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Abstract

Ca”" currents (Ic,1) carried by ventricular L-type Ca”" channels (LTCC) are altered in failing hearts, and increased LTCC
activity is discussed as a cause of cardiomyopathy. We have shown that lack of the inhibitory G-protein isoform Ga;; improves
cardiac outcome and survival in a murine heart-failure model of cardiac p;-adrenoceptor (f,-AR) overexpression (;-tg),
while lack of the Gay, isoform was detrimental in the same heart-failure model. Given the potential role of LTCC and their
modulation by p-adrenergic signalling, we now analysed ventricular I, in f;-tg mice and in f,-tg mice lacking either Go;,
or Gays. Using the patch-clamp technique, we recorded whole-cell I,; in ventricular myocytes freshly isolated from adult
mice. Compared to age-matched wild-type littermates, basal /,; was reduced in myocytes from f;-tg mice both under basal
conditions (— 8.1 + 1.6 vs. — 5.5 + 1.5 pA/pF) and upon p-adrenergic stimulation with 1 uM isoproterenol (— 14.3 + 5.6 vs.
— 7.4 + 1.9 pA/pF). Lack of Goy; normalised basal I, to nearly wild-type levels (— 7.5 & 1.6 pA/pF), while p-adrenergic
response remained attenuated (— 9.5 + 3.6 pA/pF). In contrast, the absence of Go;, did not restore basal I,; (— 5.7 + 1.8
pA/pF), but restored the p-adrenergic response of Ir,; , with the difference from basal current even exceeding that in wild-
type mice (— 12.2 + 2.9 pA/pF).We propose that by restoring basal I,; , Go;; deficiency might contribute to the restoration
of contractility in f,-tg mice, while maintaining attenuation of the I,; response upon p-adrenergic stimulation protects
against deleterious effects mediated by enhanced B-AR signalling. In contrast, restored and even enhanced /-, response to
B-adrenergic stimulation might contribute to detrimental effects of Go;, deficiency observed in f;-tg mice previously.
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Introduction

Alterations of ventricular L-type Ca®" currents (I.,; ) have
been associated with cardiomyopathy and heart failure
in animal models and humans (Mukherjee and Spinale
1998; Richard et al. 1998; Schroder et al. 1998; Chen et al.
2002, 2008; Nakayama et al. 2007; Beetz et al. 2009).
f-adrenoceptor (f-AR) overexpression and lack of G, iso-
forms play a role both in the modulation of ventricular /c,;
and the development of cardiomyopathy (Engelhardt et al.
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1999; Liggett et al. 2000; Foerster et al. 2003, 2004; Kel-
ler et al. 2015; Schroper et al. 2024). In the murine heart-
failure model of f;-AR overexpression ($,-tg) (Engelhardt
et al. 1999), an additional lack of Ga, (Gay, ™) led to early-
onset heart failure in mice with cardiac overexpression of
B,-AR (Keller et al. 2015). In contrast, we recently found
that the heart-failure phenotype of B,-tg mice is prevented
or at least delayed by additional Gay; deficiency (Schroper
et al. 2024). Given the link between ventricular /,; and
cardiac (dys-)function, we performed whole-cell I, record-
ings using ventricular myocytes isolated from f3;-tg mice and
f,-tg mice lacking either Go;, or Ga,; with an explorative
intention. Our results revealed differences in ventricular /,;
under basal conditions and upon B-adrenergic stimulation,
which hint towards mechanisms underlying isoform-specific
roles of Gay; proteins.
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Material and methods

For details, please refer to supplementary data.

On a C57BL/6J background, mice with cardiac overex-
pression of the human ;-AR (Keller et al. 2015) were cross-
bred with mice globally lacking either Gay, (Dizayee et al.
2011) or Goy; (Gohla et al. 2007). Male mice at an age of
4-5 (B,;-tg/Gay, ™) or 10-11 months (B,-tg/Goy; ™) were
investigated. Age-matched wild-type and f,-tg mice were
used for comparison. The federal state authority approved
animal breeding, maintenance and experiments (references:
84-02.04.2016.A422 and 81-02.04.2022.A141). All animal
experiments complied with the guidelines from Directive
2010/63/EU of the European Parliament on the protection
of animals used for scientific purposes.

Ventricular myocytes were isolated by retrograde perfu-
sion of freshly excised hearts with collagenase-containing
solutions, kept at room temperature and subjected to patch-
clamp experiments within 2—8 h.

By patch-clamp technique, we recorded ventricular
whole-cell I, . Pipette solution (mM): 120 CsCl, 10 EGTA,
4 Mg-ATP, 5 HEPES, 1 MgCl,; pH 7.2. Bath solution (mM):
137 NaCl, 10 HEPES, 10 glucose, 5.4 CsCl, 2 CaCl,, 1
MgCl,; pH 7.4. I-V curves were obtained at room tempera-
ture using a double-pulse protocol. To correct for different
cell size, I, density was analysed, i.e. peak I-,; divided by
membrane capacitance (that was similar in all groups). For
analysing voltage dependence of activation, data were fitted
by combined Ohm and Boltzmann relation using

I(V) = (V- VR) x azmz(#”)) (Dizayee et al. 2011;
dav

Despang et al. 2022). We estimated the half-maximum
potential of inactivation from steady-state inactivation
curves by fitting with a sigmoidal Boltzmann equation, too
(Poomvanicha et al. 2011). In addition to basal conditions,
patch-clamp recordings were separately performed using
cells incubated with 1 uM isoproterenol for 8—10 min.

Throughout, we present mean values + standard devia-
tion. More than two groups were compared using one-way
ANOVA followed by Bonferroni-corrected post-tests. Two
groups were compared using unpaired Student’s ¢ test or
the Mann-Whitney U test as appropriate. We considered p
values < 0.05 statistically significant.

Results

Impaired ventricular I, in ,-tg compared to WT
cardiomyocytes

In B,-tg mice (10-11 months of age), ventricular peak /-,
density was significantly reduced compared to age-matched
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WT, and I,; activation was shifted to more positive poten-
tials (Fig. 1; Table S1). I, response (peak I, density
and activation potential) to 1 pM isoproterenol was signifi-
cantly reduced compared to WT. Thus, p;-tg mice showed
altered ventricular /,; both under basal conditions and upon
p-adrenergic stimulation at an age, when neither cardiac
hypertrophy nor cardiac dysfunction were found in previ-
ous studies (Keller et al. 2015; Schroper et al. 2024).

Additional Ga;; deficiency normalizes basal I,
but not the response to isoproterenol in ,-tg
cardiomyocytes

I, density in Bl-tg/G(xB_/_ mice was higher than in §;-
tg mice, and not significantly different from WT (Fig. 1;
Table S1). There was no right-shift of the activation potential
as in P;-tg mice. Overlap of I, activation and inactivation
curves suggests only slight differences with respect to win-
dow currents, i.e. currents flowing in a voltage range where
inactivation is not yet complete while activation already
occurs (Fig. S1). The blunted response to B-adrenergic stim-
ulation mainly persisted in 8 1-tg/G(xi3‘/ ~ mice. In contrast to
P;-tg mice, however, isoproterenol shifted ,; inactivation
significantly to more negative potentials. Taken together,
Guoy; deficiency led to normalization of ventricular I,
density and activation potential in B,-tg mice under basal
conditions. Response to f-adrenergic stimulation, however,
remained disturbed.

Ga;, deficiency does not restore basal I,
but response to isoproterenol in ,-tg
cardiomyocytes

Our current findings on p;-tg mice aged 10-11 months sug-
gest that changes in ventricular I, precede contractile dys-
function previously observed at about 18 months (Schroper
et al. 2024), while in another study, Ga;, deficiency in p;-tg
mice led to heart failure already at 10—11 months of age
(Keller et al. 2015). Thus, we investigated /,; here at an
even younger age of 4-5 months. Already at this younger
age, peak I,; density was significantly reduced in f;-tg mice
under basal conditions, and activation appeared to occur at
more positive potentials (Fig. 2; Table S2). Furthermore,
I, response to isoproterenol incubation was attenuated.
Basal /,; density and activation potentials were not normal-
ized by Gay;, deficiency, while inactivation was significantly
shifted towards more positive potentials (Fig. S2). Overlap-
ping curves of I, activation and inactivation indicated an
increased window current in case of f,-tg/Ga, '~ compared
to both wild-type and f3;-tg mice, respectively. I, response
to isoproterenol was at least restored in B;-tg/Got, ™~ mice.
Isoproterenol caused a statistically significant leftward shift
of the I, activation potential in all three genotypes, but
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Fig.1 In f;-tg mice, lack of Gay; reverses the reduction in basal ven-
tricular /,; but does not restore the response to B-adrenergic stimu-
lation. Current-voltage relationships (A) show that both the increase
of I, density and the shift of activation upon B-adrenergic stimula-
tion (closed symbols) are impaired in mice overexpressing the cardiac
B,-adrenoceptor (B-tg). Lack of Gay; (Goy; ™) does not reverse this
effect. B Effect of isoproterenol (iso) on peak /., density and C on
the half-maximum potential of I, activation. Data are presented as
mean + SD. Symbols in B and C represent values derived from indi-

compared to WT, this shift was reduced in p,-tg, while
more pronounced in f,-tg/Ga,, . In contrast to Gayz, Gotyy
deficiency was associated with significant effects on the
inactivation rates of I,; in ;-tg myocytes, as reflected by
delayed inactivation over almost the entire voltage range
(Fig. S3). Even at 4-5 months of age, the absence of Gy,
(B;-tg/Ga; ™) in contrast to Ga,, (B,-tg/Goy,, '7) appeared
to shift basal I-,; properties towards WT levels, while as
in B;-tg mice, the response to f-adrenergic stimulation was
blunted. However, here, data are limited to five recordings
under each condition with myocytes from a single animal.

In summary, we found that in contrast to Goy, the lack
of Gay;, does not normalize basal I,; in §,-tg mice, while
it restores or even enhances the response to f-adrenergic
stimulation.

vidual recordings. *p < 0.05; **p < 0.01 and ***p < 0.001 in multi-
ple unpaired ¢ tests (A), unpaired ¢ tests comparing effects of isopro-
terenol (B, C), or Bonferroni-corrected post-tests following one-way
ANOVA from comparison of genotypes under basal conditions (B,
C). To test f-adrenergic stimulation, cells were incubated with 1 uM
isoproterenol for 8 + 2 min. Data were obtained in n = 12-19 record-
ings with cells from at least three animals per genotype, aged 10-11
months

Discussion

Cardiac ;-AR overexpression leads to heart failure in mice
(Engelhardt et al. 1999; Lee et al. 2015; Schroper et al.
2024). Additional Go; deficiency was protective (Schroper
et al. 2024), while Ga;, deficiency exacerbated cardiomyo-
pathy in both f,- and $,-AR overexpressing mice (Foerster
et al. 2003; Keller et al. 2015). In B,-tg mice, ventricular
I, was reduced (Heubach et al. 2001; Foerster et al. 2003,
2004), perhaps due to increased ventricular Gay; expression
(Foerster et al. 2003; Dizayee et al. 2011), suggested by
enhanced LTCC activity when lacking Goy; (Klein 2009).
Consistently, we find Goy; deficiency to revert the reduc-
tion in basal I,; density in ;-tg mice. This was not the
case in Goy,-deficient ;-tg mice. Non-selective G;-protein
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Fig.2 In B,-tg mice, lack of Gy, restores the f-adrenergic response
without influencing the reduced basal I, . Current-voltage rela-
tionships (A) indicate a blunted increase of the I, density upon
B-adrenergic stimulation (closed symbols) by isoproterenol (iso)
in mice overexpressing the cardiac f,-adrenoceptor (B,-tg), which
is reversed in P,-tg mice lacking Gay, (B,-tg/Goy, ™). B Respective
effects on peak I, density and C on the half-maximum potential
of I, activation. Data are presented as mean + SD. Symbols in

B and C represent values derived from individual recordings. *p <

inhibition restored the reduced contractile response to
B-adrenergic stimulation in failing cardiomyocytes (Brown
and Harding 1992). Thus, the blunted LTCC response to
B-adrenergic stimulation in B,;- and B,-tg mice (this study
and Foerster et al. 2004) might be explained by G;-protein
activity. In heart failure, the (PKA-mediated) response
to enhanced B-AR stimulation is detrimental in the long
term, and f-AR antagonists can decrease patients’ mor-
tality (El-Armouche and Eschenhagen 2009; Baker 2014;
Kotecha et al. 2017). Thus, it seems reasonable to consider
suppressed p-adrenergic response as protective. We find
reduced I,; response on isoproterenol in f;-tg mice with
and without Goy; expression. The latter suggests that the
above-mentioned restoration of contractile response to f-AR
stimulation was not mediated by inhibiting the Go; isoform.
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0.05; **p < 0.01 and ***p < 0.001 in multiple unpaired ¢ tests (A),
unpaired 7 tests comparing effects of isoproterenol (B, C), or Bonfer-
roni-corrected post-tests following one-way ANOVA from compari-
son of genotypes under basal conditions (B, C). To test f-adrenergic
stimulation, cells were incubated with 1 pM isoproterenol for 8§ + 2
min. Data were obtained in n = 7-17 recordings with cells from at
least three animals per genotype, aged 4-5 months. WT, wild-type lit-
termates

In contrast, our data on Go,, deficiency suggest that prevent-
ing effects mediated by this isoform may restore or even
enhance the response to f-AR stimulation, which could be
detrimental in the long term. The observed effects might be
explained not only by the lack of a respective Ga; isoform,
but upregulation of the other (Dizayee et al. 2011; Kohler
et al. 2014; but: Gohla et al. 2007; Hippe et al. 2013). Our
recent studies do not support this reactive change of expres-
sion, but we might have missed rather slight alterations (Kel-
ler et al. 2015; Schroper et al. 2024). Similarly, different
relative expression levels of f3;- and ,-AR might play a role,
although a previous study suggests the amount of §,-AR
negligible in f;-tg mice (Keller et al. 2015).

In summary, basal /,; and its response to f-adrenergic
stimulation is altered in ventricular myocytes from mice
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overexpressing the cardiac f;-AR. Lack of either Ga;, or
Gay; shows differential effects on these alterations.

The role of ventricular I, in the development
and prevention of cardiomyopathy

We used ventricular myocytes of mice at an age appar-
ently preceding the onset of ventricular dysfunction or even
an effect on survival for two reasons (Keller et al. 2015;
Schroper et al. 2024): first, alterations in ventricular LTCC
expression and/or function are already found in compen-
sated hypertrophy (Mukherjee and Spinale 1998; Richard
et al. 1998). Second, genetic alterations of ventricular /q,;
can lead to cardiac dysfunction, suggesting a causal role of
LTCC (Muth et al. 1999; Nakayama et al. 2007; Beetz et al.
2009; Goonasekera et al. 2012).

Increased ventricular /-,; was deleterious in some
mouse models (Muth et al. 1999; Nakayama et al. 2007;
Beetz et al. 2009). Interestingly, heterozygous knockout of
cardiac LTCC expression resulted in reduced I,; density
but also hypertrophy and heart failure (Goonasekera et al.
2012). Compared to wild-type littermates, ventricular I,
density was reduced in Gay,-deficient mice but increased
in Goy3-deficient mice (Dizayee 2011), but no contractile
dysfunction was present in either group (Jain et al. 2001;
Keller et al. 2015; Schroper et al. 2024). In p,;-tg mice, Gay;
deficiency was cardioprotective (Schroper et al. 2024) and
largely normalized, i.e. increased, ventricular I, density,
whereas Ga;, deficiency, which was detrimental to contrac-
tility and survival in f,-tg mice (Keller et al. 2015), did not
restore basal I,; density. Regarding an impact on contrac-
tility, these results suggest that the mechanism underlying
LTCC modulation may play a role.

Since mice in the previous studies died without prior
signs (Keller et al. 2015; Schroper et al. 2024) and arrhyth-
mias are the most common cause of death in humans, it
is tempting to speculate that the risk of arrhythmias is
increased in p,-tg/Go, ™~ given the increased window cur-
rent, which has been associated with rhythm disturbances
such as early after depolarizations (Benitah et al. 2010).

We cannot exclude altered LTCC expression, although
voltage dependence and response to isoproterenol indicate
effects independent of this, and previous studies using f,-tg,
Goy,- and Gay;-deficient mice did not indicate such changes
(Foerster et al. 2004; Dizayee et al. 2011).

The possible relevance of a reduced response
of ventricular I, to B-adrenergic stimulation

Sustained stimulation or overexpression of 3-AR leads to
ventricular hypertrophy and eventually to heart failure in
rodent models (Gomes et al. 2013). Acute B-AR stimulation
leads to increased LTCC activity like that observed in human

heart failure (Tsien et al. 1986; Yue et al. 1990; Schroder
et al. 1998), and increased LTCC activity can lead to cardio-
myopathy and heart failure in mice (Nakayama et al. 2007;
Beetz et al. 2009). Given the life-prolonging effect of heart
failure treatment with B-AR antagonists, one might specu-
late that the reduced I,; response to B-adrenergic stimula-
tion observed in human and murine heart failure (Schréder
et al. 1998; Muth et al. 1999; Groner et al. 2004; Foerster
et al. 2004; Chen et al. 2008; Beetz et al. 2009) is a protec-
tive mechanism, albeit insufficient or decompensating in the
long term. Thus, protective effects of Gay; deficiency in f-tg
mice might be due to maintained attenuation of I,; response
to B-AR stimulation, whereas in contrast, the deleterious
effects of Ga;, deficiency might be linked to restoration of
the I,; response to f-adrenergic stimulation, i.e. lack of
protection against or increased susceptibility to f-adrenergic
stimulation. In addition to the increased window currents
under basal conditions, I, inactivation was delayed upon
B-AR stimulation in Gay,-deficient ,-tg mice compared to
WT or mice solely overexpressing the cardiac B;-AR. This
might as well contribute to arrhythmia as seen for example
with mice expressing a mutated LTCC pore (Cheng et al.
2011; Drum et al. 2014). Studies on the modulation of /-,
by muscarinic acetylcholine receptors or $-AR suggest an
isoform-specific role of Go;, or Goy; (Nagata et al. 2000;
Foerster et al. 2003; Klein 2009). This might involve differ-
ential regulation of PKA activity that is known to regulate
I, activity (Papa et al. 2022). Of note, we recently found
G;-isoform-specific differences in phosphorylation of the
PKA target phospholamban (Schroper et al. 2024).

Limitations

Our study is subject to certain limitations. The age of mice
used in our experiments was chosen with respect to in vivo
findings from earlier studies (Keller et al. 2015; Schroper et al.
2024). We cannot exclude that cardiac function is affected
already at the age of mice we used now. Again considering
previous findings, we used mice at different ages for experi-
ments on either Goy, or Gay; deficiency. Of note, I, altera-
tions in f,-tg mice were similar at either age, and differences
between f,-tg mice lacking either Goy;, or Gay; were similar
at 4-5 months of age, though indicated by experiments with
myocytes from only one Bl—tg/GocB_/ ~ animal. Experiments
with animals of the respective other age are necessary to con-
firm the hints we found. Since we used exclusively male mice,
experiments should be repeated with females. We discuss pre-
vious findings obtained with the same mouse lines. Properties
of mouse models can change over time. However, not least for
animal welfare reasons, it is difficult to repeat experiments.
On the other hand, repeating some experiments with animals
of the same genotype but a different age seems reasonable.
We do not provide sufficient data on molecular mechanisms
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underlying our findings. Thus, future studies are needed to
address the issues discussed and furthermore analyse interac-
tion partners involved in, e.g., adrenergic signalling.

Summary and conclusion

Given the limitations of your study, we conclude with cau-
tion. We assume that Goy; deficiency contributes to the res-
toration of contractility in f,-tg mice by restoring basal ven-
tricular /,; , whereas maintained attenuation of I,; response
to f-adrenergic stimulation protects against deleterious effects
of enhanced B-AR signalling. In contrast, restored or even
enhanced I,; response to B-AR stimulation might explain
detrimental effects of Goy;, deficiency observed in f3;-tg mice
previously (Keller et al. 2015). Of course, other factors besides
I,; may be relevant for the effects of Gay;, or Gy deficiency.
Overall, our current and previous data suggest that isoform-
specific effects of inhibitory G proteins should be further
explored regarding new options for treatment or prevention
of heart failure.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s00210-025-03999-y.
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