

REVIEW ARTICLE

OPEN

LYMPHOMA

Models for T-large granular lymphocytic leukemia: how to mimic the cellular interplays in malignant autoimmunity

Hanna Klepzig¹, Marco Herling², Natali Pflug¹ and Till Braun^{1,3}✉

© The Author(s) 2025

T-large granular lymphocytic leukemia (T-LGLL) is a chronic lymphoproliferative disorder characterized by clonal expansions of cytotoxic T-cells. It presents with cytopenias that are not explained by the typically low leukemic burden. Notably, T-LGLL is frequently accompanied by autoimmune disorders, particularly rheumatoid arthritis (RA). As clonal T-cell expansions are also increasingly identified in autoimmune-driven conditions, better models of T-LGLL's pathogenesis as a spectrum of (auto)antigen-driven oligoclonal hierarchies towards overt leukemic escape with associated immune dysregulations would provide details to a valuable prototype for determinants of T-cell fitness and transformation as well as T-cell instructed dysfunctions of other immune cells. Such insights would advance our concepts of cancer biology and immunology. Common molecular links between T-LGLL and autoimmune diseases include activation of JAK/STAT signaling, proinflammatory cytokine environments, and antigen-driven immune responses. Current murine models address these mechanisms rather individually: JAK/STAT based systems replicate pathway activation, cytokine-driven models simulate inflammatory conditions, and RA models often mimic antigen stimulation. However, none of these fully captures the duality of clonal T-cell expansion and the complex immune dysregulations, inherent to T-LGLL. This review examines criteria for autochthonous in-vivo T-LGLL models and evaluates existing systems, identifying their strengths, limitations, and specific representations of clinico-pathologic aspects of LGLL. Prominent transgenic models, for example, not only manipulate the T-cell compartment but also indiscriminately alter the tumor microenvironment, impeding research on the specific role of elements of the LGLL micromilieu. We propose strategies to overcome such insufficiencies of present models. Overall, our critical appraisal emphasizes the need for novel comprehensive models that more faithfully integrate the key features of T-LGLL or for models that, by featuring specific pathogenetic aspects of the disease, would supplement existing incomplete systems. We expect such new model systems to aid in better understanding the cancer-immunity interface and in assessing novel therapeutic approaches for T-LGLL.

Leukemia (2025) 39:792–804; <https://doi.org/10.1038/s41375-025-02553-2>

INTRODUCTION

T-large granular lymphocytic leukemia (T-LGLL) is a chronic lymphoproliferative disorder characterized by the clonal expansion of mature T cells [1]. Although classified as a rare disease, T-LGLL is among the most prevalent mature T-cell leukemias [2]. The oligo- to monoclonal expanded leukemic cells are post-thymic T cells, presenting in most patients a terminally differentiated effector memory CD3⁺CD8⁺ phenotype, with diminished CD5 expression and clonal restriction to the T-cell receptor (TCR) beta constant 1 (TRBC1) or TRBC2 chain [3]. A minority of patients develop CD4⁺ leukemic cells, presenting a more indolent disease course and, therefore, handled as a distinct subtype [3]. Additionally, T-LGLL is closely related to NK-LGLL, likely linked by similar pathogenetic mechanisms, though the exact factors

influencing the dominance of each clonal population remain unclear [4].

Clinically, patients frequently present with severe neutropenia, leading to recurrent infections, along with transfusion-dependent anemia [3]. Bone-marrow infiltration is commonly seen in T-LGLL patients, but interestingly, the severity of cytopenias does not correlate with the degree of T-LGLL infiltration, suggesting that immunogenic mechanisms, beyond those of anti-neutrophil antibodies or Coombs-positive hemolytic anemia, play a role [3]. Furthermore, T-LGLL is frequently associated with autoimmune conditions like rheumatoid arthritis (RA) or severe vasculitis [3]. A 'watch and wait' approach is appropriate for asymptomatic patients, but our clinical experiences show that treatment has to be initiated in ~70% of patients with options remaining limited.

¹Department I of Internal Medicine, Center for Integrated Oncology (CIO) Aachen Bonn Cologne Düsseldorf, Translational Research for Infectious Diseases and Oncology (TRIO), University Hospital Cologne, Cologne, Germany. ²Department for Hematology, Cellular Therapy, Hemostaseology, and Infectious Diseases, University Hospital of Leipzig and Cancer Center Central Germany (CCCG), Leipzig-Jena, Germany. ³Mildred Scheel School of Oncology Aachen Bonn Cologne Düsseldorf (MSSO ABCD), Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany. ✉email: till.braun@uk-koeln.de

Received: 18 December 2024 Revised: 5 February 2025 Accepted: 24 February 2025
Published online: 7 March 2025

Standard therapy includes immunosuppressive agents like low-dose methotrexate, cyclophosphamide, or cyclosporine, often combined with temporary glucocorticoids and supportive measures (e.g. transfusions). However, those treatments are often insufficient in controlling disease and symptoms; and come with relevant side effects, emphasizing, that novel strategies are highly warranted [3].

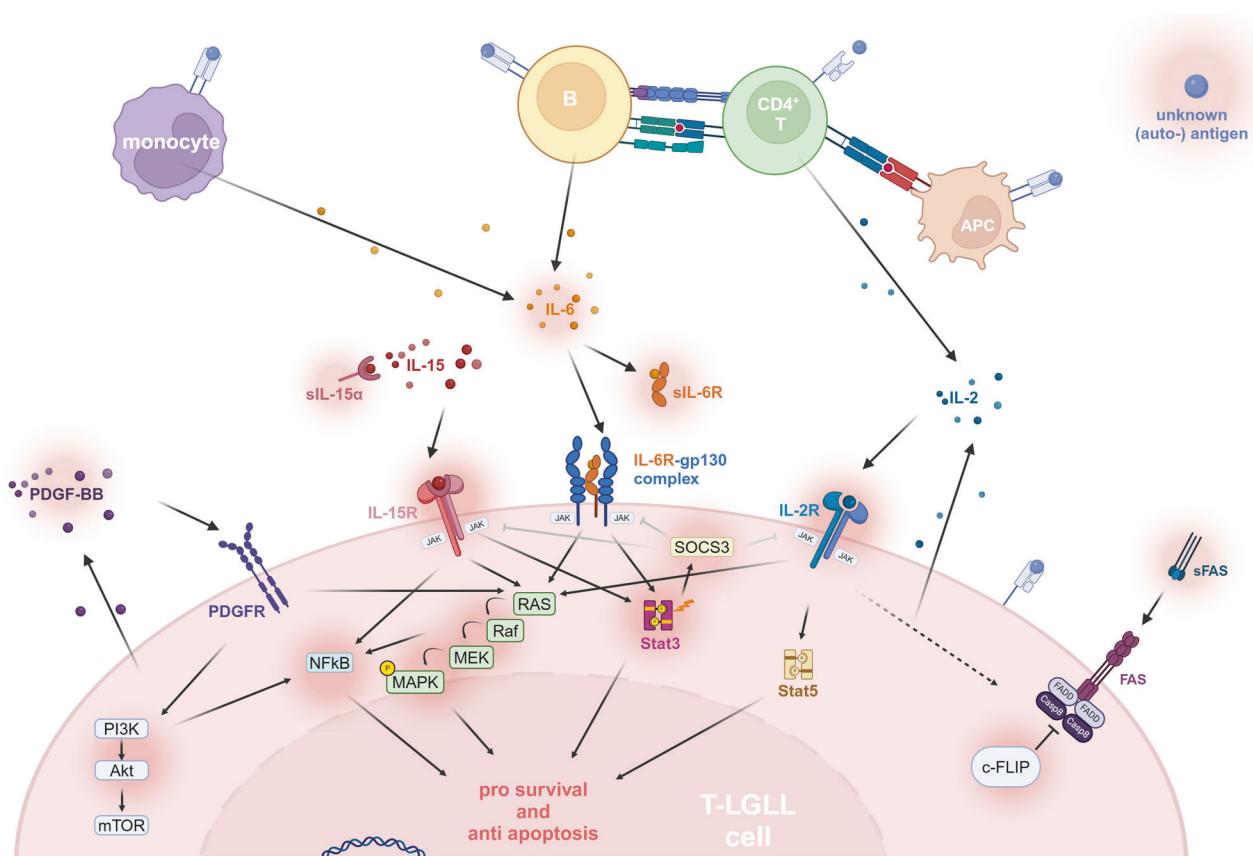
To develop new, innovative therapeutic strategies, preclinical models are of indisputable importance. T-LGLL presents at a unique intersection between cancer and immune dysregulation, exhibited by the clonal expansion of malignant T cells and the association with autoimmune mechanisms that drive clinical presentation. Current mouse models, however, fail to capture this duality of T-LGLL. As our understanding of the disease's complex pathomechanism grows, emerging insights are reshaping our view of its biology. These evolving perspectives highlight the need for refined preclinical models that reflect this complexity. In this review, we present an updated concept of T-LGLLs pathogenesis, outline the core criteria required for effective in-vivo modeling, and critically examine existing models. We highlight the future challenges in more accurately representing the intricate interplay of immune dysregulation and malignant transformation in T-LGLL.

CURRENT PATHOGENIC CONCEPT OF T-LGLL

To critically evaluate existing mouse models, a comprehensive understanding of the pathobiology of T-LGLL is essential (see Fig. 1 for the current conceptual framework of the disease). While the central pathways and cellular interactions presented in this review focus on aspects relevant to mouse models, a more in-depth review of current pathogenetic concepts can be found in [5]. The initiating 'event' for the clonal expansion of LGL cells is proposed to be a chronic and persistent antigen stimulation, although no common antigen has been identified so far [3, 6]. Potentially triggered by this chronic antigen stimulation, constitutive STAT3 activation emerges as the molecular hallmark of the disease, providing survival advantages to the escaping T-LGLL clone and leading to its (pre)leukemic expansion. This activation is in 30–75% of T-LGLL patients evoked by somatic gain of function (GOF) mutations in *STAT3*, located in its Src-homology (SH) 2 domain resulting in stabilized dimerization and, thereby, enhanced activation [7, 8]. The most prevalent mutations, *Y640F* and *D661Y*, account for 60% of all mutations [7]. STAT3 activation is involved in various biological processes, including the promotion of antiapoptotic and prosurvival mechanisms, with altered transcription of target genes like *Mc1*, *c-Myc*, *cyclins D1* and *D2*, *Bcl-xL*, and *TP53* [9, 10]. Besides recurrent GOF mutations, the lack of the negative feedback mechanism by downregulation of *SOCS3* further sustains constitutive STAT3 activation in T-LGLL cells [11]. *STAT5B* mutations are significantly less frequent in T-LGLL; they mainly occur in $CD4^+ \alpha\beta$ T-LGLL (7–66%), are less frequent in $\gamma\delta$ T-LGLL (0–19%), and are only rarely seen in $CD8^+ \alpha\beta$ T-LGLL or NK-LGLL [12]. Furthermore, T-LGLL outgrowth is supported by resistance to Fas/FasL mediated apoptosis, leading to escape from activation-induced apoptosis. Physiologically, Fas-mediated regulation limits the survival of antigen-stimulated T cells to maintain homeostasis. FasL binding activates the death-inducing signaling complex (DISC), which is essential for downstream signaling [13]. In T-LGLL, increased c-FLIP levels inhibit activation of the DISC and enhance resistance to Fas-mediated apoptosis despite the availability of all required components of the pathways, namely surface expression of Fas receptor and constant expression of FasL [13, 14].

Aberrant cytokine signaling is another hallmark in the pathogenetic concept of T-LGLL. Most centrally, the proinflammatory IL-15 signaling pathway, which supports survival of $CD8^+$

memory T cells, is altered in T-LGLL patients. Besides elevated *IL-15* mRNA expression levels in T-LGLL cells, increased levels of *SLC15A1* were detected in T-LGLL patients-derived plasma [15, 16]. The relevance of IL-15 signaling is highlighted by promising efficacy of a first trial using a selective IL-15 inhibitor in T-LGLL [17]. Known for its dual role in T-cell survival, IL-2 stands out as another mechanism of altered T-cell signaling. Physiologically, it supports T-cell proliferation and survival in the initial phase of an immune response but later increases the sensitivity to Fas-mediated apoptosis to prevent excessive immune response. In T-LGLL, ex-vivo treatment of apoptosis-resistant T-LGLL cells with IL-2 enhances DISC formation and increases the activity of caspase-8, re-sensitizing the cells to Fas-mediated apoptosis. Additionally, upregulation of the IL-2 receptor on T-LGLL cells, and its downstream signaling activating JAK/STAT, MAPK, and NF- κ B signaling, may contribute to the clonal sustenance [13, 18]. Furthermore, constitutive JAK/STAT signaling, e.g. mediated by activation of STAT3, is additionally sustained by IL-6, with both IL-6 and IL-6 receptor subunit α (IL-6R α) reported to be elevated in T-LGLL patients [11]. Additionally, increased PDGF-BB, produced by T-LGLL cells, alongside with expression of PDGF receptors on T-LGLL cells leads to an autocrine proliferation stimulus via PI3K and Akt/Erk pathways [19].


Recently, the pivotal role of the non-leukemic immune cell compartment in T-LGLL pathogenesis was highlighted. Utilizing single-cell RNA-sequencing of T-LGLL patient-derived peripheral blood mononuclear cells (PBMCs), alterations not only in the leukemic but also the non-leukemic compartment were shown, possibly connected by various cytokines that show elevated serum levels in T-LGLL patients [6, 20]. Exemplarily, intraindividual comparisons between the antigen-specificity of T-LGLL clones and the non-leukemic T-cell compartment revealed shared target antigens, suggesting antigen-driven clonal hierarchies and expansions [6]. Monocytes, key producers of cytokines and professional antigen-presenting cells, are promising candidates for interactions in this context. In T-LGLL, the composition of monocytes shifts towards a higher proportion of non-classical and intermediate monocytes [21]. Most predicted T-LGLL cell-cell interactions are with monocytes, and many elevated cytokines can in fact be monocyte-derived [6]. Additionally, patients with T-LGLL exhibit a greater proportion of mature, terminally differentiated $CD4^+CD57^+$ T cells [6] and an imbalanced $T_{H}17/T_{reg}$ ratio [21]. The latter is a known pathomechanism in RA, highlighting this alteration as a possible link to autoimmune phenomena in T-LGLL. Finally, the success of therapeutic approaches that target non-T cells, e.g. rituximab targeting CD20 as a classic B-cell marker, further substantiates the critical role of the microenvironment in sustaining the T-LGLL clone and manifestation of clinical symptoms [22].

CELL LINE MODELS OF T-LGLL

To advance our understanding of T-LGLL pathogenesis and facilitate therapeutic discoveries, ex-vivo models are critical, as they bridge the gap between molecular profiling and in-vivo complexity, enabling controlled manipulation and analysis. The MOTN-1 cell line is the most commonly used T-LGLL-like system. It exhibits a $CD3^+CD4^+CD8^-$ TCR-incompetent immunophenotype, which is exclusively observed in $CD4^+$ T-LGLL and does not accurately represent typical T-LGLL cells. Additionally, its dependence on IL-2 further complicates its applicability, as the IL-2 supplementation alters activation state and cytokine profiles within its mono-culture, thereby further restricting its utility [23].

KEY CRITERIA OF AN ACCURATE T-LGLL-LIKE MOUSE MODEL

Efforts to develop new T-LGLL-like mouse models must go beyond replicating isolated aspects of the disease; instead, they

Fig. 1 Proposed concept of T-LGLL pathogenesis. This schematic overview illustrates the pathobiological landscape of T-LGLL, highlighting key genomic, transcriptomic, and microenvironmental factors that drive T-LGLL leukemogenesis. The proposed initial event for T-LGLL is a chronic antigenic stimulation, resulting in polyclonal LGL expansion. The expansion of LGLs is further supported by inflammatory cytokines, like IL-2, IL-6, and IL-15, potentially secreted by the non-leukemic compartment, like B-cells, CD4⁺ T cells, monocytes, and other antigen-presenting cells (APC). Autocrine platelet-derived growth factor (PDGF)-BB signaling, via PI3K/Akt/mTOR, adds an additional proliferative stimulus. Clonal selection of T-LGLL expansions can be further favored by the occurrence of specific mutations, predominantly gain-of-function (GOF) mutations of STAT3 in CD8⁺ T-LGLL and STAT5B in CD4⁺ T-LGLL. Constitutive activation of STAT3 is additionally achieved by diminished expression of the negative regulator SOCS3. Pathways conferring resistance to apoptosis are also shown, with increased c-FLIP levels contributing to Fas/FasL resistance. Red shadows indicate proven alteration within T-LGLL cells; dashed arrows show suspected but unconfirmed interactions. The figure was created with Biorender.

should focus on creating a comprehensive model that ideally accurately reflects the full complexity of T-LGLL's pathology. To resemble the unique position of T-LGLL as the prototypic model for a 'malignant (auto)immune-synapse', an ideal pre-clinical model should capture (i) an oligo- to monoclonal expansion of (ii) terminally differentiated effector memory CD8⁺ T-cells accompanied by (iii) signs of inflammation, with both phenomena present in an (iv) indolent model. (v) Alterations should resemble pathogenetic hallmarks of T-LGLL, e.g. STAT3 GOF mutations. Additionally, (vi) the broader immune cell compartment should be genetically (in the experimental sense) unadulterated, to facilitate studies on a tumor microenvironment (TME) that is predominantly shaped by the T-cell clones or that itself shapes the outgrowing T cells in a genetically unbiased trajectory. Ideally, (vii) the lead findings of T-LGLL in humans, such as cytopenias, should be reflected.

Several murine models that resemble T-LGLL, at least parts of its symptom complex, or models of (auto)immune conditions that are central part of T-LGLL's pathophysiology, have been established. A detailed overview of all models reviewed can be found in Tables 1, 2, details are provided in Supplementary Table 1, and an overview is presented in Fig. 2. Our outlines are centered on capturing the most common T-LGLL phenotype, which is characterized by the expansion of CD8⁺ terminally differentiated memory T cells.

MURINE MODELS MIMICKING T-LGLL-LIKE CYTOKINE SIGNALING

First established in 2001, the transgenic IL-15 mouse model, overexpressing murine IL-15 by transgenic elimination of post-transcriptional checkpoints under the control of an MHC class I D^d promoter, is still one of the most commonly used T-LGLL-like mouse models [24]. The alteration results in the manifestation of a variety of diseases. In line with its physiological effect, experimental overexpression of murine IL-15 leads to the expansion of NK cells and CD8⁺ T cells accompanied by an overall chronic inflammation, manifested in skin symptoms such as whole body alopecia and lymphocytic infiltration in peripheral organs, e.g. peritoneum and lungs. Increased white blood cell counts can be detected as early as 3 weeks of age. In ~70% of mice, the developing disease is characterized by progressive whole body alopecia and other skin manifestations and only moderately increased white blood cell counts, resembling symptoms of cutaneous T-cell lymphoma (CTCL) [25]. In the remaining 30% of mice, a disease sharing many features with human NK- or T-LGLL develops; approximately half of these mice present NK1.1⁺CD122⁺CD3⁻ leukemic cells, therefore classified as NK-LGLL-like leukemia, while the remainder resemble CD8⁺ T-LGLL-like disease [26]. The malignant nature of these cells was confirmed by transplantation and successful engraftment in sublethally irradiated SCID mice, and clonality was detected in

Table 1. Murine models resembling mature T-cell leukemia/lymphoma based on cytokine and constitutive JAK/STAT activation.

MODEL	IL-15 tg	Gp130 (Igp130 ^{cba/wt})	STAT5B tg ^{6642H} (I ⁺ STAT5B ^{6642H})	Hyperactive STAT5A tg ^{5770f} (STAT5A ^{5770f})	JAK3 tg (JAK3 M511)	STAT3 tg (STAT3 ^{776M})	STAT3 tg _{6558N} (STAT3 _{6558N})
MURINE DISEASE	Aggressive, leukemic CD8 ⁺ TEM/NK-cell expansion in setting of chronic inflammation	T _H 17 driven multiorgan autoimmunity and inflammation	Expansion of (a) CD8 ⁺ CD25 ⁺ mature aggressive T-cell leukemia (b) immature DN1 (when crossed to Rag2 ^{-/-} mice)	Aggressive CD8 ⁺ mature, cytotoxic T-cell leukemia	Aggressive immature CD3 ⁺ /TCR<β ⁺ TdT ⁺ T-cell leukemia	Aggressive, polyclonal NK2D ^{hi} effector CD8 ⁺ T-cell expansion	Aggressive, polyclonal NK2D ^{hi} effector CD8 ⁺ T-cell expansion
MODIFICATIONS	(Transgenic) modifications	IL-15 overexpression by elimination of posttranscriptional checkpoints	Constitutive signaling via forced gp130 dimerization and activation	Constitutive expression of human STAT5B ^{6642H} (GOF mutation)	Constitutive STAT5A variant (cSSA ^h)	Constitutive active JAK3 M511	STAT3 ^{7716M} GOF mutation
Mutation type/ treatment	Germline (MHC class I D ^d promoter)	Targeted (LoxP flanked, ROSA26 locus)	Germline (VAV1 promoter)	Germline (VAV1 promoter)	Transplant JAK3 M511 expressing hematopoietic stem cells	Germline	Germline
PHENOTYPE	Spont./ transp./ind.	Spont.	Spont.	Spont.	Spont.	Spont.	Spont.
Strain	FvB	C57BL/6	C57BL/6	C57BL/6	BALB/c	C57BL/6	C57BL/6
Weight loss	Y	Y	NA	NA	Y	Y	Y
Spleno-megaly	Y	Y	Y	Y	Y	Y	Y
Lymphadenopathy	Y	Y	NA	Y	NA	Y	Y
WBC count	↑	↓	↑	↑	↑	↑	↑
Median overall survival	130-196 d	45d-69d	40-100 d	175-315 d	100-200 d	>350 d	het: >315 d hom.: >175 d
LEUKEMIA							
Clonality relevant sub-population	Y	N	NA	NA	Oligoclonal	Polyclonal	Polyclonal
IMMUNITY							
Immuno-competent	Y	Y	Y	Y	Y	Y	Y
Auto-antibodies	NA	NA	NA	NA	NA	NA	NA
Infiltration of lymphocytes in peripheral organs (other than joints)	Y	Y	Y	NA	Y	Y	Y
Inflammation	Skin	Liver Heart Spleen	NA	NA	NA	NA	NA
CYTOKINES	Cytokines, increased (↑) or otherwise relevant in pathogenesis	IL-15 ↑	IL-6 ↑ sIL-6R<α ↑ IL-17a ↑ TNF<α ↑ IFN<γ ↑ IL-10 CCL5/RANTES	NA	NA	NA	NA

Table 1. continued

	IL-15 tg	Gp130 (Igp130 ^{CD4/wt})	STAT5B tg (hSTAT5B ^{N642H})	Hyperactive STAT5A tg (STAT5A ^{SP100f})	JAK3 tg (JAK3 M511)	STAT3 tg (STAT3 ^{Y76M})
IMMUNOPHENOTYPE						
All T	↑	↑	↑	NA	NA	NA
Immature T	NA	NA	↑	NA	NA	NA
CD8 ⁺ T	↑	↑	↑	↑	↑	↑
CD8 ⁺ memory T	↑	↑	↑	↑	↑	↑
CD4 ⁺ T	NA	↓	NA	NA	NA	NA
Other immune cell populations	B cells ↓ B cells ↓ (spleen)	B cells ↑ (LN) B cells ↓ (spleen)	B cells ↑ (spleen) NK cells ↑	B cells ↑ (spleen) NK cells ↓	NA	Neutrophils ↑
Original reference	[24]	[27, 28, 67]	[29]	[37]	[34]	[41]

Overview presenting main features of different murine models. ↑ indicates an increase; ↓ a decrease. When referring to cell populations, these symbols denote changes in the total number of cells unless otherwise specified as a percentage (%). If changes are restricted to specific compartments, the relevant compartment is indicated in brackets. Detailed references and additional information are provided in Supplementary Table 1.

CD cluster of differentiation, d days, DN double negative, GOF gain of function, gp130 glycoprotein 130, het. heterozygous, hom. homozygous, ind. induced, JAK Janus kinase, KO knock-out, LN lymph nodes, MHC Major Histocompatibility Complex, N no, NA not available, NK cell Natural Killer cell, ROSA26 Reverse Oriented Splice Acceptor, Clone 26, STAT Signal transducer and activator of transcription, spont. spontaneous, TCR T-cell receptor, TEM terminal effector memory, tg transgenic, TNF α tumor necrosis factor, transp. transplant, wt wildtype, Y yes.

50% of the CD8⁺ T-cell populations [26]. The subgroup developing a leukemic CD8⁺ clone is well established as a T-LGLL model, meeting most of the criteria defined previously (e.g. clonality, associated autoimmune-mediated symptoms). However, these mice show an aggressive course with a median animal survival of 28 weeks, in contrast to the non-aggressive nature of human LGLL. In addition, when studying the TME of this model, the non-conditional nature of the transgene needs to be considered.

An alternative approach for achieving constitutive STAT3 activation, without relying on direct gain-of-function (GOF) mutations, is the Igp130 model. This model constitutively expresses active gp130, engineered by replacing its extracellular domain with the human c-Jun leucine zipper (leucine zipper plus gp130, Igp130), which results in enforced dimerization. By placing it under the ROSA26 locus and a loxP-flanked transcriptional stop cassette, targeted Igp130 expression can be achieved across nearly all cell types [27]. Gp130 lies upstream of STAT3 and is responsible for downstream signaling of the IL-6 receptor complex, therefore resembling both the characteristic constitutive STAT3 activation and chronic cytokine stimulation in T-LGLL. Igp130^{CD4/wt}-mice, created by crossing with CD4 Cre mice, exhibit Igp130-expression in CD4⁺ and CD8⁺ T cells, due to their common double-positive precursor cell. This results in multi-organ autoimmunity [27], senescence, and premature aging [28]. Cytopathias, splenomegaly, lymphadenopathy, thymic involution, and massive end-organ damage are shaping the phenotype of diseased animals, which present a visible growth retardation starting from birth [27, 28]. Importantly, the mice present a strongly altered composition of the T-cell compartment. Although the CD8⁺ T-cell compartment shows the strongest expansion, a shift to an increase in terminal effector memory T cells, and an upregulation of activation markers, the main drivers of the autoimmune inflammation are T_H17 cells, which are promoted in their proinflammatory effect by dysfunctional T_{reg} function [27]. Interestingly, the changes that occur in this model are in line with the alteration of the CD4⁺ T cell compartment observed in T-LGLL [21], shedding light on IL-6 as one possible main mechanism for CD4⁺ T-cell alterations. However, the Igp130 model in its current form does not sufficiently resemble a leukemic disease but rather a model of autoimmunity and inflammation, mainly reflected by non-clonal alterations of the T-cell compartment. In addition, the mice only have a median overall survival of 69 days. Although genetic gp130 lesions are not reported in T-LGLL, they mimic in mice hyperactive IL-6 signaling and constitutive STAT3 activation, both central alterations in T-LGLL pathogenesis.

MURINE MODELS MIMICKING T-LGLL-LIKE JAK/STAT ACTIVATION

Besides single-cytokine based models, JAK/STAT signaling as one common downstream effector pathway of the severely altered cytokine input in T-LGLL emerged as a potential strategy to develop T-LGLL-like murine models.

STAT5B was the target in some studies. STAT5B mutations are predominantly found in CD4⁺ T-LGLL, a disease subset that is typically associated with a more indolent course. In contrast, STAT5B mutations are rare in CD8⁺ T-LGLL but, when present, are strongly correlated with a more severe and aggressive disease phenotype [12]. Transgenic insertion of human (h)STAT5B^{N642H} under control of the VAV1 promoter, leading to constitutive expression of hyperactive STAT5B in all hematopoietic cells, promotes a dominant aggressive CD8⁺CD25⁺ mature post-thymic T-cell leukemia, accompanied by coexisting less prominent expansions of immature double negative (DN) 1 (CD4⁺CD8⁺) T cells [29] and of the CD56⁺ T-cell compartment [30]. The expansion of CD8⁺ T-cells becomes detectable between 6 and 8 weeks of age,

Table 2. Murine models resembling rheumatoid arthritis.

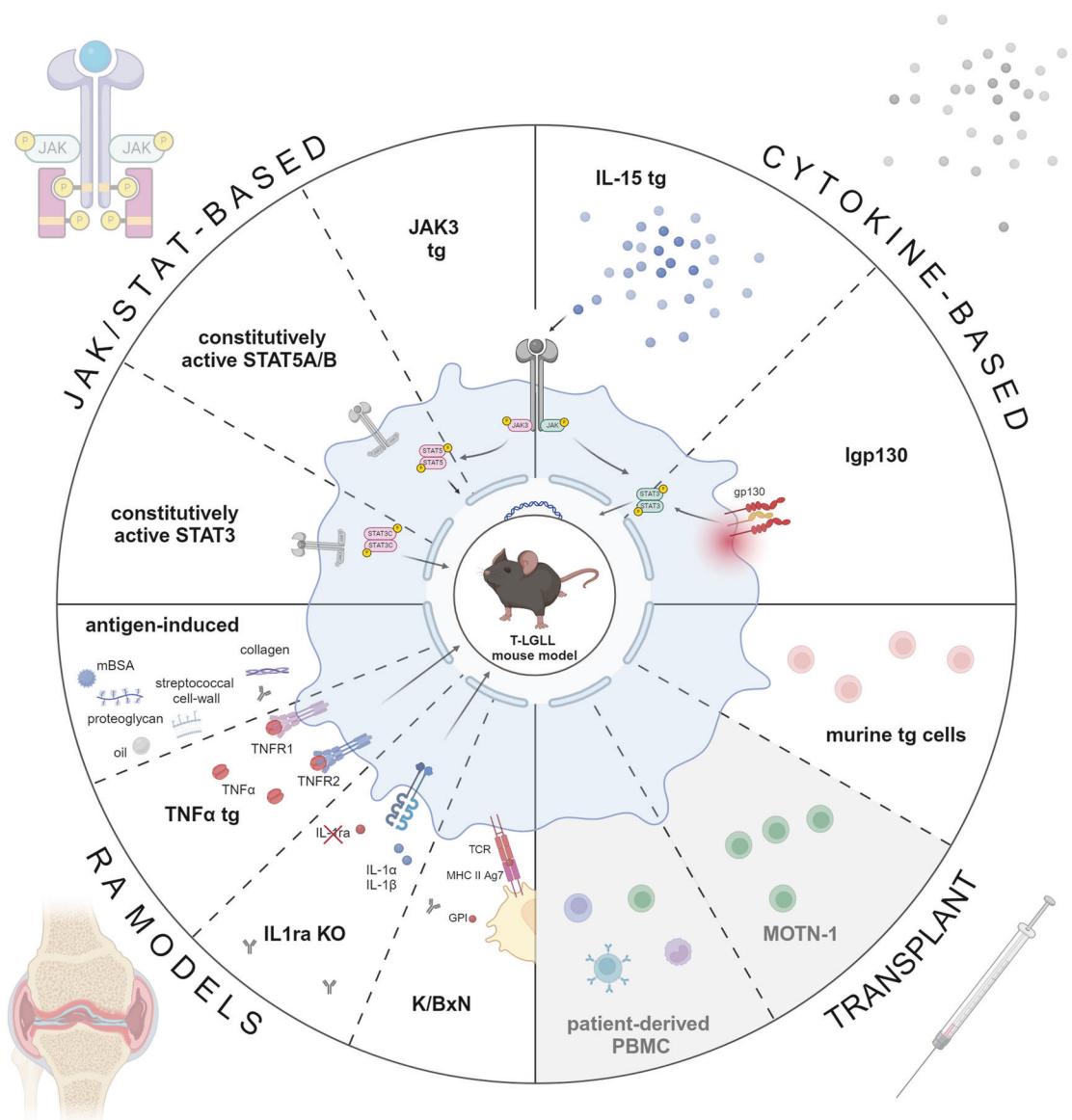

MODEL	Proteoglycan-induced arthritis (PGIA)	Streptococcal cell-wall arthritis	Collagen-induced arthritis (CIA)	Antigen-induced arthritis (OIA)	Oil-induced arthritis (OIA)	TNF- α tg	IL-1 α KO	K/BxN tg
MURINE DISEASE	Immune-mediated joint disease	Biphasic, immune-mediated joint disease Acute phase: T-cell independent Chronic phase: T-cell dependent	Chronic T-cell driven immune-mediated joint disease	Acute, locally limited, self-limiting antigen-specific T-cell driven joint disease	T-cell driven, self-limiting polyarthritis	Chronic, erosive, T- and B-cell independent polyarthritis	Chronic, T-cell driven inflammatory polyarthropathy	Severe Th2-driven inflammatory arthritis
MODIFICATIONS	(Transgenic) modifications	None	None	None	None	Increased TNF- α transcript stabilization	Deletion exons of IL-1 α	Transgenic TCR and MHC class II allele Ag7
Mutation type/treatment	ip. cartilage proteoglycan	ip. peptidoglycan-polysaccharide polymers	i.d. type II collagen in complete Freund's adjuvant	e.g. s.c./i.a. methylated bovine serum albumin	i.d. injection of incomplete Freund's adjuvant	Germline	Germline	Germline
Spont./transp./ind.	Ind.	Ind.	Ind.	Ind.	Ind.	Spont.	Spont.	Spont.
PHENOTYPE	Strain	BALB/c	Lewis rats	e.g. DBA/1	e.g. C57BL/6 BALB/c	DA rats	C57BL/6	BALB/c
	Weight loss	NA	NA	NA	NA	NA	Y	NA
	Spleno-megaly	NA	NA	Y	NA	NA	Y	Y
	Lymphadenopathy	NA	NA	Y	NA	NA	Y	NA
	WBC count	NA	NA	NA	NA	NA	NA	NA
	Median overall survival	NA	NA	NA	Recovery 21 d post-injection	Recovery 45 d post-injection	84-98 wk (tg197)	NA
LEUKEMIA	Leukemic expansion	N	N	N	N	N	N	N
	Clonality relevant T-cell population	NA	NA	NA	NA	Y	NA	NA
IMMUNITY	Immuno-competent	Y	Y	Y	Y	Y	Y	Immune compromised
	Auto-antibodies	Y	NA	Y	Y	N	NA	Y
	Infiltration of lymphocytes in peripheral organs (other than joints)	NA	NA	NA	NA	Y	N	N
	Inflammation	Joint	Joint	Joint	Joint	Joint	Joint	Joint
							Joint Liver Kidney Small intestine	Joint

Table 2. continued

	Proteoglycan-induced arthritis (PGIA)	Streptococcal cell-wall arthritis	Collagen-induced arthritis (CIA)	Antigen-induced arthritis (AA)	Oil-induced arthritis (OA)	TNF- α tg	IL-1 α KO	K/BxN tg
CYTOKINES	IFN- γ IL-6 IL-1 β	NA	IL-1 β TNF- α ↑ IFN- γ ↑ IL-6	IL-6	IL-2 IFN γ TNF α	hTNF α	IL-17 IL-6 TNF α COX2	IL-1 TNF α
IMMUNOPHENOTYPE								
All T	NA	↓	↑ (joint)	NA	NA	NA	Not altered	↓
Immature T	NA	NA	NA	NA	NA	NA	NA	NA
CD8 $^+$ T	NA	NA	↑ (joint)	NA	NA	NA	Not altered	NA
CD8 $^+$ memory T	NA	NA	NA	NA	NA	NA	NA	NA
CD4 $^+$ T	NA	NA	↑ (joint)	NA	Essential for pathogenesis	NA	Not altered	↑ (joint)
Other immune cell populations	NA	B cells ↓ Activated B-cell compartment % Monocytes↑	B cells (PB, LN)↑ Activated B-cell compartment % Myeloid cells↑ (PB, LN)	NA	Neutrophils ↑	B-cell independent disease	No alteration in T:B ratio ↑ IgG ↑ IgE Neutrophils↑ (joints)	B cells ↓ Hypergammaglobulinemia
Original reference	[68]	[69]	[70]	[71]	[72]	[73]	[59]	[56]

Overview presenting main features of different murine models. ↑ indicates an increase; ↓ a decrease. When referring to cell populations, these symbols denote changes in the total number of cells unless otherwise specified as a percentage (%). If changes are restricted to specific compartments, the relevant compartment is indicated in brackets. Detailed references and additional information are provided in Supplementary Table 1.

CD cluster of differentiation, d days, GOF gain of function, *i.a.* intra-articular, *il-1 α* IL-1 receptor antagonist, *ind.* induced, *i.d.* intradermal, *i.p.* intraperitoneal, *KO* knock-out, *LN* lymph nodes, *MHC* Major Histocompatibility Complex, *N* no, *NA* not available, *s.c.* subcutaneous, *spont.* spontaneous, *TCR* T-cell receptor, *tg* transgenic, *TNF α* tumor necrosis factor, *transp.* transplant, *wk* weeks, *Y* yes.

Fig. 2 Overview of murine models resembling T-LGLL or associated autoimmune diseases. Murine T-LGLL-like models are either based on aberrant JAK/STAT signaling, focusing on constitutive activation of JAK3, STAT5A/B, and STAT3, (upper left corner), or proinflammatory cytokine signaling, involving enhanced IL-15 expression or constitutive activation of the IL-6 family receptor glycoprotein 130 (gp130, upper right corner). In addition, murine models of the commonly associated rheumatoid arthritis (RA) are displayed (lower left corner), divided into models generated through antigen injection (left side) and those developed via transgenic modifications (right side). Besides transgenic mouse models, transplantable models of T-LGLL-like disease are conceivable (lower right corner), involving syngraft transplantation of transgenic, leukemic T-cell populations, as well as xenografts of the T-LGLL-like cell line MOTN1 or patient-derived peripheral blood mononuclear cells (PBMCs). Models with gray backgrounds represent proposed strategies, but have not yet been established. The figure was created with Biorender.

marking the onset of disease progression. This is followed by a rapid exacerbation of symptoms, culminating in end-stage disease by 8 to 9 weeks of age [29–31]. Notably, transplantation of both CD8⁺ T cells and double positive (CD4⁺CD8⁺) T cells leads to the development of CD8⁺ lymphomas, whereas the blockade of T-cell development at the DN3 stage accomplished by crosses to the recombination deficient RAG2^{-/-} background leads to a T-cell acute lymphoblastic leukemia (T-ALL) like disease, characterized by expansion of immature T cells. These findings stress the role of STAT5B in T-cell leukemic transformation, effective from early development stages [31]. Another model uses constitutively active murine STAT5B, generated by single nucleotide modifications (His-299→Arg and Ser-711→Phe) expressed in the T- and B-cell compartment under control of a *lck/Eμ* promoter/enhancer

cassette. In line with the hSTAT5B^{N642H} model, changes in the T-cell compartment occur and are mainly characterized by proliferation of memory CD8⁺ T cells and T_{reg} cells. Phenotypically, mice present predominantly skin lesions [32]. Notably, a monoclonal progenitor B-cell population develops at lower incidence in this model [33]. Overall, genetic targeting of STAT5B signaling has the potential to trigger a CD8⁺ disease in mice that shows some features of T-LGLL. In detail, the hSTAT5B^{N642H} model resembles an aggressive mature T-cell malignancy (although no analysis of clonality was performed) but does not adequately address the indolent disease signature of T-LGLL, characterized by autoimmunity, inflammation, and clonal evolution. In general, manipulation of STAT5B leads to diverse outcomes and various murine disease(s), reflecting its central role in hematopoietic cell

development, however, limiting its suitability as an approach to create a T-LGLL-like model.

Constitutive active JAK3, provoked by transplantation of retroviral transduced hematopoietic progenitor cells to express *JAK3 M511I*, the most common *JAK3* mutation in T-ALL, leads to development of an aggressive immature T-cell malignancy. Although in the initial phase, an increase in CD8⁺ T cells can be seen, TdT⁺ DN T cells prevail in the later stages of the disease. When transplanted, these mice present with increasingly more aggressive phenotype per transplant generation, characterized by massively enlarged spleen and thymus, accompanied by infiltration of TdT⁺ DN T cells into bone marrow, lymph nodes, spleen, and thymus [34]. Retroviral insertional activation of *JAK1* in OT-1 cells leads to outgrowth of *JAK/STAT* activated CD8⁺ mature T-cells in *RAG^{-/-}* recipients without revealing a striking degree of overlap with human T-LGLL [35].

A high degree of structural similarity (90% amino acid congruence) and functional overlap between *STAT5A* and *STAT5B* implicates *STAT5A* as a potential target in the development of murine T-LGLL leukemia [36]. Introducing a hyperactive *STAT5A^{S710F}* variant under control of the *VAV1* promoter [37], as well as overexpression of wild-type (wt) *STAT5A* in the lymphoid compartment by using the *H-2K^b* promoter [38], leads to development of a CD8⁺ T-cell leukemia, with the *STAT5A^{S710F}* model closely resembling T-LGLL cells with an activated memory phenotype [37]. Both models show phenotypic similarities, as diseased mice present prominent enlargement of the spleen and lymph nodes [37, 38], accompanied by invasion of the leukemic T cells in peripheral organs [38]. Conversely, lymphoid-specific insertion of the GOF *STAT5A^{S711F}*, leading to enhanced phosphorylation without elevated expression of *STAT5A*, triggered B-cell lymphomas with low incidence. Even though phenotypic manifestation, dominated by splenomegaly and lymphadenopathy in aged diseased mice was similar to the *STAT5A^{S710}* model and the *STAT5A^{wt}* overexpressing model, invasion of cells belonging to the B-cell lineage was detected [39]. Although of phenotypic fidelity, models based on manipulated *STAT5A* bear the limitation that no *STAT5A* mutations have been identified in T-LGLL patients and that, in contrast to *STAT5B*, *STAT5A* is of minor importance in human hematopoietic cell development [36]. CRISPR/Cas9-mediated germline introduction of either *K658N*, a mutation detected in one T-LGLL patient [40], or *T716M*, the most common *STAT* mutation in the *STAT3* GOF syndrome [41], leads to a murine T-LGLL-like disease that displays expansion of a polyclonal NKG2D^{high} effector CD8⁺ T-cell population [41]. Successful bone marrow transplantation of these expanded cells in *Rag^{-/-}* mice confirmed their malignant nature. Phenotypic features are more severe in homozygous mice, reflected by a shorter overall survival. Lead symptoms are linked to inflammation, as the mice present with inflamed joints, skin, and ringtails. Although from this specific model, no data on the effect in other cell compartments are available, the germline mutation is most likely also affecting other *STAT3*-expressing cells, as *STAT3* mRNA expression is present in virtually all immune cell subpopulations [42]. Thus far, this model best resembles human T-LGLL, given the prominent polyclonal population of effector CD8⁺ T cells, signs of autoimmunity (joint inflammation, alopecia), and a not too aggressive clinical course with an overall animal survival of > 50 weeks [41]. However, given the germline origin of the *STAT3* GOF mutations and the ubiquitous expression of this protein, the TME can neither be properly evaluated nor therapeutically targeted, representing the major limitation of this model.

Interestingly, in other studies, insertion of *Y640F*, one of the most common *STAT3* mutations in T-LGLL, did not lead to the development of a T- or NK-lineage disease [43, 44]. Instead, mice that receive *STAT3^{Y640F}*-transduced mouse-derived hematopoietic stem cells develop a non-transplantable myeloproliferative-neoplasm like disease, characterized by infiltration of mature

myeloid cells in bone marrow and spleen, as well as presentation of leukocytosis [43]. These models use different highly experimental techniques, such as treatment of mice with 5-FU prior to isolation of the bone marrow [44] or in-vitro culture of the bone marrow cells over several days during ex-vivo manipulation [43]. Bone marrow transplanted mice only partially regain a fully functional immune system, and with this concerns persist that such a highly experimental setting would resemble the natural pathogenesis of T-LGLL.

Although alteration of the *JAK/STAT* pathway is an intriguing and promising approach to generating a T-LGLL-like murine model, the variability in outcomes from existing *STAT* manipulation raises questions about whether altering this pathway is an effective, predictable approach to creating a T-LGLL-like mouse model. In addition, these diverse effects underscore the intricate role of *STAT* signaling in lymphocyte development, revealing that dysregulated *STAT* signaling may serve as a shared pathomechanism driving concurrent alterations in both the B- and T-cell compartments. Key factors to consider when aiming at establishing a murine T-LGLL model, are the specifically targeted cell compartment and the effects of manipulations on both activation and protein expression levels.

MURINE MODELS OF T-LGLL-ASSOCIATED AUTOIMMUNE DISORDERS

T-LGLL is frequently associated with a spectrum of autoimmune disorders, of which RA is the most common [1]. Several mechanisms underlying each of these conditions may contribute to a facultative, but common pathogenetic path with T-LGLL, regardless whether the autoimmune condition preceded and promoted the outgrowth of T-LGLL or whether the leukemic clonal T-cell preexisted and initiated a symptomatic autoimmune condition. A particular constellation is obviously needed because our clinical experience shows that a significant proportion of autoimmune diseases do not show clonal T cells or T-LGLL, while a proportion of ~30–40% of T-LGLL shows no laboratory or clinical signs of autoimmune phenomena, if taken aside the cytopenias in their yet-to-be resolved mechanisms. T-LGLL shares with RA the concept of chronic antigen stimulation, dysregulated immune cell compartments, and dependence on similar cytokine pathways, including IL-6 signaling. RA is primarily characterized by an imbalance in synovial T_H17/T_H1 and T_{reg} function, but CD8⁺ T cells are increasingly recognized as significant contributors to the local and systemic inflammation [45]. Notably, RA patients displaying anti-citrullinated protein antibodies, show clonal expansion of cytotoxic T cells, leading to an increased ratio of this subpopulation [46]. In addition, B-cells contribute to the disease by production of autoantibodies and different cytokines, and within their function as potent antigen presenting cells, leading to activation of other immune cells and shaping the immune response in RA [47]. Given the clinical and mechanistic overlap of RA with T-LGLL, RA-like mouse models offer promising approaches for optimizing T-LGLL-like models.

Several models mimicking RA use active immunization by injection of exogenous antigens to mimic the initiating stimulus. The collagen-induced arthritis (CIA) mouse model is one of the most common models in RA research and relies on intradermally injected type-II collagen to initiate an immune response. This model manifests as a chronic, T-cell-driven arthritic disease, accompanied by generation of autoantibodies and cartilage degradation. The inflamed joints show type-II collagen-specific CD4⁺ T cells and an increased number of CD8⁺ T cells [48–50]. B cells in the CIA model display an increased ratio and enhanced activation status [51]. The complex systemic immune reaction in CIA mice is further shaped by various proinflammatory cytokines, including TNF- α , IFN- γ , displaying significantly increased plasma levels, and IL-6, crucial for pathogenesis [52, 53]. The K/BxN mouse

model provides a different method of sustaining chronic antigen stimulation, leading to development of chronic T-cell driven immune-mediated erosive joint disease, resembling human RA. Here, a transgenic T-cell receptor recognizes glucose-6-phosphoisomerase as an autoantigen, with the model relying on MHC-II (I-A^{g7}) for disease development. The transgenic insertion is functional in a majority of T cells by usage of cassette vectors placing transgene-derived mRNA under control of the natural TCR α and - β promoter [54]. Diseased mice develop a polyclonal B-cell activation alongside the production of autoantibodies. The crucial role of these autoantibodies in the pathogenesis is highlighted by successful transplantation of the disease by serum transfer to non-transgenic mice. An increased CD4:CD8 T-cell ratio and a sustained effect of CD4⁺ T cells on B-cell activation suggest a supporting role of the CD4⁺ T-cell compartment in the pathogenesis of the joint disease [55, 56].

Other modeling approaches alter key cytokine pathways to create a proinflammatory signature. In the transgenic tumor necrosis factor (TNF) - α mouse model, TNF α expression is upregulated by increasing transcript stability. Different TNF- α overexpressing mouse strains exist, discriminated by the number of transgene copies and cytokine expression levels. The exact phenotype, particularly the severity and time to onset of symptoms, depends on the number of transgenes, exemplary the 3647 TNF- α line, containing one copy of the transgene, develops a milder form of arthritis whereas the 197 TNF- α line, containing five copies, displays a more aggressive phenotype [57]. These mice develop chronic erosive polyarthritis, accompanied by systemic effects, manifesting in chronic inflammation of liver, kidneys [58], and small intestine, alongside general growth retardation [53]. Interestingly, the preserved development of erosive arthritis in RAG-1^{-/-} mice crossed with the transgenic TNF- α mice suggests a T- and B-cell-independent pathogenesis [57].

The IL-1 receptor antagonist (IL-1ra) knock-out model uses an enhanced effect of IL-1 by depletion of all exons of its natural antagonist IL-1ra. This leads to manifestation of a dominant chronic, T-cell-driven inflammatory polyarthropathy with auto-antibodies [59]. No alterations in the CD4:CD8 ratio and the T:B cell ratio are described, suggesting either alteration in both or none of these compartments. The crucial role of the T-cell compartment in disease onset is proven by the transfer of the disease by T-cell transplantation into immunodeficient nude mice [59, 60].

Murine models developed to resemble RA are, in their current form, unsuitable as models for T-LGLL. While these approaches create a pro-inflammatory background that induces systemic alterations in the immune compartment, no clonal T-cell expansion has been detected in any of the models examined.

TRANSPLANTABLE MODELS

Transplant models provide a way to bypass some limitations imposed by globally (cell lineage unrestricted) expressed mutations and enable the introduction of human immune cell compartments into mice. Transplants can originate from (a) cell lines, (b) patient-derived cells, such as PBMCs or specific cell populations, or (c) murine cells derived from other mouse models.

So far, no successful transplantation of MOTN-1, the most widely used T-LGLL-like cell line, has been reported. This is most likely due to the need for immune deficient or immunocompromised mice to avoid host-versus-graft reactions, raising concerns whether successful long-term survival of the IL-2 dependent cell line can be maintained *in vivo*.

Transplanting patient-derived cells, such as bone-marrow or PBMCs, into immunodeficient mouse strains to create patient-derived xenograft (PDX) models represents a promising strategy for studying immune cell compartment dynamics and disease

progression. However, establishing a humanized mouse model for T-LGLL is particularly challenging due to the disease's indolent nature, which complicates successful engraftment. Effective T-LGLL modeling may rely on transplanting peripheral blood cells from well-characterized T-LGLL patients. This approach, while promising, faces the added challenge of donor selection based on a prototypical T-LGLL phenotype and successful engraftment in mice, enabling an accurate representation of disease mechanisms in the host.

RELATIONSHIP OF MODELS FOR T-LGLL TO THOSE OF NK-LGLL

While this review primarily focuses on T-LGLL, it is important to acknowledge its clinical relative, NK-LGLL, which shares several pathogenetic mechanisms despite being a distinct entity. Both diseases are categorized within the spectrum of mature T-cell and NK-cell leukemias in the current 5th WHO classification, with NK-LGLL having been coined as such from its term 'chronic lymphoproliferative disorder of NK cells' of the 4th edition [2]. Clinically, both diseases are indolent and frequently associated with cytopenias and autoimmune phenomena, although these manifestations are often more severe in T-LGLL [61]. Pathogenetically, they are linked by common features such as chronic antigen stimulation, resistance to apoptosis, and constitutive activation of survival signals [62]. However, NK-LGLL and T-LGLL differ significantly in their mutational landscapes. *STAT3* mutations, the molecular hallmark of T-LGLL, are less frequent in NK-LGLL [61], while *TET2* variants are rather characteristic for NK-LGLL [63]. Moreover, the more frequent association of T-LGLL with rheumatoid arthritis reflects distinct mechanisms of interaction of the leukemic clone within the broader immune cell network [64]. These histogenetic and pathogenetic differences between both entities implicate that faithful models for T-LGLL should more specifically consider the unique molecular foundations of this disease.

Nonetheless, the overlapping pathogenetic mechanisms of these two diseases are reflected by the co-occurrence of NK- and T-cell proliferations in some of the previously outlined models. For example, IL-15 overexpression induces NK- and T-cell leukemias at equal proportions [24], while *STAT5B*^{N642H} mutations in murine hematopoietic cells lead to T- or NKT-cell expansions [65]. In humans, a small cohort study revealed clonal T-cell populations in 50% of NK-LGLL patients at diagnosis, with 15% reclassified as T-LGLL over time due to the more predominant expansion of a mature clonal T-LGLL population, further suggesting overlap and interconnection between these two entities [66].

STRATEGIES TO OVERCOME CURRENT LIMITATIONS

Many existing models depend on genetic alterations driven by promoters leading to hematopoietic-cell-specific expression. However, manipulating various cell lineages, e.g. by the use of *VAV* promoters, fails to adequately capture the T-cell-specific mutational landscape characteristic of T-LGLL. Achieving more targeted genetic modifications in T cells is feasible using T-cell-specific promoters such as *lck*, while even greater precision in specifically targeting CD8⁺ T cells can be accomplished through the Cre/loxP system.

Another strategy to obtain T-cell restricted mutations could involve the transplantation of mouse-derived cell populations. This approach offers several advantages: it allows researchers to control disease severity by adjusting the number of transplanted cells, e.g. adapting an otherwise aggressive model like the IL-15tg mouse model, and lowering the number of animals required compared to traditional breeding schemes. Furthermore, it enables studies of isolated cell subpopulations in an otherwise unaltered cellular environment, especially valuable for cells

obtained by insertion of germline mutations like in the *STAT3* GOF model.

A logical approach to integrating both leukemic expansion and the inflammatory aspects in one murine model would be to involve intercrossing models that exhibit each disease component, e.g. established RA models such as CIA combined with *STAT3* GOF mice. This strategy would replicate the duality of malignancy and autoimmunity in a single model. However, there is a significant risk that such an approach could lead to an overly artificial model. While it may successfully display features of both malignant transformation and immune dysregulation, it may still fail to accurately capture the protracted chronic disease course and the shared pathogenic mechanisms that would naturally link these two components.

One promising approach to induce the expansion of an oligo- to monoclonal T-cell population is the introduction of antigen-specific T cells. For example, the OT-1 mouse with its transgenic monoclonal ovalbumin (OVA)-directed TCR on the predominant CD8⁺ T-cell population could serve as a platform. By providing a targeted antigen stimulus (i.e. the cognate OVA peptide), one could trigger local or systemic expansion of CD8⁺ T cells (e.g. in crossed animals with site-specific OVA-transgenic alleles), that gain increasing autonomy by the second hit represented by a *STAT3* mutation, e.g. when cross-bred with *STAT3* GOF mice.

CONCLUSION

This review highlights the key aberrations in T-LGLL's multi-factorial pathogenesis and establishes essential requirements for murine systems to more accurately model the main aspects of this disease. We outline that current models helped to dissect single traits of T-LGLL's biology and clinical presentation. However, given their limitations to resemble specific disease aspects, no existing model fully replicates the disease's complexity or meets all necessary requirements for a comprehensive model including (i) clonal T-cell expansion, (ii) T-LGLL's immunophenotype, (iii) autoimmune phenomena, (iv) indolent manifestations, (v) pathogenetic hallmark alterations of T-LGLL, (vi) a specifically instructed TME, and (vii) cytopenias. Addressing these challenges requires model-specific adjustments, as well as broader strategies to enhance model fidelity. It is also important to note that possibly several initiating scenarios (e.g. auto-antigen driven) funnel in a common track of T-LGLL, hence, can not be captured in one single T-LGLL model.

Refining T-LGLL models is critical for advancing research in the field. By developing more sophisticated models, we can enhance our understanding of the disease and its mechanisms. Ultimately, these improvements will also contribute to the identification of more effective treatment strategies for T-LGLL.

REFERENCES

1. Moignet A, Lamy T. Latest advances in the diagnosis and treatment of large granular lymphocytic leukemia. *Am Soc Clin Oncol Educ B*. 2018;38:616–25.
2. Alaggio R, Amadori C, Anagnostopoulos I, Attygalle AD, Araujo IBO, Berti E, et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Lymphoid Neoplasms. *Leukemia*. 2022;36:1720–48.
3. Lamy T, Moignet A, Loughran TP. LGL leukemia: from pathogenesis to treatment. *Blood*. 2017;129:1082–94.
4. Zambello R, Teramo A, Gattazzo C, Semenzato G. Are T-LGL leukemia and NK-Chronic Lymphoproliferative Disorder really two distinct diseases? *Transl Med @ UniSa*. 2014;8:4–11.
5. Marchand T, Lamy T, Loughran TP. A modern view of LGL leukemia. *Blood*. 2024;144:1910–23.
6. Huuhtanen J, Bhattacharya D, Lönnberg T, Kankainen M, Kerr C, Theodoropoulos J, et al. Single-cell characterization of leukemic and non-leukemic immune repertoires in CD8⁺ T-cell large granular lymphocytic leukemia. *Nat Commun*. 2022;13:1–16.
7. Teramo A, Barilà G, Calabretto G, Vicenzetto C, Gasparini VR, Semenzato G, et al. Insights Into Genetic Landscape of Large Granular Lymphocyte Leukemia. *Front Oncol*. 2020;10:152.
8. Savola P, Bhattacharya D, Huuhtanen J. The spectrum of somatic mutations in large granular lymphocyte leukemia, rheumatoid arthritis, and Felty's syndrome. *Semin Hematol*. 2022;59:123–30.
9. Semenzato G, Calabretto G, Teramo A, Gasparini VR, Rampazzo E, Barilà G, et al. The constitutive activation of *STAT3* gene and its mutations are at the crossroad between LGL leukemia and autoimmune disorders. *Blood Cancer J*. 2024;14:13.
10. Rajala HLM, Porkka K, Maciejewski JP, Loughran TP, Mustjoki S. Uncovering the pathogenesis of large granular lymphocytic leukemia—novel *STAT3* and *STAT5b* mutations. *Ann Med*. 2014;46:114–22.
11. Teramo A, Gattazzo C, Passeri F, Lico A, Tasca G, Cabrelle A, et al. Intrinsic and extrinsic mechanisms contribute to maintain the JAK/STAT pathway aberrantly activated in T-type large granular lymphocyte leukemia. *Blood*. 2013;121:3843–54.
12. Semenzato G, Calabretto G, Barilà G, Gasparini VR, Teramo A, Zambello R. Not all LGL leukemias are created equal. *Blood Rev*. 2023;60:101058.
13. Yang J, Epling-Burnette PK, Painter JS, Zou J, Bai F, Wei S, et al. Antigen activation and impaired Fas-induced death-inducing signaling complex formation in T-large-granular lymphocyte leukemia. *Blood*. 2008;111:1610–6.
14. Lamy T, Liu JH, Landowski TH, Dalton WS, Loughran TP. Dysregulation of CD95/CD95 ligand-apoptotic pathway in CD3+ large granular lymphocyte leukemia. *Blood*. 1998;92:4771–7.
15. Chen J, Petrus M, Bamford R, Shih JH, Morris JC, Janik JE, et al. Increased serum soluble IL-15Ra levels in T-cell large granular lymphocyte leukemia. *Blood*. 2012;119:137–43.
16. Mishra A, Liu S, Sams GH, Curphey DP, Santhanam R, Rush LJ, et al. Aberrant overexpression of IL-15 initiates large granular lymphocyte leukemia through chromosomal instability and DNA hypermethylation. *Cancer Cell*. 2012;22:645–55.
17. Brammer JE, Ballen K, Sokol L, Querfeld C, Nakamura R, Mishra A, et al. Effective treatment with the selective cytokine inhibitor BNZ-1 reveals the cytokine dependency of T-LGL leukemia. *Blood*. 2023;142:1271–80.
18. Damoiseaux J. The IL-2 - IL-2 receptor pathway in health and disease: The role of the soluble IL-2 receptor. *Clin Immunol*. 2020;218:108515.
19. Yang J, Liu X, Nyland SB, Zhang R, Ryland LK, Broeg K, et al. Platelet-derived growth factor mediates survival of leukemic large granular lymphocytes via an autocrine regulatory pathway. *Blood*. 2010;115:51–60.
20. Savola P, Brück O, Olson T, Kelkka T, Kauppi MJ, Kovanen PE, et al. Somatic *STAT3* mutations in Felty syndrome: an implication for a common pathogenesis with large granular lymphocyte leukemia. *Haematologica*. 2018;103:304–12.
21. Vicenzetto C, Gasparini VR, Barilà G, Teramo A, Calabretto G, Rampazzo E, et al. Pro-inflammatory cells sustain leukemic clonal expansion in T-cell large granular lymphocyte leukemia. *Haematologica*. 2024;109:163–74.
22. Cornec D, Devauchelle-Pensec V, Jousse-Joulin S, Marhadour T, Ugo V, Berthou C, et al. Long-term remission of T-cell large granular lymphocyte leukemia associated with rheumatoid arthritis after rituximab therapy. *Blood*. 2013;122:1583–6.
23. Matsuo Y, Drexler HG, Takeuchi M, Tanaka M, Orita K. Establishment of the T-cell large granular lymphocyte leukemia cell line MOTN-1 carrying natural killer-cell antigens. *Leuk Res*. 2002;26:873–9.
24. Fehniger TA, Suzuki K, Ponnappan A, VanDeusen JB, Cooper MA, Florea SM, et al. Fatal leukemia in interleukin 15 transgenic mice follows early expansions in natural killer and memory phenotype Cd8⁺ T cells. *J Exp Med*. 2001;193:219–32.
25. Mishra, La Perle A, Kwiatkowski K, Sullivan LA S, Sams GH, Johns J, et al. Mechanism, consequences, and therapeutic targeting of abnormal IL15 signaling in cutaneous T-cell lymphoma. *Cancer Discov*. 2016;6:986–1005.
26. Yokohama A, Mishra A, Mitsui T, Becknell B, Johns J, Curphey D, et al. A novel mouse model for the aggressive variant of NK cell and T cell large granular lymphocyte leukemia. *Leuk Res*. 2010;34:203–9.
27. Baumgartner F, Bamopoulos SA, Faletti L, Hsiao H-J, Holz M, Gonzalez-Menendez I, et al. Activation of gp130 signaling in T cells drives TH17-mediated multi-organ autoimmunity. *Sci Signal*. 2024;17:eadc9662.
28. Rafii P, Reusswig F, Werner J, Xu H, Lang PA, Rose-John S, et al. Constitutive activation of gp130 in T cells results in senescence and premature aging. *J Immunol*. 2023;210:1641–52.
29. Pham HTT, Maurer B, Prchal-Murphy M, Grausenburger R, Grundschober E, Javaheri T, et al. STAT5BN642H is a driver mutation for T cell neoplasia. *J Clin Invest*. 2018;128:387–401.
30. Klein K, Witalisz-Siepracka A, Maurer B, Prinz D, Heller G, Leidenfrost N, et al. STAT5BN642H drives transformation of NKT cells: a novel mouse model for CD56⁺ T-LGL leukemia. *Leukemia*. 2019;33:2336–40.

31. Suske T, Sorger H, Manhart G, Ruge F, Prutsch N, Zimmerman MW, et al. Hyperactive STAT5 hijacks T cell receptor signaling and drives immature T cell acute lymphoblastic leukemia. *J Clin Invest.* 2024;134:e168536.

32. Burchill MA, Goetz CA, Prlic M, O'Neil JJ, Harmon IR, Bensinger SJ, et al. Distinct effects of STAT5 activation on CD4+ and CD8+ T cell homeostasis: development of CD4+CD25+ regulatory T cells versus CD8+ memory T cells. *J Immunol.* 2003;171:5853–64.

33. Katerndahl CDS, Heltemes-Harris LM, Willette MJL, Henzler CM, Fretzke S, Yang R, et al. Antagonism of B cell enhancer networks by STAT5 drives leukemia and poor patient survival. *Nat Immunol.* 2017;18:694–704.

34. Degryse S, de Bock CE, Cox L, Demeyer S, Gielen O, Mentens N, et al. JAK3 mutants transform hematopoietic cells through JAK1 activation, causing T-cell acute lymphoblastic leukemia in a mouse model. *Blood.* 2014;124:3092–100.

35. Heinrich T, Rengstl B, Muik A, Petkova M, Schmid F, Wistinghausen R, et al. Mature T-cell Lymphomagenesis Induced by Retroviral Insertional Activation of Janus Kinase 1. *Mol Ther.* 2013;21:1160–8.

36. Maurer B, Kollmann S, Pickem J, Hoelbl-Kovacic A, Sexl V. STAT5A and STAT5B—Twins with different personalities in hematopoiesis and leukemia. *Cancers (Basel).* 2019;11:1726.

37. Maurer B, Nivarthi H, Wingelhofer B, Pham HTT, Schleiderer M, Suske T, et al. High activation of STAT5A drives peripheral T-cell lymphoma and leukemia. *Haematologica.* 2020;105:435–47.

38. Kelly JA, Spolski R, Kovanen PE, Suzuki T, Bollenbacher J, Pise-Masison CA, et al. Stat5 synergizes with T cell receptor/antigen stimulation in the development of lymphoblastic lymphoma. *J Exp Med.* 2003;198:79–89.

39. Joliot V, Cormier F, Medyoubi H, Alcalde H, Ghysdael J. Constitutive STAT5 activation specifically cooperates with the loss of p53 function in B-cell lymphomagenesis. *Oncogene.* 2006;25:4573–84.

40. Koskela HLM, Eldfors S, Ellonen P, van Adrichem AJ, Kuusanmäki H, Andersson El, et al. Somatic STAT3 mutations in large granular lymphocytic leukemia. *N Engl J Med.* 2012;366:1905–13.

41. Masle-Farquhar E, Jackson KJL, Peters TJ, Al-Eryani G, Singh M, Payne KJ, et al. STAT3 gain-of-function mutations connect leukemia with autoimmune disease by pathological NKG2Dhi CD8+ T cell dysregulation and accumulation. *Immunity.* 2022;55:2386–404.e8.

42. Monaco G, Lee B, Xu W, Mustafah S, Hwang YY, Carré C, et al. RNA-Seq Signatures normalized by mRNA abundance allow absolute deconvolution of human immune cell types. *Cell Rep.* 2019;26:1627–40.e7.

43. Couronne L, Scourzic L, Pilati C, Valle VD, Duffourd Y, Solary E, et al. STAT3 mutations identified in human hematologic neoplasms induce myeloid malignancies in a mouse bone marrow transplantation model. *Haematologica.* 2013;98:1748–52.

44. Dutta A, Yan D, Hutchison RE, Mohi G. STAT 3 mutations are not sufficient to induce large granular lymphocytic leukaemia in mice. *Br J Haematol.* 2018;180:911–5.

45. Moosic KB, Ananth K, Andrade F, Feith DJ, Darrah E, Loughran TP. Intersection between large granular lymphocyte leukemia and rheumatoid arthritis. *Front Oncol.* 2022;12:869205.

46. Moon J-S, Younis S, Ramadoss NS, Iyer R, Sheth K, Sharpe O, et al. Cytotoxic CD8+ T cells target citrullinated antigens in rheumatoid arthritis. *Nat Commun.* 2023;14:319.

47. Wu F, Gao J, Kang J, Wang X, Niu Q, Liu J, et al. B cells in rheumatoid arthritis: pathogenic mechanisms and treatment prospects. *Front Immunol.* 2021;12:750753.

48. Holmdahl R, Andersson M, Tarkowski A. Origin of the autoreactive anti-type II collagen response. I. Frequency of specific and multispecific B cells in primed murine lymph nodes. *Immunology.* 1987;61:369–74.

49. Holmdahl R, Klarekog L, Rubin K, Larsson E, Wigzell H. T lymphocytes in collagen II-induced arthritis in mice. Characterization of arthritogenic collagen II-specific T-cell lines and clones. *Scand J Immunol.* 1985;22:295–306.

50. Brand DD, Latham KA, Rosloniec EF. Collagen-induced arthritis. *Nat Protoc.* 2007;2:1269–75.

51. Teixeira JH, Silva AM, Almeida MI, Bessa-Gonçalves M, Cunha C, Barbosa MA, et al. The systemic immune response to collagen-induced arthritis and the impact of bone injury in inflammatory conditions. *Int J Mol Sci.* 2019;20:5436.

52. Richter J, Čapková K, Hříbalová V, Vannucci L, Danyi I, Malý M, et al. Collagen-induced arthritis: severity and immune response attenuation using multivalent N-acetyl glucosamine. *Clin Exp Immunol.* 2014;177:121–33.

53. Caplazi P, Baca M, Barck K, Carano RAD, DeVoss J, Lee WP, et al. Mouse models of rheumatoid arthritis. *Vet Pathol.* 2015;52:819–26.

54. Kouskoff V, Signorelli K, Benoist C, Mathis D. Cassette vectors directing expression of T cell receptor genes in transgenic mice. *J Immunol Methods.* 1995;180:273–80.

55. Ditzel HJ. The K/BxN mouse: a model of human inflammatory arthritis. *Trends Mol Med.* 2004;10:40–5.

56. Kouskoff V, Korganow A-S, Duchatelle V, Degott C, Benoist C, Mathis D. Organ-specific disease provoked by systemic autoimmunity. *Cell.* 1996;87:811–22.

57. Li P, Schwarz EM. The TNF- τ transgenic mouse model of inflammatory arthritis. *Springer Semin Immunopathol.* 2003;25:19–33.

58. Li X, Wang Y, Chen Z, Ruan M, Yang C, Zhou M, et al. Hepatorenal pathologies in TNF-transgenic mouse model of rheumatoid arthritis are alleviated by anti-TNF treatment. *Arthritis Res Ther.* 2023;25:188.

59. Horai R, Saito S, Tanioka H, Nakae S, Sudo K, Okahara A, et al. Development of chronic inflammatory arthropathy resembling rheumatoid arthritis in interleukin 1 receptor antagonist-deficient mice. *J Exp Med.* 2000;191:313–20.

60. Nakae S, Saito S, Horai R, Sudo K, Mori S, Iwakura Y. IL-17 production from activated T cells is required for the spontaneous development of destructive arthritis in mice deficient in IL-1 receptor antagonist. *Proc Natl Acad Sci.* 2003;100:5986–90.

61. Poullot E, Zambello R, Leblanc F, Bareau B, De March E, Roussel M, et al. Chronic natural killer lymphoproliferative disorders: characteristics of an international cohort of 70 patients. *Ann Oncol.* 2014;25:2030–5.

62. Semenzato G, Marino F, Zambello R. State of the art in natural killer cell malignancies. *Int J Lab Hematol.* 2012;34:117–28.

63. Gasparini VR, Binatti A, Coppe A, Teramo A, Vicenzetto C, Calabretto G, et al. A high definition picture of somatic mutations in chronic lymphoproliferative disorder of natural killer cells. *Blood Cancer J.* 2020;10:42.

64. Bareau B, Rey J, Hamidou M, Donadieu J, Morcet J, Reman O, et al. Analysis of a French cohort of patients with large granular lymphocyte leukemia: a report on 229 cases. *Haematologica.* 2010;95:1534–41.

65. Klein K, Kollmann S, Hiesinger A, List J, Kendler J, Klampf T, et al. A lineage-specific STAT5B N642H mouse model to study NK-cell leukemia. *Blood.* 2024;143:2474–89.

66. Gattazzo C, Teramo A, Passeri F, De March E, Carraro S, Trimarco V, et al. Detection of monoclonal T populations in patients with KIR-restricted chronic lymphoproliferative disorder of NK cells. *Haematologica.* 2014;99:1826–33.

67. Mesaros A, Koralov SB, Rother E, Wunderlich FT, Ernst MB, Barsh GS, et al. Activation of Stat3 signaling in AgRP neurons promotes locomotor activity. *Cell Metab.* 2008;7:236–48.

68. Glant TT, Mikecz K, Arzoumanian A, Poole AR. Proteoglycan-induced arthritis in balb/c mice. *Arthritis Rheum.* 1987;30:201–12.

69. Cromartie WJ, Craddock JG, Schwab JH, Anderle SK, Yang CH. Arthritis in rats after systemic injection of streptococcal cells or cell walls. *J Exp Med.* 1977;146:1585–602.

70. Wooley PH, Luthra HS, Stuart JM, David CS. Type II collagen-induced arthritis in mice. I. Major histocompatibility complex (I region) linkage and antibody correlates. *J Exp Med.* 1981;154:688–700.

71. Brackertz D, Mitchell GF, Mackay IR. Antigen-induced arthritis in mice. I. Induction of arthritis in various strains of mice. *Arthritis Rheum.* 1977;20:841–50.

72. Pearson CM. Development of arthritis, periarthritis and periostitis in rats given adjuvants. *Exp Biol Med.* 1956;91:95–101.

73. Kefer J, Probert L, Cazlaris H, Georgopoulos S, Kaslaris E, Kioussis D, et al. Transgenic mice expressing human tumour necrosis factor: a predictive genetic model of arthritis. *EMBO J.* 1991;10:4025–31.

ACKNOWLEDGEMENTS

TB is funded by the Deutsche Krebshilfe through a Mildred Scheel Nachwuchsstipendium scholarship (grant number 70113307) and, together with NP, receives research grants from the Sander Stiftung (No. 2023.084.1). NP is funded by the DFG grant PF1028/1-1. MH is supported by a grant from the German José-Carreras Leukemia Foundation (DJCLS 01 R_2023) and by the Faculty of Medicine of the University of Leipzig (endowed Professorship). TB and MH are supported as parts of the EU ImmuneT-ME consortium (EPPERMED2024-522).

AUTHOR CONTRIBUTIONS

HK: Literature search, data extraction, writing—original draft. HK, TB, NP, MH: Writing—review and editing. TB, NP and MH: Conceptualization, project supervision. All authors read and approved the final manuscript.

FUNDING

Open Access funding enabled and organized by Projekt DEAL.

COMPETING INTERESTS

MH gave advisory boards and received honoraria from Abbvie, Beigene, Jazz, Janssen, Stemline Menarini, and Takeda, and received research support from EDO-Mundipharma, Janpix, Novartis, and Roche.

ADDITIONAL INFORMATION

Supplementary information The online version contains supplementary material available at <https://doi.org/10.1038/s41375-025-02553-2>.

Correspondence and requests for materials should be addressed to Till Braun.

Reprints and permission information is available at <http://www.nature.com/reprints>

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit <http://creativecommons.org/licenses/by/4.0/>.

© The Author(s) 2025