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ABSTRACT: This study attempts to assess the potential benefit of a network of ground-based microwave radiometers
(MWRs) in variable configuration in synergy with simultaneous geostationary satellite observations from the Meteosat
Third-Generation Infrared Sounder (IRS) for observing regional atmospheric stability. Since both observation types are
not yet available, reanalysis fields of the western part of Germany (Rhein—Ruhr area) were used to simulate MWR and
IRS observations. From these simulations, neural network retrievals for CAPE and lifted index (LI) were derived for
satellite-only (IRS), ground-based-only (MWR), and synergistic (IRS + MWR) observation configurations. The developed
retrievals were applied to two years of simulated observations. In general, the IRS + MWR retrievals outperform (up to
0.3 improvement in Heidke skill score) the IRS retrievals under clear sky and especially under cloudy conditions, if both
observation types are available simultaneously and at the same location. The impact of adding one to 200 MWRs of the
hypothetical observation network to the satellite observations was investigated using a spatial statistical interpolation
method. The fields of CAPE/LI from IRS observations were merged with the CAPE/LI values from the MWR network by
taking into account the corresponding error covariance matrices of both retrievals, which were derived from reanalysis
data. It was shown that the contribution of ground-based observations is more pronounced under cloudy conditions and is
most valuable for the first 25 sensors located in the domain.
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1. Introduction Satellite observations from geostationary platforms enable
continuous monitoring of stability indices with higher temporal
and spatial resolution (e.g., Koenig and de Coning 2009). The
Meteosat Second Generation Global Instability Index (MSG-
GII) product is based on observations of the MSG SEVIRI
instrument and covers Africa and Europe. It includes three
instability indices, the LI, KOnvektiv-index (KO), and the
K index (KI), as well as the total precipitable water (TPW)
(EUMETSAT 2013). The GII product is produced with a hori-
zontal resolution of approximately 9 km at the subsatellite point.
Although the horizontal resolution of the GII products de-
creases with increasing latitude, the full disc coverage and repeat
cycle of 15 min still represent a significant improvement to the
sparsely located radiosonde sounding sites. However, the MSG-
GII product is based on infrared observations and therefore
restricted to cloud-free and preconvective areas. Moreover, cur-
rently operational geostationary instruments have low spectral
resolution and provide only limited information on the vertical
structure of the atmosphere, especially of the lowest layers
(Schmit et al. 2008). Particularly, the clear-sky radiances of
SEVIRI are mainly sensitive to the water vapor in the mid-
and upper troposphere (Stengel et al. 2009).

Hyperspectral IR observations from geostationary plat-
forms will be available from the recently launched Infrared
Sounder on board the Meteosat Third Generation (MTG-
IRS; https://www.eumetsat.int). IRS is expected to provide a
more detailed picture of four-dimensional water vapor and
temperature structures with high temporal resolution and full
disc coverage (Holmlund et al. 2021). The first satellite of the
MTG series carrying IRS was launched in July 2025 and is
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The accurate prediction of severe weather and issuance of
warnings are important for public safety. However, even state-
of-the-art high-resolution (kilometer scale, deep convection re-
solving) numerical weather prediction (NWP) models still have
difficulties in predicting the exact position and time of locally in-
fluenced high-impact weather events such as convective storms
or fog (Burghardt et al. 2014; Novak et al. 2011; Henderson et al.
2021; Martinet et al. 2020). The development of these events
depends, among others, on potential instability of the atmo-
sphere (Markowski and Richardson 2010). Atmospheric thermo-
dynamic stability determines the tendency of the air to rise or, in
the opposite, to resist vertical motion. It is determined by the
vertical distribution of temperature and humidity and can be
described in terms of so-called stability indices (Peppler 1988).
Two frequently used indices are convective available potential
energy (CAPE) and lifted index (LI) (Blanchard 1998).

Besides NWP models, the information needed for the
calculation of CAPE and LI (i.e., temperature and humid-
ity fields) is provided by radiosondes and satellite observa-
tions. Radiosondes are typically only available 1-2 times a day
at a specific location, which is not sufficient for capturing the
temporal and spatial variability of the thermodynamic state of
the atmosphere.
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longitude. The established monitoring of stability indices will
be complemented by the IRS observations.

The benefit of simulated geostationary hyperspectral IR obser-
vations assimilated into a regional forecast model was shown in a
number of experiments (Guedj et al. 2014; McGrath-Spangler
et al. 2022; Coopmann 2022). However, besides the higher tem-
poral and horizontal resolution of the measurements, the hy-
perspectral IR observations from geostationary orbit will be
affected by the same limitations, such as cloudiness, uncertain
information on surface emissivity, and low accuracy and reso-
lution in the boundary layer, as operational hyperspectral
sounders on board of polar orbiting satellites (Pougatchev et al.
2009).

Several convective case studies have shown that the main
limitation of the hyperspectral Infrared Atmospheric Sound-
ing Interferometer (IASI) on board EUMETSAT’s MetOp
polar orbiters is the low accuracy of retrieved humidity pro-
files in the lower troposphere. The lower-layer moisture is
often underestimated and elevated moist layers are not de-
tected, which has a large impact on CAPE calculated from
IASI-retrieved profiles (EUMETSAT 2020a). Moreover, the-
oretical assessment of the IRS-retrieved humidity profiles has
shown that over land surfaces, the accuracy of humidity pro-
files in the layer between the surface and 800 hPa degrades
with increasing satellite zenith angle (EUMETSAT 2020b).
The accuracy of the temperature profiles obtained from IRS
observations in midlatitudes was shown to degrade with in-
creasing instability.

The described limitations of different observing systems can
be reduced by constraining the hyperspectral satellite observa-
tions with surface observations or with ground-based remote
sensing. Particularly, Bloch et al. (2019) have shown that the re-
placement of the surface-parcel properties in the satellite
soundings with the surface or the radiosonde observations leads
to significant improvements in the accuracy of surface-based
CAPE. There are a growing number of ground-based instru-
ments deployed worldwide for atmospheric boundary layer pro-
filing (Cimini et al. 2020). The measured atmospheric variables
include the vertical profiles of temperature, humidity, wind,
aerosol, and cloud properties. Previous studies have shown the
benefit of combining ground-based remote sensing sensors with
satellite observations for the retrieval of atmospheric state
(Ebell et al. 2013) and of stability indices (Toporov and Lohnert
2020). Loveless et al. (2022) demonstrated the benefits of com-
bining ground- and satellite-based infrared observations for the
retrieval of temperature and humidity profiles. The combina-
tion of ground-based Atmospheric Emitted Radiance Interfer-
ometer (AERI) with space-based hyperspectral IR sounders
resulted in the increase in degrees of freedom for signal
(DOFS) by 30%-40% in the layer below 700 hPa compared to
the space-based instruments alone. This results in significant im-
provement in vertical resolution and reduced uncertainties of
the retrieved profiles in the lowest 1000 m.

Ground-based microwave radiometers (MWRs) are being
considered to fill the observation gap [e.g., through the
European National Meteorological Services Profiling Program
(EUMETNET E-PROFILE) in Europe] in the atmospheric
boundary layer (ABL) because they are suited for 24/7
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operations (also in cloudy conditions) and contain valuable in-
formation on water vapor and temperature (Lohnert and Maier
2012; Lohnert et al. 2009). In contrast to radiosondes, MWRs
provide temporally highly resolved profiles, however, with lim-
ited vertical resolution. For temperature profiles, MWRs pro-
vide about 3-4 DOFS, mostly within the ABL, whereas for
humidity, only about two independent pieces of information
are provided on the vertical structure (Lohnert et al. 2009).
First attempts to assimilate the ground-based MWR remote
sensing observations into high-resolution NWP models showed
improvements in the detection of fog (Martinet et al. 2020), in
the precipitation forecast (Caumont et al. 2016), and a positive
impact on the 6-h forecast of ABL temperature and humidity
(Vural et al. 2024).

How many ground-based MWRs are needed in a future ob-
servation network? Maintaining an operational observing net-
work is a challenging and expensive task. Therefore, it is
essential to carefully evaluate the impact of different compo-
nents of the observing system. The present study aims to show
the impact of two new observation systems (MTG-IRS and
ground-based MWR) on the regional retrieval of stability indices
(CAPE/LI), which are used as indicators for severe convection.

For this, we build upon the study performed by Toporov and
Lohnert (2020), in which observations from a single MWR
(at the subsatellite point) were shown to have a large potential
in complementing IRS-satellite observations by providing ther-
modynamic information from the lowest atmospheric layers
and below clouds, where the satellite is unable to provide useful
information.

This study now goes a step forward and poses the following
two research questions: 1) How accurately can the spatially and
temporally continuously available MTG-IRS observations re-
trieve the potential of severe convection (via CAPE/LI) over a
regional domain? 2) And how much information can a poten-
tial network of ground-based MWR in varying configurations
(i.e., spatial density) add to the regional stability information
derived by the satellite?

At the time of publication, data from the already launched
MTG-IRS was not yet available and extensive ground-based
MWR networks were only as a theoretical consideration. There-
fore, we base our study on the assessment of simulated observa-
tions. For this, reanalysis fields are considered as the true
atmospheric state. First, from these atmospheric fields, stability
indices are derived and satellite (MTG-IRS) and ground-based
MWR observations are simulated to obtain pairs of atmospheric
state and measurement vectors. With these data pairs, neural
network (NN) retrievals are derived that output time series of
CAPE/LI fields from satellite only, ground-based observations
only, and a synergy of the two. In the following, we use a statisti-
cal interpolation method to estimate the spatial influence of a
varying number of ground-based MWR observations in our re-
gional domain: from one instrument to over 1500. The obtained
CAPE/LI fields are compared to the original fields calculated di-
rectly from reanalysis to assess the accuracy and information
content of the retrievals.

The article is structured as follows. Section 2 introduces the
reanalysis dataset and the stability indices CAPE and LI. The
instruments, their measurement principle, and assumptions
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FIG. 1. (a) The target domain used in the study (black square), including the metropolitan Rhein-Ruhr area, within
the COSMO-REA2 domain. (b) Detailed topography of the target domain. Red diamonds and black crosses show
the locations of DWD SYNOP stations and of E-PROFILE ceilometers, respectively. Note the different range of
color bars. (c),(d) Mean values of CAPE and LI for the considered period.

made when simulating the observations are explained in
Section 3. Section 4 provides an overview of two methods ap-
plied in the study: the neural networks and their configuration
(section 4a) and the statistical interpolation (section 4b). Section 5
gives details on the setup of the sensitivity study concerning
the spatial number density of the MWRs and the calculation
of error covariance matrices required for statistical interpola-
tion. The results are discussed in Section 6, which is divided
into two parts: The neural network retrieval performance is
discussed in section 6a, whereas the analysis of the spatial
statistical interpolation approach is discussed in section 6b. A
summary and conclusions are given in Section 7.

2. Reanalysis data

The impact of future, not-yet-existing instruments and in-
strument networks can be assessed by simulation of their ob-
servations based on realistic atmospheric profiles. The best,
temporally consistent estimates of the atmospheric state of a
past time period can be obtained from reanalyses. The high-
resolution regional reanalysis COSMO-REA? is based on the
Consortium for Small-Scale Modeling (COSMO') limited-area

! http://www.cosmo-model.org/.

model (Doms and Baldauf 2018; Doms et al. 2011) and has
been developed within the “Hans-Ertel-Centre for Weather
Research” (HErZ; Simmer et al. 2016). A detailed description
can be found in Bollmeyer et al. (2015) and Wahl et al. (2017).

This study was performed using the COSMO-REA?2 reanal-
ysis data for the target domain located in the western part of
Germany as shown in Fig. 1. The 150 by 150 km large do-
main has heterogeneous surface properties and covers the
Lower Rhine basin in the central west and the hills of the Rhe-
nish Massif in the southeast. Within the domain, the metro-
politan Rhine-Ruhr Area is located—the most densely
populated region in Germany. This makes the prediction of se-
vere weather crucial for public safety.

The temporal and horizontal resolutions of the reanalysis
fields are 1 h and 4 km (original reanalysis fields were thinned
from 2 to 4 km to account for the coarser resolution of IRS ob-
servations), respectively, resulting in a field with 39 X 39 grid
points and about 7300 profiles per grid point. The vertical grid
has 50 layers and extends from the surface to 22 km, with the
spacing between levels increasing from 20 to 1000 m. The re-
analysis profiles from May to September in the years 2010 and
2011 were used to calculate fields of CAPE and lifted index
and to simulate the observations of IRS and MWR.

The detailed description of indices is given in the appendixes A
and B. The threshold values for CAPE and LI separating stable
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and slightly unstable conditions were taken according to
Haklander and Van Delden (2003) and lie by 168 J kg™
and 1.6 K, respectively. The higher/lower the CAPE/LI
value, the more unstable the atmosphere and the higher the
probability of thunderstorms. The mean values of CAPE and
LI for the considered period (Fig. 1) reveal more unstable con-
ditions (larger number of unstable events and higher/lower
CAPE/LI values) in the southeast part of the domain.

3. Instruments and simulation of observations
a. IRS

The next generation of Meteosat satellites, MTG, will
comprise four imaging (MTG-I) and two sounding satel-
lites (MTG-S) (Holmlund et al. 2021). The latter will re-
place Meteosat-11 at 0° longitude and bring an operational
hyperspectral instrument into geostationary orbit. The IRS
is a sounding Fourier transform spectrometer which will
perform highly spectrally resolved measurements of Earth-
emitted radiation in 1738 channels. According to the MTG
Mission Requirements Document (EUMETSAT 2018), IRS
will provide observations in two bands, in the longwave IR
(LWIR; 700-1210 cm™') and in the midwave IR (MWIR;
1600-2175 cm ™) band with a spectral resolution of 0.625 cm™!
and a spatial sampling distance of 4 km at nadir. The basic
repeat cycle of IRS will take 60 min with an increased fre-
quency of 30 min over Europe. The satellite viewing angle
for the considered region is around 60°.

The channels in the LWIR band are mostly sensitive to sur-
face and cloud properties, atmospheric temperature, and ozone,
whereas MWIR channels provide information on humidity and
temperature. The main objective of the IRS mission is the mon-
itoring of the evolution of vertically resolved water vapor, tem-
perature, and wind structures.

As in the previous study by Toporov and Lohnert (2020),
a subset of IRS channels that give information on atmo-
spheric temperature and humidity was selected. The subset of
1113 channels in total consists of the following: 130 channels
along the longwave CO, absorption band between 700 and
780 cm™!, every second channel between 780 and 1210 cm ™!
(344 in total), and 639 channels in the water vapor absorption
band between 1600 and 2000 cm ™.

The simulation of IRS observations was performed with the
fast radiative transfer model RTTOV v12 (Saunders et al.
2018). The detailed description of the radiative transfer and
of the simulation of IRS observations from COSMO-REA2
reanalysis profiles can be found in Toporov and Lohnert (2020)
and Toporov (2021). Here, we shortly summarize the most
important aspects.

For simulation of clear-sky IRS observations, RTTOV requires
atmospheric profiles of temperature, humidity, and trace gases
[carbon dioxide (CO5), ozone (O3), nitrous oxide (N,O), methane
(CHy), sulfur dioxide (SO,), carbon monoxide (CO)] along with
surface properties. In this study, the profiles of trace gases are
assumed to be constant and set to the RTTOV reference pro-
files. The surface emissivity values for satellite instruments were
taken from the RTTOV emissivity atlas University of Wisconsin
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Global Infrared Land Surface Emissivity (UWIRemis), which
provides monthly climatological mean emissivity values at a
spatial resolution of 0.1° (Borbas and Ruston 2010).

For the simulation of cloudy observations, additional profiles
of cloud liquid/ice water and cloud fraction are required. For
water clouds, five different cloud types are considered. For ice
clouds, we used the Baran ice scheme (Vidot et al. 2015) that
performs direct parameterization of ice optical properties from
the ambient temperature and the ice water content.

To produce a realistic observation dataset, the simulated
spectra were perturbed with normally distributed noise, which
varies between 0.2 and 0.9 K (EUMETSAT 2018). To reduce
the dimensionality and to optimally extract atmospheric profile
information from simulated IRS observations, principal compo-
nent analysis (PCA) was applied to the dataset. PCA makes
use of redundant information in hyperspectral observations and
transforms highly correlated observations into an uncorrelated
set of principal components. The first principal components
represent the most dominant atmospheric signal contained in
the original spectrum, whereas the last principal components
consist mostly of random instrument noise and can be dis-
carded. In the following, 50 first principal components, explain-
ing 99.94% of the observations’ variability, were used.

b. Ground-based MWR

Microwave radiometer considered in this study is a Humidity
and Temperature Profiler (HATPRO; Rose et al. 2005) manu-
factured by Radiometer Physics GmbH (RPG), Germany. It
measures the downwelling radiation emitted by atmospheric
components, mainly oxygen, water vapor, and cloud liquid. The
first seven channels are located in the K band, at the slope of
the pressure-broadened water vapor absorption line (22.24,
23.04,23.84,25.44, 26.24, 27.84, and 31.40 GHz). These frequen-
cies provide information for accurate retrievals of integrated
water vapor (IWV) and liquid water path (LWP) and for low-
resolution humidity profiling. The last seven channels are dis-
tributed in the V band along the long-wavelength slope of the
60-GHz oxygen absorption complex (51.26, 52.28, 53.86, 54.94,
56.66, 57.30, and 58 GHz). Increasing opacity toward the band
center and homogeneous mixing of oxygen throughout the tro-
posphere make the retrieval of temperature profiles possible.
The optically thick channels provide information from atmo-
spheric layers closer to the MWR, whereas more transparent
channels receive radiation also from higher atmospheric layers.
The resolution and accuracy of the retrieved temperature pro-
files can be improved by assuming the horizontally homogeneous
atmosphere and performing elevation scanning measurements at
the most opaque channels in the oxygen absorption band. The
accuracy of the retrieved temperature profiles is between 0.5 and
2 K close to the surface and in the lower troposphere, respec-
tively, whereas humidity profile accuracies are in the range of
0.8 g m ™2 for the midlatitudes (Crewell and Lohnert 2007)
and increase up to 1.6 ¢ m™> in more humid environments
(Lohnert et al. 2009; Zhang et al. 2018). The simulation of
MWR observations was performed with the RTTOV-gb
model (De Angelis et al. 2016). RTTOV-gb is based on the
original RTTOV that was adapted to handle ground-based
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MWR observations and uses 101 pressure levels, which are
selected for the ground-based perspective so that they are
denser near the ground than those used by RTTOV itself.

The HATPRO measurement vector in this work consists of
30 brightness temperatures: zenith observations at 14 frequen-
cies and additional nonzenith measurements (zenith angles 60°,
70.8%, 75.6°, and 78.6°) at the four opaque frequencies in the
V band. The simulated brightness temperature was per-
turbed with normally distributed random errors in the range
of 0.2-0.5 K for zenith and of 0.2 K for scanning observa-
tions (Lohnert et al. 2009).

c¢. Assumptions made by simulation of satellite and
ground-based observations

Temporal and spatial matching of observations is a crucial
and challenging issue in combining and comparing satellite and
ground-based sensors. Especially, the differences in the atmo-
spheric column sampled by ground-based and satellite sensors
can lead to significant representativeness errors. However, the
aim of this work is to show the synergy potential of both sensors
in the best possible setting. Therefore, both sensors are assumed
to sample the same atmospheric scene. Further, the atmosphere
is assumed to be horizontally homogeneous and aerosol free,
and the wavelength dependence of diffraction is ignored so that
the geostationary sensor samples the same volume of air at
all channels. Furthermore, using the emissivity atlas (monthly
mean values) and the assumption of constant trace gas pro-
files leads to the underestimation of the variability of satellite
observations. Therefore, for IRS and combined IRS + MWR
products, this study shows rather the best possible results,
which would most likely not be achieved by real observations.

4. Methods

a. Neural network retrieval of CAPE and lifted
index fields

In the following, we explain the NN retrievals developed to
derive CAPE/LI values from the observations described above.
NN approaches have found extensive application in the retrieval
of atmospheric properties and cloud characteristics from both
satellite (Aires et al. 2002; Boucher et al. 2023) and ground-
based microwave observations (Marke et al. 2016; Cadeddu et al.
2009; Jacob et al. 2019). The NNs reproduce a connection
between a set of input (simulated observations) and output
(CAPE/LI values) vector pairs. Multilayer perceptrons, a basic
type of neural network architecture, consist of multiple layers of
neurons (input, output, and hidden layers), where each neu-
ron of one layer is connected to neurons in the next layer by
weighted links. The NN is characterized by its inputs, outputs,
the number of hidden layers, and the number of neurons
(nodes) in each hidden layer. Studies have shown that an NN
featuring a single hidden layer with a sufficient number of no-
des and a nonlinear activation function can effectively repro-
duce any nonlinear statistical relationship (Hornik et al. 1989).

Each hidden layer node calculates a sum of the weighted in-
put parameters and bias and applies an activation function,
which introduces nonlinearity into the NN. In this study, a
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hyperbolic tangent sigmoid (tansig) activation function was
used in the hidden layers and the linear function in the output
layer.

Starting from the input vector, the output of the hidden layer
is calculated and propagated to the output layer. The calculated
output value is compared to the expected output value, and the
loss function is calculated (here, the mean-square error). The er-
ror is backpropagated by calculating the derivative of the error
value with respect to each weight. Subsequently, all weights are
updated by the subtraction of the derivative to reduce the error.
The training of the NN is performed iteratively until the desired
accuracy is reached. Here, the backpropagation of the errors
was performed according to the Levenberg-Marquardt algo-
rithm in the MATLAB neural network toolbox (Hagan and
Menhaj 1994).

In this study, the simulated observations of IRS, MWR, and
combination IRS + MWR (input), along with the correspond-
ing values of CAPE and LI (output), were used for the train-
ing of NNs. In addition to observations, the height above sea
level (SLH) in the considered grid points was included as an
input parameter (Fig. 1), allowing to localize the NN behavior
for a specific grid point.

The size of the input layer of the NNs is determined by
the number of channels of the instrument. Thereby, the MWR
observation vector consists of the zenith measurements from
14 MWR channels, additionally of the four channels scanning
at four elevation angles each, and the SLH, resulting in
31 nodes in the input layer. For the IRS, the first 50 principal
components were used. The output layer consists of one neuron
(CAPE or LI). To find the optimal network configuration for
each parameter and sensor, the training needs to be performed
for a varying number and size of hidden layers. Based on
the experience gained in the first part of the work (Toporov
and Lohnert 2020), four network configurations were con-
sidered: either one or two hidden layers, each containing
10 or 20 neurons.

For training and validation of the NN, a subset of 15 ob-
servations and corresponding atmospheric profiles per grid
point and month were randomly selected from the entire
dataset, resulting in a set of about 22.8 X 10* observations
(approximately 2% of the entire dataset). With a threshold
of 0.02 kg m ™2 for the liquid water path, approximately 60%
of the data are cloudy. This subset of observations was divided
into training (75%) and validation (25%) datasets. The remain-
ing 98% of the data were held out as an independent test set.

To prevent overfitting and achieve good generalization, that
is, good performance of the NN not only on the training dataset
but also on new, “unseen” data, we applied the early stopping
technique (Prechelt 1998). For this, during the training, the NN
is applied to the training and validation sets. When the valida-
tion error increases for several iteration steps, the training is
stopped, and the NN properties (weights and biases) at the
minimum of the validation error are returned and stored. After
training, the NN is applied to the test dataset to ensure the per-
formance of the networks on independent data.

The performance of all networks was evaluated in terms of
correlation (CORR) and root-mean-square errors (RMSEs)
of the retrieved parameters with respect to the reanalysis

Unauthenticated | Downloaded 02/10/26 12:36 PM UTC



1416

(“truth”). The comparisons showed that the NN with one hid-
den layer of 20 neurons is sufficient for the retrieval of LI. The
CAPE retrieval was found to be slightly more accurate when
using the NN with two hidden layers containing 20 neurons.

These best NN configurations were applied to 2 years of sim-
ulated IRS, MWR, and combined IRS + MWR observations in
each grid point of the target domain to obtain time series of
CAPE/LI fields. The performance of these retrievals will be
shown in section 5a for the entire dataset and in section 6a for
clear-sky and cloudy conditions separately.

b. Spatial statistical interpolation with least
squares estimation

To merge the fields of CAPE/LI retrieved from IRS observa-
tions and CAPE/LI values obtained from a varying MWR net-
work configuration, we use the statistical interpolation approach.
In this section, we introduce the equation for the least squares es-
timation, also called the best linear unbiased estimator (BLUE)
(Park and Zupanski 2022; Kalnay 2002). This equation builds a
basis for common data assimilation algorithms such as optimal
interpolation (OI), Kalman filter, and 1D-, 3D-, and 4D-Var,
which differ in the approach and simplifications applied (Kalnay
2002; Nichols 2010). A primary goal of data assimilation is to
find an optimal “analysis” of the state through the statistical
combination of observations and prior knowledge about the
state, called background or first guess.

Assume the model state to be a two-dimensional field or-
dered by the grid point, forming a single vector of the length
n =39 X 39:

x! = (xlxz,...,xn)T. (1)

Here, we assume that the background x” is given by the n
CAPE/LI values obtained from IRS observations and these
are always available at every grid point. The observation
vector consists of m CAPE/LI values corresponding to the
number of MWRs distributed in the domain:

Y= 0y, )

The CAPE/LI values of observation vector are calculated us-
ing synergistic retrieval IRS + MWR (see also section 5).

The difference between observation and background values
by, —H (xb)] is called observational increment or innovation.
The term H is an operator that maps the model variables
to observed variables and performs a spatial interpolation
from the model grid to the observation locations. In general,
H can be nonlinear (e.g., radiative transfer calculations that
provide satellite-observed radiances from temperature and
humidity profiles). In this study, the unit of the background
is the same as that of observations (J kg~ ' for CAPE or K
for LI), and the grid points of observations coincide with
the grid points of background. Therefore, the operator H
performs a simple selection of background values at grid
points with available MWR observation (and no forward
model error needs to be considered). The least squares esti-
mator or BLUE analysis x“ is defined by the following linear
interpolation equation:
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X =x" + Ky = HX")], (3)

where K is a matrix of dimension (n X m) that determines the
relative weight of observations and of background in the analy-
sis. The matrix K depends on the error covariance matrices of
the background P? and of the observations R and can be deter-
mined from the minimization of the analysis errors at each grid
point.

The optimal weight matrix K that minimizes the analysis
error variance and the error covariance matrix of the analy-
sis fields P“ are given by

K =P'H'(HP'H" + R)/, 4)
P = (I — KH)P, )

where H = (0H/ox),, is the derivative of the forward model
operator H with respect to the model state evaluated at the
model background state x°. The detailed derivation of K
[Eq. (4)] and P? [Eq. (5)] can be found in Kalnay (2002).

Thus, the BLUE approach combines two sources of informa-
tion, a background vector (here CAPE/LI fields from IRS ob-
servations only) and an observation vector (here, values of
CAPE/LI from a network of MWR), weighted by their uncer-
tainties. The weight given to the observation innovation is opti-
mally determined on the basis of background and observation
uncertainty to minimize the analysis error variance. The result-
ing analysis covers areas where MWR observations are not
available and is more accurate than background and observa-
tion data in terms of RMSE (Kalnay 2002).

A correct assessment of observation and background errors
is crucial to the quality of the analysis, since they determine to
what extent the analysis will be “pulled” toward the observa-
tions or the background. Thereby, the diagonal components
of the IRS retrieval covariance matrix P” and the combined
IRS + MWR retrieval covariance matrix R (variances) deter-
mine the correction of the background in the grid points in
which an MWR observation is available. The background co-
variances (off-diagonal elements of P?) between different
grid points specify how the observed MWR information will be
spread from MWR observation points to the neighbor grid
points without MWR observation. While the estimation of the
background error covariance could be difficult to obtain within
“real” data assimilation, in this study, the error covariance ma-
trices can be computed directly from the differences between
the retrieved values of CAPE/LI and the reanalysis (truth). One
drawback of statistical methods such as neural networks is that
they do not provide uncertainty estimates for each particular re-
trieval, unlike variational methods such as optimal estimation
(Rodgers 2000). Consequently, we use constant background and
observation error covariance matrices at all times, regardless of
factors such as cloudiness.

The calculation of the K matrix includes the inversion of
an m X m matrix [Eq. (4)], which can be computationally ex-
pensive depending on the number of available observations.
Therefore, due to the large number of grid points and avail-
able observations, the common data assimilation techniques
introduce approximations and simplifications to reduce the
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FIG. 2. Possible configurations of the network of ground-based MWR.

computational costs. However, the dimensions of the field
used in this study allow the direct use of the least squares
method. The assumptions, such as uncorrelated background
and observation errors, linearization of the observation oper-
ator, unbiased observations, and background, must be fulfilled
to ensure the optimal analysis. These aspects will be discussed
in the next section.

5. Setup of sensitivity study

In our sensitivity study, CAPE/LI fields retrieved from IRS
observations (available at every grid point) serve as the back-
ground, and CAPE/LI values derived from the differently con-
figured MWR networks (Fig. 2) are termed observations. The
retrieval error variances and covariances were calculated with
respect to reanalysis (serving as truth) at each grid point of the
domain. The domain covers 39 X 39 grid points (represented
as a vector with 1521 values), resulting in R and P? matrices
with dimensions 1521 X 1521. In an ideal case, all 1521 grid
points would have an MWR observation, which, however, is
just considered for theoretical purposes. Thus, the observation
covariance matrix R was adapted depending on the number of
MWRs in the network. For example, for a network of three
MWR, only the three corresponding diagonal elements (var-
iances) and six nondiagonal elements (covariances) of this ma-
trix are extracted. The covariance matrices of the background
P? and of observations R are combined within Eq. (4) to calcu-
late the weight matrix K. The size of the K matrix depends on
the number of MWRs (1521 X number of MWRs).

The statistical interpolation was performed twice: combining
IRS-retrieved (available at every grid point) CAPE/LI fields
with values of CAPE/LI retrieved using 1) only MWR and
2) synergistic IRS + MWR retrievals. It could be shown
that the second approach leads to more accurate analysis
than using MWR network values only. In the following, we
focus on the interpolation of IRS with IRS + MWR.

The matrix R corresponds to the error covariance of IRS +
MWR retrieval with respect to reanalysis. This could make the
assumption of an uncorrelated background and observation er-
ror invalid because the IRS observations are included in both
background and observation fields. However, the synergistic
neural network retrieval utilizes IRS and MWR brightness tem-
perature vectors as one single observation vector and gives
each element of this vector a certain weight. It is assumed that
elements of IRS measurement vectors are weighted sufficiently

different in both IRS and IRS + MWR retrievals, making their
errors independent of each other. The posterior error of the
interpolated fields was calculated relative to the reanalysis
CAPE/LI values as truth.

a. Error covariance matrices of background (IRS) and
observations (IRS + MWR)

Assuming an MWR placed at all 1521 grid points (i.e.,
every satellite pixel collocated with an MWR observation),
the square root of the diagonal elements of P? and of R gives
the uncertainty of the background and of observations in each
grid point, respectively (Fig. 3). These values have been de-
rived from the entire dataset including clear-sky and cloudy
profiles and demonstrate the performance of the retrievals in
each grid point of the domain. Of course, in the case of IRS +
MWR, they only show a theoretical state, because it is ex-
pected that just a few MWRs will be distributed in the domain.
These scenarios are discussed in section 6b. As expected, the
IRS + MWR retrieval shows significant improvements com-
pared to the IRS background, reducing the uncertainty of
CAPE by on average 30% and of LI by 50%. The spatial vari-
ability of the retrieval accuracy is discussed in section 6a.

b. Impact of a single MWR placed in the domain

Assuming only one MWR is placed in the domain, the K ma-
trix (1521 X 1) represents the impact of this single observation
on the analysis in all grid points. Varying the location of this
single MWR, the average of its impact was calculated in depen-
dency on the distance from the observation point. The average
impact of a single MWR is shown in Fig. 3. The average weight
given to the observation innovation in the observation point
lies around 0.66 and 0.82 for CAPE and LI, respectively. These
values describe the influence of an MWR observation on the
analysis in the grid point where the observation is performed.
Thus, a single MWR observation can be expected to have a
stronger impact on the analysis in the observation location for
LI than for CAPE. Higher MWR impact for LI results from
the higher uncertainty of the IRS compared to the IRS +
MWR retrieval (section 5a).

The impact (weight) of the observation innovation on the
analysis in surrounding grid points decreases with the distance.
For instance, at a distance of 10 grid points (40 km) from
the observation location, the impact of a single MWR obser-
vation on the CAPE analysis (K = 0.3) is half times weaker
than on the LI analysis (K = 0.6). The stronger decrease for
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CAPE and (d),(e) LI These values correspond to the square root of the diagonal elements of covariance matrices P
and R. (c),(f) Mean dependence of the weight given to the observation innovation on the distance to the observation
point, assuming only one MWR located in the domain. The horizontal grid spacing is 4 km.

CAPE than for LI results from the higher error correlations of
the IRS LI retrieval over the domain. Moreover, for LI, the
standard deviation of the weights is smaller than for CAPE, in-
dicating that the choice of the location of the MWR is more
important for CAPE than for LI

Generally, a greater effect of MWR can be expected when
the sensor is placed in areas where there are large differences
between the IRS and the IRS + MWR retrieval uncertainties
(e.g., frequently cloudy areas).

6. Results

Section 6a compares the accuracy of the CAPE/LI retrievals
from IRS-only, MWR-only, and the combined IRS + MWR ob-
servations. It is assumed that both IRS and MWR observations

are available simultaneously and at all locations. This allows to
assess the pros and cons of the different measurement systems,
as well as the benefit of their synergy under clear and cloudy
conditions. Then, section 6b presents a sensitivity study for vary-
ing number of MWRSs located in the target domain and shows
the accuracy of the domainwide CAPE/LI obtained using the in-
terpolation method described above.

a. Retrieval performance for domainwide collocated
satellite and MWR observations

1) RETRIEVAL PERFORMANCE

A quantitative evaluation of retrieval performance is given
by means of Taylor diagrams (Fig. 4) (Taylor 2001). The de-
tailed description of the Taylor diagram can be found in the
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FIG. 4. Taylor diagrams showing the performance of the different CAPE/LI retrievals (IRS, MWR, and IRS +
MWR; colored dots) with respect to the reanalysis truth (black dot) for (a),(b) clear-sky and (c),(d) cloudy conditions.
Constant values of CAPE/LI standard deviation are given as dotted arcs, whereby the black dot and the correspond-
ing thick dotted arc depict the CAPE/LI standard deviation of the reanalysis datasets. The CORR coefficient between
retrieval and reanalysis is shown as blue dotted lines from the origin, whereas green dashed lines indicate the constant

centered RMSE. The standard deviation of CAPE and Ll is given in joules per kilogram and kelvin, respectively.

appendixes A and B. Here, we only mention that the closer the
colored dots (representing the retrievals from different sensors)
lie to the black dot (representing reanalysis), the more accurate
the retrieval.

Under clear-sky conditions, both single-sensor retrievals MWR
and IRS provide similar results for CAPE with a CORR value of
0.79 and RMSE values of 100 J kg~". For LI, the IRS slightly out-
performs the MWR retrieval, with a CORR value of 0.92.

A clear synergy benefit is found when combining IRS and
MWR observations: The IRS + MWR retrieval outperforms
both single-instrument retrievals with CORR values of 0.89 and
0.97 for CAPE and LI, respectively. The RMSE is reduced by
around 23% and 38% compared to IRS retrieval.

Under cloudy conditions, the accuracy of the IRS retrieval
degrades for both CAPE (CORR = 0.69) and LI (CORR =
0.89), while MWR accuracy remains largely the same as under
clear-sky conditions in terms of CORR. Under cloudy condi-
tions, the synergy benefit is more pronounced than under clear
sky. IRS + MWR provides slightly smaller CORR values than
under clear-sky conditions but remains the most accurate re-
trieval with the smallest RMSE values and CORR of 0.87 and
0.96 for CAPE and LI, respectively. This corresponds to an
RMSE reduction by 33% and 56% for CAPE and LI, respec-
tively, compared to the IRS retrieval. The accuracy of the IRS
retrieval under cloudy conditions depends primarily on the to-
tal water and ice content and second on the cloud-top height
(CTH). For low clouds with CTH below 2 km and for clouds

with liquid/ice water content less than 0.5 kg m ™2, the retrieval
performs better than for clouds with CTH around 5 km and
higher water content.

2) SPATIAL VARIABILITY OF RETRIEVAL PERFORMANCE

To show the spatial variability of retrieval performance, the
RMSE and Heidke skill score (HSS) were calculated in each
grid point of the domain. HSS is calculated taking into ac-
count the exceedance of threshold values for CAPE/LI (see
section 2) and includes the number of predicted and not pre-
dicted stable and unstable events. It allows the comparison of
results based on different datasets such as clear sky and
cloudy (Doswell et al. 1990). HSS measures the relative skill,
giving the accuracy of the retrieval, relative to that of random
chance. The range of HSS is between —1 and 1 with negative
values indicating that a retrieval is worse than a randomly gen-
erated value. Value 0 means no skill, and a perfect retrieval re-
sults in HSS = 1.

The spatial variability of RMSE and HSS of CAPE for clear-
sky and cloudy conditions is shown in the left part of Figs. 5
and 6, respectively. Remember that the IRS + MWR retrieval
is applied at every grid point of the domain, assuming an MWR
is available at every satellite pixel. The RMSE and HSS fields
of MWR retrieval are not shown, since we focus on the effect
of synergistic (IRS + MWR) observations.

For CAPE, in terms of HSS, the domain-averaged IRS
retrieval value degrades from 0.56 under clear skies to 0.42
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under cloudy conditions, whereby additional MWR observa-
tions improve the HSS under both clear-sky (HSS of 0.71)
and cloudy (HSS of 0.67) conditions. Under clear-sky con-
ditions, both retrievals, IRS and IRS + MWR, perform
slightly better in the southeast part of the domain. Here, the
number of unstable events is larger (Fig. 1), probably associ-
ated with the topography of the German low mountain
range. Higher probability of detection and lower false alarm
ratio in this part of the domain result in higher HSS values.
The larger RMSE values in this part of the domain (under
both clear sky and cloudy conditions) partly reflect higher
values and variability of CAPE. Under cloudy conditions,
the IRS retrieval shows an almost uniform pattern of low
HSS over the domain, which makes it clear that this re-
trieval has issues in any case if clouds are present. Adding
the ground-based MWR, also under cloudy conditions, leads
to an improvement of skill especially in the regions with
higher CAPE, which can be attributed to the additional
temperature and humidity information in the lower tropo-
sphere, below the clouds.

For LI, the spatial variability of statistical scores is less
pronounced than in the case of CAPE (Fig. 7). Neverthe-
less, under clear-sky conditions, both retrievals tend to pro-
vide slightly higher HSS values over the southeast part of
the domain, where the unstable events happen more often.
Overall, the IRS retrieval achieves higher HSS values for LI
(0.69 and 0.48 for clear sky and cloudy cases, respectively)
as in the case of CAPE. Compared to the IRS retrieval, the
synergistic IRS + MWR approach leads to 18/64% higher
HSS values under clear-sky/cloudy conditions, respectively.
The corresponding RMSE is reduced by 38/56% due to the
synergistic use of IRS and MWR observations.

b. Sensitivity study for a varying number of MWR
observations

By applying the spatial statistical interpolation method
described in section 4b, we can now analyze the impact of a
realistic (section 1) and arbitrary (section 2) MWR network
configuration in the target domain on the CAPE/LI analysis
performance. For an approaching convective situation, we
analyze additionally a time series of CAPE and LI fields,
comparing the use of satellite observations only and satellite
observations plus a realistic number of MWRs in the do-
main (section 3).

1) IMPACT OF ADDITIONAL GROUND-BASED
OBSERVATIONS ON CAPE AND LI: REALISTIC
NETWORK CONFIGURATION

In a first sensitivity study, the impact of adding a microwave
radiometer in the center of the domain is analyzed, as well as
the deployment of ten MWRs at the E-PROFILE and the
DWD Surface Synoptic Observations (SYNOP) stations in the
domain (Fig. 1). This states a technically feasible scenario, where
the existing measurement infrastructure could be exploited.

The right parts of Figs. 5 and 6 demonstrate the impact of
these two measurement configurations on the analysis of CAPE
in terms of RMSE and HSS. These figures can be directly com-
pared with the left parts of Figs. 5 and 6 that show the impact of
MWRs measuring at every grid point (viz., 1521 MWRs), thus
representing a maximum threshold for improvement due to
ground-based remote sensing with microwave radiometers.

While in terms of RMSE in the clear-sky case, including up
to 10 MWR results in a decrease in the uncertainty of ~6%,
the uncertainty reduction is twice as large (12%) in the cloudy
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case. In the cloudy case, one MWR in the domain can in-
crease the HSS by 0.07, whereas 10 MWRs lead to a skill im-
provement by 0.16. The influence of adding just one MWR
in the cloudy case is especially noticeable in Fig. 6. The rela-
tively low skill across the whole domain in the IRS retrieval
is locally significantly enhanced (from 0.4 to 0.7), i.e., at the
central location of the MWR.

The corresponding HSS analysis for LI is shown in
Fig. 7. As for CAPE, the additional microwave radio-
meter observations lead to improvements of the RMSE
and HSS statistics. While the “perfect” measurement con-
figuration with 1521 MWRs shows a domain-averaged
skill of about 0.8 for both clear and cloudy skies, the
clear-sky and cloudy-sky analyses with 10 MWRs show
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FIG. 6. Asin Fig. 5, but illustrating the HSS for CAPE.

lower HSS by only 0.07 and 0.15, respectively. In relation to
this, adding 10 MWRs to the satellite-only retrieval leads to
an HSS increase of 0.6/0.16 for clear-sky/cloudy conditions,
highlighting the significant impact of already 10 MWRs in the
domain.

2) IMPACT OF ADDITIONAL GROUND-BASED
OBSERVATIONS ON CAPE AND LI: HYPOTHETICAL
NETWORK EXTENSION

In a further sensitivity study, the impact of adding up to
200 microwave radiometers in the domain is analyzed follow-
ing the scheme in Fig. 2. This experiment is only performed to
quantify the value of additional instruments, since such a dense
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spond to the analysis based on IRS-retrieved fields and MWR network values of CAPE obtained using MWR-only and synergistic IRS +

MWR retrievals, respectively.

network is technically hardly feasible. Fig. 8 shows the RMSE
and HSS values for CAPE calculated for the entire domain
for a network with 0-200 MWR, separated into clear-sky
and cloudy conditions. When MWR and IRS sensors are
used at the same location in synergy (red lines), the RMSE
decreases steadily with a growing number of MWRs, while
HSS improves strongly for the first one to 25 MWRs (espe-
cially for cloudy conditions) but reaches saturation when
more sensors are included. Note that in cloudy conditions,
25 MWRs lead to an increase of almost 0.2 in skill com-
pared to the IRS-only retrieval. In clear-sky cases, this im-
provement is around 0.1.

The need of using MWR and IRS in synergy can addition-
ally be drawn from Fig. 8. If the MWR-only retrieval is applied
to derive CAPE at the MWR locations (green lines) instead of
the synergistic IRS + MWR retrieval (red lines), the skill
is lower by 0.1 for both clear-sky and cloudy conditions.
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Specifically, under clear-sky conditions, the added value of
the additional ground-based observations is negligible.

The same analysis is carried out for LI (Fig. 9). The retrieval
characteristics are very similar to those for CAPE, except that
the required number of MWRs in the domain may be a little
smaller. The synergistic IRS + MWR retrieval shows a level-
ing off of HSS already at 10-15 MWRs in the domain, as op-
posed to 25 for CAPE. This is probably due to the fact that,
next to the 2-m temperature observations, only the potential
temperature at 500 hPa is used for the calculation of LI. This
value is more homogeneous over the domain, compared to the
more heterogeneous low-level temperature and humidity
profile information required to determine CAPE.

For the network of 25 MWRs, the absolute values of HSS
(0.75/0.65) for LI are noticeably higher than those for CAPE
(0.65/0.6), which is mostly due to the higher accuracy of the LI
retrievals itself (both IRS and IRS + MWR).
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FIG. 9. Asin Fig. 8, but illustrating LI.
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3) APPLICATION TO A TIME SERIES OF CAPE/LI
DEVELOPMENT

(i) CAPE

The time series in Fig. 10 shows the development of CAPE
in the period from 1800 UTC 24 August 2011 to 2200 UTC 24
August 2011. During the entire period, the domain is partially
covered by liquid clouds (left column) and almost fully covered
by thin ice clouds (shadowed area). The time series starts with
a strong instability with CAPE values up to 1500 J kg~ in the
eastern part of the domain that slightly extends to the west and
weakens during the night. The IRS retrieval (third column) can
capture only a part of the unstable region but underestimates
CAPE even in the absence of clouds (e.g., the southeast part of
the domain in Fig. 10). It can be seen that even the presence of
thin ice clouds limits the ability of the IRS retrieval to detect
high CAPE values.

The interpolation of IRS-retrieved CAPE fields with obser-
vations of 10 MWRs (IRS + 10 MWRs analysis) leads to sig-
nificantly better spatial representation of CAPE at 1800, 1900,
and 2000 UTC, especially in the cloudy areas, although the
absolute values remain largely underestimated. At 2000-2200
UTC, the performance of the IRS retrieval is very poor and
can be only slightly improved by merging with the MWR
observations.

Although the MWR addition to the satellite clearly improves
the retrieval performance and the synergistic retrieval roughly
detects the spatial-temporal trend of CAPE, it clearly misses
the finer CAPE structures as given in the reanalysis truth.

(ii) L1

Figure 11 shows the time series of LI between 0800 UTC 21
August 2011 and 1600 UTC 24 August 2011 with a 2-h time
step. A different time period as in the case of CAPE has been
chosen because after 1600 UTC the LI values over the entire
domain lie under the threshold of 1.9 K and the ability of IRS
to capture stable conditions can thus not be shown. It can be
seen that in the grid points without liquid clouds, the IRS re-
trieval is mostly able to capture stable (green and yellow) and
unstable (blue, below the threshold of 1.9 K) values of LI. In
the cloudy grid points, however, the impact of clouds on the
IRS retrieval is very strong and leads to an overestimation of LI
values (yellow areas in the first two rows and green areas in the
last two rows of Fig. 11). Here, the retrieval seems to be very
sensitive to cloud-top temperature of the liquid clouds, resulting
in too high stability. In the presence of ice clouds, the unstable
events can be partly captured by IRS (1400 and 1600 UTC), but
some low LI values are overestimated (0800, 1200 UTC).

The impact of 10 MWRs (IRS + 10 MWRs) placed in the
domain is different for different times. In the basically liquid-
cloud-free situation at 1200 UTC, no impact can be seen. At
1400 and 1600 UTC, liquid clouds strongly influence the IRS
retrieval and additional 10 MWR observations lead to a sig-
nificantly better representation of LI field (considering event/
nonevent scores). However, the interpolation of IRS-retrieved
field with LI from 10 MWRs (located in a cloudy area) leads
to an underestimation of LI in the clear sky southeast of the
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domain. In this case, a limitation of the radius of influence of
single MWR would lead to more accurate results.

The observations of 10 MWRs distributed in the domain
lead to improvements in representation of LI in the cloudy
grid points. However, the pattern of LI analysis is still strongly
influenced by the background (IRS retrieved field). Thus, us-
ing the IRS-retrieved LI values in the grid points with liquid
clouds without correction is not reasonable, since clouds intro-
duce too high LI values and gradients in the LI field. Assigning
higher variances in the background covariance matrix to the
IRS observations affected by clouds may mitigate this effect.
To improve the IRS-only retrievals, a cloud-clearing method
could also be applied to LI field retrieved from IRS observa-
tions. For example, the LI values in the grid points with LWP
exceeding an empirical threshold, which needs to be deter-
mined according to the retrieval accuracy, could be replaced
by the LI values in the nearest clear-sky grid point.

7. Summarizing discussion and conclusions

This study evaluates the potential of satellite observations
(IRS) and observations of a hypothetical ground-based
MWR network for the assessment of atmospheric stability, in
terms of CAPE and LI, over a 150 X 150-km domain in the
west of Germany.

First, the neural network retrievals of LI and CAPE from
IRS and MWR observations, developed in Toporov and Lohnert
(2020), were extended to allow for their application to the ob-
servations at different locations. In general, the accuracy of
retrievals of CAPE and LI for the considered domain is con-
sistent with the results of the previous study. In the presence of
clouds, the accuracy of IRS retrievals decreases, while the
MWR provides almost the same statistics as under clear-sky
conditions. For both indices, the accuracy of the IRS retrieval
under cloudy conditions depends on two quantities: the liquid/
ice water content and cloud-top height. In general, the IRS
retrieval fails to detect convective conditions (high CAPE/low
LI values) for cases with water content larger than 0.5 kg m™ 2.

Under clear-sky conditions, both retrievals, CAPE and LI,
benefit from the combination of ground-based and satellite ob-
servations. In the presence of clouds, additional ground-based
MWR observations are essential and provide information from
the atmospheric layers below the cloud, which cannot be cap-
tured by the infrared satellite sensor. The synergistic retrieval
IRS + MWR results in an HSS around 0.71/0.67 for CAPE
(clear sky/cloudy) and around 0.81 for LI (both clear sky and
cloudy). The retrieval of CAPE is less accurate compared to
LI, even when using synergistic ground-based and satellite
observations.

Second, the impact of adding a limited number of ground-
based MWR observations to the geostationary IRS measure-
ments was investigated using linear statistical interpolation.

The accuracy of the obtained CAPE/LI fields depends on
the error covariances of the background (IRS retrieved fields)
and of the additional observations (IRS + MWR retrieval).
Combining IRS-retrieved fields with IRS + MWR observed
values is beneficial, even if only one ground-based sensor is
placed in the center of the domain. Adding 10 MWRs at the
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FIG. 10. Time series of CAPE from 1800 UTC 24 Aug 2011 to 2200 UTC 24 Aug 2011. (a) LWP (kg m~?) and ice water path (IWP;
shadowed area; lies between 0.001 and 0.7 kg m~?). Black circles indicate the locations of 10 MWRs. (b) CAPE field calculated
from reanalysis profiles (truth). (c) CAPE field retrieved from IRS observations. (d) CAPE fields obtained by statistical interpola-
tion of IRS-retrieved CAPE field with CAPE values from 10 MWRs (location of MWRs as shown in Fig. 2).
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FIG. 11. Time series of LI from 0800 UTC 24 Aug 2011 to 1600 UTC 24 Aug 2011, with 2-h temporal resolution. (a) LWP (kg m™~?) and
IWP (shadowed area; lies between 0.001 and 0.7 kg m™~2). (b) LI field calculated from reanalysis profiles (truth). (c) LI field retrieved from
IRS observations. (d) LI fields obtained by statistical interpolation of IRS-retrieved LI field with LI values from 10 MWRs (location of
MWR as shown in Fig. 2).
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E-PROFILE and DWD SYNOP stations in the domain re-
sults in further improvement of the accuracy of CAPE/LI
fields. The HSS value of CAPE for the entire domain in-
creases to 0.64/0.58 and that of LI grows to 0.75/0.64 under
clear/cloudy conditions, respectively. With a growing number
of MWRSs in the network, an increase in HSS and a decrease
in RMSE are significant only for the first 25 MWRs for CAPE
and 10-15 MWRs for LI. If we upscale these findings to the
entire area of Germany, this would imply a ground-based re-
mote sensing network of more than 100 instruments. For this,
current microwave profilers would need to be more afford-
able and reliable to operate within a network.

The analysis of the time series of the CAPE and LI analysis
fields reveals the weak points of the method.

For CAPE, the main problem lies in the accuracy of the re-
trievals itself. Further improvements to CAPE retrieval could
be achieved by more precise selection of IRS channels sensitive
to surface temperature and humidity, by inclusion of scanning
MWR observations at lower elevation angles, or by inclusion of
in situ measurements from surface stations. We hypothesize
that the retrieval would perform better for the mixed-layer
CAPE (MLCAPE) instead of the most unstable CAPE used in
this study. For the calculation of MLCAPE, the mean condi-
tions in the lowest 100-hPa layer are required. As it was shown
by Blumberg et al. (2017), the ML parcels are better captured
by passive sensors as the most unstable (MU) parcel.

In the case of LI, the inclusion of surface measurements
would also be beneficial. However, more attention should be
given to the observation error covariance matrix used in statisti-
cal interpolation. Assigning larger error variances to cloud-
affected IRS observations could give more weight to more
accurate MWR observations.

It is important to note that the results are sensitive to assump-
tions made concerning observation errors (in space of brightness
temperature). For IRS observations, diffraction is not taken into
account, and the horizontal inhomogeneity of the atmosphere
was neglected. The training, validation, and testing of the neural
networks were performed with a 10-month dataset over a certain
region. This limits the applicability of the networks to different
geographic locations and atmospheric conditions. Further as-
sumptions that would not be fulfilled in the real atmosphere are
that the sensors first measure the same air column and second
have no representation errors because of the mismatch between
observation locations and model grid points. Therefore, the re-
sults of this study represent the theoretical evaluation of the syn-
ergy of satellite and ground-based sensors in the best possible
setting.

Finally, we conclude that significant improvements in the assess-
ment of stability could be achieved if IRS satellite observations
were complemented by ground-based MWR observations at exist-
ing observational sites. To close the observational gap in the atmo-
spheric boundary layer, we are currently extending our approach
to obtain temperature and humidity profiles, which are particu-
larly important in nowcasting and short-term forecast applications.
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APPENDIX A

Stability Indices

The CAPE describes the maximum energy available to an
ascending air parcel after it has been lifted by some process,
such as diabatic heating or forced flow over topography, up
to the level of free convection (LFC). Above the LFC, the air
parcel becomes warmer than the environment and rises up to
the equilibrium level (EL). In this study, the most unstable
CAPE is calculated by taking the most unstable parcel within
the lowest 300 hPa (MU) and integrating the buoyancy of
this parcel from the LFC to the EL (expressed using the vir-
tual temperature of the parcel Tv, and that of the environ-
ment Tv,):

PEL
CAPE = —R dj

Pyu

(Tvp — Tv,)d(Inp), (A1)

where R, = 287.05 J kg~! is the gas constant for dry air. In
general, CAPE values between 0 and 1000 J kg™ ! indicate
weak instability, and values between 1000 and 2500 J kg™!
and values above 2500 J kg~ indicate moderate and strong
instability, respectively.

The LI describes the degree of instability of the atmo-
sphere below 500 hPa and is calculated as the difference be-
tween the temperature of the environment at 500 hPa and
the temperature of an air parcel lifted adiabatically from the
surface to 500 hPa:

LI=T

so0 — T

SFC—500" (AZ)

The threshold values for CAPE and LI separating stable
and slightly unstable conditions were taken according to
Haklander and Van Delden (2003) and lie by 168 J kg ' and
1.6 K, respectively. The higher/lower the CAPE/LI value, the
more unstable the atmosphere and the higher the probability
of thunderstorms. The mean values of CAPE and LI for the
considered period (Fig. 1) reveal more unstable conditions
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(larger number of unstable events and higher/lower CAPE/LI
values) in the southeast part of the domain.

APPENDIX B

Taylor Diagram

A quantitative evaluation of the retrieval performance can
be given by means of Taylor diagrams (Fig. 4) (Taylor 2001).
The Taylor diagram allows the visual comparison of three met-
rics: the standard deviation of retrieved and true (reanalysis)
values, the correlation coefficient between retrieved and
true values, and the centered RMSE of retrieved values
relative to the truth. The black dot on the horizontal axis shows
the CAPE/LI standard deviation of the reanalysis dataset (with
correlation of 1 and centered RMSE of 0). The colored dots
represent the performance of the CAPE/LI retrievals based on
different observations (IRS, MWR, and IRS + MWR). Points
lying close to or on the thick black dotted arc indicate a re-
trieval with the correctly reproduced variability of CAPE/LIL
The azimuthal positions of colored points give the correlation
coefficients between retrieval and reanalysis. The distance be-
tween the dashed green circles and the reanalysis point is
equivalent to the centered RMSE between retrieved values
and reanalysis. Note that the diagram does not provide infor-
mation on biases. However, in this study, the retrieval
biases were found to be small, leading to negligible differ-
ences between RMSE and centered RMSE. Thus, the
points lying closest to the reanalysis point indicate retriev-
als with the highest correlation and lowest RMSE that
agree best with the reanalysis.
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