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The evolutionary adaptation of an organism to a stressful environment often comes at
the cost of reduced fitness. For example, resistance to antimicrobial drugs frequently
reduces growth rate in the drug-free environment. This cost can be compensated
without loss in resistance by mutations at secondary sites when the organism evolves
again in the stress-free environment. Here, we analytically and numerically study
evolution on a simple model fitness landscape to show that compensatory evolution
can occur even in the presence of the stress and without the need for mutations at
secondary sites. Fitness in the model depends on two phenotypes—the null-fitness
defined as the fitness in the absence of stress, and the resistance level to the stress.
Mutations universally exhibit antagonistic pleiotropy between the two phenotypes,
that is they increase resistance while decreasing the null-fitness. Initial adaptation in
this model occurs in a smooth region of the landscape with a rapid accumulation of
stress resistance mutations and a concurrent decrease in the null-fitness. This is followed
by a second, slower phase exhibiting partial recovery of the null-fitness. The second
phase occurs on the rugged part of the landscape and involves the exchange of high-
cost resistance mutations for low-cost ones. This process, which we call exchange
compensation, is the result of changing epistatic interactions in the genotype as
evolution progresses. The model provides general lessons about the tempo and mode
of evolution under universal antagonistic pleiotropy with specific implications for drug
resistance evolution.

microbial evolution | antibiotic resistance | fitness landscapes | compensatory evolution

Compensatory evolution occurs when the deleterious effects of mutations on a phenotype
or fitness are partly or fully reversed through subsequent evolution (1-7). The initial
deterioration can occur when deleterious mutations are fixed through drift or hitchhike
on beneficial mutations (2). Alternatively, the adaptation of an organism to a challenging
environment can lead to selection for beneficial mutations that are detrimental in the
original environment. Evolutionary mechanisms can eventually compensate for this loss
without affecting the fitness gain in the new environment. This is the case we study in
this paper.

A classic example of this kind of compensatory evolution is provided by drug resistance,
where resistance mutations selected upon exposure to a drug often reduce the null-fitness
(defined as fitness in the original environment, i.e. in the absence of the drug; see refs.
8-11 and references therein). A potential consequence of this is that bacteria selected
for high resistance grow more slowly, which affects their transmission to new hosts and
reduces their ability to cause widespread infection. However, experimental studies in
which resistant microbes are cultured in the absence of drugs find that these evolve to
(partially) regain their null-fitness (4, 9, 12, 13). The most commonly reported mode for
this process is through compensatory mutations at secondary sites that do not compromise
the acquired resistance (4, 9, 14, 15), though the contribution of the reversion of resistance
mutations has been noted in some cases as well (3, 4, 12, 16). Reduction of the cost
of resistance can also happen in the presence of the drug (12, 17-20). However, only
a small number of empirical studies have directly addressed this question (14, 21, 22),
despite its importance in determining the optimal course of drug treatment (12). It has
been found that the compensation loci and fitness effects in the presence of drugs can
be different from those in its absence (14, 21), but due to the limited literature on the
subject, there is no consensus on general mechanisms of compensatory evolution in the
presence of drugs, or indeed on how generic it is.

In this theoretical work, we present modeling results that demonstrate a mode of
compensatory evolution that does not require reversion to the original environment and
mutations at secondary sites. To do this, we focus on how the structure of the fitness
landscape (which captures the effect of gene—gene interactions, that is epistasis, on fitness)
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guides the evolution of resistance to an environmental stressor.
A number of studies have constructed combinatorially complete
landscapes comprising a small number of loci (23-28), but our
understanding of resistance evolution on large fitness landscapes
and how it is impacted by the environment remains incomplete.
Here, we study evolution on an empirically motivated fitness
landscape model where every resistance-increasing mutation also
reduces the null-fitness. Epistasis is introduced by the coupling
of the two phenotypes, namely null-fitness and resistance, in
producing the net fitness.

We find that when the wild type is subjected to a fixed stress
level, evolution is biphasic. The first phase exhibits a gain in
resistance accompanied by a loss in null-fitness, and the second
phase shows a substantial amount of compensatory evolution
of null-fitness even as the stress parameter stays constant.
Compensation occurs through the reversal of high-cost resistance
mutations and the substitution of low-cost ones. Contrary to
common wisdom that regards compensatory mutations as a
separate class of events, we show that they are an emergent feature
of a model that contains only one class of mutations (namely,
mutations with antagonistic pleiotropic effects (29) on resistance
and null-fitness). It is the changing selection pressure along an
evolutionary path that singles out mutations with qualitatively
different phenotypic effects in the two phases of adaptation.

1. Model and Terminology

1.1. Fitness Landscape Model. We focus on an empirically
grounded model of tradeoff-induced landscapes (TIL model; see
refs. 30 and 31) to study the evolution of a haploid population
exposed to environmental stress. While we use examples from
the well-developed literature on drug resistance for illustration
purposes, our results are primarily about a new and generic
mechanism for compensatory evolution. A summary of the
mathematical terminology used can be found in Table 1. For
a given genotype o, the two relevant phenotypes are the stress
resistance level 74 and the null-fitness denoted by 75. Resistance
comes at a cost, in the sense that resistance-increasing mutations
reduce the null-fitness. The fitness of a genotype o as a function
of an environmental stress variable (such as drug concentration)
x is represented by the population growth rate, which is assumed
to be given by a response curve of Hill type (32),

folx) = # [1]

where @ > 0 is the Hill coefficient. The parameter x represents an
environmental challenge that reduces the fitness of all genotypes.
Response curves of different genotypes intersect as x changes,
thus altering the rank order in the landscape; see ST Appendix,
Fig. S1. (For further graphic illustrations of dose-response curves
or DRC:s for antimicrobial drugs and their relevance to fitness
landscapes, see refs. 30, 31, and 33.)

The genotype is encoded by a binary vector 6 = (671, ..., 61),
where L is the number of mutation sites of interest and o; = 0, 1
indicates the absence or presence of a mutation at locus 7. We
assume that the mutational effects on null-fitness and resistance
are nonepistatic (multiplicative), that is

e = 1_[ i, me = Hmigi- (2]
i i

As we will see in Section 2.3, this choice makes the model more
analytically tractable, yet retains the features of adaptive evolution
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Table 1. List of main mathematical terms

L Number of loci in a genotype

c Genotype (expressed as binary sequence of length L)

ot Genotype obtained from ¢ by addition of a mutation
at site

oI Genotype obtained from ¢ by removal of a mutation
at sitej

a Hill coefficient (indicates the steepness of fitness
response to environmental stress)

Ug Fitness cost of genotype &

Vo Stress resistance level of genotype ¢

Fo Fitness of genotype ¢

q Number of mutated loci in the genotype

q* Number of mutated loci in a fitness peak

X Value of environmental stress variable

Zi Value of stress variable beyond which the single

mutant with mutation at locus i is fitter than the WT
ZXo,+i  Value of y beyond which the genotype ¢ with
additional mutation at locus i is fitter than o

G Relative cost of a resistance mutation

y Parameter that controls tradeoff between null-fitness
and resistance

I+ Set of all mutated loci in a genotype

K(x)  The number of single mutants which at y are fitter
than the WT

K Difference between largest and smallest values of y at
which single mutants become fitter than WT

U Mutation rate per individual per generation in
Wright-Fisher simulations

N Population size in Wright-Fisher simulations

that we are interested in. Moreover, some experimental studies
of antibiotic resistance evolution in bacteria show that Eq. 2
holds approximately (30, 34). (See ref. 30 for more details on
the empirical motivation behind the model and its relevance.)
It is convenient to work with log-transformed parameters #; =
—In#, v; =Inm;, y =Inx, Fs = Inf;. With this definition,

Foly) = —t1g — In(1 4 ¢*(x=%0)), 3]

where us = Y o;u;, v6 = Y 0,v; define the additive genotype—

phenotype maps of # and v. The assumed tradeoff between

resistance and null-fitness implies that 7, < 1, m; > 1 and

therefore #; > 0, v; > 0 for all i. Further, we impose the

condition that u

—“ <a, [4]
Vi

because, as shown later, any mutation violating this condition is

always deleterious, and can thus be ignored.

The TIL model assumes universal antagonistic pleiotropy (29),
in that every mutation affects both null-fitness and resistance
in opposite directions. To generate large fitness landscapes, the
{u;} and {v;} are taken to be random variables, where each pair
(u;, v;) is drawn independently from a distribution P(u;, v;)
which respects the constraints imposed by the tradeoff and by
Eq. 4. We denote # = E[y;] and v = E[v;], where E[] is the
mean with respect to the joint distribution of #; and ;. Note
that the TIL model has variable tradeoffs, that is, the value of the
resistance benefit v; does not uniquely determine the cost #;.

1.2. Evolutionary Dynamics. We are interested chiefly in evo-

lution at fixed values of the parameter y. We focus initially
on the strong selection/weak mutation (SSWM) regime where
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selection is sufficiently strong so that only beneficial mutations
can fix in the population, and mutations are sufficiently rare so
that a new mutation occurs only after the previous mutation
has been fixed or removed from the population (35). Later, in
Section 2.4 we will relax this assumption. In the SSWM limit,
the evolutionary dynamics is an adaptive walk, in which the
population moves along the fitness landscape in single mutational
steps that each increase fitness. The walk terminates when the
population reaches a local fitness peak, i.e. a genotype which
has higher fitness than all other genotypes that are one mutation
away. The probability that a de novo mutant 6 occurring in
a population with genotype ¢ is fixed is given by the large
population-size limit of the Kimura formula, 1 — e~ with
the selection coefficient s = max (0, fo'/fo — 1). We denote
an adaptive walk with this fixation probability as the Kimura
adaptive walk. We will also consider the uniform adaptive walk,
where every fitter mutant has equal probability of being fixed
(36). A single time step of the adaptive walk consists of the origin
and fate (fixation or extinction) of a mutation (37). Therefore, the
number of time steps is equal to the total number of mutations
that have occurred (but not necessarily fixed).

2. Results

We will first describe the broad features of the TIL fitness
landscapes and the adaptive walks based on simulations. We
then turn to a qualitative explanation of the adaptive evolution at
a phenotypic level. Finally, we show that the results described in
the first two subsections can be derived in precise mathematical
terms, if we neglect the fluctuations in resistance by assuming that
each mutation contributes a fixed amount v to the log-resistance
v of a genotype.

2.1. Directed and Fluctuating Phases of Adaptation. The struc-
ture of the fitness landscape and an adaptive walk trajectory
starting at the wild type are illustrated schematically in Fig. 1.
Since both the null-fitness and the resistance contribute to
the microbial fitness but there is a tradeoff between the two,

Fig. 1. The figure depicts a schematic for visualizing the TIL model and
adaptive walks on it. The genotypes are depicted as inhabiting the circle, and
the number of mutations in the genotypes increases in the vertical direction.
At any given stress parameter y, the local fitness maxima (depicted as filled
blue circles) contain a typical number of mutations, and therefore lie in a
narrow band shaded in blue. An adaptive walk trajectory is shown as a black
line. The walk begins at the wild type (g = 0) and terminates at one of the
maxima. The trajectory has two phases. The solid part of the black line shows
the directed phase, where the mutation number grows monotonically. The
trajectory transitions to the fluctuating phase, marked with the dashed part
of the black line, once the band of maxima is reached.
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fitness maxima are expected to have an intermediate number
of mutations, the distribution of which is governed by y. For
large L and for y ~ O(L), the leading order approximation to
the mean number of mutations ¢* in a fitness peak is given by
q* = x/v (see ref. 30 and SI Appendix, SI Text). The fitness
peaks are located in a narrow band situated around ¢* (Fig. 1).
An adaptive walk starting from the wild type has two distinct
phases. The first is the directed phase, where the mutation
number ¢ in the evolving genotype increases monotonically
(Fig. 2A). The term “directed” refers to the fact that all fitness-
increasing mutations in this phase are of the form 6, = 0 — 1,
i.e. there is no reversal of acquired mutations and mutations
accumulate. Naturally, this phase is associated with a monotonic
increase in resistance along with a monotonic decrease in null-
fitness, as shown in Fig. 2 B and C. As depicted in Fig. 1, the
directed phase ends once the walk reaches the narrow band of
maxima. The system now enters the fluctuating phase, where
the mutation number can go down as well as up, and the

. BT
— — Xx = ;0L —= x=30L e
Chil X Xe|avh oo e 475
] I additive model e ———— —
<] 2 s
< 50 ‘,/ 150
c e
2 5[ - 425
o / i
" " "
B 10! 10% 10%
TE e Ts
i }u',_.—-—-—-—-———-—
@ 50t o 150
o -
2 v o M E————
] ~
B 5 = 125
(7}
[0} /
L
OF 40
" : "
C 10 10? 10
0 0
$-0f -0
3 = e —
- ==
@ 201 Nocaaer—" 1-20
g R
C 301 Vil
= ’
= ) -
S 401 ---- fitness SO T 1-40
c L e
" . rorag
D 10 10% 10
0.7 i H0.7
i
5 T
505 MR 05
. \\
j
X 03F Y 0.3
=
0.1 0.1

1()1 10% 10%
time steps

Fig. 2. Numerical results for the mean of the various quantities associated
with the evolving genotype are plotted. The mutational effects (uj, v;) are
chosen from the distribution given in Methods, with y = 0. The genome size is
L = 100. The highest relevant value of y is vL, which is the mean v, of the most
resistant mutant. We have chosen three equally spaced y values below this
threshold to show how evolution depends on the stress level. The colored
lines are computed by generating a random landscape, simulating a Kimura
adaptive walk, and averaging over 104 such realizations, while gray lines
show individual trajectories. The dotted lines are averages for the additive
model described by Eq. 5. (A) The mean mutation number and individual
trajectories are shown for 3 different values of y as indicated in the panel.
The same values are used in the remaining panels. (B) The mean resistance
level saturates to a value close to y (dashed red lines) in the fluctuating
phase. (C) The null-fitness decreases in the directed phase and then grows
in the fluctuating phase through the process of exchange compensation (see
main text). The cyan line shows the fitness evolution for y = 17L. The fitness
closely follows the null-fitness as the resistance saturates to vs >~ y in the
fluctuating phase. (D) The fixation probability of all beneficial single-mutant
genotypic neighbors of the evolving genotype is shown.
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dynamics includes both forward (0 — 1) and reverse (1 — 0)
mutations. In the fluctuating phase, the mean resistance is nearly
constant whereas the mean null-fitness increases, leading to a
partial recovery of the cost of resistance. Fig. 2C shows that the
recovery is a slow process. This is partly due to the fact that there
are fewer beneficial mutations, but also because there is a drop in
the selection coefficients and therefore in the fixation probability
of beneficial mutations, as seen in Fig. 2D. In fact, it is shown
in ST Appendix, SI Text and Fig. S2 that for large L the fixation
probability undergoes a sharp transition between the two phases,
in the sense that the time-scale over which the transition occurs
is much smaller than the time-scale for the walk.

The origin of the directed phase can be understood as follows.
Eq. 3 together with Eq. 4 implies that when y — v > v (or
equivalently ¢* — g5 > 1), every forward mutation increases
the fitness. In this phase, the fitness given by Eq. 3 can be
approximated as F >~ —ug + avs — ay. The constant term
a v has no effect on the dynamics and can be dropped, leading
to an additive version of the TIL model,

Fg.dd = ZO’{(—ul‘ + avi). [5]

Thus, the system starting at the wild type (¢ = 0 and
v = 0) traverses an effectively smooth landscape given by Eq. 5,
acquiring mutations sequentially until its resistance reaches the
value v >~ y (Fig. 2B). The departure of the full TIL model
from the additive model indicates the transition from the directed
to the fluctuating phase, as seen in Fig. 2.

The fluctuating phase exhibits compensatory evolution of the
null-fitness. There are two notable features of this phase. First,
it demonstrates the role of epistasis in shaping evolutionary
trajectories in this model. The fluctuating phase is a combination
of forward and backward mutations, where the latter exhibit
reversal of some of the resistance mutations acquired during
the directed phase. Cleatly, in the course of adaptive evolution,
the effect of these mutations has switched from being beneficial
(in the directed phase) to deleterious (in the fluctuating phase),
exhibiting sign epistasis (5). Although the genotype—phenotype
map is additive, epistasis in fitness is introduced by the nonlinear
dependence of fitness F on the resistance v in Eq. 3, as noted
in ref. 30. In the terminology of ref. 38, this constitutes an
example of nonspecific epistasis. Second, we point out that
compensatory evolution in this model occurs in the presence of
universal antagonistic pleiotropy, in contrast to standard modes
of compensatory evolution reported in the literature. Indeed,
every reversal of a resistance mutation not only increases the
null-fitness but also reduces the resistance. The role of pleiotropy
in guiding the evolution of the phenotypes # and v is discussed
in more detail in the next section.

2.2. Trajectories in Phenotypic Space and the Role of
Pleiotropy. Several features of this model can be qualitatively
understood purely at the phenotypic level by observing that
i) the response curve given by Eq. 3 furnishes a phenotype—
fitness map, and ii) evolution in the two-dimensional phenotypic
space (#g, vs) is constrained by universal antagonistic pleiotropy,
represented by the condition #;, »; > 0. A phenotypic mutation
(#t6, v6) — (g + ui, vo + v;) induces a fitness change AF; =
AF;’" + AFZ-I/", where

1 a(x—vs)
AFZ»”" =—u; <0, AF;’" =In A 7 > 0. [6]
1+ ¢x(r—ve—ui)
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The quantity AF;® is monotonic increasing in y and reaches the
limit av; as y — oo. Thus, for a mutation with #; > av;, the
fitness change AF; is negative for all y. Consequently, such a
mutation will never be fixed, as noted before in Eq. 4. This also
implies that the reversal of a mutation violating Eq. 4 is always
beneficial, and it will eventually be lost if it happens to be initially
present in the genotype.

The phenotype—fitness map implies that a mutant that is fitter
than the wild type at y must satisfy the condition

ﬂ) _ 7]

U < tmax(vs) = In (1 )

The function #mux (v ) is the maximum cost that can be incurred
in order to acquire resistance 75, and further, #s < #max(v5)
delimits the region of the phenotypic space where adaptive
evolution is possible. This is shown as the green shaded region in
Fig. 3A4.

The role of pleiotropy is illustrated by the shape of the
adaptive walk trajectories in the # — v plane, plotted in Fig. 34
(colored solid lines). In the directed phase, the trajectories become
increasingly aligned with the direction of the maximum cost line
(black curve) for systems with higher relative cost of resistance,
characterized by ¢ = E[¢;], where ¢; = u;/v; is the relative cost
of an individual mutation. In the fluctuating phase, there is a
gain in mean null-fitness without loss of mean resistance, which
may seem puzzling in the presence of antagonistic pleiotropy.
The mechanism behind this becomes clearer upon examining
specific sample trajectories (gray lines in Fig. 34). By looking
closely at the individual adaptive steps (for example, those in
the circle enclosing the fluctuating gray line in Fig. 34), we see
that the null-fitness increases overall because the gain due to
the reversal of resistance mutations is higher than the loss that
occurs due to the forward mutations. Meanwhile, the resistance
does not change substantially because the forward mutations
occurring in the fluctuating phase counter the negative effect of
the reversals on resistance. The model allows variable tradeoffs
between # and v, implying that mutations conferring similar
levels of resistance may differ considerably in their negative
effects on null-fitness. The process proceeds by reversals that
occur preferably on resistance mutations that have higher values
of #; and forward mutations that have lower values of #;, without
substantial alteration of v in the long run. This is treated in
greater analytical detail in the next subsection through a special
case of the TIL model where all mutations have the same v;.
We introduce the term exchange compensation to encapsulate
the idea that in the fluctuating phase, compensation occurs by
“exchanging” acquired resistance mutations bearing a high cost
for those with a low cost through a multistep process. To put
it succinctly, the fluctuating phase selects against the strength of
antagonistic pleiotropy while maintaining the resistance level.

The effect of pleiotropy can be quantified through the
evolution of the relative cost ¢; associated with the substitutions.
As noted before, ¢; is bounded above by « (Eq. 4), and bounded
below by 0 (corresponding to a nonpleiotropic resistance mu-
tation). Fig. 3B summarizes the evolution of the mean relative
cost of resistance mutations contained in the genotype, defined
as (), 0ici) / (D, 0i), averaged over several landscape and walk
realizations, and conditioned on at least one mutation being
present in o. The results for the additive model in Eq. 5
are plotted as well. The points at which the additive model
results diverge from the full TIL model indicate the end of
the directed phase. As seen in the figure, the relative cost is
high in the directed phase, and goes down as compensatory
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Fig. 3. (A) The plot shows the evolutionary paths in the u—v plane for a genotype with L = 10 loci evolving at y = %VL. The colored solid lines are averages over

104 realizations. The constant ¢ represents the mean relative cost of resistance mutations in the landscape. The distribution of the {u;, v;} is given in Methods.
The parameter y is varied to tune ¢ (y = 0 corresponds to ¢ = 0.79). The black line represents the upper bound of the net cost as given in Eq. 7. The green
shaded region is the part of the phenotypic space to which adaptive walks are restricted. The curve u = av (dotted cyan line) eventually deviates from the line
of maximum cost since costly resistance mutations are no longer beneficial once a sufficiently high resistance level is achieved. Also shown are two individual
trajectories at low cost (solid gray line) and high cost (dashed gray line). (B) The plot shows the mean relative cost of the mutations present in the evolving
genotype averaged over 104 realizations. The system size is L = 100 and all other parameters are the same as in Fig. 2. Results are shown both for Kimura and
uniform adaptive walks. The dotted lines represent the same quantity in the case of the additive model; the absence of compensation here is because lack of
epistasis rules out reversals of mutations. The plus signs and squares represent the theoretical lower bounds averaged over 104 landscape realizations for the

Kimura and uniform cases respectively.

evolution occurs, reflecting the decreasing pleiotropic strength
of the resistance mutations accumulating in the genotype. For
the uniform adaptive walk, the mean relative cost in the directed
phase (as given by the dotted red line) agrees with the expected
relative cost of mutations in the full landscape, ¢ =~ 0.79, since
in the uniform walk all forward mutations are equally likely to
be fixed in the directed phase. The Kimura walk behaves in
a different way in the directed phase—there is a slight initial
decrease since selection prefers both high »; and low #;, followed
by a modest increase as low-cost resistance mutations become
rarer. The maximum relative cost accrued by the Kimura walk
(which occurs at the end of the directed phase) is lower than that
of the uniform walk, which is expected since the former preferably
fixes high-fitness mutants. The fluctuating phase of both the
Kimura and uniform walks terminate with similar average values
of the relative cost.

A lower bound on the per-mutation relative cost of a resistant
genotype with 7 mutations is given by the mean of the 7 lowest ¢;
values from the pool of L mutations in the landscape. It is seen in
Fig. 3B that the actual relative cost at the end of adaptive walks
is not much higher than this bound, indicating that, within the
constraints set by the number of resistance mutations, most of the
cost is actually recovered through the process of compensation.
Note that the degree of recovery for L = 100 in Fig. 3B is
much higher than for the corresponding L = 10 case in Fig. 34.
Indeed, the degree of compensation increases with Z, as shown in
SI Appendix, Fig. S3, because for larger L the landscape contains
mutations with values of #; that extend closer to zero.

2.3. Mechanism of Exchange Compensation in a Simplified
Setting. In the previous two subsections, we have characterized
the features of the biphasic adaptive evolution on TIL fitness land-
scapes. In order to understand better how this evolution emerges
from the microscopic dynamics of single fitness increasing
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mutations, we now turn to a theoretical analysis, characterizing
the topography of the landscape.

For a given genotype 6 = (o71,...,07), we define /T =
{i : 0; = 1} as the set of loci at which there is a mutation. The
complement /™ of this set comprises the loci where mutations are
absent. In what follows, we will specify a genotype 6 in terms of
its mutation set /T (30, 31). For i € I~ we denote the genotype
obtained from ¢ by adding a mutation at locus 7 as 67, likewise
forj € I, 67/ is the genotype obtained from & by reverting the
mutation at locus j.

The response curves associated with a pair of genotypes o
and 6, differing by a mutation at a single locus, are such that
they intersect precisely once, and we denote the value of stress at
that point as yg,+; (see SI Appendix for necessary and sufficient
conditions that ensure this). For ¥ > ys +; the genotype ot
will have larger fitness than 6, so that adding the mutation at 7 is
fitness increasing. It is found that

Xo+i= Xit+ Z ks (8]
kelt

where y; is the stress parameter value at which the response
curves of the wild-type 0 and the single-mutant 07 intersect.
Thus all intersection points ygs,+; can be constructed from the
set of y;’s and log-resistances v. This is a direct consequence of
the multiplicative nature of the parameterization in Eq. 2. We
label the loci i = 1,2, ..., L such that

X1 <x2<---<xr [9]

It follows from Eq. 8 that if y is sufficiently large, the addition
of any mutation will be fitness increasing. This characterizes the
directed phase.

Fig. 2B indicates that in the fluctuating phase the statistical
fluctuations in the resistance are far less than in the preceding
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Fig. 4. The g-TIL model, a simplified version of the TIL model where each mutation confers the same resistance v. (A) All fitness peaks have the same mutation
number g* and the directed and fluctuating phases of evolution are determined by the range of mutation numbers indicated in red and orange respectively. In
the directed phase (red) the arrows point in the direction of increasing fitness and thus move genotypes into the fluctuating regime (orange) which is trapping.
(B) The log-stress value y together with the mutation number g of a genotype partition the set of loci into the three sets marked as Lg, Mg, and Rgq. For loci
in Lq (Rq) adding (removing) a mutation is always fitness increasing. (C) Adaptive evolution in the (us, vs) plane. Shown is a realization with L = 20 loci in the
special case k = 1. Step numbers are shown in red next to selected data points. Up to step 10, the adaptive walk is in the directed phase, where mutations pile
up. In the fluctuating phase, the effective dynamics consists of exchanging mutation states of pairs of loci. The Inset shows genotypic configurations at certain

steps of the walk. Refer to text for further details.

directed phase. This suggests approximating the resistance
> ses+ vk of a genotype by its mean qv, where v is the average of
viand g = |] +| is the mutation number. In this approximation,
each mutation contributes an equal “quantum” v to the resistance
of a genotype. We shall call this the ¢-TIL model. This
approximation renders the model analytically tractable, while
retaining the key features of the adaptive evolution.

The genotype o is a fitness peak at y, if for each i € /™ and
j € I, the genotypes 6 and 6/ have lower fitness. Fitness
peaks of the TIL model can be explicitly identified (31). In the
g-TIL model, this procedure simplifies and the condition for
fitness peaks at y becomes™

max (y; — v) < ¥ — qv < min ;. [10]
ielt jel—
Letting
{uJ and ,(HLuJ, [11]
v v

where || is the greatest integer less than or equal to 4, and

defining

K(x) = max{j: 1 < x}, [12]
one can deduce from Eq. 10 the following results:

i. in terms of mutation number ¢, the fluctuating region is a
strip of width k, givenby # — xk +1 < ¢ < n + 1, as shown
in Fig. 44,

ii. all fitness peaks at a given y have the same mutation number
g*, where 4™ is the unique choice for g such that the following

inequality holds:

K(x—qv) =g =K(x —qv+v). (13]

*In the following, we will be interested in genotypes that are neither the WT nor the
all-mutant so that the sets /= satisfying the above inequalities are nonempty.
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The derivation of these results and further details on the
¢-TIL model will be presented elsewhere. The underlying key
observation is that given y and g, the intersection points of
Eq. 8 become y¢,4; = xi + qv in the ¢-TIL model and in turn
partition the set of loci into three subsets ,Cq = {1,...,F},
My = f{k+1,...,F}and R, = {F + 1,...,L}, where
k= K(y —qv) and ¥ = K(y — qv + 1). For any locus
i€ L, (j € R,) atransition is fitness increasing if and only if it
involves adding (removing) a mutation at that locus, as illustrated
in Fig. 4B.

In the g-TIL model, the biphasic adaptation takes a particularly
simple form when the width  of the fluctuating region takes its
smallest possible value k = 1, so that the genotypes oscillate
between ¢ = n and ¢ = » + 1. This is illustrated in Fig. 4C,
showing the evolution of #s and vs for L = 20. The choice of
x wassuch that n = ¢* = 10and k= K(y — g*v) = 9.

Starting with the wild-type, the directed phase is characterized
by mutation numbers g < 7, cf. Fig. 44. In this regime, the set £,
is the set of all loci and therefore any mutation 0 — 1 increases
fitness. Aslongas g < 7, mutations are added one by one, and asa
result, the log null-fitness —u¢ decreases monotonically, while the
resistance v = g increases. Next, the walk enters the fluctuating
phase at step 10, i.e. when ¢ = n = 10, cf. Fig. 4C. The
corresponding genotypic configuration is shown in the second
row of the /umset. The color coding of the mutation states of
the individual loci follows that of the three regions depicted in
Fig. 4B. Thus at step 10 the sites colored blue belong to £, while
those in orange constitute Mq. Since ¥ = 1, the region Rq is
empty. Therefore, the only available fitness increasing transitions
at this step are 0 — 1 and must be selected from the loci colored
blue.

At step 10 the locus 7 = 2 highlighted by the green box
undergoes a mutation leading to the configuration at step 11.
As a result, the mutation number increases by one, the pointers
¥ —qvand y —qv+ v decrease by v, and hence the assignment of
the loci into the three regions changes (cf. /nser of Fig. 4C). Now
the only available fitness increasing transitions are from the R-loci
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Fig. 5. Evolution at finite mutation rates. The mean null-fitness (A) and resistance (B) are plotted as a function of the number of generations. The nonsolid
lines are the results of Wright-Fisher simulations averaged over 103 landscape realizations at different mutation rates for L = 20 and N = 108 at y = vL/2; the
landscape parameters are the same as in Fig. 2. The solid cyan lines show mean values computed over 104 landscape realizations where the stress parameter
x fluctuates independently in each generation according to a normal distribution with mean y = vL/2 and SD 0.1 (the mutation rate is uN = 0.1). The blue
circles show results for the Kimura adaptive walk (averaged over 103 realizations), where we have multiplied the time steps by 100 to facilitate comparison with
the case uN = 0.01, in which one mutation occurs every 100 generations on average. The solid green lines are the results of the greedy adaptive walk. Here, the
number of time steps of the walk is divided by R = (L/2)/(2In(N)/5), where 5 >~ 1.71 is the mean selection coefficient of mutations in the wild type background.
The factor L/2 adjusts for the fact that on average L/2 mutations are required by the greedy walk algorithm to find the next mutation to be fixed (S/ Appendix),
and the factor 2In(N)/s is the fixation time of a beneficial mutation with selection coefficient s in the Wright-Fisher model. This rescaling facilitates comparison

with the results from the simulations with finite mutation rates.

shown in red and they must remove a mutation. In the example
shown, the site selected next is j = 16 and it is highlighted by
the green box. The mutation number now decreases by one and
we reach the genotype at step 12.

Observe that the net effect of going from step 10 to 12 has been
the exchange of the mutation states of loci i = 2 and j = 16,
while the mutation number remains the same. This is an example
of exchange compensation. From Eq. 3 we see that, because the
resistance v = gv has not changed, the net change in log-fitness
is equal to the change in null-fitness, AF5(y) = —Aug. Since
we are considering adaptive walks, the change in log-fitness must
be positive and therefore necessarily implies an increase of null-
fitness.

The adaptive walk in the fluctuating phase continues by the
exchange of mutation states described above. As a result, the
number of loci with mutation state 1 in £ increases, terminating
when all its 4 sites are mutated and leading to the fitness
peak configuration shown in step 18 of Fig. 4C. Consequently,
once a fitness peak has been reached, all sites 7 = 1,2,..., 4
must be mutated, while the remaining sites carrying a mutation
are selected from the subset My, cf. Fig. 4B, and therefore
characterize the individual fitness peaks. From Eq. 9 it follows
thatu; < uy < ... < ur.Consequently, thesitesi = 1,2,..., 4
have the lowest null-fitness. Thus the null-fitness of a fitness peak
reached has two contributions: a fixed part, ), _,; #;, which is
common to all fitness peaks, and a fluctuating part due to the
selection of the remaining mutations from M. The resulting
null-fitness will therefore generally be larger than ), g+ s

consistent with the systematic deviation of asymptotic null-
fitnesses from the lower bound in Fig. 3B.

The case of general k is similar. Once the fluctuating regime
is entered, the mutation number g performs a random walk
with reflecting boundaries at ¢ = » — k + 1 and ¢ = #, cf.
Fig. 44. Observing the genotype every time the mutation number
becomes 4*, the change in log-fitness AFy from one excursion
to the next is simply AFs = —Aug and hence the null-fitness
continues to increase until a fitness peak is found and the walk
terminates. Since the mutation number is ¢* at the end of each
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excursion, the net effect on the genotype is a change of mutated
loci.

2.4. Effects of Mutation Supply and Environmental Fluctuation.
We have so far restricted ourselves to evolutionary dynamics in
the regime of low mutation rates and fixed y. This has enabled
us to derive analytical results and perform efficient simulations
on large landscapes. However, it is essential to test the robustness
of the results to effects that are present in more realistic scenarios,
particularly when we relax the assumption of strong selection
and weak mutations. To do this, we simulated evolution on a
smaller landscape (L = 20) through Wright—Fisher dynamics at
constant population size N = 10° and with a mutation rate y
per individual and generation. We tuned the mutation rate to
span four orders of magnitude and plotted the results for the
null-fitness and resistance evolution in Fig. 5. At low mutation
supply rates (uIN =~ 0.01) the results approach those of the
Kimura adaptive walk, as expected. Consistent with Fig. 34,
the compensatory effect is weaker than for L = 100 due to
smaller genotype size. As the mutation supply is increased, the
compensatory phase becomes progressively less pronounced until
it disappears above uN = 1.0. Therefore, for the population
size simulated here (which is similar to effective population sizes
in microbial evolution experiments), biphasic adaptation occurs
when i is lower than ~107°, i.e. the mutation rate per locus’
per generation is lower than ~5 x 1078, For comparison, the
spontaneous per base-pair mutation rates reported for Escherichia
coli are usually in the range 107 to 10710 (39-41).

At high mutation rates, the population reaches slightly higher
null-fitness and resistance values and on a much faster time-scale.
There are two possible factors that can contribute to this effect.
The first is that multiple mutants produced from an evolving
genotype coexist and compete, which eventually leads to the
fixation of the fittest variant in the landscape neighborhood. This
is akin to the “greedy dynamics” implemented in some studies on

Tin this context itis important to note that the genotype size L in the TIL-model represents
the effective number of mutational loci that confer resistance to a specific antibiotic, rather
than the total genome size.
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fitness landscapes (36, 42—45). The second possible contributor
is stochastic tunneling (46, 47), where the population escapes a
local fitness maximum by populating neighboring lower-fitness
genotypes that have evolutionary access to maxima of even
higher fitness. Fig. 5 shows that evolution is faster at higher
mutation rates even in the directed phase, where the greedy
dynamics is the only possible contributor. We conjecture that
it is the dominant effect throughout the dynamics. We simulated
a greedy adaptive walk where a population evolves by always
moving to the fittest genotypic neighbor (see ST Appendix for
further details). The curves from the greedy walk (gray lines in
Fig. 5 A and B) are similar to those from the Wright—Fisher
model at mutation rates higher than y/N = 1.0 in Fig. 5. In
particular, a strong greedy effect eliminates the compensatory
phase in both cases, since selection is competent at finding short
paths to fitness maxima.* Our mutation supply belongs to the
regime where the greedy effect was found to be dominant in
an earlier theoretical study (48), consistent with our hypoth-
esis that an efficient exploration of genotypic neighborhoods
lies behind the rapid adaptation at higher mutation rates in
our model.

To further test the robustness of our model, we relaxed the
assumption that the environmental parameter y is constant. In
real-world scenarios, organisms frequently evolve in nonconstant
environments. For example, the drug concentration experienced
by a microbe may vary in time due to a multitude of factors
(33,49-51). Indeed, it is doubtful that organisms ever experience
a strictly constant environment, and therefore the validity of our
results depends on them being robust at least to small fluctuations
in y. To implement this, we simulated dynamics in the Wright—
Fisher model where, at every generation, the value of y was drawn
independently from a normal distribution centered around a
mean value of L/2. As seen from the cyan lines in Fig. 5 4 and
B,210% fluctuation in y has negligible effect on the evolution of
the phenotypes, and therefore our conclusions about the biphasic
nature of evolution continue to hold.

3. Discussion

In this work, we have investigated how evolution through natural
selection in a stressful environment proceeds under universal but
variable antagonistic pleiotropy between null-fitness and stress
resistance. We have identified two phases of adaptation, where
the first phase involves resistance acquisition at the cost of null-
fitness, and the second phase exhibits a partial recovery of the
cost through a process we have called exchange compensation.
Previous work has discussed the possibility of compensatory
evolution occurring through a “replacement” process, where
high-cost mutants are replaced by equally resistant low-cost
mutants, either by allelic replacement or mutations at different
loci (14, 52). Allelic replacement can occur through mutations
that do not involve any intermediate low-resistance genotypes,
but the nature of the hypothesized nonallelic replacement process
has not been clarified. Exchange compensation is a specific
mode of multistep replacement that includes both reversions and
fixation of new mutations. It involves individual mutational steps
that can temporarily increase the cost or reduce the resistance,
contrary to standard expectations from a compensatory process.
Despite this, exchange compensation does not require crossing
of any fitness valleys, because for every mutation that is fixed, the
negative fitness effect of increased cost (or reduced resistance) is

1:For the g-TIL model it can be shown that the fluctuating phase disappears when greedy
adaptive walks are considered.
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more than balanced by the increased resistance (or reduced cost)
conferred by it. Rather than crossing fitness valleys (46, 47, 53),
the adaptive evolution in the fluctuating regime proceeds along
low dimensional ridges of the fitness landscape, the dimension
of which is (in the case of the ¢-TIL model) bounded by the
parameter k.

A key element of our analysis is the nonlinear phenotype—
fitness map (Eq. 3), which is responsible for sign epistatic
effects that cause the reversion of previously fixed resistance
mutations in intermediate steps of the exchange compensation
process. Previous work has employed phenotype—fitness maps
to understand features of resistance and cost evolution. A
theoretical treatment based on a two-dimensional trait space has
shown how the assumption of two distinct phenotypic optima
corresponding to absence and presence of an antimicrobial drug
can describe different scenarios of microbial adaptation to drugs
(20), and some of the resulting predictions have been confirmed
experimentally (22, 54). Our study goes beyond these abstract
models by using phenotypic traits with a clear biological meaning
that are mapped to fitness through empirically validated response
curves (Eq. 1). Furthermore, our work illustrates how epistasis
in the genotype-fitness map separates the dynamics into distinct
phases.

We have used particular choices for the response curve and
the distribution of phenotypic effects to illustrate our results.
However, the biphasic nature of evolution found here does not
depend on these specific choices. The same qualitative features
should be observed as long as two crucial requirements are
satisfied. The first is that the response curve should be such
that when the resistance is sufficiently low, the dynamics should
not involve reversal of resistance mutations even when they incur
a high cost. This ensures the occurrence of the initial directed
phase of evolution. It is shown in ST Appendix, SI Text that this
requirement is satisfied by a broad class of response curves. The
second requirement is that there should be variable tradeoffs,
which is crucial to exchange compensation. This requirement
is not a restrictive one either, at least in the context of drug
resistance, since empirical studies across microbial systems do
not commonly find a strong relationship between individual
mutational effects on resistance and their cost (9, 14, 55, 56).
Therefore, exchange compensation is not restricted to specific
microbes or resistance mechanisms, but should occur whenever
there are adaptational tradeoffs that satisfy the above-mentioned
requirements.

Since exchange compensation is a slow process, its adverse
effects will be most pronounced under long-term stress exposure.
This has potentially important implications for drug resistance
evolution. In line with the views of other authors on drug
resistance (12, 57, 58), our work points to the need for better
understanding of the optimal duration of a drug course. Since
the cost of resistance mutations drives their reversion in the
absence of the drug (9), the reduction of the cost also reduces the
likelihood for drug susceptibility to be restored after treatment.
Of course, real-world scenarios of drug resistance can be more
complicated due to other factors not considered in this theoretical
study, such as the occurrence of compensatory mutations with
no adverse effects on resistance, or complex spatiotemporal
variations of drug concentration in a patient (33). While further
work is needed to elucidate the role of additional factors that
may complicate our modeling, the predicted generic nature of
exchange compensation indicates the need for closer empirical
and clinical scrutiny of the dynamics of compensatory evolution
and the spread of resistance strains under long-term drug
therapy.
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4. Methods

4.1. Parameter Choices. For the phenotypic effects of mutations, we use the
joint distribution

P(uj vi) = N Pu(v)Q(uily), [14]
where
V2
PV(VI') =exp ——I2 fOI'V,‘ >0
oy
=0 otherwise, [15]
and
)2
O(ui||/l») = exp —( ! 27/) @((XV/' — Ui) fOI’U,’ >0
oy
=0 otherwise. [16]

In the above, ® is the Heaviside function and A is a normalization constant. In
short, for each mutation, we choose v; from a half-normal distribution, and then
choose u; from a truncated normal distribution where the factor ®(av; — u;)
ensures that the constraint Eq. 4 is obeyed. The parameter y > 0 controls
the mean cost of the resistance mutations. The distribution used here is slightly
differentfrom the one in ref. 30 where the model was first introduced. The choice
is made for the mathematical convenience of using variables and parameters
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on the logarithmic scale for a large landscape, and also in order to allow for a
tunable cost of resistance.

Throughout the paper, the simulations were done with parameter values
a = 2and oy = oy = 1. Other parameter values are mentioned in the text
and the figure captions as needed.

4.2. Time-Scale of Adaptive Walks and Wright-Fisher Simulations. The
algorithmsforthe adaptive walksand the Wright-Fishersimulationsare provided
in SI Appendix. A description of Kimura and uniform adaptive walks is given
in Results. Here, we note briefly that for greedy adaptive walks (Fig. 5), each
time-step consisted of randomly drawing a mutation and updating the current
genotype only if the mutant was the fittest among all single mutants. Therefore,
a greedy walk takes on average L/2 steps to find the mutation that is fixed.

For the adaptive walks, the number of time steps was identical to the number
of mutations thathad occurred, regardless of whether they were fixed. Moreover,
origin and fixation occurred in the same step. In the Wright-Fisher simulations,
the dynamics consisted of nonoverlapping generations and several generations
are typically needed for the fixation of a mutation. When the mutation supply
rate uNis sufficiently small, on average, 1/ uN generations of the Wright-Fisher
model are equivalent to one time-step of the Kimura adaptive walk (Fig. 5).
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