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Anticoncentration describes how an ensemble of quantum states spreads over the allowed Hilbert space,
leading to statistically uniform output probability distributions. In this work, we investigate the
anticoncentration of random Clifford circuits toward the overlap distribution of random stabilizer states.
Using exact analytical techniques and extensive numerical simulations based on Clifford replica tensor
networks, we demonstrate that random Clifford circuits fully anticoncentrate in logarithmic circuit depth;
namely, higher-order moments of the overlap distribution converge to those of random stabilizer states.
Moreover, we investigate the effect of introducing a controlled number of non-Clifford (magic) resources
into Clifford circuits. We show that inserting a polylogarithmic in qudit number of T states is sufficient to
drive the overlap distribution toward the Porter-Thomas statistics, effectively recovering full quantum
randomness. In short, this fact presents doped tensor networks and shallow Clifford circuits as
pseudomagic quantum states. Our results clarify the interplay between Clifford dynamics, magic-state
injection, and quantum complexity, with implications for quantum circuit sampling, many-body quantum

physics, and the benchmarking of quantum computational advantage.
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I. INTRODUCTION

Quantum circuits provide a natural framework for
describing digital quantum dynamics, serving both as the
backbone for quantum computation and as a versatile
toolbox to investigate complexity in quantum many-body
systems—if{rom quantum chaos to entanglement spreading
[1,2]. A key concept in this context is anticoncentration,
which measures how the overlap distribution of an ensem-
ble of quantum states in the computational basis is spread
[3-5]. Originally, anticoncentration was introduced as the
property of a circuit ensemble to produce sufficiently
spread states in Hilbert space. Already, an approximate
2-design ensures that the overlap with any state cannot be
too small [6]. Here, we loosely employ the term anticon-
centration to describe the overlap distribution for a family
of circuit ensembles that increasingly expand over the
Hilbert space [7-9]. Related to Hilbert space delocalization
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[10-13], anticoncentration is intimately connected with
concepts of quantum randomness and plays a critical role in
practical setups, from shallow shadows in randomized
measurements on quantum chips [14—-18] to benchmarking
computational quantum advantage in quantum circuit
sampling [19-22]. For chaotic unitary circuits [23-25],
anticoncentration has been shown to occur rapidly, with the
overlap, or output, distribution approaching the Porter-
Thomas one [26] in logarithmic circuit depth [27,28].
However, when structural limitations are imposed on
quantum circuits, this behavior can be significantly altered.
A well-known example is Hamiltonian evolution, where
energy conservation prevents full anticoncentration
[29,30]. This motivates the question of how anticoncentra-
tion occurs in structured quantum many-body dynamics.
In this work, we present a comprehensive analysis of
anticoncentration for random Clifford circuits applied to
stabilizer states, a crucial class of many-body systems with
significant applications in quantum error correction and
fault-tolerant quantum computing [31-33]. Notably, stabi-
lizer states are efficiently simulatable on classical com-
puters [34-36] and can be learned with polynomial
resources [37,38]; thus, they cannot provide computational
quantum advantage. Interestingly, Clifford unitaries form a
2-design for generic qudit systems and a 3-design for qubit
systems, implying that the first few statistical moments of
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their overlap distribution match those of Haar-random
unitary gates [39,40]. As a result, the intricate structure
of the overlap distribution, which underlies the efficient
sampling of Clifford circuits, can be captured only through
its higher-order moments.

We address and solve the following problems:

(1) Whatis the overlap distribution for random stabilizer
states?

(i) What bond dimension is required for a Clifford
random tensor network to approximate this distri-
bution? On what timescale is this distribution
reached by local random Clifford circuits?

(iii) How many non-Clifford (magic) resources [41-43]
are needed to drive the overlap statistics toward the
unitary Porter-Thomas distribution, characteristic of
Hilbert space random states?

To answer these questions, we employ a combination of
exact analytical methods and extensive numerical simu-
lations based on Clifford replica tensor networks. After
determining the explicit form of the overlap distribution for
random stabilizer states, we demonstrate that Clifford
random matrix product states saturate this distribution with
a bond dimension that is polynomial in the system size.
From these results, inspired by recent works on random
unitary circuits [27], we show that “glued” Clifford circuits
anticoncentrate to random stabilizer states in logarithmic
depth. We corroborate these results with numerical simu-
lations on Clifford brickwork circuits up to N =512
qudits. Finally, we explore how many magic-state resources
we must inject into our system to drive the overlap
distribution  toward the Porter-Thomas  statistics.
Surprisingly, we find that in the thermodynamic limit, an
O(log(N)) circuit depth with a logarithmic in qudit
number N of magic states suffices. At finite sizes, a
polylogarithmic number is required to achieve indistin-
guishability from the Porter-Thomas distribution at any
polynomial accuracy, connecting with the concept of
pseudomagic states [44]. These findings provide insights
into the relationship between Clifford circuits and quantum
complexity, with implications for quantum sampling prob-
lems and the benchmarking of computational advantage in
near-term quantum computers.

The remainder of the paper is structured as follows: In
Sec. II, we review the mathematical background necessary
for our results, covering stabilizer states, Clifford oper-
ations, and the Clifford Weingarten calculus. In Sec. III, we
present our main findings, including the Clifford analog of
the Porter-Thomas distribution and the anticoncentration
properties of random tensor network states and circuits.
Additionally, we explore the role of non-Clifford resources
in enhancing anticoncentration toward the Haar unitary
ensemble. Finally, in Sec. IV, we summarize our conclu-
sions and discuss the implication of our work within and
beyond quantum information science, and potential direc-
tions for future research. For self-consistency, the

Appendix provides a brief review of Haar-random unitary
circuits and their anticoncentration properties.

II. METHODS

A. Preliminaries

We consider a system of N qudits with local Hilbert
space H, of dimension d a prime number, and denote
Hy.a EH?N the total Hilbert space. The set of Pauli
strings

Prna={X{ZV X270 X0 ZWaib;€Z,) (1)
consists of all the @*" operators defined in terms of the
generalized Pauli matrices X = > ¢! |m)(m & 1| and
Z =Y 4 o |m)(m| withw = e >/ and a @ b= (a +
b) mod d the addition in the Galois field Z,. The Clifford
group on N qudits is the subgroup of the unitary operations
Cy.q CU(dN) that maps a Pauli string P to another Pauli
string P up to a phase [40], namely,

CPC' = 0P, mezy,, P,PEPyy (2)
It is generated by the action of the Hadamard H, control
addition CADD, and phase S gates, respectively,

H=—= >  o""m)nl,
\/am,nZ:()
d-1
CADD = Z |m, m @ n){m,n|, (3)
m,n=0

while § = Y% @"=D@+D/2| ) (m| for d > 2 and § =
VZ for d = 2.

Stabilizer states over N qudits are defined by applying a
Clifford transformation to [0) = |0)®", namely,

Staby 4 = {C|0)|C €Cy 4} (4)

Equivalently, stabilizer states are uniquely characterized by
N independent signed Pauli strings, P;|¥) = |¥) for
j=1,....N, where P;= a)‘f’('/)Pj with ¢V) ez, and
P; € Py 4. In fact, since Z;|0) = |0) at each site, it follows
that for any Clifford C the stabilizer state |¥) = C|0) is
stabilized by P i =" CZ jCT. Thus, the knowledge of the
generators 13_,- is equivalent to the complete knowledge of
W) (%] = [TV, (Y40 Pe/d). As a
result, the state of the system is uniquely fixed by a (2N +
1) x N matrix, the so-called stabilizer tableau
S = (¢V[aW[b),_, . whose rows contain, for each

the state, explicitly,

stabilizing string P j» the parameters $pV ez, and
a,b e ZY fixing unambiguously the Pauli string (1). For a
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given stabilizer state, for later convenience, we define the N x
N submatrices X = (a;l))i.jzl ’’’’’ v and Z= (bj-’))i'j:1 ..... N-
The preceding discussion provides an indication of
why Clifford operations are efficiently simulatable in
poly(N) resources [34-36], as they map stabilizer S tableau
describing |¥) into stabilizer tableau S+ S’ describ-
ing |¥') = C|¥).

We conclude this section by setting up the notation and
conventions we will employ in the rest of this work. With a
slight abuse of notation, we will pass from integers x =
0,....dY — 1 to strings x€ZY implicitly, assuming the
digit-to-integer convention is inferred. Additionally, we
will employ the double-space representation fixed by A —
|AY) with {A|B)) = tr(ATB), and |[UAU™Y) = (U ® U*)|A)
[45]. For simplicity, we move between these representa-
tions as required, inferring the specific notation from the
context. Lastly, we emphasize that several results tie to g-
analog arithmetic, for which we reference Ref. [46] for a
comprehensive discussion.

B. Clifford Weingarten calculus

Consider a Clifford circuit expressed as the product of
Clifford gates acting on contiguous qudits. Explicitly, the
circuit is organized into layers identified by the time, or
depth, s. We can express the whole circuit by

-1I(I<) )

5=0 MeEA,

where A, fix the action of gates for the sth layer, and the C,
are Clifford gates acting on the set A of contiguous qudits
[47]. In essence, the collection A = {A,}._, specifies the
dynamical architecture of the circuit. For example, the two-
qudit brickwork circuit architecture we will consider later
alternates A,y = {(1,2),(3.4),....,(N—=1,N)} at even
times with Ay ={(2,3),(4,5),....,(N=2,N—-1)} at
odd ones, with N an even number.

For a given architecture A = {A}!_,, random Clifford
circuits are defined by independently sampling each local
gate C; uniformly from the finite set of Clifford gates acting
on the set of sites 4. We are interested in computing the
anticoncentration properties of random Clifford circuits. A
central interest in our work is the k-replica expectation
values [8,48]

O, = E¢,{0|(C, ® C;)®[p&") (6)

for a certain replica boundary state |O)) that specifies the
observable of interest, while |pg ®k% is the initial state of
interest. (In the following, O will be a statistical proxy of
anticoncentration.) The technology behind the computation
of O, constitutes the so-called Clifford Weingarten calculus
[40,49,50]. In fact, by linearity of the expectation value and
the statistical independence of the Clifford gates C;, the

central building block is the replica transfer matrix, or
moment operator,

T;=Egec,,l(C, ® C})®. (7)

with n = |4] the number of qudits where the action of C; is
nontrivial.

The replica transfer matrix is given in terms of the kth
Clifford commutant, namely, the set of operators A acting
on H® such that [A, C®] =0 for all C,€C, , that we
denote by Commy(C, 4). Since C, 4 C U(d"), one has that
Commy(C,, 4) D Commy[U/(d")], where Commy[Uf(d")] =
span({A,},cs,) is spanned by the representation on HE
of the permutation group with k elements S; [51,52]. To
identify the entire content of Comm,(C,, ;), one uses that the
Clifford commutants are indexed by the stochastic Lagrangian
subspaces of Z2F [40,53-56]. These are subspaces ¢ C Z2F
that satisfy the following conditions: (i) for every (x,y) €, it
holds ¥} (x? — y?) = 0 mod D, where D = 4 for qubits
and D = d for d > 3 prime, (ii) o has dimension k as a vector
space, and (iii) the vector 1,, = (1,1, ..., 1)isanelementof 6.
We denote the set of all such stochastic Lagrangian subspaces
as X, (d), which has cardinality

k=2

=[J@" +1) =

m=0

Z(d)] (=Ld)sess (8)

where (a; €), = [, (1 — aé™)isthe g-Pochhammer sym-
bol [46]. Forany given stochastic Lagrangian subspace o, we
associate the corresponding vector |o)) = >

xy)
on an individual replica qudit H?zk. This elementary
ingredient allows for constructing the action on k copies
of n qudits via |o));= ®,¢, |0:)), where 1 are the qudits
where C; act nontrivially. The vectors |6)) are linearly
independent when n=|4>k—1; in that -case,
|Commy (C, 4)| = |Z¢(d)]. Otherwise, some of these vectors
are linearly dependent.

The Schur-Weyl duality for Clifford unitaries expresses
Eq. (7) in terms of the commutant Commy (C,, 4),

= > ng

o€ (d

|”>>/1«0|,1’ (9)

where Wg(d") is the pseudoinverse of the Gram matrix
G,. =11, (oi|z;). To lighten the notation, we will
employ a graphical notation in the following section. For
instance, 7 ; acting on two neighboring qudits is given by

E \zz

o,

(10)
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whereas we will depict the gram matrix G as

A fundamental property of the Gram and Weingarten
matrix is that [40]

> G,,,, (d")

reX;(d

=d"(=d™"d);_ =Gppar  (12)

and similarly,

d- kn
> Wg”d” e e (13)

reX(d ( k=1

It is important to stress that by increasing the number of
qudits n, we can obtain arbitrarily large Clifford operators.
However, the size (8) of the commutant |X,(d)| for &
replicas explicitly depends on the dimension d of each
qudit. This contrasts with the usual Haar case, where, for
n > k — 1, the commutant has size k!.

III. RESULTS

A. Distribution of overlaps for random stabilizer states

We start our discussion by deriving the overlap distri-
bution for random stabilizer states obtained by averaging
the action of the Clifford Haar transformation onto
|0) — C|0) = |¥). A stabilizer state is fully characterized
in the computational basis B = {|x)|x € Z } by a set of ¥

..........

d9—1

75 - Z @’ [x;) (14)

for a certain g = 0, ..., N. Therefore, a fixed stabilizer state
|¥) is uniformly spread over @¥ states, so that the rescaled
overlap wy = d"|(y|¥)|* = 15, (y)d"~¢ [12,57], where 14
is the characteristic function of A. As aresult, the partici-
pation entropy is independent of the Rényi index
S[I¥)] = Sy = (1 -k)~"logy[I;] = g, L]|W)] =
S| (x| ) |2 are the inverse participation ratios [58,59].
Thus, we can identify g with the participation entropy, which
can be expressed in terms of the stabilizer tableau as [12]

where

g =S8 =rkz (X), (15)
where rkz, denotes the rank in the Galois field Z,. We are
interested in the distribution of overlaps over random stabilizer
states, namely,

P(w) = Ec{E,[6(w —wy)]}
= Ec[5(w - a"[{0[C[0)[)]. (16)

Here, in the second step, we used Clifford invariance to
reabsorb y — 0.

Itis important to underscore the subtle difference between
Hilbert space delocalization and anticoncentration: The
former describes a property of an individual state, while
the latter characterizes an ensemble of states. Specifically,
the distribution of the overlap on a given realization [E, [6(w —
wy)] = (1= d"™N)§(w) + d7N§(w — d"~9) of a random
stabilizer state is just made of two & peaks and is not
representative of the whole ensemble. Nonetheless, once
averaging over the whole Clifford unitaries E[...] a non-
trivial form emerges, and the previous discussion clarifies
that it is determined by the statistics of g and is agnostic to
the phases. This is in sharp contrast with generic Haar
unitaries, where at large N, a single realization is enough to
extract the distribution of w by varying y.

We extract the overlap distribution proceeding in two
complementary ways. First, one can directly compute the
expectation value E[w¥] via the replica transfer matrix. As
{0,0|®* - |z)) = 1 for all 7€ X,(d), we simply have

Z W4 n'o‘(dN) - M? (17)
N.k.d

o.ne€X(d)

E[[(0]C|0)*] =

where we used Eq. (13) and the size of the commutant.
However, reconstructing the distribution P(w) from its
moment is not obvious. To obtain it more directly, we
observe that each stabilizer state is equivalent to its tableau
representation [31-33], and crucially, g corresponds to the
rank of X [12]. Thus, the probability that a random
stabilizer state has participation entropy ¢ is a counting
problem of how many stabilizer states have the tableau X of
rank g in the Galois field Z,;. We note that row operations
on the matrix S lead to the same state. As a result, the
number of degeneracies for the tableau X is equivalent to
the number of echelon matrices with g rows over N terms
given by the ¢ binomial (’;’ ), [46]. Once the structure of Xis
fixed, there is an additional degeneracy on setting the terms
in Z which, modulo Gauss row operations, is the possible
nontrivial vectors in Z over the nontrivial rows in X given
by @9+t1)/2, Finally, an additional degeneracy d" comes
from the phases ¢. In summary, the number of stabilizer
states with participation entropy g is given by

N
xgz#{CecN,d|S[C|o>]:g}szd-q(gH)/Z<g) . (18)
d
As a simple consistency check, we note that > =0 Ny =
d"(—d;d)y = |Staby 4| reproduces the number of all
stabilizer states on N qudits. Thus, the distribution of
the participation entropy ¢ is simply given by
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N N\ golgt1)/2
PHaar (g) . < > TN (19)
d

~[Stabyal N\ g )a(-did)y’

This expression is one of the main results of our work: It is
the analog to the Porter-Thomas distribution of the Haar
unitary ensemble, which we dub the Clifford-Porter-
Thomas distribution.

An important consequence of Eq. (14) is the loss of self-
averaging in the Clifford ensemble. To illustrate this point,
consider the quenched and annealed averages of the
participation entropy over an ensemble &, respectively
defined by S, =E¢[S;] and S, = (1 —k)~'log, Eg[l].
Self-averaging occurs when these two quantities are equal,
up to exponentially small corrections in system size N. This
holds for Haar-random unitary transformations U(d"),
where measure concentration ensures that for large systems
(N > 1), a single realization of a Haar-random unitary is
typical. In other words, the probability that any polynomial
function p(U, U") deviates significantly from its expect-
ation value E[p(U, U")] is exponentially small in N. In
contrast, for Clifford unitaries, we can compute the average
inverse participation ratios using Eq. (19) and the g¢-
binomial theorem

N 2—k.
—d?*:d)
JHaar — d(l—k)gfp r(g):( 7N
k ; Haa (—d,d)N
_d(l_k)N<_1;d)k—1 (20
(=d™Mid)y

where the second line confirms the agreement with
Eq. (17). These inverse participation ratios of the
Clifford ensemble in Eq. (20) exhibit multifractal behavior
11,60]], meaning they depend nontrivially on the Rényi
index k. In particular, the annealed average participation
entropy over the Clifford group is given by

Sk:

0 klogd[[E(IIk{aar)] =N+ +0(e™), (21)
where ¢; = (1 —k)™' Y k2 log,(1 + d™) scales as ¢; ~
—k/2 at large k > 1. This contrasts the average participa-
tion entropy [12]

N
S = ZgPHaar(g) =N+c+ O(e_yN)v (22)
g=0

where ¢ = = Y7 | (d? + 1)7!, which is independent of the
Rényi index and thus follows a fractal behavior [57]. The
discrepancy between the annealed (21) and quenched average
(22) quantifies how Clifford circuits are not self-averaging.
Finally, we emphasize that the explicit distribution
Phaar(g) enables us to compute the exact higher-order
moments of the participation entropy for stabilizer states.

This is a significant advantage over Haar-random cases,
where such calculations require resumming an intricate
logarithmic expansion; cf., for instance, Refs. [61,62].
The leading factor in Egs. (21) and (22) indicates that the
distribution of g concentrates around its maximal value. We
can thus explore the thermodynamic limit N — co defining
n=N-g€e{0,1,...,N}, with the limiting distribution

1 d—n(n+1)/2

Plo-loaar(n) = (—d_l'd_l) <d—1.d—1) !

(23)

This expression is the scaling limit of the Clifford-Porter-
Thomas distribution, similar to the exponential distribution
being the scaling limit of the Haar unitary Porter-Thomas
distribution [63]; cf. the Appendix. We can use this
result to recover the moments of the overlaps using
E[w*|n] = d"*~)). Summing over the n, we obtain

[E[wk] = ZE[WHn]P;IOaar(n) - (_dk_z; d_l)k—l’ (24)

which, up to an overall prefactor ')V, exactly reproduces
Eq. (20) in the large-N limit. As a numerical verification, we
compute Eq. (15) for N' = 2 x 107 random stabilizer states
across different systems sizes and compare the resulting
empirical distribution with the analytical prediction
Eq. (23). For this purpose, we use the tableau simulator
STIM [35] and the rank-revealing algorithm in Ref. [64]. Our
results presented in Fig. 1(a) demonstrate already small system
sizes saturate the Haar prediction. In the next section, we
investigate how structured dynamical systems approach the
Haar scaling behavior of Eq. (20), focusing on random tensor
network states and quantum circuits.

--- CRMPS
— Haar
%} o zy=4.0
- x9=20
¥y x9=0.5
\ Y
\
\
(@) LA (b)

FIG. 1. (a) Numerical sampling of random stabilizer states over
N qubits (d = 2) compared to the Haar prediction (red line in the
plot) in Eq. (20). The data are in quantitative agreement with our
analytical predictions. (b) Numerical sampling of the overlap
distribution of Clifford random matrix product states for N = 256
varying x = N/y. The dashed black line is the analytical
prediction Eq. (30) which is in robust agreement with our data.
For reference, we plot the Clifford-Haar distribution Eq. (20) in
red, highlighting the substantial difference in the scaling regime
N,y — oo with x; = N/y fixed. In both cases, we consider N' =
2 x 107 circuit realizations.
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B. Clifford random tensor network states

The previous discussion presented the distribution of
overlaps for random stabilizer states. We now inquire
about the approach to Egs. (19) and (20) for the class of
Clifford random matrix product states (CRMPSs). We
recall that MPSs are vectors in the Hilbert space whose
wave function is fixed by a sequence of N tensors denoted
in‘-ﬁi where a,€{0,1, ...,y — 1} are the virtual indices
living in a jy-dimensional auxiliary space, and
x;€{0,...,d — 1} is the qudit variable in the computa-
tional basis [7,65-69]. Clifford random matrix product
states are obtained when the tensors I' are induced by
Clifford transformations [70]. Throughout this work, we
fix y =d" for r€{0,1,...,N — 1}, so that the explicit
wave function is given by

d'-1 d-1

ar- Y Y S

ap,...ay—,=0ay_.1=0  ay1=0
(1) (2) (N)
CO,O,x| .a CO,(1| X CaN—I Xy (25)

where each Clifford gate is uniformly drawn C) € Crira
for j < N, and is reshaped as a d x d" xd x d" tensor,
while CV="*) €C,_;., 4 is reshaped into a d"~*! x d x
d"™ ' tensor for i = 1,...,r. We note that the decreasing
bond dimensions ensure that the state is normalized in the
right canonical form [71,72]. To lighten the notation, from
now on, we will use the standard graphical representation
of tensor networks [73], inferring contractions from lines
ending in a given geometrical object. For instance, a
Clifford random matrix product state is represented by

(26)

with the open thin indices the uncontracted physical
dimensions, thick blue indices denote the virtual indices,
while the white circles represent the |0) states.

We are interested in the overlap distribution over the
ensemble of Clifford random matrix product states. For this
scope, we compute the inverse participation ratios

dV—1

I%RMPS = Ecrmps {Z |(x|‘I‘>|2k] — d“"‘)N[E[wk], (27)
x=0

where we use the local Clifford invariance to rephrase the
problem in terms of w = d" |[(0|¥)|?, where |¥) is an MPS
as in Eq. (25), and the average is taken over the realizations
of the gates. By reshaping the tensor network, this overlap
is computed from the staircase quantum circuit consisting
of N —r sequential Cliffords C) on r+ 1 qudits all

initialized in |0) [74]. The resulting amplitude is

(0lcio) - . (28)

o
o

where again, the blue contractions correspond to the virtual
indices in y = d", which can be seen as resulting from the
tensor product of r qudits. Performing the replica trick and
the Clifford averages, we obtain

where the contractions with the black dots are with the on-
site replica |0,0)®* state, and we inserted the transfer
matrix and the Gram contractions in Egs. (10) and (11).
-|z)y =1 for all z€XZ;(d) we can
iteratively resum this circuit using Egs. (12) and (13) of the
Weingarten calculus, leading to the final expression

dN glrvlzg_l d
v 12k (d)]
r+1,k.d

CRMPS _
I; =

[(=d";d) V!
B [(=d™""sd) oy IV

As explained in Refs. [7,9], universality is expected to
emerge in the thermodynamic limit N — oo for quantum
circuits with large depth; see also Refs. [75-77]. In the case
of a random MPS, this amounts to considering the scaling
limit N,y — oo, with xy, = N/y constant. Using the ¢
analog of the Stirling approximation and exponentiating,
we have in the scaling limit

= 1 (—d N d),

(30)

d"—d
I%RMPS — I?aar exp {7 x} ) (31)

where the scaling variable is defined up to the second order
in O(1/N) by

logs(N/xp)  d

~ 1-—
=Y N (d—1)N

} +0(x3). (32

Interestingly, when d = 2, Eq. (30) recovers up to k = 2, 3
the results for Haar unitary random MPS [7], as well as for

031071-6



ANTICONCENTRATION IN CLIFFORD CIRCUITS AND ...

PHYS. REV. X 15, 031071 (2025)

generic d >3 prime and k =2, consistent with the
state-design properties of the Clifford group [39,78,79].
We recall that each stabilizer state is spread over a set
of d states [Eq. (14)]. In the limit N — oo, the variable ¢
concentrates around its maximum, and we are interested
in the distribution of n =N — g over the realizations
of the CRMPS in the scaling limit. Since
I, = d"U-HE,[d"1-X], we can read the characteristic
function of the random variable n from Eq. (31). Let us
denote as n, the variable associated with the Haar dis-
tribution in Eq. (23). Then, Eq. (31) is consistent with
n = ny + p, where ny and p are drawn independently and
p follows the Poisson distribution, i.e.,

AP et
P(p) = PR A=

= (33)

By using simple convolution, we can recover the distribu-
tion of n for Clifford random matrix product states

e—x/dd—nxn n

(—d™d ) 4z (n—p)i(d~"id7h),

xPqd-r(p-1)/2

P(n) = (34)

The above expression is a central result of our work. It
reveals that the statistics of a random Clifford tensor
network combines the features of random stabilizer states
(19), with Poissonian corrections in the scaling variable x.
As we shall see, in agreement with the aforementioned
universality, this result holds for much more general classes
of systems, with x a (single) fitting parameter.

We conclude this section by benchmarking our analytical
prediction with numerical sampling for qubit systems
(d =2). Using a standard tableau simulator [35], we
compute Eq. (28) for N =256 qubits and varying
X9 = N/y. Our results are presented in Fig. 1(b). We see
that our analytical prediction quantitatively describes the
data for NV =2 x 107 disorder realizations [80].

C. Anticoncentration in Clifford circuits
1. From random tensor networks to shallow circuits

Even though our results for random tensor networks
provide a solid analytical foundation, they do not fully
capture the local and dynamical evolution of more general
quantum systems. To address this, we extend our analysis
in this section to quantum circuits, employing both
numerical and analytical methods. Specifically, we con-
sider local random quantum circuits, where each gate—
sampled from the Clifford ensemble—acts on neighboring
sites in a brickwork geometry. In this setup, each discrete
time step corresponds to an extensive number of gates
acting on the system. Notably, a brick-wall circuit with
O(N) layers—hence, O(N?) local gates—is sufficient to
generate a global Clifford transformation [81]. We now
address the key question of whether anticoncentration

occurs at linear depth in system size or if this cost can
be further reduced.

First, we focus on a case that has recently gained
attention in the context of Haar-random unitary gates:
glued shallow circuits [27]. This framework allows us to
identify the timescale at which anticoncentration occurs in
Clifford systems, similar to what happens for Haar unitary
circuits.

Strictly speaking, the staircase circuit associated with the
construction of CRMPS (28) clearly has linear depth when
r = o(N). However, this geometry can be rearranged to
obtain a shallow circuit with the same overlap distribution.
To this end, we choose the physical dimension to match the
bond dimension y = d". Rearranging the system, we
recover a Clifford staircase circuit (CSC), but with each
Clifford gate acting on two neighboring (y = d")-dimen-
sional qudits. Repeating the analysis from the previous
section, we now account for the fact that each random
tensor acts only on the virtual bonds, with a total of y*> =
d*" sites. Additionally, given N as the total number of initial
qudits, the number of gates in the system is (N/r) — 1.
Under these conditions, the inverse participation ratios are

(= d) ] (s
[(_d_zr;d)k—l}¥. ( )

IP3C = I (=d™; d),

Nevertheless, the CSC can be reshaped to the Clifford
glued circuit (GC) since, on average [82],

- (0|8 ~®k

(0|®N Qk

|0y &~

o) &V

~ ~

(36)

implying the same anticoncentration behavior. Taking the
scaling limit N,y — oo while keeping x, = (d/[d —
1)){N/[logs(x)x]} constant, we obtain the scaling limit
expression

CsC GC Haar d‘—d

I =17 = L™ exp {dzx], (37)
recovering Eq. (31) with x 2 xy[1 — 2/(xqy)]. Thus, setting
r « log N is sufficient for anticoncentration toward random
stabilizer states. Notably, since individual gates acting on
x> = d*" can be implemented in linear depth in 2r, this
implies that local Clifford circuits anticoncentrate at depth
O(log N). Moreover, Eq. (34) remains valid, controlling
fluctuations relative to the Haar-Clifford case.
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We conclude this subsection with a heuristic argument:
Introducing interactions between gates across different
patches would further accelerate anticoncentration.
However, developing a rigorous mathematical framework
to fully characterize this effect is significantly more
challenging. For this reason, in the following section, we
will present numerical benchmarks, further corroborating
our conclusions on Clifford circuit anticoncentration.

2. Numerics

To establish our numerical analysis, we begin by
introducing the Clifford replica tensor network. We con-
sider a brickwork circuit, as defined in Eq. (5), where we
distinguish between even and odd layers. Each two-qudit
gate is an independent, identically distributed random
Clifford gate acting on neighboring sites, given by

o ﬁ o
J{ a8
-

[ )
OO0O00O0O0

Again, we are interested in Eq. (27), but for the ensemble of
states generated by fixed-depth Clifford brick-wall circuits.
Upon performing the average, we now have a tensor
network whose degrees of freedom live in the commutant
space of dimension dg = |Z;(d)|. When the Clifford
group forms a k design, this replica tensor network exactly
coincides with that of Haar circuits, i.e., |X;(d)| = k! [8].
Beyond these limits, the Clifford commutant includes
defect subspaces, enlarging substantially the local space
dimension [see Eq. (8)].

Translating the circuit into replica space using the
graphical convention defined in Sec. II, we obtain the
following structure, where we distinguish between bulk
gates and the initial boundary conditions:

OFIzN @

[

©)

o

}m»

The bulk gates (sienna color) are given by

ll+1 Z GO’” H_l d)
.p,0,T
i,i 1 ~ o~
x Wl (@) |oipi W], (40)

where (7#|7)) = 8,,. The final contraction is simply
(El= ®Y., (5=, (#|), while the initial contraction is given

by a tensor product |J)) = Hi\’:/lz | + Daiz12; With

|+ Wijer = ZWg v (d)]016,5 ) (T (10, 0)F)

d_z e IZ"’ i) (41)

o

replica Bell pairs. This leads to the contracted circuit

9099090
)

which is at the base of our numerical implementation.
For simplicity, we consider a replica tensor network with
d =73 and d =5, where k =3 copies of the system are
sufficient to observe Clifford anticoncentration behavior
beyond Porter-Thomas statistics. With these specifications,
we can efficiently perform large-scale numerical simula-
tions up to 512 qudits. This is possible because the bulk
gates are nonunitary, preserving the replica bond dimension
at O(dl;) for some exponent y, where de = 2(d + 1).
To define the commutant required for constructing the
bulk gates, we refer to Ref. [40]. One could apply the
general construction of the commutant given in Sec. II B,
but for the cases of interest, we start from the fact that the
commutant for k = 3 always contains within it the group of
permutations Sz. Explicitly for ¢ € S3, in the double-space
representation, the operators |o;)) defined for each qudit i
are expressed in terms of the computational basis |x)) as

(X X xR o) = H 8 ol (43)

To construct the Clifford commutant, we need to find extra
elements to saturate the dimension (8). Thus, we introduce
the intrinsic Clifford commutant operators
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FIG. 2. Dynamics of Eq. (45) for qutrits d = 3 (a) and qupents

d =5 (b) for different system sizes. In both cases, the difference

between the Haar value and the time-evolving IPR decreases exponentially fast with circuit depth, saturating for a fixed ¢ in a timescale
that is logarithmic in system size. Distribution of the overlaps for shallow circuits with ¢ layers for N = 128 (c) and N = 256 (d),
compared to Eq. (34) where we fitted x to match the most probable value of the distribution. In all cases, we consider A" = 2 x 107 data
to sample the distribution, which is in quantitative agreement with our prediction.

1
Qd — E Z P®2 ® Pd—2’ (44)

PePiy

which induce scalable measures of magic resources or
nonstabilizerness. This framework has been introduced and
comprehensively analyzed by Leone and co-workers in
Ref. [49]. The remaining operators required to complete the
total set of |X;_3(d =3)| =8 and |Z;_5(d =5)| =12
generators can be expressed multiplicatively as A,Q,, with
A, the representation of 6 €S53 in H?k [83]. We run
simulations for several system sizes for qutrits (d = 3)
and qupents (d = 5), computing the approach to the Haar
value in Eq. (20). Specifically, we consider

AS; = logy[1§*] — log,[Ec, (13)], (45)
and present this difference Figs. 2(a) and 2(b) for qutrits
and qupents, respectively. Here, E¢ (/) is the average of
the IPR evaluated at a certain time step 7 evolving the circuit
in Eq. (42). The exponential decay in time AS;, together
with the uniform shift increasing system size N, are
consistent with our expectation: Higher-order moments
of the Clifford circuits saturate to their Haar value in depth
logarithmic with the system size.

As a complementary test, we consider now d = 2 and
study the overlap distribution of a shallow circuit with a
small depth ¢, and compare it with Eq. (34) with x a fitting
parameter. Our results for N = 128 and N = 256 two-qubit
shallow circuits are presented in Figs. 2(c) and 2(d),
respectively. We see that, despite the limited circuit depth,
the distribution Eq. (34) captures quantitatively well the
distribution of the overlap of the Clifford circuit.

These results substantiate our analytical conclusions.
We finally conclude by commenting on the magic-state
resources required to recast the unitary Porter-Thomas
distribution.

D. Beyond Clifford circuits

The discussion above demonstrates that Clifford circuits
relax to the anticoncentration properties of random stabi-
lizer states in logarithmic depth. However, as noted earlier,
Clifford transformations can be efficiently simulated on
classical computers. The concept of nonstabilizerness, or
“magic,” quantifies the non-Clifford resources required to
achieve universal quantum computation. A state possesses
magic resources if it does not belong to the set of stabilizer
states. There exist several measures of magic (M) in many-
body systems, often based on geometric distances [42] or
the structure of the Clifford commutant [84-88]. In the
following, the generalized stabilizer entropies M, defined
by [49,50]

L S Y AT

with o€, (d) = Z,(d)\S; nonpermutation stochastic
Lagrangian subspaces will occur several times in our
discussion. The quantity £, known as generalized stabilizer
purity [49] corresponds to the expectation values of k
copies of the state with elements of the Clifford commutant.
One can show that these quantities comply with magic
measure requirements: (i) M,(|¥)) >0 with equality
holding if and only if |¥) is a stabilizer for ¢ € Z;(d),
(ii) they are invariant under Clifford unitary operations
M,(C|¥)) = M,(]¥)), and (iii)) they are addi-
tive M, (%) ® [@)) = M,(|¥)) + M,(|®)).

We now address a key question: How many non-Clifford
resources are required for the system to recover the Porter-
Thomas distribution of the Haar unitary ensemble? This
problem is crucial, as anticoncentration to Haar statistics is
a sine qua non condition for achieving computational
quantum advantage. To tackle this problem, we consider
doped Clifford circuits, where a controlled amount of
nonstabilizerness is injected in the system [89-106].
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Concretely, we examine the behavior of random tensor
networks and glued circuits acting on initial magic states.
This setup is practically significant: Since transversal non-
Clifford gates are challenging to implement fault tolerantly,
magic-state injection, i.e., preparing a fault-tolerant logical
qubit with magic, offers a more viable alternative for near-
term quantum computing.

1. Doped random tensor networks

We study the class of doped Clifford random matrix
product states (ACRMPS); cf. Sec. III B. These are obtained
acting with the staircase circuit in Eq. (28), on an initial
state [T (y,)) = [T)®"7 ® |0)®¥~N7, for a given magic
state |T) such that M (|T)) =y, a constant 0 <y, <1
for any 6€Z;(d). It follows from the definition that
M,(|T(y,))) = N77,. We remark that because of Clifford
invariance, the nonstabilizerness of the initial state is
preserved by Clifford evolution. However, as we demon-
strate below, the anticoncentration properties will change
substantially.

Concretely, we answer how many N7, in the jargon T
count, resources we need to recover the Porter-Thomas
distribution. For this scope, let us first consider the solvable
case represented in the quantum circuit representation by

ACRNES) = O, )) = . @)

where C is the circuit in Eq. (28), and the magenta dot
represents the magic states |7)®" on the first virtual index.
Note that in this setup, the parameter r both controls the

number N; = r of magic states and the bond dimension
y =d". As a proxy of anticoncentration, we study the
inverse participation ratios.

Upon contracting with the state |0) and performing the
replica trick and the Clifford average, we obtain a circuit
analogous to Eq. (29), which can be resummed exactly. The
final result is given by

& Zlflﬁz)l]j”(zg")

c€X;(d)

[ICRMPS (1) — J1-kN

(48)

Furthermore, we can expand the second line using that for
any state |¢) in the Hilbert spaces, {, = 1 for any ¢ € S}, so
that Y ey, () 66 = k! + D, e5,(a) §5- The key observation
is that generalized stabilizer purity £, = d~™- is a positive
number between 1/d and 1. First, let us consider the scaling
limit N, r — co with N/d" = x constant. We recall that
1 — 1/ 115 (@Y +m); cf. the Appendix for a
review of the anticoncentration of Haar unitary circuits.
Then, a simple computation leads to

IOgd (N/xo)

J4CRMPS (1) — 7ox Zaezk

k k!

M(T

_ IHaarM i Ty 1 @

2 (W
o€z (d)

> oo T, (49)

where x is given by Eq. (32) with x, = N/y constant. In
essence, this result demonstrates how doped Clifford

In ASY AGSered

0.751 _

~Data 102 N =32

(d—d) ~N =64
0.50 1 & . ~N =128

_k(k;l)x 107 1 ~N = 256
0.95 | ~N =512

1072_
0.00 { @ ©
0.0 0.1 0.2 ¢ 10 20 30 ¢ 10 20 30 ¢

FIG. 3.

(a) Fluctuations between the doped random matrix product state /53 and the Haar unitary value for different N <512 and

4 < r <12 compared to the log-normal fluctuations expected for unitary circuits, and the Poisson fluctuations of Clifford circuits. The
data display strong agreement with the Poissonian fluctuations, corroborating Eq. (49). (b) Evolution of Eq. (50) under random circuits
of qutrits (d = 3) for different system sizes starting from a system with a number Ny = |log,(N)/2] of |T) states. This quantity
decreases exponentially fast in system size up to a convergence in log(N) depth toward a value that AS¥ (co) that decreases polynomially
in system size. (c) Evolution of Eq. (54) with respect to the doped global Clifford value Eq. (53). This quantity decreases exponentially
fast in system size, saturating in a timescale that is logarithmic in system size log(N).
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random matrix product states approximate the Porter-
Thomas distribution up to Poisson fluctuations. We test
this result in Fig. 3(a), focusing on k = 3 and d = 3 [107]
and computing

ASY = log,[I3*"¥] — log [I{MPS ()] (50)

Our results present substantial agreement with the Poisson
prediction. For reference, we compare this result with the
log-normal corrections characteristic of chaotic systems
[7,9], which are in agreement with the data only at x ~ 0.
Since x, = N/y, this limit corresponds to injected magic
resources growing as O(log(N)).

2. Doped Clifford circuits

We now extend our considerations to doped Clifford
circuits. First, we consider the doped glued circuit (dGC)
obtained acting the Clifford glued circuit in Eq. (36) on the
initial state |T'(,,)). Mutatis mutandis, we can again resum
the expression exactly, obtaining

J(1-0N [(=d "3 d), )™

N=2r

[(=d™"5d) ]

> ). (51)

cei(d)

() =

X {k!—f—

Taking the scaling limit with xo = (d/[d — 1])(N/[rd"])
and N, r — oo, we have

k
dGC Haar U | “54x
IEC(r) Pyow I e,

(52)
with x = xo(1 —2r/N) + O(x3). As a result, shallow
circuits at depth O(log(N)) with a number of N; =
O(log(N)) magic-state resources retrieve the Haar unitary
anticoncentration properties.

The above discussion holds for the thermodynamic limit.
In a practical setup, it is important to consider finite-size
systems and actual implementation. For this task, the
concept of a physical observer is crucial—an agent that
can resolve the difference between two quantities with at
most polynomial resources in system sizes. Our analysis for
doped Clifford tensor networks and circuits implies that
any r = O(log!*¢(N)) for ¢ > 0O suppresses faster than
any polynomial the difference compared to the Haar
anticoncentration value. These results suggest that a doped
Clifford tensor network and doped Clifford shallow circuits
are pseudomagic quantum states [44] analogous to shallow
circuits being pseudoentangled states [27,59,108,109].
However, it is important to remark that achieving pseudor-
andomness generally requires circuit depths of at least
Q(N) magic resources [110,111].

We conclude this section by benchmarking the core
result Eq. (49) with Clifford tensor replica network

methods for a local circuit similar to Eq. (38). We focus
on d =3 and k = 3 [112], initializing the state in |T(NT)>
with |T) = (|0) 4 >7/°|1) + e=27/°|2))/+/3. The T count
is fixed by Ny = [log,(N)/2| with | x| the integer trunca-
tion of x. As a measure of anticoncentration, we consider
Eq. (50) and present the results obtained via a replica tensor
network for 32 < N <512 in Fig. 3(b). We see that the
distance between the participation entropy decreases expo-
nentially fast in circuit depth ¢, upon saturating to a value
AS; (00) = N~ that decreases polynomially in system size.
This mismatch arises from finite-size corrections. The
stationary state reached at late times can be approximated
by replacing the full evolution with a random global
Clifford, allowing for an analytical determination of the
resulting value

N,
[§PeHar o g(I=N [6 +2 @) } : (53)
where we neglected exponentially small corrections. In
Fig. 3(c), we test if this conclusion is correct by computing

A = log, 19 —log, [Ee, (147)],  (54)

which is exponentially decaying with ¢ toward zero.
These results provide further validation of our analytical
predictions.

IV. DISCUSSION

This work examined the anticoncentration properties of
Clifford circuits and the role of non-Clifford resources in
restoring the Porter-Thomas distribution of unitary random
states. After identifying the overlap distribution of random
stabilizer states, we demonstrated that Clifford tensor
network states reach this distribution with a bond dimen-
sion growing linearly with the system size. Building on
these results, we established a mapping to glued circuits,
revealing that shallow circuits of depth O(log(N)) anti-
concentrated to random stabilizer states. Crucially, this
timescale is much faster than the condition to reach
approximate Clifford designs [56]. Furthermore, we dem-
onstrated that recovering the overlap distribution character-
istic of quantum chaotic states required a 7 count that
scaled logarithmically with the system size. To support our
findings, we performed extensive numerical simulations
using tableau methods and introduced the Clifford replica
tensor network, providing strong evidence for our analyti-
cal predictions.

The collection of techniques, frameworks, and results
developed in this work presents several relevant implica-
tions in quantum information science and beyond. We
briefly comment on some of these directions and present a
list of prominent outlooks.
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A. Implications for quantum state design

The anticoncentration properties of shallow Clifford
circuits extend naturally to quantum state design, as
quantified by the frame potential [7,9]. This quantity
measures how closely a given ensemble of quantum states
approximates the uniform Haar distribution over the Hilbert
space. The kth frame potential is defined as

Fy =By [|(w'[w) ], (55)

where the expectation is taken over pairs of independent
states sampled from the same ensemble. Consider states
generated by shallow Clifford circuits |y) = U,|0) and
|’y = U}|0), where U, and U, are independent random
circuits of depth z. Setting V,, = (U})'U,, the frame
potential can be rewritten as the ensemble average of the
overlap F, = Ey, [|(0|V5,]0)|*] o I, where V, is now a
circuit of depth 2¢. Hence, if Clifford circuits anticoncen-
trate at logarithmic depth, the frame potential approaches
its (Clifford) Haar value F; — FP*" in depth O(logN).
This implies that (additive) stabilizer state designs can be
constructed efficiently using logarithmic-depth circuits.
Furthermore, injecting a polylogarithmic amount of
magic into the initial state enables the ensemble to
approximate a Haar-random circuit ensemble, yielding

F = Ey [[(T(| Vo T[] = F 4, (56)

where |T'(,)) denotes the magic input state in Sec. III D.
Achieving a relative state design, however, remains more
challenging. Recent work [113] demonstrated that the
gluing lemma fails for stabilizer ensembles: For qubits, a
circuit of linear depth is required to achieve a relative state
design for any k > 3. This leaves open the question of how
many magic-state resources are necessary to reach relative
designs approximating Haar-random unitary states. These
considerations have direct implications for shadow tomog-
raphy in prime qudit systems with dimension d > 3, as we
detail in a forthcoming publication [114].

B. Implications for quantum many-body physics

Our work extends, in the context of Clifford circuits,
recent analyses of the emergence of universal behavior in
finite-depth quantum circuits [7,23,77]. As in those studies,
averaging over circuit ensembles leads to a natural mapping
onto effective statistical physics models, where the local
degrees of freedom correspond to elements of the commu-
tant algebra. In this framework, universality emerges in
regimes where domain walls—or “kinks”—between differ-
ent commutant sectors are sparsely distributed [77]. In the
case of Haar-random unitary circuits, similar techniques
have been applied to study the spectral properties of
Floquet dynamics [76,115], revealing a universal crossover
to quantum chaos governed by random matrix theory. Our

results highlight that Clifford circuits exhibit a distinct
form of random matrix universality in their overlap dis-
tributions—one that lies beyond the standard Dyson ensem-
bles of unitary, orthogonal, or symplectic types [9,48,116].

From this perspective, the spectral analysis of Clifford
circuits presents a compelling opportunity: Can standard
indicators of quantum chaos, such as level repulsion, offer
insight into the classical simulability of Clifford circuits?
Moreover, does the crossover to the Porter-Thomas dis-
tribution, controlled by the degree of 7T-gate doping, have a
counterpart in the spectral correlations? Our results,
together with the theoretical framework developed in this
work, open the door to addressing such questions at the
intersection of practical quantum computation, classical
and quantum complexity, and the physics of quantum
chaos. A promising route to explore these directions is
a perturbative analysis of Clifford domain walls. This
could help resolve several open problems, for example,
understanding why the universal spectral fluctuations
typically expected in Haar-random unitary circuits appear
compatible with Clifford circuit numerics, as reported in
Ref. [117].

C. Implications in quantum circuit sampling and
benchmarking of noisy intermediate-scale
quantum devices

A more practical implication concerns the benchmarking
of quantum computational advantage, a central challenge in
the noisy intermediate-scale quantum (NISQ) device era.
Here, the goal is to demonstrate that a quantum device can
perform a computational task beyond the capabilities of any
classical computer. A key example is random circuit
sampling, where one tests whether the device generates
output distributions that exhibit signatures of quantum
complexity, such as the Porter-Thomas (PT) distribution.
The fidelity of such an output can be assessed via cross-
entropy benchmarking, comparing the experimental data to
classical simulations. Reaching the PT regime is thus a
practical proxy for establishing computational hardness and
validating device performance.

As discussed, in near-term platforms, a doped Clifford
framework, wherein Clifford circuits are sparsely aug-
mented with non-Clifford gates, offers a flexible and
physically motivated setting to explore this complexity
transition. By tuning the density and placement of
magic gates, one can interpolate between classically
tractable and computationally hard regimes. Our results
show that doped Clifford circuits reach the regime of
approximate unitary Porter-Thomas statistics with the
circuit depth and the number of magic gates scaling only
polylogarithmically with system size. This scaling ena-
bles the simulation and benchmarking of large-scale
quantum circuits using efficient tableau-based stabilizer
techniques, which are well beyond the reach of tensor
network methods or full universal gate sets. Importantly,
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this provides a controlled and physically motivated
setting to validate quantum complexity in regimes that
are provably classically hard, offering a scalable diag-
nostic framework for near-term quantum advantage
experiments.

D. Outlook

Overall, our results highlight the interplay between
Clifford dynamics, quantum complexity, and randomness
generation, providing new insights into the structure of
quantum circuits and their computational power. These
findings open the door to several promising research
directions. One key avenue is exploring how different
geometries affect anticoncentration. As in the unitary
Haar case [9], we expect such variations to alter the
nature of leading fluctuations in the associated statistical
mechanics model. More broadly, investigating the
effects of noise in doped Clifford circuits is crucial for
connecting our results to NISQ devices. Similar analyses
in Haar unitary circuits [28,118,119] suggest that noise
could play a significant role in shaping anticoncentration
properties.
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APPENDIX: ANTICONCENTRATION OF
HAAR UNITARY CIRCUITS

We summarize the key results of the anticoncentration in
Haar-random unitary circuits, which provide a baseline for
comparison with our findings on Clifford circuits and
doped Clifford circuits.

A random Haar state in the Hilbert space is obtained
acting with a Haar-random unitary matrix U acting on an
initial computational basis state |0), namely, |¥) = U|0).
As anticipated in the main text, the distribution of overlaps

w = d"|(¥|0)|* for this ensemble of states follows the
Porter-Thomas distribution [26]

ay -1 w42
P(W) = d—N (1 —d—N> = N1 e . (Al)

From this distribution, we can compute the inverse par-
ticipation ratios by

k!

IHadI,Z/{ — d(]—k)N[E k — : ,
‘ b o (A" +m)

(A2)

where k! is the dimension of permutation group S;. In the
large-N limit, this simplifies to
[t o 1 g(=n (A3)
In chaotic quantum circuits, locality plays a crucial role,
requiring a threshold depth to reach the Porter-Thomas
distribution. Random unitary matrix product states con-
verge to this distribution with a logarithmic bond dimen-
sion in the number of qudits [7], while quantum circuits
saturate to the Haar unitary value at a depth logarithmic
in the number of qudits [9]. In both cases, the Haar
unitary inverse participation ratios I{ can be expressed as
the product of the Haar value (A3) and a log-normal
correction
(k=1)
Y = pilaartd 2 (A4)
The explicit overlap distribution for generic circuits was
also derived in Refs. [7,9], provided x can play the role of
a fitting parameter.
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