bldegree (1, 1) supported in E. This implies that ® is a big class and

Eqx(®) C Eqx (7*©:) UE. 3.7)

Indeed, if T € 7*®, is a Kihler current with E (T) = E,,K(ﬁ*(an) thenT + R e @isa
Kihler current and E4 (T + R) C E4(T) U E. By using (3.5) it follows that

Y ¢ E.x(©)UEY. (3.8)

Consider the class
¢ ¢
Or=a@) - ri{Sl =0+ (tj—r)Ejlys 1 €Q rj>1. (39
j=1 j=1
By Lemma 3.5 we have that ©, is big and Enk(@,) c E,,K(@) if r; — 7; is small enough.

Hence by (3.8), - ~ ~
P ¢ Eax(8,) USY. (3.10)

By Demailly’s regularization theorem [22] (see also [25, Theorem 3.2]) and by [10, The-
orem 3.17] there exists a Kéhler current 7 € ®, with almost algebraic singularities such
that E.(T) = E4x(©,). Then T + Zi‘:l rilZ;1 € c1(L), so there exists a singular metric

7 on L such that cl (Z, iz\) =T+ Z‘;:l rj [fj]. Since 7 has almost algebraic singularities
and r; > O are rational, it follows easily that the metric 71 has almost algebraic singularities
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contained in Enk(@,) U Y. Moreover we have ci(L, %) > T > e, for some ¢ > 0.
Thanks to (3.10) we can apply Proposition 3.7 to obtain, as p — o0,

PN ~ gmpm
dim H{y (V. L7 13. B715.0"[5) = — 1 /Aa'uo(p'"). (3.11)
. Y

Since X is a Kéhler space it follows that X is a Kihler manifold (see e.g. [14, Lemma
2.2]). Moreover, (3.4) implies that the line bundle Lis big,as (L, X, t) is a big triplet. Hence
Xisa a projective manifold. By Theorem 2.4, if p is sufﬁ01ently y large, every section s €

(2)(Y Lp |Y,hP|Y, @™ |y) extends to a section S € H(Z)(X LP hl’ @"). Since cl(L h) >

rj[X;] the metric 71 has a global qua51 psh weight with Lelong number > r; along b j- Thus
Smust vanish to order [rjp] on E,, l<j=<tlAsrj>rt;we have Lrjpj > t,p for all
)4 sufﬁmently large soS e H0 (X, LP E 7). It follows that H(z)(Y LP|Y, h”ly, o™ly) C

HO (X|Y, Lv, E, 7), and the proof of Theorem 1.2 is concluded by (3.11) and Lemma 3.9. O

Remark 3.10 In the setting of Theorem 1.2 assume in addition that ¥ N XY = @. Since the
triplet (L, X, 7) is big it follows that L is big. By [32] we have that Volx|y(L) > 0 when
X, Y are smooth. Theorem 1.2 actually shows that Voly s (L) > 0, i.e. the dimension of
the space of sections of L”|y that extend to X and vanish at least to order pt on X, grows
like pdim ¥

Animportant special situation is the one when X is smooth and X ; are analytic hypersurfaces.
We recall the characterization of big triplets in this case, which follows from [17, Theorem
1.3] and Lemma 3.4.

Theorem 3.11 Let X, L, X, t verify (A)-(D) and assume that X is smooth and dim X; =
n—1,1 < j <L The following are equivalent:

(i) (L, X, ) is big;

(ii) The class ® = Op 5 ; :=c1(L) — Z 1Ti{Z)5 € H (X R) is big.

As above, {X} .7 is the class of the current of integration [¥;]. In this case the exceptional
set A from (3.2) can be described more precisely:

Proposition 3.12 In the setting of Theorem 3.11, if (L, ¥, T) is big then A C E g (®)U XV,
Hence Theorem 1.2 holds for any Y that verifies the assumption

(E*) Y is an irreducible proper analytic subset of X of dimension m suchthatY ¢ E,x(®)U
=Y.
Proof Let (g, T, i) be a divisorization of (X, ¥). We apply (3.7) to : X — X, © and the
class ®; from (3.1). Using Lemma 3.6 we infer that

Enk(©x) C Eng (7*©) U Ex C 1~ (Eqng (©)) U Ex.
By Proposition 3.1, m(Ex) = X5 C £V, hence 7 (Ex (©7)) C Enx(©) U TV, u]

We conclude this section with a simple example that illustrates Theorem 1.2.

Example3.13 Let X = P", r; > 0, and X; be irreducible analytic hypersurfaces in X
of degree d;, where 1 < j < £. Let L = O(d), where d > Zf‘:l 7;d;. Then ¢ (L) —
Zf’:l 7;{X,} is a Kihler class, so the triplet (L, X, ) is big by Theorem 3.11. Moreover,
H(()) (X, LP)is given by the space of homogeneous polynomials of degree dp in C[zo, . . ., z,]

@ Springer



Restricted spaces of holomorphic sections... Page150f23 9

which are divisible by ]_[ﬁ=l Pj.j ', where Pj is an irreducible polynomial of degree d; such
that ¥; = {P; = 0}. Letnow ¥ C X be an irreducible analytic subset of dimension m such
that Y ¢ £V, i.e. Y verifies (E*). By Theorem 1.2 we have that the space H(())(X|Y, LP) of
restrictions of polynomials in HS (X, L?) to Y verifies dim Hé) (X|Y,LP) > Cp™ forall p
sufficiently large.

4 Convergence of the Fubini-Study potentials

In this section we introduce a certain restricted extremal quasi-psh function with poles along
a divisor, which will be used to define the equilibrium potential and current from Theorem
1.3. We refer to [35, 41] for similar constructions in the case of psh Green functions with
poles along analytic sets. In the absence of the poles our envelope coincides with the restricted
equilibrium weight introduced by Hisamoto [32, Definition 3.1]. We then proceed with the
proof of Theorem 1.3.

4.1 Envelopes of quasi-psh functions with poles along a divisor

Let (X, w) be a compact Hermitian manifold of dimension n, ¥ C X be a complex subman-
ifold of dimension m, ¥ ; C X be irreducible complex hypersurfaces, and let 7; > 0, where
1 < j < . Assume that

e
u.
ygs=]Jz,
j=1

We write ¥ = (X1, ..., X¢), T = (11, ..., Tr), and let dist be the distance on X induced by
.

Let a be a smooth real closed (1, 1)-form on X. We fix a smooth Hermitian metric g; on
Ox (X)), let s, be the canonical section of Ox(X;), 1 < j < ¢, and set

¢
Bi =ci1(0x(2)).8)). 0=a—Y 1;Bj. 0j:=lsg,lg. @1
j=1

As in [17, (4.2)] we consider the class
LX,a,%,71)={¢y e PSHX,a) : v(¥,x) >7;,Vx € X;, 1 < j <} 4.2)

of a-psh functions with logarithmic poles of order 7; along X ;. Given a function ¢ : ¥ —
R U {—o0} we introduce the following subclasses of quasi-psh functions and their upper
envelopes:

AXVY, 0, Z,1,9) ={Y e LX,a, Z,7): Yy <gponY}, 4.3)

14
AX|Y, T, 1, 9) = {W € PSH(X.0): ¥/ <¢— Y tjlogajonY \ zu}, (4.4)

j=1
Paq () = 9ly 5 (X) =suplY () : ¥ € AKX|Y,a, 2, 7,9)}, x €, (4.5)
Preg(X) = 0oy 2. () =sup{y/(x) : ¥/ € A(X|Y,, B, 7,9)}, x €Y. (4.6)
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We call gogl the equilibrium envelope of (o, Y, 2, T, ¢), and goriq the reduced equilibrium
envelope of (a, Y, X, 7, ¢). Note that when ¥ = X these coincide with the equilibrium
envelopes @eq, ¢req defined in [17, Section 4]. However, when Y # X it is possible that
@eq = Preq = +00 on X \ Y. The following result is concerned with some basic properties
of these envelopes. Its proof is very similar to that of [17, Proposition 4.1], so we omit it.

Proposition 4.1 Let X, Y, ¥, 7, o, 6 be as above, and let ¢ : Y — R U {—00} be an upper
semicontinuous function. Then the following hold:

(i) The mapping PSH(X,0) > ¢/ > ¥ = ¢’ + Zf‘:l tjlogo; € L(X,a, X, T) is
well defined and bijective, with inverse L(X, o, %,7) 2 ¥ > ¢ := ¢ — Zﬁ-:l Tjlogo; €
PSH(X, 6).

(ii) There exists a constant C > 0 depending onlyon X, Y, X, t, a, 0 such that supy ¥’ <
supy ¢ + C, for every ' € A'(X|Y, @, T, 7, ¢).

(i) AX|Y, o, Z,7,9) # @ if and only if A/(X|Y,a, T, T, ¢) # @. Moreover, in this
case we have that (‘/’5;)* € PSH(Y,«ly) and (gpriq)* € PSH(Y,0|y), where the upper
semicontinuous regularization is taken along Y, and

¢
‘/’e{; = wr);q + Z tjlogo; onY. “@.7
j=1

(iv) If ¢ is bounded and there exists a bounded 6-psh function on X, then (pr)éq is bounded.
(v) IfPSH(X, 0) # @ and @1, 92 : Y — R are bounded and upper semicontinuous, then

(plY,req - Sl;p |‘P1 - (P2| =< ¢2Y:req = (ply,req + Sl;p |‘Pl - @2'
holds on Y. Moreover, if o1 < @> then (pireq < go{req.

It is worth noting that we may obtain a regularity of goe{] in terms of ¢ using the technique
developed in [27] and [17].

4.2 Proof of Theorem 1.3

Let X, Y, L, ¥, t verify assumptions (A)-(E), and assume in addition that there exists a

Kihler form @ on X and that £ is a continuous Hermitian metric on L. Let kg, ¢ be as in

(1.5). Let P[f , ; be the Bergman kernel function and Fubini—Study current of the space
0 (2)(X|Y L?), and let (pg be the global Fubini-Study potential of yp (see (1.6)).

We use the set-up and notation introduced in Sect. 3.4. Namely, (X, 7, ) is a divisoriza-
tion of (X, ¥) such that (3.3) holds, and 7 : X — X is a resolution of singularities as in
Lemma 3.8.

Lemmad.2 Let7 := wo7 : X — XandZ = XﬂUn(Z) Then Z C X is an analytic subset
of dimension < n — 2, 7r 1(Z) E U E X\(E U E) — X\Z is a biholomorphism,
andrrw>00nX\(E UE)

Proof Note that 7(Z) C X is an analytic subset of dimension < n — 2, by Remmert’s proper

mapping theorem. We have that 7~ 1(Z) = E; UZ,so 7 “l(z) = n_l(E UZ)=E,UE,
and the lemma follows. O
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Let @ be a Kihler form on X such that @ > 7*w (see e.g. [14, Lemma 2.2]) and denote
by dist the distance on X induced by @. Set

-~

L:=7*L, hy:=7*hy, @a:=7*a=c1(L, o), §:=¢@or, h:i=m"h=hoe 2.
L R (4.8)
We write h? = h®P and hp = ﬁ®p . Lemma 3.9 implies that the map

Se Hg’(z)(X|Y,L”) —> 7S e H0 (2)(X|Y LP) = HO (2)(X|Y LP. S, 1. kP, 7 ™)
(4.9)
is an isometry. It follows that

~3

Pl =P o7, 7, _ﬁ*ypy (4.10)

are the Bergman kernel function, resp. Fubini-Study current, of the space Hg @ ()A( |?, Lr ).
Note that 7(Y) = Y and

1 3 7 F o~ 1 ~7 .
; yg = a|y+dd‘<pg, where (plf =9ly + 5 log Pg = go}; oT. (4.11)

-~

Let (’ﬁe?q be the equilibrium envelope of (@, .3, 1, ®) defined in (4.5),

oL =suply(n) : ¥ € LX.@T.7), y<gonT), xe?, (4.12)
where 5(3(\ ,a, f, 7) is defined in (4.2). Let 5%, be the canonical section of ﬁy(f ;j) and fix
a smooth Hermitian metric g; on ﬁg(i/) such that

o) i=lsg,lg; < lon X, 1<j<¢. (4.13)

Set

J4
Bi=c1(0%(E)).g), 0=a— Z (4.14)

Note that [Z jl = Bj +dd‘logo;, by the Lelong-Poincaré formula. Moreover 6y = 0O,
where © is the big class defined in (3.6). In this setting, we first prove the convergence of the
global Fubini-Study potentials on Y.

Theorem4.3 Let X, Y, L, X, © verify assumptions (A)-(E), and assume that (L, X, ©) is big
and there exists a Kéihler form w on X. Let h be a continuous Hermitian metric on L, let ¢, @,
aY, @Yq, 8 be defined in (1.5), (4.8), (4.11), (4.12), resp. (4.14), and set Z = Enx ({8}) UZ".
Then the following hold:

(1) ¢; (pp ((peq) in L (Y @"|5y) and locally uniformly on Y \ Z as p — o0.

(1) If ¢ is Holder continuous on Y then there exist a constant C > 0 and po € N such that
forally € ?\ 2andp > po we have

~y F \* C . =
0y () = (92g) )] < > (log p + | logdist(y, Z)|).

The proof is done by estimating the partial Bergman kernel 131,? from (4.10) asin[17, Theorem
5.1] (see also [3], [4], [11], [42] for similar approaches). Let
Qp(8) = sup {[§(x) — ()| : x,y €Y, dist(x, y) < 8}

be the modulus of continuity of @.
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Proposition 4.4 [n the setting of Theorem 4.3, there exists a constant C > 0 such that for all
p > land$ € (0, 1) the following estimate holds on Y :

1 logé
o <ol + C(a - 7) +295(C9).

Proof We proceed along the same lines as in the proof of [17, Proposition 5.4], working with
Y instead of X. Using Lemma 4.2 and following the proof of [17, Proposition 5.2] we can
show that there exists a constant C > 0 such that

TR _ SR c
Fy(6) := sup {5 log PY (y) : y e ¥, dist(y, Ex UE) = 3] < (1-log8) +5+25(0).

(4.15)
forp>1land0<§ < 1.

By Lemma 3.8, Y, Ex. E have simultaneously only normal crossings. So E.NY,ENY
are divisors in Y that have simultaneously only normal crossings. Therefore the argument
from the proof of [17, Proposition 5.4] goes through without changes and shows that there
exists a constant C’ > 0 such that for all y € ? p>1land0 < § < 1 we have

@Z(y) <P+ C'8+Q3(C'8) + Fp(8/C"). (4.16)

Recall that the sections in H(()) (2)(5(\ |?, Zp) are restrictions to Y of sections in

Ho (5(\ Z” f 7). Therefore we infer from (4.11) that the function @; is the restriction

to ¥ of an Ol psh function v on X with Lelong number > ¢; ,/p > t; along Ej 1<j<t
Sov e L(X o, E 7), and by (4.16) and (4.12)

g?p gaeq—i-CS—l—QA(C(S)—i-F 8/Ch.
The proof is concluded by applying (4.15). O

We now obtain a lower bound on log P, pY and ¢ Recall that {0} Oisa big class, where
0 is defined in (4.14) and @ in (3.6).

Lemma 4.5 There exists a @\-psh function n with almost algebraic singularities on X such
that
{n=—00}=E.x({8)), n<—1, 0+ddn > ed > eot*w (4.17)

hold on )? for some constant gy > 0. Moreover, there exist constants No, My > 0 such that
n(x) = —No|logdist (x, E.x ({8}))| — Mo, x € X. (4.18)

Proof The existence of n satisfying (4.17) follows directly from [10, Theorem 3.17] and
Demailly’s regularization theorem [22, 25]. Moreover, by [22, Proposition 3.7] n has locally
the form n = clog (Z;";l | fj1?) 4+ ¥, where ¢ > 0 is rational, f; are holomorphic func-
tions, and v is a bounded function. Since the ring of germs of holomorphic functions is
Noetherian there exists k such that locally E,,K({ }) {fi = ... = fr = 0}. Thus

n > clog ( Zj:] [fil ) + ¢/, and (4.18) follows from the t.ojasiewicz inequality. O
Proposition 4.6 In the setting of Theorem 4.3, there exist a constant C > 0 and po € N such
that for all p > po the following estimate holds on Y \ Z:
7 e €1
@,ﬁ = (@;])* +—n+— Zlogaj > —00.
p L
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Proof Using Choquet’s lemma, we can ﬁnd an increasing sequence of functions { }x>1 C
A(fﬂ?, a3, 1, @) such that ¥, (5;1)* ae.on Y. Let

¢
pi=n+Y tilogo; € LX,@, 5. 1) NE(X\ 2), (4.19)
j=1
where 7 is the function from Lemma 4.5. Then

¢
@+ddp=0+ddn+Y 1[S;] = . (4.20)
j=1
Since @ is bounded there exists a € R such that p < @ + a on X. Replacing ¥ by
max{yy, p — a} we obtain a sequence

vk e AX)Y, @, 2,1,9), yu>p—aonX, yx (@Yqy ae.on?Y. 4.21)

Consider the Bergman space H(02) (5(\, ZP, Hp, @"), where the metric Hy on LPis given
by
1
Hp i :=hie /v g, = (p— po)¥x + pop + ) _logoj, (4.22)
j=l1

and L po € N will be specified later. We have that 1//,, x € LIOC(X \ ?), and ¥, x < p + poa
on Y since o; ;i < 1. Moreover, by (4.20) and since & + dd“y, > 0 we obtain

¢
c1(LP, Hp 1) = (p — po) @+ dd“y) + po@+dd p) + Y (IZ;1— Bj) = (poco — C1)d
j=1

forevery k > 1, where C| > 0is a constant such that Z‘j 1 Bj < Ciw. By (3.8), the singular
metric H) x|y on L|Y is well defined and cl(LP|Y, Hy,ily) > (poso — C1)|y. Therefore,
if po is chosen large enough we can apply the L?-estimates for 9 from [19] (see also [17,
Theorem 5.5]) and proceed as in the proofs of [11, Theorem 5.1] and [17, Proposition 5.6],
working on ?, to show the following: there exist C; > 0 and po € N such that forall k > 1,
p = poandy € Y\Z thereexists Sy , x € HY (Y. LP |5, Hp |, @"|p) with Sy, () # 0
and

~m

2 w 2
0< [f|sy,p.k|1-1p’k‘? W =< C2|Sy,p,k()’)|1—1p‘k|? < +o00. (4.23)

Note that X is projective since it is Kédhler and Lisa big line bundle. Applying The-
orem 2.4 and i 1ncreasmg po if necessary (so that ppeg — C; > N), we infer that Sy )«
extends to a section SV pk € H(z)(X L?, Hp i, @"). Using (4.19),(4.21), (4.22), we see

that the qua31 psh function v, ; has Lelong number > ptj+ 1 along bof X, 1<j<t
Hence H (X p s Hp k, ") C HO(X LI7 E t)and Sy pk € HO(XlY P E 7). By
(4.8),(4. 22) we get

Hpy =hle 2Vrk = pPe?P9=2Vnk 50 H, > hPe™*P" on Y.

As @ > T*w we obtain by (4.23)

—
“2poa , (@T'w) 2 2000 —2Ypk(y)
e [f|Sy,p,k|jl‘p|? m = C2|Sy,p,k(y)|ﬁp‘?e r .
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Using (2.10) this yields that
PI(y) = €' PVns 0280200 k= 1, p = poy e V\Z.  (4.24)
So by (4.11),(4.22),(4.24) we get that

4

1 sy 1 log Cy - -

Y_‘/’|y 2p IOgP;Z; ((P—PO)Wk‘f'POP-l-ZlOng— > —poa) onY\ Z,
j=1

for p > po and k > 1. Letting k — oo and using (4.21),(4.7),(4.19) we obtain

¢
P gy, 1 L5 \* log C> - A
oy = (n)" + - | pon - P0(@req)” + D _logoj — —— —poa | on ¥\ Z,
j=1
for p > pg. Here @?eq is the reduced equilibrium envelope of (@, Y, &, 7, $) defined in (4.6).

The conclusion follows since (@feq)* is bounded above on Y and n<-1. O

Proof of Theorem 4.3 By the Lojasiewicz inequality, there exist constants N;, M; > 0, 1 <
J < £, such that logo;(x) > —N; ’log dlst x boff )’ —Mj;, x € X. Using Proposmon 4.6
and (4.18) we infer that there exist C 1 > 0, po € N such that

~y L\ c . ~ ~
Pp0) 2 (@) 0) = (|logdist (v, 2) [ +1). ye T pzpo. @29)

Note that log dist (-, 2)|? € Ll(?, 8’"|y), since Y a 4 (see e.g. [15, Lemma 5.2] and its
proof). The proof of Theorem 4.3 now proceeds exactly as that of [17, Theorem 5.1] by using
the lower bound (4.25) and the upper bound from Proposition 4.4. O

Proof of Theorem 1.3 Since (?ﬁ;)* is @|¢-psh, we have (@;)* < M on Y for some constant

M. Recall from Lemma 4.2 that 7 : X \ (Ex UE) — X \ Z is a biholomorphism. Therefore
the function

ol = (@) om! (4.26)

is a|y-psh and (pqu < M on Y\ Z, hence it extends to a a|y-psh function on Yieg which is

bounded above by M. This shows that <pqu is a weakly a|y-psh function on Y. Moreover, by
(4.11) and since @ > 7T*w we have

/y\z }q); - (p;l| o = /?\(EHUE) }517; - (‘peq |7 = / |(pP ‘/’eq

Theorem 1.3 now follows from Theorem 4.3. O

. . . . PY ~F
When ¢ is smooth, we may obtain a more precise estimate for pi’; , and hence for </’;/ as
n [13].

5 Zeros of random holomorphic sections
We deal here with the proof of Theorem 1.5. It is very similar to the proof of [17, Theorem

1.10], so we will only give an outline. The first step is to show that zero divisors of random
sections distribute like the Fubini-Study currents.
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Theorem 5.1 Let X, Y, L, X, t verify assumptions (A)-(E), let h be a bounded singular
Hermitian metric on L, and assume that (L, X, t) is big and there exists a Kdihler form
on X. Then there exists a constant ¢ > 0 with the following property: For any sequence of
positive numbers {,},>1 such that

A
liminf —2— > (1 4+ m)c,
p—oo log p
there exist subsets E,, C Xg such that
(@) 0, (Ep) < cp™exp(—Arp/c) holds for all p sufficiently large;
(b) if s, € X))\ E,, we have

1 cA
- {lsp = 01— vy )| < 7” Iplls2,

forany (m — 1, m — 1)-form ¢ of class € on Y.
In particular, the last estimate holds for ooo-a.e. {sp}p>1 € Xgo provided that p is large
enough.

Proof We follow closely the proof of [17, Theorem 6.1] and apply the Dinh-Sibony equidis-
tribution theorg:\mjo}r\ meromorphic transforms [29, Theorem 4.1]. Recall by (4.9) that the
spaces H(?,(z) (XY, L?)), Hg @ (XY, L?) are isometric. Using the notation from Sect. 4.2,
we first show that Theorem 5.1 holds on ¥ for the spaces

~ ~ 00 o~ ~
X) :=PH) o, (XIY,LP), o = o, RY 00) 1= [1&).0p). dp =dimX} =dim X},
p=1

and the Fubini-Study currents J//\; . This is done exactly as in the proof of Theorem 6.1,
Step 1, from [17] (see also [15, Section 4]), by applying [29, Theorem 4.1] to the Kodaira maps
considered as meromorphic transforms of codimensionm—1, ®, : Y - ]P’H& @ (5(\ | ? P ),
with graph

Fp={(.8) € ¥ x PHY o, (X|Y.LP) : §(y) = 0}.

Note that Siegel’s lemma implies that d, = O (p™).

We next show that Theorem 5.1 holds on Y for the spaces X;. Consider the restriction
T =Ty Y > Y.ByLemma427% : Y\ (Ey UE) — Y \ Z is a biholomorphism, and
by (4.9) S € HY) 5 (X|Y, LP) — 7*S € H 4 (X|Y, LP) is an isometry. Using (4.10) and
(4.11) we obtain

| 7~ ~
> yg =aly —|—dd‘(p},/ =T'a —I—ddc(go}); o).

~ 7

Since (p; e L'(Y,"|y) and @; = (pg o7 e LI(Y, ®™|3) we infer that Y, = y[f as
currents on Y. Similarly we can show that 7, [7*S = 0] = [S = 0] as currents on Y, for
S e H& ) (X1Y, LP). Theorem 5.1 now follows from the above considerations by arguing
as in the proof of Theorem 6.1, Step 2, from [17]. O

Proof of Theorem 1.5 Theorem 1.5 follows easily from Theorems 1.3 and 5.1, by proceeding
as in the proof of [17, Theorem 1.10]. m]

Remark 5.2 Assume that X, L, ¥, t verify (A)-(D), X is smooth and dimX; = n — 1,
1 < j < €. Then Theorems 1.3 and 1.5 hold for any analytic subset ¥ C X that verifies
assumption (E*) from Proposition 3.12.
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