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This work explores the integration of artificial intelligence (AI) custom chatbots in educational
settings, with a particular focus on their applicability in the context of mathematics and physics. In view
of the increasing deployment of AI tools such as ChatGPT in educational contexts, the present study
explores their potential in generating topic-related learning material. The study assesses the impact of
learning with AI-generated explanations as Supplemental Material on the learning experiences and
performance of sixth-grade students, with a particular focus on proportional relationships in math-
ematical and physical contexts. The randomized controlled study with N ¼ 214 students compared
supplementary learning material in the form of traditional textbook material with explanations previously
generated by an AI custom chatbot. The results demonstrated that while the AI-generated materials had
an indefinite impact on learning outcomes, they significantly enhanced positive-activating emotions,
situational interest, and self-efficacy while reducing intrinsic and extrinsic cognitive load. These findings
underscore the potential of AI to transform educational practices by fostering a superior learning
experience. However, further research is required to clarify its impact on learning performance and long-
term learning outcomes. The study highlights the importance of careful integration and customization of
AI tools to maximize their benefits in physics education.
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I. INTRODUCTION

Since the release of ChatGPT in 2022, there has been
growing attention to how AI chatbots can be used profit-
ably in an educational context, and the integration of
artificial intelligence (AI) is emerging as a key factor at
both the school and university levels [1]. For instance,
AI tools can be utilized by educators to develop lesson
plans, create differentiated learning materials, and provide
feedback. Additionally, they can be employed by students
as intelligent tutoring systems, research, or writing tools
[2–5]. Especially, large language models (LLMs) have the
potential to transform educational experiences, particularly
in specialized fields such as physics [1]. LLMs are a
category of artificial intelligence based on neural networks,
trained on vast datasets. Their objective is to comprehend
and generate text in a manner that imitates human

communication, thereby opening up a multitude of oppor-
tunities for educational applications [3]. By enabling more
personalized and interactive learning approaches, these
models have the potential to transform the way students
learn. One of the most widely recognized applications of
LLMs is in the field of chatbots, which are software tools
that engage with the user in written dialogue [1]. In STEM
education, chatbots can be utilized as learning assistants
to provide feedback on exercises and individual topic-
related questions. They can generate a variety of additional
exercises, which also can be adapted to the individual
student’s learning status. In the natural sciences, chatbots
can assist students during experiments [2,6–9]. However,
despite this promise, the question of how exactly learning
with AI chatbots affects students’ learning performance
and experience remains unanswered [5]. This indicates the
necessity for further research in this field. The present study
thus seeks to address this question by initially focusing on
the question of whether AI chatbots are capable of design-
ing engaging materials for self-learning. The effects on
emotional aspects, cognitive load, self-efficacy expect-
ations, and situational interest, in particular, are to be
measured while learning with an AI-generated explanation
of a selected topic.
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Regarding the use of AI chatbots in schools, challenges,
including a lack of in-depth contextual understanding, the
difficulty in assessing the quality of responses, and a
deficiency in higher-order cognitive abilities are mentioned
[10]. For instance, learners frequently utilize chatbots
without reflection when engaged in physics tasks, without
attempting to solve the tasks independently [11]. These
findings highlight the necessity for an in-depth analysis
of responses generated by ChatGPT, particularly with
regard to their scientific veracity, by both instructors and
students [12] and underscore the need for cautious incor-
poration of AI into the education system by conducting a
thorough and comprehensive evaluation of this potentially
profitable tool.
The present study explores the impact of AI-generated

explanations on students’ learning experiences and
performance in physics. The AI-generated explanations
were previously generated by an AI custom chatbot.
The aim of this study is to conduct a comparative
analysis of traditional and AI-generated supplementary
learning materials.
The primary findings of the study indicate that the use of

AI-generated material has a notable impact on the learning
experience of students. In the experimental group, higher
levels of positive-activating emotions, self-efficacy expect-
ations, and situational interest were measured. Conversely,
the levels of intrinsic and extrinsic cognitive load were
significantly lower.

II. STATE OF RESEARCH

A. Context of physics teaching

Students’ comprehension problems in physics lessons
are often related to a lack of mathematical skills [13–15].
However, these difficulties are also frequently attributed to
the challenge of transferring the skills acquired in math-
ematics to the physical context [16,17]. The causes of these
difficulties are not uniform across all students—they may
arise from misconceptions about the physical meaning
of, for example, ratios, products, functions, and neutral
elements [18].
Moreover, in the fields of physics and mathematics,

comprehension problems potentially emerge from difficul-
ties in interpreting and linking different forms of repre-
sentation, which can be defined as multiple representations
[19]. These forms of representation, including formulas,
graphs, diagrams, and tables, are a means of encoding
important information. It is therefore beneficial for learners
to possess the capacity to interpret and transition between
the various forms, thereby facilitating a full comprehension
of scientific concepts [19–21]. By providing targeted
assistance in establishing connections between the struc-
tures of depicted forms of representation, students are more
likely to develop a better understanding of the concepts and
are less likely to hold misconceptions [20].

As an example, the topic “Proportional Relationships”
was chosen for this study. It is taught in seventh-grade
mathematics in Germany. A proportional relationship can
be represented in various forms (graphs, tables, formulas),
and students must develop the ability to switch between
these representations with ease. To do so, students have to
interpret the mathematical models from a physics point of
view or translate physical behavior into a mathematical
context [22,23]. AI chatbots with vision capabilities like
ChatGPTmay offer a potential solution to this issue [2,3,5],
as they can read and analyze images of representations. In
this manner, learners can be aided in both the interpretation
of discrete forms of representation and in the recognition of
encoded information and the relationships between differ-
ent forms of representation.
In the context of educational materials and environ-

ments, a multitude of factors influence the efficacy of
learning in classroom settings. Primarily, achievement
emotions perceived during the learning process can exert
a positive or negative influence. Emotions such as enjoy-
ment, hope, pride, anger, anxiety, shame, hopelessness, and
boredom play a critical role in students’ motivation and
learning performance [24].
Moreover, situational interest is regarded as an important

element in the learning process. Contrary to individual
interest, which is defined as a permanent motivational
tendency, situational interest is initially temporary and is
associated with a specific learning situation [25]. The
research literature on the subject demonstrates a divergence
of trends with respect to the relationship between situa-
tional interest and students’ learning performance. Studies
indicate that situational interest exerts a positive effect on
learning performance [26], while others demonstrate an
absence of a measurable effect [27].
The model for cognitive load on which this work is based

is a two-factorial model for an intervention-induced cog-
nitive load [28]. Cognitive load, caused by the limitations
of working memory, is measured as intrinsic cognitive load
(ICL) and extrinsic cognitive load (ECL). ICL refers to the
complexity of the information to be processed and is
consequently influenced by the task and the prior knowl-
edge of the learner. ECL can be influenced by the design
of the learning environment and material and refers to
cognitive processes that do not lead to a significant learning
outcome [29]. Cognitive load theory (CLT) posits the
notion that the capacity of working memory is constrained
in comparison to that of long-term memory [30,31]. The
underlying objective of CLT in instructional design is to
design learning environments in a manner that optimizes
the utilization of working memory resources and minimizes
learning-irrelevant cognitive load [32–34]. In the case of a
successful implementation, learners find themselves with
augmented cognitive resources in their working memory, a
condition that fosters the active construction of new knowl-
edge and enhances the learning outcome.
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The concept of self-efficacy expectation describes a
person’s subjective conviction that they can perform
specific actions successfully. Students with higher self-
efficacy expectations are characterized by a higher level of
ambition and set themselves more challenging goals. They
are less likely to give up when faced with difficulties and
invest more time and effort in solving complex problems.
This enables more in-depth learning, which ultimately
results in affecting learning performance [35]. Positive
self-efficacy expectations have been demonstrated to
encourage motivation to engage with novel and challenging
tasks and to exert effort in doing so [36].
This study explores the extent to which learning with

AI-generated material as Supplemental Material can pro-
mote the aforementioned concepts and thereby contribute
to enhanced learning performance in physics lessons.

B. Textual explanations

In this study, an AI-generated textual explanation on
the topic of “Proportional Relationships” is compared
with nontextual textbook material in its function as
Supplemental Material. A text-based explanation should
fulfill certain characteristics. It should be as precise and
coherent as possible, explaining the core concepts and
principles while omitting irrelevant details [37]. The
inclusion of excessive detail has been demonstrated to
increase cognitive load, thereby diminishing the effective-
ness of provided explanations. Consequently, it is imper-
ative to prioritize the relevance of the information contained
within these explanations [38]. In addition, overly dense
text structures have the potential to impede comprehension,
especially for students with limited prior knowledge [39].
In order to ensure efficacy and maximize cognitive engage-
ment, it is essential that explanations be adapted to align
with the learners’ current knowledge level and interests
[37,40]. Research has demonstrated that an absence of
adaptation to existing knowledge and misconceptions can
impede the efficacy of explanations. In this regard, the
utilization of AI custom chatbots can prove beneficial,
as they possess the capability to adapt their explanations to
the given context. Explanations, tailored to the learners’
existing knowledge level, have been shown to be advanta-
geous for students [38].

C. AI chatbots in education

1. Learning experience and learning performance

The integration of AI into the field of education is rapidly
transforming teaching and learning experiences. AI is
gaining recognition for its ability to improve educational
outcomes, thereby fostering a growing interest in research
within the domain of AI in education in recent years
[41,42]. Generative AI, in particular, opens up new oppor-
tunities for the design of teaching and learning environ-
ments through the personalized assistance of chatbots.

AI chatbots can provide learners with individualized feed-
back and address specific learning difficulties and ques-
tions [2,3,5]. They have the potential to enhance student
productivity and foster motivation [4,43]. Moreover, a
meta-analysis demonstrates that AI chatbots, in general,
can significantly impact student learning outcomes [44] and
result in advantages such as better access to information
and a simplification of personalized and complex learning
[10]. ChatGPT for instance, is not only capable of solving
tasks but can also explain solutions and approaches and
create tasks itself [7,8]. This additionally gives learners the
opportunity to generate a variety of exercises and to
comprehend solution paths. Moreover, personal chatbots
can be configured to operate as so-called custom chatbots,
thereby providing users with assistance and feedback.
However, particularly within the school context, the

potential of AI chatbots, especially custom chatbots, as
intelligent tutoring assistants is still largely underexplored.
One remaining question is how learners perceive AI chatbot-
generated feedback and their interaction with AI chatbots,
and whether it influences the learning process [5]. An
increasing number of studies are investigating the influence
of the use of AI chatbots, in particular ChatGPT, on the
learning experience and learning performance.
It was found that the utilization of ChatGPT fosters

a low-pressure environment, thereby encouraging learners
to seek further clarification and assistance with greater
ease [45]. Learners exhibited greater satisfaction due to the
assurance of privacy. Additionally, learning with chatbots
may result in the cultivation of positive emotions and an
increased sense of well being [46]. In the field of math-
ematics, the utilization of ChatGPT has been demonstrated
to enhance self-efficacy and to improve the development
of conceptual understanding [47]. Similarly, in the field
of physics, ChatGPT has been shown to positively influ-
ence both learning experiences and learning performance
[48,49]. Moreover, it was found that employing ChatGPT
for experimentation in school helped to correct miscon-
ceptions in physics and facilitated a more profound
understanding of physical concepts [9]. Concerning
research methods, it was shown by a comparative analysis
between the utilization of ChatGPT and conventional
search engines that LLMs can reduce the mental effort
demanded by learners in research tasks, yet simultane-
ously result in a decline in the quality of reasoning and
conclusions [50].
At this point, it is unclear to what extent learners can

identify errors in AI-generated content and whether learn-
ing with ChatGPT fosters critical thinking or, conversely,
reinforces misconceptions [5]. The persuasive manner in
which ChatGPT presents information can obscure inaccur-
acies. Therefore, learners should not rely on it as their sole
source of information [51]. Nevertheless, nearly half of the
students enrolled in an undergraduate-level introductory
physics course expressed confidence in the ability of
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ChatGPT to provide accurate responses, regardless of their
accuracy [52]. Conversely, the utilization of an AI assistant
in the context of experimentation presents an effective
method for the rectification and resolution of potential
misconceptions within the field of physics education, as
well as facilitating a more profound comprehension of
fundamental physics concepts [9].
In conclusion, AI chatbots such as ChatGPTare valuable

tools, but their integration into physics teaching must be
handled with care. They offer the advantage of enabling
personalized learning and reducing the workload of teach-
ers. However, despite these advantages, further research is
needed to identify successful didactic concepts and mean-
ingful implementations in physics teaching [1].

2. The capabilities of ChatGPT in physics

When discussing the potential use of AI chatbots in an
educational setting, the question of the accuracy of AI-
generated responses cannot be overlooked. These should
provide accurate answers to technical queries with a high
degree of probability. This is particularly crucial in math-
ematical and physical contexts, as errors can be easily
overlooked and are challenging for students to verify.
Various studies are currently examining the capabilities
of AI chatbots in a physical context.
For instance, ChatGPT-4 demonstrated high accuracy

in solving the FCI as well as concept tasks in the field of
mechanics. Its performance exceeded that of engineering
students [53]. Even ChatGPT-3, which was able to pass an
introductory physics course, only made mistakes that
resemble those of beginners [54]. Subsequently, it was
demonstrated that ChatGPT-4 has achieved a significantly
higher score in the aforementioned context. Indeed, the
responses exhibit a level of competence that is nearly
indistinguishable from that of an expert, with a few notable
exceptions and limitations [55]. The studies demonstrate
that ChatGPT-4 has proficient fundamental physical capa-
bilities. However, they also indicate that there is an upward
trend in performance across the models. Nevertheless,
a more profound comprehension is occasionally absent,
particularly in the capacity to prove theorems or derive
physical laws [51].
As a vision-capable chatbot, ChatGPT-4 can also analyze

images. This can be particularly interesting for mathematics
and physics, since graphs, tables, and formulas are often
difficult to describe or transfer into the chatbot’s text field.
However, a study examining ChatGPT-4’s capacity to solve
the TUK test revealed that while ChatGPT-4 typically
accurately describes the approaches to solving graph-
related tasks, it exhibits deficiencies in graph analysis.
For instance, it fails to discern intersections with the axes
correctly [56]. However, a trend toward improvement could
be seen here as well, since ChatGPT-4o was able to achieve
significantly better results than its predecessor ChatGPT-4
and also outperforms all other tested models [57]. This

observation also shows a successive improvement in LLMs
for the physical learning context.

3. Custom chatbots

Despite the existence of a multitude of chatbots, it is
often necessary to adapt them to achieve the desired
performance in a given application [53]. A study with
electrical engineering students showed that learning with
an AI custom chatbot (based on ChatGPT) significantly
improved learning performance and self-efficacy, both in
comparison to traditional learning methods and to learning
with ChatGPT. Students reported heightened confidence
and effectiveness in utilizing the custom chatbot as a
learning assistant [58]. This motivates a systematic con-
figuration and evaluation of chatbots for implementation in
educational settings.
For the educational context, a good option to tailor a

chatbot is called augmentation. This method does not
require detailed knowledge in machine learning and neural
networks [59]. The chatbots are based on already existing
LLMs and adapted to a specific purpose. A way of
augmentation is called retrieval augmented generation
(RAG), which is a method used to enhance and specify
the capabilities of LLMs by integrating external data
sources [59,60]. Documents that serve as the external
knowledge base are divided into smaller segments and
converted into an embedding. When a user submits a
prompt, it is compared with the document embeddings.
These selected segments are then combined with the user’s
prompt and sent to the LLM as a new prompt reading:
“Reply to [user prompt] using the following background
materials: [relevant text segments].” [59]. The LLM then
generates a response based on both the user prompt and
the external knowledge. RAG provides a practical method
for customization for specific use cases by curating the
database with relevant materials. The reliance on external
documents reduces the risk of hallucinations [59].
Therefore, in educational contexts, RAG can be employed
to create customized chatbots that provide precise answers
based on course-specific materials, such as lecture notes,
syllabi, or problem sets [59]. A variety of platforms, for
example, operated by OpenAI1 and Anthropic,2 offer the
possibility of augmentation based on their respective LLM,
thereby enabling the creation of custom chatbots aligned
with specific requirements and domains of use. This is a
relatively straightforward process for teachers or students to
configure their own custom chatbots. The custom chatbots
at OpenAI are designated as GPTs. The users may instruct
their GPT to behave and react in a desired manner, such as
using situation-specific language or a certain length of

1https://openai.com/index/introducing-gpts/accessed: 2024-12-
14.

2https://docs.anthropic.com/en/docs/build-with-claude/tool-use/
(accessed: December 14, 2024).
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answers, by means of a configuration prompt that they
define themselves. Moreover, subject- or situation-specific
knowledge can be provided to the GPT by uploading
corresponding files.
For this study, we decided to use the method of

augmentation and OpenAI to customize an own GPT
(see Sec. IVA 3.).

III. RESEARCH QUESTIONS

The current state of research implies that further studies
in this still new and under-researched area are both useful
and imperative. AI chatbots have the potential to address
learning deficiencies among students and facilitate person-
alized learning. However, given the current limitations of
research in this area, further inquiry is necessary to gain a
more comprehensive understanding of the impact of gen-
erative AI on students’ learning experiences and learning
outcomes. As previously stated in Sec. II A, the constructs
and concepts, such as self-efficacy expectations and cog-
nitive load, have been demonstrated to have a significant
influence on learning performance in school. However, at
this point it is open to question whether chatbots can be
used to design suitable learning materials and environments
and generate text-based explanations that positively influ-
ence the aforementioned constructs.
In this study, we used a customized chatbot to generate

explanations for graphical representations (see Sec. IVA 3).
The study is designed as a field study, with students as the
target group and the objective of addressing the following
key research questions:
How does learning with AI-generated explanations using

a custom chatbot affect

RQ1: Emotional aspects?
RQ2: Situational interest?
RQ3: Cognitive load?
RQ4: Self-efficacy expectations?
RQ5: Learning performance in a mathematical
and physical learning context?

IV. METHODS

A. Study design

1. Sample

A total of N ¼ 214 sixth-grade students (146 female,
66 male, 2 n.a.) at secondary schools in Germany partici-
pated voluntarily in the randomized controlled study. The
average age of the students was 11.7 years (SD ¼ 0.51).

2. Procedure

The students were randomly assigned to either the
experimental (EG) or the control group (CG). Both groups
were provided with learning materials on the topic of
“Proportional Relationships” in a mathematical and

physical context. The topic had not been covered in class
before the study was conducted. The CGwas provided with
conventional textbook material, comprising a topic over-
view and explanatory examples. The EG was also provided
with the topic overview from the textbook. Instead of the
aforementioned examples, the participants were presented
with an explanation of the topic, which was generated
previously by an AI chatbot (see Sec. IVA 4) using a
previously defined prompt. To eliminate potential bias
caused by the use of digital media, both groups engaged
in their studies exclusively with paper-based materials.
To ensure a fair comparison, the learning time was identical
for both groups and amounted to 15 min. Moreover, the
learners were not informed in advance about the specific
type of learning material they would be using.
Prior to the learning phase, demographic data and

individual, subject-specific interest in mathematics were
collected. This was done in order to ascertain whether there
was a discrepancy in mathematical interest between the
two groups. Immediately following the learning phase,
the dependent variables, as outlined in Sec. IVA 5, were
collected sequentially by category. Participants’ emotions
and situational interest were recorded. In addition, the
intrinsic and extrinsic cognitive load when learning with
the materials and the self-efficacy expectation with regard
to solving a topic-related task were assessed. Subsequently,
in order to measure learning performance, the learners
completed a performance test (see Sec. IVA 6) within
30 min.

3. Chatbot design

The custom GPTwas configured in OpenAI and adapted
to the specific learning context and target group.
Furthermore, the chatbot specializes in the analyzing and
interpreting various forms of representation for propor-
tional relationships, including graphs, tables, and formulas.
It uses language that is both engaging and age appropriate,
making it a suitable tool for students in the sixth grade
of secondary school. The chatbot is capable of providing
targeted and individualized support in both learning math-
ematical content and applying mathematics in physics
lessons.
The chatbot was configured in multiple cycles based on

the OpenAI GPT-4.0 model. Following each configuration
phase, a test phase was conducted to systematically assess
whether the chatbot’s responses met the predefined criteria.
Based on the results of this evaluation, the configuration
prompt was successively adjusted after each test phase. In
addition, the chatbot was equipped with subject knowledge
that corresponds to the core curriculum for the respective
grade. In evaluating the quality of the chatbot, particular
attention was paid to ensuring that the answers were
factually correct and corresponded to the notations used
in common textbooks. Additionally, care was taken to
ensure that the language used contained motivating
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vocabulary and was age appropriate, assuming a learning
group between the ages of 10 and 13.

4. Material

Schoolbook material. Both the control and the experimen-
tal group received an overview of the topic “Proportional
Relationships,” taken from a schoolbook [61] for the
learning phase. The CG was also provided with additional
examples from the same schoolbook that illustrate and
explain the topic, thus compensating for the AI-generated
explanation of the topic that was provided to the EG.
The textbook material (see Supplemental Material,

Chapters A.a. and A.c. [62]) was selected by a group of
experts according to the following criteria, among others:
- A structured overview of the given topic and the forms

of representation (graphs, tables, and formulas).
- An overview that does not contain many additional

explanations.
- The selected examples are consistent, follow on from

the content of the overview (chosen from the same
book), and provide a sufficiently in-depth presentation
of the topic.

AI-generated explanation. In selecting the AI-generated
explanation, particular consideration was given to the
following criteria:
- The explanation is accurate and complete.
- All three forms of presentation are adequately explained.
- No terms are used that are unfamiliar to the students.
- No discriminatory language is used.

To achieve a satisfactory output, a prompt was initiated,
reiterated, and refined until it resulted in the final selected
explanation (see Supplemental Material, Chapter A.b. [62]).
In addition to the prompt, the custom chatbot was presented
with an image of the textbook overview.
The textbook material and the AI-generated explanation

can be found in the SupplementalMaterial (Chapter A [62]).

5. Data collection

Subject-specific interest. Interest in mathematics as a
school subject was measured using five items and, like
all subsequent variables, evaluated on a four-point Likert
scale. Subject-specific interest was measured before the
learning phase and served to examine the comparability of
the CG and EG. A scale was utilized, based on the one
developed by Rakoczy et al. [63]. The scale was shortened
from eight to five items for reasons of test economy, and the
remaining items were adapted to the specific learning context.

Emotions. To assess the emotional state of the learners
during the learning phase, positive-activating (two items:
pleasure, satisfaction) and negative-deactivating emotions
(three items: boredom, frustration, and uncertainty) were

measured retrospectively, directly after the learning phase.
For this purpose, five items were selected and translated
into German based on the achievement emotions ques-
tionnaire (AEQ) [29,64,65].

Situational interest. It was measured with four items
following the students’ engagement with the learning
materials. In order to maintain a low number of items for
the age group, four items were chosen based on a reliable
and validated scale by Linnenbrink-Garcia et al. [66],
translated into German, and adapted to the learning context.

Cognitive load. To measure the cognitive load during the
learning process, a two-factorial model of cognitive load
was used in this work, measuring intrinsic cognitive load
(ICL) and extrinsic cognitive load (ECL). Although based
on a three-factorial model, the 10-item questionnaire
developed and validated by Leppink et al. [28] was utilized
(cognitive load scale; CLS) to ensure the validity of the
measurement. Three items each were used to assess
intrinsic cognitive load (ICL) and extrinsic cognitive load
(ECL). These six items were translated into German and
adapted to the specific context of the learning environment.
Furthermore, the original response scale, which ranged
from 0 to 10, was reduced to levels 1 to 4 for reasons of
consistency with the rest of the questionnaire.

Self-efficacy expectation. It was evaluated in regard to the
independent solving of a topic-related task on the basis of a
scale comprising five items. The concept of self-efficacy
expectation was first developed by Bandura [35] and the
German adaptation was conducted by Schwarzer and
Jerusalem [67]. The items utilized in this study are derived
from the scale by Jerusalem and Satow [68].

6. Performance test

Following the examination of motivational aspects, the
students completed a performance test (see Supplemental
Material, Chapter B. [62]) that addressed the physical
concept of proportional relationships using the “spring
scale” as an example. The tasks were developed internally
based on standardized textbook tasks. The objective of the
performance test was to ascertain whether the students had
acquired an understanding of the various ways in which
proportional relationships can be represented and whether
they were able to switch between these different forms
of representation. The test is composed of four subtasks
A, B, C, and D, after which students were requested to
indicate the degree of certainty associated with their
response. They may select one of four options: “completely
sure,” “rather sure,” “unsure,” or “guess.” In the interest of
ensuring the integrity of the evaluation process, students
who had not completed a task are instructed to select
“guess” to exclude their responses from being considered
during the subsequent evaluation.
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B. Data analysis

All analyses were conducted using R version 4.4.0 [69].

1. Internal consistency

Cronbach’s alpha was calculated for the purpose of
evaluating the internal consistency of the individual scales
(R package “PSYCH,” version 2.4.6.26, function “alpha”)
[70]. In this context, values with α > 0.7 are considered
acceptable, values with α > 0.8 are considered good, and
values with 0.9 < α < 1.0 excellent [71,72].
As the values for Cronbach’s alpha are acceptable to

excellent (Table I) and no significant improvements were
identified when individual items were removed from the
scales, the scales will be retained for further data analysis.
In order to proceed with the evaluation, the mean of the
recorded values of the items on each scale was calculated
for all participants. These resulting scores formed the basis
for the subsequent data evaluation.

2. Test for normal distribution

Prior to testing the data of the experimental and control
groups for significant deviations, the entire dataset was
initially evaluated for normal distribution. This is done to
enable the drawing of conclusions regarding the appli-
cability of specific statistical tests. Both the data of the
EG and those of the CG were tested for normal distribution
using the Shapiro-Wilk test with a significance level
α ¼ 0.05 (R package “STATS,” function “shapiro.test”) [69].
In accordance with the selected significance level, a normal
distribution of the data can be assumed if the p value of the
Shapiro-Wilk test is p > 0.05. However, this is only the
case for the self-efficacy score in the experimental group
for the given dataset (p ¼ 0.101) (see Supplemental
Material, Chapter F.a. [62]). No variable demonstrated a
normal distribution in both groups, therefore, nonparamet-
ric tests were employed.

3. Test for significant deviations

To test for significant differences between the exper-
imental and control group scores, the Mann-WhitneyU test
with significance level α ¼ 0.05 was used (R package
“STATS,” function “wilcox.test”) [69]. This test is

standardized for two independent non-normally distributed
samples. Cohen’s d was calculated to estimate the effect
size for significant differences (R package “PSYCH,” version
2.4.6.26, function “cohen.d”) [70].

4. Evaluation of the performance test

Interrater reliability. It was not possible to determine a
clear allocation of points for one of the subtasks (task D).
The task required the creation of a graph within a
coordinate system. A rating system of six categories was
devised for the evaluation of the task (see Supplemental
Material, Chapter C. [62]) and a second, independent rater
was consulted. To ascertain the interrater reliability,
Cohen’s weighted kappa was computed for the two raters
and for each category of the rating system (R package
“IRR,” version 0.84.1, function “kappa2”) [73]. Quadratic
weighting was selected to account for the discrepancy in
point allocations across the rating scale (the difference
between 0 and 2 carries greater weight than that between
0 and 1). Computing the mean value of the interrater
reliability from all categories, results in a mean value of
κ ¼ 0.8469, which indicates a very good degree of agree-
ment between the two raters for task D [74–76].3 To further
evaluate the data, the mean of the two ratings was
calculated and taken as the score for task D.

Filtering data and calculating scores. As previously out-
lined in Sec. IVA 6, the students were asked to evaluate
their confidence in their responses following the comple-
tion of each subtask. Consequently, the points awarded
for solutions marked as “guessed” were set to zero.
Furthermore, an item designated as the “overall score”
was introduced for the performance test, wherein all
subtasks were given equal weighting.

Test for normal distribution. Prior to the group comparison,
the data for the performance test were also evaluated
for normal distribution using the Shapiro-Wilk test with
α ¼ 0.05 (R package “STATS,” function “shapiro.test”) [69].
The results of this analysis indicated that the data did not
meet the criteria for a normal distribution.

Test for significant deviations. Given that the data from
the performance test were not normally distributed, the
Mann-Whitney U test for independent, non-normally
distributed samples was also applied here for the compar-
ative analysis of the groups (R package “STATS,” function
“wilcox.test”) [69]. Cohen’s d was calculated to estimate
the effect size for significant differences (R package
“PSYCH,” version 2.4.6.26, function “cohen.d”) [70].

TABLE I. Cronbach’s alpha indicating scale consistency.

Scale α ¼
Interest in mathematics 0.92 Excellent
Positive-activating emotions 0.71 Acceptable
Negative-deactivating emotions 0.76 Acceptable
Intrinsic cognitive load 0.73 Acceptable
Extrinsic cognitive load 0.72 Acceptable
Situational interest 0.84 Good
Self-efficacy 0.90 Excellent

3A value of 0.60 or higher is considered “good” and a value of
0.8 or higher is considered “very good” or “almost perfect.”
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V. RESULTS

A. Mathematics—grade

To ensure a variable to assess the comparability of the
two groups with regard to performance in math classes, the
math grade from the last term’s report card was requested.4

The CG exhibits slightly superior mathematical perfor-
mance (M ¼ 2.24; SD ¼ 0.88) than the EG (M ¼ 2.38;
SD ¼ 0.95), but the Mann-Whitney U test revealed
no statistically significant discrepancy between the two
groups with respect to their mathematical performance
(p ¼ 0.252 > 0.05).

B. Measured variables

1. Subject-specific interest

Subject-specific interest was evaluated prior to the
introduction of the instructional materials. Therefore,
the assignment to a group could not have any effect on
the measured results at this point (Fig. 1). The collected data
show no significant differences between the two groups in
terms of interest in mathematics. The Mann-Whitney U test
calculated p ¼ 0.961, indicating that there was no sta-
tistically significant difference between the two groups.5

2. Emotions

The elicited emotions were classified into two catego-
ries: positive activating and negative deactivating. For the
former, a statistically significant difference (p ¼ 0.00093,
d ¼ 0.48, small effect size) was observed in favor of
the EG.
No significant deviation could be detected for negative-

deactivating emotions (p ¼ 0.391). Only a trend can be

identified, which shows that the CG tended to perceive
more negative emotions (Fig. 2).

3. Situational interest

The measured situational interest was significantly
higher in the EG (p ¼ 0.00223, d ¼ 0.45, small effect
size) than in the CG (Fig. 3).

4. Cognitive load

Cognitive load was measured as intrinsic cognitive load
(ICL) and extrinsic cognitive load (ECL). In both cases, the
CG experienced significantly greater cognitive load than
the EG (Fig. 4):
The analysis showed that a significant deviation

(p ¼ 0.00060, d ¼ 0.47, small effect size) was calculated
for ICL, and that a significant deviation (p ¼ 0.0001,
d ¼ 0.59, medium effect size) was calculated for ECL.

FIG. 1. Interest in mathematics with standard error. FIG. 2. Perceived emotions with standard error and level of
significance.

FIG. 3. Situational interest with standard error and level of
significance.

4In Germany, grades range from 1 to 6, with 1 representing the
highest level of achievement and 6 indicating the lowest.

5The complete results of the Mann-Whitney U test, including
those relating to individual items, can be found in the Supple-
mental Material, Chapter F.b. [62].
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5. Self-efficacy expectation

Self-efficacy was measured in terms of solving a topic-
related task. The values of the EG were found to be
significantly higher than those of the CG (p ¼ 0.00001,
d ¼ 0.63, medium effect size).
The results demonstrate that students who engaged in

learning activities with AI-generated explanations exhib-
ited higher levels of self-efficacy than those who utilized
textbook materials exclusively (Fig. 5).

C. Performance test

For the overall test score, no significant difference between
the two groups could be determined (p ¼ 0.750) (Fig. 6).

VI. DISCUSSION

As no significant differences were observed between
the EG and CG with respect to mathematics grade or
subject-specific interest, these two groups were found to be
comparable in this regard.

Concerning the influence of emotional aspects (RQ1),
the EG exhibited a significantly higher incidence of
positive-activating emotions (pleasure and satisfaction)
than the CG. This finding is consistent with the results
of previous research [46]. With regard to negative-
deactivating emotions (boredom, frustration, and uncer-
tainty), only a trend could be identified that suggests that
learning with AI-generated explanations may potentially
contribute to a reduction of negative emotions. In sum,
the results of the evaluation indicate that learning with
AI-generated explanations as Supplemental Material to
textbooks can have a positive impact on the emotional
states of the learners.
Regarding the influence on situational interest (RQ2),

it was found to be significantly higher in the EG than in
the CG. When learning with the explanation generated
by the custom chatbot as Supplemental Material, a
higher situational interest could be triggered than when
learning with the textbook materials only. One potential
explanation for this outcome is the nature of the custom
chatbot’s tone, which is designed to be encouraging and
motivating. For instance, the chatbot uses encouraging
questions such as “Has that become a bit clearer?” to
ensure comprehension of the content or motivating
phrases such as “Let’s look at that …” (see
Supplemental Material, Chapter A.b. [62]).
The results concerning the effects on cognitive load

(RQ3) show significant differences for both intrinsic
cognitive load (ICL) and extrinsic cognitive load (ECL)—
in both cases, the values were higher in the CG. These
findings suggest that learning with textbooks and supple-
mentary AI-generated materials reduces cognitive load
compared to learning with textbook-only materials. One
potential explanation for this outcome is the use of
accessible language and a conversational and humanlike
tone in the chatbot’s responses (Fig. 7).
As mentioned in Sec. II B, the quality of textual

explanations has been demonstrated to have a significant

FIG. 5. Self-efficacywith standard error and level of significance.

FIG. 6. Overall score of the test with standard error.FIG. 4. Intrinsic cognitive load (ICL) left and extrinsic cogni-
tive load (ECL) right, both with standard error and level of
significance.
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influence on cognitive load. It is imperative that explan-
ations not only be precise and avoid excessive details but
also be aligned with the learners’ current knowledge level
and interests. The findings suggest that the significantly
lower cognitive load, particularly the ECL, may be indica-
tive of the custom chatbot’s effective use in generating an
explanation adapted to the knowledge level and personal
needs of sixth-grade students.
Regarding research question RQ4, which concerned self-

efficacy expectations, the EG showed significantly higher
values than the CG. This indicates that the explanation
of the AI chatbot can foster students’ confidence in their
ability to complete tasks and corresponds to the findings of
Canonigo in mathematics [47]. A reason for this may be the
encouraging tone of the AI-generated text, the reduced
cognitive load, or a combination of both.
The fifth research question (RQ5) related to the influence

of the learning material on learning performance in the
mathematical and physical learning context. No clear trend
could be identified in the overall result of the performance
test. The data collected in this study were insufficient to
permit a definitive conclusion and answer to RQ5. A larger-
scale study in which students could utilize the chatbot
independently and individually would be beneficial to
enable more in-depth observations and allow for a higher
degree of individualization of the feedback. Prior research
has demonstrated that the utilization of chatbots can
enhance learning outcomes [9,44,47–49]. Whether there
is a connection between the learning performance and the
previously measured variables cannot be definitively deter-
mined on the basis of the present study. Despite the fact that
the experimental group exhibited a notable reduction in
cognitive load, this did not translate into a statistically
significant improvement in performance on the achieve-
ment test. It is possible that the lack of independent use
of the chatbot in this study may have contributed to the
observed outcomes, as it prevented the identification and
addressing of individual learning difficulties. Furthermore,
the brief duration of the intervention may have been a

contributing factor to the observed outcome. For instance,
the heightened self-efficacy expectation may only manifest,
resulting in positive effects on learning strategies, ambition,
and the willingness to tackle more complex problems
in longer-term studies (see Sec. II A). Consequently, an
impact on learning performance would only become
evident at that juncture.

VII. CONCLUSION AND OUTLOOK

The findings of the present study provide valuable insights
into the effects of learning with explanations generated by an
AI custom chatbot on students’ learning experience and
learning performance. It was shown that learning with these
explanations as Supplemental Material has a significant
impact on learners’ positive-activating emotions, situational
interest, and self-efficacy, while also reducing cognitive load
in comparison to traditional learning with textbook materials
only. Nevertheless, the influence on learning outcomes
remains unclear. No notable differences in the overall result
of the performance test could be identified and no definitive
conclusions can be drawn.
The generalizability of the results is constrained by

different factors: the size of the sample and the brief
implementation period (snapshot) as well as the necessity
of selecting a particular topic for a specific target group.
Additionally, the learning materials were provided in a
centralized manner, which resulted in the lack of consid-
eration for individual differences in utilization and the
potential for interaction with the chatbot.
Further research could serve to confirm the statements

and assumptions posited here through the implementation
of larger and longer-term studies with a variety of topics
and a wider target group. Moreover, subsequent to the
present study, learners should be afforded the opportunity
to utilize the AI chatbot independently and individually in
order to measure the impact of individualized feedback.
The findings of the study demonstrate that AI custom

chatbots have the capacity to generate learning materials or
explanations on topics that significantly enhance the learning
experience of students. A key benefit of utilizing a chatbot
for this purpose is its capacity for immediate, customized
responses, which can be generated with a high degree of
flexibility and adaptability. Teachers are empowered to create
explanations and materials for diverse purposes, including
different subjects, class levels, and integrated classrooms.
Additionally, students have the option of utilizing AI custom
chatbots to obtain feedback on topics and tasks they do not
comprehend. To gain a more nuanced understanding of the
usability of custom chatbots in mathematics and physics,
it would be prudent to implement a design with a more
pronounced emphasis on learning outcomes.
Overall, the present work shows that the use of AI in the

learning process offers promising possibilities, although
further research is needed to fully realize its potential and
increase effectiveness in different learning scenarios.

FIG. 7. Introductory text of the AI-generated explanation of the
learning material using a conversational and human-like tone (see
Supplemental Material, Chapter A.b. [62]).
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