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1. Theoretical section 

Visual perception plays a central role in how we experience the world, enabling us to 

identify objects, navigate spaces, and interpret social cues. However, given the brain’s limited 

processing capacity, the visual system employs various strategies to efficiently extract 

meaningful information from complex environments. One such strategy is creating ensemble 

summary statistics, allowing observers to rapidly and accurately extract the global properties 

of a scene, such as the average size of a group of objects. Yet, size perception is not simply a 

passive registration of the external world. Instead, it is modulated by contextual influences, as 

nicely illustrated by size contrast illusions, such as the Ebbinghaus illusion. This thesis 

explores the extent to which contextual modulation influences ensemble representations, and 

whether these representations themselves serve as context-inducing standards in size 

judgments.  

Study Ⅰ examines whether objects that are implicitly coded due to object-substitution 

masking (OSM) still contribute to ensemble representations in a size-rescaled manner. Study 

Ⅱ investigates whether different sets of stimuli, such as task-relevant and task-irrelevant 

objects differentiated by colour, interact in ways that produce mutual size contrast effects. 

Together, these investigations aim to clarify whether summary statistics extend beyond mere 

descriptions of object features and instead actively influence the perceived size of objects.  

This chapter includes the theoretical foundation for the thesis, organised into three key 

sections: (1.1) The visual system, (1.2) Mechanisms of size perception, and (1.3) Visual 

information processing: from implicit mechanisms to predictive models. Each section 

explores the mechanisms that collectively inform our understanding of how the brain 

constructs and modulates size representations. 

1.1. The visual system 

1.1.1. Visual information flow through the central visual pathway 
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The visual system processes raw sensory input in a structured sequence, ultimately 

producing meaningful visual representations of the external world. This system converts the 

incoming sensory input into neural signals that travel along the central visual pathway to the 

visual cortex (Fig. 1.1.1-1). The process begins when the eye captures light, and the first 

anatomical structure the light encounters is the cornea (Schaeffel, 2006). It is located at the 

front of the eye and plays an important role in adjusting focus by bending the incoming light. 

From there, the light moves through the pupil and reaches the lens, which is an adjustable 

structure responsible for the focus. Specifically, the lens adapts its curvature based on the 

distance of the object being viewed. For example, the lens has a more curved shape when 

focusing on a nearby object, while it flattens for objects that are farther away. This process is 

called accommodation, and ensures that objects are sharply projected on the retina’s 

photoreceptor layer. 

Next, light reaches the retina, which has multiple layers and includes numerous 

photoreceptor cells that respond to light (Kolb, 2003). These photoreceptor cells contain 

protein molecules called opsins. When opsins absorb photons, they trigger a chemical 

reaction inside the photoreceptor. This reaction changes the cell’s electrical state and causes 

hyperpolarisation. There are two types of photoreceptors, each with different contributions to 

visual processing. Rods are sensitive to low levels of light, thus facilitating vision under dark 

conditions. In contrast, cones respond to high levels of light and are responsible for 

processing colour. The allocation of rods and cones varies across the retina. Specifically, rods 

are more concentrated in the peripheral retina, while cones are densely located in the foveal 

region. Output signals generated by rods and cones are transmitted to bipolar cells, and then 

to retinal ganglion cells. Later, the optic nerves are formed when all ganglion cell axons 

converge. The optic nerves are essential, as they allow the transmission of visual information 

from the eye to the brain (Boycott & Wässle, 1999).  
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Once the signals leave the retina, the optic nerves from both eyes connect at the optic 

chiasm. This is the point where axons are reorganised into two optic tracts based on which 

side of the visual field they originated from. In detail, signals originating from the inner 

(nasal) part of each retina are routed to the opposite hemisphere, while those from the outer 

(temporal) remain on the ipsilateral side. This process is known as contralateral projection, 

ensuring that some sensory input from the left visual field is also processed in the right 

hemisphere, and some input from the right visual field is directed to the left hemisphere.  

Later, the reorganised signals continue along the optic tracts and arrive at the lateral 

geniculate nucleus (LGN). This structure includes six distinct layers, and each layer receives 

input from either the contralateral or ipsilateral eye (Merigan & Maunsell, 1993; Nassi & 

Callaway, 2009). For example, input from the contralateral eye is handled by layers 1, 4 and 

6, whereas layers 2, 3 and 5 take input from the ipsilateral eye (Wurtz & Kandel, 2000). The 

LGN consists of magnocellular and parvocellular layers. The magnocellular neurons process 

motion and are sensitive to alterations in brightness but not to colour. Neurons in these layers 

have larger receptive fields and respond to low spatial frequencies. In contrast, the 

parvocellular neurons are specialised in detecting fine details and colour. They have smaller 

receptive fields and respond to high spatial frequencies. Parvocellular neurons transmit 

signals more slowly than magnocellular neurons. Finally, the processed visual signals are 

projected from the LGN to the primary visual cortex for more detailed processing. 
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Figure 1.1.1-1 Illustration of information processing in the visual system, including the 

cornea, eye, retina, optic nerve, optic chiasm, LGN, and primary visual cortex. 

1.1.2. Hierarchical organisation of the visual cortex 

Visual information arriving from the eyes through the central visual pathway reaches 

the visual cortex, located in the occipital lobe (Fig. 1.1.2-1). The first region receiving direct 

input from the LGN is the primary visual cortex (V1), also known as the striate cortex, 

because of its distinct layered structure (Callaway, 1998). This region serves as the first stage 

where sensory signals are processed. V1 is divided into six distinct layers, each with a 

specific role in handling the incoming visual input. The input arriving from the retina via the 
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LGN enters layer 4, which is primarily composed of simple cells responsible for the initial 

processing of sensory input (Hubel & Wiesel, 1962; Callaway, 1998; Anderson & Martin, 

2009). Layers 2 and 3 receive strong feedforward projections from layer 4 and integrate this 

information before sending outputs to higher visual areas. Layer 1 is the most superficial one, 

and receives modulatory feedback from higher-order visual areas, whereas complex cells are 

mostly found in layers 2, 3, and 5. After the visual information is processed in V1, V2 

processes more complex aspects of the visual scene, such as changes in angles, shape and 

object orientation (Anzai, Peng & Van Essen, 2007).  

Beyond V2, the visual system contains several specialised extrastriate areas, including 

V3, V4, and MT (also known as V5). Specifically, V3 is involved in processing dynamic 

form and shape integration (Felleman & Van Essen, 1991). V4 is responsible for processing 

object recognition and colour perception, whereas MT focuses on analysing motion direction 

and speed (Felleman & Van Essen, 1991; Zeki, 1993; Born & Bradley, 2005). These 

extrastriate areas are functionally divided into two processing pathways (Fig. 1.1.2-1): the 

ventral stream and the dorsal stream (Mishkin & Ungerleider, 1982; Goodale & Milner, 

1992). The ventral stream originates in V1 and extends to the temporal lobe, referred to as the 

"what" pathway and is responsible for object identification and recognition. In parallel, the 

dorsal stream projects toward the parietal cortex and is referred to as the "where" or "how" 

pathway, supporting the spatial processing and the visual guidance of actions. While this 

division was originally based on their distinct roles in object recognition and spatial 

localisation, subsequent studies have shown that the ventral and dorsal streams are also 

differentially involved in conscious and unconscious visual processing. The dorsal stream 

mediates visually guided actions without conscious awareness of the visual stimuli, whereas 

the ventral stream is closely linked to conscious recognition of objects (Goodale & Milner, 

1992; Goodale, Westwood & Milner, 2004).  
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Moreover, the visual system is retinotopically organised, meaning that neighbouring 

locations in the retina are represented at neighbouring locations on the cortical surface (Kaas, 

1997; Wandell, Dumoulin, & Brewer, 2007). Retinotopic maps are most clearly defined in 

early visual areas, whereas this spatial organisation becomes less pronounced in higher-order 

visual areas, due to larger receptive fields and the emergence of more complex organisational 

principles. Reflecting this retinotopic organisation, Study Ⅱ employed a position localizer 

task to define distinct quadrants in early visual areas, confirming that stimuli presented in 

specific locations elicited spatially distinct cortical activations consistent with the retinotopic 

organisation of the visual cortex.  

 

Figure 1.1.2-1 Illustration of the dorsal and ventral stream. 

1.1.3. Feedforward, feedback and recurrent processing 

The information is hierarchically processed in the visual cortex. Early visual areas, 

such as V1, are specialised for detecting basic features like edges and orientations, while 
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higher-order areas represent increasingly complex properties such as object detection and 

motion (Hubel & Wiesel, 1962; Felleman & Van Essen, 1991; Grill-Spector & Malach, 

2004). This hierarchical fashion is accompanied by an enlargement of the receptive field size 

and an increase in the complexity of encoded features. One fundamental model of 

information processing in the visual system is the feedforward sweep, which is a stimulus-

driven approach that reflects a bottom-up flow of information. Namely, the information is 

initially transmitted from the retina through the LGN, and then processed hierarchically along 

successive cortical stages. During the processing, each stage is responsible for extracting and 

integrating more complex aspects of the stimuli. 

Although the feedforward sweep reflects the initial processing of visual information, 

it alone cannot account for the context-sensitive and predictive nature of visual perception. 

This model assumes that information processing relies entirely on incoming sensory input 

without any top-down influence from higher-level regions. If perception operated only in this 

stimulus-driven fashion, it would lack adaptability and fail to incorporate prior knowledge.  

To account for this, the feedback mechanism, often referred to as top-down 

processing, has been proposed (Kanwisher & Wojciulik, 2000). In this framework, 

information processing is expectation-driven and involves signals from higher-level cortical 

regions to project back to earlier processing stages. These top-down signals allow early visual 

areas to be modulated based on context, expectations and prior knowledge, indicating that 

perception is not a passive registration of the external world.  

Previous studies have contributed to the distinction between feedforward and 

feedback mechanisms, showing that the initial feedforward sweep of information 

predominantly supports pre-attentive processing, while feedback modulations are essential 

for attentive tasks and visual awareness (Lamme & Roelfsema, 2000). For example, the top-

down influence of figure-ground segregation has been suggested to involve feedback to 
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striate cortex from higher-order visual areas (Zipser, Lamme & Schiller, 1996). Similarly, 

evidence from a TMS study has demonstrated that motion awareness requires top-down 

feedback from MT to the early visual cortex (Pascual-Leone & Walsh, 2001).  

However, increasing evidence emphasises the importance of recurrent processing, 

which suggests that perception does not rely on a one-way flow of information (Lamme & 

Roelfsema, 2000). Instead, it emerges from iterative interactions between feedforward and 

feedback signals across cortical levels. This mechanism enables the visual system to generate 

perceptual hypotheses at higher levels and test them against the signals present in early visual 

areas (Di Lollo et al., 2000; see Chapter 1.3.2). 

1.2. Mechanisms of size perception 

1.2.1. Size perception and size constancy 

Precisely perceiving an object’s size is essential for visually guided actions. Whether 

reaching for a nearby item or estimating the dimensions of objects at a distance, the visual 

system must transform the retinal input into a stable real-world representation. An important 

aspect of visual perception is known as size constancy, which refers to the ability to perceive 

objects as maintaining a constant size despite changes in the retinal image due to variations in 

viewing distance (Boring, 1940; Holway & Boring, 1941). For example, when an object 

moves closer, its image becomes larger on the retina, yet we don’t experience that object as 

physically growing. Instead, we perceive it as maintaining a constant size. This perceptual 

constancy in various circumstances reflects the brain’s ability to incorporate depth cues to 

interpret changing retinal signals in a stable manner. 

Exploring the neural basis of size constancy requires investigating how object size is 

represented across multiple brain regions involved in visual information processing. This 

processing follows a hierarchical progression through specific brain regions (see Chapter 

1.1.2). In the early stages, the primary visual cortex initially processes the incoming visual 
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input transmitted from the LGN. As processing moves up the hierarchy, areas within the 

ventral and dorsal streams develop increasingly complex representations of object properties 

and spatial relationships. For instance, Konkle and Caramazza (2013) investigated whether 

object size (e.g., large vs. small) and animacy (e.g., animals vs. objects) elicit distinct neural 

response patterns. Results revealed that real-world object size acts as a main organising 

principle in the ventral pathway. Specifically, medial regions, including the parahippocampal 

cortex, responded more strongly to large objects, whereas the inferior temporal gyrus showed 

greater activation for small objects. Interestingly, this size-based cortical organisation was 

found only for inanimate objects, and similar effects were not observed when participants 

were shown animate objects. Supporting this view, another study using multivoxel pattern 

analysis (MVPA) revealed that real-world object size plays a crucial role in structuring object 

representations across the human visual cortex (Julian et al., 2017). They found that object 

size not only influenced overall activation strength but also shaped the distribution of 

response patterns in specific brain regions. Notably, regions associated with scene perception, 

such as the parahippocampal place area (PPA), the retrosplenial complex (RSC), and the 

occipital place area (OPA), showed stronger activations to large objects. In contrast, the 

occipitotemporal sulcus (OTS) responded more strongly to small objects, consistent with 

findings from other studies (Konkle & Oliva, 2012; Konkle & Caramazza, 2013).  

Crucially, the perceived size of an object is influenced not only by its retinal image 

but also by various factors such as depth cues, surrounding objects, and prior knowledge. 

Murray and colleagues (2006) were among the first to demonstrate that perceived size, rather 

than retinal size, modulates neural activity in the primary visual cortex (V1). In the 

experiment, participants viewed two identical spheres placed within a depth-inducing Ponzo 

corridor. Although the spheres had identical retinal sizes, the one positioned higher in the 

corridor was perceived as farther and, therefore, larger. This perceptually larger sphere 
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elicited a significantly broader spatial activation in V1 compared to the one perceived as 

smaller. These findings suggest that early visual areas not only encode retinal object size but 

are also influenced by top-down contextual feedback. Building on these findings, Fang and 

colleagues (2008) replicated the results by demonstrating that V1 encodes the perceived size 

of objects, rather than their physical size. They also found that activity in higher-level areas, 

such as the lateral occipital cortex (LOC) and the PPA, was significantly reduced during a 

demanding fixation task. This suggested that narrowed attentional focus disrupted top-down 

feedback from higher cortical areas, which is essential for integrating depth cues. Further 

supporting these findings, Sperandio and colleagues (2012) showed that the extent of cortical 

activation in V1 reflected the perceived, rather than retinal, size of the afterimage.  

1.2.2. Contextual modulation of size and rescaling 

Size perception requires more than simply reading the raw retinal image. While 

retinal size provides an initial sensory input, the visual system integrates a range of factors, 

such as contextual cues, depth and distance, to form the perceived size of objects. As retinal 

size varies with distance, the visual system must adjust or rescale the perceived size 

accordingly. This size rescaling refers to the perceptual adjustment of an object’s size 

influenced by contextual influences (Gilinsky, 1951; Kilpatrick & Ittelson, 1953). A 

foundational framework explaining this mechanism is the size-distance invariance 

hypothesis, which proposes that perceived size (S’) depends on both the retinal size (α) and 

the perceived distance (D’). This relationship is expressed as: 

𝑆′ =  2𝐷′ 𝑡𝑎𝑛 (𝛼/2), 

indicating how the visual system combines retinal input with perceived distance to 

compute the perceived object size across varying viewing conditions. Recent studies have 

advanced our understanding of size rescaling mechanisms, particularly in the context of 

ensemble representations–the ability to extract statistical properties like average size from 
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groups of objects (Ariely, 2001). For example, Tiurina and Utochkin (2019) investigated 

whether average size judgments are computed based on the retinal or perceived size of 

objects. In the experiment, participants were shown a set of objects at different distances and 

asked to report the average size. They found that average size judgments reflect the 

perceived, not the retinal, average size of the items, indicating that rescaling occurred prior to 

averaging. Based on their findings, the visual system appears to first incorporate depth cues 

to bind size information, and only then compute the average size. Extending these findings, 

Markov and Tiurina (2021) examined whether rescaling mechanisms influence not only mean 

size estimation but also range estimation within an ensemble. By using both binocular and 

monocular cues, they demonstrated that observers estimated the average range of object sizes 

only after size-distance rescaling occurred. Together, these findings indicate that contextual 

rescaling precedes both mean and range estimations in size perception. 

In addition to behavioural studies highlighting how perceived object size is rescaled 

through contextual information, neuroimaging studies provide further insight into the 

underlying neural dynamics of this modulation. For example, Zeng and colleagues (2020) 

used TMS to disrupt activity in both the early visual cortex (EVC) and LOC during a size 

discrimination task, including a hallway background. Disruption in either region reduced the 

strength of the illusion, indicating that both areas contribute to contextual modulation of size. 

Crucially, the effect of TMS in LOC occurred earlier than in EVC, suggesting that size 

information is first integrated into higher visual areas and then projected back to early visual 

regions to modulate low-level representations. Consistent with this, previous studies 

demonstrated a broader network of higher-level visual areas in illusory size perception, 

including the LOC (Weidner & Fink, 2007), right superior parietal lobule and right superior 

parietal cortex (Plewan et al., 2012), as well as prefrontal regions (Libedinsky & Livingstone, 

2011; Schall, 2015). Together, these findings are consistent with the idea that size 
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representations might be shaped by interactions between feedforward sensory input and top-

down feedback, potentially through recurrent processing. 

1.2.3. Ensemble summary statistics 

Visual scenes contain far more information than the visual system can entirely 

process, yet humans navigate complex environments with remarkable efficiency. One key 

strategy underlying this competency is the extraction of ensemble summary statistics, which 

refers to the ability to compute summary statistics from groups of objects rather than 

processing each item individually (Ariely, 2001). This mechanism allows observers to rapidly 

perceive global properties such as average size, orientation, and density. Ariely (2001) 

conducted pioneering experiments on summary statistics, demonstrating that observers 

accurately estimate the average size of a set of circles, despite being unable to report the 

individual sizes of the objects. Subsequent studies reinforced this idea across a wide range of 

visual features, including orientation (Dakin & Watt, 1997), speed (Watamaniuk & Duchon, 

1992), emotional expressions (Haberman & Whitney, 2007), motion direction (Sweeny, 

Haroz & Whitney, 2013), and body size (Oswald, 2023). Interestingly, Chong and Treisman 

(2005) showed that the ability to extract ensemble statistics is not restricted to one set of 

stimuli. They found that average size estimates for two simultaneously presented sets were as 

precise as those for a single set, indicating that multiple ensemble representations can be 

maintained in parallel. These findings provide strong evidence that ensemble summary 

statistics are computed rapidly, automatically, and effortlessly. 

Several theoretical frameworks have been proposed to explain how ensemble 

summaries are computed. According to the summary-statistic model, most or all items are 

processed in parallel to extract global properties (Ariely, 2001; Chong & Treisman, 2005). In 

contrast, the subsampling hypothesis suggests that ensemble statistics are formed by 

averaging a restricted number of randomly chosen items, instead of analysing the entire set 
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(Myczek & Simons, 2008). Meanwhile, robust or weighted averaging models propose that 

observers assign different weights to individual elements based on their reliability or 

consistency (de Gardelle & Summerfield, 2011). These models support the idea that 

ensemble summaries are not merely simple arithmetic means, but rather weighted estimates 

in which less reliable items, such as outliers, contribute less. Additionally, global interaction 

models propose that ensemble perception may emerge through nonlinear computations 

performed across all items within the visual field (Jia et al., 2022). These frameworks 

fundamentally differ in their assumptions about processing capacity, attentional modulation, 

and the computational stage at which statistical summaries emerge. 

Ensemble perception is not solely determined by the physical properties of the stimuli 

but is influenced by contextual factors (see Chapter 1.2.2). For example, Im and Chong 

(2009) investigated whether mean size estimates are based on the physical or perceived 

average size of the objects by manipulating the context through Ebbinghaus inducers. Their 

findings showed that mean size judgments were modulated by the size of the Ebbinghaus 

inducers, indicating that size averaging is based on the perceived rather than the physical size 

of the to-be-averaged set. In addition to contextual modulation, another critical question 

concerns the level of processing at which ensemble representations emerge. Choo and 

Franconeri (2010) addressed this by examining whether average size estimates can be 

computed when the visibility of objects is impaired by OSM, a type of visual masking 

thought to disrupt object representations at later stages of processing while preserving initial 

encoding (see Chapter 1.3.2). The authors hypothesised that if ensemble representations are 

formed before the stage at which OSM interferes, then both visible and invisible items would 

contribute to the average size estimates. Conversely, if masked items fail to influence the 

average, this would imply that ensemble coding depends on later-level object representations. 

They found that both visible and invisible objects contributed to mean size judgments, 
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providing strong evidence that ensemble statistics can be computed at an early stage of visual 

processing. Building on these findings, study Ⅰ combined the contextual influences and the 

level of processing within the same paradigm to investigate whether objects whose visibility 

is impaired by OSM still contribute to average size in a rescaled manner through Ebbinghaus 

inducers. 

Behavioural evidence strongly supports the view that ensemble summary statistics can 

be accessed rapidly, even before individual item features are fully processed. Consistent with 

this, an EEG study demonstrated that neural signals related to ensemble properties emerge 

rapidly in visual processing prior to individual item representations (Epstein & Emmanouil, 

2021). Meanwhile, other studies highlight the contribution of higher-level cortical regions to 

ensemble coding. Using a frequency-tagging EEG approach, Jia and colleagues (2022) 

isolated neural responses to systematically varying ensemble sizes, discovering that signals in 

parieto-occipital areas tracked global ensemble size but not individual item sizes. Additional 

support from fMRI studies showed that ensemble representations are encoded in the anterior 

medial ventral visual cortex, particularly in the PPA, as revealed through an fMRI adaptation 

paradigm (Cant & Xu, 2012). In a follow-up study, Cant and Xu (2015) extended these 

findings by examining what types of ensemble features are represented in this area. They 

found that the PPA was sensitive to changes in relative density, but not to changes in spacing 

between objects. This suggests that PPA encodes higher-level ensemble properties rather than 

low-level spatial features. In contrast, LOC responded to changes at the local level, such as 

the shape of objects, indicating that LOC processes object-level features within ensembles.  

1.2.4. Visual illusions 

Visual illusions demonstrate that perception is not a direct reflection of the external 

world, but rather an active process shaped by contextual information and prior knowledge. 

Rather than indicating perceptual failures, illusions reflect the brain’s adaptive mechanism to 
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integrate environmental cues. A widely recognised theory proposed by Gregory (1963, 1968) 

suggests that some visual illusions arise from the brain’s effort to maintain size constancy 

(see Chapter 1.2.1). When depth cues lead to misleading interpretations of distance, this 

internal rescaling mechanism adjusts perceived size inappropriately, making objects appear 

larger or smaller than they actually are. For instance, in the Ponzo illusion, two horizontal 

lines of identical length are placed over converging lines, resembling a linear perspective cue, 

such as a railway track, which induces depth information (Fig. 1.2.4-1). The upper line 

appears longer because it is perceived as being farther away, leading the brain to rescale its 

size to maintain size constancy; thus, this line is perceptually rescaled as longer (Ponzo, 

1911; Leibowitz et al., 1969). Similarly, the moon illusion shows that the moon is perceived 

as noticeably larger when it is close to the horizon than when it is high in the sky, despite 

having the same retinal size in both cases (Ross & Plug, 2002). This effect is thought to result 

from the presence of depth cues along the horizon, which make the moon appear farther 

away, hence, it is rescaled as larger by the visual system (Kaufman & Kaufman, 2000; 

Weidner et al., 2014). 

Moreover, the Ebbinghaus illusion shows that size perception is shaped by contextual 

factors even in the absence of depth cues, as identical objects appear to differ in size 

depending on the size of the surrounding items (Ebbinghaus, 1902). In detail, the target circle 

appears smaller when surrounded by large inducers and larger when surrounded by small 

inducers. Traditionally, earlier accounts associated this illusion with size contrast effects 

(Massaro & Anderson, 1971), proposing that surrounding circles serve as standards or 

benchmarks for size judgements and have a contrast-like effect on perceived size. 

Conversely, other theories emphasised low-level contour interactions (Chen et al., 2018; 

Todorović & Jovanović, 2018). Supporting this viewpoint, it has been demonstrated that the 

magnitude of the illusion strengthens as the similarity between the target and inducer 
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increases (Rose & Bressan, 2002). An interesting study using continuous flash suppression 

and backward masking (Chen et al., 2018) showed that the Ebbinghaus illusion can still be 

elicited even when either the target or the inducers are suppressed from conscious awareness. 

Therefore, the illusory effect induced by the Ebbinghaus illusion appears to occur during 

early visual processing. Similarly, it has been shown that individuals with smaller V1 areas 

experience stronger Ebbinghaus illusion, indicating that anatomical variability in the early 

visual cortex is a predictor for illusion strength (Schwarzkopf, Song, & Rees, 2011).  

Furthermore, comparing different illusions has become a useful approach for 

understanding how the visual system constructs perceptual interpretations, and whether these 

processes rely on shared or distinct neural mechanisms. For example, Song and colleagues 

(2011) discovered the effect of interocular transference on the Ebbinghaus and the Ponzo 

illusion. They found that the strength of the Ponzo illusion remained comparable whether 

shown to the same or different eyes, whereas the strength of the Ebbinghaus illusion 

diminished. These results align with evidence that the Ebbinghaus illusion depends on lateral 

interactions within the primary visual cortex (Bosking et al., 1997; Schwarzkopf, Song, & 

Rees, 2011), whereas the Ponzo illusion seems to involve top-down feedback from higher-

level regions responsible for interpreting a three-dimensional spatial context (Fang et al., 

2008). Likewise, Wu and colleagues (2023) extended this view by showing that although 

both illusions engage the right superior parietal lobule (SPL), the Ebbinghaus illusion relies 

on feedforward signals from V1 to SPL, but the Ponzo illusion is shaped by internal 

dynamics within the right SPL itself. While there is strong evidence for early sensory origin 

in the Ebbinghaus illusion, a recent study using fMRI and DCM revealed contributions from 

higher-level cortical areas (Chen et al., 2024). They found enhanced feedback connectivity 

from the right precuneus to the extrastriate cortex during size overestimation.  
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Figure 1.2.4-1 Illustration of the Ponzo illusion. 

1.3. Visual information processing: from implicit mechanisms to predictive models 

1.3.1. Implicit and explicit information processing in vision 

Although each input is transmitted from the central visual pathway to the visual 

cortex, not all of them are explicitly reportable by an observer. The distinction between 

implicit and explicit information processing has gained significance following the work of 

Graf and Schacter (1985) on memory. They defined implicit memory as a performance 

advantage that occurs without conscious recollection, while explicit memory is characterised 

by the necessity of conscious retrieval of prior experiences. In the domain of visual 

perception, this dichotomy has been extended to distinguish between explicit visual 
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processing, which involves the conscious perception and reportability of stimuli, and implicit 

visual processing, in which visual information is registered and influences behaviour despite 

the absence of conscious awareness (Kouider & Dehaene, 2007). Findings from studies on 

blindsight (Aleci & Dutto, 2024), subliminal priming (Fischer et al., 2024) and object 

recognition (Tal et al., 2024) suggest that the brain can process visual input even when it is 

not explicitly reportable. 

To explain the neural mechanisms behind these phenomena, researchers have 

introduced models such as the global neural workspace (GNW) and the recurrent processing 

framework. The GNW model suggests that consciousness arises when sensory information is 

widely distributed throughout the brain, particularly to frontoparietal regions, thereby making 

it globally accessible to multiple areas (Dehaene & Changeux, 2011). In contrast, the 

recurrent model states that consciousness emerges through feedback connections, allowing 

information to be processed in recurrent loops without necessarily requiring global 

distribution to frontal regions (Lamme, 2003).  

Building on these models, several studies have explored the contributions of the 

dorsal and ventral visual streams at different processing levels. For example, Fang and He 

(2005) investigated this by employing interocular suppression to render images (e.g., tools 

and faces) invisible. Their findings revealed that the dorsal pathway responds to invisible 

images, and this effect was observed when participants were shown tools instead of faces. 

Meanwhile, other studies have revealed that the ventral stream is more closely associated 

when the stimuli are explicitly reportable by observers (Tong et al., 1998; Bar et al., 2001). 

One of the most robust demonstrations of implicit visual processing is the 

phenomenon of blindsight, also known as residual vision. In this condition, individuals with 

damage to the primary visual cortex (V1) can detect and respond to stimuli in their blind 

visual field even though they cannot explicitly report the presence of the stimuli (Aleci & 
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Dutto, 2024). Their ability to correctly guess features, such as motion and orientation, 

indicates that visual information is still being processed outside of awareness. Neuroimaging 

studies have supported this notion by showing preserved activity in extrastriate areas, such as 

the human motion area hMT+, LOC, intraparietal sulcus (IPS), and precuneus (Ajina & 

Bridge, 2019; MacLean et al., 2023).  

Beyond clinical populations, attention plays a crucial role in implicit and explicit 

information processing. Inattentional blindness (IB), famously demonstrated by the invisible 

gorilla experiment (Simons & Chabris, 1999), refers to the failure to notice a visible, 

unexpected stimulus because attention is occupied elsewhere. IB nicely demonstrates how 

stimuli can be present in the visual field yet remain unreportable when unattended 

(Hutchinson et al., 2019). For example, an interesting study tested whether perceptual 

inference occurs for stimuli that are not explicitly reportable by using the IB paradigm with 

fMRI (Vandenbroucke et al., 2014). During the task, participants were given a demanding 

fixation task to maintain their attention focused on the task, while they were presented 

peripherally with either Kanizsa or control figures to create the IB effect. Interestingly, 

results showed enhanced activation in the visual areas V1, V2, V3, V3ab, V4, and LOC in 

response to the Kanizsa figure, despite the figures being coded implicitly. Furthermore, 

MVPA analysis revealed that responses to invisible Kanizsa figures reliably predicted 

responses to visible figures, particularly in LOC and V3ab, suggesting that perceptual 

inference doesn’t necessarily require the explicit coding of the stimuli. 

1.3.2. Recurrent processing: insights from Object-Substitution Masking (OSM) 

OSM is an effective masking paradigm to investigate the temporal dynamics of visual 

information processing. When a target object appears briefly with a four-dot mask that 

persists beyond the target's offset, target identification becomes significantly impaired. 

Notably, the effectiveness of OSM is robust when specific conditions are met, such as 
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distributed attention, short target exposure (< 100 ms), delayed mask duration compared to 

the target, and loss of visual awareness of the target (Goodhew et al., 2013). OSM is 

considered an ideal candidate for studying recurrent processing because OSM disrupts late 

object representation while preserving initial feedforward sensory input (Di Lollo et al., 

2000). The prolonged presence of the mask leads to additional feedforward processing of the 

mask alone, which interferes with the recurrent processing needed to consolidate the target-

mask representation. Consequently, the target fails to reach conscious awareness, even 

though early visual encoding remains intact. Compared to other masking techniques, such as 

pattern masking and metacontrast masking, which disrupt early visual processing (Enns, 

2004; Bugmann & Taylor, 2005), OSM, therefore, provides strong evidence that conscious 

perception depends not merely on the arrival of visual input, but on successful recurrent 

interactions within the cortical hierarchy. 

An interesting study by Choo and Franconeri (2010) investigated whether size 

averaging depends on early sensory representations or on later stages of processing. In order 

to test this, they employed OSM and hypothesised that if size averaging relies on early 

representations, performance would remain comparable even when items are masked, 

whereas if it depends on later processing, masked items would not contribute to the ensemble. 

Their results showed that both visible and invisible objects influenced size judgments, 

suggesting that size averaging occurs at an early stage of visual processing, and does not 

require fully consolidated object representations to shape perception. In Study Ⅰ, we extend 

these findings by showing that the contribution of masked objects to the ensemble is already 

rescaled through Ebbinghaus inducers.  

Neurophysiological evidence further supports that OSM offers an important 

experimental tool for distinguishing rapid sensory encoding from later stages of information 

processing. For example, previous research indicates that the N170 component, which 
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reflects object recognition, showed a decrease in OSM (Reiss & Hoffman, 2007). 

Furthermore, another study by Carlson and colleagues employed the functional magnetic 

resonance adaptation (fMR-A) technique to assess how repeated neural responses were 

affected by OSM (Carlson, Rauschenberger & Verstraten, 2007). While adaptation effects 

were observed in early visual areas such as V1, they were diminished in higher-order regions 

like the LOC, indicating that OSM interferes with later stages of processing while preserving 

the initial feedforward input. Additionally, Weidner and colleagues (2006) have identified a 

cortical network for OSM, including early visual areas (e.g., V1), the middle occipital gyrus, 

the transverse occipital gyrus, and the left IPS (Weidner, Shah & Fink, 2006). These regions 

showed the strongest activation during effective masking, when the visibility of the target 

was highly impaired. The authors suggested that these findings indicate the presence of a 

cortical network involved in initiating and iteratively testing perceptual hypotheses.  

1.3.3. Predictive coding: a computational framework for visual perception 

 While recurrent processing refers to iterative interactions between higher-level and 

lower-level cortical regions, the predictive coding framework extends this notion by 

proposing that such feedback connections carry learned expectations derived from past 

experiences (Rao & Ballard, 1999). According to this framework, the brain operates as a 

Bayesian inference system, continuously checking top-down predictions with incoming 

sensory data. For that reason, predictable information is suppressed to minimise redundancy 

and enable efficient processing by allocating resources to novel or unexpected stimuli. When 

there is a mismatch between the predicted and the incoming input, called the prediction error, 

only this error signal is transmitted forward through the hierarchy. 

 One of the key assumptions of predictive coding theory is expectation suppression, in 

which predicted stimuli elicit diminished neural responses. The reason behind this effect has 

been interpreted in multiple ways, including as a form of filtering (Rao & Ballard, 1999), as 
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redundancy reduction (Murray, Schrater & Kersten, 2004), or by the sharpening of neural 

representation, where expected features are enhanced and unexpected activity suppressed 

(Kok et al., 2012). For example, Rao and Ballard’s (1999) predictive coding model accounts 

for end-stopping, a receptive-field phenomenon where a neuron's firing rate decreases when a 

stimulus extends beyond its classical receptive field. This reduction in response is interpreted 

as a sign of efficient neural processing, where predicted input leads to decreased activity. In 

this framework, higher-level regions send predictions about the expected activity to lower-

level sensory areas, while the lower-level areas return only the residual error, which is the 

discrepancy between the actual sensory input and the prediction.  

 Within the predictive coding framework, attention is one of the most influential 

factors in modulating neural activity. Kok and colleagues (2012) investigated the interaction 

between attention and prediction in shaping neural activations using an orientation 

discrimination task in fMRI. During the task, attention was manipulated via presenting spatial 

cues, whereas prediction was modulated by varying the probability of the stimuli. They found 

that neural activity in V1 decreased when the stimuli were predicted and unattended, 

supporting the notion of expectation suppression. However, this suppression was absent when 

the stimuli were attended, and instead, they observed an increased activation in V1. These 

results support the predictive coding account in which attention enhances the precision of 

prediction errors, thereby making the brain more sensitive to unexpected or task-relevant 

input.  

 Additionally, the interaction between attention and prediction has been investigated 

through a Bayesian computational framework (Feldman & Friston, 2010). They modelled a 

classical Posner spatial cueing paradigm, where performance advantage occurs when the cue 

is presented at expected locations. Their model suggests that attention helps the brain 

determine how much to trust incoming sensory signals by modulating the influence of 
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prediction errors. When a signal is considered reliable, attention increases its impact on 

perception. This helps in explaining why we respond faster and more accurately to stimuli 

that are both expected and attended. Overall, these findings suggest that attention modulates 

perception by increasing the precision of prediction errors (Feldman & Friston, 2010). 

Beyond functional imaging and computational models, neurophysiological evidence 

further supports the predictive coding theory, as evidenced by an ERP known as mismatch 

negativity (MMN) (Garrido et al., 2009). MMN reflects the brain’s reaction to unexpected 

events, and it is observed when there is a mismatch between the prediction and the actual 

input. It originates primarily in the auditory cortex but is also influenced by higher-order 

cortical regions. Although MMN was first identified in the auditory domain, similar 

mismatch responses have also been found in the visual system (Czigler et al., 2004), 

suggesting that prediction error is a general mechanism operating across sensory modalities. 

For example, Stefanics and colleagues (2018) used EEG and computational modelling to test 

whether visual mismatch negativity (vMMN) reflects trial-by-trial prediction errors. In their 

study, participants viewed a series of face images that changed in colour or emotional 

expression. The researchers used a Bayesian model to simulate how the brain might predict 

upcoming stimuli and how strongly it reacts when those predictions are violated. They found 

that brain activity was better explained by trial-wise prediction errors than by a change 

detection model. Overall, predictive coding provides a strong framework for understanding 

perception as an active, expectation-driven process, in which the brain continuously 

anticipates, evaluates, and updates its interpretation of sensory input.  
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2. Empirical Section 

2.1. Research Aims 

This chapter presents behavioural and fMRI studies investigating how the visual system 

extracts ensemble summary statistics. These studies focus on how contextual factors shape 

ensemble representations and whether these representations themselves act as benchmarks for 

size judgments. 

I. Study Ⅰ investigated the levels of processing at which ensemble summary statistics are 

formed by examining whether implicitly coded objects contribute to perceived 

average size. To manipulate the perceived average size, three out of eight circles were 

surrounded by Ebbinghaus inducers. OSM was implemented by keeping the inducers 

on the screen longer than the target circles. The purpose of employing that particular 

type of masking was to disrupt late-level object representations while preserving early 

sensory encoding, allowing us to assess whether the influence of the inducers on the 

ensemble calculation occurred before or after masking. If context integration on the 

ensemble occurs prior to masking, then even masked objects would influence the 

perceived average size, resulting in either an increase or a decrease, depending on the 

inducer size. Conversely, if contextual effects alter size representations solely after 

the explicit recognition of an object, then the masked items would not be rescaled by 

the inducers, and no modulation of perceived average size would be expected. This 

study, therefore, examined whether implicitly coded objects are integrated into 

ensemble statistics in a size-rescaled manner. 

 

II. In a control experiment testing the general effect of Ebbinghaus inducers in Study Ⅰ, 

we observed that simultaneous presentation of two sets of stimuli is not coded 

independently, but rather influences the size judgments of the task-relevant items. 
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Building on this finding, Study II examined whether the simultaneous presentation of 

two sets of stimuli influences their perceived size in a contrast-like fashion, and 

whether such effects are reflected in altered functional activation patterns within 

retinotopically defined visual areas. Although behavioural responses were limited to 

the task-relevant set, our quadrant-specific design made it possible to examine 

whether the task-irrelevant set was also subject to size contrast effects at the neural 

level. Specifically, we investigated whether increasing the average size of task-

irrelevant items would result in a decrease of the perceived size of task-relevant items. 

If such a size contrast effect exists, the perceived average size of the task-relevant set 

would be altered by the size of the task-irrelevant set, and this modulation would also 

be reflected in corresponding changes in functional activation patterns. Alternatively, 

if there is no such effect, we would expect no significant modulation in either 

behavioural responses or functional activations across the experimental conditions. To 

disentangle these possibilities, the study employed a quadrant-specific design to 

evaluate both behavioural responses and functional markers associated with size 

contrast.  
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2.2. Study Ⅰ 

Memis, E., Yildiz, G. Y., Fink, G. R., & Weidner, R. (2025). Hidden size: Size representations 

in implicitly coded objects. Cognition, 256, 106041. 

https://doi.org/10.1016/j.cognition.2024.106041 

2.2.1. Introduction 

Perceiving our environment is an overwhelming computational challenge for our visual 

system, given that the processing capacities of our perceptual system are limited. At the same 

time, the amount of information in the outside world is infinite. One strategy the brain uses to 

cope with the vast amount of information entering our visual system via the retina is to 

process ensemble representations rather than individual items in the visual scene (Ariely, 

2001; Chong & Treisman, 2005). The visual system forms ensemble representations by 

averaging certain visual features (i.e., size, orientation, speed) of items belonging to the same 

perceptual group (Ariely, 2001; Alvarez & Oliva, 2008; Watamaniuk & Duchon, 1992) and 

hence can efficiently code the average size of multiple objects. Interestingly, these 

representations only indirectly contain individual item features, so while observers can 

compare the average size of groups of items, they struggle to report visual features of 

individuated items in these groups (Ariely, 2001).  

A recent study demonstrated that the perceived average size of a group of items changes 

based on size-distance rescaling mechanisms, indicating that the average estimates were 

computed after size-distance rescaling (Markov & Tiurina, 2021). Thus, the ensemble 

representation contributing to the formation of an average size of multiple objects is not 

merely a low-level coding of the angular size represented on the retina. Instead, it is a size 

value that resembles size as we perceive it. This is particularly intriguing in light of previous 

findings indicating that the brain estimates the average size of a group of items by 

considering the size of items that are not consciously perceived (Choo & Franconeri, 2010). 

These findings suggest that it should be possible to assess the size representations of masked 
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and, hence, more implicitly coded objects and test whether context information modifies their 

size representations.  

To answer the question of whether size averaging involves the retinal size of masked and, 

hence, more implicitly coded objects or if it is based on perceived size, i.e., involving size 

representations that are already size-rescaled, we combined object-substitution masking 

(OSM) (Enns & Di Lollo, 1997) with the Ebbinghaus illusion. The paradigms were linked so 

that the stimuli constituting the mask also served as inducers generating the Ebbinghaus 

illusion. 

In OSM, an object is masked if the surrounding dots persist on the screen longer than the 

object itself. OSM is ideal for studying implicitly coded objects since it is assumed to alter 

only later representations while keeping early representations intact (Di Lollo et al., 2000). 

Changing the size of these dots allows the generation of Ebbinghaus-like inducer patterns. In 

the classic Ebbinghaus illusion, a target surrounded by small Ebbinghaus inducers appears 

larger than its physical size, while a target surrounded by large Ebbinghaus inducers appears 

smaller than its physical size (Ebbinghaus, 1902; Massaro & Anderson, 1971). To investigate 

early contextual modulations of size, it is important to use an illusion that operates at early 

levels of visual processing. It is known that the Ebbinghaus illusion is weaker when the 

inducer and target stimuli are presented to separate eyes, indicating the involvement of 

monocular neurons in early visual processing (Song et al., 2011; Nakashima & Sugita, 2018). 

This is also supported by fMRI studies, which indicate an important role for V1 in the 

Ebbinghaus illusion (Schwarzkopf & Rees, 2013; Schwarzkopf et al., 2011). The Ebbinghaus 

illusion is therefore particularly well suited as a means of altering early size representations. 

In this study, six surrounding dots were presented to operate as Ebbinghaus inducers and 

induce OSM. This way, we could manipulate both the perceived size of the target objects and 

their level of encoding.  
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To establish that each of these paradigms generates the expected effects, three 

behavioural experiments were conducted before the main experiment, testing whether the 

stimulus configurations used in our experiments a) allow to induce changes in perceived sizes 

using our Ebbinghaus stimulus configuration (Experiment 1), b) allow to generate a robust 

masking effect using OSM (Experiment 2) and c) allow to confirm that size averaging was 

sensitive enough to detect size changes in the magnitude of the ones induced by our 

Ebbinghaus stimulus configuration (Experiment 3). Having successfully tested these three 

phenomena in isolation, we combined the Ebbinghaus illusion, OSM and size averaging into 

one paradigm (Experiment 4A-B) to investigate whether masked and, therefore, less 

recognisable objects are already size-rescaled. Participants were presented with a typical size-

averaging paradigm, while six red inducers surrounded three out of eight green circles to 

induce both the Ebbinghaus illusion and OSM. 

We hypothesised that the size of the inducers would generate an Ebbinghaus effect on the 

target objects, leading to a change in their perceived size, either an increase or a decrease. 

Additionally, because the target objects were included in the group of items used for the size 

averaging task, we expected that the altered size representations would also influence the 

perceived average size, as previously demonstrated by Markov and Tiurina (2021). The 

current study’s experimental design also permits investigating the role of the recognisability 

of the target stimulus and its contribution to perceived size averaging. In particular, if context 

integration via the Ebbinghaus illusion alters size representations before an object is 

recognised, then the size of even masked objects would incorporate size-averaging 

mechanisms in a size-rescaled manner. If this is the case, participants would report a larger 

perceived average size in blocks with small inducers and a smaller perceived size in blocks 

with large inducers, regardless of whether the targets are masked. This pattern would be 
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consistent with size-scaling effects that operate at an early level of processing, even before a 

stimulus is recognised. 

Alternatively, if masked objects are not yet affected by context effects and, therefore, 

unchanged by the Ebbinghaus illusion, we would expect no difference between large and 

small inducer blocks.  

2.2.2. Methods 

Overview of experiments 

To investigate whether context-induced size-rescaling affects representations of masked 

objects, we combined OSM with the Ebbinghaus illusion in a size-averaging paradigm. In a 

series of experiments, we tested each of these paradigms separately to confirm the efficiency 

of the respective experimental manipulation.  

General Setup 

All experiments were presented via Visual Studio 1.68.1 using PsychoPy 2021.2.3 scripts on 

an AORUS F048U 47.53-inch monitor at a distance of 57 cm. The screen resolution was 

1920 x 1080 pixels with a refresh rate of 120 Hz. The distance between participants and the 

monitor was maintained using a chin- and forehead rest. Each participant completed the 

experiment in a darkened room, and self-paced breaks were presented between the 

experimental blocks. All four experiments involve the presentation of a circular array (10 

degrees of visual angle) of equally spaced eight green (76.71 cd/m2) circles around a black 

(0.00 cd/m2) fixation cross. Red inducers with a luminance of 18.27 cd/m2 were used in all 

experiments, except for Experiment 3. The distance between the large inducers and the 

targets was 1.5 degrees of visual angle and the distance between the small inducers and the 

target was 1.2 degrees of visual angle. The distance between adjacent green circles was 3.8 

degrees of visual angle. Additionally, the distance from the centre to the green circles is 5 
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degrees of visual angle, and the distance from the centre to the nearest inducer was 3.5 

degrees of visual angle. The distances between the stimuli are comparable to those in similar 

studies (Choo & Franconeri, 2010; Jacoby et al., 2013). Experimental stimuli were presented 

over a grey (49.90 cd/m2) background at 40 degrees of visual angle over a black screen. Pre-

cues (used in Experiment 1) and post-cues (used in Experiment 2) shared the same luminance 

value as the green circles (76.71 cd/m2). 

2.2.3. Experiment 1 - Screening: Ebbinghaus illusion 

Experiment 1 had two primary objectives. First, we aimed to test whether our stimulus 

configurations reliably altered a stimulus’s perceived size by surrounding it with either large 

or small inducers. Second, we aimed to identify participants exhibiting a strong illusion 

effect, who we recruited for the subsequent experiments. 

Participants 

Sixty healthy participants (32 females) attended Experiment 1. To identify participants with a 

strong illusion, the criterion for inclusion in subsequent experiments required participants to 

exhibit an illusion strength of at least ten per cent (>10%) in small (0.9 degrees of visual 

angle) target conditions of Experiment 1 (see Stimuli subsection for details). A 10% illusion 

effect is comparable to typical values observed in the previous studies (Chen et al., 2024; Wu 

et al., 2023, Chen et al., 2018). This criterion applied to a group of twenty-nine participants 

(M = 29.38 years, SD = 5.52, 17 females) who participated in the remaining experiments on 

separate days. All participants had normal or corrected-to-normal vision. We obtained written 

informed consent before the experiment and paid all participants 10 euros per hour for their 

participation. The ethics committee of the German Society of Psychology approved the study. 

The sample size was determined based on effect sizes detected in previous studies (Choo & 

Franconeri, 2010) to ensure the current sample size would be sufficient to reveal significant 
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differences between the experimental conditions (in a repeated-measures analysis of 

variance) with 95% power and an alpha level of 0.05. Power estimates were computed using 

G*Power (Erdfelder et al., 1996). 

Stimuli 

One out of eight circles was randomly selected as a target circle, surrounded by either 

large (Fig. 1A) or small (Fig. 1B) circular inducers, generating an Ebbinghaus figure. We 

used the same stimulus configuration but without Ebbinghaus inducers as a control condition 

(Fig. 1C). Since there were no inducers in the control condition to locate the target circle, a 

pre-cue (Fig. 1, time window 2) was employed in all experimental conditions to indicate the 

target position. The target size was either 0.9 (small target) or 1.1 (large target) degrees of 

visual angle. Incorporating two different target sizes allowed us to test whether participants 

correctly performed the task.  
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Fig. 1. Illustration of the task in Experiment 1. Participants were asked to determine 

whether the comparison circle (time window 6) was larger or smaller than the target circle 

(time window 4). The position of the target circle was indicated by a pre-cue (time window 

2). The type of inducer was manipulated as either a large inducer (A) or a small inducer (B), 

while no inducers (C) were presented in the control condition. 

The small and large inducers were always presented at 0.7 and 1.3 degrees of visual 

angle, respectively. The average size of the seven distractor circles was determined in 

accordance with the target size to keep the physical average size of the screen equal across 

different target sizes. In detail, the distractor average size was 0.9 degrees of visual angle for 

the small target and 1.1 degrees of visual angle for the large target. The average size of the 

distractors was calculated based on the normal cumulative distribution in all experiments. 

Specifically, the size of each circle was varied with a standard deviation of 0.15 degrees of 

visual angle around the mean (0.9 or 1.1 degrees of visual angle). This resulted in distinct 
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sizes for each distractor circle in each trial while keeping the mean size of the seven 

distractors constant. 

The Method of Constant Stimuli was used to detect the perceived size of the target 

circle. The comparison circle’s size varied around the target stimulus’s with .1 degrees of 

visual angle increments, resulting in two different comparison size lists. Ten different 

comparison sizes were used (half of them were smaller than the size of the target stimulus, 

and the other half was larger). Each comparison circle was presented ten times. 

Procedure 

Participants were presented with a size judgment task where each trial started with a 100 ms 

fixation in which only the fixation cross was presented over a light grey background, 

followed by a pre-cue for 1000 ms (Fig. 1). The pre-cue was used to indicate the position of 

the target circle. After a fixation presentation for 100 ms, green circles appeared around the 

fixation cross in a circular array. Participants saw red inducers around the pre-cued green 

circle in the experimental blocks with the small and large inducers. All stimuli disappeared 

simultaneously after 32 ms, and only the fixation cross was displayed on the screen for 320 

ms. A green comparison circle was then displayed at the centre of the screen until participants 

pressed a button to indicate whether the comparison circle was larger or smaller than the 

target circle (indicated by a pre-cue). Each trial ended with a grey noise pattern for 500 ms. 

Participants completed 600 trials (2 target sizes × 3 inducer types × 10 comparison sizes × 10 

repetitions), resulting in an experiment length of around 40 min. 

Statistical Analyses 

All statistical analyses were performed using the JASP software package version 

0.16.0.0 (University of Amsterdam, Amsterdam, Netherlands). We measured the perceived 

size of the target stimulus in Experiment 1. To assess how participants perceived the target 
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stimulus’s size, we generated psychometric curves for each participant across six 

experimental conditions. These curves were constructed by analysing response proportions at 

precise intervals of 0.1 degrees, showing a preference for the comparison circle being larger 

than the target circle. We employed the logistic function to quantify the probability (P) of 

perceiving the comparison circle as larger than the target circle. Subsequently, the Point of 

Subjective Equality (PSE) was calculated as P = 0.5, representing the point where the 

comparison circle was perceived at an equivalent size to the target circle. Width of each 

psychometric curve was calculated as P0.75 - P0.5, representing the degree of uncertainty in the 

participants’ responses for each experimental condition. Higher values of curve width 

indicate a greater perceptual uncertainty. We calculated goodness of fit measures when fitting 

psychometric curves to the data. The obtained curves demonstrated a strong fit in Experiment 

1 (r ranged between .728 and .989). 

The PSEs are anticipated to shift towards the right in the case of small inducer 

conditions, indicating that the target size is perceived as larger than its physical size. 

Conversely, we would anticipate an opposite shift towards the left in large inducer 

conditions, indicating that the target size is perceived as smaller than its physical size. 

In Experiment 1, the obtained PSEs and curve widths were entered into separate 2 x 3 

ANOVAs with the factors target size (small, large) and inducer type (small inducer, large 

inducer, no inducer) to test whether the Ebbinghaus illusion altered the stimulus size.  

Results  

Figure 2 displays the mean PSEs with standard errors for within-subject contrast for 

the small (Fig. 2A) and large (Fig. 2B) target sizes, along with different inducer-type 

conditions. ANOVA revealed significant main effects for both target size [small vs. large] (F 

(1, 28) = 111.81, p < .001, η2
p = 0.800) and inducer type [small inducer vs. large inducer vs. 
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no inducer] (F (2, 56) = 46.35, p < .001, η2
p = 0.623). Moreover, the interaction between 

target size and inducer type was also significant (F (2, 56) = 5.86, p = .005, η2
p = 0.173).  

 

Fig. 2. Perceived size of the target stimulus for small (A) and large (B) target sizes in 

Experiment 1. Averaged PSEs across different inducer types were plotted. Grey bars indicate 

the no inducer condition, blue bars represent the small inducer condition and yellow bars 

represent the large inducer condition. Asterisks (*) represent significant differences at p < 

.05. Error bars indicate the standard errors around the mean for within-subject contrasts 

(O’Brien & Cousineau, 2014). The horizontal dashed grey lines represent the physical size of 

the target stimulus. The figures shown below the x-axis are illustrations of the corresponding 

experimental conditions. 

Above all, participants estimated the perceived size of the target circle as larger in the 

small inducer conditions (M = 0.92, SE = 0.03) than in the large inducer conditions (M = 

0.76, SE = 0.03) [planned t-test, t (28) = 8.40, Bonferroni corrected p < .001, Cohen’s d = 

1.560], indicating a robust illusory size judgment (Fig. 2A-B). Furthermore, target size 
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estimation was greater in the no inducer conditions (M = 0.93, SE = 0.02) compared to the 

large inducer conditions (M = 0.76, SE = 0.03) [planned t-test, t (28) = -8.96, Bonferroni 

corrected p < .001, Cohen’s d = -1.664]. However, the mean PSEs did not show a significant 

difference between the conditions with small inducers and those without inducers for any 

target size [planned t-test, t (28) = 0.59, Bonferroni corrected p = 1.870, Cohen’s d = 0.109].  

Consistent with our expectations, the averaged PSEs were higher in the large target 

condition (M = 0.93, SE = 0.03) than in the small target condition (M = 0.81, SE = 0.02). The 

inducer type and target size interaction suggests that the effect of inducer type on the mean 

PSEs varies based on target size. Overall, these findings indicate that inducer type 

significantly impacted participants’ size judgment (illusion effect for small target: 19.12%), 

showing that our variant of the Ebbinghaus illusion significantly altered the perceived size of 

our target stimulus.  

Curve widths for the small and large targets were compared across inducer types 

(small inducer, large inducer, no inducer) by conducting a 2 x 3 ANOVA. ANOVA showed a 

significant main effect for inducer type [small inducer vs. large inducer vs. no inducer] (F (2, 

55) = 3.256, p = .047, Greenhouse-Geisser corrected, η2
p = 0.104). Neither the main effect of 

target size (p = .137) nor the interaction between target size and inducer type was significant 

(p = .282). Specifically, the estimated curve widths were significantly greater in the small 

inducer conditions (M = 0.21, SE = 0.02) compared to the no inducer conditions (M = 0.17, 

SE = 0.01) [planned t-test, t (28) = -2.50, Bonferroni corrected p = .046, Cohen’s d = -0.419]. 

However, the estimated curve widths did not reveal a significant difference between the large 

inducer conditions and the no inducer conditions (p = .286), and between the large inducer 

conditions and the small inducer conditions (p ≥ .999). 
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2.2.4. Experiment 2: Object substitution masking 

Since our primary goal was to investigate hidden size representations, we employed OSM to 

reduce target recognisability. Specifically, we tested whether the stimuli used as Ebbinghaus-

like inducers in Experiment 1 could efficiently induce OSM by manipulating their 

presentation times. In a simultaneous viewing condition, the mask and the green circles 

disappeared simultaneously after 32 ms, aiming to preserve their accessibility levels to 

conscious visual awareness. In the delayed viewing condition, the mask persisted on the 

screen 320 ms longer than the green circles, inducing a masking effect.   

Method 

Participants 

Experiment 2 featured a group of twenty-nine participants (M = 29.38 years, SD = 5.52, 17 

females), all exhibiting an illusion effect of >10 per cent in Experiment 1. 

Stimuli 

Eight green circles were presented around the fixation cross, and two circles, randomly 

chosen (one from the right visual field, the other one from the left), were surrounded by either 

large (Fig. 3A) or small (Fig. 3B) inducers. This diagonal arrangement of inducers was 

intended to ensure a diffuse distribution of attention during the entire task. One of the green 

circles surrounded by red inducers was randomly defined as the target stimulus, while the 

other was assigned as a nontarget stimulus. Target and nontarget stimuli were presented at 

either 0.8 or 1.1 degrees of visual angle. The target and nontarget sizes were independent 

from each other. Trials where the target and nontarget stimuli were the same size were 

categorized as congruent, while those with different-sized target and nontarget stimuli were 

classified as incongruent. To prevent unequal distributions, we ensured that target and 

nontarget sizes had the same size in half of the trials (i.e., congruent trials: both target and 
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nontarget at 0.8 or 1.1 degrees of visual angle), while in the remaining trials, they were 

different (i.e., incongruent trials: target stimulus at 0.8 degrees of visual angle and nontarget 

stimulus at 1.1 degrees of visual angle and vice versa). The participant was informed which 

of the stimuli marked by inducers was task-relevant using a post-cue. The average size of the 

six distractor circles was always 0.95 degrees of visual angle, and the average size was 

calculated based on the normal cumulative distribution (M = 0.95, SD = 0.15).  

 

Fig. 3. Illustration of the task in Experiment 2. Participants were asked to indicate whether 

the target circle, marked by a post-cue, was large or small. Two out of eight circles were 

surrounded by either large (A) or small (B) inducers. The post-cue indicated which of the two 

circles was the target. In the simultaneous viewing condition, all stimuli disappeared at the 
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same time. In contrast, in the delayed viewing condition, the mask remained visible for an 

additional 320 ms after the test circles had disappeared. 

Procedure 

We manipulated the viewing type (simultaneous, delayed) to test the efficiency of OSM, 

using a paradigm similar to that of Choo and Franconeri (2010). Participants were presented 

with a size-discrimination task where they were supposed to identify the size of the target. 

Given that there were only two size categories, we asked them to report whether the target 

indicated by a post-cue was a large or a small target. Each trial started with a 1000 ms 

fixation period (Fig. 3). Following this, the distractors, target, non-target, and inducers were 

presented for 32 ms. Afterward, either the fixation cross alone (Fig. 3A-B, Simultaneous) or 

both the fixation cross and inducers (Fig. 3A-B, Delayed) remained on the screen for 320 ms. 

A post-cue then appeared, staying visible until participants pressed a button to indicate 

whether the target circle marked by the post-cue was large or small. At the end of each trial, a 

grey noise pattern was displayed for 500 ms. Each participant completed 640 trials (2 inducer 

types × 2 viewing conditions × 2 target sizes × 2 nontarget sizes × 40 repetitions). This 

experiment took around 40 minutes. 

Statistical analyses 

The percentage of correct responses was used as an outcome variable in Experiment 2. We 

performed a 2 x 2 x 2 x 2 ANOVA to test the effectiveness of OSM in our experimental 

paradigm. This analysis involved examining the impact of viewing condition (simultaneous, 

delayed), inducer type (small, large), target size (small, large) and congruency (congruent, 

incongruent). While the latter was irrelevant to our hypothesis, it was added to explain 

variance induced by target congruency. 
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Results  

Figure 4 shows the percentages of correct responses with standard errors for within-

subject contrast for the simultaneous and delayed viewing conditions under different inducer-

type conditions. An ANOVA revealed the main effects of viewing condition [simultaneous 

vs. delayed] (F (1, 28) = 117.46, p < .001, η2
p = 0.808), inducer type [small vs. large] (F (1, 

28) = 9.76, p = .004, η2
p = 0.258) and congruency [congruent vs. incongruent] (F (1, 28) = 

10.86, p = .003, η2
p = 0.280). However, the main effect of target size did not reach 

significance (p = .313). Additionally, significant interactions were observed between target 

size and inducer type (F (1, 28) = 17.40, p < .001, η2
p = 0.383), as well as between inducer 

type and congruency (F (1, 28) = 7.18, p = .012, η2
p = 0.204).  

 

Fig. 4. The percentages of correct responses in Experiment 2. The percentage of correct 

responses was plotted against inducer type and viewing condition. Blue bars represent the 

small inducers, and yellow bars represent the large inducers. Asterisks (*) represent 

significant differences at p < .05. Error bars indicate the standard errors around the mean 

for within-subject contrasts (O’Brien & Cousineau, 2014). 
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A robust masking effect was revealed by a sharp decrease in the percentage of correct 

responses in the delayed viewing condition (M = 0.60, SE = 0.02) compared to those in the 

simultaneous viewing condition (M = 0.75, SE = 0.02). Interestingly, performance 

demonstrated superiority in the conditions with large inducers (M = 0.69, SE = 0.02) over the 

conditions with small inducers (M = 0.66, SE = 0.02), indicating a stronger masking effect 

induced by the small inducer. Additionally, the interaction between target size and inducer 

type revealed that the impact of inducer type was present only when the target size was small. 

Specifically, small targets in the large inducer conditions (M = 0.70, SE = 0.03) were 

detected more accurately than in the small inducer conditions (M = 0.62, SE = 0.03). 

However, such an effect was not observed when the target size was large.  

Incongruent trials (M = 0.70, SE = 0.02), where the target and nontarget had different 

sizes, generated more accurate responses than congruent trials (M = 0.65, SE = 0.02). 

However, inducer type and congruency interaction revealed that the size of the inducer 

produced a difference only for the congruent trials. Specifically, the percentage of correct 

responses was greater in the large inducer conditions (M = 0.67, SE = 0.03) than in the small 

inducer conditions (M = 0.63, SE = 0.03) only if the target and nontarget were the same size. 

Overall, these findings indicate that OSM efficiently reduced the reportability of the masked 

circle size. 

2.2.5. Experiment 3: Size averaging 

Experiment 3 tested whether the size averaging task can effectively capture the illusory size 

changes induced by the Ebbinghaus illusion. Employing two distinct target sizes (small and 

large) that reflected the induced perceived size changes observed in Experiment 1, we 

explored whether our size averaging task can detect such alterations in target size.  

Method 
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Participants 

The same group of twenty-nine participants (M = 29.38 years, SD = 5.52, 17 females) 

attended Experiment 3. 

Stimuli 

Eight heterogeneously sized green circles were presented around the fixation cross. 

Unbeknown to the participants, three green circles were assigned as the target stimuli (e.g., 

Fig. 6). For each participant, these three targets were presented with a size matching the PSE 

values estimated in Experiment 1. Namely, all three targets were either presented at the 

stimulus’s perceived size surrounded by large inducers (small target size) or presented at the 

stimulus’s perceived size surrounded by small inducers (large target size) in Experiment 1. 

The average size of the five green distractor circles was always 0.9 degrees of visual angle, 

and the average size was calculated based on the normal cumulative distribution (M = 0.90, 

SD = 0.15). Constant stimuli were used to detect the perceived average size of the green 

circles. The comparison circle’s size varied around the average screen size with .1 degrees of 

visual angle increments, resulting in two different comparison size lists. There were 10 

different comparison sizes and each comparison circle was presented 10 times. 

Procedure 

Each trial started with a 500 ms fixation (Fig. 5). Then, eight green circles were presented for 

32 ms, followed by a 320 ms fixation. In the response window, a comparison circle was 

displayed until participants pressed a button to indicate whether the comparison circle was 

larger or smaller than the average size of all eight circles. Each trial ended with a grey noise 

pattern for 500 ms. Participants performed 200 trials (2 target sizes × 10 comparison sizes × 

10 repetitions). This experiment took around 15 min. 
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Fig. 5. Illustration of the task in Experiment 3. Participants were asked to indicate whether 

the comparison circle (time window 4) was larger or smaller than the average size of all 

eight circles (time window 2). 

Statistical analyses 

To assess how participants perceived the average size of the stimuli, we generated 

psychometric curves for each participant across experimental conditions. The PSE 

represented the point where the comparison circle was perceived at an equivalent size to the 

stimuli’s average size. Curve widths reflected the level of uncertainty in the participants' 

responses, with wider curves indicating greater perceptual uncertainty. We calculated 

goodness of fit measures when fitting psychometric curves to the data. The obtained curves 

demonstrated a strong fit in Experiment 3 (r ranged between .833 and .995). The perceived 

average size of all green circles was used as an outcome variable. Given our directional 

hypothesis, we conducted a one-tailed paired sample t-test to assess how changes in target 

size (small and large) affected the perceived average size.  

Results 

Figure 6 depicts the mean PSEs with standard errors for within-subject contrast for the small 

and large average sizes.  The results indicated a significant difference in the mean PSE values 
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for small and large targets (t (28) = 1.94, p = .032, Cohen’s d = 0.359), while no significant 

difference was found between the curve widths (t (28) = 1.41, p = .170, Cohen’s d = 0.262). 

Specifically, participants estimated the average size as significantly smaller in the small 

target condition (M = 0.80, SE = 0.02) than in the large target condition (M = 0.83, SE = 

0.03), showing that the size averaging paradigm was sensitive enough to detect size changes 

induced by the Ebbinghaus illusion (Experiment 1).  

Essentially, these findings suggest that the presence of small targets (the mean PSE of 

the large inducer per participant detected in Experiment 1) could reduce the perceived size of 

the entire stimulus, while the presence of large targets (the mean PSE of the small inducer per 

participant detected in Experiment 1) could increase it. 
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Fig. 6. Perceived average size across different target sizes in Experiment 3. Averaged PSEs 

were plotted for small and large target size. Asterisks (*) represent significant differences at 

p < .05. Error bars indicate the standard errors around the mean for within-subject contrasts 

(O’Brien & Cousineau, 2014). Black arrows (↑) illustrate an example of randomly assigned 

three target positions across experimental conditions. Please note that these arrows were not 

part of the original display. 

2.2.6. Experiment 4A: Size rescaling and masking 

The results of Experiments 1-3 indicated that our stimulus configurations were suitable to 

generate a robust Ebbinghaus illusion and an efficient OSM. Likewise, the size averaging 

paradigm was sensitive enough to reveal size changes with a magnitude as induced by our 
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variant of the Ebbinghaus illusion. In Experiment 4A, we combined these three paradigms to 

reveal the effect of context integration on hidden size averaging.  

Method 

Participants 

One participant from the group of twenty-nine participants couldn't take part in Experiment 

4A-B. So, the remaining twenty-eight participants (M = 29.32 years, SD = 5.62, 17 females) 

took part in Experiments 4A-B. We calculated goodness of fit measures when fitting 

psychometric curves to the data (see below in the Statistical Analysis Subsection). 

Participants with goodness of fit values smaller than r = 0.63 (corresponding to a p > 0.05) 

were removed from the sample. In the final sample, there were 23 participants (M = 30 years, 

SD = 5.83, 13 females). 

Stimuli 

Three out of eight circles were randomly chosen as target circles and surrounded by small or 

large inducers that allowed them to act as Ebbinghaus inducers and masking stimuli inducing 

OSM (Fig. 7A-B). All three targets were always presented at 0.9 degrees of visual angle. 

Accordingly, every change in the perceived average size could be attributed to an illusion 

effect induced by the Ebbinghaus illusion. The physical average size of the stimulus display 

(excluding inducers) was either 0.9 or 1.1 degrees of visual angle (e.g., Fig. 8, horizontal 

dashed grey lines). This was achieved by setting the average size of the five distractors to 0.9 

or 1.2 degrees of visual angle. The average size of the five distractors was calculated based 

on the normal cumulative distribution, and the size of each circle was varied with a standard 

deviation of 0.15 degrees of visual angle around the mean (0.9 or 1.2 degrees of visual angle). 

The target size was kept constant, and only the distractor average size was manipulated. This 

way, we ensured that participants averaged all green circles on the screen without 
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strategically selecting a subset. Specifically, if participants performed the task correctly, then 

their reported perceived average size is supposed to be larger in conditions with a large 

distractor average than those with a small distractor average. 

 

Fig. 7. Illustration of the task in Experiment 4A. Participants were asked to indicate 

whether the comparison circle (time window 4) was larger or smaller than the average size 

of all green circles (time window 2). Three out of eight circles were surrounded by either 

large (A) or small (B) inducers. In the simultaneous viewing condition, all stimuli 

disappeared at the same time. In contrast, in the delayed viewing condition, the mask 

remained visible for an additional 320 ms after the test circles had disappeared. 
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The targets surrounded by the three inducers were never adjacent and always 

separated by at least one distractor circle. Furthermore, targets were present on every trial in 

both hemifields, one in the left and two in the right hemifield or vice versa. Constant stimuli 

were used to detect the perceived average size of the green circles. The size of the 

comparison circle varied around the physical average size of the entire stimulus display with 

.1 degrees of visual angle increments. Accordingly, different comparison size lists were used 

for the two average size conditions. In each block, there were 10 different comparison sizes 

(half of them were smaller than the average size of all green circles, and the other half was 

larger), and each comparison circle was presented 10 times. 

Procedure 

The procedure of Experiment 4A was identical to Experiment 2, except for the following 

differences. First, in Experiment 4A, three targets were surrounded by inducers, compared to 

just one target in Experiment 2. Second, participants were asked to decide whether the 

average size of all green circles was smaller or larger than that of the comparison circle. 

Finally, Experiment 4A included not only simultaneous, but also delayed viewing condition. 

Each trial started with a 1000 ms fixation, followed by a test screen consisting of 

green circles and inducers for 32 ms (Fig. 7). In the simultaneous viewing condition, all 

stimuli disappeared at the same time, and only the fixation cross appeared on the screen for 

320 msec (Fig. 7A-B, Simultaneous). In the delayed viewing condition, the target circles 

disappeared, but the inducers persisted on the screen for 320 ms (Fig. 7A-B, Delayed). A 

comparison circle was presented at the centre of the screen until participants pressed a button 

to indicate whether the comparison circle was larger or smaller than the average size of all 

green circles. A grey noise pattern was presented for 500 ms to indicate the end of a trial. 

Participants completed 800 trials (2 inducer types × 2 viewing conditions × 2 distractor 
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average sizes × 10 comparison sizes × 10 repetitions). This experiment took around 50 

minutes. 

Eye-tracking data acquisition 

We collected eye movement data using Eyelink 1000 (SR Research, Mississauga, Ontario, 

Canada) to verify that participants maintained their gaze on the fixation cross throughout 

Experiments 4A-B. Eye movement data were recorded from the right eye at a sampling rate 

of 500 Hz. Before the experiment, participants performed a five-point calibration and 

validation procedure. A three-times bigger circular area (1.2 degrees of visual angle) around 

the fixation cross was defined as a region of interest (ROI), and we then calculated the time 

participants spent within this ROI throughout the experiment. Eye movement data were 

recorded throughout the entire experiment, but only critical periods were further analysed 

(Fig. 7, time windows 1-2-3). The average coordinates of the fixation cross for each trial were 

employed as a drift check for that specific trial. Preprocessing of the eye movement data was 

performed using RStudio Version 4.2.0 (RStudio Team, 2015). 

Statistical analyses 

As in Experiment 3, we assessed how participants perceived the average size of the stimuli by 

fitting psychometric curves to each participant’s data for each experimental condition. The 

PSE represented the point where the comparison circle was perceived at an equivalent size to 

the stimuli’s average size. Curve widths reflected the level of uncertainty in the participants' 

responses for each experimental condition, with wider curves indicating greater perceptual 

uncertainty. We calculated goodness of fit measures when fitting psychometric curves to the 

data. The obtained curves demonstrated a strong fit in Experiment 4A (r ranged between .743 

and .997). The perceived average size of all green circles was used as an outcome variable. A 

2 x 2 x 2 ANOVA was conducted to detect the illusory effects on hidden size averaging, with 
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the factors viewing condition (simultaneous, delayed), inducer type (small, large) and 

distractor average size (small, large). The estimated curve widths were analysed in a separate 

2 x 2 x 2 ANOVA with viewing condition (simultaneous, delayed), inducer type (small, 

large), and distractor average size (small, large) as within-subjects factors. 

Results  

Eye movement data 

Due to technical problems, we could not use two participants’ eye movement data. Following 

the exclusion of five outliers based on r values (see above in the Participants Subsection), the 

analysis of eye movement data involved the remaining twenty-one participants. A 2 x 2 x 2 

ANOVA was employed to examine the percentage of time that participants maintained 

fixation on the ROI in each experimental condition, with the factors of inducer type (small, 

large), viewing condition (simultaneous, delayed) and distractor average size (small, large). 

During the experiment’s critical periods, participants spent an average of 95.45% of their 

time within the ROI. ANOVA did not reveal significant main effects of viewing condition 

[simultaneous vs. delayed] (F (1, 20) = 0.77, p = .391, η2
p = 0.037), inducer type [large vs. 

small] (F (1, 20) = 2.44, p = .134, η2
p = 0.109) and distractor average size [small vs. large] (F 

(1, 20) = 0.44, p = .513, η2
p = 0.022). Besides, none of the interactions reached significance 

(all ps ≥ .052), indicating that participants maintained their gaze similarly across 

experimental conditions. 

Analysis of the perceived average size  

Figure 8 represents the mean PSEs with standard errors for within-subject contrast for 

the viewing condition and inducer type, in the (A) small and (B) large distractor averages. 

ANOVA revealed significant main effects of viewing condition [simultaneous vs. delayed] (F 

(1, 22) = 8.50, p = .008, η2
p = 0.279), inducer type [large vs. small] (F (1, 22) = 51.92, p < 
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.001, η2
p = 0.702) and distractor average size [small vs. large] (F (1, 22) = 49.70, p < .001, η2

p 

= 0.693). Furthermore, an interaction between inducer type and distractor average was 

observed (F (1, 22) = 19.02, p < .001, η2
p = 0.464).  

 

Fig. 8. Perceived average size for small (A) and large (B) distractor averages in 

Experiment 4A. Averaged PSEs were plotted against the inducer type and viewing condition. 

Blue bars represent the small inducers, while yellow bars indicate the large inducers. Error 

bars indicate the standard errors around the mean for within-subject contrasts (O’Brien & 

Cousineau, 2014). The horizontal dashed grey lines represent the physical average size of the 

stimulus display. 

Most importantly, participants estimated the average size as larger in the small 

inducer conditions (M = 1.03, SE = 0.03) than in the large inducer conditions (M = 0.93, SE = 

0.02), indicating the effect of contextual information. Given that no significant interaction 

was observed between inducer type and viewing condition (F (1, 22) = 1.50, p = .234, η2
p = 

0.064), the data suggest that the effect of contextual information did not differ between 
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masked and non-masked objects (Fig. 8A-B). Moreover, the mean PSEs were overestimated 

in the delayed viewing condition (M = 1.00, SE = 0.02) compared to the simultaneous 

viewing condition (M = 0.96, SE = 0.03) (Fig. 8A-B). 

As expected, we observed a notable difference between the small and large distractor 

averages. Specifically, the averaged PSEs in the large distractor average condition (M = 1.09, 

SE = 0.03) were greater than the ones in the small distractor average condition (M = 0.87, SE 

= 0.03) (Fig. 8A-B).  

Curve Widths  

The estimated curve widths were analysed by conducting a 2 x 2 x 2 ANOVA with the 

factors viewing condition (simultaneous, delayed), inducer type (small, large) and distractor 

average size (small, large). ANOVA revealed neither main effects (all ps ≥ .188) nor 

interactions (all ps ≥ .077). 

2.2.7. Experiment 4B: Size rescaling or size contrast? 

The results from Experiment 4A could be attributed to a context-based modulation of the 

target items. However, one could argue that the inducers generated a more general effect on 

elements present in the display other than the target stimuli. The goal of Experiment 4B was 

to investigate whether the observed effect in Experiment 4A could be attributed to the size 

rescaling of masked or non-masked target objects or whether it signifies a more general 

influence of Ebbinghaus inducers. Specifically, we explored whether the apparent size of one 

set (e.g., Ebbinghaus inducers) would influence the perceived average size of the other set 

(e.g., distractor circles), indicating a size-contrast effect which may represent a broader 

impact of inducers on other elements on the screen. To explore this, we conducted a control 

experiment identical to Experiment 4A, with the only distinction being the absence of targets 

within the inducers. If the results from Experiment 4A were independent of target-related 

size-rescaling and instead stemmed from the more general effects of inducers, then we would 
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anticipate identical results in Experiment 4B. Specifically, the obtained results would not 

differ based on the presence or absence of targets. However, if the size rescaling induced by 

Ebbinghaus inducers altered the target size representation, we would expect to observe an 

additional modulation by the Ebbinghaus inducers in Experiment 4A compared to 

Experiment 4B. 

Method 

Participants 

The same twenty-eight participants who attended Experiment 4A took part in Experiment 4B. 

We calculated goodness of fit measures when fitting psychometric curves to the data (see 

below in the Statistical Analysis Subsection). Participants with goodness of fit values smaller 

than r = 0.63 (corresponding to a p > 0.05) were removed from the sample. In the final 

sample, there were 23 participants (M = 30 years, SD = 5.83, 13 females).  

Stimuli 

All stimuli used in Experiment 4B were the same as in Experiment 4A. However, the only 

difference was the absence of target circles within the inducers. Hence, the average size of 

the overall screen was either 0.9 or 1.2 degrees of visual angle corresponding to the distractor 

average size since there were no more target circles to influence the overall screen average in 

the conditions with a large distractor average (e.g., Fig. 9, horizontal dashed grey lines). 

Procedure 

The procedure was identical to the one in Experiment 4A. 

Eye-tracking data acquisition 

We applied the same protocol to collect eye movement data. 
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Statistical analyses 

The obtained curves demonstrated a strong fit in Experiment 4B (r ranged between .772 and 

.995). The perceived average size of all green circles was used as the dependent variable. 

ANOVA with the mean PSE values was performed with the factors viewing condition 

(simultaneous, delayed), inducer type (small, large) and distractor average size (small, large). 

After that, we applied a normalisation procedure to facilitate a comparable assessment of the 

PSE values across different distractor averages. This normalisation was necessary due to the 

differences in the physical average size of the green circles in the large distractor average 

condition between Experiment 4A and Experiment 4B. In Experiment 4A, we employed a 

constant target size (0.9 degrees of visual angle) and manipulated the distractor average size 

(0.9 and 1.2 degrees of visual angle), whereas no targets were presented in Experiment 4B. 

This resulted in different average sizes for the large distractor conditions. Consequently, in 

Experiment 4A, the physical average size of the green circles was 1.1 degrees of visual angle, 

calculated as follows: ((5 × 1.2) + (3 × 0.9)) / 8 = 1.1. In contrast, the physical average size of 

the green circles was 1.2 degrees of visual angle in Experiment 4B, calculated as follows: (5 

× 1.2) / 5 = 1.2. To normalise the raw PSE values, we calculated each PSE value as a 

percentage relative to the particular physical average size. This procedure accounts for 

variations in the distractor's average size. For example, for a given PSE value (e.g., 1.1) and a 

screen average (e.g., 0.9), the normalised value was computed using the formula: (PSE × 

100) / Screen Average. Then, we subtracted target-absent PSE percentages (Experiment 4B) 

from target-present PSE percentages (Experiment 4A). This subtraction enables us to observe 

the effect of the target’s presence on the PSE values. 

Results 

Eye movement data 
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This analysis included the same twenty-one participants as those in Experiment 4A. ANOVA 

was conducted to assess the percentage of time participants spent on ROI in different 

conditions, with the factors of inducer type (small, large), viewing condition (simultaneous, 

delayed) and distractor average size (small, large). On average, participants spent 95.79% of 

their time within the ROI. ANOVA did not show significant main effects of viewing 

condition [simultaneous vs. delayed] (F (1, 20) = 2.13, p = .160, η2
p = 0.096), inducer type 

[large vs. small] (F (1, 20) = 2.07, p = .165, η2
p = 0.094) and distractor average size [small vs. 

large] (F (1, 20) = 0.83, p = .373, η2
p = 0.040). Similar to Experiment 4A, no significant 

interactions were observed (all ps ≥ .329). Accordingly, fixation was comparable across the 

various experimental conditions. 

Analysis of the perceived average size  

Figure 9 represents the mean PSEs with standard errors for within-subject contrast for the 

viewing condition and inducer type in the small (A) and large (B) distractor averages. 

ANOVA revealed significant main effects of both inducer type [small vs. large] (F (1, 22) = 

24.49, p < .001, η2
p = 0.527) and distractor average size [small vs. large] (F (1, 22) = 60.00, p 

< .001, η2
p = 0.732). However, the main effect of viewing condition did not reach 

significance. Moreover, an interaction between inducer type and distractor average was 

detected (F (1, 22) = 21.71, p < .001, η2
p = 0.497). 
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Fig. 9. Perceived average size for small (A) and large (B) distractor averages in 

Experiment 4B. Averaged PSEs were plotted against the inducer type and viewing condition. 

Blue bars represent the small inducers, while yellow bars indicate the large inducers. Error 

bars indicate the standard errors around the mean for within-subject contrasts (O’Brien & 

Cousineau, 2014). The horizontal dashed grey lines represent the physical average size of the 

stimulus display. 

As in Experiment 4A, where the targets were present, the average size was estimated 

as larger in the small inducer conditions (M = 1.00, SE = 0.03) compared to the large inducer 

conditions (M = 0.93, SE = 0.03) (Fig. 9A-B). Also, the averaged PSEs in the large distractor 

average condition (M = 1.10, SE = 0.03) were greater than in the small distractor average 

condition (M = 0.83, SE = 0.03) (Fig. 9A-B). Additionally, the inducer type and distractor 

average interaction showed that the difference between the small and large inducers was 

significant for the large distractor average. This pattern is consistent with the notion of a more 

general effect of the Ebbinghaus inducers.  
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However, we explicitly compared the results of the two experiments in one analysis to 

test for additional modulations induced by Ebbinghaus inducers in Experiment 4A. 

Exploring on top effects: The inducer effect on the target 

Figure 10 represents the normalised PSEs with standard errors for within-subject contrast for 

the viewing condition and inducer type. Experiment 4B was conducted to estimate the 

general effects of the Ebbinghaus stimuli on the results of Experiment 4A. While both 

experiments involved the effects of inducers on distractor stimuli, only Experiment 4A 

involved additional effects of inducers on the masked and non-masked target items. 

Subtracting the target-absent PSE values (Experiment 4B) from the target-present PSE values 

(Experiment 4A), we could reveal target-related modulations. Therefore, we directly 

compared Experiments 4A and 4B. After normalising the raw PSE values by calculating the 

percentage of each PSE value considering the physical average size of the screen, we 

subtracted the target-absent PSE values (Experiment 4B) from the target-present PSE values 

(Experiment 4A). The resulting values were included in the analysis. A 2 x 2 x 2 ANOVA 

was conducted with the factors viewing condition (simultaneous, delayed), inducer type 

(small, large) and distractor average size (small, large). ANOVA revealed significant main 

effects of inducer type [small vs. large] (F (1, 22) = 6.52, p = .018, η2
p = 0.229) and distractor 

average size [small vs. large] (F (1, 22) = 4.52, p = .045, η2
p = 0.170). However, neither the 

main effect of viewing condition (p = .191) nor the interactions (all ps ≥ .082) reached 

statistical significance. 
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Fig. 10. Difference between Experiments 4A and 4B. Normalised PSEs were plotted against 

inducer type and viewing condition. Blue bars represent the small inducers, while yellow 

bars indicate the large inducers. Error bars indicate the standard errors around the mean for 

within-subject contrasts (O’Brien & Cousineau, 2014). 

Most importantly, participants estimated the average size as larger in the small 

inducer conditions (M = 7.86, SE = 1.10) relative to that in the large inducer conditions (M = 

3.82, SE = 1.28), indicating evidence of target-based size modulations (Fig. 10). Since, the 

interaction between the factors inducer type and viewing condition was not significant, we 

did not have evidence that this effect was different for masked and non-masked targets (F (1, 

22) = 2.01, p = .170, η2
p = 0.084). Furthermore, as expected, the average size was estimated 

larger in the large distractor average conditions (M = 7.26, SE = 1.27) than in the small 

distractor average conditions (M = 4.42, SE = 0.94). 
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Curve Widths 

The estimated curve widths were analysed by conducting a 2 x 2 x 2 ANOVA with the 

factors viewing condition (simultaneous, delayed), inducer type (small, large) and distractor 

average size (small, large). As in Experiment 4A, ANOVA revealed neither main effects (all 

ps ≥ .184) nor interactions (all ps ≥ .533). 

2.2.8. Discussion 

Through behavioural experiments, we investigated how contextual information influences the 

perceived size of masked and non-masked objects. A combined paradigm allowed the 

induction of an illusion via the Ebbinghaus inducers. The Ebbinghaus inducers also 

efficiently functioned as a mask, inducing object substitution masking. Efficient masking 

decreased target recognisability and hence rendered target item encoding more implicit. 

Finally, size averaging allowed us to indirectly assess the size representations of the target 

stimuli so that it was possible to infer the effect of size rescaling of both masked and non-

masked visual stimuli in the same way. The results of Experiment 4A showed that large 

Ebbinghaus inducers decreased the reported average size, whereas small inducers led to an 

increase. This effect was independent of the target items being masked. 

 Moreover, in a control experiment (Experiment 4B), we tested for a more general 

inducer effect on the display configuration by removing all target items while keeping all 

other display features identical to Experiment 4A. Experiment 4B indeed showed a general 

effect of inducers on distractor items. We explicitly tested for specific target effects by 

directly comparing the results of Experiments 4A and 4B. This analysis showed that over and 

above the general effects found in Experiment 4B, there was a target-related modulation of 

size by Ebbinghaus inducers, which was not significantly different for masked and non-

masked objects.  
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The interpretation of Experiments 4A’s and B’s findings critically depends on the 

effectiveness of each experimental manipulation combined in our paradigm. Therefore, in 

addition to the main experiment, we verified the effectiveness of each paradigm by 

conducting Experiments 1-3.  

Experiment 1 demonstrated the efficiency of our experimental setup in altering the 

perceived size of objects. The results showed a substantial perceived size difference between 

small and large inducers compared to the control condition without inducers, indicating that 

our variant of the Ebbinghaus illusion generated a robust size illusion effect in Experiment 1. 

However, the no-inducer condition differs from the two illusion conditions in terms of the 

number of stimuli, which could explain why no significant increase in perceived average size 

was detected in the small inducer condition compared to the no-inducer condition. A variant 

with inducer stimuli of the same size as the target might have provided a more controlled 

baseline for comparison. Please note, that the no-inducer condition was not used in the 

subsequent experiments.  

Furthermore, it was crucial to ensure that our masking procedure efficiently altered 

target recognisability to infer the effects of size-rescaling of masked vs. non-masked stimuli. 

We used OSM following the experimental setup previously introduced by Choo and 

Franconeri (2010). The results from Experiment 2 revealed that our stimulus configuration 

reliably induced OSM, as evident from a robust performance decline in the delayed viewing 

condition. In principle, the simultaneous presentation of targets and inducers may have 

decreased target recognisability, hence generating a masking effect itself. However, results 

from Experiment 2 show that accuracy was significantly reduced in the delayed viewing 

condition as compared to the simultaneous viewing condition hence indicating that our 

experimental set-up successfully altered target recognisability. We used the stimulus 

parameters proven efficient in Experiment 2 to ensure robust masking in Experiment 4A.  
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Lastly, we tested whether the size averaging paradigm was sensitive enough to detect 

perceived size changes in the magnitude of the ones induced by the Ebbinghaus illusion in 

Experiment 3. We employed the individual PSE values from Experiment 1 as small and large 

target sizes to achieve this. Specifically, we adjusted the physical sizes of the target items to 

align with the perceived sizes altered by the Ebbinghaus illusion in Experiment 1. We 

employed three target circles in a single display to enhance the impact of target size. 

Experiment 3 confirmed that both small and large targets significantly influenced the 

perceived display’s average size, leading to a decrease and an increase in the perceived 

average size, respectively. 

After successfully confirming the efficiency of each paradigm in Experiments 1-3, the 

objective of Experiment 4A was to integrate these three paradigms to reveal the effect of 

context integration on hidden size averaging. The findings of Experiment 4A demonstrated a 

modulation in the perceived average size, regardless of the object being masked or not. No 

notable distinctions were evident between the simultaneous (non-masked) and delayed 

(masked) viewing conditions. These findings replicate those reported by Choo and Franconeri 

(2010), emphasising that even when OSM highly impairs an object’s visibility, its 

contribution to the average size remains intact and is comparable to that of an unmasked 

object. The results of Choo and Franconeri (2010) have been criticised in a study by Jacoby 

and colleagues (2013). The main criticism raised in this study was directed towards the mask 

positions, particularly the possibility of adjacent masks, which could potentially introduce an 

attentional effect. Besides, Choo and Franconeri (2010) found that the average influence of 

the two target circles was weaker in masked conditions compared to non-masked conditions, 

showing a bias toward smaller responses. Following the critique by Jacoby and colleagues 

(2013), this result could be interpreted as evidence that OSM disrupts size averaging. We 

addressed these concerns by implementing three masks to ensure a diffuse distribution of 
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attention mandatory for OSM (Enns & Di Lollo, 1997). Further, we included two distinct 

distractor averages in Experiment 4A, which allowed testing participants’ task performance. 

Contrary to Jacoby et al.’s findings (2013), which demonstrated that OSM disrupts single 

object representation and impairs averaging performance, the findings of Experiment 4A 

strongly support the notion that even masked objects contribute to size averaging. The results 

of Experiment 4A align with a prior study showing that ensemble summary statistics vary 

depending on contextual information, and the perceived average range is formed after size-

rescaling mechanisms (Markov & Tiurina, 2021). Notably, our results take these findings one 

step further, showing that even the size of masked objects is first rescaled and then 

incorporated into the averaged size. Interestingly, even though size information was 

implicitly coded and not explicitly reportable in the delayed viewing conditions, a bottom-up 

signal still revealed its influence on perceptual decisions. This is consistent with a previous 

study showing that neural activity patterns in occluded areas of early visual cortex provide 

key insights into the categorization and specific details of nearby images (Morgan et al., 

2019). Despite V1 and V2 receiving only feedback from higher cortical areas and lacking a 

direct feedforward signal, information can still be extracted from these occluded areas. This 

suggests that category information can be effectively anticipated by the internal models in the 

early visual cortex. 

Previously, Im and Chong (2009) combined size averaging and the Ebbinghaus 

illusion to test whether the reported average size reflects a stimulus’s perceived or physical 

size. In contrast to our study, their stimuli were clearly visible and unmasked. Small and large 

Ebbinghaus inducers induced, similar to our study, contextual information. Following a 

reasoning similar to ours, the authors argued that if the perceived size of target objects 

contributes to the reported average size, there would be either an overestimation or an 

underestimation of the average size. Instead, if the physical size contributes to the reported 
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average size, no difference would emerge between small and large inducer blocks. Their 

results showed that the perceived size of the objects contributed to the reported average size. 

Thus, their data align with our findings, indicating that each target size is rescaled through 

contextual information and then contributes to the average size, consistent with Tiurina and 

Utochkin (2019). These findings collectively demonstrate that contextual information 

influences the objects before they contribute to ensemble summary statistics.  

In light of the current findings, it is reasonable to argue that size averaging comes into 

play just after the size representations are rescaled through contextual information. This 

hypothesis is supported by the finding that conscious perception of the surrounding inducers 

or target item is not essential for the Ebbinghaus illusion, indicating a subconscious 

contextual modulation (Chen et al., 2018). In Chen et al.’s study (2018), the target items and 

the surrounding inducers were rendered invisible by continuous flash suppression and 

backward masking. Significant illusory size judgments were observed in both masking 

procedures, demonstrating that the illusory effect induced by the Ebbinghaus illusion 

persisted even when the target or surrounding inducers were invisible. In contrast, similar 

findings could not be detected for the Ponzo illusion, which relies on feedback mechanisms 

from higher-level visual areas (Schwarzkopf et al., 2011). Chen et al.’s findings indicate that 

subconscious contextual modulations already occur in early visual processing, consistent with 

the results from a functional imaging study indicating that neural activity in V1 represents the 

perceived size of the objects (Sperandio et al., 2012). 

Even though the Ebbinghaus illusion is widely recognized for its association with 

activations in early visual processing regions, particularly V1, recent studies suggest that this 

illusion may involve brain regions beyond V1 (Wu et al., 2023; Chen et al., 2024). Wu and 

colleagues (2023) reported an important role of the parietal cortex for the Ebbinghaus 

illusion. Namely, the connection from the right V1 to the superior parietal lobule (SPL) was 
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found to predict the strength of the Ebbinghaus illusion. A stronger Ebbinghaus illusion after 

inhibitory rTMS to the right SPL might be explained by altered inhibitory feedforward 

connectivities from V1 to SPL. This effect aligns with the observed negative correlation 

between the strength of this connection and the magnitude of the Ebbinghaus illusion. 

Furthermore, Chen et al. (2024) demonstrated that the Ebbinghaus illusion is influenced by 

feedback projections from higher to lower visual areas, highlighting the role of top-down 

signals in modulating this illusion. The influence of feedback mechanisms on size rescaling 

was further demonstrated by Zeng and colleagues (2020). Their study, which applied TMS 

stimulation, revealed that there is a top-down influence on context integration, indicating that 

feedback mechanism from LOC modulates the altered perceived size representations in the 

early visual cortex.  

Despite object recognisability being highly impaired by OSM in Experiment 4A, the 

perceived average size was larger in the delayed viewing than the simultaneous viewing 

condition. A similar tendency to overestimate the average size in the delayed viewing 

condition was observed in previous studies (Choo & Franconeri, 2010; Jacoby et al., 2013). 

Nevertheless, this effect was not evident when target items were removed in Experiment 4B. 

Two perspectives may account for this overestimation in the delayed condition compared to 

the simultaneous condition in Experiment 4A. Initially, visual information processing differs 

between the simultaneous and delayed viewing conditions in Experiment 4A. In the 

simultaneous condition, where targets are presented within the inducers, the perceptual 

process benefits from faster processing due to the immediate availability of visual signals. 

However, in the delayed condition, the absence of visual signals due to OSM necessitates a 

more prolonged accumulation of evidence, resulting in extended processing time. This 

prolonged processing time aligns with previous studies demonstrating that stimuli presented 
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or processed longer tend to be perceived as larger (Thomas & Cantor, 1976; Rammsayer & 

Verner, 2014).  

Secondly, neuronal activity initially progresses from lower-level visual areas to 

higher-order visual areas in visual processing, referred to as feedforward processing (Krasich 

et al., 2022; Boehler et al., 2008). Once this initial feedforward activity reaches a specific 

visual area, the activation is sent back to lower-level visual areas through feedback 

connections (recurrent processing). These feedback connections are believed to convey 

predictions about incoming information, while any error in these predictions is transferred via 

feedforward connections, aiding to refine subsequent processing. OSM is thought to interfere 

with recurrent processing while preserving the initial feedforward signal (Harris et al., 2013; 

Boehler et al., 2008; Di Lollo et al., 2000; Enns & Di Lollo, 1997). Specifically, the longer 

presentation of mask in the delayed viewing condition results in additional feedforward 

processing of the mask-alone representation. This additional feedforward processing of the 

prolonged mask-alone presentation disrupts the recurrent processing of the stimulus-mask 

representation. Consequently, context-induced perceptual biases may have a stronger impact 

and, may enhance the impact of the Ebbinghaus illusion in the delayed viewing condition. 

Integrating these perspectives, we suggest that the observed overestimation in the delayed 

viewing condition in Experiment 4A arises from the prolonged processing time required for 

accumulating evidence and the interruption of recurrent processes. These explanations could 

also clarify why we did not observe overestimation in Experiment 4B, where the absence of 

targets removed potential processing differences between the simultaneous and delayed 

viewing conditions. 

Interestingly, we observed a modulation of the perceived average size in the control 

experiment (Experiment 4B). This finding cannot be attributed to rescaling the target size, as 

demonstrated in Experiment 4A, nor to the influence of inducers contributing to average size. 
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If Ebbinghaus inducers were incorporated into the items to be averaged, an opposing effect 

would be anticipated. Specifically, the presence of large inducers would lead to an increase in 

the reported average, while small inducers would result in a decrease in the reported average. 

However, we observed the exact opposite pattern. The data suggest that the inducers directly 

act on the perceived average size in more general terms. The fact that large inducers 

decreased while small inducers increased perceived average size suggests a size contrast 

effect, which may arise on multiple levels of processing.  It is possible that the size of the 

items to be judged is already biased at the initial perceptual level, where all stimuli are 

presented simultaneously. This interpretation is supported by psychophysical (Song et al, 

2011; Nakashima & Sugita, 2018) and neuroimaging (Schwarzkopf & Rees, 2013; 

Schwarzkopf et al, 2011) studies suggesting that the Ebbinghaus illusion occurs on early 

levels within the visual system. Alternatively, the decision might be influenced at a 

subsequent stage, where the contrast effect becomes more pronounced, leading participants to 

judge the distractors relative to the inducers in Experiment 4B. This latter view is consistent 

with early accounts of the Ebbinghaus illusion such as the one suggested by Massaro & 

Anderson (1971). Based on this account, the bias observed in Experiment 4B might reflect a 

size-contrast effect occurring at a post-perceptual stage. In particular, the inducers may have 

served as standards or references when the distractor circles are judged (Massaro & 

Anderson, 1971). 

The question then arises, whether the effects observed in Experiment 4A can be fully 

explained by the same mechanism, namely by a contrast effect of the inducers on the visible 

items on the screen. We addressed this question by comparing the data from Experiments 4A 

and 4B. We subtracted the size average judgments in the control Experiment 4B with its 

respective judgments in Experiment 4A to eliminate any size contrast effect by the inducers 

on non-target stimuli. The rationale behind this was that if the changes in size-averaging were 
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solely due to a general size-contrast effect, then the two experiments should show no 

differences. On the other hand, any observed difference could be attributed to a rescaling 

effect of the target. What we found were on-top effects in Experiment 4A over Experiment 

4B, indicating target-related effects. In particular, we found a significant impact of inducer 

size, with larger reported size averaging values for small inducers and smaller size averaging 

values for large inducers, indicating target-size-rescaling. Importantly, we did not find any 

difference between viewing conditions. Hence, target-size-rescaling was not found to be 

different between explicitly and implicitly coded objects.  

Two key considerations could be raised when interpreting our findings. Initially, one 

might question whether our results have been influenced by post-perceptual decision biases 

(Firestone & Scholl, 2016). While such concerns are typical in psychophysics, we 

implemented several precautions to minimise the impact of these biases. Participants were 

instructed to report their responses without using mental strategies and were unaware of the 

experimental manipulations (inducer types, viewing conditions, and distractor sizes), making 

it unlikely that differences between conditions were due to general decision biases. The 

randomisation of block order further reduced potential biases from prior knowledge, and 

participants' lack of familiarity with psychophysical methods (e.g., the Method of Constant 

Stimuli) decreased the likelihood of systematic bias. Finally, we used two distractor averages 

to evaluate task performance. The target size was consistently set at 0.9 degrees of visual 

angle, while the distractor average sizes were manipulated to be either small (0.9) or large 

(1.2) degrees of visual angle. This manipulation altered the overall average size of objects on 

the screen. Our findings demonstrated a clear upward shift in perceived average size when 

the distractor average size increased, which would not be expected to observe when the 

effects were purely due to decisional biases.  
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Subsequently, as our paradigm involves several circles, it could potentially induce 

crowding effects. However, the stimuli that are located close enough to generate crowding 

effects are separated by colour. It is known, that perceptual grouping is one of the key factors 

for crowding. Stimuli from different sets of colours are unlikely to generate crowding as 

demonstrated by Kennedy and Whitaker (2010). In their study, they manipulated 

chromaticity channels (red-green, blue-yellow) and demonstrated that crowding occurs only 

when the target and flankers shared the same colour. Furthermore, most crowding paradigms 

typically involve longer stimulus durations (≥150 ms) that allow a proper allocation of 

attention (Levi et al., 2002; Kooi et al., 1994; Kennedy & Whitaker, 2010; Freeman & Pelli, 

2007; Greenwood & Parsons, 2020; Li et al., 2020), whereas our stimuli were presented for a 

notably brief duration of 32ms, making it unlikely for a crowding mechanism to occur. 

Finally, Parkes and colleagues (2001) demonstrated that crowding did not prevent 

participants from obtaining summary statistics, such as the average orientation of a cluster of 

items.  

2.2.9. Conclusion 

In summary, we identified two critical aspects related to size-rescaling in the context 

of size-averaging. First, we found that the Ebbinghaus inducers play a pivotal role in altering 

the perceived average size of distractor stimuli. When large inducers were present, the 

perceived average size decreased, while smaller ones had the opposite effect. The results 

indicate that the average size of different groups of objects are not independent, but mutually 

alter their perceived size in a contrast-like fashion. These findings align with earlier theories 

regarding the Ebbinghaus illusion (Massaro & Anderson, 1971), suggesting that the context 

circles within the illusion serve as standards for size judgment. 

Second, our results revealed that the inducers consistently influenced their size 

representation even when stimuli were masked. This observation indicates that the size-
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rescaling effects operate at the early stages of visual processing, preceding explicit stimulus 

encoding. 
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2.3. Study Ⅱ 

Memis, E., Fink, G. R., & Weidner, R. (Unpublished manuscript, included in this dissertation 

and made publicly available via KUPS). Cross-ensemble size contrast in summary statistics: 

Neural and behavioural evidence. 

2.3.1. Introduction 

The human visual system demonstrates remarkable parallel processing by rapidly 

forming ensemble representations, efficiently summarising or averaging object features 

across groups - such as size (Ariely, 2001), distance (Tiurina & Utochkin, 2019), and 

orientation (Parkes et al., 2001). For example, size averaging enables observers to rapidly (in 

less than 50 ms) and accurately estimate the average size of a set of stimuli, even when they 

are unable to report information about individual items (Ariely, 2001; Haberman & Whitney, 

2007; Alvarez & Oliva, 2008; Allik et al., 2014).  Notably, observers can accurately report 

the average size of a group of objects, even when the visibility of some objects is impaired by 

object-substitution masking (OSM) (Choo & Franconeri, 2010).  

Size averaging performance remains resilient to changes in object features such as set 

size and set density (Chong & Treisman, 2005) and summary statistics are calculated 

simultaneously for multiple groups of objects without any drop in performance compared to 

sequential presentation. Overall, these findings indicate that the respective computations 

occur in parallel and at early stages of the visual processing hierarchy (Chong & Treisman, 

2003). 

Evidence from EEG suggests that ensemble representations such as average size are 

formed even before individual objects are processed (Epstein & Emmanouil, 2021). Although 

these findings argue that summary statistics are generated early on, the fact that summary 

statistics are calculated for different groups of objects in parallel (Chong & Treisman, 2005) 

implies that preattentive grouping processes have to occur first.  
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Taken together, these findings support the idea that individual objects and ensemble 

representations of objects are represented differently in the visual system and that information 

about ensemble representations for different object groups are available relatively early and 

simultaneously for different groups. It is yet unclear, whether such different summary 

statistics constitute independent descriptors or whether they are integrated at some level of 

processing where they might interact and whether such an interaction becomes perceptually 

relevant.  

In a recent study, we found evidence that summary size statistics may not be coded 

independently but instead influence each other in a contrast-like fashion (Memis et al., 2025). 

In a size-averaging experiment we found that the average size of a set of objects was altered 

by the presence of stimuli inducing the Ebbinghaus illusion. Large Ebbinghaus inducers led 

to a decrease, whereas small inducers led to an increase in the perceived average size of the 

task-relevant set indicating instead a contrast-driven modulation. The pattern is consistent 

with the idea that one group of objects acts as the context for another set and that these 

contextual objects serve as benchmarks for size judgments, thereby producing a contrast-like 

effect (Massaro and Anderson, 1971).  

In Memis et al.'s experiment, the Ebbinghaus inducers were all of the same size 

(either large or small) so that their average size and the size of a single inducer object were 

identical. This confound makes it difficult to uniquely determine whether the observed 

contrast effects were due to the overall summary size statistics or the specific sizes of the 

individual inducers. Therefore, in the present experiment, we used heterogeneous sets of 

stimuli with variable sizes, while keeping their average size constant to disentangle individual 

object size and group average size.  

In particular, we employed behavioural measures and fMRI to investigate whether the 

perceived average size of one set of stimuli influences the perceived average size of another 
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set in a contrast-like fashion and whether such a contrast effect alters stimulus coding in early 

visual regions. Participants were presented with two sets of stimuli and were asked to report 

the perceived average size of a task-relevant set. Task-relevant and task-irrelevant sets were 

presented in different quadrants of the visual field, which allowed to separate their neural 

signatures in early retinotopic regions of the visual cortex. Furthermore, spatially separating 

the different groups of stimuli enabled us to quantify the effects of mutual size-contrasts on 

the early coding of objects. In addition, based on Murray et al.'s (2006) finding that increased 

perceived size correlates with larger representations in early visual regions, we hypothesised 

that: (1) neural activation in regions encoding task-relevant sets would be larger when 

surrounded by small task-irrelevant objects as compared to large ones; (2) neural activation in 

regions encoding task-irrelevant sets would be larger when surrounded by small task-relevant 

objects when compared to large ones; and (3) these neural patterns would correspond with 

behavioural results showing a size-contrast effect. Such mutual influence between the 

perceived average size of different sets would indicate that size-contrast effects, as observed 

in size-contrast illusions, may occur at the level of statistical summary descriptors. 

2.3.2. Materials and methods 

Participants 

Twenty-nine healthy participants (M = 29.28 years, SD = 4.54, 11 females) took part 

in the fMRI experiment. All participants had normal or corrected-to-normal vision, and had 

normal colour vision as tested by the Velhagen-Broschmann pseudoisochromatic plates 

(Velhagen & Broschmann, 1997). Participants provided written informed consent prior to the 

experiment. They were remunerated for their time with 20 euros per hour for the fMRI 

session and 15 euros per hour for the behavioural session. The study was approved by the 

ethics committee of the German Society of Psychology (Application ID: WeidnerRalph2024-

07-31-VA). The sample size was determined based on effect sizes observed in pilot studies to 
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make sure the current sample size would be sufficient to reveal significant differences 

between the experimental conditions (in a repeated-measures analysis of variance) with 95% 

power and an alpha level of 0.05. Considering the strong effect observed in the behavioural 

experiment, we cautiously increased the number of participants for the fMRI study to account 

for potential variations in the observed effect. Power estimates were computed using 

G*Power (Erdfelder et al., 1996). 

Stimuli 

The experiment was run via Visual Studio Code 1.68.1 using PsychoPy 2021.2.3 

scripts. The experimental stimuli consisted of two uniformly coloured sets of circles, with 

eighteen green and eighteen red circles, presented on a grey background (49.90 cd/m²) at 40 

degrees of visual angle over a black screen (Fig. 1). Participants’ task was to indicate the 

perceived average size of a task-relevant set (e.g., green) while ignoring the task-irrelevant 

one (e.g. red). Due to sample size, full counterbalancing of the task-relevant colour was not 

feasible: 15 participants were assigned the green set as the task-relevant set, while 14 

participants were assigned the red set. The luminance values were measured on the computer 

used to run the experiment, with green circles at 76.71 cd/m2 and red circles at 18.27 cd/m2.  

In each trial, one quadrant of the display was randomly assigned as the target quadrant 

and included fourteen task-relevant circles (Fig. 1, time window 2). The quadrant diagonal to 

the target quadrant was assigned as the distractor quadrant, containing six task-irrelevant 

circles. The remaining two adjacent quadrants included six task-irrelevant and two additional 

task-relevant circles. This way, participants had to attend the whole screen to perform the 

task. The average size of the two additional circles in the adjacent quadrants was equal to the 

average size of the task-relevant circles on that trial so the overall average size of targets 

remained unchanged.  
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The average sizes of both sets were either small (0.7° visual angle) or large (1.3° 

visual angle), resulting in four experimental conditions: (1) small task-relevant/large task-

irrelevant (Fig. 1A), (2) small task-relevant/small task-irrelevant (Fig. 1B), (3) large task-

relevant/small task-irrelevant (Fig. 1C), and (4) large task-relevant/large task-irrelevant 

circles (Fig. 1D). For clarity, conditions (1) and (3) are referred to as negative and positive 

size-contrast, respectively, corresponding to the expected underestimation and overestimation 

of the average size of the task-relevant set, whereas conditions (2) and (4) are referred to as 

size-match. 

The experimental conditions were presented block-wise, with each block containing 

trials from only one condition. The individual sizes of circles in task-relevant and task-

irrelevant sets were determined based on a normal cumulative distribution. Specifically, the 

size of each circle was varied with a standard deviation of 0.15° visual angle around the 

corresponding mean (0.7° or 1.3° visual angle), and a minimum centre-to-centre distance of 

3° visual angle was maintained between adjacent circles. The distance from the fixation cross 

to the edge of the closest circle was approximately 2.65° visual angle for the small set and 

2.35° visual angle for the large set. In this way, we manipulated the heterogeneity of the set 

on each and every trial while keeping the spatial distribution comparable across trials, as well 

as across different task-relevant and task-irrelevant object sizes. 

The method of constant stimuli was used to detect the perceived average size of the task-

relevant circles. The size of the comparison circle varied around the average size of the task-

relevant circles with 0.1° visual angle increments, resulting in two different comparison size 

lists for small (0.7°) and large (1.3°) averages. Ten different comparison sizes were used (half 

of them were smaller than the average size of the task-relevant set and the other half was 

larger). In the fMRI session only, one of five fixation durations (500 ms, 1000 ms, 1500 ms, 
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2000 ms, and 2500 ms) was randomly assigned at the beginning of each trial to introduce 

temporal jitter (Fig. 1, time window 1).  

 

Fig. 1. Illustration of the main task. The figure shows the experiment setup in which task-

relevant items were green, and task-irrelevant items were red. Participants were required to 

determine whether the comparison circle (Time Window 4) was larger or smaller than the 

average size of the green circles (Time Window 2). In the size-match conditions (B and D), 

the average sizes of green and red circles were identical, either small or large, respectively. 

In the negative size-contrast condition (A), the average size of task-relevant circles was 

smaller than that of task-irrelevant circles. Conversely, in the positive size-contrast condition 

(C), the average size of green circles was larger than that of red circles. 

Procedure 

Participants attended two sessions: a pre-test session and an MRI session, conducted 

on different days. Initially, participants attended a pre-test session that lasted approximately 1 



 Empirical Section
  

82 
 

hour, during which they completed a colour vision test (Velhagen & Broschmann, 1997), an 

Ebbinghaus screening task (see Ebbinghaus Screening section), and a practice run for the 

main task. Participants attended an MRI session 1-4 days after the pre-test session. For some 

participants the time between the pre-test and the MRI session was longer (from 8 to 27 

days). Those participants received an additional 5 minutes of practice before scanning. The 

MRI session lasted around 1.5 hours and included a position localizer task and the main task 

performed inside the scanner. 

In the main task, participants were instructed to indicate via button press whether the 

comparison circle was larger or smaller than the average size of the task-relevant set of 

circles (Fig. 1, time window 4). Response mapping was counterbalanced across trials: in half 

of the trials, a left button press indicated that the comparison circle was larger, while in the 

remaining trials, the left button press indicated that the comparison circle was smaller. The 

response mapping was indicated during the response period (e.g. larger/left, smaller/right). 

Each trial started with a fixation period in which only a fixation cross was presented over a 

grey background (Fig. 1). Following this, task-relevant and task-irrelevant circles appeared in 

their respective quadrants for 32 ms. After a 1000 ms fixation period, a comparison circle 

was displayed at the centre of the screen for 1300 ms (Fig. 1). If participants did not respond 

within the given time frame of 1300 ms, the trial was considered as incorrect. Each trial 

ended with a grey noise pattern for 500 ms. Participants completed 120 trials per block, 

resulting in a total of 480 trials (2 task-relevant size × 2 task-irrelevant size × 10 comparison 

sizes × 4 quadrants × 3 repetitions), which lasted approximately 37 minutes. 

Ebbinghaus Screening 

During the pre-test session, participants completed a size judgment task designed to 

assess the strength of the Ebbinghaus illusion, to test whether a potential size-contrast effect 
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in the main experiment is correlated with an individual's susceptibility to the Ebbinghaus 

illusion. The task required participants to judge the size of a target circle (0.9° visual angle) 

that appeared randomly at one of the four corners within an imaginary square (10° visual 

angle) centred on the fixation cross (Fig. 2). The target circle was green (76.71 cd/m²), and 

the inducers were red (18.27 cd/m²). Each trial started with a 1000 ms fixation period, 

followed by a 32 ms presentation of the target circle surrounded by either small (0.7° visual 

angle) or large (1.3° visual angle) inducers to manipulate the perceived size of the target (Fig. 

2A-B). After a 320 ms fixation period, a comparison circle appeared at the centre of the 

screen, and participants were asked to judge whether it was larger or smaller than the target 

circle. Participants pressed the right key if the comparison circle was larger and the left key if 

it was smaller. Each trial ended with a noise screen for 500 ms. Participants performed 80 

trials (2 inducer sizes x 4 target locations x 10 comparison sizes) which took approximately 5 

minutes to complete. 

 

Fig. 2. Illustration of the task in Ebbinghaus screening. Participants were asked to  
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determine whether the comparison circle (time window 4) was larger or smaller than the 

target circle (time window 2). The target circle was surrounded by either a large (A) or a 

small inducer (B). 

Eye-tracking data acquisition 

Eye movement data were recorded from the right eye during the pre-test session using 

an Eyelink 1000 (SR Research, Mississauga, Ontario, Canada) at a sampling rate of 500 Hz. 

Participants performed a five-point calibration and validation procedure. A three-times larger 

circular area with a radius of 1.5° visual angle around the fixation cross was defined as a 

region of interest (ROI). Eye movement data were recorded throughout the entire experiment, 

but only critical periods were further analysed (Fig. 1, time window 1-2-3). The average 

coordinates of the fixation cross for each trial were employed as a drift check for that specific 

trial. Preprocessing of the eye movement data was performed using RStudio Version 4.2.0 

(RStudio Team, 2015).  

Behavioural data analysis 

The perceived object sizes were calculated and analysed throughout all experimental 

sessions. To quantify how participants perceived the average size, psychometric curves were 

generated for each condition by analysing response proportions at 0.1° intervals, reflecting 

the likelihood of judging the comparison circle as larger than the target circle. A logistic 

function was used to model this probability (P), and the Point of Subjective Equality (PSE) 

was calculated as P = 0.5, reflecting the size at which the comparison circle was perceived as 

equal in size to the target circle. A 2 × 2 repeated-measures ANOVA was conducted on PSEs 

to examine the effects of task-relevant size and task-irrelevant size (small vs. large) in the 

pre-test and fMRI session.  
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When fitting the psychometric curves to the data, we calculated the goodness of fit 

value, quantified as 1 minus the ratio of residual to total variance in response proportions. 

The obtained curves demonstrated a strong fit in the Ebbinghaus screening task (r ranged 

between .770 and .998), pre-test (r ranged between .882 and .997), and fMRI session (r 

ranged between .886 and .994).  

To investigate the relationship between participants’ susceptibility to the Ebbinghaus 

illusion and size-contrast effects measured in both the pre-test and fMRI task, we calculated 

individual size-contrast effects and examined their correlations with Ebbinghaus illusion 

strength. Size-contrast effects were computed separately for negative and positive size-

contrast conditions. Negative size-contrast refers to a condition in which contextual contrast 

leads to a decrease in perceived size, whereas positive size-contrast indicates an increase in 

perceived size. These two variants were calculated by using the formulas:  

𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑠𝑖𝑧𝑒 − 𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 𝑒𝑓𝑓𝑒𝑐𝑡 = 𝑃𝑆𝐸(𝑠𝑖𝑧𝑒_𝑚𝑎𝑡𝑐ℎ) − 𝑃𝑆𝐸(𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑠𝑖𝑧𝑒_𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡) 

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑠𝑖𝑧𝑒 − 𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 𝑒𝑓𝑓𝑒𝑐𝑡 = 𝑃𝑆𝐸(𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑠𝑖𝑧𝑒_𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡) − 𝑃𝑆𝐸(𝑠𝑖𝑧𝑒_𝑚𝑎𝑡𝑐ℎ) 

The strength of the Ebbinghaus illusion was quantified as the percentage difference 

between PSE values obtained with small and large inducers, relative to the target size, using 

the formula:  

𝐼𝑙𝑙𝑢𝑠𝑖𝑜𝑛 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ (%)  =  
(𝑃𝑆𝐸 𝑠𝑚𝑎𝑙𝑙 𝑖𝑛𝑑𝑢𝑐𝑒𝑟 −  𝑃𝑆𝐸 𝑙𝑎𝑟𝑔𝑒 𝑖𝑛𝑑𝑢𝑐𝑒𝑟)  ×  100

0.9
 

2.3.3. fMRI measurement 

Data acquisition 

Each scanning session included both structural (TR = 2500 ms, TE = 2.22 ms, flip 

angle = 7°, FOV = 240×240 mm, voxel size = 0.94×0.94×0.94 mm, number of slices = 208, 

slice thickness = 0.94 mm) and functional (TR = 800 ms, TE = 37 ms, flip angle = 52°, FOV 

= 280×280 mm, voxel size = 2×2×2 mm, number of slices = 72, slice thickness = 2 mm).  



 Empirical Section
  

86 
 

MRI acquisitions. Functional magnetic resonance imaging (fMRI) data were acquired to 

measure blood oxygenation level-dependent (BOLD) signal changes while participants 

performed the task. Functional scans were acquired using a 3-T PRISMA MRI system 

(Siemens, Erlangen, Germany) with T2*-weighted EPI sequence. During imaging, visual 

stimuli were presented via binocular video goggles (NNL, Bergen, Norway) attached to the 

64-channel head coil and adjusted to fit the participants' vision. Participants were provided 

with two 5-button response units (Psychology Software Tools Celeritas, Sharpsburg, PA, 

USA), and used their index fingers to indicate responses. The button on the left hand 

corresponded to a “left” response, while the button on the right hand corresponded to a 

“right” response. In the position localizer task, 450 volumes were acquired, and 2790 

volumes were obtained from the main task. 

Data preprocessing 

The fMRI data were analysed using the statistical parametric mapping software 

SPM25 (Wellcome Department of Imaging Neuroscience, London; 

http://fil.ion.ucl.ac.uk/spm/software/spm25). Functional images from both the main 

experiment and the position localizer task were first realigned to correct for inter-scan 

movement by aligning each image to the participant’s mean functional image. Next, each 

participant’s mean image was normalised to the standard MNI single-subject template using 

the unified segmentation approach in SPM25. Finally, to improve the signal-to-noise ratio 

and compensate for minor anatomical differences, the images were smoothed using an 8-mm 

full width at half-maximum (FWHM) Gaussian kernel. 

2.3.4. fMRI analysis 

From an initial sample of twenty-nine participants, seven were excluded from all 

subsequent analyses due to poor task performance and head motion. One participant was 

http://fil.ion.ucl.ac.uk/spm/software/spm
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excluded due to a high number of missed responses during the task (more than 10% of task 

responses, exceeding two standard deviations above the mean across participants). The 

remaining six participants were excluded due to head motion during scanning. Head motion 

was quantified using frame-wise displacement (FD), calculated as the sum of absolute 

differences in translational and rotational motion parameters between consecutive volumes 

(Power et al., 2012; Ciric et al., 2017). To ensure data quality, a mean FD threshold of 0.2 

mm was applied. The final sample consisted of 22 participants (M = 28.55 years, SD = 3.91, 

8 females) and was included in all behavioural and functional analyses. 

Position Localizer Task 

Prior to the fMRI experiment, a position localizer task was conducted to identify the 

cortical representations in each quadrant of the visual field (lower-left, lower-right, upper-

left, and upper-right). This task involved the presentation of a contrast-reversing flickering 

checkerboard, featuring black and white squares, within each quadrant at a frequency of 8 

Hz. The size of each square within the checkerboard was 2.9° visual angle, and each 

checkerboard was presented for 18 seconds. The entire task lasted approximately 6 minutes. 

Four regressors indicated the onsets of 18 seconds visual stimulations, with each 

regressor corresponding to a different quadrant. The hemodynamic response for each 

condition was modeled using a canonical HRF and its time derivative, with head movement 

parameters included as additional regressors in the design matrix. 

For every participant, first-level analyses were performed, testing for larger BOLD 

amplitudes in one condition relative to the remaining three, resulting in condition-specific 

differential contrasts.  

These differential contrasts were then entered into second-level group analysis. One-

sample t-tests were performed to assess group-level activation patterns (p < .001, whole-brain 

FWE corrected at the peak voxel level). Functional masks representing retinotopically 
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distinct stimulus locations were generated based on group-level activation maps computed 

separately for each quadrant (Fig. 4). 

Next, each quadrant-specific group-level activation map from the localizer was intersected 

with probabilistic maps of early visual areas (V1v, V1d, V2v, V2d, V3v, V3d) provided by 

Wang et al. (2015), registered in MNI space. This procedure resulted in separate functional 

ROIs defined by both visual area (e.g., V1) and quadrant representation (e.g., upper-left). 

These functional ROIs were used in the main task to quantify the number of significantly 

active voxels in the experimental conditions. 

Main task  

During the scanning session, participants performed the same size-averaging task as 

in the pre-test session, in which they indicated whether the comparison circle was larger or 

smaller than the average size of the task-relevant set, while ignoring a simultaneously 

presented task-irrelevant set (Fig. 1). Initially, we defined 16 onset regressors, corresponding 

to the 16 experimental conditions (2 task-relevant sizes: small, large; x 2 task-irrelevant sizes: 

small, large; x 4: quadrants: lower-left, lower-right, upper-left, upper-right). This way, we 

could test the effects of our experimental manipulations separately in each quadrant. The 

hemodynamic response was modeled using a canonical HRF and its time derivative, with 

head movement parameters included as additional regressors in the design matrix.  

ROI-analyses: Separating task-relevant and task-irrelevant sets of objects 

In order to investigate the mutual size-contrast effect of task-relevant and task-

irrelevant objects, we first needed to disentangle their neural signals. We defined functional 

ROIs based on localizer scans to test functional activation in voxels representing one specific 

quadrant at a time (lower-left, lower-right, upper-left, upper-right). This allowed us to 

examine the neural representation of the task-relevant set of objects in isolation, as well as the 
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influence of the task-irrelevant set of objects located in a different quadrant, (located 

diagonally from the task-relevant set). Later, the quadrant specific functional ROIs were 

further subdivided into different visual areas (V1, V2, V3).  

 

Testing for mutual influences: Size-contrast vs. Size-match 

To test mutual size‑contrast effects across ensembles, we compared the number of 

suprathreshold voxels for a target set of objects (e.g., task‑relevant objects with a large 

average size) depending on the average size of the context set (e.g., task‑irrelevant objects 

with a small average size). The average size of the context set could either match the average 

size if the target set hence constituting a size-match condition (e.g., task-irrelevant objects 

with a large average size), or it could have a different average size resulting in a size-contrast 

condition (e.g., task-irrelevant objects with a small average size).  

If the average size of the context set affects the neural coding of the target set, we 

would expect that the number of voxels activated by the target set to differ between size-

contrast and the size-match conditions. This effect can be quantified as: 

∆𝑁𝑣𝑜𝑥 = 𝑁𝑣𝑜𝑥(𝑠𝑖𝑧𝑒_𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡) − 𝑁𝑣𝑜𝑥(𝑠𝑖𝑧𝑒_𝑚𝑎𝑡𝑐ℎ)  

where:  

• 𝑁𝑣𝑜𝑥(. )=number of suprathreshold voxels in the condition indicated in 

parentheses; 

• “size‑contrast” = target set paired with context set of a different average size; 

• “size‑match” = target set paired with context set of the same average size;  

• Positive ∆𝑁𝑣𝑜𝑥 indicates more activated voxels in the size-contrast condition and 

negative values indicates fewer.  

Based on the size-contrast hypothesis, we can make clear directional predictions about 

∆𝑁𝑣𝑜𝑥. As indicated below in more detail, a positive size-contrast, where a large target set is 
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presented with a smaller context set, is expected to generate a positive ∆𝑁𝑣𝑜𝑥, whereas a 

negative size-contrast, where a small target set is presented with a large context set is 

hypothesised to generate a negative ∆𝑁𝑣𝑜𝑥.  

Large target sets 

Pairing a large target set with a small context generates a positive size-contrast and should 

increase its perceived size, leading to more activated voxels. In that case ∆𝑁𝑣𝑜𝑥 is expected to 

be > 0. 

For large task-relevant sets: 

∆𝑁𝑣𝑜𝑥 = 𝑁𝑣𝑜𝑥(𝑇𝑅𝑙𝑎𝑟𝑔𝑒|𝑇𝐼𝑠𝑚𝑎𝑙𝑙) − (𝑇𝑅𝑙𝑎𝑟𝑔𝑒|𝑇𝐼𝑙𝑎𝑟𝑔𝑒) > 0 

For large task-irrelevant sets: 

∆𝑁𝑣𝑜𝑥 = 𝑁𝑣𝑜𝑥(𝑇𝐼𝑙𝑎𝑟𝑔𝑒|𝑇𝑅𝑠𝑚𝑎𝑙𝑙) − (𝑇𝐼𝑙𝑎𝑟𝑔𝑒|𝑇𝑅𝑙𝑎𝑟𝑔𝑒) > 0 

where for all specific-case formulas:  

• 𝑁𝑣𝑜𝑥(𝑋|𝑌)= number of suprathreshold voxels for set X (target) when presented 

with set Y(context) 

• TR = task-relevant set, TI = task-irrelevant set; 

• Subscript large/small = average‑size category of that set; 

• The vertical bar “|” means “presented with” 

• ∆𝑁𝑣𝑜𝑥=voxel-count difference size‑contrast and size‑match conditions 

Small target sets 

Pairing a small target set with a large context should result in a negative size-contrast and 

should decrease its perceived size, leading to less activated voxels. In that case ∆𝑁𝑣𝑜𝑥 is 

expected to be < 0. 

For small task-relevant sets, this can be described as: 

∆𝑁𝑣𝑜𝑥 = 𝑁𝑣𝑜𝑥(𝑇𝑅𝑠𝑚𝑎𝑙𝑙|𝑇𝐼𝑙𝑎𝑟𝑔𝑒) − (𝑇𝑅𝑠𝑚𝑎𝑙𝑙|𝑇𝐼𝑠𝑚𝑎𝑙𝑙) < 0 
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For small task-irrelevant sets, this can be described as: 

∆𝑁𝑣𝑜𝑥 = 𝑁𝑣𝑜𝑥(𝑇𝐼𝑠𝑚𝑎𝑙𝑙|𝑇𝑅𝑙𝑎𝑟𝑔𝑒) − (𝑇𝐼𝑠𝑚𝑎𝑙𝑙|𝑇𝑅𝑠𝑚𝑎𝑙𝑙) < 0 

To summarise, mutual size‑contrast interactions between different sets of objects are 

reflected in differences between size‑contrast and size‑match conditions. The resulting 

voxel‑count difference ∆𝑁𝑣𝑜𝑥 is expected to be positive for positive size‑contrasts (target 

larger than context) and negative for negative size‑contrasts (target smaller than context). 

  Functionally, four differential contrasts per quadrant were defined to compare the 

size-match conditions with the size-contrast conditions (Size-match > negative Size-contrast 

and positive Size-contrast > Size-match) for task-relevant (Fig. 6A-B) and task-irrelevant 

(Fig. 6C-D) stimuli.  

Statistical testing 

By using the functionally defined and intersected ROIs, we extracted the number of 

significantly active voxels in each functional ROI from the main task differential contrasts, 

applying a threshold of p < .05 (uncorrected), with this voxel count serving as the dependent 

variable. To control for variability in functional ROI size, the extracted voxel counts were 

normalised by calculating the percentage of activated voxels relative to the total voxel count 

within each functional ROI, enabling comparisons across visual areas and quadrants. The 

normalised percentage of voxels from differential contrasts was submitted to second-level 

one-sample t-tests to determine whether the observed activations for each contrast were 

significantly greater than zero, indicating that the functional ROI showed a reliable difference 

in activation between conditions. In other words, this would be taken as evidence of increased 

modulation in one condition (e.g., Positive Size-contrast) relative to the other (e.g., Size-

match condition). Similarly, greater modulation is expected when comparing the size-match 

condition with the negative size-contrast. 
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2.3.5. Behavioural results 

Eye movement data  

Eye movement data were analysed for the twenty-two participants. We employed a 2 

× 2 repeated measures ANOVA to examine fixation maintenance within the fixation ROI 

across experimental conditions, with factors of task-relevant size (small, large) and task-

irrelevant size (small, large). During the critical periods of the experiment, participants’ gaze 

was located within the fixation ROI for an average of 96.70% of the time. The ANOVA did 

not reveal significant main effects of task-relevant size [small vs. large] (F (1, 21) = 0.53, p = 

.474, η2p = 0.025), and task-irrelevant size [small vs. large] (F (1, 21) = 0.34, p = .567, η2p = 

0.016). No significant interaction was observed between the task-relevant and task-irrelevant 

size of objects (F (1, 21) = 0.22, p = .646, η2p = 0.010), indicating comparable fixation 

maintenance across all experimental conditions. 

Ebbinghaus Screening 

Figure 3 displays the mean PSEs with standard errors for within-subject contrast for 

the small and large inducer conditions. The Ebbinghaus screening task was conducted to 

assess participants' susceptibility to size-contrast effects. A two-tailed paired-sample t-test 

indicated a significant difference in the mean PSE values for small and large inducers (t (21) 

= 7.51, p < .001, Cohen’s d = 1.601). 

Specifically, participants estimated the target size as significantly larger in the small 

inducer condition (M = 0.78, SE = 0.03) than in the large inducer condition (M = 0.66, SE = 

0.02), showing that the Ebbinghaus screening task significantly altered the perceived size of 

the target stimulus. Overall, the illusion strength was approximately 13.77% across 

participants.  



 Empirical Section
  

93 
 

 

Fig. 3. Perceived target size in Ebbinghaus screening. Averaged PSEs across different 

inducer types were plotted. The blue bar represents the small inducer condition, and the 

green bar indicates the large inducer condition. Asterisks (*) represent significant differences 

at p < .05. Error bars indicate the standard errors around the mean for within-subject 

contrasts (O’Brien & Cousineau, 2014). The horizontal dashed grey line represents the 

physical size of the target stimulus.  

Pre-test 

Figure 4A represents the mean PSEs with standard errors for within-subject contrast 

for the task-relevant size and task-irrelevant size. As expected, participants perceived the 

average size as significantly smaller in the small task-relevant condition (M = 0.59, SE = 

0.02) than in the large task-relevant condition (M = 1.24, SE = 0.02). Additionally, the 

estimated perceived size was larger in the small task-irrelevant condition (M = 0.97, SE = 

0.02) compared to the large task-irrelevant condition (M = 0.86, SE = 0.02). A 2 × 2 ANOVA 
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on mean PSEs revealed significant main effects of task-relevant size [small vs. large] (F (1, 

21) = 1384.40, p < .001, η2p = 0.985), and task-irrelevant size [small vs. large] (F (1, 21) = 

62.88, p < .001, η2p = 0.750). However, there was no interaction between the two factors (F 

(1, 21) = 0.16, p = .698, η2p = 0.007).  

To directly assess the size-contrast effect, two-tailed paired-sample t-tests were 

conducted comparing each contrast condition to the size-match condition (Fig. 4A). Overall, 

the average size of a set of objects was altered by the average size of another group of 

objects. In particular, the perceived average size of small task-relevant object sets was 

significantly smaller when they were presented alongside large task-irrelevant item sets (M = 

0.54, SE = 0.02), compared to when they were presented with small task-irrelevant objects (M 

= 0.64, SE = 0.02), t (21) = 5.06, p < .001, Cohen’s d = 1.078. Likewise, the perceived 

average size of large task-relevant object sets was significantly larger when they were 

presented with small task-irrelevant objects sets (M = 1.29, SE = 0.03) compared to when 

they were presented alongside large task-irrelevant item sets (M = 1.18, SE = 0.02), t (21) = 

5.11, p < .001, Cohen’s d = 1.088. 

Together, these results demonstrate a robust size-contrast effect. Specifically, the 

perceived average size of the task-relevant set was systematically modulated by the size of 

the surrounding objects even though they were assigned as task-irrelevant. This finding is 

consistent with our hypothesis that the average size of a task-irrelevant set influences the 

perceived average size of the task-relevant set. 

fMRI-behaviour 

The behavioural results obtained during the fMRI session replicate the pre-test 

findings, showing that the perceived average size was modulated by the size of task-irrelevant 

objects (Fig. 4B). As in the pre-test, the perceived average size was smaller in the small task-

relevant condition (M = 0.57, SE = 0.02) than in the large task-relevant condition (M = 1.23, 
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SE = 0.02). Also, participants reported larger perceived average size when task-irrelevant 

items were small (M = 0.93, SE = 0.02) compared to when they were large (M = 0.87, SE = 

0.02). Also the 2 x 2 ANOVA on mean PSEs replicated the findings from the pre-tests. It 

confirmed the significant main effects of both task-relevant size [small vs. large] (F (1, 21) = 

1405.43, p < .001, η2p = 0.985), and task-irrelevant size [small vs. large] (F (1, 21) = 26.52, p 

< .001, η2p = 0.558). The interaction between the two factors was, consistent with the 

findings from the pre-tests not significant (F (1, 21) = 0.23, p = .639, η2p = 0.011).  

Two-tailed paired-sample t-tests confirmed the size-contrast effect, replicating 

findings from the pre-test (Fig. 4B). The perceived average size was significantly smaller in 

the small task-relevant and large task-irrelevant condition (M = 0.54, SE = 0.02) than in the 

size-match condition (M = 0.60, SE = 0.02), t(21) = 3.80, p < .001, Cohen’s d = 0.810. 

Similarly, the perceived average size was significantly larger in the large task-relevant and 

small task-irrelevant condition (M = 1.27, SE = 0.03) compared to the size-match condition 

(M = 1.20, SE = 0.03), t(21) = 4.50, p < .001, Cohen’s d = 0.960.  
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Fig. 4. Perceived average size of experimental conditions in the pre-test (A) and during the 

fMRI (B). Averaged PSEs were plotted against the task-relevant size and task-irrelevant size. 

In each panel, bars on the left reflect the small task-relevant conditions, and bars on the right 

reflect the large task-relevant conditions. The blue bars represent conditions with small task-

irrelevant items, while the green bars represent those with large task-irrelevant items. The 

horizontal dashed grey lines represent the physical average size of the stimulus display. The 

figures shown below the x-axis are illustrations of the corresponding experimental 

conditions. Asterisks (*) represent significant differences at p < .05. Error bars indicate the 

standard errors around the mean for within-subject contrasts (O’Brien & Cousineau, 2014).  

Correlation analysis 

Pearson correlation analyses were conducted to examine the relationship between 

Ebbinghaus illusion strength and size-contrast effects in both the pre-test and the fMRI 

session. In the pre-test, no significant correlations were found between illusion strength and 

negative size-contrast effects (r = –0.206, p = .357), or positive size-contrast effects (r = –

0.332, p = .132). Similarly, in the fMRI session, correlations between the illusion strength 
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and negative (r = 0.118, p = .601) or positive (r = 0.409, p = .06) size-contrast effects were 

not significant. These findings suggest that participants’ susceptibility to the Ebbinghaus 

illusion is unlikely to be associated with size-contrast effects, implying that size-contrast 

operates through different mechanisms for ensembles compared to single items, despite 

producing similar perceptual outcomes.   

2.3.6. fMRI results 

Position localizer  

Figure 5 displays the four quadrant-specific functional ROIs derived from the position 

localizer task. Whole-brain statistical maps were thresholded at p < .001, FWE-corrected at 

the peak level, to identify significant activation clusters evoked by each quadrant. This 

analysis revealed distinct peak activations consistent with the retinotopic organisation of the 

early visual cortex. Specifically, stimuli presented in the lower right quadrant (Fig. 4, blue) 

elicited activation in the left hemisphere above the calcarine sulcus, while stimuli in the lower 

left quadrant (Fig. 4, green) activated the right hemisphere above the calcarine sulcus. 

Likewise, stimuli from the upper right quadrant (Fig. 4, yellow) were represented in the left 

hemisphere below the calcarine sulcus, and those from the upper left quadrant (Fig. 4, red) 

were observed in the right hemisphere below the calcarine sulcus. These identified regions 

were then intersected with probabilistic atlas (e.g., V1, V2, V3) from Wang et al. (2015) to 

generate functional ROI masks for functional analysis in the main experiment. 
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Fig. 5. Visual activation patterns from the position localizer task. The left panel shows 

quadrant-specific retinotopic ROIs identified through whole-brain analysis, displayed on a 

3D surface-rendered brain. The middle panel illustrates the spatial configuration of the 

stimulus locations used to define retinotopically distinct regions. The right panel presents 

axial and coronal slices showing the corresponding peak activations, thresholded at p < .001 

(FWE-corrected at the peak level).  

Main experiment 

Figure 6 illustrates the normalised percentage of activated voxels in early visual areas 

(V1, V2, V3) for four differential contrasts, averaged across visual field quadrants (lower-

right, lower-left, upper-right, upper-left). Each differential contrasts test for effects of a 

context set on the neural representation of a target set, by contrasting size-contrast conditions 

with size-match conditions. These differential contrasts were calculated separately for large 

target sets testing for positive size-contrast effects (∆𝑁𝑣𝑜𝑥 > 0) and for small target sets, 

testing for negative size-contrast effects (∆𝑁𝑣𝑜𝑥 < 0). In addition, differential contrasts were 

calculated separately for task-relevant and task-irrelevant target sets.  

Task-relevant sets: small average size 

We tested whether a negative size-contrast reduced the number of activated voxels.  
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For clarity of presentation, voxel‑count differences were computed as: 

∆𝑁𝑣𝑜𝑥 = 𝑁𝑣𝑜𝑥(𝑠𝑖𝑧𝑒_𝑚𝑎𝑡𝑐ℎ) − 𝑁𝑣𝑜𝑥(𝑠𝑖𝑧𝑒_𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡) 

so that reduced number of activated voxels in the size-contrast condition would generate 

positive ∆𝑁𝑣𝑜𝑥. One-tailed one-sample t-tests against zero were conducted on the percentage 

of significantly activated voxels extracted from each functional ROI to estimate the negative-

size contrast effect (Fig. 6A). Negative size-contrast significantly affected the neural coding 

of average-size in all functional ROIs [V1 (t(21) = 3.09, p = .003, Cohen’s d = 0.660); V2 

(t(21) = 3.06, p = .003, Cohen’s d = 0.653), and V3 (t(21) = 3.06, p = .003, Cohen’s d = 

0.653)]. 

 Task-relevant sets: large average size 

Similarly, we tested for a significant positive size-contrast effect for task-relevant sets 

(Fig. 6B). Since a positive size-contrast effect is expected to increase the number of activated 

voxels in the size-contrast condition, the voxel-count differences were computed as: 

∆𝑁𝑣𝑜𝑥 = 𝑁𝑣𝑜𝑥(𝑠𝑖𝑧𝑒_𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡) − 𝑁𝑣𝑜𝑥(𝑠𝑖𝑧𝑒_𝑚𝑎𝑡𝑐ℎ) 

One-tailed one-sample t-tests against zero on the resulting voxel counts revealed significantly 

more activated voxels (∆𝑁𝑣𝑜𝑥 > 0 ) in the size-contrast condition in all functional ROIs [V1, 

t(21) = 3.53, p < .001, Cohen’s d = 0.753; V2 (t(21) = 3.86, p < .001, Cohen’s d = 0.822), and 

V3 (t(21) = 4.02, p < .001, Cohen’s d = 0.856)]. 

Together these results provide robust evidence that neural populations in early visual areas 

represent perceived average size differences. In combination with the behavioural evidence of 

contrast-like modulation in perceived average size, these functional imaging results provide 

strong support for a size-contrast effect, demonstrating that the perceived average size of 

task-relevant objects was modulated by the size of the task-irrelevant set. 
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Task-irrelevant sets: small average size 

To explore whether a similar pattern exists for task-irrelevant stimuli, we applied the 

same analysis for task-irrelevant quadrants. For small task-irrelevant sets we tested whether 

negative size-contrast reduced the number of activated voxels (Fig. 6C).  

Again, for clarity of presentation, voxel‑count differences were computed as: 

∆𝑁𝑣𝑜𝑥 = 𝑁𝑣𝑜𝑥(𝑠𝑖𝑧𝑒_𝑚𝑎𝑡𝑐ℎ) − 𝑁𝑣𝑜𝑥(𝑠𝑖𝑧𝑒_𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡) 

so that reduced number of activated voxels in the size-contrast condition would generate 

positive ∆𝑁𝑣𝑜𝑥. One-tailed one-sample t-tests against zero were conducted on the percentage 

of significantly activated voxels extracted from each functional ROI to estimate the negative 

size-contrast effect. Negative size-contrast significantly affected the neural coding of task-

irrelevant average-size in all functional ROIs [V1 t(21) = 2.76, p = .006, Cohen’s d = 0.588; 

V2 (t(21) = 2.86, p = .005, Cohen’s d = 0.609), and V3 (t(21) = 2.78, p = .006, Cohen’s d = 

0.592)]. 

Task-irrelevant sets: large average size 

As for task-relevant sets, we tested whether a positive size-contrast increased the 

number of activated voxels when contrasting size-contrast and size-match conditions (Fig 

6D).  Positive size-contrast is expected to increase the number of activated voxels in the size-

contrast condition, therefore the voxel-count differences were computed as: 

∆𝑁𝑣𝑜𝑥 = 𝑁𝑣𝑜𝑥(𝑠𝑖𝑧𝑒_𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡) − 𝑁𝑣𝑜𝑥(𝑠𝑖𝑧𝑒_𝑚𝑎𝑡𝑐ℎ) 

One-tailed one-sample t-tests against zero on the resulting voxel counts revealed significantly 

more activated voxels (∆𝑁𝑣𝑜𝑥 > 0 ) in the size-contrast condition in all functional ROIs [V1, 

t(21) = 3.01, p = .003, Cohen’s d = 0.640; V2 (t(21) = 3.27, p = .002, Cohen’s d = 0.698), and 

V3 (t(21) = 3.41, p < .001, Cohen’s d = 0.726)]. 
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Although we did not obtain direct behavioural evidence for perceived size modulation 

in the task-irrelevant ensemble, we found a pattern supporting the notion that task-irrelevant 

objects may also be subject to size-contrast effects. 

 

Fig. 6. Normalised percentage of activated voxels per functional ROI. The figure displays 

four differential contrasts, with panels A and B showing task-relevant quadrants and panels 

C and D showing task-irrelevant quadrants. Each panel illustrates a pairwise comparison 

between the size-match and the size-contrast condition, followed by the percentage of 

activated voxels within V1 (blue), V2 (red), and V3 (yellow). Error bars indicate the standard 

errors around the mean for within-subject contrasts (O’Brien & Cousineau, 2014). 

2.3.7. Discussion 

Mutual size-contrast in ensemble representations 

This study provides strong evidence for a mutual size-contrast effect in ensemble 

representations, demonstrating that the average size of two groups of objects appears to exert 

a mutual influence, with each group acting as context for the other. In particular, behavioural 

data showed that participants perceived the average size of a task-relevant set of objects as 

larger when presented alongside a smaller set of objects, and smaller when surrounded by a 
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larger set. This pattern closely replicates classical size-contrast effects, such as those 

observed in the Ebbinghaus illusion (Ebbinghaus, 1902), but illustrates that this phenomenon 

exists at the level of ensemble representations. Notably, we observed no significant 

correlation between the participants’ susceptibility to the Ebbinghaus illusion, as detected in 

the screening task, and the size-contrast effect measured in the main task. This suggests that 

size-contrast effects may operate via different mechanisms for ensemble summary statistics 

and individual objects, despite resulting in similar perceptual outcomes. 

Retinotopically defined ROI analysis revealed a neural activation pattern indicating 

that size‑contrast modulated the activity evoked by a task‑relevant set of objects in early 

visual areas, in a manner consistent with perceptual size‑contrast effects. 

For task-irrelevant sets, a similar neural activation pattern was observed, despite the 

absence of behavioural data confirming a perceived size-contrast effect. The presence of this 

neural modulation suggests that size-contrast may also have influenced the processing—and 

potentially the perception—of task-irrelevant objects, even though they were not directly 

attended or relevant to the behavioural task. 

While earlier studies have shown that summary statistics can be computed 

simultaneously across object groups (Chong & Treisman, 2005), our findings show that these 

representations are not entirely independent, with size-contrast effects occurring at the level 

of statistical summary representations. 

Our neuroimaging results support the involvement of early visual areas in ensemble 

size computation, rather than being restricted to higher-level statistical operations (Cant & 

Xu, 2015; Jia et al., 2022). Although previous studies have shown that perceived, not retinal 

size, is encoded in early visual areas for individual objects (Murray, Boyaci, & Kersten, 

2006; Schwarzkopf, Song, & Rees, 2011; Sperandio, Chouinard, & Goodale, 2012), our 

findings reveal that such a mechanism applies to ensemble representations, with perceived 
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average size affecting retinotopic activation. Specifically, conditions in which a small task-

relevant set was surrounded by a larger task-irrelevant set showed a reduced number of 

activated voxels compared to the size-match condition, directly aligning with participants’ 

behavioural responses in which the task-relevant set appeared smaller. Conversely, conditions 

involving a large task-relevant set surrounded by a smaller task-irrelevant set demonstrated 

an increased number of activated voxels. These results suggest that the visual system appears 

to dynamically adjust cortical activation patterns based on perceived size differences in 

ensemble representations.   

Contextual modulation and cross-ensemble dynamics 

The present findings align with and extend previous research showing that the visual 

system automatically rescales ensemble representations relative to contextual cues before 

statistical summaries are computed (Im & Chong, 2009; Tiurina & Utochkin, 2019; Markov 

& Tiurina, 2021). Such rescaling implies that ensemble representations reflect perceived 

rather than retinal size of object groups (Haberman & Suresh, 2021), which is supported by 

our functionally defined retinotopic analysis. Furthermore, we replicated and broadened our 

previous findings (Memis et al., 2025), in which we initially observed size-contrast effects 

where task-irrelevant items influenced the perceived average size of task-relevant items. The 

current study clarifies these mechanisms, suggesting reciprocal size modulation between 

task-relevant and task-irrelevant stimuli.  Our findings indicate that the visual system 

constructs ensemble representations of object groups regardless of whether they are attended. 

Notably, even task-irrelevant groups—those not in the focus of attention—display neural 

signatures of size-contrast effects, paralleling those seen for attended groups. This implies 

that ensemble information from both attended and unattended sets are integrated into the 

scene’s relational framework, influencing how other object groups are perceived and 

represented. 
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An important question in ensemble perception is whether multiple sets of stimuli are 

processed independently or combined into a single, pooled representation (Chong & 

Treisman, 2005). If all stimuli were pooled into a single representation, one would expect an 

additive averaging effect, in which the presence of large objects increases the overall 

perceived size of the ensemble. Our results argue against this assumption, instead 

demonstrating a contrast-like interaction between distinct ensembles. On the contrary, recent 

work by Ortego and Störmer (2024) found that when participants were asked to report the 

average orientation of a target-coloured set of lines while ignoring a distractor-coloured set, 

their judgments were biased toward the distractor orientations, suggesting an integration 

effect rather than a contrast effect. This biased effect stands in direct opposition to the size-

contrast effect we observed for average size judgments. This discrepancy suggests that 

ensemble perception might be feature-dependent, such as some ensemble properties (e.g., 

orientation) may be integrated, while others (e.g., size) may be subject to contrast effects. 

This difference in processing might arise from timing disparities in how features are 

processed. Previous studies have shown that colour is perceived before orientation 

(Moutoussis & Zeki, 1997). If similar timing differences exist between size and orientation, 

this might explain why colour-defined ensembles produce contrast effects for size but result 

in integration effects for orientation.  

Bottom-up and top-down mechanisms in ensemble perception 

Our findings raise the question whether size-contrast effects in ensemble 

representations are primarily driven by early sensory processes or modulated by higher-level 

feedback mechanisms. The voxel-based changes detected in retinotopic areas may support 

early sensory origin, aligning with previous behavioural evidence of the rapid extraction of 

summary statistics, and the robustness of size averaging despite variations in set size and 

density (Chong & Treisman, 2003; Haberman & Whitney, 2007). While our findings support 
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the involvement of early retinotopic regions, they do not exclude the possibility of higher-

level feedback contribution to these effects. In line with this, previous neuroimaging studies 

have demonstrated the contribution of higher visual areas. For example, the lateral occipital 

complex (LOC) has been shown to be involved in perceived size encoding (Weidner & Fink, 

2007; Zeng et al., 2020), whereas the right parietal cortex appears to represent illusory size 

only when it is task-relevant (Plewan et al., 2012). These findings raise the possibility that 

higher-order regions may contribute to contextual modulation of ensemble statistics.  

Taken together, ensemble coding is more likely to be driven by both bottom-up and 

top-down processes, aligning with the well-known notion of recurrent processing (Lamme & 

Roelfsema, 2000). Based on this account, retinotopic regions may compute basic ensemble 

properties, while higher-order cortical regions provide top-down modulation that modifies 

these representations in response to task demands or contextual factors. This dynamic 

interplay between the streams allows for iterative refinement of retinal input, potentially 

occurring simultaneously across multiple ensembles to support comparison of relative 

properties. Yet, it remains unknown whether these are constructed at the same processing 

level, or whether a higher-level mechanism extracts and compares these representations. 

Although existing neuroimaging studies do not directly examine how multiple 

ensembles interact, they do show that different brain regions encode distinct ensemble 

features, supporting the idea that ensemble processing is functionally distributed across the 

multiple levels of the visual hierarchy. For example, Jia et al. (2022) demonstrated that 

parieto-occipital areas track global ensemble size rather than individual items, suggesting a 

top-down mechanism for global integration. Similarly, a study by Cant & Xu (2012, 2015) 

revealed that the parahippocampal place area (PPA) encodes higher-level ensemble properties 

such as relative density, while the lateral occipital cortex (LOC) processes local features like 

shape. However, these studies investigated ensembles defined by a single feature at a time, 
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leaving open the question of how the visual system handles simultaneously presented but 

separate ensembles.  

 Notably, our study was not designed to determine whether the observed size-contrast 

effects originate solely from early feedforward mechanisms or whether they also involve 

feedback from higher-level visual areas. Instead, our goal was to test whether retinotopic 

regions contribute to these effects and provide a functional marker of size-contrast. This 

approach allowed us to isolate quadrant-specific activations and directly compare activations 

in task-relevant and task-irrelevant quadrants. A whole-brain analysis was neither feasible nor 

intended, as it would have introduced confounds from task-irrelevant quadrants and failed to 

capture the mutual contrast dynamics specific to retinotopically organised areas. Future work 

could build on these findings by employing DCM to test how early visual areas and higher-

level regions interact during ensemble-level size-contrast. 

Broader implications for visual perception 

Although the current study focuses on ensemble summary statistics, our findings also 

contribute to the broader discussion of size-contrast illusions, particularly the Ebbinghaus 

illusion. While some theories attribute the illusion to low-level contour interactions (Chen et 

al., 2018; Todorović & Jovanović, 2018), others relate the illusion to size-contrast effects 

(Massaro & Anderson, 1971). However, the observed effects in this study do not reflect the 

basis of the Ebbinghaus illusion, as the experimental paradigm uses spatially separated 

ensembles without target-surround structure. Instead, we found that the size-contrast effect 

extends beyond individual target-inducer interactions to influence ensemble-level statistics. 

This suggests that similar perceptual mechanisms operate at the level of ensemble statistics, 

affecting perceived average sizes rather than just individual object sizes.  
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Taken together, these findings imply that the visual system employs ensemble 

statistics to segment and compare groups of stimuli. This type of processing may reflect a 

general mechanism in visual perception. This notion implies that such a mechanism should 

generalise across different visual dimensions and features, which has to be tested in future 

experiments, along with the question of how many ensemble representations can be coded at 

the same time.  

The finding that the coding of task-irrelevant objects is altered by context sets of 

objects in the visual field illustrates that the visual system emphasises differences in 

ensemble representations of features between groups. This way, not only the appearance or 

the perceived average size of a group of objects may altered, but it may also be involved in 

attentional selection. For instance, detecting a pop-out target in visual search may involve 

ensemble representations. In visual pop-out search, the visual system rapidly computes an 

average representation of the search array and identifies targets as items that deviate 

significantly from this statistical norm (Treisman & Gelade, 1980). Therefore, items that 

strongly differ from the ensemble representations become more salient. The contextual 

modulation observed in this study indicates that target detection in visual search may be 

shaped not only by individual stimulus properties but also by the statistical regularities of 

surrounding context.  

Finally, our findings are consistent with predictive coding frameworks, which propose 

that perception represents the brain’s best guess about the most likely interpretation of 

sensory input given the available context (Rao & Ballard, 1999; Friston, 2005). The visual 

system does not perceive stimuli in isolation but compares input to internal models based on 

context, expectations, and prior knowledge. Our findings suggest that the visual system 

incorporates contextual information from task-irrelevant ensembles to adjust the perceived 

representation of task-relevant ensembles. The mutual size-contrast effect may thus represent 
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a manifestation of the visual system's predictive mechanisms, where ensemble 

representations are continuously updated based on contextual predictions.  

2.3.8. Conclusion 

Our findings show that the statistical features of simultaneously presented object sets 

are not computed independently, but are shaped by size-contrast mechanisms. Combining 

behavioural results with functional imaging analyses, we found that the perceived average 

size of the task-relevant ensemble was modulated by the size of task-irrelevant objects. 

Interestingly, a similar pattern was observed for regions representing objects that participants 

were explicitly instructed to ignore. This mutual size-contrast effect suggests that each 

ensemble served as a reference for the other, irrespective of task relevance. Together, these 

findings contribute to a broader understanding of how the visual system organises complex 

scenes and highlight the importance of size-contrast mechanisms in shaping ensemble 

representations.  
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3. General Discussion 

In order to interpret the incoming sensory input effectively, the visual system must 

integrate multiple sources of information from the immediate environment. While it is often 

assumed that many of these perceptual processes operate automatically, growing evidence 

suggests that they rely on complex and dynamic mechanisms. As outlined in the theoretical 

section, previous studies have examined these mechanisms using a range of approaches, 

including behavioural measures, neuroimaging and neurophysiological techniques, 

computational models, and predictive coding frameworks. The objective of this thesis is to 

extend these findings by examining how contextual influences modulate size representations. 

This chapter investigates the implications and limitations of the studies, and provides 

suggestions for future research. 

3.1. Implications 

3.1.1. Visual illusions 

Visual illusions robustly illustrate how the visual system interprets the retinal input, 

showing that two physically identical stimuli can be perceived as differing in size, distance, 

or lighting. For that reason, they are powerful tools for understanding the mechanism behind 

visual perception. Study Ⅰ investigated whether rescaled objects through Ebbinghaus inducers 

contribute to average size. Results showed that rescaled objects contributed to the average 

size, regardless of whether they were coded implicitly (masked) or explicitly (non-masked). 

This suggests that size rescaling takes place relatively early in the visual processing stream, 

and the rescaled representations become available for further statistical calculation. In a 

control experiment, we observed a general effect of the Ebbinghaus inducers on the to-be-

averaged set. This observation led us to explore whether such contextual modulation also 

arises from ensemble representations themselves. Namely, study Ⅱ examined whether the 

average size of two sets of stimuli affects their perceived size in a contrast-like fashion. 
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Behavioural and functional data indicated that the perceived average size of the task-relevant 

set was modulated by the average size of the task-irrelevant set. Also, similar effects were 

observed for the task-irrelevant set of objects at the functional level. These findings indicate a 

mutual size contrast effect in simultaneously presented ensembles, suggesting that size 

contrast operates not only at the item level but also at the level of summary statistics. 

Predictive coding theory brings an explanation for how the brain interprets illusory 

stimuli. According to this framework, perception arises from an interaction between top-

down predictions and bottom-up sensory signals, with the brain constantly working to 

minimise the mismatch between what it expects and what it senses, known as prediction error 

(Weiss et al., 2002; Friston & Kiebel, 2009; Clark, 2013; Kok & de Lange, 2015). Illusions 

serve as useful tools for this model, as they reveal the brain's Bayesian inference process, 

showing how prior knowledge and expectations influence the selection of the most likely 

perceptual interpretation from ambiguous stimuli. Within this framework, illusions are not 

seen as perceptual failures but as Bayes-optimal percepts. Specifically, differences between 

physical and perceived object features are more likely to result from well-known 

environmental causes (e.g., distance, lighting, or depth), even when the physical stimuli 

suggest otherwise. The Craik-O'Brien-Cornsweet (CBC) illusion clearly shows how the 

visual system relies on prior knowledge to interpret sensory data (Purves et al., 2004; Brown 

& Friston, 2012). In this illusion, two equally bright areas appear different in brightness 

because of a subtle edge gradient. This happens because the visual system assumes that this 

gradient signals a change in lighting, rather than a change in surface. As a result, the brain 

interprets the difference as a variation in lighting across the regions. Likewise, the Ponzo 

illusion illustrates how prior expectations about size constancy and depth influence 

perception. When two identical objects are placed between converging lines, the object 
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located higher appears larger because the visual system interprets it as being farther away in a 

three-dimensional context. 

Another example is perceptual grouping, which plays a critical role in contextual 

modulation. Specifically, the strength of the Ebbinghaus illusion is highly dependent on the 

similarity in shape, spatial proximity, and colour between the target and surrounding inducers 

(Rose & Bressan, 2002). From a predictive coding perspective, such statistical regularities 

(e.g., grouping by colour) act as priors: the brain assumes that grouped objects belong to a 

coherent unit and uses this assumption to interpret sensory input (Van de Cruys & 

Wagemans, 2011). This perspective also explains why the illusion magnitude weakens when 

grouping principles are violated, potentially resulting in increased prediction error. 

Supporting this view, Murray et al. (2002) found that activation patterns were influenced by 

the statistical regularities of visual features. Specifically, they observed increased activity in 

the LOC and decreased activity in V1 when simple lines were arranged to form a regular 

configuration, compared to when they were randomly positioned on the screen. These results 

support predictive coding theory, which suggests that higher-level areas, such as LOC, 

generate hypotheses about the input and send predictions back to early visual regions. When 

the input aligns with these predictions, V1 activity is reduced due to the absence of prediction 

error, reflecting the brain’s confidence in the grouped percept. Collectively, these findings 

reinforce the notion that perception is more likely to be modulated by context and 

expectations than by merely registering raw sensory input. 

3.1.2. Size perception 

Although perceiving the size of objects is thought to be an automatic process, the 

visual system performs complex computations that go far beyond the raw sensory input, 

integrating it with environmental cues and prior knowledge. Notably, the visual system 

appears to employ distinct mechanisms for processing individual objects versus groups of 



 General Discussion
  

116 
 

objects (Ariely, 2001). While observers often struggle to report the size of individual items in 

a set, they are surprisingly accurate at estimating the global properties of the ensemble, such 

as the average size of the set. Both studies presented in this thesis demonstrate how 

contextual modulation influences ensemble summary statistics through a series of 

experiments.  

Nevertheless, ensemble coding is not limited to such controlled experimental settings 

and plays a crucial role in everyday perception by enabling the rapid interpretation of 

crowded scenes, such as estimating the speed of surrounding traffic, tracking the movement 

of a crowd, or maintaining a safe distance while driving. To accomplish these goals, the 

visual system relies on ensemble summary statistics to generate quick and accurate estimates 

that guide behaviour. Importantly, ensemble coding is not limited to basic stimulus features, 

such as size or orientation, but also applies to socially meaningful attributes (see Whitney & 

Yamanashi Leib, 2018, for a review). For instance, observers can extract the average emotion 

in a group of faces (Haberman & Whitney, 2007), detect the direction of a crowd’s 

movement (Sweeny, Haroz, & Whitney, 2013), or judge the average body size within a group 

(Oswald, 2023). Together, these findings reinforce the ecological relevance of ensemble 

coding in everyday life, and demonstrate that investigating size perception within this 

framework reveals how the visual system efficiently navigates complexity. 

In addition to studies with healthy participants, studies involving clinical populations, 

such as individuals with Autism Spectrum Disorder (ASD), further deepen our understanding 

of the mechanisms underlying ensemble perception. ASD is a developmental disorder 

characterised by impairments in both verbal and non-verbal communication, and individuals 

with ASD tend to prioritise local features over global ones in visual processing (Mottron et 

al., 1999; O’Riordan et al., 2001; Frith, 2003). This processing bias manifests across several 

perceptual domains. For instance, individuals with ASD show diminished adaptation effects 
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in facial identity (Pellicano et al., 2007) and numerosity estimation (Turi et al., 2015), 

indicating a diminished influence of prior experience on perceptual processing. However, 

findings related to visual illusions remain mixed. For example, Happé (1996) observed 

reduced susceptibility to the Ebbinghaus illusion in individuals with ASD, whereas Ropar 

and Mitchell (2001) found no significant differences between the ASD group and the control 

group.  

Building on these findings, it is reasonable to anticipate that individuals with ASD 

exhibit deficits in ensemble coding, as this process requires the extraction of global features. 

However, Corbett and colleagues (2016) found that individuals with ASD exhibited accurate 

perceptual averaging in mean estimation tasks, suggesting that ensemble mechanisms remain 

intact despite a bias toward local processing. Taken together, these findings suggest that 

while certain aspects of contextual integration are impaired in ASD, the ability to extract 

ensemble-level representations remains intact.  

3.1.3. Contextual modulation in ensemble perception 

This thesis examines how the visual system integrates contextual information into size 

representations. Study Ⅰ showed that contextual modulation occurs prior to the extraction of 

ensemble representations, as the perceived average size included contributions from 

implicitly coded (e.g., masked) objects. Study II extended these findings by showing that 

when two sets of stimuli are presented simultaneously, their average sizes mutually influence 

each other’s perceived size through contrast-like interactions. Together, these findings 

provide strong support for a processing model (Fig. 3.1.3-1) in which two sets are processed 

in parallel, with each ensemble being contextually modulated by the other through contrast 

mechanisms before final ensemble representations are formed. This model aligns with early 

theories of the Ebbinghaus illusion (Massaro & Anderson, 1971), which propose that 

surrounding elements serve as standards for size judgments. Notably, even when participants 
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were instructed to report only the average size of one set of stimuli (e.g., green or red), the 

visual system appears to automatically compute ensembles from both sets regardless of their 

task relevance. 

These results are consistent with the summary-statistics model, which proposes that 

ensemble perception involves the rapid and parallel extraction of summary statistics from 

multiple groups (Ariely, 2001; Chong & Treisman, 2005). However, rather than supporting 

an independent summary of ensembles, our findings reveal mutual contextual interactions 

between simultaneously presented ensemble representations. The observed modulation 

suggests that ensemble processing involves contextual comparison mechanisms that adjust 

perceived averages based on the relative properties of nearby ensembles. If ensembles were 

processed independently or if all items were pooled into a single global average, one would 

predict either no contextual modulation or an additive effect toward the global mean. The 

robust size contrast effects observed in both studies challenge these assumptions and instead 

point to a model in which ensembles are processed in parallel but remain contextually 

interactive. Recent evidence from Ortego and Störmer (2024) provides converging support 

for the view that ensemble representations are not fully independent. In their study, 

participants reported the average orientation of differently coloured lines, and their responses 

were consistently biased toward the task-irrelevant ensemble. Although the direction of 

modulation differs, they point out that the influence of nearby ensembles is not suppressible. 

This aligns with our findings, indicating that ensemble representations are processed in 

parallel but remain susceptible to contextual modulation.  

The subsampling model offers an alternative account, proposing that the visual system 

selectively samples a subset of items rather than computing the average size of the entire set 

(Myczek & Simons, 2008). According to this framework, the visual system would sample 

only a few items from each set rather than processing all elements. This strategy would 
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produce less precise and more variable estimates across trials, as the sampled subset would 

vary randomly. However, several aspects of our data challenge this explanation. In control 

conditions where no size contrast was expected (e.g., size-matched conditions), reported 

average size estimates were remarkably precise and consistent. Such an observation would be 

less likely within the framework of subsampling, as individual item sizes varied across trials, 

and random sampling would introduce noise. Thus, subsampling would likely weaken or 

eliminate the size contrast effect due to inconsistent item selection, contrary to our robust and 

consistent size contrast findings.  

To conclude, the model proposed in this thesis introduces a novel framework by 

demonstrating that ensemble summary statistics are not mere summaries of stimulus features 

but instead influence each other’s perceived size through contrast-like interactions. This 

observation suggests that ensemble representations themselves serve as contextual cues in 

size judgments. 
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Figure 3.1.3-1 Schematic illustration of a processing model demonstrating the mutual size 

contrast effect between two simultaneously presented stimulus sets.  

3.2. Limitations and Future Directions 

3.2.1. Study Ⅰ 

Study I examined the level of processing at which ensemble summary statistics are 

extracted, using a series of behavioural experiments. In Experiment 1, we tested the strength 

of the Ebbinghaus illusion and observed a significant difference in the perceived target size 

between the small and large inducer conditions. However, the difference between the control 

condition (no inducer condition) and the small inducer condition was not significant. One 

potential explanation is that removing inducers altered the total number of items presented on 
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the screen. Future studies could easily address this by including a control condition with 

inducers matched in size to the target, allowing for a more balanced comparison. 

Additionally, we applied a 10% illusion strength threshold in Experiment 1 and 

included only participants who exceeded this criterion in subsequent experiments 

(Experiments 2, 3, 4A, and 4B). While this controlled for individual variability in illusion 

sensitivity, future research could investigate these effects without thresholding, to examine a 

broader range of individual differences. Notably, findings from Study II suggest that 

contextual modulation in the main task was not solely attributable to the classical Ebbinghaus 

configuration. Although the target circles within the inducers were removed, the inducers still 

influenced the perceived average size, suggesting a more general mechanism of contextual 

modulation. 

Furthermore, even though we conducted a control experiment (Experiment 4B) 

alongside the main task (Experiment 4A), it did not include a matched-size inducer condition, 

as in Experiment 1, and therefore was not an optimal baseline. One might consider using 

Experiment 3 as a control condition; however, this is not feasible due to two key differences: 

(1) the total number of items differed, and (2) individual PSE values were used to define 

large and small target sizes. The main purpose of Experiment 3 was to test the sensitivity of 

the paradigm in detecting size changes induced by Experiment 1, rather than to isolate 

illusion-specific effects. 

Our findings demonstrate that rescaled objects contribute to ensemble representations, 

and this modulation persists even when the objects are implicitly coded (i.e., masked). This 

suggests that size modulation occurs prior to the level of ensemble formation, while OSM 

likely disrupts later processing stages. However, since Study I relies solely on behavioural 

data, it does not provide direct insight into the timing or direction of these effects. Future 
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research could help clarify whether such contextual modulation arises through feedforward 

processing alone or also involves feedback from higher-level regions. 

3.2.2. Study Ⅱ 

Study II investigated the mutual size contrast effect between simultaneously presented 

sets of stimuli. The experimental design aimed to isolate the functional activation of both 

task-relevant and task-irrelevant stimuli within the same trial. To achieve this, stimuli were 

presented in diagonal quadrants, preserving retinotopic organisation and disentangling neural 

responses associated with each set. This configuration enabled us to investigate the activation 

patterns in early visual areas (V1, V2, V3) by using functional ROIs defined by a position 

localizer task. Due to the spatial specificity of the design, conducting a whole-brain analysis 

was neither feasible nor intended, as neural responses from surrounding quadrants could have 

introduced confounding effects. For that reason, the functional analysis was limited to 

retinotopic regions where the activation can be clearly differentiated based on the quadrants. 

Nevertheless, future research could employ DCM to examine whether higher-level regions, 

particularly the LOC, which is known to be involved in illusory size processing (Zeng et al., 

2020), modulate early visual areas via feedback signals during ensemble perception. 

One methodological limitation was the unequal distribution of stimuli across quadrants. 

Although there were eighteen green and eighteen red circles in total, the task-relevant 

quadrant contained fourteen, while the task-irrelevant quadrant contained only six. The 

remaining quadrants included both task-relevant and task-irrelevant stimuli. This spatial 

arrangement was necessary to separate task-relevant from task-irrelevant regions while also 

maintaining distributed attention. Nonetheless, this might have affected the results since we 

directly compared these two diagonal quadrants. 

Additionally, we used size-matched conditions as the control condition, and they were 

matched in size but not colour. It is possible that different processing may be behind these 
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features. We had to do it in that way because we wanted to investigate relevant and irrelevant 

items in the same experimental condition. One can easily test this by using the same-colour 

control conditions differently for green and red. Even if they are the same size, a colour 

difference might still create a size-contrast effect.  

Another open question is the generalizability of these findings to other visual features. 

While both studies used size as the ensemble-defining feature, it remains unclear whether the 

mutual size contrast effect extends to other features, such as orientation, brightness, or spatial 

frequency. Investigating these dimensions could reveal whether size contrast is feature-

specific or a broader ensemble coding mechanism. Lastly, our study demonstrates that the 

visual system can compute average size across two sets of stimuli. However, it remains 

unknown whether a third set could also be integrated into this process. Future research could 

test whether ensemble coding mechanisms simultaneously process three or more sets and 

whether certain sets receive prioritisation based on grouping cues, such as colour, shape, or 

spatial configuration. 

3.3. Concluding remarks 

This thesis provides new insights into the mechanisms underlying ensemble summary 

statistics. Study Ⅰ demonstrated that even when the recognisability of objects is significantly 

impaired by OSM, those objects still contribute to ensemble summary statistics, just as 

explicitly coded objects do. Notably, this contribution is already rescaled through contextual 

modulation, in which small Ebbinghaus inducers increased the perceived average size of the 

to-be-averaged set, while large Ebbinghaus inducers decreased it.  

Building on these findings, Study Ⅱ explored whether these context-driven ensemble 

representations themselves act as a benchmark that influences the perceived average size of 

another set. Results showed that the simultaneous presentation of two sets of stimuli produces 

a contrast effect, meaning that the average size of one set appears larger when the average 
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size of the other set is smaller. While this effect was robustly observed for the task-relevant 

items in both behavioural and functional level, retinotopically defined ROI analysis also 

suggests that task-irrelevant ensembles may be modulated in a similar manner.  

Collectively, these findings indicate that ensemble summary statistics go beyond 

capturing statistical regularities in visual scenes. Rather than merely describing simple object 

features, they actively influence the perceived size of other objects. The studies presented in 

this thesis deepen our understanding of size representations in visual perception and provide a 

strong foundation for future investigation.   
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4. Summary 

4.1. Study Ⅰ 

Perceived object size is not determined solely by the apparent size of the stimulus, but 

also by the context in which it appears. The Ebbinghaus illusion is an example of how the 

visual system interprets the target circle as being larger or smaller depending on the size of 

the surrounding inducers. For instance, the target circle appears larger when surrounded by 

small Ebbinghaus inducers, and the same object is perceived as smaller when the size of the 

surrounding inducers is large. In Study Ⅰ, we investigated the levels of processing at which 

this interpretation occurs. We combined three distinct psychophysical paradigms into one 

experiment to investigate whether implicitly coded objects are rescaled through Ebbinghaus 

inducers before they contribute to the ensemble. To investigate this, six red circles were 

employed both as inducers of the Ebbinghaus illusion and as masks to initiate OSM. During 

the main experiment, participants viewed a set of green circles, three of which were 

surrounded by inducers, and were asked to judge the average size of the green set. Using a 

method of constant stimuli, we quantified the perceived average size by fitting a logistic 

function. In total, we tested twenty-nine participants. Three experiments were conducted prior 

to the main task to test the effectiveness of each paradigm in isolation. Experiment 1 revealed 

that the perceived size of the target circle was modulated by the size of the inducers, meaning 

the target circle is perceived as smaller when surrounded by large inducers and larger when 

surrounded by small inducers. Thus, the Ebbinghaus illusion significantly altered the 

perceived size of the target. The second experiment aimed to test the strength of OSM in our 

setup, and we found a significant decrease in the percentage of correct responses in the size 

discrimination task in the masked conditions compared to non-masked ones. The third 

experiment showed that the size averaging paradigm is sensitive enough to detect size 

changes in the magnitude of the ones induced by the Ebbinghaus illusion. We used the 
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individual PSE values detected in Experiment 1 as the target size. Namely, the perceived 

average size was larger when target circles were large, and the perceived average size was 

smaller when target circles were small. Lastly, we combined all paradigms in Experiment 4 to 

investigate whether implicitly coded objects contribute to ensemble summary statistics. We 

observed that both masked and non-masked stimuli contributed to average size estimates. 

Notably, this contribution was already rescaled by the Ebbinghaus inducers. Additionally, we 

conducted a control experiment in which we removed all target circles within the inducers 

and tested the general effects of Ebbinghaus inducers on the to-be-averaged display. 

Interestingly, we observed a size-contrast effect, meaning that small inducers increased the 

perceived average size, while large inducers decreased it. Taken together, Study I 

demonstrates that contextual integration via Ebbinghaus inducers alters size representations at 

an early stage, and this effect is independent of whether the object is implicitly or explicitly 

coded. 

4.2. Study Ⅱ 

The visual system employs various strategies to handle its limited capacity. One such 

strategy involves calculating the global properties of a scene instead of processing each 

individual item, a process known as ensemble summary statistics. Study Ⅰ revealed a size 

contrast effect in a control experiment testing the general effect of Ebbinghaus inducers, 

suggesting that summary statistics do not purely reflect simple descriptions of object features, 

and instead themselves influence the perceived average size of another set. This finding 

aligns with the early assumption of the Ebbinghaus illusion, which suggests that the illusion 

arises as a size contrast mechanism, and inducers act as standards for size judgments 

(Massaro & Anderson, 1971). Study Ⅱ aimed to investigate whether the average size of two 

sets of stimuli generates a size contrast effect via presenting two ensembles grouped by 

colour. During the task, participants responded to the comparison item either as smaller or 
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larger than the average size of the task-relevant set. A total of twenty-nine participants were 

tested. To investigate the mutual size contrast effect, task-relevant and task-irrelevant 

quadrants were placed diagonally, allowing for the observation of activation patterns in line 

with the retinotopic organisation of the visual cortex. In order to achieve this, four distinct 

quadrants were functionally defined in the position localizer task, and then used as functional 

ROIs in the main task to investigate activation patterns in the task-relevant and task-irrelevant 

quadrants. Behavioural data provided strong support for the hypothesis that the size of task-

irrelevant objects modulates the perceived average size of task-relevant ones. Specifically, 

the perceived average size of the task-relevant set increased when the average size of the 

task-irrelevant set was small, whereas it decreased when the average size of the task-

irrelevant set was large. This perceptual modulation was further supported by systematic 

changes in functional activation patterns, consistent with the retinotopic organisation. 

Notably, a similar modulation was observed in regions, representing the task-irrelevant set of 

objects, suggesting that even the task-irrelevant ensemble may be subject to size contrast 

effects. These results demonstrate that simultaneously presented ensembles are not coded 

independently but instead are processed in a contrast-like fashion. All in all, these findings 

indicate that size contrast effects observed in many illusions, such as the Ebbinghaus illusion, 

occur at the level of statistical summary statistics.   
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6. List of abbreviations 

DCM   dynamic causal modeling 

EEG   electroencephalography 

ERP   event-related potential 

fMRI   functional MRI 

IPS   intraparietal sulcus  

LGN   lateral geniculate nucleus 

LOC   lateral occipital cortex 

MRI   magnetic resonance imaging  

MVPA  multivoxel pattern analysis 

OSM   object-substitution masking 

PPA   parahippocampal place area 

PSE   point of subjective equality 

ROI  region of interest 

TMS   transcranial magnetic stimulation 
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