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Abstract
We investigate the quantum fate of the classical singularities that occur by gravitational
collapse of a dust cloud. For this purpose, we address the quantization of a model first
proposed by Georges Lemaître in 1933. We find that the singularities can generically
be avoided. This is a consequence of unitary evolution in the quantum theory, whereby
the quantum dust cloud collapses, bounces at a minimal radius and re-expands.
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1 Introduction

One of George Lemaître’s most important papers is L’univers en expansion published
in 1933 [1]. As Andrzej Krasiński emphasizes in his editorial notes following the
English translation of [1], this paper plays a pioneering role for various reasons [2].
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Fig. 1 Robert Millikan, Georges Lemaître, and Albert Einstein at California Institute of Technology,
January 1933. . Figure credit: Wikimedia Commons

Perhaps the main reason is that the paper contains a derivation of a spherically-
symmetric solution of inhomogeneous dust fromEinstein’s field equations. In thisway,
it generalizes Schwarzschild’s solutions for both vacuumand homogeneous static dust.
This solution plays a major role in our contribution. But there are at least three other
important developments initiated in [1]. First, Lemaître suggests a possiblemechanism
to describe the formation of clusters of galaxies (called nébuleuses there). Second, the
paper contains a proof that the Schwarzschild horizon at r = 2G M/c2 is only a
coordinate singularity. And third, it presents an introduction to the concept of Misner–
Sharp mass thirty years before Misner and Sharp published their work.

Lemaître worked on his paper during his visit to the United States in 1932–33, in
particular during his stay at the Caltech in Pasdadena fromNovember 1932 to January
1933, where he also met Albert Einstein (Fig. 1).

Themost intense interaction concering the topic of [1] during his stay atCaltechwas
with Richard Tolman, who himself wrote a paper on this topic in 1934. As discussed
in [2], although Tolman gives explicit credit to Lemaître, the inhomogeneous dust
solution became known as “Tolman model” or “Tolman–Bondi model” after a paper
by Hermann Bondi on this topic had appeared in 1947. We shall follow here the more
recent practice of calling this solution the Lemaître–Tolman–Bondi solution or LTB
solution. For details on biographic aspects, we refer to [3].

The LTB model has since been used extensively in classical relativity, in particular
in addressing questions of structure formation; see, for example, [4] for details of the
classical theory. Here, instead, we use this model as a starting point for quantization,
in order to get insights into how the classical picture of gravitational collapse may be
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modified in the quantum theory. This allows to address questions such as what is the
fate of the black-hole singularity or what is the role of white holes.

Our paper is organized as follows. Before turning to our main topic, we shall briefly
address the simpler situation of a thin null dust shell. Then we discuss the LTB model
at the classical and at the quantum level. A major issue is to investigate the quantum
version of the classical collapse scenario. We shall, in fact, see that the classical
singularity can be avoided and that the initial collapse of a wave packet mimicking
a shell in the dust cloud will be followed by its re-expansion. We then discuss the
simpler case of the Oppenheimer–Snyder (OS) scenario, which is obtained from the
LTBmodel in the limit of constant density [5]. This simplification allows the derivation
ofmore explicit details.We shall endwith a brief summary and reflections about future
developments.

2 Thin null dust shell

Before starting our discussion for the dust cloud in the LTB model, we shall briefly
address the simpler case of a single self-gravitating dust shell. It has turned out that
the case of a null dust shell is especially suitable for our purpose; see [6–8] and the
references therein for details.

Classically, the shell either collapses to a black-hole singularity or expands from a
white-hole singularity. A consistent quantum version can be obtained by themethod of
reduced quantization. The shell can there be represented by a quantum stateΨκλ(t, r),
where t is the asymptotic (Killing) time, r the shell radius and κ (positive integer)
and λ (positive number with dimension of a length) are two parameters characterizing
the wave packet that is the quantum version of the shell. At t = 0, we choose the
following family of wave packets in momentum space:

ψκλ(p) := (2λ)κ+1/2

√
(2κ)! pκ+1/2e−λp. (1)

By an appropriate choice of κ and λ, a narrowwave packet can be constructed. After an
integral transform from the p- to the r -transformation, one can find an exact solution
to the Schrödinger equation. It reads

Ψκλ(t, r) = 1√
2π

κ!(2λ)κ+1/2

√
(2κ)!

[
i

(λ + it + ir)κ+1 − i

(λ + it − ir)κ+1

]
. (2)

An important property of this solution is that the wave function vanishes at the position
r = 0 of the classical singularity,

lim
r→0

Ψκλ(t, r) = 0. (3)

This means that the probability of finding the shell at vanishing radius is zero! In this
sense, the singularity is avoided in the quantum theory. The quantum shell bounces
and re-expands, and no event horizon forms.
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From (2), we can find the expectation value

〈R0〉κλ := 2G〈E〉κλ = (2κ + 1)
l2P
λ

,

of the shell radius and its variance,

Δ(R0)κλ := 2GΔEκλ = √
2κ + 1

l2P
λ

,

where lP = √
G� is the Planck length (c = 1 here). It thus turns out that the wave

packet can be squeezed below its Schwarzschild radius if its energy is greater than the
Planck energy—a genuine quantum effect!

In a sense, one can describe this scenario as a “superposition of black and white
hole”: the quantum solution contains information about the classical black hole as
well as the classical white hole solution. The two together enable a singularity-free
quantum state. Similar features were also found in loop quantum gravity [9] and in
quantum cosmology [10].

This is an interesting result, but it emerges from a simple model that may not reflect
the situation in the real world. The model can only be in accordance with observations
if the timescale between collapse and re-expansion is sufficiently long, that is, if it is at
least comparable with the age of the Universe (because we have so far no evidence for
a reversal of collapsing stars). It is certainly imaginable that gravitational time delay is
sufficiently long to guarantee this consistency. But explicit calculations are not simple,
mainly due to the problem of defining an appropriate time delay between comoving
and stationary observer (naively, for a stationary observer there is an infinite time
delay). In fact, different results have appeared in the literature; see, for example, the
review [11]. Timescales ∝ M3 or M2, where M is the initial mass, may be sufficient
for this purpose, but the issue is not settled. This question will also be of relevance for
the LTB model.

Singularity avoidance in this model is reflected by the fact that the quantum state
vanishes at the place of the classical singularity. This is here a consequence of the self-
adjoint nature of the reduced Hamiltonian, which leads to a unitary time evolution.
Unitarity prevents the wave packet from disappearing in a singularity – the packet
must always be present somewhere. From this point of view, it is not surprising that
the packet collapses, bounce, and re-expands. This is what we shall also find in the
LTB model.

In quantum cosmology, one often imposes from the outset Ψ = 0 at places of
classical singularities. This was already suggested by Bryce DeWitt in 1967 [12] and
is called DeWitt criterion. While this is related in spirit to the vanishing of quantum
states in our case, it is not equivalent because in quantum cosmology there is no
asymptotic time and no unitarity – these concepts emerge there only in a semiclassical
approximation [6].

We also emphasize that in our case there is no ambiguity arising from themeasure of
the inner product for wave function. The reason is that we shall construct a self-adjoint
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Hamiltonianwith respect to a given inner productwith a givenmeasure (more precisely,
due to factor-ordering ambiguities, we have a class of self-adjoint Hamiltonians).

3 LTBmodel

In this section, we shall briefly introduce the classical LTB model. It describes
a spherically-symmetric solution of Einstein’s equations with non-rotating dust of
energy (mass) density ε(ρ) as its source (where ρ denotes the radial coordinate), see
(4) below. For constant energy density, we arrive at the Oppenheimer–Snyder (OS)
scenario, which provided the first example of a solution describing the gravitational
collapse to what was later called a black hole [5]. In the case of dust (no pressure
or viscosity), we can interpret the cloud as consisting of infinitely many independent
shells. This will be mandatory for developing the formalism of quantization.

The line element of the LTB solution can be written in the form

ds2 = −c2dτ 2 + R′

1 + 2 f
dρ2 + R2dΩ2, (4)

8πG

c2
ε = F ′

R2R′ , (5)

Ṙ2

c2
= F

R
+ 2 f , (6)

where τ is the dust proper time and a prime denotes a derivative with respect to the
radial variable ρ that labels the dust shells comprising the dust cloud; F(ρ) is twice the
active gravitational mass (the Misner–Sharp mass M) inside the shell with label ρ.1

We restrict ourselves to vanishing cosmological constant. The variable f is a measure
of the curvature of the subspaces with constant time; below we restrict ourselves to
the marginally bound (flat) case f = 0.

An important quantity is R(τ, ρ), which is the curvature radius of the shell labelled
by ρ at time τ . It describes how the shell collapses or expands. A central singularity
forms at R = 0. There are also singularities from shell crossings happening when two
dust shells occupy the same radius. In the simplified setting below, these do not occur.

Let us now address the quantization of this model and its consequences for the
collapse situation. One possibility is to apply canonical (Wheeler–DeWitt) quantiza-
tion. This has led to interesting results concerning Hawking radiation and black-hole
entropy, but did not allow finding exact quantum states [6]. Exact results can be
obtained if one restricts oneself to self-gravitating dust clouds without introducing
additional quantum fields, that is, without the possibility to implement Hawking radi-
ation. This is what we shall review here. In this, we shall follow [13] to which we refer
the reader for more details.

As for the case of the thin shell above, we employ here the method of reduced
quantization. We assume that the infinitely many different shells comprising the cloud
decouple, so we can focus on a single shell, here: the outermost shell. This simplifies

1 Inserting the gravitational constant G and the speed of light c, we have F = 2G M/c2.
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the calculations drastically. An early analysis along these lines was presented by Fer-
nando Lund [14], who obtained qualitative results about singularity avoidance without
calculating exact quantum wave packets. In order to derive exact solutions, we start
with the Hamiltonian for the outermost shell (with radius Ro) given by

H = − P2
o

2Ro
, (7)

which is the negative of the ADM energy. (Po is the momentum conjugate to Ro.) As
mentioned above, restriction is made here to the marginally bound case of the LTB
solution ( f = 1 in (4)).

The fact that the Hamiltonian (7) is negative might seem surprising. But this is not
unusual for gravitational systems because it reflects the attractivity of gravity [15].
The physical (ADM) energy is positive.

As in the case of the collapsing shell, we seek for a unitary evolution (here with
respect to the dust proper time τ ). In the Schrödinger representation, we have

Po → P̂o = −i�
d

d Ro
.

The operator R̂o acts by multiplication. (In the following, we shall suppress the
subscript o.) The Hamilton operator is then given by

Ĥ = �
2

2
R−1+a+b d

d R
R−a d

d R
R−b,

where a and b encode factor ordering ambiguities. The Schrödinger equation reads

i�
∂Ψ (R, τ )

∂τ
= ĤΨ (R, τ ). (8)

We impose square-integrability on wave functions and let them evolve unitarily
according to a self-adjoint Hamiltonian. This corresponds to enforcing probability
conservation in dust proper time. The dynamics of the resulting wave packets will be
presented in the next section.

4 Singularity avoidance

To solve the Schrödinger equation, an initial quantum state (e.g. at τ = 0) must be
specified. In order to find the quantum version of the classical collapse, we choose a
narrow initial wave packet that mimicks the classical shell. A detailed investigation
shows that for a wide class of wave packets, the probability for the outermost dust
shell to be in the classically singular configuration R = 0 is zero [13]. To give one
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Fig. 2 Probability amplitude for
R as given by
R1−a−2b |Ψ (R, τ )|2, see (9),
compared to the classical
trajectories (full green line) and
the exterior apparent horizon
(dotted red line), with a = 2 and
b = 1, and λ = 2.2, κ = 0.96.
Reproduced from [13] with kind
permission by the American
Physical Society

example for an exact solution of (8):

Ψ (R, τ ) = √
3

(√
2

3

) 1
3 |1+a|+1

Γ
( 1
6 |1 + a| + κ

2 + 1
)

√
Γ (κ + 1)Γ

( 1
3 |1 + a| + 1

) R
1
2 (1+a+|1+a|+2b)

× λ
1
2 (κ+1)

( λ
2 − iτ)

1
6 |1+a|+ κ

2 +1

1F1

(
1
6 |1 + a| + κ

2 + 1; 1
3 |1 + a| + 1;− 2R3

9( λ
2 − iτ)

)
, (9)

where 1F1 denotes Kummer’s confluent hypergeometric function. The parameters κ

and λ have the same meaning as in the thin-shell case above; see Eq. (1). This solution
is plotted in Fig. 2, where it is also compared with the classical trajectory.

We recognize that the packet first follows the infalling classical trajectory up to some
minimal radius R and then makes a transition to the outgoing classical trajectory. The
behaviour of the wave packet thus resembles the behaviour for the thin shell described
above. The packet first collapses, enters the apparent horizon, but then bounces and
re-epands. This is, again, a consequence of the unitary evolution which follows from
having a self-adjoint reduced Hamiltonian. In this sense it is different from imposing
the DeWitt criterion of vanishing wave function from the outset. The measure in the
inner product for wave functions is directly taken into account, see [13], and there is
thus no ambiguity in applying the DeWitt criterion.

As for the thin shell above, a crucial issue is the lifetime of the bouncing cloud (or
“Planck star”), that is, the elapsed time between collapse and re-expansion. For this
purpose, two observers are introduced, one at a fixed physical radius outside the object
(stationary observer), one comoving with the cloud. These observers meet twice – first
during collapse and second during re-expansion. Applying the method for calculating
the lifetime in a similar situations for spinfoams [16], one finds here a lifetime ∝ M3,
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which would be long enough to be in accordance with the observational non-evidence
for such objects. In fact, a lifetime ∝ M3 is distinguished because it coincides with
the lifetime of black holes due to emission of Hawking radiation and also with the
spreading time for wave packets in models of stationary quantum black holes [17].

5 Oppenheimer–Snyder model

An important special case of the LTB model is the Oppenheimer–Snyder (OS) model
[5]. Here, the collapsing dust cloud is homogeneous. The geometry is then described
in the exterior by the Schwarzschild metric and in the interior by the Friedmann-
Lemaître-Robertson-Walker (FLRW) metric. As in cosmology, one can distinguish
between flat, closed, and open FLRW metric.

Dirac quantization of this model for the flat FLRW case (with curvature parameter
k = 0) is attempted in [18]. In contrast to the above discussion, the whole cloud is
treated, not just the outermost shell as a representative of the cloud. Using Brown-
Kuchař dust for matter and employing the standard Kuchař decomposition in the
canonical formulation [6], one arrives at a form of the Hamiltonian constraint that is
of a multivalued nature and looks too complicated for a direct application of Dirac
quantization. Nevertheless, some preliminary results can be obtained [18].

Amore promisingmethod is affine coherent state quantization (ACSQ) [19]. Coher-
ent state quantization relies on the identification of the classical phase space with a Lie
group. One can then consider a unitary irreducible representation of the group on a
suitableHilbert space, letting it act on a fixed state. This allows constructing a family of
coherent states in the quantum theory. The affine group comes into play because phase
space here corresponds to a half line. If the phase-space function is semi-bounded, the
resulting operator after quantization is self-adjoint. A brief self-contained introduction
to affine quantization can be found in [19].

Using again the flat FLRW case for the OS dust cloud, the authors of [19] find that
both the comoving and the stationary observers see a bounce: the OS cloud collapses
to a minimal radius outside the photon sphere and then re-expands. Because of this
large minimal radius, one cannot even speak of a black hole. The lifetime seen by
the comoving observer is again proportional to M , but it was not possible to define
a suitable lifetime for the stationary observer. The question of whether this scenario
reflects features of the real world thus remains unanswered.

The closed and openOSmodels, also called nonmarginal models (curvature param-
eters k = 1 and k = −1), are discussed in [20]. There again the method of ACSQ is
used. The discussion is more involved than in the flat case, but one finds again that
under some conditions there is a bounce of the collapsing cloud, as seen both from
the viewpoint of the comoving and of the stationary observers. An interesting special
scenario for the closed case (particular choice of parameters) is shown in Fig. 3.

A comoving observer obtains the following picture. Inside the horizon, the curve
R(τ ) exhibits oscillations. This is different from the flat case and means that the
cloud collapses, experiences a bounce and oscillates until it reaches an equilibrium.
This looks as if from the outside this situation could not be distinguished from a
Schwarzschild black hole. Unfortunately, it turns out that a horizon never forms from
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Fig. 3 Graph in the R − τ space.
The orange line represents the
Schwarzschild radius
R = 2G M/c2, the green line the
location where equilibrium is
reached after oscillations, where
Ṙ = R̈ = 0. Reproduced from
[20] with kind permission by the
American Physical Society

the viewpoint of the stationary observer and that therefore the object does not resemble
a black hole. This apparent conflict remains an open issue and is subject for further
discussion.

6 Summary and outlook

We hopewe have convinced the reader that Lemaître’s model from 1933 [1] is not only
well suitable for problems in classical cosmology, but also for addressing fundamental
issues in quantum gravity. As we have reviewed here, one can construct quantum
models for gravitational collapse which are singularity-free, that is, both the classical
black-hole as well as the classical white-hole singularities can be avoided. There is, in
fact, a unitary evolution for the quantumstate fromacollapsingwavepacket to a bounce
and a re-expanding packet. In a sense, the quantum theory knows of both black holes
and white holes, even if classically white holes are irrelevant. If generally true, this
would solve the cosmic-censorship problem because singularities are fundamentally
absent.

In spite of these promising results, there remain open problems. First, these results
were found for spherically-symmetric systems only. Real black holes are described
by the Kerr metric, but an analysis similar to the one presented here seems, at present,
impossible for the rotating case. Second, there remains the problem of how the life-
time of these collapsing and re-expanding wave packets can be properly defined for
stationary observers. There will be no conflict with observation only if the time delay
between collapse and expansion is at least of the order of the age of our Universe.
And third, these models should be extended by taking into account appropriate quan-
tum matter fields so that the issues of Hawking radiation and information loss can
be discussed at an exact quantum gravity level. Perhaps the groundbreaking work of
Georges Lemaître will continue to guide us towards that goal.
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