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1. Introduction

1.1. Motivation

In the course of decarbonizing energy supply, the electricity system constitutes a
central channel for providing low-emission energy to final consumers. Advanced
economies promote electrification across sectors: electrolyzers for hydrogen pro-
duction in industry, electric vehicles for individual mobility in transport, and
heat pumps for residential heating (IAE, 2024, p.109). At the same time, the
expansion of information and communication technology (ICT) increases elec-
tricity demand through the operation of digital infrastructure, partly offsetting
efficiency gains (IAE, 2024, p.187). Germany showcases the global trends in its
projected demand trajectory (EWI and BET, 2025, p.33-45).

From a microeconomic perspective, electrification expands the option set of
final consumers by inserting electricity as an alternative to fossil fuels in the
provision of energy services, such as material energy use, individual mobility,
and residential heating. In making investment and usage decisions, consumers
must account for the distinctive characteristics of the electricity system, which
differ substantially from those of fossil fuels, for instance, in terms of its network-
dependency and need for continuous balancing of supply and demand (Biggar
and Hesamzadeh, 2014, p. 73-76). Unlike relatively stable fossil fuel markets,
the short-term volatility of electricity markets may pose novel challenges for
individual decision-making. At the same time, aggregated electricity demand
may increasingly reflecs heterogeneous preferences regarding time, comfort, and
location, thereby reshaping demand formation at the system level.

A more profound understanding of the determinants of emerging electricity de-
mand is therefore essential. Examining the characteristics of electricity demand
technologies, the factors influencing individual decisions, and the underlying user
preferences provides insights into the drivers of power demand in the system
transition. Such insights are valuable for informing multiple stakeholders: for
individuals, to support informed decision-making when adopting new technolo-
gies; and for policymakers, to incorporate behavioral responses into the design
of effective transition policies. At the system level, individual choices aggregate
to affect electricity prices, network requirements, and investment needs, thereby
influencing the efficiency and distributional outcomes of the energy transition.

To this end, this dissertation develops and applies methods for modeling and
interpreting individual decisions in the system transition. It combines theoretical
models, numerical optimization, and empirical approaches to capture different
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dimensions of emerging power demand. It examines how electricity market risks
affect the viability of new technologies, how individual preferences shape demand
patterns, how investment decisions in electric technologies interact with behav-
ioral biases, and how digitalization influences final energy consumption. The
applications focus on the German energy transition in the context of the Euro-
pean energy system. Each chapter is structured as a standalone research paper,
contributing complementary perspectives to the overarching research agenda,
resulting in the following structure:

• Chapter 2: Simultaneity of green energy and hydrogen production: Analyz-
ing the dispatch of a grid-connected electrolyzer. Joint work with David
Schlund, both authors contributed equally. Published in Energy Policy
(Schlund and Theile, 2022).

• Chapter 3: The Shape of U – On the Structure of Utility from Electric
Vehicle Charging. EWI Working Paper 25/07 (Theile, 2025).

• Chapter 4: Environmental Policy Instruments for Investments in Backstop
Technologies Under Present Bias - An Application to the Building Sector.
Joint work with Fabian Arnold and Amir Ashour Novirdoust, all authors
contributed equally. Published in Environmental and Resource Economics
(Arnold et al., 2025).

• Chapter 5: Digitalization and energy consumption in the EU: sector-
specific impacts and mediating factors. Markos Farag and Philipp Theile
contributed equally, and Thomas Kopp reviewed and edited the text.

The remainder of the introduction provides an outline of the individual Chap-
ters (Section 1.2), and discusses the methodological approaches, limitations, and
opportunities for future research (Section 1.3).
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1.2. Outline

Simultaneity of green energy and hydrogen production:
Analyzing the dispatch of a grid-connected electrolyzer

Hydrogen production via grid-connected electrolyzers can entail unintended side
effects, such as higher CO2 emissions in power systems that are not fully re-
newable. To mitigate the indirect emissions, the EU introduces a simultaneity
obligation (temporal matching), requiring hydrogen production to coincide with
renewable generation within certain time intervals. Chapter 2 develops a model
framework combining a mixed-integer linear program with a Markov chain Monte
Carlo simulation for stochastic electricity market prices to assess electrolyzer dis-
patch. A case study of the German electricity market illustrates the effect of a
simultaneity obligation on operational outcomes.

The results indicate that simultaneity reduces the CO2 emission intensity of
hydrogen production while constraining profits. The length of the simultaneity
interval shapes the electrolyzer’s average contribution margin and its profit at
risk, reflecting exposure to renewable generation variability. Regulatory design at
the electricity-hydrogen interface must consider the trade-offs between economic
viability, full load hours, and associated emissions of electricity-based hydrogen.

The Shape of U – On the Structure of Utility from Electric
Vehicle Charging

With the growing adoption of electric vehicles, understanding user charging be-
havior becomes increasingly important for informing operational, investment,
and policy decisions regarding their integration into the power system. While
utility functions are commonly used to describe user preferences in charging be-
havior models, most existing studies rely on formulations with limited theoretical
consistency and empirical validation, potentially leading to biased expectations.
Chapter 3 introduces a discrete choice model framework to efficiently estimate
utility function parameters from revealed preference data. Using a dataset of
observed charging sessions at public charging stations in Germany, the model
identifies utility functions, uncovers charging preferences, and simulates station
segment viability.

The results suggest that charging utility is non-linear: marginal utility de-
creases with charged energy and marginal disutility increases with charging du-
ration. An interaction between energy and duration leads to higher marginal
valuation of energy for longer charging durations. Stations profit from inelastic
demand driven by users who highly value energy content, are less price sensitive,
and engage in high-value activities at the charging location, such as in urban
areas or traffic hubs.
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Environmental Policy Instruments for Investments in Backstop
Technologies Under Present Bias - An Application to the
Building Sector

Policies such as carbon pricing and subsidies are key to reducing greenhouse gas
emissions. When individuals exhibit present bias, Heutel (2015) shows that the
optimal policy mix for externality-producing durable goods includes one compo-
nent addressing the externality and another correcting for present bias. Chapter
4 generalizes Heutel’s model by broadening the technology set to reflect the de-
pendence of fuel prices and emission intensities on building sector technologies
and to include a zero-emission backstop technology. A theoretical part exam-
ines how the generalization modifies Heutel’s propositions, distinguishing cases
in which the backstop technology is or is not optimal. A case study of a repre-
sentative German building quantifies the implications of present bias for heating
system investment and use, emissions, policy performance, and deadweight loss.

Chapter 4 demonstrates that as long as social costs of carbon and the corre-
sponding CO2 price are insufficient to render the backstop technology optimal,
Heutel’s proposition holds: optimal policy must combine two instruments. Con-
trary to Heutel’s proposition, once the social cost of carbon and the CO2 price are
high enough, a single instrument can address both the externality and present
bias. While the optimal level of the single instrument, i.e., a tax or subsidy,
depends on the level of present bias, the chapter finds that there exists a tax-
subsidy combination that is optimal regardless of the level of present bias.

Digitalization and energy consumption in the EU: sector-specific
impacts and mediating factors

Chapter 5 examines the relationship between digitalization and final energy and
electricity consumption in the EU-28 from 2007 to 2020, with a focus on the
industrial, transport, and residential sectors. Utilizing the system generalized
method of moments (GMM), the chapter explores how the expansion of informa-
tion and communication technology (ICT) capital impacts sector-specific energy
consumption patterns.

The findings reveal that increased digitalization correlates with reductions in
overall energy and electricity consumption, with a 10% increase in ICT capital
share linked to a decrease of 0.74% in energy consumption and 0.47% in electric-
ity consumption. Sectoral analyses demonstrate that digitalization lowers energy
consumption in the industry and residential sectors, attributed to economic re-
structuring and efficiency improvements. In the transport sector, the impact of
digitalization on energy consumption and efficiency is not statistically significant,
suggesting barriers to digitalization’s effectiveness. The analysis underscores the
importance of considering sector-specific dynamics in understanding the rela-
tionship between digitalization and energy use.
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1.3. Methodological approaches

Each chapter of this thesis addresses a distinct aspect of the economics of emerg-
ing power demand in the system transition, employing numerical, empirical, or
theoretical methods. Chapters 2 - 4 adopt a microeconomic perspective, analyz-
ing individual consumption, dispatch, and investment decisions. The analyzes
model the respective actors as price takers and abstract from endogenous interde-
pendencies between individual choices and system equilibrium. In the numerical
models, the actors are assumed to have perfect foresight, resulting in a poten-
tial underestimation of their costs. Chapter 4 relaxes the individual focus and
adopts a macroeconomic perspective, examining broader structural trends in
energy demand.

Chapter 2 introduces a profit maximization model of a single electrolyzer con-
nected to the electricity grid. A mixed-integer linear program (MILP) is devel-
oped to simulate grid-connected electrolyzer dispatch, incorporating a constraint
that enforces simultaneity between renewable generation and hydrogen produc-
tion. The dispatch model is simulated using several wind generation time series
generated with a Markov chain Monte Carlo approach. The wind generation
series are translated into electricity price series through a parametric model for
intraday and day-ahead electricity markets.

The EU Emission Trading System (EU ETS) is the primary instrument for
reducing emissions in the EU, establishing a cap on emissions in certain sectors.
Since power sector emissions are capped, electricity consumed by electrolyzers
may be regarded as emission-free. It is controversial whether requirements for
hydrogen production are necessary or constitute double regulation. Chapter 2
does not address the interaction between hydrogen generation and the EU ETS,
which remains an avenue for future research.

Chapter 3 establishes a discrete choice model framework based on revealed
preference data to estimate utility function coefficients. It examines the func-
tional form of utility from electric vehicle charging by characterizing products
in terms of charging duration and energy delivered. Alternative specifications
are compared, including linear and quadratic formulations of attribute utility as
well as models with interaction terms.

The discrete choice model relies on revealed preference data from observed
charging sessions at a single station but abstracts from individual-level informa-
tion on EV users, such as budget and time constraints, activity preferences, and
schedules. Consequently, observed charging demand is treated as an indirect out-
come of underlying activity demand, e.g.,for leisure or work, subject to spatial
and temporal constraints. The abstraction constitutes a key limitation, reducing
the economic interpretability of the results. Future research could address the
issue by combining charging session data with individual-level datasets, thereby
enriching both the theoretical framework and empirical examination.
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Chapter 4 comprises a theoretical and numerical part. The theoretical part
generalizes an investment model for externality-producing durable goods devel-
oped by Heutel (2015) to encompass a broader technology set and a zero emission
backstop technology. The numerical part applies the extended model as a non-
linear optimization problem to a stylized case study of a representative building
in Germany, computing key outcome variables.

Household welfare-optimal decisions are evaluated using the long-run criterion.
The criterion relies on a paternalistic assumption that present-biased household
choices may deviate from their welfare-maximizing outcomes. While the as-
sumption underpins the examination, it is open to critical scrutiny. Moreover,
the long-run criterion constitutes only one of several possible criteria in settings
with time-inconsistent discounting. Assessing the robustness of the chapter’s
findings under alternative criteria is a potential direction for future research.
Further extensions could explore household heterogeneity, varying heating sys-
tem vintages, and intertemporal investment dynamics.

Chapter 5 applies a mediation analysis framework to the relationship between
energy consumption and information and communication technology capital.
The analysis distinguishes structural and efficiency effects and introduces both
aggregate and sectorally disaggregated energy and electricity consumption func-
tions. Using the framework, the chapter examines the relationship between en-
ergy consumption and information and communication capital in the European
Union from 2007 to 2020.

The examination uses information and communication technology capital as a
proxy for digital development. While the approach provides a consistent and re-
liable measure, it does not fully capture recent dynamics, particularly changes in
technology use. Future research could explore more nuanced indicators of digital-
ization. Despite the use of system GMM as a sophisticated estimator, the results
should be interpreted as controlled correlations rather than causal effects. Unob-
served country- or sector-specific factors may still jointly influence ICT capital
and energy consumption. Extending the dataset and incorporating additional co-
variables to test the presented indications could further strengthen the findings.
Finally, aggregating energy carriers may overlook technology-specific or struc-
tural effects of digitalization. Future research could address the shortcoming by
using exergy-based or disaggregated energy measures.

Comprehensive descriptions of the methodological approaches as well as fur-
ther research avenues are provided within the respective chapters.
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2. Simultaneity of green energy and

hydrogen production: Analyzing the

dispatch of a grid-connected electrolyzer

2.1. Introduction

In the course of decarbonization, renewable primary energy carriers substitute
fossil primary energy carriers (Smil, 2017). This transformation can be achieved
by electrification of natural gas and oil applications, e.g., through heat pumps
or electric vehicles, or by substituting hydrocarbons with climate-neutral gases
like hydrogen or synthetic natural gas (Rosen et al., 2020, Thiel et al., 2016,
Thomaßen et al., 2021). Hydrogen embodies characteristics that complement
well the properties of electricity, e.g., it has a higher economic efficiency than
electricity in some final energy conversion processes, such as heavy road trans-
port, in high-temperature industry applications (Dodds et al., 2015, Parra et al.,
2019), and steel production. Furthermore, it is a meaningful option for both
short-term and long-term energy storage to balance fluctuating supply from in-
termittent wind and solar energy (Anderson and Leach, 2004). CO2 emission
reduction can only be achieved if no additional greenhouse gases are emitted for
the production of hydrogen. A promising technology is, therefore, to produce
renewable hydrogen from renewable energy (RE) sources and water electrolysis
(Rosen et al., 2020). The latter is referred to as power-to-gas (PtG) technology,
which uses electricity to split water into hydrogen and oxygen. Besides its pos-
itive effects on the energy system transformation, the uptake of hydrogen as a
future energy carrier, new markets for hydrogen technologies and hydrogen trade
can stimulate economic growth (Schlund et al., 2022), acknowledged by various
governmental hydrogen strategies (Lambert and Schulte, 2021). However, so far,
renewable hydrogen is economically not efficient in any final energy sector (Abdin
et al., 2020, Buttler and Spliethoff, 2018). Moreover, most energy systems still
have substantial fossil generation in their electricity supply mix; hence, produc-
ing hydrogen from fossil-fired power stations can increase CO2 emissions from
the power sector (Hurtubia and Sauma, 2021, Schlund and Schönfisch, 2021).

Policymakers are facing the challenge of building capacity for hydrogen gener-
ation to stimulate technology development while maintaining emission reduction
measures in the power sector. Defining and certifying green hydrogen is one
option to separate both goals, so that exclusively emission-free hydrogen pro-
duction is favored by the regulatory framework (Velazquez Abad and Dodds,
2020). The design and effectiveness of such a separation are politically and
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scientifically discussed. A repeated part of these discussions is establishing a
temporal link between electricity-based hydrogen generation and electricity gen-
eration from RE sources. For instance, in the EU (European Commission, 2018)
or German (Renewable Energy Act, 2021) legislation this temporal link is con-
sidered. This temporal link can be expressed by the simultaneity of the power
generation from the RE source and the power consumption. While the original
rationale behind such a simultaneity obligation is the prevention of unwanted
side-effects in the electrolyzer dispatch from investment subsidies, it may distort
the investment signals. These possible distortions on the investment incentive
have not been taken into consideration so far. In this paper, we assess the struc-
tural form of these distortions that policymakers can consider when designing
dispatch-oriented criteria for green energy subsidies. Therefore, we focus on a
grid-connected electrolyzer, which purchases electricity at spot markets and is
obliged to consume electricity from RE plants. We explicitly consider and vary
the simultaneity to assess four aspects of the obligation on the electrolyzer dis-
patch: the general value generated by the electrolyzer, the risk from varying RE
generation, the sensitivity on the price relation between hydrogen and electricity,
and the translation of associated carbon emissions.

Against this background, we develop a model framework including a mixed-
integer-linear program to determine the optimal dispatch of an electrolyzer, a
parametrical representation of day-ahead and intraday markets, and a Monte
Carlo simulation to generate random wind generation. We apply the framework
to an electrolyzer located in Germany and vary the electricity prices for the year
2019. We draw random wind generation realizations for this case and evaluate
the distribution of the contribution margin and full load hours (FLH). We vary
the simultaneity interval and assess its structural impact on the viability and
associated emissions of the electrolyzer.

The remainder of the paper is structured as follows: Section 2.2 reviews recent
literature on the economics of power-to-gas technology. Section 2.3 presents
the model framework and the numerical assumptions for the case study, and
Section 2.4 shows the results. In Section 2.5, we discuss the implications of our
findings. We conclude our paper and draw policy implications in Section 2.6.

2.2. Literature review

The economics of power-to-hydrogen conversion has recently been subject to
broad research. A PtG plant converts electricity into hydrogen, benefiting from
cross-commodity trading between these two secondary energy carriers (Baumann
et al., 2013). The economic viability strongly depends on the conversion effi-
ciency and the market prices on the input and output side (Glenk and Reichel-
stein, 2019). The variable costs of a PtG plant are predominantly determined by
electricity prices, which are increasingly characterized by the volatility of RE gen-
eration. The electricity procurement strategy significantly affects the hydrogen
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production costs and the total emissions of hydrogen production (El-Emam and
Özcan, 2019). It can take three distinct forms: (i) The PtG plant is co-located
and physically connected with a RE generation plant (Ferrero et al., 2016). The
production of hydrogen is profitable when hydrogen sales yield higher revenues
than selling electricity on the market, assuming that the RE generator is con-
nected to the grid (Glenk and Reichelstein, 2019). If the RE generator and the
public grid are not connected, hydrogen sales also need to cover the total cost of
electricity generation (Brändle et al., 2021). (ii) Further, the PtG plant can be
both connected to the public grid and co-located with a RE generator, forming
a vertically integrated portfolio that can be optimized against volatile electricity
prices (Clúa et al., 2018, Glenk and Reichelstein, 2020, Hurtubia and Sauma,
2021, Jørgensen and Ropenus, 2008). Moreover, (iii) a grid-connected PtG plant
can be optimized against electricity market prices to maximize hydrogen produc-
tion at minimal costs (Matute et al., 2021, Nguyen and Crow, 2016), whereby
a distinction of different electricity pricing schemes (e.g., flat, time-of-use, or
real-time pricing) can be made (Nguyen et al., 2019). In the third case, the PtG
plant is more independent from volatile RE sources and can thus increase its
output; however, indirect CO2 emissions can be induced unless the electricity is
entirely produced from RE (Huber et al., 2021).

Each power purchase strategy yields economic and operational constraints for
the PtG dispatch, either through the availability of power supply or through
electricity cost. A grid-connected PtG plant receives its renewable characteristic
from the power source, which varies both temporally and spatially, and relies on
the primary energy source used (Weber et al., 2010). Currently, hydrogen can
either be sold to industrial consumers at (nearly) fixed prices (Luck et al., 2017)
or sold as a close substitute to natural gas (Haeseldonckx and D’haeseleer, 2007).
In the future, an equilibrium price of hydrogen at competitive hydrogen markets
will equal the average cost of hydrogen production (Green et al., 2011). Since
hydrogen is currently mainly used as a feedstock in industrial processes, there
are only vague estimates on a possible equilibrium price. Thus, literature either
considers inelastic demand in use cases for the industry, mobility, or heating sec-
tor or derives hydrogen prices from conventional production or derived products
like synthetic methane (Baumann et al., 2013, Breyer et al., 2015, Fragiacomo
and Genovese, 2020, Glenk and Reichelstein, 2019, Matute et al., 2019).

While numerous studies have estimated hydrogen production costs from grid-
connected electrolysers with an optimization of the RE plant’s and electrolyser’s
utilization, few have taken into account the indirect emission effect of electricity
supplied by the grid. Since policies are in place or being discussed, defining
regulation on electricity withdrawals from the grid to produce hydrogen, we
aim at filling the gap in literature through explicitly focusing on a simultaneity
obligation and its impact on hydrogen production.
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2.3. Methodology

To answer the research question we develop a novel model framework and tailor
a case study to an application in Germany.

2.3.1. Model framework

The model framework aims at capturing a realistic representation of an elec-
trolyzer’s operation, the volatility of a RE integrated electricity system, and
appropriate metrics to assess the cross-commodity potential and the associated
CO2 emissions. Figure 2.1 summarizes the key components of our methodological
approach.

Day-ahead

Intraday

Parametric
models

Electricity
market input

Monte Carlo
simulation

Wind generation

Day-ahead and
intraday mar-

ket participation

Cost-optimal dis-
patch of electrolyser

Mixed-integer
linear program

Technical proper-
ties, e.g. partial
load efficiency

Full load hours

Absolute contri-
bution margin

Emission
intensity

Metrics for cross-
commodity
arbitrage

Figure 2.1.: Methodological approach consisting of a mixed-integer linear program,
stochastic price time series generation, and metrics for cross-commodity
arbitrage.

To estimate the optimal short-term viability of the electrolyzer, we develop a
techno-economic mixed-integer linear program, which simulates the cost-optimal
dispatch of an electrolyzer. The dispatch is optimized for exogenous wind gener-
ation and corresponding electricity prices. As electricity markets the day-ahead
and the intraday market are considered. Other sources of revenue are not con-
sidered. Two parametric models for day-ahead and intraday electricity markets
capture the relation between wind generation realizations and electricity prices.
A Monte Carlo simulation of synthetic wind generation realizations includes the
risk of uncertain wind generation. The models are applied in a case study for
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one year. Finally, we evaluate the case study with metrics for the viability and
CO2 intensity of the corresponding hydrogen production.

2.3.2. Mixed-integer linear program of electrolyzer operation

The economic viability of an electrolyzer depends on its variable cost, fixed op-
erative and maintenance (O&M) costs, and revenues. In the short term, the
cost-optimal dispatch of the electrolyzer requires that revenues are equal to or
higher than the associated costs of the plant’s operation. These decisions are
modeled in the economic dispatch model, which simulates the operation of an
electrolyzer under a temporal resolution of 15 minutes. Fixed O&M and invest-
ment costs are not considered in the short-term dispatch decision and, therefore,
excluded from the dispatch model.

The economic dispatch model is formulated as a mixed-integer linear program
(MILP). The objective function in equation (2.1) maximizes the profit over all
simulated periods t ∈ T from revenues Rt of hydrogen production and costs Ct

of electricity supply.

max Contribution margin =

T∑
t

Rt − Ct (2.1)

The revenue is calculated in equation (2.2) with an exogenous constant hydro-
gen price pH2 and the output of the plant, which depends on the load in period
t and an input-output function f that converts electric input in MW into hy-
drogen output in kg considering a conversion efficiency. The output of the plant
depends on its load L. The binary variable B determines whether the plant is
switched on (B = 1) or off (B = 0). The constant δ ensures the correct time
scale.

Rt = f(Lt, Bt) ∗ δ ∗ pH2 ∀ t (2.2)

Equation (2.3) determines the variable cost of the electrolyzer. In each period
t, the plant’s load L purchased on the power market m is dispatched, whereby
the set of markets M includes the day-ahead and intraday markets. The costs
C are then calculated by multiplying the load with the corresponding electricity
price p on the market and the fixed electricity surcharges α.

Ct =

M∑
m

Lt,m ∗ (pt,m + α) ∗ δt ∀ t (2.3)

Its rated nominal capacity cap in MWel limits the total load of the electrolyzer
(equation (2.4)).
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∑
m

Lt,m ≤ cap ∀ t (2.4)

The minimal load constraint in equation (2.5) restricts the operating range
of the electrolyzer. The minimal load is expressed as a share β ∈ (0, 1) of the
nominal capacity cap.

∑
m

Lt,m ≥ Bt ∗ β ∗ cap ∀ t (2.5)

The electrolyzer is assumed to be subject to a simultaneity obligation of RE
and hydrogen production. The simultaneity is determined by a fixed time factor
γ ∈ T , which defines the time interval in which RE generation and the elec-
trolyzer’s electricity consumption must be balanced. Hence, a time factor γ = 1
obliges the electrolyzer to consume the power production within the same pe-
riod. If γ > 1, the electrolyzer can virtually shift the RE production from one
period to another. The following equations operationalize the balancing of RE
generation and hydrogen production. The sum of the total load L of one period
t and all subsequent periods within the given simultaneity interval γ must be
equal to or less than the RE production in the same period. The RE production
is determined by the relative RE output re multiplied by the electrolyzer capac-
ity cap and the RE scaling factor σ, which defines the capacity ratio of the RE
plant and the electrolyzer. For the first periods (t ≤ γ), the equation (2.6) is
modified such that the latest period valid for balancing equals one. The simul-
taneity constraint implies that a virtual RE power storage is generated during the
electrolyzer’s operation, where RE power certificates are stored with a temporal
validity of γ.

∑
m

Lt,m +
t−1∑

j=(t−γ+1)

∑
m

Lj,m ≤
t∑

j=t−γ+1

rej ∗ σ ∗ cap ∀ γ + 1 ≤ t ≤ T (2.6)

While the model formulation simplifies some technical characteristics and does
not consider all the electrolyzer’s business opportunities (e.g., frequency control),
it comes with the advantage of low computation time. This allows solving the
deterministic model for multiple realizations to follow a stochastic approach.

2.3.3. Synthetic electricity price time series

In a power system with a high share of RE, hydrogen production would rely on re-
newable primary energy carriers, such as wind and solar. The availability of these
resources is intermittent, observable in electricity systems with high penetration
of wind and solar generation. Since volatility will remain a crucial determinant
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of an RE system, we account for its impact on the electrolyzer’s value. Beyond
analyzing point observations based on a single weather realization, we capture
the risk profile originating from the weather-dependency of renewable generation
by performing two steps. First, we parameterize two linear models, one for the
relation between RE generation forecasts and the day-ahead electricity prices
and the other for the relation between the intraday prices, day-ahead prices, and
forecast errors. Second, we generate synthetic renewable generation time-series
with a Monte Carlo simulation as inputs for the independent variables in our
linear models.

The first linear model captures the link between day-ahead electricity prices
pDA
t as the dependent variable and the residual load qrest as an independent vari-

able. Equation (2.7) shows the corresponding model formulation (Burger et al.,
2003). Note that we take the forecast residual load as an independent variable
as it describes the available information at the day-ahead auction (Elberg and
Hagspiel, 2015). We choose a third-degree polynomial so that it captures the
non-linear relation between day-ahead prices and residual load (Ehrlich et al.,
2015). The captured functional relation is not a pure estimate of the merit
order but also includes the demand-side price elasticity implicitly (Elberg and
Hagspiel, 2015). Additionally, ramp-up constraints, as well as scarcity situa-
tions, are addressed by the polynomial function. We fit one function per month
so that the final model accounts for seasonal effects, e.g., wind generation, load,
and resource prices.

pDA
t = ϵ0 + ϵ1q

res
t + ϵ2(q

res
t )2 + ϵ3(q

res
t )3 (2.7)

The second polynomial model describes the relation between the intraday price
pIDt as the dependent variable and the day-ahead price pDA

t and the forecast error
FE2

t as independent variables in equation (2.8). As we vary the wind generation,
we model only the impact of forecast errors and day-ahead prices on the intraday
price and let other influences remain unexplained (Hagemann, 2013). We use a
second-degree polynomial model of the forecast error to account for the non-
linear relation (Kulakov and Ziel, 2021, Narajewski and Ziel, 2020). Thus, our
functional relation implicitly captures impact factors on the intraday price like
scarcity situations and ramp-up constraints (Pape et al., 2016).

pIDt = ζ0 + ζ1p
DA
t + ζ2FEt + ζ3FE2

t (2.8)

The parametric models capture the functional relation between wind genera-
tion, forecast errors, and electricity market prices. Following Papaefthymiou and
Klockl (2008), we draw random wind generation and forecast time series. The
creation of the Markov chain and the Monte Carlo simulation are explained in
Appendix A.2. With these time series and the parametric models, we compute
synthetic electricity price time series.
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2.3.4. Evaluation metrics

The results are analyzed for the short-run profitability of an electrolyzer. First,
the electrolyzer’s annual contribution margin is evaluated, which is defined as the
sum of hourly cost minus hourly revenues (see equation 2.1). Second, FLH for
one year are determined: FLH = Q

Cap (de Groot et al., 2017). Third, the CO2

emission intensity of hydrogen is determined. Depending on the emission factor
for electricity, the indirect carbon emissions of grid-connected electrolysers can
be larger than zero, whereby either marginal or average emission factors can be
used (Huber et al., 2021). An exact calculation of marginal emission factors and
specific CO2 emissions of hydrogen requires time-consuming electricity market
simulations (Braeuer et al., 2020, Stöckl et al., 2021), which are not compatible
with our stochastic Monte Carlo approach. We approximate the emission factor
with two different measures to estimate a range of emission intensity of hydrogen.

We assume that matching renewable generation and hydrogen production in
every 15-minute period as the lowest temporal unit of electricity balancing pur-
poses in the EU, which we describe as a simultaneity of a quarter-hour, has
an emission factor of 0 gCO2/kWhel

1, thus represents a perfect balancing of
RE and hydrogen production2. Each (positive) deviation of the quarter-hourly
power consumption from the RE generation leads to additional electricity de-
mand, which must be balanced by the grid, where it increases the power pro-
duction from the marginal power plant. The indirectly induced emissions are
calculated by multiplying the total grid-power consumption with the emission
factor for electricity in each period. We apply two emission factors for electricity:
(i) The marginal emission factor (MEF) equals the specific emission factor of the
marginal power plant, which sets the market price on the intraday market based
on its marginal cost (Fleschutz et al., 2021). Hence, the marginal emission factor
is determined by mapping the quarter-hourly intraday price with the marginal
costs of different power plants. The yearly average grid emission factor (YAEF)
is defined as the total emissions of the power sector divided by total electricity
production and is constant throughout the year. Finally, the hydrogen emission
intensity is calculated by dividing the total absolute CO2 emissions (in kg) by
the total absolute quantity of hydrogen produced (in kg).

Within the analysis, the obtained distributions of these three metrics are com-
pared regarding their arithmetic mean value and their coefficient of variation
(CoV). The CoV, or relative standard deviation, sets the standard deviation in
relation to the mean of the distribution and measures the dispersion of a data set.

1We neglect embodied emissions in preliminary chains, e.g., for building, installing, and main-
taining the wind generator and the electrolyzer. The emission balance should primarily
capture the additional indirect emissions in the power sector from hydrogen production
excluding additional embodied emissions.

2While even in the case of quarter-hourly simultaneity the actual emissions induced by the
electrolyzer might be higher, the assumption enables comparability with higher simultaneity
values.
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2.3. Methodology

The comparison focuses on general structures represented by relative changes to
the base case rather than on absolute estimations.

2.3.5. Case study design

We simulate the model with historical German electricity market data and exem-
plary inputs for the electrolyzer. Electricity market data include day-ahead and
intraday spot prices of the German electricity market zone from 2015 until 2019.3

Generation, forecast, and realized electricity demand time series are withdrawn
from the data publication platform of the German federal grid agency (German
Federal Grid Agency, 2021). Electricity demand, generation, forecast, and in-
traday price data are available in quarter-hourly resolution, whereby day-ahead
prices are given in hourly resolution. The simulation is run in quarter-hourly
resolution for one year and 1000 samples of wind generation with accordingly
derived electricity prices. The resulting parametric models for the electricity
prices are shown in Appendix A.1.

The parameterization of the electrolyzer is based on literature data and sum-
marized in Table 2.1. The ratio of the RE source and the electrolyzer capacity
is fixed at a value of two, which is not endogenously optimized in the model and
based on recent literature (Brändle et al., 2021, Glenk and Reichelstein, 2019).
From the linearization of the input-output function, we receive a minimum ef-
ficiency at full load of 52 %, maximum efficiency at part-load of 61 %, and
an average efficiency of 54 %. The efficiency values include peripheral equip-
ment and refer to the higher heating value of hydrogen (Kopp et al., 2017).
The assumed parameters only represent an exemplary electrolyzer. In practice,
technical and economic characteristics are extensive and depend on multiple
factors (see e.g., Götz et al. (2016), Saba et al. (2018), Thema et al. (2019)).
Consequently, the simulation results depend on the parameterization of the elec-
trolyzer. Based on current German regulation, we assume electricity price sur-
charges of 2.39e /MWh.4

The initial exogenous hydrogen price is set to 3e /kg in the base case and
varied in a subsequent sensitivity (see Section 2.4.5). Currently, hydrogen is
not traded on transparent and liquid markets. Instead, over-the-counter trades
and bilateral contracts between producers and consumers organize volumes and
prices. Here, we assume a selling price for green hydrogen as an indicator of the
willingness to pay. The price is not varied over time since hydrogen can be stored,
stabilizing the hydrogen prices (Green et al., 2011). The green characteristic is
varied by changing the simultaneity obligation since it affects the renewable
characteristic of the power supply.

3The year 2020 was excluded due to its low comparability with other years caused by the
covid-19 pandemic.

4The surcharges consist of 1.54e /MWh electricity tax and 0.85e /MWh of other surcharges.
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Table 2.1.: Electrolyzer parameter (own assumptions based on Kopp et al. (2017) and
International Energy Agency (2019)).

Parameter Value Unit

Production capacity 1 MWel

Ramping gradient 100 % cap
15 min

Minimum load 20 % of cap

CAPEX 800 e
kWel

Lifetime 11 years
Fixed O&M costs 1.5 % of total invest
Interest rate 7 %
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Input-output function:

Qhydrogen = 0.98 + 4.3Qelectrical load

Figure 2.2.: Electrolyzer input-output-function (own assumption based on Kopp et al.
(2017).
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2.4. Results

A reference list mapping MEF with electricity prices is derived from Fleschutz
et al. (2021), which covers the German power system for the year of 2019. Hence,
the MEF used from the study coincide with the data input for the regression
analysis spatially and temporally for the most recent year. A day-ahead price
of less than 35.5 EUR/MWh is below the lowest marginal cost of conventional
power plants in the reference list. Hence, the marginal emission factor is assumed
to be 0 gCO2/kWhel for prices below that threshold. As YAEF of Germany, we
assume 408 gCO2/kWhel (Umweltbundesamt, 2021).

2.4. Results

We obtain results for the electrolyzer dispatch within the defined case study.
First, we present the time series of randomly drawn wind generation realiza-
tions and corresponding electricity prices. For a base case, we show then the
distribution of the absolute contribution margin and the FLH of a standardized
electrolyzer. Fourth, we assess the impact of a simultaneity obligation on both
the dispatch level and the annual dispatch risk. Fifth, the interdependence be-
tween a simultaneity obligation and the green hydrogen selling price is analyzed.
Lastly, we highlight the effect on the CO2 emission intensity of hydrogen.

2.4.1. Price time series

Based on the Markov chain, we generate 1000 samples of a yearly wind genera-
tion time series in quarter-hourly resolution. Combined with the parameterized
day-ahead and intraday models, these wind generation samples obtain 1000 sam-
ples of quarter-hourly intraday prices and hourly day-ahead prices. Figure 2.3
illustrates the sampled range of these three time series. The two price time
series diagrams show the upper and the lower limits of the sampled price dura-
tion curves, i.e. the sorted quarter-hourly electricity prices.5 The lower diagram
shows the range of the corresponding wind capacity factors.6

The middle illustration in Figure 2.3 shows the dispersion of the day-ahead
price duration curves. Towards the lower and the upper end, the price dispersion
increases. In the middle part, however, the dispersion is comparably low. The
parametric models in A.1 represent the merit-order of the electricity market.
The resulting price responses are stronger for particular high and low residual
loads so that the differences between the samples in these periods lead to high

5The electricity prices are first sorted, and then the maximum and minimum of each sorted
hour are shown in the respective diagram. They span the range of price duration curves
within the total sample.

6The single samples are, first, sorted according to the order of the day-ahead price duration
curves. Then the maximum and minimum of the wind capacity factor are shown in the
diagram, also spanning the range of possible wind capacity factor realizations given the
corresponding day-ahead price.
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Figure 2.3.: The price duration curve of the intraday prices, the day-ahead prices, and
the wind generation. The upper and lower limits of the sampled price dura-
tion curves are shown, and the wind generation’s corresponding upper and
lower limits.

dispersion in the price duration curves. Differences in the less extreme residuals
translate into comparably low price differences. The illustrations show a negative
correlation between the wind capacity factor and the electricity prices, indicating
the merit-order effect of RE generation. Additionally, the figure shows that the
dispersion of the wind capacity factor is higher in hours with low electricity
prices. Electricity prices are mostly affected by wind generation when its feed-in
is comparably high, resulting in a lower residual demand7 (Sensfuß et al., 2008).
This leads to lower prices when wind capacity factors are high and consequently
to a higher dispersion of electricity prices depending on the variation of wind
generation. The intraday price duration curve is quite similar to the day-ahead
price duration curve as the source of variation is the wind generation forecast
errors. These result in slight deviations from the day-ahead price.

Table 2.2 shows the descriptive statistics of the simulated time series and the
resulting value factors for the wind generation profile. The mean yearly capacity

7Defined as total electricity demand less RE feed-in, which is the demand being supplied by
conventional power plants.
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2.4. Results

Table 2.2.: Descriptive statistics of the samples wind generation and the regressed price
time series.

Yearly capacity Price Price Value factor Value factor
factor wind day-ahead intraday day-ahead intraday

Unit e /MWh e /MWh e /MWh e /MWh

Min 0.14 -149 -180 25 24
Max 0.18 106 106 37 37
Mean 0.16 40 41 33 33
StD 0.007 15 16 2 2

factor across all samples is 0.16, which equals approximately 1400 FLH. The min-
imum across all sampled years is 0.14 and the corresponding maximum is 0.18.
The mean hourly electricity prices are 40e /MWh for the day-ahead market and
41e /MWh for the quarter-hourly intraday market, respectively. The mean of
electricity price maxima deviates only in the decimals between day-ahead and
intraday, while the mean of minima is 31e /MWh lower on the intraday mar-
ket. The value factors confirm the negative correlation between wind generation
and electricity prices. The value factor of 33e /MWh is lower than the mean
average electricity price. The upper bound for the electricity market price, at
which the electrolyzer is dispatched, depends on the green hydrogen selling price,
which translates into an electricity break-even price through the plant-specific
efficiency.

2.4.2. Dispatch of a grid-connected electrolyzer

A green hydrogen selling price of 3e /kg and no simultaneity obligation define the
base case. To understand the effects of higher simultaneity on the electrolyzer’s
dispatch, we first present the two main characteristics of this dispatch for the base
case. First, we show the total profitability of the electrolyzer’s dispatch indicated
by the distribution of the absolute contribution margin (upper histogram in
Figure 2.4). Consecutively, we show the electrolyzer’s production rate indicated
by the distribution of FLH (lower histogram in Figure 2.4).

The absolute contribution margin for a year ranges from 30e /kW in the worst
case to 61e /kW in the best case. At the mean, the electrolyzer would generate
a margin of 40e /kW with a standard deviation of 5e /kW. This results in a
CoV of 0.12. The distribution is slightly right-skewed since it is more concen-
trated for low margins than for high margins. The underlying wind generation
distribution initially causes the right skewness. Without simultaneity, it only
affects the absolute contribution margin through electricity prices. The FLH
show a symmetrical distribution with a mean of 3517 hours and a standard de-
viation of 115 hours. Since, in this case, the electrolyzer is not constrained by a
wind generation profile, the FLH are determined by the hydrogen price, its cor-
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Figure 2.4.: The distribution of the absolute contribution margin (top) and the full load
hours (bottom).

responding electricity break-even price, and the electricity price duration curve
on the market.

The mean CO2 emission intensities are 31.9 kgCO2/kgH2 when applying the
MEF and 30.1 kgCO2/kgH2 using the YAEF. The break-even price defines the
range of possible marginal power plants. From the mean FLH of 3517, we can
derive the finding that the electrolyzer mostly operates in periods where electric-
ity prices are either set by generation technologies with close-to-zero marginal
costs, e.g., nuclear, RE or by baseload generation technologies, such as lignite
power plants. Whereas the former has an emission factor for electricity of zero,
the latter has the highest emission factor of all generation technologies. Conse-
quently, the electrolyzer either withdraws power from the grid when the MEF is
particularly high or low, which leads on average to a similar emission intensity
of hydrogen compared to the YAEF.

2.4.3. Simultaneity effect on the annual dispatch level

Starting from the base case with a hydrogen selling price of 3e /kg and no
simultaneity, we first introduce a simultaneity of one year and increase it up to
an interval of 15 minutes. The discrete intervals are None, 1 a, 12 hours, 8 hours,
1 hour, and 15 minutes. The hydrogen price remains constant. The results are
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normalized regarding the base case. The normalized means of the contribution
margin and FLH are shown in Table 2.3.

Table 2.3.: Relative changes to the base case of mean, standard deviation, and coeffi-
cient of variation (CoV) of contribution margin and FLH in the simultaneity
sensitivity.

Simultaneity
in % of base case none 1a 12h 8h 1h 15min

Mean
Contribution margin 100 98 78 75 71 67
Full load hours 100 78 57 54 51 47

Standard deviation
Contribution margin 100 101 99 98 96 96
Full load hours 100 110 96 96 97 101

Coefficient of variation
Contribution margin 100 104 126 130 135 143
Full load hours 100 141 170 178 189 216

The results show that the mean contribution margin decreases with an in-
creasing simultaneity. Without any simultaneity, the absolute mean contribu-
tion margin results in a value of 40e /kW. Compared to this, the contribution
margin with simultaneity of 15 minutes is 33 % lower. The introduction of a
yearly simultaneity would decrease the contribution margin by 2 %. The elec-
trolyzer benefits from arbitrage since electricity can be bought during low-price
periods and hydrogen can be sold at a fixed price. If no simultaneity obligation
is in place, implicitly, all hydrogen produced by the electrolyzer is considered
green, which can be interpreted as the virtual generation of the green electricity
characteristic. The electrolyzer runs in all periods with an electricity price lower
than the break-even price. The introduction of simultaneity ties the electrolyzer
production to the wind generation profile. The electricity consumption is only
considered green within a specific time interval and after its generation by the
wind generator. Therefore, already yearly simultaneity prevents the virtual gen-
eration of green electricity. Implicitly, low simultaneity allows the electrolyzer
to store the green characteristic of the electricity since it can generate the green
characteristic in high-price periods and consume it in low price periods. The
shorter the time interval, the lower the storage capability of the electrolyzer,
and, hence, the lower the profit from this storage. Therefore, the case of a
15 minute simultaneity does not allow the electrolyzer to store the green char-
acteristic and marks the lowest contribution margin with 67 % of the base case.
The case of yearly simultaneity, on the other hand, implies the largest virtual
storage, resulting in a contribution margin of 98 % of the base case. Thus, the
potential value of virtual green electricity storage is significant and can make up
to one-third of the electrolyzer’s contribution margin.
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The potential value of virtual storage also becomes apparent in the FLH.
Without simultaneity, the mean FLH sum up to 3517 hours, corresponding to a
capacity factor of 40 %. The introduction of yearly simultaneity reduces the FLH
by 22 %. Compared to the base case None, where the break-even price alone
determines the FLH, the total yearly production of the wind generator limits the
FLH in case of yearly simultaneity. The 22 % difference marks the additional
potential generation by a larger wind generation capacity for the electrolyzer.
However, the 22 % FLH only account for 2 % of contribution margin. The
electrolyzer mainly loses less profitable hydrogen generation at high electricity
prices. Increasing the simultaneity further to 15 minutes results in an FLH
reduction of 53 % compared to the base case. Compared to the case of yearly
simultaneity, the reduction is 31 % points regarding the base case. Analogously
to the contribution margin, the allowance to virtually store the green electricity
characteristic can make up to 40 % of the electrolyzer’s hydrogen production.

2.4.4. Simultaneity effect on the annual dispatch dispersion

The sensitivity of the contribution margin and FLH dispersion to a varying
simultaneity is also shown in Table 2.3 in the form of the standard deviation and
the coefficient of variation. The results are normalized regarding the base case.

The absolute CoV of the contribution margin in the base case results in 0.12
and increases with higher simultaneity. Introducing yearly simultaneity increases
the CoV by 4 %. Reducing the interval to 15 minutes results in a CoV increase
of 43 %. The allowance to store the green characteristic of the electricity gen-
eration increases the robustness of the electrolyzer towards varying yearly wind
generation. In the case of yearly simultaneity, the dispersion between years with
different wind generation realizations is defined by the lower end of the price
duration curve (see Figure 2.3) since the electrolyzer can shift all of its power
consumption into the lowest price periods. For simultaneity of 15 minutes, the
dispersion between the yearly wind generation profiles mainly determines the dis-
persion of the contribution margin, as the electrolyzer cannot shift its consump-
tion. The results indicate that the dispersion between the annual RE generation
is higher than the dispersion between the yearly electricity prices, which finds
support in the illustration of the time series in Figure 2.3. The variation within
the wind capacity factor is higher than the variation within the electricity prices
(see Table 2.2). Lower simultaneity decouples the contribution margin from the
risk associated with the economic value of the wind generation profile. This risk
can account for one-third of the total risk from yearly varying wind generation.

The CoV of FLH increases with a higher simultaneity. In the case of yearly
simultaneity, the CoV is 41 % higher than in the base case (with an absolute
value of 0.03). For simultaneity of 15 minutes, the CoV is 216 % of the base
case’s CoV. The simultaneity appears to have a more significant effect on hydro-
gen production risk than on the contribution margin risk. As already observed
for the mean of the FLH, introducing a simultaneity obligation significantly in-
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Table 2.4.: Absolute values of the mean contribution margin and the FLH at a hydrogen
selling price of 3e /kg.

Unit None 1a 15min

Mean contribution margin e /kW 40.4 39.4 27.2
Mean FLH h 3516 2740 1641

creases the CoV. Constraining the total yearly FLH to the wind generation limits
the FLH of the electrolyzer, shifting the main dispatched hours to the high dis-
persion area at the low prices of the duration curve. Therefore, the dispersion
increases significantly with the introduction of yearly simultaneity. Increasing
the simultaneity further towards the 15 minutes interval increases the impor-
tance of the dispersion within the low electricity prices and the importance of
the dispersion between the yearly wind generation profiles, since only wind gen-
eration within periods with prices below the break-even price leads to hydrogen
production. Hence, the hydrogen production risk resulting from the wind energy
profile makes up one-third of the total risk.

2.4.5. Interdependence of the simultaneity and the green
hydrogen selling price

The hydrogen price is a decisive factor for the electrolyzer’s viability, but it is
generally unknown in the absence of a liquid hydrogen market. Therefore, a
sensitivity is applied to the price. We simulate the electrolyzer dispatch model
for a green hydrogen price of 2, 2.5, 3, 3.5, 4, and 4.5e /kg. Three cases will
be presented: starting from the base case (i) without a simultaneity obligation,
the sensitivity is additionally applied on the simultaneity of (ii) one year and
(iii) 15 minutes. In Table 2.4 the absolute values for the mean contribution
margin and the FLH are summarized. Within each case, the relative deviation
from a reference price of 3e /kg is computed for the mean and the CoV of the
contribution margin and the FLH. Figure 2.5 illustrates the results.

The diagram on the top left in Figure 2.5 illustrates the sensitivity of the
contribution margin’s mean to the hydrogen price for three simultaneity cases.
Regardless of the simultaneity, the contribution margin increases with a rising
hydrogen price. The exact gradient of this increase diverges between the different
simultaneity obligations. In the absence of simultaneity, hydrogen production is
profitable for all periods with an electricity price below the break-even price.
Therefore, increasing the hydrogen price increases both the contribution mar-
gin for the already profitable periods and makes additional periods profitable.
This twofold effect results in a convex contribution margin increase. Increasing
the hydrogen price by 1.5e /kg increases the contribution margin by 408 %.
Introducing yearly simultaneity, the electrolyzer only profits from storing the
green characteristic. As the FLH of the wind generation are limited, there is a
saturation level of the contribution margin increase through higher production.
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Figure 2.5.: Relative changes to the base case of 3e /kg of the mean (upper) and the
CoV (lower) of the contribution margin (left) and the FLH (right) in %.

Therefore, once the break-even price is sufficiently high to capture as many pe-
riods as FLH provided by the wind generator, the contribution margin increases
linearly. At a hydrogen price of 4.5e /kg, the contribution margin is 242 %
of the contribution margin at 3e /kg. With quarter-hourly simultaneity, the
electrolyzer is also prevented from benefiting from green characteristic storage.
This significantly reduces the mean contribution margin of the base case (see
Table 2.4). However, the relative increase of the mean contribution margin is
higher than with yearly simultaneity. With lower simultaneity and thus larger
green characteristic storage, the electrolyzer reaches for lower hydrogen prices at
the saturation level of the wind generation FLH. In the absence of the storage
allowance, the electrolyzer reaches the saturation level not until higher hydrogen
prices.

The relative changes of the FLH, and thus the total output of the electrolyzer,
are shown in the top right diagram of Figure 2.5. The change in FLH is s-shaped,
with a first convex increase, followed by a concave increase with a decreasing
growth rate in FLH at a hydrogen price of more than 3.5e /kg. The convex
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and concave course becomes most visible in the case of no simultaneity. For
example, the FLH can be more than doubled (plus 105 %) when increasing the
price from the base case (3e /kg) to 4e /kg, whereas it only increases by 67 %
points when changing from 3.5 to 4.5e /kg. This shape can be explained with
the price duration curves in Figure 2.3. If the price is varied at a level such that
the electricity break-even price lies in the flat part of the price duration curve, the
number of operating periods is very sensitive to a change in the hydrogen price.
If it is varied at the upper or lower end of the price duration curve with few prices
at one level, the FLH are less sensitive to hydrogen price changes. Increasing
the FLH is possible to a limited extent since electricity prices eventually reach
the left tail of the price duration curve with soaring prices in a few hours of
the year. Introducing yearly simultaneity adds a FLH saturation level based on
the wind generation capacity factor. With the given assumptions, the maximum
FLH are reached with a price of 3e /kg. A further increase in the price enables
the electrolyzer to be dispatched in more periods from an economic perspective
(as shown in the first case without simultaneity). However, total wind energy
production, i.e., virtual green electricity storage, is fully used. For simultaneity
of 15 minutes, the FLH only increase with a higher hydrogen price when periods
exist that have spare wind generation and electricity market prices above the
electricity break-even price. Hence, the extent to which a higher hydrogen price
increases the FLH in this situation strongly depends on the correlation between
wind generation and electricity prices. Here, at a price of 3e /kg, there are still
periods with wind power generation but without hydrogen production, which
allow increasing the electrolyzer’s output at higher hydrogen prices.

The diagram on the bottom left in Figure 2.5 shows the contribution mar-
gin’s CoV sensitivity to the hydrogen price. The relative CoV’s resulting course
shows a convex decrease for each line. In the case None without simultaneity,
the CoV for a hydrogen price of 2.0e /kg is 209 % of the CoV in the base case.
For a hydrogen price of 4.5e /kg, however, it decreases to 29 %. An increasing
hydrogen price decreases the contribution margin’s CoV in two ways. First, it
defines the break-even price and, hence, the FLH and average short-term costs.
A higher hydrogen selling price moves the break-even price along the flat part in
the middle of the price duration curves. Here, the variation between the sampled
years is low compared to the variation at the end of the price duration curve.
With a higher hydrogen price, the share of the periods with prices, which vary
little between the samples, in the total periods grows. This leads to a relative
reduction of the CoV. Second, a higher hydrogen price increases the absolute
contribution margin per kg of hydrogen produced. As the variation in the case
without simultaneity only originates from the varying electricity prices, an in-
crease of the revenue per kg decreases the relative impact of the production costs
and thus the CoV of the contribution margin. In the case of yearly simultaneity,
the electrolyzer’s dispatch is constrained by the total FLH of the wind genera-
tor. Therefore, it already reaches for lower hydrogen prices a saturation level of
CoV reduction than without simultaneity. For a hydrogen price of 4.5e /kg, the
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relative CoV is 61 %. The electrolyzer only benefits from the first effect, i.e.,
the slight variation in the flat part of the price duration curve, until it reaches
the wind generator’s FLH. The second effect of increasing revenue compared to
the cost variation remains. This also holds for the case of high simultaneity of
15 minutes. Although the FLH of the wind generator are exhausted for higher
hydrogen prices (leading to a slightly higher CoV reduction rate), the CoV is
mainly reduced due to the second effect for higher hydrogen prices. However, for
lower hydrogen prices, the relative CoV increase is lower than for no and yearly
simultaneity. While for no and yearly simultaneity, the price variation at the
lower end of the price duration curve determines the CoV, the CoV in the case
of high simultaneity is determined by the wind generation value factor. Due to
the negative correlation between electricity prices and wind generation, the wind
value factor has a lower dispersion than the electricity prices (see Table 2.2.

The FLH CoV’s sensitivity to the hydrogen price is shown in the bottom right
diagram of Figure 2.5. All curves show a convex decrease. The decrease rate
is the highest for the case of no simultaneity, falling from 330 % of the base
case’s CoV for a hydrogen price of 2.0e /kg to 17 % for a 4.5e /kg. Again,
two effects play a role in this decrease. First, the variation in the flat part of
the price duration curve is lower than at its ends, resulting in a low CoV for
break-even prices in this part. Second, for high hydrogen prices, the FLH of
the electrolyzer are comparably high. Variation between the samples of a few
hours only increases the CoV slightly. Therefore, the curve is convex in its
reduction. Introducing yearly simultaneity adds a saturation level in the form
of the wind generator’s FLH. Therefore, once this saturation level is reached
at 3e /kg, the CoV does not change anymore. For lower hydrogen prices, the
relative increase of the CoV is lower than in the case of no simultaneity. For
3e /kg, the electrolyzer is already constrained by the FLH of the wind generator
so that a further decrease in the hydrogen price has a relatively lower effect
than in the case of no simultaneity. Given a quarter-hourly simultaneity, the
CoV reaches the saturation level for higher hydrogen prices than under yearly
simultaneity since the electrolyzer cannot shift its dispatch into periods with
sufficiently low electricity prices. Analogously to the contribution margin, the
CoV of the FLH increases with a lower rate for decreasing hydrogen prices.

2.4.6. Emission intensity

The additional value from storing the green characteristic of electricity comes
with a potential fading of the actual greenness of the associated electricity con-
sumption. The additionally induced electricity generation of conventional power
plants to serve the electrolyzer’s demand may increase indirect emissions. This
issue does not only apply to the operation of electrolyzers but also to other power
consumers (e.g., battery electric vehicles (Nansai et al., 2002)and demand-side
response (Fleschutz et al., 2021)). The relative emission intensity of hydrogen to
the base case is determined for each considered simultaneity. Furthermore, the
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mean emission intensities are determined for varying hydrogen prices along with
the simultaneity of None, one year, and 15 minutes.
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Figure 2.6.: The hydrogen emission intensity in % indicated by the MEF and the YAEF
depending on the simultaneity.

In Figure 2.6, the mean CO2 emission intensity of hydrogen for the simul-
taneity sensitivity is visualized. Starting from the case of no simultaneity, the
relative average emission intensity is shown for each considered simultaneity.
The case without simultaneity has the highest relative emission intensity since
the grid fully balances the electricity consumption. Following the assumptions
in Section 2.3, a quarter-hourly simultaneity corresponds to perfect balancing of
RE and hydrogen generation and induces no additional indirect CO2 emissions.
Hence, the emission intensity of hydrogen is 100 % lower compared to the base
case. The trend indicates a reduction in emission intensity with increasing si-
multaneity in between these cases. The largest drop occurs when a simultaneity
obligation is imposed, i.e., moving from no simultaneity towards yearly simul-
taneity. Here, the emission intensity decreases by more than 50 % for both the
YAEF and the MEF.

Moving downwards from yearly to lower simultaneity in discrete steps, the
emission intensity further decreases, but the effect weakens. Note that the time
intervals between the simultaneity cases differ, and the change in emission inten-
sity must be regarded relative to the respective interval. The difference between
12 hourly and 8 hourly simultaneity is only 6 % points for the MEF and 5 %
points for the YAEF, respectively. With simultaneity of 8 hours, the emission
intensity of hydrogen reduces by more than two-thirds compared to the base
case (None). A substantial decrease can be noticed when moving from hourly
to quarter-hourly simultaneity, i.e., to perfect balancing, where the emission in-
tensity decreases by more than 10 % points in both cases, although the step is
the lowest on a time-scale. When comparing the results for yearly with quarter-
hourly simultaneity, the relative emission intensity deviates by a value of 38 %
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points. The effect of the simultaneity on the emission intensity appears to be
very similar for both emission factors for electricity. This implies that higher
simultaneity reduces the share of electricity balanced from the grid, but the
average mean emission factor for electricity does not change significantly.
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Figure 2.7.: The relative hydrogen emission intensity to the base case (3e /kg) indicated
by the YAEF (left) and the MEF (right) for the hydrogen price sensitivity.

Besides the simultaneity, the hydrogen price can affect the emission intensity
of hydrogen since it changes the electricity break-even price and, therefore, the
possible range of marginal power plants. The charts in Figure 2.7 show the
relative emission intensity of hydrogen depending on the price for yearly and no
simultaneity when applying the MEF (left chart) and the YAEF (right chart).
The emission intensity for quarter-hourly simultaneity is not displayed, as it does
not change with the price and always equals zero in absolute terms.

Applying the YAEF, the emission intensity does not change when no simul-
taneity obligation is in place since both the emission factor for electricity and the
power balanced by the grid are constant overall prices. With yearly simultane-
ity, the emission intensity depends on the share of electricity that exceeds the
generation from the RE sources and is balanced by the grid. The mean emission
intensity of hydrogen decreases when the hydrogen price is reduced from the
base case price of 3e /kg. Low electricity prices usually occur when residual
demand is low and when RE feed-in is high. With increasing residual demand,
the electricity market price rises and the share of electricity, which is balanced
by the grid, increases. Consequently, a comparably low selling price for green
hydrogen limits the electrolyzer to produce only in periods with low electricity
prices and accordingly high feed-in from the RE generator, which means that less
power must be balanced by the grid, lowering the emission intensity of hydrogen.
However, a comparably higher price with yearly simultaneity also decreases the
emission intensity. Here, the emission intensity hits its maximum at 3e /kg and
slightly decreases afterward. While the mean FLH reach the maximum with a
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price of 3e /kg and do not increase with higher prices (see Section 2.4.5), the
considered part-load efficiency allows the electrolyzer to increase the total output
by using the same amount of electricity. In a small range of electricity benchmark
prices, it is economically efficient for the electrolyzer to operate in partial load to
increase efficiency and accept a lower output. With a higher hydrogen price, this
price range increases, and the operating periods with partial load shift towards
higher electricity market prices. As a result, the total output of the electrolyzer
increases while the consumed power remains constant, which leads to a slightly
lower emission intensity of hydrogen with a higher hydrogen price.

Applying the MEF, the emission intensity of hydrogen increases with the hy-
drogen price when no simultaneity obligation is in place. The change is S-shaped,
meaning more minor deviations from the base case with a price of 3e /kg lead
to more substantial emission effects than higher deviations. The MEF depends-
besides the rate of power balanced by the grid-on the electricity market price.
With higher prices, the electrolyzer can also be dispatched during mid and
peak load periods, which can be seen by the increased FLH with a higher price
(see Section 2.4.5). In these periods, coal- and gas-fired power plants are often
marginal suppliers, which have lower emission factors in comparison to lignite
power plants. Hence, the increase in indirect emissions is slowed down. With
yearly simultaneity and applying the MEF, the trend of the mean emission in-
tensity is similar to the YAEF, but the decrease at lower prices is stronger when
applying the MEF. Since the MEF depends on both the share of power balanced
on the grid and on the electricity market price, the effect of the marginal power
plant affects the emission intensity in two ways: the MEF is lower at a compara-
bly lower hydrogen price, and the power supply from the RE generator is higher
since it often produces in periods with low electricity prices. On the other hand,
the emission intensity decreases with a higher hydrogen price and yearly simul-
taneity. The effect is analogous to the YAEF reasoned by the increase in output
with the same FLH, but the emission intensity is affected by the electricity price
and the change in total output.

2.5. Discussion

This chapter presents the dispatch decision of an electrolyzer, highlighting the
impact of a simultaneity obligation of hydrogen and electricity generation from
RE sources in the presence of risk from varying wind generation. Since grid-
connected electrolyzers could physically operate constantly and without restric-
tions from the supply side, the simultaneity obligation is a political measure to
tie electricity consumption to its production from RE plants to prevent fossil-
fired power plants from supplying PtG plants with electricity. Hence, the si-
multaneity can be interpreted as an allowance to store the green characteristic
of the RE plant’s electricity generation. In the case study, we show that this
allowance improves the business case of an electrolyzer in three ways. First, the
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storage capability adds economic value to the dispatch of the electrolyzer. The
electrolyzer benefits from time arbitrage, shifting the green characteristic from
high-price to low-price periods. This arbitrage increases the electrolyzer’s con-
tribution margin. Second, the virtual storage also mitigates the RE generation
risk, both price and quantity. Third, the contribution margin’s sensitivity to
green hydrogen price changes is higher. The electrolyzer benefits directly from
higher hydrogen prices as it can shift it to periods in which the electricity price
is sufficiently low. These three aspects also hold for the hydrogen production
quantity.

One goal of a simultaneity obligation is the prevention of additional indirect
CO2 emissions from grid-connected electrolysers. During the hydrogen market
ramp-up, the electricity supply mix has still significant shares of conventional
power generation, translating, if not constrained, into a high emission intensity
of hydrogen. Our results have shown that simultaneity, indeed, affects the elec-
trolyzer’s dispatch of its emissions. From a system perspective, a reduction of
emissions can be achieved if additionally generated renewable electricity is used
to produce renewable hydrogen. As a consequence, RE generators sourcing the
electrolyzer should be installed to the existing capacities simultaneously to pre-
vent additional emissions from the power sector. Otherwise, hydrogen production
would displace RE production from existing generators and ultimately lead to
additional generation from fossil-fired plants to serve residual electricity demand
(see e.g., Pototschnig (2021)). The installation of RE capacities along with the
electrolyzer investment needs to be ensured to meet additional electricity demand
from hydrogen generation with zero-emission production. Another aspect to be
considered at the system level is the fact that the European power sector is part
of the EU ETS, where the total emission budget is theoretically limited. How-
ever, in practice the market stability reserve (MSR) softens this limit. Increased
emissions from electricity generation for the purpose of hydrogen production can
lead to lower cancellation of emission allowances in the short-term or even higher
emission allowance auction volumes. To what extent the emission demand from
hydrogen production would displace emission demand, or rather increase overall
emissions, remains ambiguous. The dynamic design of the EU ETS prevents a
definite determination of the emission effect from hydrogen production (Bocklet
et al., 2019, Schmidt, 2020). Generally, regulation may tend to tailor different
green characteristic definitions to each emission mitigation option. However,
maintaining these various definitions in parallel may induce distortions not only
between green and non-green technologies but also within green technologies. If
a policy instrument for internalizing the costs of emissions is already in place,
such as the EU ETS, additional restrictions on the dispatch of electrolyzers may
not be necessary. Regardless of the indirect effect on emissions in the short-term,
the simultaneity obligation may have a due date since it becomes obsolete with
higher shares of RE in the electricity supply mix.

Given the dependence of the short-term dispatch decision on the RE gener-
ation risk and the simultaneity, it is of interest for an investor how these con-
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ditions affect the long-term profitability. The profits must cover the annuity
and other fixed costs to make the electrolyzer investment viable. Taking the
assumptions of the case study from Section 2.3.5 on investment cost, depreci-
ation time, and interest rate, we can derive an annuity (including fixed cost)
of 119e /kW. Comparing the fixed and annuity costs to the mean contribution
margin from the base case of 40e /kW, the investment would prove unprofitable
with a financing gap of approximately 80e /kW. Given a standard deviation
of 5e /kW, even in the more advantageous cases, the electrolyzer cannot cover
its long-term cost. The relative risk of the contribution margin—expressed as
CoV in Section 2.4-increases with the simultaneity by up to 43 % when changing
from None to quarter-hourly simultaneity. However, this increase in the risk is
relatively low when comparing the absolute financing gap of 80e /kW with the
standard deviation of 5e /kW. As a result, investors should prioritize lowering
the fixed and annuity costs over reducing the risk resulting from short-term dis-
patch decisions. Note that this calculation only holds for representative years
regarding RE feed-in and electricity market prices based on the historical obser-
vations. In the mid-term, increasing resource prices and additional renewable
generation may increase the steepness at both ends of the price duration curve.
For electrolysers, particularly the changes in the parts of the price-duration curve
below the break-even price are relevant. Thus, price changes due to additional
renewable generation allow electrolysers to enhance their economic viability. In
the long-term, the expansion of electrolyzer capacity and flexible consumers, in
general, may lead to more elastic demand and hence to increased competition
for low electricity prices, which could dampen the profitability of electrolysers
(see e.g., Lynch et al. (2019), Roach and Meeus (2020), Ruhnau (2021)).

2.6. Conclusions

The hydrogen market ramp-up requires large-scale investments in electricity-
based hydrogen production. With substantial subsidies, policymakers aim to
set sufficient incentives for investors to realize these investments. As the reduc-
tion of CO2 remains the goal, introducing specific rules for the dispatch along
with the investment subsidies is discussed to limit associated emissions from an
electrolyzer’s energy consumption. One discussed criterion is a simultaneity obli-
gation between renewable energy (RE) generation and electrolyzer production.
While its purpose would be to limit the emissions from fossil-fired electricity
generation, the measure significantly affects the dispatch of an electrolyzer and
may distort the investment incentive.

With our research, we contribute to understanding these distortions that pol-
icymakers may consider when designing dispatch criteria for electricity-based
hydrogen production. We set up a model framework that allows us to assess a
grid-connected electrolyzer dispatch considering the risk from varying RE genera-
tion. The variation of RE is captured by a Markov chain Monte Carlo simulation
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for wind generation. Subsequently, two regression models for the intraday and
day-ahead markets are calibrated with historical data from the German spot
markets to calculate synthetic electricity spot market price time series. We in-
troduce simultaneity to the dispatch model and evaluate its structural impact
on the distribution of the electrolyzer’s contribution margin, full load hours,
and associated emissions within a case study in the German electricity market
context.

In the short term, we show that the introduction of a simultaneity obligation
delivers on its original goal of reducing the associated CO2 emissions from elec-
tricity consumption. On the other hand, an absence of simultaneity comes with
several significant benefits for the operator of an electrolyzer: the contribution
margin and production rate increase while the risk from RE generation decreases.

Hydrogen from RE sources is part of many energy and climate policies since
it provides long-term energy storage and is a close substitute to fossil energy
carriers. Moreover, hydrogen has also gained interest in economic policy, since
substantial economic value in hydrogen trade as an energy commodity and in an
emerging market for hydrogen equipment is anticipated. Investing in hydrogen
today is essential to commercializing the technology and to achieving long-term
learning and scaling effects. The simultaneity obligation is a regulatory measure
that concentrates on the short-term decisions of electrolyzer operation, though
it also affects investment incentives. Although the effects of a simultaneity obli-
gation on the contribution margin are significant, they are comparatively low in
comparison with the total financing gap, i.e., also considering investment cost.
With the design of a simultaneity obligation, policymakers are weighing two
goals: ramping-up the hydrogen market in the long-term and preventing emis-
sions from the power sector in the short-term. A low simultaneity—or even the
absence of such an obligation—favors a more dynamic hydrogen market ramp-
up, while a strict simultaneity ensures to mitigate emissions but may lead to less
investment. While these effects are immediate results from our analysis, further
aspects that need to be considered are the interplay of the simultaneity obli-
gation with other emission abatement measures and the entire energy system,
e.g., regarding carbon trading schemes and the long-term transformation of the
energy system. Regardless of the actual design of the simultaneity obligation,
it has a role to play in future policies addressing green hydrogen since it has a
significant impact on the electrolyzer operation.
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3. The Shape of U - On the Structure of

Utility from Electric Vehicle Charging

3.1. Introduction

Electric vehicle (EV) adoption accelerates. According to IEA (2024) current
stated national policies, projections show an increase in the global Battery Elec-
tric Vehicle (BEV) stock from 28 Million in 2023 to 390 Million by 2030. Inte-
grating the resulting electricity demand from EV charging into the power system
poses a growing challenge for utilities and regulators. Even today, the challenges
are becoming apparent: while infrastructure investment demand increases (IEA,
2024, McKinsey, 2022), charging stations lack profitability (Fröde et al., 2023,
Hecht et al., 2022).

For decision-makers, it becomes instrumental to understand EV users’ charg-
ing behavior and underlying preferences. To inform operation, investment, and
policy decisions, the literature explores charging behavior models (Li et al., 2023).
The models examine the demand for charging at different times and locations,
allowing to form expectations about EV users’ preferences. So far, the existing
models must rely on simplified representations of the decision context, poten-
tially overlooking the full empirical intricacies (Daina et al., 2017b). As a single
charging decision depends on EV users’ upstream and downstream travel-activity
schedule, non-linearities and temporal interdependencies may occur. The tem-
poral and spatial constraints introduce unique trade-offs that shape EV charging
decisions. This work’s point of departure is the explicit examination of EV users’
utility structure at a public charging station.

3.1.1. Literature review

In the light of rising EV adoption, researchers have turned their attention to
understanding the behavior of EV users. In their comprehensive review, Daina
et al. (2017b) summarize the literature on EV use models, revealing two key
insights. First, the existing research focuses on long-term decisions, such as EV
adoption and ownership, with fewer publications addressing short-term decisions,
including charging behavior. Second, among the publications on short-term deci-
sions, only a few employ explicit choice models. Most rely on exogenous charging
patterns and strategies, overlooking the dynamic and adaptive behavior of EV
users. To address the gap in the literature, Daina et al. (2017b, p.458) advocates
for research on “theoretical coherent modelling frameworks” and “empirical esti-
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mation and strong validation of their parameters”. They further note that sparse
publicly available data on EV charging poses a major challenge for achieving such
real-world validation. More recently, Li et al. (2023) reviewed advancements in
modeling short-term EV user choice behavior, finding that many models still de-
pend on exogenous demand patterns. As such, the call by Daina et al. (2017b)
for comprehensive frameworks and empirical validation stays mostly unanswered.
Bridging the research gap requires exploring new datasets and refining models
that better reflect the complexity of real-world EV charging behavior. Despite
the common reliance on exogenous behavioral patterns, several publications pro-
pose utility-based models for EV user choices. A selection of utility functions,
albeit often lacking theoretical or empirical grounding, is provided by Limmer
(2019). Their work underscores the diversity of approaches but also highlights
a recurring reliance on assumptions rather than data-driven insights, echoing
concerns raised by Daina et al. (2017b).

Several publications attempt to address the gap in modeling EV user charg-
ing behavior. Table 3.1 summarizes the key applications of utility functions in
EV charging models, highlighting their properties and data sources. A notable
contribution is Daina et al. (2017a) who propose a novel joint travel-activity
and charging choice model including individual characteristics and product at-
tributes. Although they provide a seminal theoretical foundation for examining
charging choices, their reliance on stated preference data and constant marginal
returns limits its real-world applicability. They suggest future research to use
revealed preference data for validation. In contrast, Fridgen et al. (2021) account
for potential discontinuities in charging preferences by introducing a utility func-
tion depending on the state of charge (SoC) at departure and a desired departure
time, but they lack empirical validation. In general, utility functions often serve
as inputs for electricity demand simulations, while explicit investigation into
their forms remains rare. Only Daina et al. (2017a) and Wang et al. (2021)
focus directly on charging choice models. Most publications simplify by relying
on a single key attribute, such as session duration or energy charged, and of-
ten assume constant marginal utility. Exceptions include Fridgen et al. (2021),
Xing et al. (2021), and Daina et al. (2017a), which consider both attributes,
and Fridgen et al. (2021) and Valogianni et al. (2020), which allow for more
complex marginal utility structures. No choice model has yet been validated
using revealed preference data. While the approaches offer valuable insights,
the findings suggest an ongoing need for theoretically grounded and empirically
validated consolidations of utility functions.

Simplifications in modeling charging behavior often overlook the location- and
time-specific nature of user preferences. A promising foundation for improving
such models can be found in the travel behavior literature, where time has long
been treated as a prerequisite for consuming goods, ever since DeSerpa (1971)
extended classical consumer theory. Utility can be derived from engaging in
time-consuming activities, with preferences varying across locations and times
(Small, 2012, Vickrey, 1973). Consequently, the rate of utility accumulation
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Table 3.1.: Overview of utility functions used in the literature. The functions differ by
marginal utility, i.e., constant (Con.), variable (Var.), and the consideration
of an interaction term (Inter.). The data is either exogenously given (EX),
based on stated preferences (SP), or based on revealed preferences (RP).

(a) Application and data sources of the utility functions.

Application Data

Paper EX SP RP

Daina et al. (2017a) Charging choice

Fridgen et al. (2021) EV dispatch

Galus et al. (2012) Demand model

Liu et al. (2022) Demand model

Nourinejad et al. (2016) Vehicle-to-grid

Valogianni et al. (2020) Coordination

Wang et al. (2021) Charging choice

Wu et al. (2022) Coordination

Xing et al. (2021) Demand model

Theile (2025) Charging choice

(b) Marginal utility properties of the utility functions.

Marginal utility

Time Energy Inter.

Paper Con. Var. Con. Var.

Daina et al. (2017a)

Fridgen et al. (2021)

Galus et al. (2012)

Liu et al. (2022)

Nourinejad et al. (2016)

Valogianni et al. (2020)

Wang et al. (2021)

Wu et al. (2022)

Xing et al. (2021)

Theile (2025)

differs across locations and times (Tseng and Verhoef, 2008). While the concept
is established in the travel behavior literature, refer to Bento et al. (2024) and
Wichman and Cunningham (2023) for recent examples, it does not integrate
energy requirements, which are central to charging decisions. Translating the
logic to EV charging behavior suggests that utility functions should account for
two components of user preferences: (i) the utility derived from remaining at
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the current location, which depends on the duration of the parking stay, and
(ii) the potential utility associated with future locations, which depends both
on the duration (determining the next arrival time) and the energy charged
(determining the set of reachable destinations).

3.1.2. Contribution

Three observations from the literature review stand out. First, utility functions
are rarely the primary object of investigation, resulting in inconsistent assump-
tions about their structure across publications. Second, most existing utility
functions do not account for more complex preference structures, such as varying
marginal utility. Third, empirical validation of the functions is limited, partic-
ularly with revealed preference data. This chapter contributes to the literature
by focusing on the structure of utility from EV charging. Specifically, it seeks to
answer the three-part question: Which functional form best describes the utility
of charging an EV? How do utility function assumptions shape the interpreta-
tion of EV charging preferences? How do the observed utility properties relate
to profitability differences between charging station segments? To address the
questions, this chapter sets up a discrete choice model framework and applies it
within a case study on German public charging stations. The approach yields
three key contributions to the literature:

• Introducing an efficient discrete choice model to estimate charging behavior
using information from revealed preference data. Curating and enriching a
unique dataset on charging choices in Germany, including information on
tariffs, charging curves, and EV stock.

• Proposing a utility function that (i) incorporates time and energy at-
tributes, (ii) considers varying marginal utility, and (iii) accounts for the
dependence structure between attributes. Comparing and validating the
proposed utility function structures empirically.

• Examining the link between user preferences and the viability of charging
station segments.

The findings show that non-linear utility functions best explain observed charg-
ing choices. Marginal utility from energy charged decreases, and marginal disu-
tility from charging duration increases. Longer charging durations amplify the
marginal utility of the energy charged. Charging stations serving inelastic de-
mand, such as those at urban locations or at traffic hubs, achieve higher turnovers.

Section 3.2 presents the theoretical framework of examining charging choices.
In Section 3.3, the empirical model is explained. Section 3.4 sets up the case
study, before Section 3.5 shows the results. After discussing the findings in
Section 3.6, the chapter concludes in Section 3.7.
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3.2. Discrete choice of charging an electric vehicle

Defining the choice context is fundamental to modeling decisions. This section
outlines the general considerations of modeling an EV user’s decision-making
process at a public charging station.

3.2.1. Choice framework

As a starting point, Daina et al. (2017a) offer an intuitive depiction of the choice
space an EV user faces when arriving at a charging station. Following their
approach, Figure 3.1 illustrates a general choice space of EV charging options.
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Figure 3.1.: The choice space of an EV user arriving at a charging station from Daina
et al. (2017a). The bold bullet marks the chosen alternative at departure
energy Edep and departure time tdep. The maximum available charging rate
q limits the choice space.

The main dimensions spanning the choice space are the energy content of the
battery at departure from the connection point, Edep, and the departure time,
tdep, following a total charging duration ∆t = tdep − tarr. Both dimensions are
subject to constraints. The energy content at departure is physically bounded
by 0, when the battery is completely discharged, and by the battery’s maximum
capacity E. Neglecting a vehicle-to-grid functionality, the lower bound for the
energy content at departure is the energy content at arrival Earr. The maximum
charging rate q imposes a time-dependent upper limit on the achievable energy
content at departure. Combinations of duration and energy that exceed the
feasible charging rate are excluded. The time starts at arrival tarr. While the
choice space is theoretically unbounded in time — an EV user could choose to
stay at the charging point indefinitely — a practical upper limit is necessary for
defining a finite choice set. Introducing a time horizon T effectively bounds the
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duration dimension. Additionally, each charging product has a certain monetary
price C.

3.2.2. Structure of utility

The EV user selects the alternative from the choice set that maximizes their util-
ity (Train, 2009). A critical assumption in modeling the decision is the functional
form of the perceived utility from observed product attributes. As discussed in
Section 3.1.1, most existing studies rely on utility functions that include either
energy or duration, often assuming constant marginal utility. The case study
compares five utility specifications. Three use linear-in-parameter forms: one
depends solely on the energy content at departure (LiP Energy), another solely
on the duration of the charging session (LiP Duration), and a third includes
both attributes with constant marginal utility (LiP Energy & Duration). Build-
ing on insights from the travel behavior literature, which suggests that utility
from the charging product may consist of utility gains from activities, that vary
across time and location, two additional functions allow for varying marginal
utility: QiP Energy & Duration includes quadratic terms for both attributes,
while QiP Interaction adds an interaction term between energy and duration.
The five specifications are summarized in equation (3.1), with β as coefficients
of the utility attributes.

UD(Edep,∆t, β) =



β1E
dep LiP Energy

β1∆t LiP Duration

β1E
dep + β2∆t LiP Energy & Duration

β1E
dep + β2∆t QiP Energy & Duration

+β3E
dep2 + β4∆t2

β1E
dep + β2∆t QiP Interaction

+β3E
dep2 + β4∆t2

+β5E
dep∆t

(3.1)

Figure 3.2 illustrates the preference structure implied by utility functions
through isoquants, i.e., showing charging products with the same utility level,
over a shared product space. In single-attribute utility functions, users achieve
higher utility levels only by increasing one of the two attributes. The combi-
nation LiP Energy & Duration allows both attributes to contribute positively
to the valuation of the charging product. With including quadratic terms, the
utility gain from an incremental improvement in one attribute depends on the
current level of that attribute. For example, the utility gain from an additional
unit of energy may be higher at lower SoCs than at higher SoCs. Similarly, the
interaction term captures how the marginal utility of one attribute varies with
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the level of the other. For instance, the utility gain from additional energy may
be higher during long-duration charging sessions than during short ones.
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Figure 3.2.: Isoquants of the five utility functions (in yellow), over a shared product
space (in grey). The utility functions are either linear-in-parameter (LiP) or
quadratic-in-parameter (QiP) and include different combinations of charging
product attributes energy and duration.

The examination focuses on the direct utility function UD(Edep,∆t, β), which
depends on energy content and charging duration. To account for the costs
C of charging products, the nominal indirect utility function is expressed as
UN (Edep,∆t, C, β, γ) in equation (3.2), with γ as coefficient of the product costs.

UN (Edep,∆t, C, β, γ) = UD(Edep,∆t, β) + γC (3.2)

3.3. Empirical model

Against the background of the decision framework presented in Section 3.2, this
section presents an empirical model that allows to estimate the coefficients of
different utility functions.

3.3.1. Discrete choice model estimation

This chapter employs a discrete choice framework to efficiently estimate the
coefficients β and γ in the nominal utility functions. Discrete choice models
are rooted in the principle of utility-maximizing behavior by decision-makers
(Train, 2009). The concept of random utility provides a useful bridge between
the theoretical behavior and the practical limitations of observing only a part of
the decision context and the resulting choices (Berbeglia et al., 2022).
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The decision maker of charging event s in all charging events S derives a
utility UR

s,j from each product j in the choice set J and selects the alternative

i that yields the highest utility, i.e., UR
s,i > UR

s,j ∀ j in J (Train, 2009). While
the decision-maker’s utility is unobservable, the attributes of the products and
the user’s characteristics are. The observable charging product attributes are
energy content at departure Edep

s,j , charging duration ∆ts,j , and cost Cs,j . Based

on the attributes, a nominal utility function UN
s,j(E

dep
s,j ,∆ts,j , Cs,j , β, γ) can be

specified (Train, 2009). To account for unobserved factors, the random utility
UR
s,j is decomposed into nominal utility UN

s,j and an error term ϵs,j as shown in
equation (3.3) (Berbeglia et al., 2022).

UR
s,j = UN

s,j(E
dep
s,j ,∆ts,j , Cs,j , β, γ) + ϵs,j (3.3)

The error terms ϵs,j are unknown to the researcher and treated as random
(Train, 2009). By specifying the joint density distribution of the random fac-
tors, the researcher can model the probabilistic assumptions about the decision
maker’s choice behavior. Various discrete choice models arise from different as-
sumptions about the joint density distribution (Berbeglia et al., 2022). The
choice model determines the choice probability assigned to every alternative in
the choice set. The multinomial logit (MNL) and the mixed multinomial logit
model (MMNL) are among the most common (Berbeglia et al., 2022).

In the MNL model, the probability that an EV user chooses alternative j,
P(j|J), is defined in equation (3.4a). The MMNL model allows unobserved
factors to follow any distribution, making it fully general (Train, 2009). Unlike
the MNL model, which estimates point values for the utility function coefficients
β, the MMNL estimates the parameters θ of a density function f(uN |θ) for
the coefficients. The flexibility enables the model to account for variation in
preferences across EV users or different market segments. Equation (3.4b) defines
the probability of choosing an alternative j in the MMNL model, where any
density function can be assumed for f .

P(j|J) = eU
N
j∑

i∈J e
UN
i

(3.4a)

P(j|J) =
∫

eu
N
j∑

i∈S eu
N
i

f(uN |θ)duN (3.4b)

The estimation process seeks to identify the model specification that best
explains a given in-sample set of observed charging choices. The process involves
estimating the coefficients β for the MNL model or the distribution parameters
θ for the MMNL model, alongside the cost coefficient γ. Equation (3.5) presents
the likelihood function for a given utility functional form U (e.g., LiP Energy or
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QiP Interaction) within a discrete choice model M (e.g., MNL or MMNL). The
likelihood is calculated by the product of probabilities for all observed charging
events s in the in-sample dataset Sin.

LU ,M =

Sin∏
s

PU ,M(jos |Js, βU ,M, θU ,M, γU ,M) (3.5)

The coefficients (βU ,M, γU ,M) and parameters (θU ,M) are estimated by maxi-
mizing the log-likelihood function, as defined in equation (3.6).

max
β,γ,θ

Sin∑
s

logPU ,M(jos |Js, βU ,M, θU ,M, γU ,M) (3.6)

3.3.2. Metrics

The first question of this chapter seeks the utility function that best models
observed charging choices. For assessing the actual utility function fit, the Root
Mean Square Error (RMSE) as the evaluation metric is applied to an out-of-
sample set Sout of charging session observations, as shown in equation (3.7).
The RMSE is a common measure to compare the model computations with
real observed values (Berbeglia et al., 2022), reducing the effect of potential
overfitting by increasing model complexity.

RMSE(Sout,PU ,M) =

√√√√∑Sout

s

∑Js
j (I(j = jos )− PM(j|Js))2∑Sout

s (|Js|+ 1)
(3.7)

The second question examines the implied preferences of utility function as-
sumptions. In discrete choice models, coefficient magnitudes are often not di-
rectly interpretable because the dependent variable represents an abstract util-
ity that determines choice probabilities. A common approach to illustrate the
implications of estimated coefficients is to examine trade-offs between product
attributes and costs. Following Bierlaire (2017), such trade-offs can be derived
by identifying changes in attribute levels that compensate for cost increases, such
that Udep

s,j (Cs,j+δCs,j , Xs,j+δXs,j) = Udep
s,j (Cs,j , Xs,j). The travel behavior literature

typically examines the value of time (Bierlaire, 2017, Train, 2009). This chapter
extends the examination by calculating the value of energy. The value of time for
the utility functions LiP Energy & Duration and QiP Interaction is computed
using equation (3.8), while the value of energy is derived from equation (3.9).
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V oT =
δCs,j

δ∆t
s,j

=
(δUN

s,j/δ∆ts,j)(E
dep
s,j ,∆ts,j , Cs,j)

(δUN
s,j/δ∆Cs,j)(E

dep
s,j ,∆ts,j , Cs,j)

(3.8)

=


β2

γ LiP Energy & Duration
β2+2β4∆ts,j+β5E

dep
s,j

γ QiP Interaction

V oE =
δCs,j

δEs,j
=

(δUN
s,j/δE

dep
s,j )(E

dep
s,j ,∆ts,j , Cs,j)

(δUN
s,j/δ∆Cs,j)(E

dep
s,j ,∆ts,j , Cs,j)

(3.9)

=


β1

γ LiP Energy & Duration
β1+2β3E

dep
s,j +β5∆ts,j
γ QiP Interaction

The third question links EV user preferences to charging station profitability,
indicated by total turnover. The total turnover per charging station m can be
obtained by summing over all weighted charging products in the choice sets Js
of the charging sessions Sm, as shown in equation (3.10). For each station, the
results are scaled with the weight of the samples in the in-sample set in relation
to the total number of session in the entire dataset.

RTotal
m =

Sm∑
s

Js∑
j

P (j|Js)Cs,j (3.10)

3.4. Case study

In the case study, the efficiency of the proposed model approach is demonstrated
by applying it to a curated revealed preference dataset of charging sessions at
public charging stations in Germany.

3.4.1. Data

The primary data source is the Online Reporting Charging Infrastructure pro-
vided by the German National Centre for Charging Infrastructure (NCfCI) (NCfCI,
2024). Publicly accessible charging stations are eligible for German charging in-
frastructure founding programs. Program beneficiaries must report all charging
sessions conducted at the funded station for six consecutive years following their
installation. The reports form the basis of the dataset used in this study.

The key indicators taken from the session data are the date and time of arrival,
the duration of connection, the charged energy, a location activity parameter,
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an area type parameter, and the charging station’s connection points and their
power (NCfCI, 2024). Connection duration is initially recorded in seconds but
is discretized into hourly steps to enhance computational traceability. The case
study distinguishes three segmentations, Area, Activity, and Charger. Area types
are categorized based on German spatial observations from BBSR (2023). The
location activity parameter provides qualitative information about the charging
station’s setting, such as whether it is located in a public parking lot, a customer
parking area, or near a federal highway. The Charger segmentation distinguishes
AC and DC charging depending on the connection point power. Appendix B.2.1
describes the segmentations and their assignment rules. Additionally, the case
study distinguishes two time segmentations, one by type of day and one by time
of day, to examine time-dependent preferences. Day types are weekdays and
weekends. Following Federal Statistical Office of Germany (2024), three time
periods are defined: 23-07, capturing the night, where most people spend their
time at home sleeping; 08-16 as day period during which the main activity
is work; and 17-22, capturing the evening, during which people mainly leisure
activities.

The dataset covers the years 2018-2023, encompassing a total of 21.1 Mio. ob-
served charging sessions at 13,410 public charging stations. Given the extensive
data volume, a pre-selection of charging sessions is necessary for the empirical
analysis. To avoid potential biases from the COVID-19 pandemic and the Eu-
ropean energy crisis, only the most recent charging sessions reported in 2023
are considered, resulting in 7.96 million sessions. The primary objective of the
analysis is to distinguish different forms of utility derived from EV-charging. To
capture relative preferences effectively, the choice set must offer various distinct
alternatives. The case study focuses on 1,145 charging stations with at least two
connection points of differing power levels, yielding 1.03 million charging sessions.
To keep the estimation computational tractable, a random sample of 10,000 ses-
sions is selected, with 8,000 used as an in-sample set and 2,000 reserved for out-
of-sample RMSE evaluation. To elaborate on the sample size, Appendix B.3.1
presents sensitivities of the model results on the number of observations and
the number of alternatives included in the choice set. Appendix B.3.2 explores
sensitivities on the pre-selection of the observations included in the in-sample
set.

The revealed preference data collected from charging station operators does
not include information on specific choice circumstances, such as the applicable
charging tariff or the battery’s SoC upon arrival, nor on individual user charac-
teristics, such as socio-economic factors or exact travel-activity schedules. En-
riching the dataset with additional assumptions and supplementary information
allows for an approximation of the specific choice circumstances. Key parameters
for designing the choice set that are unobserved include the battery capacity Es

of the EV, the energy content in the battery at arrival Earr
s , the time horizon

of the choice Ts, and the costs of the charging products Cs,j . Although indi-
vidual user characteristics cannot be directly accounted for, the MMNL model
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accommodates variation in coefficients across the dataset, thereby capturing a
broader range of preference structures. Appendix B.2.2 describes in detail the
imputations performed to enrich and curate the data for the case study. Table
3.2 summarizes the key assumptions made.

Table 3.2.: Assumptions used for the creation of choice sets and choices.

Parameter Symbol Unit Value Source

AC adhoc charging price PAC e /kWh 0.58 EC (2024)
DC adhoc charging price PDC e /kWh 0.72 EC (2024)
Maximum free blocking
time

tBlock h 4 B.2.5

Blocking fee PBlock e /min 0.1 B.2.5

Maximum paid blocking
time

t
Block e 12 B.2.5

Charging losses % 15 ADAC (2022)
Minimum state of charge
at arrival

Earr % 10 Own assumption

Time resolution δt min 60 Own assumption

3.4.2. Choice set

The actual choice set of available charging products is not directly observable be-
cause the data originates from revealed preferences instead of stated preferences.
Constructing a realistic representation of the choice set is pivotal to the relia-
bility and accuracy of the discrete choice model’s results. While EV users could
theoretically select any combination of energy and duration within the defined
choice space outlined in Section 3.2.1, practical constraints at public charging
stations restrict the actual choices observed in the case study dataset. The
derivation of this chapter’s choice set relies on three key assumptions. First, the
EV user maintains a constant charging rate throughout the session. Switching
rates would require disconnecting and reconnecting, which is treated as departure
from the charging point. Only energy-duration combinations achievable with a
single charging rate are included. Second, charging terminates either when the
battery reaches its maximum capacity or when the user departs. The choice set
excludes combinations where charging stops at a specific target energy content,
as interruption is only possible through departure. Finally, users cannot connect
to a charging point without starting to charge. While they may remain parked
after the battery is fully charged, the choice set assumes that charging always
commences upon connection. Figure 3.3 illustrates the choice set considering the
limits of the observed choices in the case study dataset.

The choice set must consist of discrete, unique options, requiring the two
continuous dimensions — energy and time — to be discretized. To achieve the
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Figure 3.3.: The discrete choice set of an EV user arriving at a charging station based on
Daina et al. (2017a). The bullets mark alternatives in the choice set, with
the bold bullet marking the chosen alternative at departure energy Edep and
departure time tdep. The set of available charging rates Q consists of the
three rates q1, q2, and q3, with q1 being the maximum and q3 the minimum.
E is the battery’s capacity and T the time horizon.

discretization, all energy-duration combinations are sampled at a time resolution
of δt, with each combination mapped to its corresponding energy content at
departure. The discretization results in a finite choice set, Js, containing all
available charging products j available for the EV user at the charging event s.
Each charging product is defined by three primary attributes: the energy content
in the battery at departure Edep

s,j , the session duration ∆ts,j , and the associated
cost of the charging session Cs,j . The structured choice set ensures that the EV
user’s options are clearly defined and amenable to discrete choice modeling.

Each choice set includes a no-charge option j = 0 representing departure with
the energy content of arrival with no duration and no cost. Random utility mod-
els only capture the differences in utility between different alternatives (Train,
2009, p.24). Following the normalization in Berbeglia et al. (2022), the nomi-
nal utility of the no-charge option j = 0 with the lowest arrival energy content
min
s∈S

Earr is set to zero, as expressed in equation (3.11).

UN
s,0(min

s∈S
Earr, 0, 0, β, γ) = 0 (3.11)

3.4.3. Choice and station description

By constructing the choice sets according to the approach described in Sec-
tion 3.4.2, each observation is associated with a set of available charging prod-

45



On the Structure of Utility from Electric Vehicle Charging

ucts at the time of arrival, as well as the product that was actually chosen. For
the total set of actual choices, Figure 3.4 depicts the distribution of the three
product attributes charged energy, duration, and price paid.
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Figure 3.4.: The distribution of the energy charged, duration, and total price paid of
the chosen products in the dataset of 1.03 mio. charging sessions reported
for 2023 at 1,145 charging stations with varying charging rates based on
(NCfCI, 2024) and the assumptions in 3.4.1.

On average, an EV user pays 14,5e for leaving the charging station after
1.2 hours with 63 kWh. The dataset exhibits right-skewed distributions, char-
acterized by numerous small to medium values and a few large ones. The tail is
particularly pronounced for the energy charged and the total price paid. There
are only a few observations of EVs leaving the charging station with a fully
charged 120 kWh battery, paying more than 70e for the charging session. On
the other hand, the majority charges up to 50 kWh, paying in total up to 40e .
For the duration, the tail exists, although it is less strong. Notably, a consis-
tently significant share of sessions lasts longer than 8 hours, though the majority
charges for less than 4 hours.

Each charging session occurs at a specific connection point associated with
a particular charging station. Given that the dataset encompasses all reported
sessions for publicly funded charging stations, it provides valuable insights into
the stations’ key economic characteristics. Figure 3.5 presents the distribution
of absolute turnover, derived from the charging session data and underlying as-
sumptions, across the entire set of charging stations. The charging session distri-
butions translate into a right-skewed distribution of charging station’s turnover.
Most of the charging stations generate an income of up to 20,000e with fewer
stations generating more than 50,000e . Only a few outliers report turnovers
beyond 100,000e .
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Figure 3.5.: The distribution of the total turnover in 2023 at 1,145 charging stations
with varying charging rates based on (NCfCI, 2024) and the assumption in
3.4.1.

3.5. Results

The discrete choice model is implemented in biogeme (Bierlaire, 2024). The
computation of the segmented coefficients follows Bierlaire and Ortelli (2023).
Applied to the case study, the model allows comparing utility functions, assessing
their implications, and evaluating the turnover of the corresponding charging
stations.

3.5.1. Utility function comparison by model-fit

To answer the first question, the coefficients of each of the five utility functions
from Section 3.2.2 are fitted to the in-sample set and evaluated against the out-
of-sample set. For each utility function, two discrete choice models are fitted: an
MNL and an MMNL with normal distributed coefficients. Figure 3.6 illustrates
the RMSE of the models applied to the out-of-sample set.

The RMSEs indicate that a two-parameter utility function based on dura-
tion and price slightly outperforms one based on energy content at departure
and price. Duration may be a stronger explanatory variable for two reasons.
First, because of the limited battery capacity compared to a broader time hori-
zon, duration choices exhibit a greater variability than energy choices. Second,
time constraints likely weigh more heavily in user decisions than energy needs.
Accordingly, utility functions including duration capture more variation in prod-
uct choices. Including both energy and duration yields a model of comparable
performance in the MNL case and a slightly improved fit in the MMNL case,
suggesting that while connection time explains much of the observed behavior,
energy content contributes significantly.
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Figure 3.6.: The Root Mean Square Error of the five utility functions under a multino-
mial logit and a mixed multinomial logit discrete choice model. The RMSE
is computed on an out-of-sample dataset of 2,000 observations.

The linear-in-parameter utility function, including energy content at depar-
ture, connection duration, and price, offers a natural starting point for modeling
charging decisions at public charging stations. As argued in Section 3.2.2, it
may not fully reflect an EV user’s decision rationale. The observed reduction in
RMSE when introducing quadratic terms for energy and duration in QiP Energy
& Duration suggests that marginal utility is not constant, but instead increases
or decreases with the attribute level. Incorporating an interaction term between
energy and duration further improves the model fit, indicating that the marginal
utility of one attribute depends on the level of the other, e.g., the value of a
given energy level depends on the time required to achieve it, and vice versa.
To illuminate the non-linear relationships, Section 3.5.2 presents the estimated
coefficients.

The MNL and the MMNL with normally distributed coefficients yield the
same ranking of utility functions. Overall, the MMNL choice model outperforms
the MNL choice model, with performance differences increasing alongside model
complexity. The significant difference suggests the presence of preference het-
erogeneity in the observed choices, which is better captured by a distribution
of coefficients than by fixed estimates. The heterogeneity may stem from indi-
vidual differences or other contextual factors such as time of day. Section 3.5.5
further investigates the heterogeneous effects by examining different charging
station segments and times of day. The MNL model is used for further analysis,
as it is computationally more tractable and reveals the same underlying utility
structures as the MMNL model.
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3.5.2. Utility function comparison by estimated coefficients

Examining the actual coefficients of the estimated utility functions answers the
second research question of this chapter. The model improvement by incorporat-
ing parameters allowing for non-linear forms of utility in Section 3.5.1 suggests
that the quadratic and interaction terms explain some share of the variation in
the observed charging choices. Table 3.3 lists the estimated coefficients for each
of the five utility function specifications under the MNL model.

Table 3.3.: The estimated coefficients of the multinomial logit model for the five utility
functions.

(1) (2) (3) (4) (5)

LiP LiP LiP QiP QiP
Energy Duration Energy Energy Interaction

& Duration & Duration

Costs -0.064*** 0.011*** -0.050*** -0.052*** -0.056***
(0.003) (0.001) (0.003) (0.004) (0.004)

Energy 0.046*** 0.056*** 0.384*** 0.498***
(0.002) (0.002) (0.008) (0.011)

Duration -0.226*** -0.248*** -0.008 -1.238***
(0.008) (0.009) (0.021) (0.086)

Energy2 -0.003*** -0.004***
(0.000) (0.000)

Duration2 -0.019*** -0.052***
(0.004) (0.006)

Interaction 0.020***
(0.001)

Note: Robust standard errors in parenthesis. *** p<0.01, ** p<0.05, * p<0.1.

The cost of a certain charging product shows for four of the five utility functions
a negative sign, significant at the 1% level. The negative coefficient intuitively
associates higher prices with a lower product choice probability. Only in the
linear-in-parameter utility function including the energy costs and the duration
in column (2), the sign is positive. The counterintuitive positive sign in contrast
to the other utility functions hints at a potential incomplete specification by
only using costs and charging duration to explain charging choices. Omitting
the energy content variable may lead to a positive cost sign, compensating the
missing positive effect of energy content in the battery.

The sign of energy content in the battery at departure is positive in all four
utility functions where it is included and significant at the 1% level. As can
be expected from the literature, higher levels of energy charged are associated
with higher levels of utility (Daina et al., 2017a). The negative sign of the
quadratic term, significant at the 1% level, suggests that the positive marginal
utility from energy content in the battery is diminishing. On average, with higher
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levels of energy content, the utility from one additional unit of energy stored in
the battery decreases. The resulting utility function is concave in the charging
product’s attribute energy, consistent with consumer theory.

The connection duration at the charging station has a negative sign, significant
at the 1% level, except for QiP Energy & Duration. The negative sign suggests
that a longer connection duration creates disutility for the EV user. Given that
all other attributes are equal, the user would prefer a charging product with a
shorter duration over a product with a longer one. The sign of the quadratic
term is negative, indicating that the marginal disutility decreases with a longer
connection duration. It is significant at the 1% level. While the positive marginal
utility from energy diminishes, the disutility from duration increases. The longer
the charging takes, the higher is the marginal disutility from additional time of
parking at the charging station. The utility function is convex in the charging
product’s attribute duration.

The fifth utility function in column (5) includes, beside the linear and quadratic
terms of energy and duration, an interaction term between energy content in the
battery at departure and the duration of the charging session. The interaction
term’s sign is positive and significant at the 1% level. A positive interaction
term between energy and duration suggests that the marginal utility from an
additional unit of energy stored in the battery increases in the duration of the
connection time. The higher the charging duration, the higher the loss in utility
of foregone energy. Put into different words, the positive interaction term sug-
gests that marginal disutility from duration is higher at low levels of energy than
at high levels of energy.

For the model results presented in column (5), statistical properties of the
specification and the robustness of the results are discussed in Appendix B.3.
Appendix B.3.3 explores potential model extensions using specific constants,
while Appendix B.3.4 investigates the correlation between the higher-order utility
function variables.

3.5.3. The value of time and energy

The value of time and energy may provide clearer insights into the underlying
preferences of EV users than estimated coefficients alone. Figure 3.7 illustrates
both values for the utility functions LiP Energy & Duration and QiP Interaction.
Because the marginal utilities of the quadratic utility function depend on the
battery’s energy content and the charging duration, the values are shown for
several attribute levels.

Under the linear utility function, time has a value of 5e /h, while under the
quadratic utility function with interaction term, the value of time ranges from
-14e /h at 0 h and 100 kWh up to 38e /h at 12 h and 20 kWh depending on the
actual energy content in the battery and the charging duration. In contrast to
the positive values, indicating that users are willing to pay to leave the charging
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Figure 3.7.: The value of time over the duration of the charging product and the value
of energy over the energy content in the battery at departure for the utility
functions LiP Energy & Duration and QiP Interaction.

station earlier, negative values suggest a willingness to pay for staying longer.
As outlined in Section 3.1.1, the utility functions reflect both the utility gained
from time spent at the current location and the potential utility of time at
future locations, which are reachable with the charged energy. A positive value
of time implies that the utility at future locations exceeds that at the current
one, whereas a negative value indicates the opposite. Such negative values may
arise from instances where EV users remain connected longer than necessary to
fully charge, reflecting a preference for staying at the current location.

The value of time reflects the increasing marginal disutility from duration, it
increases by 2.1e /h per hour. The increase with duration suggests that, over
time, utility at the current location diminishes while the potential utility at
future locations increases, resulting in a higher willingness to pay for earlier de-
parture. Similarly, the positive interaction term implies that the time-dependent
value of time decreases as energy content increases. At lower energy levels, the
value of time is higher, indicating greater time sensitivity among EV users with
insufficient charge. The sensitivity suggests that users anticipate the time re-
quired to reach a sufficient charge and exhibit a stronger preference for faster
charging when energy levels are low.

The value of energy under a linear utility function is 0.94e /kWh. Under the
quadratic utility function with interaction term, it ranges from -4.96e /kWh at
0 h and 100 kWh to 11.34e /kWh at 12 h and 0 kWh. A positive value indicates
a willingness to pay for additional energy content, while a negative value suggests
a willingness to pay for less. The willingness to pay for less energy at the same
duration may hint at the EV user’s expectation about future trips and charging
options. If the current energy level is sufficient to reach the next destination,
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and cheaper charging is expected elsewhere, users may prefer to limit charging
at the current location, even at a cost.

The diminishing marginal returns are reflected in the decrease in the value of
energy by 12.6 ct/kWh per additional kWh of energy stored in the battery. The
decrease in the value of energy illustrates that there may be a saturation effect
of energy charged once the energy required to reach the next location is charged.
Similar to the value of time, the positive interaction term reveals that the value
of energy increases with longer durations. The longer the charging duration, the
higher is the willingness to pay for energy, reflecting users’ preference to make
productive use of the connection time.

The value of energy and time demonstrate that the QiP Interaction utility
function accounts for the charging preference variation with duration and the
energy level. In contrast, the LiP Energy & Duration function assumes constant
values of time and energy. Section 3.5.5 further explores preference heterogeneity
by examining different charging station segments and times.

3.5.4. Coefficient differences between charging station segments

To answer the third research question, the coefficients can be distinguished by
charging station segment. In the assessment of charging choices, the spatial
and temporal circumstances play a significant role. A segmentation may allow
identifying differences between charging station categories. The MNL model
with the utility function QiD Interaction is estimated for three different spatial
segmentations, i.e., area, activity, and charger, and two temporal segmentations,
day and time of day. Tables 3.4 and 3.5 show the resulting coefficients.

The three segmentations reveal variation in the magnitude of the negative cost
coefficient, indicating differing sensitivities to prices across segments. A larger
absolute coefficient suggests greater price sensitivity, which may arise from two
factors: (i) tighter budget constraints among users, and (ii), the availability of
competitive charging alternatives downstream of the user’s travel-activity sched-
ule. In the area segmentation, rural stations show a more negative cost coefficient
than urban ones, suggesting greater price sensitivity among rural users. The dif-
ference may reflect the rural-urban income gap and greater access to alternative,
often cheaper, private charging options in rural areas. Although urban areas
feature denser public charging infrastructure and meshed road networks, high
demand and limited flexibility in travel routes may reduce the effective avail-
ability of substitutes. Additionally, the cost differences between public charging
options in urban areas may be smaller than the price gap between public and
private charging in rural areas. Similarly, the greater cost sensitivity observed
for refueling in the Activity segmentation and for DC charging in the Charger
segmentation further supports the role of accessible alternatives. Refueling sta-
tions are often located at traffic hubs such as petrol station on federal highways
(see Appendix B.2.1), where multiple downstream charging options are available.
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Table 3.4.: Estimated coefficients of the multinomial logit model for the utility function
QiD Interaction with quadratic and interaction terms. The results include
coefficients of three spatial segmentations, Area, Activity, and Charger.

(a) Columns (1) to (5) for segmentations Area and Activity.

(1) (2) (3) (4) (5)

Area Activity

Rural Sub-Urban Urban Parking Refueling

Costs -0.062*** -0.057*** -0.050*** -0.052*** -0.110***
(0.009) (0.019) (0.019) (0.004) (0.015)

Energy 0.567*** 0.502*** 0.462*** 0.463*** 0.822***
(0.029) (0.060) (0.062) (0.011) (0.051)

Duration -1.513*** -1.249*** -1.041** -1.104*** -2.806***
(0.223) (0.462) (0.472) (0.088) (0.456)

Energy2 -0.005*** -0.004*** -0.004*** -0.004*** -0.006***
(0.000) (0.001) (0.001) (0.000) (0.000)

Duration2 -0.009 -0.056** -0.068*** -0.060*** 0.002
(0.010) (0.022) (0.023) (0.006) (0.028)

Interaction 0.020*** 0.021*** 0.019*** 0.019*** 0.035***
(0.004) (0.007) (0.008) (0.001) (0.007)

Observations 1193 4459 2348 7012 988

Note: Robust standard errors in parenthesis. *** p<0.01, ** p<0.05, * p<0.1.

(b) Columns (6) to (7) for segmentation Charger.

(6) (7)

Charger

AC DC

Costs -0.055*** -0.075***
(0.008) (0.016)

Energy 0.341*** 0.532***
(0.024) (0.049)

Duration -0.301** -1.395***
(0.131) (0.285)

Energy2 -0.003*** -0.004***
(0.000) (0.000)

Duration2 -0.103*** -0.052***
(0.008) (0.020)

Interaction 0.018*** 0.018***
(0.002) (0.005)

Observations 2673 5327

Note: Robust standard errors in parenthesis.
*** p<0.01, ** p<0.05, * p<0.1.
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Differences in the magnitude of the linear energy coefficient may be explained
by the EV users’ anticipated energy needs for upcoming trips in their travel-
activity schedule. When additional charging is not critical, e.g., for short up-
coming trips or when the arrival energy level is already sufficient, users tend to
show lower preferences for energy. Differences in the quadratic coefficient, in
turn, capture how sharply the marginal utility of energy diminishes once a suffi-
cient level is reached. Higher absolute values suggest a stronger saturation effect,
meaning that energy beyond the amount required for the next trip holds con-
siderably less value. Compared to parking, the magnitude of the linear energy
coefficient in the refueling segment is significantly higher, suggesting that EV
users place greater value on energy at refueling locations. The higher valuation
likely reflects longer anticipated travel distances, e.g., along federal highways,
and the associated energy needs, while upcoming trips from parking locations
may be shorter. The higher magnitude of the quadratic energy coefficient at refu-
eling stations suggests a steeper decline in marginal utility once sufficient energy
is charged. The observation could imply that EV user at refueling stations are
more aware of upcoming energy requirements. In the area segmentation, EV
users at rural stations exhibit a higher valuation of energy, which may be at-
tributed to generally longer distances between destinations in rural compared to
urban areas.

The underlying trade-off between utility gained at the current charging loca-
tion and utility at subsequent locations, described in Section 3.1.1, may explain
the variation in the duration coefficients across segments. A high magnitude of
the negative linear duration coefficient suggests that users perceive low utility at
the current location relative to future ones. The greater the negative coefficient,
the larger the gap in perceived utility between staying and leaving. Similarly,
a high negative quadratic duration coefficient may reflect rigid travel-activity
schedules, where utility declines rapidly with longer stays and increases sharply
at the next stop. Lower magnitudes, by contrast, indicate more flexible schedules
and smoother transitions.

In the area segmentation, rural stations exhibit a more negative linear du-
ration coefficient, suggesting that users derive less utility from staying in rural
locations. The magnitude of the quadratic duration coefficient is higher in urban
areas, implying tighter scheduling constraints and a stronger aversion to extend-
ing stays beyond a planned departure. In rural areas, the quadratic duration
coefficient is even insignificant, supporting the interpretation of more flexible
travel-activity schedules. EV users experience particularly high disutility from
time spent at refueling locations, with a coefficient of -2.806. The insignificant
quadratic term suggests that users avoid time at refueling stations from the start.
The primary motive for stopping is to charge, not to engage in other activities. In
contrast, at parking locations, e.g., customer parking lots (see Appendix B.2.1),
the magnitude of the linear duration coefficient is lower, indicating that users
initially derive utility from the location. Once their activities conclude, the pref-
erence to leave increases, as reflected in the more negative quadratic coefficient.
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In these cases, charging may be more opportunistic or secondary. Differences
between AC and DC chargers show a similar pattern, albeit less pronounced.
The similarity may be linked to the installation context: AC chargers are more
commonly found at parking locations, while DC chargers are more often installed
at refueling stations.

The interaction term captures how strongly the attributes of energy and du-
ration complement each other in users’ utility evaluations. A high coefficient
indicates, that one attributes’s impact on the valuation of the other attribute is
high, while a low coefficient rather indicates independence in EV users’ valua-
tion. Across most segments, the interaction coefficient varies only slightly. Only
the segment refueling shows a significantly higher coefficient of 0.035. The high
value reinforces the interpretation that the primary purpose of stopping at refu-
eling stations is to charge the battery. Here, users judge the value of time spent
by how much energy is charged during that time—and vice versa, they assess
the value of the charged energy in light of how long the process takes.

Table 3.5.: Estimated coefficients of the multinomial logit model for the utility function
QiD Interaction with quadratic and interaction terms. The results include
coefficients of two temporal segmentations, Day and Time of day.

(1) (2) (3) (4) (5)

Day Time of day

Weekday Weekend 23-07 08-16 17-22

Costs -0.054*** -0.061*** -0.035*** -0.056*** -0.061***
(0.004) (0.011) (0.010) (0.021) (0.021)

Energy 0.490*** 0.517*** 0.430*** 0.489*** 0.536***
(0.013) (0.033) (0.034) (0.070) (0.072)

Duration -1.298*** -1.055*** -1.137*** -1.039* -1.611***
(0.103) (0.260) (0.267) (0.546) (0.557)

Energy2 -0.004*** -0.004*** -0.004*** -0.004*** -0.004***
(0.000) (0.000) (0.000) (0.001) (0.001)

Duration2 -0.054*** -0.051*** -0.042*** -0.073** -0.033
(0.006) (0.019) (0.014) (0.029) (0.030)

Interaction 0.022*** 0.017*** 0.020*** 0.019** 0.024**
(0.002) (0.004) (0.004) (0.009) (0.009)

Observations 5739 2261 763 4605 2632

Note: Robust standard errors in parenthesis. *** p<0.01, ** p<0.05, * p<0.1.

Segmenting the observations by day and time of day reveals the time depen-
dency of EV users’ charging preferences. The higher values indicate greater
price sensitivity during leisure times, possibly because users anticipate more
convenient or lower-cost charging opportunities later downstream in their travel-
activity schedule, such as charging at home. Cost sensitivity is lowest at night,
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between from 23:00 and 07:00, suggesting that users are less inclined to delay or
substitute charging, likely due to limited future alternatives during nighttime.

The energy coefficient is highest on weekends and in the evening, indicating
that users anticipate longer upcoming trips, e.g., for distant leisure activities,
or prefer to start the next day with a sufficiently charged battery. In contrast,
the coefficient is lower at night and in the early morning, suggesting that shorter
trips are expected or energy levels at arrival are already adequate. The quadratic
energy coefficient remains stable across all time segments, implying that the
degree of diminishing marginal utility for energy, beyond the level needed for
upcoming trips, is largely constant over time.

The magnitude of the negative linear duration coefficient is highest in the
evening, suggesting that the utility of staying at the charging station is consid-
erably lower than the utility of proceeding to the next activity, likely related
to leisure after the workday. The insignificant quadratic term supports the in-
terpretation that disutility arises immediately, with little tolerance for extended
stays. On average, the primary purpose of the stop may be charging. On week-
ends and during daytime hours (08:00–16:00), the lower magnitudes of the linear
coefficient suggest higher utility at the charging location itself. Weekend stays
may coincide with longer leisure activities, while daytime charging often overlaps
with structured routines such as work, reducing sensitivity to duration. Notably,
the quadratic coefficient is relatively high during the day, indicating more rigid
transitions between scheduled activities, for instance, a strong preference to leave
once work is over.

The interaction term varies less across time than across station segments. It
is slightly higher in the evening, indicating that stops during are more strongly
driven by the need to charge the EV rather than by activities at the location.
In contrast, the lower magnitude on weekends suggests that charging events are
more optional, with weaker interdependence between energy and duration in
users’ preferences.

3.5.5. Turnover by charging station segment

Decision margins quantify how choice probabilities shift in response to variations
in product attributes, given a parameterized utility function and a defined choice
set. Two margins illustrate the estimated utility functions effect on the turnover
of a charging station: a change in the energy content at arrival and a change in
the energy price, as illustrated in Figure 3.8.

Variations in energy content at arrival indicate how responsive charging sta-
tion usage is to the availability of prior charging opportunities along an EV
user’s travel-activity schedule. In absolute terms, all station types benefit from
lower arrival energy levels, while higher arrival energy reduces station turnover.
In relative terms, urban, refueling, and DC charging stations exhibit greater
sensitivity to changes in arrival energy. For instance, a 1% decrease in arrival
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Figure 3.8.: The mean of the total turnover over all charging stations in a single segment,
depending on the decision margins relative to the arrival SoC and the energy
price.

energy increases the average turnover of refueling stations by 1.5% and of park-
ing stations by 1.4%. The higher sensitivity reflects the segment-specific user
preferences discussed in Section 3.5.5. Stations where users exhibit strong pref-
erences for departing with high energy levels, such as refueling or DC locations,
respond more strongly to changes in arrival energy. Likewise, stations offering
high utility at the current location, such as urban locations, appear to be more
sensitive to changes in arrival energy content. In both cases, charging demand
is either essential or a by-product of the user’s activity at the current location,
making station turnover particularly reactive to upstream energy availability.

Energy price variations may have two effects on the total turnover of a charging
station, a direct price effect on the total amount paid by an EV user and, in-
directly, a quantity effect capturing the price elasticity of EV users’ demand.
Across all station segments, higher energy prices lead to increased absolute
turnover, indicating that in the considered price range, the price effect outweighs
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the quantity effect. In relative terms, sub-urban, refueling, and DC stations are
most sensitive to changes in the energy price. For example, a 1% increase in the
energy price is associated with a 1% increase in turnover at refueling stations.
The greater sensitivity may reflect two aspects of user preferences: (i) cost sen-
sitivity, shaped by the availability of alternative charging options downstream
in the travel-activity schedule or income levels, and (ii) the high valuation of
energy at departure, shaped by downstream energy requirements. At refueling
and DC charging stations, the demand for energy appears to outweigh users’ cost
sensitivity. Sub-urban locations combine higher cost sensitivity than urban areas
with comparatively high energy valuation, resulting in greater responsiveness of
turnover to price changes.

3.6. Discussion

The empirical case study has demonstrated that the utility from EV charging at
public charging stations exhibits non-linearities regarding the product attributes
energy content in the battery at departure and duration of the charging session.
The results highlight the existence of an interaction term between both prod-
uct attributes. When interpreting the findings and deriving implications, it is
important to acknowledge certain limitations of the approach.

3.6.1. Interpretation

The case study observes a decreasing marginal utility regarding energy content
in the battery at departure, in contrast to the assumption of constant marginal
utility commonly adopted in the literature, like in Liu et al. (2022) or Daina et al.
(2017a). Only simulations, such as Fridgen et al. (2021) or Galus et al. (2012),
consider the possibility of decreasing marginal utility. The observed decreas-
ing marginal utility suggests that as users reach higher SoCs during a session,
their perceived benefit diminishes. The observation indicates that marginal util-
ity decreases once a sufficient SoC for the subsequent travel-activity schedule is
reached. By demonstrating that the utility of energy content in the battery at
departure varies non-linearly, this work highlights the potential for misinterpre-
tation of users’ preferences in models that assume constant marginal utility.

Analogously, this chapter reveals increasing marginal disutility regarding the
duration of a session. Typically, models such as Daina et al. (2017a) or Nourine-
jad et al. (2016) assume constant marginal disutility from the duration of charg-
ing sessions. The increasing marginal disutility suggests that, with continuing
time, the perceived harm of EV users staying at the charging station increases.
The decreasing marginal disutility suggests that EV users may have a preferred
departure time to be able to follow their travel-activity schedule. The urgency
to leave the charging station may increase while approaching the ideal departure
time.
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According to the results of the case study, a significant interaction term be-
tween the energy content in the battery at departure and the duration of the
charging session exists. To the best of the author’s knowledge, commonly as-
sumed utility functions for EV charging do not assume a dependence between
the two attributes. The positive interaction between energy content in the bat-
tery and time spent at the charging station indicates that the marginal benefit
from an additional unit of energy in the battery increases with the duration of
the stay. The dependence of the marginal benefit from energy charged on the
time spent indicates that the urgency to have a sufficient charge may increase
when approaching the considered departure time.

On average, the value of time in a linear utility function would be 4.99e /h
and the value of energy 0.94 e /kWh. The value of time makes around 21% of
the net wage in Germany (Statista, 2025). The value of energy leaves a consumer
rent of 0.22e /kWh in the case of DC charging and 0.36e /kWh in the case of
AC charging. The identified non-linearities imply significant changes in both the
value of time and the value of energy around the average, depending on the SoC
and the duration.

Charging stations in urban areas or at refueling locations, such as those along
federal highways, tend to generate higher turnover than charging stations in rural
areas. The turnover sensitivity simulations based on the estimated utility func-
tion suggest three potential links between user preferences and station viability:
(i) a high valuation for energy content at departure, reflecting downstream en-
ergy requirements; (ii) low price sensitivity, potentially associated with higher
income levels and a lack of competitive charging alternatives along the subse-
quent travel-activity schedule; and (iii) a lower sensitivity to charging duration,
reflecting a high valuation of activities at the current location, whereby charging
becomes a by-product of the ongoing stay.

3.6.2. Implication

The better performance of the non-linear utility function in contrast to the linear
utility functions suggests that the structure of EV charging demand may be more
heterogeneous than commonly assumed. While partially demand may be highly
flexible, there may also be a significant share of inelastic charging demand.

Current energy system analyses and policies often assume EV charging demand
to be highly flexible, driven by either constant marginal utility of energy or uni-
form price responsiveness. The observed decreasing marginal utility of energy
charged, the decreasing disutility from charging duration, and the dependence
between both attributes suggest that the flexibility may be more constrained
than modeled. EV users may be less likely to adapt their charging behavior sig-
nificantly when the SoC is insufficient and the travel-activity schedule imposes
strict timing constraints. Consequently, the controllable capacity EV fleets con-
tribute to the power system may be overestimated.
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The profitability evaluation of different charging segments indicates that the
investment spent on slow-charging public charging stations in rural areas may
not be as beneficial. The segment differences and the sensitivity to the arrival
energy content in the battery indicate that the interaction between private and
public infrastructure must be considered. Public infrastructure that offers no
power, location, or cost advantage over private infrastructure may turn redun-
dant, particularly in areas where EV users have the option to install a private
charging point.

3.6.3. Limitation

The data has properties that limit the generalization of the insights generated in
the case study. Implicit in the dataset is a selection bias caused by two aspects.
First, the early adopters of EVs that constitute the charging sessions reported
in the dataset may not be representative of the entire population. Second, the
dataset contains only publicly available and publicly funded charging stations.
Charging stations that are financed without public funding are not part of the
dataset, so the analysis may underestimate the turnover of charging stations.

The dataset does not contain information about individual circumstances of
each charging session, such as the arrival SoC of the batteries, the EV’s battery
capacity, and the actual tariffs paid. The assumptions taken may influence the
observed results because they cannot account for the actual variance in circum-
stances. The analysis would benefit from a repetition with a more complete
dataset.

The use of polynomial utility specifications, in the absence of individual-level
user data, may limit the empirical identification and interpretability of non-linear
marginal utilities. Appendix B.3.4 elaborates on the correlations between higher-
order and base attributes, with the observed relationships indicating scope for
further refinement and research. In particular, the absence of data on individ-
ual characteristics and planned departure times likely reduces the variance in
observed choices, thereby weakening the identification of non-linearities in the
utility function. Enhancing the dataset by incorporating preferred departure
times and expanding the choice set to include more competitive charging alter-
natives along users’ travel-activity schedules could improve the model’s ability to
capture marginal utility effects. One promising approach would be to intersect
the charging demand data with longitudinal mobility surveys in Germany, such
as KIT (2025), and to reformulate the charging decision as a dynamic discrete
choice problem. Beyond travel behavior, incorporating information on individ-
ual risk preferences and behavioral characteristics may further improve model
specification (Franke and Krems, 2013).
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3.7. Conclusion

This chapter examines the functional form of utility from charging an EV at a
public charging station. It develops a novel discrete choice model that allows
to estimate utility function coefficients given an operator’s observed information
at a charging point. Applied in a case study on a curated dataset of charging
sessions at public charging stations in Germany, the approach reveals the suit-
ability of different utility functions in describing charging choices, the underlying
preferences of EV users, and the profitability of public charging stations.

The key contribution to the existing literature is threefold. First, the chap-
ter presents a discrete choice model formulation that allows to examine charging
session data observed from the operator’s perspective without information about
individual characteristics. Second, the chapter provides a comparison of differ-
ent functional forms of utility from EV charging, derived from a description of
EV users’ preferences. Third, a case study obtains empirical support for the
choice of utility function from a consistent dataset of revealed preferences, while
contributing to the economic evaluation of charging station operation.

In the case study, it appears that the non-linear utility functions model the ob-
served charging choices the most accurately. The findings suggest that marginal
utility from energy charged is decreasing and marginal disutility from duration
is increasing. Additionally, the results indicate that marginal utility from en-
ergy charged increases in duration. The insights suggest the flexibility of EV-
charging is more constrained than commonly assumed. Distinguishing an elastic
and inelastic part of energy demand from EV could illuminate the assessment
of flexibility from EV-charging. Charging stations benefit from locations with
inelastic residual charging demand, such as in urban areas or at traffic hubs.

The current research considers revealed preference data from public charging
stations. Future research could analyze the preferences of EV users when charg-
ing at private locations, i.e., at home or work. Differences in the elasticity of
demand at these locations could inform policymakers about the weighting be-
tween private and public charging infrastructure. The insights generated by the
chapter suggest that charging demand may be more heterogeneous than com-
monly assumed. Future work could explore the implications of refined assump-
tions about charging behavior for energy system analysis and charging station
pricing strategies.
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4. Environmental policy instruments for

investments in backstop technologies

under present bias - an application to the

building sector

4.1. Introduction

4.1.1. Background and motivation

Governments of many countries have set themselves climate targets, i.e., emis-
sion reduction targets. These targets no longer aim at a mere partial reduction
of greenhouse gas (GHG) emissions, but rather at a reduction of GHG emis-
sions to zero or close to zero. More than 70 countries pledged to reach net-zero
emissions, including the countries of the European Union, China, and the USA
(United Nations, 2023). Investments must be stimulated and carried out be-
yond efficiency improvements to achieve these goals. Therefore, in all sectors,
investments in zero-emission technologies, i.e., backstop technologies, must be
made.8 A backstop technology is a process or a technology in which the use of
an exhaustible resource can be completely avoided. In this chapter, we define
backstop technology more narrowly: as a technology that does not emit CO2

during operation. We assume that such a technology exists at finite cost.9

An example is the residential building sector: Global GHG emissions from
building operations, i.e., heating and hot water provision, have increased in re-
cent years. In 2021, global direct CO2 emissions from building operations ac-
counted for around 8 % of global energy-related CO2 emissions (IEA, 2022).
In the residential building sector, decarbonization needs to be carried out by
private households investing in new technologies (e.g., heating systems and re-
furbishment) and choosing their indoor temperature level. In this chapter, the
analysis is applied to the residential building sector, although the results are
generalizable.

The prominent policy from classic economics to reach the first-best outcome
in the presence of an environmental externality (i.e., the emitted emissions) is
to introduce a price on said externality (i.e., a carbon or CO2 price), internaliz-
ing the externality into the decision-making rationale of the households, like the

8Alternatively or additionally, hard-to-avoid emissions can be offset by natural or technical
carbon sinks.

9More details in Section 4.2.
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Pigouvian tax (Pigou, 1920). Empirical literature suggests that individuals do
not always behave according to classic rational choice theory. Behavioral issues,
such as time-inconsistent discounting (e.g., present bias), could prevent individu-
als from investing optimally in time. Heutel (2015) has shown that if consumers
experience present bias, a Pigouvian tax does not lead to welfare optimal invest-
ment decisions for externality-producing durable goods. Instead, the optimal
policy mix consists of an instrument to correct the externality and another one
aiming at the present bias, constituting an internality. Besides carbon taxation
or pricing, these instruments can include subsidies, taxes based on efficiency, or
mandates.

In his analysis, Heutel (2015) assumes that consumers can invest in technolo-
gies with different efficiencies. Sheer improvement of efficiencies in externality-
producing durable goods, however, cannot reduce externalities to zero. Thus,
by assumption, no backstop technology exists. The author finds that there is a
welfare-optimal amount of externalities (i.e., GHG emissions) corresponding to
the Pigouvian tax rate, which represents the monetary damage of the external-
ity. The optimal level balances the damage from the externality with the utility
derived from the externality-producing good. In contrast, in many countries,
the declared political target is to achieve zero or close to zero emissions.10 The
implicit assumption when applying a zero-emission target is, that the marginal
damage from GHG emissions is higher than corresponding marginal abatement
costs, and correspondingly, the optimal amount of GHG emissions is zero. Put
differently, the policy maker is interested in target-consistent CO2 pricing and
policy measures rather than taxing the externality at the rate of social costs of
carbon (Aldy et al., 2021).

Building on the work of Heutel (2015), this raises the following questions.
First: How can Heutel’s model be generalized to account for the existence of
zero emission backstop technologies with finite costs? Second: What does this
generalization imply for the main propositions of the model? Third: What are
optimal policies under present bias for externality-producing durable goods if
the optimal investment decision is the investment in the backstop technology?

We generalize the analytical model of Heutel (2015) for investments in externality-
producing durable goods under present bias by allowing for a greater technology
space. In the generalized model, the investment may be accompanied by the
substitution of the fuel used, for example, in the case of heating investments,
switching from a gas heating system to an electric heat pump. The integration
of fuel substitution into the investment decision allows us to depict the existence
of a zero emissions backstop technology.

We first examine the effect of the model generalization on Heutel’s main propo-
sitions, assuming still that there is a welfare-optimal inner solution, i.e., that the

10In the following, we abstract from the possibility of carbon sinks to achieve net-zero targets
and assume that the goal of the investments under investigation is to reduce emissions to
zero.
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backstop technology is not optimal. We then discuss the implications of the
situation when the investment in the backstop technology is optimal. This may
be the case if the assumed damage of the externality is high enough so that the
backstop technology is welfare-optimal, or due to politically set zero-emission
targets. In a stylized case study for a representative building of the German
building sector, we assume a politically set zero-emission target. We numerically
estimate real-world magnitudes of the present bias effect on heating-related in-
vestment and utilization decisions, emissions, policies, and associated deadweight
loss.

In our analysis, we show that as long as social damage of carbon and the corre-
sponding CO2 price is not high enough to make the backstop technology optimal,
households in the optimum will still emit CO2. In this case, Heutel’s propositions
hold that to reach the social optimum, we need two policy instruments, one to
address the internality and a second one to address the externality. Generalizing
Heutel’s propositions, if the social costs of carbon and the corresponding CO2

price are high enough, a mark-up on the CO2 price can also induce the social
optimum. Therefore, present bias can be addressed by a tax or another single
instrument when aiming at zero emissions in the presence of a zero-emission
backstop technology. In numerical simulations for a representative household in
Germany and under the assumption of continuous investment choices, we quan-
tify the target-consistent CO2 price for reaching zero-emissions without present
bias at 192e /tCO2. Applying this target-consistent CO2 price in the case of
present bias leads to a welfare loss. In the case of a present-biased household,
a higher CO2 tax exists that reaches the target (in our exemplary building and
an assumed present bias of 0.7: 235e /tCO2 including an internality-mark-up
of 43e /tCO2). While the optimal tax rate and subsidy depend on the level of
present bias, we find that there exists an optimal tax-subsidy combination that
is optimal regardless of the level of present bias.

4.1.2. Related literature and contribution

Ever since (Strotz, 1955) introduced the idea of time-inconsistent discounting
with his theory of commitment, it has been recognized that consumers may
deviate from the assumption of exponential, thus time-consistent, discounting.11

In line with time-inconsistent discounting, Laibson (1997) coined the concept
of present bias, i.e., agents’ preference for immediate benefits over advantages
in future periods beyond exponential discounting.12 To represent this behavior,
the literature has introduced and applied models of quasi-hyperbolic discounting
(Laibson, 1997, O’Donoghue and Rabin, 1999, Phelps and Pollak, 1968).

11Frederick et al. (2002) includes a critical review of the history and models of time discounting,
including time-consistent utility discounting models as well as time preferences and (quasi-
)hyperbolic discounting models.

12See the reviews Frederick et al. (2002) and DellaVigna (2009) for empirical estimates for
present bias in various circumstances and Imai et al. (2021) and Cheung et al. (2021) for
recent meta studies of papers reporting present bias estimates.
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One metric for policy evaluation is welfare. Assuming time-inconsistent pref-
erences implies that preferences change over time, complicating welfare analysis.
Economists provide several welfare criteria to overcome this complication. The
two most prominent criteria are the Pareto criterion, i.e., considering each pe-
riod’s perspective in overall utility, and the long-run criterion, i.e., evaluating
the ”true” utility from a long-run perspective (O’Donoghue and Rabin, 2015).
O’Donoghue and Rabin (1999) argue that the Pareto criterion is too strong an as-
sumption when applied to intertemporal choice. O’Donoghue and Rabin (2015)
claim that both approaches, as well as other thinkable welfare criteria, frequently
yield the same conclusions but argue for the usage of the long-run criterion.13

As Heutel (2015) utilizes the long-run criterion in his model, we will also apply
it.

Applying the long-run criterion deviates from standard social welfare anal-
ysis, which relies on revealed preferences as information about the consumer’s
true utility. The paternalistic assumption that the consumer’s choices do not
optimize her welfare is as critical as it is controversial. Gilles Saint-Paul (2011)
argues that taxes levied for inducing a particular behavior might only lead to
consumers paying higher prices instead of changing behavior, reducing overall
welfare. According to Whitman (2006), the justifications of policy interventions
for addressing internalities are based on the idea of Pigouvian taxation, ignoring
Coase’s theorem (R. H. Coase, 1400). The theorem states that externalities can
be resolved by negotiation between individual parties when transaction costs are
low. Since internalities consist of choices within the individual, Whitman (2006)
argues that Coase’s theorem is better suited for dealing with internalities. The
information required to find the least costly option addressing the damage from
time-inconsistent discounting is only available to the individual. Moreover, Per
Krusell et al. (2002) argues that to tackle consumers’ time-inconsistent prefer-
ences, only an intervention by a time-consistent social planner is welfare en-
hancing. Time-consistency of social planners could partly be achieved by avoid-
ing short-term political pressure by establishing credible rules and institutions,
enforcing commitment. Examples of such institutions are independent central
banks, fiscal rules, and social security systems with automatic adjustments based
on demographic or economic changes.

We apply our analysis to the case of households’ heating system investment
decisions. The empirical literature regarding behavioral biases in energy effi-
ciency decision-making is limited (Gillingham et al., 2009). Schleich et al. (2019)
investigated the role of present bias and other behavioral aspects in adopting
energy-efficient technologies within different countries in the European Union.
They provide evidence for the significance of present bias in reducing invest-
ments in energy-efficient appliances and building retrofitting. Werthschulte and
Löschel (2021) find that present bias increases power consumption. Therefore,
as households undervalue energy costs, price-based policies might fail to reduce

13Kang (2015) shows that improvements in the Pareto criterion are also welfare-improving from
the long-run perspective.
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household energy consumption. Furthermore, in the specific case of investment
in household appliances in India, Franz Fuerst and Ramandeep Singh (2018)
find that present bias becomes more significant the larger the purchase object
investigated. This finding is relevant to our work, as heating system replacement
represents a particularly large investment decision for households. Overall, there
is not yet a comprehensive empirical view on the effect of present bias on heating
system investments. We account for this lack of estimates by considering a range
of present bias factors in our numerical simulation.

This chapter focuses on the consequence of present bias in agents’ decision-
making on policies for decarbonization. The model from Heutel (2015) consti-
tutes the basis of our analysis. A detailed description of the model for analyz-
ing optimal policy instruments for externality-producing durable goods under
present bias can be found in Section 4.2.1. Heutel (2015) considers a technology
space with efficiency and investment costs as dimensions. We expand this space
by allowing technologies to differ in emission intensity and fuel price. As we will
see, this generalization enables us to discuss the subject of zero-emission back-
stop technologies. Other researchers have also addressed the question of how
to design policy with externalities and internalities such as present bias (Alcott
et al., 2012, Allcott and Sunstein, 2015). Allcott and Sunstein (2015) discuss
principles for regulating internalities in the field of energy. They find that in-
ternalities such as present bias can justify government intervention, given that
”true preferences” of individuals can be identified in contrast to revealed pref-
erences. Alcott et al. (2012) find that when households undervalue long-term
energy costs in their investment decisions for durable goods, an externality tax
such as a GHG tax yields a double dividend, since it also addresses the internal-
ity. They also find, that optimal policy mixes addressing both externalities and
internalities depend on unknown information about levels of internalities, pri-
vate to households. Our results deviate from this finding due to the presence of
a zero-emission backstop technology. Since Heutel (2015), recent work has deep-
ened the understanding of present bias in economic policy design and welfare
analysis (Bar-Gill and Hayashi, 2021, Chan and Globus-Harris, 2023, Drugeon
and Wigniolle, 2021, Kang, 2022, Kotsogiannis and Schwager, 2022, Lades et al.,
2021). Bar-Gill and Hayashi (2021) discuss the investment decisions for durable
goods by present-biased agents. In contrast to our work, they focus on the effect
of purchase financing. They find countervailing effects of present bias on the valu-
ing of the benefits of an investment and the costs of financing said investment
and derive recommendations for credit regulation. Since they discuss general
durable goods, they do not consider the emission externalities from using en-
ergy technologies. Lades et al. (2021) examine investments from present-biased
households in energy efficiency technologies. They illustrate particularly how
administrative burden can reduce these investments. Similar to our work, they
apply a theoretical model and a simulation with exemplary building data. Chan
and Globus-Harris (2023) discuss incentivization of energy-efficient appliances
such as air conditioners and refrigerators. They find that efficiency incentives
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on their own, such as subsidies, do not directly address externalities and thus
distort consumer decision-making. They show that under certain circumstances,
efficiency subsidies may lead to more energy use overall due to the rebound ef-
fect. As we will see, our key point of departure from Heutel (2015), Lades et al.
(2021) and Chan and Globus-Harris (2023) is that we consider policies reaching
zero emissions combined with the availability of a backstop technology.

While there is literature on policies in the context of present bias, to the best
of our knowledge, there is no literature addressing the subject of policies for
externality-producing durable goods aiming at zero emissions. In the present
work, we aim to close this gap by (i) generalizing the model from Heutel to
more complex technologies also differing in emission intensity and fuel price
to be able to account for zero emission backstop technologies, (ii) analyzing
the consequences of the existence of an optimal backstop technology, and (iii)
illustrating the consequence of such policies in the residential building sector
numerically.

The remainder of this chapter is structured as follows: Section 4.2 gives an
overview of the analytical model that serves as the starting point for our analysis.
There, propositions resulting from the analytical model are derived regarding the
political-economic conditions and low heat demand elasticities in the building
sector. Section 4.3 introduces the numerical simulation, assessing findings from
section 4.2 numerically and drawing further conclusions. Section 4.4 discusses
these results against the background of politically set climate neutrality targets
and welfare implications. Section 4.5 concludes this chapter.

4.2. Analytical model

In this section, we first describe the representative agent model for investments
in externality-producing durable goods under present bias from Heutel (2015).
Then we generalize the model and apply it to the building sector. By defining
a larger technology set, we can represent technologies running on different fuels
and thus zero emission backstop technologies. Based on the generalized model,
we discuss two different cases: first, the case that the backstop technology is not
optimal. Second, the case that the backstop technology is the optimal technology
choice.

4.2.1. A representative agent model for investments in
externality-producing durable goods under present bias

Heutel (2015) describes the investment and operation problem for externality-
producing durable goods under present bias in a representative agent model. We
present the model based on nomenclature for residential heating. The investment
decision is made in the initial period (t = 0) and the good lasts T periods. In
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each period after the investment (t = 1 through t = T ), the household decides on
the operating intensity of the good: the generated heat or indoor temperature.

The model is defined by the household’s problem and the social planner’s
problem. In the household’s problem, future utility and costs are discounted
using quasi-hyperbolic discounting. Quasi-hyperbolic discounting is a method
for modeling the behavior of households who experience present bias, i.e., prefer
immediate payoffs and undervalue future costs and payoffs.14 To this end, two
discount factors are introduced. δ is called the ”long-run” discount factor, and
β represents the ”present bias”. If a household experiences present bias, then
β < 1.

The present-biased household perspective is contrasted with the social plan-
ner’s problem. Present bias is a behavioral anomaly that a social planner does not
experience due to fully rational behavior. One way to solve the social planner’s
optimization problem is to directly apply the long-run criterion while disregard-
ing the household’s present bias, i.e., setting β = 1. The approach assumes that
the household’s utility maximization deviates from optimal welfare even from
the household’s perspective. Thus, the household ”makes a mistake” and does
not optimize its ”true utility”.15

In the initial period, the household chooses the heating system’s ratio of fuel
input and generated heat, the so-called effort coefficient fph (fuel per heat),
representing the investment decision for the durable good. In the subsequent
periods, the heat generated in each period ht(t) is chosen, which translates into
indoor temperature. U(ht), where U

′ > 0 and U ′′ < 0, describes the utility from
generated heat in monetary terms. The costs per kWh of fuel are calculated
as the sum of the time-dependent fuel cost (pt) and a tax per kWh of fuel (τt).
This fuel tax, hereinafter referred to as the carbon tax, is intended to put a
price on the GHG emissions. When choosing a level of fph, the household faces
investment costs of c(fph). It is assumed that c′ < 0, meaning that less efficient
goods (heating systems) are less expensive, and c′′ > 0. The household’s problem
is thus described in equation (4.1):

max
fph,{ht}Tt=1

−c(fph) + β ·

[
T∑
t=1

δt ·
[
U(ht)− [pt + τt] · fph · ht

]]
(4.1)

The social planner’s problem is characterized by including the externality of
fuel consumption. The external damage from fuel consumption, i.e., damage

14Technically speaking, present-biased households discount utility and costs in the near future
at a higher implicit discount rate than in the distant future (Laibson, 1997).

15Alternative welfare criteria in the case of time-inconsistent discounting include the Paretian
approach (e.g. Bhattacharya and Lakdawalla (2004)), or the ”dictatorship of the present”
approach discussed in Jonathan Gruber and Botond Köszegi (2004) or Laibson (1997), which
prioritizes the preferences of the current self over the preferences of all future selves. Anal-
ogous to the approach in Heutel’s basic model and following the arguments of O’Donoghue
and Rabin (1999), we apply the long-run criterion.
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from GHG emissions, depends on ht, the kWh of fuel used in each period t, times
fph, the fuel used for producing the heat. The damage is denoted as d(ht · fph),
where d(0) = 0, d′ > 0 and d′′ = 0. The corresponding social planner’s problem,
using the long-run criterion for discounting and including external damages, is
described in equation (4.2):

max
fph,{ht}Tt=1

−c(fph) +
T∑
t=1

δt · [U(ht)− pt · fph · ht − d(ht · fph)] (4.2)

4.2.2. Model generalization

In the model described in the previous section, consumers invest in one tech-
nology and can decide on its efficiency. By assumption, no backstop technology
exists because efficiency improvements cannot reduce externalities to zero, and
fuel cost differences between technologies used are neglected. We extend the
technology set by allowing technologies to run on different fuels. Therefore, the
investment decision affects fuel costs and GHG emissions per unit of generated
heat. This enables us to analyze how optimal investment decisions depend on fuel
cost ratios and to include a zero emission backstop technology. An example of
a zero emission backstop technology in the building sector would be the switch
to renewably generated heat from solar thermal energy or to electric heating
powered by renewably generated electricity.

By allowing technologies to vary in fuel price and emission intensity (down to
zero), we extend the technology set and generalize the model. In this generalized
model, the fuel price pt(fph) and the CO2 factor of the heating system epf(fph)
are represented as functions of the effort coefficient fph.16 The functional form
of pt(fph) is ambiguous: it is conceivable that the change to a more efficient
heating system, e.g., from a gas boiler to an electric heat pump, is accompanied
by decreasing fuel prices, in e per kWhfuel, but also that the fuel price increases,
if, for example, electricity is more expensive than gas.17 We incorporate a back-
stop technology with finite costs fphBS by assuming that the emission function
epf(fph) equals zero for all fph <= fphBS , and epf ′ > 0 for fph >= fphBS .
This means that when investing in the reduction of fph, epf(fph) decreases lin-
early until the backstop technology fphBS is reached, where emission intensity
is zero. Further investments in reducing fph cannot further reduce the emission
intensity.

16We model the choice of fph, the investment costs, the change in fuel price, and CO2 factor
as continuous. This serves the theoretical tractability of the model.

17By including pt(fph) as a continuous function, we do not consider explicitly the case of a
backstop-technology without fuel costs (pt(fph) equals zero for all fph <= fphBS). An
example of that could be self-sufficiency using solar energy. The results of our analysis apply
for that case as well.
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The household’s problem, including quasi-hyperbolic discounting as defined in
Section 4.2.1, is thus described as follows18:

max
fph,{ht}Tt=1

− c(fph)

+ β ·

[
T∑
t=1

δt ·
[
U(ht)− [pt(fph) + epf(fph) · τt] · fph · ht

]] (4.3)

The household’s problem differs from Heutel (2015), since the investment de-
cision fph depends on pt and the newly introduced CO2 factor epf . This yields
first-order conditions for fph and each ht. Assume that there exists a unique
interior solution.19 The solutions to the household’s problem are called fph∗ and
h∗t .

− c′(fph∗)

− β ·
T∑
t=1

δt · h∗t · [pt(fph∗) + epf(fph∗) · τt]

− β ·
T∑
t=1

δt · h∗t ·
[
[p′t(fph

∗) + epf ′(fph∗) · τt] · fph∗
]
= 0

(4.4)

U ′(h∗t )− [pt(fph
∗) + epf(fph∗)τt] · fph∗ = 0,∀t (4.5)

In equation 4.4, considering the negative sign, the first term −c′(fph∗) is posi-
tive. The term represents the benefit of a marginal increase in fph. Since c′ > 0,
it is cheaper to choose a system with higher fph and hence, lower efficiency. Sim-
ilar to Heutel (2015), the first sum represents the discounted cost of a marginal
increase in fph due to the decrease in efficiency: the utility in each future pe-
riod decreases as heating costs increase. The second sum adds the changes in
fuel prices p′t(fph) and changes in emission costs epf ′(fph) · τt. While epf ′

t is
positive, p′t can be positive or negative, depending on the constellation of fuel
prices.20 If both p′t(fph) = 0 and epf ′(fph) = 0, the third summand equals
zero. In this case, neither the fuel price nor the emission intensity of the heating
system depends on the investment decision, obtaining Heutel’s application with
a limited technology set. Equation 4.5 sets equal the marginal increase in utility
of an additional kWh of heat with the marginal increase in costs for each period
t.

The social planner’s problem uses the long-run criterion and omits the term
β. The external damage d depends on the GHG emissions emitted, which are

18Appendix C.1 shows the isocost curves of the household’s decision problem for illustration.
19It is assumed that lim

ht→0
U ′(ht) = ∞ to ensure a unique interior solution.

20We will discuss the implications of this relationship under Proposition 2.
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calculated as the product of the emission intensity, the system efficiency, and the
provided heat: d(epf(fph) · fph · ht), where d(0) = 0, d′ > 0 and d′′ = 0.

The social planner’s problem is:

max
fph,{ht}Tt=1

− c(fph) +

[
T∑
t=1

δt

·
[
U(ht)− [pt(fph) · fph · ht]− d(epf(fph) · fph · ht)

]] (4.6)

The solutions to the social planner’s problem are fphopt and hoptt . The first-
order conditions of the social planner’s problem are:

− c′(fphopt)

−
T∑
t=1

δt · hoptt ·
[
pt(fph

opt)

+ epf(fphopt) · d′(epf(fphopt) · fphopt · hoptt )
]

−
T∑
t=1

δt · hoptt ·
[
p′t(fph

opt)

+ epf ′(fphopt) · d′(epf(fphopt) · fphopt · hoptt )
]

· fphopt = 0

(4.7)

U ′(hoptt )

−
[
pt(fph

opt) + epf(fphopt) · d′(epf(fphopt) · fphopt · hoptt )
]
· fphopt

= 0,∀t

(4.8)

4.2.3. Analysis

Optimal inner solution

First, we analyze the case that there is a welfare-optimal inner solution, i.e.,
that the backstop technology is not optimal and fphopt > fphBS . This is the
case when the assumed external damage from GHG emissions is smaller than
necessary for the backstop technology to be welfare-optimal. Thus, there exists
a welfare-optimal quantity of GHG emissions that exceeds zero. The optimal
solution is therefore found in the non-zero linear part of the emission intensity
function epf(fph).

From the first-order conditions of the household and the social planner, it
follows that if β = 1, the household chooses the first-best outcome if τt =
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d′(epf(fphopt) · fphopt · hoptt ) ∀t. This is the Pigouvian tax rate, called τpigt ,
which internalizes fossil fuel usage’s external damage.

As in Heutel (2015), the following holds for the adapted model:

Proposition 1.
Let β < 1: No set of emissions tax τt for all tϵ[1, ..., T ] exists that leads to the
first-best outcome fphopt and hoptt .21

If the Pigouvian tax rate is applied, Heutel (2015) obtains that too little is
invested and the good is underutilized compared to the optimum of the social
planner. In our case, when looking at heating investments, whether too much or
too little is invested due to present bias depends on how fuel and emission costs
are affected by the investment decision, leading to Proposition 2:

Proposition 2.

Let β < 1: If τt = τpigt for all t ∈ [1, ..., T ] and
∑T

t=1 δ
t ·h∗t ·

[
[pt(fph

∗)+epf(fph∗)·
τt] + [p′t(fph

∗)

+ epf ′(fph∗) · τt] · fph∗
]
≥ 0 then fph∗ > fphopt and h∗t < hoptt for all t ∈

[1, ..., T ].22

Proposition 2 states that present-biased households under-invest in the invest-
ment period and heat less than optimal in the subsequent periods, as long as the
change in discounted future costs for a marginal increase in fph (marginally less
efficient heating system) is greater than or equal to zero. The scenario occurs
if p′ >= 0, meaning that the price for heating increases for less efficient heat-
ing systems. Then, the optimal solution is found as the trade-off between fph
decreasing investment costs on the one side and the marginal increase in future
heating costs consisting of the effects of the decreased efficiency, increasing emis-
sion costs, and increasing fuel costs on the other side. In the other scenario, in
which p′ < 0, the described relationship only continues to hold as long as the
emission tax and lower efficiency offset the decrease in fuel costs for a marginal
increase in fph. If this does not hold, i.e., p′t << 0, a marginal increase in fph
leads to lower investment costs and a decrease in future costs. In such a case, it
would be optimal to invest as little as possible, thus fph → ∞.

In the case of present bias, no set of CO2 tax rates produces the first-best
outcome regarding investments, fuel usage, and GHG emissions. A second-best
policy solely based on CO2 tax rates must consist of higher tax rates than the
Pigouvian tax rate. The tax must address the usage of the heating system
while also unfolding high incentives in the investment period, compensating for
the present bias. A tax that incentivizes efficient investment despite present

21The proof is presented in Appendix C.2.1.
22The proof is presented in Appendix C.2.2.
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bias cannot be optimal because the tax is too high in subsequent periods to
incentivize optimal heating use, given the optimal efficiency level, the utility of
heating, and GHG emission damage. A second policy instrument has to be in-
troduced to achieve the first-best result. In Heutel (2015), the author discusses
a tax on the goods effort coefficient in the starting period and a fuel effort co-
efficient standard. In the case of the building sector, there is another policy
measure often applied by the regulator: A subsidy on capital expenditures on
more energy-efficient or less emission-intensive technologies, like, upfront subsi-
dies on heat-pumps (Rosenow et al., 2022). We define this subsidy as a monetary
benefit σ that is scaled with 1

fphmin−fphmax
· fph+ 1

1− fphmin
fphmax

. The subsidy thus

decreases linearly in fph. The household gets the full value of the subsidy if the
household chooses fphmin and no subsidy if the household chooses fphmax:

Proposition 3.
Let β < 1: The first best is achieved by setting τt = τpig in each period t > 0
and setting a capital subsidy in the form of ( 1

fphmin−fphmax
· fph+ 1

1− fphmin
fphmax

) · σ

with σ = (fphmin − fphmax) · (β − 1)
·
∑T

t=1 δ
t ·hoptt ·

[
[pt(fph

opt)+epf(fphopt) ·τpigt ]+[p′t(fph
opt)+epf ′(fphopt) ·τpigt ] ·

fphopt
]
.23

Since the household is present-biased, in the investment period, the household
only considers a share of β of the future discounted benefits from decreasing fph.
The subsidy is therefore composed of the benefit from investing in lower fph,
expressed in the sum, times (β−1), offsetting the present bias in the investment
period. In contrast to the fuel economy tax in Heutel (2015), our model’s subsidy
depends not only on hoptt but also on fphopt. The intuition behind this is that
due to the fuel switch when investing, fphopt is relevant for determining the
marginal benefit from an increase in fph as it defines fuel and emission costs
in the optimal case. This means that for the optimal design of the subsidy, it
is crucial to know how the optimal investment changes the fuel and emission
costs. Besides the level of fuel and emission costs at fphopt, also their slopes at
this point determine the optimal subsidy. In contrast to Heutel (2015), marginal
changes in investment affect the fuel price and the emission intensity. Therefore,
the subsidy accounts for the marginal variable cost changes, composed of fuel
price and emission intensity, induced by investment decisions under present bias.
The term can both increase or decrease the optimal subsidy, as the fuel price
can have a positive or negative slope in fphopt.

Optimal backstop technology

In the model so far, we assumed that there exists a welfare optimal amount of
GHG emissions that relates to the Pigouvian tax rate, internalizing the exter-

23The proof is presented in Appendix C.2.3.
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nal emission damage. It was not optimal to invest in the backstop technology.
In contrast, in the current political debate around the decarbonization of the
building sector, the declared target is to achieve zero emissions. The implicit
assumption is, thus, that the damage from GHG emissions is higher than cor-
responding abatement costs, and correspondingly, the optimal amount of GHG
emissions is zero: fph is optimal if epf is zero. The same applies to a situation
where the zero emission backstop technology is optimal due to sufficiently high
assumed external emission damage. In the following, we discuss the case that
fphopt = fphBS .

The backstop technology does not produce emissions while generating heat,
i.e., epf(fphBS) = 0. Considering the household’s decision problem, we can
identify a minimum emission tax rate τBS

t required to induce investments into
the backstop technology. In equations (4.4) and (4.5)), we replace fph∗ by
fphBS , h∗ by hBS and epf(fph∗) = epf(fphBS) = 0, obtaining the new first
order conditions:

− c′(fphBS)

− β ·
T∑
t=1

δt · hBS
t · [pt(fphBS)]

− β ·
T∑
t=1

δt · hBS
t ·

[
[p′t(fph

BS) + epf ′(fphBS) · τBS
t ] · fphBS

]
= 0

(4.9)

U ′(hBS
t )− [pt(fph

BS)] · fphBS = 0,∀t (4.10)

Equation (4.10) determines the optimal heating rate with the backstop tech-
nology where marginal utility U ′(hBS

t ) and marginal costs pt(fph
BS) · fphBS

equal. This operation decision is thus independent of the emission tax rate,
in contrast to the case where there is an optimal amount of GHG emissions.
This leaves equation (4.9) for determining the minimum emission tax rate τBS

t .
Assuming T = 1 for simplicity, replacing epf ′(fphBS)∗fphBS by marginal emis-
sions ∆em(fphBS), p′(fphBS) ∗ fphBS by marginal energy costs ∆en(fphBS),
and solving equation (4.9) for τBS

t leads to the following proposition:

Proposition 4.
Let β < 1, fphopt = fphBS , and T = 1: First best can be achieved by a GHG

tax τBS
t = −c′(fphBS)

β·δt·h∗
t ·∆em(fphBS)

− pt(fphBS)
∆em(fphBS)

− ∆en(fphBS)
∆em(fphBS)

leading to investments

in the backstop technology without distorting the heating decision.

The tax τBS
t is the minimal tax rate that induces zero emissions, when the

damage of GHG is high enough for the backstop technology to be optimal. The
tax rate consists of three terms.
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The first term is the marginal investment costs, divided by the level of present
bias, the heating decision, and the marginal emissions. The first term, therefore,
describes the marginal abatement costs, discounted by the level of present bias.
The higher the marginal investment costs (for reducing the fuel intensity of the
heating system fph), the higher the tax τBS

t inducing investment in the backstop
technology. Further, τBS

t increases with the level of present bias β (lower β
signifies a higher present bias), following the findings in the previous sections.

The second term describes the impact of the ratio of fuel prices to marginal
emissions on τBS

t . Here, the overall price level of energy fuels matters. Since
the second term is negative, if energy prices are low, τBS

t needs to be higher to
incentivize households to invest in efficient heating systems. However, if energy
prices are high, the second term reduces τBS

t since households already have an
economic incentive to invest in more efficient heating systems.

The third term represents the marginal change in energy costs relative to
emissions. As stated in Section 4.2.2, the derivative of p(fph) can be positive or
negative, depending on the price constellations of different energy carriers such
as gas and power. Therefore, ∆en(fphBS) and with that, the third term can
be positive or negative. For the case where ∆en(fphBS) is negative, the third
term becomes positive. In this case, the relation between marginal changes in
fuel prices and marginal changes in emissions increases τBS

t . Since it is costly
to switch to the backstop technology, τBS

t needs to be higher to counter the
disincentive stemming from price changes. This effect is more pronounced, the
higher the price increase compared to the reduction in emissions. Ultimately,
a higher energy cost change with a smaller emission reduction requires a larger
emission tax.

In contrast to Proposition 1 in Section 4.2.3, if the backstop technology is
the optimal investment choice, a set of emission taxes τt > τBS

t can be used to
address both the externality and the internality. This is the case because of
the added property of the emission function: We can choose taxes high enough
for optimal investment, which induces zero emissions. But since epf(fphopt) =
epf(fphBS) = 0, the taxes do not influence the heating decision of households
anymore. That means that any set of taxes high enough to induce investments
in zero-emission heating technologies would be optimal since it does not affect
heating decisions in the subsequent periods, as the heating decision becomes
independent of the tax. This finding is, in principle, unaffected by the presence
of present bias. Present bias only increases the minimum level of the taxes,
inducing investments in zero-emission heating technologies.

Following that logic, the optimal investment decision can be derived from a set
of taxes or a subsidy alone, a combination of both, or a command-and-control
policy, i.e., a ban on new investments in conventional technologies. In our stylized
model framework, except for the distributional effects of subsidies, there is no
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difference between those policies regarding the household’s welfare, investment,
or heating.24

4.3. Numerical simulation

In the numerical case study, we estimate real-world magnitudes of the present
bias effect on under-investment, under-consumption of thermal energy, over-
emissions, and associated deadweight loss. We obtain optimal single instrument
magnitudes of CO2 prices and subsidies representing the internality-mark-ups.
Lastly, we show how present bias differentially affects CO2 prices and subsidies
and therefore numerically obtain optimal policy mixes.

4.3.1. Case study set-up

Metric for evaluation of sub-optimal policies

We numerically investigate the effects of present bias under policy measures
aimed at reaching the politically set emission target with the help of a two-step
procedure. First, excluding present bias internalities, we determine the minimal
target-consistent carbon tax rate inducing investments suitable for zero-emission
goals, i.e., in the zero-emission backstop technology.25 In the reference case, this
carbon tax rate τneut is 192e /tCO2.

26 Second, we use this carbon tax rate as
the implied damage to evaluate social welfare and deadweight loss.

Building and system characteristics

The functional form and parametrization of the utility of heating determine the
household’s choices. Mertesacker (2021) develops a utility function for domes-
tic heating accounting for the properties of the technical heating system and
building envelope. He estimates the utility’s parameters within a German case
study. We utilize this function and its estimated parameters. Equation (4.11)
shows the utility function of our household U(Tt) depending on the ideal indoor
temperature T t of 21 °C and chosen indoor temperature Tt. The utility function
thus reflects the willingness to pay for the heating temperature. γ expresses the
marginal utility of indoor temperature. We also refer to γ as valuation factor
since it expresses the valuation of a specific household for indoor temperature.

24See Section 4.4 for a discussion of the distributional effects of different policies.
25In our numerical simulation, we define the backstop technology with finite cost as an air-to-

water heat pump. This applies under the assumption of continuously zero-emission elec-
tricity generation or, in the case of Germany, assuming that emissions from the electricity
sector are accounted for in the electricity sector and will decrease to zero in the long term
as part of the European emissions trading system.

26In the numerical simulation, for simplicity, we assume constant fuel prices over time and
utilize the same CO2 tax rate in each year of the heating system lifetime.

77



Environmental policy instruments for investments in backstop technologies under present bias

U(Tt) = −γ · (T t − Tt)
2 (4.11)

We specify the utility function for the case study by defining an example
household by its estimated marginal utility of indoor temperature γ, and an
ideal indoor temperature. The characteristics and estimates of the corresponding
marginal utility from indoor temperature stem from the median household in
Mertesacker (2021). For this household, we obtain a γ of 25e /∆T 2.27 Figure 4.1
shows the resulting utility function and variations for the exemplary household.
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Figure 4.1.: Utility Functions of indoor temperature for varying valuation factors.

The heat demand in the case study, associated with the indoor temperature
choice, is based on a representative building from Diefenbach et al. (2015) and
IWU (2016). 28 Given the physical building characteristics, IWU (2016) pro-
vides heat demands for different indoor temperature levels. For simplification,
the calculation aggregates over the entire heating period, taking an average am-
bient temperature as input. Similarly, the indoor temperature can be interpreted
as an average over this heating period. The heat demand, in this case, is the
heat demand for one heating period given the chosen average indoor tempera-
ture. Such theoretical calculation methods for determining heat demand tend
to overpredict the real heat demand (Loga et al., 2012, Mertesacker, 2021). To
account for this overprediction, we assume an adaptation factor of 0.8 for our
representative building, based on Loga et al. (2012) and IWU (2016). The choice
of this factor is consistent with the results of Mertesacker (2021), who estimates
lower adaptation factors, but does not take into account domestic hot water
generation. The heat demand in our model h [kWh] is then approximated as a

27The underlying assumption of the household characteristics, the marginal utility estimates,
and the computation of the valuation factor is described in Appendix C.3.1.

28Refer to Appendix C.3.2 for a more detailed description of the building, the computation of
the heat demand, and the underlying assumptions.
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linear function, depending on the chosen temperature T [°C]:

h = 0.8 · 147.1m2 · (11.61 kWh

m2 ·◦ C
· T − 19.85

kWh

m2
) (4.12)

To evaluate a continuous investment choice of households, we estimate func-
tions for investment costs, CO2 emissions, and fuel prices based on real data
(BAFA, 2021, Danish Energy Agency, 2021, Pickert et al., 2022). The heat-
ing technologies include oil and gas condensing boilers with and without solar
thermal support and an air-source heat pump. As in the theoretical model, the
functions are formulated concerning the heating technology’s energy intensity
level fph. We assume a system lifetime and an assessment period of 20 years.
Table 4.1 shows the resulting technology functions.29 It should be noted that fuel
prices incorporate consumer taxes, including value-added tax, as well as electric-
ity and gas taxes. Additionally, electricity prices include the costs of emission
certificates derived from the European Emission Trading System. When inter-
preting the numerical results, one should keep in mind that these intricacies
introduce distortions in optimal policy instruments and deadweight loss.30

Table 4.1.: Estimated continuous functions of investment costs, CO2 emissions, and vari-
able costs.

Unit Function Data

Investment
costs

e c(fph) =
14, 100e−1.019·fph

Fitted function illustrated in
the left plot in Figure C.2.
Underlying fph data from col-
umn 3 and costs from columns
4 and 5 in Table C.2.

CO2 emissions kg/kWh epf(fph) =
−0.110 +
0.358 · fph

Fitted function illustrated in
the middle plot in Figure C.2.
Underlying fph data from col-
umn 3 in Table C.2 and emis-
sions derived from column 3 of
Table C.3.

Fuel price e /kWh p(fph) =
0.394 − 0.331 ·
fph

Fitted function illustrated in
the right plot in Figure C.2.
Underlying fph data from col-
umn 3 in Table C.2 and prices
derived from column 2 of Ta-
ble C.3.

29Appendix C.3.3 presents the underlying data and the computation of the technology func-
tions.

30One distortion, for example, is that since the electricity sector in Germany has not been fully
decarbonized, electricity prices today do not reflect the price of zero-emission electricity.
These could be higher, and the results would change accordingly.
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4.3.2. Results

Continuous model

From the negative gradient of the fuel price in Table 4.1 follows that p′(fph) < 0.
Considering Proposition 2 from Section 4.2, p′(fph) < 0 means that a CO2 price
(or a subsidy) has to at least offset the decrease of the heating system’s variable
fuel price induced by increasing fph. For such a CO2 price, present bias leads to
under-investment and, consequently, under-consumption of thermal energy. The
numerical results replicate this finding on the relationship between present bias,
investment, and consumption choices, as illustrated in Figure 4.2. In case of no
present bias, β = 1.0, there is no investment up to a CO2 price of 137e /tCO2.
The chosen indoor temperature at this price is 17.8°C. With an increasing CO2

price, the investments in lower fph increase. As heating costs decrease, the
indoor temperature increases, which is commonly referred to as the rebound
effect. At a CO2 price of 192e /tCO2, the household invests in zero-emission
heating technology and reaches the corresponding indoor temperature of 18.2°C.
As described in Section 4.3.1, we interpret this carbon tax rate τneut as the
implied emission damage to evaluate social welfare and consequently deadweight
loss. In the presence of present bias, the household invests less and chooses a
lower indoor temperature.
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Figure 4.2.: The chosen fph and indoor temperature levels depending on the CO2 price
for present biases of 1.0, 0.9, 0.8, and 0.7.

Figure 4.3 shows that the total CO2 emissions over the 20 years of heating
system lifetime follow the household’s investment and consumption choices. As
discussed in Section 4.2.3, the investment in lower fph impacts emissions more
than decreasing indoor temperature. In case of β = 0.7, emissions decrease from
81 tCO2 to 75 tCO2 for a CO2 price increase from 0e /tCO2 to 157e /tCO2,
due to the decrease in temperature. The emission decline turns more significant
once the investments in lower fph start at 158e /tCO2. At an emission price of
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235e /tCO2, the household invests in the zero-emission technology so that total
CO2 emissions are 0.

0 100 200
0

20

40

60

80

CO2-price in e /tCO2

C
O

2
-e
m
is
si
o
n
s
in

t

1.0 0.9 0.8 0.7

0 100 200
0

1,000

2,000

3,000

CO2-price in e /tCO2

D
ea
d
w
ei
gh

t
lo
ss

in
e

Figure 4.3.: Total emissions and deadweight loss over the heating system’s lifetime of 20
years depending on the CO2 price for present biases of 1.0, 0.9, 0.8, and 0.7.

The deadweight loss over the heating system’s lifetime of 20 years is illustrated
in Figure 4.3. It is based on the two-step procedure described in Section 4.3.1
and follows the chosen fph level. The deadweight loss constitutes the difference
to the case of an investment in the zero-emission technology in investment costs,
heating costs, gained utility from indoor temperature, and emission damage.
Whereby the emission damage is calculated by applying the minimal target-
consistent carbon tax rate inducing investments suitable for zero-emission goals.
The resulting deadweight loss is mainly driven by the emission damage reduced
by benefits through lower investment and heating costs. Without a CO2 price,
the household invests in the option with the highest fph, leading to a deadweight
loss above 3,000e due to the emissions. With an increasing CO2 price, the
indoor temperature first decreases slightly and with it, consequently, the emis-
sions. Once the household invests in lower fph, the deadweight loss decreases
convexly. Without present bias, the carbon tax rate τneut of 192e /tCO2 is suf-
ficient to incentivize investment in the zero-emission technology. As Proposition
2 in Section 4.2.3 suggests, present bias leads to a deadweight loss caused by
under-investment and, consequently, under-consumption. For β = 0.9, β = 0.8
and β = 0.7 the deadweight loss at τneut is 58e , 252e , and 613e , respectively.
The loss results from the present bias internality as the τneut addresses the emis-
sion externality. In Section 4.2.3, we argue that under a zero-emission target
regime, a mark-up on top of the CO2 price, which addresses the externality, can
address the internality and reach the zero-emission technology. The required
mark-ups in the case study for β = 0.9, β = 0.8 and β = 0.7 are 11e /tCO2,
25e /tCO2, and 43e /tCO2, respectively.

According to Proposition 3 in Section 4.2.3, a subsidy is an alternative to a
mark-up on the carbon tax. If the subsidy is high enough to induce investments
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in heat pumps, no CO2 price is needed since subsequent heating does not emit
CO2. Consequently, a negative relationship exists between the two policies. All
policy combinations that lead to the social optimum are illustrated in Figure 4.4.
The function’s slope describing the relationship between policies depends on the
level of present bias and is lower for a high present bias. The slope differences
originate from the differing times at which subsidies and CO2 prices affect the
household. Present bias hinders households from fully considering the CO2 price
in their optimal choice problem. Subsidies take effect directly at the time of the
investment. The higher the level of present bias, the more the CO2 price must
increase to reduce the required subsidy.
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Figure 4.4.: Combinations of CO2 price and subsidy that lead to the social optimum for
present biases of 1.0, 0.9, 0.8, and 0.7.

At a CO2 price of 89e /t and a subsidy of 8,000e , there is an intersection
of the functions for the different levels of present biases. Thus, at this combi-
nation of CO2 price and subsidy, the required policy for the social optimum is
independent of the level of present bias. The policy combination’s CO2 price
creates parity between the variable costs of all technology options. In other
words, the variable costs become independent of the chosen fph. We identify
this intersection in Proposition 2 in Section 4.2.3 by stating that present bias
leads to under-investment and, consequently, under-consumption as long as total
future discounted heating costs, including fuel and emission costs, for a marginal
increase in fph are greater than or equal to zero. If this is not the case, i.e.,
less efficient heating systems have lower future heating costs, present bias will
lead to over-investment. At the intersection between both cases, when future
discounted heating costs are equal for all fph, the investment costs determine
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the investment choice. As present bias affects the household’s weighting be-
tween marginal changes in investment costs and marginal changes in total future
discounted costs, it does not affect the household’s decision for equal future dis-
counted costs. 89e /t is the CO2 price, which offsets the differences in the fuel
costs. In this case, the subsidy must compensate households for the difference
in investment costs between CO2-emitting and zero-emission technologies. This
subsidy is 8,000e . As a result, the policy mix at the intersection of the functions
is optimal, independent of the level of present bias.31
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Figure 4.5.: The chosen fph and indoor temperature levels depending on the CO2 price
for valuation factors of 15e /∆T 2, 25e /∆T 2, and 35e /∆T 2.

The utility function of households is a critical assumption. As shown in Ap-
pendix C.3.1, we identify different valuation levels for indoor temperature. Fig-
ure 4.5 shows the fph level and chosen indoor temperature over CO2 price for
three different valuation factors given a present-bias of β = 0.8. A higher val-
uation factor implies a lower necessary CO2 price to incentivize investments in
fph. In the case of a low valuation factor, the household reacts first with de-
creasing indoor temperature, as this yields lower utility loss compared to the
additional costs of investing, as is shown in the right part of Figure 4.5. As soon
as investments in more efficient technologies are profitable, efficiency increases,
and the household increases the indoor temperature until the installation of the
zero-emission backstop technology.

The CO2 emissions and deadweight losses over the heating system’s lifetime
of 20 years illustrated in Figure 4.6 show a slight decline until the start of in-
vestments in lower fph followed by a convex decline until the investment into
the zero-emission technology. Before investments in more efficient technologies
start, the deadweight loss is the highest for the high valuation factor since the
under-consumption of indoor temperature weighs the most. The same logic also
applies to why households with a high valuation factor start investing in more

31The values of the optimal policy mix depend on the assumptions fed into the model, like fuel
prices, heating efficiencies, and the utility function.
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Figure 4.6.: Total emissions and the deadweight loss over the heating system’s lifetime
of 20 years depending on the CO2 price for valuation factors of 15e /∆T 2,
25e /∆T 2, and 35e /∆T 2 and a present bias of 0.8.

efficient heating systems at lower CO2 prices than households with lower val-
uation factors. As a higher level of investments decreases the deadweight loss
not only through increased efficiency but also through reduced fuel costs, they
exhibit a quadratic effect on the deadweight loss. Thus, the decline in welfare
is less significant for lower valuation households, which still react by decreasing
indoor temperature.

Discrete model

So far, the presented theoretical and numerical results assume continuous tech-
nology options so that all fph levels are feasible between the zero-emission and
the least efficient option. In reality, there is only a limited set of heating technolo-
gies. Figure 4.7 illustrates the household’s investment and consumption choices,
given a discrete technology set, including an oil condensing boiler, a gas con-
densing boiler, both boilers combined with solar thermal, and an air-to-water
heat pump. We define the set of technologies as the available fph levels from
Section 4.3.1 and choose the cost and emission levels according to the functions
from the continuous model (see Appendix C.3.3).

For each present bias level, there are four break-even CO2 prices that lead
to a technology switch. In case of no present bias, i.e., β = 1.0, the household
invests in the highest fph of 1.09, i.e., the oil condensing boiler, until a CO2

price of 139e /tCO2. For higher prices, the household chooses a fph of 1.02,
i.e., the gas condensing boiler. The break-even points for investing in the oil
condensing boiler combined with solar thermal and the gas condensing boiler
combined with solar thermal are at 145e /tCO2 and 150e /tCO2 respectively.
At a CO2 price of 170e /tCO2, the household invests in the heat pump. Thus, in
the discrete case 170e /tCO2 is the carbon tax rate τneut that induces investment
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Figure 4.7.: The chosen fph and indoor temperature levels in case of discrete technology
options depending on the CO2 price for present biases of 1.0, 0.9, 0.8, and
0.7.

in the zero-emission technology. The τneut is lower in the discrete case than
in the continuous case because the CO2 price only has to create a break-even
between the gas condensing boiler with solar thermal and the heat pump, and not
between an infinitesimally less efficient heating technology and the zero-emission
backstop technology. Analogously to the continuous case, present bias leads to
under-investment and under-consumption.
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Figure 4.8.: The total emissions and deadweight loss over the heating system’s lifetime
of 20 years in the case of discrete technology options depending on the CO2

price for present biases of 1.0, 0.9, 0.8, and 0.7.

The total CO2 emissions over the heating system’s lifetime of 20 years in
Figure 4.8 mirror the step function of fph. There is a nearly linear decrease
in CO2 emissions following the household’s temperature decreases and a more
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significant step whenever the CO2 price causes a switch between two heating
technologies. At the carbon tax rate τneut , there are zero CO2 emissions in case
of no present bias. The under-investment, due to present bias, leads to CO2

emissions increases. These increases are for present biases of β = 0.9, β = 0.8,
and β = 0.7, 49tCO2, 49tCO2, and 54tCO2. This step is significantly higher
than in the continuous case, as the next available technology is a gas condensing
boiler with solar thermal compared to a technology with infinitesimally higher
emission intensity. A mark-up on the CO2 price can address the internality and
incentivize investment in the heat pump, as stated in Section 4.2.3. For β = 0.9,
β = 0.8, and β = 0.7, the mark-up is 10e /tCO2, 21e /tCO2, and 36e /tCO2,
respectively. Following the two-step procedure described in Section 4.3.1, the
implied damage from CO2 emissions τneut is lower than in the continuous case,
naturally resulting in a lower total level of deadweight loss. The deadweight loss
due to present bias from under-investment and under-consumption is 101e for
a present bias of β = 0.7. The household chooses the oil condensing boiler with
solar thermal instead of a heat pump. For present biases of β = 0.9 and β = 0.8
the household chooses a gas condensing boiler with solar thermal, which leads to
negligible deadweight loss since τneut is defined as the necessarily implied damage
to break-even between the two heating technologies.

4.4. Discussion

In our stylized model, we find that single-instrument policies can be welfare opti-
mal and target-consistent even if the household is present biased. We implicitly
assume that all households, their valuation factors, and their level of present bias
are homogeneous. Accounting for household heterogeneity, however, implications
of policy instruments can differ, especially in distributional effects.

According to our analysis, the lower the valuation for heat, the higher the
CO2 price must be to induce investment in the zero-emission backstop technol-
ogy. Assuming the policymaker introduces a CO2 price sufficient for incentivizing
investment into the zero-emission backstop technology for a household with an
average valuation factor, low-valuation households would not invest in the zero-
emission technology. Instead, they would pay the CO2 price and heat less, while
high-valuation households invest in the zero-emission backstop technology. Sim-
ilarly, if instead of a CO2 price, the policymaker sets a target-consistent subsidy
for average households, low-valuation households will not invest sufficiently. For
households with higher valuations, however, the subsidy is not only sufficient but
too high: they receive more money from the state than would have been necessary
to stimulate the investment. The empirical literature suggests that high-income
households have a higher valuation for thermal energy than low-income house-
holds (Cayla et al., 2011, Mertesacker, 2021). This would imply that a single,
uniform subsidy, which aims to reach households with low valuation factors as
well, favors high-income households.
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Households also show heterogeneity regarding their level of present bias. As-
sume the policymaker sets a CO2 price that is target-consistent for households
with average present bias. As shown in Section 4.3.2, households with stronger
present bias (β < β̄) would underinvest and pay the CO2 price in future peri-
ods, heating less than optimal. Literature estimations of the correlation between
income and the present bias level range between no correlation and a negative
correlation, suggesting that low-income households experience higher levels of
present bias (Can and Erdem, 2013, Filippini et al., 2021, Meier and Sprenger,
2010).

Based on the above, it might therefore make sense for the policy maker to set a
CO2 price that is target-consistent for households with the highest present bias to
have a target consistent CO2 price for all households. However, there is another
real-world issue that our stylized model does not consider. In reality, investment
distortions exist, hindering households from investing. Possible distortions and,
thus, obstacles to investment include budget constraints, lack of access to capital,
technological or regional circumstances, or split incentives between landlords and
tenants. In cases where households cannot invest, otherwise target-consistent
CO2 prices may lead to high costs. And these costs increase with the height of
the chosen price. Subsidies can help to overcome budget constraints and lack
of access to capital. Suppose a subsidy is introduced as a single instrument. In
that case, there is no price signal to at least partially internalize the externalities
of households that cannot invest and whose heating is still associated with GHG
externalities.

According to the Tinbergen rule (Tinbergen, 1952), each political goal needs
its own political measure. For instance, income effects of certain political inter-
ventions can be addressed more efficiently and more consistently by non-linear
income taxation. Nonetheless, the distortionary effects and the investment bar-
riers discussed above could partly be addressed by targeted subsidies or non-
linear taxes on energy consumption. Targeted subsidies may incentivize certain
households to invest in zero-emission heating technologies, either otherwise being
unable to invest or having too low of a valuation for heat. Nonlinear taxation
may alleviate burdens to lower income households, in the case that the CO2

price does not lead to the investment into zero-emission technologies and heat-
ing still produces emissions. Both these options are difficult to implement and
need robust empirical evidence, which we therefore do not further elaborate on.

We show in Section 4.3.2 that an optimal policy combination of a CO2 price
and subsidy exists that can account for different (unknown) levels of present
bias.

The policy instruments also differ regardless of households’ heterogeneity. In
the case of a singular implementation of a CO2 price or bans on GHG emitting
technologies, the households bear the full costs. With (supplementary) subsidies,
by contrast, the state pays (part of) the costs. The latter may make sense from
a social justice perspective or to increase acceptance among the population.
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Our assumption that there is a backstop technology at finite costs available
may be oversimplified when considering real-world applications. Even within
one sector, the costs of backstop technologies can vary between households and
in time (Acemoglu et al., 2012). The differences might become even more pro-
nounced when comparing across sectors, such as heating and aviation. Policy
mechanisms must account for the fact that a uniform cross-sectoral CO2 price
could incentivize backstop technology adoption in one sector while leaving it un-
economical in another. For example, while a CO2 price alone might suffice to
drive adoption in one sector, another sector may require additional, targeted,
technology-specific investment subsidies to achieve similar outcomes.

Furthermore, governments themselves could potentially be present biased,
which could affect the effectiveness of measures to correct internalities. These
aspects of government were excluded in this study, which assumed a social plan-
ner with a complete long-term orientation. However, elected officials are often
under pressure to implement short-term solutions such as temporary tax cuts or
spending increases before elections, complicating the design of policies for long-
term welfare improvements. As mentioned in the literature review, one approach
to addressing governments own potential present bias is to establish institutions
like independent central banks, fiscal rules, or automatically adjusting spending
for social security systems and other areas of government. Central banks, for ex-
ample, often operate under rules designed to take a long-term view. While these
rules are not infallible and may sometimes be broken, they provide a framework
that can help mitigate the short-term political pressures prevalent in political
decision-making.

Given the heterogeneity of households and their potential investment con-
straints, as well as the possible desirability of distributing costs between house-
holds and the state, there are arguments in favor of combining taxes (or bans)
with subsidies. By distinguishing the effects of policies on investment and uti-
lization decisions, our analysis can support a nuanced discussion of appropriate
policy mixes.

4.5. Conclusion

The present chapter examines the impact of present bias on optimal environmen-
tal policies aimed at achieving zero emissions. The study generalizes Heutel’s
model for policy design for externality-producing durable goods when internal-
ities are present. Besides increasing efficiency, investments in a new heating
system may substitute the fuel used. Accounting for this substitution adds the
dimensions of fuel price and emission intensity to our technology space. The
generalization allows us to include a backstop technology with finite cost and
analyze policy choices that reach zero emissions.
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This work contributes to the scientific literature in three ways. First, we gen-
eralize Heutel’s model by allowing technologies to differ in fuel price and emis-
sion intensity. Second, we introduce a model framework for developing target-
consistent environmental policies given a backstop technology. It can serve as
one element within a toolbox for welfare analysis given political targets beyond
externality pricing. Third, we apply the model framework to the case of de-
carbonization in the German heating sector of private households under present
bias and derive numerical magnitudes of the present bias effects.

We find that, generalizing Heutel’s propositions, one instrument can be suffi-
cient to address both externality and internality. Still, a combination of subsidies
and taxes can be advantageous, as we show that there exists a tax-subsidy com-
bination that is optimal regardless of the present bias level. This finding can be
applied to comparable investment decisions in externality (GHG emission) pro-
ducing durable goods, such as private mobility investments. The existence of the
optimal policy mix is particularly relevant because the level of present bias is pri-
vate information unknown to the policymaker and heterogeneous among house-
holds. Policymakers could avoid distributional effects by utilizing the present
bias agnostic optimal policy mix. There are further arguments supporting pol-
icy mixes that fall short in our stylized model, including heterogeneity in the
valuation of heating, investment distortions, and the costs’ distribution between
households and the state.

Based on our analysis, there remains room for further research. In contrast to
our greenfield analysis with constant prices, in reality, households already own
heating systems, and the heating system stock’s age structure is heterogeneous.
Therefore, households are faced not only with the question of which technology
to invest in, but also whether it is worth investing in a new heating system early
on before the existing one breaks down. This raises questions about the timing of
policy instruments, e.g., concerning the interdependencies of price paths of CO2

taxes or fuel prices over time. Here, as well, the question arises as to what con-
stitutes target-consistent policy instruments. The issue could prove complicated,
as it is difficult to determine under which circumstances early heating systems
replacement is required to achieve climate targets. Further, we discussed the
role of household heterogeneity in our findings qualitatively. Households differ
in their level of present bias, their current heating systems, and their financial
capabilities. A more detailed examination of these properties could, in addition
to theoretical analyses, e.g., concerning optimal policy mixes across households,
also quantify effects at the level of the entire German building stock.
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5. Digitalization and energy consumption in

the EU: sector-specific impacts and

mediating factors

5.1. Introduction

The digital transformation and energy transition are reshaping modern economies.
Information and communication technology (ICT) has become a key driver, with
global digital transformation spending projected to reach $3.9 trillion by 2027,
growing at 16.1% annually (IDC, The International Data Corporation, 2024).
Meanwhile, the International Energy Agency’s Net Zero Emission by 2050 sce-
nario assumes a 14% decline in per capita energy consumption by 2030 (IEA,
2023b). The two shifts raise a central question: How does the growth of the
digital economy, powered by ICT capital, affect energy consumption?

Examining the interaction between digitalization and energy consumption re-
quires clear definitions of both. Technically, digitalization refers to the “increased
computation, storage, and transmission of data” (Goldfarb and Tucker, 2019).
Generalizing the concept, Lange et al. (2020) describe digitalization as “the
increasing application of ICT throughout the economy and society”. In this
paper, digitalization is defined as the share of ICT capital —including computa-
tion, communication, and software or database assets— in total capital. Energy
consumption refers to the use of final energy to deliver services, such as heat,
lighting, or mechanical force. According to Hunt and Ryan (2015), energy con-
sumption depends total disposable income for consumption, the menu of energy
services offered, and the efficiency state of the technologies providing the services.

Reflecting on this definition, the specific impact of digitalization can be ex-
pected to vary across energy services, which are commonly categorized into sec-
tors such as industry, transport, and residential (Enerdata, 2023a). The increas-
ing shares in ICT capital may affect the share of industrial processes in the
total economy, resulting in a restructuring of the economy (World Bank, 2023a).
In the transport sector, digitalization may improve route choices and optimize
vehicle utilization, thereby increasing the sector’s energy efficiency (European
Commission, 2020, Noussan and Tagliapietra, 2020, Turan et al., 2023). Lastly,
the residential sector offers a distinctive perspective on how digitalization alters
domestic energy consumption (Paneru and Tarigan, 2023). Smart technologies,
such as smart meters and home automation systems, enhance energy efficiency
by allowing better control and monitoring of energy use in households. The
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sector-specific effects illustrate the complexity and diversity of digitalization’s
impact on disaggregated energy consumption.

The European Union (EU) offers a compelling case for examining the rela-
tionship between digitalization and energy consumption, combining advanced
digital infrastructure, ambitious climate policies, and diverse energy systems
among its 27 member states (former 28). The EU’s commitment to becom-
ing carbon-neutral by 2050, set out in the European Green Deal, highlights the
need to understand how digital transformation impacts energy demand and us-
age patterns across sectors (Fetting, 2020). The Digital Decade Policy Program
(DDPP), launched in January 2023, reflects the EU’s integrated approach to
digitalization and environmental objectives. By promoting investments in smart
technologies and advanced connectivity, the DDPP aims to enhance real-time en-
ergy monitoring and efficiency—both crucial to meeting the EU’s climate goals
(European Commission, 2023).

Against this backdrop, this paper investigates the question: How does the
relative importance of ICT capital in the economy influence sector-specific energy
consumption patterns in the EU, and through which key mediating factors does
this influence occur? The question is particularly relevant given the recent surge
in digital technology adoption. To our knowledge, this is the first study to
specifically address it at the sectoral level. We examine the relationship between
digitalization, proxied by the share of ICT capital, and energy consumption in
the EU’s industrial, transport, and residential sectors.

We contribute to the literature in three ways. First, we investigate the effect
of digitalization on energy and electricity consumption in the EU from 2007 to
2020. The examination sheds light on key aspects of the energy transition, specif-
ically the reduction of final energy consumption and the electrification of energy
use. To capture dynamic effects, we employ the system generalized method of
moments (system GMM). Second, we extend our analysis to the sectoral level,
examining how digitalization affects energy consumption in the industry, trans-
port, and residential sectors. The approach reveals heterogeneous impacts across
economic domains. Third, we explore mediating factors that influence the rela-
tionship between digitalization and energy consumption, focusing on structural
and efficiency effects. Sector-specific energy efficiency indicators are used to
quantify efficiency changes.

Our results can be summarized as follows. First, energy and electricity con-
sumption in the EU-28 exhibit strong persistence, with past usage levels closely
predicting current consumption. Second, digitalization, measured by the share
of ICT capital, is associated with reductions in both overall energy and elec-
tricity consumption, suggesting efficiency gains and potential shifts towards less
energy-intensive economic structures. Specifically, a 10% increase in the ICT
capital share correlates with approximately a 0.74% decrease in energy consump-
tion and a 0.47% decrease in electricity consumption. Third, sectoral analysis
shows consumption reductions in the industry and residential sectors, while the

92



5.2. The relationship between digitalization and energy consumption

transport sector shows no significant effect, highlighting sector-specific dynam-
ics. Lastly, our exploration of the indirect effects of digitalization reveals that,
in the industry sector, the impact is mediated by shifts towards less complex,
and potentially less energy-intensive, activities and improvements in energy ef-
ficiency. In the residential sector, the positive role of digitalization in enhancing
energy efficiency is evident, underlining the importance of smart and efficient
technologies in reducing consumption.

The remainder of this chapter is structured as follows. Section 5.2 provides
a conceptual background on the relationship between digitalization and energy
consumption. Section 5.3 describes the empirical approach. In Section 5.4, the
data used is presented. Section 5.5 shows empirical findings, and Section 5.6
discusses their implications. Finally, Section 5.7 concludes.

5.2. The relationship between digitalization and
energy consumption

Exploring factors influencing energy consumption is an established area of schol-
arly inquiry. Recently, including digitalization as a potential determinant has
added a new dimension to the field. Thus, the literature on energy consumption
determinants can be categorized into three strands: identifying the principal
factors that drive energy consumption, integrating digitalization within these
factors, and developing approaches to measure digitalization.

An extensive body of literature focuses on the determinants of energy con-
sumption, primarily examining the impacts of economic activity and energy
prices (e.g., Ahmad et al., 2020, Kraft and Kraft, 1978, Ozturk, 2010). These
studies consistently find that energy consumption positively correlates with in-
come and negatively with energy prices. Moreover, recent studies have expanded
the traditional energy consumption function by incorporating additional factors.
Both theoretical and empirical research have begun to explore the influence of in-
dustrial structure, financial development, R&D expenditures, and demographic
trends on energy consumption (Adom et al., 2012, Lee et al., 2021, Mi et al.,
2015), financial development (Acheampong, 2019, Sadorsky, 2010), research and
development expenditures (R&D) (Churchill et al., 2021, Godil et al., 2021), and
demographic structure (Liddle, 2014) as potential drivers of energy consumption.
The studies commonly find that an economy’s industrial structure often corre-
lates with its energy consumption, with more industrialized economies generally
consuming more energy. Other factors, such as financial development, indirectly
shape energy consumption via economic and technological shifts.

As the role of digitalization in the global economy intensifies, a growing body
of research has started to explore its effects on energy consumption, reporting
seemingly conflicting results regarding the effects’ direction. Some studies, such
as Schulte et al. (2016) and Han et al. (2016), find that increasing digitalization
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correlates with lower energy consumption. In contrast, others, including Kouton
(2019), Saidi et al. (2017), and Sadorsky (2012), argue that the effects of digital-
ization are associated with an increase in energy consumption. The conflicting
results partially stem from the use of different econometric approaches and the
analysis of different samples of countries and periods, which likely reflect various
growth phases of digitalization. Additionally, many of the studies do not consider
the mediating factors through which digitalization affects energy consumption.

To clarify the mediating factors in the relationship between digitalization and
energy consumption, Lange et al. (2020) employ an analytical model that pin-
points key energy consumption reducing channels such as structural changes and
energy efficiency. In their analysis, they provide a real-world interpretation of
the factors. Digitalization is seen as a driver of structural change in an economy,
often leading to a greater emphasis on the tertiary (services) sector, as digitaliza-
tion typically enhances the provision and efficiency of service-oriented activities.
Regarding energy efficiency, digitalization promotes advancements through de-
materialization—reducing the material and energy intensity of processes—and
optimizing production processes to enhance energy use efficiency. The empirical
significance of these channels has been considered in the literature (e.g., Börjes-
son Rivera et al., 2014, Koomey et al., 2013, Lange et al., 2020). However, the
review by Horner et al. (2016) illustrates that the observed results depend highly
on the specific scope and variables defined by researchers. Consequently, studies
focusing on the total effect of digitalization on energy consumption (Schulte et al.,
2016), the direct effect (Aebischer and Hilty, 2015, Andrae, 2019) or only one
indirect effect, e.g., sectoral change (Fix, 2019, Rieger, 2020) or energy efficiency
(Joyce et al., 2019, Santarius et al., 2020), are hardly comparable.

Recognizing the gaps in the literature, few studies have attempted to unify
the seemingly conflicting results within a comprehensive empirical framework.
Recently, Xu et al. (2022) and Ren et al. (2021) have conducted mediation anal-
yses to understand the interplay between digitalization and energy consumption,
recognizing both direct and indirect effects. While Ren et al. (2021) focus on
China, Xu et al. (2022) examine a sample of 109 major economies worldwide.
Collectively, the studies apply seven variables that relate to the mediating factors
identified by Lange et al. (2020): (1) factors like industrial structure distortion
and upgrading pertaining to changes in economic structure; and (2) elements in-
cluding human capital, financial development, and technological innovation and
progress, which are associated with the technical channel (i.e., energy efficiency).
Although the measures effectively convey digitalization’s impact through general
economic dimensions, they do not offer a clear energy interpretation akin to that
provided by Lange et al. (2020). Our research aims to develop measures for
mediating factors in alignment with Lange et al. (2020). It considers the di-
versity of energy services across various sectors and relates them closely to an
energy-centric interpretation, utilizing reproducible European data.

Given the varied impacts of digitalization identified in prior research, under-
standing the definitions and measurements of digitalization is essential. Accu-
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rately defining measures of digitalization presents a significant challenge (Coyle
and Nguyen, 2019, Goodridge et al., 2021), as reflected in the energy consump-
tion literature, which employs a range of measures to analyze the effects of
digitalization on energy use. The measures encompass access and usage met-
rics, focusing on the extent of digital technology’s penetration within a society,
such as the percentage of internet users and mobile cellular subscriptions (e.g.,
Kouton, 2019, Sadorsky, 2012, Usman et al., 2021); composite indices, aiming to
capture both the breadth and depth of digital penetration by combining multi-
ple indicators to provide a more comprehensive overview of digital penetration
and its sophistication within an economy (Lin and Huang, 2023, Shahbaz et al.,
2022, Xu et al., 2022); and economic investment metrics, reflecting the intensity
of commitment to digital transformation from an economic investment perspec-
tive, such as ICT capital (e.g., Bernstein and Madlener, 2010, Hanclova et al.,
2015, Xu and Zhong, 2022).

From the literature reviewed above, three main findings emerge. First, al-
though most studies examine the effects of digitalization on aggregated energy
consumption, understanding of its impact on specific sectors or consumption ar-
eas remains limited. The research gap underscores the need for more detailed
investigations into the varied influences of digitalization across energy use sectors.
Second, in their aim to establish a comprehensive empirical framework, many
studies rely on general economic measures, such as human capital and financial
development, as proxies for the indirect effects of digitalization. The approach
that empirical analysis fails to integrate measures informed by energy economics
for the indirect effects when examining the relationship between digitalization
and energy consumption. Lastly, empirical evidence focusing on the impact of
digitalization on energy consumption within the European Union (EU) is lim-
ited, highlighting an opportunity for region-specific studies that could inform
EU-centric policies and strategies.

Addressing the gaps, this paper extends the existing literature by analyzing
the impact of digitalization on energy and electricity consumption at the sectoral
level, specifically focusing on the industry, transport, and residential sectors. Our
study explores the mediating roles of economic structure and energy efficiency
in the digitalization-energy consumption relationship. Finally, our research pro-
vides nuanced insights into the EU specific dynamics. Our approach utilizes a
unique EU-specific dataset to quantify digitalization as the share of ICT capi-
tal in total capital, including detailed, sector-specific ICT capital data for the
industry, transport, and residential sectors.

5.3. Methodology

This section outlines the empirical strategy to assess the impact of digitalization
on energy consumption, detailing the econometric framework and methods for
addressing endogeneity.
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5.3.1. Empirical strategy

We are particularly interested in understanding the effects of digitalization on
both aggregate and disaggregate energy consumption, while identifying the rela-
tionship’s mediating factors. Our hypothesis posits that a higher level of digital-
ization correlates with reduced energy and electricity consumption. We suggest
that the negative effect is indirectly mediated by factors such as changes in eco-
nomic structure and improvements in energy efficiency, in line with the findings
of Lange et al. (2020).

Figure D.1 summarizes the three aspects of our empirical analysis. (1) The
aggregate analysis illustrates the overarching correlation between enhanced ICT
capital and energy usage. (2) A disaggregated analysis distinguishes among
the industry, transport, and residential sectors. The sector specific examina-
tion reveals the nuanced dynamics of digitalization’s impact on energy consump-
tion. In the industry sector, digitalization fosters a shift towards service-oriented,
less energy-intensive activities and enhances energy efficiency through improved
control and optimization of manufacturing processes (Crozet and Milet, 2017,
OECD, 2020, Paschou et al., 2020). For the transport and residential sectors,
the emphasis lies on the advancement in energy efficiency facilitated by digital
technologies such as smart systems in vehicles and homes that optimize energy
use (Giannopoulos, 2004, Helmke, 2022, Lyons et al., 2019, Morán et al., 2016).
(3) The mediation analysis refines the insights by exploring underlying mecha-
nisms, such as the structural shift in the industry sector towards services and the
overall enhancement of energy efficiency enabled by digitalization across sectors.

For the aggregated analysis, we calculate the overall share of ICT capital by
summing the ICT capital across the industry, transport, and residential sectors
and then dividing the total by the sum of capital across sectors. The aggregate
ICT capital share is linked to energy and electricity consumption throughout the
entire economy, establishing a base model for our study. In contrast, the disag-
gregated analysis focuses on the specific impacts within the industry, transport,
and residential sectors. Here, we calculate the share of ICT capital to total cap-
ital within each sector, tailoring both the measures of digitalization and energy
consumption to the corresponding sector. The approach allows us to illuminate
the underlying effects identified in the aggregated analysis and to explore the ob-
served effects and potential sector-specific mediating factors at a more granular
level.

Two potential mediating variables could influence the relationship between
digitalization and energy consumption. The first, related to the structure of the
economy, focuses particularly on the industry sector. Lange et al. (2020) ar-
gue that digitalization may drive the economy toward tertiarization, facilitated
by digital technologies that notably support the development of new service-
oriented products. Consequently, we examine how a structural shift within the
industry sector mediates the relationship between digitalization and energy con-
sumption. The second potential factor linking digitalization to energy consump-
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Figure 5.1.: Structure of the empirical approach including (1) aggregated, (2) disag-
gregated, and (3) mediation analysis of the relationship between ICT and
energy and electricity consumption.

tion is the enhancement of energy efficiency in delivering energy services across
the industrial, transport, and residential sectors. In the industrial sector, digital
technologies can increase efficiency through improved technical control and au-
tomation of the machinery or optimized process controls (Lin and Huang, 2023).
In the transport sector, beyond technological advancements within the vehicles,
efficiency gains also stem from facilitated information and guidances of users,
improved operation of networks, and freight transport systems (Giannopoulos,
2004). Meanwhile, in the residential sector, digitalization facilitates more effi-
cient energy use through additional sensors and control systems, such as in smart
thermostats (Lyons et al., 2019, Morán et al., 2016).

5.3.2. Energy consumption determinants and digitalization’s
impact

As highlighted in Section 5.2, the primary determinants of energy consumption
in an economy are income and energy prices. Building on this understanding, our

97



Digitalization and energy consumption in the EU

energy consumption model is based on this fundamental relationship, as shown
in the following equation32:

ln(Energy consumption) = β0+β1ln(Income)+β2ln(Energy price)+ϵ. (5.1)

where income and energy prices are treated as endogenous variables, acknowl-
edging that the factors not only influence energy consumption but are also im-
pacted by it, forming a dynamic and interdependent relationship. The energy
consumption function is further extended to include other covariates known to
impact energy consumption: Heating degree days (HDD) serve as a proxy for
variations in heating demand due to weather conditions, a dummy variable cap-
tures the effects of the financial crisis in 2009, and another dummy variable
accounts for the COVID-19 pandemic in 2020. The variables are assumed to be
exogenous to energy consumption. Thus, equation (5.1) is expanded as follows:

ln(Energy consumption) = β0 + β1ln(Income) + β2ln(Energy price)

+ β3ln(HDD) + β4ln(Fin. crisis)

+ β5ln(COV ID) + ϵ.

(5.2)

Given our focus on the impact of digitalization on energy consumption, we
incorporate digitalization as a key explanatory variable in the model, following
the approach of Ren et al. (2021), Lange et al. (2020), and Schulte et al. (2016).
Consequently, equation (5.2) is extended to include digitalization, resulting in
the following formulation:

ln(Energy consumption) = β0 + β1ln(Income) + β2ln(Energy price)

+ β3ln(HDD) + β4ln(Fin. crisis)

+ β5ln(COV ID)

+ β6Digitalization+ ϵ.

(5.3)

In equation (5.3), income, energy prices, and digitalization are treated as en-
dogenous variables. The factors not only influence energy consumption but are
also impacted by it, forming a dynamic and interdependent relationship. We
apply the model to both energy and electricity consumption. For the empirical
analysis, equation (5.3) is re-parameterized into an estimable form as follows:

32The formal derivation of equation (5.1) aligns with the theoretical framework explained by
Hunt and Ryan (2015).
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ln(Energy consumption)it = β0 + β1ln(Incomeit)

+ β2ln(Energy priceit)

+ β3Digitalizationit + β4ln(HDDit)

+ β5Fin. crisisit + β6COV IDit + ϵit,

(5.4)

where i refers to the country and t refers to the time period. Moreover, fol-
lowing the existing empirical literature (e.g., Çoban and Topcu, 2013, Sadorsky,
2010), energy consumption in the previous period has a dynamic effect on cur-
rent energy consumption. Therefore, equation (5.4) is extended by the lagged
dependent variable to equation (5.5), representing the model to be estimated to
derive the effect of digitalization on energy consumption.

ln(Energy consumption)it = β0 + θ0ln(Energy consumption)it−1

+ β1ln(Incomeit)

+ β2ln(Energy priceit)

+ β3Digitalizationit + β4ln(HDDit)

+ β5Fin. crisisit + β6COV IDit + ϵit.

(5.5)

5.3.3. Estimating indirect effects of digitalization on energy
consumption

Our econometric approach to estimating the indirect effects of digitalization on
energy consumption involves a three-step process, as outlined by VanderWeele
(2016), Zhao et al. (2010), and Baron and Kenny (1986). Initially, the first step
focuses on estimating the potential influence of digitalization on the mediating
variables. Subsequently, the second step examines the impact of the mediating
variables on energy consumption. In the third step, we apply the product method
to compute the indirect effects.

In the first step, we estimate the effect of digitalization on each individual
mediating variable within all mediating variables, resulting in one equation per
mediating variable as depicted in equation (5.6). The set of Covariatesit in each
equation is tailored to the corresponding mediating variable. The coefficients α2

in these equations capture the effects of digitalization on each mediating variable.

Mediating variableit = α0 + α1Mediating variableit−1

+ α2Digitalizationit + α3Covariatesit + ϵit,
(5.6)
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Following the notation in equation (5.5), the effect of the mediating factors
on energy consumption can be estimated in the second step through equation
(5.7). Here, we include all Mediating variables of the corresponding sector in
the same energy consumption equation. In contrast to estimating one function
per mediator, the approach accounts for potential effects between the mediating
variables (VanderWeele, 2015). The formulation prevents us from counting me-
diating effects double, which might happen if they are estimated separately. The
vector θ1 contains the coefficients of the mediating variables in explaining the
dependent variable energy consumption. If the equation accounts for all medi-
ating effects, coefficient λ3 would be the direct effect of digitalization on energy
consumption.

ln(Energy consumption)it = λ0 + θ0ln(Energy consumption)it−1

+ θ1ln(Mediating variables)it

+ λ1ln(Incomeit) + λ2ln(Energy priceit)

+ λ3Digitalizationit + λ4ln(HDDit)

+ λ5Fin. crisisit + λ6COV IDit + ϵit.

(5.7)

Using the product method, the indirect effect of digitalization on energy con-
sumption is calculated as the product θ1α2 (VanderWeele, 2016). A mediating
effect is deemed significant if both coefficients θ1 and α2 are significant. The
total effect is the sum of direct and indirect effects, represented as (λ3 + θ1α2).
33

5.3.4. Addressing endogeneity in energy consumption modeling
with GMM estimators

When estimating equation (5.5), we encounter a scenario where the lagged de-
pendent variable serves as one of the explanatory variables, while simultaneously,
the dependent variable might negatively influence the explanatory variable. This
setup inherently introduces simultaneous endogeneity into the model. Therefore,
we employ the system GMM estimator, as proposed by Arellano and Bover (1995)
and further developed by Blundell and Bond (1998), to address the challenges
of dynamic panel bias and the potential endogeneity of regressors. The choice
of system GMM over traditional panel data estimation techniques such as Or-
dinary Least Squares (OLS) or the Within Group estimations is motivated by
their inability to adequately control for these issues. Specifically, OLS estimates
are biased and inconsistent due to the omission of unobserved time-invariant

33Note that we proceed with the mediation analysis even if digitalization demonstrates a sta-
tistically insignificant effect on energy consumption, as estimated in equation (5.5). The
approach aligns with views expressed in the relevant literature, such as (Jiang et al., 2021,
e.g.,), which argue that a significant effect is not essential for examining mediation effects.
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country effects. The OLS levels estimate of the coefficient on the lagged de-
pendent variable tends to be biased upwards, as it is positively correlated with
the permanent effects in dynamic panel regressions. On the other hand, Within
Group estimations attempt to mitigate this issue by controlling for unobserved
country-specific effects. However, the estimate of the coefficient on the lagged
dependent variable tends to be biased downwards (Hsiao, 2022, Nickell, 1981).

The system GMM estimator is designed to yield consistent and efficient param-
eter estimates in scenarios where independent variables are not strictly exoge-
nous, as they are correlated with past and current error terms, and in cases char-
acterized by heteroscedasticity and autocorrelation within individuals Roodman
(2009). It effectively addresses endogeneity by instrumenting the lagged depen-
dent variable and/or any other endogenous variables with instruments presumed
to be uncorrelated with the fixed effects (Nickell, 1981, Roodman, 2009). The
system GMM offers enhanced efficiency over the difference GMM estimator by
assuming the first differences of instruments are not correlated with fixed ef-
fects, thus allowing the inclusion of more instruments. It also addresses the
potential for downward bias in estimates due to weak instruments, a concern
highlighted by (Roodman, 2009), and proves particularly beneficial for series re-
sembling random walks, where difference GMMmay introduce large finite sample
biases Blundell and Bond (1998). Nevertheless, the system GMM is subject to
a primary concern, which is the over-identification problem due to an excessive
number of instruments. To avoid this issue, we limit our instruments by col-
lapsing the instrument matrix and choosing fewer lags instead of exploiting all
available lags as instruments (Bazzi and Clemens, 2013).

We conduct two key diagnostic tests to ensure the reliability of our GMM esti-
mates. Firstly, we use the Arellano and Bond (1991) test to examine the residuals
in differences, working under the null hypothesis that there is no serial corre-
lation. Secondly, given that the system GMM estimator relies on instrumental
variables, we implement the Hansen (1982) test for over-identifying restrictions,
where the validity of the instruments constitutes the null hypothesis. It is gen-
erally acknowledged that two-step system GMM estimation yields more efficient
estimates compared to one-step system GMM. However, it is important to note
that the efficiency gain from using the two-step approach is relatively modest.
Moreover, asymptotic standard errors associated with two-step GMM estimators
can exhibit significant downward bias in small sample sizes (Blundell and Bond,
1998, Hoeffler, 2002). Given the limited number of groups in our analysis, we
apply the one-step system GMM estimation method.

5.4. Data

Our empirical analysis employs panel data spanning from 2007 to 2020 for 28 EU
countries, covering aspects such as energy consumption, digitalization, economic
activity, economic structure, and energy efficiency. Table D.1 in Appendix D.1
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comprehensively lists the variables used in our analysis. It provides summary
statistics for each variable, including mean, minimum, maximum, and standard
deviation values. Additionally, the table details the units of measurement for
variables and distinct symbols assigned to them, which will be consistently used
throughout the remainder of this paper. In the following, we outline the rationale
behind selecting variables for our regression analysis, focusing on factors affecting
energy and electricity consumption within the EU.

5.4.1. Main variables

The primary dependent variable is energy consumption, including both final
energy consumption per capita and electricity consumption per capita, with a
focus on the industry, transport, and residential sectors. Collectively, the sectors
account for over 80% of the EU’s final energy consumption, according to (Ener-
data, 2023a). Our sector-specific approach significantly enhances the precision
and relevance of our analysis, aimed at discerning the impact of digitalization
on energy dynamics. By excluding non-energy uses, we ensure a more accurate
evaluation of energy consumption patterns, thereby eliminating potential biases
arising from activities unrelated to direct energy use.

Data on both aggregate and sector-specific energy and electricity consumption
are derived from the IEA’s World Energy Balances (IEA, 2023a). To facilitate
a standardized comparison, we normalize the energy data by dividing the total
energy consumption by the population size of each respective country, resulting
in per capita energy consumption metrics. The population data necessary for the
calculation are sourced from the World Development Indicators (World Bank,
2023b). The normalization technique is critical for adjusting for population size
variations among the EU-28 countries, thereby ensuring that our analysis of
energy consumption trends and patterns is meaningful.

Moving to the independent variables, digitalization represents our primary
variable of interest. We utilize the January 2023 release of the EU-KLEMS
Growth and Productivity Accounts to measure digitalization, which provides de-
tailed data on investments in ICT (Information and Communication Technology)
and non-ICT assets (Stehrer and Sabouniha, 2023). This dataset segments cap-
ital investments into three ICT categories—computing equipment, communica-
tion devices, and software—and non-ICT categories such as buildings, transport
equipment, and other machinery. The data classification follows the NACE Rev.
2 1-digit system34. For our sector-specific analysis, we focus on the classes of
C Total manufacturing (industrial sector), H Transportation and storage (trans-
port sector), and L Real estate activities (residential sector). For consistency,
we rely on the real estate sector as approximation of digitalization in the res-
idential sector. In Appendix D.3, the disaggregate analysis is repeated with a

34The NACE Rev. is a statistical classification of economic activities in the European Com-
munity. For more information, refer to eurostat (2008).
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consumption-side measure of digitalization. We derive sector-specific digitaliza-
tion measures by calculating the ratio of total ICT capital to total capital stock
for each sector, facilitating an assessment of digitalization’s extent within them.
An aggregated digitalization measure across the three sectors is computed based
on the share of ICT capital.

Our analysis includes economic activity as the second independent variable due
to its well-established correlation with energy consumption. We utilize Gross Do-
mestic Product (GDP) as the primary metric to represent economic activity in
the aggregated examination acknowledging its effectiveness in explaining scale
differences in energy consumption. Across sectors, we keep GDP as a proxy for
activity level, while we recognize that it may not fully capture structural dif-
ferences. For instance, GDP alone may mask significant structural differences
between countries in the industry, where variations in the composition of produc-
tion can influence energy use. The structural aspects are addressed separately
in the mediation analysis. For both the industry and the transport sector, GDP
has been similarly applied as a proxy for activity in previous research (Ecola and
Wachs, 2012, Salim et al., 2014). In the residential sector, we use private con-
sumption (total household expenditure) as a proxy to more accurately capture
the nuances of domestic activity levels and their impact on energy consump-
tion. The choice is informed by the documented connection between household
lifestyle, economic status, and energy use in Thomas and Rosenow (2020). Cru-
cially, all economic indicators are expressed in real, per capita terms. The nor-
malization is essential to ensure data are comparable across countries and time,
mitigating spurious correlations arising from inflation and population growth.

We examine the impact of energy prices, recognizing their significant influ-
ence on the energy consumption behaviors of both consumers and industries.
Higher energy prices generally lead to decreased consumption due to escalated
costs, while lower prices may incentivize increased usage. We utilize the real
energy price index for both industry and households, which incorporates levies
and taxes, as provided by the IEA’s Energy Prices and Taxes database (IEA,
2022). The index represents a quantity-weighted average of various energy prod-
ucts—such as oil, natural gas, coal, and electricity—across industrial and res-
idential consumer categories, as detailed in (IEA, 2020). It takes into account
the prices faced by end-users, including both non-tax components—like genera-
tion costs, network charges, and profit margins—and taxes, such as excise taxes
and value-added taxes. To neutralize the effect of inflation, nominal prices are
adjusted using country- and consumer-specific price indices. Our chosen price
index effectively reflects the cross-country and temporal variations attributable
to differences in regulatory, tax, market conditions, or consumer behaviors. We
apply it as a control in both the final energy and electricity consumption mod-
els. While using an energy price index in the electricity model may introduce
noise from other energy carriers, we retain it for two reasons: it sufficiently re-
flects variations in electricity costs, and comprehensive electricity price indices
accounting for complex retail structures are limited.
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5.4.2. Control variables

In estimating the energy consumption function, we control for three variables.
The number of HDD per country per year serves as an exogenous control vari-
able, sourced from the ODYSSEE database (Enerdata, 2023b), which is par-
ticularly pertinent to the residential sector due to its dependency on ambient
temperatures and heating requirements (Hart and de Dear, 2004). To account
for significant historical events that likely influenced energy consumption pat-
terns, we also include two dummy variables: one representing the 2008 financial
crisis and another for the 2020 COVID-19 pandemic. These variables are essen-
tial in acknowledging the distinct and significant impacts these events had on
energy usage. Moreover, for the industrial sector, we account for the share of free
emission allowances within the EU ETS (EEA, 2024). This metric, calculated as
the ratio of free allowances a country receives to its total allocated allowances,
serves to gauge the extent to which the sector is financially motivated to reduce
emissions. This approach directly reflects the degree of incentive for industries
to adopt emission-reducing practices based on the allocation of free allowances.

5.4.3. Mediating variables

Our analysis explores the indirect effects of digitalization on energy consump-
tion through two mediating factors: the economic structure, particularly within
the industrial sector, and energy efficiency across the industrial, transporta-
tion, and residential sectors. This section details the methods for quantifying
economic structure and energy efficiency at a sectoral level, and the rationale
behind choosing these variables as mediators.

Understanding the varied energy consumption profiles across different eco-
nomic structures, such as industry-heavy versus service-oriented economies, is
essential due to their differing levels of energy intensity and efficiency. These
structural distinctions are key to analyzing energy consumption and act as a
crucial mediator in the relationship between digitalization and energy usage,
given that the integration of ICT capital can lead to varied effects depending on
the economic context. The literature has proposed various methods to measure
these economic structures. Lin and Huang (2023) suggest using the share of
industrial value-added in GDP as an indicator of industrial structure, while Xu
et al. (2022) develop an industrial distortion index based on the Euclidean dis-
tance between the output value share and employment share within an economy.
Additionally, Ren et al. (2021) measure industrial upgrading through the ratio of
output value between tertiary and secondary industries. These approaches aim
to quantify the economic structure but may simplify the complex dynamics in-
herent in how economies organize their production activities, possibly neglecting
the nuanced ways in which economies operate.

In this paper, we measure the structural change within the industry sector
using the economic complexity index (ECI), which maintains information about
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the sector by applying dimensionality reduction (Hidalgo, 2021). The ECI cap-
tures the diversity and sophistication of production, offering a nuanced view of
how structure of the industry sector might influence its energy consumption pat-
terns. Specifically, the ECI measures “how diversified and complex an export
basket is” (GLaHU, 2023), reflecting the intricacy of production processes and
the potential for energy efficiency improvements. As control variables for ECI,
we use the patents per capita and average school years in a country (UNDP,
2022, WIPO, 2023).

Identifying an appropriate metric for energy efficiency, defined as the opti-
mal utilization of energy for delivering specific services or functions, presents a
significant challenge due to the difficulties in precisely defining and measuring ef-
ficiency (Hunt and Ryan, 2015). Hunt and Ryan (2015) criticize the use of energy
intensity as a somewhat coarse measure. Therefore, we leverage the ODEX en-
ergy efficiency index, which provides detailed metrics for energy efficiency within
the EU’s end-use energy sectors, including individual sectors and the aggregate
economy from the ODYSSEE database, supported by the European Commission
(Enerdata, 2023b, Lapillonne, 2020). ODEX offers a sector-specific gauge of en-
ergy efficiency advancements across different end-uses like lighting, heating, and
cooking in the residential sector, as well as unit consumption across twelve indus-
trial sectors, and improvements in vehicle efficiency and transport optimization
in the transportation sector. Our research argues that digitalization plays a piv-
otal role in enhancing energy efficiency, promoting the adoption of smarter and
more efficient energy use practices across these sectors, thereby underscoring the
importance of digital technologies in driving energy conservation efforts.

5.5. Results

This results section is structured as follows: Initially, Section 5.5.1 explores the
impact of digitalization on overall energy and electricity usage. Then, Section
5.5.2 delves into sector-specific analyses, examining the relationship between dig-
italization and energy and electricity consumption within the industrial, trans-
port, and residential sectors. Lastly, Section 5.5.3 assesses the indirect effects
of digitalization through mediating variables such as economic complexity and
energy efficiency.

5.5.1. Digitalization’s effect on aggregate energy and electricity
consumption

Table 5.1 presents the results for aggregate energy and electricity consumption.
Columns (1) and (3) correspond to equation (5.2), and columns (2) and (4)
correspond to equation (5.3). We examine the impacts of digitalization on energy
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and electricity consumption across the EU-28, employing a dynamic specification
estimated with the one-step system GMM estimator.35

For energy consumption, column (1) of Table 5.1 demonstrates a strong per-
sistence in energy use, as evidenced by the lagged dependent variable coefficient
(L.dep) of 0.818, significant at the 1% level. This implies that past energy con-
sumption is a strong predictor of current consumption. Additionally, GDP per
capita has a positive and significant effect (0.113 at 1% significance level), indi-
cating that higher economic activity is linked to increased energy consumption.
Specifically, a 1% increase in GDP per capita corresponds to an average in-
crease of 0.113% in energy consumption. The negative coefficient for real energy
prices suggests that higher prices result in reduced energy consumption. The
HDD variable, representing weather-related energy needs such as heating, shows
a positive and significant effect, while both the financial crisis and COVID-19
dummies have negative impacts, reflecting reduced consumption during these pe-
riods. Regarding electricity consumption, column (3) has similar findings with
a slightly lower persistence (0.785 at 1% significance level), indicating that pre-
vious electricity use is also a key predictor of current use. The impacts of GDP
per capita, energy prices, HDD, and the two crises on electricity consumption
are consistent with those observed for overall energy consumption.

Columns (2) and (4) reveal that investments in ICT capital exhibit a negative
correlation with energy consumption, with coefficients of -0.074 for energy and
-0.047 for electricity, significant at the 5% and 10% levels, respectively. This
indicates that an increase in ICT capital is associated with reductions in both
energy and electricity consumption within the EU-28. These reductions can be
attributed to several interconnected factors: efficiency gains in production and
consumption, the rising importance of services-oriented activities which often
leads to a less energy-intensive economic structure, advancements in automation
and control, and improvements in user guidance. The lower significance may re-
flect its nature as a stock variable, which overlooks changes in capital utilization.
For comparison, Appendix D.2 presents estimations using ICT capital compen-
sation (a flow variable) and a societal digitalization index. The robustness checks
show that ICT capital share captures the same directional effect but partially
underestimates digitalization’s impact on energy consumption. Because final en-
ergy consumption does not reflect useful work, Appendix D.5 provides estimates
using final exergy consumption as the dependent variable .

5.5.2. Digitalization’s effect on disaggregate energy and
electricity consumption

This section explores the relationship between digitalization and energy and
electricity consumption across specific end-use sectors: industry, transport, and

35The two-step system GMM estimates are provided in Appendix D.4.
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Table 5.1.: The effect of digitalization on aggregate energy and electricity consumption.

Variable Energy Electricity

(1) (2) (3) (4)

L.dep 0.818*** 0.739*** 0.828*** 0.850***
(0.05) (0.08) (0.07) (0.08)

Digitalization -0.074** -0.047*
(0.04) (0.03)

GDP per capita 0.113*** 0.105*** 0.095** 0.068*
(0.03) (0.03) (0.04) (0.04)

Energy price -0.310*** -0.356*** -0.197*** -0.242***
(0.04) (0.04) (0.05) (0.05)

HDD 0.078*** 0.116*** 0.038** 0.041**
(0.02) (0.04) (0.02) (0.2)

Fin. crisis -0.067*** -0.066*** -0.072*** -0.076***
(0.01) (0.01) (0.01) (0.01)

COVID -0.084*** -0.077*** -0.061*** -0.057***
(0.01) (0.01) (0.01) (0.01)

Constant -0.081 0.017 -0.108 -0.006
(0.11) (0.19) (0.17) (0.16)

AR(2) 0.288 0.334 0.118 0.122
Hansen test 18.68 21.48 21.92 21.41
P-value 0.229 0.369 0.110 0.373
Obs. 364 364 364 364
Countries 28 28 28 28
Note: Heteroscedasticity-consistent standard errors are in parentheses. Wind-
meijer (2005) finite sample correction for standard errors is employed. ***
p<0.01, ** p<0.05, * p<0.1. The values reported for AR(2) are the p-values
for the null hypothesis of the Arellano and Bond (1991) tests of second-order au-
tocorrelation in the first differenced errors. The “P-value” is reported for Hansen
tests.

residential. The results of these sector-specific estimations are presented in Table
5.2.

The effect of digitalization on energy and electricity consumption exhibits dis-
tinct patterns across the industry, transport, and residential sectors, suggesting
nuanced associations between the adoption of digital technologies and energy
use. In terms of energy consumption, digitalization is associated with a reduc-
tion in the industry sector, as indicated by a statistically significant negative
coefficient, reflecting efficiency gains and possibly structural shifts towards less
energy-intensive processes. However, in the transport sector, the relationship
between digitalization and energy consumption is not statistically significant,
suggesting the current level of digitalization does not clearly impact energy use
within this sector. In contrast, the residential sector shows a statistically sig-

107



Digitalization and energy consumption in the EU

nificant negative association, indicating digital technologies’ substantial role in
reducing energy consumption, likely through enhanced home energy efficiency
and smarter management systems. When examining electricity consumption,
digitalization also shows a negative correlation in the industry sector. The effect
in the transport sector remains statistically insignificant, suggesting a minimal
impact of digitalization on electricity use within this sector. Conversely, the resi-
dential sector demonstrates a slight but significant negative correlation, pointing
towards the beneficial role of digitalization in reducing electricity consumption,
possibly through the adoption of energy-efficient appliances and smarter energy
management practices. Overall, these results suggest that digitalization has a
statistically significant impact on reducing energy consumption in the industry
and residential sectors. In contrast, its influence on the transport sector and
electricity consumption in general is less pronounced.

Our analysis also indicates variations in how control variables affect energy
and electricity consumption in different sectors. Economic activity is positively
associated with energy consumption in all three sectors, with coefficients indi-
cating a stronger effect in the industry sector, and a slightly weaker, but still
positive, effect in the transport and residential sectors. This positive relation-
ship likely stems from higher production activities in the industry and transport
sectors and increased consumption in residential areas. This also aligns with the
positive sign and magnitude of elasticity obtained by other studies (e.g., Alberini
and Filippini, 2011, Cialani and Mortazavi, 2018). Energy prices negatively af-
fect energy consumption in all sectors, with the strongest impact observed in
transport (-0.293 significant at the 1% level), followed by industry (-0.246 signif-
icant at the 1% level) and residential (-0.106 significant at the 5% level). This
indicates a typical demand response to price increases, wherein higher energy
costs lead to reduced consumption. For example, a 1% increase in real energy
prices is associated with lower energy consumption in the transport sector by
0.293%, on average. Additionally, HDD positively affects energy consumption
across all sectors, most notably in the residential sector, reflecting the increased
need for heating due to colder temperatures. Regarding electricity consumption,
our analysis reveals that economic activity is again positively associated with
consumption in the industry sector, albeit with a weaker effect than its impact
on overall energy consumption, and only marginally in the transport and resi-
dential sectors. The impact of energy prices on electricity consumption is also
negative across sectors, most notably in industry but not statistically significant
in transport and residential sectors. This finding aligns with the results ob-
tained by Cialani and Mortazavi (2018), who also find that residential electricity
consumption is less sensitive to price changes than the industrial sector.

We also control for the share of free allowances under the EU Emissions Trad-
ing System (ETS) on the energy consumption of the industry sector, as detailed
in column (2). Including free allowances as a control variable considers the po-
tential impact of regulatory incentives on energy consumption behaviors within
industries. Free allowances could theoretically lower CO2 emission costs, poten-
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tially diminishing firms’ financial incentive to reduce energy consumption. The
estimated coefficient for the share of free allowances is positive and statistically
significant, indicating a positive association with energy consumption in the in-
dustry sector. This suggests that industries with a higher share of free allowances
tend to consume more energy, likely because the economic incentive to reduce
energy usage or invest in more energy-efficient technologies is lessened by the
availability of these allowances. We also find that the results related to the effect
of digitalization on energy consumption remain statistically significant, suggest-
ing that the efficiency gains and potential structural shifts towards less energy-
intensive processes attributed to digitalization are not significantly confounded
by the regulatory context represented by the allocation of free allowances.

HDD shows a strong positive correlation with energy consumption in all sec-
tors, particularly in the residential sector, indicating increased energy use during
colder periods. This trend is also observed in electricity consumption, albeit to
a lesser degree. The financial crisis exerts a significant negative effect on energy
consumption, particularly in the industry and transport sectors. This suggests
a reduction in energy usage, possibly due to decreased economic activity or the
implementation of cost-saving measures. The impact of the COVID-19 pandemic
varies; it has resulted in a notable decrease in energy and electricity consump-
tion in the industry and transport sectors possibly due to reduced economic and
travel activities. In contrast, it leads to increased electricity consumption in the
residential sector, likely reflecting the shift to working and spending more time
at home. Collectively, these variables highlight how external factors like weather
conditions, economic disruptions, and global crises can significantly alter energy
and electricity consumption patterns in different sectors.

Lastly, our findings indicate a positive and significant dynamic effect of the
lagged dependent variable on electricity and energy consumption across all three
sectors. This finding suggests that past consumption patterns have a persisting
and reinforcing impact on current energy and electricity usage. Such a trend
highlights the role of historical consumption trends in forecasting future energy
demands, demonstrating gradual evolution in consumption patterns rather than
abrupt shifts within the observed sectors.

Building on these insights, the subsequent section examines the mediating ef-
fects of efficiency measures between ICT capital accumulation and energy and
electricity consumption across the industry, transport, and residential sectors.
We also explore the role of economic structure in the industry sector as a medi-
ating factor.

5.5.3. Digitalization’s indirect effects on energy and electricity
consumption

This section follows the methodology outlined in Section 5.3.3. Table 5.3 presents
the results of the first step, involving the estimation of equation (5.6), which
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Table 5.2.: The effect of digitalization on disaggregate energy and electricity.

(a) Columns (1)-(4) for energy consumption.

Variable Energy

(1) (2) (3) (4)

Industry Industry Transport Residential

L.dep 0.821*** 0.808*** 0.712*** 0.689***
(0.07) (0.07) (0.10) (0.06)

Digi. -0.041** -0.039* -0.024 -0.267*
(0.02) (0.02) (0.15)

Econ. act. 0.186** 0.174** 0.114** 0.122*
(0.09) (0.09) (0.04) (0.07)

Energy price -0.246*** -0.308*** -0.293*** -0.106**
(0.09) (0.08) (0.07) (0.05)

Free Allowances 0.040**
(0.02)

HDD 0.129*** 0.142*** 0.040** 0.207***
(0.04) (0.04) (0.02) (0.04)

Fin. crisis -0.144*** -0.156*** -0.054*** 0.010
(0.02) (0.02) (0.02) (0.01)

COVID -0.039*** -0.031** -0.141*** 0.007
(0.01) (0.02) (0.01) (0.01)

Constant -0.897** -0.913** 0.246 -1.241***
(0.40) (0.39) (0.17) (0.35)

AR(2) 0.235 0.197 0.182 0.791
Hansen test 23.21 23.42 25.09 27.47
P-value 0.279 0.268 0.198 0.123
Obs. 364 364 364 364
Countries 28 28 28 28
Note: Heteroscedasticity-consistent standard errors are in parentheses. Wind-
meijer (2005) finite sample correction for standard errors is employed. ***
p<0.01, ** p<0.05, * p<0.1. The values reported for AR(2) are the p-values
for the null hypothesis of the Arellano and Bond (1991) tests of second-order au-
tocorrelation in the first differenced errors. The “P-value” is reported for Hansen
tests. The economic activity measures are the GDP per capita in industry and
transport, and the private consumption in the residential sector.

shows the impact of digitalization on the mediating variables across the three
sectors. Subsequently, Table 5.4 provides the estimated effect of digitalization
on sectoral energy and electricity consumption, as derived from equation (5.7).
Building on the results from these initial steps, we then compute the indirect
effects using the estimated coefficients.
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(b) Columns (5)-(7) for electricity consumption.

Variable Electricity

(5) (6) (7)

Industry Transport Residential

L.dep 0.820*** 0.903*** 0.909***
(0.14) (0.07) (0.03)

Digi. -0.020** -0.004 -0.060*
(0.00) (0.03)

Econ. act. 0.100* 0.008* 0.039*
(0.06) (0.00) (0.02)

Energy price -0.136** -0.015** -0.018
(0.05) (0.01) (0.05)

HDD 0.066* 0.006 0.015*
(0.04) (0.00) (0.01)

Fin. crisis -0.091*** -0.003** 0.002
(0.01) (0.00) (0.01)

COVID -0.037*** -0.005*** 0.010**
(0.01) (0.00) (0.01)

Constant -0.432 -0.039 -0.113
(0.32) (0.03) (0.11)

AR(2) 0.836 0.051 0.839
Hansen test 20.38 22.21 17.24
P-value 0.434 0.965 0.370
Obs. 364 364 364
Countries 28 28 28
Note: Heteroscedasticity-consistent standard errors are in parentheses. Wind-
meijer (2005) finite sample correction for standard errors is employed. ***
p<0.01, ** p<0.05, * p<0.1. The values reported for AR(2) are the p-values
for the null hypothesis of the Arellano and Bond (1991) tests of second-order au-
tocorrelation in the first differenced errors. The “P-value” is reported for Hansen
tests. The economic activity measures are the GDP per capita in industry and
transport, and the private consumption in the residential sector.
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Table 5.3 shows digitalization’s effect on the potential mediating variables in
industry, transport, and residential sectors. In the industry sector, digitalization
negatively impacts the economic complexity index, indicating that an increase in
ICT capital share could be associated with a shift towards less complex, possibly
more service-oriented activities that traditionally exhibit lower energy intensity.
This could suggest that as industries adopt more digital technologies, there is
a structural transformation towards activities that are less reliant on physical
inputs and energy consumption. The effect of digitalization on energy efficiency
in the industry sector is positive and statistically significant at the 10 % level,
indicating that investments in ICT within the industry sector are associated with
improvements in energy efficiency. However, our results reveal that the effect of
digitalization on energy efficiency within the transport sector is not statistically
significant, implying that the direct relationship between increased ICT capital
and efficiency gains might be complex or delayed. For the residential sector, the
positive impact of digitalization on efficiency points towards the adoption of ICT
technologies leading to more energy-efficient household operations. This could
be through smarter energy management systems, more efficient appliances, or
behaviors induced by greater awareness and control over energy consumption
facilitated by digital technologies.
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Table 5.3.: Effects of digitalization on the mediating variables per sector.

Variable Industry Transport Residential

(1) (2) (3) (4)

Structure Efficiency Efficiency Efficiency

L.dep 0.803*** 0.927*** 1.029*** 0.945***
(0.08) (0.02) 0.06 (0.03)

Digitalization -0.047** 0.009* -0.011 0.070*
(0.02) (0.02) (0.01) (0.04)

Economic activity -0.077*** 0.042* 0.048**
(0.02) (0.02) (0.02)

Energy price -0.119 0.003 0.124*** 0.082***
(0.08) (0.03) (0.06) (0.02)

Free allowances -0.020***
(0.01)

HDD -0.001 -0.008
(0.01) (0.01)

Financial crisis 0.029* -0.011*** 0.006 0.013***
(0.02) (0.00) (0.01) (0.00)

COVID -0.014 -0.007*** 0.001 0.001
(0.01) (0.00) (0.00) (0.00)

Patents 0.054**
(0.02)

School 0.379**
(0.17)

Heat policy -0.001
(0.00)

Appliance policy -0.002
(0.00)

Constant -0.733** 0.251*** -0.177** -0.190***
(0.34) (0.07) (0.08) (0.07)

AR(2) 0.539 0.084 0.632 0.958
Hansen test 26.28 15.90 23.18 16.56
P-value 0.157 0.784 0.280 0.167
Obs. 364 364 364 364
Countries 28 28 28 28
Note: Heteroscedasticity-consistent standard errors are in parentheses. Windmeijer
(2005) finite sample correction for standard errors is employed. *** p<0.01, ** p<0.05,
* p<0.1. The values reported for AR(2) are the p-values for the null hypothesis of the
Arellano and Bond (1991) tests of second-order autocorrelation in the first differenced
errors. The “P-value” is reported for Hansen tests. The economic activity measures
are the GDP per capita for industry and transport, and the private consumption in the
residential sector. The structure measure is economic complexity. The efficiency (i) is
the ODEX index of the industry, the traffic of goods per capita, and the ODEX index
of the residential sector. The efficiency (ii) is the traffic of passengers per capita.
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Table 5.4.: Effects of the mediating variables on energy and electricity consumption per
sector.

(a) Columns (1)-(3) for energy consumption,

Variable Energy

(1) (2) (3)

Industry Transport Residential

L.dep 0.716*** 0.764*** 0.592***
(0.08) (0.09) (0.09)

Structure 0.187*
(0.10)

Efficiency -0.325*** 0.013 -0.269***
(0.11) (0.12) (0.11)

Digi. -0.011 -0.024 -0.157
(0.02) (0.03) (0.12)

Economic activity -0.013 0.098*** 0.166**
(0.11) (0.04) (0.08)

Energy price -0.326*** -0.345*** -0.125*
(0.10) (0.08) (0.07)

Free Allowances 0.012
(0.03)

HDD 0.120*** 0.028** 0.257***
(0.04) (0.01) (0.05)

Fin. crisis -0.168*** -0.060*** -0.009
(0.02) (0.02) (0.01)

COVID -0.019 -0.154*** 0.013
(0.02) (0.02) (0.01)

Constant -0.193 0.254* -1.508***
(0.47) (0.15) (0.42)

AR(2) 0.447 0.116 0.509
Hansen test 19.49 17.77 26.40
P-value 0.362 0.275 0.153
Obs. 364 364 364
Countries 28 28 28
Note: Heteroscedasticity-consistent standard errors are in parentheses. Wind-
meijer (2005) finite sample correction for standard errors is employed. ***
p<0.01, ** p<0.05, * p<0.1. The values reported for AR(2) are the p-values
for the null hypothesis of the Arellano and Bond (1991) tests of second-order au-
tocorrelation in the first differenced errors. The “P-value” is reported for Hansen
tests. The economic activity measures are the GDP per capita in industry and
transport, and the private consumption in the residential sector. The structure
measure is economic complexity. The efficiency is the ODEX index of the indus-
try, transport, and residential, respectively.
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(b) Columns (4)-(6) for electricity consumption,

Variable Electricity

(4) (5) (6)

Industry Transport Residential

L.dep 0.875*** 0.922*** 0.885***
(0.06) (0.08) (0.04)

Structure 0.076*
(0.04)

Efficiency -0.025 0.004 -0.084**
(0.05) (0.00) (0.01)

Digi. 0.001 0.000 -0.003
(0.01) (0.00) (0.00)

Economic activity 0.005 0.005 0.063**
(0.02) (0.00) (0.03)

Energy price -0.106*** -0.013** -0.008
(0.04) (0.01) (0.06)

HDD 0.014 0.005 0.016*
(0.02) (0.00) (0.01)

Fin. crisis -0.100*** -0.003** -0.003
(0.01) (0.00) (0.01)

COVID -0.035*** -0.005** 0.014***
(0.01) (0.00) (0.01)

Constant 0.032 -0.029 -0.150*
(0.13) (0.04) (0.09)

AR(2) 0.769 0.050 0.873
Hansen test 20.92 17.27 15.35
P-value 0.283 0.303 0.427
Obs. 364 364 364
Countries 28 28 28
Note: Heteroscedasticity-consistent standard errors are in parentheses. Wind-
meijer (2005) finite sample correction for standard errors is employed. ***
p<0.01, ** p<0.05, * p<0.1. The values reported for AR(2) are the p-values
for the null hypothesis of the Arellano and Bond (1991) tests of second-order
autocorrelation in the first differenced errors. The “P-value” is reported for
Hansen tests. The economic activity measures are the GDP per capita in indus-
try and transport, and the private consumption in the residential sector. The
structure measure is economic complexity. The efficiency is the ODEX index of
the industry, transport, and residential, respectively.
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Table 5.4 details the effects of mediating variables on energy and electricity
consumption across sectors. In the industry sector, our results indicate that
digitalization’s influence on energy consumption is mediated by both changes
in economic complexity and improvements in energy efficiency. However, the
anticipated mediation effect of digitalization through energy efficiency does not
hold for the electricity consumption, as shown in column (4). A potential ex-
planation for this result is that our measure of energy efficiency encompasses all
energy carriers, within which electricity plays a comparatively minor role. In the
transport sector, while efficiency does not appear to significantly mediate the
effect of digitalization on energy consumption, it indicates a relatively stable in-
teraction between digitalization, energy efficiency, and energy use in this sector.
Finally, in the residential sector, efficiency plays a statistically significant medi-
ating role, highlighting how improvements in energy efficiency can significantly
influence the impact of digitalization on energy and electricity consumption. This
efficiency-driven mediation suggests that as residential spaces become more dig-
itized, energy-efficient technologies and practices become crucial in determining
overall energy and electricity usage.

The mediation analysis indicates potential mediation in the industry and res-
idential sector, while there is no evidence for mediation in the transport sector.
In the third step of the analysis the indirect effect is computed using the product
method. In the industry sector, digitalization’s influence on energy consumption
is mediated by economic complexity and energy efficiency. The indirect effects
of digitalization on energy and electricity consumption through economic com-
plexity are -0.009 and -0.004, respectively. Additionally, the indirect effect of the
ICT capital share through energy efficiency on the energy consumption in the
industrial sector is -0.003. Our results also suggest that energy efficiency is a me-
diating factor in the residential sector, highlighting how improvements in energy
efficiency can significantly influence the impact of digitalization on energy and
electricity consumption. A 1% increase of digitalization decreases energy and
electricity consumption through efficiency improvements by 0.019% and 0.006%,
respectively. This efficiency-driven mediation suggests that ICT-capital could
contribute to a more efficient use of energy and electricity in residential spaces.
In the transport sector, no significant effect of digitalization on efficiency nor of
efficiency on energy consumption can be found.

5.6. Discussion

In the preceding section, we demonstrated that digitalization within the EU-
28 is associated with reduced energy and electricity consumption over the past
decade. These results are in line with previous findings on the energy-saving
impacts of ICT, as reported by Xu et al. (2022), Schulte et al. (2016), and
Han et al. (2016). Our research contributes further by exploring the sectoral
effects of digitalization, especially within the industry, transport, and residential
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sectors, and by considering sector-specific mediating factors that could influence
the relationship between digitalization and energy consumption.

In the context of the industry sector, our findings indicate that digitalization
is negatively associated with energy and electricity consumption. This negative
association suggests a transformative shift towards less energy-intensive oper-
ations, potentially facilitated by the integration of advanced technologies that
enhance energy efficiency and increased emphasis on service-oriented activities.
Through mediation analysis, we explore how this effect is predominantly medi-
ated by enhancements in energy efficiency and changes in the economic structure.
Specifically, our results reveal that digitalization correlates with improvements
in energy efficiency. The positive association between ICT capital share and
energy efficiency is in line with Matthess et al. (2023), who also find a posi-
tive impact of digitalization on energy intensity in the industry sector across
EU countries. Regarding the mediation effect through economic complexity, we
observe that greater investments in ICT are linked with a structural transition
towards products with lower economic complexity, which are inherently associ-
ated with reduced energy demands. This observation supports the hypothesis
that sectors of lower economic complexity are less energy-intensive. For example,
Crozet and Milet (2017) illustrate this shift by examining French manufacturing
firms, noting that a significant number have augmented their service output,
indicating an internal restructuring trend within the firms themselves.

In the transport sector, our empirical analysis reveals that the influence of
digitalization on energy consumption, as well as its potential to enhance en-
ergy efficiency, does not reach statistical significance. This finding suggests that,
within the timeframe and context of our study, digitalization has not yet led
to measurable reductions in energy consumption or significant improvements in
energy efficiency in this sector. A potential interpretation could be related to the
inherent characteristics and challenges of the transport sector, including the slow
turnover rate of infrastructure and vehicles, and the potential for rebound effects
where efficiency gains lead to increased usage rather than reduced energy con-
sumption (Waisman et al., 2013, Zito and Salvo, 2011). Another interpretation
could be that energy savings in the transport sector may instead originate from
increased ICT capital shares in other sectors, such as industry and residential,
e.g., digital infrastructure to promote remote work or smartphones and apps for
road navigation (Lange et al., 2020).

In the residential sector, our analysis reveals that digitalization is signifi-
cantly associated with reduced energy consumption, particularly through en-
hanced heating efficiency. This potential role of efficiency in heating could be
explained by the exponential growth in smart thermostat installations across EU
homes, escalating from 1 million in 2014 to 22 million by 2020. These devices
enable more efficient heating strategies, for instance, heating solely occupied
rooms or discontinuing heating when windows are open. For example, Lean-
Heat’s application of such sensor and control systems in 80,000 apartments in
Finland has achieved energy cost savings of 10-20% for building owners (Lyons
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et al., 2019). In contrast, the influence of digitalization on electricity consump-
tion, while still present, is less pronounced. This lesser impact could be partly
attributed to the fact that ICT devices and infrastructure themselves consume
electricity, potentially offsetting efficiency gains in other areas. This suggests
that while digitalization broadly curtails overall energy use, its effect on electric-
ity consumption is moderated by the electrical demand of digital technologies,
indicating that significant energy savings are primarily in non-electric energy
forms, such as heating fuels (Gao et al., 2023, Pothitou et al., 2017).

5.7. Conclusion

This paper explores the impact of digitalization on final energy and electricity
consumption across the EU-28 from 2007 to 2020, focusing on the industry, trans-
port, and residential sectors. By disaggregating energy consumption into these
end-use sectors, our study identifies sector-specific mediation factors influenced
by structure and efficiency.

Our findings reveal that, at an aggregate level, digitalization—measured by the
share of ICT capital— is generally associated with lower energy and electricity
consumption. However, this overarching trend manifests differently across sec-
tors. Specifically, in the residential sector, digitalization plays a significant role
in enhancing energy efficiency, directly contributing to lower energy consump-
tion. In the industry sector, observed decrease in energy usage is due to efficiency
gains and a shift toward activities of lower economic complexity. These activities
inherently require less energy, suggesting that digitalization’s impact on energy
consumption extends beyond just efficiency improvements to include structural
changes in economic activities that are intrinsically less energy-intensive. In the
transport sector, our analysis shows that the effects of digitalization on reducing
energy consumption and improving energy efficiency lack statistical significance.
A potential reason could be the slow turnover of infrastructure and vehicles
and the susceptibility to rebound effects in the transport sector could prevent
digitalization from being effective in the considered time period.

Our analysis could inform both academic research and policy development
highlighting the benefit of sector-specific analyses in energy consumption stud-
ies. Such a distinct approach allows decision-makers to take sector-specific digi-
talization and energy consumption characteristics into consideration. Our find-
ings suggest that promoting digital technologies in the residential sector could
contribute to achieving energy consumption reduction goals. Therefore, encour-
aging the use of smart controls for efficient heat and electricity management
could be a straightforward complement to building renovation and heating sys-
tem replacement. Similarly, promoting the use of ICT applications to enhance
manufacturing processes could lead to energy savings in the industrial sector.
The decrease in industrial energy consumption is also found to be linked to a
shift towards less energy-intensive activities, which warrants closer attention on
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the actual structural changes accompanying digitalization. Depending on the
value of the emerging services and potentially declining energy-intensive activ-
ities, guiding policies could be considered. In the transport sector, research
could be conducted on digitalization effects over longer time horizons, and with
consideration of cross-sector effects of ICT capital shares to determine whether
digitalization’s impact outside the transport sector exceeds its effect within it.

A limitation of our study is the reliance on low-frequency data, which inher-
ently comes with low variation in price and other variables. This characteristic
likely contributes to the relatively small estimates of elasticities observed in our
analysis. The primary reason for our approach was the limited availability of
ICT capital data and economic activity variables at a higher frequency. Future
research could explore higher frequency data and longer time horizons. Our
robustness checks suggest that incorporating economic flow measures of digital-
ization into exergy models could be a promising avenue.
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A.1. Regression Results

The regression results for the day-ahead market are illustrated in Figure A.1.
Based on the data for the years 2015-2019, a function is fitted to each month of
the year.
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Figure A.1.: Regression results for the day-ahead market.

Analogously, the intraday market prices are regressed on the day-ahead market
prices and the wind generation forecast error. Table A.1 shows the regression
results indicating that the applied independent variables are significant within
this model.
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Table A.1.: Regression results for the intraday market.

Coef. Std. t Pr(> |t|) Lower Upper
Error 95% 95%

(Intercept) 1.8026 0.1922 9.38 < 1e− 20 1.4258 2.1793
DA prices 0.9717 0.0046 211.68 < 1e− 99 0.9627 0.9807

Forecast error -0.9768 0.0194 -50.31 < 1e− 99 -1.0149 -0.9388
(Forecast error)2 -0.0221 0.0023 -9.56 < 1e− 20 -0.0266 -0.0175

A.2. Monte Carlo simulation

To obtain synthetic electricity market price time series for both the day-ahead
and the intraday market, we generate synthetic time series of the independent
variables used in the parametric models of the electricity market, i.e., wind gener-
ation forecast and wind generation forecast errors. We follow Papaefthymiou and
Klockl (2008) by parameterizing the transition probabilities of a Markov chain
with 15 states on both parameters separately. Note that we do not consider the
correlation between the parameters. However, we use the relative forecast errors
instead of the absolute ones so that the absolute errors still scale with the wind
generation forecast. The transition probability matrix includes the probabilities
to change from one state to another to the next period. We obtain a cumulative
distribution function of possible following states for every state.

For each time step of the simulation horizon, we draw random numbers from a
uniform distribution U(0,1). Plugging the random number into the inverse of the
cumulative distribution function obtains the next state within the Markov chain
(Amelin, 2004). We continue the process for the entire simulation horizon and
repeat it for the number of samples we generate. The day-ahead prices are then
calculated based on Equation (2.7). Figure 2.3 shows the range of resulting price
duration curves. The intraday prices are computed based on Equation (2.8), also
using the synthetic day-ahead prices. The results are shown in Figure 2.3.

A.3. Annuity

The annuity of the electrolyzer investment is computed based on equation (A.1).
Multiplying the CAPEX with the capital recovery factor obtains the annuity.

annuity = CAPEX ∗ (1 + i)n ∗ i
(1 + i)n − 1

(A.1)

A.4. Notation
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Table A.2.: Model indices, parameters, and variables.

Name Unit Definition

Sets
t, j ∈ T Time periods
m ∈ M Electricity markets (intraday, day-ahead)

Parameters
pH2 EUR/kg Green hydrogen selling price
pDA EUR/MWhel Day-ahead price
pID EUR/MWhel Intraday price
p EUR/MWhel Electricity price
δ - Time scaling
cap MWel Electrolyzer capacity
α EUR/MWhel Electricity price surcharges
β - Minimal load as a fraction of the capacity
γ - Simultaneity of electricity production

and consumption
σ - Capacity ratio of electrolyzer and RE plant
re - (current) RE capacity factor
qres MWel Residual load
n a Years

Variables
Contribution EUR Total contribution margin
margin
R EUR Revenue
C EUR Cost
CFOM EUR Fixed operation and maintenance cost
Ct EUR Variable cost
Q kg Hydrogen production
L MWel Load
B - Binary variable to determine whether plant

is switched on/off
FE - Forecast error
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B.1. Notation

Table B.1.: Notation of the variables used.

Name Definition

Observable variables
to,arrs Observed arrival time of charging event s

to,deps Observed departure time of charging event s
∆Eo

s Observed energy charged during charging event s
∆tos Observed parking duration during charging event s
qos Observed charging rate during charging event s
Qo

s Available charging rates at the station of charging event s
qos Maximum available charging rate at the station of charging event s
qo
s

Minimum available charging rate at the station of charging event s

jos Observed product choice in charging event s

Derived variables

Es Battery capacity of the EV in charging event s

E
arr
s Energy content in the battery at arrival in charging event s

Ts Time horizon of charging event s
RTotal

m Total turnover generated at charging station m

Product attributes

Edep
s,j Battery’s energy content at departure in charging event s

of charging product j
∆ts,j Parking duration during charging event s of charging product j
Cs,j Total cost in charging event s

of charging product j
C∆t
s,j Duration component of total cost in charging event s

of charging product j
CE
s,j Energy component total cost in charging event s

of charging product j
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Table B.2.: Notation of the sets and parameters used.

Name Definition

Sets
s ∈ S Charging event
Sin In-sample charging sessions (training)
Sout Out-of-sample charging sessions (test)
j ∈ J Charging product
m ∈ M Charging station

Parameter
Earr Minimum energy content in the battery at arrival
PAC Slow charging tariff
PDC Fast charging tariff
PBlock Blocking fee
tBlock Start time blocking fee

t
Block

End time blocking fee
δt Time resolution

Table B.3.: Notation of functions used.

Name Definition

Utility function coefficients
ϵc Unobservable factors affecting utility from charging product c
β Nominal utility function coefficient
γ Product cost coefficient
θ Parameter of coefficient distribution

Functions
UR
c,s Random utility from charging product c in charging event s

UN
c,s Nominal utility from charging product c in charging event s

M Discrete choice model (e.g., multinomial logit)

P(D|s) Probability density function of maximal charging duration D
given charging event s

P(E|s) Probability density function of minimum energy charged E
given charging event s
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B.2. Data

B.2.1. Segments

The case study examines three segmentations, Area, Activity, and Charger. Table
B.4 lists the segments of each segmentation and their assignment rule.

Table B.4.: Segmentations applied in the case study and their assignment rules.

Segmentation Segment Assignment rule Source

Area Urban 71 Urban region BBSR
(2023)- metropolis

72 Urban region
- regional center and metropolis

Sub-
Urban

73 Urban region

- medium-sized city, urban area
75 Rural region
- central town
76 Rural region
- medium-sized city, urban area

Rural 74 Urban region
- small-town, village area
77 Rural region
- urban small-town, village area

Activity Parking Public parking lot NCfCI
(2024)Customer parking lot

Parking garage
Park & Ride
Other

Refueling Petrol station on a federal high-
way
Other filling station

Charger AC q < 50kW
DC q ≥ 50kW

B.2.2. Data imputation

The charging session data collected from charging station operators does not
include information on specific choice circumstances. Instead, for each ob-
served charging event s, the data includes details on product attributes such
as the arrival and departure time (to,arr,to,dep), the connection duration ∆tos, the
charged energy ∆Eo

s , the chosen charging power rate qos , and the set of available
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power rates at the charging station Qo
s. Based on the information provided, the

dataset is enriched with additional assumptions regarding the battery capacity,
the charging curve, the energy content at arrival, the time horizon, and the
associated costs.

The construction of the choice set requires information on the EV’s total bat-
tery capacity. A probability distribution P(E) is derived based on the battery
capacity distribution of the current EV fleet, constructed by combining monthly
data on the German vehicle stock from KBA (2024) with battery capacities of
specific EVs models from ADAC (2024) as described in B.2.3. To account for
the observed charged energy ∆Eo

s , which serves as the lower bound of the bat-
tery’s capacity, the median of the resulting conditional distribution is taken as
the assumed battery capacity Es as formulized in equation (B.1).

Es = Med(P(E|E ≥ ∆Eo
s )) (B.1)

Charging at charging stations does not process with a constant power. While
the exact charging power depends on various factors such as the EV or ambient
temperature, most charging power curves decay in the SoC of the EV’s battery
because charging controls use a constant current-constant voltage (cc-cv) charg-
ing process instead of maintaining a constant power (Li et al., 2020, Watson,
2022). B.2.4 describes the charging curve assumption used in this paper. The
dataset’s energy charged parameter is measured at the connection point, includ-
ing losses between charging point and battery. The products in the choice set
account for losses of 15% (ADAC, 2022).

A lower bound for the energy content in the battery at departure of a charging
event is the energy content at arrival, Earr

s , which itself is unobserved by the
charging operator. Assuming that the observed charged energy was sufficient to
fully charge the battery, SoCs in equation (B.2) expresses the maximum possible
SoC at arrival. Higher values would imply that the EV continues to charge at a
high rate, although the battery’s capacity is reached.

SoC
arr
s =

Es − Eo
s

Es

(B.2)

To evaluate whether the assumption of a fully charged battery is temporally
feasible, the time required to charge from the maximum SoC to full capacity
∆tfulls is computed by equation (B.3) and compared to the actual observed con-
nection duration ∆tos. Given the battery’s capacity and the observed charging
rate of the connection point qos , an integral over the SoC-dependent charging
curve qs(q

o
s , SoC) obtains the necessary charging duration. This paper assumes

an exponentially decaying charging curve, as detailed in B.2.4.
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∆tfulls =

∫ 1

SoC
arr
s

Es

qs(qos , SoC)
dSoC (B.3)

The computed charging time distinguishes two cases, as shown in equation
(B.4). If the observed charging time exceeds the charging time that would be
needed to charge the battery fully, arriving with the maximum SoC, it is assumed
that the battery is fully charged and the maximum SoC at arrival is indeed the
arrival SoC. In any other case, the assumption does not hold, and the mean
between a minimum assumed energy content at arrival Earr and the maximum
energy content at arrival (Es − Eo

s ) is taken as arrival energy content in the
battery.

Earr
s =

{
Es − Eo

s if ∆tfulls ≤ ∆tos
Earr+(Es−Eo

s )
2 if ∆tfulls > ∆tos

(B.4)

The time horizon Ts limiting the choice set of one observed charging event s
is set to the time until which the lowest available charging rate qo

s
would take

to fill the battery, adding one additional time step ∆t to consider the option to
stay connected beyond a full battery, shown in equation (B.5).

Ts = tarrs +

∫ 1

SoCarr
s

Es

qs(qos, SoC)
dSoC + δt (B.5)

The charging product’s costs Cs,j consists of two components, one energy
component CE

s,j and one duration component C∆t
s,j .

Cs,j = CE
s,j + C∆t

s,j (B.6)

Common EV charging tariffs distinguish charging rates by the type of connec-
tor, either alternating current (AC) or direct current (DC). AC chargers offer
lower, DC chargers higher charging rates. Chargers with a charging rate be-
low qfast are considered to charge with the AC tariff PAC , and chargers with a
charging rate above qfast are considered to charge with the DC tariff PDC .

CE
s,j =

{
PAC∆Es,j if qs,j ≤ qfast

PDC∆Es,j if qs,j > qfast
(B.7)

The duration component depends on the parking time of the EV. Many tariffs
include a blocking fee for occupying the charger, which starts after a certain
parking time tBlock and must be paid by additional minute of connection pBlock∗t.
B.2.5 provides an overview of blocking fees. Some blocking fees have a limit,
t
Block

, beyond which the blocking fee does not increase anymore.
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CDs, j =


0 if t ≤ tBlock

PBlock ∗ t if tBlock ≤ t ≤ t
Block

PBlock ∗ tBlock
if t ≥ t

Block

(B.8)

Both base tariff and blocking fee vary among operators and suppliers. The
assumption taken here only captures the general structure of the tariffs, without
accounting for contract-specific variation among EV users. The base tariff varies
according to the charger type (EC, 2024). The blocking fee assumption bases on
a review of several charging tariffs described in B.2.5.

B.2.3. Battery Sizes

The distribution of battery capacities follows the fleet of registered electric ve-
hicles in Germany in the year 2023 taken from KBA (2024) and the battery
capacity of the corresponding electric vehicle models provided by ADAC (2024).
Figure B.1 illustrates the resulting battery size distribution. The mean capacity
is 73 kWh.
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Figure B.1.: The distribution of battery capacities in the German car fleet in the year
2023 based on KBA (2024) and ADAC (2024).

B.2.4. Charging curve

Electric vehicle charging does not maintain a constant charging rate throughout
the process. Most charging power curves decay in the SoC of the electric vehicle’s
battery, (Watson, 2022) since the controls utilize a constant current-constant
voltage (cc-cv) charging process (Li et al., 2020) instead of maintaining a constant
power. A piecewise non-linear function comprising an initial constant power
phase up to a switch point at the SoC SOCcc−cv, followed by an exponentially
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decaying phase for higher SoCs, can model the resulting non-linear charging
curve. Equation (B.9) describes the functional form of the assumed charging
curve. The decay rate τ and the switching SoC SOCcc−cv define the shape of
the curve.

q(SoC) =

{
q0 if SoC ≤ SOCcc−cv

q0e
−τ(SoC−SOCcc−cv) if SoC > SOCcc−cv

(B.9)

Figure B.2 depicts the assumed charging curve with SOCcc−cv = 50% and
τ = 2.8. For comparison, the figure illustrates observed charging curves from
Fastned (2025) and Schaden et al. (2021).
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Figure B.2.: Observed charging curves depending on the SoC based on Fastned (2025)
and Schaden et al. (2021).

B.2.5. Blocking fee

Several German charging point operators charge a blocking fee for parking at
a connection point (e.g. BMW, 2025, Elli, 2025, ENBW, 2024, Entega, 2025,
EWE go, 2025, ADAC, 2025, IONITY, 2025, Lichtblick, 2025, MAINGAU, 2025,
Mercedes, 2025, Sachsenenergie, 2025, Shell, 2024, SWD, 2024, SWM, 2025).
Figure B.3 illustrates the total blocking fee charged under different blocking fee
tariffs depending on the parking duration. As comparison, the figure shows the
assumed blocking fee of 0.1e /min given a free parking period of four hours and
a maximum total blocking fee of 12e .
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Figure B.3.: An overview of blocking fees applied in German charging tariffs depending
on the parking duration.

B.3. Robustness checks

Several design choices must be made throughout the case study, and these as-
sumptions can influence the nature of the results. Assessing the sensitivity of
model outcomes to alternative sampling strategies and design specifications helps
demonstrate the robustness of the findings. As the examination relies on re-
vealed preference data, inherent limitations may constrain the model’s explana-
tory power. In particular, higher-order polynomial specifications are prone to
higher correlations between the variables by construction. Examining the alter-
native specifications and variance structure offers insights into model assump-
tions and data limitations, highlighting opportunities for improving data sources
and model specifications.

B.3.1. Sample size

The case study comprises 8,000 observations, randomly selected from a dataset
of 1.03 million charging sessions 3.4.1. Varying the sample size may affect the
results. Given the consistency of the estimators, such variations are not expected
to distort the main conclusions of the case study (Wooldridge, 2016, p.169). Ta-
ble B.5 shows the results from estimations based on 800 and 80,000 observations
in columns (2) and (3). Across all sample sizes, the signs of the estimated coef-
ficients remain stable, and the magnitude of coefficients evolves consistently in
one direction, suggesting robustness in the underlying structural relationships.
In the smallest sample, the coefficient for the quadratic duration term becomes
statistically insignificant, indicating that a limited sample may lack the variation
needed to identify more complex preference structures. The base specification in
column (1), as used in the main case study, appears to include a sufficient num-
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ber of observations to capture the utility structure reliably, thereby supporting
the validity of the chosen data sample.

Beyond the number of observations, the number of alternatives included in
each choice set also influences the effective sample size. The number of alterna-
tives in the case study is set by the resolution of the attributes energy, duration,
and costs. Lower-resolution choice sets aggregate similar alternatives, poten-
tially masking preference heterogeneity, whereas higher-resolution sets allow for
more granular distinctions, but may introduce alternatives that are unrealistic
or irrelevant from the perspective of EV users. In the case study, 162 charging
alternatives are considered. Column (4) of Table B.5 reports the estimation re-
sults for a higher-resolution specification, comprising 1,003 alternatives. Column
(5) further combines an increased number of observations (40,000) with a higher
product resolution, resulting in 1,155 alternatives. The estimated coefficients
retain their signs and significance levels, with one exception: the cost coefficient
in column (4) becomes less significant. The number of observations may not be
sufficient to identify preference differences given the larger set of alternatives.
Consequently, increasing the number of observations in column (5) improves
the significance. Regarding the magnitude of the coefficients, both expanding
the choice set appear to induce directional convergence, further supporting the
structural consistency of the model. The interaction term is the only coefficient
where this pattern is less clear. A possible explanation is that lower-resolution
choice sets may obscure subtler interaction effects between energy and duration.
Nevertheless, the overall magnitude of the interaction coefficient remains within
a comparable range, suggesting that the estimated utility structure is robust to
changes in the level of attribute granularity and sample size.

B.3.2. Sample composition

In discrete choice models, only differences in utility between products matter
(Train, 2009, p. 24). The variance in observed product choices reveals the
preference between products. Besides increasing the number of observations or
number of alternatives, another option to increase the information carried by
observed choices, is the pre-selection of observations. Particularly, given the
extensive dataset used in the case study and the potential repetitive nature of
observed charging sessions, sample selection may be a viable option to increase
the variance in the discrete choice model improving the identification of prefer-
ence structures in the discrete choice model.

Compared to the base case from the case study in column (1) of Table B.6,
column (2) shows the estimation results when only observations are considered,
in which the EV user chooses to depart with a full battery. Conversely, column
(3) includes the results when only partial charges are considered. In the selected
data sample of 8,000 observations, 2,598 correspond to full charges, leaving 5,402
as partial charges. The results for partial charges in column (3) largely align with
the base case in terms of coefficient signs and significance. Only the quadratic
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Table B.5.: Estimated coefficients of the Quadratic-in-Parameter utility function with
interaction term for varying sample and choice set sizes.

(1) (2) (3) (4) (5)
Base Sin↓ Sin↑ J↑ Sin↑, J↑

QiP QiP QiP QiP QiP
Interaction Interaction Interaction Interaction Interaction

Costs -0.056*** -0.106*** -0.024*** -0.024** -0.021***
(0.004) (0.011) (0.001) (0.007) (0.003)

Energy 0.498*** 0.336*** 0.544*** 0.585*** 0.604***
(0.011) (0.023) (0.004) 0.021 0.010

Duration -1.238*** -1.428*** -0.913*** -0.413*** -0.384***
(0.086) (0.278) (0.029) (0.174) (0.084)

Energy2 -0.004*** -0.002*** -0.005*** -0.006*** -0.006***
(0.000) (0.000) (0.000) (0.000) (0.000)

Duration2 -0.052*** -0.006 -0.058*** -0.303*** -0.351***
(0.006) (0.008) (0.004) (0.033) (0.025)

Interaction 0.020*** 0.013*** 0.016*** 0.029*** 0.030***
(0.001) (0.003) (0.000) (0.004) (0.002)

Observations 8,000 800 80,000 8,000 40,000
Alternatives 162 148 204 1003 1155

Note: Robust standard errors in parenthesis. *** p<0.01, ** p<0.05, * p<0.1.

term for duration becomes statistically insignificant, suggesting that full charges
contribute important information regarding the increasing marginal disutility of
charging duration—likely because they offer clearer insight into time preferences
when departure energy levels are held constant. Accordingly, the coefficient for
energy becomes larger in column (3), as preferences in the subset can be at-
tributed more to differences in energy levels. In contrast, the estimation based
on full charges in column (2) presents greater challenges for identifying the utility
structure. Duration and interaction effects are not statistically significant, and
the signs of the cost and quadratic energy terms deviate from expectations. Be-
cause energy levels are constant in the subset, only variation in time preferences
can inform the model, limiting its explanatory power. Against this background,
including both full and partial charges appears essential for adequately identify-
ing the structure of charging preferences in EV usage.

A second option to increase the informational value of each observed choice is
to restrict the sample to charging stations offering multiple power levels. In the
base case, stations with only one available power level are excluded to ensure
that each observed choice reflects preferences among a diverse set of charging
alternatives (see Section 3.4.2). Table B.6 reports in column (4) the estimation
results when all stations are included, regardless of the number of power levels,
and in column (5) when only stations with at least three power levels are con-
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sidered. In both cases, all coefficients remain statistically significant at the 1%
level.

Including sessions from single-rate stations changes the signs of the duration
and interaction terms. The shift likely reflects the reduced opportunity to observe
preferences for faster charging, limiting the informational content about users’
time sensitivity. In contrast, the estimates based on stations with three or more
power levels are largely consistent with the base specification. Notably, the
magnitude of the negative duration coefficient increases, potentially indicating
stronger revealed time preference in charging decisions at the stations.

Table B.6.: Estimated coefficients of the Quadratic-in-Parameter utility function with
interaction term for observation pre-selection.

(1) (2) (3) (4) (5)

Base Edep
s,jo = Es Edep

s,jo ̸= Es Qo
s > 0 Qo

s > 2

QiP QiP QiP QiP QiP
Interaction Interaction Interaction Interaction Interaction

Costs -0.056*** 0.074*** -0.096*** -0.033*** -0.030***
(0.004) (0.008) (0.005) (0.004) (0.003)

Energy 0.498*** 0.469*** 0.750*** 0.335*** 0.364***
(0.011) (0.043) (0.016) (0.012) (0.008)

Duration -1.238*** -0.369 -0.681*** 0.528*** -1.925***
(0.086) (–) (0.095) (0.078) (0.087)

Energy2 -0.004*** 0.005*** -0.006*** -0.002*** -0.003***
(0.000) (0.000) (0.000) (0.000) (0.000)

Duration2 -0.052*** -0.083*** 0.002 -0.039*** -0.089***
(0.006) (0.010) (0.003) (0.004) (0.005)

Interaction 0.020*** 0.012 0.006*** -0.003*** 0.030***
(0.001) (–) (0.002) (0.001) (0.001)

Observations 8,000 2,598 5,402 8,000 8,000

Note: Robust standard errors in parenthesis. *** p<0.01, ** p<0.05, * p<0.1.

B.3.3. Alternative specific constants

In discrete choice modeling, alternative specific constants (ASCs) are commonly
employed to capture unobserved variation in product choices that is not ex-
plained by observable attributes (Train, 2009). The constants absorb systematic
differences in utility across alternatives that remain after accounting for observed
characteristics. Beyond ASCs, individual-specific constants can reflect hetero-
geneity in preferences due to unobserved user characteristics, such as varying
degrees of range anxiety or differences in time constraints and planning behavior
(Franke and Krems, 2013). Another option would be to include station-specific
constants, which can capture unobserved location-specific characteristics that
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systematically influence the choice of certain alternatives. These constants could
reflect factors such as accessibility, nearby amenities, or perceived safety, which
are not explicitly included in the model but may affect user preferences. Both
individual-specific and station-specific constants are only relevant if their effect
varies between products, so that actual choice differences are captured. Incorpo-
rating such elements improves the explanatory power of the model by accounting
for individual-level variation in utility.

The product attributes in the considered charging choice model are discretized
representations of continuous characteristics: charging duration, energy level
at departure, and costs. Given that the discretized attributes already capture
variation between alternatives explicitly, it is not immediately clear that ASCs
would add explanatory power. Moreover, including ASCs for all more than 100
alternatives risks overparameterizing the model, leading to estimation challenges
and potential overfitting. The dataset does not contain individual identifiers,
which prevents linking observed charging sessions to specific users. As a result,
it is not possible to include individual-specific constants in the model to account
for unobserved user heterogeneity. Locational influences are partially captured
by the segmentations in 3.5.4. It is notable, that the segmentation captures
differences between observations and not necessarily between products.

While including ASC may overly burden the model, grouped constants can
offer a feasible alternative to test the specification. In particular, user prefer-
ences may systematically differ by charging power level. Table B.7 compares the
results of an ASCPower specification, that includes grouped ASCs by charging
rate, to the base case from the case study. Two coefficients change in sign and
significance: the cost coefficient turns positive, and the squared duration term
becomes statistically insignificant. The sign reversal of the cost coefficient can
be explained by the fact that charging costs are largely determined by the power
level, with higher power chargers typically incurring higher per-kWh prices. The
inclusion of ASCs by power level introduces finer granularity to the model, dis-
tinguishing between nine charging rates instead of the original two power-level
groups. The additional differentiation absorbs the variation previously explained
by the cost coefficient, indicating that the original specification already ade-
quately captures power-related cost differences. Similarly, the insignificance of
the squared duration term suggests that time preferences, previously captured
through the curvature of the duration function, are now reflected in the choice
between charging rates, which are directly encoded in the ASCs. Overall, the
ASCPower specification appears to explain variance already accounted for by cost
and duration attributes in the base model. Because this paper aims to identify
structural utility functions based on observable product attributes, retaining
a model that explains choices through costs, energy, and duration attributes,
rather than group-level constants, offers greater interpretability.
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Table B.7.: Estimated coefficients of the Quadratic-in-Parameter utility function with
interaction term with and without alternative specific constants (ASC).

(1) (2)
Base ASCpower

QiP QiP
Interaction Interaction

Costs -0.056*** 0.018***
(0.004) (0.002)

Energy 0.498*** 0.614***
(0.011) (0.012)

Duration -1.238*** -0.872***
(0.086) (0.049)

Energy2 -0.004*** -0.005***
(0.000) (0.000)

Duration2 -0.052*** -0.001
(0.006) (0.001)

Interaction 0.020*** 0.009***
(0.001) (0.001)

ASCpower No Yes
Observations 8,000 40,000

Note: Robust standard
errors in parenthesis.
*** p<0.01, ** p<0.05,
* p<0.1.

B.3.4. Correlation of coefficients

The case study focuses on higher-order utility functions. By design, the vari-
ables in such specifications are often correlated, which may also lead to stronger
correlations among the estimated coefficients. While multicollinearity between
estimators is not considered a well-defined problem in itself (Wooldridge, 2016,
p.95), examining the correlation structure among coefficients can still provide
valuable insights into the nature of the underlying estimation and potential is-
sues of identification or redundancy in the specification.

Table B.8 presents the correlation matrix of the estimated coefficients, com-
puted using Biogeme (Bierlaire, 2024). While there is no correlation that is
problematic by definition, the coefficients for Energy and Energy2, as well as
for Duration and Interaction, exhibit relatively high correlations. The high cor-
relation suggests that a substantial portion of the variance in the higher-order
terms,Energy2 and Interaction, is explained by the respective base variables. As
already indicated by the relatively low point estimates in Table 3.5.2, the high
correlations reflect that marginal utility effects related to energy at departure
are more nuanced and potentially harder to identify than for duration. As noted
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by Wooldridge (2016, p.96), such correlations are only indicative, and do not in
themselves compromise a model. The low standard errors in Table 3.5.2 and the
strong out-of-sample fit of the utility function including the higher-order terms
shown in Section 3.5.1 support the conclusion that the correlations are not im-
pairing model validity. The parameters remain informative, even though their
explanatory power may be lower compared to the base variables.

Table B.8.: The correlation between parameters for the Quadratic-in-Parameter utility
function with the interaction term with in column (5) of Table 3.3.

Energy Duration Energy2 Duration2 Interaction

Costs -0.413*** 0.192*** 0.167*** -0.373*** -0.075***
Energy -0.664*** -0.959*** -0.199*** 0.67***
Duration 0.683*** 0.334** -0.959***
Energy2 0.353 -0.738***
Duration2 -0.561***

Further research could explore the higher-order components of the utility func-
tion in greater depth by extending both the case study and the model to better
capture nuanced preferences. First, incorporating additional information on in-
dividual travel-activity schedules could improve the identification of preferences
regarding departure energy levels, as the time constraints and urgency would
be more clearly defined. Second, travel-activity schedules would allow for an
expanded definition of the choice set, including not only the charging options
available at the current station but also competitive alternatives encountered
along the individual’s planned route. Such an extension could provide a more
comprehensive picture of EV users’ preferences and improve the model’s explana-
tory power.

138



C. Supplementary Material for Chapter 4

C.1. Isocost curves

Figure C.1 illustrates the isocost curves of the household’s decision problem. For
illustrative purpose, the plots are based on the data of the numerical example,
although the plots shall only provide an intuition about the properties of the
household’s decision context. The costs consist of the investment costs, fuel
costs, and the chosen fph. Moreover, emission taxes or subsidies would affect the
costs. The indifference curves would be horizontal lines, since the household’s
utility depends solely on the heat. In the left illustration of figure C.1, there are
the basic isocost curves. The darker the color, the higher the costs. Without
any policy intervention, higher fph can provide heat at lower costs, as the isocost
curves are convex in fph. Emission taxes and subsidies can turn the course of the
isocost curves so that they are decreasing with fph, and lower fphs can provide
heat at lower costs.

fph

h

Base

fph

Including emission taxes

fph

Including a subsidy

Figure C.1.: Illustration of the isocost curves of the household’s decision problem. The
darker the color, the higher the costs. The left plot shows the isocost curves
of the original problem, the middle the isocosts under an emission tax rate,
and the plot to the right the isocosts given a technology subsidy. The plots
are based on the inputs of the numerical case study.

Without any policy intervention, for all temperature levels, higher fphs are the
option with the lowest cost. The isocost curves show a steeper increase towards
high fphs so that there is in any case a high fph alternative for each temperature
level. Introducing an emission tax, decreases the slope of the isocost curves at the
end of higher fphs, here additional cost for paying the emission tax are added
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to the total costs. With that, the slope at lower fph is higher so that for all
temperature levels a lower fph constitutes the technology with the lowest costs.
Analogously, a subsidy depending on the fph decreases the slope of the isocost
curves at high fph. In contrast to the case of emission taxes, the effect does
not scale with the chosen temperature level, so that for high temperature levels
the shape remains similar to the case without subsidy, as the relative impact is
lower. At low-temperature levels, the impact of the subsidy, however, is higher.
The household can take the subsidy profit from the higher efficiency and reach
higher temperature levels, or waive the subsidy and remain on lower temperature
levels.

C.2. Proofs

C.2.1. Proof 1:

Proposition:
There does not exist any set of emission tax rates τt for all t ∈ [1, ..., T ] that
leads to the first-best outcome fphopt and hoptt .
Proof analogous to Heutel (2015):

Suppose the contradiction: there exists a set of tax rates τ optβt that lead to
m∗

t = mopt
t for all t > 0 and gpm∗ = gpmopt. The first-order condition for

choice of mt in period t is U ′(m∗
t ) = (pt(fph

∗) + epf(fph∗) · τ optβt ) · fph∗ or

U ′(mopt
t ) = (pt(fph

opt)+epf(fphopt) ·τ optβt ) ·fphopt. Since U ′′ is strictly negative

the only optimal solution, when β = 1, is τ optβt = τpigt . When β < 1, the optimal
solution does not change, since the planner does not consider the quasi-hyperbolic
discount factor, but first order conditions of the consumer change. Thus, it does
not equal the planner’s solution.

C.2.2. Proof 2:

Proposition:

If τt = τpigt for all t ∈ [1, ..., T ] and
∑T

t=1 δ
t · h∗t · [[pt(fph∗) + epf(fph∗) · τt] +

[p′t(fph
∗) + epf ′(fph∗) · τt] · fph∗] then fph∗ > fphopt and h∗t < hoptt for all

t ∈ [1, ..., T ].
Proof analogous to Heutel (2015):
Note that the consumer’s choice of fph∗ is given by her first-order condition; call
this equation F:

F =

− c′(fph∗)− β ·
T∑
t=1

δt · h∗t ·
[

[pt(fph
∗) + epf(fph∗) · τt]

+ [p′t(fph
∗) + epf ′(fph∗) · τt] · fph∗

] (C.1)
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The implicit function theorem can be used to show how fph∗ varies with β:

dfph∗

dβ
=

−dF/dβ

dF/dfph
=

T∑
t=1

δt · h∗t

·
[
[pt(fph

∗) + epf(fph∗) · τt] + [p′t(fph
∗) + epf ′(fph∗) · τt] · fph∗

]
· 1

dF/dfph

(C.2)

The denominator is negative from the second-order condition of the consumer’s
optimization problem. The numerator is positive (or zero) if

T∑
t=1

δt · h∗t ·
[

[pt(fph
∗) + epf(fph∗) · τt]

+ [p′t(fph
∗) + epf ′(fph∗) · τt] · fph∗

]
≥ 0

(C.3)

If the numerator is positive, then dfph∗/dβ < 0. Since when β = 1 fph∗ =
fphopt, it follows that in the case of β < 1 fph∗ > fphopt.

The consumer’s choice of h∗t in each period is a function of the total price of
one kWh of heating, [pt(fph)+epf(fph) · τt] ·fph, from the first-order condition
U ′(h∗t ) = [pt(fph) + epf(fph) · τt] · fph. Since U ′′ < 0, dh∗t /dfph < 0. When
fph = fphopt, h∗t = hoptt . But when β < 1, fph∗ > fphopt, so h∗t < hoptt for each
period t¿0 (and vice versa).

C.2.3. Proof 3:

Proposition:
Let β < 1: The first best is achieved by setting τt = τpig in each period t > 0 and
setting a technology subsidy in the form of ( 1

fphmin−fphmax
· fph+ 1

1− fphmin
fphmax

) · σ

with σ = (fphmin − fphmax) · (β − 1)
·
∑T

t=1 δ
t ·hoptt ·

[
[pt(fph

opt)+epf(fphopt) ·τpigt ]+[p′t(fph
opt)+epf ′(fphopt) ·τpigt ] ·

fphopt
]
.

Proof:
The subsidy is defined as a monetary benefit σ that is scaled with 1

fphmin−fphmax
·
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fph+ 1

1− fphmin
fphmax

. The consumer’s problem is:

max
fph,{ht}Tt=1

−c(fph) + (
1

fphmin − fphmax
· fph+

1

1− fphmin

fphmax

) · σ

+ β ·

[
T∑
t=1

δt ·
[
U(ht)− [pt(fph) + epf(fph) · τpigt ] · fph · ht

]] (C.4)

Subject to

U ′(ht)− [pt(fph) + epf(fph) · τpigt ] · fph = 0,∀t (C.5)

Consider this problem’s Lagrangian, where the constraint from the period t
choice of h∗t has a multiplier λt. The first-order condition with respect to ht
is:

β · δt
[
U ′(h∗t )− [pt(fph

∗) + epf(fph∗) · τpigt ] · fph∗
]
+ λt · U ′′(h∗t ) = 0 (C.6)

The term in brackets is zero from the first-order condition from the static choice
of ht, Since U” is strictly negative, λt = 0 for all t > 0. Then, the first-order
condition for fph is:

− c′(fph∗)

+
1

fphmin − fphmax
· σ

− β ·
[ T∑
t=1

δt · h∗t ·
[

[pt(fph
∗) + epf(fph∗) · τpigt ]

+ [p′t(fph
∗) + epf ′(fph∗) · τpigt ] · fph∗

]]
= 0

(C.7)

With the value of σ as given, this first-order condition can be written as:

− c′(fph∗)

−
T∑
t=1

δt ·

[
β · h∗t ·

[
[pt(fph

∗) + epf(fph∗) · τpigt ]

+ [p′t(fph
∗) + epf ′(fph∗) · τpigt ] · fph∗

]
+ (1− β) · hoptt ·

[
[pt(fph

opt) + epf(fphopt) · τpigt ]

+ [p′t(fph
opt) + epf ′(fphopt) · τpigt ] · fphopt

]]
= 0

(C.8)
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When fph∗ = fphopt, then h∗t = hoptt for all t > 0 since τt = τpigt . Plugging
fph∗ = fphopt and h∗t = hoptt in Equation C.8 makes it equal to the social
planner’s first-order condition. So fphopt and hoptt solve the consumer’s problem,
and by the second-order condition this is a unique solution.

C.3. Numerical simulation

C.3.1. Household’s heating valuation

Mertesacker (2021) provides a utility function and estimates of its parameters
for a case study on energy consumers in Germany. The utility function from
Equation (4.11) includes a household’s indoor temperature valuation factor γ. γ
is obtained by multiplying household characteristics x as binary vector and the
estimated coefficient for each characteristic δ. We specify the utility function
for the case study by defining an example household by its characteristics x
and corresponding estimated marginal utility of indoor temperature δ. The
characteristics and estimates of the corresponding marginal utility from indoor
temperature stem from Mertesacker (2021) as listed in Table C.1. For the case
study in this paper, we construct three sample households covering the potential
spread of valuations as shown in Table C.1. The base household has a valuation
of 25e /∆T 2, while the minimum obtained value is 13e /∆T 2 and the maximum
38e /∆T 2. For simplicity, we utilize valuations of 15e /∆T 2, 25e /∆T 2, and
35e /∆T 2 in the valuation sensitivity.

C.3.2. Building’s heat demand

The heat demand for the representative building used in the numerical case study
is based on the building ”SFH 1” from the building stock model of Diefenbach
et al. (2015) and IWU (2016)36. The building definition in Diefenbach et al.
(2015) is part of a model for the German building stock of the year 2009 via
six representative average buildings. In this model ”SFH 1” represents the most
common average building in Germany. It is a single-family home with 147.1 m2

of floor area. Based on the calculations implemented in IWU (2016), the specific
heat demand of the household (including domestic water supply, storage, and dis-
tribution losses) for the ideal room temperature of 21°C is set to 224 kWh/m2.
This value includes an assumed reduction factor of 0.86 which corrects for the
heated area and the reduction of temperatures during the night. Using the calcu-
lation methods and definitions from IWU (2016), the heat demand is determined
for different temperature levels.

36Specified with the code DE.National.2009.002.01

143



C. Supplementary Material for Chapter 4

Table C.1.: Estimates of a household’s characteristic’s effect on marginal utility from
indoor temperature from Mertesacker (2021).

δ x
Parameter Coefficent Base Min Max

Constant 12,256 1 1 1
Age 30-39 1.262 0 0 0

40-49 0.094 1 1 0
50-59 3.918 0 0 0
≥ 60 4.811 0 0 1

# adults 2 3.014 1 1 0
3 6.654 0 0 1
≥ 4 3.850 0 0 0

# children 1 -0.368 0 1 0
≥ 2 2.964 1 0 1

Is employed -2.234 1 1 0
Has Abitur 3.271 1 0 1
Is owner -0.033 1 1 0
Income < 1,500e 2.329 0 0 1

≥ 3,500 e 0.320 0 1 0
Dwelling size Small: < 1st tercile -1.103 0 1 0

Large: > 2nd tercile 5.322 1 0 1

Valuation βx in e /∆T 2 25 13 38

C.3.3. Heating technologies

Within the case study, we utilize stylized continuous functions of investment
costs, CO2 emissions, and fuel prices depending on the chosen fph-level. These
functions are based on technical and economic heating system parameters from
Danish Energy Agency (2021), emission intensities from BAFA (2021), and fuel
price trajectories from Pickert et al. (2022). Danish Energy Agency (2021) pro-
vides data on real heating systems, including reference capacities, efficiencies,
and cost components, as shown in Table C.2. We combine the solar thermal
system with both an oil boiler and a gas boiler to obtain in total five invest-
ment options for the household in the case study. fph is the reciprocal of the
efficiency. The efficiency of the combined heating system of a boiler and solar
thermal results from the assumption that the solar thermal accounts for 20% of
heat demand (BDEW, 2020). The investment costs of for each technology are
obtained by scaling the equipment costs from Table C.2 to the uniform heating
system size of 12.5 kW for the conventional technologies and 6.25 kW for the
heat pump and adding the corresponding installation costs. Figure C.2 illus-
trates the resulting investment costs depending on fph, both for the discrete
heating systems and a fitted exponential function.
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The fuel data in Table C.3 contains the CO2-intensites from BAFA (2021) and
the average fuel prices over the next 20 years from Pickert et al. (2022). Note
that the fuel prices are final consumption prices accounting for grid fees and
other levies. Accounting for the efficiencies of the heating systems, Figure C.2
shows the resulting discrete emission intensities and fuel prices in dependence of
fph as well as fitted linear functions.

Table C.2.: Technical and economic properties of oil boiler, gas boiler, air-to-water heat
pump, and solar thermal systems (Danish Energy Agency, 2021).

Heating Capacity Efficiency Equipment costs Installation costs
technology

kWth e e

Oil boiler 20 0.92 4260 1300

Gas boiler 14 0.98 2702 1158

Air-to-Water 7 3.15 6780 3830
heatpump

Solar thermal 4.2 2872 1228

Table C.3.: Energy prices based on Pickert et al. (2022) and CO2-intensities based on
BAFA (2021).

Fuel Fuel price CO2-intensity
e /kWh kgCO2/kWh

Oil 0.0738 0.266
Gas 0.0743 0.201
Electricity 0.3142 0
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Figure C.2.: Investment costs, CO2 emissions, and fuel prices for different heating tech-
nologies, including gas and oil condensing boiler, gas and oil boiler combined
with a solar thermal system, and an air-source heat pump. Both the dis-
crete technologies as well as fitted functions are displayed.
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D.1. Data

Table D.1 lists the main variables used in the analysis. The shown characteris-
tics include the symbol, mean, minimum, maximum, standard deviation, unit,
and source. Final energy consumption per capita is detailed for total energy,
as well as broken down by industry, transport, and residential sectors, show-
ing significant variability within and across sectors. Electricity consumption per
capita follows a similar structure, highlighting the differences in consumption
patterns among sectors. The table also includes the share of ICT capital at
both the aggregate and sectoral levels, which serves as a proxy for digitalization.
Additionally, economic activity is captured through GDP per capita, industrial
production index, and private consumption per capita, providing a backdrop
against which the energy consumption and digitalization data can be contextu-
alized. The Economic Complexity Index (ECI) and various efficiency indicators
offer insights into the structural and operational aspects influencing energy use.
Control variables such as oil price, heating degree days, the share of natural
resources, patents per capita, and average school years are included to account
for external factors that might affect the observed relationships.

Table D.1 shows that for energy consumption, the average per capita fig-
ures reveal substantial variations, with the total consumption averaging at 26.14
MWh, indicating significant energy use differences across the industry (6.737
MWh), transport (8.533 MWh), and residential (6.646 MWh) sectors. Electric-
ity consumption per capita shows a similar pattern of variability, with the total
average at 5.764 MWh. The industry sector’s average stands at 2.180 MWh,
highlighting its substantial electricity demand, while the transport sector has
the lowest average at 0.104 MWh, reflecting its minimal reliance on electricity
compared to other forms of energy. Residential electricity consumption averages
at 1.629 MWh, underscoring the sector’s considerable but varied electrical en-
ergy use.Moreover, the ICT capital share statistics show a total average share
of 0.927%, with the industry sector leading at 3.627%, followed by transport at
1.847%, and a relatively lower share in the residential sector at 0.093%.

Figure D.1 illustrates the relationship between digitalization and energy con-
sumption across the industry, transport, and residential sectors in the EU-28
from 2007 to 2020. It shows the average digitalization of the 27 countries as
a line, along with the average energy and electricity consumption represented
as bars. Within these bars, electricity consumption is distinguished in black,
indicating its proportion of total consumption. Following the financial crisis,
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the industry sector experienced a marked decrease in both energy and electricity
usage, which later stabilized. This trend suggests a possible correlation between
ICT capital intensity and reduced energy consumption, partially influenced by
the EU Emission Trading Scheme. Energy consumption in the transport sector
declined until 2013, then increased, followed by a significant reduction during
the COVID-19 pandemic due to decreased mobility; meanwhile, electricity use
remained relatively low but gradually increased with the adoption of electric
vehicles, predominantly supported by the existing rail system. The residen-
tial sector exhibited the smallest reduction in energy consumption, affected by
weather conditions and showing stable yet slightly decreasing electricity usage,
which indicates enduring consumption patterns and the longevity of capital as-
sets. Despite advancements in digitalization, the trends in energy and electric-
ity consumption across these sectors were varied, indicating reductions in the
industry and residential sectors, while the transport sector showed fluctuating
consumption patterns, reflecting shifts in efficiency and behavior.
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Figure D.1.: The development of energy and electricity consumption and ICT capital
shares in the sectors industry, transport, and residential on average for the
EU-28 between 2007 and 2020.
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D.1. Data

Table D.1.: Descriptive statistics of all variables

Variable Symbol Mean Min. Max. St.
Dev.

Unit Source

Energy consump-
tion pc
Final energy IEA (2023a)
Total 26.14 10.27 95.04 13.35 MWh
Industry 6.737 1.114 26.26 4.485 MWh
Transport 8.533 2.540 53.77 7.332 MWh
Residential 6.646 1.816 12.60 2.285 MWh

Electricity IEA (2023a)
Total 5.764 1.846 16.28 2.906 MWh
Industry 2.180 0.387 8.842 1.605 MWh
Transport 0.104 0 0.419 0.085 MWh
Residential 1.629 0.497 4.903 0.820 MWh

Digitalization
ICT capital share Stehrer and

Sabouniha
(2023)

Total 0.927 0.510 0.188 2.831 %
Industry 3.627 2.213 0.505 13.10 %
Transport 1.847 0.801 0.266 3.998 %
Residential 0.093 0.09410.011 0.584 %

Economic Activ-
ity pc

Gross domestic
product

GDP pc 30.62 5.964 105.5 20.10 k$2015 World Bank
(2023b)

Private consump-
tion

14.01 7.209 24.43 3.649 ke Enerdata
(2023b)

Structure
Economic complex-

ity index
ECI 1.200 0.018 2.329 0.515 Index GLaHU (2019)

Efficiency
Gross efficiency in-

dex
Enerdata
(2023b)

Industry 22.63 16.71 -18 68 Index2000
Transport 2.87 12.52 -39 33 Index2000
Residential 18.97 10.94 -8 46.28 Index2000

Control variables
Energy price index 101.1 7.613 77.36 120.6 Index2015 IEA (2022)
Heating degree days HDD 2,782 322.4 6,180 1,129 d Enerdata

(2023b)
Patents per capita Patents 885.2 31.26 5,969 1,067 Number WIPO (2023)

Average school
years

School 11.86 7.672 14.13 1.211 y UNDP (2022)

Share of free al-
lowances

Free al-
lowances

74.28 25.17 24.98 1.080 % EEA (2024)
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D.2. Flow and stock variables of digitalization

In our analyses, we use the ICT capital share in total capital as a measure of
digitalization. Unlike flow variables such as energy consumption or economic
activity, a stock measure may underestimate ICT’s role, as it captures capital
accumulation rather than utilization. Given that ICT applications and usage
have grown in recent years, the stock variable likely understates ICT’s effect on
energy consumption. For comparison, we also consider two alternative measures
of digitalization: ICT capital compensation (a flow variable) and a societal digital
index capturing broader technological trends.

To capture the economic impact of digitalization as a flow, we follow the liter-
ature (Schulte et al., 2016, Taneja and Mandys, 2022) and compute ICT capital
compensation. Since ICT capital compensation is not directly available in the
EU KLEMS database (Stehrer and Sabouniha, 2023), we derive it using the
the growth accounting framework. The income share of ICT capital is obtained
by dividing ICT’s contribution to value added growth (V ACOn) by the growth
rate of ICT capital services, measured as the year-on-year change in the quantity
index (CAPICT QI). Multiplying the income share by total capital compen-
sation (COMP ) yields ICT capital compensation in monetary terms, specified
in equation (D.1). For the residential sector, we use private expenditures on
ICT goods and services (eurostat, 2025, ONS, 2025), as detailed in D.3. The
aggregated digitalization index is then constructed as first principal component
of the three sectors industry, transport, and residential.

COMP ICT
t,j = COMPt,j

V ACOnTAngICTt,j + V ACon Soft DBt,j

CAPICT QIj,t − CAPICT QIj,t−1
(D.1)

The Digital Economy and Society Index (DESI) is constructed by the Euro-
pean Commission to capture differences in digital maturity across EU-28 coun-
tries (EU, 2023). In high-income environments such as the EU, where single-
technology penetration often approaches saturation, DESI’s broad scope makes
it a suitable measure. It covers four dimensions: connectivity, human capital,
integration of digital services, and digital public services. The first three corre-
spond to common components of digitalization indices: digital technical capital
(infrastructure and tools enabling digital activities), digital human capital (skills
for effective digital technologies) and digital technology use (technology integra-
tion across various sectors) (ITU, 2022, Portulans Institute, 2022, Shahbaz et al.,
2017).
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Table D.2.: The effect of digitalization, measured by digital capital compensation and
the digitalization index DESI, on aggregate energy and electricity consump-
tion using the system GMM estimator.

Variable Energy Electricity

(1) (2) (3) (4)

Compensation DESI Compensation DESI

L.dep 0.814*** 0.696*** 0.821*** 0.774***
(0.05) (0.08) (0.07) (0.07)

Digitalization -0.014*** -0.299*** -0.004** -0.166**
(0.00) (0.11) (0.00) (0.08)

Economic activity 0.104*** 0.154*** 0.096** 0.124***
(0.03) (0.03) (0.05) (0.05)

Energy price -0.312*** -0.288*** -0.194*** -0.176***
(0.04) (0.04) (0.05) (0.05)

HDD 0.083*** 0.132*** 0.040** 0.051**
(0.02) (0.03) (0.02) (0.02)

Fin. crisis -0.069*** -0.067*** -0.072*** -0.072***
(0.01) (0.01) (0.01) (0.01)

COVID -0.087*** -0.050*** -0.061*** -0.040***
(0.01) (0.02) (0.01) (0.01)

Constant -0.075 -0.167 -0.117 -0.186
(0.11) (0.15) (0.17) (0.22)

AR(2) 0.453 0.583 0.120 0.154
Hansen test 24.91 23.67 21.92 20.14
P-value 0.205 0.311 0.257 0.449
Obs. 364 364 364 364
Countries 28 28 28 28
Note: Heteroscedasticity-consistent standard errors are in parentheses. Wind-
meijer (2005) finite sample correction for standard errors is employed. ***
p<0.01, ** p<0.05, * p<0.1. The values reported for AR(2) are the p-values
for the null hypothesis of the Arellano and Bond (1991) tests of second-order au-
tocorrelation in the first differenced errors. The “P-value” is reported for Hansen
tests.
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D.3. Digitalization variables in the residential sector

Analogous to the industry and transport sectors, digitalization in the residen-
tial sector is approximated by the NACE Rev. 2 category Real Estate Activi-
ties (eurostat, 2008). The sector includes “...operating of self-owned or leased
[...] apartment buildings and dwellings” and “... provision of homes and [...]
flats or apartments for permanent use”, thereby capturing fixed installed assets
such as smart home systems. The main advantage of the NACE REv. 2 cate-
gory as proxy is its consistency with the measures for industry and transport,
both in interpretation and data source. It comes with two limitations because
EU KLEMS reports data on the production side, while the residential sector
is primarily consumption-oriented. First, the measure may reflect ICT used by
real estate firms, introducing noise. Second, digitalization in households occurs
through mobile smart devices (e.g., smartphones), which are not included in
installed capital.

An alternative measure, though inconsistent with the main digitalization indi-
cators, is private expenditures on ICT goods and services (eurostat, 2025, ONS,
2025). Table D.3 reports the residential sector estimates using private ICT ex-
penditures. In both energy and electricity models, digitalization measured via
private ICT expenditure exhibits higher significance than when using ICT capital
in the real estate sector.
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Table D.3.: The effect of digitalization, measured by private expenditures for ICT goods
and services, on residential energy and electricity using the system GMM
estimator.

Variable Energy Electricity

(1) (2)

L.dep 0.680*** 0.933***
(0.07) (0.03)

Digitalization -0.323** -0.102**
(0.15) (0.04)

Economic activity 0.294*** 0.080**
(0.10) (0.04)

Energy price -0.100* -0.028
(0.06) (0.05)

HDD 0.203*** 0.012
(0.04) (0.01)

Fin. crisis 0.006 -0.002
(0.01) (0.01)

COVID 0.024** 0.015**
(0.01) (0.01)

Constant -1.549*** -0.168
(0.42) (0.13)

AR(2) 0.774 0.993
Hansen test 26.75 22.71
P-value 0.142 0.303
Obs. 364 364
Countries 28 28
Note: Heteroscedasticity-consistent
standard errors are in parentheses.
Windmeijer (2005) finite sample cor-
rection for standard errors is employed.
*** p<0.01, ** p<0.05, * p<0.1. The
values reported for AR(2) are the
p-values for the null hypothesis of the
Arellano and Bond (1991) tests of
second-order autocorrelation in the first
differenced errors. The “P-value” is
reported for Hansen tests.
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D.4. Two-step system GMM

Table D.4.: The effect of digitalization on disaggregate energy and electricity using the
two-step system GMM estimator.

(a) Columns (1)-(4) for energy consumption.

Variable Energy

(1) (2) (3) (4)

Industry Industry Transport Residential

L.dep 0.752*** 0.749*** 0.756*** 0.411***
(0.08) (0.07) (0.07) (0.09)

Digitalization -0.061*** -0.054** 0.037 -0.272
(0.02) (0.03) (0.02) (0.26)

Economic activity 0.226** 0.213** 0.096** 0.318***
(0.10) (0.10) (0.04) (0.11)

Energy price -0.212*** -0.292*** -0.376*** -0.153
(0.07) (0.07) (0.07) (0.10)

Free allowances 0.040*
(0.02)

HDD 0.186*** 0.180*** 0.022 0.374***
(0.06) (0.05) (0.01) (0.08)

Financial crisis -0.137*** -0.146*** -0.061*** -0.007
(0.02) (0.02) (0.01) (0.02)

COVID -0.034** -0.028* -0.157*** 0.003
(0.01) (0.02) (0.01) (0.01)

Constant -1.327*** -1.188*** 0.330** -2.495***
(0.47) (0.45) (0.13) (0.61)

AR(2) 0.312 0.232 0.098 0.792
Hansen test 19.53 21.55 22.12 26.56
P-value 0.312 0.365 0.334 0.148
Obs. 364 364 364 364
Countries 28 28 28 28
Note: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
The economic activity measures are the GDP per capita in industry and trans-
port, and the private consumption in the residential sector.
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(b) Columns (5)-(7) for electricity consumption.

Variable Electricity

(5) (6) (7)

Industry Transport Residential

L.dep 0.784*** 0.938*** 0.846***
(0.12) (0.07) (0.08)

Digitalization -0.036*** -0.002 -0.060*
(0.01) (0.00) (0.04)

Economic activity 0.103** 0.003 0.052**
(0.05) (0.00) (0.03)

Energy price -0.157** -0.008 -0.014
(0.07) (0.01) (0.05)

HDD 0.063** 0.004 0.020
(0.03) (0.00) (0.02)

Financial crisis -0.087*** -0.003* -0.003
(0.01) (0.00) (0.01)

COVID -0.027*** -0.006*** 0.011*
(0.01) (0.00) (0.01)

Constant -0.299 -0.021 -0.130
(0.29) (0.03) (0.18)

AR(2) 0.914 0.058 0.889
Hansen test 18.50 22.40 17.56
P-value 0.555 0.319 0.351
Obs. 364 364 364
Countries 28 28 28
Note: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
The economic activity measures are the GDP per capita in industry and trans-
port, and the private consumption in the residential sector.

155



D. Supplementary Material for Chapter 5

D.5. Exergy

The analysis uses total final energy consumption as the dependent variable, which
has some caveats. It does not account for differences in useful work delivered
by energy carriers; for instance, electrification (e.g., replacing gasoline vehicles
with electric vehicles) may reduce final energy consumption without reducing
useful work. Brockway et al. (2024) provide data on final exergy consumption,
which measures the useful work in energy consumption. Table D.5 shows the
effect of digitalization—approximated by capital share, capital compensation,
and DESI—on exergy consumption. The coefficients remain negative, but their
magnitude decreases compared to the final energy consumption estimates: cap-
ital share from -0.074 to -0.048, compensation from -0.014 to -0.012, and DESI
from -0.299 to -0.106 suggesting that using final energy consumption may over-
estimate digitalization’s effect. Digital capital compensation is least affected by
the dependent variable change and remains significant at the 1% level, indicating
lower correlation with electrification.
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Table D.5.: The effect of digitalization, measured by ICT capital share, private expen-
ditures for ICT goods and services, and DESI, on final exergy consumption
using the system GMM estimator.

Variable Exergy

(1) (2) (3) (4)

Base Capital share Compensation DESI

L.dep 0.873*** 0.824*** 0.871*** 0.817***
(0.05) (0.08) (0.05) (0.08)

Digitalization -0.048 -0.012*** -0.106
(0.04) (0.00) (0.12)

Economic activity 0.074*** 0.072*** 0.065*** 0.090***
(0.02) (0.02) (0.02) (0.03)

Energy price -0.324*** -0.352*** -0.326*** -0.318***
(0.04) (0.05) (0.04) (0.04)

HDD 0.066*** 0.089** 0.069*** 0.089***
(0.02) (0.04) (0.02) (0.03)

Fin. crisis -0.080*** -0.078*** -0.082*** -0.079***
(0.01) (0.01) (0.01) (0.01)

COVID -0.085*** -0.080*** -0.087*** -0.072***
(0.01) (0.01) (0.01) (0.02)

Constant -0.035 0.012 -0.027 -0.074
(0.09) (0.14) (0.09) (0.12)

AR(2) 0.669 0.594 0.421 0.490
Hansen test 18.78 21.67 23.05 23.24
P-value 0.224 0.358 0.286 0.277
Obs. 364 364 364 364
Countries 28 28 28 28
Note: Heteroscedasticity-consistent standard errors are in parentheses. Wind-
meijer (2005) finite sample correction for standard errors is employed. ***
p<0.01, ** p<0.05, * p<0.1. The values reported for AR(2) are the p-values
for the null hypothesis of the Arellano and Bond (1991) tests of second-order au-
tocorrelation in the first differenced errors. The “P-value” is reported for Hansen
tests.
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Statista (2025). Höhe des durchschnittlichen netto-stundenlohns je arbeitnehmer
in deutschland von 1991 bis 2023.

Stehrer, R. and Sabouniha, A. (2023). wiiw growth and productivity database.
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