Pediatric Nephrology (2025) 40:2729-2739
https://doi.org/10.1007/500467-025-06670-z

REVIEW

=

Check for
updates

The Ca®*-actin-cytoskeleton axis in podocytes is an important,
non-immunologic target of immunosuppressive therapy in proteinuric

kidney diseases

Agnes Hackl' - Lutz T. Weber'

Received: 10 June 2024 / Revised: 19 December 2024 / Accepted: 19 December 2024 / Published online: 25 January 2025

© The Author(s) 2025, corrected publication 2025

Abstract

The integrity of the filtration barrier of the kidney relies on the proper composition of podocyte interdigitating foot processes.
Their architecture is supported by a complex actin-cytoskeleton. Following podocyte stress or injury, podocytes encounter
structural changes, including rearrangement of the actin network and subsequent effacement of the foot processes. Immu-
nosuppressive drugs, which are currently used as treatment in proteinuric kidney diseases, have been shown to exert not
only immune-mediated effects. This review will focus on the direct effects of glucocorticoids, cyclosporine A, tacrolimus,
mycophenolate mofetil, and rituximab on podocytes by regulation of Ca** ion channels and consecutive downstream signal-
ing which prevent cytoskeletal rearrangements and ultimately proteinuria. In addition, the efficacy of these drugs in genetic

nephrotic syndrome will be discussed.
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Introduction

The filtration barrier of the kidney consists of three layers,
the fenestrated endothelium lined with glycocalyx, the glo-
merular basement membrane (GBM), and the podocytes
with the slit diaphragm (SD) bridging their interdigitating
foot processes (FPs). The architecture of podocytes is mainly
supported by a complex network of the actin-cytoskeleton.
Upon podocyte stress or injury, the actin-cytoskeleton of
podocytes undergoes rearrangements of the actin network
resulting in subsequent FP effacement (FPE) [1]. It has
been proposed that FPE initially might be a compensatory
attempt of podocytes to prevent detachment. However, if
the insult is prolonged, detachment often cannot be avoided.
Recent studies have shown that the nephroprotective effect
of renin-angiotensin-aldosterone system inhibitors are
associated with the inhibition of a Ca’* ion channel and

P< Agnes Hackl
agnes.hackl @uk-koeln.de

Department of Pediatrics, University of Cologne, Faculty
of Medicine and University Hospital Cologne, Kerpener
Street 62, 50937 Cologne, Germany

its downstream signaling, which prevented cytoskeletal
rearrangements in podocytes and proteinuria [2—6]. Other
immunosuppressive drugs, which are regularly used to treat
proteinuric kidney diseases, have also been shown to exhibit
additional direct effects on the Ca** ion channels and the
actin-cytoskeleton beyond their role in systemic immuno-
suppression and thus directly protect podocytes. Therefore,
this review will focus on these drugs and their effect on the
Ca**-actin-cytoskeleton axis.

Ca?* signaling and the actin-cytoskeleton
in podocytes

Ca?* signaling in podocytes

Ca”* signaling is initiated by an increase of the intracel-
lular calcium concentration ([Ca**],). The influx of Ca®*
can originate from the extracellular space or intracellular
Ca’* stores such as the endoplasmic reticulum (ER) and the
mitochondria [7]. The binding of Ca®* induces structural
and conformational changes in various calcium-binding
proteins, thereby modulating their activity and function in
downstream signaling cascades to regulate cell motility and
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survival. The level of [Ca®*]; is meticulously regulated by
the coordinated activity of ion channels, molecular pumps
and cytosolic Ca®* buffers, all of which cooperate to main-
tain low [Ca”]i at baseline and enable responsive calcium-
dependent signaling pathways.

Ca’* signaling has emerged as a central element in
podocyte damage. Kerjaschki suggested that an increase
in [Ca®*], is an early event in podocyte injury [8]. Indeed,
altered Ca**-signaling has been reported in several circum-
stances of podocyte injury. Either as a direct cause of focal
segmental glomerulosclerosis (FSGS) caused by the gain-
of-function mutation in transient receptor potential cation
channel member 6 (TRPC6) [9] or as a uniform response to
stress in this cell type, e.g., in protamine sulfate nephropa-
thy [10] or in complement Cs, 4 complex-mediated podo-
cyte injury [11]. Moreover, significantly elevated Ca>* lev-
els can be measured in response to podocyte injury using
in vivo [Ca2+]i imaging [12]. This increase in [Ca”]i leads to
cytoskeletal disorganization and FPE [13] and subsequently
increases podocyte cell motility in different disease models
of podocyte injury in vivo [14].

Due to disease causing human mutations, TRPC6 is the
most extensively studied channel in the context of Ca>*
signaling in podocytes [15-19]. TRPC6 is located in the
podocyte foot processes at or near the site of the SD and
contributes to the proposed mechanosensing function of
the SD, whereby TRPC6 tightly regulates Ca*" currents
and cytoskeletal rearrangement of podocytes [20]. TRPC6
can be activated by an increase in [Ca**]; from the extracel-
lular space (receptor-operated Ca>* entry, ROCE) or from
intracellular stores (store-operated Ca* entry, SOCE)
[21-23]. During ROCE, phospholipase C [24] is activated
by a G-protein-coupled receptor [25, 26]. The subsequently
released diacyl-glycerol directly activates TRPC6 channels
to trigger downstream calcium signaling [24, 25]. During
SOCE, Ca2* levels in the ER are depleted, which result in
the activation of the ER-resident stromal interaction protein
1 [27]. This stimulates calcium-release-activated calcium
channel protein 1 (Orail), allowing Ca’* influx into the
cell, which directly activates TRPC channels and promotes
the trafficking and the insertion of TRPC channels into the
plasma membrane. Importantly, additional evidence sup-
ports and highlights the importance of TRPC channels as a
critical regulator of calcium signaling in podocytes: ANG
IT activates ROCE to induce TRPC6-mediated Ca®* influx
in podocytes under hyperglycemic condition modelling
diabetes [28], ANG II-induced albuminuria is reduced in
TRPC6 knockout mice [29] and the inhibition of ANGII by
losartan blocks calcium signaling in podocytes [6]. How-
ever, the strongest evidence for the pathophysiological rel-
evance of TRPC6 remains the development of FSGS and
consequent kidney failure in human patients with a gain of
function mutation [9, 30].
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TRPCS, calcium-activated potassium channels (BKs;
KCal.l) and store-operated channels (SOCs) have also
been implicated in glomerular disease development [31-33].
Furthermore, the ionotropic N-methyl-D-aspartate receptor
and purinergic P2X receptors are ligand-gated ion channels
that are also thought to play a role in the pathogenesis of
glomerular disease [34, 35]. Additionally, the IP; receptor
also regulates glomerular shape and podocyte foot process
formation through SOCE [36]. Further details can be found
in the informative review by Tu et al. [37]. Taken together,
these results demonstrate the importance of calcium and
related signaling pathways in the structure and function of
the glomerular filtration barrier.

Actin-cytoskeleton in podocytes

Podocytopathies are characterized by an altered cytoskeletal
architecture (imbalance between polymerization and depo-
lymerization) in the actin-rich FPs of podocytes. They can
alter the permeability of the filtration barrier by changing
the FP morphology [38]. Signal transduction pathways at
the FP that influence cytoskeletal dynamics are controlled
by the Rho family of small GTPases and their regulators:
Racl promotes cell motility, RhoA stimulates the formation
of contractile actin cables in vivo or stress fibers in vitro,
while Cdc42 initiates actin branching [39-42]. Several stud-
ies have closely linked the development of proteinuria with
the dysregulation of actin organization in podocytes [43—-45].
Mutations affecting actin-related structure, anchors, and reg-
ulator proteins in podocytes result in actin-cytoskeleton rear-
rangement, disrupt the filtration barrier, and subsequently
lead to kidney disease [46—50]. In this context, the actin-
associated regulatory protein, synaptopodin, has gained
special attention: It binds directly to RhoA and thereby
prevents the targeting of RhoA for proteasomal degrada-
tion and thereby induces stress fiber formation in podocytes
[51-53]. Furthermore, nephrin a major component of the SD
is linked to the actin cytoskeleton and regulates it via the nck
and CD2AP adaptor proteins [54, 55]. Mutations in nephrin
disturb the actin cytoskeleton [56]. Finally, myosin le may
be important for the function of actin cables, as mutations
in myosinle are also associated with FSGS [57, 58]. Fur-
ther details can be found in an excellent review by Blaine
et al. [59]. Altogether, this data underlines that the proper
organization and the dynamic regulation of the podocyte
cytoskeleton are vital to the kidney filtration function.

Regulation of the actin-cytoskeleton
via intracellular Ca?* signaling

Ca”* binding can trigger podocyte pathology by activating
multiple downstream signal transducers such as calcineu-
rin, calmodulin, and small GTPases. Signaling through the
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Ca”*-activated serine/threonine phosphatase, calcineurin,
has recently emerged as an important modulator of podocyte
function. Calcineurin is widely distributed across many cell
types including podocytes. Its most renowned function is the
activation of the nuclear factor of activated T-cells (NFAT)
[60—63], which upregulates interleukin-2 and induces T-cell
response [64]. Additionally, calcineurin renders the actin
stabilizer synaptopodin by dephosphorylation accessible to
cathepsin L-mediated degradation. This leads to modula-
tion in Rho GTPases activity, cytoskeletal rearrangement
and proteinuria [53, 65-70]. Ang II has also been shown
to activate calcineurin in a TRPC5-dependent manner [69].
Taken together, calcineurin seems to be a key transducer of
Ca**-activated signaling in podocyte injury.

Another important calcium sensor is calmodulin. It is a
critical upstream regulator of the Ca**/calmodulin—depend-
ent kinase (CaMK4), which activates Racl and suppresses
synaptopodin and nephrin leading to the remodeling of the
actin-cytoskeleton and a motile podocyte phenotype [71].
Podocyte-specific inhibition of CaMK4 restores synapto-
podin expression and protects the actin-cytoskeleton from
damage. In addition, the interaction between calmodulin and
MYOWYA is crucial to crosslink actin and to regulate RhoA
activity [72]. Importantly, heterozygous loss-of-function
mutations in MYO9A directly impairing the interaction
with actin and calmodulin cause a form of human autoso-
mal dominant FSGS. Finally, calmodulin is also involved in
the Ca®*-dependent inactivation of TRPC6 channels, which
serves as a negative feedback regulation to prevent excess
influx of Ca** [73]. Thus, the disruption of the calmodulin-
bridge with TRPC6 can lead to sustained Ca** elevation,
stimulation of downstream signaling cascades and filamen-
tous actin (F-actin) rearrangements. Altogether, calmodulin
plays an important role in the fine adjustment of [Ca®*], in
podocytes.

It is well known that the activation and the inactivation of
small GTPases are mediated by guanine nucleotide exchange
factors (GEF)s, which stimulate the exchange of bound GDP
by free GTP, and by GTPase-activating proteins (GAP)s,
which trigger the hydrolysis of GTP to GDP [39]. Interest-
ingly, the highly [Ca2+]i dependent Rho GEF, Arhgefl, has
been shown to influence vascular tone and blood pressure in
vascular smooth muscle cells in vivo [74]. Moreover, Arh-
gap24/ FILGAP inactivates Racl [75] and a mutant form of
Arhgap24/FiLGAP has been associated with a familial form
of FSGS [76]. Further details of the regulation of the small
GTPases in podocytes can be found in an excellent review
by Saleem et al. [77]. Altogether, increased [Ca2+]i levels
are associated with small GTPase-induced cytoskeletal rear-
rangements, which in turn alter podocyte motility.

In summary, the downstream signaling of Ca®* converges
on the actin-cytoskeleton, and Ca** is a critical regulator to

mediate the dynamic remodeling of the actin-cytoskeleton
and to contribute to the regulation of the podocyte motility
(Table 1).

The effect of immunosuppressive agents
on the Ca?*-actin-cytoskeleton

Immunosuppressive agents are widely used in the ther-
apy of proteinuric kidney diseases due to their immu-
notherapeutic or anti-inflammatory therapeutic effects
[78]. However, there is growing evidence that these
agents may additionally directly target podocytes via the
Ca’*-actin-cytoskeleton axis and enhance stability of
actin filaments (Fig. 1; Table 2).

Glucocorticoids

For decades, glucocorticoids (GCs) have remained the pri-
mary treatment for many glomerular diseases [79]. GCs
act predominantly by altering gene expression, but also
have secondary non-genomic effects [79]. After binding
to a cytoplasmic glucocorticoid receptor (GR), which is
expressed in every cell, the complex undergoes nuclear
translation to induce transcriptional responses via bind-
ing to glucocorticoid response elements. In contrast, non-
genomic effects are mediated by binding to GRs located in
the cytosol or by direct interaction with the cell membrane
[80]. Podocytes have also been shown to express functional
glucocorticoid receptors [8§1-83], and several studies have
shown that GCs can change gene expression in podocytes
in vitro, demonstrating that podocytes are responsive to
GCs, as has been comprehensively summarized by Broek
et al. [84].

It is well established that GCs can, on one hand, exert
significant anti-proteinuric effects by influencing Ca* sign-
aling: They preserve the structural and functional integrity
of the SD by binding and blocking TRPC6 channels [85].
On the other hand, GCs increase actin polymerization and
the stability of actin filaments [86, 87]. For example, actin
structure and binding molecules have been identified as
targets of GCs: They increase gene expression and phos-
phorylation of nephrin [88, 89], upregulate CD2-associated
protein [90], induce olfactomedin-1 expression [91] and pro-
mote Kriippel-like factor 15 gene expression, which stabi-
lize the actin cytoskeleton under stress and podocyte injury
[92-94]. Furthermore, GCs protect podocytes by stabilizing
the expression of a-actinin-4, an actin crosslinking protein
that coordinates cytoskeletal organization [95]. Actin regula-
tors are an additional important target group: GC treatment
after exposure to proteinuria-inducing agents reduced Racl
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Table 1 Comparison of the specific alterations in various pathways/targets in relation to the effect on podocytes (injury or protection)

Signal pathway/protein Function in podocyte protection Function in podocyte injury
TRPC6 Balance between TRPCS and TRPC6 Overactivation e.g. through gain-of-function
mutation

Calcium-activated potassium channels
(KCal.l)

Store-operated channels (SOCs)
Tonotropic NMDA receptor and purinergic

Activation enhances Ca>* influx through
TRPC6 activation

Activation triggers actin remodeling
Activation enhances Ca>* influx

P2X receptor
Calcineurin Facilitates cathepsin L-mediated degradation of
synaptopodin
Calmodulin Ca*-dependent inactivation of the TRPC6 Through Ca* /calmodulin—dependent kinase
channel (CaMK4) activation of Rac1l and suppression
of synaptopodin and nephrin
Synaptopodin Prevention of synaptopodin from degradation = Cathepsin L-mediated degradation of synapto-
podin through calcineurin
Small GTPases Activation of RhoA promotes stable actin Overactivation of Racl promotes cell motility
cables; balance between RhoA and Racl
activation
Arhgap24/ FILGAP Inactivating Racl Mutant form of Arhgap24/FiLGAP is associ-
ated with a familial form of FSGS
Nephrin Major component of the SD, is linked to the =~ Mutations in nephrin affect the actin cytoskel-
actin cytoskeleton and regulates it via adap- eton
tor proteins
Myosinle Pathological variants in myosinle are associ-

ated also with FSGS
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over-activity and podocyte motility [96, 97], increased the ~ Cyclosporine A

stability of actin filaments by stabile synaptopodin expres-
sion, and increased RhoA activity [98, 99]. The effects of
GCs-induced changes on the actin-cytoskeleton lead to its
increased stability and enhanced protection of podocytes
against damage (Fig. 2A).
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Cyclosporine A (CsA) is a calcineurin inhibitor that
blocks the activation of NFAT in T cells preventing the
transcription of cytokines such as I1-2 and I1-4. Recent
studies demonstrated that its therapeutic effects extend
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Table 2 Summary of the
specific molecular mechanisms

of podocyte protection induced Glucocorticoids Blocking TRPC6 signaling
by each of the various drugs

Immunosuppressive agents Effect on podocytes

Activation of the nephrin gene promoter and support of nephrin’s
phosphorylation

Upregulation of CD2AP adaptor protein

Stabilizing the expression of actin crosslinking protein, a-actinin-4
Prevention of synaptopodin’s degradation

Diminishing Racl overactivity and enhancing RhoA activity
Promoting Kriippel-like factor 15 gene expression

Inducing olfactomedin-1 expression

Cyclosporine A Preventing synaptopodin's dephosphorylation and degradation
Decreasing TRPC6 gene expression

Tacrolimus Preventing the degradation of synaptopodin
Increasing the activation of RhoA

Mpycophenolate-mofetil Reducing podocyte’s [Ca?*];

Stabilizing stress fiber formation

Reducing the expression levels of Vavl and Racl activity
Rituximab Preventing acid-sphingomyelinase down-regulation

Upregulation of ASMase expression and activity

Binding soluble urokinase-type plasminogen activator

P— decreased TRPCE) decreased
A ‘ TRPCE B8 oo B \ @Ecs) (P — @ Ca* influx
o S
>e 0 \
Rl 0 5 Y
= > o=Se o0,
. ® ° e ® e
. - car 4
enhanced gen
expression and v
Tod calcineurin phosphorylation FKBP12 ) — (cal D — -
facilitation of actin GCs e et GCs Tayc; FKBP12 (calcineurin ) CsA
polmerization  preservation of| 7 upregulation of \ /
B synaptopodin £ CD2AP ¥ Preseration: of
GCs | and a-actinin4 synaptopodin
- synaptopodint < CD2APT  nephrint )
stable actin cables/ \‘ 00 A —7— oo i
< 1 4 . stable actin cables/
stress fibers o ®0 Wactining 'W oo stress fibers
4 o A
(GOP) < AT (GoP " / =
5 P) : ( 2 4 GTP i )
RhoA [= ROAT= —— proteasome = Rac1 = Ract T = RAT"_ | (Groreasome = Ract GIP
f inactivation (o ? Ppreservation of RhoA
ofRact |

GCS\‘ preservation and Tac
activation of RHoA o

C [ D (
e o
0 . Ao . ¥ !
. =18 J eile o @
[ oy — Se% SMPDL3b |
. ” ca* SUPAR
decreased !
Ca influx
calcineurin v
) ASMase WPAR
stable actin cables/ /
& stress fibers 3 inactivation &
IMPDH 4§ —> | i ) ) i amar,/
o > stable actin cables/ o °ge 4
80 Jocno0mom 19 rwsgen 2, — e T 4
stress fibers . - /
7 ; ae ¥
GoP, > (GoP) GDP. . (GTP) S
Racl | RhoA [= = Ract $ = Rac |

inactivation ~=7

G[Pid
MPA |
)

Fig. 2 Direct effects of GCs, CsA, Tac, MMF, and RTX on ion chan- drugs: GCs (A), CsA (B), Tac (B), MMF (C), and RTX (D). Created
nels, actin-cytoskeleton components, and regulators in podocytes. in BioRender.com. CsA cyclosporine A, GCs glucocorticoids, RTX
Panels focus on the relevant mechanisms of action of each of the rituximab, MPA mycophenolic acid, Tac tacrolimus
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beyond immune cells. Calcineurin dephosphorylates the
actin-associated protein and Rho-GTPase-regulator syn-
aptopodin in podocytes and increases its susceptibility
to cathepsin L-mediated degradation. CsA prevents the
dephosphorylation of synaptopodin by calcineurin, thereby
maintaining the phosphorylation-dependent interaction of
synaptopodin with —14-3-3 beta [65] and preventing the
degradation of synaptopodin. Therefore, CsA stabilizes
the stress fiber formation making podocytes more resist-
ant to the development of proteinuria. Similarly, inhibi-
tion of Ca®* channels by CsA as well as the cathepsin L
inhibitor reduced FPE, which was induced by the treat-
ment of isolated glomeruli with protamine-sulfate. This
suggests that Ca®* signaling through calcineurin- and cath-
epsin L-dependent cleavage of synaptopodin is essential
in the initial stages of glomerular injury and can serve
as a podocyte-specific therapeutic target [100]. Accord-
ingly, pre-incubation of mouse podocytes with CsA dur-
ing treatment with puromycin aminonucleoside increased
the expression of synaptopodin and restored the organi-
zation of the actin-cytoskeleton [101]. Additionally, CsA
decreases TRPC6 expression in doxorubicin nephropathy
[102]. These findings (Fig. 2B) clearly demonstrate that
the treatment response of CsA in proteinuric kidney dis-
eases extends beyond its immunosuppressive effect and
reveals the podocyte as the therapeutic target of choice for
glomerular diseases [103].

Tacrolimus

Tacrolimus (Tac) is another calcineurin inhibitor, that
exerts the same effect on calcineurin and downstream
inhibition of NFAT activation in T-cells though it lacks
clear structural similarity to CsA [61]. Its activity is medi-
ated through the FK506 binding protein 1A (FKBP12).
Importantly, FKBP12 is localized to the actin-cytoskeleton
and associates with F-actin [104]. FKBP12 knockdown in
podocytes leads to alterations in the structure of F-actin,
highlighting the importance of FKBP12 expression and
function in maintaining the integrity of the actin cytoskel-
eton [104]. Furthermore, Tac could restore the expression
of FKBP12 and enhance the interactions between FKBP12
and synaptopodin to ameliorate FPE in injured podocytes
[104]. The stabilizing effect of Tac on the synaptopodin
expression is strongly supported by in vitro and in vivo
studies [101, 105]. Additionally, Wu et al. investigated the
calcineurin-related Ca**-actin-cytoskeleton axis and found
that it was highly up-regulated in a model of depleted
miR-30 and impressively blocked by Tac [106]. Tac also
activates the actin-regulator RhoA [107]. Altogether, Tac
seems to be able to stabilize stress fibers in podocytes
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mostly in a Ca?*-calcineurin dependent manner, but also
directly via actin-cytoskeleton (Fig. 2B).

Mycophenolate mofetil

The prodrug mycophenolate mofetil (MMF) is activated by
esterases in the gut and blood to release the pharmacologi-
cally active drug moiety, mycophenolic acid (MPA), which
functions as a selective non-competitive inhibitor of inosine
5'-monophosphate dehydrogenase. This is the rate-limiting
enzyme in the de novo purine synthesis pathway and thereby
impairs lymphocyte proliferation [108]. Importantly, direct
effects on non-immune cells, including glomerular cells such
as mesangial cells and podocytes, have been attributed to
MMF [109]. In a lupus model, MMF reduced expression
levels of Vavl and Racl activity, which ameliorated stress
fiber formation in podocytes [107]. This finding is further
supported by our in vitro experiments, which were designed
to exclude the effect of immune cells and study MPA’s direct
effect on podocytes: We detected a significant change in 350
genes within 24 h of MPA treatment [110], and these genes
were partially related to Ca**-signaling and actin-cytoskel-
eton regulation. As validation, we showed that MPA treat-
ment was able to completely block the increase in [Ca2+]i
induced by bovine serum albumin and subsequently stabilize
the stress fiber formation. Additionally, we demonstrated in a
nephrotoxic serum nephritis model in vivo an improvement
of proteinuria treatment and identified a significant reduc-
tion in podocyte’s [Ca>*]; after MMF treatment as possible
underlying mechanisms. This change resulted in a tendency
towards structural stabilization of podocyte foot processes
[111]. Together, these data suggest a relevant effect of MPA
to directly stabilize stress fibers in podocytes (Fig. 2C).

Rituximab

Rituximab (RTX) is a B-cell depleting chimeric mono-
clonal IgG1 antibody targeting the CD20 receptor. B-cell
destruction is mediated by the Fcy immunoglobulin recep-
tor, complement activation and trigger of apoptosis [112].
RTX has been shown to be effective in podocytopathies by
the depletion of B-cells [113]. RTX also possesses other
B-cell-independent effects: By targeting sphingomyelin
phosphodiesterase acid-like 3b (SMPDL-3b) in podocyte
lipid rafts, RTX regulates acid-sphingomyelinase activity
and stabilizes the podocyte actin-cytoskeleton [114]. The
inhibition of stress fibers formation in podocytes, following
incubation with sera of patients with recurrent FSGS after
transplantation, was blocked by treatment with RTX. This
response and podocyte viability were dependent on SMPDL-
3b expression in vitro, as the knockdown of SMPDL-3b in
podocytes abrogated these effects. Furthermore, SMPDL-3b
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has been shown to increase the stability of the cytoskeleton
by binding soluble urokinase-type plasminogen activator
receptor with subsequent Racl inhibition [115]. No data
are currently available on the direct effects of the human-
ized, and therefore less immunogenic, anti-CD20 antibodies,
ofatumumab and obinutuzumab, or the anti-CD38 antibody
daratumumab [116]. Altogether, RTX seems to possess a rel-
evant direct effect on podocytes. However, few weeks after
administration, RTX is likely no longer present in the circu-
lation, making the duration and relevance of its direct effect
on podocytes potentially less pronounced compared to other
immunosuppressive agents (Fig. 2D).

Cyclophosphamide

To date, no data are available about a direct beneficial effect
of cyclophosphamide on podocytes. Children with genetic
proteinuric diseases also do not respond to cyclophospha-
mide therapy [117].

Immunosuppressive therapy in genetic
nephrotic syndrome

The non-immunologic effects of the immunosuppressive
drugs discussed above raise the question, whether patients
with genetic steroid resistant nephrotic syndrome (SRNS)
could benefit from an immunosuppressive therapy or not.
In terms of CsA, there are some multicenter studies offer-
ing sparse data. In a large retrospective multicenter study of
CsA treatment, none of the patients with genetic nephrotic
syndrome experienced a complete remission and only two
(17%) achieved a partial response [66]. In another multi-
center study, 3% of patients with genetic SRNS experienced
a complete remission, and 16% of patients with genetic
SRNS showed a partial remission after CsA therapy [118].
The PodoNet Consortium has obtained similar results: Of
74 patients with proven genetic mutations, two patients had
complete and 12 partial remissions. Thus, in this series, a
total of 14/74 (19%) patients with genetic SRNS had a lim-
ited response to immunosuppression with CsA and predniso-
lone pulses [117]. Based on some case reports, children with
WT-1 mutation might constitute a particular group, which
could show favorable response to an intensified therapy with
CsA and GCs [119, 120]. Interestingly, the authors discuss
the potential role of the direct effect on podocytes. In sum-
mary, most patients with genetic nephrotic syndrome do not
benefit from an immunosuppressive therapy and show sig-
nificantly lower response rates compared with non-genetic
patients. This could be due to a direct effect stabilizing actin-
binding proteins, which is missing if these proteins them-
selves are mutated, leading to drug-resistant damage of the
actin-cytoskeleton. As genetic podocytopathies are caused

by mutations in multiple distinct proteins, it is not unex-
pected that their response to therapies differs. The extent of
nephrotoxic effect (in case of CsA and Tac) and the subse-
quent reduction of plasma flow is also difficult to predict.
Therefore, it is generally not recommended to administer
immunosuppressive drugs in genetic forms of NS. However,
in the future, it could be part of an individualized therapeutic
concept for patients with genetic NS.

Conclusion

Immunosuppressive drugs commonly used to treat proteinuric
kidney diseases exert direct effects on ion channels, actin-
cytoskeleton components, and regulators (Fig. 1) in podo-
cytes. This explains, in conjunction with their effects on
immune cells, their clinical effectiveness. In the adaptation to
damage, a strict regulation of the Ca**-actin-cytoskeleton axis
is crucial for the survival of podocytes. Therefore, utilizing
the demonstrated direct effects of GCs, CsA, Tac, MMF, and
RTX is an essential part in choosing an individual therapeu-
tic approach. The question, to what extent the non-immune,
direct drug actions contribute to sustained effects of immu-
nosuppression, will require continued studies in the future.
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