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Abstract

Passive microwave observations from polar-orbiting satellites contain informa-
tion on both the sea ice and clouds, which are essential components of the Arctic
climate system. Retrieving this information requires physical or empirical simu-
lations of the surface radiative transfer. Intricate processes of the Arctic climate
system govern the spatiotemporal variability of sea ice optical properties and
limit climate record capabilities from historic observations and the exploitation
of recently launched submillimeter missions. This thesis exploits multi-platform
sub-orbital passive microwave observations to improve the understanding of the
spatiotemporal variability of the sea ice emissivity at millimeter and submillime-
ter waves and its representation in physical radiative transfer models, and to
assess cloud liquid water path retrieval accuracy over sea ice.

Sea ice and its snow cover are spatially heterogeneous due to the ice defor-
mation, drift, and its formation history. Hence, the sea ice emissivity is expected
to vary at small spatial scales that are not resolved by coarse satellite footprints.
Airborne sea ice emissivity observations obtained from field campaigns between
89 and 340GHz allow for a quantification of this small-scale spatial variability at
hectometer-scale resolution relevant for new submillimeter satellite missions. A
clustering technique is used to identify distinct sea ice emissivity spectra. The four
identified spectra are related to specific sea ice types using visual camera imagery
with similar sea ice and snow properties. Each cluster exhibits a low spectral
emissivity variability from 183 to 340GHz. The spatial variability strongly de-
pends on the footprint size and reduces by 50% from the hectometer resolution to
the typical size of satellite footprints at 340GHz. Collocations with satellite ob-
servations show low spectral gradients from 89 to 340GHz at the scale of satellite
footprints as small-scale features average out.

The sea ice microwave emissivity varies temporally due to changes in its
macro- and microphysical properties, especially around surface freeze onset at
the end of summer. Ship-based observations over two months from two scanning
microwave radiometers between 22 and 243GHz capture this temporal surface
emissivity evolution at the meter scale. During new ice formation, the surface
emissivity transitions from the open water signature to nilas. This transition is
resolved continuously and found to be highly correlated across all frequencies.
Subsequent snowpack formation and related volume scattering by snow grains
reduce the emissivity at 183 and 243GHz from 0.95 to about 0.6, while almost
no change occurs at lower frequencies (22 to 51GHz) where scattering is lower.
A novel regression model is applied, which predicts the emissivity at 243GHz
from grayscale camera images. This method highlights the role of snow presence
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for the emissivity reduction. Radiative transfer model simulations of bare and
snow-covered new ice were found to statistically match the observed frequency,
angular, and polarization-dependent emissivity signature observed along the ship
trajectory.

Cloud liquid water path (CLWP) retrievals from passive microwave obser-
vations over Arctic sea ice require a separation of the sea ice and atmospheric
radiative contributions. An optimal estimation retrieval that inverts a coupled
physical sea ice–atmosphere radiative transfer model is applied to airborne pas-
sive microwave radiometer data from 22 to 183GHz. The retrieval is evaluated
against collocated airborne reference observations, such as cloud liquid layers de-
tection from lidar. The cloud liquid water path detectability, defined as the 95th
percentile of falsely-detected CLWP under clear-sky conditions, is about 50 g m−2

in the Central Arctic and increases up to 350 g m−2 toward the marginal ice zone.
The relative retrieval accuracy improves with increasing CLWP to below 50%
for CLWP above 100 g m−2. The main challenge for the CLWP retrieval is the
similarity between CLWP emission and surface signals due to scattering in the
upper snowpack and emission by nilas in leads. Moreover, atmospheric events,
such as melt-freeze cycles during warm air intrusions, cause retrieval uncertainties
by changing the optical properties of the snowpack.
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Zusammenfassung

Passive Mikrowellenbeobachtungen von polarumlaufenden Satelliten enthalten In-
formationen sowohl über das Meereis als auch über Wolken, die wesentliche Be-
standteile des arktischen Klimasystems sind. Die Gewinnung dieser Informatio-
nen erfordert physikalische oder empirische Simulationen des Strahlungstransfers
an der Oberfläche. Komplexe Prozesse des arktischen Klimasystems bestimmen
die räumlich-zeitliche Variabilität der optischen Eigenschaften des Meereises und
schränken die Möglichkeiten der Klimaaufzeichnung aus historischen Beobach-
tungen und der Nutzung kürzlich gestarteter Submillimeter-Missionen ein. Diese
Arbeit nutzt suborbitale passive Mikrowellenbeobachtungen von mehreren Platt-
formen, um das Verständnis der räumlich-zeitlichen Variabilität der Emissivität
von Meereis bei Millimeter- und Submillimeterwellen und deren Darstellung in
physikalischen Strahlungstransfermodellen zu verbessern und die Genauigkeit der
Ermittlung des Flüssigwasserpfads von Wolken über Meereis zu bewerten.

Meereis und seine Schneebedeckung sind aufgrund der Eisverformung, der
Drift und ihrer Entstehungsgeschichte räumlich heterogen. Daher ist zu erwarten,
dass die Emissivität des Meereises auf kleinen räumlichen Skalen variiert, die von
groben Satelliten-Footprints nicht aufgelöst werden. Luftgestützte Beobachtun-
gen der Emissivität von Meereis, die im Rahmen von Feldkampagnen zwischen
89 und 340GHz gewonnen wurden, ermöglichen eine Quantifizierung dieser klein-
räumigen räumlichen Variabilität mit einer Auflösung im Hektometerbereich, die
für neue Submillimeter-Satellitenmissionen relevant ist. Zur Identifizierung unter-
schiedlicher Emissivitätsspektren des Meereises wird eine Klassifizierungsmetho-
de verwendet. Die vier identifizierten Spektren werden anhand von Bildern einer
visuellen Kamera mit ähnlichen Meereis- und Schneeeigenschaften bestimmten
Meereistypen zugeordnet. Jeder Cluster weist eine geringe spektrale Emissivi-
tätsvariabilität von 183 bis 340GHz auf. Die räumliche Variabilität hängt stark
von der Auflösung ab und verringert sich um 50% von der Hektometerauflösung
auf die typische Größe von Satellitenmessungen bei 340GHz. Kollokationen mit
Satellitenbeobachtungen zeigen geringe spektrale Gradienten von 89 bis 340GHz
auf der Skala der Satellitenmessungen, da kleinräumige Merkmale sich ausglei-
chen.

Die Mikrowellenemissivität des Meereises variiert zeitlich aufgrund von Ver-
änderungen seiner makro- und mikrophysikalischen Eigenschaften, insbesonde-
re zu Beginn der Oberflächenvereisung am Ende des Sommers. Schiffsgestütz-
te Beobachtungen über zwei Monate hinweg mit zwei abtastenden Mikrowellen-
radiometern zwischen 22 und 243GHz erfassen diese zeitliche Entwicklung der
Oberflächen-Emissivität im Meterbereich. Während der Neubildungsphase des
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Eises wandelt sich die Oberflächen-Emissivität von der Signatur offenen Wassers
zu Nilas. Dieser Übergang wird kontinuierlich aufgelöst und weist eine hohe Kor-
relation über alle Frequenzen hinweg auf. Die anschließende Schneedeckenbildung
und die damit verbundene Volumenstreuung durch Schneekörner reduzieren die
Emissivität bei 183 und 243GHz von 0,95 auf etwa 0,6, während bei niedrige-
ren Frequenzen (22 bis 51GHz), bei denen die Streuung geringer ist, fast kei-
ne Veränderung auftritt. Es wird ein neuartiges Regressionsmodell angewendet,
das die Emissivität bei 243GHz aus Graustufen-Kamerabildern vorhersagt. Die-
se Methode unterstreicht die Rolle des Schneevorkommens für die Verringerung
der Emissivität. Simulationen mit Strahlungstransfermodellen von blankem und
schneebedecktem neuem Eis stimmten statistisch mit der entlang der Schiffsroute
beobachteten frequenz-, winkel- und polarisationsabhängigen Emissivitätssigna-
tur überein.

Die Ermittlung des Wolkenflüssigwasserpfades (cloud liquid water path; CL-
WP) aus passiven Mikrowellenbeobachtungen über dem arktischen Meereis erfor-
dert eine Trennung der Strahlungsbeiträge des Meereises und der Atmosphäre.
Ein Optimal Estimation-Retrieval, das ein gekoppeltes physikalisches Meereis-
Atmosphäre-Strahlungstransfermodell invertiert, wird auf Daten eines luftgestütz-
ten passiven Mikrowellenradiometers von 22 bis 183GHz angewendet. Das Re-
trieval wird anhand von kollokierten luftgestützten Referenzbeobachtungen, wie
z. B. der Erkennung von Wolkenflüssigkeitsschichten mittels Lidar, bewertet. Die
Nachweisbarkeit des flüssigen Wasserpfads in Wolken, definiert als das 95. Per-
zentil des falsch-detektierten CLWP unter wolkenfreien Bedingungen, beträgt in
der zentralen Arktis etwa 50 g m−2 und steigt in Richtung der Randzone des Mee-
reises auf bis zu 350 g m−2 an. Die relative Genauigkeit des Retrievals verbessert
sich mit zunehmendem CLWP auf unter 50% für CLWP über 100 g m−2. Die
größte Herausforderung bei der CLWP-Ermittlung ist die Ähnlichkeit zwischen
CLWP-Emission und Oberflächensignalen aufgrund von Streuung in der oberen
Schneedecke und Emissionen durch Nilas in Rinnen. Darüber hinaus verursachen
atmosphärische Ereignisse wie Schmelz-Gefrier-Zyklen während Warmlufteinbrü-
chen Unsicherheiten bei dem Retrieval, da sie die optischen Eigenschaften der
Schneedecke verändern.
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Chapter 1

Introduction

1.1 Motivation

Remote sensing instruments onboard satellite platforms capture information about
the Earth system encoded in electromagnetic radiation. This signal can be
converted into physical properties of the Earth’s atmosphere, ocean, land, and
cryosphere using geophysical retrieval methods. While active remote sensing in-
struments transmit radiation and measure the signal scattered back to the sensor,
passive instruments receive radiation emitted from the sun and scattered to the
sensor or emitted and scattered by the Earth system. The expansion of global
observing system capabilities and improvements in assimilating observations into
numerical weather prediction models at global scales significantly enhanced the
weather prediction accuracy over the past decades (Bauer et al., 2015). Moreover,
the continuous multi-decade time series of satellite remote sensing data are the
basis for understanding processes and changes in the Earth system, especially in
regions sparsely covered with conventional ground-based measurement networks.
In the Arctic, polar-orbiting satellites provide the only long-term data source
with complete spatial coverage. This global view from satellites is complemented
by targeted field campaigns and long-term ground-based measurement sites that
resolve processes at regional and local scales.

Observations in the Arctic record a near-surface air temperature increase in
response to the anthropogenic emission of greenhouse gases, which increase the at-
mospheric absorption and re-emission of thermal radiation emitted at the surface
(Serreze and Francis, 2006). This near-surface air temperature increase exceeds
global warming by a factor of 2–4, known as Arctic amplification (Rantanen et al.,
2022; Chylek et al., 2022). Arctic amplification results from various dominant pos-
itive feedback mechanisms unique to the Arctic climate system that enhance the
external greenhouse gas forcing (Wendisch et al., 2023) modulated by internal cli-
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CHAPTER 1. INTRODUCTION

mate variability (Zhou et al., 2024; Sweeney et al., 2023). A key positive feedback
is the surface albedo feedback, which describes the amplified warming in response
to increased absorption of solar radiation when high-albedo surfaces, such as sea
ice and snow cover, melt. The observed extension of the melt season duration
(Stroeve et al., 2014) and summer sea ice area decline (Fig. 1.1; Stroeve et al.,
2007) contribute to the surface albedo feedback. The observed sea ice area decline
is related to greenhouse gas emissions (Notz and Stroeve, 2016) and projected to
continue in the future (Wang and Overland, 2012; Notz and SIMIP Community,
2020). A reduction and additional thinning of sea ice cover (Soriot et al., 2024)
also increases the heat flux from the upper ocean to the atmosphere (Screen and
Simmonds, 2010). This additional warming near the surface often remains within
the surface inversion in the Arctic (lapse rate feedback; Linke et al., 2023). The
near-surface temperature increase exhibits seasonal (Serreze et al., 2009; Maturilli
et al., 2015) and regional variations owing to the complexity of coupled processes
in the Arctic climate system (sea ice, snow, clouds, and water vapor), and atmo-
sphere and ocean circulation (Screen and Simmonds, 2010; Screen et al., 2012;
Pithan et al., 2014). While climate projections of Arctic amplification magnitude
are uncertain due to the various feedback processes involved, there is high confi-
dence that Arctic amplification will continue over the 21st century (IPCC, 2021,
Chapter 4).

Clouds play a delicate role in the Arctic climate system through precipitation
formation as part of the water cycle (Bengtsson, 2010) and the surface energy
budget (Bennartz et al., 2013). While snow accumulation on land and sea ice
changes the surface albedo and heat flux, liquid precipitation modifies snowpack
properties with implications for wildlife (Bartsch et al., 2023). The net radiative
effect of clouds largely depends on microphysical (particle phase, shape, size, and
number concentration) and macrophysical properties (cloud height and thick-
ness). Clouds cool the surface by reflecting incoming shortwave radiation, which
modulates the strength of the surface albedo feedback in autumn (Kay et al.,
2016), and warm the surface through the emission of longwave radiation (Shupe
and Intrieri, 2004; Shupe et al., 2015; Kay and L’Ecuyer, 2013). This longwave
emission mostly depends on the amount of cloud liquid water (Ebell et al., 2020;
Nomokonova et al., 2020), which typically occurs together with frozen hydrome-
teors at temperatures as low as −40◦C (Shupe et al., 2011). Such mixed-phase
clouds frequently occur in the Arctic (Cesana et al., 2012; Nomokonova et al.,
2019; Gierens et al., 2020) and can persist for several days through various local
feedback mechanisms (Morrison et al., 2012). The distinct signature of mixed-
phase clouds on the longwave radiative flux (Stramler et al., 2011) is challenging
to represent in climate models (Pithan et al., 2014).
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1.1. MOTIVATION

Figure 1.1: Arctic mean sea ice concentration based on satellite observations in
(a, b) March and (d, e) September for the decades (a, d) 1979–1988 and (b, e)
2010–2019. The absolute change in sea ice concentration over the 31 years is
shown for (c) March and (f) September, where negative values correspond to a
reduction in sea ice concentration from 1979–1988 to 2010–2019. Sea ice con-
centrations are derived from passive microwave observations with the Bootstrap
algorithm version 3 (Comiso, 2017). This figure is adapted from Fig. 9.13 in the
Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report
(AR6) (IPCC, 2021).

Improved understanding of the surface and atmospheric properties in the Arc-
tic can be achieved by a range of satellite instruments. Regarding the surface,
passive microwave observations can monitor key geophysical sea ice parameters,
such as sea ice cover and extent, sea ice type, sea ice surface temperature, thin
sea ice thickness, sea ice drift, and snow depth on first-year ice (Lucas et al.,
2023). These parameters are typically derived from observations at frequen-
cies between 1.4 and 91GHz, which we define as low frequencies (≤ 91 GHz),
while high frequencies (> 91 GHz) are typically not incorporated in sea ice prod-
ucts. These passive microwave observations are complemented by spectrometers,
infrared radiometers, scatterometers, imaging synthetic aperture radar (SAR),
radar altimeters, and lidar altimeters (Lucas et al., 2023). Spectrometer and in-
frared radiometer observations of sea ice are limited to cloud-free conditions, and
the passive observations in the visible spectrum are further unavailable during
polar night. Microwave radiometers and radars partly close this gap by providing
information also under cloudy conditions year-round.
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Passive microwave radiometers also allow monitoring of key atmospheric pa-
rameters, including clouds and precipitation (e.g., Boukabara et al., 2011; Pfre-
undschuh et al., 2024). An important cloud property is the total amount of cloud
liquid water in the atmospheric column, i.e, liquid water path. The liquid wa-
ter path is operationally derived from passive microwave observations over open
ocean (e.g., Elsaesser et al., 2017) using an accurately estimated background sur-
face emissivity based on the sea state, i.e., sea surface temperature, sea surface
salinity, and near-surface wind (Kilic et al., 2023). Over sea ice, no operational
product is yet available from passive microwave observations. An accurate obser-
vation of liquid cloud occurrence is available from spaceborne lidars (Kay et al.,
2016), but the observations are often attenuated by the topmost liquid layer.
Visual and near infrared imagers are important in the summer and provide infor-
mation on the effective radius, optical depth, and cloud liquid water path from
solar reflectance measurements (Platnick et al., 2001). Over sea ice, these meth-
ods exploit the spectral dependence of absorption by liquid cloud droplets above
1000 nm (Platnick et al., 2001; Klingebiel et al., 2023), but need to account for
surface albedo uncertainties related to variations in the snow grain size (Ehrlich
et al., 2017).

Frozen hydrometeors can also be detected with passive microwave observa-
tions, but the mixed signal from the surface and hydrometeors makes the retrieval
challenging (Milani and Kidd, 2023). In the Arctic, spaceborne Cloud Profiling
Radars (CPRs) onboard CloudSat (Stephens et al., 2002, 2008) and EarthCARE
(Illingworth et al., 2015; Wehr et al., 2023) provide high sensitivity to the verti-
cal distribution of precipitation. Thus, they are used as ground truth for passive
microwave retrieval evaluation and development (Camplani et al., 2024a), but of-
ten miss clouds and precipitation below about 1 km height due to surface clutter
(Maahn et al., 2014; Schirmacher et al., 2023). Observations of cloud ice proper-
ties, i.e., ice water path, are poorly constrained by current observations and thus
largely differ among climate models (Duncan and Eriksson, 2018; Eliasson et al.,
2011). Novel submillimeter wave satellite missions will fill this gap (Buehler et al.,
2012; Eriksson et al., 2020; May et al., 2024; Wang et al., 2017a) as demonstrated
from airborne observations (Brath et al., 2018; Pfreundschuh et al., 2022). While
the higher frequencies are less sensitive to the surface, surface contributions are
relevant up to about 480GHz (Wang et al., 2017b).

The satellite observations in Fig. 1.2 demonstrate the combined surface and
atmosphere sensitivity of passive microwave observations in the Arctic at three
frequencies on 10 April 2025. At 23GHz, the sea ice is clearly separable from open
water due to its high emissivity at this frequency. At 89GHz, various structures
can be detected over sea ice, such as leads and large-scale gradients, which indicate
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the importance of spatial and temporal variations in sea ice and snow properties
and sea ice rheology (Ólason et al., 2025), which are challenging to simulate. At
325.15GHz, water vapor and scattering by ice clouds dominate the signal, but
surface influence is clearly visible under very dry conditions, such as a lead north
of the Arctic Archipelago and the ice edge in the Fram Strait. Thus, the Central
Arctic between Svalbard and the Arctic Archipelago likely receives a significant
surface contribution that needs to be considered for cloud ice and water vapor
retrievals.

Figure 1.2: Passive microwave observations in the Arctic on 10 April 2025. (a)
Advanced Microwave Scanning Radiometer - 2 (AMSR2) at 23GHz at horizon-
tal polarization (H-pol), (b) AMSR2 onboard the GCOM-W satellite at 89GHz
at H-pol, and (c) Microwave Radiometer (MWR) onboard the Arctic Weather
Satellite (AWS) mission at 325.15±6.6GHz at quasi-vertical polarization (QV-
pol). Arrows indicate the presence of the ice and a lead visible at 325.15±6.6GHz.
Note that the incidence angle of AMSR2 is constant with 55◦, while it varies with
scan position between ±54◦ for the cross-track scanning MWR onboard AWS.
GCOM-W AMSR2 data is obtained from Berg (2022b) and AWS MWR data is
obtained from EUMETSAT (2025).

Lawrence et al. (2019) identified that passive microwave, conventional, and in-
frared observations have the largest impact on short-range tropospheric forecasts
in the Arctic. Microwaves are most important in summer, while conventional ob-
servations are most important in winter. This difference is due to the challenge
in simulating the microwave emission of sea ice and snow-covered land during
winter from model equivalents. At the same time, this joint sensitivity of passive
microwave observations to the Arctic atmosphere and surface provides an op-
portunity for coupled data assimilation (De Rosnay et al., 2022). Coupled data
assimilation aims at improving the assimilation in one domain by using observa-
tions in another domain (Penny et al., 2017) and improves model forecast skill
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(Browne et al., 2019). This is particularly important over sea ice, where sea ice
and snow temperature are important input parameters of the observation opera-
tor that are needed to estimate atmospheric contributions to the measured signal.
Improving the assimilation of satellite observations in the Arctic will also improve
weather forecasts in mid-latitudes, depending on the large-scale atmospheric flow
(Day et al., 2019). Additionally, refined assimilation of observations from current
and future satellites will enhance global reanalysis products (ECMWF, 2025) and
thus data-driven weather prediction models (e.g., Lam et al., 2023).

There are several methods to account for the surface emission over sea ice and
snow for a given location and time. These are climatological emissivity atlases,
empirical models, and physical radiative transfer models. Advances in each of
the tools will improve physical retrievals, data assimilation, and radiative trans-
fer modeling (Kubota et al., 2025; Sandells et al., 2025). Emissivity atlases are
based on a satellite climatology and provide a globally mapped monthly mean
and standard deviation of the emissivity (Munchak et al., 2020; Wang et al.,
2017b). A widely used atlas is the Tool to Estimate Land Surface Emissivity
from Microwave to Submillimeter Waves (TELSEM2; Wang et al., 2017b), which
parametrizes monthly statistics of the emissivity as a function of frequency, an-
gle, and polarization. These atlases also provide a baseline for the incorporation
of other tools that account for temporal variability. The operational Microwave
Integrated Retrieval System (MiRS; Boukabara et al., 2011) by the National
Oceanic and Atmospheric Administration (NOAA) simultaneously derives atmo-
spheric and surface properties over all surfaces globally. The algorithm derives
the surface emissivity dynamically from background values depending on the sur-
face type using the Community Radiative Transfer Model (CRTM). The retrieved
sea ice emissivity spectra are then converted into geophysical properties (sea ice
concentration and age) using sea ice and snow radiative transfer models during
post-processing (Boukabara et al., 2018; Kongoli et al., 2011).

The long time series of satellite microwave observations provides large amounts
of data to train large-scale machine learning models that learn the spatial and
temporal variability of the microwave signature (Geer, 2024a). When predicting
the emissivity with a machine learning model, as in Geer (2024a), an atmospheric
model is required to provide the atmospheric upwelling radiation and transmis-
sivity for direct comparison with satellite radiances. The method by Geer (2024a)
learns an underlying empirical state and an empirical emissivity model, which con-
verts the state into an emissivity. The empirical sea ice state can be interpreted
as a compression of sea ice properties that are relevant for the radiative signature,
such as polarization effects and spectral gradients. This approach requires careful
consideration of model errors that might potentially affect model weights during
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training. An application of this framework in numerical weather prediction mod-
els enables improved timeliness for assimilating sea ice concentration fields (Geer,
2024b). Recently, De Gélis et al. (2025) developed an empirical emissivity model
from 1.4–89GHz based on a single-layer feedforward neural network for snow
on land using reanalysis, satellite products, and emissivity climatology as pre-
dictors. Their model improved the estimates compared to a monthly emissivity
climatology.

Radiative transfer models for sea ice and snow simulate the microwave emis-
sivity spectrum from first principles using layered geophysical properties as input,
such as temperature, thickness, density, salinity, and grain size. An established
sea ice and snow radiative transfer model is the Microwave Emission Model of
Layered Snowpacks (MEMLS; Wiesmann and Mätzler, 1999; Mätzler and Wies-
mann, 1999), with extensions for sea ice (Tonboe et al., 2006) and for active
simulations (Proksch et al., 2015b). Around the same time, the semi-empirical
Helsinki University of Technology (HUT) snow emission model was developed
(Pulliainen et al., 1999), which differs in various assumptions from MEMLS, but
shows comparable results (Pan et al., 2016). To facilitate comparisons between
electromagnetic theories within the same framework, the Snow Microwave Ra-
diative Transfer model (SMRT) was developed and extended to sea ice surfaces
(Picard et al., 2018).

An application of sea ice and snow emission models is to identify surface
parameters that influence satellite measurements and retrievals. Rahimi et al.
(2022) perform sensitivity tests to quantify the impact of snow properties (depth,
density, and grain size) on the emissivity at high frequencies (89 and 166GHz)
over northern hemisphere land surfaces with the dense media radiative transfer
quasi-crystalline approximation (DMRT-QCA) theory (Tsang et al., 2000). The
scattering signal of frozen hydrometeors at these frequencies is used to derive
snowfall over land from the Global Precipitation Measurement (GPM) Microwave
Imager (GMI) instrument. Thus, small changes in the surface snow properties
would impact the snowfall retrieval accuracy. Density and snow depth based
on the land surface hydrology model of the European Centre for Medium-Range
Weather Forecasts (ECMWF) Integrated Forecasting System (IFS), Integrated
Hydrology Tiled ECMWF Scheme for Surface Exchanges over Land (HTESSEL;
Balsamo et al., 2015, 2009), are used to map regions where snowfall retrievals are
vulnerable to snow emissivity changes. Potential accumulation of snow by the
precipitation event itself would change the underlying emissivity at high frequen-
cies.

Several physical retrieval approaches have been developed to derive atmo-
spheric properties from surface-sensitive passive microwave observations over sea
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ice, which often requires a combination of radiative transfer models developed sep-
arately by the cryosphere and atmosphere communities. Rückert et al. (2023b)
couple the sea ice version of MEMLS with the atmospheric model by Wentz
and Meissner (2000) to simultaneously retrieve snow and sea ice parameters (sea
ice concentration, multiyear ice fraction, snow thickness, and temperature) and
atmospheric parameters (liquid water path and integrated water vapor) from
Advanced Microwave Scanning Radiometer - 2 (AMSR2) observations. Their re-
trieval is also applicable over the open ocean, where additionally the sea surface
temperature and wind speed are derived based on the ocean emissivity model by
Meissner and Wentz (2012). This retrieval builds on an earlier version that used
an empirical emissivity (Mathew et al., 2009) estimated from satellite observa-
tions over first-year and multiyear ice instead of the physical radiative transfer
model (Scarlat et al., 2017, 2020). An evaluation of this earlier version showed
lower accuracy in water vapor estimates compared to other satellite and reanal-
ysis products (Crewell et al., 2021). Incorporating a more physical approach for
the surface improved the retrieval result. An advantage of using a physical ra-
diative transfer model is also that it allows the use of spatially and temporally
varying inputs from thermodynamic sea ice and snow models. Kang et al. (2023)
use a thermodynamic sea ice and snow model and couple the radiative transfer
models MEMLS for sea ice (Tonboe, 2010; Tonboe et al., 2011) and Radiative
Transfer for TOVS (RTTOV; Saunders et al., 2018) to retrieve the atmospheric
temperature profile from Advanced Technology Microwave Sounder (ATMS) ob-
servations at the Multidisciplinary drifting Observatory for the Study of Arctic
Climate (MOSAiC; Nicolaus et al., 2022) site. Improvements in the retrieved
atmospheric temperature profile were detected when including surface-sensitive
oxygen sounding channels in the retrieval.

The physical snow radiative transfer model HUT was tested in a data assimi-
lation context over snow-covered land (Hirahara et al., 2020). The main difference
to sea ice is the underlying soil and potential embedded or emerging vegetation
and its interaction with microwave radiation, and more diverse large-scale topog-
raphy. Simulating the physical inputs required for radiative transfer models is
challenging, as found by Prigent et al. (2015) when comparing simulations with
CRTM over land with an emissivity climatology (Aires et al., 2011). Hirahara
et al. (2020) use model fields on snow properties (thickness, temperature, density,
liquid water content, and snow water equivalent), from a multi-layer snow model
(Arduini et al., 2019) of the land surface model HTESSEL. Data assimilation ex-
periments showed improvements when using the HUT model over an emissivity
atlas at low frequencies. However, the improvements were limited by systematic
deficiencies in the emissivity modeling at frequencies above 20GHz.
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Radiative transfer models for the sea ice and snow can be applied to evaluate
general circulation models (GCMs) in the Arctic against microwave observations
from satellites (Burgard et al., 2020b; Smith et al., 2022). In analogy to data
assimilation for numerical weather prediction, this approach avoids the impact of
geophysical retrieval uncertainties on quantities predicted by the model, such as
sea ice concentration. Burgard et al. (2020a) developed the Arctic Ocean Obser-
vation Operator (ARC3O) to convert the GCM output on physical properties of
the sea ice, snow, ocean, and atmospheric parameters into brightness tempera-
tures. The MEMLS sea ice version is used as a module to simulate the emission
and reflection of sea ice during the cold season. The input to MEMLS is taken
directly from the GCM, with additional assumptions about microphysical prop-
erties not simulated directly. ARC3O is applied to evaluate the GCM against
observations at 6.9GHz (Burgard et al., 2020a) and 18GHz (Smith et al., 2022).
The applicability to higher frequencies requires consideration of the spatial and
temporal evolution of snowpack properties (density, grain size, and layering),
which is not yet available from the sea ice module of the GCM.

Spaceborne passive microwave observations are recently advancing toward im-
proved spatial resolution, extended spectral regions, and higher temporal cover-
age. Improved spatial resolution will be achieved by the conically-scanning multi-
frequency microwave radiometer (1.4–36GHz) Copernicus Imaging Microwave
Radiometer (CIMR) (Donlon et al., 2023). At 18 and 36GHz, the resolution will
be 4×6 and 3×5 km, reducing the footprint radius by a factor of about three
compared to AMSR2 due to the large antenna of CIMR. This will enable the
development of sea ice concentration maps at a much finer resolution and im-
proved accuracy (Kilic et al., 2018) with implications for observing leads and
estimating surface fluxes. Moreover, CIMR continues the time series of thin ice
thickness based on 1.4GHz observations, which can fully penetrate newly formed
sea ice of 50 cm thickness (e.g., Kaleschke et al., 2010; Tian-Kunze et al., 2014;
Huntemann et al., 2014; Scarlat et al., 2020; Paţilea et al., 2019) based on the
Soil Moisture and Ocean Salinity (SMOS; Barre et al., 2008) and Soil Moisture
Active-Passive (SMAP; Entekhabi et al., 2010) missions. With the launch of
AMSR3 (Kachi et al., 2023) in 2025, the spatial resolution at high frequencies
(about 5 km at 165.5 and 183.31GHz) also increases by a factor of 2–3 com-
pared to similar sensors in the polar orbit. Moreover, AMSR3 will continue the
time series of its predecessors, AMSR2 (JAXA, 2016) and AMSR-E (Kawanishi
et al., 2003). An even higher resolution of less than 1 km will be achieved by the
Wind Velocity Radar Nephoscope (WIVERN; Illingworth et al., 2018), a coni-
cally scanning 94GHz Doppler radar measuring wind, clouds, and precipitation,
and a radiometer mode sensitive to both atmosphere and sea ice properties.
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Extensions in the spectral region from typically below 200GHz toward the
submillimeter wave up to 660GHz will be implemented with the European Po-
lar System - Second Generation (EPS-SG) Ice Cloud Imager (ICI; Kangas et al.,
2014a) by the European Organisation for the Exploitation of Meteorological Satel-
lites (EUMETSAT). The ICI instrument will be onboard the Metop-SG-B satel-
lite together with the MicroWave Imager (MWI), covering the frequency range
from 18.7 to 660GHz on a single platform. The submillimeter waves fill the gap
between the microwave and thermal infrared spectrum and are highly sensitive to
the scattering by cloud ice (Buehler et al., 2007). Long-term observations of ICI
onboard three consecutive satellites are expected to improve the understanding
of global occurrence of cloud ice and their representation in weather and climate
models (Eliasson et al., 2011; Duncan and Eriksson, 2018). First measurements
up to 204GHz were conducted with the Time-Resolved Observations of Pre-
cipitation structure and storm Intensity with a Constellation of Smallsats - 01
(TROPICS-01) Pathfinder mission in a polar orbit from June 2021 to December
2023 (Blackwell, 2022). The Arctic Weather Satellite (AWS), launched in 2024,
provides first observations up to frequencies of 325GHz (Eriksson et al., 2025).
The Microwave Sounder (MWS) onboard the Metop-SG-A satellite launched in
2025 extends the time series of its predecessors, Advanced Microwave Sounding
Unit - A (AMSU-A), AMSU-B, and Microwave Humidity Sounder (MHS), and
provides an additional high-frequency channel at 229GHz (Kangas et al., 2014b).

Multiple satellites similar to AWS will be arranged in the EPS-Sterna con-
stellation, enabling higher temporal coverage in polar regions. While temporal
coverage in the Arctic is already higher than in other regions, the EPS-Sterna en-
ables the monitoring of rapidly developing storms, such as polar lows (Melsheimer
et al., 2016), with positive impact on numerical weather prediction skill (Lean
et al., 2025; Rivoire et al., 2024). Fully exploiting its capabilities will require
knowledge of the emissivity at 325GHz.

1.2 Field campaigns

Four field campaigns that include microwave radiometer observations over sea
ice with channels above 100GHz and ancillary instruments to characterize the
surface, clouds, and atmosphere, were carried out within the framework of the
Transregional Collaborative Research Center TRR 172 on ”Arctic amplification:
Climate Relevant Atmospheric and Surface Processes and Feedback Mechanisms
(AC)3” (Wendisch et al., 2023): Arctic Cloud Observations Using Airborne Mea-
surements During Polar Day (ACLOUD; Wendisch et al., 2019), Airborne Mea-
surements of Radiative and Turbulent Fluxes of Energy and Momentum in the
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Figure 1.3: Spectrum of the atmospheric transmissivity and location of instru-
ment band passes. (a) Nadir transmissivity under clear-sky conditions from 1 to
700GHz simulated with the Passive and Active Microwave radiative TRAnsfer
(PAMTRA; Mech et al., 2020) model based on monthly mean radiosonde pro-
files launched from 2018 to 2022 at 12 UTC in Ny-Ålesund, Svalbard (Maturilli,
2020). (b) Band passes of satellite instruments as provided by RTTOV (EU-
METSAT NWP-SAF, 2019) and instruments deployed during field campaigns in
a downward-looking geometry (see Sect. 1.2). Band passes with a bandwidth of
less than 1GHz are set to 1GHz for better visibility.

Arctic Boundary Layer (AFLUX; Mech et al., 2022a), HALO–(AC)3 (Wendisch
et al., 2024), and Water Vapor, Mixed-Phase Clouds, and Sea Ice Emissivity over
the Central Arctic Ocean (VAMPIRE; Rabe and Geibert, 2025). The microwave
radiometer observations over sea ice during ACLOUD, AFLUX, and HALO–
(AC)3 campaigns were implemented with aircraft, and during the VAMPIRE
campaign from a research vessel (Table 1.1). The instruments provide observa-
tions at surface-sensitive satellite channels at frequencies above 200GHz similar
to current and future satellite instruments (Fig. 1.3).

During ACLOUD, measurements with the Polar 5 research aircraft were con-
ducted in the Fram Strait from May to June 2017 (Ehrlich et al., 2019b). Po-
lar 5 carried the nadir-viewing Microwave Radar/radiometer for Arctic Clouds
(MiRAC; Mech et al., 2019), consisting of a combined active–passive component
MiRAC-A with a 94GHz cloud radar and an 89GHz radiometer channel, and
a solely passive component MiRAC-P (183–340GHz). MiRAC-A and MiRAC-P
were also operated onboard the same aircraft during AFLUX in the Fram Strait
from March to April 2019 (Mech et al., 2022a). During this time period, the
atmospheric transmissivity reaches its maximum in the Arctic (Fig. 1.3). Hence,
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the AFLUX campaign provides the highest quality of 340GHz sea ice emissivity
data among the field campaigns analyzed here.

The HALO–(AC)3 campaign from March to April 2022 focused on air mass
transformations during cold air outbreaks and warm air intrusions in the Fram
Strait and Central Arctic (Wendisch et al., 2024). The High Altitude and Long
Range Research Aircraft (HALO) carried the nadir-viewing HALO Microwave
Package (HAMP) consisting of a 35GHz cloud radar (Ewald et al., 2019) and
22–183GHz microwave radiometer (Mech et al., 2014). HALO allows for passive
microwave observations of deeper cloud systems and includes observations in the
Central Arctic not available from the low-flying Polar 5 aircraft.

The VAMPIRE campaign was performed during R/V Polarstern cruise PS144
around the surface freeze onset (August to October 2024) in the Central Arctic
(Rabe and Geibert, 2025). Its instrumentation for sea ice observations includes
MiRAC-P and the Humidity and Temperature Profiler (HATPRO; Rose et al.,
2005) with channels between 22 and 58GHz. HATPRO and MiRAC-P scanned
upwelling and downwelling radiation at various incidence angles regularly during
the cruise with a smaller footprint size compared to the aircraft observations.
The passive microwave radiometer observations were complemented by ancillary
instruments, including two surface cameras (visual and thermal infrared), two
cloud radars, radiosondes, and a disdrometer. The VAMPIRE campaign is an
extension of the Water Vapor, Cloud Liquid Water, and Surface Emissivity over
the Arctic Marginal Ice Zone in Summer (WALSEMA) setup (Rückert et al.,
2025) implemented onboard R/V Polarstern cruise PS131 during the summer
melt period from June to August 2022 in the Fram Strait (Kanzow, 2023). VAM-
PIRE captures the temporal evolution of the sea ice emissivity after surface freeze
onset at 243GHz and its angular dependence for the first time.

Each field campaign provides high-quality observations of the surface and
atmospheric radiation over Arctic sea ice. They are suitable for analyzing the
spatiotemporal variability of sea ice emissivity and the retrieval capabilities of
surface and atmospheric properties.

Table 1.1: Overview of the field expeditions ACLOUD, AFLUX, HALO–(AC)3,
and VAMPIRE.

Mission Platform Type Frequencies Time
[GHz]

ACLOUD Polar 5 Aircraft 89–340 May–Jun 2017
AFLUX Polar 5 Aircraft 89–340 Mar–Apr 2019

HALO–(AC)3 HALO Aircraft 22–183 Mar–Apr 2022
VAMPIRE R/V Polarstern Ship 22–340 Aug–Oct 2024
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1.3 Thesis objectives

Passive microwave observations from polar-orbiting satellites allow long-term
monitoring of the surface and atmospheric state of the Arctic climate system.
This provides observational evidence for changes in the cryosphere and atmo-
sphere in response to global warming. Moreover, their assimilation in numerical
weather prediction models improves weather forecasting in the high and mid
latitudes and reanalysis. However, there are still challenges in interpreting and
simulating surface-sensitive passive microwave observations over snow and sea
ice from existing and novel satellite missions with high-frequency channels. Chal-
lenges include the representation of its spatial variability at small scales, which are
typically not resolved by satellites but influence the measured signal. Moreover,
the temporal evolution of the emissivity at high frequencies and its atmospheric
drivers that couple the cryosphere and atmosphere are not well understood due to
the lack of detailed observations. Additionally, physical radiative transfer models
need to be evaluated against field observations over sea ice. Finally, field observa-
tions provide high-resolution reference observations to evaluate passive microwave
retrievals based on physical radiative transfer models.

The ACLOUD, AFLUX, HALO–(AC)3, and VAMPIRE expeditions provide
an opportunity to improve the understanding and simulation of spaceborne surface-
sensitive passive microwave observations at high frequencies over Arctic sea ice.
These observations are used to identify physical sea ice and snow properties that
influence the emissivity up to submillimeter wavelengths. Moreover, the temporal
evolution of sea ice emissivity at high frequencies is related to surface and atmo-
spheric processes, such as new ice formation and snowfall. The spatial variability
of the high-resolution emissivity is analyzed within satellite footprints. Addi-
tionally, the representation of sea ice emissivity in a snow and sea ice microwave
radiative transfer model is assessed using the field observations. The applicabil-
ity is tested with a physical forward operator consisting of an atmospheric and
surface radiative transfer model to simultaneously retrieve surface parameters
and cloud liquid water path. The detectability of the cloud liquid water path
retrieval is assessed using ancillary airborne observations, and the accuracy is
quantified from synthetic retrieval experiments. This dissertation aims to answer
the following research questions (RQs):

RQ1: How does sea ice emissivity vary spatially within satellite footprints, and
how is this reflected in the spectral variability at the satellite scale toward
submillimeter wavelengths? (addressed in Study 1)

RQ2: Which atmospheric processes influence sea ice emissivity toward high fre-
quencies? (addressed in Studies 2 and 3)
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RQ3: How representative are sea ice and snow radiative transfer simulations at
high frequencies? (addressed in Studies 2 and 3)

RQ4: How accurately can we retrieve cloud liquid water path from passive mi-
crowave observations over sea ice? (addressed in Study 3)

The next section provides an overview of the studies addressing the RQs. Af-
terward, the theoretical background is introduced in Chapter 2. The Chapters 3,
4, and 5 present the three studies outlined below. Finally, Chapter 6 concludes
this thesis and provides an outlook.

1.4 Overview of the studies

Study 1: Spatial emissivity variability up to 340 GHz

Satellite observations of MWS, AWS, and ICI above 200GHz are partly sensi-
tive to the surface, especially under cold and dry conditions during polar night
(Fig. 1.3). To derive surface and atmospheric properties from these observations,
the sea ice microwave emission at high frequencies and its spatial variability must
be known. Therefore, the first study assesses sea ice microwave emissivity from
89 to 340GHz using airborne observations from the ACLOUD and AFLUX field
campaigns (Chapter 3; Risse et al., 2024b). The field observations provide sea ice
emissivity estimates during clear-sky flights at frequencies similar to those of the
satellite instruments. Moreover, frequent collocations with large-scale satellite
observations provide insights into the role of small-scale emissivity variations for
the large-scale satellite footprint.

Study 2: Microwave signature of snow accumulation

The temporal evolution of sea ice and snow microwave emissivity at small spatial
scales is often not captured by field observations due to their short duration,
and is unresolved by large satellite footprints. Especially at high frequencies
(183 and 243GHz), no observations are yet available that capture the small-scale
emissivity change during the transition from summer melt to autumn freeze-
up, including the formation of new ice and snow accumulation on newly formed
sea ice. The second study uses VAMPIRE observations to analyze the sea ice
microwave emissivity at frequencies up to 243GHz and assesses the performance
of the Snow Microwave Radiative Transfer (SMRT; Picard et al., 2018) model
at high frequencies (Chapter 4). These observations allow us to assess the role
of snow scattering for the sea ice emissivity at 183 and 243GHz. Moreover,
the spectral, angular, and polarization dependence of SMRT over sea ice can be
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compared to long-term high-resolution emissivity observations of diverse sea ice
conditions.

Study 3: Sea ice–atmosphere retrieval

Several studies developed physical sea ice–atmosphere retrievals for satellite pas-
sive microwave observations (e.g., Kang et al., 2023; Rückert et al., 2023b). How-
ever, little is known about the retrieval performance regarding cloud liquid water
path, i.e., detectability and retrieval accuracy, due to the scarcity of reference ob-
servations from field measurements or collocated spaceborne lidar observations.
Airborne passive microwave observations, combined with collocated reference ob-
servations from cloud radar, lidar, and thermal infrared, provide an opportunity
for retrieval evaluation along the flight track under diverse atmospheric condi-
tions. The third study develops a physical optimal estimation sea ice–atmosphere
retrieval algorithm for airborne passive microwave observations that inverts a
physical forward operator consisting of SMRT and the Passive and Active Mi-
crowave radiative TRAnsfer (PAMTRA; Mech et al., 2020) model (Chapter 5).
The retrieval estimates cloud liquid water path and snow layer properties based
on observations during the HALO–(AC)3 campaign.
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Chapter 2

Theoretical background

This chapter provides an overview of the two radiative transfer models used in
this thesis, i.e., the Passive and Active Microwave radiative TRAnsfer (PAMTRA;
Mech et al., 2020) model for the atmosphere (Sect. 2.1) and the Snow Microwave
Radiative Transfer (SMRT; Picard et al., 2018) model for the sea ice and its snow
cover (Sect. 2.2). Both models receive physical input parameters and convert
them to optical properties to solve the radiative transfer equation. In order to
retrieve geophysical parameters using radiative transfer models, the geophysical
retrieval problem needs to be solved. Here, the optimal estimation (Rodgers,
2000) method is used and described in Sect. 2.3. The emissivity definition and
assumptions for the emissivity estimation from microwave radiometer data are
outlined in Sect. 2.4. Finally, machine learning methods are introduced to solve
unsupervised clustering tasks and regression tasks (Sect. 2.5).

2.1 Atmospheric radiative transfer

2.1.1 PAMTRA model

The PAMTRA model (Mech et al., 2020) allows for both active and passive mi-
crowave radiative transfer simulations, including absorption and scattering by
hydrometeors. In this thesis, the passive mode is used for the simulation of
ship, airborne, and satellite geometries. PAMTRA solves the monochromatic
one-dimensional vector radiative transfer equation for a plane-parallel, horizon-
tally homogeneous atmosphere with azimuthal homogeneity (Evans and Stephens,
1993, Eq. (2.22))

µ
dI(z, µ)
dz

= K(z, µ)I(z, µ)−2π
∫ 1

−1
M(z, µ, µ′)I(z, µ′) dµ′−σ(z, µ)B[T (z)], (2.1)
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with the vector of I (total intensity) and Q (difference between horizontal and
vertical polarization) Stokes parameters I, scattering matrix M, extinction ma-
trix K, emission vector σ, temperature T , Planck function B, height coordinate
z, and cosine of the zenith angle µ. Positive µ corresponds to the downward
direction. The equation is solved with the doubling and adding method (e.g.,
Mätzler, 2006) implemented in the polarized radiative transfer code RT4 (Evans
and Stephens, 1995). The output of PAMTRA is the horizontally and vertically
polarized equivalent blackbody temperature at 16 discrete quadrature angles for
both the upwelling and downwelling directions. By specifying an instrument
height, the output corresponds to sensor geometries within the atmosphere (ship,
aircraft) or satellite geometries. The inputs to PAMTRA are atmospheric profiles
(temperature, relative humidity, and pressure), hydrometeor profiles, and surface
boundary conditions.

2.1.2 Atmospheric gases

PAMTRA accounts for the absorption by atmospheric gases from resonant lines
(water vapor and oxygen) and the water vapor and dry continuum (Mech et al.,
2020). The gas absorption coefficients are computed in this thesis with the line-
by-line model by Rosenkranz (1998) with modifications for the water vapor con-
tinuum (Turner et al., 2009) and the line width modification of the 22.235GHz
water vapor line (Liljegren et al., 2005). Accounting for the gaseous absorption
is important near absorption lines and toward high frequencies where the wa-
ter vapor continuum absorption increases (243 and 340GHz). The microwave
radiometers used in this thesis measure along the rotational water vapor absorp-
tion lines at 22.235 and 183.31GHz, the oxygen absorption complex between 50
and 60GHz, and the oxygen absorption line at 118.75GHz.

2.1.3 Cloud liquid water

Liquid clouds are a two-phase medium consisting of almost spherical liquid wa-
ter droplets suspended in air (Mätzler, 2006). Their diameter is much smaller
than the wavelength at microwave frequencies (about 10 µm), and therefore in-
teract with microwave radiation mostly through emission and absorption. In
the Arctic, liquid clouds occur at temperatures as low as −40◦C. Thus, simulat-
ing their interaction with microwave radiation requires a realistic representation
of the dielectric permittivity of liquid water at supercool temperatures (Kneifel
et al., 2014; Rosenkranz, 2015). Turner et al. (2016) developed a parameteriza-
tion for temperatures as low as −35◦C based on field observations at supercool
temperatures and laboratory data, which is implemented in PAMTRA. The fre-
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quency and temperature dependence of the dielectric permittivity is expressed
by a double-Debye equation (Debye, 1929; Ellison, 2007). Based on the dielectric
permittivity of liquid water, PAMTRA computes the single scattering properties
of liquid clouds using Mie theory (Mie, 1908). Under the Rayleigh approxima-
tion, the absorption coefficient κa can be written as (Evans and Stephens, 1993;
Turner et al., 2016)

κa = 6πν
ρlc0
=
(
ε− 1
ε+ 2

)
W, (2.2)

with the frequency ν, density of liquid water ρl, speed of light in vacuum (c0 ≈
3 × 108 m s−1), complex dielectric permittivity of liquid water ε = ε′ + iε′′,
imaginary part of a complex number =(·), and cloud liquid water content within
a given volume of airW . Equation (2.2) shows that the absorption by cloud liquid
water droplets is proportional to the total amount of liquid water. The frequency
and temperature dependence of the absorption coefficient at HAMP frequencies
is shown in Fig. 2.1. The absorption coefficient increases with frequency and
shows a temperature dependence at all frequencies. Therefore, errors in the cloud
temperature lead to uncertainties in the radiative transfer simulation through
both the Planck function and the absorption coefficient.

Figure 2.1: Temperature dependence of the liquid cloud absorption coefficient for
a cloud liquid water content of 0.5 g m−3 at 22, 31, 50, 90, 118, 183, 243, and
340GHz. The absorption coefficient is calculated with Eq. (2.2) using the liquid
water dielectric permittivity parameterization by Turner et al. (2016).
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2.1.4 Boundary conditions

In order to solve the radiative transfer equation, boundary conditions of the
lower interface (surface) and upper interface (space) are required. While the free
space is described with a fixed cosmic microwave background of 2.73K (Fixsen,
2009), the surface is represented via an emissivity, temperature, and reflection
type. Two reflection types can be selected, i.e., specular and diffuse (Lamber-
tian) reflection (see Sect. 2.4.4). The emissivity can be extracted from a surface
emissivity model or atlas. Here, we use the Tool to Estimate Sea-Surface Emissiv-
ity from Microwave to Submillimeter Waves (TESSEM2; Prigent et al., 2017) for
comparison with observations over the open ocean. TESSEM2 parametrizes the
sea surface emissivity from 10–700GHz as a function of wind speed, sea surface
temperature, and sea surface salinity based on the FAST microwave Emissivity
Model (FASTEM; Liu et al., 2011).

2.2 Sea ice and snow radiative transfer

2.2.1 SMRT model

The SMRT model (Picard et al., 2018) computes the propagation of thermal radi-
ation emitted within plane-parallel, multilayered sea ice and snow (Fig. 2.2). The
uppermost layer is an atmosphere layer, and the lowest layer is a semi-infinite
ocean layer where any transmitted radiation gets absorbed. Inputs to SMRT are
the physical properties of the sea ice and snow layers (e.g., thickness, temper-
ature, density, microstructure, and salinity). Then, the permittivity of the raw
materials (fresh ice, air, and brine) is computed with permittivity models, and an
electromagnetic model is applied to derive optical properties (effective permittiv-
ity, absorption and scattering coefficients, and phase matrix). Here, we assume
that all interfaces and boundaries are flat. Thus, the reflectivity and transmis-
sivity coefficients at intermediate layer interfaces and the boundaries (ocean and
air) are computed with the Fresnel equations, based on the effective permittiv-
ity of each layer. Figure 2.3 shows the Fresnel reflectivity for radiation entering
from air into nilas, first-year ice, multiyear ice, and snow. The Fresnel equa-
tions provide the only source for polarization effects, as the scattering with the
microstructure of snow and sea ice is assumed to be isotropic. Finally, the vec-
tor radiative transfer equation is solved (see Eq. (2.1)) with the discrete ordinate
and eigenvalue method (DORT Picard et al., 2004, 2013) with 128 discrete zenith
angles (streams). SMRT neglects inter-layer interferences and coherent effects,
which are mostly relevant at 1.4GHz for homogeneous conditions (Tan et al.,
2015; Leduc-Leballeur et al., 2015) or thin ice lenses (Matzler and Wegmuller,
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1987).

Figure 2.2: Setup of the plane-parallel, multilayered medium in SMRT. Variables
denote the radiance I(θ, φ) as a function of zenith θ and azimuth angle φ, reflec-
tivity at the interface r(θ), physical inputs of each layer l (h: height, ρ: density,
and T : temperature), and derived optical properties (ε: dielectric permittivity,
Ke: extinction coefficient, Ka: absorption coefficient, P : phase matrix). Based
on Fig. 1 in Picard et al. (2018).

2.2.2 Sea ice

Sea ice consists of pure ice with discrete brine pockets and air bubbles embedded
within the ice matrix. Air bubbles are mostly present in multiyear ice in the
freeboard layer due to flushing of brine during the summer melt (Untersteiner,
1968; Comiso, 1983). Each sea ice component (pure ice, liquid brine, and air)
differs in its dielectric properties. The complex relative dielectric permittivity of
air is very close to unity (Hector and Schultz, 1936) and fixed to ε = 1 in SMRT.
For pure ice, the dielectric permittivity model from Mätzler (2006, Chapter 5)
is used in this thesis. The real part of the dielectric permittivity of pure ice is
almost constant (ε′ ≈ 3.17) with a small temperature dependence (Fig. 2.4a).
The imaginary part is generally small for pure ice (ε′′ < 0.03) at frequencies and
temperatures relevant for this thesis (Fig. 2.4c), which means that absorption by
pure ice is small at microwave frequencies. For brine, the parameterization by
Stogryn and Desargant (1985) is applied here, which is also a function of fre-
quency and temperature (Fig. 2.4b,d). The much higher dielectric loss of brine
compared to pure ice (O(1000) below 60GHz and O(100) from 60 to 200GHz)
shows that the absorption of sea ice strongly depends on the presence of brine
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Figure 2.3: Reflectivity at horizontal (H-pol) and vertical polarization (V-pol)
based on the Fresnel equations (Maezawa and Miyauchi, 2009) implemented in
SMRT (Picard et al., 2018) for radiation entering from air into (a) nilas, (b) first-
year ice (FYI), (c) multiyear ice (MYI), and (d) snow. The effective permittivity
of each medium is computed with SMRT at 90GHz and provided within each
panel.

(Shokr, 1998). The brine volume fraction can be determined as a function of bulk
salinity and temperature using the parameterizations by Cox and Weeks (1974)
and Leppäranta and Terhikki (1988) as implemented in SMRT (Fig. 2.5). At a
fixed bulk salinity, the brine volume fraction decreases with decreasing tempera-
ture due to the freezing of brine.

The macrophysical dielectric properties of sea ice can be approximated with di-
electric mixing models from the dielectric properties of each constituent and their
volume fractions. Assumptions on their shape and microstructure are needed for
the application of mixing models, which introduces uncertainties in the estimated
macrophysical properties (Mätzler, 2006). For sea ice and snow, the Polder–Van
Santen mixing formula (Polder and van Santen, 1946) is widely used (e.g., Denoth,
1982; Matzler, 1996; Soriot et al., 2022). For spherical scatterers, the effective
permittivity εeff of a medium consisting of two components can be computed from
this relationship (Mätzler, 2006)

(1− f2) ε1 − εeff

ε1 − 2εeff
+ f2

ε2 − εeff

ε2 − 2εeff
= 0, (2.3)

with the permittivity of the environment phase ε1, permittivity of the inclusion
phase ε2, and the dimensionless volume fraction of the inclusion phase f2. For
first-year ice, pure ice corresponds to the environment phase and brine pockets to
the inclusion phase. For multiyear ice, which consists of pure ice, brine pockets,
and air bubbles, the mixing equation is computed first for the pure ice and brine
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Figure 2.4: Complex relative dielectric permittivity of (a, c) pure ice (Mätzler,
2006) and (b, d) brine (Stogryn and Desargant, 1985) as a function of temperature
and frequency (20 to 340GHz). The real parts are shown in (a, b) and the
imaginary parts in (c, d).

mixture, and then for the saline ice and air bubbles in SMRT. The corresponding
volume fractions are the brine volume fraction (derived from temperature and
salinity) and porosity (derived from temperature, salinity, and density).

2.2.3 Snow

Snow consists of air, pure ice, and potentially liquid water or brine. However, in
this thesis, we only simulate dry snow and do not explicitly handle wet or saline
snow. Generally, the microwave absorption of wet snow is very high even for a low
liquid water content (Mätzler, 2006). For dry snow, the effective permittivity can
be computed from the Polder–Van Santen mixing formula in Eq. (2.3) with air as
the environment phase and pure ice as the inclusion phase (e.g., Sandells et al.,
2022). The dielectric properties of dry snow are therefore mainly determined by
its density or the ice volume fraction (Ulaby et al., 1986).

2.2.4 Microstructure representation

The permittivity fluctuations due to brine and air inclusions within sea ice (Vant
et al., 1978) and snow grains in snowpacks lead to volume scattering of microwave
radiation (Comiso, 1986). In first-year ice and nilas, the scattering is mainly
caused by brine pockets (Tonboe et al., 2006), while air bubbles dominate the
scattering in multiyear ice (Nghiem et al., 1995; Comiso, 1983). The size and
spatial arrangement of the scatterers within the environment phase are described
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Figure 2.5: Brine volume fraction of saline ice as a function of sea ice temper-
ature and salinity. The parameterization is based on Cox and Weeks (1974) for
temperatures below −2◦C and Leppäranta and Terhikki (1988) above −2◦C as
implemented in SMRT. The sea ice is assumed to contain no air bubbles.

by the microstructure in the form of the autocorrelation function of the indicator
function. For sea ice and snow, the exponential microstructure (e.g., Kang et al.,
2023; Rückert et al., 2023b) and sticky hard spheres microstructure (e.g., Soriot
et al., 2022) are often used. The exponential microstructure, which is also used in
MEMLS (Mätzler and Wiesmann, 1999; Tonboe et al., 2006), is described by two
parameters (volume fraction and exponential correlation length), while the sticky
hard spheres model requires three parameters (volume fraction, stickiness, and
sphere radius) to capture more structural correlations (Picard et al., 2018). In
this thesis, the exponential microstructure is applied due to its good agreement
with observations over snow up to 243GHz (Wivell et al., 2023). For simplicity,
the microstructure is assumed to be isotropic, although some horizontal and ver-
tical anisotropy is observed for old and new snow, respectively (Sandells et al.,
2022; Leinss et al., 2016). The exponential autocorrelation function for isotropic
materials is defined as (Picard et al., 2018; Debye et al., 1957)

Cex(r) = f2(1− f2)e
−r
ξ , (2.4)

with the distance r, exponential correlation length ξ, and volume fraction of the
inclusion f2. In Fourier space, the exponential autocorrelation function writes as
(Picard et al., 2018)

C̃ex(kd) = 8πξ3f2(1− f2)
[1 + (kdξ)2]2 , (2.5)
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with the difference of wave vectors in the effective medium in the incident and
scattering directions kd (Picard et al., 2018)

kd = 2k0
√
εeff sin

(
ϑ

2

)
. (2.6)

The scattering angle is denoted as ϑ and the wavenumber in free space as k0 =
2πν/c0.

The correlation length can be interpreted as an effective size of scatterers and
is directly linked to the specific surface area within the porous medium (Mätzler,
2002). Especially for snow, the autocorrelation function and thus the correlation
length show a high variability as observed from 2D or 3D binary images of the
ice–air matrix from thin sections (e.g., Reber et al., 1987) or micro-computed
tomography (CT) scans (e.g., Sandells et al., 2022). An example of the ice–
air matrix based on micro-CT scans is shown in Fig. 2.6 for three snow types
(Proksch et al., 2015a). The exponential correlation length for low-density new
snow is rather low, with about 0.07mm (Fig. 2.6a), while the correlation length
is higher for larger depth hoar crystals with about 0.37mm (Fig. 2.6c). The large
difference between each sample shows the importance of snow metamorphism
due to water vapor gradients and melt processes (Lehning et al., 2002) on the
microstructure.

Figure 2.6: Examples of micro-CT snow structure reconstruction of (a) low-
density new snow, (b) dense melt refrozen snow, and (c) medium-density depth
hoar crystals. Values denote snow density (ρ), specific surface area (SSA), and
exponential correlation length (ξ) derived from the micro-CT reconstruction.
Adapted from Fig. 1 in Proksch et al. (2015a).

2.2.5 Improved Born approximation

The scattering coefficient, absorption coefficient, and phase function for each sea
ice and snow layer are calculated from the permittivity and microstructure using
electromagnetic theory. Several electromagnetic theories are available in SMRT,
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such as the improved Born approximation (IBA; Mätzler, 1998), dense media
radiative transfer (DMRT) based theories, and strong contrast expansion (SCE;
Torquato and Kim, 2021). Picard et al. (2022) compare IBA, DMRT–quasi-
crystalline approximation (QCA) Mie scattering of sticky spheres (DMRT–QMS;
Liang et al., 2008; Tsang et al., 2006), and SCE for snow with the sticky hard
sphere microstructure and find an agreement of the scattering coefficients up to
k0a ≈ 1.5, with the snow grain radius a. This corresponds to an upper bound
of the radius where the theories agree of about 0.8mm at 90GHz and 0.2mm
at 340GHz. Hence, the estimation of the scattering coefficient of coarse-grained
snow or at high frequencies is highly uncertain and depends on the selected elec-
tromagnetic theory. Here, we apply the IBA theory, which was evaluated by
Wivell et al. (2023) over snow and provides realistic emissivity spectra up to
243GHz in agreement with in situ observations and is also often used for sea ice
(e.g., Kang et al., 2023; Rückert et al., 2023b; Soriot et al., 2022; Kilic et al.,
2019).

Picard et al. (2018) describes IBA based on the original work by Mätzler
(1998). The phase function in the 1–2 polarization frame is given as (Picard
et al., 2018; Ding et al., 2010)

p(ϑ, ϕ) = f2(1− f2)(ε2 − ε1)2Y 2(ε1, ε2)k4
0M(kd) sin2 χ, (2.7)

with the polarization angle χ. The mean squared field ratio Y 2(ε1, ε2) for small
spherical scatterers in an isotropic microstructure can be calculated from the
dielectric permittivity as (Mätzler, 1998)

Y 2(ε1, ε2) =
∣∣∣∣2εeff + ε1
2εeff + ε2

∣∣∣∣2 . (2.8)

The microstructure term M(kd) depends on the Fourier transform of the auto-
correlation function C̃(kd)

M(kd) = 1
4π

C̃(kd)
f2(1− f2) . (2.9)

In our case, C̃(kd) corresponds to the exponential autocorrelation function from
Eq. (2.5). The scattering coefficient is then determined by integrating over the
phase function (Picard et al., 2018)

κs = π
∫ π

0
[p11(ϑ) + p22(ϑ)] sinϑ dϑ. (2.10)
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Simulated scattering coefficients of nilas, first-year ice, multiyear ice, and snow
layers as a function of correlation length are presented in Fig. 2.7. The scat-
tering coefficients increase with correlation length and cover about five orders of
magnitude from fine-grained snow at 22GHz to coarse-grained snow at 340GHz.

Figure 2.7: Scattering coefficients of single-layer (a) nilas, (b) first-year ice (FYI),
(c) multiyear ice (MYI), and (d) dry snow as a function of correlation length de-
rived from IBA with SMRT (Picard et al., 2018). The variability of the correlation
length is set to typical values for each medium. The layers are defined with a
temperature of −15◦C. The density is set to 920, 920, 750, and 260 kg m−3 and
the salinity to 14, 7, 0.5, and 0PSU for nilas, first-year ice, multiyear ice, and
snow, respectively, corresponding to the uppermost layer of each surface type in
Tonboe et al. (2006).

The absorption coefficient is directly computed from the effective permittivity
in IBA as

κa = 2k0=(√εeff). (2.11)

Absorption coefficients of three sea ice types (nilas, first-year ice, and multiyear
ice) with a fixed salinity and dry snow are shown as a function of temperature in
Fig. 2.8. The absorption coefficient is highest in the saline ice (nilas and first-year
ice), and its temperature dependence is modulated by the brine volume fraction
(see Fig. 2.5). Multiyear ice and snow have much lower absorption coefficients
than saline ice, with slightly higher absorption in multiyear ice compared to snow.

2.3 The geophysical retrieval

The geophysical retrieval aims at inferring a geophysical state (x) from remote
sensing measurements (y). In Chapter 5, the retrieved geophysical state cor-
responds to snow properties and cloud water path, and the measurements are
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Figure 2.8: Absorption coefficients of single-layer (a) nilas, (b) first-year ice (FYI),
(c) multiyear ice (MYI), and (d) dry snow as a function of temperature derived
from IBA with SMRT (Picard et al., 2018). The density and salinity are set as
in Fig. 2.7.

brightness temperatures at several channels from a passive microwave radiome-
ter. As described above, the interactions of the cryosphere and atmosphere with
microwave radiation can be simulated with a radiative transfer model (F )

F (x,b) = y. (2.12)

Inputs to the radiative transfer model are the state vector and model parameters
(b). The model parameters describe fixed parameters that contribute to uncer-
tainties in the simulation (Maahn et al., 2020). Through the inversion of the
generally non-linear radiative transfer model, the geophysical state can be esti-
mated from a set of measurements. However, there exists no unique solution, as
completely different geophysical states can correspond to the same measurement
(Rodgers, 2000). Additionally, different measurement channels can be sensitive to
the same element of the state vector, which reduces the independent information
about the geophysical state contained in the measurements. These factors need
to be considered to extract new information from the measurements.

There are various approaches to solving the retrieval problem. In this thesis,
a physical retrieval method based on optimal estimation (Rodgers, 2000) is ap-
plied. Optimal estimation inverts the forward operator iteratively until a solution
is found based on a priori knowledge of the geophysical state. The uncertainties
of the a priori information, measurement, and forward model are handled during
the retrieval by weighing the relative contributions of the a priori and measure-
ment. The algorithm is based on Bayes’ theorem, which provides a probabilistic
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equation of the desired quantity, the posterior probability density function of the
geophysical state given an observation P (x|y)

P (x|y) = P (y|x)P (x)
P (y) . (2.13)

The conditional probability density function P (y|x) describes the knowledge of y
for a given state x, i.e., the measurement and forward model uncertainty. P (x) is
the prior distribution of the state x, which we aim to update during the retrieval
based on new information from the measurement, and P (y) is a normalizing
factor.

In order to convert the probability into quantitative estimates, optimal es-
timation assumes Gaussian distributions and unbiased measurement and state
vectors. Hence, all distributions can be described by a mean and a covariance
matrix, and an explicit expression for the a posteriori distribution is given as
(Rodgers, 2000, Eq. (5.3))

− 2 lnP (x|y) = (y− F (x))TSe
−1(y− F (x)) + (x− xa)TSa

−1(x− xa), (2.14)

with the a priori state xa, a priori covariance matrix Sa, and effective measure-
ment uncertainty Se. The effective measurement uncertainty combines observa-
tion uncertainty (e.g., instrument noise) and model uncertainty

Se = Sy + KbSbKb
T , (2.15)

with the observation uncertainty Sy, the Jacobian matrix Kb = ∂F (xi,b)/∂b,
and the model parameter uncertainty Sb.

The maximum probability state is obtained by minimizing the derivative of the
posterior probability density function in Eq. (2.14). The resulting cost function
must be solved numerically, and here we use the Gauss–Newton method based
on the software implementation by Maahn et al. (2020). The iterative updates
of the state can be expressed as (Rodgers, 2000, Eq. (5.9))

xi+1 = xa + (Sa
−1 + Ki

TSe
−1Ki)−1Ki

TSe
−1[(y−F (xi,b) + Ki(xi−xa)], (2.16)

with the Jacobian matrix Ki = ∂F (xi,b)/∂xi. The first guess is typically set
to the a priori estimate (Maahn et al., 2020). The convergence criterion for the
iteration is

(xi − xi+1)TSi
−1(xi − xi+1)� N, (2.17)

where N denotes the number of retrieved parameters and Si the retrieval uncer-
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tainty
Si = (Sa

−1 + Ki
TSe

−1Ki)−1. (2.18)

Hence, the iteration stops once the update of the state vector is smaller than the
retrieval uncertainty. For the final iteration, Eq. (2.18) provides the a posteriori
uncertainty of the retrieved parameters.

2.4 Emissivity estimation from radiometers

2.4.1 Emissivity definition

The spectral emissivity at frequency ν, polarization p (horizontal or vertical), and
viewing angle θ is defined as the ratio between emitted spectral radiance (I) and
the unpolarized spectral radiance of a black body B(ν, T ) with temperature T
(Mätzler, 2006)

e(ν, p, θ) = I(ν, p, θ)
B(ν, T ) . (2.19)

The spectral radiance of a black body is determined by the Planck function

B(ν, T ) = 2hν3

c2(e
hν
kbT − 1)

, (2.20)

with the Planck constant (h = 6.626 × 10−34 J s), the Boltzmann constant
(kb = 1.381×10−23 J K−1), and the speed of light in a refractive medium c = c0/n

′

given as ratio between the speed of light in vacuum and the real part of the
complex index of refraction of the medium n′ defined as n =

√
ε. In the microwave

spectrum, the dependence between spectral radiance and equivalent blackbody
temperature is nearly linear as expressed by the Rayleigh–Jeans approximation
(hv/kbT � 1)

BRJ(T ) = 2kbTν
2

c2 . (2.21)

When applying this approximation to Eq. (2.19), the expression for the emissivity
simplifies to

e(ν, p, θ) = Tb(ν, p, θ)
T

, (2.22)

with the brightness temperature Tb. In the following, T is referred to as the
surface or emitting layer temperature and denoted as Ts.

2.4.2 Surface temperature

An estimate of the surface temperature is required for the emissivity calculation.
Precisely, the surface temperature denotes the weighted temperature of the layers
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that contribute to the microwave radiation emitted by the sea ice and snow (e.g.,
Tonboe, 2010). The relative contributions of individual layers to the emitted
signal are strongly linked to the physical properties of the medium and, therefore,
also frequency dependent. Vertical gradients in the temperature profile, which are
strongest in winter (Langlois et al., 2007), thus lead to spectrally varying emitting
layer temperatures. The spectral dependence of the emitting layers is simulated
with SMRT for nilas, first-year ice, and multiyear ice at nadir from 22 to 340GHz
based on idealized profiles by Tonboe et al. (2006) (Fig. 2.9). The emitting layers
correspond to peaks of the temperature weighting function (Kang et al., 2025). At
high frequencies, the signal is emitted only from the upper few centimeters of the
nilas or snow cover. Toward lower frequencies, the radiation is emitted by layers
in up to about 40 cm depth for multiyear ice. Unlike the weighting functions
of oxygen sounding channels in the atmosphere (e.g., Mech et al., 2014), the
shape of the sea ice and snow weighting functions changes strongly due to the
highly variable sea ice and snow dielectric properties and microstructure. Hence,
even if the sea ice and snow temperature profile is known from in situ data, an
estimation of the emitting layer temperature requires assumptions on the emitting
layer depth or weighting function (e.g., Mathew et al., 2008, 2009).

A practical solution for the emitting layer estimation is the skin temperature
estimated from a thermal infrared radiometer on suborbital platforms (Thielke
et al., 2022) or polar-orbiting satellites (Nielsen-Englyst et al., 2023) under clear-
sky conditions. The thermal infrared emissivity is very close to unity with a
small dependence on snow and ice surface properties (Hori et al., 2006). These
provide a high spatial coverage to capture the horizontal temperature variations,
which can be large due to leads and snow cover (Thielke et al., 2022). At high
frequencies, this estimate is close to the temperature of the emitting layer near
the surface (see Fig. 2.9). Using skin temperatures at lower frequencies leads
to an emissivity overestimation due to the increase in temperature with depth.
Spatially and temporally continuous information on the surface temperature is
only available from reanalysis (Hersbach et al., 2020), which combines observa-
tions with the underlying numerical model. Observation-based all-sky surface or
subsurface temperature estimates are developed from passive microwaves (Kilic
et al., 2019; Kang et al., 2025), but they are not used in this thesis to avoid
potential correlations with the suborbital passive microwave observations.

2.4.3 Atmospheric contribution

When estimating the emissivity from passive microwave radiometer observations
in the field, there is a significant atmospheric contribution to the measured signal
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Figure 2.9: Temperature weighting functions estimated for idealized nilas, first-
year ice, and multiyear ice profiles from 22 to 340GHz at nadir. The layer prop-
erties for the profiles are taken from Tables 4.5–4.7 in Tonboe et al. (2006). As
in Tonboe et al. (2006), the simulations are performed at 1 cm vertical resolution
with a snow–ice interface temperature of 268.15K, equivalent to a thermal con-
ductivity of snow and ice of 0.3 and 2.1W m−1 K−1, respectively. The ice–water
and air–snow interface temperatures are set to 271.35 and 258.15K, respectively.
The weighting function is computed by perturbing the temperature of each layer
by 0.1K. The simulations are performed with the Snow Microwave Radiative
Transfer (SMRT) model (Picard et al., 2018) with the setup described in Chap-
ter 5.

(Prigent et al., 1997). Estimating the emissivity in the presence of hydrometeors
typically requires a geophysical retrieval (e.g., Boukabara et al., 2011) due to the
lack of accurate information on hydrometeor properties (Chapter 5). Therefore,
the following discusses the clear-sky case, where the atmospheric contribution is
only due to the emission and absorption by atmospheric gases. These conditions
also allow simultaneous surface temperature estimates from infrared observations.

The atmospheric contributions to the measured brightness temperature are
downwelling radiation reflected at the surface Tb,down(∞, 0), upwelling radiation
between the microwave radiometer height h and the surface Tb,up(0, h), and trans-
missivity of radiation emitted or reflected at the surface toward the instrument
height t(0, h). This can be expressed by the integrated radiative transfer equa-
tion with the Rayleigh–Jeans approximation for the non-scattering, plane-parallel
atmosphere (Prigent et al., 1997, 1998)

Tb = eTst(0, h) + (1− e)Tb,down(∞, 0)t(0, h) + Tb,up(0, h). (2.23)

Rearranging provides an equation for the emissivity with an atmospheric contri-
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bution
e = Tb − Tb,up(0, h)− Tb,downt(0, h)

t(0, h)(Ts − Tb,down) . (2.24)

In the case of a microwave radiometer close to the surface, Eq. (2.24) can be
simplified to

e = Tb − Tb,down

Ts − Tb,down
. (2.25)

The downwelling atmospheric component can be directly estimated during up-
ward scans with the microwave radiometer (NORSEX Group, 1983). Under the
assumption that scattering by frozen hydrometeors is small, this approach is also
applicable to cloudy conditions.

For airborne or satellite applications, Eq. (2.24) needs to be solved with appro-
priate estimates of the atmospheric contributions using radiative transfer simula-
tions (Chapters 3). During field observations, dropsondes or radiosondes provide
direct measurements of the thermodynamic profile of the atmosphere. However,
their spatial representability, together with the measurement accuracy, needs to
be considered during the emissivity estimation.

2.4.4 Surface reflection

The downwelling atmospheric radiation is anisotropic and strongly depends on
the incidence angle. Therefore, the bistatic scattering coefficient, which describes
how much radiation is scattered in a certain direction for a given incident direc-
tion, is required to correctly estimate the reflected sky radiation (Mätzler, 2006,
Chapter 4.3.2). The bistatic scattering coefficient can have complex shapes and
is generally not known. As a simplification, the surface reflection r(ν, p, θ) is
assumed to consist of a specular component rs(ν, p, θ) and a diffuse component
rd(ν). The specular component is polarized and angle-dependent, while the dif-
fuse component is unpolarized and described by Lambertian scattering, which is
independent of the angle. This leads to the equation of the upwelling radiation
at the surface as a combination of specular and Lambertian contributions

Tb,surf = e(ν, p, θ)Ts + rs(ν, p, θ)Tb,down(ν, θ) + rdTb,down,d, (2.26)

with the diffusely scattered sky radiation Tb,down,d given by integrating the down-
welling atmospheric radiation Tsky over the sky hemisphere

Tb,down,d = 2
∫ 1

0
Tsky(µ′)µ′dµ′. (2.27)

An effective incidence angle is often used to approximate the Lambertian reflec-
tion. As shown by Matzler (2005), this angle varies typically between 50–60◦
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and tends toward 60◦ for low zenith opacity. With increasing zenith opacity, the
effective incidence angle decreases as shown in Fig. 2.10 for a humid and dry
atmosphere. Clearly, the wrong assumption on the surface reflection type would
cause a large bias at nadir. However, even a fixed effective incidence angle causes
biases, as can be seen in the shift at 243GHz of the effective incidence angle from
humid to dry conditions (Fig. 2.10c,g). Therefore, the most accurate approach is
to perform an integration over the downwelling radiation using a combination of
observations and simulations (Harlow, 2009). In general, the difference between
Lambertian and specular reflection decreases if the atmosphere is very transpar-
ent, the incidence angle is near the effective Lambertian incidence angle, or the
emissivity is close to unity (Mätzler, 2006, Chapter 4.3.2).

A main challenge in the Arctic is the change in surface reflection type de-
pending on the surface properties. While the ocean reflects mostly specular,
snow-covered surfaces, including sea ice, follow Lambertian scattering (Harlow,
2009; Bormann, 2022). This introduces challenges when the surface type within
the radiometer footprint is unknown. Additionally, the surface reflection varies
seasonally over snow surfaces (Guedj et al., 2010).

Figure 2.10: PAMTRA simulations of the reflected downwelling radiation under
specular (spec.) and Lambertian (Lamb.) reflection at (a, e) 31.4, (b, f) 51.26, (c,
g) 243, and (d, h) 340GHz on 20 August (top) and 29 September 2024 (bottom)
at 12UTC. The simulations are based on retrieved temperature and humidity
profiles and liquid water path (Walbröl et al., 2022) of the HATPRO microwave
radiometer (Rose et al., 2005) during the VAMPIRE campaign. The liquid water
path during the simulations is very low with < 10 g m−2, and the integrated water
vapor is 14 kg m−2 on 20 August and 5 kg m−2 on 29 September. Vertical lines
indicate the effective Lambertian incidence angle as simulated with PAMTRA
θeff and for the limit of zenith opacity τ → 0 (60◦; Matzler, 2005).
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2.5 Machine learning

2.5.1 Unsupervised clustering

Unsupervised machine learning techniques are widely applied in meteorology and
remote sensing, where large amounts of unlabeled data are available from models
and observations. Unlabeled means that the category of a sample is unknown
due to the lack of resources for manual labeling to train a supervised classifier. A
blend between unsupervised and supervised tasks is the self-supervised approach,
where the model creates its own label from an augmented version of the sample
(Caron et al., 2021). The categories are assigned based on the specific classifica-
tion task to be solved, such as cloud pattern taxonomy (e.g., Chatterjee et al.,
2023), moisture transport pathways (e.g., Mewes and Jacobi, 2019), or surface
emissivity and backscatter classification (e.g., Munchak et al., 2020; Soriot et al.,
2022). Here, we perform clustering of a small data set with low-dimensional sam-
ples using an unsupervised approach to objectively separate observed emissivity
spectra into distinct groups (Wang et al., 2017b; Camplani et al., 2021). Dis-
tinct means that each cluster contains emissivity spectra that differ from those
in other clusters. The resulting clusters can be analyzed with respect to the
spatiotemporal occurrence and physical surface properties.

Here, we apply the k-means clustering algorithm (MacQueen, 1967) and re-
lated score metrics implemented in the Python package scikit-learn (Pedregosa
et al., 2011). The k-means algorithm splits a data set with N samples X =
{x1, . . . , xN} into K disjoint clusters C = {C1, . . . , CK} with cluster centers (cen-
troids) M = {m1, . . . ,mK}. A solution is found by minimizing the within-cluster
sum of squares W between each sample xi and the cluster center mk of the cor-
responding subset Ck (Likas et al., 2003)

W =
N∑
i=1

K∑
k=1

I(xi ∈ Ck)‖xi −mk‖2. (2.28)

The indicator function is defined as I(X) = 1 if X is true, and I(X) = 0 other-
wise.

The optimal number of clusters, in which the algorithm should split the ob-
served emissivity spectra, is unknown. Therefore, k-means is applied to a range
of possible K, and three heuristics are employed to find the optimal number of
clusters from the different clustering results. The methods are the elbow method
(Thorndike, 1953), Calinski–Harabasz index (Calinski and Harabasz, 1974), and
silhouette score (Rousseeuw, 1987), and are outlined in the following.

The elbow method is based on the change of the within-cluster sum of squares
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(W ) as a function of K (Thorndike, 1953). It assumes that W decreases strongly
for cluster amounts less than the optimal number of clusters, and flattens when
the number of clusters exceeds the optimal number of clusters.

The Calinski–Harabasz index or variance ratio criterion (V RC) is defined as
(Calinski and Harabasz, 1974)

V RC = B/(M − 1)
W/(N −M) , (2.29)

with the between-cluster sum of squares (B)

B =
K∑
k=1

Nk‖mk −m‖2, (2.30)

where Nk is the number of samples in cluster Ck, and m the mean of all samples.
High values of the Calinski–Harabasz index correspond to an optimal number of
clusters.

The silhouette score is the mean silhouette coefficient s(xi) over all samples
N defined as (Rousseeuw, 1987)

s(xi) = b(xi)− a(xi)
max[a(xi), b(xi)]

, (2.31)

where a(xi) denotes the mean distance between the sample xi to other samples
within its cluster, and b(xi) the mean distance between the sample xi to samples
within the next nearest cluster. If the silhouette score is close to 1, it indicates
that the sample xi is assigned to the correct cluster. The optimal number of
clusters will yield the highest silhouette score.

2.5.2 Regression

Machine learning algorithms are widely used for supervised regression tasks due
to their ability to extract features from raw input through a general-purpose
learning procedure (LeCun et al., 2015). During training, the model weights are
optimized by mapping the inputs to the corresponding outputs. Hence, they are
also suitable for emissivity estimation from satellite observations (Geer, 2024b;
Kang et al., 2025). In this thesis, the microwave emissivity is estimated from
input grayscale camera images obtained during VAMPIRE with the goal of de-
tecting the link between snow cover and the microwave emissivity. To learn the
underlying relationship for this narrow objective, a convolutional neural network
(CNN; Lecun et al., 1998) followed by a multi-layer perceptron (MLP; Rumelhart
et al., 1986) is applied. The model is implemented using the Python package Py-
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Torch (Paszke et al., 2019). Details on the lightweight network architecture, loss
function, and hyperparameters of the CNN and MLP are outlined in Chapter 4.
The following provides an overview of the two main building blocks, the CNN
and the MLP.

CNNs are designed to process data in the form of arrays, such as grayscale im-
ages, by exploiting the properties of natural signals (LeCun et al., 2015). Weights
are shared throughout the image to extract objects and shapes invariant to loca-
tion. Additionally, CNNs make use of the local connectivity, meaning that pixels
in an image close to each other are correlated and share similar properties. This
local information can be combined by pooling operations, which are essential to
reduce the dimensionality and compress the information content of the image.
Through the sequential operations of many layers, the local information (edges)
is assembled into motifs that finally compose an object. For the application of this
thesis, the object corresponds to the sea ice property relevant for the microwave
emissivity.

The basic architecture of a CNN consists of a convolutional layer (convolution
and activation) followed by a pooling layer (Yamashita et al., 2018). The convo-
lutional layer performs discrete convolutions of the image using kernels that slide
through the rows and columns of the image. Typically, several kernels are used,
which expand the two-dimensional input to a three-dimensional feature map after
the first convolutional layer. The result of the convolution is processed through
an activation function. Here, we use the rectified linear unit (ReLU), defined
as f(z) = max(z, 0), which learns faster than smoother functions in multi-layer
neural networks (Glorot et al., 2011). The ReLU activation functions essentially
mutes a node if the result of the weighted sum is negative. The pooling opera-
tions typically compute the maximum or average of a local patch of the feature
map along the spatial dimension. As adjacent pooling kernels are shifted, the
operation shrinks the spatial dimension of the image representation. Through
several repeats of convolutional and pooling operations, the model captures an
increasingly larger field of view, although individual operations only capture local
information of the feature map. The compressed information on the object-level
information of the image is passed to the MLP as a vector. Here, global average
pooling is applied to average the spatial dimension of the CNN, which reduces
the number of parameters in the MLP and makes the CNN flexible to various
image sizes (Yamashita et al., 2018).

The multi-layer perceptron consists of an input layer, one or more hidden
layers, and an output layer (LeCun et al., 2015). In this thesis, the input layer
contains the feature vector extracted from the CNN, and the output layer maps
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to the emissivity. The mapping between layers is a weighted sum

y = xAT + b (2.32)

of the input from a previous layer x with the 2-dimensional weights matrix A
and a bias vector b. The result of this computation is then passed through a non-
linear activation function. As for the CNN, we use the ReLU activation function.
A linear activation function is applied when mapping the output layer.

The model parameters are randomly initialized and updated iteratively during
the model training. After a forward pass on a subset of the data, the prediction is
compared to the corresponding target. A loss function is evaluated to quantify the
distance of the prediction to the target. Through backpropagation, the gradient
of each parameter with respect to the loss function is computed. Afterward, the
parameters of the CNN (kernel weights) and MLP (node weights and biases)
are updated based on stochastic gradient descent (Kingma and Ba, 2017). By
iteratively updating the parameters for a certain number of epochs, the model
predictions improve. Typically, a validation set is used to monitor overfitting by
comparing its loss to the training loss for each epoch. The training is terminated
once a certain convergence criterion is reached. The generalizability of the trained
model can be assessed from an unseen test set.
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Chapter 3

Sea ice emissivity at
submillimeter waves

This study exploits airborne microwave radiometer observations over sea ice ob-
tained during the ACLOUD and AFLUX field campaigns and collocated satellite
observations. The study has been published in:

Risse, N. et al. 2024: Assessing sea ice microwave emissivity up to sub-
millimeter waves from airborne and satellite observations, The Cryosphere, 18,
4137–4163, doi:10.5194/tc-18-4137-2024.

The content of this chapter has been published under the Creative Commons
Attribution 4.0 License. Formatting changes were made to adopt the format of
this thesis.

Detailed author contributions: Nils Risse conducted the emissivity re-
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provided valuable expertise in interpreting emissivity signatures. All authors
reviewed and edited the paper.
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Abstract Upcoming submillimeter wave satellite missions require an im-
proved understanding of sea ice emissivity to separate atmospheric and surface
microwave signals under dry polar conditions. This work investigates hectometer-
scale observations of airborne sea ice emissivity between 89 and 340GHz, com-
bined with high-resolution visual imagery from two Arctic airborne field cam-
paigns that took place in summer 2017 and spring 2019 northwest of Svalbard,
Norway. Using k-means clustering, we identify four distinct sea ice emissivity
spectra that occur predominantly across multiyear ice, first-year ice, young ice,
and nilas. Nilas features the highest emissivity, and multiyear ice features the
lowest emissivity among the clusters. Each cluster exhibits similar nadir emis-
sivity distributions from 183 to 340GHz. To relate hectometer-scale airborne
measurements to kilometer-scale satellite footprints, we quantify the reduction
in the variability of airborne emissivity as footprint size increases. At 340GHz,
the emissivity interquartile range decreases by almost half when moving from
the hectometer scale to a footprint of 16 km, typical of satellite instruments.
Furthermore, we collocate the airborne observations with polar-orbiting satellite
observations. After resampling, the absolute relative bias between airborne and
satellite emissivities at similar channels lies below 3%. Additionally, spectral
variations in emissivity at nadir on the satellite scale are low, with slightly de-
creasing emissivity from 183 to 243GHz, which occurs for all hectometer-scale
clusters except those predominantly composed of multiyear ice. Our results will
enable the development of microwave retrievals and assimilation over sea ice in
current and future satellite missions, such as the Ice Cloud Imager (ICI) and
EUMETSAT Polar System – Sterna (EPS–Sterna).
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3.1 Introduction

Passive microwave observations from polar-orbiting satellites have continuously
monitored polar regions with high spatial coverage for over 5 decades (Comiso
and Hall, 2014). These observations are essential for atmosphere (e.g., Triana-
Gómez et al., 2020; Perro et al., 2020), sea ice (e.g., Spreen et al., 2008; Kilic
et al., 2020; Soriot et al., 2023), and joint atmosphere–sea-ice retrievals (e.g.,
Scarlat et al., 2020; Rückert et al., 2023b; Kang et al., 2023). Such satellite-
based retrievals help us to understand the accelerated Arctic near-surface warm-
ing compared to the global mean (Rantanen et al., 2022; Wendisch et al., 2023).
However, the highly variable sea ice emissions cause uncertainties in satellite re-
trievals and severely limit the use of surface-sensitive microwave channels in op-
erational numerical-weather-prediction data assimilation compared to the open
ocean (Lawrence et al., 2019). Therefore, current research aims to improve the
assimilation of microwave observations over sea ice; for example, Bormann (2022)
showed improved performance occurs when Lambertian rather than specular re-
flection is assumed in forward simulations.

Further spaceborne capabilities will become available through the novel Ice
Cloud Imager (ICI; Buehler et al., 2007) and EUMETSAT Polar System – Sterna
(EPS–Sterna; Albers et al., 2023) instruments, which will feature operational
channels above 200GHz for the first time. These channels provide higher sensi-
tivity to small cloud ice particles than current passive microwave sensors (Buehler
et al., 2012; Wang et al., 2017a; Eriksson et al., 2020). However, variable emis-
sions from polar surfaces also significantly contribute to the atmospheric signal
received at the 243 (ICI only) and 325GHz channels due to the dry atmosphere
(Wang et al., 2017b).

While there is considerable interest in expanding sea ice emissivity estimates
to account for submillimeter waves, few field observations cover this frequency
range. The first brightness temperature (TB) observations of sea ice at 220GHz
were obtained using an airborne cross-track scanning radiometer (Hollinger et al.,
1984). However, sea ice emissivity was derived only at lower frequencies, up to
140GHz, due to high TB noise and low atmospheric transmissivity at 220GHz
during the field study. The observations revealed similar nadir emissivities at 90
and 140GHz, with higher emissivity over young ice (0.96) and lower emissivity
over multiyear ice (0.68). Airborne observations with along-track scanning ra-
diometers from Hewison and English (1999) provide detailed emissivity spectra
for typical sea ice types and snow from 24 to 157GHz and demonstrate the im-
portance of volume scattering within snow at 157GHz. Hewison et al. (2002)
calculated the nadir emissivities of sea ice from 24 to 183GHz at different de-
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velopment stages, from new ice to multiyear ice, using similar instrumentation
to that used in Hewison and English (1999). New-ice emissivities were highest
at 89GHz, measuring 0.95, and slightly decreased to 0.9 at 183GHz. First-year
ice emissivities decreased from 24 to 157GHz and slightly increased from 157 to
183GHz. This emissivity increase at higher frequencies was also found for mul-
tiyear ice. Haggerty and Curry (2001) observed first-time emissivities of up to
243GHz at nadir at a resolution of ∼1 km2. However, leads, which are typically
smaller, could not be resolved. The 340GHz channel aboard the same aircraft
was insensitive to surface emission due to low atmospheric transmissivity. Air-
borne observations by Wang et al. (2017b) measured sea ice emissivities of up to
325GHz, revealing high spatial variability, but the driving sea ice properties at
this frequency could not be estimated.

While field studies demonstrate the high sensitivity of microwaves to sea ice
and snow properties in limited regions, only global sea ice emission information
allows for atmospheric retrievals from satellites. As modeling sea ice emissions is
computationally expensive and requires detailed knowledge of sea ice and snow
properties (Royer et al., 2017; Picard et al., 2018; Rückert et al., 2023b), which is
missing on global scales, spaceborne emissivity climatologies have been developed
(Wang et al., 2017b; Munchak et al., 2020). The Tool to Estimate Land Surface
Emissivity from Microwave to Submillimeter Waves (TELSEM2; Wang et al.,
2017b) climatology for sea ice and land surfaces extrapolates emissivities up to
700GHz to provide first-guess emissivities for upcoming satellite missions, such
as ICI. To simultaneously retrieve atmospheric, sea ice, and snow properties,
radiative-transfer models of sea ice and atmosphere have been combined (Rückert
et al., 2023b; Kang et al., 2023). Kang et al. (2023) additionally simulated sea
ice growth to increase the temporal consistency of the retrieved sea ice and snow
properties. However, sea ice radiative-transfer models might only be valid below
100GHz. Recently, observed snow emissivities (up to 243GHz) were successfully
simulated based on realistic snow properties (Wivell et al., 2023). This result
highlights the need for similar sea ice emissivity field observations that account
for submillimeter waves to improve future modeling studies of sea ice. These
field observations must also be related to satellite observations, which resolve the
surface at a much coarser resolution.

The limitation of sea ice emissivity observations at the scale of submillimeter
waves and their relevance for future satellite missions motivate our study, which
is structured around two objectives. First, we aim to identify critical physical
sea ice and snow properties affecting emissivity up to submillimeter wavelengths,
as observed during two airborne field campaigns. We calculate the sea ice emis-
sivity from TBs at 89 (25◦ incidence angle; horizontal polarization), 183, 243,
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and 340GHz (nadir) using the airborne Microwave Radar/radiometer for Arctic
Clouds (MiRAC; Mech et al., 2019). Then, we characterize typical emissivity
spectra with airborne visual imagery and surface temperature observations. Sec-
ond, we aim to relate the observed hectometer-scale emissivity observations to
the satellite scale. This includes an assessment of emissivity variability as a func-
tion of footprint size. Furthermore, we collocate MiRAC with observations from
polar-orbiting satellites and analyze spectral variations in emissivity observed at
satellite resolutions from 89 to 340GHz, relevant for upcoming satellite missions
(such as ICI and EPS–Sterna).

The paper is outlined as follows. Section 3.2 describes the airborne field data,
microwave instruments, and auxiliary data. Section 3.3 details the emissivity
calculation. Section 3.4 identifies relevant sea ice and snow properties that affect
emissivity pertaining to airborne observations. Section 3.5 compares emissivity
levels between airborne and satellite observations, and the study is summarized
and concluded in Sect. 3.6.

3.2 Data

3.2.1 Field data

We use airborne observations from two campaigns: Arctic CLoud Observations
Using airborne measurements during polar Day (ACLOUD), from 23 May to
26 June 2017 (Wendisch et al., 2019; Ehrlich et al., 2019c), and Airborne measure-
ments of radiative and turbulent FLUXes of energy and momentum in the Arctic
boundary layer (AFLUX), from 19 March to 11 April 2019 (Mech et al., 2022a).
Both campaigns were conducted as part of the “Arctic Amplification: Climate
Relevant Atmospheric and Surface Processes and Feedback Mechanisms” ((AC)3)
research project (Wendisch et al., 2023). The research flights (RFs) with the Po-
lar 5 aircraft (Wesche et al., 2016) from the Alfred Wegener Institute, Helmholtz
Centre for Polar and Marine Research (AWI), covered the Fram Strait, located
northwest of Svalbard, Norway (Fig. 3.1). Polar 5 carried MiRAC (a microwave
package), the KT-19 (a thermal infrared sensor), and a visual camera, as well
as other instruments. Various sea ice characteristics were observed with Po-
lar 5 during the ACLOUD campaign (i.e., during RF23 on 25 June and RF25 on
26 June 2017) and the AFLUX campaign (i.e., during RF08 on 31 March, RF14
on 8 April, and RF15 on 11 April 2019) under clear-sky conditions and over sea ice
suitable for emissivity estimation. During the two ACLOUD flights, melt ponds
formed on the sea ice, and there was open water between individual ice floes. Dur-
ing the three AFLUX flights, snow-covered sea ice, mostly composed of multiyear
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ice (Fig. 3.9), prevailed, with nilas found in refrozen leads between individual ice
floes. Higher fractions of open water during the AFLUX campaign were only
observed in the marginal sea ice zone of RF08. The infrared-based mean surface
temperatures were near the freezing point, ranging from 0.8 to 1 ◦C during both
ACLOUD flights, and well below the freezing point, ranging from −22 to −17 ◦C
during the three AFLUX flights. The integrated water vapor, derived from in
situ observations (see Sect. 3.2.4), was about 10 to 10.3 kg m−2 during the two
ACLOUD flights and 1.3 to 2 kg m−2 during the three AFLUX flights, which indi-
cates reduced water vapor emissions and high atmospheric transmissivity during
the AFLUX campaign.

Figure 3.1: All Polar 5 flights, clear-sky segments over sea ice, and mean sea
ice concentrations (Spreen et al., 2008) during (a) the ACLOUD campaign, from
23 May to 26 June 2017, and (b) the AFLUX campaign, from 19 March to
11 April 2019.

3.2.2 Airborne microwave instruments

Polar 5 carried the MiRAC package, which includes the combined active–passive
component (MiRAC-A), mounted inside a belly pod beneath the aircraft’s fuse-
lage, and the solely passive component (MiRAC-P), deployed inside the aircraft
cabin (Mech et al., 2019). MiRAC-A consists of a 94GHz cloud radar and a pas-
sive 89GHz channel with horizontal polarization, measuring backward with a 25◦

incidence angle. MiRAC-P measures at six double-sideband water vapor channels
(183.31± 0.6, ±1.5, ±2.5, ±3.5, ±5.0, and ±7.5 GHz) and two window channels
(243 and 340GHz) at nadir (see Table 3.1). Both MiRAC components measure at
a temporal resolution of 1 s. We exclude MiRAC-A observations collected during
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low flights, i.e., when the slant path between the instrument and the surface is less
than 500m, due to contamination resulting from back-scattered broadband noise
from the cloud radar. This threshold means MiRAC-A is entirely excluded during
ACLOUD RF25, where the flight altitude during clear-sky transects over sea ice
ranges from 60 to 350m. For the other four flights, the typical flight altitudes
range from 60m to 3 km, with about 80% (15%) of the time spent below 500m
(above 2.5 km). Furthermore, we exclude observations with aircraft roll or pitch
angles above 10◦. The flight distance over which MiRAC provides emissivities
depends on the channel, ranging from 400 km at 89GHz to 1,700 km at 243GHz.
For about 200 km of this distance, all MiRAC-A and MiRAC-P channels provide
emissivities nearly instantaneously – i.e., the spatially matched footprint centers
of MiRAC-P and the inclined MiRAC-A are less than 200m apart.

The instrument receivers were calibrated with a two-point calibration using
liquid nitrogen and an internal target at the beginning of each campaign. In
addition, MiRAC-A performed gain calibrations every 15min (and MiRAC-P
performed them every 20min) during flights using an internal target (Mech et al.,
2019). After the campaign, we applied a bias correction to the 89GHz TBs,
following Konow et al. (2019); this was based on Passive and Active Microwave
radiative TRAnsfer (PAMTRA; Mech et al., 2020) forward simulations and used
dropsonde profiles under clear-sky conditions over the open ocean, extended by
ERA5 reanalysis (Hersbach et al., 2020) to the top of the atmosphere, and a
sea surface temperature analysis (UK Met Office, 2012) as inputs. The added
89GHz TB offset for the ACLOUD (AFLUX) flights in this study is 11 (32)K
and decreases linearly toward higher TBs. This high calibration offset occurred
due to difficult weather conditions during the liquid-nitrogen calibration. We
estimate the accuracy of the offset correction to be 2K. For MiRAC-P, no such
calibration issues occurred due to its location inside the aircraft cabin (Mech
et al., 2019). The TB noise is about 0.5K for MiRAC-A (Küchler et al., 2017)
and MiRAC-P (Mech et al., 2019), indicating an upper bound of the observed
TB noise of 0.2 to 0.3K, based on a homogeneous time series during ACLOUD
RF10. This random noise cancels out when averaging, but we do not consider
this here as systematic effects dominate the overall emissivity uncertainty (see
Sect. 3.3.2). Hence, we assume the overall TB uncertainty from bias correction
and noise to be 2.5K at 89GHz and 0.5K at all other frequencies. The footprint
size at a 60m s−1 flight velocity with a 1 s integration time is about 70×130 m2 at
3 km flight altitude and 1×60 m2 at 60m flight altitude at 183GHz, i.e., at nadir
with an opening angle of 1.3◦ (see Table 3.1). We shift the MiRAC measurement
time by 1 to 2 s (2 to 5 s) during the ACLOUD (AFLUX) campaign relative to
the infrared radiometer KT-19 as determined from lagged correlations between
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243GHz TBs and KT-19 infrared TBs during the clear-sky sea ice emissivity
flight segments. Note that the 243GHz channel showed the highest correlation
with the infrared TB of all MiRAC-P channels during both campaigns due to its
high atmospheric transmission compared to the other MiRAC-P channels.

Table 3.1: Specifications of the passive MiRAC-A and MiRAC-P channels.
H: horizontal. V: vertical.

Instrument Channel Frequency Polarization Incidence Field of
(GHz) angle (◦) view (◦)

MiRAC-A 1 89 H 25 0.85

MiRAC-P

1 183.31± 0.6 V 0 1.3
2 183.31± 1.5 V 0 1.3
3 183.31± 2.5 V 0 1.3
4 183.31± 3.5 V 0 1.3
5 183.31± 5.0 V 0 1.3
6 183.31± 7.5 V 0 1.3
7 243 H 0 1.25
8 340 H 0 1.0

3.2.3 Satellite microwave instruments

We focus on commonly used cross-track and conical polar-orbiting scanning mi-
crowave radiometers. These include the Microwave Humidity Sounder (MHS;
EUMETSAT, 2010), the Advanced Technology Microwave Sounder (ATMS; Kim
et al., 2014), the Special Sensor Microwave Imager/Sounder (SSMIS; Kunkee
et al., 2008), and the Advanced Microwave Scanning Radiometer 2 (AMSR2;
JAXA, 2016); their platforms and specifications are summarized in Table 3.2. To
ensure consistency among the sensors, we use intercalibrated Level 1C TB data
(NASA Goddard Space Flight Center and GPM Intercalibration Working Group,
2022). This intercalibration corrects offsets between the constellation satellites
using the well-calibrated Global Precipitation Measurement (GMP) Microwave
Imager (GMI) (Hou et al., 2014), which covers up to 65◦N, as a reference (Berg
et al., 2016).

MHS and ATMS conduct cross-track scanning at incidence angles of up to
59 and 64◦, respectively, and the SSMIS and AMSR2 scan conically at incidence
angles of 53 and 55◦, respectively. MHS and ATMS measure TBs with nominal
vertical (QV) or nominal horizontal (QH) polarization at nadir, rotating with
view angle α. These TBs are expressed as

Tb,QV = Tb,V cos2(α) + Tb,H sin2(α) (3.1)
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and
Tb,QH = Tb,H cos2(α) + Tb,V sin2(α), (3.2)

respectively. We only use MHS and ATMS data with incidence angles from 0
to 30◦ because these angles provide observation conditions similar to those of
MiRAC. Moreover, fewer footprints with higher incidence angles collocate with
MiRAC, and their increased footprint sizes make comparisons more uncertain.
Using this incidence angle filter for MHS and ATMS, the footprint sizes are
mostly around 16 × 16 km2, with the highest resolution of 3 × 5 km2 provided
by AMSR2. MHS aboard the NOAA-18 spacecraft only operated during the
ACLOUD campaign, and the Metop-C and NOAA-20 spacecraft only operated
during the AFLUX campaign. The 150GHz channel of the SSMIS aboard the
DMSP-F18 satellite was unavailable due to its failure (Berg et al., 2016).

MiRAC overlaps spectrally with MHS, ATMS, and SSMIS at 89 and 183GHz
and overlaps spectrally with AMSR2 at 89GHz. However, MiRAC’s 89GHz
channel, which measures under horizontal polarization at 25◦, is not directly
comparable with the satellite channels because MHS and ATMS mostly measure
vertically polarized TBs near this incidence angle, and SSMIS and AMSR2 mea-
sure at higher incidence angles. Only MiRAC’s 183GHz near-nadir channel is
directly comparable with near-nadir observations from MHS and ATMS.

3.2.4 Ancillary observations

The emissivity retrieval requires ancillary information on the atmospheric ther-
modynamic profile and surface temperature. We construct the thermodynamic
profile below 3 km altitude from measurements of the aircraft’s nose boom and
dropsondes, and we construct the thermodynamic profile above 3 km altitude from
radiosondes (Maturilli, 2020) launched at the AWIPEV station, operated jointly
by the AWI and the Polar Institute Paul-Emile Victor (IPEV) in Ny-Ålesund,
Svalbard, Norway (Neuber, 2003). If no dropsonde information is available over
sea ice, we assume constant temperature and humidity from the lowest flight alti-
tude of about 100m down to the surface. The air temperature measured at these
heights differs by less than 5K from the mean surface temperature, which indi-
cates that the profiles capture typical Arctic surface temperature inversions (e.g.,
Tjernström and Graversen, 2009). The uncertainties in temperature and relative
humidity are ±0.2 K and ±2% for dropsondes (Vaisala, 2010), ±0.2–0.4K and
±3–4% for radiosondes (Maturilli, 2020), and ±0.3 K and ±0.4% for the nose
boom (Ehrlich et al., 2019c).

The KT-19 aboard Polar 5 provides infrared TBs integrated over the atmo-
spheric window from 9.6 to 11.5 µm, with a 1 s resolution and an opening angle of
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2◦ at nadir. Hence, its opening angle is slightly larger than MiRAC’s opening an-
gles. The accuracy of the KT-19 is about ±0.5 K. The infrared TBs are converted
to surface skin temperatures with an infrared emissivity of 0.995, similar to Høyer
et al. (2017) and Thielke et al. (2022), which approximates the infrared emissivity
of typical sea ice types and oceans with an accuracy of 0.01 to 0.02 (Hori et al.,
2006). We use the KT-19 data as input for the sea ice emissivity calculation for
MiRAC. We also require an accurate description of the surface temperature at
the satellite footprint scale, which has higher spatial coverage than the KT-19.
Therefore, we use the daily “Arctic Ocean – Sea and Ice Surface Temperature”
reanalysis (Level 4) with a resolution of 0.05×0.05◦ (Nielsen-Englyst et al., 2023),
which matches the AMSR2 satellite footprint size (hereafter referred to as NE23).
The product derives daily gap-free sea and ice surface temperatures from clear-
sky thermal infrared satellite observations sensitive to the upper few millimeters
of snow or ice (Warren, 1982) and passive microwave-based sea ice concentrations.
A comparison between the airborne surface temperatures based on the KT-19 and
the NE23 temperatures reveals biases of 4 to 6K during the ACLOUD campaign
and biases of -1 to 1K during the AFLUX campaign (KT-19 minus NE23). During
the ACLOUD campaign, the KT-19 temperatures are close to the melting point,
which agrees with observed melting conditions and a snow liquid water fraction
of around 15% (Rosenburg et al., 2023). We use the nearest NE23 ice surface
temperature pixel to the satellite footprint as input for the sea ice emissivity cal-
culation for satellites. Furthermore, a downward-looking camera equipped with
a fish-eye lens operating in the visible spectrum (red, green, and blue) aboard
Polar 5 provides information on sea ice characteristics every 4 to 6 s. Finally,
three data products contribute surface information: daily sea ice concentration
maps from the University of Bremen with a 6.25× 6.25 km2 resolution, based on
AMSR2 (Spreen et al., 2008); daily wintertime multiyear ice concentration maps
from the University of Bremen with a 12.5×12.5 km2 resolution, based on AMSR2
and the Advanced Scatterometer (ASCAT; Melsheimer and Spreen, 2022); and
Sentinel-2B Level 2A (L2A) visual images with a 20×20 m2 resolution (European
Space Agency, 2021). Although the multiyear ice concentration product incorpo-
rates microwave observations from AMSR2 and ASCAT that may correspond to
observations collected at MiRAC frequencies, the implemented temperature and
drift corrections increase independence between multiyear ice concentration and
MiRAC TB.

We utilize topographic data from the Norwegian Polar Institute to exclude
observations over land and near the coastline (Norwegian Polar Institute, 2014).
Specifically, we exclude data within 150m of the shoreline for MiRAC and within
about one footprint radius of 2.5 km (8 km) for AMSR2 (MHS, ATMS, and SS-
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MIS).

3.2.5 Collocation of MiRAC with satellites

To compare MiRAC with satellites, we require nearly simultaneous and spatially
aligned observations. We achieve simultaneous observations by filtering colloca-
tions within a ±2 h window, which maximizes the number of satellite overpasses
and minimizes the effects of sea ice drift. The sea ice drift during the flights is
less than 1 km h−1, based on data from the National Snow and Ice Data Center
(NSIDC; Tschudi et al., 2020), and spatial variability exceeds temporal variability
(not shown). Furthermore, we spatially align MiRAC with the nearest satellite
footprints for each satellite overpass by imposing specific criteria: a footprint
center distance threshold of about one footprint radius, corresponding to 2.5 km
(8 km) for AMSR2 (MHS, ATMS, and SSMIS), and a minimum of 17 (50) MiRAC
footprints within the AMSR2 (MHS, ATMS, or SSMIS) footprint. The latter cri-
terion translates to a straight flight distance exceeding approximately 20% of the
satellite footprint diameter (10% for ATMS at 89GHz).

The number of satellite overflights during the ACLOUD (AFLUX) campaign
with collocated footprints from MHS, ATMS, SSMIS, and AMSR2 is 15 (23),
0 (8), 11 (26), and 2 (9), respectively. We matched channels near 89GHz with
MiRAC-A, and channels above 100GHz were matched with MiRAC-P. The num-
ber of satellite footprints collocated with MiRAC at 89GHz during the ACLOUD
(AFLUX) campaign is 87 (86), 0 (34), 107 (175), and 23 (159) for MHS, ATMS,
SSMIS, and AMSR2, respectively. The number of satellite footprints collocated
with MiRAC above 100GHz during the ACLOUD (AFLUX) campaign is 222
(138), 0 (46), and 277 (261) for MHS, ATMS, and SSMIS, respectively. Around
70 MiRAC footprints fall within each of the satellite footprints at 89GHz, and
about 200 fall within each satellite footprint at frequencies above 100GHz. The
difference is mainly related to the higher resolution of AMSR2 at 89GHz.

3.3 Methodology

3.3.1 Effective sea ice emissivity calculation

We directly derive effective sea ice emissivity from observed clear-sky TBs and
infrared-based skin temperatures, following Prigent et al. (1997). Typically, the
skin temperature differs from the temperature of the emitting sea ice or snow
layer (Tonboe, 2010). The depth of the emitting layer, or penetration depth,
depends on sea ice and snow properties and decreases with increasing frequency
(Tonboe et al., 2006). Emissivity based on skin temperature is commonly referred
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to as effective emissivity, but hereafter, we use the term “emissivity” for better
readability.

Harlow (2011) compared methods for estimating emitting-layer temperature
from 183GHz observations. However, their applicability to our data is limited
by the absence of simultaneous downwelling 183GHz TB measurements and un-
certainties in the atmospheric profile impacting surface temperature estimates.
Other studies employ precalculated penetration depths and observed sea ice tem-
perature profiles for specific ice types (Mathew et al., 2008, 2009), which do not
apply to the diverse sea ice conditions presented here.

The emissivity calculation is based on nonscattering radiative transfer (RT),
which is valid under clear-sky conditions. The TB observed at aircraft or satellite
height, denoted as Tb, is given by

Tb = Ts · e · t+ T ↓b · t · (1− e) + T ↑b , (3.3)

where e represents surface emissivity, Ts represents surface temperature, t repre-
sents atmospheric transmissivity in the viewing direction between the surface and
the aircraft/satellite height, T ↓b represents downwelling atmospheric radiation at
the surface, and T ↑b represents upwelling atmospheric radiation at the observation
height. Solving Eq. (3.3) for the surface emissivity yields

e = Tb − T ↑b − T
↓
b · t

(Ts − T ↓b ) · t
. (3.4)

Equation (3.4) can be solved using two RT simulations with e = 0 and e = 1
(Mathew et al., 2008). The solution is expressed as

e = Tb − Tb(e = 0)
Tb(e = 1)− Tb(e = 0) . (3.5)

We perform RT simulations for the Polar 5 or satellite height using PAMTRA.
In PAMTRA, we select the Rosenkranz (1998) gas absorption with modifications
for water vapor continuum absorption (Turner et al., 2009). We simulate specular
and Lambertian reflections separately.

Satellite-based emissivity studies typically limit the emissivity calculation to
channels with high atmospheric transmissivity. Using aircraft, we can increase
transmissivity by flying at low altitudes. However, in addition to transmissivity,
the contrast between surface temperature and atmospheric downwelling TB dom-
inates the surface sensitivity, i.e., the sensitivity of the observed TB to emissivity
changes. This can be seen when calculating the partial derivative from Eq. (3.3),
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given as follows:

∂Tb

∂e
= (Ts − T ↓b ) · t = Tb(e = 1)− Tb(e = 0). (3.6)

This term corresponds to the denominator in Eq. (3.5) and should be maximized
to avoid noisy emissivity estimates. We identify 40K as a reasonable threshold
below which emissivity noise exceeds typical signatures of sea ice. Observed mean
surface sensitivities during the AFLUX campaign are 200K (50K) at 89GHz
(340GHz). Only observations obtained at 183 and 340GHz during the ACLOUD
campaign fall below the surface sensitivity threshold and are excluded to avoid
highly uncertain emissivity estimates.

3.3.2 Emissivity uncertainty estimation

We estimate the emissivity uncertainty by propagating errors from TB (see Sect.
3.2.2), air temperature, relative humidity, and surface temperature. The assumed
uncertainties for air temperature and relative humidity are ±2 K and ±5%, re-
spectively. These assumed uncertainties are higher than the dropsonde and ra-
diosonde uncertainties to account for representability errors along the flight path.
The assumed uncertainty in surface temperature is ±3 K during the ACLOUD
campaign and ±8 K during the AFLUX campaign. The surface temperature
uncertainty pertaining to the ACLOUD campaign mainly accounts for errors
in infrared emissivity and KT-19 measurement uncertainty. The higher uncer-
tainty in surface temperature during the AFLUX campaign, compared to the
ACLOUD campaign, accounts for the spread between surface skin temperature
and emitting-layer temperature, which can deviate by up to 10K at 89GHz over
multiyear ice due to insulating snow (Tonboe, 2010). During the ACLOUD cam-
paign, we expect mostly isothermal sea ice due to surface melt (Perovich et al.,
1997). The uncertainty estimation is performed only on aircraft data, not on
satellite observations, because the MiRAC channels already include most satellite
channels. A notably higher emissivity uncertainty occurs for satellites operating
near 183GHz than for MiRAC, due to the higher atmospheric contributions.

3.3.3 Surface reflection model

The surface reflection model affects the direction from which downwelling atmo-
spheric radiation is reflected at the surface. Typically, the surface is approximated
as either purely specular or Lambertian. Across specular surfaces, the incidence
angle matches the reflection angle, whereas Lambertian surfaces exhibit isotropic
and unpolarized reflection. High sensitivity to the assumed surface reflection type
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occurs at nadir, where MiRAC conducts measurements, and low sensitivity oc-
curs at incidence angles between 50 to 60◦, where imagers like SSMIS and AMSR2
conduct measurements (Matzler, 2005; Karbou and Prigent, 2005).

Guedj et al. (2010) presented a method for constraining the surface reflec-
tion model at 50GHz sounding channels by combining TB measurements with
an emissivity retrieval. They calculated the emissivity at a wing channel of the
absorption line to simulate an adjacent inner channel, finding Lambertian reflec-
tion across Antarctica in winter and seasonal variations in specular contributions.
Here, we adapt the method to 183GHz MiRAC observations collected during the
three AFLUX flights by following three steps. First, we calculate emissivities at
183.31± 7.5 GHz under both specular and Lambertian reflection. Second, we use
the emissivities derived at 183.31 ± 7.5 GHz to simulate TBs at 183.31 ± 5 GHz
with PAMTRA, taking the respective surface reflection into account. Third, we
compare the simulation with the observed TB at 183.31 ± 5 GHz. The bias dis-
tribution is closest to zero under the Lambertian assumption (Fig. 3.2). Despite
the relatively high uncertainty near the water vapor absorption line, the results
confirm Lambertian behavior of sea ice at 183GHz, consistent with findings by
Harlow (2011) and Bormann (2022).

In the following, we only present the emissivities calculated using Lamber-
tian surface reflection from aircraft and satellites, based on findings collected at
183GHz. Hence, we assume similar surface reflection behavior at 89, 243, and
340GHz. Additionally, we assume that the reflection type identified during the
AFLUX campaign also applies to ACLOUD observations, where 183GHz surface
emissivity data are lacking. However, at 89GHz, it is well known that sea ice
exhibits a distinct polarization signature (NORSEX Group, 1983), indicating a
specular contribution to the reflection. While we are still able to reproduce po-
larization signatures from satellites operating at an incidence angle close to 50◦

(Matzler, 2005), the specular contribution modifies the magnitude of the sim-
ulated 25◦ reflected downwelling atmospheric TB. For MiRAC observations at
89GHz, fully specular emissivities exceed fully Lambertian emissivities by about
6% to 2% during the ACLOUD campaign and by 3% to 1% during the AFLUX
campaign when Lambertian emissivities range from 0.6 to 0.8. This emissivity
uncertainty is comparable to or lower than the uncertainty due to the surface
temperature assumption since sea ice is not fully specular at 89GHz (Bormann,
2022).
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Figure 3.2: Histogram and mean of the difference between observed and simulated
183.31± 5 GHz TBs (Tb,obs and Tb,sim, respectively), employing 183.31± 7.5 GHz
emissivities under Lambertian and specular surface reflection during the AFLUX
campaign. The TB bin width is 0.5K.

3.4 Airborne observations

3.4.1 Case study

In this section, we first illustrate the available airborne observations collected
along an 11 km transect during AFLUX RF08 on 31 March 2019 (Fig. 3.3). Satel-
lite observations indicate that ∼75% of the ice within the area is multiyear ice
(Fig. 3.9). The sea ice types along the transect are distinguishable in airborne
visual-camera observations (Fig. 3.3a–d) and Sentinel-2B imagery (Fig. 3.3e).
We observe predominantly snow-covered sea ice from 0 to 7 km. Notably, surface
structural variations from 3 to 4 km suggest the presence of young ice, defined
as the transition stage between nilas and first-year ice (WMO, 2014) that is
sometimes formed within leads among thicker multiyear ice. Progressing from
7 to 11 km, we encounter refrozen leads with nilas attached to individual snow-
covered ice floes. The observed surface temperatures reflect the changing sea ice
and snow properties, with almost constant temperatures of −24 ◦C over snow-
covered sea ice and up to −18 ◦C over nilas. The TBs vary significantly with
ranges of 76, 47, 48, and 30K at 89, 183.31± 7.5, 243, and 340GHz, respectively,
and exceed the 6K surface temperature range. This high variability demonstrates
the importance of surface emissivity variations in the observed TB.
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The difference between the minimum and maximum sea ice emissivity de-
creases as frequency increases, with values of 0.35, 0.27, 0.24, and 0.21 at 89,
183.31 ± 7.5, 243, and 340GHz, respectively. The higher emissivity variability
at 89GHz compared to the other frequencies likely relates to its horizontal po-
larization at a 25◦ incidence angle. Previous studies have shown that horizontal
polarization exhibits higher sea ice emissivity variability at 89GHz than vertical
polarization does at an incidence angle of 53◦ (e.g., Shokr et al., 2009). This is
related to the enhanced sensitivity to sea ice and snow properties with horizontal
polarization. Similar effects likely occur at a 25◦ incidence angle. Furthermore,
horizontal polarization at 89GHz results in emissivities that are up to 0.05 lower
compared to nadir, depending on the sea ice type, as shown in past airborne ob-
servations at varying incidence angles (Hewison and English, 1999). This partly
explains the low emissivity at 89GHz observed here compared to that from the
other nadir-viewing channels.

Despite the implications of incidence angle and polarization differences on
spectral features, this transect showcases typical sea ice emission signatures. Over
nilas from 7 to 11 km, sea ice emissivity increases across all channels, with values
ranging from 0.9 to 1. Hewison and English (1999) and Hewison et al. (2002)
observed similar emissivities at 89 and 183GHz over bare ice under the same
observing geometry as MiRAC. Sea ice emissivity over multiyear ice within the
first 7 km is lower than that over nilas at all frequencies. The snow-covered and
refrozen leads from 3 to 4 km only cause higher emissivities at 89GHz, likely
due to the higher sensitivity of the horizontal polarization at this channel to
sea ice and snow properties. Observations of multiyear ice at nadir in Hewison
et al. (2002) are comparable to multiyear ice observations along this transect.
The 243GHz nadir emissivity is close to the mean emissivity of 0.84 at 220GHz,
observed by Haggerty and Curry (2001). The alignment of MiRAC emissivity
features with past sea ice emissivity studies provides confidence in the 243GHz
emissivity resolved at the hectometer scale. Moreover, the high similarity between
243 and 340GHz emissivities shows that MiRAC provides submillimeter sea ice
emissivities with a clear dependence on distinct sea ice types for the first time.

The ±8 K surface temperature uncertainty causes the highest emissivity un-
certainty for all channels (not shown). The uncertainty magnitude varies highly
between the channels. The lowest uncertainty range occurs at 89 and 243GHz,
while the highest range occurs at 183.31± 2.5 GHz, which is the channel closest
to the 183.31GHz water vapor absorption line, exceeding the 40K surface sen-
sitivity threshold. In the following, we only show the 183.31 ± 7.5 GHz channel
due to its higher surface sensitivity and similar emissivity compared to the inner
183GHz channels (Fig. 3.3j). The measured emissivity difference between mul-
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tiyear ice and nilas exceeds the emissivity uncertainty at all frequencies, while
no significant variations occur in the first 7 km at 340GHz. Overall, this case
study demonstrates the relevance of sensitivity tests in interpreting the retrieved
emissivities to distinguish emissivity features arising from uncertainties inherent
to the assumptions of the emissivity calculation, caused by unknown subsurface
temperatures and uncertain atmospheric thermodynamic profiles.

3.4.2 TB and emissivity variability

In the following, we analyze the distributions of TB and emissivity observed dur-
ing all clear-sky flights over sea ice during the ACLOUD and AFLUX campaigns
(Fig. 3.4). The histograms corresponding to 89GHz and 183–340GHz include
different samples due to the exclusion of low flight altitudes at 89GHz, which
introduces a potential inconsistency (Table 3.3). Therefore, we compared these
histograms with those from instantaneous measurements in which all channels
sample the same sea ice, and we found no changes in the shape of the histograms
that exceed the estimated emissivity uncertainties (not shown). Hence, we present
all available observations here. The TB variability during the AFLUX campaign
exceeds that during the ACLOUD campaign at all frequencies (Fig. 3.4a–d). The
ACLOUD TBs at 183, 243, and 340GHz show low variability and higher values,
attributed to the increased atmospheric water vapor and surface temperature.
Two distinct peaks occur at 89 and 243GHz during the AFLUX campaign. These
peaks become even more pronounced in the emissivity distributions, ranging from
around 0.7 to 0.85 and from 0.9 to 1, respectively (Fig. 3.4e–h). These emissivity
ranges correspond to those pertaining to multiyear ice and nilas in the AFLUX
RF08 case (see Sect. 3.4.1). The histograms derived for 243GHz are broader than
the 220GHz emissivities reported by Haggerty and Curry (2001) due to MiRAC’s
higher resolution, which captures previously unresolved leads. MiRAC’s 340GHz
emissivity distribution follows a similar shape to the 183 and 243GHz channels.
The broader emissivity distribution at 340GHz could be related to the higher
emissivity uncertainty of 9% compared to the emissivity uncertainty at 183GHz
(6%) and 243GHz (5%) during the AFLUX campaign (Table 3.3). The appar-
ent shape difference of the 89GHz distribution and the 2-fold higher interquartile
range (Table 3.3) indicate that this horizontally polarized and 25◦ inclined chan-
nel is more sensitive to sea ice and snow properties than the other channels at
higher frequencies. The 89GHz distribution is narrower during the ACLOUD
campaign than during the AFLUX campaign in the presence of melting sea ice,
which agrees with findings from Haggerty and Curry (2001). Lower emissivities
during the ACLOUD campaign, indicated by the two lower peaks around 0.65,
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Figure 3.3: Observations collected along an 11 km transect at 81.01◦N, 4.28–
4.91◦ E (about 100 km north of the sea ice edge) during AFLUX RF08
(31 March 2019). Polar 5 flew westward (right to left in this figure) at an al-
titude of 540m for about 4min, starting at 11:39UTC. (a–d) Fish-eye lens im-
ages with a 100m diameter nadir reference circle obtained at (a) 11:42:16UTC,
(b) 11:41:32UTC, (c) 11:40:20UTC, and (d) 11:40:00UTC. (e) Sentinel-2B L2A
natural-color image obtained at 14:37UTC, showing the flight track, surface skin
temperature from the KT-19, and the location of the airborne imagery. (f) Sur-
face skin temperature from the KT-19. (g, i, k, m) TB at all MiRAC channels.
(h, j, l, n) Emissivity and uncertainty from MiRAC’s surface-sensitive channels,
i.e., except the two inner 183GHz channels in this case. The Sentinel-2B image
was shifted northward by 2.5 km to correct for sea ice drift. H-pol: horizontal
polarization
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correspond to regions with lower sea ice concentrations. These emissivities should
be treated with care due to the specular contributions of the sea surface.

Figure 3.4: Histograms of (a–d) TB and (e–h) emissivity at (a, e) 89, (b,
f) 183, (c, g) 243, and (d, h) 340GHz during the ACLOUD and AFLUX cam-
paigns. The TB bin width is 5K, and the emissivity bin width is 0.025. The
observations at 183 and 340GHz collected during the ACLOUD campaign fall
below the surface sensitivity threshold and are therefore excluded from panels (f)
and (h). The histograms for 183, 243, and 340GHz contain more samples than
the 89GHz histogram (see Table 3.3).

3.4.3 Influence of sea ice and snow properties

In this section, we aim to relate the observed sea ice emissivity variability to sea ice
and snow properties visible in fish-eye lens images and surface skin temperature.
Previous airborne studies have classified sea ice based on airborne imagery or
visual inspection and calculated emissivity spectra for each sea ice type (e.g.,
Hewison and English, 1999). However, this approach requires sea ice classification
at a high temporal resolution. Therefore, we use k-means clustering to extract
distinct emissivity spectra – a similar approach to that seen in previous sea ice
and snow emissivity studies (Wang et al., 2017b; Wivell et al., 2023). First, we
normalize the data by subtracting the mean emissivity and dividing the result by
the standard deviation at each channel to ensure equal channel weighting. Then,
we cluster the normalized emissivity spectra across all four MiRAC frequencies
using k-means to identify distinct sea ice emissivity spectra.

The crucial hyperparameter for k-means clustering is the total number of
clusters. Therefore, we analyze three heuristics – distortion (Thorndike, 1953),
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the Calinski–Harabasz index (Calinski and Harabasz, 1974), and silhouette score
(Rousseeuw, 1987) – and yield an optimal cluster number of four (Appendix 3.B).
However, not all clusters separate clearly due to transitional stages and inho-
mogeneous sea ice properties within MiRAC’s footprint (Fig. 3.10b). Fish-eye
images for all samples underline the high diversity in sea ice and snow properties
(Fig. 3.11).

The occurrence of each cluster varies between the flights. Cluster 1 (C1) occurs
more often than the other clusters (appearing in 52% of cases during RF08),
while C2 is predominant during RF14 (accounting for 68% of occurrences), and
C3 is observed in 48% of instances during RF15. C4 occurs about 20% of the
time during RF08 and RF14, and it occurs 8% of the time during RF15. It is
unclear whether these changes are due to sea ice drift or temporal changes in ice
properties, given the coarse temporal resolution and potential bias resulting from
the flight pattern.

Each cluster exhibits distinct emissivity features (Figs. 3.5a and 3.12). The
lowest emissivity prevails in C1, and the highest is found in C4. C1 occurs over
snow-covered sea ice (Fig. 3.5c), which might be classified as multiyear ice and
predominates during the AFLUX flights (Fig. 3.9). This also corresponds to the
lower skin temperature of 250K for this cluster compared to the other clusters
(Fig. 3.5b). Few open leads are present within C1 as water shows a spectral
signature similar to that of this cluster. C4 occurs over nilas in refrozen leads
(Fig. 3.5c). This aligns with the generally warmer skin temperature observed in
this cluster compared to in the other clusters (Fig. 3.5b). C4 is distinct from the
other three clusters at 183, 243, and 340GHz. C2 emissivities fall between those
of C1 and C4 at all frequencies. This cluster occurs over various surface types,
but it predominantly occurs over ice with visual properties of first-year ice. C3
emissivities are close to those of C4 at 89GHz and close to those of C1 at 243 and
340GHz. This cluster occurs over young ice that has more snow cover than the
sea ice in C4. Hence, scattering within the upper snow layer could explain the
lower emissivity at 243 and 340GHz in C3 than in C4. However, the emissivity
is lower than in C2, where snow is also present, which indicates the importance
of other factors, such as snow density and grain size.

The evaluation of airborne emissivities reveals (1) low differences in the me-
dian emissivity and interquartile range at 183, 243, and 340GHz; (2) higher
emissivities over nilas compared to those over multiyear ice at all frequencies;
and (3) four distinct emissivity spectra. The similarity between 243 and 340GHz
implies a lower spectral variation in sea ice emissivity in the submillimeter wave
range. However, the emissivity variability at both frequencies is still notable and
depends on the sea ice type, with the highest contrast observed between multiyear
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ice and nilas.

3.5 Comparison with satellites

3.5.1 Spatial variability at a subfootprint scale

Airborne and satellite observations resolve sea ice emissivity on different spa-
tial scales. Hectometer-scale airborne observations resolve most leads, while
kilometer-scale satellite observations partially smooth out these structures. Fig-
ure 3.6a shows a Polar 5 transect during AFLUX RF08, covering a 5 km lead
mainly composed of nilas. MiRAC’s 89GHz emissivity exhibits a pronounced
increase from multiyear or first-year ice to nilas, followed by a sharp decrease
over a short section of open water. Consequently, emissivity clusters shift from
C1 over multiyear or first-year ice to C4 over younger sea ice. The 5 km AMSR2
footprints partially resolve the lead, with higher emissivities observed over nilas,
whereas the 16 × 16 km2 MHS footprints cannot fully capture it. This exam-
ple underscores the significance of subfootprint-scale emissivity variations over
spatially heterogeneous sea ice.

Next, we examine how emissivity varies with footprint size from 0.1 to 20 km
for all airborne observations. We calculate the larger-scale emissivity from the
mean airborne surface temperature and emission for each footprint size inter-
val. The interquartile range of the emissivity decreases rapidly with increasing
footprint size during the ACLOUD and AFLUX campaigns at all frequencies
(Fig. 3.6b). For example, the variability in 100m footprints at 340GHz during
the AFLUX campaign decreases by 42% (65%) when the footprint size corre-
sponds to 5×5 km2 (16×16 km2). The smallest decrease occurs at 89GHz during
the ACLOUD campaign, with a decrease of 21% (20%) when the footprint size
reaches 5 × 5 km2 (16×16 km2). Hence, a larger satellite footprint averages out
small-scale emissivity variations.

3.5.2 Channel intercomparison

Before integrating MiRAC data with all satellite observations to study spectral
variations of up to 340GHz on a satellite scale, we must ensure that our collo-
cation approach reproduces satellite observations at similar frequencies and ob-
serving geometries. The near-nadir (0–30◦) 157GHz MHS and 165.5GHz ATMS
channels are comparable to MiRAC’s 183GHz channel at nadir. We compare
these satellite channels rather than the 190.31 and 183.31± 7 GHz channels due
to their higher surface sensitivity and lower uncertainty, even though spectral
emissivity gradients might occur (e.g., Hewison et al., 2002). Other channel or
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Figure 3.5: Comparison of sea ice emissivity and surface temperature across k-
means clusters. (a) Tukey boxplot depicting the distribution of sea ice emissivity
at MiRAC frequencies within each k-means cluster. (b) Tukey boxplot showing
the distribution of surface temperature within each k-means cluster. (c) Fish-eye
lens images representing the k-means cluster centroids, i.e., for emissivity samples
similar to the mean cluster emissivity, with a 100m diameter nadir reference circle
(see Fig. 3.11 for all images). It should be noted that the actual footprint might
not lie within the indicated region due to the aircraft attitude causing MiRAC-P
to point off-nadir by a few degrees and potential temporal shifts between the
camera and MiRAC.
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Figure 3.6: (a) Sea ice emissivity at 89GHz from MiRAC (10:32 to 10:37UTC),
AMSR2 (11:02UTC), and MHS onboard Metop-B (11:38UTC) during AFLUX
RF08 on 31 March 2019. The MiRAC emissivity cluster is displayed 100m east
of the emissivity. The actual MiRAC footprints lie between the emissivity and
emissivity cluster locations. The background shows a Sentinel-2B L2A natural-
color image that was obtained at 14:37UTC and shifted 4 km northward to correct
for sea ice drift. (b) The emissivity interquartile range as a function of footprint
size from 0.1 to 20 km for all flights and channels. The spread represents the
minimum and maximum interquartile ranges for each campaign.
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instrument combinations differ in terms of incidence angle or polarization, making
footprint-level comparisons less meaningful.

Figure 3.7 illustrates the resampling process, which transitions from MiRAC’s
high-resolution emissivity to the satellite footprints. It also shows the corre-
sponding satellite emissivity and the differences for all AFLUX flights. Notably,
MiRAC reveals hectometer-scale emissivity features, such as leads, which are
not captured by MHS and ATMS due to their 16 × 16 km2 footprint. This
high hectometer-scale variability consistently occurs within each satellite foot-
print (right column in Fig. 3.7) and diminishes after resampling to the satellite
footprint scale. The limited spatial coverage of MiRAC causes deviations from
MHS and ATMS as MiRAC only captures a narrow strip of the satellite footprint
(e.g., during AFLUX RF08 near 80.4◦N, 5◦ E; Fig. 3.7a), resulting in the highest
emissivity bias (Fig. 3.7d). However, the collocation method is robust in most
cases and yields MiRAC emissivities that are representative of the 16 × 16 km2

satellite footprints. Moreover, the assessment of relative bias, calculated by sub-
tracting the MiRAC emissivity from MHS or ATMS emissivity and dividing the
result by the MiRAC emissivity, yields insights into the consistency of MiRAC
observations from satellites (Tables 3.4 and 3.5). This relative bias of −3% to 1%
falls well within MiRAC’s 6% uncertainty range at 183GHz (see Table 3.3). The
correlation between MiRAC and MHS or ATMS ranges from 0.4 to 0.6 and re-
flects the partial footprint overlap, reducing the representation of MiRAC for each
satellite footprint. In summary, the comparison with MHS and ATMS provides
confidence in the accuracy of our airborne-emissivity estimates and the reliability
of converting from hectometer to satellite footprint scales. Hence, we can apply
the same approach to other MiRAC channels at frequencies up to 340GHz.

3.5.3 Spectral variations

In this section, we collocate MiRAC with MHS, ATMS, SSMIS, and AMSR2
to analyze spectral variations in sea ice emissivity from 88 to 340GHz as well as
angular and polarization effects. We group all collocated emissivities by frequency
into the following categories: 88–92, 150–165 (only for satellites), 176–190, 243,
and 340GHz. The MiRAC observations are averaged to align with the collocated
footprints of each satellite instrument, ensuring equivalent spatial sampling (see
Sect. 3.2.5).

The channel-dependent emissivity variability observed on a satellite scale dur-
ing the ACLOUD and AFLUX campaigns reveals distinct features related to
spectral, angular, and polarization differences (Fig. 3.8). Low spectral differences
during the ACLOUD campaign occur near nadir from 89 to 243GHz (MHS and

63
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Figure 3.7: Comparison of emissivity from nadir 183GHz MiRAC observations
and near-nadir (0–30◦) 157GHz MHS and 165.5GHz ATMS observations col-
lected along the Polar 5 flight track during AFLUX RF08, RF14, and RF15
(rows). (a, f, k) MiRAC emissivity at the original resolution. (b, g, l) MiRAC
emissivity resampled to satellite (Sat.) footprints. (c, h, m) Satellite emissiv-
ity. (d, i, n) Emissivity difference between MiRAC and the satellites (satellite
emissivity minus MiRAC emissivity). (e, j, o) MiRAC emissivity interquartile
range within the satellite footprint. No 183GHz observations from MiRAC were
available during the ACLOUD campaign. The background images are composites
of MODIS onboard Terra from the same day (NASA Worldview). All footprints
are approximated as circles. MiRAC’s footprints are enlarged to a 5 km diameter.
The satellite footprint size corresponds to the footprint size at nadir.
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MiRAC) and at vertical polarization from 91 to 150GHz (SSMIS; Fig. 3.8a).
The higher satellite emissivity can be attributed to the underestimation of the
NE23 skin temperature compared to that of the KT-19. As expected, the 89GHz
emissivity shows a polarization signal of about 0.1. This indicates a specular con-
tribution to surface reflection and an underestimation of emissivity in the case
of purely Lambertian reflection at 89GHz for MiRAC (see Sect. 3.3.3). Combin-
ing both polarizations from SSMIS or AMSR2 with quasi-vertical polarization,
following Eq. (3.1), reduces the absolute emissivity difference, meaning it falls
within the 0–30◦ emissivity range of MHS. Furthermore, the horizontally polar-
ized 89GHz channel of MiRAC is closer to the horizontally polarized channels
of SSMIS and AMSR2. Spectral differences observed during the AFLUX cam-
paign exceed those observed during the ACLOUD campaign, which might be due
to contrasting sea ice properties (i.e., melting conditions during the ACLOUD
campaign versus much colder and dryer sea ice and snow during the AFLUX
campaign; Fig. 3.8b). The near-nadir emissivity remains constant from 89 to
183GHz but decreases near frequencies of 243 and 340GHz. No significant dif-
ference in spectral emissivity can be detected in the 165 to 183GHz frequency
range, where all satellites fall within MiRAC’s 6% uncertainty (see Table 3.3)).
The decrease around 243GHz exceeds the 243GHz emissivity uncertainty. The
AFLUX emissivities show a lower polarization difference at 89GHz compared
to the ACLOUD emissivities, which can be attributed to the lower amount of
open water between ice floes during the AFLUX campaign. The emissivity of
the 89GHz MiRAC channel lies between the horizontally polarized AMSR2 and
SSMIS channels and the near-nadir MHS and ATMS channels.

Different instruments show similar emissivity distributions at similar channels.
For example, the three MHS and ATMS channels exhibit nearly identical distri-
butions during the AFLUX campaign (see Fig. 3.8b). Additionally, the polarized
89GHz channels of the SSMIS and AMSR2 show good agreement. However, dur-
ing the ACLOUD campaign, emissivity differences between AMSR2 and SSMIS
are noted for the vertically polarized channel, primarily due to the low number of
collocated AMSR2 footprints compared to MiRAC footprints. For the AFLUX
campaign, where the footprint counts of SSMIS and AMSR2 are comparable,
AMSR2 shows higher variability as it has a smaller footprint than SSMIS.

Furthermore, MiRAC distributions align with MHS and ATMS distributions
near nadir. The increased emissivity variability in MiRAC’s 25◦ inclined 89GHz
channel, compared to that of MHS and ATMS, may be explained by its hori-
zontal polarization. When comparing the vertically and horizontally polarized
SSMIS and AMSR2 channels, horizontal polarization exhibits higher variability,
consistent with findings from experiments by Shokr et al. (2009).
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The consistent outcomes from spaceborne and airborne observations unveil
a first-time representation of sea ice emissivity variability from 89 to 340GHz.
As detected by MiRAC, hectometer-scale emissivity variations smooth out when
observed from a satellite perspective. Our analysis shows a potential decline
in emissivity from 183 to 243GHz under cold and dry conditions during the
AFLUX campaign. This spectral pattern occurs within airborne emissivity clus-
ters – i.e., within C3 (young ice) and, to some extent, within C2 (first-year ice)
and C4 (nilas) – but is notably absent in C1 (multiyear ice) and prevails after
being resampled onto a satellite scale. These cluster differences underscore the
importance of spatial distributions among sea ice types.

3.6 Conclusions

The upcoming launches of ICI and EPS–Sterna, featuring novel frequencies above
200GHz, and AMSR3, exhibiting a novel AMSR2-like resolution at 183GHz,
require an improved understanding of sea ice emissivity to distinguish atmospheric
and surface microwave signals under dry polar conditions (Wang et al., 2017b).
However, few field observations have measured sea ice emissivity at such high
frequencies using a hectometer-scale resolution. Therefore, we analyzed sea ice
emissivity variations observed with the MiRAC microwave radiometer during
two airborne field campaigns – the ACLOUD campaign (summer 2017) and the
AFLUX campaign (spring 2019). The flights analyzed in this study covered
about 1700 km of distance. Moreover, 7000 samples were collected at 89GHz
(25◦ incidence angle; horizontal polarization), 28 000 samples were collected at
243GHz (nadir), and 11 000 samples were collected at 183 and 340GHz (nadir).

Our first objective was to identify critical physical sea ice and snow properties
affecting emissivity up to submillimeter wavelengths. Sea ice emissivity exhibits
high variability, ranging from about 0.65 to 1, with the lowest emissivities ob-
served at 89GHz. The 89GHz distribution showed higher variability than the
nadir channels due to its inclination and horizontal polarization. MiRAC resolves
sea ice emissivity features that align with sea ice and snow properties identified
from visual imagery. Four emissivity spectra from 89 to 340GHz could be iden-
tified through k-means clustering. These spectra predominantly correspond to
multiyear ice, first-year ice, young ice, and nilas. However, the emissivity vari-
ability for each cluster is significant due to variations in snow or sea ice micro-
physical properties and mixed types within the radiometer footprint. The lowest
emissivity is observed over multiyear ice, and the highest emissivity is found over
nilas, consistent with previous studies conducted at 89 and 183GHz (NORSEX
Group, 1983; Hewison and English, 1999; Hewison et al., 2002).
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Figure 3.8: Tukey boxplots of collocated emissivity observed during (a) the
ACLOUD campaign and (b) the AFLUX campaign for the frequency ranges 88–
92, 150–165, 176–190, 243, and 340GHz, derived from MHS (0 to 30◦), ATMS
(0 to 30◦), SSMIS (53◦), AMSR2 (55◦), and MiRAC (25◦ at 89GHz and 0◦ at
183, 243, and 340GHz). The secondary axis denotes the count of the collocated
footprints. Quasi-vertical SSMIS QV and AMSR2 QV polarizations are charac-
terized by dominant contributions of 64% and 67%, respectively, from horizontal
polarization. The 88–92GHz satellite footprint count might be lower than the
satellite footprint count at frequencies above 150GHz because satellite footprints
are excluded if the nearest MiRAC channel exhibits no emissivity. Note that no
ATMS overpass occurred during the ACLOUD campaign.
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Our second objective was to relate the observed hectometer-scale emissivity
observations to the satellite scale. We collocated MiRAC with MHS, ATMS, SS-
MIS, and AMSR2 for this purpose. Satellite instruments do not resolve hectometer-
scale sea ice emissivity variations observed by MiRAC due to their larger foot-
prints. By averaging the airborne observations, we estimated the decrease in the
emissivity interquartile range as footprint size increases. The reduction in the
interquartile range is most significant during the AFLUX campaign, when leads
induce significant hectometer-scale emissivity variations. For example, the emis-
sivity interquartile range decreases by almost half from the hectometer scale to a
footprint of 16×16 km2, typical of microwave satellite instruments. We find high
agreement between MHS, ATMS, and MiRAC emissivities near 183GHz. During
the AFLUX campaign, emissivity decreases significantly from 183 to 243GHz,
while it remains almost constant during the ACLOUD campaign. The estimates
provided here may represent the emissivities that future satellites, such as ICI
and EPS–Sterna, will observe.

The study’s implications are as follows:

• The first implication involves hectometer-scale frequency dependency. The
183, 243, and 340GHz channels exhibit similar hectometer-scale sea ice
emissivity variations at nadir, regardless of the sea ice type (e.g., multi-
year ice and nilas). This finding is crucial for the development of airborne
retrieval methods.

• The second concerns spatial and temporal representation. At the satellite
footprint scale, hectometer-scale sea ice emissivity variations average out,
which facilitates sea ice emissivity parameterization. However, these varia-
tions become more relevant for higher-resolution channels, such as AMSR2.

• The third pertains to emissivity frequency extrapolation. The relatively
low spectral variation in emissivity at the satellite scale from 89 to 340GHz
at nadir supports using a first-order approximation of constant emissivities
over sea ice within existing parameterizations, such as TELSEM2 (Wang
et al., 2017b). Accounting for spatial and temporal emissivity variations
appears to be more relevant than focusing on spectral gradients.

This study has several limitations:

• The first limitation concerns channel intercomparison. The 25◦ inclination
and horizontal polarization of the 89GHz channel may affect comparisons
with the 183–340GHz nadir-viewing channels by increasing the channel’s
variability and lowering its emissivity compared to an 89GHz nadir-viewing
channel. Quantification of this effect might be possible by analyzing the
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airborne HALO–(AC)3 campaign conducted in spring 2022 (Wendisch et al.,
2021).

• Another limitation involves surface temperature assumption. Using the sur-
face skin temperature rather than the emitting-layer temperature imposes a
frequency-dependent bias on emissivity measurements collected during the
AFLUX campaign.

• Sea ice and snow properties pose another limitation. The aerial images
provide only a broad perspective on sea ice and snow properties and have
limitations in providing vertical profiles of sea ice microphysics, such as
density, grain size, or salinity.

• Spatial resolution is also a limiting factor. MiRAC’s hectometer scale may
not resolve smaller sea ice features, such as ridges or melt ponds, which
could influence emissivity.

• There are also spatial and temporal limitations. Field observations are lim-
ited in space (approximately 100 km) and time (5 d), potentially restricting
the generalizability of findings across polar regions.

Three primary challenges persist when it comes to comprehending sea ice
emissivity variations to advance atmospheric and surface retrievals over sea ice.
First, the relatively unexplored emissivity dependence on polarization and inci-
dence angles, especially at frequencies above 200GHz, demands comprehensive
investigation. Potential solutions include utilizing shipborne or airborne observa-
tions with scanning radiometers. Second, the high uncertainty due to atmospheric
emissions that mask spectral features of emissivity, particularly at 340GHz and
over the more reflective multiyear ice, requires simultaneous measurements of
near-surface downwelling atmospheric TB for emissivity calculations. Third, ob-
served emissivity spectra must be combined with in situ measurements of sea
ice and snow microphysics to advance radiative-transfer modeling. In summary,
addressing these challenges will help bridge remaining knowledge gaps in sea ice
microwave emissivity and will have implications for current and upcoming satellite
missions. Future work will need to focus on separating sea ice and atmospheric
signals under all-sky conditions.
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Appendix

3.A Multiyear ice concentration maps

We include maps illustrating multiyear ice concentration to offer additional con-
text for the three AFLUX flights (Fig. 3.9). The multiyear ice concentration
is mainly around 50%, with higher concentrations in the northern parts of the
RF08 and RF14 flight tracks. The case study transect observed during RF08 falls
within a pixel corresponding to ∼75% multiyear ice concentration (Fig. 3.9a).

Figure 3.9: Maps illustrating the Polar 5 flight track; the sea ice edge, indicated
by the 15% sea ice concentration isoline (Spreen et al., 2008); and multiyear ice
concentration (Melsheimer and Spreen, 2022) during (a)AFLUX RF08 (including
the case study transect), (b) RF14, and (c) RF15.

3.B Optimal number of k-means emissivity clus-
ters

The k-means algorithm assigns a cluster to each normalized emissivity spectrum
across the four MiRAC frequencies. Normalization involves subtracting the mean
and scaling the emissivity of each channel to include unit variance, which ensures
equal weighting between the four channels. However, the absolute number of
clusters (k) is unknown and needs to be defined objectively. Therefore, we eval-
uate three metrics for cluster sizes ranging from 2–10 to identify the optimal
k value (Fig. 3.10a). The distortion represents the sum of squared distances
from all samples to their assigned cluster centroids (Thorndike, 1953). The dis-
tortion ideally follows an elbow-shaped curve, exhibiting a decrease until the
optimal k value is reached and constant distortion for higher k values. The dis-
tortion curve for the emissivity samples flattens slightly after a k value of 4. The
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Calinski–Harabasz index determines the ratio of between-cluster dispersion to
within-cluster dispersion, i.e., the ratio of separation to cohesion (Calinski and
Harabasz, 1974). Higher Calinski–Harabasz index values correspond to optimal
clustering with well-separated and dense clusters. The index peaks at a k value
of 4 and decreases for both higher and lower values (Fig. 3.10a). The silhouette
score represents the mean silhouette coefficient, which measures the similarity of
a sample to its cluster compared to other clusters (Rousseeuw, 1987). Silhouette
coefficients of 1 (−1) indicate correct (wrong) class assignment. On average, the
silhouette score is 0.37 for 2–10 clusters. The silhouette score is highest for two
clusters and shows a secondary peak at four clusters. All three metrics indicate
that the emissivity spectra can be optimally divided into four clusters. The two-
dimensional principal component analysis compression (Hotelling, 1933) shows
the four identified emissivity clusters (Fig. 3.10b). Overall, the emissivity clus-
ters are well separated, with gradual transitions occurring due to mixed types
within the radiometer’s footprint or transitional stages of the sea ice. Fish-eye
lens images resolve these mixed types and transitional stages (Fig. 3.11).

Figure 3.10: (a) The k-means clustering metrics – distortion, the Calinski–
Harabasz index, and silhouette score – plotted as functions of the number of
clusters. (b) Clustered emissivity spectra projected along the first two principal
components (x1, x2) using k-means. The k-means cluster boundaries are ap-
proximated in a Voronoi diagram based on the cluster centroid projections. The
cluster numbers are shown at the centroid positions.

3.C Sea ice emissivity spectra

We provide a figure of the MiRAC sea ice emissivity spectra and the k-means
cluster centroids (Fig. 3.12).

73



CHAPTER 3. SEA ICE EMISSIVITY AT SUBMILLIMETER WAVES

Figure 3.11: Fish-eye lens images corresponding to the emissivity samples shown
in Fig. 3.10b. The k-means cluster boundaries are approximated in a Voronoi
diagram based on the cluster centroid projections onto the first two principal
components (x1, x2). The cluster numbers are shown at the centroid positions.
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Figure 3.12: MiRAC sea ice emissivity spectra and k-means cluster centroids.
Note that the 89GHz channel measures horizontal polarization at an incidence
angle of 25◦, while the 183, 243, and 340GHz channels measure it at nadir.
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Code and data availability

The code for this study and a usage example of the published emissivity data are
available on Zenodo at doi:10.5281/zenodo.11535477 (Risse, 2024). The MiRAC
emissivity data are available on PANGAEA at doi:10.1594/PANGAEA.965569
(Risse et al., 2024a). MiRAC-A measurements collected during the ACLOUD
campaign were obtained from doi:10.1594/PANGAEA.899565 (Kliesch and Mech,
2019), and those collected during the AFLUX campaign were obtained from
doi:10.1594/PANGAEA.944506 (Mech et al., 2022b). MiRAC-P measurements
collected during the ACLOUD campaign were obtained from doi:10.1594/PANGA
EA.944070 (Mech et al., 2022c), and those collected during the AFLUX campaign
were obtained from doi:10.1594/PANGAEA.944057 (Mech et al., 2022d). Camera
images taken during the AFLUX campaign were obtained from doi:10.1594/PAN
GAEA.901024 (Jäkel and Ehrlich, 2019). KT-19 measurements collected dur-
ing the ACLOUD campaign were obtained from doi:10.1594/PANGAEA.900442
(Stapf et al., 2019), and those collected during the AFLUX campaign were ob-
tained from doi:10.1594/PANGAEA.932020 (Stapf et al., 2021). Dropsonde mea-
surements collected during the ACLOUD campaign were obtained from doi:10.15
94/PANGAEA.900204 (Ehrlich et al., 2019a), and those collected during the
AFLUX campaign were obtained from doi:10.1594/PANGAEA.922004 (Becker
et al., 2020). Nose boom measurements collected during the ACLOUD campaign
were obtained from doi:10.1594/PANGAEA.902849 (Hartmann et al., 2019), and
those collected during the AFLUX campaign were obtained from doi:10.1594/PAN
GAEA.945844 (Lüpkes et al., 2022). Aircraft position and orientation were ob-
tained from the “ac3airborne” intake catalog (Mech et al., 2022e). Radiosound-
ings from Ny-Ålesund were obtained from doi:10.1594/PANGAEA.914973 (Ma-
turilli, 2020). The sea–land mask for Svalbard was obtained from the Kartdata
Svalbard 1 : 100 000 (S100 Kartdata)/Map Data of the Norwegian Polar Institute
at doi:10.21334/npolar.2014.645336c7 (Norwegian Polar Institute, 2014). The
L1C TB data for SSMIS on DMSP-F16 were obtained from doi:10.5067/GPM/S
SMIS/F16/1C/07 (Berg, 2021a). The L1C TB data for SSMIS on DMSP-F17
were obtained from doi:10.5067/GPM/SSMIS/F17/1C/07 (Berg, 2021b). The
L1C TB data for SSMIS on DMSP-F18 were obtained from doi:10.5067/GPM/S
SMIS/F18/1C/07 (Berg, 2021c). The L1C TB data for AMSR2 on GCOM-W1
were obtained from doi:10.5067/GPM/AMSR2/GCOMW1/1C/07 (Berg, 2022a).
The L1C TB data for MHS on Metop-A were obtained from doi:10.5067/GPM/M
HS/METOPA/1C/07 (Berg, 2022b). The L1C TB data for MHS on Metop-
B were obtained from doi:10.5067/GPM/MHS/METOPB/1C/07 (Berg, 2022c).
The L1C TB data for MHS on Metop-C were obtained from doi:10.5067/GPM/M
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HS/METOPC/1C/07 (Berg, 2022d). The L1C TB data for MHS on NOAA-18
were obtained from doi:10.5067/GPM/MHS/NOAA18/1C/07 (Berg, 2022e). The
L1C TB data for MHS on NOAA-19 were obtained from doi:10.5067/GPM/MHS/
NOAA19/1C/07 (Berg, 2022f). The L1C TB data for ATMS on SNPP were ob-
tained from doi:10.5067/GPM/ATMS/NPP/1C/07 (Berg, 2022g). The L1C TB
data for ATMS on NOAA-20 were obtained from doi:10.5067/GPM/ATMS/NOA
A20/1C/07 (Berg, 2022h). The NE23 Level-4 “Arctic Ocean – Sea and Ice Sur-
face Temperature” data were obtained from doi:10.48670/moi-00123 (Coperni-
cus Marine Service, 2024; Nielsen-Englyst et al., 2023). The AMSR2 sea ice
concentration data from the University of Bremen were retrieved from https:
//data.seaice.uni-bremen.de/ (last access: 8 September 2024, Spreen
et al., 2008). The AMSR2 and ASCAT multiyear ice concentration data from
the University of Bremen were retrieved from https://data.seaice.uni-br
emen.de/MultiYearIce/MYIuserguide.pdf (Melsheimer and Spreen, 2022).
Sentinel-2B L2A images were obtained from the Copernicus Data Space Ecosys-
tem doi:10.5270/S2_-znk9xsj (European Space Agency, 2021). Images from
MODIS onboard Terra were retrieved from the NASA Worldview application
at https://worldview.earthdata.nasa.gov (NASA ESDIS, 2024). Satellite
bandpass information was obtained from the EUMETSAT Numerical Weather
Prediction Satellite Application Facility at https://nwp-saf.eumetsat.int
/site/software/rttov/download/coefficients/spectral-response
-functions/ (NWP SAF, 2024). Sea ice drift data were retrieved from the
NASA National Snow and Ice Data Center Distributed Active Archive Center at
doi:10.5067/INAWUWO7QH7B (Tschudi et al., 2019).
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Chapter 4

Microwave signature of snow
accumulation

This study analyses the sea ice microwave emissivity during autumn freeze-up
with a focus on new ice formation and snow accumulation from 22 to 243GHz
in the Central Arctic using observations from the VAMPIRE experiment during
R/V Polarstern expedition PS144. The study is currently in preparation for sub-
mission:

Risse, N. et al. 2025: Microwave signature of new ice formation and snow
accumulation on newly formed sea ice: New insights at 183 and 243GHz from
the ship-based VAMPIRE experiment, in preparation.

Detailed author contributions: Nils Risse conducted the emissivity re-
trieval, data analysis, data visualization, and prepared the manuscript. Nils Risse
conceptualized the study with support from Susanne Crewell, Mario Mech, and
Catherine Prigent. All authors reviewed and edited the manuscript.

79



CHAPTER 4. MICROWAVE SIGNATURE OF SNOW ACCUMULATION

Microwave signature of new ice formation and snow accu-
mulation on newly formed sea ice: New insights at 183 and
243 GHz from the ship-based VAMPIRE experiment

Nils Risse1, Mario Mech1, Catherine Prigent2, and Susanne Crewell1
1Institute for Geophysics and Meteorology, University of Cologne, Cologne, Ger-
many
2Laboratoire d’Instrumentation et de Recherche en Astrophysique, Observatoire
de Paris, CNRS, Paris, France
Correspondence: Nils Risse (n.risse@uni-koeln.de)

Abstract The spaceborne passive microwave capabilities recently expanded
beyond 200GHz, providing new information on atmospheric and surface proper-
ties. However, the properties and processes that modify the spectral, angular,
and polarization dependence of sea ice and snow emissivity at frequencies above
200GHz are not fully understood. Moreover, it is unclear how well surface mi-
crowave emission models represent the observed sea ice emissivity at high fre-
quencies. Here, we use data from the VAMPIRE experiment conducted during
R/V Polarstern expedition PS144 from August to October 2024. The microwave
radiometers HATPRO (22–58GHz) and MiRAC-P (183–340GHz) performed reg-
ular scans of the upwelling radiation from the surface (35–65◦) and downwelling
radiation from the sky with collocated thermal infrared and visual surface cam-
eras. A statistical analysis of the observed emissivity spectra during ship transit
is performed with a focus on the emissivity evolution during new ice formation
and snow accumulation on newly formed ice after surface freeze onset. New ice
formation shows highly correlated emissivity at all frequencies from the open wa-
ter signature and saturates at a high emissivity (0.95). Snow accumulation leads
to a reduction of the emissivity due to scattering at 183.31±7.5 and 243GHz
to about 0.6, while the emissivity at 23.84, 31.4, and 51.26GHz remains almost
unchanged. A regression model was developed with visual grayscale images as
input to predict the emissivity at 243GHz, which confirmed the importance of
snow cover in the emissivity reduction. Based on the observed variability, we
perform Monte-Carlo SMRT simulations and sensitivity tests of bare and snow-
covered nilas. Snow density, correlation length, and thickness dominate the signal
at 183.31±7.5 and 243GHz as suggested from observations. Moreover, the simu-
lated emissivity of bare and snow-covered sea ice matches the observations when
considering biases due to the emitting layer temperature and surface reflection
assumptions. The results of this study are useful for coupled satellite data assim-
ilation and atmospheric and surface retrievals over sea ice above 200GHz.
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4.1 Introduction

Passive microwave observations from polar-orbiting satellites contain informa-
tion on various sea ice and snow properties (Sandven et al., 2023) and their
long-term changes (e.g. Stroeve et al., 2014) in the Arctic. With the launch of
novel instruments with channels above 200GHz that improve remote sensing of
cloud ice (Buehler et al., 2007; May et al., 2024) and supercooled liquid water
(Camplani et al., 2024b), new spectral capabilities of sea ice and snow remote
sensing are also available from partly surface-sensitive channels under cold and
dry Arctic conditions. Examples are the TROPICS-01 Pathfinder (204.8GHz),
Arctic Weather Satellite or EPS-Sterna constellation (325±6.6GHz), Microwave
Sounder (229GHz), and Ice Cloud Imager (243 and 325±9.5GHz). Understand-
ing the underlying properties and processes that modify the sea ice and snow
emissivity and its spectral, angular, and polarization dependence is highly rele-
vant for data assimilation within numerical weather prediction models (De Ros-
nay et al., 2022). Uncertainties in the modeling of the surface emissivity and its
temporal changes currently limit the use of microwave observations for numerical
weather prediction (Lawrence et al., 2019).

A fast temporal change of the sea ice emissivity occurs from summer to au-
tumn. The end of summer melt is initiated by radiative energy flux changes due
to decreased downwelling shortwave radiation, increased surface albedo, and de-
creased downwelling longwave radiation (Persson, 2012). This leads to the surface
freeze onset and the formation of new sea ice in between the multiyear ice, defined
as sea ice that survived summer melt. At the same time, the precipitation phase
transitions from a rain-dominated regime to predominantly snowfall (Ebell et al.,
2025), which accumulates on the sea ice. The transition in surface properties dur-
ing the surface melt and surface freeze onset can be detected from satellite passive
microwave observations (Drinkwater and Xiang Liu, 2000; Drobot and Anderson,
2001; Wang et al., 2011; Markus et al., 2009; Bliss et al., 2017) and allows for
the derivation of changes in the timing of the surface freeze onset (Stroeve et al.,
2014). In summer, the microwave emissivity of sea ice and snow is high due to
the high liquid water content. Once the surface begins to freeze, the emissivity
decreases and is dominated by scattering within the upper sea ice layers and snow
(Gogineni et al., 1992), and allows for retrievals of multiyear and first-year ice
concentration (Melsheimer et al., 2023). New sea ice in between older ice exhibits
a high emissivity (Hewison and English, 1999). The brine volume, especially at
the surface, and ice temperature influence the microwave emissivity of new ice at
6, 19, and 37GHz as found from surface-based observations (Hwang et al., 2008)
and the polarization ratio at 37GHz is used for ice thickness retrievals (Cavalieri,
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1994; Martin et al., 2004). Thin snow thickness can be observed with higher
frequencies around 85GHz (Comiso et al., 2003). This was also found by Hwang
et al. (2008) over thin ice, while lower frequencies are not sensitive to the shallow
snow cover, except for saline snow.

Several ship expeditions were conducted with microwave radiometers point-
ing at the sea ice during stations or transit through the sea ice. The earliest
was the Norwegian Remote Sensing Experiment (NORSEX) in September and
October 1979 with frequencies between 4.9 and 94GHz (NORSEX Group, 1983;
Matzler et al., 1984), followed by the Marginal Ice Zone Experiment (MIZEX) in
June and July 1983 and 1984 (Onstott et al., 1987; Tucker et al., 1991). Gren-
fell (1992) conducted the Coordinated Eastern Arctic Experiment (CEAREX)
with traverse observations during the initial stages of freeze-up from 11 to 16
September 1988. In October 2003, Hwang et al. (2008) performed measurements
of thin newly formed sea ice combining ship-based microwave radiometers and in
situ sampling in the Beaufort Sea and Amundsen Gulf at 19, 37, and 85GHz for
incidence angles from 30 to 70◦. Surface-based microwave radiometer observa-
tions on a multiyear ice floe with extensive in situ observations were conducted
during the Multidisciplinary drifting Observatory for the Study of Arctic Climate
(MOSAiC) expedition (Nicolaus et al., 2022), providing new insights into rain-on-
snow events (Stroeve et al., 2022). The Water Vapor, Cloud Liquid Water, and
Surface Emissivity over the Arctic Marginal Ice Zone in Summer (WALSEMA)
project carried out microwave observations onboard R/V Polarstern in July and
August 2022 in the Fram Strait with frequencies between 22.24 and 243GHz dur-
ing the melt season (Rückert et al., 2025). Measurements from 89 to 340GHz
were also conducted during two airborne campaigns, ACLOUD (Wendisch et al.,
2019) and AFLUX (Mech et al., 2022a). These showed on average flat emissivity
spectra from 89 to 340GHz, but also emissivity spectra over snow-covered young
ice with a high emissivity at 89GHz and low emissivity at 243 and 340GHz
(Risse et al., 2024b). However, there is a gap in describing the sea ice emissivity
change at frequencies above 200GHz from highly emissive newly formed bare ice
to snow-covered first-year ice and in evaluating microwave emission models at
high frequencies over sea ice.

In this work, we analyze the temporal evolution of sea ice microwave emissivity
from 22.24 to 51.26GHz and 183.31±7.5 to 243GHz using quasi-continuous ship-
based passive microwave, thermal infrared, and visual camera observations in
the Central Arctic from August to October 2024. Two microwave radiometers
were mounted on the railing of R/V Polarstern and performed surface scans with
incidence angles between 35 and 65◦. Based on this data, we aim to (1) analyze
the spectral and angular emissivity variability during summer melt and autumn
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freeze-up, (2) understand microwave emissivity changes after surface freeze onset
from new ice formation to ice growth and snowpack formation, and (3) assess its
representation in the Snow Microwave Radiative Transfer (SMRT) model (Picard
et al., 2018).

This paper is structured as follows. Section 4.2 provides an overview of the
VAMPIRE experiment and the data. The emissivity estimation and radiative
transfer simulations are presented in Sect. 4.3. The results are presented in
Sect. 4.4. Section 4.5 summarizes and concludes the study.

4.2 Data

4.2.1 VAMPIRE experiment

The Water Vapor, Mixed-Phase Clouds, and Sea Ice Emissivity over the Central
Arctic Ocean (VAMPIRE) experiment was conducted during Research Vessel
(R/V) Polarstern cruise PS144 from 9 August to 13 October 2024 (Rabe and
Geibert, 2025). The ship traveled within the sea ice between 84 and 90◦N for 52
days from 14 August to 4 October (Fig. 4.1). Hence, the VAMPIRE experiment
captured processes during the transition phase from polar day to polar night,
such as new ice formation and snow accumulation. The new ice that formed
within leads is predominantly sampled during transit, while ten ice stations were
performed on multiyear ice floes. Here, we analyze observations during transit,
defined as ship velocity above 0.5m s−1, which provide a large amount of quasi-
random regular samples over diverse sea ice and snow conditions. Observations
at low ship velocity are used to visualize homogeneous emissivity scans only.

August was dominated by surface melt conditions with intermittent freezing
events, which caused refreezing of melt ponds and formation of patches with new
ice (Fig. 4.2a). After 2 September, air temperatures remained below the freezing
point of salt water until the end of the expedition with 3-hourly mean surface and
air temperature minima of 257K. Based on this, we divide the ship trajectory
into a melting period and a continuous freezing period with a surface freeze onset
on 2 September, which is within climatological estimates for the region (Markus
et al., 2009; Stroeve et al., 2014).

The precipitation events during both time periods are depicted in Fig. 4.2b.
While rain and mixed-phase precipitation occurred before the surface freeze onset,
several snowfall events led to the development of a snowpack on the multiyear
and newly formed sea ice. These snowfall observations along the ship trajectory
agree qualitatively with in situ snow depth measurements. While no snow was
observed during the three ice stations from 16 August to 2 September, snow was
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observed for all ice stations thereafter (5 to 25 September) with a snow depth
mostly between 5–10 cm (Rabe and Geibert, 2025, Table 6.6). Thus, the snow
accumulation on multiyear ice happens during a single episode after surface freeze
onset. The continuous formation of new ice in leads after surface freeze onset and
regular snowfall leads to a high variability in snow cover along the ship track.
Based on visual camera imagery, the first snow patches on young ice occurred on
10 September.

The instrumentation of the VAMPIRE experiment is an extension of the
WALSEMA experiment during R/V Polarstern cruise PS131 (Rückert et al.,
2025). Several instruments were installed on the ship, including 22–58 and 183–
340GHz microwave radiometers, W- and G-band cloud radars, thermal infrared
and visual surface cameras, a disdrometer, an ultrasonic anemometer, and a sky
camera (Rabe and Geibert, 2025, Fig. 6.22 and 6.23). Further meteorological
data are collected by the German Weather Service (DWD). Radiosondes were
launched by DWD and the VAMPIRE project, mostly three times per day (Rabe
and Geibert, 2025, Fig. 6.24), and in situ sea ice and snow sampling was per-
formed during ten ice stations.

Figure 4.1: Track of R/V Polarstern and the mean sea ice concentration (Spreen
et al., 2008) from 14 August to 4 October as shading. The position during
surface freeze onset on 2 September and ice stations are indicated along the ship
trajectory. Note that the sea ice concentration product is not available north of
about 89◦N.
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Figure 4.2: Meteorological and surface conditions from 14 August to 4 October
with dates of the surface freeze onset (SFO) and ice stations. (a) 3-hourly mean
surface temperature from the thermal infrared camera and 3-hourly mean air
temperature at about 40m above sea level. (b) Daily mean number density of
the equivalent diameter measured by the disdrometer. The missing data flag
indicates days with less than 75% of thermal infrared camera or disdrometer
data.
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4.2.2 Microwave radiometers

The microwave radiometers Humidity and Temperature Profiler (HATPRO; Rose
et al., 2005) and Microwave Radar/radiometer for Arctic Clouds - Passive (MiRAC-
P; Mech et al., 2019) are mounted on the railing in the forward part of the
ship about 21m above sea level. HATPRO measures at seven channels between
22.24 and 31.4GHz, and seven channels between 51.26 and 58GHz (Table 4.1).
MiRAC-P measures at six channels along the 183.31GHz water vapor absorp-
tion line with the outermost double side-band channel at 183.31±7.5GHz and
two channels at 243 and 340 GHz. The 340GHz channel is not considered in
this analysis due to high receiver noise throughout the expedition and thus very
noisy emissivity estimates. All channels measure mixed polarization that changes
with scan or incidence angle (θ). Note that the polarization is opposite to the
WALSEMA campaign. The relative contributions of vertical and horizontal po-
larization to the brightness temperature (TB) at quasi-vertical polarization (QV)
Tb,QV can be computed with

Tb,QV = Tb,V cos2(θ) + Tb,H sin2(θ), (4.1)

and for quasi-horizontal polarization (QH) with

Tb,QH = Tb,H cos2(θ) + Tb,V sin2(θ). (4.2)

The relative contributions of vertical (horizontal) polarization to the QV (QH)
channel at 35, 45, 53, 55, and 65◦ are 67, 50, 36, 33, and 18%, respectively.
Thus, the measured radiation is mixed equally between horizontal and vertical
polarization at an incidence angle of 45◦. The same relationships as in Eq. (4.1)
and (4.2) also hold for the emissivity under unpolarized downwelling TB.

Both microwave radiometers measured continuously in the sea ice with short
interruptions on 27 August and 11 September (Rabe and Geibert, 2025, Fig. 6.24).
Synchronized adjustments of the internal mirror of each instrument allowed fre-
quent automated scans of the upwelling TB from the surface and the downwelling
TB from the atmosphere. Four scan types are performed: surface scans at 35–
65◦ and corresponding sky views (A), zenith scan (B), surface scan at 53◦ and
corresponding sky view (C), and boundary layer scans (D; Table 4.2). The scan
types are combined to a scan pattern of about 30min duration in the following
order: A-B-C-B-C-D-B (Fig. 4.13). The frequent switch between the scan types
ensures regular sampling along the ship trajectory, and regular restarts at 00 and
30min of each hour ensure synchronization of both instruments. Here, we use all
surface scans and match them with the sky views averaged over 15min intervals,
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excluding sky views near the horizon (94.2–104.4◦). We can assume that the sky
views are representative of the time where surface scans were measured, due to
the low ship velocity and temporal proximity of the surface scans and slanted
sky views (Fig. 4.13). To reduce the influence of ship motion on the scans, we
filter data where the ship roll or pitch angles (recorded by ship sensors) are larger
than ±2.5◦ from both the upwelling and downwelling TB scans. About 750,000
upwelling TB samples are available at 53◦ incidence angle, and 35,000 each at 35,
45, 55, and 65◦ incidence angle during transit within the sea ice. This corresponds
to about 8 d of continuous sampling at 53◦ and 12 h at each of the other four inci-
dence angles. Despite the short sampling time compared to the cruise duration,
the regular sampling of the upwelling TB captures large-scale features present
in collocated Advanced Microwave Scanning Radiometer 2 (AMSR2) data (see
Appendix 4.B). Moreover, the comparison with AMSR2 highlights the capability
of the small footprint size to separate sea ice types and leads.

Absolute calibrations with liquid nitrogen were performed after instrument
installation, before the cruise start, and during the cruise on 11 September. Ad-
ditionally, the instruments perform an internal gain calibration for 10 s at the
beginning of each zenith scan. To further validate the observations, we com-
pare them with forward simulations of 13 radiosondes launched during clear-sky
conditions between 25 August and 1 October using the Passive and Active Mi-
crowave radiative TRAnsfer (PAMTRA) model (Mech et al., 2020). Potential
contamination due to fog is excluded using ceilometer measurements by DWD.
The agreement is very good for HATPRO channels with mean biases between
-0.5 and 2K at zenith. For MiRAC-P channels, a larger mean bias occurs for
zenith scans at 183.31±7.5, 243, and 340GHz with -2, -4, and 3K, respectively.
As the bias changes smoothly with incidence angle, we assume that the bias origi-
nates from the radiative transfer simulation. The other MiRAC-P channels show
a much lower mean bias between 0 and 1.5K at zenith. The biases of HAT-
PRO and MiRAC-P are stable before and after the absolute calibration on 11
September, which provides confidence in the measurement accuracy.

4.2.3 Surface cameras

A thermal infrared (FLIR A315) and visual camera (GoPro HERO11) are in-
stalled next to the microwave radiometers at an incidence angle of about 53◦ to
provide surface skin temperature data and daytime information on the surface
conditions. The thermal infrared camera records TB images at 7.5–13 µm with 1 s
temporal resolution and a field of view of 25◦×18.8◦ resolved by 320×240 pixels.
The accuracy of the recorded temperature data is ±2K in the observed tempera-

87



CHAPTER 4. MICROWAVE SIGNATURE OF SNOW ACCUMULATION

Table 4.1: Frequency, polarization (Pol.), and footprint size of the HATPRO
and MiRAC-P channels during VAMPIRE. The footprint size corresponds to an
incidence angle of 53◦ (Rückert et al., 2025). QH: quasi-horizontal. QV: quasi-
vertical.

Instrument Frequency Pol. Footprint
(GHz) (m2)

HATPRO

22.24, 23.04, 23.84, 25.44, QV 4.0×2.4–3.6×2.226.24, 27.84, 31.4
51.26, 52.28, 53.86, 54.94, QH 2.7×1.6–2.4×1.456.66, 57.3, 58.0

MiRAC-P
183.31± 0.6; 1.5; 2.5; 3.5; 5.0; 7.5 QV 1.4×0.8

243 QH 1.4×0.8
340 QH 1.1×0.7

Table 4.2: Sky angles, surface angles, and duration per angle for the four scan
types. An angle of 180◦ corresponds to zenith and 0◦ to nadir.

Scan Sky angles Surface angles Duration per angle
[◦] [◦] [s]

A 115, 125, 135, 145 35, 45, 55, 65 15
B 180 360 (270a)

C 127 53 2×15 (sky),
155b, 175c (surface)

D 180, 120, 109.2, 104.4, 101.4, 1098.4, 96.6, 95.4, 94.8, 94.2
aDuration of the final scan within a 30min scan pattern. bHATPRO. cMiRAC-P
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ture range. The camera is actively heated to avoid condensation on the lens. As
the camera’s range of covered incidence angles (44–62◦) is slightly smaller than
the microwave radiometer scans (35–65◦), we use the mean temperature of the
camera image for the emissivity calculation at all angles. Typically, the conver-
sion of thermal infrared TB is performed under the assumption of an infrared
emissivity. Here, we directly perform a correction based on in situ skin temper-
ature measurements during the ten ice stations, which revealed a consistent bias
of 3.5K in the FLIR data for in situ temperature ranges of 260–273K.

The visual camera records high-resolution images with a temporal resolution of
2 s. As the color ratio of the images adjusts to ambient light, we derive grayscale
images as the mean of all channels. Its large field of view covers all incidence
angles of the microwave radiometer. Here, we use crops with a size of 384×384
pixels that cover the surface viewed by the different scan positions. The crops
are not corrected for the camera viewing geometry. The global radiation (G)
observations from DWD are used to remove images with sun glint (G ≥ 40 W m−2)
and dark images (G ≤ 3 W m−2). Images with condensation on the lens are
filtered manually. The lenses of both cameras were cleaned regularly during the
expedition.

4.2.4 Ancillary data

We use temperature profiles, absolute humidity profiles, and liquid water path
retrieved from HATPRO zenith observations (Walbröl et al., 2022). These profiles
are averaged to 15min and used as input to PAMTRA. Moreover, we use pressure
values from radiosondes launched during the expedition for the radiative transfer
simulation. The temperature and relative humidity profiles from the radiosondes
are used under clear-sky conditions for the analysis of the microwave radiometer
measurement accuracy based on PAMTRA simulations.

Data from the OTT Parsivel disdrometer is used for qualitative information
on the precipitation intensity and type, especially snowfall after surface freeze
onset. However, these observations are only of limited use and not necessarily
related to the accumulated snowfall on the sea ice. To get information on the
general presence of accumulated snow, we use the in situ samples in the microwave
radiometer footprint provided in Rabe and Geibert (2025).

The DWD also provides standard meteorological data. Air temperature data
are used to identify the surface freeze onset and for qualitative comparison with
the thermal infrared skin temperature. Additionally, we use global radiation data
for quality control of the visual camera images. We also use sea ice concentration
data from the University of Bremen to provide context on the sea ice in the
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Central Arctic (Spreen et al., 2008). Intercalibrated Level 1C TB data (NASA
Goddard Space Flight Center and GPM Intercalibration Working Group, 2022)
from AMSR2 (JAXA, 2016) at 23.8GHz along the ship trajectory are used to
analyze the representability of the ship measurements for the large-scale satellite
TB variability during transit.

4.3 Methods

4.3.1 Surface emissivity estimation

The emissivity calculation from the ship is based on the non-scattering radiative
transfer equation (Prigent et al., 1997)

Tb = e · Ts · t(0, h) + (1− e) · Tb,down(∞, 0) · t(0, h) + Tb,up(0, h), (4.3)

with the measured upwelling brightness temperature Tb, emissivity e, surface
temperature Ts, transmissivity between the surface and instrument height t(0, h),
downwelling TB at the surface Tb,down(∞, 0), and upwelling TB of the atmosphere
between the surface and the microwave radiometer Tb,up(0, h). We assume that
the effect of scattering by frozen hydrometeors above the ship can be neglected.
As the instrument is close to the surface at an altitude of 21m, we can also assume
that the upwelling TB is negligible (Tb,up(0, h) ≈ 0 K) and the transmissivity close
to unity (t(0, h) ≈ 1) at window channels and channels at the wing of absorption
lines. This leads to the simplified version of the radiative transfer equation at the
surface

Tb = e · Ts + (1− e) · Tb,down(∞, 0). (4.4)

Moreover, we can assume that the measured downwelling TB at the instru-
ment height is similar to the downwelling TB at the surface (Tb,down(∞, 0) ≈
Tb,down(∞, h)). Hence, we can estimate the emissivity directly from the surface
temperature and observed microwave TB following

e = Tb − Tb,down(∞, h)
Ts − Tb,down(∞, h) . (4.5)

We estimate the emissivity under both specular and Lambertian reflection of the
downwelling TB. For specular reflection, the downwelling TB is taken directly
from the corresponding angle from the sky view. For Lambertian reflection, an
integration over the entire hemisphere is needed. Similar to airborne observations
by Harlow (2009), we only measure the downwelling TB at a few angles during the
sky view and need additional information to account for contributions from angles
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not measured by the microwave radiometers. Therefore, we simulate the down-
welling TB with PAMTRA every 15min (see Sect. 4.3.3). Channel-dependent
biases are corrected using all available sky views between 0–71◦ incidence angle
for each 15min time window. Any measurement where the bias or residual er-
ror is larger than the channel (and angle) dependent 95th percentile is excluded
from the analysis to automatically filter for poor simulations of the downwelling
TB or observations. The residual mean absolute error between simulation and
observation varies with channel and angle, but is mostly below 2K.

Several factors contribute to the emissivity uncertainty. Here, we use Gaussian
error propagation to estimate the uncertainty of the emissivity calculation at the
surface as described in Rückert et al. (2025). The error estimation considers un-
certainties from the upwelling TB, downwelling TB, and surface skin temperature.
The error of the observed upwelling TB is estimated as 1.5K, which represents
the microwave radiometer measurement uncertainty. The error of the observed
downwelling TB is a combination of the radiometer noise (1.5K) and also takes
into account the representativeness of the downwelling TB for the surface scan.
For specular reflection, this representativeness is given as the standard deviation
of the downwelling TB for the given angle. For Lambertian reflection, this un-
certainty is computed as the root mean squared error (RMSE) of the residual
between the surface scan and the bias-corrected downwelling TB simulation. The
surface temperature uncertainty consists of instrument noise, which is assumed
to be 1K based on comparison with in-situ measurements, and the standard devi-
ation of temperatures within the image. We discard any data with an emissivity
uncertainty larger than 0.1, except for the case study in Fig. 4.4. This thresh-
old includes all observations from 22.24 to 51.26GHz, 16–75% of observations at
183.31±7.5GHz, and 70–90% of observations at 243GHz. The lowest number of
observations is available under specular reflection at an incidence angle of 65◦ at
the high frequencies. Uncertainties due to fog between the instrument and the
surface are assumed to be negligible for the statistical analysis.

In addition to random errors, there are potentially large biases due to the
difference between skin temperature and emitting layer temperature. While the
difference is small at high frequencies due to the small penetration depth (Tonboe
et al., 2006), larger biases occur at low frequencies. To assess the impact of a
warm emitting layer temperature on the emissivity, we also derive the emissivity
with a temperature of max(271K,Ts). The minimum temperature value is based
on the bulk temperature of multiyear ice during ice stations (Rabe and Geibert,
2025, Table 6.6). These emissivity estimates are used for comparison with SMRT
simulations only.

The surface reflection type varies seasonally (Guedj et al., 2010), spectrally,
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and between surface types, i.e., open water and snow-covered sea ice. While
the difference between specular and Lambertian reflection is small at channels
with low zenith opacity (Matzler, 2005), the biases cannot be neglected from
51.26 to 243GHz. Lambertian reflection was found to be more accurate than
specular reflection over snow-covered surfaces at high frequencies (Harlow, 2009).
Therefore, we primarily analyze Lambertian emissivity.

Changes of the sea ice and snow by the ship through breaking or flooding
strongly impact the microwave emissivity compared to pristine conditions. The
largest effect is expected at the 35◦ angle, which scans at a distance of about 12m
to the vessel (42m at 65◦). However, as intense disturbances are rare and partly
similar to natural sea ice processes, they are assumed to be negligible during the
statistical analysis.

4.3.2 Image–emissivity regression

Visual images contain high-level information on sea ice and snow properties
through brightness differences, shapes, and structures. These are usually used
to classify the sea ice and snow into categories, such as open water, melt ponds,
dark nilas, white nilas, snow cover, ridges, first-year ice, and multiyear ice. Sev-
eral studies have shown that these high-level categories translate into distinct
microwave emission signals (e.g., NORSEX Group, 1983; Hewison and English,
1999) and explain substantial parts of the variability. For example, the difference
between snow-covered multiyear ice and nilas can be easily detected from cam-
era images, and they also show distinct microwave emission spectra. Emissivity
variability within a given sea ice or snow type is dominated by low-level features,
such as snow and sea ice microstructure, salinity, density, and thickness, which
are not resolved by visual images. However, the importance of high-level infor-
mation motivates the development of an unbiased and automated information
extraction method from visual images.

As we are only interested in features relevant to microwave emission, we ex-
tract the information with the objective of explaining the observed microwave
TB. Hence, the model solves an image–emissivity regression problem, transform-
ing grayscale visual images (384×384 pixels) to microwave TB. For model training
and evaluation, we use about 12,500 collocated visual and microwave samples over
newly formed sea ice after surface freeze onset. Newly formed sea ice is defined
as scans where the 51.26GHz emissivity exceeds its 65th percentile (e = 0.91).
This represents a simpler task than predicting the entire emissivity variability,
including surface melt. The output of the network is the surface emissivity under
Lambertian reflection at 243GHz and 53◦ incidence angle. Details on the training
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and network architecture can be found in Appendix 4.C.1 and 4.C.2, respectively.

4.3.3 Atmospheric radiative transfer simulations

Atmospheric radiative transfer simulations are performed with the PAMTRA
model (Mech et al., 2020). From the simulations, we extract the downwelling
TB at the surface, and the transmissivity and upwelling TB from the surface to
the top of the atmosphere. Inputs are the temperature profile, humidity pro-
file, and liquid water path retrieved from the HATPRO zenith scans, averaged
to 15min intervals. The pressure values for the retrieval height levels are inter-
polated from the radiosonde observations. The liquid water path is distributed
with a homogeneous cloud water content from 0–4 km height and simulated with
a cloud droplet diameter of 20 µm. Supercooled liquid water emission is esti-
mated following Turner et al. (2016). Absorption by atmospheric cases is modeled
using Rosenkranz (1998) with water vapor continuum absorption modifications
(Turner et al., 2009). Frozen hydrometeors are not included in the simulations.
Atmospheric transmissivity and upwelling TB are only used at 23.84GHz, where
scattering by frozen hydrometeors can be neglected.

4.3.4 Sea ice and snow radiative transfer simulations

Radiative transfer simulations of the sea ice and snow are performed with SMRT
(Picard et al., 2018). The simulations are compared statistically with the obser-
vations and are used to study the impact of snow properties on the emissivity
at high frequencies. Here, we perform simulations of bare and snow-covered sea
ice above a semi-infinite ocean layer with the layer properties listed in Table 4.3.
The sea ice and snow layers are defined to represent newly formed sea ice in
leads with a snow cover with small and medium-sized grains. The snow cover
is dry and contains no brine in all simulations. This is a simplification as snow
frequently merges with the surface brine of new sea ice (Ehn et al., 2007). Scat-
tering is assumed to occur in the sea ice due to brine pockets only, typical for
first-year ice. The microstructure is represented by the exponential autocorrela-
tion function (Wiesmann et al., 1998) with the improved Born approximation as
electromagnetic theory (Mätzler, 1998; Mätzler and Wiesmann, 1999). The radia-
tive transfer is solved with the discrete ordinate and eigenvalue radiative transfer
solver (Picard et al., 2013). The permittivity of the sea ice is calculated with
the Polder–van Santen mixing formula (Polder and van Santen, 1946), assuming
spherical brine inclusions.

Two types of simulations are performed. First, the base profile (Table 4.3) is
simulated while varying a single parameter between the minimum and maximum
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values. These simulations provide insights into the impact of snow thickness,
density, and correlation length on the emissivity. Second, random Monte-Carlo
simulations with uniformly distributed parameters between the minimum and
maximum values are conducted, i.e., density, correlation length, thickness, and
temperature of the snow, and correlation length, thickness, temperature, and
salinity of the sea ice. In total, 5000 random profiles are simulated, out of which
75% contain a snow cover. While it would be possible to simulate the observed
distribution of surface temperatures, we vary it uniformly as well for simplicity.
As will be shown later, mainly the ice temperature is important, which is not
directly observed in the presence of snow. The Monte-Carlo simulations are used
for comparison with the observed variability.

The emissivity is calculated from the simulated TB following Wiesmann and
Mätzler (1999). This calculation considers the emitting layer temperature instead
of the surface skin temperature as used for the observations. We simulate the
frequencies of HATPRO, MiRAC-P, and intermediate frequencies at 89, 118, and
165GHz. For direct comparison with HATPRO and MiRAC-P observations, we
mix the vertically and horizontally polarized emissivity equivalent to Eq. (4.1)
and (4.2) as measured by the different channels.

Table 4.3: Snow and sea ice layer parameters as input for SMRT simulations.
Values indicate the base profile used for snow sensitivity tests (Base), and min-
imum (Min.) and maximum (Max.) values of the uniform distribution for the
Monte-Carlo simulations.

Layer Parameter Symbol Unit Base Min. Max.

Snow

Density ρsnow kg m−3 225 100 350
Corr. length ξsnow mm 0.1 0.05 0.25
Thickness hsnow cm 5 0 10

Temperature Tsnow
◦C -5 -15 -2

Sea ice

Corr. length ξice mm 0.15 0.1 0.2
Thickness hice cm 10 0.5 10

Temperature Tice
◦C -5 -15 -2

Salinity Sice psu 15 1 40
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4.4 Results

4.4.1 Observed sea ice emissivity

Temporal evolution

The temporal variability of the surface microwave emissivity measured along the
ship track is dominated by the local conditions. For example, a high variability
in the observed emissivity occurs even within a single day (Fig. 4.3). At the
same time, large-scale forcings modify the measured emissivity time series. The
dominant large-scale forcing is the surface freeze onset on 2 September, after
which the occurrence of open water and its emissivity signature along the ship
track decreases, e.g., at 23.84GHz (< 0.5) and 51.26GHz (< 0.6) (Fig. 4.3a,b).
A similar regime shift occurs at 243GHz after the surface freeze onset. Low
emissivity values occur more frequently, especially from mid-September onward
after the ship passed the North Pole (Fig. 4.3c). In general, the surface emissivity
changes gradually after the surface freeze onset. This might be related to the
formation and thickening of new ice and snow accumulation. However, new ice
forms continuously along the ship track in newly formed leads, as will be shown
in the following case.

Figure 4.3: Time series of the Lambertian emissivity during transit at (a) 23.84,
(b) 51.26, and (c) 243GHz at an incidence angle of 45◦ with the surface temper-
ature from the thermal infrared camera as shading. SFO: surface freeze onset.

After analyzing the large-scale emissivity variability, we provide an example
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of a small-scale time series from the 53◦ scan with a duration of about 3min
(Fig. 4.4). This case shows various sea ice types, including dark nilas with high
skin temperature, young ice with a brighter surface, and older sea ice with more
heterogeneity toward the end of the surface scan. The change in ice types corre-
sponds to changes in the emissivity regime. For example, the dark nilas lead to
an emissivity reduction at 23.84 to 51.26GHz compared to the high emissivity of
the thicker young ice. Over the multiyear ice toward the end of the surface scan,
the low frequencies show a high variability and the lowest emissivity of about
0.6 at 51.26GHz. The emissivity at 183.31±7.5 and 243GHz reduces over the
young ice that is observed around 15:50UTC, while the emissivity from 23.84
to 51.26GHz remains high. From visual images, the ice appears to be partly
snow-covered. This shows that the measurements resolve small-scale details in
the surface properties. In Sect. 4.4.1, we will analyze all observations statistically
to identify the persistence of these features along the ship trajectory.

Emissivity distribution

In the following, we present specular and Lambertian emissivity distributions at
23.84, 31.4, 51.26, 183.31±7.5, and 243GHz for incidence angles between 35 and
65◦ (Fig. 4.5). The good match between the ocean emissivity computed with
the Tool to Estimate Sea-Surface Emissivity from Microwaves to sub-Millimeter
waves (TESSEM2; Prigent et al., 2017) implemented in PAMTRA and the ocean
peak in the specular emissivity histograms allows filtering of ocean surfaces from
the Lambertian histogram using 23.84 to 31.4GHz observations. Therefore,
MiRAC-P scans are not shown in the Lambertian distribution if they are not
synchronized with HATPRO. Larger differences in the ocean emissivity occur at
51.26GHz for the 35 and 45◦ angles, and at 183.31±7.5GHz for the 65◦ angle.
While the difference at 183.31±7.5GHz can be explained by reduced surface sen-
sitivity, the higher observed emissivity at 51.26GHz could be explained by the
formation of foam and waves near the ship.

The Lambertian emissivity distribution changes with frequency and becomes
increasingly bimodal from 23.84 to 243GHz at 45◦. The three channels from 23.84
to 51.26GHz peak at an emissivity around 0.95, and measure emissivities as low as
0.5. Generally, low emissivities occur more frequently with increasing frequency
from 23.84 to 51.26GHz. This is expected due to the increased scattering with
decreasing wavelength due to air pockets in the upper part of the multiyear ice
and large snow grains in the surface scattering layer. At 183.31±7.5 and 243GHz,
two separated peaks emerge with maxima around 0.6 and 0.9. The peak at 0.9
is broader than the peak at 0.6, and both are well separated at 243GHz.

The emissivity distributions change with angle (and polarization) at each
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Figure 4.4: Case study of small-scale emissivity variability at an incidence angle
of 53◦ along an 800m transect from 15:48:20 to 15:52:00 UTC on 20 Septem-
ber. (a) Visual (VIS) camera image stripes, (b) thermal infrared (TIR) camera
image stripes, and Lambertian emissivity at (c) 23.84, (d) 31.4, (e) 51.26, (f)
183.31±7.5GHz, and (g) 243GHz. Vertical stripes are extracted near the center
of each camera image.
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channel. This indicates that not all surfaces are Lambertian reflectors. In general,
the three QV channels show decreasing emissivity with increasing incidence angle
due to the larger contribution of horizontal polarization. Similarly, the two QH
channels slightly increase with incidence angle or remain constant. Apart from
shifts of the distributions, their shape changes notably between 35 and 65◦. The
most notable change in the emissivity distribution shape occurs at 243GHz. At
35◦, the emissivity follows a uniform distribution with values between 0.6 and
0.95. As the incidence angle increases, two separate peaks emerge and are almost
entirely separated at 65◦. Additionally, the low-emissivity peak shifts from 0.6 to
0.55, which is not observed for the low-emissivity peak at 51.26GHz for the same
polarization. These potential angular and polarization dependencies introduce
non-Lambertian contributions to the reflected downwelling radiation, which are
not considered in the emissivity calculation. However, the angular consistency
over sea ice appears more stable when using Lambertian reflection compared to
specular reflection for high incidence angles.

Figure 4.5: Histograms of the Lambertian emissivity over sea ice and specu-
lar emissivity over all surfaces at 23.84, 31.4, 51.26, 183.31±7.5, and 243GHz
(columns) for incidence angles of 35, 45, 55, and 65◦ (rows). Emissivity spectra
are defined as sea ice if the specular emissivity deviates from the water emissivity
spectrum calculated with TESSEM2 (Prigent et al., 2017) by more than 0.05 at
any of the seven channels from 22.24 to 31.4GHz.

Spectral variability

In the following, we present the spectral and angular co-variability at 23.84, 51.26,
and 243GHz to relate the emissivity distribution shifts to surface properties.
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Figure 4.6 compares the emissivity co-variability at these channels before and
after surface freeze onset on 2 September. The distinct patterns before and after
surface freeze onset can be linked to sea ice and atmospheric processes.

Before surface freeze onset, the relationship of both frequencies is almost lin-
ear at 35 and 45◦ with a low emissivity mode over open water and melt ponds and
a high emissivity mode over melting sea ice (Fig. 4.6i,j) and potentially refrozen
melt ponds. The emission signatures of melting sea ice and melt ponds are also
described by Gogineni et al. (1992) at lower frequencies. The high emissivity over
melting sea ice is used to detect the melt and freeze onset from satellite obser-
vations (e.g., Markus et al., 2009). Intermittent refreezing events, e.g., from 24
to 26 August (Fig. 4.3), explain the emissivity values between 0.6 and 0.9, which
are almost constant with incidence angle compared to the open water signature.
At 65◦ incidence angle, the lowest emissivity occurs over sea ice, which also cor-
responds to a higher 23.84GHz emissivity compared to open water. The dry
surface scattering layer on the multiyear ice reduces the emissivity at all frequen-
cies. However, the high heterogeneity of its microstructure and thickness of the
refrozen layer likely explains the large variability of emissivity values (Gogineni
et al., 1992).

After surface freeze onset, snow accumulation and new ice formation alter the
spectral emissivity co-variability, which broadly splits into three distinct branches.
The upper branch is comparable to the water and melting sea ice or refrozen melt
pond signature before surface freeze onset. However, the high emissivity mode
is caused by newly formed sea ice, such as nilas (Fig. 4.6l). This also agrees
with several previous studies that found high emissivity over newly formed sea
ice (Hewison and English, 1999; Hwang et al., 2008; Risse et al., 2024b). Earlier
stages of sea ice formation, such as dark nilas (Fig. 4.6k), show a reduced emissiv-
ity in between both ends of this branch. The high correlation of both frequencies
at all angles along this branch indicates that the same physical properties influ-
ence the emissivity, i.e., temperature, salinity, and thickness. This generalizes the
patterns presented for the case study in Fig. 4.4.

The second branch is characterized by a high emissivity at 51.26GHz between
around 0.95 and a variable emissivity between 0.55 and 0.95 at 243GHz. Cor-
responding visual images along this branch indicate the presence of accumulated
snow redistributed by wind on level sea ice (Fig. 4.6m,n). This indicates that
snow accumulation and corresponding scattering at 243GHz could explain the
reduction in emissivity along this branch. At 51.26GHz, fresh snow with rather
small grain size is expected to scatter much less, which explains the constant
emissivity. However, we are limited in interpreting this signal as thin layers of
wet snow or snow-ice cannot be easily identified on visual imagery. Nevertheless,
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we hypothesize that this branch is a continuation of the new ice formation process
as snow accumulates. The absence of frequent deviations from this pattern might
relate to the lack of snow accumulation before the ice reaches a thickness where
the microwave emissivity saturates at the upper limit. Also, a similar emissiv-
ity spectrum was observed in the frequency range from 89 to 340GHz in spring
at nadir (Risse et al., 2024b, Fig. 5), but the airborne data were insufficient in
identifying the continuous evolution of the sea ice emissivity.

The third branch shows almost flat emissivity at 243GHz of 0.6 and variable
emissivity at 51.26GHz between 0.5 and 0.9. The mode separates well from the
open water emissivity at higher incidence angles. Corresponding images indi-
cate snow-covered sea ice with deformations (Fig. 4.6o,p). The low emissivity
at 51.26GHz indicates multiyear ice, similar to the signature of intermittent re-
freezing events before surface freeze onset. The accumulation of fresh snow on
multiyear ice likely explains the emissivity reduction at 243GHz compared to
before surface freeze onset. Interestingly, the emissivity at 23.84 and 51.26GHz
reaches lower values compared to before surface freeze onset. This might be ex-
plained by further drying of the upper ice layer or changes in the multiyear ice
properties along the ship trajectory.

In the following, we will focus on the second branch, which likely shows the
impact of snow accumulation on newly formed sea ice. As we can find visual
structures in the images that correspond to the reduction in 243GHz emissivity
from region 4 to 6 (Fig. 4.6l–n) and during the case study (Fig. 4.4a), we now
test this hypothesis using the image–emissivity regression model.

4.4.2 Image–emissivity regression skill

The model’s skill on the test set provides an indication of the information content
of the images to predict the microwave emissivity. Here, we assess the skill in
reproducing the observed TB, which is minimized by the loss function, and the
emissivity. The predicted TB correlates with the observed TB (0.84), while the
correlation is lower for the emissivity (0.67) (Table 4.4). The RMSE is about 9K
for the TB and 0.11 for the emissivity. Figure 4.7 compares the predicted and
observed TB and emissivity. Clearly, the model is able to extract information
from the images for the sea ice emissivity prediction. There are certain clusters
that align close to the 1:1 line. This indicates that spatial structures, such as
sea ice and snow shapes, are extracted from the image. However, intermediate
emissivity of 0.7 to 0.8 is not well predicted by the model, although they are
well-represented in the training data.

In the following, we analyze images of the test set grouped into four cate-
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Figure 4.6: Scatter plot of the Lambertian surface emissivity at 51.26 and 243GHz
with shading indicating the emissivity at 23.84GHz at incidence angles from 35 to
65◦ (a-d) before and (e-h) after surface freeze onset (SFO) on 2 September. Panels
(a–h) show observations during transit. (i–p) Visual images during stationary
and homogeneous observations where 90% of the observed emissivity is within
the corresponding circle (1–8). Note that the polarization mixing is different at
23.83GHz (QV) compared to 51.26 and 243GHz (QH) except for 45◦ incidence
angle.
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Figure 4.7: Comparison between the observation and image–emissivity regression
model prediction for the test data. Panels show the (a) TB and (b) emissivity
at 243GHz at an incidence angle of 53◦. Shading indicates the observed surface
temperature.

gories of model skill to identify the sea ice and snow properties that determine
the emissivity (Fig. 4.8). The first category corresponds to accurate predictions
of surfaces with a high emissivity. These images show nilas without snow cover
and diverse structures (Fig. 4.8a–f). These images are also generally darker than
other images (not shown). The second category represents accurate predictions
of sea ice with a low emissivity. Corresponding images show various snow struc-
tures and a high variability of shapes. For some images, the snow cover appears
closed, whereas for other images, the snow appears redistributed by wind. The
third category corresponds to images where the emissivity is underestimated by
the model. These images also show some snow structures and are more het-
erogeneous compared to the images of the first category. The fourth category
represents overestimation in emissivity. All images show heterogeneous condi-
tions that might be challenging as the model assigns a single emissivity for the
entire image. Generally, the images show that snow appears as the main feature
that determines the emissivity reduction, while snow microstructure, density, and
thickness lead to larger uncertainties in the prediction.

4.4.3 SMRT simulations

Parameter importance

After identifying snow as a key parameter related to the reduction in microwave
emissivity at 243GHz, we test this behavior using the Monte-Carlo SMRT simu-
lations with uniform sea ice and snow parameter distributions across HATPRO
and MiRAC-P frequencies. As a measure of parameter importance, we use the
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Figure 4.8: Random camera images of the test data grouped into four categories of
emissivity prediction skill (∆e = eobs−esim). (a–f) Accurate emissivity prediction
(|∆e| < 0.01) and high observed emissivity (e > 0.8), (g–l) accurate emissivity
prediction and low observed emissivity (e < 0.7), (m–r) emissivity underestima-
tion (∆e > 0.2), and (s–x) emissivity overestimation (∆e < −0.1). Indicated
values indicate the observed and predicted emissivity for each image. The image
brightness is rescaled to improve the visualization of snow structures.
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correlation between each parameter and the emissivity at an incidence angle of
55◦. The results are split into bare and snow-covered ice, and horizontal and
vertical polarization (Fig. 4.9).

In the absence of snow cover, the sea ice temperature and salinity are the most
important parameters at all frequencies and both polarizations (Fig. 4.9a,b). The
temperature and salinity determine the volume fraction of brine inclusions and
thus the permittivity of the saline ice. The sea ice salinity dependence is used
for satellite retrievals of thin ice thickness as these parameters are inversely cor-
related (Naoki et al., 2008). Sea ice thickness also directly affects the emissivity,
especially at low frequencies. However, this dependence saturates already for an
ice thickness of about 3 cm (not shown). The emissivity is almost insensitive to
the correlation length of brine inclusions. Generally, the emissivity variability is
higher at horizontal polarization than at vertical polarization (not shown).

For snow-covered sea ice, the influence of ice parameters decreases compared to
bare ice from 89 to 340GHz under vertical polarization and from 118 to 340GHz
under horizontal polarization (Fig. 4.9c,d). Snow density, correlation length, and
thickness dominate the simulated emissivity variability, while snow temperature
is less important. At horizontal polarization, snow density correlates with the
emissivity across the entire frequency range. As expected from the scattering
process, increases in correlation length and snow thickness reduce the emissivity.
The dependence on snow density follows a more complex spectral shape due to
nonlinearities, likely related to the dielectric contrast at the snow–ice interface.
The highest sensitivity to snow thickness occurs from 90 to 200GHz, but this
sensitivity also depends on the simulated snow thickness distribution (Sect. 4.4.3).
While the low-frequency channels are typically used for snow depth retrievals over
sea ice (Sandven et al., 2023), this dependence is not simulated here due to the
rather small snow correlation length (grain size) and snow thickness provided to
SMRT. Overall, the high influence of snow at 243GHz from the SMRT simulations
aligns with the moderate skill of the image–emissivity regression model applied
to ship observations.

Influence of snow properties

This section analyzes the emissivity from SMRT simulations of the base sea ice
and snow profile (Table 4.3) as a function of snow thickness, density, and correla-
tion length. The simulations are shown for HATPRO and MiRAC-P frequencies
and additionally at 89, 118, and 165GHz (Fig. 4.10).

The vertically polarized emissivity reduction with increasing snow thickness
is largest at high frequencies and saturates for a snow thickness of about 2 cm at
340GHz and 4 cm at 243GHz (Fig. 4.10a). No reduction in the vertically polar-
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Figure 4.9: Correlation between emissivity and surface parameters for (a, b) bare
ice and (c, d) snow-covered ice based on Monte-Carlo SMRT simulations at an
incidence angle of 55◦. The correlation is shown for (a, c) vertical polarization
(V-pol) and (b, d) horizontal polarization (H-pol). The range of simulated values
and parameter names of each symbol is provided in Table 4.3.
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ized emissivity occurs at frequencies below 89GHz due to the limited scattering
for the simulated correlation length. However, the polarization difference slightly
reduces with increasing snow thickness at 51GHz by about 0.025. At high fre-
quencies, reductions in the polarization difference of about 0.075 are simulated
as the snow thickness increases.

Increases in the snow density generally lead to an increase in the vertically
polarized emissivity at high frequencies, while the lower frequencies show a lower
sensitivity and a slight non-linear relationship (e.g., 118GHz). As shown from the
Monte-Carlo simulations, the horizontal polarization changes with snow density
also at low frequencies, affecting the emissivity polarization difference (Fig. 4.10e).
While the polarization difference increases at high frequencies with increasing
density, it decreases at low frequencies.

The change of vertically polarized emissivity with correlation length is directly
linked to the scattering in the snowpack. Saturation occurs at 340GHz for a
correlation length of about 0.15mm and at 243GHz near 0.2mm. Additionally,
the emissivity spectrum reaches its minimum at 340GHz for correlation lengths
below 0.1mm, while the minimum occurs at 165GHz for a correlation length
of 0.25mm. The polarization difference is less sensitive to correlation length
compared to the snow thickness and density, especially at high frequencies.

The simulations from 23 to 90GHz qualitatively agree with the spectral and
polarization signatures observed at 19, 37, and 85GHz from ship observations
over bare and snow-covered new ice (Hwang et al., 2008). At high frequencies,
the results of these sensitivity tests align with the observation of an initially high
emissivity over bare new sea ice and a reduction in emissivity at high frequencies
due to snow accumulation on the newly formed sea ice (Fig. 4.6). Moreover, the
simulations suggest that the emissivity difference between the 183.31±7.5 and
243GHz is non-linear and largest for shallow snow thickness (1–3 cm) with a low
density (< 250 kg m−3) and low correlation length (< 0.12 mm). Also, a change
in the spectral emissivity gradient at high frequencies might be expected, e.g.,
between 183.31±7.5 and 243GHz, for low emissivity (high snow thickness, high
density, and high correlation length). This simulated behavior at high frequencies
will be compared statistically with the observations in the next section.

Comparison with observations

After analyzing the sensitivity of the emissivity from SMRT simulations to snow
and sea ice parameters, we compare the Monte-Carlo simulations with the sta-
tistical sampling of Lambertian emissivity along the ship track. The focus of the
comparison is new ice formation and the snow accumulation signature on newly
formed sea ice after surface freeze onset. However, due to the challenge of filter-
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Figure 4.10: Idealized SMRT simulations of (a–c) vertically polarized emissivity
(eV ) and (d–f) emissivity polarization difference (eV − eH) from 23 to 340GHz
at an incidence angle of 55◦ as a function of (a, d) snow thickness, (b, e) snow
density, and (c, f) snow correlation length. The sea ice and snow parameters of
the base profile are listed in Table 4.3.

ing the surface type, we include all observations for the comparison and apply
the physical interpretation of the three main branches found in Fig. 4.6. The
spectral, angular (35 to 65◦), and polarization dependence at three channel pairs
is analyzed: 31.4 and 183.31±7.5GHz (QV-pol), 51.26 and 243GHz (QH-pol; see
Fig. 4.6e–h), and 183.31±7.5 and 243GHz (QV-pol and QH-pol).

Figure 4.11 shows the simulated and observed co-variability for each of the
channel pairs and observed incidence angles. The observed variability is well
represented by the simulations for all frequency pairs and angles. The main
difference is the absence of the third branch with low emissivities at 31.4 and
51.26GHz as no multiyear ice and surface scattering layers with large snow grains
(high correlation length) near the snow–ice interface are simulated. Parts of the
third branch are visible in the 51.26 and 243GHz co-variability for snow with a
high thickness and correlation length.

A clear difference between simulation and observation can be found at 31.4
and 51.26GHz, where the observed emissivity is higher by about 0.05 to 0.1,
especially when the emissivity at 183.31±7.5 and 243GHz is low. This can be
attributed to the bias of the emissivity calculation from observations using the
skin temperature, which is typically colder than the emitting layer temperature.

The signature of thin and bare new ice is clearly visible in the simulations as
a thin upper branch with low simulated variability. However, the observations
show much higher variability in this region. While the difference is partly related
to inhomogeneities within the footprint, it might also be explained by variations
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in the shape of brine inclusions, vertical gradients, and brine films on the surface
of the ice not represented in the single-layer simulations. However, the agreement
with observations is remarkable, especially at the QH frequency pair (Fig. 4.11e–
h). A larger difference occurs for the QV frequency pair, which disappears when
assuming specular reflection, as will be shown later.

The snow-covered sea ice corresponds to the second branch visible in the QV
and QH polarization pairs. Similar to the observations, the emissivity decreases at
183.31±7.5 and 243GHz while it remains almost constant at 31.4 and 51.26GHz.
Whether such a signature was also observed will be shown later when considering
uncertainties in the observations due to the surface reflection and emitting layer
temperature. The sensitivity experiments with different snow properties sug-
gest an earlier reduction in the 243GHz emissivity compared to 183.31±7.5GHz
during snow accumulation. The same feature is also visible in the simulations
and observations at all four angles (Fig. 4.11i–l). Very low emissivity values at
243GHz in the simulations were not observed along the trajectory. These re-
late to potentially unrealistic snow with a high thickness (> 5 cm), low density
(200 kg m−3) and high correlation length (> 0.2 mm).

To analyze the impact of the assumptions on surface reflection type and emit-
ting layer temperature during the emissivity calculation, we visualize the over-
lap of SMRT simulations with three different emissivity estimates (Fig. 4.12).
These are specular reflection, Lambertian reflection (as in Fig. 4.11), and a mix-
ture of specular reflection at 31.4 and 51.26GHz and Lambertian reflection at
183.31±7.5 and 243GHz. Additionally, the mixture uses a minimum surface
temperature of 271K to account for the difference between emitting layer tem-
perature and skin temperature at low frequencies. This analysis can be sum-
marized by three main findings. First, the simulated emissivity of bare ice is
best represented under specular reflection. This is based on the result that only
specular emissivity matches most bare ice simulations, with the exception at 65◦

for the 31.4 and 183.31±7.5GHz pair, potentially due to larger uncertainty at
183.31±7.5GHz and emissivity variability at 31.4GHz. Second, only Lamber-
tian emissivity matches the snow-covered sea ice at 183.31±7.5 and 243GHz,
with the exception of very low simulated emissivities corresponding to unrealistic
snow conditions. Third, accounting for the warmer emitting layer temperature
at 31.4 and 51.26GHz and specular contributions improves the agreement with
the simulations. This effect is most evident at the 51.26 and 243GHz channel
pair (Fig. 4.12e–h).
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Figure 4.11: Comparison of the emissivity co-variability between observations
after surface freeze onset and Monte-Carlo SMRT simulations at (a–d) 31.4 and
183.31±7.5GHz (both QV-pol), (e–h) 51.26 and 243GHz (both QH-pol), and
(i–l) 183.31±7.5 (QV-pol) and 243GHz (QH-pol) at incidence angles from 35 to
65◦. Contours of the observed Lambertian emissivity correspond to the 94th,
96th, and 98th percentiles of the distribution density at a bin width of 0.025.
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Figure 4.12: Emissivity co-variability from Monte-Carlo SMRT simulations at (a–
d) 31.4 and 183.31±7.5GHz (both QV-pol), (e–h) 51.26 and 243GHz (both QH-
pol), and (i–l) 183.31±7.5 (QV-pol) and 243GHz (QH-pol) at incidence angles
from 35 to 65◦ as in Fig. 4.11. Shading indicates the overlap with the observed
emissivity calculated from specular reflection (S), Lambertian reflection (L), and
specular reflection at 31.4 and 51.26GHz with a surface temperature ≥271K and
Lambertian reflection at 183.31±7.5 and 243GHz with the surface temperature
from thermal infrared (M). A simulation overlaps with the observation if it lies
within the contour of the 94th percentile of the observed distribution density at
a bin width of 0.025.
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4.5 Conclusions

Satellite passive microwave capabilities are expanding beyond 200GHz and pro-
vide novel spectral information on snow and sea ice emission in polar regions.
Especially, the Ice Cloud Imager (ICI) will provide dual-polarized information
on the surface at 243GHz, which contains notable surface emission of Arctic sea
ice and snow. Simulating these emission signatures is essential for coupled data
assimilation (De Rosnay et al., 2022) and satellite retrievals of ice cloud proper-
ties (May et al., 2024) and snowfall (Camplani et al., 2024a). In this study, we
analyzed quasi-continuous observations of sea ice and snow microwave emissivity
from two passive microwave radiometers onboard the R/V Polarstern during the
PS144 expedition to the Central Arctic from August to October 2024 (VAMPIRE
experiment). The microwave radiometers HATPRO and MiRAC-P were mounted
on the ship’s railing and scanned the surface at incidence angles between 35 and
65◦ between 22.24 and 58GHz and 183.31±7.5 to 340GHz. These observations
were collocated with visual and thermal infrared cameras that provide additional
information on the surface characteristics. The objectives of this work were to
(1) analyze the spectral and angular emissivity variability during summer melt
and autumn freeze-up, (2) understand microwave emissivity changes after surface
freeze onset from new ice formation to ice growth and snowpack formation, and
(3) assess its representation in the Snow Microwave Radiative Transfer (SMRT)
model (Picard et al., 2018).

The analysis of spectral and angular emissivity variability before and after
surface freeze onset could be explained by various processes. Before surface
freeze onset, the signature was dominated by open water, open and refrozen
melt ponds, and melting and refrozen multiyear sea ice. While the open water
signature exhibits angular variability as expected, the angular variability of the
refrozen multiyear ice was much smaller. After surface freeze onset, the emissiv-
ity co-variability between low and high frequency channels could be divided into
three main branches. The first branch connects the open water and bare nilas
signatures. Both the low and high frequency channels are highly correlated along
this branch and saturate at a high emissivity. Subsequent snow accumulation
on the newly formed sea ice leads to a reduction of the emissivity at 183.31±7.5
and 243GHz, while emissivity remains high from 22.24 to 51.26GHz (second
branch). The third branch corresponds to multiyear ice and is connected to the
lower emissivity end of the second branch. While the high frequency channels
are saturated by the newly accumulated snow, the low frequencies vary due to
multiyear ice properties at the snow–ice interface, such as refrozen melt ponds,
surface scattering layer, and air inclusions.
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The emissivity changes at 243GHz of the second branch after surface freeze
onset relate to snow accumulation on newly formed ice. A small image–emissivity
regression model was used to predict the microwave emissivity at 243GHz at an
incidence angle of 53◦ from collocated grayscale images of the visual camera for
this branch. The moderate skill of the model showed that high-level features
visible in the images, such as snow presence and structure, partly explain the
emissivity reduction at 243GHz. Based on idealized SMRT simulations, it was
further found that the high frequencies already saturate for a snow thickness of a
few centimeters. Additionally, variations in snow density and correlation length
cause a high variability of the emissivity, which explains the limitations of the
simple image-based regression model.

The comparison of Monte-Carlo SMRT simulations showed that SMRT re-
produces the angular, spectral, and polarization dependence of bare and snow-
covered nilas after surface freeze onset when considering uncertainties in the ob-
servations due to emitting layer temperature and surface reflection. Moreover,
the observed emissivity-dependent spectral gradients from 183.31±7.5 to 243GHz
in the observations can be reproduced with realistic parameter combinations by
SMRT at all incidence angles.

Limitations of this study are the convolution of spatial and temporal changes
of sea ice properties along the ship trajectory. Moreover, the analysis is limited
due to the large gap of observed frequencies between 51.26 and 183.31±7.5GHz,
which misses the gradual transitions of snow accumulation that are simulated
by SMRT at 89, 118, and 165GHz. Finally, the impact of saline snow at the
snow–ice interface of young sea ice is not considered in the simulations.

The results imply improved monitoring of sea ice and snow properties with
observations at 243GHz and along the 325.15GHz water vapor absorption line
from satellites, such as the Ice Cloud Imager. Moreover, the extended spectral
information is expected to improve the emissivity estimates at 183.31±7.5GHz,
as the emissivity at both frequencies varies almost linearly over snow-covered
surfaces. This might improve the temperature and humidity profiling from the
Metop-SG satellites. Finally, SMRT could be useful in a coupled data assimilation
context and for atmospheric satellite retrievals, even at high frequencies, ideally
considering surface heterogeneity (open water, leads, snow-covered sea ice) within
the satellite footprint.

There are several ways for future work regarding the analysis of field obser-
vations, radiative transfer evaluation, and satellite observations. This includes
the analysis of the emissivity variability over multiyear sea ice and its relation
to physical properties observed during ice stations of the VAMPIRE experiment.
This will also provide input data for a more detailed SMRT evaluation similar to
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Wivell et al. (2023) over snow. Additionally, satellite observations above 200GHz
will be used to assess whether the features observed during the VAMPIRE ex-
periment also occur on pan-Arctic scales on satellite footprint scales during new
ice formation.

Appendix

4.A Radiometer scan positions

We attach an overview of the radiometer scan positions. Figure 4.13 shows the
order of scans and the number of observations during the scan interval of 30min.

Figure 4.13: Overview of the scan pattern with a duration of 30min for (a)
HATPRO and (b) MiRAC-P. Shading provides the observation count per degree
and second while the ship was within the sea ice. Capital letters indicate the
surface scan at 35–65◦ and corresponding sky view (A), zenith scan (B), surface
scan at 53◦ and corresponding sky view (C), and boundary layer scan (D).

4.B Collocation with AMSR2

The microwave radiometers on the ship observe the upwelling TB on a scale
of a few meters in close proximity to the research vessel. To assess, whether
these observations capture the large-scale variability measured from satellites, we
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match HATPRO scans at 53◦ incidence angle with AMSR2 at 23.8GHz with a
maximum temporal offset of±4 h and maximum distance to the AMSR2 footprint
center of 10.5 km. The observations can be compared directly when applying QV
polarization mixing to AMSR2 following Eq. (4.1) and scaling the HATPRO TB
measurements at the surface Tb,surf to the corresponding satellite TB Tb,sat based
on the simulated atmospheric transmissivity t and upwelling TB Tb,up along the
slant path

Tb,sat = Tb,surf ∗ t+ Tb,up. (4.6)

The atmospheric contribution at 23.8GHz for an incidence angle of 52.8◦ is low
during the entire expedition, with 25th and 75th percentiles of 0.82 and 0.9 for the
transmissivity, and 26 and 48K for the upwelling TB, respectively. Hence, surface
emissivity variations are dominating the TB variability measured by AMSR2.

Figure 4.14 shows the time series of HATPRO and AMSR2 from 14 August to
4 October and a histogram of the TB difference. Despite the notable small-scale
variability resolved by HATPRO, the observations averaged over the satellite
footprint mostly agree with the AMSR2 observations. The distribution is cen-
tered near 0K, with a skewness toward a TB underestimation. Based on the
time series, this is mostly attributed to open water patches in late August and
early September. From mid to end September, the ship measurements tend to
overestimate the TB, likely due to new ice formation in leads. Several features
are captured by HATPRO, such as the TB (and emissivity) reduction from 24
to 26 August, which is linked to colder air and surface temperatures and po-
tential refreezing of the sea ice surface (Fig. 4.2a). Based on this overall good
agreement, the small-scale observations during transit periods provide detailed
insights into the emissivity variability at HATPRO and MiRAC-P frequencies
relevant at satellite scales.

4.C Image–emissivity regression model

4.C.1 Training objective

The training objective of this model is to reproduce the observed upwelling TB
corresponding to the input image. Rather than training the model on potentially
noisy emissivity estimates, we use the radiative transfer equation to convert the
predicted emissivity to an upwelling TB using Eq. (4.4). Then, the loss is com-
puted as the mean absolute error between the simulated and observed TB

L = 1
N

N∑
i

|Tb,obs − Tb,sim|. (4.7)
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Figure 4.14: Comparison between HATPRO and collocated AMSR2 observations
along the ship trajectory at 23.8GHz. (a) Lambertian emissivity from HATPRO,
(b) TB from HATPRO, (c) TB from AMSR2, (d) difference between HATPRO
resampled to the AMSR2 footprint with atmospheric correction and collocated
AMSR2 observations, and (e) histogram of the difference between HATPRO and
AMSR2.
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The emissivity distribution of the data is adjusted to ensure balanced targets.
Samples are randomly dropped from the two most frequent emissivity intervals
with a bin width of 0.1 until their count matches the third most frequent emissiv-
ity interval. All other intervals with a lower count remain unchanged. Also, data
is thinned to ensure a distance of at least 4m between consecutive time steps
based on the ship’s velocity. The network is trained on 60% of the data, while
the remaining data is left for validation (20%) and testing (20%). The split is
performed using non-overlapping temporal blocks of length 400. This split en-
sures that each subset captures the temporal evolution during VAMPIRE and
reduces temporal and spatial correlation between the three data sets. The batch
size during training is set to 64, the learning rate is 0.001, and training is stopped
after 200 epochs. The Adam optimizer is used to update the model parameters
(Kingma and Ba, 2017).

Data augmentation is performed on all network inputs and parameters in-
cluded in the loss function to reduce the risk of overfitting and inform the model
about underlying data uncertainty. Augmentations for the grayscale image are
random horizontal flips, random crops of 288×288 pixels, random brightness off-
sets, and random noise. Random noise is applied to the upwelling TB and down-
welling TB (1.5K). Additionally, the uncertainty of the Lambertian downwelling
TB is added as random noise to the downwelling TB. Moreover, noise is applied
to the thermal infrared temperature (1K).

4.C.2 Network architecture

The network consists of a convolutional neural network (CNN; Lecun et al., 1998)
as encoder and a multi-layer perception (MLP; Rumelhart et al., 1986) as decoder
(Fig. 4.15). The encoder extracts features from the grayscale image input, which
are provided to the decoder for emissivity prediction. The predicted raw emis-
sivity is then converted to a physical emissivity using the sigmoid function to
bound it into the range 0 ≤ e ≤ 1. The CNN consists of three convolutional
layers with 4, 8, and 12 channels, and a kernel size of 3, padding of 1, dilation of
2, and a stride of 2. Each convolution is followed by batch normalization, Recti-
fied Linear Unit (ReLU) activation function, and maximum pooling with a kernel
size and stride of 2. After the three convolutions, an averaging over the spatial
dimension is performed to get a 1-dimensional feature vector z. This vector of
length 12 is the input to the MLP. The MLP consists of 2 hidden layers with
five neurons each and a ReLU activation function. A linear activation function
is applied to the output layer. The total number of parameters is about 1,200,
which is about 10% of the number of training samples. We also trained networks
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based on the mean image brightness and the distribution of brightness for the im-
age. While the mean brightness did not provide skillful predictions, the network
trained on 12 percentiles of the cumulative density function of image brightness
provided similar performance to the CNN-based architecture. This indicates that
the variability of brightness within the image contains useful information.

Figure 4.15: Architecture of the image–emissivity regression model. Variables de-
note the feature vector z, emissivity e, downwelling TB Td, surface temperature
Ts, simulated upwelling TB Tb,sim, and observed upwelling TB Tb,obs. CNN: con-
volutional neural network; MLP: multi-layer perceptron; RTE: radiative transfer
equation; MAE: mean absolute error.

4.C.3 Prediction skill

The following table summarizes the model skill for predicting the upwelling TB
and surface emissivity at 243GHz for the training, validation, and test sets (Ta-
ble 4.4). All metrics are similar between the three data sets, which indicates that
the model generalizes well. The model slightly underestimates the TB by about
2K and the emissivity by 0.05. The RMSE of the TB is about 9K and 0.11
for the emissivity, which is larger than the measurement uncertainty at 243GHz.
This is likely related to the limited information content of the images for the
microwave signature and the treatment of images as spatially homogeneous in
microwave emissivity by the network. The correlation of the prediction in TB
space is higher (0.84) than in emissivity space (0.67) (see also Fig. 4.7). This
can be explained by the use of the TB in the loss function, which puts a reduced
weight on emissivity estimates with a low surface sensitivity.
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Table 4.4: Model skill in predicting the upwelling TB and sea ice emissivity
measured at 243GHz at an incidence angle of 53◦ for the training, validation, and
test set. Note that the emissivity is predicted by the model, and the TB departure
is minimized during model training. The three metrics are bias (observation
minus prediction), root mean squared error (RMSE), and correlation coefficient
(Corr.).

Data set Bias RMSE Corr.
Tb e Tb e Tb e
[K] [K] [K]

Training 3 0.06 9.2 0.12 0.84 0.61
Validation 2.3 0.04 9.1 0.11 0.83 0.7

Test 2.1 0.05 8.9 0.11 0.84 0.67
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Chapter 5

Sea ice–atmosphere retrieval

This study develops a sea ice–atmosphere retrieval to estimate cloud liquid water
path over sea ice from airborne microwave radiometer observations during the
HALO–(AC)3 field campaign. The study has been submitted to Atmospheric
Measurement Techniques and is currently under review:

Risse, N. et al. 2025: Cloud liquid water path detectability and retrieval
accuracy from airborne passive microwave observations over Arctic sea ice, EGU-
sphere [preprint], doi:10.5194/egusphere-2025-3311, submitted on 9 July 2025.

The content of this chapter has been published under the Creative Commons
Attribution 4.0 License. Formatting changes were made to adopt the format of
this thesis.

Detailed author contributions: Nils Risse conducted the retrieval, data
analysis, and visualization, and prepared the manuscript. Susanne Crewell, Mario
Mech, Catherine Prigent, and Nils Risse conceptualized the study. Susanne
Crewell, Mario Mech, and Nils Risse carried out the field observations. Joshua J.
Müller derived the VELOX surface classification within the radiometer footprint.
All authors reviewed and edited the manuscript.
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Cloud liquid water path detectability and retrieval accu-
racy from airborne passive microwave observations over
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Abstract Clouds are critical in the Arctic’s water balance and energy budget.
Especially, the cloud liquid water path (CLWP) modifies the cloud radiative prop-
erties and affects the surface energy balance. Spaceborne microwave radiometers
provide a high sensitivity to CLWP at pan-Arctic scales, but extracting this in-
formation over sea ice requires separation of surface and cloud emission. Here, we
assess CLWP detectability and retrieval accuracy over sea ice from a physical op-
timal estimation retrieval applied to airborne passive microwave observations dur-
ing the HALO–(AC)3 campaign. Reference data on surface temperature, young
ice fraction, hydrometeor occurrence, and cloud liquid layers are available from
collocated airborne instruments. The retrieval estimates CLWP and five surface
parameters by inverting a forward operator consisting of the Snow Microwave
Radiative Transfer (SMRT) and Passive and Active Microwave radiative TRAns-
fer (PAMTRA) models. We find a consistent representation of sea ice and snow
emission from 22–183GHz under clear-sky conditions in both observation and
state space. The CLWP detectability, defined as the 95th percentile of retrieved
CLWP under clear-sky conditions, is about 50 g m−2 in the Central Arctic and
increases towards the marginal ice zone up to 350 g m−2. The CLWP retrieval
accuracy increases with increasing CLWP, with a relative root mean squared er-
ror below 50% for CLWP above 100 g m−2. Retrieval uncertainties occur due to
ambiguities between cloud liquid water emission and scattering in the snowpack
and emission by newly formed sea ice. We further analyze the impact of surface
melt and a rain-on-snow event associated with the warm air intrusion on the
surface parameters. Finally, we show CLWP distributions along the flight track
for all HAMP observations in comparison to ERA5 for different cloud regimes.
The retrieval algorithm enhances the understanding of Arctic clouds and allows
for an improved use of passive microwave satellite data in polar regions.
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5.1 Introduction

The Arctic is warming at a faster rate than the global average in recent decades
(Rantanen et al., 2022). Clouds play a critical role as a feedback mechanism
in the amplified warming in the Arctic (Tan et al., 2021). Cloud liquid water
modifies the cloud radiative effect (Shupe and Intrieri, 2004; Ebell et al., 2020)
with implications for the surface energy budget (Sledd et al., 2025). Addition-
ally, cloud liquid water plays a critical role in precipitation formation processes,
such as efficient ice crystal growth through riming (Maherndl et al., 2024). Pas-
sive microwave radiometers allow for a quantification of the cloud liquid water
path (CLWP), defined as the columnar integral of cloud liquid water content,
by observing the temperature-dependent microwave emission of liquid droplets
(Kneifel et al., 2014; Turner et al., 2016). This emission of liquid droplets in-
creases with frequency, and retrievals typically use observations at window chan-
nels in the range from 19 to 90GHz (Greenwald et al., 1993; Crewell and Löhnert,
2003). Over sea ice, high-quality CLWP estimates are provided from ship-based
microwave radiometers (Westwater et al., 2001; Walbröl et al., 2022). Opera-
tional satellite CLWP products are currently not available over sea ice due to
the variable emission and polarization of the sea ice and snow. For example, the
Multisensor Advanced Climatology of Liquid Water Path (MAC-LWP; Elsaesser
et al., 2017; O’Dell et al., 2008) is limited to ice-free ocean, and the Microwave
integrated Retrieval System (MiRS; Boukabara et al., 2011) provides estimates
over ice-free ocean and land only. First estimates of the CLWP retrieval accuracy
from passive microwaves are presented by Haggerty et al. (2002) using airborne
microwave observations and collocated in situ data. Their results show a high ac-
curacy for CLWP above 100 g m−2 and poor accuracy for CLWP below 50 g m−2.
Generally, the CLWP uncertainty increases with increasing surface emissivity due
to the decreasing contrast between the liquid cloud emission and the surface (Pri-
gent et al., 2003). Hence, airborne or satellite retrievals of atmospheric properties
require an accurate representation of the surface emissivity and its polarization.

Several methods were developed to describe the emissivity of sea ice and snow-
covered surfaces. Emissivity atlases derived from long-term satellite observations
under clear-sky with collocated surface temperature data provide robust first-
guess emissivities and their variability (Prigent et al., 1997; Wang et al., 2017b).
However, as the emissivity variability over sea ice can be very high, the long-term
mean might deviate largely from the actual emissivity (Perro et al., 2020). To bet-
ter capture this emissivity variability, dynamic emissivity modeling approaches
are developed in a data assimilation context (e.g., Di Tomaso et al., 2013). This
approach computes the emissivity at window channels and extrapolates to neigh-
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boring sounding channels in the same field-of-view, but is limited to clear-sky
conditions. A novel machine learning approach by Geer (2024a) addresses the
need for better sea ice emissivity modeling in a numerical weather prediction
context over sea ice (Lawrence et al., 2019). The approach exploits long-term
observations to learn a compact representation of relevant sea ice and snow mi-
crophysical properties and their empirical transformation to an emissivity. While
machine learning provides a computationally efficient approach, interpreting the
underlying geophysical parameters is challenging. Physical snow and sea ice ra-
diative transfer modeling approaches directly compute the emission from plane
parallel sea ice and snow layers and their properties, such as density, grain size,
salinity, temperature, thickness, and microstructure (Tonboe et al., 2006). The
Arctic-wide retrieval by Rückert et al. (2023b) validated with observations from
the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MO-
SAiC) expedition provides simultaneous atmospheric and sea ice properties from
an optimal estimation retrieval framework. While their retrieval used a fixed
assumption on the snow and ice layering, Kang et al. (2023) explored the cou-
pling of a sea ice and snow radiative transfer model with a thermodynamic sea
ice and snow evolution model to better capture snow metamorphism and tem-
poral variations in snow layering. This approach could be useful in a coupled
land-atmosphere assimilation of surface-sensitive microwave channels (Hirahara
et al., 2020). Yet, we lack a detailed assessment of the CLWP detectability and
retrieval accuracy from passive microwave observations over sea ice.

To study the CLWP signal over sea ice, we develop an optimal estimation
sea ice–atmosphere retrieval specifically for airborne passive microwave observa-
tions from 22–183GHz at nadir. The underlying forward operator simulates the
brightness temperature (Tb) at flight altitude from a loose coupling of the Snow
Microwave Radiative Transfer (SMRT; Picard et al., 2018) model with the Pas-
sive and Active Microwave radiative TRAnsfer (PAMTRA; Mech et al., 2020)
tool via the spectral surface emissivity and effective temperature. This physi-
cal modeling approach allows a simultaneous retrieval of snow layer properties
(correlation length and thickness), snow and sea ice temperature, and CLWP,
under non-heavy cloud ice and snow conditions, since frozen water path is not
retrieved. We apply the retrieval to the airborne Microwave Package (HAMP;
Mech et al., 2014) radiometer onboard the High Altitude and Long Range Re-
search Aircraft (HALO) during the HALO–(AC)3 field campaign carried out in
spring 2022 in the Fram Strait and Central Arctic. HALO’s cloud observatory
suite (Stevens et al., 2019) with coincident cloud radar, lidar, and infrared obser-
vations provides a unique opportunity for passive microwave retrieval evaluation
(Jacob et al., 2019). We aim to (1) assess the representation of sea ice and snow
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microwave emission by the forward model, (2) estimate the CLWP detectability
and retrieval accuracy, and (3) analyze the spatial variability of CLWP over sea
ice during HALO–(AC)3.

The paper is structured as follows. Section 5.2 provides an overview of the
airborne field data and auxiliary satellite and reanalysis data. Section 5.3 de-
scribes the sea ice–atmosphere retrieval and the forward operator. Section 5.4
details the clear-sky evaluation (first objective), CLWP detectability, and CLWP
retrieval accuracy (second objective). Section 5.5 addresses the third objective
by presenting the retrieval application to two case studies, a rain-on-snow event,
and comparing the CLWP from HAMP with ERA5. The study is summarized
and concluded in Sect. 5.6.

5.2 Data

5.2.1 HALO–(AC)3 field campaign

The multi-platform field campaign HALO–(AC)3 included 17 flights with the
research aircraft HALO between 11 March and 12 April 2022 over sea ice in the
Fram Strait and Central Arctic (Wendisch et al., 2024; Ehrlich et al., 2024). Thus,
HALO captured diverse sea ice conditions from young ice near the sea ice edge
to perennial sea ice north of Greenland. Here, we include all observations over
at least 90% sea ice concentration (Spreen et al., 2008) with a distance of more
than 15 km to coasts (Fig. 5.1). Due to the coarser spatial resolution of the sea
ice product compared to the airborne observations, few open water pixels remain
in the airborne data.

The meteorological conditions during HALO–(AC)3 were dominated by warm
air intrusions from 11–20 March 2022 and colder northerly winds from 21 March
2022 until the end of the campaign (Walbröl et al., 2024). The warm air intrusions
caused rainfall on sea ice up to about 83◦N (see Fig. 10 in Walbröl et al., 2024),
which HALO captured on three consecutive days (11–13 March 2022).

The cloud observatory configuration of HALO includes a microwave radiome-
ter, cloud radar, lidar, thermal infrared radiometer, thermal infrared spectral im-
ager, and solar spectral imager. In addition, 85 dropsonde launches over sea ice
provide vertical profiles of air temperature, humidity, and wind between flight alti-
tude and the surface (George et al., 2024). This dropsonde data was partly assimi-
lated into the European Centre for Medium-Range Weather Forecasts (ECMWF)
Integrated Forecasting System (IFS). Details on the HALO instrumentation and
dropsonde assimilation can be found in Ehrlich et al. (2024). An example of the
microwave radiometer, radar, and lidar observations is provided in Fig. 5.2 for
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a 550 km southbound transect. The following sections describe the instruments
and products of the cloud observatory configuration and ancillary products.

Figure 5.1: Map of the HALO flight track and mean sea ice concentration (Spreen
et al., 2008). Only positions where the retrieval was applied are shown.

5.2.2 Microwave radiometer

The HAMP radiometer measures at 25 channels in the frequency range from
22.24 to 183.31±7.5GHz (Mech et al., 2014). Six channels each are located along
the 22.24GHz water vapor absorption line and around the 183.31GHz water
vapor absorption line, seven channels are located along the 50–60GHz oxygen
absorption complex, four channels are located around the 118.75GHz oxygen ab-
sorption line, and two channels are located within atmospheric windows at 31.4
and 90GHz. HAMP points nadir and samples with a temporal resolution of 1 s.
The footprint sizes range from about 0.7 to 1.4 km at typical HALO flight alti-
tude and speed (Table 5.1). The data was corrected for biases using dropsondes
over open ocean (Dorff et al., 2024). Here, we use an updated version of the bias
correction. Measurement gaps that were filled by temporal interpolation in the
published data are discarded, and we removed any observations where aircraft roll
or pitch exceed ±6◦. Moreover, we exclude about 19% of the observations due
to potentially high scattering by frozen hydrometeors or surface melt. In total,
about 85,000 HAMP samples are available over sea ice along a flight distance of
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Figure 5.2: Radar, lidar, and microwave radiometer observations during a 550 km
southbound transect over sea ice on 14 March 2022 (case 2 in Fig. 5.1). (a) Radar
reflectivity, (b) lidar backscatter ratio, (c) Tb from 22 to 31GHz, (d) Tb around
183.31GHz, (e) Tb from 50 to 58GHz, and (f) Tb at 90 and around 118.75GHz.
Missing/flagged data is shown in gray.
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20,000 km between -55–27◦ E and 74.8–89.4◦N, out of which about 14% (12,200)
were clear-sky as identified from the radar–lidar cloud mask with available ther-
mal infrared data.

Most weighting functions of HAMP peak at the surface under cold and dry
Arctic conditions. Thus, the Tb varies due to changes in surface emission along the
flight track with a high correlation between neighboring surface-sensitive channels
(Fig. 5.2c–f). Therefore, we only use six HAMP channels for the retrieval: 22.24,
31.4, 50.3, 90, 118.75±8.5, and 183.31±7.5GHz. This includes channels typically
used for ground-based and satellite CLWP retrievals, with the highest sensitiv-
ity at 90 and 118.75±8.5GHz. Moreover, these channels fully exploit HAMP’s
spectral range for surface characterization.

Table 5.1: Beam width, noise equivalent differential temperature (NeDT), and
footprint size of HAMP channels. The footprint size is calculated for a flight
velocity of 300m s−1 and 12 km flight altitude.

Channels Frequency range Beam width NeDT Footprint size
[GHz] [°] [K] [km2]

1–7 22.24–31.4 5 0.1 1.1×1.4
8-14 50.3–58 3.5 0.2 0.7×1
15 90 3.3 0.25 0.7×1

16–19 110.25–127.25 3.3 0.6 0.7×1
20–25 175.81–190.81 2.7 0.6 0.6×0.9

5.2.3 Radar–lidar cloud mask

The cloud radar and lidar onboard HALO provide reference data on the oc-
currence of hydrometeors in the field of view of HAMP. Especially, the lidar is
highly sensitive to liquid cloud layers. Both instruments and derived products
are described below.

The HAMP cloud radar operates in the Ka-band at 35.5GHz with a tem-
poral resolution of 1 s and vertical resolution of 30m (Ewald et al., 2019). The
sensitivity of the HAMP radar is about -30 dBZ (Konow et al., 2019). Here, we
use the radar reflectivity product aligned temporally with the passive microwave
radiometer observations and filtered for ground clutter in the lowest about 100m
(Dorff et al., 2024). Hence, shallow fog layers cannot be detected by the radar.
Compared to the microwave radiometer, the radar’s footprint size is rather nar-
row, with about 130m (Mech et al., 2014).

Backscatter lidar and water vapor differential absorption lidar profiles were
measured by the airborne demonstrator for the WAter vapor Lidar Experiment
in Space (WALES; Wirth et al., 2009). Here, we use the backscatter ratio (BSR)
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and depolarization ratio at 532 nm, which are available with a vertical resolution
of 15m and a temporal resolution of 1 s (Wirth and Groß, 2024). We exclude all
data with a non-zero quality flag and below 50m above the surface.

The radar observation is defined as cloudy if the radar reflectivity of any bin
exceeds -40 dBZ. Similarly, we apply a backscatter ratio threshold of 4 to the lidar
column. We define a scene as cloudy if either the radar or the lidar observations
fulfill their cloud mask criterion. Both thresholds reduce the impact of thin ice
clouds on the thermal infrared radiometer measurements.

In addition to the hydrometeor detection, we need to identify scenes with
potential impact of scattering by frozen hydrometeors, which is relevant at HAMP
frequencies above 90GHz (Bennartz and Bauer, 2003). Here, we use a maximum
radar reflectivity threshold of 5 dBZ at any height level in the radar column,
which corresponds to a snowfall rate of about 0.05 to 0.5mm h−1 depending on
the ice particle habit and size distribution (Kneifel et al., 2011).

Further, we build a detection method for liquid cloud layers based on the
lidar backscatter ratio and depolarization ratio. Cloud regions dominated by
liquid water exhibit a high backscatter and near-zero depolarization ratio (Shupe,
2007; De Boer et al., 2009; Luke et al., 2010). Several threshold-based methods
are developed for liquid classification from both parameters (Kalesse-Los et al.,
2022), and here we subjectively define a similar thresholding method from the
examination of WALES statistics of both parameters for HALO–(AC)3. We define
a region as liquid-dominated if the depolarization ratio is below 0.1 and the
backscatter ratio is above 50. Typically, only the uppermost liquid layer can
be detected from airborne lidars, and we define the uppermost bin of liquid-
dominated regions as liquid layer top height (hl). To account for attenuation of
the lidar beam by large amounts of frozen hydrometeors, we classify columns that
did not satisfy the liquid water criterion as potentially liquid clouds if the radar
hydrometeor fraction in the lowest 5 km exceeds 50%.

5.2.4 Radiation data

The thermal infrared radiometer KT-19 provides Tb in the atmospheric window
from 9.6–11.5 µm (Schäfer et al., 2022). The Tb accuracy of KT-19 is about 0.5K.
The instrument points nadir with a beam width of 2.3◦, which is comparable to
the HAMP radiometer channels. The sampling frequency of 20Hz is averaged to
1Hz to match the HAMP radiometer sampling. We convert the clear-sky infrared
Tb to surface skin temperature under the assumption of an infrared emissivity of
0.995 (Høyer et al., 2017; Thielke et al., 2022). Remaining atmospheric effects in
the atmospheric window are considered to be negligible. This data is used as a
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data source for the development of the microwave-only retrieval.
The Video airbornE Longwave Observations within siX channels (VELOX)

camera provides two-dimensional thermal infrared Tb in the atmospheric window
from 8.65–12 µm (Schäfer et al., 2022). The data are available at a temporal
resolution of 1 s (Schäfer et al., 2023a). Here, we use the 10.74±0.39 µm channel
(band 3) for qualitative information on spatial surface temperature features. From
each image, we extract the cross-track scan at nadir. This data is used as a
visualization during case studies.

The VELOX-based clear-sky surface classification product groups each pixel
into four surface types, i.e., open water, sea ice water mixture, thin sea ice, and
snow-covered sea ice (Müller et al., 2025). The classification exploits spatial skin
temperature variations of sea ice, snow, and open water with a spatial resolution
of about 10×10m2. We derive the thin sea ice area fraction within the microwave
radiometer footprint from the high-resolution pixel-based classification. The ac-
curacy of the thin sea ice classification, defined as the ratio of correct to total
predictions, is approximately 70% (Müller et al., 2025). We use this data for
retrieval evaluation under clear-sky conditions.

The spectrometer of the Munich Aerosol Cloud Scanner (specMACS) mea-
sures two-dimensional fields of reflected spectral radiances from 0.4–2.5 µm (Ewald
et al., 2016; Weber et al., 2024a). SpecMACS points nadir with a field of view
of about 35◦ and a temporal resolution of 30Hz. Since the visible bands were
not available during HALO–(AC)3, we use the 1 µm near infrared radiance for
qualitative information on clouds and surface conditions. This data is used as a
visualization during case studies.

5.2.5 Ancillary products

The ERA5 reanalysis provides hourly air temperature, pressure, and specific hu-
midity on 137 model levels, and skin temperature, 2m air temperature, and total
column liquid water on surface levels at a spatial resolution of 31 km resampled
to 0.25×0.25◦ (Hersbach et al., 2020). Here, we use data from the ERA5 grid
cells that are nearest in space and time to the HALO flight track. The data is
used as input for the retrieval and, in the case of the total column liquid water,
for comparison with the CLWP retrieved from HAMP. The 2m air temperature
is used to filter potential surface melt, which occurred during parts of the warm
air intrusion over sea ice. Here, we use a 2m air temperature threshold of -1 ◦C.

Daily sea ice concentration maps from the University of Bremen with a 6.25×
6.25 km2 resolution based on Advanced Microwave Scanning Radiometer - 2 (AM-
SR2) 89GHz observations (Spreen et al., 2008) are used to filter for observations
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over sea ice. To include data close to the north pole not covered by the AMSR2
swath, we assume sea ice concentrations are above 90% in this area. Based on
this data, we define the sea ice edge as the 50% sea ice concentration contour
and the Central Arctic as a region with a distance of at least 200 km from the
sea ice edge.

We use Level 1C Tb data from channel 17 of the Special Sensor Microwave
Imager/Sounder (SSMIS; Kunkee et al., 2008) onboard the DMSP-F16 satellite
to get qualitative information on the spatial Tb variability around the HALO
track (NASA Goddard Space Flight Center and GPM Intercalibration Working
Group, 2022). Channel 17 of SSMIS measures vertically polarized Tb at 91GHz
under an incidence angle of 53◦ with a footprint size of 9×15 km2.

5.3 Sea ice–atmosphere retrieval

5.3.1 Retrieval overview

For a coupled sea ice–atmosphere retrieval using a physical forward operator, we
need to solve the radiative transfer of both the cryosphere and the atmosphere.
Unfortunately, no model exists that simultaneously solves the radiative transfer
equations of both spheres. Therefore, previous work on sea ice–atmosphere re-
trievals performed a loose coupling between the sea ice and snow radiative transfer
model and radiative transfer model for the atmosphere via Tb or emissivity and
emitting layer temperature (e.g., Kang et al., 2023; Sandells et al., 2024). Here,
we follow the same approach and loosely couple the radiative transfer models
SMRT (Picard et al., 2018) for the surface and PAMTRA (Mech et al., 2020)
for the atmosphere. Both models are called sequentially, and the surface radia-
tive properties are provided to PAMTRA as frequency-dependent emissivity and
emitting layer temperature. This workflow is depicted in Fig. 5.3a and relevant
input parameters are listed in Table 5.2.

Using optimal estimation (Rodgers, 2000), we retrieve six state parameters
from the HAMP observations, considering observation, forward model, and a
priori uncertainties. The retrieved state parameters are CLWP and five surface
parameters: wind slab correlation length, depth hoar correlation length, wind
slab thickness, snow–ice interface temperature, and air–snow interface temper-
ature. The selection of these state parameters is based mainly on two criteria.
First, there should be high sensitivity to state parameter variations within the
parameter uncertainty range at HAMP frequencies based on SMRT–PAMTRA
simulations. Second, ambiguities in the radiometric sensitivity between state
parameters should be minimized to ensure stable retrieval convergence, i.e., cor-
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relations between columns of the Jacobian should be low. Note that CLWP is
the only atmospheric parameter that gets retrieved. The selection of snow pa-
rameters is also motivated by Wivell et al. (2023), who found that varying wind
slab correlation length, depth hoar correlation length, and wind slab thickness
reproduces observed tundra snow emissivity spectra from 89 to 243GHz.

The main challenge for the retrieval is the lack of ground truth on the surface
characteristics along the flight track. Therefore, we define two retrievals, hereafter
referred to as retrieval 1 (R1; Fig. 5.3b) and retrieval 2 (R2; Fig. 5.3c). R1 is
only applied to clear-sky and retrieves four surface parameters using wind slab
and depth hoar correlation length a priori from the literature and an a priori
guess of the wind slab thickness. Additionally, the air–snow interface is taken
from KT-19, and CLWP is fixed to 0 g m−2. The retrieved distribution for all
clear-sky samples (mean and standard deviation) of wind slab correlation length,
depth hoar correlation length, and wind slab thickness is then used as a priori
for the microwave-only retrieval R2 for both clear-sky and cloudy conditions to
remove potential biases of the a priori values in R1. The clear-sky data used for
the calibration covers most parts of the HALO study area and is therefore likely
representative for cloudy scenes (Fig. 5.1).

5.3.2 Optimal estimation

During the optimal estimation retrieval, the state vector ~x is iteratively updated
until an optimal solution is found. Here, we use a priori as a first guess. The
updated state

~xi+1 = ~xa + SiKi
TSe

−1[(~y − F (~xi,~b) + Ki(~xi − ~xa)] (5.1)

is computed from the observation ~y (HAMP Tb), effective measurement uncer-
tainty Se, a priori state ~xa, forward operator F , forward model parameters ~b,
Jacobian matrix Ki of the forward operator F (~xi,~b), and retrieval uncertainty
Si. The effective measurement uncertainty combines observation and model un-
certainty, i.e.,

Se = Sy + KbSbKb
T , (5.2)

with the observation uncertainty Sy, the Jacobian matrix for model parameters
Kb (computed during each iteration), and the model parameter uncertainty Sb.
We choose an uncorrelated observation uncertainty of 1.5K from 22 to 118 GHz
and 2K at 183 GHz. Table 5.2 lists the mean and uncertainty of the model
parameters (wind slab density, depth hoar density, depth hoar thickness, and
specularity).
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The retrieval uncertainty is given as

Si = (Sa
−1 + Ki

TSe
−1Ki)−1, (5.3)

with the a priori covariance matrix Sa. The optimal solution and its a posteriori
uncertainty are found if the condition

(~xi − ~xi+1)TSi
−1(~xi − ~xi+1) < N

10 (5.4)

is met within six iterations. The retrieval algorithm assumes that the parameters
follow a Gaussian distribution. While this is valid for most parameters, the CLWP
may differ from a Gaussian distribution. A logarithmic transformation of CLWP
similar to Boukabara et al. (2011) will be applied in the future.

Figure 5.3: Flow diagrams of the (a) SMRT–PAMTRA forward operator (F (x, b))
coupled via emissivity (e) and effective temperature (Teff ), (b) clear-sky retrieval
to calibrate snow parameters (R1), and (c) retrieval for clear-sky and cloudy con-
ditions (R2). The parameter labeling of the forward operator in (a) corresponds
to the retrieval for clear-sky and cloudy conditions in (c) (the air–snow interface
temperature (Tas) and cloud liquid water path (CLWP ) are fixed parameters in
(b)). Note that the surface is characterized by fractions of young ice (YI) and
multiyear ice (MYI), such that fY I +fMY I = 1. Parameter names of each symbol
are listed in Table 5.2.

5.3.3 Sea ice radiative transfer

The sea ice radiative transfer is solved with SMRT (Picard et al., 2018). SMRT
simulates the microwave emission and scattering of horizontal and plane-parallel
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snow and sea ice layers. We assume that the snow consists of a mixture of ice
and air without any liquid water or brine. Although liquid water likely occurred
in the snowpack during parts of HALO–(AC)3, a CLWP retrieval would be very
uncertain over the highly emissive wet snow (Prigent et al., 2003; Vuyovich et al.,
2017). The sea ice is characterized either as first-year or multiyear ice in SMRT.
First-year ice comprises pure ice with brine inclusions, and multiyear ice comprises
pure ice with brine and air inclusions. Below the sea ice, we add a semi-infinite
ocean layer.

The propagation and scattering of microwave radiation in sea ice and snow
depend on the snow and ice microstructure (Mätzler, 2002). Here, we use the
exponential autocorrelation function as microstructure representation for both
snow and sea ice, which is a function of the correlation length (Wiesmann et al.,
1998). We select the improved Born approximation as electromagnetic theory
to compute the scattering coefficient, which was shown to reproduce observed
Tb over snow from 5–243GHz (Vargel et al., 2020; Sandells et al., 2022, 2024),
and the discrete ordinate and eigenvalue radiative transfer solver (Picard et al.,
2013). The permittivity of multiyear ice is calculated with the Polder–Van Santen
mixing formulas. Spherical inclusions are assumed for brine in first-year ice and
air bubbles in multiyear ice.

As we lack detailed sea ice and snow layer properties along the HALO flight
track, we define two simplified sea ice types: snow-covered sea ice and bare young
sea ice. The snow-covered sea ice comprises multiyear sea ice covered with a two-
layer snowpack. Snow-covered first-year ice is not defined explicitly due to the
limited sensitivity of frequencies above 18GHz to the sea ice type with constant
snow parameters based on SMRT (Soriot et al., 2022). The two-layer snow con-
sists of a depth hoar and a wind slab layer, commonly observed in the Arctic
(Merkouriadi et al., 2017; King et al., 2020). Wind slab typically consists of
rounded snow grains, and its density is higher than the density of the underlying
depth hoar. We do not retrieve the snow density, due to the limited sensitivity
at the low HAMP frequencies and similar sensitivity to correlation length at high
frequencies (Wivell et al., 2023). The snow thickness is set to 38 cm a priori typi-
cal for the study region in spring (Warren et al., 1999) with a depth hoar fraction
of about 40% similar to field observations (King et al., 2020). The young sea ice
is simulated as bare first-year sea ice, typically present in refrozen leads that are
resolved by high-resolution aircraft observations and have a higher emissivity and
surface temperature than surrounding sea ice (e.g., Hewison and English, 1999;
Risse et al., 2024b). Note that the young sea ice fraction is included in the forward
operator for sensitivity tests only and not retrieved due to poor retrieval regula-
tion when the influence of snow parameters decreases with increasing young ice
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fraction and the lack of accurate a priori data under cloudy conditions. Since the
sea ice type and its physical properties do not notably impact the Tb at HAMP
frequencies (Soriot et al., 2022), we can define a single-layer sea ice with fixed
thickness, density, correlation length, and salinity (Table 5.2).

The sea ice and snow layer temperatures are linearly interpolated between the
air–snow and snow–ice interface temperatures. An exception is the multiyear sea
ice layer, where the snow–ice interface temperature is used as layer temperature,
because the radiation emanates mostly from the upper part of the sea ice. Details
on the a priori estimation are provided in Appendix 5.B.

The emissivity (e) for each sea ice type (young ice or multiyear ice) is cal-
culated using SMRT simulations of the upwelling brightness temperature (Tb,up)
with and without atmospheric downwelling brightness temperature (Tb,down) fol-
lowing Wiesmann and Mätzler (1999), i.e.,

e = 1− Tb,up(Tb,down = 100 K)− Tb,up(Tb,down = 0 K)
100 K . (5.5)

Then, the emitting layer or effective temperature (Teff) is calculated as

Teff = Tb,up(Tb,down = 0 K)
e

. (5.6)

The emissivity and effective temperature of the two sea ice types are combined
using the young ice fraction. To reduce computational cost, we simulate e and
Teff only for the center frequencies of each channel and interpolate linearly to all
HAMP band passes.

5.3.4 Atmospheric radiative transfer

The atmospheric radiative transfer is simulated with PAMTRA (Mech et al.,
2020). PAMTRA computes the nadir Tb at the six HAMP channels for the
flight altitude of HALO, considering the atmospheric and surface contributions.
For the surface, we provide PAMTRA with the frequency-dependent emissivity
and effective temperature simulated with SMRT. The Lambertian and specular
contributions to surface reflection are weighted by specularity (s), where s = 0
(s = 1) corresponds to a fully Lambertian (specular) surface. The specularity
parameter is set to 0 as found for winter over snow (Guedj et al., 2010; Harlow
and Essery, 2012), with an uncertainty accounting for 25% specular contribution.
Atmospheric profiles are used from ERA5 and not adjusted during the retrieval
(Appendix 5.A). The gas absorption model by Rosenkranz (1998) is used with
modifications of the water vapor continuum absorption (Turner et al., 2009).

The a priori CLWP is set to 0 g m−2 with a standard deviation of 150 g m−2.
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Although CLWP is available from ERA5, we keep the retrieval simple and always
assume cloud-free conditions a priori. Negative CLWP values are set to 0 g m−2

before calling the forward operator. The CLWP is distributed with a homoge-
neous cloud liquid water content between the surface and 4 km height where the
air temperature is above -38 ◦C and simulated using a monodisperse size distri-
bution of 20 µm diameter. Both assumptions are considered to have a minimal
impact on the simulated Tb (Crewell et al., 2009; Ebell et al., 2017). The emission
of supercooled liquid water is derived following the model by Turner et al. (2016).
Rain is not included in the forward simulations because we also do not consider
associated wetting of the snowpack in our SMRT setup.

Cloud ice is not included in the simulation due to the low scattering at HAMP
frequencies up to 183GHz (e.g., Buehler et al., 2007). However, high amounts of
larger snow particles lead to notable scattering from 90 to 183GHz. For example,
we observed Tb depressions up to 10K at 183±7.5GHz during parts of the warm
air intrusion over sea ice during HALO–(AC)3. However, since we remove these
cases based on the radar reflectivity threshold, we assume that the remaining snow
scattering can be neglected. Adding snow water path is in principle possible, but
for simplicity, we focus on the cloud liquid water signal in this work.

5.3.5 Synthetic retrieval setup

The synthetic retrieval allows for the quantification of the CLWP retrieval ac-
curacy and the identification of parameter ambiguities. The observation for the
synthetic retrieval consists of realistic forward simulations of a known state rather
than real observations. To create realistic forward simulations that resemble nat-
ural variability, we randomly generate state and model parameters using the a
priori and model parameter covariance matrices. No noise is added to the syn-
thetic forward simulations, but it is part of the effective measurement uncertainty
of the retrieval. The synthetic database is built from random samples of HAMP
observation positions and respective state, model, and fixed parameters to rep-
resent HALO–(AC)3 conditions. The mean ERA5 integrated water vapor of the
database is 5 kg m−2 with a standard deviation of 3 kg m−2, and the mean ERA5
skin temperature is -14 ◦C with a standard deviation of 8K. For the CLWP ac-
curacy assessment, we sample CLWP uniformly from 0–500 g m−2 and run 5000
simulations. For the identification of parameter ambiguities (2000 simulations),
all parameters are sampled from Gaussian distributions truncated by the param-
eter limits (Table 5.2).
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5.4 Retrieval evaluation

5.4.1 Clear-sky evaluation

Observation space

A comparison between the HAMP observation and simulations under clear-sky
conditions (12,250 samples) provides an indication of whether the SMRT–PAM-
TRA forward operator represents real sea ice and snow conditions. In the follow-
ing, we present Tb departure statistics of the a priori and optimal states for the
retrievals R1 and R2 (Fig. 5.4). To ensure equal sampling, we analyze 81% of
the clear-sky observations where both R1 and R2 converge. Generally, R1 shows
a slightly higher convergence rate with 90% than R2 (87%), which is expected
due to the higher number of state parameters in R2.

The departures of the optimal solution improve notably and are much nar-
rower than the a priori for both R1 and R2, especially from 22–118GHz. The
highest difference between the R1 and R2 distributions occurs at 90 and 118GHz.
While R1 tends to underestimate the Tb, R2 slightly overestimates the Tb in some
cases by up to 10K. Still, both distributions align well with the effective measure-
ment uncertainty despite the increase in state parameters from four to six from
R1 to R2. The highest bias in R2 occurs at 22GHz with -3K, but the effect on
the CLWP retrieval is expected to be small. The biases of the other channels are
much smaller (-0.6–1.5K). This indicates a substantial improvement compared
to the a priori with biases between -11K at 22GHz and 2K at 118GHz. A Tb

bias correction could be performed at a later stage, but is not included here. The
root mean squared error of the R2 retrieval varies between 2–4K and lies close to
the effective measurement uncertainty. Also, the correlations between observed
and simulated Tb of the optimal solution are very high from 31–118GHz with
0.9–0.93. Hence, this clear-sky evaluation shows that the retrieval finds a state
that closely matches the observations, which provides the basis for the retrieval
application to synthetic and cloudy observations.

State space

Encouraged by the good match of the retrieval with HAMP in observation space,
we now analyze the corresponding retrieved state parameters (Fig. 5.5). The
mean and standard deviation of the retrieved states in R1 for all clear-sky obser-
vations lie mostly close to the a priori mean and standard deviation. The largest
difference occurs for the mean depth hoar correlation length, which increases by
about 1.2σ (a priori uncertainty) from the a priori to the optimal state. This
increase might be related to snow metamorphism throughout the winter, which
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Figure 5.4: Histograms of the Tb departure between clear-sky observations and
forward simulations of the a priori and optimal (opt.) states retrieved with R1
and R2. Panels show the (a) 22, (b) 31, (c) 50, (d) 90, (e) 118, and (f) 183GHz
channels. Note that only times where both retrievals converge are shown (81%
of the data). Unc.: Effective measurement uncertainty.

137



CHAPTER 5. SEA ICE–ATMOSPHERE RETRIEVAL

increased depth hoar grain size and microwave scattering in this layer. This in-
crease in a priori depth hoar correlation length explains the differences in the
a priori Tb bias between R1 and R2 (Fig. 5.4). The changes in the wind slab
correlation length (-0.2σ) and wind slab thickness (0.2σ) are much smaller. The
retrieved variability of the wind slab correlation length is lower than the value
from the literature. For the snow–ice interface temperature, a relatively large
negative deviation can be seen. This might be related to the observed negative
bias of the a priori at low frequencies in Fig. 5.4 and might originate from the
assumed relationship in Eq. (5.7) or a misrepresentation of sea ice and snow lay-
ering. An assessment of the spatial consistency of these parameters is presented
during the retrieval application in Sect. 5.5.

The distributions of the optimal parameters from the R2 retrieval shift slightly
compared to the R1 retrieval, but differences are overall small (Fig. 5.5). This
shows that the retrieved state is not very sensitive to the a priori mean, which
is important for the poorly constrained snow parameters. Compared to R1, the
R2 retrieval also derives the air–snow interface temperature, as this information
will not be available under cloudy conditions. The retrieved temperature centers
well around the ERA5-based a priori estimate, indicating that the ERA5 skin
temperature is a suitable a priori choice. The root mean squared error between
the retrieved air–snow interface temperature and the skin temperature from KT-
19 is 2.8K, which is similar to the ERA5-based a priori (3.1K; not shown). For
CLWP, which is also retrieved by R2 and should ideally be zero under clear-
sky identified from the radar–lidar cloud mask, the root mean squared error is
112 g m−2 (Fig. 5.5f). Generally, the state distributions are realistic despite some
deviations in the snow–ice interface temperature, which affect the low-frequency
HAMP channels. Thus, we conclude that the retrieval with the SMRT–PAMTRA
forward operator provides a generalized representation of the sea ice and snow
layer properties for a CLWP retrieval.

5.4.2 Cloud liquid water path detectability

This section analyses the CLWP detectability of the HAMP retrieval from clear-
sky observations. During clear-sky conditions, the retrieved CLWP should ide-
ally be close to 0 g m−2. Hence, we can define the CLWP detectability as the
95th percentile of retrieved CLWP under clear-sky (Fig. 5.6a). For all observa-
tions, about 95% of the retrieved CLWP are below 306 g m−2. We identify a
distinct spatial pattern in the Central Arctic, where this detectability improves
a lot down to 45 g m−2. This decrease with increasing distance to the ice edge
is shown in Fig. 5.6b. Between 150–200 km, the detectability decreases from
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Figure 5.5: Histograms of the retrieved parameters from the retrievals R1 and
R2 during clear-sky observations corresponding to Fig. 5.4. The a priori mean
and uncertainty are shown above each panel. Panels show the (a) wind slab
correlation length, (b) depth hoar correlation length, (c) wind slab thickness, (d)
snow–ice interface temperature minus a priori, (e) air–snow interface temperature
minus a priori (R2 only), and (f) cloud liquid water path (R2 only). Note that
only times where both retrievals converge are shown (81% of the data).
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300 to below 100 g m−2 and remains low for further distances to the ice edge.
The infrared-based analysis by Müller et al. (2025) shows a consistent decrease
of refrozen leads with distance to the ice edge. These leads and their respec-
tive high microwave emissivity and skin temperature are correlated with false
CLWP detections (Fig. 5.6c). The high false detection for low thin ice fraction
likely corresponds to thicker young ice, potentially with a snow cover, and a skin
temperature comparable to surrounding sea ice. A similar Tb response between
CLWP and increased bare ice fraction can also be simulated with SMRT and
PAMTRA (Fig. 5.6d). Overall, the clear-sky retrieval evaluation shows that the
retrieval detects CLWP above 50 g m−2 at higher distances from the ice edge and
can thus be applied to cloudy scenes.

Figure 5.6: Assessment of cloud liquid water path (CLWP) detectability and
falsely-detected CLWP. (a) Cumulative density of retrieved CLWP for all and
Central Arctic clear-sky samples with the corresponding detectability estimated
from the 95th percentile. (b) CLWP detectability and sigmoidal fit as a function
of distance to sea ice edge. (c) Scatter plot between thin ice fraction derived
from the thermal infrared spectral imager and falsely-detected CLWP with Tb
difference between 90 and 22GHz as shading. (d) Simulated brightness tempera-
ture difference (∆Tb) between the a priori state and modified a priori states with
increased fY I (from 0 to 50%) and CLWP (from 0 to 150 g m−2) for all clear-sky
samples. Shading indicates the 25–75 percentile range of ∆Tb for both sensitivity
tests.
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5.4.3 Cloud liquid water path accuracy

In Sect. 5.4.1, we proved that the forward operator and adjustment of the state
parameters closely match with clear-sky HAMP observations. In the following,
we analyze the CLWP retrieval skill based on synthetic retrieval experiments
(Fig. 5.7). Generally, the retrieval is able to reproduce the real CLWP, but with
a high relative uncertainty of about 125% for CLWP below 50 g m−2 and growing
underestimation toward high CLWP values. The high relative uncertainty of more
than 100% for low CLWP indicates the challenge in identifying thin or low-level
clouds over sea ice (Turner et al., 2007). The RMSE of the synthetic experiment
for low CLWP conditions can be compared with the clear-sky retrieval (Fig. 5.7b).
At larger distances from the sea ice edge toward the Central Arctic, the clear-sky
RMSE is about 30 g m−2, which is comparable to the RMSE estimated from the
sensitivity test for low CLWP conditions. The growing bias toward high CLWP
values can likely be explained by the retrieval starting with cloud-free conditions
a priori. As the CLWP exceeds multiples of its uncertainty, a growing fraction
of the cloud liquid signal influences the retrieval of snow parameters with similar
Jacobians, particularly the wind slab correlation length (Appendix 5.C).

The uncertainty estimated from the synthetic experiments holds for all condi-
tions that meet the forward model assumptions. Mainly, the occurrence of leads,
open water, wet snow, and deviations from the simple two-layer snow assump-
tions increases the CLWP uncertainty and leads to biases. However, the synthetic
experiments provide the only way to assess the retrieval skill due to the lack of
independent CLWP data. The good performance under clear-sky conditions pro-
vides confidence that the estimated skill closely represents real conditions. While
some improvements might be expected with an improved CLWP a priori infor-
mation, such as ERA5, we keep the clear-sky a priori assumption for simplicity.

We also performed sensitivity tests with two additional dual oxygen channel
pairs (51.76, 52.8, 118±4.2, and 118±2.3 GHz; not shown). The lower surface
sensitivity and differential water vapor emission signal were shown to provide
additional information on precipitation, especially over land (Bauer and Mugnai,
2003; Bauer et al., 2005). However, the synthetic experiments did not yield an
improvement in CLWP retrieval accuracy in relation to the additional computa-
tional cost. Furthermore, we increased the number of channels starting with the
lower three channels (22–50GHz) and found the highest improvement in accuracy
when adding the 90GHz channel. However, we use the entire frequency range
during the retrieval to provide a broad spectral range for the surface characteri-
zation.
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Figure 5.7: Cloud liquid water path (CLWP) retrieval skill based on synthetic ex-
periments. (a) Joint histogram of the true CLWP used in the forward simulation
and the retrieved CLWP, with median, 25th (Q25), and 75th percentiles (Q75).
(b) Root mean squared error (RMSE) as a function of true CLWP from the syn-
thetic experiments and clear-sky observations split into all and Central Arctic
(C. Arctic) observations. (c) RMSE normalized by the true CLWP (PRMSE) as
a function of true CLWP.

5.5 Retrieval application

5.5.1 Case 1: Stratocumulus (12 April 2022)

In this section, we present the HAMP retrieval for an overflight of about 800 km
across a stratocumulus field over sea ice from the ice edge toward the north pole on
12 April 2022 (Fig. 5.8; case 1 in Fig. 5.1). About 92% of the retrievals converged,
which is slightly above the convergence rate of 85% for all flights. The near and
thermal infrared images indicate refrozen leads in the initial 150 km until the
stratocumulus and a cirrus layer dominate the images (Fig. 5.8a1–b1). The cloud
top height is stable with about 300–400m along the 250 km cross section captured
by HALO (Fig. 5.8b2). The radar reflectivity signal of the cloud is rather weak
with few low-reflectivity streaks (Fig. 5.8a2).

The observed HAMP Tb generally decreases toward the north, with a break-
point around 400 km at 22, 31, and 50GHz (Fig. 5.8c1-h1). This large-scale
gradient might be related to a transition in the snow and sea ice regime to-
ward the Central Arctic with predominantly perennial sea ice, apart from surface
cooling. Small-scale features at a scale below 25 km indicate snow and sea ice
variations at floe scales and the presence of refrozen leads, which likely cause the
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high 90, 118, and 183GHz Tb peaks. The retrieval is able to find a matching Tb
for most conditions, which represents this small and large scale Tb variability not
represented by the a priori. An exception is the section from 450–600 km with
differences of about 5–10K, especially at 90, 118, and 183GHz.

While no distinct cloud emission signature can be identified from the observed
Tb time series, the retrieval finds CLWP from 0–400 km and 650–850 km. Very
high and short CLWP peaks coincide with leads due to the similar Jacobians
of lead fraction and CLWP (see Fig. 5.6d). The broader CLWP plateau from
150–400 km might be linked to actual cloud liquid presence in the stratocumulus
field. However, most CLWP values are below the CLWP detectability. The
CLWP signal at the end of the segment does not align with an observed liquid
layer in the lidar. The other state parameters follow the small and large scale Tb
features discussed earlier. Notably, the depth hoar correlation length increases
around 400 km, which could be linked to more multiyear ice toward the north.
Interestingly, the wind slab correlation length does not follow the same pattern
and increases around 600 km.

Overall, this case study demonstrates that the retrieval finds a state space,
which matches the observations under cloudy and clear-sky conditions along a
long flight segment from the sea ice edge to the Central Arctic (81–88◦N). How-
ever, the retrieval does not clearly identify the CLWP signature of the low-level
stratocumulus field, likely due to its CLWP being below the CLWP detectability
threshold, and falsely retrieves CLWP in areas without liquid cloud layers.

5.5.2 Case 2: Warm air intrusion (14 March 2022)

After analyzing the HAMP retrieval for a stratocumulus cloud with low CLWP,
we now present a second case during a crossing from north to south of the warm
air intrusion on 14 March 2022 (Fig. 5.9; case 2 in Fig. 5.1). Almost all of the
retrievals converged along this transect (99%). The radar shows the cloud and
precipitation structure with snowfall occurring from 25–175 km. The lidar signal
shows liquid top heights from 2–4 km within the precipitating system. Lower
clouds occur toward the end of the segment. These clouds can also be seen in the
near-infrared images. The thermal infrared images indicate increased fraction and
size of leads with warmer skin temperature than the surrounding sea ice toward
the end of the segment, around 550 km.

The observed HAMP Tb decreases toward the end of the segment at all fre-
quencies, which is partly linked to the decrease in atmospheric water vapor and
temperature as HALO leaves the warm air intrusion center. This gradient is also
reflected by the a priori Tb. However, the Tb decreases well below the a priori
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Figure 5.8: HAMP observation and retrieval for a northbound flight segment
above a stratocumulus field on 12 April 2022 (case 1 in Fig. 5.1). (a1) Near
infrared radiance, (a2) radar reflectivity, (b1) thermal infrared Tb, and (b2)
backscatter ratio. (c1-h1) Observation space: Observed, a priori, and optimal
Tb at (c1) 22, (d1) 31, (e1) 50, (f1) 90, (g1) 118, and (h1) 183GHz. (c2-h2) State
space: A priori and optimal (c2) cloud liquid water path from HAMP with ERA5
cloud liquid water path and HAMP cloud liquid water path detectability (CLWP
det.), (d2) air–snow interface temperature with KT-19 skin temperature under
clear-sky, (e2) snow–ice interface temperature, (f2) wind slab correlation length,
(g2) depth hoar correlation length, and (h2) wind slab thickness. Note that the
CLWP detectability exceeds the axis limit from 0–100 km.

144



5.5. RETRIEVAL APPLICATION

at all frequencies with sharp boundaries at about 200 and 425 km. Similar to
the stratocumulus case in Fig. 5.8, the observations and the simulated optimal
state align well on both small and large spatial scales. Larger differences between
the observations and retrieved state occur between 250–450 km. Moreover, the
simulation overestimates the observed 22GHz Tb from 200 km until the end of
the segment.

The retrieval adds CLWP for regions where the lidar also identifies liquid layers
with up to 300 g m−2 from 0–225 km. This region corresponds to the cloudy region
at the core of the warm air intrusion and is partly excluded from the retrieval
due to potential scattering by frozen hydrometeors that are not considered in the
radiative transfer. The decrease in CLWP also aligns with the transition from
liquid to non-liquid layers in the lidar backscatter ratio. Also, ERA5 data contains
clouds with CLWP up to about 75 g m−2, although a comparison is challenging
due to the larger size of the model grid compared to the HAMP footprint. The
retrieved CLWP toward the end of the segment is likely associated with the low-
level clouds and false detections from refrozen leads, which formed in response to
the warm air intrusion.

The air–snow interface temperature aligns well with the KT-19 skin tempera-
ture with absolute differences mostly below 2K. The snow–ice interface temper-
ature drops to very low values at about 200 km, corresponding to the 22GHz Tb
decrease. A similar trend can be found for the wind slab and depth hoar correla-
tion lengths, which increase toward the end of the segment at about 425 km. The
wind slab correlation length is very low within the precipitating system, likely due
to the ambiguity with the CLWP signal (see Appendix 5.C). Overall, the liquid
cloud signal during the warm air intrusion is well represented by the retrieval.

5.5.3 Rain-on-snow event (12–14 March 2022)

Sea ice parameters retrieved during the warm air intrusion on 14 March 2022
partly lie outside of the expected parameter range. This flight covered an area
affected by surface melt and rain on 13 March 2022 and subsequent refreezing.
It is well known that rain-on-snow (ROS) events and associated surface glazing
strongly influence the sea ice microwave signature from ground-based (Stroeve
et al., 2022) and satellite observations (Voss et al., 2003; Rückert et al., 2023a).
In the following, we present the evolution of the state parameters during three
consecutive flights from 12 to 14 March 2022, covering the conditions before,
during, and after the ROS event (Fig. 5.10). The 91 GHz V-pol imagery captured
by SSMIS onboard DMSP-F16 close to the HALO overpasses shows an increase
in Tb by several tens of Kelvins from 12 to 13 March 2022. After the ROS event
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Figure 5.9: HAMP observation and retrieval for a southbound flight segment
during the warm air intrusion on 14 March 2022 (case 2 in Fig. 5.1). Panels as
in Fig. 5.8.
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on 14 March 2022, the Tb decreases far below the condition observed prior to the
ROS event (Fig. 5.10a3), and remains low for a couple of weeks until April 2022
(not shown).

The HAMP retrieval on 12 March lies near the a priori values and converges
87% of the time. The only outlier is an open water patch near the ice edge at
80◦N, which corresponds to very low Tb that causes artificial sharp gradients in
the retrieved snow–ice interface temperature and depth hoar correlation length.
The cloudy region south of 82◦N visible in radar and lidar is captured by the
retrieval. The retrieved CLWP reaches mostly values between 200 and 300 gm−2,
which aligns with liquid layer top heights of 4–5 km detected by the lidar.

On 13 March, a clearly visible bright band at 1 km height in the radar re-
flectivity profile likely indicates melting snow and associated rainfall on the sea
ice. Therefore, the retrieval is invalid for most parts of this segment and masked
out by the 2m air temperature and radar reflectivity flags. The northern part
of the bright band is not flagged at about 83◦N, but the HAMP retrieval does
not converge in this area (Fig. 5.10a2). The area not affected by the ROS event
(north of 83◦N) mostly lies close to the a priori. A notable increase in the depth
hoar correlation length north of 86◦N might be related to the higher fraction of
perennial sea ice.

After the ROS event, the HAMP retrieval converged for most observations
(99%) on 14 March (see Sect. 5.5.2). While sea ice parameters in the north-
ern region lie close to the a priori, they deviate from the expected range in the
low-Tb region south of 84.5◦N (Fig. 5.10a3). This is slightly farther north than
the observed melting layer in the radar at 83◦N and could be explained by the
northward transport of warm and moist air masses between the flights and po-
tential rain or surface melt up to 84.5◦N. Especially the wind slab correlation
length and the snow–ice interface temperature lie far from the a priori and the
conditions observed before the ROS event on 12 March. Potential reasons for the
altered sea ice emissivity could be the formation of ice lenses after the freeze-up
at the surface. Ice lenses are weakly scattering and lower the microwave emissiv-
ity through the dielectric contrasts between adjacent layers of different densities.
Additionally, newly accumulated snow on top of the ice lens could amplify the
Tb reduction. Interestingly, a secondary increase in the wind slab correlation
length occurs as HALO approaches the Tb minimum of the SSMIS swath around
82.5◦N. Near and thermal infrared images do not show apparent surface patterns
that correlate with this microwave signature (not shown). Thus, we assume that
spatial variations of snowpack changes (ice lens, fresh snow) contribute.
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Figure 5.10: HAMP retrieval and satellite observations before the rain-on-snow
(ROS) event (12 March 2022, column 1), during the ROS event (13 March 2022,
column 2), and after the ROS event (14 March 2022, column 3). (a1–a3) 91 GHz
V-pol Tb from SSMIS onboard DMSP-F16 at about (a1) 13:30 UTC, (a2) 15:00
UTC, and (a3) 14:45 UTC, 15% sea ice concentration contour, and meridional
HALO flight tracks with retrieval convergence mask as shading from (a1) 13:56–
15:42 UTC, (a2) 13:43–15:30 UTC, and (a3) 13:26–16:45 UTC. Note that HALO
flew a zonal segment during the turn in (a3), not shown here. Panels below the
maps show HALO observations and retrieval parameters (a priori and optimal)
as a function of latitude: (b1–b3) Radar reflectivity, (c1–c3) backscatter ratio
(BSR), (d1–d3) cloud liquid water path from HAMP with ERA5 cloud liquid
water path and HAMP cloud liquid water path detectability (CLWP det.), (e1–
e3) air–snow interface temperature with KT-19 skin temperature under clear-sky,
(f1–f3) snow–ice interface temperature, (g1–g3) wind slab correlation length, (h1–
h3) depth hoar correlation length, and (i1–i3) wind slab thickness.
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5.5.4 CLWP variability during HALO–(AC)3

In this section, we exploit the collocated radar–lidar cloud remote sensing data
from HALO to assess CLWP distributions for different cloud types (Fig. 5.11).
In total, 85% of HAMP retrievals converge during the entire campaign, which
is similar to the clear-sky convergence rate (87%). The CLWP distributions of
HAMP shift gradually toward higher values with increasing liquid top height
determined from the lidar (Fig. 5.11a). The low liquid top class predominantly
shows CLWP below 25 g m−2 and the high liquid top class shows a broad peak
from 100–200 g m−2. During the absence of a liquid layer, the CLWP follows the
clear-sky distributions (Fig. 5.5f) with a considerable amount of falsely detected
CLWP likely related to refrozen leads. To exclude these cases, we filter for the
Central Arctic where fewer leads are expected (Fig. 5.11c). The no liquid class
remains mostly below 50 g m−2, which aligns with the lower CLWP detectability
threshold found in this region. Most CLWP values above 100 g m−2 align with
observations with liquid top heights between 1–5 km. In the 50–100 g m−2 range,
the 0.5–1 km liquid top heights become more frequent.

The distributions from ERA5 follow a similar shape as the HAMP distribu-
tions for all observations (Fig. 5.11b) and the Central Arctic (Fig. 5.11d). A no-
table difference for all cases is the higher number of extremes derived from HAMP,
which likely relates to the small footprint size of HAMP with 1 km compared to
a spatial resolution of 31 km of ERA5. Moreover, potential false detection over
leads could cause artificial CLWP peaks. Both CLWP distributions peak at 125–
150 g m−2 when a liquid layer was detected by the lidar. For the distribution in
the Central Arctic, both HAMP and ERA5 show CLWP up to 175 g m−2 and a
few extremes above 200 g m−2 mostly linked to high liquid tops.

The analysis of CLWP distributions for HAMP and ERA5 indicates agree-
ment in both the shape and magnitude of CLWP. However, the relatively high
uncertainty of the HAMP retrieval and the negative bias found for high CLWP
from synthetic experiments should be considered when evaluating ERA5 CLWP.

5.6 Conclusions

Passive microwave observations provide high spatial and temporal coverage in
the Arctic onboard polar orbiting satellites, but their use remains limited due to
the variable sea ice and snow emission. Here, we exploited nadir-viewing pas-
sive microwave observations (22–183GHz) and collocated active cloud remote
sensing data for diverse cloud and sea ice conditions captured with the HALO
aircraft during the Arctic spring HALO–(AC)3 campaign (Wendisch et al., 2024).
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Figure 5.11: Cloud liquid water path histogram along the HALO flight track from
(a, c) HAMP and (b, d) ERA5. (a, b) All observations and (c, d) observations
in the Central Arctic. Shading classifies observations based on liquid top height
(hl), no liquid (No liq.), potential liquid (Pot. liq.), and missing lidar data. The
inset region is denoted by the gray rectangle. Note that ERA5 is only shown for
times where the HAMP retrieval converged.
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We developed a physical sea ice–atmosphere optimal estimation retrieval algo-
rithm with the loosely coupled SMRT (Picard et al., 2018) and PAMTRA (Mech
et al., 2020) radiative transfer models for the HAMP microwave radiometer chan-
nels. The algorithm retrieves three snow layer parameters (wind slab correlation
length, depth hoar correlation length, and wind slab thickness), the air–snow
and snow–ice interface temperatures, and CLWP. The combination of this pas-
sive microwave retrieval with HALO’s cloud observatory instrument suite, which
is typically not available for passive microwave observations from satellites, pro-
vides a unique opportunity to (1) assess the representation of sea ice and snow
microwave emission by the forward model, (2) estimate the CLWP detectability
and retrieval accuracy, and (3) analyze the spatial variability of CLWP over sea
ice during HALO–(AC)3.

The optimal estimation retrieval found a geophysical state consistent with
HAMP clear-sky observations identified by the collocated radar–lidar cloud mask
with a convergence rate of 87%. The Tb departure of the optimal solution strongly
improved compared to the a priori, which assumed no spatial variability of the
three snow properties. Moreover, the distributions of all snow parameters lie
within the expected range.

The CLWP detectability was assessed from the clear-sky performance. We find
a detectability threshold of 50 g m−2 in the Central Arctic, which increases to-
wards the marginal ice zone up to 350 g m−2. The detectability near the marginal
ice zone can be potentially improved with additional information on lead or young
ice fraction. From SMRT–PAMTRA simulations, we found that a young ice frac-
tion of 50% causes a similar Tb signature as 150 g m−2 CLWP. The CLWP re-
trieval accuracy was derived from synthetic retrieval experiments. The relative
root mean squared error of CLWP decreased from above 100% for CLWP below
50 g m−2 to below 50% above 100 g m−2. The identified bias for higher CLWP
values can be explained by the parameter ambiguity between CLWP and wind
slab correlation length.

The retrieval was applied to a stratocumulus case and a warm air intrusion
case. While the CLWP of the stratocumulus case was mostly near the detectabil-
ity threshold and not clearly matching with the liquid layer visible in the lidar
observations, the higher CLWP of the warm air intrusion event aligned well with
the lidar. The simultaneously derived surface parameters for the stratocumulus
case follow realistic spatial gradients with increased snow correlation length and
thus increased scattering from the ice edge toward the north pole. A statistical
comparison of CLWP for all flights between HAMP and ERA5 found generally a
similar CLWP shape and increasing CLWP for increasing liquid top height.

This work implies that SMRT could be useful in a coupled sea ice–atmosphere
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data assimilation system using a priori data from a thermodynamic sea ice and
snow evolution model. This approach would benefit from the high sensitivity of
passive microwave observations to snow emissivity changes due to atmospheric
processes, such as rain, snowfall, and near-surface air temperature. For example,
the warm air intrusion in March 2022 and the associated surface melt and rain-on-
snow event altered the emissivity within a few hours due to increased liquid water
fraction within the snowpack, and the subsequent refreezing and potential ice lens
formation altered the Tb signature for several weeks compared to conditions prior
the warm air intrusion.

There are several limitations of this study, apart from the limited seasonal
and spatial generalization of field observations. First, no independent quantitative
reference observations of the state variables exist at scale, especially under cloudy
conditions and regarding snow microstructure. The second limitation involves
the simplified two-layer snowpack without fresh surface snow from accumulating
snow or ice lenses from melt-freeze cycles, which both impact the emissivity at
frequencies sensitive to CLWP (e.g., Sandells et al., 2024). The difficulty of
simulating these scattering signatures with our two-layer snow setup might partly
explain the non-convergence rate of 13% under clear-sky conditions.

A way for future work to advance the use of passive microwave observations in
the Arctic lies in exploiting the influence of atmospheric events on surface emis-
sion, such as rain-on-snow, and the integration of more observation geometries
from microwave imagers and sounders. This would not only increase the tem-
poral resolution, which is crucial during extreme events like warm air intrusions,
but also ensure spectral, angular, and polarization consistency of the radiative
transfer simulations. Especially the angular and polarization dependence over sea
ice requires validation of SMRT, e.g., using ship observations (Rabe and Geibert,
2025; Rückert et al., 2025), and could provide additional information benefit for
integrated sea ice–atmosphere retrievals.

Appendix

5.A Atmospheric profiles

The approach of fixed atmospheric temperature and specific humidity profiles
differs from sea ice–atmosphere retrievals that derive temperature profiles (Kang
et al., 2023) or integrated water vapor (IWV) (Rückert et al., 2023b) based on
climatological mean a priori data. The collocated instantaneous ERA5 data pro-
vide accurate IWV when compared to dropsondes launched over sea ice with a
root mean squared error (RMSE) of 0.25 kg m−2 and percentage RMSE (PRMSE)
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of 9%, without notable improvement for assimilated dropsondes. Similarly low
RMSE between ERA5 and dropsondes over sea ice are found for profiles of tem-
perature (0.5K above 1 km height and up to 2K below 1 km height) and relative
humidity (10–15%) (see Fig. 3 in Walbröl et al., 2024). To assess the impact of
ERA5 IWV uncertainty at HAMP frequencies, we conduct a sensitivity test by
increasing IWV by 10%. This test results in maximum Tb changes of up to 2K
at 183±7.5GHz for IWV ranges of 2 to 4 kg m−2 and 1.5K at 118±8.5GHz for
IWV ranges of 8 to 13 kg m−2 (not shown). These relatively moderate sensitivities
support our use of fixed atmospheric profiles.

5.B A priori interface temperatures

The snow–ice interface temperature (Tsi) a priori is computed by a simple linear
scaling between the air–snow interface temperature a priori (Tas) and the water
temperature (Tw = 271.35K) with a manually determined scaling factor (a =
0.25), chosen from sensitivity tests, as

Tsi = Tas + a · (Tw − Tas). (5.7)

The ERA5-based air–snow interface temperature a priori used in R2 is derived
from ERA5 skin temperature (Ts,ERA5) with an empirical correction to remove
biases with respect to the KT-19 skin temperature. We derive the following
empirical relationship from clear-sky HALO–(AC)3 data:

Tas = 0.94 · Ts,ERA5 + 11 K. (5.8)

5.C Parameter ambiguities

In the following, we analyze parameter ambiguities between the six retrieved state
parameters and the four fixed model parameters from synthetic retrievals. The
ambiguities are quantified from correlations between the normalized residuals
derived for the state parameters as

rx,i = xop,i − xtrue,i√
Sa,ii

, (5.9)

with the retrieved state xop and state used for the synthetic observation xtrue.
The same equation is adapted to the model parameters, which are fixed during
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the retrieval, i.e,
rb,i = bi − btrue,i√

Sb,ii
, (5.10)

where btrue denotes the model parameter used for the synthetic observation. Cor-
relations between two model parameters are neglected here as they are not directly
relevant for the retrieval performance.

In total, 14 out of 39 parameter combinations show correlations larger than
±0.1, and five of the relationships include CLWP (Fig. 5.12). The highest cor-
relation is found between CLWP and wind slab correlation length (0.67). This
indicates that scattering in the wind slab layer partly compensates the spectral
cloud emission signature and vice versa. This is consistent with similar Jaco-
bians, which indicates that both parameters affect the simulated Tb in a similar
way (not shown). Also, the posterior covariance matrix shows a high correlation
of 0.8 between CLWP and wind slab correlation length. Negative correlations
are found between CLWP and air–snow interface temperature (-0.21) and wind
slab density (-0.18). Minor relationships occur between CLWP and the specu-
larity parameter and snow–ice interface temperature. The lower correlation with
these parameters can be related to the larger differences in the Jacobian matrix.
Correlations between other parameters are also found, notably between depth
hoar correlation length and depth hoar thickness (-0.63) and snow–ice interface
temperature (0.51). Overall, the pronounced ambiguity between CLWP and wind
slab correlation length suggests that HAMP observations can only partly separate
both signals over sea ice from real observations.
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Figure 5.12: Correlations between normalized parameter residuals from the syn-
thetic retrieval experiment. The parameter combinations are sorted from positive
to negative correlations, and the first (second) parameter is shown on the hori-
zontal (vertical) axis. Note that parameter combinations with correlations within
±0.1 are not shown and that no positive residuals occur for the specularity model
parameter. Parameter names of each symbol are listed in Table 5.2.
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Code and data availability

The code for this study is available on Zenodo at https://doi.org/10.5281/
zenodo.15849617 (Risse, 2025b). The optimal estimation retrieval inputs and
outputs are available on Zenodo at https://doi.org/10.5281/zenodo.15848
709 (Risse, 2025a). The version of PAMTRA with an emissivity vector extension
corresponds to commit fb71f43 (last access: 21 November 2024), pulled from
https://github.com/nrisse/pamtra/commit/fb71f43 (Mech et al., 2020).
The version of SMRT corresponds to commit 6f7dadc (last access: 29 October
2024), pulled from https://github.com/smrt-model/smrt/commit/6f7dadc
(Picard et al., 2018). The version of pyOptimalEstimation corresponds to commit
1eb4f26 (last access: 22 November 2024), pulled from https://github.com/m
aahn/pyOptimalEstimation/commit/1eb4f26 (Maahn et al., 2020). HAMP
measurements were obtained from https://doi.org/10.1594/PANGAEA.974108
(Dorff et al., 2024), and the updated version of the bias correction used here will be
made available soon. WALES measurements were obtained from https://doi.
org/10.1594/PANGAEA.967086 (Wirth and Groß, 2024). KT-19 measurements
were obtained from https://doi.org/10.1594/PANGAEA.967378 (Schäfer
et al., 2024). VELOX measurements were obtained from https://doi.org/
10.1594/PANGAEA.963382 (Schäfer et al., 2023b). SpecMACS measurements
were obtained from https://doi.org/10.1594/PANGAEA.966992 (Weber et al.,
2024b). Dropsonde measurements were obtained from https://doi.pangae
a.de/10.1594/PANGAEA.968900 (George et al., 2024). The VELOX surface
classification data is currently accessible upon request and will be made publicly
available on PANGAEA (Müller et al., 2025). Aircraft position and orientation
were obtained from the "ac3airborne" intake catalog (Mech et al., 2022e). The
sea ice concentration data from the University of Bremen were obtained from
https://data.seaice.uni-bremen.de (last access: 30 April 2025, Spreen et al.,
2008). The ERA5 reanalysis data on model levels were obtained from https:
//doi.org/10.24381/cds.143582cf (last access: 28 June 2025, Hersbach et al.,
2017). The ERA5 reanalysis data on single levels were obtained from https:
//doi.org/10.24381/cds.adbb2d47 (last access: 28 June 2025, Hersbach et al.,
2023). The Level 1C TB data for SSMIS on DMSP-F16 were obtained from
https://doi.org/10.5067/GPM/SSMIS/F16/1C/07 (Berg, 2021b).
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Chapter 6

Conclusions and outlook

6.1 Conclusions

Passive microwave observations in the Arctic capture physical properties of both
the sea ice and clouds, which are essential components of the Arctic climate
system. This dissertation aims to improve the use of high-frequency passive mi-
crowave observations from polar-orbiting satellites over sea ice. Unique airborne
and ship-based observations were analyzed from the ACLOUD, AFLUX, HALO–
(AC)3, and VAMPIRE campaigns. The field observations provided insights into
the spatial variability of sea ice emissivity at high frequencies within satellite foot-
prints (Chapter 3). Parts of these sea ice emissivity variations could be attributed
to atmospheric processes (Chapter 4). The observations were also compared with
sea ice and snow radiative transfer simulations during new ice formation and snow
accumulation. The radiative transfer model is inverted in a newly developed sea
ice–atmosphere optimal estimation retrieval, which allows for cloud liquid water
path estimation over sea ice from airborne observations (Chapter 5). To assess
the retrieval capabilities, extensive evaluation is performed with reference data
from collocated cloud radar and lidar instruments. To address the objectives of
this work, four research questions were formulated. The contributions of the three
studies are summarized below.

RQ1: How does sea ice emissivity vary spatially within
satellite footprints, and how is this reflected in the spec-
tral variability at the satellite scale toward submillimeter
wavelengths?

The sea ice emissivity is highly variable on small spatial scales that are typically
averaged out at the satellite scale. The spatial variability of the sea ice emissivity
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within satellite footprints was quantified from Polar 5 observations during the
ACLOUD and AFLUX field campaigns up to 340GHz (Chapter 3). The spec-
tral emissivity variability at satellite scale toward submillimeter wavelengths was
quantified by resampling the airborne observations to the footprints of current
satellite sensors.

The field observations spatially resolve the surface emissivity with a footprint
size of about 100m. The change in emissivity variability with increasing foot-
print size up to 20 km was estimated. As expected, a reduction of the emissivity
variability occurs with increasing footprint size. The reduction is larger during
the AFLUX campaign than during the ACLOUD campaign, due to the melting
conditions during ACLOUD. During AFLUX, the 340GHz emissivity variabil-
ity across all flights decreases by about half from the hectometer resolution of
the aircraft to a typical satellite footprint with a diameter of 16 km. A relevant
small-scale feature is the newly formed sea ice in leads between larger ice floes.
This newly formed sea ice has a higher emissivity than the adjacent older sea
ice, likely due to the absence of scattering from snow on the sea ice. The results
further showed that AMSR2 is able to resolve more small-scale features at 5 km
footprint size at 89GHz.

The collocation of MiRAC observations with MHS, ATMS, SSMIS, and AMSR2
provides insights into the spectral emissivity variability that can be expected
above 200GHz from satellites. Differences are found between the spectral vari-
ability from ACLOUD and AFLUX, with an emissivity reduction during AFLUX
from 183 to 243GHz and constant emissivity during ACLOUD. From the airborne
observations, a similar co-variability occurs at 183, 243, and 340GHz with a small
spectral emissivity gradient from 89 to 340GHz. In general, the spatial and tem-
poral variability might be larger than the spectral differences in this frequency
range at satellite scales.

RQ2: Which atmospheric processes influence sea ice emis-
sivity toward high frequencies?

Atmospheric processes influence the sea ice emissivity at high frequencies through
precipitation and the melt–freeze cycle. The field observations analyzed in Chap-
ter 4 quantify the effects of the surface freeze onset, snow accumulation, and new
ice formation. The retrieval in Chapter 5 captured the sea ice emissivity change
after a rain-on-snow that occurred during a warm air intrusion in March 2022.

The impact of snowfall on the emissivity could be quantified from the quasi-
continuous statistical observations during the VAMPIRE expedition onboard
R/V Polarstern before and after surface freeze onset. The newly accumulated
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snow reduces the emissivity at the high frequencies to an almost constant level
over multiyear ice. The continuous formation of new ice with varying snow thick-
ness provided evidence that snow accumulation causes the emissivity reduction
of young ice from about 0.95 to 0.6 at high frequencies. The signature of snowfall
is only visible at 183 and 243GHz and not at lower frequencies (22 to 51GHz).
A machine learning regression model that predicts the microwave emissivity at
243GHz from visual images confirmed the role of snow formations. The model
could predict the emissivity with a root mean squared error of 0.11 and a corre-
lation to the observation of 0.67.

The findings from VAMPIRE also match emissivity spectra observed in spring
2019 during AFLUX at nadir from 89 to 340GHz (Chapter 3). However, not
enough samples were collected to establish the role of snow cover in the evolution
from nilas with a high emissivity from 89 to 340GHz to young ice with a high emis-
sivity at 89GHz and low emissivity at high frequencies. The observed emissivity
variability at high frequencies over snow-covered sea ice is high and attributed
to snow correlation length and density variations based on Snow Microwave Ra-
diative Transfer (SMRT; Picard et al., 2018) simulations. The influence of snow
thickness saturates once snow thickness exceeds a few centimeters at 243GHz.
Another impact of the snow accumulation on the microwave signature of bare ice
at high frequencies is a potential change in surface reflection type from specular
to more diffuse reflection.

The impact of a rain-on-snow event in March 2022 during a warm air intrusion
on the sea ice emissivity before and after the event was studied. Before the event,
satellite observations show rather homogeneous conditions in the Fram Strait and
toward the Central Arctic. During the rain event, the brightness temperature
reached high values at all frequencies, likely due to the increased liquid water
content in the snowpack (e.g., Stroeve et al., 2022). Refreezing after the rain-
on-snow event likely led to the formation of an ice lens in the snow pack, which
reduced the emissivity for several weeks compared to conditions before the event.
The impact was seen from 22 to 183GHz with a sharp transition to regions that
were likely unaffected by the rain or surface melt conditions (see Fig. 5.10).

New ice formation can also be viewed as a link between the atmosphere and the
surface once air temperatures reach sub-freezing. The VAMPIRE observations
provided detailed insights into the relation of the emissivity at low and high
frequencies for newly forming sea ice. The emissivity changes almost linearly
between the open water and nilas signature and with a high correlation from
22 to 243GHz. This likely relates to salinity variations and the low penetration
depth over saline ice.
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RQ3: How representative are sea ice and snow radiative
transfer simulations at high frequencies?

Simulations with the SMRT model for various snow and sea ice properties indicate
a good agreement with observations. The statistical comparison in Chapter 4 for
VAMPIRE observations showed that both bare and snow-covered young sea ice
could be simulated by SMRT up to 243GHz. Additionally, the implementation of
SMRT in the forward operator in Chapter 5 shows consistency with observations
during HALO–(AC)3 at 118 and 183GHz.

To provide an SMRT evaluation that accounts for the natural variability of
sea ice and snow parameters, we chose a Monte-Carlo approach, where all pa-
rameters are varied uniformly within a realistic range. We compare the simulated
and observed variability and assess the overlap with observations in the emissivity
space. The statistical comparison of the spectral, angular, and polarization vari-
ability between observations and simulations indicates a good agreement from
183 to 243GHz. However, in order to match simulations and observations at
low frequencies, it was required to account for the surface reflection type and
penetration depth during the emissivity calculation from observations. At high
frequencies, the skin temperature from thermal infrared observations was used
directly due to their lower penetration depth. While Wivell et al. (2023) could
show that SMRT simulations agree well with in situ observations over tundra
snow, the VAMPIRE observations showed for the first time that SMRT also pro-
duces realistic emissivity spectra at high frequencies over newly formed bare and
snow-covered sea ice.

The representativeness of SMRT from 22 to 183GHz can also be assessed from
the sea ice–atmosphere retrieval applied to HAMP observations during HALO–
(AC)3 under clear-sky conditions. A consistent geophysical state was found by ad-
justing the parameters of a two-layer snowpack, i.e., wind slab correlation length,
depth hoar correlation length, and wind slab thickness, within the expected vari-
ability. About 90% of observations converged for the clear-sky retrieval (R1), and
the difference between observation and simulation at 118 and 183 GHz improved
from the a priori to the optimal solution. Residuals can be explained by pa-
rameters that were not adjusted, such as snow density and depth hoar thickness.
Moreover, several surfaces cannot be represented by a simple two-layer snowpack
on multiyear ice, such as potential ice lens formation after the rain-on-snow event
at the beginning of the campaign and snow-covered young sea ice. In general,
the clear-sky retrievals showed that SMRT provides realistic emissivity at high
frequencies over larger areas in the Fram Strait and Central Arctic during most
conditions.
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RQ4: How accurately can we retrieve cloud liquid water
path from passive microwave observations over sea ice?

The cloud liquid water path detectability and retrieval accuracy are quantified
in Chapter 5 using the sea ice–atmosphere optimal estimation retrieval applied
to HAMP observations during HALO–(AC)3. The cloud liquid water path de-
tectability is estimated under clear-sky conditions, and the retrieval accuracy is
determined using synthetic retrieval experiments.

The HAMP observations during HALO–(AC)3 allow for cloud liquid water
path retrieval evaluation with ancillary airborne observations, which provide col-
located information on hydrometeor occurrence and liquid layers down to 100m
above the surface. First, the a priori snow parameters are adjusted to match
the observations under clear-sky conditions. Then, the cloud liquid water path
and air–snow interface parameters are added to the state vector. From clear-
sky observations, the cloud liquid water path detectability, defined as the 95th
percentile of retrieved cloud liquid water path (CLWP) under clear-sky condi-
tions, is estimated. It was found to increase from the Central Arctic (50 g m−2)
to the marginal ice zone (350 g m−2). The main reason for the false detection
of CLWP is young sea ice in leads, which occur more frequently near the ice
edge. The spectral signature of a high emissivity at high frequencies is similar
to the CLWP signature. To estimate the retrieval accuracy in the absence of a
CLWP ground truth, synthetic retrieval experiments were performed based on
forward simulations of a known CLWP. Generally, the accuracy increases with
increasing CLWP, with a relative root mean squared error below 50% for CLWP
above 100 g m−2. This highlights the challenge of detecting clouds with a low
CLWP. Despite the limitations, the application to a stratocumulus and warm air
intrusion case demonstrates the qualitative agreement with liquid layers detected
by the lidar. Moreover, the CLWP distribution from HAMP agrees with ERA5
along the flight track and shows the expected trend of higher CLWP for higher
liquid layer top heights.

Several factors limit the performance of the CLWP derived from the sea ice–
atmosphere retrieval. First, the a priori assumptions on the sea ice and snow can
differ largely from the actual conditions due to atmospheric events, as found for
the warm air intrusion case. Second, retrievals under conditions with rain-on-
snow events that add liquid water into the snowpack or a high young ice fraction
mask any additional CLWP emission. Third, there is an ambiguous signal of
scattering in the uppermost snow layer (wind slab) and CLWP emission at 90
and 118GHz as found from synthetic retrieval experiments. Frequencies from
22 to 50GHz, which are less sensitive to CLWP, are also less sensitive to the
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scattering signal of the wind slab snow layer.

6.2 Outlook

6.2.1 Future field campaigns

The planned field campaign Clouds over Complex Environment (COMPEX) in
spring 2026 will further expand the sampling of clouds and sea ice from the
ACLOUD and AFLUX campaigns. With new high-frequency satellite missions
in polar orbit, such as the Arctic Weather Satellite (AWS) and EPS-SGMicrowave
Sounder (MWS), satellite observations can be related to the high-resolution air-
borne observations at 243 and 340GHz. In spring, AWS will receive a significant
surface contribution at 325GHz. This allows for further study of the impact of
small-scale sea ice emissivity variation on the satellite footprint and how it varies
during the campaign. Also, potential scattering by ice clouds above the aircraft
could be studied, using the known surface contributions below the cloud mea-
sured by the aircraft. This could help evaluate the AWS products over sea ice
depending on the underlying surface conditions.

Microwave radiometers for continuously scanning sky and surface radiation
during the R/V Polarstern expeditions PS131 (WALSEMA; Rückert et al., 2025)
and PS144 (VAMPIRE; Chapter 4) proved successful for understanding the emis-
sion signature of sea ice and snow and for evaluating radiative transfer simulations
with SMRT. Recently, similar measurements were performed during the R/V Po-
larstern expedition PS149 from July to September 2025 (VAMPIRE 2; Nicolaus,
2025). These observations can provide further insights into the microwave sig-
nature of melting sea ice and the effects of surface refreezing, similar to the
observations during WALSEMA and VAMPIRE. This design could be continued
in upcoming expeditions as it combines the need for high-quality observations
of the atmospheric thermodynamic profiles, integrated water vapor, and clouds
(Walbröl et al., 2022) and surface microwave emission to improve the long-term
characterization of sea ice and the atmosphere from satellites. Moreover, in situ
sampling over diverse sea ice types within the radiometer footprint can be used
for validation of radiative transfer models. The setup requires low maintenance,
suitable for long-term and recurring monitoring.

6.2.2 Statistical emissivity modeling

Physical sea ice and snow radiative transfer models require detailed inputs on the
sea ice and snow from climatology, field observations, or numerical models, which
are difficult to obtain globally at high quality. Moreover, in order to solve the
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radiative transfer, several assumptions are needed, such as horizontal homogene-
ity, scattering, and dielectric mixing, which might lead to deviations from the
radiative signature in observations. Therefore, emissivity models based on neural
networks provide a promising opportunity for emissivity estimation by replac-
ing (parts of) the physical radiative transfer model. While field observations are
generally not suitable for the development of robust statistical models applicable
on global scales, they provide valuable independent data on the emissivity for a
given time and location for the evaluation of large-scale satellite-based emissivity
models.

Additionally, emissivity models based on neural networks can be used to sys-
tematically learn from large amounts of field data with the goal of better un-
derstanding the observed emissivity variability. This was demonstrated for collo-
cated visual camera and passive microwave observations at 243GHz using R/V
Polarstern VAMPIRE observations (Chapter 4). The approach could be extended
to all expeditions (PS131, PS144, and PS149) and observed sea ice and snow con-
ditions, rather than only bare and snow-covered nilas after surface freeze onset.
A suitable method is the extraction of low-dimensional feature vectors or clusters
from the images using self-supervision (Caron et al., 2021) to compress the sea
ice and snow structures of the image. Such frameworks are established in vari-
ous applications for unlabeled data, such as sky camera (Fabel et al., 2022) and
satellite images (Chatterjee et al., 2024). In a first step, it can be tested whether
the resulting feature vectors or clusters explain the observed microwave emis-
sivity variability, similar to the regression approach used here, by replacing the
CNN with the feature vector or cluster. Furthermore, physical radiative transfer
models can be applied to reproduce the observed microwave signature for certain
clusters of images based on assumptions about the sea ice and snow properties.
This can provide statistically robust insights into the importance of small-scale
surface features captured by the camera, such as ridges, refrozen melt ponds, and
snow formations, on the observed spectral, angular, and polarization dependence.

6.2.3 Physical retrieval extensions

The physical retrieval could be extended by including frozen water path and in-
tegrated water vapor into the state vector, and refining specular contributions
and polarization signals for inclined observations. These changes would allow an
application to high-frequency channels up to 340GHz and inclined 89GHz obser-
vations available during field campaigns (ACLOUD, AFLUX, and COMPEX).
The inclusion of frozen hydrometeors can be evaluated using collocated cloud
radar and lidar observations. This can provide insights into the added informa-
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tion from submillimeter channels similar to those onboard AWS and ICI over sea
ice. Potential challenges are the positioning of liquid layers within the cloud,
which could mask the scattering signal (Camplani et al., 2024b). Accounting
for variations in integrated water vapor, e.g., by scaling the background humidity
profile, might be necessary at 340GHz and when using more water vapor channels.
An improvement in lower tropospheric humidity retrieval might be expected from
additional channels in the 243GHz window and along the 325GHz water vapor
absorption line compared to observations up to 183GHz. The 243GHz channel
provides information on the emissivity at the neighboring sounding channels as
observed during VAMPIRE and AFLUX that could be used for the water vapor
retrieval. This additional information could be tested using Polar 5 observations
over sea ice and using dropsondes as reference data. An application to field cam-
paigns up to 340GHz under clear-sky conditions could further allow refinement of
the snow layers near the surface defined in SMRT to match the diverse emissivity
spectra observed during AFLUX and VAMPIRE. For example, a third snow layer
might be needed to better capture spectral gradients (Wivell et al., 2023). Also,
it could be tested if bare ice and snow-covered young ice area fractions should be
retrieved for Polar 5 observations near the marginal ice zone to capture mixtures
of the three emissivity branches observed during VAMPIRE. Simulating off-nadir
observations (VAMPIRE, MiRAC-A) requires a refined treatment of specular
contributions from the surface at high frequencies in PAMTRA to simulate the
observed polarization signals and angular dependence. Reproducing the signal
measured during VAMPIRE accurately could also improve cloud liquid water
path retrievals from space by additionally observing the absorption of polarized
and emission of unpolarized radiation of liquid cloud droplets, and polarization
signal of frozen hydrometeors (Xie et al., 2015). As the suggested extensions
might increase CLWP detectability and retrieval accuracy, the retrieval could
be used for evaluating ERA5 and high-resolution ICON simulations over sea ice
(Schemann and Ebell, 2020) as shown in Mech et al. (2019) over open ocean. A
general drawback of the physical approach is the rather slow radiative transfer
simulation, which could be solved by generating a retrieval database from for-
ward simulations and a statistical inversion, or replacing SMRT with a machine
learning emulator that retains physical consistency.

6.2.4 Retrieval application to satellites

Application to satellites helps to understand the long-term trends and spatiotem-
poral consistency of surface and atmospheric parameters. The sea ice state could
be derived from observations with different frequencies, incidence angles, and
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polarizations. Also, findings from the VAMPIRE expedition that highlight the
importance of snow accumulation on newly formed sea ice could be studied fur-
ther with pan-Arctic satellite observations. Inclusion of both cross-track and
conical scanners could be tested. Validation with visual, thermal infrared, and
cloud radar and lidar observations (EarthCARE) could be performed for collo-
cated footprints. Also, the microwave radiometer, atmospheric sounding, and
cloud radar observations from field observations can be used for satellite retrieval
evaluation. Another promising extension is the addition of surface backscatter,
which is measured by WIVERN (Illingworth et al., 2018) together with the cloud
radar and passive radiometer signal. This could potentially improve both the
characterization of sea ice and snow, as well as cloud liquid water path, com-
pared to solely passive observations. So far, limited information is available on
the relation between the surface backscatter and surface emissivity in W-band
that could allow improved use of the radiometer signal. Also, the representation
of small-scale variability from satellites will improve with the CIMR mission from
1.4 to 36GHz, with potential benefit at higher frequencies through high-resolution
sea ice concentration, type, and thickness estimates.

6.2.5 Coupled data assimilation

Coupled Earth system models simulate the thermodynamic and dynamic inter-
actions between the ocean, cryosphere, and atmosphere, and predict their spa-
tiotemporal evolution. In a 1-dimensional standalone retrieval as applied in Chap-
ter 5, the temporal and spatial consistency is unconstrained, which imposes an
inherent limitation of the retrieval. Coupled data assimilation uses the coupled
model trajectory as background information for the assimilation of observations
(De Rosnay et al., 2022). The coupled model should capture the long-term evo-
lution of snowpacks, such as snow accumulation, layering, sea ice growth, and
metamorphism due to water vapor gradients. Additionally, fast processes need to
be captured, such as snow and sea ice temperature profile changes, increases of
liquid water content during rain-on-snow events, refreezing, and lead formation.
This physical information can be simulated with a coupled forward operator, such
as SMRT and PAMTRA used in this thesis. In this work, it could be shown that
such coupled forward operators are generally suitable for the application in data
assimilation of passive microwave observations at high frequencies by employ-
ing simple static a priori information. Further work is needed to represent the
physical interactions between the sea ice and snow and atmospheric processes in
numerical models to capture the highly diverse microwave emissivity signatures of
Arctic sea ice. Moreover, sensor synergies between thermal infrared, passive mi-
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crowave, and conventional systems can be fully exploited during the assimilation
process. Field observations, such as those collected during the (AC)3 project, will
play a key role in defining the needs for such an advanced coupled data assimi-
lation system in polar regions to further advance the assimilation of low-peaking
microwave sounding and window channels and improve the long-term monitoring
of polar regions.
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