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Abstract
The integrity of the filtration barrier of the kidney relies on the proper composition of podocyte interdigitating foot processes. 
Their architecture is supported by a complex actin-cytoskeleton. Following podocyte stress or injury, podocytes encounter 
structural changes, including rearrangement of the actin network and subsequent effacement of the foot processes. Immu-
nosuppressive drugs, which are currently used as treatment in proteinuric kidney diseases, have been shown to exert not 
only immune-mediated effects. This review will focus on the direct effects of glucocorticoids, cyclosporine A, tacrolimus, 
mycophenolate mofetil, and rituximab on podocytes by regulation of Ca2+ ion channels and consecutive downstream signal-
ing which prevent cytoskeletal rearrangements and ultimately proteinuria. In addition, the efficacy of these drugs in genetic 
nephrotic syndrome will be discussed.
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Introduction

The filtration barrier of the kidney consists of three layers, 
the fenestrated endothelium lined with glycocalyx, the glo-
merular basement membrane (GBM), and the podocytes 
with the slit diaphragm (SD) bridging their interdigitating 
foot processes (FPs). The architecture of podocytes is mainly 
supported by a complex network of the actin-cytoskeleton. 
Upon podocyte stress or injury, the actin-cytoskeleton of 
podocytes undergoes rearrangements of the actin network 
resulting in subsequent FP effacement (FPE) [1]. It has 
been proposed that FPE initially might be a compensatory 
attempt of podocytes to prevent detachment. However, if 
the insult is prolonged, detachment often cannot be avoided. 
Recent studies have shown that the nephroprotective effect 
of renin‐angiotensin‐aldosterone system inhibitors are 
associated with the inhibition of a Ca2+ ion channel and 

its downstream signaling, which prevented cytoskeletal 
rearrangements in podocytes and proteinuria [2–6]. Other 
immunosuppressive drugs, which are regularly used to treat 
proteinuric kidney diseases, have also been shown to exhibit 
additional direct effects on the Ca2+ ion channels and the 
actin-cytoskeleton beyond their role in systemic immuno-
suppression and thus directly protect podocytes. Therefore, 
this review will focus on these drugs and their effect on the 
Ca2+-actin-cytoskeleton axis.

Ca2+ signaling and the actin‑cytoskeleton 
in podocytes

Ca2+ signaling in podocytes

Ca2+ signaling is initiated by an increase of the intracel-
lular calcium concentration ([Ca2+]i). The influx of Ca2+ 
can originate from the extracellular space or intracellular 
Ca2+ stores such as the endoplasmic reticulum (ER) and the 
mitochondria [7]. The binding of Ca2+ induces structural 
and conformational changes in various calcium-binding 
proteins, thereby modulating their activity and function in 
downstream signaling cascades to regulate cell motility and 
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survival. The level of [Ca2+]i is meticulously regulated by 
the coordinated activity of ion channels, molecular pumps 
and cytosolic Ca2+ buffers, all of which cooperate to main-
tain low [Ca2+]i at baseline and enable responsive calcium-
dependent signaling pathways.

Ca2+ signaling has emerged as a central element in 
podocyte damage. Kerjaschki suggested that an increase 
in [Ca2+]i is an early event in podocyte injury [8]. Indeed, 
altered Ca2+-signaling has been reported in several circum-
stances of podocyte injury. Either as a direct cause of focal 
segmental glomerulosclerosis (FSGS) caused by the gain-
of-function mutation in transient receptor potential cation 
channel member 6 (TRPC6) [9] or as a uniform response to 
stress in this cell type, e.g., in protamine sulfate nephropa-
thy [10] or in complement C5b-9 complex-mediated podo-
cyte injury [11]. Moreover, significantly elevated Ca2+ lev-
els can be measured in response to podocyte injury using 
in vivo [Ca2+]i imaging [12]. This increase in [Ca2+]i leads to 
cytoskeletal disorganization and FPE [13] and subsequently 
increases podocyte cell motility in different disease models 
of podocyte injury in vivo [14].

Due to disease causing human mutations, TRPC6 is the 
most extensively studied channel in the context of Ca2+ 
signaling in podocytes [15–19]. TRPC6 is located in the 
podocyte foot processes at or near the site of the SD and 
contributes to the proposed mechanosensing function of 
the SD, whereby TRPC6 tightly regulates Ca2+ currents 
and cytoskeletal rearrangement of podocytes [20]. TRPC6 
can be activated by an increase in [Ca2+]i from the extracel-
lular space (receptor-operated Ca2+ entry, ROCE) or from 
intracellular stores (store-operated Ca2+ entry, SOCE) 
[21–23]. During ROCE, phospholipase C [24] is activated 
by a G-protein-coupled receptor [25, 26]. The subsequently 
released diacyl-glycerol directly activates TRPC6 channels 
to trigger downstream calcium signaling [24, 25]. During 
SOCE, Ca2+ levels in the ER are depleted, which result in 
the activation of the ER-resident stromal interaction protein 
1 [27]. This stimulates calcium-release-activated calcium 
channel protein 1 (Orai1), allowing Ca2+ influx into the 
cell, which directly activates TRPC channels and promotes 
the trafficking and the insertion of TRPC channels into the 
plasma membrane. Importantly, additional evidence sup-
ports and highlights the importance of TRPC channels as a 
critical regulator of calcium signaling in podocytes: ANG 
II activates ROCE to induce TRPC6-mediated Ca2+ influx 
in podocytes under hyperglycemic condition modelling 
diabetes [28], ANG II-induced albuminuria is reduced in 
TRPC6 knockout mice [29] and the inhibition of ANGII by 
losartan blocks calcium signaling in podocytes [6]. How-
ever, the strongest evidence for the pathophysiological rel-
evance of TRPC6 remains the development of FSGS and 
consequent kidney failure in human patients with a gain of 
function mutation [9, 30].

TRPC5, calcium-activated potassium channels (BKs; 
KCa1.1) and store-operated channels (SOCs) have also 
been implicated in glomerular disease development [31–33]. 
Furthermore, the ionotropic N-methyl-D-aspartate receptor 
and purinergic P2X receptors are ligand-gated ion channels 
that are also thought to play a role in the pathogenesis of 
glomerular disease [34, 35]. Additionally, the IP3 receptor 
also regulates glomerular shape and podocyte foot process 
formation through SOCE [36]. Further details can be found 
in the informative review by Tu et al. [37]. Taken together, 
these results demonstrate the importance of calcium and 
related signaling pathways in the structure and function of 
the glomerular filtration barrier.

Actin‑cytoskeleton in podocytes

Podocytopathies are characterized by an altered cytoskeletal 
architecture (imbalance between polymerization and depo-
lymerization) in the actin-rich FPs of podocytes. They can 
alter the permeability of the filtration barrier by changing 
the FP morphology [38]. Signal transduction pathways at 
the FP that influence cytoskeletal dynamics are controlled 
by the Rho family of small GTPases and their regulators: 
Rac1 promotes cell motility, RhoA stimulates the formation 
of contractile actin cables in vivo or stress fibers in vitro, 
while Cdc42 initiates actin branching [39–42]. Several stud-
ies have closely linked the development of proteinuria with 
the dysregulation of actin organization in podocytes [43–45]. 
Mutations affecting actin-related structure, anchors, and reg-
ulator proteins in podocytes result in actin-cytoskeleton rear-
rangement, disrupt the filtration barrier, and subsequently 
lead to kidney disease [46–50]. In this context, the actin-
associated regulatory protein, synaptopodin, has gained 
special attention: It binds directly to RhoA and thereby 
prevents the targeting of RhoA for proteasomal degrada-
tion and thereby induces stress fiber formation in podocytes 
[51–53]. Furthermore, nephrin a major component of the SD 
is linked to the actin cytoskeleton and regulates it via the nck 
and CD2AP adaptor proteins [54, 55]. Mutations in nephrin 
disturb the actin cytoskeleton [56]. Finally, myosin 1e may 
be important for the function of actin cables, as mutations 
in myosin1e are also associated with FSGS [57, 58]. Fur-
ther details can be found in an excellent review by Blaine 
et al. [59]. Altogether, this data underlines that the proper 
organization and the dynamic regulation of the podocyte 
cytoskeleton are vital to the kidney filtration function.

Regulation of the actin‑cytoskeleton 
via intracellular Ca2+ signaling

Ca2+ binding can trigger podocyte pathology by activating 
multiple downstream signal transducers such as calcineu-
rin, calmodulin, and small GTPases. Signaling through the 
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Ca2+-activated serine/threonine phosphatase, calcineurin, 
has recently emerged as an important modulator of podocyte 
function. Calcineurin is widely distributed across many cell 
types including podocytes. Its most renowned function is the 
activation of the nuclear factor of activated T-cells (NFAT) 
[60–63], which upregulates interleukin-2 and induces T-cell 
response [64]. Additionally, calcineurin renders the actin 
stabilizer synaptopodin by dephosphorylation accessible to 
cathepsin L-mediated degradation. This leads to modula-
tion in Rho GTPases activity, cytoskeletal rearrangement 
and proteinuria [53, 65–70]. Ang II has also been shown 
to activate calcineurin in a TRPC5-dependent manner [69]. 
Taken together, calcineurin seems to be a key transducer of 
Ca2+-activated signaling in podocyte injury.

Another important calcium sensor is calmodulin. It is a 
critical upstream regulator of the Ca2+/calmodulin–depend-
ent kinase (CaMK4), which activates Rac1 and suppresses 
synaptopodin and nephrin leading to the remodeling of the 
actin-cytoskeleton and a motile podocyte phenotype [71]. 
Podocyte-specific inhibition of CaMK4 restores synapto-
podin expression and protects the actin-cytoskeleton from 
damage. In addition, the interaction between calmodulin and 
MYO9A is crucial to crosslink actin and to regulate RhoA 
activity [72]. Importantly, heterozygous loss-of-function 
mutations in MYO9A directly impairing the interaction 
with actin and calmodulin cause a form of human autoso-
mal dominant FSGS. Finally, calmodulin is also involved in 
the Ca2+-dependent inactivation of TRPC6 channels, which 
serves as a negative feedback regulation to prevent excess 
influx of Ca2+ [73]. Thus, the disruption of the calmodulin-
bridge with TRPC6 can lead to sustained Ca2+ elevation, 
stimulation of downstream signaling cascades and filamen-
tous actin (F-actin) rearrangements. Altogether, calmodulin 
plays an important role in the fine adjustment of [Ca2+]i in 
podocytes.

It is well known that the activation and the inactivation of 
small GTPases are mediated by guanine nucleotide exchange 
factors (GEF)s, which stimulate the exchange of bound GDP 
by free GTP, and by GTPase-activating proteins (GAP)s, 
which trigger the hydrolysis of GTP to GDP [39]. Interest-
ingly, the highly [Ca2+]i dependent Rho GEF, Arhgef1, has 
been shown to influence vascular tone and blood pressure in 
vascular smooth muscle cells in vivo [74]. Moreover, Arh-
gap24/ FiLGAP inactivates Rac1 [75] and a mutant form of 
Arhgap24/FiLGAP has been associated with a familial form 
of FSGS [76]. Further details of the regulation of the small 
GTPases in podocytes can be found in an excellent review 
by Saleem et al. [77]. Altogether, increased [Ca2+]i levels 
are associated with small GTPase-induced cytoskeletal rear-
rangements, which in turn alter podocyte motility.

In summary, the downstream signaling of Ca2+ converges 
on the actin-cytoskeleton, and Ca2+ is a critical regulator to 

mediate the dynamic remodeling of the actin-cytoskeleton 
and to contribute to the regulation of the podocyte motility 
(Table 1).

The effect of immunosuppressive agents 
on the Ca2+‑actin‑cytoskeleton

Immunosuppressive agents are widely used in the ther-
apy of proteinuric kidney diseases due to their immu-
notherapeutic or anti-inflammatory therapeutic effects 
[78]. However, there is growing evidence that these 
agents may additionally directly target podocytes via the 
Ca2+-actin-cytoskeleton axis and enhance stability of 
actin filaments (Fig. 1; Table 2).

Glucocorticoids

For decades, glucocorticoids (GCs) have remained the pri-
mary treatment for many glomerular diseases [79]. GCs 
act predominantly by altering gene expression, but also 
have secondary non-genomic effects [79]. After binding 
to a cytoplasmic glucocorticoid receptor (GR), which is 
expressed in every cell, the complex undergoes nuclear 
translation to induce transcriptional responses via bind-
ing to glucocorticoid response elements. In contrast, non-
genomic effects are mediated by binding to GRs located in 
the cytosol or by direct interaction with the cell membrane 
[80]. Podocytes have also been shown to express functional 
glucocorticoid receptors [81–83], and several studies have 
shown that GCs can change gene expression in podocytes 
in vitro, demonstrating that podocytes are responsive to 
GCs, as has been comprehensively summarized by Broek 
et al. [84].

It is well established that GCs can, on one hand, exert 
significant anti-proteinuric effects by influencing Ca2+ sign-
aling: They preserve the structural and functional integrity 
of the SD by binding and blocking TRPC6 channels [85]. 
On the other hand, GCs increase actin polymerization and 
the stability of actin filaments [86, 87]. For example, actin 
structure and binding molecules have been identified as 
targets of GCs: They increase gene expression and phos-
phorylation of nephrin [88, 89], upregulate CD2-associated 
protein [90], induce olfactomedin-1 expression [91] and pro-
mote Krüppel-like factor 15 gene expression, which stabi-
lize the actin cytoskeleton under stress and podocyte injury 
[92–94]. Furthermore, GCs protect podocytes by stabilizing 
the expression of α-actinin-4, an actin crosslinking protein 
that coordinates cytoskeletal organization [95]. Actin regula-
tors are an additional important target group: GC treatment 
after exposure to proteinuria-inducing agents reduced Rac1 
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over-activity and podocyte motility [96, 97], increased the 
stability of actin filaments by stabile synaptopodin expres-
sion, and increased RhoA activity [98, 99]. The effects of 
GCs-induced changes on the actin-cytoskeleton lead to its 
increased stability and enhanced protection of podocytes 
against damage (Fig. 2A).

Cyclosporine A

Cyclosporine A (CsA) is a calcineurin inhibitor that 
blocks the activation of NFAT in T cells preventing the 
transcription of cytokines such as Il-2 and Il-4. Recent 
studies demonstrated that its therapeutic effects extend 

Table 1   Comparison of the specific alterations in various pathways/targets in relation to the effect on podocytes (injury or protection)

Signal pathway/protein Function in podocyte protection Function in podocyte injury

TRPC6 Balance between TRPC5 and TRPC6 Overactivation e.g. through gain-of-function 
mutation

Calcium-activated potassium channels 
(KCa1.1)

Activation enhances Ca2+ influx through 
TRPC6 activation

Store-operated channels (SOCs) Activation triggers actin remodeling
Ionotropic NMDA receptor and purinergic 

P2X receptor
Activation enhances Ca2+ influx

Calcineurin Facilitates cathepsin L-mediated degradation of 
synaptopodin

Calmodulin Ca2+-dependent inactivation of the TRPC6 
channel

Through Ca2+ /calmodulin–dependent kinase 
(CaMK4) activation of Rac1 and suppression 
of synaptopodin and nephrin

Synaptopodin Prevention of synaptopodin from degradation Cathepsin L-mediated degradation of synapto-
podin through calcineurin

Small GTPases Activation of RhoA promotes stable actin 
cables; balance between RhoA and Rac1 
activation

Overactivation of Rac1 promotes cell motility

Arhgap24/ FiLGAP Inactivating Rac1 Mutant form of Arhgap24/FiLGAP is associ-
ated with a familial form of FSGS

Nephrin Major component of the SD, is linked to the 
actin cytoskeleton and regulates it via adap-
tor proteins

Mutations in nephrin affect the actin cytoskel-
eton

Myosin1e Pathological variants in myosin1e are associ-
ated also with FSGS

Fig. 1   Direct effects of GCs, 
CsA, Tac, MMF, and RTX on 
ion channels, actin-cytoskeleton 
components and regulators in 
podocytes. Created in BioRen-
der.com. CsA cyclosporine 
A, GCs glucocorticoids, RTX 
rituximab, MPA mycophenolic 
acid, Tac tacrolimus
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Table 2   Summary of the 
specific molecular mechanisms 
of podocyte protection induced 
by each of the various drugs

Immunosuppressive agents Effect on podocytes

Glucocorticoids Blocking TRPC6 signaling
Activation of the nephrin gene promoter and support of nephrin`s 

phosphorylation
Upregulation of CD2AP adaptor protein
Stabilizing the expression of actin crosslinking protein, α-actinin-4
Prevention of synaptopodin’s degradation
Diminishing Rac1 overactivity and enhancing RhoA activity
Promoting Krüppel-like factor 15 gene expression
Inducing olfactomedin-1 expression

Cyclosporine A Preventing synaptopodin's dephosphorylation and degradation
Decreasing TRPC6 gene expression

Tacrolimus Preventing the degradation of synaptopodin
Increasing the activation of RhoA

Mycophenolate-mofetil Reducing podocyte’s [Ca2+]i

Stabilizing stress fiber formation
Reducing the expression levels of Vav1 and Rac1 activity

Rituximab Preventing acid-sphingomyelinase down-regulation
Upregulation of ASMase expression and activity
Binding soluble urokinase-type plasminogen activator

Fig. 2   Direct effects of GCs, CsA, Tac, MMF, and RTX on ion chan-
nels, actin-cytoskeleton components, and regulators in podocytes. 
Panels focus on the relevant mechanisms of action of each of the 

drugs: GCs (A), CsA (B), Tac (B), MMF (C), and RTX (D). Created 
in BioRender.com. CsA cyclosporine A, GCs glucocorticoids, RTX 
rituximab, MPA mycophenolic acid, Tac tacrolimus
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beyond immune cells. Calcineurin dephosphorylates the 
actin-associated protein and Rho-GTPase-regulator syn-
aptopodin in podocytes and increases its susceptibility 
to cathepsin L-mediated degradation. CsA prevents the 
dephosphorylation of synaptopodin by calcineurin, thereby 
maintaining the phosphorylation-dependent interaction of 
synaptopodin with −14–3-3 beta [65] and preventing the 
degradation of synaptopodin. Therefore, CsA stabilizes 
the stress fiber formation making podocytes more resist-
ant to the development of proteinuria. Similarly, inhibi-
tion of Ca2+ channels by CsA as well as the cathepsin L 
inhibitor reduced FPE, which was induced by the treat-
ment of isolated glomeruli with protamine-sulfate. This 
suggests that Ca2+ signaling through calcineurin- and cath-
epsin L-dependent cleavage of synaptopodin is essential 
in the initial stages of glomerular injury and can serve 
as a podocyte-specific therapeutic target [100]. Accord-
ingly, pre-incubation of mouse podocytes with CsA dur-
ing treatment with puromycin aminonucleoside increased 
the expression of synaptopodin and restored the organi-
zation of the actin-cytoskeleton [101]. Additionally, CsA 
decreases TRPC6 expression in doxorubicin nephropathy 
[102]. These findings (Fig. 2B) clearly demonstrate that 
the treatment response of CsA in proteinuric kidney dis-
eases extends beyond its immunosuppressive effect and 
reveals the podocyte as the therapeutic target of choice for 
glomerular diseases [103].

Tacrolimus

Tacrolimus (Tac) is another calcineurin inhibitor, that 
exerts the same effect on calcineurin and downstream 
inhibition of NFAT activation in T-cells though it lacks 
clear structural similarity to CsA [61]. Its activity is medi-
ated through the FK506 binding protein 1A (FKBP12). 
Importantly, FKBP12 is localized to the actin-cytoskeleton 
and associates with F-actin [104]. FKBP12 knockdown in 
podocytes leads to alterations in the structure of F-actin, 
highlighting the importance of FKBP12 expression and 
function in maintaining the integrity of the actin cytoskel-
eton [104]. Furthermore, Tac could restore the expression 
of FKBP12 and enhance the interactions between FKBP12 
and synaptopodin to ameliorate FPE in injured podocytes 
[104]. The stabilizing effect of Tac on the synaptopodin 
expression is strongly supported by in vitro and in vivo 
studies [101, 105]. Additionally, Wu et al. investigated the 
calcineurin-related Ca2+-actin-cytoskeleton axis and found 
that it was highly up-regulated in a model of depleted 
miR-30 and impressively blocked by Tac [106]. Tac also 
activates the actin-regulator RhoA [107]. Altogether, Tac 
seems to be able to stabilize stress fibers in podocytes 

mostly in a Ca2+-calcineurin dependent manner, but also 
directly via actin-cytoskeleton (Fig. 2B).

Mycophenolate mofetil

The prodrug mycophenolate mofetil (MMF) is activated by 
esterases in the gut and blood to release the pharmacologi-
cally active drug moiety, mycophenolic acid (MPA), which 
functions as a selective non-competitive inhibitor of inosine 
5′-monophosphate dehydrogenase. This is the rate-limiting 
enzyme in the de novo purine synthesis pathway and thereby 
impairs lymphocyte proliferation [108]. Importantly, direct 
effects on non-immune cells, including glomerular cells such 
as mesangial cells and podocytes, have been attributed to 
MMF [109]. In a lupus model, MMF reduced expression 
levels of Vav1 and Rac1 activity, which ameliorated stress 
fiber formation in podocytes [107]. This finding is further 
supported by our in vitro experiments, which were designed 
to exclude the effect of immune cells and study MPA’s direct 
effect on podocytes: We detected a significant change in 350 
genes within 24 h of MPA treatment [110], and these genes 
were partially related to Ca2+-signaling and actin-cytoskel-
eton regulation. As validation, we showed that MPA treat-
ment was able to completely block the increase in [Ca2+]i 
induced by bovine serum albumin and subsequently stabilize 
the stress fiber formation. Additionally, we demonstrated in a 
nephrotoxic serum nephritis model in vivo an improvement 
of proteinuria  treatment and identified a significant reduc-
tion in podocyte’s [Ca2+]i after MMF treatment as possible 
underlying mechanisms. This change resulted in a tendency 
towards structural stabilization of podocyte foot processes 
[111]. Together, these data suggest a relevant effect of MPA 
to directly stabilize stress fibers in podocytes (Fig. 2C).

Rituximab

Rituximab (RTX) is a B-cell depleting chimeric mono-
clonal IgG1 antibody targeting the CD20 receptor. B-cell 
destruction is mediated by the Fcγ immunoglobulin recep-
tor, complement activation and trigger of apoptosis [112]. 
RTX has been shown to be effective in podocytopathies by 
the depletion of B-cells [113]. RTX also possesses other 
B-cell-independent effects: By targeting sphingomyelin 
phosphodiesterase acid-like 3b (SMPDL-3b) in podocyte 
lipid rafts, RTX regulates acid-sphingomyelinase activity 
and stabilizes the podocyte actin-cytoskeleton [114]. The 
inhibition of stress fibers formation in podocytes, following 
incubation with sera of patients with recurrent FSGS after 
transplantation, was blocked by treatment with RTX. This 
response and podocyte viability were dependent on SMPDL-
3b expression in vitro, as the knockdown of SMPDL-3b in 
podocytes abrogated these effects. Furthermore, SMPDL-3b 
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has been shown to increase the stability of the cytoskeleton 
by binding soluble urokinase-type plasminogen activator 
receptor with subsequent Rac1 inhibition [115]. No data 
are currently available on the direct effects of the human-
ized, and therefore less immunogenic, anti-CD20 antibodies, 
ofatumumab and obinutuzumab, or the anti-CD38 antibody 
daratumumab [116]. Altogether, RTX seems to possess a rel-
evant direct effect on podocytes. However, few weeks after 
administration, RTX is likely no longer present in the circu-
lation, making the duration and relevance of its direct effect 
on podocytes potentially less pronounced compared to other 
immunosuppressive agents (Fig. 2D).

Cyclophosphamide

To date, no data are available about a direct beneficial effect 
of cyclophosphamide on podocytes. Children with genetic 
proteinuric diseases also do not respond to cyclophospha-
mide therapy [117].

Immunosuppressive therapy in genetic 
nephrotic syndrome

The non-immunologic effects of the immunosuppressive 
drugs discussed above raise the question, whether patients 
with genetic steroid resistant nephrotic syndrome (SRNS) 
could benefit from an immunosuppressive therapy or not. 
In terms of CsA, there are some multicenter studies offer-
ing sparse data. In a large retrospective multicenter study of 
CsA treatment, none of the patients with genetic nephrotic 
syndrome experienced a complete remission and only two 
(17%) achieved a partial response [66]. In another multi-
center study, 3% of patients with genetic SRNS experienced 
a complete remission, and 16% of patients with genetic 
SRNS showed a partial remission after CsA therapy [118]. 
The PodoNet Consortium has obtained similar results: Of 
74 patients with proven genetic mutations, two patients had 
complete and 12 partial remissions. Thus, in this series, a 
total of 14/74 (19%) patients with genetic SRNS had a lim-
ited response to immunosuppression with CsA and predniso-
lone pulses [117]. Based on some case reports, children with 
WT-1 mutation might constitute a particular group, which 
could show favorable response to an intensified therapy with 
CsA and GCs [119, 120]. Interestingly, the authors discuss 
the potential role of the direct effect on podocytes. In sum-
mary, most patients with genetic nephrotic syndrome do not 
benefit from an immunosuppressive therapy and show sig-
nificantly lower response rates compared with non-genetic 
patients. This could be due to a direct effect stabilizing actin-
binding proteins, which is missing if these proteins them-
selves are mutated, leading to drug-resistant damage of the 
actin-cytoskeleton. As genetic podocytopathies are caused 

by mutations in multiple distinct proteins, it is not unex-
pected that their response to therapies differs. The extent of 
nephrotoxic effect (in case of CsA and Tac) and the subse-
quent reduction of plasma flow is also difficult to predict. 
Therefore, it is generally not recommended to administer 
immunosuppressive drugs in genetic forms of NS. However, 
in the future, it could be part of an individualized therapeutic 
concept for patients with genetic NS.

Conclusion

Immunosuppressive drugs commonly used to treat proteinuric 
kidney diseases exert direct effects on ion channels, actin-
cytoskeleton components, and regulators (Fig. 1) in podo-
cytes. This explains, in conjunction with their effects on 
immune cells, their clinical effectiveness. In the adaptation to 
damage, a strict regulation of the Ca2+-actin-cytoskeleton axis 
is crucial for the survival of podocytes. Therefore, utilizing 
the demonstrated direct effects of GCs, CsA, Tac, MMF, and 
RTX is an essential part in choosing an individual therapeu-
tic approach. The question, to what extent the non-immune, 
direct drug actions contribute to sustained effects of immu-
nosuppression, will require continued studies in the future.
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