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Mixed-state topological order parameters for symmetry-protected fermion matter
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We construct an observable mixed-state topological order parameter for symmetry-protected free-fermion
matter. It resolves the entire table of topological insulators and superconductors, relying exclusively on the
symmetry class, but not on unitary symmetries. It provides a robust, quantized signal not only for pure ground
states, but also for mixed states in or out of thermal equilibrium. Key ingredient is a unitary probe operator,
whose phase can be related to spectral asymmetry, in turn revealing the topological properties of the underlying
state. This is demonstrated analytically in the continuum limit, and validated numerically on the lattice. The
order parameter is experimentally accessible via either interferometry or full counting statistics, for example, in
cold-atom experiments.
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I. INTRODUCTION

Rapid advances in engineered quantum systems, including
cold-atomic gases [1–5] or, more broadly, noisy intermediate-
scale quantum (NISQ) platforms [6–9], have enabled novel
strategies for quantum state preparation, and have unlocked
new diagnostic tools for global observables. These platforms
provide ideal settings for exploring topological matter, char-
acterized by nonlocal order parameters. However, inevitable
interactions with the environment drive them into mixed
states, posing challenges beyond the ideal assumption of pure
states [10–19] while also creating new opportunities. Conse-
quently, the study of topology in mixed states has emerged as a
key focus, with a major challenge posed by the identification
of experimentally accessible topological signatures. Among
mixed states, fermion Gaussian states represent an important
class, whose pure state limit forms the basis of our understand-
ing of topological insulators and superconductors protected
by symmetry [10,12,15,16,18,19]. These states arise naturally,
for example, from finite-temperature Gibbs ensembles, dissi-
pation engineering [20–22], and synthetic quantum systems
[23–26]. Even for spin systems, spin-to-fermion mappings can
offer insight into the former [27–30]. The first steps towards
identifying and understanding the topological structures of
mixed Gaussian states were achieved in specific one- [31] and
two-dimensional [32–34] systems in terms of the Uhlmann
phase. Complementarily, experimentally relevant observables
for Gaussian mixed-state topology have been constructed for
models such as the Rice-Mele model, Chern and quantum
spin Hall insulators [35–37]. A general experimentally acces-
sible order parameter valid for the entire table of topological
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insulators and superconductors, and in particular, the identi-
fication of an overarching mathematical principle behind it,
remains outstanding.

In this paper, we uncover a unified topological order
parameter based on symmetry principles, applicable to all
Gaussian-state symmetry classes. Our construction requires
minimal input, the symmetry class of the stationary state,
regardless of its dynamical origin, equilibrium, or nonequilib-
rium. Its output is universal, connecting the physical signal to
the asymmetry matrix QW introduced below, a single object
which applies across the entire periodic table of topological
insulators and superconductors. The order parameter provides
a robust, quantized signal, reflecting the topological term in
the partition function, and thus distinguishing different topo-
logical phases. The resulting mixed-state topological phase
represents a direct generalization of the pure state cases in the
classic Refs. [15,16]. This unifies pure- and mixed-state sys-
tems in a common symmetry-based framework. In addition,
it centers on physical observables at the core of the theory:
Experimentally, this order parameter can be observed in cold-
atom systems, for instance, via interferometry [35,38] or, as
we demonstrate here, through full counting statistics of global
observables, such as total particle number or spin [39–44].
Thus, our top-down approach renders a systematic recipe for
detecting pure- and mixed-state topological phases, moving
beyond previous instance-specific proposals for experimental
protocols [45,46].

II. A TOPOLOGICAL ORDER PARAMETER
FOR ALL SYMMETRY CLASSES

Topology is a nonlocal property of fermions [15,16], and
we thus use a global unitary operator as a probe. Its expecta-
tion value forms a nonunitary partition function. Its phase, as
a topological term [15], yields a topological order parameter.
This phase renders a quantized signal due to symmetry, dis-
tinguishing different phases. Phase transitions can thus occur
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either by breaking the protecting symmetry, or by encounter-
ing a zero in the partition function, akin to Lee-Yang zeros.
Specifically, we will consider

φW [w] = arg[ZW [w]], ZW [w] =〈e−iŴ [w]〉,
Ŵ [w] =

∑
i,a,b

ψ̂
†
i,awiWabψ̂i,b, (1)

where 〈. . . 〉= Tr[ρ̂ . . . ]/Tr[ρ̂], ψ̂i,a(ψ̂†
i,a) are the fermionic

annihilation (creation) operators at site i with internal indices
a. The state of the system is characterized by its density matrix
ρ̂ = e−Ĝ, taken to be Gaussian, Ĝ = ∑

i j,ab ψ̂
†
i,aGi j,abψ̂ j,b: G

is local in real space; the topological signal will be activated
in the presence of background gauge fields G = G[A]. Such
density matrix represents gapped fermionic matter in differ-
ent symmetry classes in [12] and out of equilibrium [21,31–
33,37,47,48]. Pure states obtain in zero-temperature ground
states (Ĝ = βĤ for inverse temperature β and Hamiltonian Ĥ ,
in the limit β → ∞), or as dark states of Lindbladian evolution
[37,48]. The probe operator is characterized by a possibly
space-dependent real function wi, and a Hermitian matrix
in internal space W , with the constraint W2 = I. We will
demonstrate that for a suitable choice of W , the winding of w

will activate the topological charge contained in Ĝ, across all
classes. This winding features the product of momentum- and
real-space topological invariants. The momentum-space topo-
logical invariant includes examples like the Chern number.
The real-space topology derives from the homotopic charac-
teristics of the background gauge fields within Ĝ[A]. The latter
bifurcate into two classes, either U(1) gauge fields for U(1)
symmetric insulators, or Z2 gauge fields for superconductors
with fermion parity symmetry. Our focus is on the U(1) case,
with the necessary adjustments for Z2 provided subsequently.

The choice of w is determined exclusively by the spatial
dimension:

(1) Even spatial dimensions: w is a spatially homoge-
neous constant with value [0, 2π ]. It spans a parameter cycle,
such that �φW

2π
≡ ∫ 2π

0
dw
2π

∂wφW ∈ {Z, 2Z, Z2} renders a phase
winding number, detecting the underlying topology.

(2) Odd spatial dimensions: w = wi is an inhomogeneous
function, varying slowly in one spatial direction and constant
otherwise, respecting periodic boundary conditions [49]. The
order parameter is then φW

π
itself, i.e., φW

π
∈ {Z, 2Z, Z2}.

The form of W is instead determined by symmetry.
Symmetry-protected fermion matter falls into two categories
[12,19,47,48]: (i) the prime series with integer topological
invariant, Z or 2Z valued; and (ii) the descendant states with
Z2 invariant. The form of W changes accordingly (see Fig. 1
for an overview):

(1) For the prime series, W = I.
For the descendant states, a symmetry constraint upon W

is needed:
2(a) For systems without chiral symmetry [“No CS” in

Fig. 1(c)], we require that SWS−1 = −W , with S the matrix
representation of the protecting time-reversal (T ) or particle-
hole symmetry (C) [50].

2(b) For systems with chiral symmetry [“CS” in Fig. 1(c)],
we require that (a) W anticommute with chiral symmetry,

FIG. 1. Mixed-state order parameter concept. (a) In even spatial
dimensions (d = 2 here), we construct the mixed-state order parame-
ter by choosing the probe matrix W [Eq. (1)] such that QW [Eq. (3)]
belongs to the 2Z class, serving as a parent for Z2 classes (dotted
arrows). Results in odd spatial dimensions (d = 1 here) are inferred
via dimensional reduction (dashed arrows). (b) The reduction to Z2

arises from an ambiguity in the choice of W: different W change
�φW

2π
by 4Z, manifesting as the appearance of a quartic number of

Lee-Yang zeros in the parameter space for the complex amplitude
ZW [w] [Eq. (1)], where θ parametrizes different W . (c) Overview of
the choices of W .

(b) T WT −1 = −W (or CWC−1 = −W) in 4k + 2 (or 4k)
spatial dimensions, with k ∈ N0.

This will be explained by the W matrix being inferred from
a 2Z class parent in the same dimension [see Fig. 1(a)]. For a
fixed W , the ensuing accumulated phase signal consequently
satisfies �φW

2π
∈ 2Z. The reduction to Z2 then arises from the

freedom in choosing W matrices compatible with the above
symmetries, demonstrating that the signal is defined only
modulo 4Z. We take advantage of this mechanism to detect
the Z2 signal �φW

2π
via random sampling of W .

In this discussion, we have assumed even dimension. For
the odd-dimensional cases, the W matrix can be taken the
same as for its even-dimensional parent state, following from
dimensional reduction [37,51,52] [see Fig. 1(a)]. We now
derive these results, and illustrate them via examples. To
this end, we will pass to the continuum limit, where Gi j,ab

becomes a first-quantized local operator, and wi a function on
d-dimensional space; our results are expected to equally hold
on the lattice [53], as confirmed by our numerical simulations.

III. �φW MEASURES ACTIVATED
TOPOLOGICAL CHARGE

We focus on Eq. (1), and demonstrate that the winding of
w activates quantized topological charge of Ĝ, measured by
�φW . This will be achieved by identifying �φW

2π
as a spectral

asymmetry, which is a topological index [54,55]. Namely,
upon tracing out fermion degree of freedom in Eq. (1), one
obtains

φW = Im ln det

{
cos

w

2
+ i sin

(w

2

)[
W tanh

(
G

2

)]}
.

(2)
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It represents a multivalued function due to the presence of a
branch cut in the logarithm [56]. Specifically, upon perform-
ing a winding w → w + 2π , this multivaluedness singles out
the topological charge encapsulated in G, manifesting itself
as the spectral asymmetry of the Hermitian asymmetry matrix
QW (see Appendix A),

QW ≡ 1
2 {W, sign(G)} (3)

with sign(G) ≡ tanh( G
2 )√

tanh( G
2 )2

for gapped G, and

�φW

2π
= 1

2

∑
n

sign(qn), (4)

with qn the eigenvalues of QW [57]. Here the winding is
implemented via spatially homogeneous w, the discussion for
slowly varying w is postponed to later. Notably, �φW is β

independent (G = βH) and well defined for any β 	= 0. Thus,
the topological phase structure in the Gaussian pure-state limit
is matched by our order-parameter approach. We also note that
in interacting systems a transition can happen at finite β, as
exemplified in Ref. [58].

According to Atiyah, Patodi, and Singer [54,55], the spec-
tral asymmetry of an elliptic (local) Hermitian operator is
related to topology. Here, this manifests as the product of
momentum- (denoted as chW ) and real-space (

∫
C) topolog-

ical invariants,

�φW

2π
= chW

∫
dd xC(x) ∈ Z, (5)

which is the fundamental formula for our mixed-state or-
der parameter. Specifically, chW captures the topological
properties of QW , characterized by the homotopy group,
e.g., πd+1[GL(N,C)] for the map from frequency-momentum
space (with dimension d + 1) to 1

iω−QW
∈ GL(N,C). Clearly,

for W = I, this reproduces the Chern number in the Chern
insulator. Meanwhile,

∫
C depends only on homotopic prop-

erties of the background field, with C for the associated
topological charge density [59]. For the case of U(1) gauge
fields A and in even spatial dimensions d = 2n,

∫
C can be

the background topological charge of a magnetic field, or the
winding number of skyrmions [60],

C(2n)(x) = ε0i1i2...i2n−1i2n

(2π )nn!
∂i1 Ai2 . . . ∂i2n−1 Ai2n . (6)

Together, �φW

2π
captures the topological charge localized

within real-space solitons [61,62], underpinning its role as an
order parameter of mixed-state topology.

The spectral asymmetry �φW

2π
closely links to the fermion

parity expectation value, but crucially provides a finer resolu-
tion. Specifically, the bridging formula is

sign〈(−1)Q̂〉= eiπ×( �φW
2π

), (7)

established by recognizing that eiφW |w =π coincides with the
fermion parity, as a consequence of W2 = I. Meanwhile, Her-
miticity of W implies that φW (w) = − φW (−w), and thus
both eiφW |w =π and the fermion parity discern only even or
oddness of �φW

2π
, yielding a Z2 signature. The Z-valued spec-

tral asymmetry �φW

2π
instead captures a richer topological

pattern.

Changes in �φW

2π
can only occur when QW contains zero

modes. This implies the appearance of Lee-Yang zeros in ZW ,
which can be viewed as a nonunitary partition function. These
fall into two categories. Indeed, the existence of a Lee-Yang
zero is a sufficient, but not a necessary condition for a topo-
logical phase transition: The latter occurs for zero modes of G
(which implies zero modes of QW ). But zero modes of QW

can also occur while G remains gapped, depending on the
choice of W matrices. Symmetry [points 1 and 2] imposes
constraints, ensuring zeros of this type to appear in multiples
of four [see Fig. 1(b)] (see Appendix C). This results in a
Z2 classification descending from the 2Z-valued �φW , as we
explain next.

IV. EXHAUSTING ALL SYMMETRY CLASSES
BY CHOICE OF W

We now construct W for all symmetry classes, and thus
derive the conditions presented in points 1, 1, and 2 based on
the spectral asymmetry formula (5). The real-space topology
C stems from a U(1) gauge field [see Eq. (6)] for insulators
[represented by complex fermions, (i) and (ii) below], and Z2

gauge fields for superconductors [Majorana fermions, (iii)].
(i) Insulators in even spatial dimensions. For the Z and

2Z classes, the choice is simple: we take W = I (cf. [1]),
yielding �φW

2π
∈Z (or 2Z) as mixed-state order parameter. This

is possible since these classes possess a nontrivial homotopic
invariant πd+1[GL(N,C)] [37,57,63]; the 2Z classification
results from the presence of time-reversal and particle-hole
symmetries requiring the appearance of an even number of
Z-class copies [12].

The Z2 classes, however, generally render a vanishing sig-
nal �φW

2π
when W = I [and thus positive fermion parity, cf.

Eq. (7)]. This is because symmetry enforces the spectrum of
sign(G) to be composed of symmetric pairs of eigenvalues
with opposite sign in Eq. (4) (see Appendix C for details). We
thus opt for a different choice of the W matrix, as listed in
points 1 and 2, which endows an opposite sign to the eigen-
values of the symmetric pairs of sign(G). Namely, we first
observe that the associated QW is in the 2Z class: Its spectral
asymmetry takes values �φW

2π
∈ 2Z, ensured by the positive

fermion parity noted above. The reduction to Z2 then roots
in the remaining freedom for choosing W (see Appendix C):
varying W alters �φW

2π
by 4Z, manifesting in ZW as a multiple

of four for the number of Lee-Yang zeros in the parameter
plane [see Fig. 1(b)]. Hence, we identify Z2 = 2Z mod 4, and
obtain �φW

2π
= 0, 2 mod 4 as a mixed-state order parameter.

(ii) Insulators in odd spatial dimensions. For the order
parameters in odd spatial dimension, a caveat associated with
Eq. (5) is that chW generally vanishes, due to Bott periodicity
(see, e.g., [64]). Still, one can access the underlying topology
by invoking slowly varying w(x) [cf. 2], and then establish
an order parameter via dimensional reduction [12,63]. We
start from a generalization of φW in Eq. (2) to such w(x)
(Appendix B for a derivation from a Dirac model):

φW ≡ chW

∫
d2nx IW [w(x)] ×C(2n)(x), (8)

where C(2n) is given in Eq. (6). IW [w(x)] is a model-
dependent multivalued function with the key property

033028-3



ZE-MIN HUANG AND SEBASTIAN DIEHL PHYSICAL REVIEW RESEARCH 7, 033028 (2025)

IW |w+2π
w = 2π , to uphold the spectral asymmetry [Eq. (5)],

i.e., φW |w = 2π
w = 0

2π
∈ Z. We can then infer the descendant formula

via integrating out one spatial dimension [12,63]. The ensuing
odd-dimensional signal, with W read off from its parent state
and inhomogeneous w [see Figs. 1(a) and 1(b), in direction
xα] is (see Appendix D)

φW

π
= chW

(∮
dxα

∂

∂xα

IW

)[
1

2π

∫
d2n−2xC(2n−2)

]
∈ Z.

(9)

This establishes φW

π
as an order parameter in 2.

(iii) Superconductors. Thus far, our focus has been on
insulators, i.e., systems with a conserved particle number. This
allows us to introduce a U(1) gauge field as a means to acti-
vate the spectral asymmetry. While a continuous symmetry
is crucial for constructing U(1) gauge fields, it is irrelevant
for the definition of symmetry classes [10,65]. Indeed, in the
case of particle-hole symmetric fermion matter, representing
superconductors, the continuous U(1) symmetry is reduced to
a discrete Z2 fermion parity symmetry. The central concept,
spectral asymmetry, remains applicable, but is leveraged in
a different manner: it is activated by a Z2 fermion parity
symmetry gauge field instead, implemented through twisted
spatial boundary conditions [66]. Hence, our recipe in 1, 1,
and 2 generalizes to superconductors. We relegate the details
to Appendix G, but illustrate its working in Example II below.
In the following we will illustrate our findings with concrete
examples with Z2 classification. The signal can be distilled by
randomly and repeatedly choosing the probe matrix W , while
respecting the symmetry constraints. We will present results
for equilibrium states G = βH only; nonequilibrium states
including dynamical scenarios are discussed in Appendix E.

V. EXAMPLES

A. Example I: Two-dimensional AII class

We focus on the (modified) Bernevig-Hughes-Zhang
model (mBHZ) [67]

H =
(

H0(k) −i�τ y

i�τ y H∗
0 (−k)

)
, T = σ y ⊗ τ 0K, (10)

with τ x,y,z (τ 0) for Pauli (unit) matrices, and k for momentum.
H0 = d · τ with d = [sin(kx ), sin(ky), m + cos(kx ) + cos(ky)],
and the � term is introduced to break the z-axis spin rotational
symmetry.

Possible choices for the probe matrix compliant with 1 are
then W ={σ ⊗ τ x, z, 0, σ 0 ⊗ τ y}. Numerical results are pre-
sented in Fig. 2. The mixed-state topological order parameter
accurately reconstructs the zero-temperature phase boundary
(red line) from a finite-temperature situation (β = 1 here).

The topological order parameter can be observed in cold-
atom experiments by taking simultaneous snapshots of all
particles [40–43], to build the full counting statistics (FCS)
of the global operator Ŵ . The FCS signal is the distribution
function for the eigenvalues W of Ŵ [w ≡ 1] with w taken to
be constant 1, represented as

P[W ] ≡ 〈δ(Ŵ [1] − W )〉=
∫ 2π

0
dw eiwW 〈e−iwŴ [1]〉.

FIG. 2. Numerical results for the modified BHZ (mBHZ) model
(a)–(c), and the DIII superconductor (d). (a) �φW

2π
as a signature

for the topological (normal) phase in the mBHZ model under in-
sertion of one magnetic flux quantum at temperature 1 and site
number 15 × 15. W is randomly sampled 50 times. The color bar
is a histogram counting the number of nontrivial valued �φW

2π
, i.e.,

�φW
2π

= 2 mod 4 [68]. TI, NI, and M stand for topological, nor-
mal, and gapless phase, respectively. (b) Full counting statistics for
the mBHZ model in the canonical ensemble at β = 3, with fixed
W = σ z ⊗ τ 0. Its Fourier components encode the mixed-state order
parameter φW , which are plotted in (c), as a function of w, leading
to a nontrivial value �φW

2π
= 2 ∈ 2Z mod 4 in TI. (d) Mixed-state

topological order parameter for a DIII superconductor as a function
of m, i.e., φW

π
= 1

2 × (0, 2 mod 4), where w = 2πx1
N1

and 1
2 from the

Majorana nature. The amplitude λ ≡ − ln |ZW |2
N1

exhibits a cusp at the
transition points.

Its Fourier components at frequency w render the mixed-state
order parameter ZW [w]. Results for representative points in
the normal (NI) and topological (TI) phases are shown in
Figs. 2(b) and 2(c): While the FCS histogram looks quali-
tatively similar in both phases, the topologically nontrivial
character is clearly visible in TI, indicated by the winding
number along tuning w. Alternatively, Mach-Zehnder inter-
ferometry could be used [35,36,38], where Ŵ acts as the
Hamiltonian for an adiabatically imprinted Loschmidt echo
[69–72]. This requires immersing the atoms in a cavity, and
engineering a probe Hamiltonian defined with w and Ŵ .

B. Example II: One-dimensional DIII class

To illustrate the dimensional reduction method and the
Majorana case, we consider the DIII class superconductor
in one dimension. Its parent class is AII in two dimensions.
Numerical results are shown in Fig. 2(d) for the following
model:

H = − (sin kxσ
z ) ⊗ τ x + (m + cos kx )σ 0 ⊗ τ z, (11)

in the Nambu basis �̂k = (ψ̂k, −iσ yψ̂
†
k ). According to point

1, we choose time-reversal odd probe matrices, realized
by the Pauli matrices, i.e., W = n · σ (or 1

2 n · σ ⊗ τ 0

in Nambu space) for a spin pointing in direction
n = (sin θ cos φ, sin θ sin φ, cos θ ), and sample the angles
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randomly. Figure 2(d) verifies our order parameter as a probe
of the underlying topology.

VI. CONCLUSION

We define mixed-state topological phases via topological
order parameters, which complements the two-way quantum
channel connectivity definition [73], offering clear operational
meaning and experimental accessibility. At the heart of the
possibility of exhausting the full periodic table with a single
topological order parameter lies a new descendant relation
between the 2Z and Z2 classes in the same dimension. While
concentrating on free fermions here, the order parameter re-
mains well defined (with the same bilinear Ŵ ) for interacting
fermion systems. Their mixed-state physics might be enriched
by the activation of defects and novel entropy driven topolog-
ical phase transitions [58]. A further direction is to connect
the symmetry-protected topology of mixed fermion states to
topological order and the robustness of quantum information
[74–78], where mixed Gaussian fermion states can provide a
powerful building block [30].
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APPENDIX A: �φW
2π

CAN CHANGE ONLY WHEN QW

IS GAPLESS

We demonstrate that for a fermionic Gaussian state
ρ̂ = e−ψ̂†Gψ̂ , �φW

2π
depends only on the spectral asymmetry of

QW , providing the details for the derivation of Eq. (2).

1. Tracing out fermion degree of freedom

We first trace out fermion degree of freedom to repro-
duce Eq. (2) in the main text. For concreteness, we shall
assume ψ̂ to be complex fermion, while derivations for the
Majorana case (or fermions in the Nambu space) are parallel,
as we shall comment along the way. The object of interest
is

φW (w) ≡ arg

[
1

Trρ̂
Tr(ρ̂e−iwψ̂†Wψ̂ )

]
, ρ̂ = e−ψ̂†Gψ̂ , (A1)

which after tracing out fermions, yields

φW (w) = arg

[
det(I + e−Ge−iwW )

det (1 + e−G)

]

= arg

[
det(e−i w

2 W )
det(ei w

2 W + e−i w
2 We−G)

det (1 + e−G)

]

= −w

2
trW

+ arg

{
det

[
cos

(w

2

)
+ i sin

w

2
W tanh

(
G

2

)]}
.

(A2)

Here, we have used the following identity for complex
fermion:

Tr(e−ψ̂†Aψ̂e−ψ̂†Bψ̂ ) = det
(
I + e−Ae−B

)
, (A3)

while its counterpart for Majorana fermions γ̂ is [79]

[Tr(e−γ̂ Aγ̂ e−γ̂ Bγ̂ )]2 = det(I + e−2Ae−2B). (A4)

2. �φW
2π

as the spectral asymmetry of QW

Now we demonstrate one of our key results, that �φW

2π
only

depends on the spectral asymmetry of the Hermitian matrix

QW = 1

2

⎧⎪⎨
⎪⎩W,

tanh
(

G
2

)
√

tanh2
(

G
2

)
⎫⎪⎬
⎪⎭. (A5)

Hence, �φW can change only when the gap of QW closes.
The proof is based on the following two observations:
(1) Due to Hermiticity of W:

φW (w) = − φW (−w) ⇒ �φW

= 2
∫ π

0
dw ∂wφW (w) = 2φ(π ), (A6)

which holds since φ(0) = 0 [cf. Eq. (A2)].
(2) φW (w = π ) depends solely on the spectral asymmetry

of QW .
To demonstrate observation 2, we first use observation 1

and the explicit form of φ(π ) [Eq. (A2)] to get

�φW = 2 Im Tr ln

[
iW tanh

(
G

2

)]

= 2 Im Tr ln

⎡
⎢⎣iW

tanh
(

G
2

)
√

tanh2
(

G
2

)
√

tanh2

(
G

2

)⎤⎥⎦
= 2 Im Tr ln [iW sign(G)], (A7)

with

sign(G) ≡ tanh
(

G
2

)
√

tanh2
(

G
2

) (A8)

for gapped G. For gapless G, we notice that the amplitude of
φW vanishes [see Eq. (A2)], so without loss of generality, we
extend sign(G) to encompass the gapless scenario by defining
sign(0) = 0 in the eigenbasis of G. Here, iW sign(G) is a

unitary matrix, and
√

tanh2( G
2 ) a positive-definite matrix. The

proof of Eq. (A7) is delivered below. Hence, by taking the
branch cut of the logarithm function on [−∞, 0], we find

�φW

2π
= 1

π
Im Tr ln [iW sign(G)] = 1

2

∑
n

sign(qn), (A9)
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with qn eigenvalue for QW . The second equality is based on
the observation that the formula

Im
∫ 2π

0

dx

2π
∂x ln

(
cos

x

2
+ i sin

x

2
λ
)

= 1

2
sign(Reλ), (A10)

for λ ∈ C, singles out the real part of λ. Hence, to-
gether with Eqs. (A6) and (A7), we connect φW with
the real part of the eigenvalues of W sign(G) (recall
that this matrix is normal, i.e., unitarily diagonalizable).
But the real part of these eigenvalues coincides with the
eigenvalues of QW ≡ 1

2 {W, sign(G)}, which holds since
W sign(G) and sign(G)W = [W sign(G)]† are diagonalized
by the same unitary transformation. Using the interpola-
tion Im Tr ln[cos( x

2 ) + i sin( x
2 )W sign(G)] between 0 and

1
π

Im Tr ln[iW sign(G)], Eq. (A9) follows.
Proof of Eq. (A7). It is based on the defining properties

of the matrix logarithm and the Baker-Campbell-Hausdorff
formula. For notational simplicity, we rewrite it as

Im Tr ln (U × A)
?= Im Tr ln U, (A11)

where U an unitary matrix and A a positive-definite matrix.
By definition of the matrix logarithm, we have

U = eln U , A = eln A. (A12)

Due to the Baker-Campbell-Hausdorff formula eB1 eB2 =
eB1+B2+[B1, [B1,... ]], we find

Tr ln (U × A) = Tr ln eln U+ln A+[ln U, [ln U,... ]]

= Tr(ln U + ln A), (A13)

and thus demonstrate Eq. (A11).

APPENDIX B: ACTION (8) FROM DIRAC MODEL

We present a detailed derivation of Eq. (8) from a micro-
scopic Dirac model in the presence of an external U(1) gauge
field, for the Z2 class (see [37] for the Z or 2Z classes). For
concreteness, we present the derivation in d = 2, the general-
ization to higher dimension is straightforward. We start from
the following continuum model:

Ĝ = Ĝ0 +
∫

d2x[mψ̂†(x)σ z ⊗ (n · τ)ψ̂ (x)] (B1)

and

Ĝ0 =
∫

d2x ψ̂†(x)[(i∂x − Ax )σ x ⊗ τ 0

+ (i∂y − Ay)σ y ⊗ τ 0]ψ̂ (x), (B2)

where n is a unit vector, and x the two-dimensional spatial
coordinate. We will reserve the symbol G0 (G) for the first-
quantized counterparts of Ĝ0 (Ĝ), i.e.,

G0 ≡ [i∂x − Ax(x)]σ x ⊗ τ 0 + [i∂y − Ay(x)]σ y ⊗ τ 0, (B3)

containing two decoupled massless Dirac operators under
U(1) gauge field (Ax, Ay), and

G = G0 + mσ z ⊗ (n · τ ), (B4)

involving a mass term mσ z ⊗ n · τ. As for the probe operator,
we take W = s · τ ⊗ σ 0 with s a unit vector, such that

φW ≡ argTr(e−i
∫

d2x ψ̂†ws·τ⊗σ 0ψ̂e−Ĝ)

= Im

{
Tr ln e−i 1

2 ws·τ⊗σ 0

+Tr ln

[
cos

(w

2

)
+i sin

(w

2

)
s · τ ⊗ σ 0 tanh

(
G

2

)]}
,

(B5)

where w is homogeneous, and Tr is for tracing over both the
internal and spatial space, while tr is preserved for internal
space.

In the rest of this section, we will show that

φW = chW

∫
d2x IW [w] × N , N = 1

2π
εi j∂iA j,

IW [w] = Re

{
− i tr ln

[
cos

(w

2

)

+ i sin
(w

2

)
s · τ tanh

|m|(n · τ)

2

]}
. (B6)

with chW = 2 sign(m)
2 . Here, N is the topological index den-

sity of G0, which in the presence of the external magnetic
field equals the specified expression. It counts the number
of zero modes associated with G0. It is interesting to note
that all the topological information is contained in G0, while
both the mass term (associated to n) and the probe operator
(associated to s) appear exclusively in the function IW . The
relation between the zero modes of the Dirac operator and the
topological index is the content of the Atiyah-Singer index
theorem; it holds in higher even space dimensions too, so that
analogous results can be derived straightforwardly, inferred
from the index theorem.

To proceed, we will represent φW in the eigenbasis of G0

(including inhomogeneous external fields), aiming to demon-
strate that φW is only from zero modes of G0. We first notice
that G0 has the following symmetries:

{G0, σ z} = 0, [G0, (s · τ ⊗ σ 0)] = 0, (B7)

from which we infer the following:
(i) Eigenstates of G0 with nonzero eigenvalues appear in

opposite eigenvalue pairs, namely |ψn〉, σ z|ψn〉, with eigen-
values ±λn. For later notational simplicity, we preserve the
n = 0 index for the zero-eigenvalue sector.

(ii) We can diagonalize G0 and s · τ ⊗ σ 0 simultaneously,
and thus label |ψn〉 by |ψ±

n 〉 for the positive (negative) eigen-
value of s · τ.

Together, the contribution to φW from the eigenstates
|ψ±

n 〉’s (n 	= 0) is

arg Trn

[
cos

(w

2

)
+ i sin

(w

2

)
s · τn tanh

(
1

2
Gn

)]
, (B8)

where the subscript n is to emphasize the restriction to the
subspace spanned by {|ψ±

n 〉, σ z|ψ±
n 〉}’s, e.g., Trn for tracing
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over this subspace, and s · τn and Gn are

s · τn ≡

⎛
⎜⎜⎝
(

1
−1

)
0

0

(
1

−1

)
⎞
⎟⎟⎠ (B9)

and

Gn ≡
(

λn1 mn · τ

mn · τ −λn1

)
. (B10)

After these preparations, we are ready to demonstrate
that φW receives no contributions from n 	= 0 states, i.e.,
Eq. (B8) vanishes for n 	= 0. This is based on the following
two properties: 1. (s · τn)2 = I; 2. Gn possesses chiral symme-

try, i.e., {Gn, M} = 0 where M ≡ (
0 −iI
iI 0 ). In turn, we find

Trn[cos( w
2 ) + i sin( w

2 )s · τn tanh( 1
2 Gn)] is real, i.e.,

Trn ln

[
cos

(w

2

)
+ i sin

(w

2

)
s · τn tanh

(
Gn

2

)]

= Trn[M(s · τn)] ln

[
cos

(w

2

)

+ i sin
(w

2

)
tanh

(
1

2
Gn

)
s · τn

]
[M(s · τn)]†

= Trn ln

[
cos

(w

2

)
+ i sin

(w

2

)
s · τn tanh

(
Gn

2

)]†

.

(B11)

Built upon results above, we conclude that φW is from the
n = 0 state (zero mode of G0). To finally obtain Eq. (B6), we
proceed by utilizing the chiral symmetry of G0, from which
we can take the zero mode to be eigenstates of σ z, labeled by
α = ±. In turn, φW becomes

φW =
∑
α=±

Re(−i)tr ln

[
cos

(w

2

)

+ i sin
(w

2

)
s · τ tanh

(αmn · τ

2

)]
, (B12)

where we have used [G0, τ ⊗ σ 0] = 0, and here, “tr” is over
the two-dimensional τ matrix. Together with the index theo-
rem, we reproduce Eq. (B6), i.e.,

φW = chW × (nα=+ − nα=−) × IW [w]

= chW × IW [w] ×
(∫

d2x
2π

εi j∂iA j

)
, (B13)

with

chW = 2
sign(m)

2
and nα=+ − nα=− ≡

∫
d2xN ∈ Z.

(B14)

In particular, we notice that IW satisfies

IW |w+2π
w = ±2π, (B15)

where the ± originates from the sign of tr[(s · τ ) · (n · τ)].
chW is the spin Chern number [80–82] for our massive Dirac
model: This can be seen clearly in the limit of n · τ = τ z,
where G consists of two Dirac models with opposite mass, and

thus opposite Chern number, i.e., ± 1
2 sign(m) [12]. The half-

integer valuedness is attributed to the Dirac model, which can
be cured by proper regularization [12,37,83]. These together
produce chW = 1

2 sign(m) − [− 1
2 sign(m)] = 2 sign(m)

2 .
Finally, we highlight that our action is readily generalized

to weakly inhomogeneous w, via gradient expansion as de-
rived in [37], by replacing constant w with w[x].

APPENDIX C: Z2 INVARIANT FROM THE FREEDOM
OF CHOOSING W

Here we shall focus on the Z2 class in even spatial dimen-
sions, and elucidate the emergence of its Z2 invariant through
variation of W . To this end, we shall first demonstrate that
opting for the naive choice W = I results in a vanishing �φW

2π
.

This observation prompts us to seek for an alternative W . We
construct it such that the associated QW falls in a 2Z class. It
turns out that the choice of W is not unique, which leads to a
reduction form 2Z to Z2 invariant. For concreteness, we shall
focus on external U(1) gauge fields in this section.

1. Vanishing �φW for W = I

We first show that symmetry enforces vanishing
�φW

2π
|W=I = 0 in the Z2 class in even spatial dimensions.

We observe the following:
(i) The periodic table exhibits the following symmetry

pattern for the Z2 classes: In d = 4k (d = 4k + 2) spatial
dimensions (k ∈ Z), all the Z2 classes possess particle-hole
(time-reversal) symmetry, i.e., SGS−1 = (−1)d/2+1G, with S
for C (or T ).

(ii) Under an external field with strength tensor Fμν ≡
∂μAν − ∂νAμ, the spectral asymmetry formula in Eq. (4) in
the main text becomes

�φW

2π
= chW

∫
C, and C = ε0i1i2...id−1id

(2π )d/2(d/2)!
∂i1 Ai2 . . . ∂id−1 Aid ,

(C1)

where “
∫

” denotes the integration over the spatial coordinates.
Expressed in terms of a magnetic field, we have C = ( B

2π
)d/2.

Consequently, symmetry necessitates vanishing spectral
asymmetry: On the one hand,

�φW

2π
= 1

2
Tr[sign(G[A])] = chW

∫
C, (C2)

which results from Eq. (A9), by taking W = I. On the other
hand, from time-reversal (particle-hole) symmetry with odd
(even) d/2,

�φW

2π
= (−1)d/2+1 1

2
Tr[S sign(G[−A])S−1] = −chW

∫
C,

(C3)

with S = C and T , where for odd d/2, the minus sign in the
second equality is from A → −A in C; for even d/2, it is
from particle-hole symmetry [CGC−1 = (−1)G], encoded in
the prefactor (−1)d/2+1. By comparing Eq. (C2) with (C3),
we conclude that

�φW

2π
= 0. (C4)
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TABLE I. Symmetry-shifting pattern induced by probe operator: 1. In even spatial dimension: Z2 and Z2 to 2Z; 2. dimensional reduction,
from even spatial dimension to odd spatial dimension: Z2 (even D) to Z2 (odd D); Z (even D) to Z2 (odd D).

Symmetry class Symmetry d = 0 1 2 3 4 5 6 7 8

AI T 2 = 1 Z 0 0 0 2Z 0 Z2 Z2 Z
BDI T 2 = 1 C2 = 1 Z2 Z 0 0 0 2Z 0 Z2 Z2

D C2 = 1 Z2 Z2 Z 0 0 0 2Z 0 Z2

DIII T 2 = −1 C2 = 1 0 Z2 Z2 Z 0 0 0 2Z 0
AII T 2 = −1 2Z 0 Z2 Z2 Z 0 0 0 2Z
CII T 2 = −1 C2 = −1 0 2Z 0 Z2 Z2 Z 0 0 0
C C2 = −1 0 0 2Z 0 Z2 Z2 Z 0 0
CI T 2 = 1 C2 = −1 0 0 0 2Z 0 Z2 Z2 Z 0

Alternatively, the vanishing spectral asymmetry can be at-
tributed to symmetric pairs, which is a crucial concept in the
following. By a symmetric pair, we refer to two eigenvalues of
sign(G) with opposite sign, whose associated eigenstates are
related to each other by a symmetry transformation S . Indeed,
imposing of a symmetry compels a pairwise division within
the spectrum of G: The symmetry transformation

SG[A]S−1 = (−1)d/2+1G[−A] (C5)

implies that for every eigenstate |ψ[A]〉 with eigenvalue
g[A], its symmetric counterpart S−1|ψ[−A]〉 has eigen-
value (−1)(d/2+1)g[−A]. Thus, the spectrum comprises pairs
{g[A], (−1)d/2+1g[−A]}, each with a level degeneracy | ∫ C|.
Furthermore, motivated by the spectral asymmetry formula
(C1), we can restrict our attention to states contributing terms
linear in

∫
C, whose eigenvalues must satisfy

sign(g[A]) = sign(C) ⇒ sign(g[A])|
∫

C| =
∫

C, (C6)

where | ∫ C| is from level degeneracy, and where we have
neglected a possible A-field-independent sign in g[A], as it
is irrelevant for our results. Consequently, eigenvalues from
these symmetric pairs must exhibit opposite signs, i.e.,

sign{g[A] × (−1)d/2+1g[−A]} = sign[(−1)d+1] < 0, (C7)

from which we conclude that the external field activated spec-
tral asymmetry vanishes, due to the presence of symmetric
pairs with opposite sign eigenvalues.

So far, we have shown that symmetry enforces symmetric
pairs, and thus a vanishing spectral asymmetry (for W = I),
due to a cancellation effect. To cure this problem, i.e., to
obtain a finite signal quantitatively probing the underlying
topology, our strategy is to reverse the relative sign for these
symmetric pairs, implemented via introducing a W matrix
such that QW ≡ 1

2 {sign(G), W} contains nonzero spectral
asymmetry, and belongs to the 2Z class.

2. Symmetry constraints for W
To place QW in the 2Z class in the same dimension (brown

in Table I), possessing an even-integer-valued spectral asym-
metry (with W = I), we equip W with a symmetry

(1) G without chiral symmetry (blue in Table I): for G with
T (or C) symmetry, T WT −1 = −W (or CWC−1 = −W ).

To see this, we note that the symmetries of QW are{
T GT −1 = G,

T = UTK, T 2 = ±1,
→
{
CW QWC−1

W = −QW ,

CW = UTK, C2
W = ±1

(C8)

and{
CGC−1 = −G,

C = UCK, C2 = ±1,
→
{
TW QWT −1

W = QW ,

TW = sign(G)UCK, T 2
W = ∓1

.

(C9)

which confirms that QW belongs to the 2Z class. The prop-
erty T 2

W = ∓1 in the second equation results from a special
symmetry:

[QW , sign(G)] = 0

⇒ T 2
W = sign(G)UCKsign(G)UCK = −(UCK)2 (C10)

and, due to this symmetry, the inherited TW symmetry can
satisfy either T 2

W = +1, −1 by dressing up with sign(G),
i.e., signGUCK, and our choice here is to ensure QW in the
2Z class. Interestingly, this exhibits a shifting pattern, i.e.,
T (C) → CW (TW ), which will be utilized to construct the W
matrix for the chiral symmetry Z2 class, discussed below.

(2) G with chiral symmetry (purple in Table I): (a) W
anticommutes with the chiral symmetry generator;

(b) T WT −1 = −W (or CWC−1 = −W) in 4k + 2 (or 4k)
spatial dimensions, with k ∈ Z.

We focus on the chiral symmetric Z2 class in even spatial
dimensions (blue in Table I). To this end, we observe that
they possess both particle-hole and time-reversal symmetry,
while the 2Z class in the same dimension (brown in Table I)
exhibits either particle-hole or time-reversal symmetry. To
bridge this discrepancy, we require W to anticommute with
the chiral symmetry generator [(a) in point 1 above], such that
the resulting QW is not chiral symmetric. Adding to this, we
require QW to share the same symmetry as the 2Z class, from
which one can straightforwardly infer (b) in point 1 above, via
the symmetry-shifting pattern [i.e., T (C) → CW (TW )].

Finally, we outline the construction of W matrix in odd
spatial dimensions, but postpone the details to the later Ap-
pendix D, where a parallel scenario unfolds for the Z2

classes:
(i) For the nonchiral symmetric Z2 class (purple Z2 in

Table I), W = I as φW can be nonzero.
(ii) For the chiral symmetric class (blue Z2 in Table I),

symmetry dictates vanishing φW , necessitating an alternative
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TABLE II. Changes of �φW
2π

from transferring symmetric pairs. QW contains 2s states. Before crossing zeros, the number of states in Q(1, ±)
W

(and Q(2, ±)
W ) is r ∈ Z. After crossing, the number of states in Q(1, +)

W becomes r + t ∈ Z. Consequently, the difference in the spectral asymmetry
is 2t ∈ 2Z.

Gapless G Q(1, +)
W Q(2, +)

W Q(1, −)
W Q(2, −)

W
�φW

2π
Changes in �φW

2π

No. of states (before) r r s − r s − r 2r − s 2t ∈ 2Z
No. of states (after) r + t r + t s − r − t s − r − t 2r − s + 2t

choice of W matrix. This is achieved via the method of dimen-
sional reduction, resulting in a W similar to its even spatial
dimensional parent (i.e., blue Z2 in even spatial dimensions in
Table I).

3. Z2 invariant from the freedom in choosing W
The construction of W above introduces ambiguities in the

selection of W , to be addressed now. The ambiguity is noticed
based on the observation that smooth deformations of W or
G lead to a transfer of symmetric pairs of sign(G) between
the positive and negative eigenvalue sectors of QW (denoted
as Q(±)

W ), such that a symmetric pair of eigenstates in the Q(±)
W

subspace is relocated to Q(∓)
W : Here, we have used the property

that QW commutes with sign(G), so eigenstates associated
with a symmetric pair of sign(G) are also eigenstates of QW ,
belonging to the same positive and negative eigenvalue sector
of QW (see Appendix C 3 a for derivations). From this, we
demonstrate the following:

(1) The ensuing change of spectral asymmetry counts
twice the number of transferred symmetric pairs.

(2) The condition that G be gapped necessitates an even
number of transferred symmetric pairs.

(3) W and G are independent, so a smooth deformation
of W changes the spectral asymmetry by 4Z, from which we
establish a Z2 = 2Z mod 4 invariant.

To this end, we first collect properties of QW , and introduce
notation for later convenience:

(i) [sign(G), QW ] = 0, so we can diagonalize these two
matrices simultaneously, i.e.,

QW = Q(1, +)
W ⊕ Q(1, −)

W ⊕ Q(2, +)
W ⊕ Q(2, −)

W , (C11)

where ± (or 1, 2) for the positive and negative sign of eigen-
values associated with QW [or sign(G)], and Q(1/2, ±)

W for the
subspace consisting of corresponding eigenvectors.

(ii) For notational simplicity, we introduce λ(1/2, ±)
n = 1 to

enumerate states in the Q(1/2, ±)
W subspace.

Leveraging the properties listed above and employing
Eq. (A9), the spectral asymmetry associated with QW is

�φW

2π
= 1

2

∑
n

{[
λ(1,+)

n + λ(2,+)
n

]− [
λ(1,−)

n + λ(2,−)
n

]}
.

(C12)

Here, λ(1, +)
n and λ(2, +)

n (as well as λ(1, −)
n and λ(2, −)

n ) form a
symmetric pair (see Appendix C 3 a for derivation), which en-
sures that the spectral asymmetry associated with G vanishes,
i.e.,∑

n

{[
λ(1,+)

n − λ(2,+)
n

]+ [
λ(1,−)

n − λ(2,−)
n

]} = 0. (C13)

Now we are ready to establish the Z2 invariant. To this
end, we show that under the constraint that G remain gapped,
�φW

2π
undergoes a change of 4Z under a smooth deformation

of W or G. To achieve this, we first note that the change
in spectral asymmetry is equal to twice the number of trans-
ferred symmetric pairs, i.e., 1 listed above (see Table II): We
assign the number of states in Q(1, +)

W and Q(1, −)
W as r ∈ Z and

s − r ∈ Z, respectively, whose ensuing spectral asymmetry is
�φW

2π
= 2r − s. After transferring t symmetric pairs between

the Q(±)
W sectors, i.e., r → r + t and s − r → s − r − t , the

spectral asymmetry changes by 2t ∈ 2Z.
Furthermore, we observe that transferring an odd number

of symmetric pairs necessitates a gapless G (i.e., 2 listed
above). Illustratively, consider a {λ(1/2, +)

n } sub-block of G (de-
noted by G(s)), featuring a single symmetric pair, i.e., G(s) =
ξτ z, where τ z signifies the symmetric pair with opposite
eigenvalues in sign(G). Moreover, G(s) exhibits “particle-
hole” symmetry, i.e., S(s)G(s)[A]S−1

(s) = −G(s)[A] and S(s) =
Kτ x (see Appendix C 3 b for a concrete example). This
reflects the underlying time-reversal and particle-hole sym-
metries, enforcing symmetric pairs of sign(G) as elaborated
in Appendix C 1. After these preparations, let us imple-
ment a smooth deformation. Symmetry S(s) dictates W(s) to
be W(s) = ±τ z, satisfying S(s)τ

zS−1
(s) = −τ z. Consequently,

QW, (s) = sign(ξ )τ 0 when W(s) = τ z, where sign(ξ ) identifies
the belonging to the sectors Q(sign(ξ ))

W . Hence, the transfer of a
symmetric pair necessitates tuning ξ from positive to negative,
closing the gap in G at ξ = 0 and inducing a spectral asym-
metry change of 2. This underscores the requisite gaplessness
in G for symmetric pair transfer.

In contrast, gapped G mandates an even number of trans-
ferred pairs (i.e., 3 listed above). Consider an illustrative
case of a doublet: G(s) = ξτ z ⊗ σ 0 and S(s) = Kτ x ⊗ σ 0. We
transfer this symmetric pair doublet between Q±

W through
smooth deformations of either G(s) or W(s), while keep-
ing G gapped. For the former scenario, we deform G(s)

by adding an extra mass term allowed by symmetry, i.e.,
τ y ⊗ σ y, rendering G(s) = ξ (cos θτ z ⊗ σ 0 + sin θτ y ⊗ σ y),
with θ parametrizing the deformation. Taking W(s) =
τ z ⊗ σ 0, we find that the asymmetry matrix is QW, (s) =
sign(ξ ) cos θτ 0 ⊗ σ 0. Thus, a symmetric pair doublet can be
transferred by tuning θ , keeping G gapped. Alternatively,
the transfer can be achieved by deforming W: Using G(s) =
ξτ z ⊗ σ 0 and W(s) = cos θτ z ⊗ σ 0 + sin θτ y ⊗ σ y, we again
infer that QW, (s) = sign(ξ ) cos θτ z ⊗ τ 0. Hence, tuning θ

enables the transfer of a symmetric pair doublet with G re-
maining gapped, supporting our earlier assertion.

Together, we conclude that under the constraint of gapped
G, the spectral asymmetry changes by 4Z, from transfer-
ring even number of symmetric pairs. Finally, it is amused
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to observe that the even or odd effect of symmetric pairs
mirrors the Z2 classification in zero-dimensional D-class in-
sulators. Specifically, an even number of D-class insulators
(e.g., G(s) = ξτ z representing one specific D insulator here),
are adiabatically connected with spectral gap open, and thus
belongs to the topologically trivial phase.

a. Symmetric pairs of Q±
W

For sign(G), we have established the existence of
eigenvalue pairs with opposite signs, linked by symme-
try. Extending our investigation to Q+

W (Q−
W ), we observe

a parallel phenomenon: eigenvalue pairs sharing the same
sign, interrelated through symmetry, which is referred to
as symmetric pairs of Q+

W (Q−
W ). To show this, we adopt a

strategy akin to that presented in Appendix C 1, utilizing
both the spectral asymmetry formula (C1) and the symmetry
relation SQW [A]S−1 = (−1)d/2+2QW [−A]. This entails the
following:

(1) The spectral asymmetry formula, expressed as �φW

2π
=

chW
∫
C, implies that it is sufficient to focus on eigenval-

ues of QW (denoted by q[A]). These eigenvalues adhere to
signq[A] = signC, up to a possible A-field-independent sign.

(2) The symmetry relation SQW [A]S−1 =
(−1)d/2+2QW [−A] dictates that for the eigenstate of
QW (denoted by |ψ[A]〉) with eigenvalue q[A], its
symmetry-transformed counterpart (denoted by S−1|ψ[−A]〉)
has eigenvalue (−1)d/2+2q[−A].

Consequently, we conclude that the eigenvalues of |ψ[A]〉
and S−1|ψ[−A]〉 share the same sign, i.e.,

sign{q[A] × (−1)d/2+2q[−A]} = (−1)d+2 > 0, (C14)

and thereby confirm the existence of symmetric pairs of Q(+)
W

and of Q(−)
W . We reemphasize that the symmetric pairs of

signG have the opposite sign, and the symmetric pairs of Q(±)
W

have the same sign.

b. An example for the symmetric pairs of sign(G) and QW

Here, we shall illustrate symmetric pairs discussed above
in a concrete example, from which we reveal an emergent
particle-hole symmetry, and dimensional reduction to zero-
dimensional class-D insulators.

We consider the two-dimensional time-reversal symmetric
Dirac model in Appendix B, and derive the Hamiltonian con-
sisting of one symmetric pair of sign(G),

G = G0 + mσ z ⊗ (n · τ ), n = (0, 0, 1) (C15)

with

G0 ≡ [i∂x − Ax(x)]σ x ⊗ τ 0 + [i∂y − Ay(x)]σ y ⊗ τ 0 (C16)

and

T = Kσ y ⊗ τ x, (C17)

where the choice of n is made for simplicity. In Appendix B,
we have demonstrated that under magnetic fields, the spectral
asymmetry is from zero modes of G0, in particular the differ-
ence in chiral zero modes (i.e., chiral matrix σ z ⊗ τ 0). Hence,
it is sufficient to focus on this zero-mode sector of G0 (i.e., by
setting G0 to zero), rendering an effective Hamiltonian in the

symmetric pair basis (with degeneracy | ∫ C|),
G(s)[A] = m × sign(C)τ z, (C18)

with

S(s)G(s)[A]S−1
(s) = −G(s)[A] and S(s) = Kτ x, (C19)

where the “chiral matrix” σ z drops out by restricting to one
chiral sector because we are only interested in the difference
of chiral modes. Clearly, this effective model possesses one
symmetric pair of sign(G), signaled by the emergent “particle-
hole symmetry” S(s) = Kτ x (S2

(s) = 1). The latter is inherited
from its parent T symmetry, such that σ y drops out: The effect
of σ y (upon G) is to reverse both the sign of magnetic fields
and mass, and thus acts trivially on G(s). Physically speak-
ing, this is because magnetic field significantly constrains the
“spin” degree of freedom, such that the operation upon spin
(i.e., σ y in T ) is irrelevant for the effective model. Finally, we
remark that the magnetic field renders a dimensional reduction
from two-dimensional time-reversal massive Dirac fermions
(i.e., AII insulator) to zero-dimensional particle-hole massive
ones (i.e., D insulator).

Built upon this, we can further construct the ensuing asym-
metry matrix QW , containing one symmetric pair. This is
based on the observation that in the basis of symmetric pairs,
the only W allowed by symmetry is

W(s) = τ z, with S(s)W(s)S−1
(s) = −W(s), (C20)

from which one can infer the effective QW , i.e.,

QW, (s) = sign(mC)τ 0, (C21)

consistent with our discussion in Appendix C 2, with ξ = m ×
sign(C).

APPENDIX D: RESULTS IN ODD SPATIAL DIMENSION
FROM DIMENSIONAL REDUCTION

Here, we generalize our even-dimensional results to odd
spatial dimensions, via the standard method of dimensional
reduction [15,37,63]. This is achieved in two steps: (i) formu-
lating the even-dimensional effective action for φW in terms
of external fields, and (ii) deriving the ensuing odd-spatial-
dimensional one, by integrating out one spatial dimension.
From this odd dimensional φW , we can infer the ensuing
order parameter, which falls into two categories, Z2 or Z (2Z),
determined by chiral symmetry.

We now implement this protocol, so as to derive φW in
odd spatial dimensions. To this end, we start from an effective
action for φW in d = 2n spatial manifold M(2n) = M(2n−1) ×
S1, i.e.,

φW ≡ chW ×
∫
M(2n)

d2nx IW [w(x)] × C(2n), (D1)

where the superscript (2n) emphasizes even spatial di-
mensions. C(2n) is the density of the homotopic invariant
associated with background fields, so it is locally a total
derivative C(2n) ≡ ∂iKi

W . We then perform an integration by
part so as to facilitate the implementation of dimensional
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reduction, i.e.,

φW ≡ −chW

∫
M(2n−1)

d2n−1x ∂iIW [w(x)]

(∮
S1

dx2nKi
W

)
,

(D2)

where we have assumed that IW [w(x)] is independent of
the (2n)th spatial dimension, and thus the superscript i 	= 2n.
Then, we assume that Ki

W is of the Chern-Simons form, i.e.,
Ki

W = 1
n!

1
(2π )n ε

ii1i2i3...Ai1∂i2 Ai3 . . . , where Ai can be the electro-
magnetic gauge field, or the gauge field from skyrmions [60].
After these preparations, we shall derive the odd-dimensional
action by integrating out one spatial dimension, implemented
by the following:

(i) taking the dependence on the extra 2nth spatial coordi-
nate dependence exclusively via A2n;

(ii) inserting half a flux quantum along x2n, i.e.,∮
A2ndx2n = −π .
Together, we find the following φW for the odd-spatial-

dimension descendant,

φW

π
= chW

∫
M(2n−1)

∂iIW [w(x)]
1

2π
C(2n−2) ∈ chW × Z,

(D3)

where C(2n−2) is independent of xi, and thus
∫

dxi∂iIW ∈ 2πZ
due to spatial periodicity.

Built upon the formula (D3), we now discuss about the
ensuing topological order parameter, enumerated below:

(1) For the nonchiral symmetric class, the mixed-state
topological order parameter is taken to be φW

π
= 0, 1

mod 2 ∈ Z2, which renders a Z2 invariant. In particular, this
Z2 accounts for the ambiguity encoded in the map between
even-dimensional parent states and their odd-dimensional de-
scendant.

(2) For the chiral symmetric class, the descendant state be-
longs to the Z (2Z) class instead, as chiral symmetry resolves
the map ambiguity [12], which can be detected by φW

π
∈ Z.

Example: Complex fermion in the one-dimensional DIII class

Based on the strategy outlined in the last part, now we con-
struct a mixed-state topological order parameter in details, by
properly choosing w[x]. Following the dimensional reduction
sketched in Fig. 1 in the main text, we shall focus on the
second descendant, e.g., blue Z2 in Table I, while for other
classes, one can obtain the mixed-state order parameter via
the polarization operator (e.g., generalization of the ensemble
geometric phase [35,37]).

To detect the underlying topology, we shall make a slight
modification of the probe operator, according to

2πxα

Ni
W → 2πxα

Nα

1

2
(I + W ), (D4)

where the subscript α refers to the α-spatial direction.
1
2 (I + W ) is a projection operator, activating half the degree
of freedom. This modification is necessary because chW ∈ 2Z
for the Z2 class (blue in Table I), inherited from the parent
2Z class (brown in Table I). In turn, by taking w = 2πxα

Nα
,

φW ∈ 2πZ, and thus eiφW = +1. To cure this and improve
the resolution of eiφW , we utilize Eq. (D4) to activate half the

degree of freedom. (For superconductors, this modification is
not needed, i.e., eiφW = ±1 as explained in Appendix G.)

Physically speaking, this modification impacts on both
the original probe operator (e.g., π

Nα
xαW) and the temporal

component of the U(1) gauge field (e.g., A0 = π
Nα

xα , via the

overall prefactor 1
2 ). It is the modification of the probe oper-

ator which provides us with a signal distinguishing different
(blue) Z2 mixed states, i.e., ei 1

2 φW = ±1, because w associ-
ated with W takes 1

2 of its original value. The modification
of the U(1) part preserves the spatial periodicity, i.e., xα →
xα + Nα: Since the U(1) action for (blue) Z2 is known to be
nontopological [37,51,84], so we expect its contribution to φW

vanishes. Numerically, we confirm this in the DIII complex
fermion class (see Fig. 3).

APPENDIX E: NUMERICAL RESULTS
FOR NONEQUILIBRIUM MIXED STATE

We apply our mixed-state order parameter to study the
nonequilibrium dynamics of mixed states, which arise from
exposing the pure ground state of a Hamiltonian to dissipative
processes. Concretely, we start from the ground state of the
(modified) BHZ model (AII insulator), with Hamiltonian

H =
(

H0(k) −i�τ y

i�τ y H∗
0 (−k)

)
, T = σ y ⊗ τ 0K. (E1)

H0 = d · τ with d = [sin(kx ), sin(ky), m + cos(kx ) +
cos(ky))] is the Qi-Wu-Zhang model [85], and time-reversal
symmetry is implemented by T .

We subsequently examine the ground state subjected to
Lindblad dynamics, characterized by linear Lindblad opera-
tors (with Hamiltonian switched off)

L̂(l )
i = √

γl
1 + τ z ⊗ σ 0

2
ψ̂i, L̂(g)

i = √
γg

1 − τ z ⊗ σ 0

2
ψ̂

†
i ,

(E2)

which preserves the time-reversal symmetry [48,86]. These
processes by themselves target a trivial pure steady state, i.e.,
|ψtarget〉 = ∏

i ψ̂
†
i, a=2ψ̂

†
i, a=4|0〉, where |0〉 is for the vacuum

without particle, and the subscript a for internal indices.
For the probe operator, possible choices for the W matrix

are then W = {σ ⊗ τ x, z, 0, σ 0 ⊗ τ y}. Numerical results are
presented in Fig. 4, which include the plot of the Loschmidt
echo |ZW [w = π ]|2 at w = π , or its rate function λ(t ) ≡
− ln |ZW [w=π]|2

Nx×Ny
] in the left panel, and mixed-state order param-

eter in the right panel. Here, both the rate function λ(t ) and
�φW

2π
provide a sharp signature distinguishing different phases.

APPENDIX F: PHASE SIGNAL φW IN COLD-ATOMIC
ENSEMBLES

In the main text, we have discussed numerical results for
φW within the canonical ensemble, i.e., for a fixed number
of particles. Here we demonstrate the effectiveness of the
order parameter �φW

2π
in full counting statistic measurements

with cold atoms. These measurements will be carried out by
repeating the counting experiment many times, with two key
characteristics: (1) Within each run, the particle number is
fixed, and (2) for every run, however, the particle number
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FIG. 3. Numerical results for the 1D DIII complex fermions, with G = −(sin kxσ
z ) ⊗ τ x + (m + cos kx )σ 0 ⊗ τ z, and kx for momentum.

Here, W = n · σ ⊗ τ 0 is the spin matrix, with n a randomly sampled unit vector. Left panel: plot of −2 ln |Tr(ρ̂Û )|/Nx as a function of m, with

site number Nx . Here, we take Û = (−1)Nx+1e−i
∑

i �̂
†
i

2πx
Nx

1
2 (I+W )�̂i , and (−1)Nx+1 is the factor in reference to the topological trivial phase. This

clearly exhibits cusp around the topological transition point (e.g., m = ±1). Right panel: plot of (modified) φW as a function of m, showing a
sharp transition between different topological phases.

might be different, governed by some probability distribution
function for the particle number. In Fig. 5, we present nu-
merical results incorporating these specifics for the modified
BHZ model [Eq. (10) in the main text], adopting a Poisson
distribution function to model the mean particle number at
half-filling for definiteness [see Fig. 5(a)]. The results de-
picted in Fig. 5(b) clearly demonstrate that �φW

2π
efficiently

differentiates between topological and trivial phases.

APPENDIX G: RESULTS FOR SUPERCONDUCTORS
(MAJORANA FERMIONS)

We present results for superconductors (Majorana
fermions), which includes (i) the relation between spectral
asymmetry and fermion parity, and (ii) the construction of a
mixed-state topological order parameter.

We first introduce the necessary notation. In the context of
superconductors, the U(1) symmetry is broken down to the
discrete Z2 fermion parity symmetry. Accordingly, we work
in the Nambu basis, and the modular Hamiltonian is expressed
as

Ĝ = �̂†G�̂, with �̂ ≡ (ψ̂, ψ̂†)T , (G1)

where the first quantized operator G embodies particle-hole
symmetry.

1. Fermion parity and spectral asymmetry for Majorana

We demonstrate that fermion parity detects spectral prop-
erties of the modular Hamiltonian G. Namely, due to
particle-hole symmetry, the eigenvalues of the matrix G ap-
pear in pairs with opposite sign, i.e., {λn, −λn}, where λn

FIG. 4. Numerical results for mixed-state open system evolution starting from a ground state (with one magnetic flux quantum inserted,
site number 15 × 15, m = 1, � = 0.5). The left panel shows the amplitude of the Loschmidt echo at w = π , i.e., λ(t ) ≡ − ln |ZW [w=π ]|2

Nx×Ny
, which

exhibits a cusp around the transition point. The right panel presents 1
2

�φW
2π

as a function of t , with gapped QW .
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FIG. 5. Numerical results for the phase signal φW in cold-atomic ensembles, focusing on the modified BHZ model on a 5 × 5 lattice;
each lattice site hosts four states. The ensemble-averaged particle number corresponding to half-filling is 50, and we set the model parameters
to β = 3 and � = 0.5. In (a), we have sampled 50 runs from the Poisson distribution, where the y axis represents the frequency of particle
number. In (b), we delineate the ensemble-averaged phase signal for both topological insulators (TI), and normal insulators (NI), exemplified
by m = 1, 3, respectively. The ensemble-averaged phase signal for Ns samples is defined as φW ≡ arg[ 1

Ns

∑Ns
n=1 Z

(n)
W ], with n the sample index.

can be positive or negative. We then divide these particle-
hole pairs to two different classes, e.g., {λ1, λ2, . . . } and

{−λ1, −λ2, . . . }, such that G = ⊕n(
0 iλn

−iλn 0 ). It turns out

that the fermion parity (−1)Q̂ crucially hinges on the spectral
asymmetry of {λ1, λ2, . . . },

Im ln Tr[(−1)Q̂ρ̂] = −π

2
N + π

2

∑
n

sign(λn), (G2)

where N is for the total particle number, and we have used the
following identity (see, for example, [79,87]):

Tr(ρ̂e−iπQ̂) = (−i)N Pf(tanh G). (G3)

This indicates that the fermion parity probes the asymmetry
of λn.

2. Probe operator for superconductors in the prime series

We now turn to Majorana models in the prime series,
which includes examples like the Kitaev chain, and the
two-dimensional (2D) p-wave chiral superconductor. The su-
perconductor no longer enjoys U(1) symmetry, but still we
can induce a spectral asymmetry via a Z2 gauge field, im-
plemented via antiperiodic spatial boundary conditions, based
upon which we construct a mixed-state order parameter.

The probe operator, similar to the complex fermion coun-
terpart, is taken to be

e−iwQ̂, Q̂ =
∑
i, a

ψ̂
†
i, aψi,a. (G4)

For the mixed-state density matrix, we need to replace the
U(1) gauge fields by an alternative construction. In fact, Z2

gauge fields can be utilized to activate topological charge.
This can be implemented in the density matrix by twisted
boundary conditions according to

ρ̂ = e−Ĝ|(s1,s2,... ), (G5)

where s1, s2 · · · = 0, π for the periodic and antiperiodic
boundary condition along ith spatial direction. The ensuing

mixed-state order parameter is then defined as the winding
number of the following phase:

φW (w) ≡ arg

⎡
⎣ ∏

s1,s2,···=0,π

Tr(ρ̂e−iwQ̂)ν{s}

⎤
⎦, (G6)

where ν{s} = +1 (−1) for {s} = (s1, s2, . . . ) containing even
(odd) number of 0. Here, the product provides a normalization
which ensures that the winding number φW (w) is only from
insertion of Z2 gauge field in all spatial directions. For exam-
ple, the factor −π

2 N in Eq. (G2) is canceled, which shall be
further illustrated below, via examples.

We are now in the position to construct the associated
effective action, from which we can infer the descendant Z2

invariant, via the method of dimensional reduction. That is,
the action is

φW (w) = chW

∫
IW [w]

a1

π
× a2

π
. . . , (G7)

with

chW ∈ Z, IW [w]|w=2π
w=0 = 2π, and IW [w = π ] = π, (G8)

where ai is the Z2 gauge field for the ith direction, such that∮
ai = si. We have assumed that IW [w] is a smooth function

of w for a gapped system. Also, IW [w = π ] = π is from
Hermiticity, i.e., φW (w) = −φW (−w). Taking one spatial di-
mension as an example, this reproduces the result in Ref. [66],
by taking IW [w] = w. Finally, it is worth mentioning that the
effective action shares the same form in all dimensions, as the
dimensional reduction is implemented by integrating out a π

flux inserted along the extra dimension.
As an illustration, we consider the w = π point, which

determines the evenness or oddness of the winding number
(i.e., chW ). In the one-dimensional case, we find

eiφW (π ) = sign

[
〈(−1)Q̂〉|s1=π

〈(−1)Q̂〉|s1=0

]
, (G9)

033028-13



ZE-MIN HUANG AND SEBASTIAN DIEHL PHYSICAL REVIEW RESEARCH 7, 033028 (2025)

FIG. 6. Numerical results for the 1D Kitaev chain. Left panel: plot of −2 ln |Tr[ρ̂(−1)Q̂]|s1=0,π |/Nx as a function of μ, which exhibits
singular points around the topological transition point (μ = ±1). Middle panel: plot of φW (w=π )

π
as a function of μ, which reconstructs the

zero-temperature phase diagram. Right panel: plot of φW (w) at μ = 0.5, 2 as a function of w, which shows that φW possesses different
winding numbers in the topologically trivial and nontrivial phases.

which reproduces the Z2 index for Majorana fermions [66,88].
We see the role of the denominator, canceling out irrel-
evant factors, e.g., (−i)N in Eq. (G3). Meanwhile, the
two-dimensional counterpart is

eiφW (π ) = sign

[
〈(−1)Q̂〉|s1=π,s2=π 〈(−1)Q̂〉|s1=0,s2=0

〈(−1)Q̂〉|s1=0,s2=π 〈(−1)Q̂〉|s1=π,s2=0

]
,

(G10)

which is reminiscent of the invariant defined in Ref. [89].
Physically, this describes the pumping of the one-dimensional
fermion parity [e.g., Eq. (G9)], after insertion of a π flux (i.e.,
s2 = π ).

Numerical results for φW in one and two dimensions

To further support our results above, we shall present nu-
merical results in the Kitaev chain, and the two-dimensional
chiral p-wave superconductors.

For the Kitaev chain, the modular Hamiltonian is

Ĝ = −μ
∑

i

(ψ̂†
i ψ̂i + H.c.) − t

∑
i

(ψ̂†
i+1ψ̂i + H.c.)

+�
∑

i

(ψ̂i+1ψ̂i + H.c.). (G11)

For later convenience, we shall set t = � = 1, so this model is
topologically nontrivial (trivial) for |μ| < 1 (|μ| > 1). Mean-
while, the twisted spatial boundary condition is implemented
via

−teis1ψ̂
†
1 ψ̂Nx and �eis1ψ̂1ψ̂Nx , with s1 = 0, π. (G12)

Numerical results for the Kitaev chain are presented in Fig. 6.
The left panel and the middle panel demonstrate that φW (w=π )

π

successfully captures the topology in different phase, and the
transition point manifests itself as a cusp in the amplitude,
λ ≡ − ln |ZW |2

Nx
. The right panel displays φW as a function of

w, which does exhibit different winding for the topologically
trivial and nontrivial phases. Note that the trace formula for
the product of two Majorana Gaussian operators is not known

FIG. 7. Numerical results for the 2D chiral superconductor. Left panel: plot of −2 ln |Tr[ρ̂(−1)Q̂]|s1,s2=0,π |/(Nx × Ny ) as a function of μ,
which exhibits a singular point around the topological phase transition point (μ = ±2). Right panel: plot of φW (w=π )

π
as a function of μ, which

shows that φW (w=π )
π

detects the topologically trivial and nontrivial phases.
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except when one of the operators is the fermion parity (to the
best of our knowledge) [79], so here we used the method of
exact diagonalization.

For the two-dimensional chiral p-wave superconductor, the
modular Hamiltonian is

Ĝ =
∑
m,n

[−t (ψ̂†
m+1,nψ̂m,n + H.c.) − t (ψ̂†

m,n+1ψ̂m,n + H.c.)]

−
∑
m,n

μ(ψ̂†
m,nψ̂m,n + H.c.)

+
∑
m,n

[(�ψ̂
†
m+1,nψ̂

†
m,n + H.c.)

+ (i�ψ̂
†
m,n+1ψ̂

†
m,n + H.c.)], (G13)

and the twisted boundary condition is implemented similar
to the Kitaev chain. Also, for later convenience, we set � =
t = 1, and this model is topologically nontrivial (trivial) for
|μ| < 2 (|μ| > 2). Numerical results are presented in Fig. 7,
which confirms that φW (w=π )

π
probes the underlying topology

for mixed states.

3. Probe operator for superconductors in the Z2 class

For superconductors in the Z2 class, parallel to their com-
plex fermion counterparts, we are required to choose W
differently from I in order to resolve the topological signal. In
turn, constraints for W are similar, except for the following:

(1) W should be antisymmetric, due to the anti-
commuting nature of Majorana.

(2) The W → 1
2W with a 1

2 factor, from the redundancy
in the Nambu space.

This construction hinges on the following identity for Ma-
jorana fermions:

[Tr(e−γ̂ Aγ̂ e−γ̂ Bγ̂ )]2 = det(I + e−2Ae−2B), (G14)

where the anticommutation relation of γ̂ is {γ̂a, γ̂b} = δab.
A, B are skew symmetric, from the anticommutation rela-
tions, reproducing 1. The Majorana Gaussian operator e−γ̂ Aγ̂

appears on the right-hand side as e−2A, leading to 2.
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