

Opposite effects of $G\alpha_{i2}$ or $G\alpha_{i3}$ deficiency on reduced basal density and attenuated β -adrenergic response of ventricular Ca^{2+} currents in myocytes of mice overexpressing the cardiac β_1 -adrenoceptor

Nour Katnahji¹ · Jan Matthes¹

Received: 28 June 2024 / Accepted: 27 February 2025 / Published online: 31 March 2025
© The Author(s) 2025

Abstract

Ca^{2+} currents (I_{CaL}) carried by ventricular L-type Ca^{2+} channels (LTCC) are altered in failing hearts, and increased LTCC activity is discussed as a cause of cardiomyopathy. We have shown that lack of the inhibitory G-protein isoform $G\alpha_{i3}$ improves cardiac outcome and survival in a murine heart-failure model of cardiac β_1 -adrenoceptor (β_1 -AR) overexpression (β_1 -tg), while lack of the $G\alpha_{i2}$ isoform was detrimental in the same heart-failure model. Given the potential role of LTCC and their modulation by β -adrenergic signalling, we now analysed ventricular I_{CaL} in β_1 -tg mice and in β_1 -tg mice lacking either $G\alpha_{i2}$ or $G\alpha_{i3}$. Using the patch-clamp technique, we recorded whole-cell I_{CaL} in ventricular myocytes freshly isolated from adult mice. Compared to age-matched wild-type littermates, basal I_{CaL} was reduced in myocytes from β_1 -tg mice both under basal conditions (-8.1 ± 1.6 vs. -5.5 ± 1.5 pA/pF) and upon β -adrenergic stimulation with 1 μM isoproterenol (-14.3 ± 5.6 vs. -7.4 ± 1.9 pA/pF). Lack of $G\alpha_{i3}$ normalised basal I_{CaL} to nearly wild-type levels (-7.5 ± 1.6 pA/pF), while β -adrenergic response remained attenuated (-9.5 ± 3.6 pA/pF). In contrast, the absence of $G\alpha_{i2}$ did not restore basal I_{CaL} (-5.7 ± 1.8 pA/pF), but restored the β -adrenergic response of I_{CaL} , with the difference from basal current even exceeding that in wild-type mice (-12.2 ± 2.9 pA/pF). We propose that by restoring basal I_{CaL} , $G\alpha_{i3}$ deficiency might contribute to the restoration of contractility in β_1 -tg mice, while maintaining attenuation of the I_{CaL} response upon β -adrenergic stimulation protects against deleterious effects mediated by enhanced β -AR signalling. In contrast, restored and even enhanced I_{CaL} response to β -adrenergic stimulation might contribute to detrimental effects of $G\alpha_{i2}$ deficiency observed in β_1 -tg mice previously.

Keywords Calcium channel · Adrenergic receptor · Inhibitory g protein GI · Heart failure · Cardiomyopathy · Transgenic mouse

Introduction

Alterations of ventricular L-type Ca^{2+} currents (I_{CaL}) have been associated with cardiomyopathy and heart failure in animal models and humans (Mukherjee and Spinale 1998; Richard et al. 1998; Schröder et al. 1998; Chen et al. 2002, 2008; Nakayama et al. 2007; Beetz et al. 2009). β -adrenoceptor (β -AR) overexpression and lack of $G\alpha_i$ isoforms play a role both in the modulation of ventricular I_{CaL} and the development of cardiomyopathy (Engelhardt et al.

1999; Liggett et al. 2000; Foerster et al. 2003, 2004; Keller et al. 2015; Schröder et al. 2024). In the murine heart-failure model of β_1 -AR overexpression (β_1 -tg) (Engelhardt et al. 1999), an additional lack of $G\alpha_{i2}$ ($G\alpha_{i2}^{-/-}$) led to early-onset heart failure in mice with cardiac overexpression of β_1 -AR (Keller et al. 2015). In contrast, we recently found that the heart-failure phenotype of β_1 -tg mice is prevented or at least delayed by additional $G\alpha_{i3}$ deficiency (Schröder et al. 2024). Given the link between ventricular I_{CaL} and cardiac (dys-)function, we performed whole-cell I_{CaL} recordings using ventricular myocytes isolated from β_1 -tg mice and β_1 -tg mice lacking either $G\alpha_{i2}$ or $G\alpha_{i3}$ with an explorative intention. Our results revealed differences in ventricular I_{CaL} under basal conditions and upon β -adrenergic stimulation, which hint towards mechanisms underlying isoform-specific roles of $G\alpha_i$ proteins.

✉ Jan Matthes
jan.matthes@uni-koeln.de

¹ Center of Pharmacology, Department II, University of Cologne and University Hospital Cologne, Gleueler Strasse 24, Cologne 50931, Germany

Material and methods

For details, please refer to supplementary data.

On a C57BL/6J background, mice with cardiac overexpression of the human β_1 -AR (Keller et al. 2015) were cross-bred with mice globally lacking either $G\alpha_{i2}$ (Dizayee et al. 2011) or $G\alpha_{i3}$ (Gohla et al. 2007). Male mice at an age of 4–5 (β_1 -tg/ $G\alpha_{i2}^{-/-}$) or 10–11 months (β_1 -tg/ $G\alpha_{i3}^{-/-}$) were investigated. Age-matched wild-type and β_1 -tg mice were used for comparison. The federal state authority approved animal breeding, maintenance and experiments (references: 84-02.04.2016.A422 and 81-02.04.2022.A141). All animal experiments complied with the guidelines from Directive 2010/63/EU of the European Parliament on the protection of animals used for scientific purposes.

Ventricular myocytes were isolated by retrograde perfusion of freshly excised hearts with collagenase-containing solutions, kept at room temperature and subjected to patch-clamp experiments within 2–8 h.

By patch-clamp technique, we recorded ventricular whole-cell I_{CaL} . Pipette solution (mM): 120 CsCl, 10 EGTA, 4 Mg-ATP, 5 HEPES, 1 MgCl₂; pH 7.2. Bath solution (mM): 137 NaCl, 10 HEPES, 10 glucose, 5.4 CsCl, 2 CaCl₂, 1 MgCl₂; pH 7.4. I-V curves were obtained at room temperature using a double-pulse protocol. To correct for different cell size, I_{CaL} density was analysed, i.e. peak I_{CaL} divided by membrane capacitance (that was similar in all groups). For analysing voltage dependence of activation, data were fitted by combined Ohm and Boltzmann relation using $I(V) = (V - VR) \times \frac{C_{max}}{(1 + \exp \frac{(V_{0.5} - V)}{dV})}$ (Dizayee et al. 2011; Despang et al. 2022). We estimated the half-maximum potential of inactivation from steady-state inactivation curves by fitting with a sigmoidal Boltzmann equation, too (Poomvanicha et al. 2011). In addition to basal conditions, patch-clamp recordings were separately performed using cells incubated with 1 μ M isoproterenol for 8–10 min.

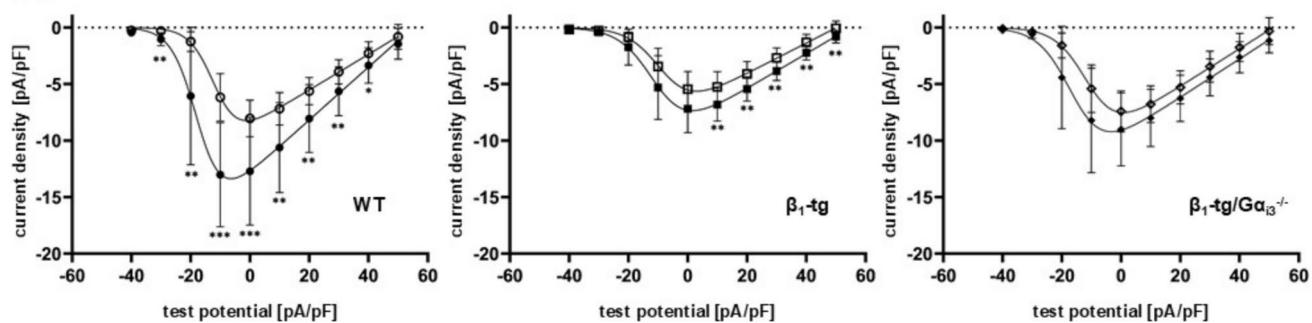
Throughout, we present mean values \pm standard deviation. More than two groups were compared using one-way ANOVA followed by Bonferroni-corrected post-tests. Two groups were compared using unpaired Student's *t* test or the Mann-Whitney *U* test as appropriate. We considered *p* values < 0.05 statistically significant.

Results

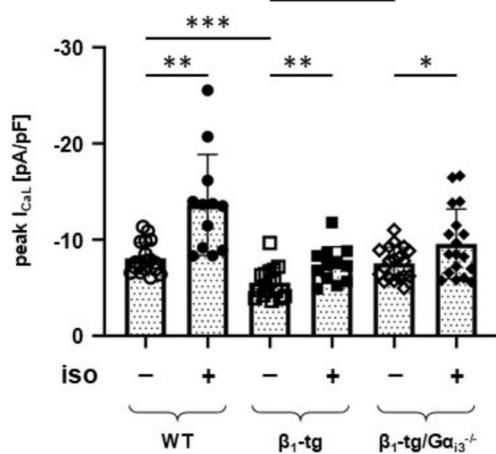
Impaired ventricular I_{CaL} in β_1 -tg compared to WT cardiomyocytes

In β_1 -tg mice (10–11 months of age), ventricular peak I_{CaL} density was significantly reduced compared to age-matched

WT, and I_{CaL} activation was shifted to more positive potentials (Fig. 1; Table S1). I_{CaL} response (peak I_{CaL} density and activation potential) to 1 μ M isoproterenol was significantly reduced compared to WT. Thus, β_1 -tg mice showed altered ventricular I_{CaL} both under basal conditions and upon β -adrenergic stimulation at an age, when neither cardiac hypertrophy nor cardiac dysfunction were found in previous studies (Keller et al. 2015; Schröper et al. 2024).


Additional $G\alpha_{i3}$ deficiency normalizes basal I_{CaL} but not the response to isoproterenol in β_1 -tg cardiomyocytes

I_{CaL} density in β_1 -tg/ $G\alpha_{i3}^{-/-}$ mice was higher than in β_1 -tg mice, and not significantly different from WT (Fig. 1; Table S1). There was no right-shift of the activation potential as in β_1 -tg mice. Overlap of I_{CaL} activation and inactivation curves suggests only slight differences with respect to window currents, i.e. currents flowing in a voltage range where inactivation is not yet complete while activation already occurs (Fig. S1). The blunted response to β -adrenergic stimulation mainly persisted in β_1 -tg/ $G\alpha_{i3}^{-/-}$ mice. In contrast to β_1 -tg mice, however, isoproterenol shifted I_{CaL} inactivation significantly to more negative potentials. Taken together, $G\alpha_{i3}$ deficiency led to normalization of ventricular I_{CaL} density and activation potential in β_1 -tg mice under basal conditions. Response to β -adrenergic stimulation, however, remained disturbed.


$G\alpha_{i2}$ deficiency does not restore basal I_{CaL} but response to isoproterenol in β_1 -tg cardiomyocytes

Our current findings on β_1 -tg mice aged 10–11 months suggest that changes in ventricular I_{CaL} precede contractile dysfunction previously observed at about 18 months (Schröper et al. 2024), while in another study, $G\alpha_{i2}$ deficiency in β_1 -tg mice led to heart failure already at 10–11 months of age (Keller et al. 2015). Thus, we investigated I_{CaL} here at an even younger age of 4–5 months. Already at this younger age, peak I_{CaL} density was significantly reduced in β_1 -tg mice under basal conditions, and activation appeared to occur at more positive potentials (Fig. 2; Table S2). Furthermore, I_{CaL} response to isoproterenol incubation was attenuated. Basal I_{CaL} density and activation potentials were not normalized by $G\alpha_{i2}$ deficiency, while inactivation was significantly shifted towards more positive potentials (Fig. S2). Overlapping curves of I_{CaL} activation and inactivation indicated an increased window current in case of β_1 -tg/ $G\alpha_{i2}^{-/-}$ compared to both wild-type and β_1 -tg mice, respectively. I_{CaL} response to isoproterenol was at least restored in β_1 -tg/ $G\alpha_{i2}^{-/-}$ mice. Isoproterenol caused a statistically significant leftward shift of the I_{CaL} activation potential in all three genotypes, but

A

B

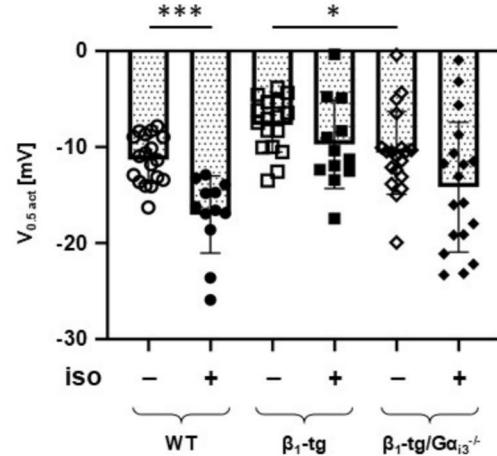
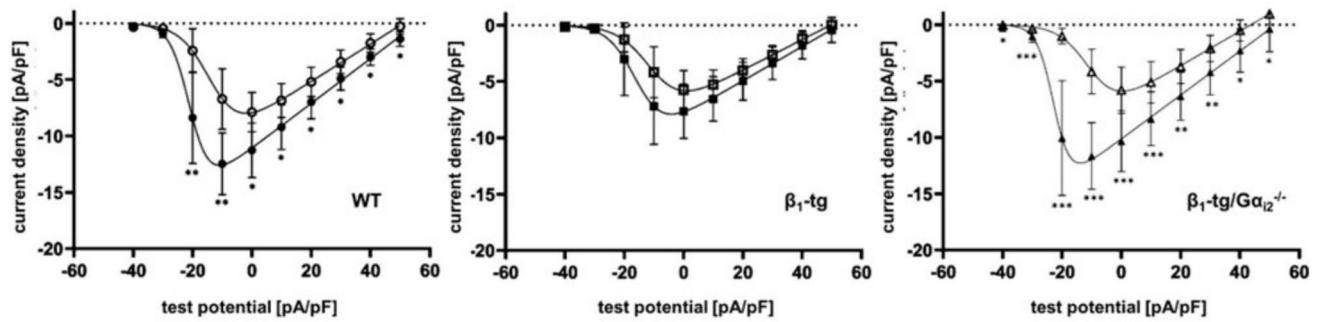


Fig. 1 In β_1 -tg mice, lack of $G\alpha_{i3}$ reverses the reduction in basal ventricular I_{CaL} but does not restore the response to β -adrenergic stimulation. Current-voltage relationships (A) show that both the increase of I_{CaL} density and the shift of activation upon β -adrenergic stimulation (closed symbols) are impaired in mice overexpressing the cardiac β_1 -adrenoceptor (β_1 -tg). Lack of $G\alpha_{i3}$ ($G\alpha_{i3}^{-/-}$) does not reverse this effect. **B** Effect of isoproterenol (ISO) on peak I_{CaL} density and **C** on the half-maximum potential of I_{CaL} activation. Data are presented as mean \pm SD. Symbols in **B** and **C** represent values derived from individual recordings. * p $<$ 0.05; ** p $<$ 0.01 and *** p $<$ 0.001 in multiple unpaired t tests (A), unpaired t tests comparing effects of isoproterenol (B, C), or Bonferroni-corrected post-tests following one-way ANOVA from comparison of genotypes under basal conditions (B, C). To test β -adrenergic stimulation, cells were incubated with 1 μ M isoproterenol for 8 \pm 2 min. Data were obtained in n = 12–19 recordings with cells from at least three animals per genotype, aged 10–11 months

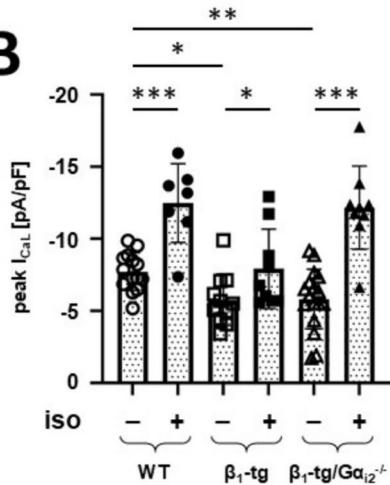
compared to WT, this shift was reduced in β_1 -tg, while more pronounced in β_1 -tg/ $G\alpha_{i3}^{-/-}$. In contrast to $G\alpha_{i3}$, $G\alpha_{i2}$ deficiency was associated with significant effects on the inactivation rates of I_{CaL} in β_1 -tg myocytes, as reflected by delayed inactivation over almost the entire voltage range (Fig. S3). Even at 4–5 months of age, the absence of $G\alpha_{i3}$ (β_1 -tg/ $G\alpha_{i3}^{-/-}$) in contrast to $G\alpha_{i2}$ (β_1 -tg/ $G\alpha_{i2}^{-/-}$) appeared to shift basal I_{CaL} properties towards WT levels, while as in β_1 -tg mice, the response to β -adrenergic stimulation was blunted. However, here, data are limited to five recordings under each condition with myocytes from a single animal.

In summary, we found that in contrast to $G\alpha_{i3}$, the lack of $G\alpha_{i2}$ does not normalize basal I_{CaL} in β_1 -tg mice, while it restores or even enhances the response to β -adrenergic stimulation.

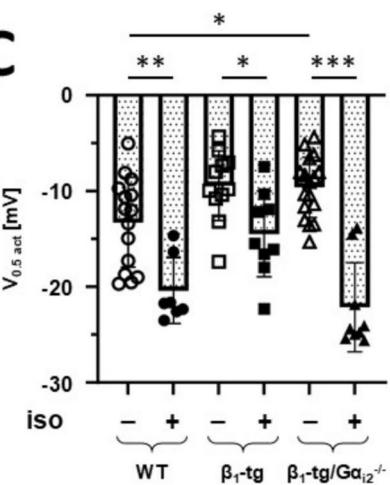
C



individual recordings. * p $<$ 0.05; ** p $<$ 0.01 and *** p $<$ 0.001 in multiple unpaired t tests (A), unpaired t tests comparing effects of isoproterenol (B, C), or Bonferroni-corrected post-tests following one-way ANOVA from comparison of genotypes under basal conditions (B, C). To test β -adrenergic stimulation, cells were incubated with 1 μ M isoproterenol for 8 \pm 2 min. Data were obtained in n = 12–19 recordings with cells from at least three animals per genotype, aged 10–11 months


Discussion

Cardiac β_1 -AR overexpression leads to heart failure in mice (Engelhardt et al. 1999; Lee et al. 2015; Schröper et al. 2024). Additional $G\alpha_{i3}$ deficiency was protective (Schröper et al. 2024), while $G\alpha_{i2}$ deficiency exacerbated cardiomyopathy in both β_1 - and β_2 -AR overexpressing mice (Foerster et al. 2003; Keller et al. 2015). In β_2 -tg mice, ventricular I_{CaL} was reduced (Heubach et al. 2001; Foerster et al. 2003, 2004), perhaps due to increased ventricular $G\alpha_{i3}$ expression (Foerster et al. 2003; Dizayee et al. 2011), suggested by enhanced LTCC activity when lacking $G\alpha_{i3}$ (Klein 2009). Consistently, we find $G\alpha_{i3}$ deficiency to revert the reduction in basal I_{CaL} density in β_1 -tg mice. This was not the case in $G\alpha_{i2}$ -deficient β_1 -tg mice. Non-selective G_i -protein


A

B

C

Fig. 2 In β_1 -tg mice, lack of $G\alpha_{i2}$ restores the β -adrenergic response without influencing the reduced basal I_{CaL} . Current-voltage relationships (A) indicate a blunted increase of the I_{CaL} density upon β -adrenergic stimulation (closed symbols) by isoproterenol (iso) in mice overexpressing the cardiac β_1 -adrenoceptor (β_1 -tg), which is reversed in β_1 -tg mice lacking $G\alpha_{i2}$ (β_1 -tg/ $G\alpha_{i2}^{-/-}$). **B** Respective effects on peak I_{CaL} density and **C** on the half-maximum potential of I_{CaL} activation. Data are presented as mean \pm SD. Symbols in **B** and **C** represent values derived from individual recordings. $*p <$

0.05; $**p < 0.01$ and $***p < 0.001$ in multiple unpaired *t* tests (A), unpaired *t* tests comparing effects of isoproterenol (B, C), or Bonferroni-corrected post-tests following one-way ANOVA from comparison of genotypes under basal conditions (B, C). To test β -adrenergic stimulation, cells were incubated with 1 μ M isoproterenol for 8 ± 2 min. Data were obtained in $n = 7$ –17 recordings with cells from at least three animals per genotype, aged 4–5 months. WT, wild-type littermates

inhibition restored the reduced contractile response to β -adrenergic stimulation in failing cardiomyocytes (Brown and Harding 1992). Thus, the blunted LTCC response to β -adrenergic stimulation in β_1 - and β_2 -tg mice (this study and Foerster et al. 2004) might be explained by G_i -protein activity. In heart failure, the (PKA-mediated) response to enhanced β -AR stimulation is detrimental in the long term, and β -AR antagonists can decrease patients' mortality (El-Armouche and Eschenhagen 2009; Baker 2014; Kotecha et al. 2017). Thus, it seems reasonable to consider suppressed β -adrenergic response as protective. We find reduced I_{CaL} response on isoproterenol in β_1 -tg mice with and without $G\alpha_{i3}$ expression. The latter suggests that the above-mentioned restoration of contractile response to β -AR stimulation was not mediated by inhibiting the $G\alpha_{i3}$ isoform.

In contrast, our data on $G\alpha_{i2}$ deficiency suggest that preventing effects mediated by this isoform may restore or even enhance the response to β -AR stimulation, which could be detrimental in the long term. The observed effects might be explained not only by the lack of a respective $G\alpha_i$ isoform, but upregulation of the other (Dizayee et al. 2011; Köhler et al. 2014; but: Gohla et al. 2007; Hippe et al. 2013). Our recent studies do not support this reactive change of expression, but we might have missed rather slight alterations (Keller et al. 2015; Schröper et al. 2024). Similarly, different relative expression levels of β_1 - and β_2 -AR might play a role, although a previous study suggests the amount of β_2 -AR negligible in β_1 -tg mice (Keller et al. 2015).

In summary, basal I_{CaL} and its response to β -adrenergic stimulation is altered in ventricular myocytes from mice

overexpressing the cardiac β_1 -AR. Lack of either $G\alpha_{i2}$ or $G\alpha_{i3}$ shows differential effects on these alterations.

The role of ventricular I_{CaL} in the development and prevention of cardiomyopathy

We used ventricular myocytes of mice at an age apparently preceding the onset of ventricular dysfunction or even an effect on survival for two reasons (Keller et al. 2015; Schröper et al. 2024): first, alterations in ventricular LTCC expression and/or function are already found in compensated hypertrophy (Mukherjee and Spinale 1998; Richard et al. 1998). Second, genetic alterations of ventricular I_{CaL} can lead to cardiac dysfunction, suggesting a causal role of LTCC (Muth et al. 1999; Nakayama et al. 2007; Beetz et al. 2009; Goonasekera et al. 2012).

Increased ventricular I_{CaL} was deleterious in some mouse models (Muth et al. 1999; Nakayama et al. 2007; Beetz et al. 2009). Interestingly, heterozygous knockout of cardiac LTCC expression resulted in reduced I_{CaL} density but also hypertrophy and heart failure (Goonasekera et al. 2012). Compared to wild-type littermates, ventricular I_{CaL} density was reduced in $G\alpha_{i2}$ -deficient mice but increased in $G\alpha_{i3}$ -deficient mice (Dizayee 2011), but no contractile dysfunction was present in either group (Jain et al. 2001; Keller et al. 2015; Schröper et al. 2024). In β_1 -tg mice, $G\alpha_{i3}$ deficiency was cardioprotective (Schröper et al. 2024) and largely normalized, i.e. increased, ventricular I_{CaL} density, whereas $G\alpha_{i2}$ deficiency, which was detrimental to contractility and survival in β_1 -tg mice (Keller et al. 2015), did not restore basal I_{CaL} density. Regarding an impact on contractility, these results suggest that the mechanism underlying LTCC modulation may play a role.

Since mice in the previous studies died without prior signs (Keller et al. 2015; Schröper et al. 2024) and arrhythmias are the most common cause of death in humans, it is tempting to speculate that the risk of arrhythmias is increased in β_1 -tg/ $G\alpha_{i2}^{-/-}$ given the increased window current, which has been associated with rhythm disturbances such as early after depolarizations (Benitah et al. 2010).

We cannot exclude altered LTCC expression, although voltage dependence and response to isoproterenol indicate effects independent of this, and previous studies using β_1 -tg, $G\alpha_{i2}$ - and $G\alpha_{i3}$ -deficient mice did not indicate such changes (Foerster et al. 2004; Dizayee et al. 2011).

The possible relevance of a reduced response of ventricular I_{CaL} to β -adrenergic stimulation

Sustained stimulation or overexpression of β -AR leads to ventricular hypertrophy and eventually to heart failure in rodent models (Gomes et al. 2013). Acute β -AR stimulation leads to increased LTCC activity like that observed in human

heart failure (Tsien et al. 1986; Yue et al. 1990; Schröder et al. 1998), and increased LTCC activity can lead to cardiomyopathy and heart failure in mice (Nakayama et al. 2007; Beetz et al. 2009). Given the life-prolonging effect of heart failure treatment with β -AR antagonists, one might speculate that the reduced I_{CaL} response to β -adrenergic stimulation observed in human and murine heart failure (Schröder et al. 1998; Muth et al. 1999; Groner et al. 2004; Foerster et al. 2004; Chen et al. 2008; Beetz et al. 2009) is a protective mechanism, albeit insufficient or decompensating in the long term. Thus, protective effects of $G\alpha_{i3}$ deficiency in β_1 -tg mice might be due to maintained attenuation of I_{CaL} response to β -AR stimulation, whereas in contrast, the deleterious effects of $G\alpha_{i2}$ deficiency might be linked to restoration of the I_{CaL} response to β -adrenergic stimulation, i.e. lack of protection against or increased susceptibility to β -adrenergic stimulation. In addition to the increased window currents under basal conditions, I_{CaL} inactivation was delayed upon β -AR stimulation in $G\alpha_{i2}$ -deficient β_1 -tg mice compared to WT or mice solely overexpressing the cardiac β_1 -AR. This might as well contribute to arrhythmia as seen for example with mice expressing a mutated LTCC pore (Cheng et al. 2011; Drum et al. 2014). Studies on the modulation of I_{CaL} by muscarinic acetylcholine receptors or β -AR suggest an isoform-specific role of $G\alpha_{i2}$ or $G\alpha_{i3}$ (Nagata et al. 2000; Foerster et al. 2003; Klein 2009). This might involve differential regulation of PKA activity that is known to regulate I_{CaL} activity (Papa et al. 2022). Of note, we recently found G_i -isoform-specific differences in phosphorylation of the PKA target phospholamban (Schröper et al. 2024).

Limitations

Our study is subject to certain limitations. The age of mice used in our experiments was chosen with respect to *in vivo* findings from earlier studies (Keller et al. 2015; Schröper et al. 2024). We cannot exclude that cardiac function is affected already at the age of mice we used now. Again considering previous findings, we used mice at different ages for experiments on either $G\alpha_{i2}$ or $G\alpha_{i3}$ deficiency. Of note, I_{CaL} alterations in β_1 -tg mice were similar at either age, and differences between β_1 -tg mice lacking either $G\alpha_{i2}$ or $G\alpha_{i3}$ were similar at 4–5 months of age, though indicated by experiments with myocytes from only one β_1 -tg/ $G\alpha_{i3}^{-/-}$ animal. Experiments with animals of the respective other age are necessary to confirm the hints we found. Since we used exclusively male mice, experiments should be repeated with females. We discuss previous findings obtained with the same mouse lines. Properties of mouse models can change over time. However, not least for animal welfare reasons, it is difficult to repeat experiments. On the other hand, repeating some experiments with animals of the same genotype but a different age seems reasonable. We do not provide sufficient data on molecular mechanisms

underlying our findings. Thus, future studies are needed to address the issues discussed and furthermore analyse interaction partners involved in, e.g., adrenergic signalling.

Summary and conclusion

Given the limitations of your study, we conclude with caution. We assume that $G\alpha_{i3}$ deficiency contributes to the restoration of contractility in β_1 -tg mice by restoring basal ventricular I_{CaL} , whereas maintained attenuation of I_{CaL} response to β -adrenergic stimulation protects against deleterious effects of enhanced β -AR signalling. In contrast, restored or even enhanced I_{CaL} response to β -AR stimulation might explain detrimental effects of $G\alpha_{i2}$ deficiency observed in β_1 -tg mice previously (Keller et al. 2015). Of course, other factors besides I_{CaL} may be relevant for the effects of $G\alpha_{i2}$ or $G\alpha_{i3}$ deficiency. Overall, our current and previous data suggest that isoform-specific effects of inhibitory G proteins should be further explored regarding new options for treatment or prevention of heart failure.

Supplementary Information The online version contains supplementary material available at <https://doi.org/10.1007/s00210-025-03999-y>.

Acknowledgements We appreciate the excellent technical support by Cora Fried, Sigrid Kirchmann-Hecht, and members of the animal facilities of our medical faculty. We are very grateful to Sarah Salamon, Elza Kuzmenkina and Patrick Despang for discussions on experimental procedures, data analysis and beyond. We would like to thank Lutz Birnbaumer, Stefan Engelhardt and Bernd Nürnberg for providing us with the mouse lines that were crossbred for this study.

Author contributions JM and NK designed the research. NK conducted the experiments and analysed the data, supervised by JM. JM wrote a first draft of the manuscript, NK and JM finalised and approved it. The authors declare that all data were generated in-house and that no paper mill was used.

Funding Open Access funding enabled and organized by Projekt DEAL.

Data availability All source data for this work (or generated in this study) are available upon reasonable request.

Declarations

Ethics approval The responsible federal state authority approved animal breeding, maintenance and experiments (Landesamt fuer Natur-, Umwelt- und Verbraucherschutz Nordrhein-Westfalen; references: 84-02.04.2016.A422 and 81-02.04.2022.A141). All animal experiments complied with the guidelines from Directive 2010/63/EU of the European Parliament on the protection of animals used for scientific purposes.

Competing interests The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source,

provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit <http://creativecommons.org/licenses/by/4.0/>.

References

- Baker AJ (2014) Adrenergic signaling in heart failure: a balance of toxic and protective effects. *Pflugers Arch* 466:1139–1150. <https://doi.org/10.1007/s00424-014-1491-5>
- Beetz N, Hein L, Meszaros J et al (2009) Transgenic simulation of human heart failure-like L-type Ca^{2+} -channels: implications for fibrosis and heart rate in mice. *Cardiovasc Res* 84:396–406. <https://doi.org/10.1093/cvr/cvp251>
- Benitah JP, Alvarez JL, Gómez AM (2010) L-type Ca^{2+} current in ventricular cardiomyocytes. *J Mol Cell Cardiol* 48:26–36. <https://doi.org/10.1016/j.jmcc.2009.07.026>
- Brown LA, Harding SE (1992) The effect of pertussis toxin on β -adrenoceptor responses in isolated cardiac myocytes from noradrenaline-treated guinea-pigs and patients with cardiac failure. *Br J Pharmacol* 106:115–122. <https://doi.org/10.1111/j.1476-5381.1992.tb14302.x>
- Chen X, Piacentino V, Furukawa S et al (2002) L-type Ca^{2+} channel density and regulation are altered in failing human ventricular myocytes and recover after support with mechanical assist devices. *Circ Res* 91:517–524. <https://doi.org/10.1161/01.RES.0000033988.13062.7C>
- Chen X, Zhang X, Harris DM et al (2008) Reduced effects of BAY K 8644 on L-type Ca^{2+} current in failing human cardiac myocytes are related to abnormal adrenergic regulation. *Am J Physiol Heart Circ Physiol* 294:2257–2267. <https://doi.org/10.1152/ajpheart.01335.2007>
- Cheng EP, Yuan C, Navedo MF et al (2011) Restoration of normal L-type Ca^{2+} channel function during Timothy syndrome by ablation of an anchoring protein. *Circ Res* 109:255–261. <https://doi.org/10.1161/CIRCRESAHA.111.248252>
- Despang P, Salamon S, Breitenkamp A et al (2022) Inhibitory effects on L- and N-type calcium channels by a novel $CaV\beta 1$ variant identified in a patient with autism spectrum disorder. *Naunyn Schmiedebergs Arch Pharmacol* 395:459–470. <https://doi.org/10.1007/S00210-022-02213-7>
- Dizayee S, Kaestner S, Kuck F et al (2011) $G\alpha i2$ - and $G\alpha i3$ -specific regulation of voltage-dependent L-type calcium channels in cardiomyocytes. *PLoS One* 6:e24979. <https://doi.org/10.1371/journal.pone.0024979>
- Drum BML, Dixon RE, Yuan C et al (2014) Cellular mechanisms of ventricular arrhythmias in a mouse model of Timothy syndrome (long QT syndrome 8). *J Mol Cell Cardiol* 66:63–71. <https://doi.org/10.1016/J.YJMCC.2013.10.021>
- El-Armouche A, Eschenhagen T (2009) Beta-adrenergic stimulation and myocardial function in the failing heart. *Heart Fail Rev* 14:225–241. <https://doi.org/10.1007/S10741-008-9132-8>
- Engelhardt S, Hein L, Wiesmann F, Lohse MJ (1999) Progressive hypertrophy and heart failure in $\beta 1$ -adrenergic receptor transgenic mice. *Proc Natl Acad Sci U S A* 96:7059–7064. <https://doi.org/10.1073/pnas.96.12.7059>
- Foerster K, Groner F, Matthes J et al (2003) Cardioprotection specific for the G protein $G\alpha i2$ in chronic adrenergic signaling through 2-adrenoceptors. *Proc Natl Acad Sci* 100:14475–14480. <https://doi.org/10.1073/pnas.1936026100>

Foerster K, Kaeferstein T, Groner F et al (2004) Calcium channel function and regulation in $\beta 1$ - and $\beta 2$ -adrenoceptor transgenic mice. *Naunyn Schmiedebergs Arch Pharmacol* 369:490–495. <https://doi.org/10.1007/s00210-004-0928-3>

Gohla A, Klement K, Piekorz RP et al (2007) An obligatory requirement for the heterotrimeric G protein G i3 in the antiautophagic action of insulin in the liver. *Proc Nat Acad Sci* 104:3003–3008

Gomes AC, Falcão-Pires I, Pires AL et al (2013) Rodent models of heart failure: an updated review. *Heart Fail Rev* 18:219–249. <https://doi.org/10.1007/S10741-012-9305-3>

Goonasekera SA, Hammer K, Auger-Messier M et al (2012) Decreased cardiac L-type Ca^{2+} channel activity induces hypertrophy and heart failure in mice. *J Clin Invest* 122:280–290. <https://doi.org/10.1172/JCI58227>

Groner F, Rubio M, Schulte-Euler P et al (2004) Single-channel gating and regulation of human L-type calcium channels in cardiomyocytes of transgenic mice. *Biochem Biophys Res Commun* 314:878–884. <https://doi.org/10.1016/j.bbrc.2003.12.174>

Heubach JF, Graf EM, Molenaar P et al (2001) Murine ventricular L-type Ca^{2+} current is enhanced by zinterol via $\beta 1$ -adrenoceptors, and is reduced in TG4 mice overexpressing the human $\beta 2$ -adrenoceptor. *Br J Pharmacol* 133:73–82. <https://doi.org/10.1038/sj.bjp.0704045>

Hippe H, Lüddecke M, Schnoes K et al (2013) Competition for G β dimers mediates a specific cross-talk between stimulatory and inhibitory G protein α subunits of the adenylyl cyclase in cardiomyocytes. *Naunyn Schmiedebergs Arch Pharmacol* 386:459–469. <https://doi.org/10.1007/s00210-013-0876-x>

Jain M, Lim CC, Nagata K et al (2001) Targeted inactivation of $G\alpha i$ does not alter cardiac function or β -adrenergic sensitivity. *Am J Physiol Heart Circ Physiol* 280:569–575. <https://doi.org/10.1152/ajpheart.2001.280.2.h569>

Keller K, Maass M, Dizayee S et al (2015) Lack of $G\alpha i2$ leads to dilative cardiomyopathy and increased mortality in $\beta 1$ -adrenoceptor overexpressing mice. *Cardiovasc Res* 108:348–356. <https://doi.org/10.1093/cvr/cvv235>

Klein C (2009) Die Bedeutung des G-Proteins $G\alpha i3$ für das Schaltverhalten kardialer L-Typ-Calciumkanäle in Kardiomyozyten sowie für die Entwicklung von kardialer Hypertrophie und Insuffizienz von Mäusen bei Überexpression des $\beta 2$ -Adrenorezeptors (Dissertation). University of Cologne, Thesis

Köhler D, Devanathan V, De Franz CBO et al (2014) $G\alpha i2$ - and $G\alpha i3$ -deficient mice display opposite severity of myocardial ischemia reperfusion injury. *PLoS One* 9:e98325. <https://doi.org/10.1371/journal.pone.0098325>

Kotecha D, Flather MD, Altman DG et al (2017) Heart rate and rhythm and the benefit of beta-blockers in patients with heart failure. *J Am Coll Cardiol* 69:2885–2896. <https://doi.org/10.1016/j.jacc.2017.04.001>

Lee GJ, Yan L, Vatner DE, Vatner SF (2015) Mst1 inhibition rescues $\beta 1$ -adrenergic cardiomyopathy by reducing myocyte necrosis and non-myocyte apoptosis rather than myocyte apoptosis. *Basic Res Cardiol* 110:7. <https://doi.org/10.1007/s00395-015-0461-1>

Liggett SB, Tepe NM, Lorenz JN et al (2000) Early and delayed consequences of $\beta 2$ -adrenergic receptor overexpression in mouse hearts: critical role for expression level. *Circulation* 101:1707–1714. <https://doi.org/10.1161/01.CIR.101.14.1707>

Mukherjee R, Spinale FG (1998) Calcium channel abundance and function with cardiac hypertrophy and failure : a review L -type. 1916:1899–1916

Muth JN, Yamaguchi H, Mikala G et al (1999) Cardiac-specific overexpression of the alpha(1) subunit of the L-type voltage-dependent $Ca(2+)$ channel in transgenic mice. Loss of isoproterenol-induced contraction. *J Biol Chem* 274:21503–21506

Nagata K, Ye C, Jain M et al (2000) $G\alpha i2$ but not $G\alpha i3$ is required for muscarinic inhibition of contractility and calcium currents in adult cardiomyocytes. *Circ Res* 87:903–909

Nakayama H, Chen X, Baines CP et al (2007) Ca^{2+} - and mitochondrial-dependent cardiomyocyte necrosis as a primary mediator of heart failure. *J Clin Invest* 117:2431–2444. <https://doi.org/10.1172/JCI31060>

Papa A, Kushner J, Marx SO (2022) Adrenergic regulation of calcium channels in the heart. *Annu Rev Physiol* 84:285–306. <https://doi.org/10.1146/ANNUREV-PHYSIOL-060121-041653>

Poomvanicha M, Wegener W, Blaich A et al (2011) Facilitation and Ca^{2+} -dependent inactivation are modified by mutation of the Cav12 channel IQ Motif. *J Biol Chem* 286:26702–26707. <https://doi.org/10.1074/jbc.M111.247841>

Richard S, Leclercq F, Lemaire S et al (1998) Ca^{2+} currents in compensated hypertrophy and heart failure. *Cardiovasc Res* 37:300–311. [https://doi.org/10.1016/S0008-6363\(97\)00273-3](https://doi.org/10.1016/S0008-6363(97)00273-3)

Schröder F, Handrock R, Beuckelmann DJ et al (1998) Increased availability and open probability of single L-type calcium channels from failing compared with nonfailing human ventricle. *Circulation* 98:969–976. <https://doi.org/10.1161/01.CIR.98.10.969>

Schröper T, Mehrkens D, Leiss V et al (2024) Protective effects of $G\alpha i3$ deficiency in a murine heart-failure model of $\beta 1$ -adrenoceptor overexpression. *Naunyn Schmiedebergs Arch Pharmacol* 397:2401–2420. <https://doi.org/10.1007/s00210-023-02751-8>

Tsien RW, Bean BP, Hess P et al (1986) Mechanisms of calcium channel modulation by beta-adrenergic agents and dihydropyridine calcium agonists. *J Mol Cell Cardiol* 18:691–710. [https://doi.org/10.1016/S0022-2828\(86\)80941-5](https://doi.org/10.1016/S0022-2828(86)80941-5)

Yue DT, Herzog S, Marban E (1990) Beta-adrenergic stimulation of calcium channels occurs by potentiation of high-activity gating modes. *Proc Natl Acad Sci U S A* 87:753–757. <https://doi.org/10.1073/PNAS.87.2.753>

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.