Neue Untersuchungen zu Synthese und Eigenschaften niedervalenter Perfluororganyltellur-Verbindungen

Inaugural-Dissertation
zur
Erlangung des Doktorgrades
der Mathematisch-Naturwissenschaftlichen Fakultät
der Universität zu Köln

vorgelegt von Herbert Pohl aus Bochum

Köln 2002

Berichterstatter: Prof. Dr. D. Naumann

Prof. Dr. J. Hahn

Tag der mündlichen Prüfung: 13.11.2002

Die vorliegende Arbeit wurde in der Zeit von November 1997 bis Juni 2002 am Lehrstuhl II des Instituts für Anorganische Chemie der Universität zu Köln unter Leitung von

Herrn Prof. Dr. D. Naumann

angefertigt, dem ich für die interessante Themenstellung, wertvolle Anregungen und die großzügige Unterstützung bei der Durchführung dieser Arbeit meinen herzlichen Dank aussprechen möchte.

Weiterhin gilt mein Dank allen Angehörigen und Angestellten der Arbeitskreise von Herrn Prof. Dr. D. Naumann und Herrn Prof. Dr. J. Hahn die mir bei meiner Arbeit behilflich waren. Im besonderen möchte ich mich bei den Herren F. Schulz, Dr. T. Marx und vor allem Dr. I. Pantenburg für die Durchführung der Röntgenstrukturanalysen, bei Dr. B. Hoge für die DFT-Berechnungen und Dr. M. Schäfer aus dem Arbeitskreis von Prof. Dr. H.-G. Schmalz für die GC/MS-Messung bedanken.

Darüber hinaus möchte ich mich bei meiner Familie und bei meinen Eltern bedanken, ohne deren Unterstützung diese Arbeit nicht möglich gewesen wäre.

Inhaltsverzeichnis

1 Einleitung]
2 Diskussion der Ergebnisse	(
2.1 Untersuchungen zur Darstellung von Bis(trifluormethyl)tellur	6
2.1.1 Darstellung von Te(CF ₃) ₂ aus CF ₃ I	8
2.1.2 Darstellung von Te(CF ₃) ₂ aus Hg(CF ₃) ₂	10
2.2 Untersuchungen an Bis(trifluormethyl)ditellur	12
2.2.1 Reinigung von Bis(trifluormethyl)ditellur	12
2.2.2 NMR-Spektren von Bis(trifluormethyl)ditellur	13
2.2.2.1 ¹⁹ F-NMR-Spektrum von Bis(trifluormethyl)ditellur	13
2.2.2.2 125Te-NMR-Spektrum von Bis(trifluormethyl)ditellur	15
2.2.2.3 ¹³ C-NMR-Spektrum von Bis(trifluormethyl)ditellur	19
2.2.3 Schwingungsspektren von Bis(trifluormethyl)ditellur	21
2.3 Darstellung und Eigenschaften von Octamethyloxamidiniumbis(trifluormethyltellurat(0))	27
2.3.1 Darstellung von Octamethyloxamidiniumbis(trifluormethyltellurat(0))	29
2.3.2 NMR-Spektren von Octamethyloxamidiniumbis(trifluormethyltellurat(0))	34
2.3.2.1 ¹ H-NMR-Spektrum von Octamethyloxamidiniumbis(trifluormethyltellurat(0))	34
2.3.2.2 ¹³ C-NMR-Spektrum von Octamethyloxamidiniumbis(trifluormethyltellurat(0))	35
2.3.2.3 ¹⁹ F-NMR-Spektrum von Octamethyloxamidiniumbis(trifluormethyltellurat(0))	37
2.3.2.4 ¹²⁵ Te-NMR-Spektrum von Octamethyloxamidiniumbis(trifluormethyltellurat(0))	38
2.3.3 Schwingungsspektren von Octamethyloxamidiniumbis(trifluormethyltellurat(0))	39
2.3.4 Kristallstruktur von Octamethyloxamidiniumbis(trifluormethyltellurat(0))	41
2.3.5 TeCF ₃ -Gruppenübertragung mit Octamethyloxamidiniumbis(trifluormethyltellurat(0))	46
2.3.5.1 Umsetzung mit Iodethan	46
2.3.5.2 Umsetzung mit Quecksilber(II)chlorid	47
2.3.5.3 Umsetzung mit Silbersalzen	48

2.4 Trifluormethyltellurgruppenübertragung mit Bis(trifluormethyltellur)quecksilber	51
2.4.1 Umsetzung von Bis(trifluormethyltellur)quecksilber mit Antimontriiodid in Toluol	56
2.4.2 Umsetzung von Bis(trifluormethyltellur)quecksilber mit Iodethan in Toluol	57
2.5 Kristallstruktur von Bis(pentafluorphenyl)tellur	61
2.6 Kristallstruktur von Bis(pentafluorphenyl)ditellur	64
2.7 Reaktion von Tetrakis(dimethylamino)ethylen mit Bis(pentafluorphenyl)ditellur	68
3 Darstellung und Reinigung der Ausgangssubstanzen	71
4 Analyse- und Meßmethoden	74
5 Experimenteller Teil	77
5.1 Untersuchungen zur Darstellung von Bis(trifluormethyl)tellur	77
5.1.1 Darstellung von Te(CF ₃) ₂ aus CF ₃ I	77
5.1.2 Darstellung von Te(CF ₃) ₂ aus Hg(CF ₃) ₂	79
5.2 Untersuchungen an Bis(trifluormethyl)ditellur	81
5.2.1 Reinigung von Bis(trifluormethyl)ditellur	81
5.3 Darstellung und Eigenschaften von Octamethyloxamidiniumbis(trifluormethyltellurat(0))	83
5.3.1 Darstellung von Octamethyloxamidiniumbis(trifluormethyltellurat(0))	83
5.3.2 NMR-Spektren von Octamethyloxamidiniumbis(trifluormethyltellurate	(0)) 84
5.3.3 Schwingungsspektren von Octamethyloxamidiniumbis(trifluormethyltellurat(0))	85
5.3.4 Kristallstruktur von Octamethyloxamidiniumbis(trifluormethyltellurate	(0)) 86
5.3.5 TeCF ₃ -Gruppenübertragung mit Octamethyloxamidiniumbis(trifluormethyltellurat(0))	91
5.3.5.1 Umsetzung mit Iodethan	91
5.3.5.2 Umsetzung mit Quecksilber(II)chlorid	93
5.3.5.3 Umsetzung mit Silbersalzen	95

5.4 Trifluormethyltellurgruppenübertragung mit Bis(trifluormethyltellur)quecksilber	97
5.4.1 Umsetzung von Bis(trifluormethyltellur)quecksilber mit Antimontriiodid in Toluol	97
5.4.2 Umsetzung von Bis(trifluormethyltellur)quecksilber mit Iodethan in Toluol	99
5.5 Kristallstruktur von Bis(pentafluorphenyl)tellur	103
5.6 Kristallstruktur von Bis(pentafluorphenyl)ditellur	111
5.7 Reaktion von Tetrakis(dimethylamino)ethylen mit Bis(pentafluorphenyl)ditellur	115
6 Zusammenfassung	117
7 Literatur	120
Kurzzusammenfassung	130
Abstract	131
Lebenslauf	132

Abkürzungsverzeichnis:

Me Methyl-Gruppe
Et Ethyl-Gruppe
Ph Phenyl-Gruppe
Ar Aryl-Gruppe
R organischer Rest

R_f perfluororganischer Rest / bei DC: R_f-Wert (Retentions-Faktor)

RT Raumtemperatur LM Lösungsmittel

DC Dünnschichtchromatographie

GC/MS Gaschromatographie-Massenspektrometrie-Kopplung

ESI Elektrospray Ionisation

vdW van der Waals CT Charge Transfer rel. Int. relative Intensität k. A. keine Angaben

m Minute h Stunde d Tag

PE Polyethylen Glyme Dimethoxyethan

Diglyme Diethylenglycoldimethylether DMF N,N-Dimethylformamid DMSO Dimethylsulfoxid

PNP Bis(triphenylphosphoranyliden)ammonium

TAS Tris(dimethylamino)sulfonium TDAE Tetrakis(dimethylamino)ethylen

NMR-Spektroskopie

s Singulett
d Dublett
t Triplett
q Quartett
m Multiplett

Schwingungsspektroskopie

sehr V stark \mathbf{S} mittel m schwach W bd breit sh Schulter polarisiert p dp depolarisiert

1 Einleitung

Die Organoelement-Chemie hat ihre Ursprünge bereits in der Mitte des 19. Jahrhunderts. 1840 gelang Wöhler mit der Darstellung von Diethyltellur die Synthese einer der ersten Organoelement-Verbindungen, welche gleichzeitig die erste Organotellur-Verbindung überhaupt darstellte [1]. Erst 1948 gelang Emeléus et al. [2] die Darstellung der ersten Perfluoralkylelement-Verbindungen Trifluoriodmethan und Pentafluoriodethan. In der Folge kam es schnell zur Synthese weiterer Perfluoralkylelement-Verbindungen. So konnten durch Umsetzungen der Iodperfluoralkane mit Quecksilber die entsprechenden Perfluoralkylquecksilberiodide erhalten werden [2,3]. 1949 gelang mit der Darstellung von Bis(trifluormethyl)quecksilber die erstmalige Synthese einer reinen Perfluoralkyl-Metall-Verbindung [4]. Heute sind eine Vielzahl von Perfluoralkylelement-Verbindungen bekannt, von denen viele als Perfluoralkylgruppenüberträger – insbesondere der Trifluormethylgruppe – auf andere Elemente oder organische Verbindungen Verwendung finden [5-7].

Die Untersuchungen an Perfluoralkyl-Verbindungen der Chalkogene Schwefel, Selen und Tellur blieben dabei lange Zeit auf die Verbindungen des Selens und vor allem des Schwefels beschränkt. So wurde die erste Trifluormethylschwefel-Verbindung CF₃SF₅ bereits 1950 durch Fluorierung von Methylthiol erhalten [8]. 1952 beschreiben Emeléus et al. [9] die Synthese von Bis(trifluormethyl)disulfid durch die Reaktion von Schwefel mit Trifluoriodmethan. Die SCF₃-Gruppe findet, ähnlich wie in vielen Fällen die Trifluormethylgruppe, wegen ihrer besonders starken Lipophilie und der damit verbundenen Diffusion durch Lipid-Membranen [6,10,11] zunehmend Anwendung im pharmazeutischen und landwirtschaftlichen Bereich [11-13].

Untersuchungen der homologen Selenverbindungen sind nicht so umfangreich wie die der Perfluoralkylschwefel-Verbindungen, aber auch hier sind eine Vielzahl von Verbindungen bekannt und untersucht [14-16]. Hingegen ist die Chemie der Perfluoralkyltellur-Verbindungen erst in den letzten 20 Jahren Gegenstand eingehenderer Forschungen, da lange Zeit kein präparativ nutzbares Verfahren zur Darstellung geeigneter Ausgangsverbindungen bekannt war [17].

Zwar wurde bereits 1963 Bis(trifluormethyl)ditellur, dargestellt durch Einwirkung von CF₃-Radikalen – gewonnen durch thermische Zersetzung von Hexafluoraceton – auf einen Tellurspiegel,

2 Te + CF₃COCF₃
$$\xrightarrow{\Delta}$$
 Te₂(CF₃)₂ + CO

von Bell et al. [18] als erste Perfluoralkyltellur-Verbindung überhaupt beschrieben, doch ist dieses Verfahren nicht für die Darstellung größerer Mengen an Te₂(CF₃)₂ geeignet. Zehn Jahre später beschrieben Paige und Passmore [19] Bis(pentafluorethyl)mono- und -ditellur, welche neben Spuren weiterer Perfluoralkyl-Verbindungen bei der Reaktion von C₂F₄ mit Te₄[AsF₆]₂ gebildet wurden. Te₂(C₂F₅)₂ wurde dabei zur Trennung des Gemisches mit Quecksilber zu Bis(pentafluorethyltellur)quecksilber umgesetzt. Weitere Untersuchungen von Naumann und Herberg [20] zeigten aber, daß die Ausbeuten nur gering sind.

$$Te_{4}[AsF_{6}]_{2} + C_{2}F_{4} \xrightarrow{SO_{2}bzw.} Te(C_{2}F_{5})_{2} + Te_{2}(C_{2}F_{5})_{2}$$

$$\downarrow Hg$$

$$Hg(TeC_{2}F_{5})_{2}$$

1975 gelang Denniston und Martin [21] die photochemische Umsetzung von Trifluoriodmethan mit Dimethyltellur zu einem Gemisch aus CH₃TeCF₃ und Te(CF₃)₂, welches durch Destillation nicht zu trennen war.

$$CF_3I + (CH_3)_2Te \xrightarrow{h \cdot v} Te(CF_3)_2 + CH_3TeCF_3 + CH_3I$$

Ebenfalls 1975 gelang Lagow et al. [22] mittels Hochfrequenzentladung die Darstellung von Bis(trifluormethyl)mono- und -ditellur, indem sie Tellurtetrabromid mit aus C₂F₆ gebildeten CF₃-Radikalen zur Reaktion brachten. 1979 folgte die entsprechende Umsetzung mit elementarem Tellur [23]. Auch hier zeigten weitere Untersuchungen zu Plasmareaktionen von Schmeisser et al. [24], daß die Ausbeuten für präparative Mengen zu gering sind.

$$TeBr_4 + C_2F_6 \longrightarrow Te_n(CF_3)_2 \quad (n = 1,2)$$

Te +
$$C_2F_6$$
 \longrightarrow Te_n(CF₃)₂ (n = 1,2)

Erst 1982 konnten Naumann und Herberg [20,25] ein reproduzierbares Verfahren für die Darstellung größerer Mengen Bis(trifluormethyl)tellur entwickeln, indem sie in einer Feststoffreaktion Bis(trifluormethyl)quecksilber mit Tellurtetrachlorid zur Umsetzung brachten und Te(CF₃)₂ durch anschließende Tieftemperaturdestillation von Nebenprodukten befreiten.

$$Hg(CF_3)_2 + TeCl_4 \xrightarrow{\Delta} Te(CF_3)_2 + HgCl_2 + Cl_2 + ...$$

 $Te(CF_3)_2$ erwies sich dabei als hydrolyseunempfindliche, aber extrem leicht zu oxidierende Substanz. Mit Sauerstoff reagiert es bei Raumtemperatur spontan zu der Te(IV)-Verbindung $(CF_3)_2TeO$, mit anderen Oxidationsmitteln bilden sich Verbindungen des Typs $(CF_3)_2TeX_2$ (mit X = F, Cl, Br, ONO_2) [26].

In weiteren Untersuchungen zeigte $Te(CF_3)_2$ unter radikalischen Bedingungen hervorragende Trifluormethylierungseigenschaften sowohl gegenüber Olefinen und Aromaten [27] als auch gegenüber Elementhalogeniden [28]. Bei diesen Untersuchungen zu den Trifluormethylierungseigenschaften von $Te(CF_3)_2$ an Aromaten fanden Naumann und Kischkewitz [29,30] das erste präparativ nutzbare Verfahren zur Gewinnung von Bis(trifluomethyl)ditellur. Bei der radikalischen Trifluormethylierung unter Belichtung von $Te(CF_3)_2$ in Furan entsteht durch Dimerisierung der gebildeten CF_3Te -Radikale $Te_2(CF_3)_2$ in Ausbeuten über 40 %.

$$Te(CF_3)_2 + Furan \xrightarrow{h \cdot v} Te_2(CF_3)_2 + Furan-CF_3$$

Analog zu den homologen Verbindungen von Schwefel [9] und Selen [14] gelang auch die oxidative Übertragung der TeCF₃-Gruppe auf Quecksilber sowie auf Cadmium.

$$Te_2(CF_3)_2 + M \xrightarrow{DMF} M(TeCF_3)_2$$

$$M = Hg, Cd$$

Durch entsprechende Umsetzungen gelang Boye [31] die Darstellung und Isolierung von $CuTeCF_3$, $Zn(TeCF_3)_2$ und $In(TeCF_3)_3$.

Verbindungen des Typs M(TeCF₃)_n (M = Übergangsmetall) sind insbesondere als potentielle Precursoren für den Aufbau von II-VI-Halbleitern durch Epitaxie-Verfahren interessant [32-34], die in der Optoelektronik z. B. als IR-Detektoren (HgCdTe, PbSnTe), optische Speichermedien (TeSe) oder auch Solarzellen (CdTe) Anwendung finden [32-35]. Auch Organotellur-Verbindungen des Typs R₂Te oder R₂Te₂ wurden in diesem Bereich bereits erfolgreich als Precursoren in der MOCVD verwendet [36], wobei Perfluoralkyltellur-Verbindungen aufgrund ihrer höheren Flüchtigkeit und teilweise niedrigeren Zersetzungspunkte besonders geeignet erscheinen [37]. MOCVD-Verfahren haben auch bei der Entwicklung von thermoelektrischen Tellurverbindungen (PbTe, Bi₂Te₃), die als Thermo- und Peltier-Elemente genutzt werden [32], zu einem Entwicklungssprung geführt [38].

Organotellur-Verbindungen sind aber auch in einigen Spezialfällen (z.B. Kontrastmittel in bildgebenden Verfahren, Lepramittel und Mittel gegen Hautkrankheiten) im medizinischpharmazeutischen Bereich im Einsatz [32,39,40]. Perfluoralkylierte Derivate sind aufgrund ihrer bereits angesprochenen Eigenschaften möglicherweise auch hier von besonderem Interesse; allerdings dürfte der Einsatz aufgrund der Toxizität von Tellur eingeschränkt bleiben.

Da die direkte Umsetzung von Te₂(CF₃)₂ mit den Elementen nur in Ausnahmefällen Erfolg hat und die Darstellung von gemischt substituierten Organyltrifluormethyltellur-Verbindungen auf diesem Weg nicht möglich ist, müssen andere Wege zur Einführung der TeCF₃-Gruppe in organische Verbindungen gefunden werden.

Ausgehend von $Te(CF_3)_2$ wurden einige erfolgreiche Versuche unternommen, durch Distributionsreaktionen mit Diorganyltellur-Verbindungen gemischt substituierte Tellurverbindungen zu erhalten [37,41].

$$Te(CF_3)_2 + R_2Te \longrightarrow 2 RTeCF_3$$

 $R = C_6F_5$, Benzyl, t-Bu

Eine vielversprechende Methode zur Übertragung der TeCF₃-Gruppe auf andere Verbindungen und Elemente sind die bei den homologen SCF₃- [6,42-51] und SeCF₃-Derivaten [49-53] etablierten Metathese-Reaktionen mittels Metall-Trifluormethylchalkogenyl-Verbindung, bei denen es meist zu einem Austausch gegen Halogen kommt.

$$M(ECF_3)_n + n RX \longrightarrow n RECF_3 + MX_n$$

 $E = S, Se;$
 $M = Hg, Cu, Ag, Cs$
 $X = Halogen$
 $R = Organyl, Element$

Über Austauschreaktionen mit Trifluormethyltellur-Verbindungen gibt es bislang nur wenige Arbeiten. Erste Untersuchungen hierzu stammen von Haas et al. [54], die CF₃TeI, synthetisiert aus Te₂(CF₃)₂ und Iod, mit Quecksilbersalzen umsetzten. Später berichteten Naumann et al. [55] von Umsetzungen mit Organolithium-Verbindungen und Silbersalzen. 1999 waren es dann erneut Haas et al. [56], die mittels Me₃SnTeCF₃ die TeCF₃-Gruppe erfolgreich auf Säurechloride übertragen konnten.

$$Me_3SnTeCF_3 + Ar - C$$
 O
 $MeCN$
 $Ar - C$
 $TeCF_3$
 $+ Me_3SnCl$

Da viele der in der Schwefel- und Selenchemie verwendeten Überträger in der Tellurchemie bislang unbekannt oder aber instabil und daher schwer handhabbar sind, ist das Ziel dieser Arbeit die Suche nach weiteren TeCF₃-Gruppen-Überträgern. Daneben soll aber auch das stabile Hg(TeCF₃)₂, welches bei einer Untersuchung von Boye [31] mit verschiedenen Übergangsmetall-TeCF₃-Verbindungen keine Übertragungseigenschaften aufwies, eingehender untersucht werden.

2 Diskussion der Ergebnisse

2.1 Untersuchungen zur Darstellung von Bis(trifluormethyl)tellur

Neben den einleitend beschriebenen Verfahren zur Darstellung von Te(CF₃)₂ [20-25] sind noch eine Reihe weiterer Umsetzungen bekannt, bei denen Te(CF₃)₂ gebildet wird.

In Anlehnung an die von Naumann und Herberg [20,25] beschriebene Umsetzung von Bis(trifluormethyl)quecksilber mit Tellurtetrachlorid, bei der in einer Feststoffreaktion unter Normaldruck Te(CF₃)₂ in einer Ausbeute von 56% erhalten wird, beschreiben Ganja et al. [57] die entsprechende Druckreaktion mit Tellurtetrabromid.

$$Hg(CF_3)_2 + TeBr_4 \xrightarrow{155 °C} Te(CF_3)_2 + HgBr_2 + Br_2$$

Die angegebene Ausbeute von 92% konnte in eigenen Experimenten nicht reproduziert werden, so daß aufgrund des im Vergleich zu Tellurtetrachlorid erheblich höheren Preises von Tellurtetrabromid diese Darstellung keine sinnvolle Alternative ist. Einer der Hauptvorteile der Umsetzung mit TeCl₄ ist die sehr gute Skalierbarkeit, die große Ansätze erlaubt. Nachteilig sind die hohe Toxizität der Quecksilberverbindung und die aufwendige Abtrennung der Nebenprodukte – insbesondere von Chlordifluormethyl(trifluormethyl)tellur – durch Tieftemperaturdestillation.

Kasemann et al. [58,59] untersuchten die Übertragbarkeit des Syntheseprinzips für Dialkyltellur-Verbindungen – z. B. Dimethyltellur, aus Natriumtellurid und Iodmethan [60] –

$$Na_2Te + 2 CH_3I \longrightarrow (CH_3)_2Te + 2 NaI$$

auf perfluorierte Derivate. Wegen der besseren Löslichkeit in flüssigem Ammoniak setzten sie Dinatriumditellurid unter anderem mit CF_3I und CF_3Br um und erhielten $Te(CF_3)_2$ in Ausbeuten von 37% im Gemisch mit 15% $Te_2(CF_3)_2$.

$$Na_2Te_2 + 2 CF_3X$$
 $\xrightarrow{\text{fl. NH}_3}$ $Te(CF_3)_2 + 2 NaX + Te$ $X = Br, I$

Der ungewöhnliche Hochfeldshift der Te(CF₃)₂-Resonanz im ¹⁹F-NMR-Spektrum im Vergleich mit Literaturdaten [61] sowie Farbeffekte bei der Kondensation deuten auf eine Adduktbildung mit Ammoniak hin. Einer der Hauptvorteile dieser Synthese, die Verwendung von preiswertem CF₃Br, ist durch das Verbot dieser Substanz aufgrund ihres ozonschädigenden Potentials hinfällig geworden. Weitere Versuche zur Optimierung dieses Synthesewegs durch Variation des Lösungsmittels führten nicht zum Erfolg [62,63] .

Durch Verwendung des hochsiedenden Lösungsmittels Sulfolan und unter Kupferkatalyse gelang es Boye [31] Natriumtrifluoracetat als CF₃-Gruppenüberträger zu verwenden.

$$2 \text{ NaOCOCF}_3 + 2 \text{ Te} \xrightarrow{\text{Sulfolan } / \text{Cu}_{\text{kat}}} \text{Te}(\text{CF}_3)_2 + \text{Na}_2\text{Te} + 2 \text{CO}_2$$

Die Ausbeute von 20 - 25% ließ sich jedoch nicht reproduzieren und liegt in der Regel lediglich bei 10 - 15%. Ein weiterer Nachteil ist die aufgrund der hohen Reaktionstemperatur entstehende große Anzahl von Nebenprodukten.

1996 stellten Haas und Mitarbeiter [64] mehrere Methoden zur Darstellung von in der Hauptsache höheren Perfluoralkytellur-Verbindungen vor. Ausgehend von den entsprechenden Perfluoralkylquecksilber-Verbindungen bzw. Perfluoriodalkanen gelingt die Umsetzung mit elementarem Tellur in Gegenwart von Kupfer und ohne Lösungsmittel im Bombenrohr.

$$Hg(R_f)_2 + 3 Te \xrightarrow{\Delta / Cu_{kat}} Te(R_f)_2$$

 $R_f = CF_3, C_2F_5$

$$R_fI + 3 Te + 3 Cu \xrightarrow{\Delta} Te(R_f)_2 + CuI$$

 $R_f = C_2F_5, n-C_3F_7, i-C_3F_7, n-C_4F_9$

2.1.1 Darstellung von Te(CF₃)₂ aus CF₃I

Bei ihren Untersuchungen über die Darstellung von Bis(perfluoralkyl)tellur-Verbindungen aus Perfluoriodalkanen gehen Haas und Mitarbeiter [64] nicht auf die Darstellung von Te(CF₃)₂ mittels CF₃I ein. Es bleibt unklar, ob sich Te(CF₃)₂ nicht bildet oder ob die Umsetzung nicht durchgeführt wurde, da sich Te(CF₃)₂ in früheren Untersuchungen unter radikalischen Bedingungen als der bessere Trifluormethylgruppenüberträger erwiesen hat. So gelingt die Darstellung von CF₃I aus Te(CF₃)₂ und Iod mit 97% Ausbeute [28], und Te(CF₃)₂ zeigt im Vergleich mit CF₃I sowohl bei Belichtung wie auch bei thermischen Reaktionen mit Aromaten die höhere Reaktivität mit zum Teil erheblich höheren Ausbeuten [27a,b].

Die Darstellung von Te(CF₃)₂ aus CF₃I und elementarem Tellur gelingt unter vergleichbaren Bedingungen.

$$CF_3I + 3 Te + 3 Cu \xrightarrow{40 h} Te(CF_3)_2 + CuI$$

Die Umsetzung verläuft dabei nicht vollständig. Ein Teil des eingesetzten CF₃I reagiert nicht ab. Nach dem Abdestillieren aller flüchtigen Bestandteile finden sich im gebildeten Te(CF₃)₂ noch bis zu 51% CF₃I. Auch eine Verlängerung der Reaktionszeit um 24 h führt zu keiner Verringerung des CF₃I-Anteils. Dabei kann es sich jedoch nicht um eine Gleichgewichtseinstellung handeln, wie folgende Überlegungen und Beobachtungen zeigen.

Es ist zu vermuten, daß CF₃I in einem primären Reaktionsschritt mit Kupfer zu Kupfer(I)iodid und einer reaktiven CF₃Cu-Spezies reagiert, die dann das eigentliche Überträgerreagenz darstellt. Dabei ist auch die Bildung von Kupfertelluriden zu diskutieren.

$$CF_3I + 2 Cu \longrightarrow CuI + \langle CuCF_3 \rangle$$
 $2 \langle CuCF_3 \rangle + Te \longrightarrow Te(CF_3)_2 + 2 Cu$
 $2 \langle CuCF_3 \rangle + 2 Te \longrightarrow Te(CF_3)_2 + "Cu_2Te"$

Bei größeren Ansätzen werden sinkende Ausbeuten beobachtet und der Anteil an nicht umgesetztem CF₃I steigt an.

Eine mögliche Erklärung könnte die mangelnde Durchmischung der Reaktionspartner während der Reaktion sein, da sich im Verlauf der Reaktion das Reaktionsgemisch verfestigt.

 $Te(CF_3)_2$ wird in bis zu 34% Ausbeute erhalten und ist bis auf nicht umgesetztes CF_3I und Spuren von $Te_2(CF_3)_2$ ¹⁹F-NMR-spektroskopisch rein.

Die Umsatzraten von CF₃I, d. h. das Verhältnis von CF₃I zu Te(CF₃)₂ im abdestillierten Rohprodukt, korrespondieren in etwa mit den gefundenen Ausbeuten an Te(CF₃)₂. Dies ist ein weiteres Indiz für die mangelnde Durchmischung als limitierendem Faktor der Reaktion, da die molaren Verhältnisse der Edukte konstant waren.

Tab.: Vergleich der Ausbeuten an Te(CF₃)₂ mit dem Anteil an CF₃I im Rohprodukt

	1. Ansatz	2. Ansatz	3. Ansatz
Ausbeute	34%	26%	32%
Verhältnis CF_3I : $Te(CF_3)_2$	1:8,2	1:1,85	1:4,6

Eine praktisch vollständige Abtrennung von CF₃I gelingt durch mehrfache fraktionierte Tieftemperaturdestillation. Nach einmaliger Destillation bei Temperaturen der ersten und zweiten Kühlfalle von -116 °C und einer dritten von -196 °C sinkt der CF₃I-Gehalt auf unter 5%. Die Trennung erweist sich dabei als überraschend schwierig und gelingt nur, wenn der Sumpf auf -78 °C gekühlt und die Destillation im Ölpumpenvakuum bei 1·10·3 mbar durchgeführt wird. Nach einer Wiederholung der Destillation bei einer Temperatur der ersten Kühlfalle von -108 °C, der zweiten von -116 °C und der dritten von -196 °C ist CF₃I nur noch in Spuren nachweisbar.

Tab.: CF₃I-Anteil im Te(CF₃)₂

Verhältnis der Integrale im ¹⁹ F-NMR-Spektrum	CF ₃ I	:	Te(CF ₃) ₂
1. nach der Darstellung	1	:	4,6
2. nach erster Tieftemperaturdestillation	1	:	22
3. nach zweiter Tieftemperaturdestillation	1	:	1136

Die Reaktion von CF₃I mit Tellur stellt daher bei weiter sinkenden CF₃I-Preisen und bei weiterer Optimierung bezüglich Aufarbeitung und Reaktionsführung eine interessante Alternative zu den bisherigen Syntheseverfahren dar. So gelingt die vollständige Abtrennung von CF₃I auch durch eine isotherme Destillation [65].

2.1.2 Darstellung von Te(CF₃)₂ aus Hg(CF₃)₂

Trotz der Entsorgungsproblematik ist Bis(trifluormethyl)quecksilber, dargestellt durch Decarboxylierung von Quecksilberbis(trifluoracetat) [66], nach wie vor eine gebräuchliche CF₃-Quelle zur Darstellung von Te(CF₃)₂.

$$HgO + 2 CF_3COOH \longrightarrow (CF_3COO)_2Hg + H_2O$$

$$(CF_3COO)_2Hg \xrightarrow{\Delta} Hg(CF_3)_2 + 2CO_2$$

Ein Vorteil dieser Umsetzung ist die Möglichkeit, mit sehr großen Ansätzen zu arbeiten, auch wenn die in der Literatur angegebenen Ausbeuten von 90% in eigenen Experimenten nicht reproduziert werden können und in der Regel bei 45 bis 50% liegen.

Bereits Herberg und Naumann [20] berichteten über den Versuch $Hg(CF_3)_2$ mit elementarem Tellur umzusetzen, erhielten aber keine CF_3 -haltigen Tellurverbindungen. Durch den Zusatz katalytischer Mengen Kupferpulver erhielten Haas und Mitarbeiter [64] in einer Feststoffreaktion $Te(CF_3)_2$ mit 40% Ausbeute. Nachteilig ist jedoch die Reaktionsführung im Bombenrohr, da sie nur relativ kleine Ansätze erlaubt und umständlich in der Handhabung ist.

Die Durchführung der Reaktion in einem evakuierten und mit Teflon-Ventil (Young-Hahn) versehenen Glasrohr erweist sich als nicht geeignet. Da das Kunststoffventil nicht mit erhitzt werden darf, sublimiert Hg(CF₃)₂ im Vakuum sofort an den kälteren Stellen der Glaswand und wird somit der Reaktion entzogen. Die Ausbeuten an Te(CF₃)₂ liegen folglich unter 10%.

Zur Verminderung dieser Sublimation wird die Reaktion dahingehend modifiziert, daß die Umsetzung bei Normaldruck durchgeführt wird. Durch Erhöhung des Kupferanteils und der Temperatur wird eine Verkürzung der Reaktionsdauer von 48 Stunden auf zwei bis drei Stunden erreicht.

$$Hg(CF_3)_2 + 3 Te + Cu \xrightarrow{240 °C} Te(CF_3)_2$$

Die Reaktionstemperatur muß dabei möglichst schnell erreicht werden, da sonst ein Großteil des Hg(CF₃)₂ aus dem Reaktionsgemisch sublimiert bevor es abreagiert.

Zur Entfernung des gebildeten Te(CF₃)₂ wird ein leichter Stickstoffstrom durch den Reaktionskolben geleitet und Te(CF₃)₂ in mehreren hintereinander geschalteten Kühlfallen aufgefangen. Sublimiertes, durch Quecksilber grau gefärbtes Hg(CF₃)₂ findet sich hauptsächlich in den kühleren Zonen des Reaktionskolbens sowie in der ersten Kühlfalle und kann größtenteils zurückgewonnen werden.

Neben Te(CF₃)₂ werden im ¹⁹F-NMR-Spektrum lediglich 3-4% Te₂(CF₃)₂ – in einem Fall 6,6% – sowie Spuren von mitgeschlepptem Hg(CF₃)₂ detektiert. Diese können durch Tieftemperaturdestillation leicht abgetrennt und Te(CF₃)₂ mit bis zu 48,5% Ausbeute isoliert werden. In der Regel liegen die Ausbeuten zwischen 35 und 40%. Größere Ansätze haben tendenziell eine geringere Ausbeute, weshalb eine weitere Skalierung hin zu größeren Ansätzen nicht sinnvoll erscheint.

Gegen Ende der Arbeiten stellte sich heraus, daß die Kupferqualität eine herausragende Rolle bei der Umsetzung spielt. Nachdem die bislang verwendete Kupfercharge unbekannter Herkunft aufgebraucht war und durch andere Kupferpulver unbekannter Herkunft ersetzt wurde, sanken die Ausbeuten teilweise auf Null. Erst mit Kupferpulver der Firma Merck, Darmstadt, (p.a. / Gehalt min. 99,7%) wurden wieder standardmäßige Ausbeuten von über 35% erreicht. Der Hauptvorteil dieser neuen Synthesevariante im Vergleich zur Umsetzung mit TeCl₄ [20,25] liegt in der Vermeidung der chlorhaltigen Nebenprodukte, von denen insbesondere Te(CF₃)(CF₂Cl) nur sehr schwer vollständig abgetrennt werden kann. Nachteilig sind die kleineren Ansatzgrößen. Gegenüber der Variante im Bombenrohr [64] liegen die Vorteile in der einfacheren Handhabung und den deutlich kürzeren Reaktionszeiten. Das Hauptproblem ist die Sublimierbarkeit von Hg(CF₃)₂.

2.2 Untersuchungen an Bis(trifluormethyl)ditellur

Für das erstmalig 1963 von Bell et al. [18] als erste Perfluoralkyltellur-Verbindung überhaupt dargestellte Bis(trifluormethyl)ditellur ist zur Zeit als einzige Darstellungsmethode, die $Te_2(CF_3)_2$ in präparativ sinnvollen Mengen liefert, die Belichtung von $Te(CF_3)_2$ in Furan bekannt [30].

Trotz zahlreicher Untersuchungen zur Darstellung von Perfluoralkyl- bzw. Perfluoraryltellurund -ditellurverbindungen, bei denen die Bildung von Ditellurverbindungen beobachtet wurde,
konnte bis heute keine Alternative zur Belichtung in Furan gefunden werden [58,63,64,67,68].

Daneben wurden auch Versuche zur Optimierung der Belichtung unternommen [62,69].

Problematisch ist vor allem die Reinigung des Produktes, die alleine durch Destillation nicht
gelingt.

2.2.1 Reinigung von Bis(trifluormethyl)ditellur

Durch die bei der Belichtung gebildeten zahlreichen Nebenprodukte ist eine aufwendige Aufarbeitung von Te₂(CF₃)₂ nötig. So gelingt eine praktisch vollständige Abtrennung aller fluorhaltigen Nebenprodukte erst durch eine säulenchromatographische Trennung [69]. Das dabei verwendete Laufmittel Pentan läßt sich nur durch eine fraktionierte Tieftemperaturdestillation wieder vollständig entfernen. Der Pentangehalt kann durch die Aufnahme von Gasphasen-IR-Spektren kontrolliert werden. Bei dieser Destillation wird auch das durch Zersetzung unter Tellurabscheidung ständig nachgebildete Te(CF₃)₂ abdestilliert.

Zusammenfassend sind folgende Reinigungsschritte nötig:

- 1. Entfernung von überschüssigem Furan und Abtrennung der CF₃-Furan-Derivate durch Destillation bei Normaldruck bis 85 °C.
- 2. Abtrennung aller verbliebenen Verunreinigungen durch inerte säulenchromatographische Trennung über SiO₂ mit Pentan als Laufmittel.
- 3. vollständige Entfernung von Pentan durch
 - Destillation bei Normaldruck bis 60 °C (Entfernung der Hauptmenge Pentan)
 - fraktionierte Vakuumdestillation (Kühlfallen: -64 °C / -78 °C / -196 °C)

2.2.2 NMR-Spektren von Bis(trifluormethyl)ditellur

 $Te_2(CF_3)_2$ zeichnet sich dadurch aus, daß alle in ihm vorkommenden Elemente mindestens ein NMR-aktives Isotop mit der Kernspinzahl I = ½ besitzen. Das macht $Te_2(CF_3)_2$ für NMR-Untersuchungen besonders interessant. So sind insbesondere die $^{19}F_1$ und die $^{125}Te_2$ NMR-Spektren in der Literatur bereits mehrfach besprochen worden [54,61,70,71].

Tab.: Häufigkeit und Kernspin der in Te₂(CF₃)₂ enthaltenen Elemente [72]:

	Isotop	Kernspin [I]	Häufigkeit [%]	μ_{mag}
Kohlenstoff:	¹³ C	1/2	1,10	+ 0,7024
Fluor:	$^{19}\mathrm{F}$	1/2	100	+ 2,6283
Tellur:	¹²³ Te	1/2	0,91	- 0,7359
	¹²⁵ Te	1/2	7,14	- 0,8871

Bedingt durch die Te-Te-Bindung, kommt es allerdings im ¹⁹F- und ¹²⁵Te-NMR-Spektrum zu Spektren höherer Ordnung. Dies fällt nur bei genauer Betrachtung hochaufgelöster Spektren auf, so daß dieser Aspekt bislang weitgehend unberücksichtigt blieb.

2.2.2.1 ¹⁹F-NMR-Spektrum von Bis(trifluormethyl)ditellur

Da die natürliche Häufigkeit der NMR-aktiven Isotope von Kohlenstoff und Tellur nur sehr gering ist, trifft man in 82,7% der Fälle auf zwei magnetisch äquivalente CF₃-Gruppen mit einem daraus resultierenden Singulett.

Der nächst wahrscheinliche Fall ist die Anwesenheit von ¹²⁵Te im Molekül: F₃C¹²⁵TeTeCF₃. Dann ist die Äquivalenz der beiden CF₃-Gruppen aufgehoben und man erhält nach den Regeln 1. Ordnung eine Aufspaltung zu Dubletts durch die ²J- und ³J-Kopplung mit ¹²⁵Te, welche dann durch die ⁵J-Kopplung der Fluoratome untereinander zu Quartetts aufgespalten werden. Eine genaue Betrachtung des Spektrums zeigt, daß die ¹²⁵Te-Satelliten zusätzliche Linien aufweisen und es sich um ein A₃B₃X-System höherer Ordnung handelt, das allenfalls genähert 1. Ordnung interpretiert werden darf. Die chemische Verschiebung der CF₃-Gruppen ist praktisch identisch, so daß von einem A₃A₃'X-System gesprochen werden kann. Ein Isotopenshift aufgrund der unterschiedlichen Massen ist nicht messbar.

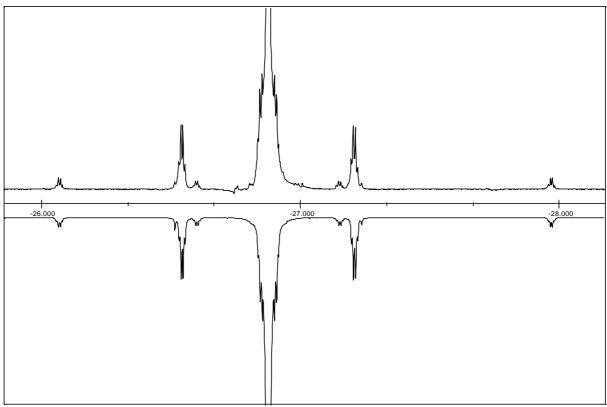


Abb.: ¹⁹F-NMR-Spektrum von Te₂(CF₃)₂ in d₆-Aceton (oben: experimentell; unten: simuliert)

Die Simulation zeigt bei einer dem gemessenen Spektrum entsprechenden Linienbreite von 0,53 Hz eine sehr gute Übereinstimmung mit den experimentellen Werten. Zur Verdeutlichung ist noch einmal das berechnete Subspektrum des Isotopomers F₃C¹²⁵TeTeCF₃ abgebildet.

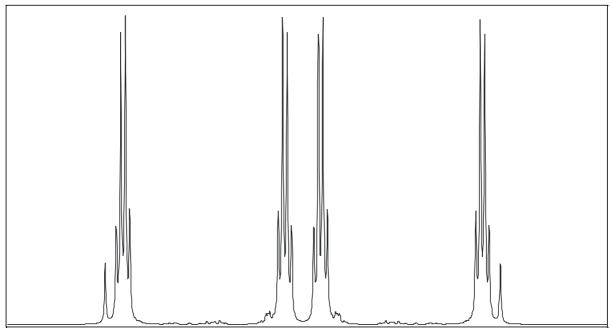


Abb.: simuliertes ¹⁹F-NMR-Spektrum des Isotopomers F₃C¹²⁵TeTeCF₃

Aufgrund der geringen Wahrscheinlichkeit und der damit verbundenen geringen Intensität lassen sich die beschriebenen Effekte für die Isotopomere F₃C¹²³TeTeCF₃ und F₃¹³CTeTeCF₃ nicht in gleicher Weise im experimentellen Spektrum beobachten. Eine Simulation ist aufgrund fehlender Informationen über die ³J(¹²³Te-¹⁹F)- bzw. ⁴J(¹⁹F-¹³C)-Kopplung sinnlos. Entsprechendes gilt für das Spektrum des noch selteneren Isotopomers F₃C¹²⁵Te¹²⁵TeCF₃, welches ein A₃A₃'XX'-System darstellt und dessen Linien im ¹⁹F-NMR-Spektrum nicht mehr ausreichend aufgelöst werden können.

Tab.: ¹⁹F-NMR-Daten von Te₂(CF₃)₂ (teilweise aus Simulation)

Lösungsmittel	δ [ppm]	Kopplungen [Hz]	Isotopenshift [ppm]
d ₆ -Aceton (ca. 66 Vol-%)	-26,88	$^{1}J(^{19}F_{-}^{-13}C) = 357.6$	$^{1}\Delta^{19}F(^{13/12}C) = -0,143$
		2 J($^{123/125}$ Te- 19 F) = (+,-) $^{a)}$ 104,1 / 125,3	
		$^{3}J(^{125}Te^{-19}F) = (+,-)^{a)} 12,0^{b)}$	
		$^{5}J(^{19}F_{-}^{-19}F) = (\pm,\pm)^{a)}1,5$	
CDCl ₃ (ca. 33 Vol-%)	-26,17	$^{1}J(^{19}F_{-}^{13}C) = 358,2$	$^{1}\Delta^{19}F(^{13/12}C) = -0.141$
		2 J($^{123/125}$ Te- 19 F) = 82,0 / 99,0	

^{a)} Die Simulation zeigt, daß die ²J- und die ³J(¹²⁵Te-¹⁹F)-Kopplung das gleiche Vorzeichen haben müssen. Die Vorzeichen der ¹J(¹²⁵Te-¹²⁵Te)- und der ⁵J(¹⁹F-¹⁹F)-Kopplung spielen keine Rolle.

2.2.2.2 ¹²⁵Te-NMR-Spektrum von Bis(trifluormethyl)ditellur

Im ¹²⁵Te-NMR-Spektrum dominiert das mit einer Wahrscheinlichkeit von 89,9% häufigste Isotopomer F₃C¹²⁵TeTeCF₃, dessen Tellursignal durch die ²J- und ³J-Kopplung zu den beiden CF₃-Gruppen nach den Regeln 1. Ordnung zu Quartetts vom Quartett aufspaltet.

Bei dem mit 6,98% nächst wahrscheinlichen Isotopomer F₃C¹²⁵Te¹²⁵TeCF₃ handelt es sich um ein A₃A₃'XX'-System, aus welchem ein ¹²⁵Te-Spektrum höherer Ordnung resultiert. Die Mehrzahl der zugehörigen Linien werden allerdings von den dominierenden Quartetts überlagert. Gleiches gilt für die weiteren Isotopomere, deren Wahrscheinlichkeit noch einmal deutlich geringer ist.

b) Wert aus Simulation, da Satelliten nicht vollständig aufgelöst

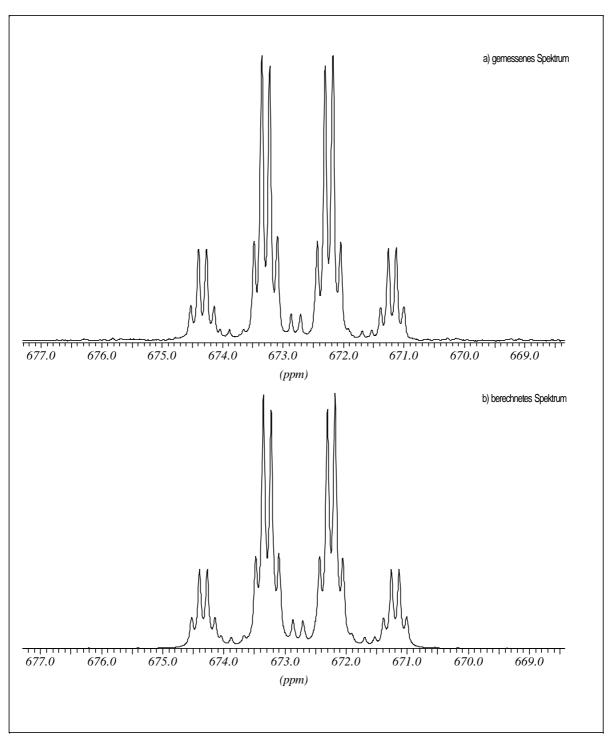


Abb.: 125Te-NMR-Spektrum von Te₂(CF₃)₂, in CDCl₃ (a) experimentell; b) simuliert)

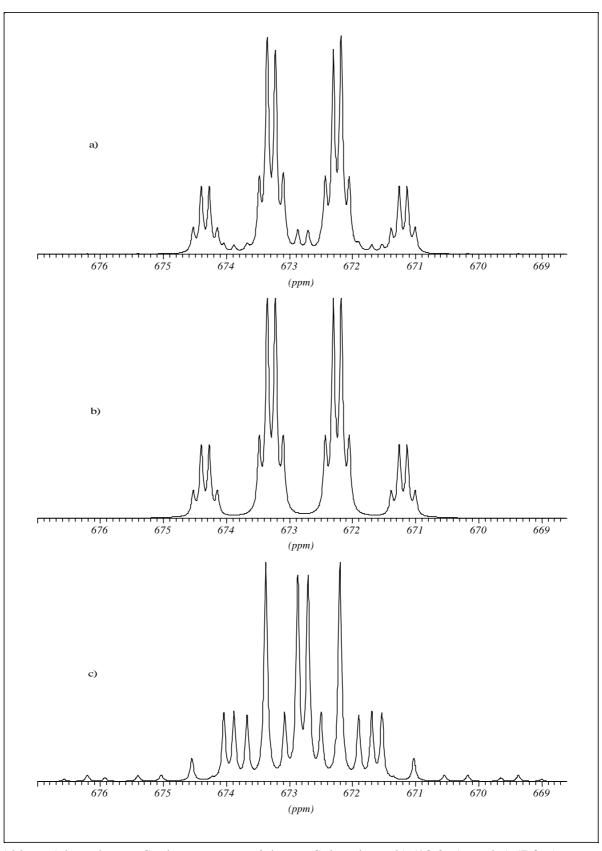


Abb.: a) berechnetes Spektrum aus gewichteten Subspektren b) (92,2%) und c) (7,8%)

- b) Teilspektrum des Isotopomers F₃C¹²⁵TeTeCF₃
- c) Teilspektrum des Isotopomers F₃C¹²⁵Te¹²⁵TeCF₃

Die ¹J(¹²⁵Te-¹²³Te)- und die ¹J(¹²⁵Te-¹³C)-Kopplung läßt sich aus dem ¹⁹F-entkoppelten ¹²⁵Te-NMR-Spektrum bestimmen. Dies ist für die ¹J(¹²⁵Te-¹²⁵Te)-Kopplung natürlich nicht möglich, da durch die wegfallende Te-F-Kopplung nur ein Singulett für die dann äquivalenten Te-Kerne resultiert. Die durch die Spektrensimulation bestimmte ¹J(¹²⁵Te-¹²⁵Te)-Kopplung hat einen Betrag von 241,1 Hz, die durch Berechnung über die gyromagnetischen Verhältnisse aus der ¹J(¹²⁵Te-¹²³Te)-Kopplung bestimmte, einen Betrag von 253,4 Hz. Die Differenz ist auf die unterschiedlichen Konzentrationen der Proben zurückzuführen. Die Größe ¹J(¹²⁵Te-¹²³Te)-Kopplung liegt am unteren Ende des in symmetrischen Diarylditelluriden gefundenen Bereichs von 213 bis 269 Hz [73]. Im Gegensatz dazu wird in unsymmetrischen Diaryltelluriden die dort direkt bestimmbare ¹J(¹²⁵Te-¹²⁵Te)-Kopplung mit lediglich 170 bis 207 Hz registriert.

Der Isotopenshift der ¹³C-Satelliten ¹Δ¹²⁵Te(^{13/12}C) ist mit -0,308 ppm deutlich größer als der entsprechende Isotopenshift im ¹⁹F-NMR-Spektrum. Auch für die ¹²³Te- und ¹²⁵Te-Satelliten wird ein Isotopenshift beobachtet. Dieser ist allerdings sehr klein und liegt schon am Rande der Meßgenauigkeit.

Tab.: 125Te-NMR-Daten von Te₂(CF₃)₂

Lösungsmittel	δ [ppm]	Kopplungen [Hz]	Isotopenshift [ppm]
CDCl ₃ (ca. 33 Vol-%)	672,8	${}^{1}J({}^{125}Te^{-125}Te) = sim: (\pm,\pm) {}^{a)} 241,1$ ber: 253,4 b)	$^{1}\Delta^{125}\text{Te}(^{128,0/125}\text{Te}) = 0.022$ °)
		$^{2}J(^{125}Te^{-19}F) = (+,-)^{a)}99,2$	
		${}^{3}J({}^{125}Te^{-19}F) = (+,-){}^{a)}12,1$	
{19F}:			
CDCl ₃ (ca. 50 Vol-%)	683,5	1 J(125 Te- 123 Te) = 210,5	$^{1}\Delta^{125}\text{Te}(^{127,7/123}\text{Te}) = 0.039^{\text{ d}}$
		$^{1}J(^{125}Te^{-13}C) = 525,6$	$^{1}\Delta^{125}\text{Te}(^{13/12}\text{C}) = -0.308$

^{a)} Die Simulation zeigt, daß die ²J- und die ³J(¹²⁵Te-¹⁹F)-Kopplung das gleiche Vorzeichen haben müssen. Die Vorzeichen der ¹J(¹²⁵Te-¹²⁵Te)- und der ⁵J(¹⁹F-¹⁹F)-Kopplung spielen keine Rolle.

b) sim: Wert aus simuliertem Spektrum, ber: Wert aus ¹J(¹²⁵Te-¹²³Te)-Kopplung im ¹°F-entkoppelten Spektrum über die gyromagnetischen Verhältnisse berechnet

c) bezogen auf die durchschnittliche Masse des Tellurs ohne das Isotop 125Te

d) bezogen auf die durchschnittliche Masse des Tellurs ohne das Isotop 123Te

2.2.2.3 ¹³C-NMR-Spektrum von Bis(trifluormethyl)ditellur

Das ¹³C-NMR-Spektrum zeigt durch die ¹J-Kopplung zu den drei Fluoratomen ein Quartett. Die durch die ⁴J-Kopplung zur zweiten CF₃-Gruppe zu erwartende weitere Quartettierung wird nicht beobachtet. Bei einer Halbwertsbreite der Signale von 0,84 Hz muß diese Kopplung deutlich kleiner als 1 Hz sein.

Ebenfalls überraschend klein ist die gerade noch im Fuß der Hauptsignale erkennbare Aufspaltung zu Dubletts durch die ²J-Kopplung zu ¹²⁵Te im Isotopomer F₃C¹²⁵TeTe¹³CF₃. Sie ist mit einem Betrag von nur 8,9 Hz deutlich kleiner als die ¹J-Kopplung im F₃¹³C¹²⁵TeTeCF₃, die mit einem Betrag von 525,5 Hz sehr groß ist im Vergleich mit den bei symmetrischen Diaryltelluriden beobachteten ¹J-Kopplungen [73], und wird daher wegen der deutlich größeren Halbwertsbreiten weder im ¹⁹F-entkoppelten ¹³C- noch im ¹⁹F-entkoppelten ¹²⁵Te-NMR- Spektrum beobachtet.

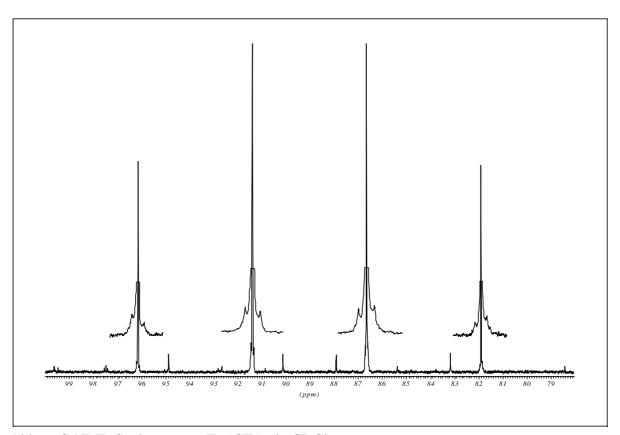


Abb.: ¹³C-NMR-Spektrum von Te₂(CF₃)₂, in CDCl₃

Die große ¹J(¹²⁵Te-¹⁹F)-Kopplung führt zu einer Überlagerung der vier Dubletts. Effekte höherer Ordnung sind laut Simulation sehr klein, so daß das Spektrum in guter Näherung

1. Ordnung interpretiert werden darf. Die entsprechende Kopplung zum ¹²³Te kann aufgrund der geringen Intensität nur an einem der vier Hauptsignale beobachtet werden, findet sich aber im ¹⁹F-entkoppelten Spektrum mit dem gleichen Betrag. Ein Isotopenshift tritt nicht auf.

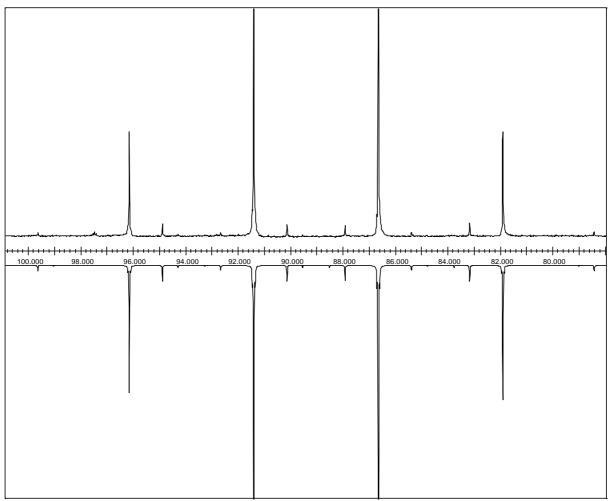


Abb.: ¹³C-NMR-Spektrum von Te₂(CF₃)₂, in CDCl₃ (oben: experimentell; unten: simuliert)

Tab.: ¹³C-NMR-Daten von Te₂(CF₃)₂

Lösungsmittel	δ [ppm]	Kopplungen [Hz]	
CDCl ₃ (ca. 33 Vol-%)	89,02	$^{1}J(^{19}F_{-}^{13}C) = 358,4$	
		1 J(123 Te- 13 C) = 436,0	
		$^{1}J(^{125}Te^{-13}C) = 525,5$	
		$^{2}J(^{125}Te^{-13}C) = 8,9$	
{19F}:			
CDCl ₃ (ca. 50 Vol-%)	89,0	1 J(123 Te- 13 C) = 435,0	
		1 J(125 Te- 13 C) = 524,6	
-			

2.2.3 Schwingungsspektren von Bis(trifluormethyl)ditellur

In der Literatur sind bislang kaum Angaben zu den Schwingungsspektren von Te₂(CF₃)₂ zu finden. Lediglich Bell et al. [18] sowie Lagow et al. [74] haben IR-Daten veröffentlicht, ohne eine Zuordnungen zu treffen. Lage und Anzahl der Banden sind zudem unterschiedlich. Die eigenen Spektren zeigen wiederum deutliche Unterschiede zu den oben zitierten:

Tab.: Vergleich der IR-Spektren von Te₂(CF₃)₂ mit Literaturdaten

a) : [cm		b) ga [cm		c) Bell et a		d) Lagow et a [cm ⁻¹]	l. [74]
	-				•	1778	m
				1367	W	2,,,	
1314	W	1319	w	1321	m		
1286	W	1288	vw				
1251	W	1254	w				
1213	w,sh	1220	w				
				1219	S	1250	S
		1164	sh				
1126	vs,bd	1150	S	1150	S	1151	S
1078	VS	1098	S	1088	S	1078	S
1061	VS	1074	VS	1043	S		
994	w-m	999	W				
968	W	968	VW				
913	W	929	vw	917	m		
725	m-s	727	m	722	S	730	m
523	w,bd						

a) flüssig, zwischen KBr-Scheiben b) gasförmig, 5 cm Meßzelle, zwischen KBr-Scheiben c) gasförmig, 10 cm Meßzelle, zwischen NaCl-Scheiben d) keine Angaben

Die Zuordnung der Banden erfolgt durch Berechnung der Schwingungen, unterstützt durch Polarisations-Raman-Messungen und durch Vergleich mit Literaturdaten strukturell verwandter Verbindungen wie (CH₃)₂Se₂ [75,76], (CH₃)₂Te₂ [76,77] und insbesondere Se₂(CF₃)₂ [78,79], zu denen es zahlreiche Untersuchungen gibt.

Die Berechnung erfolgt in zwei Schritten mit Gaussian 98 [80]. Zuerst wird die Struktur von Te₂(CF₃)₂ berechnet und optimiert und anschließend mit diesem Resultat eine Schwingungsanalyse durchgführt. Dabei wird dem Molekül keine Symmetrie vorgegeben, um keinen Zwang bei der Optimierung auszuüben. Erst zum Schluß wird das System mit C₂-Symmetrie berechnet.

Es wird erwartet, daß $Te_2(CF_3)_2$ im flüssigen bzw. gasförmigen Zustand eine dem H_2O_2 analoge Molekülgeometrie mit der Punktgruppe C_2 , die auch schon im Kristall gefunden wurde

[55], besitzt. In der Mehrzahl der schwingungsspektroskopischen Untersuchungen wird auch für die vergleichbaren Dichalkogen-Verbindungen (CH₃)₂Se₂ [75], (CH₃)₂Te₂ [77] und Se₂(CF₃)₂ [78,79] eine C₂-Symmetrie als am wahrscheinlichsten angenommen. Dies wird durch Elektronenbeugungs-Experimente in der Gasphase an Se₂(CF₃)₂ unterstützt [81]. Einzig Hamada und Morishita [76] postulieren nach Untersuchungen an (CH₃)₂E₂ (E = O, S, Se, Te) für diese einen linearen Bau wie in 2-Butin mit D_{3d}-Symmetrie. Sie begründen dies mit geringfügigen Differenzen in den Wellenzahlen im IR- und im Raman-Spektrum. Diese Unterschiede dürften aber noch im Bereich der Meßfehler liegen. Für Te₂(CF₃)₂ werden alle Banden sowohl im IR- als auch im Raman-Spektrum beobachtet, was ein weiteres Indiz für die Punktgruppe C₂ ist, da hier alle Schwingungen IR- und Raman-aktiv sind.

Die berechneten Frequenzen stimmen sehr gut mit den gemessenen Frequenzen überein. Lediglich die Schwingungen mit Beteiligung der Te-Te-Bindung weichen im Verhältnis etwas stärker ab. Dies resultiert aus den Abweichungen der Strukturrechnung, die für die berechnete Te-Te-Bindung in der Gasphase eine Verlängerung von 8,2 pm gegenüber der im Kristall gemessenen Bindunglänge liefert. Im Vergleich dazu ändert sich die Bindunglänge im $S_2(CF_3)_2$ um weniger als 3 pm (Kristall: 202,4 pm [82], Gasphase: auf 205,3 pm [83]).

Tab.: Vergleich der berechneten Strukturdaten von Te₂(CF₃)₂ mit Kristalldaten

	Kristall [55]	Berechnung a)
Bindungslänge:	[pm]	[pm]
Te – Te	266,9	275,1
Te – C	218,6 / 217,5	219,8
C-F	132,3 / 133,3 / 133,3 133,0 / 131,6 / 133,0	133,2 / 133,9 / 133,0
Winkel:	[°]	[°]
Te - Te - C	96,3 / 95,3	96,4
C-Te-Te-C	88,3	89,5

^{a)} DFT-Berechnung: B3PW91, 6-311G(3d) Basissatz für C und F, SDD Basissatz und ECP für Te.

Die Berechnung wurde mit Gaussian 98 [80] durchgeführt

Bei C_2 -Symmetrie werden für $Te_2(CF_3)_2$ insgesamt 24 Grundschwingungen erwartet -13 Schwingungen der Rasse A und 11 der Rasse B. Die berechneten relativen Intensitäten zeigen nur Tendenzen auf und sind keine Absolutwerte. Sie haben in Übereinstimmung mit der Forderung, daß alle Schwingungen IR- und Raman-aktiv sein müssen, alle einen Wert größer

Null und erscheinen nur durch Rundung in der Tabelle mit dem Wert 0,0. Die Polarisationsmessungen wurden nicht quantitativ ausgewertet und auch die Angaben der Polarisierbarkeit der berechneten Schwingungen sind rein qualitativ.

Tab.: Vergleich der IR-, F-IR- und Raman-Spektren von Te₂(CF₃)₂ mit den berechneten Daten und mit Se₂(CF₃)₂

		$Te_2(CF_3)_2$		Zuordnung /	Se ₂ (CF	F ₃) ₂ [79]
IR gas a)	IR fl. b)	Raman fl. c)	berechnet d)	Schwingung f)	IR gas	Raman fl.
[cm ⁻¹]	[cm ⁻¹]	[cm ⁻¹] rel I	[cm ⁻¹] rel I ^{e)}	E = (Se, Te)	[cm ⁻¹]	[cm ⁻¹]
1319 w	1314 w					
1288 vw	1286 w					
				742 + 543 (Se	1284 w,sh	
				742 + 533 (Se	1273 w,bc	
1254 w	1251 w			725 + 525 (Te)	
1220 w	1213 w,sh		1102 4 - [20 2] (0 4	(4)		
1164 sh			1182,4 p [38,3] (0,4		1100 a	1105 hd
Ļ	1126 vs,bd \	_	1161,8 dp[44,1] (1,1	I (CE)	1190 s	1185 w,bd
	1120 15,00	1150	1158,5 p [0,0](16,3	V_2 (A)	1172 vs	1155 w,bd
1150 vs	Ĺ	bd,dp	1152,4 dp[36,4](11,4	$\left(V_{15}\left(B\right) \right)$		
1098 s		1079 p 0,047	1091,0 p [52,6](46,2		1116 0	1104 m n
1074 vs	1061 vs	1050 sh	1069,0 dp [100](92,3	$\left\{\begin{array}{c} v_{16}(B) \\ v_{16}(B) \end{array}\right\} v_{s}(CF_{3})$	1116 s	1104 m,p
				2 · 543 (Se)	1091 vs	1084 w,bd
				743 + 335 (Se	1	1066 w,bd
999 w	994 w			725 + 269 (Te		
971 vw 918 vw	968 vw 913 w			725 + 242 (Te		
910 VW	913 W		733,5 p [3,1] (100		1	
727 s \	725 s	726 p 0,251 \	731,8 dp [5,3](12,8		742 m	743 vs,p
Ļ		. 	533,5 p [0,0](16,9			
		528 dp 0,013	533,4 dp [0,0] (1,4	1 1	543 vw	542 mw,dp
		220 up 0,013 2	525,4 p [0,0] (8,7	1 2 (CE)	533 w	532 w,dp
	525	l	SI		333 W	332 w,up
	525 m	,	522,9 dp [0,1] (1,5	1 ?		
	269 s	270 p 0,297 \	273,6 p [0,2](31,4		335 m,sh	1 *
			272,5 dp [0,2](32,0	ر (B) رار (D)	326 s	330 m,sh
			254,6 p [0,0](19,8			320 m,sh,p
			245,9 dp [0,0] (0,4	7 V ₂₁ (D)		_
		244 dp 0,069	243,6 p [0,0](24,2		285 s	288 m,dp
	242 m		240,4 dp [0,3](18,5			277 w,sh
	186 w	189 p 0,958	179,8 p [0,0](67,5	ν_{10} (A) $\nu(EE)$	246 w	246 vs,p
	77 m	76 dp 0 162 5	67,6 dp [0,1](15,0	$ v_{23}(B) = \delta(EEC)$	103 m	103 c n
	''''']	/ 'O up 0,102	61,4 p [0,0](21,6	$[v_{11}(A)]$		103 s,p
			40,3 p [0,0] (8,6	$v_{12}(A)$ $\tau(EE)$	49 w	
			32,7 dp [0,0] (0,2	$\nu_{24}(B)$		
			32,4 dp [0,0] (1,2	$\nu_{13}(A)$		
a) qoofiirmi			67,6 dp [0,1](15,0 61,4 p [0,0](21,6 40,3 p [0,0] (8,6 32,7 dp [0,0] (0,2 32,4 dp [0,0] (1,2			103 s,p

^{a)} gasförmig, 5 cm Meßzelle, zwischen KBr-Scheiben ^{b)} flüssig, zwischen KBr-Scheiben, unterhalb der fett gedruckten Wellenzahl zwischen PE-Preßlingen ^{c)} flüssig

^{d)} DFT-Berechnung: B3PW91, 6-311G(3d) Basissatz für C und F, SDD Basissatz und ECP für Te. Die Berechnung wurde mit Gaussian 98 [80] durchgeführt.

e) berechnete relative Intensitäten für [IR] und (Raman), Werte von 0,0 entstehen durch Rundung

^{f)} Die getroffene Benennung der Normalschwingungen beruht auf den berechneten Verschiebungsvektoren.

Die C-F-Valenzschwingungen verschiedener CF₃-Verbindungen liegen alle zwischen 1300 cm⁻¹ und 1000 cm⁻¹ [84]. Somit lassen sich die stärksten Banden in den IR-Spektren diesen Schwingungen zuordnen. Dies wird auch durch die in diesem Bereich besonders gute Übereinstimmung mit den berechneten Schwingungen gestützt. Der Unterschied in den Wellenzahlen zwischen der flüssigen Phase und der Gasphase deutet auf stärkere Wechselwirkungen zwischen den Molekülen in der flüssigen Phase hin. Gegenüber den C-F-Schwingungen im Se₂(CF₃)₂ [78,79] sind sie aufgrund der höheren Atommasse von Tellur erwartungsgemäß zu kleineren Wellenzahlen verschoben. Der relativ breiten Bande bei 1126 cm⁻¹ im IR-Spektrum von flüssigem Te₂(CF₃)₂ lassen sich die vier asymmetrischen Streckschwingungen v_{as}(CF₃) der CF₃-Gruppe zuordnen. Durch die geringere Linienbreite im IR-Spektrum von gasförmigem Te₂(CF₃)₂ ist dort neben der entsprechenden Bande bei 1150 cm⁻¹ noch eine weitere Bande bei 1164 cm⁻¹ als Schulter zu beobachten, die ebenfalls diesen Schwingungen zugeordnet wird.

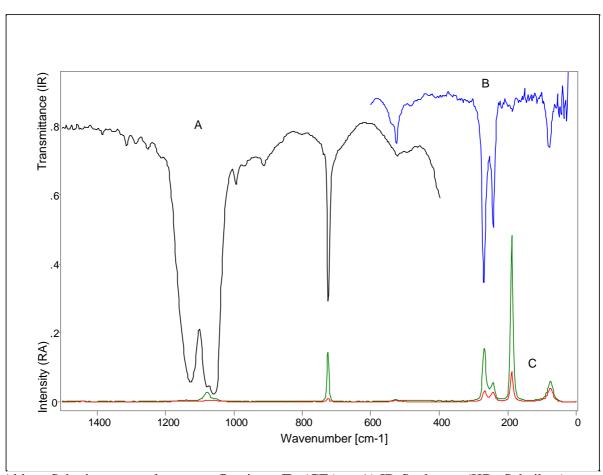


Abb.: Schwingungsspektren von flüssigem Te₂(CF₃)₂: A) IR-Spektrum (KBr-Scheiben) B) F-IR-Spektrum (PE-Scheiben) C) Raman-Spektrum (polarisiert / depolarisiert)

Die beiden IR-Banden bei $1098 \, cm^1$ und $1074 \, cm^1$ im Spektrum der Gasphase sowie $1078 \, cm^1$ und $1061 \, cm^1$ im Spektrum der flüssigen Phase lassen sich den beiden symmetrischen CF_3 -Streckschwingungen $\nu_s(CF_3)$ zuordnen. Diese Zuordnung wird durch das Raman-Spektrum gestützt, in dem die entsprechende Bande bei $1079 \, cm^1$ deutlich polarisiert ist. Die anderen C-F-Banden erscheinen nur mit sehr geringer Intensität und nicht vollständig aufgelöst links und rechts als breite Schultern der Bande bei $1079 \, cm^1$.

Im Unterschied dazu finden Odom et al. bei der Normalkoordinaten-Analyse von $Se_2(CF_3)_2$ eine Entartung der symmetrischen CF_3 -Streckschwingung und postulieren für die sehr starke IR-Bande bei 1091 cm⁻¹ einen Oberton in Fermi-Resonanz mit der entarteten symmetrischen CF_3 -Streckschwingung. Marsden [78] wiederum beobachtet zwei symmetrische CF_3 -Streckschwingungen. Eine Entartung der symmetrischen CF_3 -Streckschwingungen $\nu_s(CF_3)$ tritt laut Berechnung bei $Te_2(CF_3)_2$ eindeutig nicht auf.

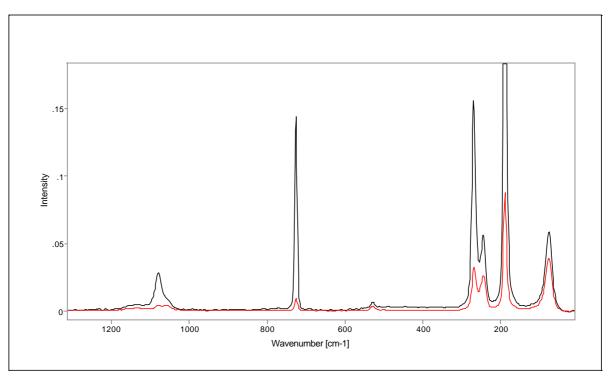


Abb.: Ausschnitt aus dem Raman-Spektrum von Te₂(CF₃)₂ (flüssig, obere Linie depolarisiert, untere Linie polarisiert)

Bei den schwachen IR-Banden bei 994 cm⁻¹, 968 cm⁻¹ und 913 cm⁻¹ könnte es sich um Kombinationsbanden der im F-IR registrierten Banden bei 269 cm⁻¹, 242 cm⁻¹ und 186 cm⁻¹ mit der Bande bei 725 cm⁻¹ handeln. Sie werden im Raman-Spektrum nicht detektiert. Die im Bereich der Deformationsschwingungen liegende Bande bei 726 cm⁻¹, die im IR- und im

Raman-Spektrum mit mittlerer bis starker Intensität registriert wird und stark polarisiert ist, wird der symmetrischen CF₃-Deformationsschwingung δ_s (CF₃) zugeordnet. Der depolarisierten Bande bei 528 cm⁻¹, die auch im IR- und F-IR-Spektrum nur eine geringe Intensität aufweist wird und in der Gasphase gar nicht registriert wird, die asymmetrische CF₃-Deformationsschwingung zugeordnet, die in diesem Bereich zu erwarten ist [84b]. Entsprechende Beobachtungen und Zuordnungen machen auch Marsden [78] und Odom et al. [**79**].

Die relativ intensive, polarisierte Ramanbande bei 270 cm⁻¹ wird der symmetrischen Te-C-Streckschwingung zugeordnet. Die schwächere, depolarisierte Bande bei 244 cm⁻¹ entsprechend der asymmetrischen; sie ist nach den Ergebnissen der Berechnung allerdings eine Mischung aus einer Te-C-Streckschwingung und einer Te-C-F-Deformation. Beide Banden werden in den gleichen Intensitätsverhältnissen im F-IR-Spektrum beobachtet. Damit liegen die Te-CF₃-Streckschwingungen bei deutlich kleineren Wellenzahlen als die entsprechenden Te-CH₃-Streckschwingungen in (CH₃)₂Te₂ [76,77] oder auch in (CH₃)₂Te, CH₃TeH [84] und (CH₃)₂TeI₂ [85], die alle im Bereich um 500 cm⁻¹ liegen. Sie liegen somit etwa im Bereich der Te-Aryl-Streckschwingungen, wie in Ph₂Te₂ [86].

So ein deutlicher Substituenteneffekt wird bei der Te-Te-Schwingung nicht beobachtet. Hier ist die Variationsbreite deutlich kleiner. Der Te-Te-Schwingung wird die stärkste Raman-Bande bei 189 cm⁻¹ zugeordnet. Sie ist polarisiert und genau im erwarteten Bereich. Im F-IR-Spektrum wird im Gegenzug nur eine sehr schwache Bande bei 186 cm⁻¹ registriert.

Tab: Vergleich der Wellenzahlen von Te-Te-Schwingungen im Raman-Spektrum

	[cm ⁻¹]		[cm ⁻¹]
$Te_2(CF_3)_2$	189	Ph ₂ Te ₂ [86]	167
$(CH_3)_2Te_2$ [77]	188	(Naphtyl) ₂ Te ₂ [86]	187
$(CH_3)_2Te_2$ [76]	195	$(p-MeC_6H_4)_2Te_2$ [86]	169
$Te_2(C_6F_5)_2$ [58]	185	$(p-EtOC_6H_4)_2Te_2$ [86]	186

Die relativ breite, depolarisierte Raman-Bande bei 76 cm⁻¹ (77 cm⁻¹ im F-IR-Spektrum) liegt im Bereich der Gerüstschwingungen und wird einer Te-Te-C-Deformationsschwingung zugeordnet.

2.3 Darstellung und Eigenschaften von Octamethyloxamidiniumbis(trifluormethyltellurat(0))

Tetrakis(dimethylamino)ethylen (TDAE) ist aufgrund des +M-Effektes seiner vier Amino-Gruppen ein sehr elektronenreiches Ethylen, mit einem Reduktionspotential vergleichbar dem von Zink und bildet als Dikation, dem Octamethyloxamidinium-Ion, zahlreiche stabile Salze [87]. Die Halbstufenpotentiale der beiden Elektronenübergänge betragen -0,75 V und -0,61 V [88].

Das Radikalkation [TDAE]*+ ist auf direktem Wege nicht zugänglich, kann aber durch Umsetzung des Perchlorat-Salzes mit äquimolaren Mengen an TDAE in einer Gleichgewichtsreaktion erhalten werden [88].

$$TDAE + [TDAE]^{2+} \longrightarrow 2 [TDAE]^{\bullet+}$$

Dabei liegt das Gleichgewicht bei 89% [TDAE]⁺⁺ und ändert sich auch beim Erhitzen auf 120°C nicht. Lediglich bei Tetraaminoethylenen mit größeren Substituenten ist auch die direkte Oxidation – z. B. mit Iod – zum Radikalkation beobachtet worden [89].

Daneben bildet TDAE auch zahlreiche Elektronen-Donator-Akzeptor-Komplexe (bzw. CT-Komplexe), die sich durch ihre zum Teil sehr intensive Farbigkeit auszeichnen und auch in unterschiedlichen Stöchiometrien existieren [87].

Aufgrund dieser Eigenschaften gelang Pawelke [90] durch Umsetzung von TDAE mit CF₃I die Übertragung von "[CF₃]-" auf Me₃SiCl. Er postuliert dabei die Bildung eines tiefroten, sich bei 0 °C langsam zersetzenden CT-Komplexes, der dann unter "CF₃-"-Übertragung zum Dikation abreagiert. Angaben zu spektroskopischen Eigenschaften des Komplexes macht Pawelke nicht.

Petrov [91] übertrug diese Methode auf höhere Perfluoriodalkane zur Darstellung von Me_3SiR_f und nutzte das System TDAE / R_fI auch zur Übertragung von R_f^- auf Aldehyde und Ketone. Ähnliche Ergebnisse erzielten auch Dolbier et al. [92] bei photochemisch induzierten CF_3 -Übertragungsreaktionen mit CF_3I und TDAE auf Ketone und Aldehyde.

Kolomeitsev et al. [93] setzten TDAE mit Bis(trifluormethyl)disulfan um und erhielten das bei Raumtemperatur stabile, luftempfindliche [TDAE][SCF₃]₂. TDAE reagiert mit S₂(CF₃)₂ unter reduktiver Spaltung der S-S-Bindung zu einem farblosen Salz, das in einer Metathesereaktion [SCF₃]⁻ gegen Halogenid austauscht.

$$S_{2}(CF_{3})_{2} + TDAE \xrightarrow{\qquad \qquad } [TDAE]^{2+} + 2 [SCF_{3}]^{2}$$

$$\downarrow CH_{2}X \qquad DMF/MeCN$$

$$1 : 10$$

$$0 \text{ °C} \rightarrow 20 \text{ °C}$$

$$CH_{2}-SCF_{3}$$

2.3.1 Darstellung von Octamethyloxamidiniumbis(trifluormethyltellurat(0))

[TDAE][TeCF₃]₂ ist das erste Beispiel für eine ionisch aufgebaute Trifluormethyltellur-Verbindung in der formalen Oxidationsstufe 0, da CF₃ aufgrund seiner Gruppen-elektronegativität in der Größenordnung von Sauerstoff [10] als der elektronegativere Partner anzusehen ist. Die Darstellung von [TDAE][TeCF₃]₂ erfolgt durch Umsetzung äquimolarer Mengen von TDAE und Te₂(CF₃)₂ in Diethylether bei -30 °C. Unter diesen Bedingungen fällt [TDAE][TeCF₃]₂ als oranger Feststoff sofort vollständig aus, wird mit kaltem Diethylether gewaschen – ein geringer TDAE-Überschuß ist daher unkritisch – und bei tiefen Temperaturen im Ölpumpenvakuum getrocknet. In der überstehenden Lösung sind im ¹9F-NMR-Spektrum keine fluorhaltigen Substanzen nachweisbar und im ¹H-NMR-Spektrum wird neben dem Lösungsmittel nur überschüssiges TDAE detektiert.

Die Darstellung gelingt auf gleiche Weise auch in Pentan oder Diglyme, wobei letzteres sich aber nicht vollständig aus dem Niederschlag entfernen läßt. Auch in Aceton oder Acetonitril kann [TDAE][TeCF₃]₂ synthetisiert werden. Es verbleibt aufgrund seiner guten Löslichkeit in diesen Lösungsmitteln aber mit tiefroter Farbe in Lösung und muß zur Isolierung durch Zugabe von Diethlether ausgefällt werden. Auf diese Weise ist auch die Züchtung von Kristallen möglich.

Während die Existenz von [TDAE][TeCF₃]₂ durch eine Kristallstruktur (Kapitel 2.3.4) gesichert ist, sind die Verhältnisse in Lösung bedeutend komplizierter. Dies wird insbesondere in den ¹⁹F-NMR-Spektren sichtbar. So ist der Verschiebungsbereich der [TDAE][TeCF₃]₂-Resonanz extrem groß.

Es lassen sich grob zwei Fälle unterscheiden, je nachdem ob die Komponenten im Verhältnis eins zu eins zugegeben wurden oder eine der beiden Komponenten im Überschuß eingesetzt wurde:

– Werden TDAE und $Te_2(CF_3)_2$ im Verhältnis 1:1 umgesetzt – in der Regel ein geringer TDAE-Überschuß von 10% (maximal 1,3:1) – so resultiert sowohl in Diethylether als auch in Diglyme oder Pentan ein orangefarbener Niederschlag, der nach Lösen in Acetonitril oder

Aceton im Bereich um 1 ppm Resonanz zeigt. Die Varianz in der chemischen Verschiebung ist durch Konzentrations-, Temperatur- und Lösungsmitteleffekte erklärbar, die typisch für CF₃Te-Verbindungen sind [55,61].

– Wird eine der Komponenten TDAE oder Te₂(CF₃)₂ deutlich im Überschuß eingesetzt, so kommt es in beiden Fällen zu ähnlichen Effekten. Bei Zugabe des fünffachen Überschusses TDAE bildet sich sofort ein klumpiger tiefroter Niederschlag, der, gelöst in Aceton, im ¹⁹F-NMR-Spektrum ein sehr breites Signal bei -12 ppm besitzt. Nach 24 h bei -78 °C zeigt der Niederschlag nach Lösen in Acetonitril bei -9,9 ppm eine relativ scharfe Resonanz. Aus der abpipettierten überstehenden trüben Lösung fällt über Nacht ein wenig eines orangefarbenen Feststoffes aus, dessen Signal in Acetonitril nun, wie bei den 1:1-Umsetzungen, bei 1,4 ppm detektiert wird.

Im entgegengesetzten Fall, dem zweifachen Überschuß von Te₂(CF₃)₂, bildet sich ebenfalls ein roter Niederschlag. In der überstehenden Lösung wird kein Te₂(CF₃)₂ mehr detektiert. Im ¹⁹F-NMR-Spektrum wird nach dem Lösen in Aceton ein breites Signal bei -13 ppm beobachtet. Wird der rote Niederschlag aus Aceton durch Zugabe von Diethylether wieder ausgefällt, wird anschließend in MeCN ein relativ scharfes Signal bei -4,2 ppm detektiert.

Tab.: Vergleich der ¹⁹F-NMR-Daten von [TDAE][TeCF₃]₂ aus verschiedenen Darstellungen

Darstellung	Lösungs-	δ	Konnlun	gen [Hz]
•	mittel	_	² J(¹²⁵ Te- ¹⁹ F)	¹ J(¹⁹ F- ¹³ C)
(Verhältnis TDAE : Te ₂ (CF ₃) ₂)	millei	[ppm]	-J(,, IG-,,L)	.J(.,L,C)
Verhältnis 1:1				
Darst. in Diglyme:	CH ₃ CN	2,55	246,0	345,2
	CH₃CN	1,54	244,2	345,9
	CD_3CN	0,45	244,1	348,4
	Aceton-d6	2,26	245,1	_
	CH_2Cl_2	-1,22	sehr	breit
Darst. in Diethylether:	CH ₃ CN	-1,19	239,1	_
Darst. in Diethylether:	CH ₃ CN	2,38	244,1	_
Darst. in Diethylether:	CH ₃ CN	1,81	244,1	345,9
Darst. in Pentan:	CH ₃ CN	1,97	244,1	_
Darst. in Acetonitril:	CH ₃ CN	4,44	236,9	_
Darst. in Aceton-d ₆	Aceton-d6	-0,20	241,3	
Verhältnis 5:1				
Darst. in Diethylether:				
roter Niederschlag:	Aceton	-11,99		breit
roter Niederschlag:	CH ₃ CN	-9,89	231,7	_
oranger Niederschlag:	CH₃CN	1,38	249,2	_
Verhältnis 1:2				
Darst. in Diethylether:	Aceton	-12,85	sehr	breit
nach Lösen und Ausfällen aus Aceton:	CH ₃ CN	-4,16	237,2	_

Diese Beobachtungen lassen den Schluß zu, daß [TDAE][TeCF₃]₂ im ¹⁹F-NMR-Spektrum bei 1,5 ppm Resonanz zeigt und daß die zu hohem Feld verschobenen Signale anderen Spezies zugeordnet werden müssen. Die teilweise starke Verbreiterung der Signale deutet auf dynamische Vorgänge hin, kann aber auch durch paramagnetische Verbindungen verursacht werden. So sollten Verbindungen des Radikalkations [TDAE]*+, das aus [TDAE]²⁺ durch überschüssiges TDAE gebildet werden könnte [88], paramagnetisch sein. Aber auch CT-Komplexe von TDAE können, je nach Konzentration und Lösungsmittel, sowohl dia- als auch paramagnetisch vorliegen [87]. Ein weiteres Indiz für Austauschprozesse ist die beobachtete Verbreiterung und der starke Hochfeldshift der Signale im ¹⁹F-NMR-Spektrum bei Umsetzungen mit [TDAE][TeCF₃]₂.

Ebenfalls in Erwägung gezogen werden muß die Reaktion von [TeCF₃]- mit Te₂(CF₃)₂ und die Bildung von [(TeCF₃)₃]-. Ein analoges Verhalten wird bei der Umsetzung von [TePh]- mit Ph₂Te₂ beobachtet, welche zu [(TePh)₃]-, einem Komplexanion mit einer nahezu linearen Te₃-Einheit, reagieren [94]. Ein Indiz für diese Hypothese ist das Freiwerden von Te₂(CF₃)₂ beim Umfällen des Niederschlags aus dem Ansatz mit einem Überschuß an Te₂(CF₃)₂ sowie bei Übertragungsreaktionen mit Material aus diesem Ansatz. Eine zur Überprüfung vorgenommene Zumischung von Te₂(CF₃)₂ zu einer [TDAE][TeCF₃]₂-Probe mit einer ¹⁹F-NMR-Resonanz bei 4,3 ppm zeigt kein eindeutiges Ergebnis. Zwar verschwindet die Te₂(CF₃)₂-Resonanz nach einem Tag, das Signal von [TDAE][TeCF₃]₂ ist aber praktisch unverändert und wird bei 3,1 ppm detektiert.

Weiterhin besteht die Möglichkeit einer negativen Hyperkonjugation, wie sie beim [OCF₃]-diskutiert wird [95].

Bei einer entsprechenden Konjugation im $[TeCF_3]^-$ kommt es zur Bildung des instabilen $F_2C=Te$, dessen Dimerisierungsprodukt bei -38,8 ppm im ^{19}F -NMR-Spektrum Resonanz zeigt [96]. Ein Gleichgewicht zwischen diesen Strukturen unter bestimmten Reaktionsbedingungen wäre eine Erklärung für den beobachteten Hochfeldshift.

Ein Indiz für einen gewissen Doppelbindungsanteil der C-Te-Bindung ist die Tatsache, daß die ¹⁹F-NMR-Resonanz von [TeCF₃]- bei relativ tiefem Feld detektiert wird. Gombler [97] beobachtet mit zunehmendem s-Charakter am C-Atom eine abnehmende Abschirmung der F-Atome und somit eine Verschiebung der ¹⁹F-NMR-Resonanzen zu tiefem Feld. Er erklärt diese Abnahme in Verbindungen des Typs CF₃EX (E = Chalkogen; X = beliebiger Substituent) mit folgenden Grenzstrukturen [98]:

$$F = C - E - X \qquad F + \bigoplus_{F} C - E - X \qquad F = F - X$$

$$I \qquad II \qquad III$$

Dabei steigt der Anteil der Grenzstrukturen II und III und somit der s-Charakter des C-Atoms mit der Eignung des Substituenten X, als σ-Donor zu wirken, sowie mit abnehmender Elektronegativität des am C gebundenen Chalkogenatoms E. Ein Te- sollte also zu einem hohen Anteil an Struktur III und, daraus resultierend, einer hohen Entschirmung der F-Atome führen. Eine mit diesem Modell einhergehende starke Abschirmung des Kohlenstoffs wird in den ¹³C-NMR-Spektren allerdings nicht beobachtet (Kapitel 2.3.2.2), und auch im Kristall wird nur eine geringe Verkürzung der Te-C-Bindung und somit ein geringer Doppelbindungsanteil gefunden (Kapitel 2.3.4).

Das orange, im kristallinen Zustand leuchtend orangerote [TDAE][TeCF₃]₂ ist temperatur-, luft- und feuchtigkeitsempfindlich. Bei Raumtemperatur färbt es sich nach wenigen Minuten braun, nach einigen Stunden wird es schwarz. An Luft erfolgt rasche Zersetzung, zunächst unter

Schwarzfärbung, schließlich verbleibt ein weißer Rückstand, der in Wasser und gängigen organischen Lösungsmitteln unlöslich ist.

Im Massenspektrometer erfolgt Zersetzung zu TDAE und Te₂(CF₃)₂. In Lösung wird bei Übertragungsreaktionen fast immer auch die Bildung von teilweise erheblichen Mengen Te₂(CF₃)₂ beobachtet. Die Zersetzung von [TDAE][TeCF₃]₂-Lösungen an Luft bzw. mit Feuchtigkeit führt hingegen ausschließlich zur Bildung eines zuerst olivgrünen, schließlich schwarzen Niederschlags und zur Bildung von CF₃H. Im Niederschlag kann mit konzentrierter Schwefelsäure Tellur nachgewiesen werden und im Massenspektrum des Niederschlags werden keine tellurhaltigen Fragmente gefunden. Bei 330 °C werden schließlich Te⁺ und Te₂⁺ detektiert.

In der Temperatur- und Luftempfindlichkeit liegt vermutlich auch der Grund für die Abweichungen in den Elementaranalysen, da keine Möglichkeit einer völlig inerten und gekühlten Probenvorbereitung besteht. So kommt es selbst mit kristallinem Material zu größeren Abweichungen in der CHN-Analyse und bei der Tellur-Bestimmung. Lediglich der Fluorgehalt entspricht dem berechneten Wert. Bei den pulverigen Niederschlägen können die Abweichungen durch Einschlüsse von mitgefälltem Lösungsmittel oder überschüssigem TDAE erklärt werden, was durch die Tatsache gestützt wird, daß die Ausbeuten teilweise über 100% liegen.

Tab.: Elementaranalysen von [TDAE][TeCF₃]₂

Element	berechneter Gehalt [%]	rote Kristalle ^{a)} [%]	oranger NS (Ansatz 1:1) b) [%]	umgefällter NS (Ansatz 1:2) ° [%]
Н	4,08	3,18	3,13	3,77
C	24,28	20,33	40,23	21,62
N	9,44	7,57	7,09	7,83
F	19,20	19,64	_	_
Te	42,99	38,84	_	_

a) rote Kristalle: aus Ansatz TDAE : Te₂(CF₃)₂ 1 : 1 in Et₂O.

b) oranger Niederschlag: aus Ansatz 1:1 in Et₂O

c) umgefällter Niederschlag: aus Ansatz 1:2 in Et₂O, NS in Aceton gelöst und durch Zugabe von Et₂O wieder ausgefällt

2.3.2 NMR-Spektren von Octamethyloxamidiniumbis(trifluormethyltellurat(0))

2.3.2.1 ¹H-NMR-Spektrum von Octamethyloxamidiniumbis(trifluormethyltellurat(0))

Das ¹H-NMR-Spektrum von [TDAE][TeCF₃]₂ zeigt den für [TDAE]²+ typischen Habitus mit zwei Protonenresonanzen für die CH₃-Gruppen, die – wie auch in der Kristallstruktur deutlich zu sehen (Kapitel 2.3.4) – durch den Doppelbindungscharakter der C-N-Bindung nicht mehr magnetisch äquivalent sind. Im TDAE sind, bedingt durch die freie Rotation der Aminogruppen, alle acht Methylgruppen äquivalent. Die chemische Verschiebung ist gegenüber TDAE zu tiefem Feld verschoben, da durch die positive Ladung Elektronendichte von den Protonen abgezogen wird, und liegt in dem von anderen [TDAE]²+-Verbindungen her bekannten Bereich.

Tab.: Vergleich der 1 H-NMR-Daten von [TDAE][TeCF $_3$] $_2$ mit verschiedenen [TDAE] 2 +-Verbindungen und TDAE

		Lösungs- mittel	δ [ppm]	¹ J(¹³ C- ¹ H) [Hz]
[TDAE][TeCF ₃] ₂		CH ₃ CN	3,14 / 3,42	
[TDAE][SCF ₃] ₂	[93]	CD_3CN	3,04 / 3,33	
[TDAE]Br ₂		D_2O	3,30 / 3,59	143,6
[TDAE]F ₂	[99]	$(CD_3)_2SO$	3,2 / 3,5	
TDAE		CD_3CN	2,47	133,8
TDAE	[100]	k. A.	2,32	
TDAE	[101]	k. A.	2,55	
TDAE	[102]	pur	2,54	

2.3.2.2 ¹³C-NMR-Spektrum von Octamethyloxamidiniumbis(trifluormethyltellurat(0))

Genau wie im ¹H-NMR-Spektrum werden auch im protonenentkoppelten ¹³C-NMR- Spektrum zwei Resonanzen für die Methylgruppen im [TDAE][TeCF₃]₂ beobachtet. Im nicht entkoppelten Spektrum erkennt man zwei sich überlagernde Quartetts von Quartetts durch die große ¹J-C-H-Kopplung von 143,3 bzw 143,9 Hz und die kleine ⁴J-C-H-Kopplung von 3,2 bzw. 3,1 Hz zu den nicht äquivalenten Methylgruppen, wobei letztere aufgrund des schlechten Signal- Rausch-Verhältnisses nicht mehr vollständig aufgelöst werden kann. Die sichere Zuordnung gelingt erst durch die Aufnahme von Vergleichsspektren von [TDAE]Br₂, da in der Literatur keine detaillierten ¹³C-NMR-Daten bekannt sind.

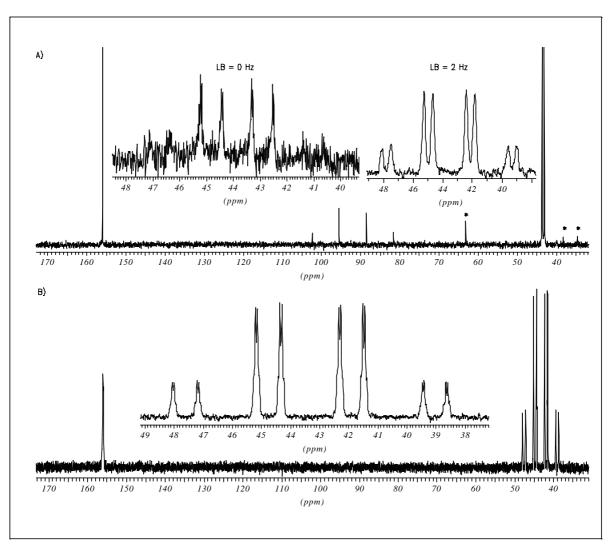


Abb.: A) ¹³C-NMR-Spektrum von [TDAE][TeCF₃]₂ (* Verunreinigungen)

- Übersichtsspektrum: protonenentkoppelt in Aceton-d₆,
- Ausschnittsvergrößerungen: nicht entkoppelte Spektren in CD₃CN bzw. Aceton-d₀
- B) ¹³C-NMR-Spektrum von [TDAE]Br₂ (in D₂O)

Die Resonanz der beiden quartären Kohlenstoffatome ist durch die positive Ladung gegenüber TDAE zu tiefem Feld verschoben und liegt im Verschiebungsbereich anderer Verbindungen mit C=N-Doppelbindungen [103].

Die Lage der CF₃-Resonanz hingegen hat sich, mit rund 92 ppm gegenüber 89 ppm der CF₃-Resonanz im Te₂(CF₃)₂, kaum verändert und liegt damit zwischen den Werten für Te₂(CF₃)₂ und Te(CF₃)₂ [20]. Ein Hochfeldshift der CF₃-Resonanz, wie er nach dem Modell von Gombler [97,98] (Kapitel 2.3.1) aber auch bei einem kontinuierlichen Übergang von Te(II) über Te(I) nach Te(0) zu erwarten ist, wird nicht beobachtet. Auch im Falle einer im Gleichgewicht vorliegenden Dimerisierung von F₂C=Te wäre ein Hochfeldshift zu erwarten, da das Dimerisierungsprodukt bei 45,3 ppm detektiert wird [96].

Tab.: Vergleich der ¹³C-NMR-Daten von [TDAE][TeCF₃]₂ mit verschiedenen [TDAE]²⁺- und TeCF₃-

	Verbind	ungen	sowie	TDAE.
--	---------	-------	-------	-------

	Lösungs- mittel	δ (CH ₃) [ppm]	$\delta (C_q)$ [ppm]	δ (CF ₃) [ppm]	Kopplungen [Hz]
[TDAE][TeCF ₃] ₂	CD_3CN bzw. Aceton- d_6	43,1 / 43,6	156,0	92,1	${}^{1}J({}^{13}C^{-1}H) = 143,3 / 143,9$ ${}^{4}J({}^{13}C^{-1}H) = 3,1$ ${}^{1}J({}^{19}F^{-13}C) = 348,6$
[TDAE]Br ₂	D_2O	42,9 / 43,7	156,0		$^{1}J(^{13}C^{-1}H) = 143.5 / 144.1$ $^{4}J(^{13}C^{-1}H) = 3.3$
$[TDAE]F_2$ [104]	D_2O	41,0 / 42,2	155,9		
TDAE	Aceton-d ₆	41,4	131,9		
$Te_2(CF_3)_2$	$CDCl_3$			89,02	$^{1}J(^{19}F_{-}^{13}C) = 358,4$
$Te(CF_3)_2$ [20]	CH ₃ CN			102,5	$^{1/3}$ J(19 F- 13 C) = 352 / 2,6
$F_2C < \frac{\text{Te}}{\text{Te}} > CF_2$ [96]	CDCl ₃			(CF ₂) 45,3	

Die ¹³C-NMR-Daten von [TDAE]²⁺ im [TDAE][TeCF₃]₂ und im [TDAE]Br₂ sind praktisch identisch und vergleichbar mit den in **[104]** veröffentlichten für [TDAE]F₂. Sie stellen damit einen weiteren Beleg für einen ionischen Aufbau von [TDAE][TeCF₃]₂ dar.

2.3.2.3 ¹⁹F-NMR-Spektrum von Octamethyloxamidiniumbis(trifluormethyltellurat(0))

Berücksichtigt man das im Kapitel 2.3.1 bezüglich der Abhängigkeit der ¹⁹F-Resonanzen von der Art der Darstellung gesagte, so muß man davon ausgehen, daß die CF₃-Gruppe in [TDAE][TeCF₃]₂ im Bereich um 1 ppm Resonanz zeigt. Diesen Schluß läßt auch ein Vergleich mit den bereits bekannten Komplexanionen [OCF₃]- und [SCF₃]- und den entsprechenden Bis(trifluormethyl)dichalkogen-Verbindungen zu. Auch dort erfährt die CF₃-Gruppe im Anion gegenüber den Dichalkogen-Verbindungen einen ähnlichen Tieffeldshift.

Tab.: Vergleich der 19 F-NMR-Daten von [ECF₃] $^-$ und E₂(CF₃)₂ (E = O, S, Te)

[ECF ₃]-	LM	δ [ppm]	$E_2(CF_3)_2$	LM	δ [ppm]
[TDAE][TeCF ₃] ₂	CH ₃ CN	1,81 a)	$Te_2(CF_3)_2$	Aceton-d ₆	-26,88 b)
[TDAE][SCF ₃] ₂ [93]	CD_3CN	-7,8	$S_2(CF_3)_2$ [47a]	CH ₃ CN	-46,1
$[TAS][OCF_3] \qquad [95]$	CD_2Cl_2	-21,3	$O_2(CF_3)_2$ [105]	CH ₃ CN	-69,0

a) ${}^{1}J({}^{19}F-{}^{13}C) = 345,9 \text{ Hz}; {}^{2}J({}^{123/125}Te-{}^{19}F) = 203,5/244,1 \text{ Hz}$

b) ${}^{1}J({}^{19}F^{-13}C) = 357,6 \text{ Hz}; {}^{2}J({}^{123/125}Te^{-19}F) = 104,1/125,3 \text{ Hz}$

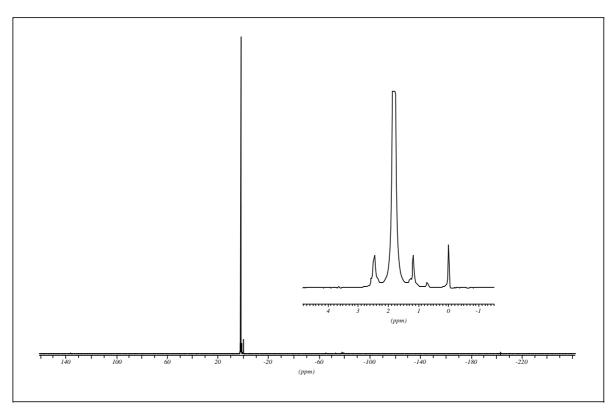


Abb.: 19F-NMR-Spektrum von [TDAE][TeCF₃]₂ in AN (Lock: Kapillare mit Aceton-d₆ / CCl₃F)

Auffallend ist die enorm große 2 J-Te-F-Kopplung, deren Betrag in Acetonitril fast doppelt so groß ist wie in Te₂(CF₃)₂ und fast dreimal so groß wie in Te(CF₃)₂ [61], so daß in der Regel der zu tiefem Feld gelegene 125 Te-Satellit den entsprechenden 13 C-Satelliten überlagert.

2.3.2.4 ¹²⁵Te-NMR-Spektrum von Octamethyloxamidiniumbis(trifluormethyltellurat(0))

Die Aufnahme von Tellur-NMR-Spektren gestaltete sich unerwartet schwierig, und es konnten keine hochaufgelösten Spektren erhalten werden, da es während der langen Meßzeiten immer wieder zu Zersetzungen oder Temperaturschwankungen kam. Erst durch spezielle Meßverfahren (Optimierung auf die ²J-Kopplung im ¹⁹F-NMR-Spektrum) gelang es den Bereich einzugrenzen. Im Spektrum erscheint lediglich ein sehr breites Signal bei 581 ppm, in einem zweiten eingeengten wird ein schwaches, scharfes Signal bei 502 ppm registriert. Der Versuch, in fluorgekoppelten Spektren die Aufspaltung zum Quartett durch die CF₃-Gruppe zu beobachten, gelingt nicht. Ähnliche Beobachtungen machen auch Giolando et al. bei ihren Untersuchungen an [(TeC₆H₅)₃]- [94b].

Das NMR-Signal von [TDAE][TeCF₃]₂ wird damit im erwarteten Bereich detektiert. Mit abnehmender Elektronegativität des Substituenten X in CF_3TeX ($X = CF_3$, $TeCF_3$, e^-) und somit zunehmender Elektronendichte am Tellur, wird vom $Te(CF_3)_2$ (1368 ppm [20]) über $Te_2(CF_3)_2$ (672,8 ppm) zum [$TeCF_3$]- (502 ppm) hin eine Verschiebung der Tellurresonanz zu hohem Feld beobachtet. Dies spricht für einen geringen Doppelbindungsanteil der Te-C-Bindung und der damit einhergehenden Verlagerung der negativen Ladung auf die Fluoratome.

2.3.3 Schwingungsspektren von Octamethyloxamidiniumbis(trifluormethyltellurat(0))

Da sich [TDAE][TeCF₃]₂ auch bei kleinster Laserleistung sofort zersetzt, ist die Aufnahme eines Raman-Spektrums nicht möglich. Insofern beschränken sich die Schwingungsspektren auf das IR- und das F-IR-Spektrum.

Tab.: Vergleich des IR-Spektrums von [TDAE][TeCF₃]₂ mit dem von [TDAE]X₂ a) [106]

	ΓDAE][TeCF ₃] ₂	[cm ⁻¹]		[TDAE] ²⁺ [cm-1]	Zuordnung
IR	b)	F-II	R c)			
2969	w-m, br			3030 2985 2915	S S	ν C - H
1669	s, sh			1672	m vs	ν CN ₂
1655	S			1667	VS	v CN ₂
1510	W			1516	W	. 5-12
				1477	m	
1466	m, br			1456	m	
				1430	vw	
				1414	m	
1399	m			1406	m	
1258	m			1262	m	
1206	w-m			1210	m	
1179	w-m			1184 /	m	
				1178		
				1142	W	
1099	m, sh			1104	m	
				1063 /	m	
1055				1057		
1055	VS					ν C-F
1015	S			000		ν C-F
885	w-m			882	m	
868	m			870	S	
710				854	m	
710	w-m	615		724	W	
647	w-m	645	m	687 475	m	
		364	w-m	4/3	VW	
		353	W-III W			
		311	m, br			
		279	m, or			
		162	w, br			
		70	m, br			
		61	m, sh			
		43	W			

^{a)} Wiberg und Buchler [106] machen keine Angaben, von welchem Halogenid die Daten stammen. Aus dem Kontext ist aber zu vermuten, daß es sich um [TDAE]Br₂ handelt.

b) KBr-Preßling

c) PE-Preßling

Die IR-Daten von [TDAE][TeCF₃]₂ stimmen sehr gut mit den Literaturwerten für das TDAE-Dikation überein. Insbesondere das Auftreten der aufgespaltenen, starken Bande bei 1669 cm⁻¹ und 1655 cm⁻¹, welche der Valenzschwingung der N–C=N[®]-Gruppe zugeordnet wird [106], sowie das Fehlen der im TDAE dominierenden und von der Schwingung der C=C–N-Gruppe herrührenden Bande bei 1337 cm⁻¹ [94] sind charakteristisch für das Dikation. Die stärksten Banden im IR-Spektrum bei 1055 cm⁻¹ und 1015 cm⁻¹ werden den C-F-Valenzschwingungen zugeordnet. Sie sind im Vergleich zu den C-F-Valenz- schwingungen in Te₂(CF₃)₂ signifikant zu kleineren Wellenzahlen verschoben, was in Einklang mit der geänderten Natur der C-F-Bindung im [TeCF₃]⁻ steht. So sollte eine Erhöhung der Elektronendichte am Tellur auch zu einer Erhöhung am Kohlenstoff und somit zu einer schwächeren Bindung zu den negativ polarisierten Fluoratomen führen.

2.3.4 Kristallstruktur von Octamethyloxamidiniumbis(trifluormethyltellurat(0))

Bislang sind nur wenige Strukturen monovalenter Tellur-Salze des Typs [Kat]ⁿ⁺[TeR]_n-bekannt. Neben dem bisher einzigen Tellurat(0) [PNP][TeCN] [107] sind dies ausschließlich Organyltelluride mit Tellur in der formalen Oxidationsstufe –2 und meist sperrigen Substituenten des Typs 2,4,6-Alkyl₃C₆H₂ aus der Gruppe der Mesityle [108]. Auch Tellurocarboxylate [109] und Telluride mit Thiophenyl-Resten [110] sind bekannt. Bei letzteren findet man eine Verkürzung der Te-C-Bindung, was auf einen Doppelbindungsanteil durch Mesomerie hindeutet. Noch ausgeprägter findet sich diese Bindungsverkürzung mit 202 pm im [TeCN]-[107].

Die luft-, feuchtigkeits- und temperaturempfindlichen Kristalle von [TDAE][TeCF₃]₂ konnten durch langsames Aufkondensieren von Diethylether auf eine Acetonitrillösung bei -30 °C erhalten werden. Sie sind leuchtend orangerot und quaderförmig. [TDAE][TeCF₃]₂ kristallisiert in einer orthorhombischen Elementarzelle mit den Winkeln $\alpha = \beta = \gamma = 90^{\circ}$ und den Gitterkonstanten a = 1208,2 pm, b = 1501,2 pm und c = 2316,4 pm. Die Raumgruppe ist Pcab und Z = 8.

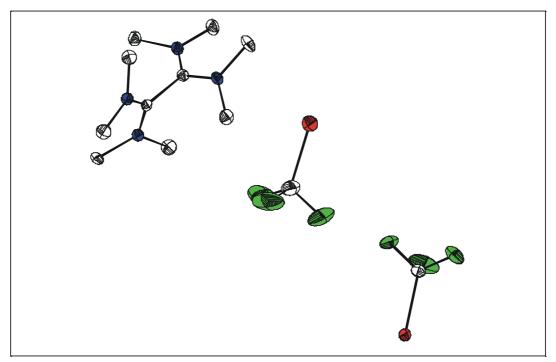


Abb.: Kristallstruktur von [TDAE][TeCF₃]₂ (Weiß: C; Blau: N; Grün: F; Rot: Te) (mit thermischen 50%-Ellipsoiden)

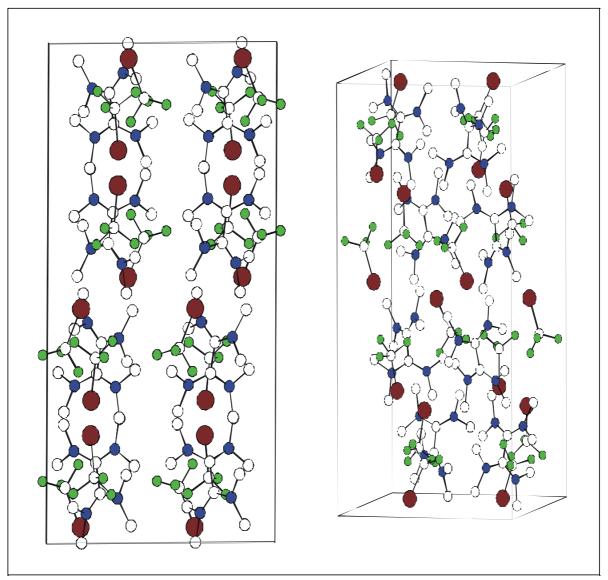


Abb.: Elementarzelle von $[TDAE][TeCF_3]_2$ mit Z = 8 (Weiß: C; Blau: N; Grün: F; Rot: Te)

Das TDAE-Dikation entspricht in seinem Bau den bereits bekannten Strukturen im Chlorid und Bromid [111], Hexafluorophosphat [112] und Trifluormethylsulfid [93]. Die C-C-Bindung hat sich im Vergleich zu TDAE [113] deutlich verlängert und entspricht mit 150,6 pm einer C-C-Einfachbindung [72]. Im Gegenzug verkürzen sich die C-N-Bindung auf 132,4 pm bis 133,5 pm und liegen damit ziemlich exakt zwischen C-N-Einfach- und C-N-Doppelbindungen. Durch die Mesomerie der beiden N-C-N-Gruppen werden die beiden positiven Ladungen optimal und möglichst weit voneinander verteilt. Zusätzlich sind die beiden N-C-N-Ebenen durch die freie Drehbarkeit der C-C-Bindung gegeneinander verdreht. Der Torsionswinkel

beträgt $67,0^\circ$ bzw. $68,2^\circ$ und ist damit in etwa so groß wie in den anderen Salzen. Lediglich im Chlorid ist er mit $75,8^\circ$ größer.

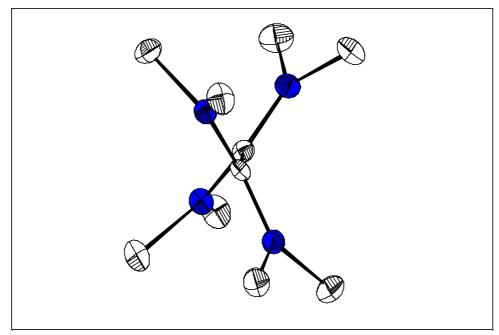


Abb.: Ansicht des [TDAE]²⁺ im [TDAE][TeCF₃]₂ entlang der C-C-Achse

Tab.: Vergleich der Strukturdaten von $[TDAE]^{2+}$ mit TDAE

	[TDAE][TeCF ₃] ₂	[TDAE][SCF ₃] ₂ [93]	[TDAE]Br ₂ [111]	TDAE [113]
Bindungslänge:	[pm]	[pm]	[pm]	[pm]
C-C	150,6	151,1	151,2	135,1
C-N	132,4 - 133,5	130,5 - 132,0	129,7 - 133,1	139,9 - 140,8
N-CH ₃	147,0 - 148,3	146,5 - 148,1		141,1 - 145,1
zum Vergleich die t	heoretischen Bindung	slängen [72]:		
	C-C: 154	C=C: 133	C-N: 147	C=N: 122
Winkel:	[°]	[°]	[°]	[°]
N-C-C-N	67,0 / 68,2	70,0 / 71,9	67,2	28,3
N-C-N	126,0 / 126,4	126,8 / 127,0	120	

Die [TeCF₃]-Einheiten im [TDAE][TeCF₃]₂ sind weitestgehend isoliert. Der kürzeste Te-Te-Abstand im Kristall beträgt 603,6 pm und auch die kürzesten interionischen Abstände liegen fast alle deutlich über der Summe der jeweiligen van-der-Waals-Radien. Die einzige Ausnahme stellen die Te-F-Abstände dar, da jedes Telluratom zu einem Fluor der korrespondierenden TeCF₃-Einheit mit 339,0 bzw 342,9 pm einen Abstand deutlich innerhalb der van-der-Waals- Radien hat.

Tab.: Vergleich der kürzesten gefundenen interionischen Abstände mit den jeweiligen Summen der van-der-Waals-Radien

Bindung	kürzester Abstand	Σ vdW-Radien [74]
	[pm]	[pm]
Te – Te	603,6	420
Te - C	396,2	380
Te - N	387,8	370
Te - F	339,0 / 342,9	360
F - C	323,2	320
F-N	378,6	310

Die Te-C-Bindung im [TeCF₃]- ist mit 212,1 bzw. 212,4 pm gegenüber der Te-C-Bindung in der Ausgangsverbindung Te₂(CF₃)₂ mit 217,5 bzw. 218,6 pm zwar deutlich verkürzt, liegt aber noch im Bereich einer Te-C-Einfachbindung (214 pm [72]). Die C-F-Bindungslängen variieren im [TeCF₃]- zwischen 132,4 pm und 136,2 pm und sind damit im Schnitt etwas größer als im Te₂(CF₃)₂ mit Bindungslängen zwischen 131,6 pm und 133,3 pm. Dies steht im Einklang mit den Ergebnissen der IR-Spektroskopie. Die beim [OCF₃]- aufgrund der gegenüber Q₂(CF₃)₂ sehr kurzen C-O- und der sehr langen C-F-Bindung diskutierte Grenzstruktur mit C-O-Doppelbindung spielt somit bei [TeCF₃]- nur eine untergeordnete Rolle [95]. Schon bei [SCF₃]- ist dieses Phänomen nur noch schwach ausgeprägt, der C-S-Abstand ist gegenüber dem Disulfan zwar deutlich verkürzt und entspricht einer Bindungsordnung von 1,5, die C-F-Bindung ist im Schnitt jedoch kaum länger als in [TeCF₃]- [93]. Diese Abnahme des Doppelbindungsanteils an der Chalkogen- Kohlenstoff-Bindung wird erwartet und steht völlig im Einklang mit der Doppelbindungsregel. Auch die Bindungswinkel im [TeCF₃]- stützen diesen Befund. So weiten sich die Te-C-F-Winkel im [TeCF₃]- gegenüber denen im Te₂(CF₃)₂ nur wenig auf. Entsprechend kommt es nur zu einer geringen Verkleinerung der F-C-F-Winkel.

Im Vergleich dazu ist die Aufweitung der S-C-F-Winkel und die Abnahme der F-C-F-Winkel im $[SCF_3]^-$ gegenüber $S_2(CF_3)_2$ verhältnismäßig groß [81,93]. So sind in Übereinstimmung mit der VSEPR-Theorie die Te-C-F-Winkel im $Te_2(CF_3)_2$ größer und die F-C-F-Winkel kleiner als die S-C-F- und F-C-F-Winkel im $S_2(CF_3)_2$, da durch das sterisch anspruchsvollere Tellur die Tetraeder-Struktur des Kohlenstoffs stärker verzerrt wird. Im Gegensatz dazu sind die Te-C-F-Winkel im $[TeCF_3]^-$ im Schnitt sogar kleiner und die F-C-F-Winkel größer als im $[SCF_3]^-$, was durch einen deutlich größeren Doppelbindungsanteil im $[SCF_3]^-$ erklärt werden kann.

Tab.: Vergleich der Bindungslängen und Bindungswinkel von [ECF₃] mit E₂(CF₃)₂ (E = O, S, Te)

	O ₂ (CF ₃) ₂ a) [114]	[OCF ₃] ^{- b)} [95]	S ₂ (CF ₃) ₂ [81]	[SCF ₃] ^{- c)} [93]	Te ₂ (CF ₃) ₂ [55]	[TeCF ₃]
Länge:	[pm]	[pm]	[pm]	[pm]	[pm]	[pm]
Е-С	139,9	122,7	182,5/182,4	172,0/169,2	218,6/217,5	212,1/212,4
C-F1		139	133,0/132,8	135,3/132,5	132,3/133,0	136,2/134,5
C-F2	132	139	133,5/133,0	136,6/133,3	133,3/131,6	133,6/133,4
C-F3		139,7	133,0/132,7	135,1/133,6	133,3/133,0	135,5/132,4
zum Vergl	eich die theoreti	schen Bindung	slängen E–C und	E=C [72]:		
Е-С		143		181		214
E=C		119		161		194
Winkel:	[°]	[°]	[°]	[°]	[°]	[°]
E-C-F1		116,5	113,6/113,2	116,2/117,6	113,5/113,0	114,8/116,4
E-C-F2	nicht	116,5	106,0/107,0	114,6/117,1	108,5/109,8	114,9/114,5
E-C-F3	bestimmt	115,8	112,5/112,2	115,6/115,3	114,4/113,1	114,5/114,0
F1-C-F2		102,2	108,9/108,2	102,4/102,0	108,1/107,5	102,6/99,9
F2-C-F3	109,0	101,7	107,7/107,8	103,6/100,8	106,2/107,5	107,0/104,9
F3-C-F1		101,7	107,9/108,2	102,5/101,5	105,7/105,7	101,5/105,3
a) O ₂ (CF ₃) ₂	-Daten aus der C	Gasphase b) [O	CF ₃]- als [TAS][O	CF ₃] ^{c)} [SCF ₃]- als	[TDAE][SCF ₃] ₂	

$2.3.5 \quad TeCF_3\text{-}Gruppen\"{u}bertragung \ mit \ Octamethyloxamidiniumbis (trifluormethyltellurat(0)) \\$

Zur Überprüfung der Eignung von [TDAE][TeCF₃]₂ als TeCF₃-Gruppenüberträger in Metathesereaktionen wurden Übertragungen sowohl auf anorganische Salze als auch auf Organylhalogenide vorgenommen.

2.3.5.1 Umsetzung mit Iodethan

In mehreren Übertragungsreaktionen gelingt der Austausch von Iod gegen die TeCF₃-Gruppe und die Bildung von Ethyltrifluormethyltellur, welches durch GC/MS bei den Übertragungsreaktionen mit Hg(TeCF₃)₂ (Kapitel 2.4) nachgewiesen werden konnte.

[TDAE][TeCF₃]₂ + 2 C₂H₅I
$$\xrightarrow{\text{MeCN}}$$
 [TDAE]I₂ + 2 C₂H₅TeCF₃

Dabei liefern alle Übertragungen unabhängig von der Darstellungsmethode des verwendeten [TDAE][TeCF₃]₂ und der Menge des zugesetzten Iodethans vergleichbare Ergebnisse. In allen Fällen werden im ¹⁹F-NMR-Spektrum nur wenige Nebenprodukte registriert, bei denen es sich in erster Linie um CF₃H und Te₂(CF₃)₂ sowie unter Umständen TeCF₃I handeln dürfte. Eine sichere Zuordnung ist – abgesehen von CF₃H – aufgrund der geringen Intensitäten nicht möglich.

Tab.: Vergleich der ¹⁹F-NMR-Daten von EtTeCF₃ aus den Übertragungen mit [TDAE][TeCF₃]₂ und mit Hg(TeCF₃)₂ (Kapitel 2.4)

	Lösungs-	δ	Kopplungen [Hz]				
	mittel	[ppm]	2 J(125 Te- 19 F)	$^{1}J(^{19}F^{-13}C)$			
Darstellung aus [TDAE][TeCF ₃] ₂ :							
$^{a)}$ Überschuß C_2H_5I	CH ₃ CN	-24,6	91,6	351,0			
$^{b)}$ Unterschuß C_2H_5I	CH ₃ CN	-25,1	96,6	352,6			
$^{c)}$ Überschuß C_2H_5I	CH ₃ CN	-24,8	95,4	351,0			
Darstellung aus Hg(TeCF ₃) ₂ :							
Überschuß C_2H_5I	Toluol	-23,7	84,6	351,6			
[TDAE][TeCF ₃] ₂ aus Darstellung in: ^{a)} Diglyme ^{b)} Et ₂ O mit Überschuß Te ₂ (CF ₃) ₂ , umgefällt ^{c)} Et ₂ O							

Die Unterschiede in der chemischen Verschiebung und der Größe der Kopplungen lassen sich durch die unterschiedlichen Lösungsmittel erklären. Eine F-H-Kopplungen wird nicht beobachtet (Kapitel 2.4.2).

Eine Isolierung von EtTeCF₃ aus dem Lösungsmittel und die Abtrennung von überschüssigem Iodethan gelingen nicht. Selbst mittels Gaschromatographie werden Iodethan und EtTeCF₃ nicht vollständig getrennt.

Im Unterschied zu der Umsetzung von Hg(TeCF₃)₂ mit Iodethan, die auch nach 48 h bei Raumtemperatur noch nicht vollständig ist, läuft die Reaktion zwischen [TDAE][TeCF₃]₂ und Iodethan auch bei -30 °C spontan und vollständig ab. Nach fünf bis zehn Minuten hat sich die orange Lösung nach hellgelb aufgehellt, und [TDAE][TeCF₃]₂ ist im Falle eines Iodethan-Überschusses nicht mehr nachweisbar. Nach dem Abdestillieren aller flüchtigen Komponenten verbleibt ein schmutzig-weißer Rückstand, der in Wasser gelöst mit Silbernitrat zu einem positiven Iodidnachweis führt und daher als [TDAE]I₂ identifiziert wird.

Wird Iodethan im Unterschuss zugesetzt, wird die Resonanz von [TDAE][TeCF₃]₂ im ¹⁹F-NMR-Spektrum stark verbreitert und zu hohem Feld verschoben detektiert.

2.3.5.2 Umsetzung mit Quecksilber(II)chlorid

[TDAE][TeCF₃]₂ + HgCl₂
$$\xrightarrow{\text{MeCN}}$$
 [TDAE]Cl₂ + Hg(TeCF₃)₂

Die Übertragung der TeCF₃-Gruppe von [TDAE][TeCF₃]₂ auf HgCl₂ in Acetonitril verläuft zunächst nicht eindeutig. Sofort nach Zugabe der HgCl₂-Lösung hellt sich die orange Lösung auf und wird hellgelb, sowie durch ausfallendes [TDAE]Cl₂ milchig-trüb. Im ¹⁹F-NMR-Spektrum wird allerdings neben sehr viel Te₂(CF₃)₂ und wenig Te(CF₃)₂ nur eine sehr breite Resonanz bei -16 ppm detektiert, bei der zunächst nicht klar ist, ob sie [TDAE][TeCF₃]₂ oder einer HgTeCF₃-Spezies zugeordnet werden muß. Das Signal nimmt im Laufe der Reaktion zu und wird dabei noch breiter.

Nach dem Abdestillieren der flüchtigen Komponenten verbleibt ein gelber Rückstand, der durch sein Massenspektrum eindeutig als Hg(TeCF₃)₂ identifiziert wird.

Unklar bleibt die Herkunft des Te₂(CF₃)₂. Ob es durch Zersetzung von [TDAE][TeCF₃]₂ bzw. Hg(TeCF₃)₂ gebildet wird oder aus dem eingesetzten [TDAE][TeCF₃]₂ frei wird, kann nicht geklärt werden.

2.3.5.3 Umsetzung mit Silbersalzen

Bereits 1987 versuchten Kischkewitz und Naumann [30] AgTeCF₃ durch die Umsetzung von Silber mit Te₂(CF₃)₂ in DMF darzustellen. Im Gegensatz zu der Reaktion mit Quecksilber, wird mit Silber aber keine oxidative Übertragung der TeCF₃-Gruppe beobachtet. Boye [31] wiederholte die Umsetzung bei niedrigeren Temperaturen in Acetonitril und beobachtete im ¹⁹F-NMR-Spektrum eine Resonanz bei -12,5 ppm, die sie aufgrund der chemischen Verschiebung AgTeCF₃ zuordnete.

$$2 \text{ Ag} + \text{Te}_2(\text{CF}_3)_2 \xrightarrow{\text{MeCN}} 2 \text{ AgTeCF}_3$$

Die Umsetzung verläuft dabei sehr langsam und nicht vollständig. Eine Isolierung und weitere Charakterisierung von AgTeCF₃ gelingt nicht.

Es sollte daher versucht werden, $AgTeCF_3$ aus $AgNO_3$ durch Metathesereaktion mit $[TDAE][TeCF_3]_2$ darzustellen und zu isolieren.

[TDAE][TeCF₃]₂ + 2 AgNO₃
$$\xrightarrow{\text{MeCN}}$$
 [TDAE][NO₃]₂ + 2 AgTeCF₃

Bereits nach 15 min Reaktionszeit bei -30 °C wird im ¹⁹F-NMR-Spektrum nur noch ein breites Signal bei -15,1 ppm detektiert, welches nach Rühren der Reaktionslösung über Nacht bei Raumtemperatur sehr scharf und bei -12,9 ppm mit einer ²J(¹²⁵Te-¹⁹F)-Kopplung von 124,6 Hz

registriert wird. Daneben wird neben wenig CF₃H nur noch ein Signal bei -26,3 ppm beobachtet, das Te₂(CF₃)₂ zugeordnet wird, welches immer wieder als Zersetzungsprodukt gefunden wird. Während die chemische Verschiebung sehr gut mit dem von Boye gefundenen Wert übereinstimmt, weicht die ²J(¹²⁵Te-¹⁹F)-Kopplung erheblich ab und ist um gut 30 Hz kleiner. [TDAE][NO₃]₂ bleibt in Lösung und kann nicht abgetrennt werden. Es wird kein Lösungsmittel gefunden, das selektiv eines der beiden Reaktionsprodukte löst. Im Laufe der Isolierungsversuche kommt es zur Zersetzung von AgTeCF₃, so daß weitere Untersuchungen nicht möglich sind.

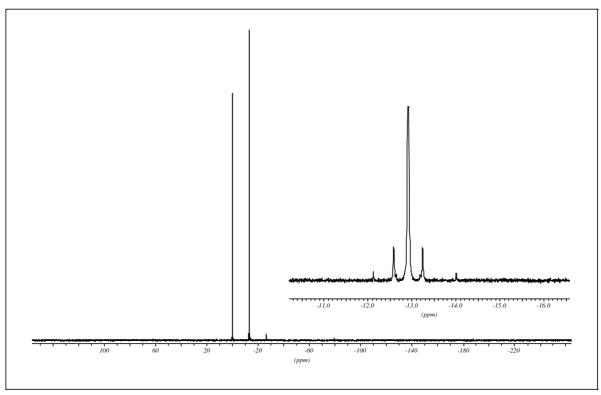


Abb.: ¹⁹F-NMR-Spektrum von AgTeCF₃ aus Darstellung mit AgNO₃ in MeCN (Lock: Kapillare mit Aceton-d₆ / CCl₃F)

Bei der analogen Umsetzung mit Silberacetat werden ähnliche Ergebnisse erhalten. Im ¹⁹F-NMR-Spektrum wird lediglich eine einzige etwas verbreiterte Resonanz bei -13,5 ppm registriert, deren ²J(¹²⁵Te-¹⁹F)-Kopplung auch aufgrund des schlechten Signal-Rausch-Verhältnisses nur abgeschätzt werden kann und etwa 126 Hz beträgt.

Eine abschließende Bewertung, ob es sich bei den obigen Verbindungen zum einen um die selbe Substanz und zum anderen um AgTeCF₃ handelt, kann daher nicht mit Sicherheit erfolgen. Allerdings läßt die Ähnlichkeit der Ergebnisse trotz der unterschiedlichen Darstellungsmethoden den Schluß zu, daß es sich um AgTeCF₃ handelt. Dies wird auch durch die in Kapitel 2.4 besprochene Korrelation der NMR-Verschiebungen von CF₃-Selen- und -Tellur-Verbindungen gestützt.

Tab.: Vergleich der ¹⁹F-NMR-Daten von AgTeCF₃ aus den verschiedenen Darstellungen

AgTeCF ₃ aus:	δ	Kopplungen [Hz]	
	[ppm]	2 J(125 Te- 19 F)	¹ J(¹⁹ F- ¹³ C)
$Ag + Te_2(CF_3)_2$ [31]	-12,5	154	357
$AgNO_3 + [TDAE][TeCF_3]_2$	-12,9	124,6	354,1
$AgOCOCH_3 + [TDAE][TeCF_3]_2$	-13,5	ca. 126	

2.4 Trifluormethyltellurgruppenübertragung mit Bis(trifluormethyltellur)quecksilber

Bislang gibt es nur sehr wenige Untersuchungen über das Reaktionsverhalten von Hg(TeCF₃)₂ als TeCF₃-Gruppenüberträger. Haas et al. [54,96] beschreiben in Analogie zu der Umsetzung von Hg(SeCF₃)₂ mit AlI₃ und anschließendem Zerfall zu Se=CF₂ die Reaktion von Hg(TeCF₃)₂ mit Et₂AlI. Intermediär gebildetes Et₂AlTeCF₃ zerfällt bei der exothermen Reaktion unter Bildung von Te=CF₂, dem ersten bekannten Telluroketon.

$$Hg(TeCF_3)_2 + 2 Et_2AlI \longrightarrow 2 TeCF_2 + HgI_2 + 2 Et_2AlF$$

Boye [31] vergleicht bei ihren Untersuchungen die TeCF₃-Übertragungseigenschaften der vier teilweise instabilen Verbindungen Hg(TeCF₃)₂, Cd(TeCF₃)₂, Zn(TeCF₃)₂ und CuTeCF₃ untereinander und beobachtet dabei folgende Reaktivitätsabstufung:

$$Hg(TeCF_3)_2 < CuTeCF_3 < Cd(TeCF_3)_2, Zn(TeCF_3)_2$$

Cd(TeCF₃)₂, Zn(TeCF₃)₂ und CuTeCF₃ übertrugen die TeCF₃-Gruppe auf Quecksilbersalze, es gelangen aber keine Übertragungen von Hg(TeCF₃)₂ auf Cadmium-, Kupfer- oder Zinksalze. Es wurde lediglich eine Verbreiterung der Hg(TeCF₃)₂-Resonanz im ¹⁹F-NMR-Spektrum beobachtet. Entsprechend erhalten Haas et al. [56] keine Reaktion von Hg(TeCF₃)₂ mit CBr₄. Im Gegensatz dazu gelingt die Bromsubstitution zum Tetrakis- (trifluormethylselen)methan aber mit dem homologen Hg(SeCF₃)₂ [115].

$$2 \text{ Hg(SeCF}_3)_2 + \text{CBr}_4 \xrightarrow{65 \text{ °C}} 2 \text{ HgBr}_2 + \text{C(SeCF}_3)_4$$

Analoge Umsetzungen mit Iod-Adamantanen [51] und Elementbromiden [52] führen ebenfalls zu den entsprechenden SeCF₃-substituierten Verbindungen, z.B.:

$$Hg(SeCF_3)_2 + AsBr_3 \xrightarrow{CS_2} As(SeCF_3)_3 + (SeCF_3)HgBr + HgBr_2$$

Ausgehend von obiger Übertragungsreaktion wurde die Umsetzung von Hg(TeCF₃)₂ mit Arsenund Antimontriiodiden untersucht [69]. Dahinter stand die Überlegung, daß die TeCF₃-Gruppe nach dem Paraelement-Konzept [116] als Paraelement zu Iod angesehen werden kann und somit nach dem HSAB-Prinzip [117] eine große Affinität zu dem weichen Quecksilberkation aufweist. Ein Austausch sollte daher am leichtesten gegen Iod stattfinden.

Zwar gelingt es, Hg(TeCF₃)₂ bei tiefen Temperaturen und sehr langen Reaktionszeiten von teilweise mehreren Wochen zur Umsetzung zu bringen, die gewünschten Arsen- und Antimon-TeCF₃-Derivate werden aber nicht beobachtet. Sie können lediglich aufgrund der Bildung von Te₂(CF₃)₂ als Zwischenstufen postuliert werden.

$$Hg(TeCF_3)_2 + EI_3 \longrightarrow \langle E(TeCF_3)_x I_{3-x} \rangle \longrightarrow Te_2(CF_3)_2$$
 $E = As, Sb$

Die Bildung von Te₂(CF₃)₂ wird auch bei der Zersetzung von Hg(TeCF₃)₂ oberhalb 77 °C [**30**] und der Umsetzung von Me₃SnTeCF₃ mit CBr₄ beobachtet [**56**]. Bei letzterer wird C(TeCF₃)₄ als instabiles Zwischenprodukt postuliert.

Die Umsetzungen von Hg(TeCF₃)₂ mit Arsen- und Antimontriiodiden wurden in den koordinierenden Lösungsmitteln THF und Acetonitril durchgeführt, da ein polarer Übertragungsmechanismus und somit eine bessere Stabilisierung möglicher Zwischenstufen angenommen wurde. Dieser ist aufgrund der Ergebnisse aber eher unwahrscheinlich, daher werden zur Überprüfung die Umsetzungen mit Antimontriiodid in Toluol wiederholt.

Um das Auftreten etwaiger Arsen- und Antimon-TeCF₃-Verbindungen erkennen zu können, ist eine Abschätzung des Verschiebungsbereiches im ¹⁹F-NMR-Spektrum sinnvoll, in dem As(TeCF₃)₃ und Sb(TeCF₃)₃ Resonanz zeigen sollten.

Schon 1973 konnten McFarlane und McFarlane [118] zeigen, daß eine Korrelation der ⁷⁷Seund der ¹²⁵Te-NMR-Verschiebungen von Organoselen- und Organotellur-Verbindungen möglich ist. Eine gegenseitige Auftragung ergibt einen linearen Zusammenhang. Aus der Auftragung der ⁷⁷Se- und der ¹²⁵Te-NMR-Verschiebungen von Verbindungen des Typs CF₃EX (E = Se, Te; X = beliebiger Substituent) resultiert ebenfalls eine Gerade. Auch eine Auftragung der ¹⁹F-NMR-Verschiebungen ergibt in guter Korrelation einen linearen Zusammenhang.

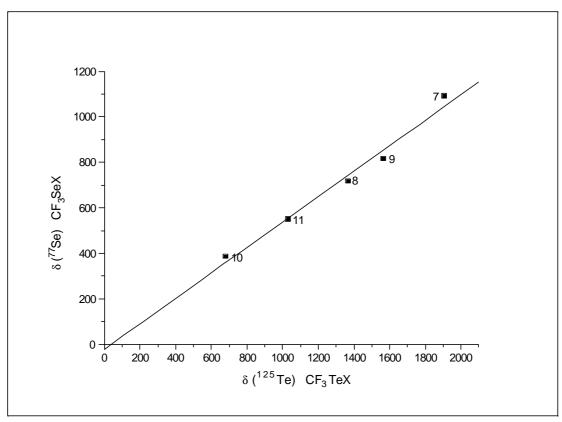


Abb.: Auftragung von $\delta(^{77}Se)$ gegen $\delta(^{125}Te)$ von Verbindungen des Typs CF_3EX ($E=Se,\,Te;X=$ beliebiger Substituent); (r=0,99121)

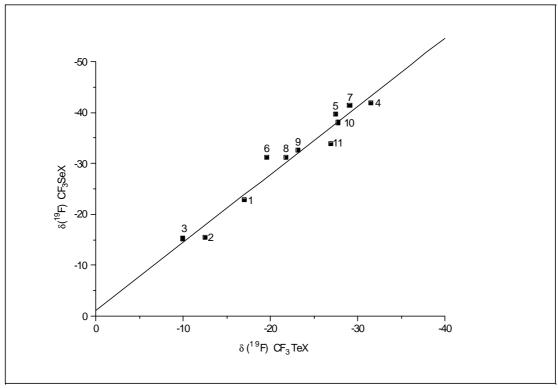


Abb.: Auftragung der $\delta(^{19}F)$ -Werte der CF_3 -Gruppe von Verbindungen des Typs CF_3EX ($E=Se,\,Te;X=$ beliebiger Substituent); (r=0,97782)

Tab.: $\delta(^{19}\text{F})$, $\delta(^{77}\text{Se})$ und $\delta(^{125}\text{Te})$ von Verbindungen des Typs CF₃EX (E = Se, Te; X = beliebiger Substituent)

	<u>CF</u> ₃ SeX	$\delta(^{19}F)$	$\delta(^{77}Se)^{a)}$		<u>CF</u> ₃ TeX	$\delta(^{19}F)$	δ (125Te)	
Nr.		[ppm]	[ppm]	Lit.		[ppm]	[ppm]	Lit.
1	CF ₃ SeCu·DMF	-22,76		[49]	CF ₃ TeCu	-17,0	217	[31]
2	CF ₃ SeAg	-15,4	26	[53]	CF ₃ TeAg	-12,5		[31]
3	$(CF_3Se)_2Hg$	-15,2		[119]	(CF ₃ Te) ₂ Hg	-10,0	537	[31]
4	CF ₃ SeCl	-41,9	1077	[97]	CF ₃ TeCl	-31,2		[65]
5	CF ₃ SeBr	-39,6	886	[97]	CF ₃ TeBr	-27,46		[62]
6	CF ₃ SeCN	-31,2	509	[97]	CF ₃ TeCN	-19,59		[62]
7	CF ₃ SeNSO	-41,4	1091	[97]	CF ₃ TeNSO	-29,1	1908	[54]
8	CF ₃ SeCF ₃	-31,2	717	[97]	CF ₃ TeCF ₃	-21,8	1368	[97]
9	CF ₃ SeCF ₂ Cl	-32,5	815	[97]	CF ₃ TeCF ₂ Cl	-23,2	1566	[97]
10	CF ₃ SeSeCF ₃	-38,0	550	[97]	CF ₃ TeSeCF ₃	-27,8	1031,9	[54]
11	CF ₃ SeTeCF ₃	-33,9	384,8	[54]	CF ₃ TeTeCF ₃	-26,9	673	
	zum Vergleich:							
	$(CF_3Se)_3N$	-45,4	1617	[97]				
	$(CF_3Se)_3P$	-29,8	541	[97]	aus den Auftragu	ıngen abgele	sene Werte:	
	$(CF_3Se)_3As$	-28,1	505	[97]	$(CF_3Te)_3As$	-20,5	950	

a) Standard: (Me)₂Se

Die aus den Auftragungen ermittelten Werte für As(TeCF₃)₃ betragen -20,5 ppm für die ¹⁹F-NMR-Verschiebung und 950 ppm für die ¹²⁵Te-NMR-Verschiebung. Gombler [**97**] konnte für eine Reihe homologer CF₃SeX-Verbindungen eine gute Abhängigkeit der ¹⁹F- und der ⁷⁷Se-Verschiebungen von der Elektronegativität des Substituenten X ermitteln. Daher sollte aufgrund der geringeren Elektronegativität von Antimon gegenüber Arsen im ¹⁹F-NMR-Spektrum eine Verschiebung zu tiefem und im ¹²⁵Te-NMR-Spektrum eine Verschiebung zu hohem Feld erwartet werden.

Die ermittelten Verschiebungen dürfen trotz der guten Korrelation nur als grobe Näherungen betrachtet werden, da insbesondere für die Auftragung der ⁷⁷Se- und ¹²⁵Te-Verschiebungen nur

wenige Wertepaare zur Verfügung stehen und mit Hg(SeCF₃)₂/Hg(TeCF₃)₂ die ¹⁹F-NMR-Daten nur einer mehrfach substituierten homologen Trifluormethylchalkogen- Verbindung bekannt sind. Diese liegen allerdings genau auf der Regressionsgeraden. Des weiteren ist die enorme Abhängigkeit der chemischen Verschiebung von Tellurverbindungen von der Konzentration und vom verwendeten Lösungsmittel zu beachten, da die NMR-Daten der Auftragungen nicht unter standardisierten Bedingungen ermittelt wurden. So beobachtet Dukat [61] in grober Abhängigkeit von der Donatorzahl des verwendeten Lösungsmittels - welche aus der Reaktionsenthalpie der Reaktion des Donors mit der Lewis-Säure SbCl₅ ermittelt wird, und die somit in den meisten Fällen als ein Maß für die Lewis-Basizität des Donators gelten kann [120] – für Te₂(CF₃)₂ und insbesondere Te(CF₃)₂ eine große Varianz in der chemischen Verschiebung des ¹⁹F-NMR-Signals und der Größe der ²J(¹²⁵Te-¹⁹F)-Kopplung. Die chemische Verschiebung und der Betrag der ²J(¹²⁵Te-¹⁹F)- Kopplung von Te(CF₃)₂ ändern sich z.B. beim Übergang von n-Hexan zu DMSO als Lösungsmittel von -21,02 ppm und 31,3 Hz nach -25,99 ppm und 131,1 Hz. Für Me₂Te₂ wird ein Shift der ¹²⁵Te-Verschiebung um 10 ppm bei Konzentrationsänderungen beobachtet [118]. Auch bei $Hg(TeCF_3)_2$ wird eine Lösungsmittelabhängigkeit der chemischen Verschiebung im ¹⁹F-NMR-Spektrum gefunden, die aber deutlich weniger ausgeprägt ist [30,31].

Tab.: Vergleich der ¹⁹F-NMR-Daten von Hg(TeCF₃)₂ in verschiedenen Lösungsmitteln

		δ	Kopplungen [Hz]	
-		[ppm]	2 J($^{123/125}$ Te- 19 F)	¹ J(¹⁹ F- ¹³ C)
DMF	[30]	-10,0	-/162,2	352,7
Acetonitril	[31]	-10,1	126 / 153	349
Aceton	[31]	-9,5	128 / 154	351
Toluol		-8,2	124,5 / 150,1	353,8

2.4.1 Umsetzung von Bis(trifluormethyltellur)quecksilber mit Antimontriiodid in Toluol

In einer ersten Umsetzung wird Hg(TeCF₃)₂ im Überschuß mit SbI₃ bei Raumtemperatur zur Reaktion gebracht. Sofort nach Zugabe bildet sich ein oranger Niederschlag und nach 15 min ist im ¹⁹F-NMR-Spektrum neben nicht umgesetztem Hg(TeCF₃)₂ und Te₂(CF₃)₂ noch eine dritte Resonanz bei -16,2 ppm mit Tellursatelliten und einer ²J(¹²⁵Te-¹⁹F)-Kopplung von 136 Hz, deren Intensität nach 24 h genauso wie die von Hg(TeCF₃)₂ zugunsten von Te₂(CF₃)₂ stark abnimmt. Hierbei könnte es sich um die teilausgetauschte Verbindung Hg(TeCF₃)I handeln, die von Gall [62] bei -14,47 ppm und mit einer Kopplung von 149,5 Hz – allerdings ohne Angabe des Lösungsmittels – detektiert wird. Daß die Resonanz bei -16,2 ppm einer Antimon-TeCF₃-Verbindung zugeordnet werden muß, ist eher unwahrscheinlich, da sie, wenn auch deutlich weniger intensiv, auch bei den Umsetzungen mit Iodethan beobachtet wird.

In einer weiteren Umsetzung bei einer Temperatur von -50 °C, werden neben den drei oben angeführten Signalen noch weitere intensitätsschwache oder breite Signale detektiert, die im weiteren Reaktionsverlauf wieder verschwinden und nicht zugeordnet werden können. Lediglich das Signal bei -21,4 ppm wird auf Grund seiner chemischen Verschiebung Te(CF₃)₂ zugeordnet.

Auch bei tiefen Temperaturen gelingt es nicht, Antimon-TeCF₃-Verbindungen mit Sicherheit zu identifizieren. Es ist zu vermuten, daß eines der im Verlauf der Reaktion detektierten Signale einer solchen zuzuordnen ist, Haupt(zersetzungs)produkt der Umsetzung ist jedoch auch hier Te₂(CF₃)₂, dessen Resonanz im Laufe der Reaktion stetig an Intensität zunimmt.

2.4.2 Umsetzung von Bis(trifluormethyltellur)quecksilber mit Iodethan in Toluol

Durch Umsetzungen mit Iodethan wird die Eignung von Hg(TeCF₃)₂ als TeCF₃-Gruppenüberträger in Verbindung mit Organoiod-Verbindungen überprüft.

Eine Übertragung der TeCF₃-Gruppe findet nur sehr langsam statt. Trotz der im Vergleich zur Umsetzung mit SbI₃ erheblich höheren Reaktionstemperatur wird erst nach Rühren über Nacht bei Raumtemperatur die Bildung eines orangen Niederschlags beobachtet. Wird Iodethan nur in einem geringen Überschuß eingesetzt, so ist auch nach sechs Tagen noch keine vollständige Umsetzung erfolgt. Die Reaktionsgeschwindigkeit läßt sich durch eine Erhöhung des Iodethan-Überschusses steigern. Nach 24 Stunden wird nur noch ein geringer Anteil Hg(TeCF₃)₂ im ¹⁹F-NMR-Spektrum des Reaktionsgemisches detektiert, der aber auch nach 48 h nicht vollständig verschwunden ist. Nach 48 h werden alle flüchtigen Komponenten im Vakuum abdestilliert und es verbleibt ein oranger, an einigen Stellen durch nicht umgesetztes Hg(TeCF₃)₂ gelber, Rückstand.

$$Hg(TeCF_3)_2 + 2 C_2H_5I \xrightarrow{Toluol} 2 C_2H_5TeCF_3 + HgI_2$$

Eine Isolierung von EtTeCF₃ gelingt nicht, da es sich auf destillativem Wege weder im Vakuum bei tiefen Temperaturen noch unter Normaldruck bis 90 °C von überschüssigem Iodethan und dem Lösungsmittel trennen läßt. Aufgrund der dadurch bedingten großen Verdünnung, scheitern auch alle Versuche ein aussagekräftiges ¹²⁵Te- oder ¹³C-NMR- Spektrum aufzunehmen. Da keine Möglichkeit besteht, gleichzeitig protonen- und fluorentkoppelt zu messen, wird im ¹²⁵Te-NMR-Spektrum lediglich eine breite Resonanz bei 901 ppm detektiert. Diese chemische Verschiebung liegt im Vergleich zu denen anderer gemischtsubstituierter Organylperfluoralkyltellur-Verbindung [37,55] bei etwas höherem Feld. Die ¹⁹F-NMR-Resonaz liegt hingegen mit -23,7 ppm genau im erwarteten Bereich.

Tab.: Vergleich der ¹⁹F- und der ¹²⁵Te-NMR-Daten verschiedener Organyltrifluormethyltellur-Verbindungen

-		¹⁹ F-NN	/IR-Daten	¹²⁵ Te-NM	R-Spektrum
		δ [ppm]	² J(¹²⁵ Te- ¹⁹ F) [Hz]	δ [ppm]	² J(¹²⁵ Te- ¹⁹ F) [Hz]
EtTeCF ₃		-23,7	84,6	901	_
t-BuTeCF ₃	[55]	-21,46	81,8	1144 (q) a)	81,8
PhCH ₂ TeCF ₃	[37]	-24,0	_	980 (qt) b)	91,0
PhC(O)TeCF ₃	[56]	-24,7	_	1283,5 (q)	32,6
$MeTeCF_3$	[121]	-26,9	_	_	_
p-MePhTeCF ₃	[27c]	-24,5	_	_	-
2-CF ₃ -Cyclohexyl-Te <u>CF₃</u>	[27a]	trans 23,1 cis 23,7	- -	_ _	- -

a) Daten aus protonenentkoppeltem Spektrum b) ${}^{2}J({}^{125}Te^{-1}H) = 23 Hz$

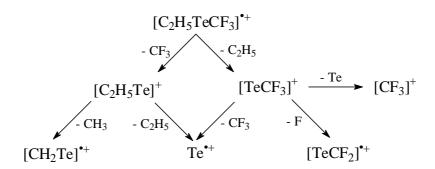
Eine eindeutige Identifizierung über die F-H-Kopplung gelingt nicht, da weder im ¹⁹F- noch im ¹H-NMR-Spektrum die ⁴J(¹⁹F-¹H)-Kopplung sichtbar ist. Diese wurde bislang auch nicht in anderen gemischtsubstituierten Organylperfluoralkyltellur-Verbindung wie CH₃TeCF₃ [57,121], CH₃TeC₂F₅ [122], 2-CF₃-Cyclohexyl-TeCF₃ [27a] oder PhCH₂TeCF₃ [37] beobachtet. Wiedersprüchlich sind die Angaben bei CH₃Te(i-C₃F₇) [122]. Einerseits wird für die Methylgruppe im ¹H-NMR-Spektrum ein Singulett und für die CF₃-Gruppen sowie die CF-Einheit im ¹⁹F-NMR-Spektrum die durch die F-F-Kopplung erwartete Aufspaltung zum Dublett bzw. Septett angegeben, andererseits werden sowohl die ⁴J(¹⁹F-¹H)- als auch die ⁵J(¹⁹F-¹H)-Kopplungen aufgeführt. Diese liegen mit 1,5 und 0,75 Hz in einer auch bei vielen anderen Verbindungen beobachteten Größenordnung [123]. Im CH₃SCF₃ ist die ⁴J(¹⁹F-¹H)-Kopplung beispielsweise kleiner als 1 Hz [124] und damit so klein, daß sie unter Umständen aufgrund der in den Spektren von EtTeCF₃ erzielten Linienbreiten dort nicht mehr aufgelöst werden kann.

Es gelingt der indirekte Nachweis einer F-H-Kopplung über den Vergleich der Halbwertsbreiten der detektierten Signale. So verkleinert sich die Halbwertsbreite des Hauptsignals von EtTeCF₃ von 2,08 Hz im nichtentkoppelten ¹⁹F-NMR-Spektrum auf 0,84 Hz im protonenentkoppelten ¹⁹F-NMR-Spektrum und die der ¹²⁵Te-Satelliten von 2,07 bzw. 2,15 Hz auf 1,06 bzw. 1,05 Hz. Die Änderungen der Halbwertsbreiten der benachbarten

Signale sind im Vergleich dazu gering und bewegen sich innerhalb der durch die Auflösung von $0.16~\mathrm{Hz}$ pro Punkt gegebenen Fehlergrenzen von $\pm\,0.32~\mathrm{Hz}$.

Tab.: Vergleich der Linienbreiten von EtTeCF₃ im protonengekoppelten und -entkoppelten ¹⁹F-NMR-Spektrum. (in Toluol, Lock: Toluol-d₈)

δ	Zuordnung	Halbwertsbreite [Hz]		
[ppm]		gekoppelt	entkoppelt	
-20,86	$Te(CF_3)_2$	1,04	0,82	
-22,71	Et ¹²⁵ TeCF ₃	2,07	1,06	
-22,93	EtTeCF ₃	2,08	0,84	
-23,16	$Et^{125}TeCF_3$	2,15	1,05	
-25,61	$Te_2(CF_3)_2$	0,87	0,82	


Für die Protonenresonanzen wird im Vergleich zu Diethyltellur [121] ein gegenläufiger Effekt durch die Trifluormethylgruppe beobachtet. Für die Methylengruppe wird wie erwartet eine durch den –I-Effekt der elektronegativen Trifluormethylgruppe verursachte Entschirmung und, daraus resultierend, eine Verschiebung hin zu tiefem Feld gefunden. Im Gegensatz dazu erfährt die Methylgruppe einen deutlichen Hochfeldshift, was auf eine Zunahme der Elektronendichte an den Methylprotonen schließen läßt, die nicht erklärbar ist. Tellursatelliten werden nicht beobachtet.

Tab.: Vergleich der ¹H-NMR-Daten von Et₂Te und EtTeCF₃

	δ [ppm]	δ [ppm]	Kopplung [Hz]
	CH_2	CH ₃	$^{3}J(^{1}H-^{1}H)$
EtTeCF ₃	3,75	0,80	7,1
Et ₂ Te [121]	3,30	1,59	7,6

Die eindeutige Identifizierung gelingt mittels GC/MS-Kopplung. Die in der Masse gefundenen Fragmente lassen aufgrund der charakteristischen Isotopenmuster eine eindeutige Identifizierung zu. So ist der Molekülpeak das intensivste Fragment – abgesehen von dem Peak bei m/z=156, der von auch in der GC nicht vollständig abtrennbarem Iodethan stammt, aber

aufgrund des fehlenden Isotopengatters insgesamt nur einen geringen Anteil ausmacht. Daneben werden sowohl die Fragmente $[TeCF_3]^+$ sowie $[TeCF_2]^{\bullet+}$ und $[C_2H_5Te]^+$ in vergleichbarer Intensität registriert.

Die Eigenschaften von EtTeCF₃ ähneln denen von Te(CF₃)₂. Es ist thermisch relativ stabil. So tritt bei der Destillation bis 90 °C keine Zersetzung im eigentlichen Sinne auf. Allerdings kommt es in Analogie zu Te(CF₃)₂ bei dieser Temperatur bereits in geringem Umfang zu einer Reaktion mit dem Lösungsmittel Toluol, welches trifluormethyliert wird. Die Produktverteilung von orto-, meta und para-Trifluormethyltoluol und die ¹⁹F-NMR-Daten entsprechen den bei der photochemischen Trifluormethylierung von Toluol mittels Te(CF₃)₂ gefundenen [27c] Ergebnissen. Ein Hinweis, daß EtTeCF₃ auch Ethylradikale abspaltet, ist die Bildung von Te₂(CF₃)₂, welches durch Dimerisierung der TeCF₃-Radikale gebildet wird, sowie die Bildung von para-Methylphenyltrifluomethyltellur, das auch bei der Belichtung und der thermischen Umsetzung mit Te(CF₃)₂ gebildet wird. Hinweise auf Reaktionsprodukte der Ethylradikale im ¹H-NMR-Spektrum werden wegen der geringen Mengen neben dem Lösungsmittel Toluol nicht gefunden.

Genau wie Te(CF₃)₂ ist EtTeCF₃ lichtempfindlich. Bei Belichtung durch Tageslicht werden die gleichen Produkte wie bei der thermischen Umsetzung beobachtet; bei Belichtung einer Toluol-d₈-haltigen Probe auch die entsprechenden deuterierten.

2.5 Kristallstruktur von Bis(pentafluorphenyl)tellur

 $Te(C_6F_5)_2$ wurde erstmals 1968 von Massey et al. **[125]** beschrieben und seine Darstellung war seitdem Gegenstand zahlreicher Untersuchungen **[59,122,126-128]**. Trotzdem war bislang die Kristallstruktur unbekannt. Erst 2001 erschien unabhängig von dieser Arbeit eine Veröffentlichung von Klapötke et al. **[129]** in der die Kristallstruktur von $Te(C_6F_5)_2$ vorgestellt wird.

Diese unterscheidet sich in mehreren Punkten von der hier vorgestellten Struktur:

- Die Raumgruppe ist P2₁, also azentrisch und ohne Inversionszentrum bei Klapötke et al.; P2₁/c mit Inversionszentrum in dieser Arbeit.
- Bei Klapötke et al. ist die Zahl der Formeleinheiten (Z) in der Elementarzelle Z = 2; in dieser Arbeit werden drei kristallographisch unabhängige Formeleinheiten gefunden, die sternförmig zueinander angeordnet sind. Daraus resultiert ein Z von 12.
- Die in dieser Arbeit vorgestellte Struktur hat eine erheblich größere Elementarzelle mit a=2277.9 pm, b=588.02 pm und c=2967.7 pm gegenüber a=932.4 pm, b=751.2 pm und c=968.7 pm bei Klapötke et al.

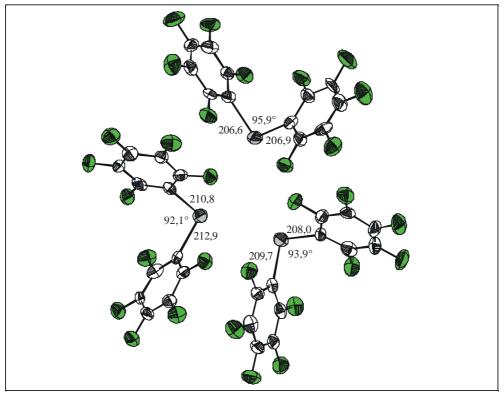


Abb.: Kristallstruktur von Te(C₆F₅)₂ (Weiß: C; Grün: F; Grau: Te) (mit thermischen 50%-Ellipsoiden und Bindungslängen in [pm])

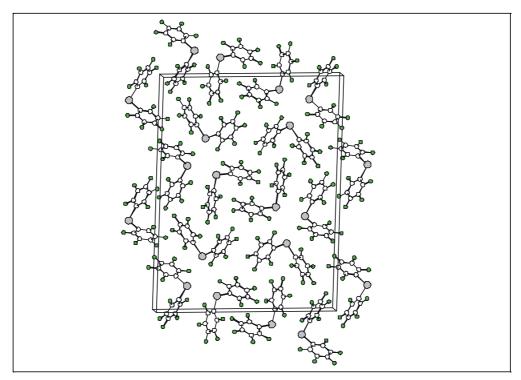


Abb.: Elementarzelle von $Te(C_6F_5)_2$ mit Z = 12 (Weiß: C; Grün: F; Grau: Te)

 $Te(C_6F_5)_2$ kristallisiert in einer monoklinen Elementarzelle mit Z=12 und den Winkeln $\alpha=\gamma=90^\circ$ und $\beta=91,81^\circ$. Die C_6F_5 -Gruppen in jeder Formeleinheit sind V-förmig angeordnet und stehen senkrecht auf der gleichen Ebene. Untereinander sind die drei Formeleinheiten so angeordnet, daß jeweils zwei C_6F_5 -Gruppen parallel zueinander ausgerichtet sind.

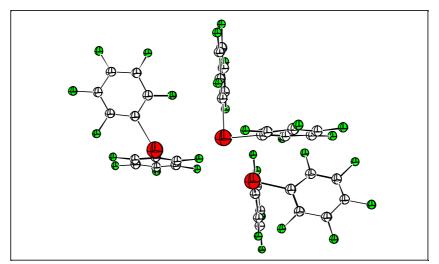


Abb.: Kristallstruktur von $Te(C_6F_5)_2$ – zur Verdeutlichung der Anordnung der C_6F_5 -Gruppen (Weiß: C; Grün: F; Rot: Te)

Die Abstände des Tellurs zu den ortho-F-Atomen liegen mit 320 pm bis 326 pm deutlich innerhalb der van der Waals-Radien und auch intermolekular sind die $Te(C_6F_5)_2$ -Einheiten über ortho-F-Atome mit Te-F-Abständen von 323 pm bis 340 pm zu unendlichen Ketten verknüpft.

Ein Vergleich der Kristallstruktur von $Te(C_6F_5)_2$ mit den bereits bekannten Strukturen von $S(C_6F_5)_2$ [130] und $Se(C_6F_5)_2$ [131] zeigt wie erwartet eine kontinuierlichen Abnahme der C-E-C-Winkel (E = S, Se, Te) vom $S(C_6F_5)_2$ zum $Te(C_6F_5)_2$ hin. Die E-C-Bindungen liegen zwar noch im Bereich einer Einfachbindung, sind aber alle deutlich kürzer als die Summe der Kovalenzradien [72]. Dabei variieren die C-Te-C-Winkel und die Te-C-Bindungslängen in den drei $Te(C_6F_5)_2$ -Einheiten um die von Klapötke et al. [129] für $Te(C_6F_5)_2$ gefundenen Werte, so daß die Unterschiede auf Packungseffekten beruhen dürften. Die Bindungslängen sind dabei, wie von der VSEPR-Theorie gefordert, umgekehrt proportional zu den entsprechenden C-Te-C-Winkeln.

Tab.: Vergleich der Bindungslängen und Bindungswinkel von E(C₆F₅)₂ (E = S, Se, Te)

\mathcal{E}	υ	ε	(0 5)	-
	$S(C_6F_5)_2$ [130]	$Se(C_6F_5)_2$ [131]	$Te(C_6F_5)_2$ [129]	$Te(C_6F_5)_2$
Länge:	[pm]	[pm]	[pm]	[pm]
				208/209,7
E-C	175	192,0/190,3	210,1/209,4	210,8/212,9
				206,9/206,6
zum Vergleich	die theoretische	en Bindungslängen	E-C und E=C [72	2]:
E-C	181	194	2	214
E=C	161	184	194	
Winkel:	[°]	[°]	[°]	[°]
				93,9
C-E-C	100,6	96,61	93,3	92,1
				95,9

2.6 Kristallstruktur von Bis(pentafluorphenyl)ditellur

Vermutlich wurde $Te_2(C_6F_5)_2$ erstmalig 1990 von Kasemann und Naumann [41] in reiner Form dargestellt. Zwar berichten Massey et al. [132] bereits 1968 von der Synthese von $Te_2(C_6F_5)_2$, der ermittelte Schmelzpunkt von 42 - 43 °C weicht aber um mehr als 50 °C von dem von Kasemann und Naumann zu 97 - 98 °C bestimmten Wert ab. Auch die Elementaranalyse weicht vom theoretischen Wert ab.

Obwohl $Te_2(C_6F_5)_2$ hervorragend kristallisiert, war die Kristallstruktur bislang nicht bestimmt worden. Ende 2001 wurde dann unabhängig von dieser Arbeit die Kristallstruktur von Klapötke et al. **[68]** veröffentlicht. Die Ergebnisse sind bis auf Abweichungen in den Te-C-Bindungslängen und dem C-Te-Te-C-Torsionswinkel praktisch identisch.

 $Te_2(C_6F_5)_2$ kristallisiert in tiefroten Prismen in einer hexagonalen Zelle mit den Parametern a=b=1444,8 pm, c=3629,5 pm, $\gamma=120^\circ$ und Z=8 und in der Raumgruppe $R\overline{3}$.

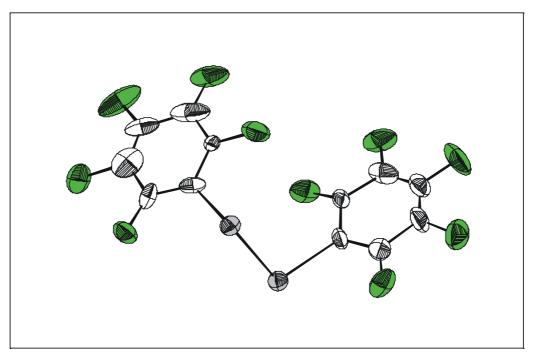


Abb.: Kristallstruktur von $Te_2(C_6F_5)_2$ (Weiß: C; Grün: F; Grau: Te) (mit thermischen 50%-Ellipsoiden)

Abb.: Elementarzelle von $Te_2(C_6F_5)_2$ mit Z=8, entlang der c-Achse (Grau: C; Grün: F; Schwarz: Te)

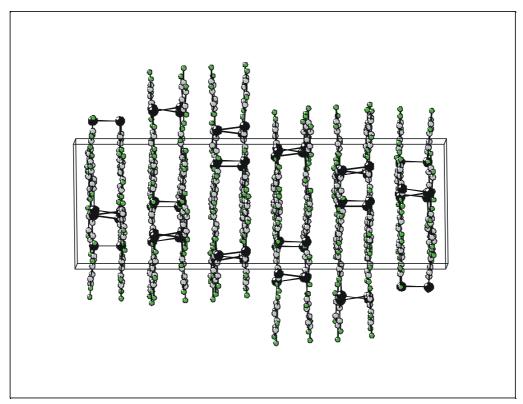


Abb.: Elementarzelle von $Te_2(C_6F_5)_2$ mit Z=8, entlang der a-Achse (Grau: C; Grün: F; Schwarz: Te)

Die beiden C_6F_5 -Gruppen im $Te_2(C_6F_5)_2$ liegen parallel zueinander und bilden mit weiteren $Te_2(C_6F_5)_2$ durch Te-Te-Bindungen verbrückte Doppelschichten. Diese sind alternierend durch Te-F-vdW-Bindungen von 337,2 pm und Te-Te-vdW-Bindungen von 390,1 pm untereinander verbunden. Daraus resultiert die relativ geringe mechanische Belastbarkeit der Kristalle.

Die Te₂(C₆F₅)₂-Einheiten sind so angeordnet, daß sie entlang der c-Achse von Te- und F-Atomen eingefaßte Kanäle bilden. Eine elektrische Leitfähigkeit entlang dieser Kanäle besteht aber nicht [133].

Tab.: Vergleich der Bindungslängen und Bindungswinkel von Verbindungen des Typs E_2R_2 (E = S, Se, Te)

	$S_2(C_6F_5)_2$ [134]	$Se_2(C_6F_5)_2$ [134]	$Te_2(C_6F_5)_2$ [68]	$Te_2(C_6F_5)_2$	Ph ₂ Te ₂ [135]	Te ₂ (CF ₃) ₂ [55]
Länge:	[pm]	[pm]	[pm]	[pm]	[pm]	[pm]
Е-Е	205,9	231,9	270,28	271,2	271,2	266,9
Е-С	177,0/177,1	189,9/192,1	212,4/212,4	218/215	208,1/215,0	218,6/217,5
zum Verglei	ch die theoretisc	chen Bindungslä	ingen E–E, E–C	und E=C [72]:		
Е-Е	208	234		2	74	
Е-С	181	194		2	14	
E=C	161	184		1	94	
Winkel:	[°]	[°]	[°]	[°]	[°]	[°]
E-E-C	101,5/101,0	98,7/98,9	98,94/98,35	99,3/98,2	100,3/97,4	96,3/95,3
C-E-E-C	76,5	75,3	91,8	93,38	88,5	88,3

Die Te-Te-Bindung im $Te_2(C_6F_5)_2$ ist mit 271,2 pm etwas kürzer als die Summe der Kovalenzradien [72] und damit exakt gleich lang wie im Ph_2Te_2 [135], aber deutlich länger als im $Te_2(CF_3)_2$ [55]. Eine verkürzte Chalkogen-Chalkogen-Bindung wird auch in den homologen $S_2(C_6F_5)_2$ und $Se_2(C_6F_5)_2$ gefunden [134]. Während in diesen Verbindungen und auch in der von Klapötke et al. [68] gefundenen Struktur von $Te_2(C_6F_5)_2$, die E-C-Bindung (E = S, Se, Te) ebenfalls verkürzt ist, wird in der hier vorgestellten Struktur eine deutlich längere Te-C-Bindung gefunden. Sie liegt in der gleichen Größenordnung wie im $Te_2(CF_3)_2$ und ist somit etwas länger als die Summe der Kovalenzradien. Im Ph_2Te_2 werden zwei unterschiedlich lange Te-C-Bindungen beobachtet und daraus resultierend auch ein deutlicher Unterschied in den beiden Te-Te-C-Winkeln. Diese unterscheiden sich im Falle von $Te_2(C_6F_5)_2$ kaum von den

entsprechenden Winkeln im $S_2(C_6F_5)_2$ und $Se_2(C_6F_5)_2$, so daß hier kein Einfluß der verschiedenen Chalkogenatome erkennbar ist. Bei den Torsionswinkeln gibt es keinen kontinuierlichen Übergang vom $S_2(C_6F_5)_2$ zum $Te_2(C_6F_5)_2$. Zuerst nimmt der Winkel vom $S_2(C_6F_5)_2$ zum $Se_2(C_6F_5)_2$ hin leicht ab, um dann zum $Te_2(C_6F_5)_2$ hin stark zuzunehmen. Er ist mit 93,38° im $Te_2(C_6F_5)_2$ auch deutlich größer als im Ph_2Te_2 oder im $Te_2(CF_3)_2$, wo er $88,5^\circ$ bzw. $88,3^\circ$ beträgt. Klapötke et al. messen einen nicht ganz so großen Diederwinkel von $91,8^\circ$. Als Grund für die Aufweitung gegenüber den beiden angeführten Ditellurverbindungen kommen die sterisch anspruchsvolleren C_6F_5 -Gruppen in Betracht.

2.7 Reaktion von Tetrakis(dimethylamino)ethylen mit Bis(pentafluorphenyl)ditellur

Analog der Umsetzung zum $[TDAE][TeCF_3]_2$ wurde versucht durch Umsetzung von TDAE mit $Te_2(C_6F_5)_2$ das entsprechende $[TDAE][TeC_6F_5]_2$ darzustellen.

Da fast alle bislang strukturell untersuchten monovalenten Tellur-Salze des Typs [Kat]ⁿ⁺[TeR]_n- aromatische Reste enthalten [108-110], wurde durch den Übergang von der CF₃- zur C₆F₅-Gruppe eine Abnahme der Zersetzungsneigung erwartet.

Unter ähnlichen Reaktionsbedingungen – in Diethylether bei -78 °C – wie bei der Bildung von [TDAE][TeCF₃]₂ kommt es zunächst zur Bildung eines dunklen Feststoffes, der manchmal blauschwarz, manchmal grünschwarz und metallisch schimmernd und dann wieder dunkelbraun ist. Er löst sich in allen Fällen mit oranger Farbe in Aceton und Acetonitril, während er an Luft sofort dunkelgrau bis schwarz wird.

Im 19 F-NMR-Spektrum der orangen Lösung werden lediglich die drei Signale einer C_6F_5 -Gruppe mit den Integralen 2:1:2 detektiert, deren chemische Verschiebung sich deutlich von denen des eingesetzten Eduktes $Te_2(C_6F_5)_2$ unterscheidet. Die ortho- Fluorresonanz ist gegenüber der von $Te_2(C_6F_5)_2$ etwas zu tiefem Feld verschoben, während die para-Fluorresonanz einen starken Hochfeldshift von über 7 ppm und die meta- Fluorresonanz einen von über 2,5 ppm erfährt.

Sie liegen damit in dem Bereich, in dem auch $Hg(TeC_6F_5)_2$ im ¹⁹F-NMR-Spektrum Resonanz zeigt **[41]**. Durch das elektropositivere Quecksilber sollte es im $Hg(TeC_6F_5)_2$ gegenüber $Te_2(C_6F_5)_2$ ebenfalls zu einer Erhöhung der Elektronendichte am Tellur kommen und somit die Änderung der chemischen Verschiebung die gleiche Tendenz haben.

Da eine eindeutige Identifizierung der Verbindung [TDAE][TeC₆F₅]₂ nicht möglich ist, wird sie im weiteren Verlauf in Anführungsstriche gesetzt.

Tah · Vergleich de	er ¹⁹ F-NMR-Daten von	$_{1}$ Te ₂ ($C_{c}F_{c}$) ₂	$H\sigma(TeC_{\epsilon}F_{\epsilon})_{\alpha}$ und	ITDAEIITeC.E.l."
rab vergicien ac		11 1021 061 572	, 115 (10001 5/2 und	39 1 D 1 1 D 1 1 C C 1 3 1 2

	Lösungs-	$\delta (F_o)$	$\delta\left(F_{p}\right)$	$\delta\left(F_{m}\right)$
	mittel	[ppm]	[ppm]	[ppm]
"[TDAE][Te C ₆ F ₅] ₂ "	Aceton	-113,2	-157,4	-162,7
$Hg(TeC_6F_5)_2$ [41]	DMSO	-112,5	-155,2	-161,3
$Te_2(C_6F_5)_2$	Pentan	-114,1	-150,1	-160,1

Abb.: Vergleich der $^{19}\text{F-NMR-Spektren von A)}$ $Te_2(C_6F_5)_2$ und B) "[TDAE][TeC_6F_5]_2"

Auch bei Temperaturen von -78 °C beginnt bereits nach einigen Minuten eine Zersetzung unter Bildung eines olivgrünen Feststoffs, der sich rasch schwarz färbt. Im schwarzen Rückstand ist elementares Tellur nachweisbar. Dies entspricht den bei [TDAE][TeCF₃]₂ gemachten Beobachtungen. Im Massenspektrum des Rückstands werden zunächst die Fragmente von TDAE sowie C₆F₅H^{*+} und bei Temperaturen oberhalb 300 °C wird schließlich Te⁺ und Te₂⁺ nachgewiesen. TeC₆F₅-haltige Fragmente oder andere Organotellur-Verbindungen werden nicht gefunden.

Bei der Zersetzung in Lösung wird neben C_6F_5H auch wieder $Te_2(C_6F_5)_2$ gebildet, welches bei erneuter Zugabe von TDAE wieder zu "[TDAE][Te C_6F_5]2" abreagiert. Bei der Zersetzung des Feststoffes an Luft und Extraktion des grauschwarzen Rückstandes mit Aceton finden sich im ^{19}F -NMR-Spektrum neben den Signalen von $Te_2(C_6F_5)_2$ noch die Resonanzen von $Te(C_6F_5)_2$ und einiger unbekannter Verbindungen.

Aufgrund der großen Empfindlichkeit ist eine Charakterisierung der Verbindung nicht möglich. Im 125 Te-NMR-Spektrum wird lediglich die Resonanz des Zersetzungsproduktes $Te_2(C_6F_5)_2$ detektiert und der Versuch, $[TeC_6F_5]$ - mittels ESI-Massenspektrum direkt in Lösung nachzuweisen, scheitert an dem ausfallenden Feststoff, der das Einlaßsystem zusetzt.

Daher läßt sich nicht abschließend beurteilen, ob bei der Reaktion von TDAE mit $Te_2(C_6F_5)_2$ die gewünschte Zielverbindung $[TDAE][TeC_6F_5]_2$ und somit das zum $[TeCF_3]^-$ analoge Pentafluorphenyltellurat(0) entstanden ist. Allerdings sind die Ähnlichkeiten bei der Zersetzung und das ^{19}F -NMR-Spektrum Indizien für die Bildung von $[TDAE][TeC_6F_5]_2$.

3 Darstellung und Reinigung der Ausgangssubstanzen

- Bis(trifluormethyl)quecksilber:

Hg(CF₃)₂ wird nach **[66]**, unter Zusatz von K₂CO₃, durch Decarboxylierung von Quecksilberbis(trifluoracetat) dargestellt und in einem Soxhlet-Extraktor durch Extraktion mit Dichlormethan gereinigt. Quecksilberbis(trifluoracetat) wird nach der gleichen Literarturvorschrift durch Umsetzung von Quecksilberoxid mit Trifluoressigsäure synthetisiert.

- Octamethyloxamidiniumdibromid:

Die Darstellung von [TDAE]Br₂ erfolgt nach [136] durch langsame Zugabe von in Diethylether gelöstem Brom zu einer Lösung von TDAE in Diethylether bis die überstehende Lösung sich nicht mehr entfärbt. Der beige, fast weiße Feststoff wird abfiltriert, mit Diethylether gründlich gewaschen und aus Aceton umkristallisiert.

- Bis (trifluor methyltellur) queck silber:

Nach der Vorschrift von Boye [31] wird $Hg(TeCF_3)_2$ durch Umsetzung von $Te_2(CF_3)_2$ mit Quecksilber bei 50 °C in Acetonitril dargestellt. Die gelbe Lösung wird von überschüssigem Quecksilber abpipettiert und im Ölpumpenvakuum bei $1\cdot10^{-3}$ mbar das Lösungsmittel abdestilliert. $Hg(TeCF_3)_2$ verbleibt als lichtempfindliches hellbeiges Pulver.

- Bis(pentafluorphenyl)tellur:

In Anlehnung an [127] wird $Te(C_6F_5)_2$ mittels Magnesium-Grignard aus C_6F_5I und $TeCl_4$ in Diethylether dargestellt. Nach dem Ausschütteln der Salze mit Wasser wird das Lösungsmittel abdestilliert. Der verbleibende ölige Rückstand wird im Ölpumpenvakkuum bei $1\cdot 10^{-3}$ mbar

72

und 45 °C möglichst bis zur Trockene eingeengt. Anschließend sublimiert $\text{Te}(C_6F_5)_2$ ab 50 °C

aus dem Rückstand und wird durch nochmalige Sublimation gereinigt.

- Bis(pentafluorphenyl)ditellur:

 $Te_2(C_6F_5)_2$ wird nach [41] durch vierzehntägige Belichtung von $Te(C_6F_5)_2$ in Furan dargestellt

und nach dem Abdestillieren des überschüssigen Furans durch fraktionierte Sublimation aus

dem Rückstand isoliert. Zur vollständigung Abtrennung von mitgeschlepptem Te(C₆F₅)₂ wird

aus Pentan umkristallisiert.

- Trifluoriodmethan:

CF₃I wurde freundlicherweise von D. Langen und J. Mehrabani zur Verfügung gestellt.

- käuflich erworbene Chemikalien:

Die eingesetzten Lösungsmittel wurden nach Literaturmethoden [137] absolutiert und über

Trockenmitteln unter Stickstoffatmosphäre gelagert.

CF₃COOH und TDAE wurden vor Verwendung durch Destillation gereinigt, alle anderen

Substanzen wurden ohne weitere Reinigung eingesetzt.

Aceton p. a. E. Merck, Darmstadt

Aceton-d₆ Deutero-GmbH, Kastellaun

Acetonitril p. a. Acros, Geel, Belgien

Acetonitril-d₃ Deutero-GmbH, Kastellaun

Antimon(III)iodid Strem-Chemicals Inc., Newburyport, M.A., USA

Celite[®] E. Merck, Darmstadt

Deutero-GmbH, Kastellaun

Deuterooxid Aldrich, Steinheim

Dichlormethan Riedel-de Haën, Seelze

Diglyme Riedel-de Haën, Seelze

Furan Fluka, Buchs, CH

Iodethan Acros, Geel, Belgien Kaliumcarbonat E. Merck, Darmstadt

Kieselgel E. Merck, Darmstadt

Kupferpulver (< 63µm) E. Merck, Darmstadt

Perfluorpolyether (7 cST) ABCR, Karlsruhe

Propionitril Acros, Geel, Belgien

Quecksilber(II)chlorid E. Merck, Darmstadt

Quecksilber(II)oxid (rot) E. Merck, Darmstadt

Silberacetat E. Merck, Darmstadt

Silbernitrat Degusssa, Frankfurt

TDAE Fluka, Buchs, CH

Tellur(IV)chlorid Acros, Geel, Belgien

Tellurpulver (< 74µm) E. Merck, Darmstadt

Toluol E. Merck, Darmstadt

Toluol-d₈ Deutero-GmbH, Kastellaun

Trifluoressigsäure Solvay Fluor und Derivate GmbH

4 Analyse- und Meßmethoden

- NMR-Spektroskopie:

Die NMR-Spektren wurden mit den NMR-Spektrometern AC 200 und AMX 300 der Firma Bruker, Analytische Meßtechnik GmbH, Karlsruhe aufgenommen

Tab.: Meßfrequenzen und Standardsubstanzen:

-	AC 200	AMX 300	
Kern	[MHz]	[MHz]	Standard
$^{1}\mathrm{H}$	200,13	300,1	Si(CH ₃) ₄
¹³ C	50,32	75,47	Si(CH ₃) ₄
¹⁹ F	188,31	282,35	CCl ₃ F
¹²⁵ Te	_	94,7	$Te(CH_3)_2$

Die chemischen Verschiebungen sind in ppm angegeben. Ein negatives Vorzeichen bedeutet eine Verschiebung zu hohem Feld bzw. niedriger Frequenz. Kopplungen sind als Beträge in Hertz angegeben. Vorzeichen wurden nicht bestimmt. Die Angabe der Isotopenshifts erfolgt nach der Nomenklatur von Gombler [71], wobei ein negatives Vorzeichen eine Verschiebung zu hohem Feld bedeutet. Wenn keine Multiplizitäten angegeben sind, handelt es sich um Singuletts.

Die Simulation der Spektren erfolgte mit dem Programm gNMR V 4.1.0 für Windows der Firma Ivory Soft, im Vertrieb bei Cherwell Scientific Publishing.

- Massenspektrometrie:

Die Massenspektren wurden mit den Massenspektrometern CH5 und Thermo Quest Finnigan MAT 95 der Firma Finnigan MAT GmbH, Bremen aufgenommen. Die Ionisierung erfolgt durch Ionenstoß. Ionisierungsenergie und Probentemperatur werden bei den Spektren angegeben. Die angegebenen m/z-Werte beziehen sich immer auf den intensivsten Peak eines Isotopengatters. Zuordnungen werden durch Vergleich mit den berechneten Gattern getroffen.

- GC/MS:

Verwendet wurde ein Gaschromatograph Varian 3400 mit einer Säule Optima 5 (5% Diphenylpolysiloxan, 95% Dimethylpolysiloxan) und Helium als Trägergas. Die GC ist gekoppelt mit dem Massenspektrometer Finnigan MAT Incos 50.

- Infrarot- und Raman-Spektroskopie:

Die IR-Spektren wurden mit den FT-IR-Spektrometern 5PC der Firma Nicolet und IFS66v/S der Firma Bruker aufgenommen, die Raman-Spektren mit dem Spektrometer FRA 106/S der Firma Bruker. Die Intensitäten in den Raman-Spektren sind relativ zum intensivsten Peak angegeben, der auf den Wert von 1 normiert wurde.

- Elementaranalysen:

Fluor:

Verbrennung der Substanz im sauerstoffgefüllten PE- oder Glaskolben und anschließende potentiometrische Messung mit einer fluorspezifischen Elektrode der Firma Metrohm, sowie Bezugselektrode und NaF-Standardlösung nach Standard-Additionsmethode [138].

Tellur:

Die Substanz wird sauer aufgeschlossen und anschließend potentiometrisch titriert [139].

C, H, N:

Die CHN-Analysen wurden mit einem Gerät vom Typ CHNO Rapid der Firma Heraeus durchgeführt. Als Trägergas wurde Helium verwendet.

-Röntgenstrukturanalyse:

Die Sammlung der Röntgenbeugungsdaten wurde mit einem STOE-Diffraktometer (IPDS-Flächenzähler, MoK α -Strahlung: $\lambda=71,073$ pm, Graphitmonochromator, Steuerrechner DEC Alpha) durchgeführt.

Die Zeichnungen wurden mit Diamond V 1.2 und V 2.1a für Windows der Firma Crystal Impact GbR, angefertigt.

5 Experimenteller Teil

Alle Umsetzungen wurden mit Schlenk- und Standardvakuum-Techniken unter Luft- und Feuchtigkeitsausschluß in einer Stickstoffatmosphäre durchgeführt. Alle festen Substanzen wurden vor der Reaktion im Vakuum getrocknet und die Glasgefäße im Vakuum ausgeheizt.

5.1 Untersuchungen zur Darstellung von Bis(trifluormethyl)tellur

5.1.1 Darstellung von Te(CF₃)₂ aus CF₃I

Die gewünschte Menge CF₃I wird in eine skalierte, auf -196 °C gekühlte Kühlfalle einkondensiert und diese dann zur Ermittlung der exakten Menge gewogen. In einer Glasampulle mit angesetztem Young-Teflon-Hahn wird dann die benötigte Menge eines Gemischs aus Tellur- und Kupferpulver vorgelegt und das CF₃I aus der Kühlfalle in das Young-Hahn-Gefäß umkondensiert. Anschließend wird die Glasampulle bei -196 °C im dynamischen Ölpumpenvakuum evakuiert. Das Reaktionsgemisch wird mehrmals geschüttelt und 40 h auf 180 °C erhitzt. Te(CF₃)₂ färbt dabei das Reaktionsgefäß gelb. Nach Beendigung der Reaktion wird erneut auf -196 °C gekühlt, evakuiert und Te(CF₃)₂ sowie nicht umgesetztes CF₃I können nach dem Auftauen im Vakuum abdestilliert werden. Die Ausbeuten beziehen sich auf CF₃I und sind durch Auswiegen des Rohprodukts unter Berücksichtigung des CF₃I-Anteils im ¹9F-NMR-Spektrum ermittelt worden, da unter den gewählten Reaktionsbedingungen nur fluorhaltige Produkte zu erwarten sind.

Beispielhaft sind hier drei Ansätze aufgeführt:

	Ansatz 1		Ar	nsatz 2	Ansatz 3		
CF ₃ I	4,72 g	24,1 mmol	9,44 g	48,2 mmol	5,35 g	27,3 mmol	
Те	9,20 g	72,1 mmol	18,37 g	144,0 mmol	10,45 g	81,9 mmol	
Cu	4,57 g	71,9 mmol	9,15 g	144,0 mmol	5,15 g	81,0 mmol	
Ausbeute	1,08 g	4,1 mmol	1,65 g	6,2 mmol	1,18 g	4,4 mmol	
	34%			26%		32%	
$CF_3I : Te(CF_3)_2$ a)	1:8,2		1:1,85		1	: 4,6	
a) Verhältnis der In	^{a)} Verhältnis der Integrale im ¹⁹ F-NMR-Spektrum						

Anschließend werden $Te(CF_3)_2$ und CF_3I durch eine fraktionierte Tieftemperaturdestillation im Ölpumpenvakuum bei $1\cdot 10^{-3}$ mbar getrennt. Dazu wird der Destillationskolben mit dem $Te(CF_3)_2/CF_3I$ -Gemisch auf -78 °C gekühlt und die abdestillierten Substanzen werden in drei hintereinander geschalteten Kühlfallen kondensiert.

1.Kühlfalle: -108 °C (THF / N_2) 2.Kühlfalle: -116 °C (Et₂O / N_2)

3.Kühlfalle: -196 °C (N_2)

Die Hauptmenge Te(CF₃)₂ findet sich in der ersten Kühlfalle sowie geringe Mengen in der zweiten. CF₃I wird in der dritten Kühlfalle aufgefangen und kann in der zweiten Kühlfalle nur in Spuren nachgewiesen werden. Wird die erste Kühlfalle ebenfalls auf eine Temperatur von -116 °C gekühlt, gelingt keine vollständige Trennung.

Tab.: ¹⁹F-NMR-Daten des erhaltenen Te(CF₃)₂ (ohne LM; Lock:Kapillare mit Aceton-d6 / CCl₃F)

	nach Darstellung		nach 1. De	estillation	nach 2. Destillation	
Zuordnung	δ [ppm]	Integral	δ [ppm]	Integral	δ [ppm]	Integral
CCl₃F	0,0	0,0012	0,0	0,0044	0,0	0,1795
CF ₃ I	-5,3	1,0000	-5,3	1,0000	-5,8	1,0000
$Te(CF_3)_2$	-21,6	4,6209	-21,6	22,022	-21,8	1136,1
$Te_2(CF_3)_2$	-26,7	0,0039	_	-	-	-

Tab.: ¹⁹F-NMR-Daten von Te(CF₃)₂ (ohne LM; Lock:Kapillare mit Aceton-d6 / CCl₃F)

δ [ppm]	Zuordnung	Kopplungen
-21,6	Te(CF ₃) ₂	${}^{1}J({}^{19}F^{-13}C) = 351 \text{ Hz}$ ${}^{2}J({}^{125}Te^{-19}F) = 30,5 \text{ Hz}$ ${}^{4}J({}^{19}F^{-19}F) = 7,6 \text{ Hz}$

Tab.: ¹⁹F-NMR-Daten von Te(CF₃)₂ (in Furan; Lock: Aceton-d6, extern)

δ [ppm]	Zuordnung	Kopplungen
-21,8	Te(CF ₃) ₂	${}^{1}J({}^{19}F_{-}{}^{13}C) = 353 \text{ Hz}$ ${}^{2}J({}^{123/125}Te_{-}{}^{19}F) = 44,3 / 53,4 \text{ Hz}$ ${}^{4}J({}^{19}F_{-}{}^{19}F) = 6,5 \text{ Hz}$

5.1.2 Darstellung von Te(CF₃)₂ aus Hg(CF₃)₂

In einem 250 ml Rundkolben mit Seitenhahn, angeschlossen an drei in Serie geschaltete Kühlfallen (0 °C / -78 °C / -130 °C (Pentan / N_2)) mit abschließendem Blasenzähler, werden in einem typischen Ansatz 9,6 g (75 mmol) Tellurpulver und 1,6 g (25 mmol) Kupferpulver mit 8,5 g (25 mmol) Hg(CF₃)₂ gründlich vermischt und für zwei bis drei Stunden in einem vorgeheitzten Ölbad oder mit einem Heißluftfön auf 240°C erhitzt. Die Reaktion ist beendet, wenn die Gelbfärbung im Gasraum des Reaktionskolbens verschwunden ist. Während der Reaktion wird ein leichter Stickstoffstrom durch den Reaktionskolben geleitet und damit das entstehende $Te(CF_3)_2$ in die angeschlossenen Kühlfallen geleitet.

In der ersten Kühlfalle (0 °C) findet sich nur sublimiertes $Hg(CF_3)_2$ sowie eine geringe Menge $Te_2(CF_3)_2$. Die in der zweiten Kühlfalle (-78 °C) kondensierte tiefgelbe bis orange Flüssigkeit enthält als Hauptkomponente $Te(CF_3)_2$ und wenig $Te_2(CF_3)_2$. In einigen Fällen sind im ^{19}F -NMR-Spektrum noch Spuren von $Hg(CF_3)_2$ nachweisbar. In der dritten Kühlfalle (-130 °C) findet sich ausschließlich hellgelbes $Te(CF_3)_2$.

Wird für die dritte Kühlfalle eine höhere Temperatur gewählt oder der Stickstoffstrom zu stark eingestellt, kommt es durch mitgeschlepptes Te(CF₃)₂ zu Ausbeuteverlusten – erkennbar an der Gelbfärbung des Blasenzählers.

In Reaktionskolben und Übergangsstück sublimiertes, durch Quecksilber grau gefärbtes $Hg(CF_3)_2$, kann größtenteils zurückgewonnen werden und wird nach Vereinigung mehrerer Ansätze, wie in Kapitel 2.1.2 beschrieben, nach [66] aufgearbeitet.

Die Ausbeuten beziehen sich auf $Hg(CF_3)_2$ und sind durch Auswiegen des Rohprodukts abzüglich des Anteils der weiteren im ^{19}F -NMR-Spektrum detektierten Verbindungen ermittelt worden, da unter den gewählten Reaktionsbedingungen nur fluorhaltige Verunreinigungen im $Te(CF_3)_2$ zu erwarten sind.

Beispielhaft sind hier der Ansatz mit der besten Ausbeute (1) und der größte Ansatz (2) aufgeführt:

	Ansatz 1		Ansatz 2	
Te	9,02 g	70,7 mmol	22,60 g	177,1 mmol
Cu	1,51 g	23,8 mmol	3,78 g	59,5 mmol
$Hg(CF_3)_2$	8,02 g	23,7 mmol	20,06 g	59,2 mmol
Ausbeute	3,06 g	11,5 mmol	5,46 g	20,6 mmol
	48,5%		34,8%	

Tab.: ¹⁹F-NMR-Daten des Rohproduktes (2. und 3. Kühlfalle) (MeCN, Lock: Kapillare mit Aceton-d6 / CCl₃F)

δ [ppm]	Integral	Zuordnung	Kopplungen
0,00		CCl ₃ F	Standard
-23,60	31,252	Te(CF ₃) ₂	$^{1}J(^{19}F_{-}^{13}C) = 353,2 \text{ Hz}; ^{1}\Delta^{19}F(^{13/12}C) = -0,1407 \text{ ppm}$ $^{2}J(^{123/125}Te_{-}^{19}F) = 69,5 / 83,6 \text{ Hz}$ $^{4}J(^{19}F_{-}^{19}F) = 6,8 \text{ Hz}$
-26,99	1,000	$Te_2(CF_3)_2$	2 J(125 Te- 19 F) = 123,2 Hz
-39,12	0,074	$Hg(CF_3)_2$	

81

5.2 Untersuchungen an Bis(trifluormethyl)ditellur

5.2.1 Reinigung von Bis(trifluormethyl)ditellur

Das durch Belichtung (Tageslichtlampe: Südlicht HSL-B 125 W TT F9) von Te(CF₃)₂ in Furan

[30,62] gebildete Te₂(CF₃)₂ muß in einem mehrstufigen Reinigungsprozeß von Nebenprodukten

und Lösungsmitteln getrennt werden. Alle Arbeitsschritte müssen inert erfolgen, da sich

Te₂(CF₃)₂ an Luft langsam unter Tellurabscheidung zersetzt.

1.) Entfernung von überschüssigem Furan und Abtrennung der CF₃-Furan-Derivate:

Bei Normaldruck werden bei 50 °C Ölbadtemperatur überschüssiges Furan und

Te(CF₃)₂-Reste über eine Vigreux-Kolonne abdestilliert. Anschließend wird die Temperatur

auf 85 °C erhöht und das bei der Belichtung gebildete 2-Trifluormethylfuran vollständig, sowie

die teilgesättigten Verbindungen 2,3-Dihydro-2-trifluormethylfuran und 2,5-Dihydro-

2-trifluormethylfuran teilweise abgetrennt. Die Destillation wird abgebrochen, wenn im Sumpf

keine Gasentwicklung mehr zu beobachten ist. Eine weitere Erhöhung der Temperatur ist nicht

sinnvoll, da es zu einer verstärkten Zersetzung von Te₂(CF₃)₂ kommt.

2.) Abtrennung aller verbliebenen Nebenprodukte:

Zur vollständigen Entfernung der verbliebenen Nebenprodukte erfolgt eine Trennung

über eine inerte Chromatographiesäule über ausgeheiztes Kieselgel mit einer Sperrschicht aus

Celite® und Pentan als Laufmittel. Die Fraktionen werden mittels einer Spinne gewechselt;

Te₂(CF₃)₂, erkennbar an seiner orangen Farbe, wird als erste Verbindung eluiert.

– Daten zur Säulenchromatographie von Te₂(CF₃)₂:

Laufmittel: Pentan

 $(R_f$ -Wert aus DC: 0,70)

stationäre Phase: Kieselgel 60 (Merck, Korngröße 63 - 200 μ m, pH 7,0 \pm 0,5)

Säule: 15 x 2,5 cm und 20 x 3,0 cm

3.) Vollständige Abtrennung von Pentan:

Zunächst wird bei Normaldruck bis 60 °C Ölbadtemperatur die Hauptmenge Pentan

über eine Vigreux-Kolonne abdestilliert. Das aufgefangene Pentan ist durch mitgeschlepptes

Te₂(CF₃)₂ leicht gelb gefärbt. Wird im Sumpf keine Gasentwicklung mehr beobachtet, wird die

Destillation abgebrochen und das verbliebene tiefrote Te₂(CF₃)₂ im dynamischen

Ölpumpenvakuum $(1 \cdot 10^{-3} \text{ mbar})$ einer fraktionierten Tieftemperaturdestillation unterzogen.

Dazu wird das Pentan-haltige Te₂(CF₃)₂ auf -196 °C gekühlt und langsam auf Raum- temperatur erwärmt. Es werden drei Fraktionen genommen.

1. Kühlfalle: -64 °C (CHCl₃ / N₂)

2. Kühlfalle: -78 °C (Isopropanol / Trockeneis)

3. Kühlfalle: -196 °C (N₂)

Das Hauptvolumen, eine in der Kälte orangerote, bei Raumtemperatur tiefrote Flüssigkeit, wird in der ersten Kühlfalle aufgefangen und besteht laut ¹⁹F-NMR- und IR-Spektrum nur noch aus Te₂(CF₃)₂ und Spuren von Pentan. In der zweiten Kühlfalle finden sich einige Tropfen einer orangen Flüssigkeit, die hauptsächlich Te₂(CF₃)₂, wenig Te(CF₃)₂ sowie mehrere unbekannte fluorhaltige Verbindungen und Pentan enthält. Die dritte Kühlfalle enthält deutlich mehr Flüssigkeit als die zweite Kühlfalle. Hierbei dürfte es sich hauptsächlich um Pentan handeln, da sie nur gelb gefärbt ist und als fluorhaltige Hauptkomponente das schon in kleinen Mengen intensiv färbende Te₂(CF₃)₂ enthält. Daneben werden im ¹⁹F-NMR-Spektrum noch Te(CF₃)₂ sowie mehrere Signale von unbekannten leichtflüchtigen fluorhaltigen Verbindungen detektiert. In den ¹H-NMR- Spektren ist nur Pentan zu detektieren. Te(CF₃)₂ stammt aus der Zersetzung von Te₂(CF₃)₂ und wird laufend nachgebildet, was nach jedem Umkondensieren an einem verbleibenden Tellurspiegel sichtbar ist.

Tab.: a) ¹⁹F-NMR-Daten des Inhalts der 2. Kühlfalle (-78°C), Pentan (Lock: Kapillare mit Aceton-d6 / CCl₃F) b) ¹⁹F-NMR-Daten des Inhalts der 3. Kühlfalle (-196°C), Pentan (Lock: Aceton-d6, extern)

•		a)				b)	
δ [ppm]	Integr.	Zuordnung	Kopplungen	δ [ppm]	Integr.	Zuordnung	Kopplungen
0,0		CCl ₃ F					
-20,3	25,85	$Te(CF_3)_2$	2 J(125 Te- 19 F) = 33,4 Hz	-21,0	10,35	$Te(CF_3)_2$	
-25,6	244,13	$Te_2(CF_3)_2$	${}^{1}J({}^{19}F - {}^{13}C) = 357,6 \text{ Hz}$ ${}^{2}J({}^{125}Te - {}^{19}F) = 86,8 \text{ Hz}$	-26,4	23,80	$Te_2(CF_3)_2$	2 J(125 Te- 19 F) = 81,4 Hz
-64,4	3,26			-65,4	2,48		
-80,9	9,69		Dublett $(J = 7.6 \text{ Hz})$	-81,7	7,45		
-82,6	1,58			-83,4	1,16		
-84,5	1,00			-85,3	1,00		
-115,0	1,30						

Die vollständigen NMR-Daten von $Te_2(CF_3)_2$ sind in Kapitel 2.2.2 beschrieben, die Schwingungsspektren werden in Kapitel 2.2.3 besprochen.

5.3 Darstellung und Eigenschaften von Octamethyloxamidiniumbis(trifluormethyltellurat(0))

5.3.1 Darstellung von Octamethyloxamidiniumbis(trifluormethyltellurat(0))

Ansatz in Diethylether 1:1

Ansatz					
$Te_2(CF_3)_2$	1,98 g	5,04 mmol			
TDAE	1,04 g (1,2 ml)	5,19 mmol			
Et_2O	10 ml	l			

Zu einer auf -30 °C gekühlten leuchtend orangen Lösung von Te₂(CF₃)₂ in 5 ml Diethylether werden in einer Argonhose in einem starken Stickstoffgegenstrom 5 ml einer gelben, auf -30 °C gekühlten TDAE-Diethylether-Lösung zugegeben und 30 min gerührt. Die Reaktionslösung färbt sich tiefrot und nach wenigen Minuten – manchmal auch sofort – bildet sich ein oranger Niederschlag, der sich rasch absetzt und nach dem Abpipettieren der überstehenden gelben Lösung zur Entfernung von überschüssigem TDAE zwei mal mit je 5 ml -30 °C kaltem Diethylether gewaschen wird. Der Ether wird möglichst vollständig abpipettiert und der verbleibende luft- und temperaturempfindliche orange Niederschlag bei -30 °C im Ölpumpenvakuum getrocknet.

- Ausbeute [TDAE][TeCF₃]₂: (100% bezogen auf $Te_2(CF_3)_2 = 2,99 \text{ g}$) 2,87 g (96%)

Tab.: Massenspektrum von [TDAE][TeCF₃]₂

m / z	rel. Intensität [%]	Zuordnung	m / z	rel. Intensität [%]	Zuordnung
394	27,9	$Te_2(CF_3)_2^{\bullet+}$	130	12,1	Te*+
325	21,8	$Te_2(CF_3)^+$	113	29,6	$((CH_3)_2N)_2C=CH^+$
256	17,9	Te ₂ •+	101	30,5	$((CH_3)_2N)_2CH^+$
200	69,6	TDAE*+	85	100	$(CH_3)_2N-C=NCH_3^+$
199	9,3	$Te(CF_3)^{\bullet+}$	69	23,9	CF ₃ ⁺
185	48,2	TDAE(-CH ₃) ⁺	58	9,6	$H_2C=N(CH_3)_2^+$

– Alle Te-haltigen Fragmente können anhand der berechneten Isotopengatter eindeutig zugeordnet werden

$\textbf{5.3.2} \quad NMR-Spektren \ \ von \ Octamethyloxamidinium bis (trifluor methyl tellurat (0))$

Tab.: 1 H-NMR-Spektrum von [TDAE][TeCF $_{3}$] $_{2}$ in AN bei -30 ${}^{\circ}$ C (Lock: Kapillare mit Aceton-d $_{6}$ / CCl $_{3}$ F)

δ [ppm]	Integral	Zuordnung
3,14	6,79	CH ₃
3,42	6,76	CH_3

Tab.: ¹³C-NMR-Daten von [TDAE][TeCF₃]₂ in verschiedenen Lösungsmitteln bei -30 °C und -50 °C

Lösungsmittel	δ [ppm]	Zuordnung	Kopplungen [Hz]
CD ₃ CN (-30 °C):	43,5 (qq)	CH ₃	1 J(13 C- 1 H) = 143,3 / 4 J(13 C- 1 H) = 3,2
	44,2 (qq)	CH_3	${}^{1}J({}^{13}C - {}^{1}H) = 143.9 / {}^{4}J({}^{13}C - {}^{1}H) = 3.1$
	91,6 (q)	CF ₃	$^{1}J(^{19}F^{-13}C) = 348,6$
	156,2	\mathbf{C}_{q}	
Aceton-d ₆ (-50 °C):	43,2 (q)	CH_3	1 J(13 C- 1 H) = 143,2
	43,8 (q)	CH_3	${}^{1}J({}^{13}C - {}^{1}H) = 144,6$
	92,1 (q)	CF ₃	${}^{1}J({}^{19}F_{-}{}^{13}C) = 351,6$
	156,1	$\mathbf{C}_{ ext{q}}$	
{1H} Aceton-d ₆ (-50 °C):	43,1	CH_3	
	43,6	CH_3	
	92,1 (q)	CF ₃	1 J(19 F- 13 C) = 348,6
	156,0		

Tab.: ¹⁹F-NMR-Daten von [TDAE][TeCF₃]₂ in verschiedenen Lösungsmitteln bei -30 °C und -50 °C

Lösungsmittel	δ [ppm]	Kopplungen [Hz]		Isotopenshift [ppm]
		2 J($^{123/125}$ Te- 19 F)	¹ J(¹⁹ F- ¹³ C)	$^{1}\Delta^{19}F(^{13/12}C)$
CD ₃ CN (-30 °C):	0,45	206,0 / 244,1	348,4	-0,1823
CH ₃ CN (-30 °C):	1,81	203,5 / 244,1	345,9	-0,162
Aceton-d ₆ (-50 °C):	-0,20	-/241,3	_	_

Tab.: 125 Te-NMR-Daten von [TDAE][TeCF $_3$] $_2$

Lösungsmittel	δ [ppm]
CH ₃ CN (-30 °C, Lock Aceton-d ₆ extern)	581
Aceton- d_6 (-70 °C):	502

5.3.3 Schwingungsspektren von Octamethyloxamidiniumbis(trifluormethyltellurat(0))

[TDAE][TeCF₃]₂ wurde als KBr- und PE-Preßling gemessen. Die IR-Proben wurden in einer Argon-Box mit KBr- bzw. PE-Pulver gemörsert und in die Preßwerkzeuge gefüllt.

Tab.: IR- und F-IR-Spektrum von [TDAE][TeCF₃]₂

IR [IR [cm ⁻¹]		[cm ⁻¹]	Zuordnung
2969	w-m, br			ν C - H
1669	s, sh			$\nu \text{ CN}_2$
1655	S			$\nu \text{ CN}_2$
1510	W			
1466	m, br			
1399	m			
1258	m			
1206	w-m			
1179	w-m			
1099	m, sh			
1055	VS			ν C-F
1015	S			ν C-F
885	w-m			
868	m			
710	w-m			
647	w-m	645	m	
		364	w-m	
		353	W	
		311	m, br	
		279	m	
		162	w, br	
		70	m, br	
		61	m, sh	
		43	W	

Für eine Raman-Messung wurde kristallines Material in einem Glasrohr abgeschmolzen und bei kleinster Laserleistung gemessen. Es erfolgte sofortige Zersetzung im Brennpunkt des Lasers.

5.3.4 Kristallstruktur von Octamethyloxamidiniumbis(trifluormethyltellurat(0))

Tab.: [TDAE][TeCF₃]₂.Kristalldaten und Angaben zur Strukturbestimmung.

	$[C(N(CH_3)_2)_2][TeCF_3]_2$
Summenformel	$C_{12}H_{24}F_6N_4Te_2$
Molmasse (g mol ⁻¹)	593,55
Gitterparameter a (pm)	1208,2(1)
b (pm)	1501,2(2)
c (pm)	2316,4(3)
Zellvolumen (nm³)	4,2014(9)
Formeleinheiten	8
Kristallsystem	orthorhombisch
Raumgruppe	Pcab (Nr. 61)
Kristallform	Quader
Farbe	orange
Kristallgröße (mm)	$0.41 \cdot 0.21 \cdot 0.25$
Messtemperatur (K)	170
Absorptionskorrektur	numerisch
$T_{\min/\max}$	0,5223 / 0,6973
Messbereich $\theta_{\min/\max}$ (°)	2,34 / 26,00
Indexbereich h _{min/max}	-15 / 15
${ m k_{min/max}}$	-19 / 19
$l_{ m min/max}$	-30 / 30
F(000)	2256
Absorptionskoeffizient (mm ⁻¹)	2,830
R_{int}	0,1238
gemessene Reflexe	39767
unabhängige Reflexe	4124
beobachtete Reflexe	3339
σ-Schranke	$[I > 2\sigma(I)]$
S ₂ (beob./sämtl. Daten)	1,131 / 1,048
R_1 "	0,0325 / 0,0419
wR_2 "	0,0840 / 0,0870
$\Delta \rho_{\text{min/max}} (10^6 \text{e} \cdot \text{pm}^{-3})$	-0,595 / 0,971
Anzahl Parameter	218
Δ /σ	-0,001

Anmerkungen:

 F_{o} und F_{c} entsprechen den beobachteten und berechneten Strukturfaktoren.

$$Es \ gilt: \ R_1 = \Sigma \ | \ |F_o| - |F_c| \ | \ / \ \Sigma \ |F_o|, \ w \\ R_2 = [\ \Sigma \ w \ (\ |F_o|^2 - |F_c|^2 \)^2 \ / \ \Sigma \ w \ (\ |F_o|^2 \)^2 \]^{1/2},$$

 $S_2 = [\ \Sigma \ w \ (\ |F_o|^2 - |F_c|^2 \)^2 \ / \ (n-p) \]^{1/2}. \ Die \ minimierte \ Funktion \ ist \ w (\ |F_o|^2 - |F_c|^2 \)^2 \ mit \ dem$

Gewichtsschema $w = 1 / [\sigma^2 (F_o)^2 + (0.0458 \cdot P)^2 + 2.598 \cdot P]$ mit $P = (F_o^2 + 2F_c^2) / 3$.

Die sekundäre Extinktion wird über $F_c^* = k \; F_c \; [1+0,001 \; \cdot \; |F_c|^2 \; \lambda^3 \; / \; sin(2\theta)]^{-1/4}$ berücksichtigt.

Für die Röntgenstrukturanalyse geeignete Kristalle wurden durch langsames Aufkondensieren von Diethylether auf eine Lösung von [TDAE][TeCF₃]₂ in Acetonitril erhalten. Dazu wird ein Stickstoff-Überdruck auf die Apparatur gegeben und der Diethylether ausschließlich durch das

bestehende Temperaturgefälle zwischen der -30 °C kalten Acetonitril-Lösung und dem bei Raumtemperatur bevorrateten Ether umkondensiert.

Nach dem Abpipettieren der überstehenden Lösung werden die Kristalle bei -30 °C in einem kalten, trockenen Stickstoffstrom in einem bei -54 °C erstarrenden Perfluorpolyether auf einem Markröhrchen zentriert, eingefroren und bei -103 °C vermessen.

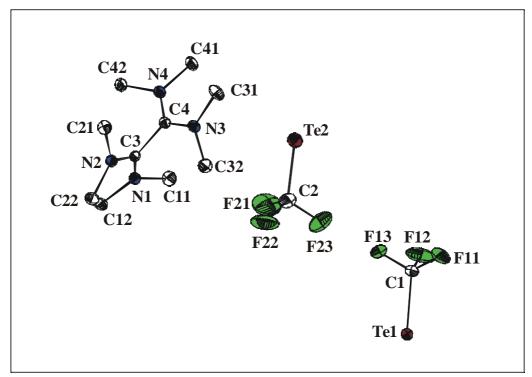


Abb.: Kristallstruktur von [TDAE][TeCF₃]₂ (mit thermischen 50%-Ellipsoiden)

Tab.: [TDAE][TeCF₃]₂, ausgewählte interatomare Abstände und Winkel

	Abstand [pm]		Winkel [°]		Winkel [°]
Te1 – C1 C1 – F11 C1 – F12 C1 – F13	212,1 (4) 136,2 (6) 133,6 (6) 135,5 (6)	Te1 - C1 - F11 Te1 - C1 - F12 Te1 - C1 - F13	114,8(3) 114,9(3) 114,5(3)	F1 – C1 – F2 F2 – C1 – F3 F3 – C1 – F1	102,6 107,0 101,5
Te2 – C2 C2 – F21 C2 – F22 C2 – F23	212,4 (6) 134,5 (8) 133,4 (7) 132,4 (7)	Te2 – C2 – F21 Te2 – C2 – F22 Te2 – C2 – F23	116,4(4) 114,5(4) 114,0(4)	F1 – C2 – F2 F2 – C2 – F3 F3 – C2 – F1	99,9 104,9 105,3
C3 – C4 C3 – N1 C3 – N2 C4 – N3 C4 – N4	150,6 (5) 132,5 (5) 132,6 (5) 132,4 (5) 133,5 (5)	N1 - C3 - C4 - N4 N2 - C3 - C4 - N3 N1 - C3 - N2 N3 - C4 - N4	68,2(4) 67,0(4) 126,3(3) 125,9(3)		

Tab.: Atomlagen und isotrope Auslenkungsparameter (Standardabweichung). Die äquvalenten isotropen thermischen Parameter U_{eq} [10^{-20} m 2] sind über U_{eq} = 1/3 $S_{ij}U_{ij}a_i^*a_j^*(a_i$ x a_j) berechnet worden.

Atom	x/a	y/b	z/c	$ m U_{eq}$
Te1	0.69317(2)	-0.61234(2)	0.214261(11)	0.02917(10)
C1	0.7102(4)	-0.5587(3)	0.1300(2)	0.0376(10)
F11	0.7850(3)	-0.6016(2)	0.09591(13)	0.0631(9)
F12	0.6183(3)	-0.5608(4)	0.09801(14)	0.0886(14)
F13	0.7489(5)	-0.4740(2)	0.12841(14)	0.0868(14)
Te2	0.64826(3)	-0.19678(2)	0.032068(13)	0.03907(11)
C2	0.5793(6)	-0.2413(4)	0.1113(3)	0.059(2)
F21	0.4815(5)	-0.2036(4)	0.1243(2)	0.130(2)
F22	0.6374(6)	-0.2186(4)	0.1580(2)	0.128(2)
F23	0.5631(5)	-0.3282(3)	0.1164(2)	0.118(2)
C3	0.7153(3)	0.1052(2)	0.16093(15)	0.0199(7)
N1	0.6187(3)	0.0839(2)	0.18419(13)	0.0245(7)
C11	0.5463(4)	0.0162(3)	0.1575(2)	0.0355(9)
H11A	0.4803(4)	0.0096(3)	0.1802(2)	0.183(10)
H11B	0.5847(4)	-0.0397(3)	0.1557(2)	0.183(10)
H11C	0.5268(4)	0.0348(3)	0.1191(2)	0.183(10)
C12	0.5734(4)	0.1258(3)	0.2365(2)	0.0336(9)
H12A	0.5027(4)	0.1000(3)	0.2454(2)	0.183(10)
H12B	0.5647(4)	0.1886(3)	0.2301(2)	0.183(10)
H12C	0.6232(4)	0.1163(3)	0.2682(2)	0.183(10)
N2	0.7982(3)	0.1465(2)	0.18721(13)	0.0229(6)
C21	0.8843(4)	0.1933(3)	0.1536(2)	0.0323(9)
H21A	0.9374(4)	0.2192(3)	0.1795(2)	0.183(10)
H21B	0.8507(4)	0.2395(3)	0.1310(2)	0.183(10)
H21C	0.9209(4)	0.1518(3)	0.1286(2)	0.183(10)
C22	0.8167(4)	0.1476(3)	0.2502(2)	0.0354(10)
H22A	0.8818(4)	0.1817(3)	0.2587(2)	0.183(10)
H22B	0.8262(4)	0.0877(3)	0.2638(2)	0.183(10)
H22C	0.7539(4)	0.1740(3)	0.2689(2)	0.183(10)
C4	0.7344(3)	0.0792(2)	0.0989(2)	0.0226(7)
N3	0.8100(3)	0.0171(2)	0.08944(14)	0.0259(7)
C31	0.8699(4)	0.0061(4)	0.0344(2)	0.0411(11)
H31A	0.9204(4)	-0.0430(4)	0.0375(2)	0.183(10)
H31B	0.9103(4)	0.0596(4)	0.0260(2)	0.183(10)
H31C	0.8179(4)	-0.0054(4)	0.0040(2)	0.183(10)
C32	0.8470(4)	-0.0446(3)	0.1356(2)	0.0353(10)
H32A	0.9018(4)	-0.0845(3)	0.1204(2)	0.183(10)
H32B	0.7849(4)	-0.0783(3)	0.1494(2)	0.183(10)
H32C	0.8783(4)	-0.0109(3)	0.1668(2)	0.183(10)
N4	0.6746(3)	0.1207(2)	0.05863(14)	0.0260(7)
C41	0.6546(4)	0.0853(3)	0.0001(2)	0.0358(10)
H41A	0.6096(4)	0.1264(3)	-0.0213(2)	0.183(10)
H41B	0.6172(4)	0.0290(3)	0.0028(2)	0.183(10)
H41C	0.7240(4)	0.0773(3)	-0.0194(2)	0.183(10)
C42	0.6172(4)	0.2050(3)	0.0710(2)	0.0332(9)
H42A	0.5788(4)	0.2246(3)	0.0370(2)	0.183(10)
H42B	0.6703(4)	0.2492(3)	0.0823(2)	0.183(10)
H42C	0.5651(4)	0.1960(3)	0.1017(2)	0.183(10)

Tab.: Anisotrope thermische Auslenkungsparameter (Standardabweichung) [$10^{-20}~\text{m}^2$]

Atom	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Te1	0.0406(2)	0.0246(2)	0.0223(1)	-0.0011(1)	-0.0004(1)	-0.0004(1)
C1	0.055(3)	0.036(2)	0.022(2)	0.001(2)	-0.001(2)	0.002(2)
F11	0.073(2)	0.080(2)	0.037(2)	-0.007(2)	0.022(2)	0.004(2)
F12	0.057(2)	0.167(4)	0.042(2)	0.037(2)	-0.013(2)	0.014(3)
F13	0.179(5)	0.037(2)	0.044(2)	0.011(1)	0.018(2)	-0.022(2)
Te2	0.0391(2)	0.0434(2)	0.0347(2)	0.0010(1)	-0.004(2)	0.001(1)
C2	0.077(4)	0.048(3)	0.052(3)	0.007(2)	0.006(3)	-0.016(3)
F21	0.120(5)	0.162(5)	0.108(4)	0.023(3)	0.067(4)	0.011(4)
F22	0.195(6)	0.148(5)	0.041(2)	0.029(2)	-0.031(3)	-0.073(4)
F23	0.167(5)	0.063(2)	0.122(4)	0.026(2)	0.026(4)	-0.042(3)
C3	0.021(2)	0.020(2)	0.019(2)	0.0005(13)	-0.0018(13)	0.0061(14)
N1	0.027(2)	0.0233(15)	0.023(2)	-0.0001(12)	0.0025(13)	0.0009(13)
C11	0.029(2)	0.039(2)	0.039(2)	0.000(2)	-0.002(2)	-0.009(2)
C12	0.040(3)	0.034(2)	0.027(2)	0.002(2)	0.015(2)	0.006(2)
N2	0.027(2)	0.0232(15)	0.0185(15)	-0.0009(12)	-0.0039(13)	0.0014(13)
C21	0.025(2)	0.036(2)	0.036(2)	-0.004(2)	0.001(2)	-0.006(2)
C22	0.046(3)	0.037(2)	0.024(2)	0.001(2)	-0.014(2)	0.001(2)
C4	0.021(2)	0.024(2)	0.023(2)	-0.0004(14)	0.0015(15)	-0.0021(15)
N3	0.026(2)	0.030(2)	0.022(2)	-0.0043(13)	0.0025(13)	0.0037(14)
C31	0.036(3)	0.058(3)	0.029(2)	-0.012(2)	0.014(2)	0.005(2)
C32	0.038(3)	0.034(2)	0.034(2)	0.001(2)	-0.002(2)	0.012(2)
N4	0.031(2)	0.026(2)	0.020(2)	-0.0013(12)	-0.0027(13)	0.0012(13)
C41	0.049(3)	0.036(2)	0.022(2)	-0.006(2)	-0.008(2)	0.004(2)
C42	0.042(3)	0.030(2)	0.027(2)	-0.001(2)	-0.004(2)	0.008(2)

Tab.: Bindungsabstände (Standardabweichung)

Atom 1	Atom 2	Abstand [pm]
-		
Te1	C1	212,1(4)
C1	F12	133,6(6)
C1	F13	135,5(6)
C1	F11	136,2(6)
Te2	C2	212,4(6)
C2	F23	132,4(7)
C2	F22	133,4(7)
C2	F21	134,5(8)
C3	N1	132,5(5)
C3	N2	132,6(5)
C3	C4	150,6(5)
N1	C12	147,2(5)
N1	C11	147,7(5)
N2	C22	147,5(5)
N2	C21	147,7(5)
C4	N3	132,4(5)
C4	N4	133,5(5)
N3	C31	147,4(5)
N3	C32	148,3(5)
N4	C42	147,0(5)
N4	C41	147,7(5)

Tab.: Bindungswinkel (Standardabweichung)

Atom 1	Atom 2	Atom 3	Winkel [°]
F12	C1	F13	107.0(4)
F12	C1	F11	102.6(4)
F13	C1	F11	101.5(4)
F12	C1	Te1	114.9(3)
F13	C1	Te1	114.5(3)
F11	C1	Te1	114.8(3)
F23	C2	F22	104.9(5)
F23	C2	F21	105.3(6)
F22	C2	F21	99.9(6)
F23	C2	Te2	116.4(4)
F22	C2	Te2	114.5(4)
F21	C2	Te2	114.0(4)
N1	C3	N2	126.3(3)
N1	C3	C4	117.4(3)
N2	C3	C4	116.3(3)
C3	N1	C12	124.0(3)
C3	N1	C11	121.2(3)
C12	N1	C11	114.8(3)
C3	N2	C22	125.0(3)
C3	N2	C21	120.9(3)
C22	N2	C21	114.1(3)
N3	C4	N4	125.9(3)
N3	C4	C3	116.5(3)
N4	C4	C3	117.6(3)
C4	N3	C31	124.1(4)
C4	N3	C32	121.9(3)
C31	N3	C32	113.9(3)
C4	N4	C42	121.4(3)
C4	N4	C41	124.2(3)
C42	N4	C41	114.3(3)

Tab.: Torsionswinkel (Standardabweichung)

Atom 1	Atom 2	Atom 3	Atom 4	Winkel [°]
N2	C3	N1	C12	20.0(6)
C4	C3	N1	C12	-161.0(3)
N2	C3	N1	C11	-161.8(4)
C4	C3	N1	C11	17.2(5)
N1	C3	N2	C22	23.5(6)
C4	C3	N2	C22	-155.5(3)
N1	C3	N2	C21	-159.1(4)
C4	C3	N2	C21	21.9(5)
N1	C3	C4	N3	-112.1(4)
N2	C3	C4	N3	67.0(4)
N1	C3	C4	N4	68.2(4)
N2	C3	C4	N4	-112.7(4)
N4	C4	N3	C31	23.5(6)
C3	C4	N3	C31	-156.2(4)
N4	C4	N3	C32	-160.6(4)
C3	C4	N3	C32	19.7(5)
N3	C4	N4	C42	-162.2(4)
C3	C4	N4	C42	17.5(5)
N3	C4	N4	C41	21.5(6)
C3	C4	N4	C41	-158.9(4)

5.3.5 TeCF₃-Gruppenübertragung mit Octamethyloxamidiniumbis(trifluormethyltellurat(0))

5.3.5.1 Umsetzung mit Iodethan

Es wurden mehrere Übertragunsreaktionen mit verschiedenen Chargen [TDAE][TeCF₃]₂ aus unterschiedlichen Darstellungen durchgeführt. Zum einen mit [TDAE][TeCF₃]₂ aus der Darstellung in Diglyme mit einem Verhältnis von TDAE zu Te₂(CF₃)₂ von 1:1, zum anderen mit zwei Chargen aus Ansätzen in Diethylether. Bei ersterem handelt es sich um den in Aceton gelösten und erneut mit Diethylether aussgefällten Niederschlag aus der Umsetzung mit einem zweifachen Überschuß Te₂(CF₃)₂, bei letzterem um einen Ansatz mit einem Verhältnis von TDAE zu Te₂(CF₃)₂ von 1:1.

- [TDAE][TeCF₃]₂ aus der Darstellung in Diglyme:

Zu einer 15 min auf Raumtemperatur erwärmten Probe von [TDAE][TeCF₃]₂ in Acetonitril wird ein Überschuß Iodethan gegeben und kurz gerührt. Die orange Farbe verschwindet sofort und ein weißer Niederschlag tritt auf. Nach Absetzen des Niederschlags ist die überstehende Lösung hellgelb gefärbt. Auf eine Aufarbeitung wird wegen der geringen Mengen verzichtet.

Tab.: ¹⁹F-NMR-Daten in CH₃CN bei RT (Lock: Aceton-d₆, extern)

δ [ppm]	Integral	Zuordnung	Kopplungen [Hz]
-24,6	8,38	EtTeCF ₃	${}^{1}J({}^{19}F^{-13}C) = 351,0$ ${}^{2}J({}^{125}Te^{-19}F) = 91,6$
-26,7	1,00	$Te_2(CF_3)_2$ (?)	

- [TDAE][TeCF₃]₂ aus der Darstellung in Diethylether mit Überschuß Te₂(CF₃)₂:

Das [TDAE][TeCF₃]₂ aus der Darstellung in Diethylether mit dem zweifachen Überschuß Te₂(CF₃)₂ wurde zur Reinigung in Aceton gelöst und mit Diethylether erneut ausgefällt. Nach erneutem Lösen in Acetonitril bei -30 °C werden einige wenige Tropfen einer verdünnten und vorgekühlten Lösung von Iodethan in Acetonitril zugetropft, damit Iodethan im Unterschuß verbleibt. Die orange Reaktionslösung entfärbt sich nur wenig und nach einigen Minuten bildet sich ein heller Niederschlag. Die Probe wird nicht weiter aufgearbeitet.

Tab.: ¹⁹F-NMR-Daten in CH₃CN bei -30 °C (Lock: Kapillare mit Aceton-d₆ / CCl₃F)

δ [ppm]	Integral	Zuordnung	Kopplungen [Hz]
0,0	45,07	CCl ₃ F	$^{1}J(^{19}F^{-13}C) = 332,3$
-15,1	44,12	[TDAE][TeCF ₃] ₂	breit
-25,1	91,43	EtTeCF ₃	${}^{1}J({}^{19}F_{-}{}^{13}C) = 352,6$ ${}^{2}J({}^{125}Te_{-}{}^{19}F) = 96,6$
-27,0	2,01	$Te_2(CF_3)_2$	
-83,7	1,00	(?)	

- [TDAE][TeCF₃]₂ aus der Darstellung in Diethylether:

A	nsatz	
[TDAE][TeCF ₃] ₂	0,214 g	0,36 mmol
C_2H_5I	0,175 g	1,12 mmol
CH₃CN	5	ml

Zu einer orangefarbenen, auf -30 °C gekühlten Lösung von [TDAE][TeCF₃]₂ in 2,5 ml Acetonitril wird unter Rühren eine ebenfalls auf -30 °C gekühlte Lösung von Iodethan in 2,5 ml Acetonitril pipettiert und für 15 min weitergerührt. Eine ¹⁹F-NMR-spektroskopische Kontrolle zeigt, daß die Reaktion beendet ist und [TDAE][TeCF₃]₂ vollständig abreagiert hat. Die Lösung hat eine gelbe Farbe angenommen, und ein weißer Niederschlag setzt sich ab. Dieser wird nach

Abpipettieren der überstehenden Lösung in Wasser gelöst und bildet mit Silbernitrat einen gelben Niederschlag, der auch mit konzentriertem Ammoniak nicht wieder in Lösung geht. Der Versuch, EtTeCF₃ durch Destillation zu isolieren oder aufzukonzentrieren, führt weder bei Normaldruck noch im Vakuum zum Erfolg.

Tab.: ¹⁹F-NMR-Daten in CH₃CN bei -30 °C (Lock: Kapillare mit Aceton-d₆ / CCl₃F)

δ [ppm]	Integral	Zuordnung	Kopplungen [Hz]
0,0	129,30	CCl ₃ F	
-24,8	146,24	EtTeCF ₃	$^{1}J(^{19}F^{-13}C) = 351,0$ $^{2}J(^{123/125}Te^{-19}F) = 78,2 / 95,4$
-26,3	1,00		
-26,4	10,09	$Te_2(CF_3)_2$ (?)	
-26,8	2,11	$TeCF_3I$ (?)	
-79,1 (d)	1,60	CF₃H	$^{2}J(^{19}F-^{1}H) = 80,1$

5.3.5.2 Umsetzung mit Quecksilber(II)chlorid

Ansatz				
[TDAE][TeCF ₃] ₂	0,188	0,32 mmol		
$HgCl_2$	0,087	0,32 mmol		
CH₃CN	5 ml			

Zu einer orangefarbenen, auf -30 °C gekühlten Lösung von [TDAE][TeCF₃]₂ in 2,5 ml Acetonitril wird unter Rühren die äquimolare Menge HgCl₂ – gelöst in Acetonitril und auf -30 °C gekühlt – zupipettiert. Die Reaktionslösung hellt sich sofort auf und wird hellgelb sowie milchig-trüb. Der sich nur langsam absetzende Niederschlag löst sich in Wasser und ergibt einen positiven Chloridnachweis. Im ¹⁹F-NMR-Spektrum der überstehenden gelben Lösung dominiert neben der Resonanz von Te₂(CF₃)₂ ein breites Signal bei -16 ppm, dessen Zuordnung zunächst unklar ist. Ein Teil der Reaktionslösung wird auf Raumtemperatur erwärmt, um die

Reaktion zu vervollständigen. Jedoch ist nach 48 h bei Raumtemperatur die Te₂(CF₃)₂-Resonanz ebenfalls verbreitert und das Signal bei -16 ppm ist nach -13 ppm verschoben. Nach dem Abdestillieren aller flüchtigen Komponenten im Ölpumpenvakkum verbleibt ein gelber Rückstand, dessen Massenspektrum den Molekülpeak von Hg(TeCF₃)₂ enthält.

Der bei -30 °C verbliebene Teil der Reaktionslösung zeigt nach sieben Tagen ebenfalls eine Verbreiterung der Te₂(CF₃)₂-Resonanz, das zuvor bei -16 ppm detektierte Signal ist schärfer geworden und wird zu tiefem Feld bei -11,6 ppm registriert. Nach dem Abpipettieren und dem Abdestillieren im Ölpumpenvakuum verbleibt ein gelber Rückstand, dessen ¹⁹F-NMR-Spektrum dem von Hg(TeCF₃)₂ entspricht. Te(CF₃)₂ wird durch Zumischung eindeutig identifiziert.

Tab.: Massenspektrum des gelben Rückstands

m / z	relative Intensität [%]	Zuordnung
594	22,4	Hg(TeCF ₃) ₂ •+
396	100	$\operatorname{Te}_2(\operatorname{CF}_3)_2^{\bullet_+}$
325	48,5	$Te_2(CF_3)^+$
258	24,9	${\rm Te}_2^{\bullet_+}$
199	40,2	TeCF ₃ ⁺ und Hg [•] +

Alle aufgeführten Fragmente können anhand der berechneten Isotopengatter eindeutig zugeordnet werden

Tab.: ¹⁹F-NMR-Daten der Reaktionslösungen und des gelben Rückstands in CH₃CN (Lock: Kapillare mit Aceton-d₆ / CCl₃F bzw. Aceton-d₆ extern)

15 min /	-30 °C	48 h	/ RT	7 d/-	30 °C	Rücksta	nd / RT	Zuordnung
δ [ppm]	Integral	δ [ppm]	Integral	δ [ppm]	Integral	δ [ppm]	Integral	
0,0	13,13	0,0	7,72					CCl ₃ F
-15,9	12,20	-13,0	8,36	-11,6	11,19	-11,1	329,8	Hg(TeCF ₃) ₂
-24,4 a)	1,00	-24,0 c)	1,00	-23,6	1,00			$Te(CF_3)_2$
-27,3 b)	24,18	-27,3	11,38	-27,0 d)	15,12	-26,9	1,00	$Te_2(CF_3)_2$
		-35,0	0,03					
						-75,1	1,31	
						-84,4	1,56	
	10=> 0= 4	TT 1) 07/100						

a) ${}^{2}J({}^{125}Te^{-19}F) = 97.2 \text{ Hz}$ b) ${}^{2}J({}^{123/125}Te^{-19}F) = 109.6/131.1 \text{ Hz}; {}^{1}J({}^{19}F^{-13}C) = 357.2 \text{ Hz}$

Zahlreiche intensitätsschwache Fragmente unterhalb m/z = 200, deren Zuordnung aufgrund fehlender Isotopengatter nicht möglich ist, werden nicht aufgeführt.

 $^{^{\}circ}$ 2 J($^{123/125}$ Te- 19 F) = 71,2/85,7 Hz $^{d)}$ 2 J($^{123/125}$ Te- 19 F) = 112,4 Hz

5.3.5.3 Umsetzung mit Silbersalzen

- Umsetzung mit Silbernitrat:

Ansatz					
[TDAE][TeCF ₃] ₂	0,233 g	0,39 mmol			
$AgNO_3$	0,141 g	0,82 mmol			
CH₃CN	5 ml				

Zu der auf -30 °C gekühlten Lösung von [TDAE][TeCF₃]₂ in 2,5 ml Acetonitril wird AgNO₃, gelöst in 2,5 ml auf -30 °C vorgekühltem Acetonitril, gegeben und 15 min gerührt. Die Lösung entfärbt sich und nimmt eine hellgelbe Färbung an. Das Auftreten eines Niederschlags wird nicht beobachtet. Im ¹⁹F-NMR-Spektrum wird nur eine breite Resonanz bei -15,1 ppm, sowie ein schwaches Signal bei -28,2 ppm, das unter Umständen Te₂(CF₃)₂ zugeordnet werden kann, beobachtet. Nach weiteren 2 h bei -30 °C wird die Reaktionslösung über Nacht auf Raumtemperatur erwärmt.

Eine Isolierung von AgTeCF₃ gelingt nicht. Nach dem Abdestillieren aller flüchtigen Komponenten im Vakuum ist im ¹⁹F-NMR-Spektrum des Destillats nur ein schwaches Signal bei -27 ppm zu detektieren. Der verbleibende Rückstand ist grau gefärbt und zeigt nach dem erneuten Lösen in Acetonitril nur noch eine schwache AgTeCF₃-Resonanz. Nach einigen Versuchen, [TDAE][NO₃]₂ mit unpolaren Lösungsmitteln auszufällen, ist kein AgTeCF₃ mehr nachweisbar.

Tab.: 19F-NMR-Daten in CH₃CN bei RT (Lock: Kapillare mit Aceton-d₆ / CCl₃F)

δ [ppm]	Integral	Zuordnung	Kopplungen [Hz]
0,0		CCl ₃ F (Standard)	$^{1}J(^{19}F^{-13}C) = 332,5$
-12,9	28,29	AgTeCF ₃	$^{1}J(^{19}F^{-13}C) = 354,1$ $^{2}J(^{123/125}Te^{-19}F) = 101,1 / 124,6$
-25,8	0,14		
-26,3	1,00	$Te_2(CF_3)_2$ (?)	$^{2}J(^{125}Te^{-19}F) = 97,3$

- Umsetzung mit Silberacetat:

Zu einer Probe von [TDAE][TeCF₃]₂ in Acetonitril werden bei -30 °C einige Tropfen einer konzentrierten, kalten Silberacetatlösung gegeben. Nach 30 min wird im ¹⁹F-NMR-Spektrum nur eine einzige Resonanz bei -13,5 ppm detektiert. Diese ist verbreitert und so läßt sich die Kopplung der Satelliten nur an den Schultern im Signalfuß zu 126 Hz abschätzen.

Tab.: ¹⁹F-NMR-Daten in CH₃CN bei -30 °C (Lock: Aceton-d₆ extern)

δ [ppm]	Zuordnung	Kopplungen [Hz]	
-13,5	AgTeCF ₃	2 J(125 Te- 19 F) ≈ 126	

5.4 Trifluormethyltellurgruppenübertragung mit Bis(trifluormethyltellur)quecksilber

5.4.1 Umsetzung von Bis(trifluormethyltellur)quecksilber mit Antimontriiodid in Toluol

- Umsetzung bei Raumtemperatur:

A	nsatz	
SbI ₃	0,21 g	0,42 mmol
Hg(TeCF ₃) ₂	0,52 g	0,88 mmol
Toluol	5	ml

Zu einer Lösung von Hg(TeCF₃)₂ in 2,5 ml Toluol wird bei Raumtemperatur und unter Rühren eine Lösung von Antimontriiodid in 2,5 ml Toluol gegeben. Sofort nach der Zugabe bildet sich ein oranger Niederschlag, der als HgI₂ gedeutet wird. Das ¹⁹F-NMR-Spektrum der gelben Reaktionslösung zeigt neben den Resonanzen für nicht umgesetztes, im Überschuß eingesetztes Hg(TeCF₃)₂ und für das Zersetzungsprodukt Te₂(CF₃)₂ noch ein drittes Signal bei -16,2 ppm mit einer ²J-Tellur-Fluor-Kopplung von 136 Hz, welches unter Vorbehalt der teilausgetauschten Spezies Hg(TeCF₃)I zugeordnet wird. Nach 24 h haben die Resonanzen von Hg(TeCF₃)₂ und Hg(TeCF₃)I zugunsten von Te₂(CF₃)₂ abgenommen.

Tab.: ¹⁹F-NMR-Daten der Reaktionslösungen (Lock: Kapillare mit Aceton-d₆ / CCl₃F)

15 min		48	3 h	Zuordnung
δ [ppm]	Integral	δ [ppm]	Integral	
0,0	1,00	0,0	1,00	CCl ₃ F
-8,0 a)	1,00	-8,0	0,19	Hg(TeCF ₃) ₂
-16,2 b)	0,30	-16,2	0,08	Hg(TeCF ₃)I (?)
-26,4 c)	0,28	-26,4	0,75	$Te_2(CF_3)_2$

^{a)} ${}^{2}J({}^{125}Te^{-19}F) \approx 141 \text{ Hz (Satelliten nicht vollständig aufgelöst)}$

b) ${}^{2}J({}^{125}Te^{-19}F) = 135,9 \text{ Hz}$ c) ${}^{2}J({}^{125}Te^{-19}F) = 108,2 \text{ Hz}$

- Umsetzung bei -50 °C:

A	nsatz	
SbI ₃	0,25 g	0,50 mmol
$Hg(TeCF_3)_2$	0,53 g	0,89 mmol
Toluol	5	ml

Zu einer Lösung von Hg(TeCF₃)₂ in 2,5 ml Toluol wird bei -50 °C und unter Rühren eine ebenfalls auf -50 °C gekühlte Lösung von Antimontriiodid in 2,5 ml Toluol gegeben. Sofort nach der Zugabe bildet sich ein oranger Niederschlag, der als HgI₂ gedeutet wird. Die überstehende gelbe Lösung wird ¹⁹F-NMR-spektroskopisch untersucht. Zusätzlich zu den bei der Umsetzung bei Raumtemperatur beobachteten Signalen werden eine Reihe weiterer Signale detektiert. Te₂(CF₃)₂ wird durch Zumischung eindeutig identifiziert.

Tab.: ¹⁹F-NMR-Daten der Umsetzung von Hg(TeCF₃)₂ mit SbI₃ bei -50 °C, nach 20 min (Lock: Kapillare mit Aceton-d6 / CCl₃F)

δ [ppm]	Integral	Zuordnung	Kopplungen
0,0	1,00	CCl₃F	Standard
-7,8	0,04	$Hg(TeCF_3)_2$	2 J(125 Te- 19 F) = 158,2 Hz
-13,2	0,06	(?)	
-14,4	0,001	(?)	
-15,7	(rel Int.: 2,4)	(?)	überlagert mit -15,9 ppm
-15,9	0,15	Hg(TeCF ₃)I (?)	2 J(125 Te- 19 F) = 144,7 Hz
-21,4	0,01	$Te(CF_3)_2$ (?)	
-23,3	0,003	(?)	
-26,0	0,27	$Te_2(CF_3)_2$	${}^{1}J({}^{19}F^{-13}C) = 359,4 \text{ Hz}$ ${}^{2}J({}^{125}\text{Te}{}^{-19}F) = 117,0 \text{ Hz}$

5.4.2 Umsetzung von Bis(trifluormethyltellur)quecksilber mit Iodethan in Toluol

1	Ansatz	
EtI	0,29 g	1,86 mmol
$Hg(TeCF_3)_2$	0,43 g	0,72 mmol
Toluol	5	ml

Zu einer Lösung von Hg(TeCF₃)₂ in 2,5 ml Toluol wird bei Raumtemperatur und unter Rühren eine Lösung von Iodethan in 2,5 ml Toluol gegeben. Die Lösung wird ein wenig trübe und nach Rühren über Nacht bildet sich ein oranger Niederschlag, der sich nur langsam absetzt und im Laufe der Reaktion ständig nachgebildet wird. Nach sechs Tagen wird die Reaktion abgebrochen, da durch unvermeidbaren Lichteinfluß vermehrt Nebenprodukte gebildet werden.

Tab.: $^{19}\text{F-NMR-Daten}$ der Reaktionslösung (Lock: Kapillare mit Aceton-d_6 / CCl_3F)

20 1	min	24	h	48	3 h	6	d	Zuordnung
<u>δ [ppm]</u>	Integral	δ [ppm]	Integral	δ [ppm]	Integral	δ [ppm]	Integral	
0,0	1,00	0,0	1,00	0,0	1,00	0,0	1,00	CCl₃F
						-5,9	0,005	CF ₃ I (?)
-8,2 a)	1,76	-8,2 c)	0,99	-8,2 e)	0,47	-8,5 h)	0,16	Hg(TeCF ₃) ₂
-13,1	0,025							(?)
		-15,6	0,011					(?)
-16,4	0,028	-16,2	0,020					Hg(TeCF ₃)I (?)
-16,6	0,007							(?)
-21,6	0,004	-21,6	0,008	-21,6 f)	0,036	-21,6 i)	0,055	Te(CF ₃) ₂
-23,7	0,021	-23,7 d)	0,34	-23,7 g)	0,53	-23,7 ^{j)}	0,66	EtTeCF ₃
				-25,8	0,014	-25,8	0,017	p-CF ₃ Te-Toluol
-26,2 b)	0,069	-26,2	0,054	-26,2	0,064	-26,3 k)	0,091	$Te_2(CF_3)_2$
						-61,5	0,018	p-CF ₃ -Toluol
						-62,1	0,009	m-CF ₃ -Toluol
						-62,4	0,012	o-CF ₃ -Toluol

a) ${}^{2}J({}^{125}Te^{-19}F) = 149.7 \text{ Hz}; {}^{1}J({}^{19}F^{-13}C) = 352 \text{ Hz}$ b) ${}^{2}J({}^{125}Te^{-19}F) = 108.8 \text{ Hz}$

c) ${}^{2}J({}^{123/125}Te^{-19}F) = 123,0/150,8 Hz; {}^{1}J({}^{19}F^{-13}C) = 353,6 Hz$ d) ${}^{2}J({}^{125}Te^{-19}F) = 84,4 Hz$

 $^{{}^{}e)} \ ^2J(^{123/125}Te^{-19}F) = 124,5/150,1 \ Hz; \ ^1J(^{19}F^{-13}C) = 353,8 \ Hz \qquad {}^{f)} \ ^2J(^{125}Te^{-19}F) = 54,4 \ Hz$

 $^{^{}g)} \ ^2J(^{123/125}Te^{-19}F) = 70,9/85,0 \ Hz; \ ^1J(^{19}F^{-13}C) = 352,2 \ Hz \\ \phantom{^{(1)}} \ ^{h)} \ ^2J(^{125}Te^{-19}F) = 147,2 \ Hz \\ \phantom{^{(1)}} \ ^{h)} \ ^$

 $^{^{}i)}$ 2 J(125 Te- 19 F) = 56,5 Hz $^{j)}$ 2 J($^{123/125}$ Te- 19 F) = 70,2/84,7 Hz; 1 J(19 F- 13 C) = 351,7 Hz

 $^{^{}k)}$ 2 J(125 Te- 19 F) = 110,6 Hz

2	Ansatz	
EtI	0,77 g	4,94 mmol
$Hg(TeCF_3)_2$	0,78 g	1,31 mmol
Toluol	10) ml

Zu einer Lösung von Hg(TeCF₃)₂ in 5 ml Toluol wird bei Raumtemperatur und unter Rühren eine Lösung von Iodethan in 5 ml Toluol gegeben. Die Lösung wird trübe und nach Rühren über Nacht bildet sich ein feiner oranger Niederschlag, der laufend nachgebildet wird. Nach 48 h Reaktionszeit werden alle flüchtigen Komponenten im Ölpumpenvakuum abgezogen und es verbleibt ein oranger, an einigen Stellen gelber Rückstand. Wird dieser erneut mit Toluol gerührt, so wird im ¹⁹F-NMR-Spektrum lediglich ein sehr schwaches Signal bei -8 ppm detektiert, das Hg(TeCF₃)₂ zugeordnet wird. Die abdestillierte hellgelbe Toluollösung wird zur Abtrennung von überschüssigem Iodethan und Toluol im Ölpumpenvakuum (1·10·3 mbar) bei tiefen Temperaturen fraktioniert destilliert. Eine Trennung der Komponenten gelingt dabei nicht. Auch eine schrittweise Erhöhung der Temperatur bis 90 °C und des Drucks auf Normaldruck führt nicht zum Erfolg. Dafür wird bei hohen Temperaturen eine Trifluormethylierung des Lösungsmittels beobachtet. Eine mehrtägige Belichtung einer Probe mit einem Lösungsmittelgemisch aus Toluol und Toluol-d₈ durch Tageslicht führt ebenfalls zur Bildung einer Reihe trifluormethylierter Produkte.

Die Komponenten einer bei der Tieftemperaturdestillation abgenommenen Fraktion werden mittels GC/MS- Kopplung getrennt und bestimmt. Neben EtTeCF₃ werden lediglich Iodethan und Toluol sowie Spuren von Ethylbenzol und Xylol identifiziert.

Tab.: Massenspektrum der EtTeCF3-Fraktion aus GC/MS

m / z	rel Int. [%]	Zuordnung	m / z	rel Int. [%]	Zuordnung
226	67,3	EtTe(CF ₃)*+	144	6,7	TeCH ₂ •+
198	24,2	$TeCF_{3}^{+}$	128	58,8	Te*+
180	21,8	TeCF ₂ •+	79	4,8	?
159	41,5	$C_2H_5Te^+$	69	20,0	CF_3^+
156	100	$C_2H_5I^{\bullet_+}$			

[–] Die tellurhaltigen Fragmente können anhand der berechneten Isotopengatter eindeutig zugeordnet werden

Die Zuordnung der Signale im ¹⁹F-NMR-Spektrum erfolgt durch Literaturvergleich. So entsprechen die Toluolderivate den in [27c] gefundenen. Te₂(CF₃)₂ kann durch die ⁵J(¹⁹F-¹⁹F)-Kopplung eindeutig zugeordnet werden und CF₃TeI wird im entsprechenden Lösungsmittel im Vergleich zu Te₂(CF₃)₂ meist bei tieferem Feld detektiert [54,55,61].

Tab.: 19F-NMR-Daten der abdestillierten Komponenten (Lock: Kapillare mit Aceton-d₆ / CCl₃F bzw. Toluol-d₈)

48	h	nach T	Γ-Dest.	nach De	est. 90°C	nach Beli	chtung	Zuordnung
δ [ppm]	Integral	δ [ppm]	Integral	δ [ppm]	Integral	δ [ppm]	Integral	
0,0	1,00	0,0	1,00					CCl₃F
-21,5	0,22	-21,5 c)	0,42			-20,9	1,00	$Te(CF_3)_2$
-23,7 a)	8,48	-23,7 d)	9,67	-23,6 e)	7,73	-22,9 g)	93,23	EtTeCF ₃
						-23,3	0,44	(?)
-25,7	0,12	-25,8	0,12			-25,1	0,17	CF₃TeI (?)
						-25,56 h)	k)	p-CF ₃ Te-Toluol-d ₇
				-26,2	f)	-25,57	k)	p-CF ₃ Te-Toluol
-26,1	0,083	-26,1	0,092	-26,3	1,00	-25,61 i)	18,45	$Te_2(CF_3)_2$
		-26,2	0,016					(?)
-47,5(d) b)	0,11							(?)
						-49,1(d) ^{j)}	0,51	(?)
				-61,3	0,24	-60,69		p-CF ₃ -Toluol
						-60,71	14,91 ¹⁾	p-CF ₃ -Toluol-d ₇
				-61,9	0,092	-61,21		m-CF ₃ -Toluol
						-61,23	6,36 ¹⁾	m-CF ₃ -Toluol-d ₇
				-62,2	0,11	-61,50		o-CF ₃ -Toluol
						-61,53	8,43 1)	o-CF ₃ -Toluol-d ₇

^{a)} ${}^{2}J({}^{125}Te^{-19}F) = 84.8 \text{ Hz}; {}^{1}J({}^{19}F^{-13}C) = 353.8 \text{ Hz}$ ^{b)} J = 48.6 Hz (?)

Tab.: 1H-NMR-Daten von EtTeCF3 in Toluol (Lock: Toluol-d8)

δ [ppm]	Integral	Zuordnung	³ J(¹ H- ¹ H) [Hz]
3,75	1,00	CH_2	7,1
0,80	1,47	CH_3	7,1

c) ${}^{2}J({}^{125}Te^{-19}F) = 57.9 \text{ Hz}$ d) ${}^{2}J({}^{123/125}Te^{-19}F) = 70.6/84.6 \text{ Hz}; {}^{1}J({}^{19}F^{-13}C) = 351.6 \text{ Hz}$

e) ${}^{2}J({}^{125}Te^{-19}F) = 83.9 \text{ Hz}$ f) überlagert von Signal bei -26.3 ppm

 $^{^{}g)}$ 2 J($^{123/125}$ Te- 19 F) = 69,9/84,2 Hz; 1 J(19 F- 13 C) = 351,9 Hz $^{h)}$ drei Linien eines Quintetts 5 J(19 F- 2 H) = 1,6 Hz (?)

 $^{^{1)} ^{2}}J(^{125}Te^{-19}F) = 108,5 Hz; ^{1}J(^{19}F^{-13}C) = 358,9 Hz; ^{5}J(^{19}F^{-19}F) = 1,5 Hz$ $^{j)} J = 8,6 Hz$ (?)

k) überlagert von Signal bei -25,61 ppm jeweils beide Signale nicht vollständig aufgelöst

Tab.: 19F-NMR-Daten von EtTeCF3 in Toluol (Lock: Kapillare mit Aceton-d6 / CCl3F)

δ [ppm]	Kopplunge	Isotopenshift [ppm]	
	2 J($^{123/125}$ Te- 19 F)	$^{1}J(^{19}F^{-13}C)$	$^{1}\Delta^{19}F(^{13/12}C)$
-23,7	70,6 / 84,6	351,6	-0,15

Tab.: 125Te-NMR-Daten von EtTeCF3 in Toluol (Lock: Toluol-d8)

δ [ppm]	Kopplungen [Hz]	
901	breit	

5.5 Kristallstruktur von Bis(pentafluorphenyl)tellur

Tab.: Te(C₆F₅)₂.Kristalldaten und Angaben zur Strukturbestimmung.

	$Te(C_6F_5)_2$
Summenformel	$C_{12}F_{10}Te$
Molmasse (g mol ⁻¹)	461,72
Gitterparameter a (pm)	2277,9(6)
b (pm)	588,02(9)
c (pm)	2967,7(7)
β (°)	91,81(2)
Zellvolumen (nm³)	3,9731(15)
Formeleinheiten	12
Kristallsystem	monoclin
Raumgruppe	$P2_1/c$
Kristallform	Nadel
Farbe	hellgelb
Messtemperatur (K)	170
Absorptionskorrektur	numerisch
$T_{\min/\max}$	0,6991 / 0,8763
Messbereich $\theta_{\min/\max}$ (°)	1,79 / 25,00
Indexbereich h _{min/max}	-34 / 34
$k_{\min/\max}$	-7 / 8
$l_{ m min/max}$	-44 / 44
F(000)	2568
Absorptionskoeffizient (mm ⁻¹)	2,360
R_{int}	0,3688
gemessene Reflexe	55861
unabhängige Reflexe	6941
beobachtete Reflexe	1664
σ-Schranke	$[I > 2\sigma(I)]$
S ₂ (beob./sämtl. Daten)	0,563 / 0,670
R_1 "	0,2300 / 0,0359
wR_2 "	0,0902 / 0,0436
Anzahl Parameter	623
$ \Delta /\sigma$	0,009

Anmerkungen:

 F_{o} und F_{c} entsprechen den beobachteten und berechneten Strukturfaktoren.

 $Es~gilt:~R_{1}=\Sigma \mid |F_{o}| - |F_{c}| \mid / \Sigma \mid F_{o}|,~wR_{2}=[~\Sigma~w~(~|F_{o}|^{2} - |F_{c}|^{2}~)^{2}~/~\Sigma~w~(~|F_{o}|^{2}~)^{2}~]^{1/2},$

 $S_2 = [\ \Sigma \ w \ (\ |F_o|^2 - |F_c|^2 \)^2 \ / \ (n-p) \]^{1/2}. \ Die \ minimierte \ Funktion \ ist \ w (\ |F_o|^2 - |F_c|^2 \)^2 \ mit \ dem$

Gewichtsschema $w = 1 / [\sigma^2 (F_o)^2 + (0.0458 \cdot P)^2 + 2.598 \cdot P]$ mit $P = (F_o^2 + 2F_c^2) / 3$.

Die sekundäre Extinktion wird über $F_c*=k\ F_c\ [1+0,001\cdot|F_c|^2\ \lambda^3\ /\ sin(2\theta)]^{-1/4}$ berücksichtigt.

Für die Röntgenstrukturanalyse geeignete Kristalle wurden durch Umkristallisieren von $Te(C_6F_5)_2$ aus Dichlormethan erhalten. $Te(C_6F_5)_2$ wurde zuvor durch Sublimation gereinigt. Die dabei anfallenden samtartigen Nadeln erwiesen sich als nicht geeignet für eine Strukturbestimmung.

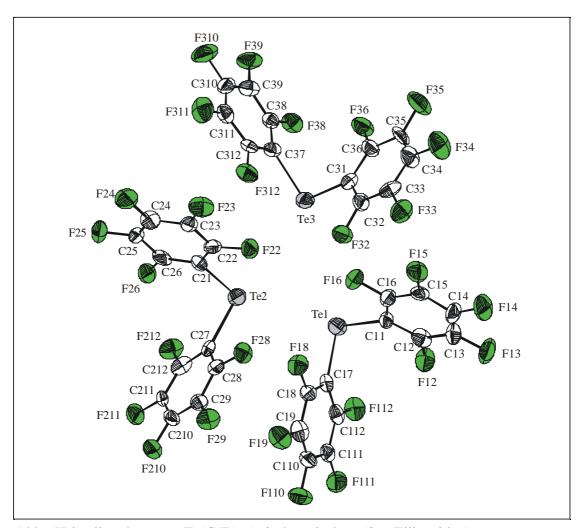


Abb.: Kristallstruktur von $\text{Te}(C_6F_5)_2$ (mit thermischen 50%-Ellipsoiden)

Tab.: Te(C₆F₅)₂, ausgewählte interatomare Abstände und Winkel

	Abstand [pm]		Winkel [°]
Te1-C11	208(2)	C11–Te1–C17	93,9(5)
Te1-C17	209,7(14)		
Te2-C21	210,8(14)	C21–Te2–C27	92,1(5)
Te2-C27	212,9(15)		
Te3-C31	206,9(15)	C31–Te3–C37	95,9(6)
Te3-C37	206,6(14)		

Tab.: Atomlagen und isotrope Auslenkungsparameter (Standardabweichung). Die äquvalenten isotropen thermischen Parameter U_{eq} [10^{-20} m 2] sind über U_{eq} = 1/3 $S_{ij}U_{ij}a_i^*a_j^*(a_i \ x \ a_j)$ berechnet worden

Atom	x/a	y/b	z/c	$ m U_{eq}$
Te1	0.27198(5)	0.6800(2)	0.27999(3)	0.0681(4)
C11	0.3384(7)	0.8919(27)	0.2580(5)	0.060(5)
C12	0.3688(7)	0.8521(33)	0.2193(6)	0.067(5)
C13	0.4143(8)	0.9922(35)	0.2048(6)	0.076(6)
C14	0.4293(8)	1.1759(39)	0.2296(7)	0.085(6)
C15	0.4007(9)	1.2150(32)	0.2673(6)	0.073(5)
C16	0.3570(7)	1.0820(32)	0.2820(6)	0.069(5)
F12	0.3560(4)	0.6662(19)	0.1942(3)	0.094(3)
F13	0.4409(5)	0.9383(20)	0.1670(4)	0.133(5)
F14	0.4735(4)	1.3063(20)	0.2160(4)	0.129(4)
F15	0.4190(4)	1.4007(18)	0.2927(3)	0.102(4)
F16	0.3304(4)	1.1443(16)	0.3198(3)	0.082(3)
C17	0.2198(6)	0.7204(29)	0.2210(5)	0.055(4)
C18	0.1843(8)	0.9116(35)	0.2169(6)	0.068(5)
C19	0.1469(8)	0.9488(33)	0.1792(7)	0.068(5)
C110	0.1468(8)	0.7862(46)	0.1463(6)	0.077(6)
C111	0.1814(9)	0.5943(35)	0.1495(6)	0.072(6)
C112	0.2158(7)	0.5665(28)	0.1869(6)	0.054(4)
F18	0.1826(4)	1.0729(15)	0.2483(3)	0.086(3)
F19	0.1121(5)	1.1261(19)	0.1745(4)	0.113(4)
F110	0.1125(5)	0.8078(22)	0.1089(3)	0.126(4)
F111	0.1807(5)	0.4321(17)	0.1172(3)	0.099(4)
F112	0.2489(4)	0.3772(15)	0.1899(3)	0.082(3)
Te2	0.17337(5)	0.8319(2)	0.39311(3)	0.0661(4)
C21	0.1324(6)	0.9236(26)	0.4532(5)	0.046(4)
C22	0.1447(7)	1.1197(29)	0.4750(5)	0.060(5)
C23	0.1207(7)	1.1766(34)	0.5160(5)	0.063(4)
C24	0.0797(8)	1.0451(38)	0.5340(6)	0.076(6)
C25	0.0647(6)	0.8437(34)	0.5116(5)	0.054(4)
C26	0.0921(8)	0.7810(29)	0.4732(6)	0.066(5)
F22	0.1850(3)	1.2641(14)	0.4585(3)	0.078(3)
F23	0.1356(4)	1.3766(17)	0.5356(3)	0.090(3)
F24	0.0523(4)	1.1047(18)	0.5704(3)	0.102(4)
F25	0.0246(4)	0.7071(18)	0.5299(3)	0.097(3)
F26	0.0757(4)	0.5821(17)	0.4539(3)	0.094(3)
C27	0.1142(7)	1.0347(25)	0.3533(5)	0.048(4)
C28	0.1336(7)	1.2330(30)	0.3343(4)	0.059(5)
C29	0.0970(7)	1.3668(30)	0.3080(5)	0.058(4)
C210	0.0379(8)	1.3034(33)	0.3032(5)	0.071(5)
C211	0.0175(7)	1.1125(30)	0.3212(5)	0.059(5)
C212	0.0573(8)	0.9798(30)	0.3471(5)	0.067(5)
F28	0.1904(4)	1.2979(16)	0.3364(2)	0.076(3)
F29	0.1145(5)	1.5555(17)	0.2878(3)	0.099(3)
F210	0.0005(5)	1.4351(18)	0.2783(3)	0.105(4)
F211	-0.0389(4)	1.0465(17)	0.2765(3)	0.097(3)
F212	0.0356(3)	0.7870(16)	0.3654(3)	0.077(3)
Te3	0.32708(5)	1.2214(2)	0.42745(3)	0.0748(4)
C31	0.4013(7)	1.4191(29)	0.42743(3)	0.058(5)
C32	0.4013(7)	1.6195(31)	0.3941(5)	0.038(3)
C32	0.4507(8)	1.7556(30)	0.3890(5)	0.062(5)
C34	0.4307(8)	1.7002(37)	0.3890(3)	0.002(3)
C35	0.5020(7)	1.5053(35)	0.4117(0)	0.074(5)

Atom	x/a	y/b	z/c	$U_{\rm eq}$
C36	0.4556(9)	1.3805(30)	0.4410(6)	0.073(5)
F32	0.3510(4)	1.6808(17)	0.3724(3)	0.081(3)
F33	0.4453(4)	1.9440(18)	0.3634(3)	0.097(3)
F34	0.5477(4)	1.8336(21)	0.4053(3)	0.115(4)
F35	0.5557(5)	1.4493(19)	0.4563(4)	0.118(4)
F36	0.4619(4)	1.1903(20)	0.4666(3)	0.097(3)
C37	0.3135(6)	1.3116(32)	0.4936(5)	0.054(4)
C38	0.3305(6)	1.1791(32)	0.5301(6)	0.060(4)
C39	0.3187(7)	1.2375(34)	0.5751(6)	0.065(5)
C310	0.2892(8)	1.4315(39)	0.5827(6)	0.070(5)
C311	0.2749(8)	1.5632(34)	0.5494(8)	0.073(6)
C312	0.2861(7)	1.5147(34)	0.5051(6)	0.066(5)
F38	0.3576(4)	0.9804(16)	0.5236(3)	0.089(3)
F39	0.3338(4)	1.0938(17)	0.6087(3)	0.105(4)
F310	0.2793(5)	1.4903(17)	0.6257(3)	0.098(3)
F311	0.2454(4)	1.7688(18)	0.5571(3)	0.100(3)
F312	0.2692(4)	1.6590(17)	0.4726(3)	0.083(3)

Tab.: Anisotrope thermische Auslenkungsparameter (Standardabweichung) [10⁻²⁰ m²].

Atom	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U ₂₃
Te1	0.0721(8)	0.0789(9)	0.0534(7)	0.0120(7)	0.0009(6)	-0.0109(8)
C11	0.058(11)	0.066(13)	0.055(10)	0.002(9)	-0.015(9)	-0.002(9)
C12	0.061(12)	0.079(14)	0.062(12)	-0.018(11)	0.017(9)	-0.002(11)
C13	0.063(13)	0.097(16)	0.069(13)	0.021(12)	0.042(11)	-0.002(12)
C14	0.073(13)	0.085(16)	0.097(15)	-0.009(15)	0.021(11)	-0.037(13)
C15	0.099(15)	0.058(13)	0.058(11)	-0.014(11)	-0.029(11)	-0.008(12)
C16	0.054(12)	0.086(15)	0.067(13)	0.026(12)	0.008(10)	-0.009(11)
F12	0.103(8)	0.104(8)	0.077(7)	-0.023(7)	0.029(6)	-0.012(7)
F13	0.120(10)	0.170(12)	0.112(9)	-0.023(8)	0.063(8)	-0.043(8)
F14	0.104(8)	0.119(9)	0.167(10)	0.009(9)	0.038(8)	-0.050(8)
F15	0.101(9)	0.091(9)	0.111(9)	-0.001(7)	-0.017(7)	-0.020(6)
F16	0.089(7)	0.091(7)	0.066(6)	-0.002(6)	0.013(5)	-0.002(6)
C17	0.065(10)	0.056(11)	0.044(9)	0.004(9)	0.005(8)	-0.006(10)
C18	0.062(13)	0.109(18)	0.034(10)	0.006(11)	0.018(9)	-0.008(11)
C19	0.060(13)	0.069(14)	0.076(14)	-0.010(12)	0.019(11)	-0.014(11)
C110	0.064(12)	0.115(19)	0.052(12)	0.028(14)	-0.008(10)	-0.032(14)
C111	0.094(17)	0.073(15)	0.050(12)	-0.009(12)	0.007(12)	-0.045(13)
C112	0.059(12)	0.051(12)	0.053(11)	0.002(10)	0.011(9)	0.011(9)
F18	0.100(8)	0.086(8)	0.072(7)	-0.011(6)	0.023(6)	0.011(6)
F19	0.096(8)	0.099(10)	0.144(10)	0.027(8)	0.000(7)	0.034(8)
F110	0.147(9)	0.159(11)	0.070(6)	0.034(8)	-0.034(6)	-0.043(9)
F111	0.137(9)	0.102(9)	0.058(6)	-0.029(6)	-0.001(6)	-0.043(7)
F112	0.096(7)	0.069(7)	0.082(6)	-0.022(6)	0.015(6)	-0.001(6)
Te2	0.0676(8)	0.0684(8)	0.0621(7)	-0.0065(7)	-0.0019(6)	0.0116(7)
C21	0.035(9)	0.049(10)	0.053(10)	-0.003(9)	-0.011(8)	-0.007(8)
C22	0.056(11)	0.074(14)	0.048(10)	0.001(10)	-0.011(9)	-0.005(10)
C23	0.063(11)	0.068(13)	0.056(11)	0.015(12)	0.002(9)	0.009(12)
C24	0.055(13)	0.122(18)	0.051(12)	0.027(12)	0.015(10)	0.042(13)
C25	0.028(9)	0.084(13)	0.050(10)	0.010(11)	0.006(7)	-0.007(10)
C26	0.088(13)	0.039(12)	0.069(12)	0.002(10)	-0.022(10)	-0.007(11)
F22	0.070(6)	0.072(7)	0.091(6)	0.000(5)	0.006(5)	-0.023(5)
F23	0.110(9)	0.070(8)	0.091(8)	-0.009(6)	-0.003(6)	-0.005(6)
F24	0.075(7)	0.154(11)	0.077(7)	0.007(7)	0.018(6)	0.027(6)
F25	0.068(6)	0.132(9)	0.093(6)	0.044(7)	0.011(5)	-0.019(7)

Atom	\mathbf{U}_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
F26	0.118(9)	0.078(7)	0.086(8)	0.001(6)	-0.014(6)	-0.041(7)
C27	0.054(11)	0.042(10)	0.050(10)	0.005(8)	0.015(8)	-0.003(9)
C28	0.066(12)	0.074(15)	0.037(9)	-0.003(9)	-0.002(8)	0.011(11)
C29	0.059(12)	0.066(13)	0.047(10)	-0.009(9)	0.002(9)	-0.025(10)
C210	0.080(14)	0.062(13)	0.070(11)	0.031(11)	0.004(10)	0.017(12)
C211	0.048(12)	0.079(15)	0.049(10)	-0.002(10)	-0.005(9)	0.010(10)
C212	0.077(14)	0.076(14)	0.051(11)	0.013(10)	0.023(10)	-0.031(12)
F28	0.061(6)	0.084(7)	0.082(6)	-0.015(6)	0.002(5)	-0.018(6)
F29	0.135(10)	0.077(8)	0.085(7)	0.019(6)	0.012(7)	-0.016(7)
F210	0.112(9)	0.119(9)	0.085(7)	0.029(7)	-0.002(7)	0.026(7)
F211	0.050(7)	0.139(10)	0.101(8)	0.016(6)	-0.005(6)	-0.001(6)
F212	0.066(6)	0.083(7)	0.083(6)	0.009(6)	0.005(5)	-0.018(6)
Te3	0.0729(8)	0.0876(10)	0.0642(7)	-0.0205(7)	0.0087(6)	-0.0292(7)
C31	0.039(10)	0.077(14)	0.057(10)	-0.014(9)	0.001(8)	-0.010(9)
C32	0.052(12)	0.075(15)	0.061(11)	-0.016(10)	-0.006(9)	0.009(10)
C33	0.075(13)	0.071(15)	0.040(9)	0.007(9)	0.009(9)	-0.029(11)
C34	0.050(11)	0.084(15)	0.086(13)	-0.005(13)	-0.014(10)	-0.023(12)
C35	0.045(12)	0.081(15)	0.096(15)	0.004(12)	0.003(11)	-0.012(12)
C36	0.085(15)	0.061(14)	0.075(13)	0.004(10)	0.017(11)	-0.024(12)
F32	0.067(6)	0.091(7)	0.084(6)	-0.002(6)	-0.016(5)	0.000(6)
F33	0.095(8)	0.104(8)	0.093(8)	0.028(7)	0.014(6)	-0.001(7)
F34	0.075(7)	0.126(9)	0.144(9)	0.009(9)	0.014(6)	-0.042(8)
F35	0.057(7)	0.158(11)	0.137(10)	0.021(8)	-0.030(7)	-0.003(7)
F36	0.076(6)	0.095(8)	0.119(8)	0.013(8)	-0.003(6)	-0.002(7)
C37	0.040(9)	0.054(11)	0.068(10)	0.003(11)	0.009(8)	-0.001(9)
C38	0.048(10)	0.048(11)	0.083(13)	-0.017(12)	0.016(9)	-0.010(10)
C39	0.045(10)	0.081(16)	0.069(12)	0.020(12)	0.008(9)	-0.012(10)
C310	0.063(13)	0.092(16)	0.056(13)	-0.005(12)	0.015(11)	-0.016(12)
C311	0.069(14)	0.053(13)	0.098(17)	0.008(13)	0.012(13)	-0.028(11)
C312	0.056(12)	0.088(16)	0.052(12)	0.024(12)	0.005(10)	-0.026(11)
F38	0.088(8)	0.063(7)	0.117(9)	0.008(6)	0.007(6)	0.003(6)
F39	0.085(8)	0.136(10)	0.093(7)	0.051(7)	-0.003(6)	0.000(7)
F310	0.125(9)	0.112(8)	0.058(7)	-0.014(6)	0.020(6)	-0.021(7)
F311	0.114(8)	0.079(8)	0.109(7)	-0.020(7)	0.023(6)	0.000(7)
F312	0.085(7)	0.074(7)	0.090(7)	0.020(6)	-0.005(5)	0.004(6)

Tab.: Bindungsabstände (Standardabweichung)

Atom1	Atom2	Abstand [pm]
Te1	C11	208,(2)
Te1	C17	209,7(14)
C11	C12	138,(2)
C11	C16	139,(2)
C12	F12	135,(2)
C12	C13	140,(2)
C13	F13	133,(2)
C13	C14	134,(2)
C14	C15	133,(2)
C14	F14	134,(2)
C15	C16	135,(2)
C15	F15	138,(2)
C16	F16	134,(2)
C17	C112	136,(2)
C17	C18	139,(2)

Atom1	Atom2	Abstand [pm]
C18	F18	133,(2)
C18	C19	140,(2)
C19	F19	131,(2)
C19	C110	137,(2)
C110	F110	134,(2)
C110	C111	138,(2)
C111	C112	135,(2)
C111	F111	135,(2)
C112	F112	135,(2)
Te2	C21	210,8(14)
Te2	C27	212,9(15)
C21	C27	135,(2)
C21	C26	
C22	F22	139,(2)
		135,(2)
C22	C23	139,(2)
C23	C24	134,(2)
C23	F23	135,(2)
C24	F24	131,(2)
C24	C25	140,(2)
C25	F25	134,(2)
C25	C26	137,(2)
C26	F26	135,(2)
C27	C212	134,(2)
C27	C28	137,(2)
C28	F28	135,(2)
C28	C29	137,(2)
C29	F29	133,(2)
C29	C210	140,(2)
C210	C211	133,(2)
C210	F210	135,(2)
C211	F211	134,(2)
C211	C212	141,(2)
C212	F212	136,(2)
Te3	C37	206,6(14)
Te3	C31	206,9(15)
C31	C36	138,(2)
C31	C32	141,(2)
C32	C33	137,(2)
C32	F32	137,(2)
C33	F33	135,(2)
C33	C34	138,(2)
C34	F34	131,(2)
C34	C35	136,(2)
C35	C36	133,(2)
C35	F35	135,(2)
C36	F36	136,(2)
C37	C38	138,(2)
C37	C312	139,(2)
C38	F38	134,(2)
C38	C39	141,(2)
C39	F39	135,(2)
C39	C310	135,(2)
C310	C311	129,(2)
C310	F310	135,(2)
C311	C312	138,(2)
C311	F311	141,(2)
C312	F312	133,(2)
	1 314	133,(4)

Tab.: Bindungswinkel (Standardabweichung)

Atom1	Atom2	Atom3	Winkel [°]
C11	Te1	C17	93.9(5)
C12	C11	C16	114.3(16)
C12	C11	Te1	123.3(13)
C16	C11	Te1	122.4(13)
F12	C12	C11	119.4(16)
F12	C12	C13	117.0(16)
C11	C12	C13	123.5(17)
F13	C13	C14	122.6(17)
F13	C13	C12	118.7(19)
C14	C13	C12	118.7(17)
C15	C14	F14	123.1(21)
C15	C14	C13	118.5(18)
F14	C14	C13	118.4(18)
C14	C15	C16	123.8(18)
C14	C15	F15	116.6(20)
C16	C15	F15	119.6(18)
F16	C16	C15	118.0(18)
F16	C16	C11	120.7(16)
C15	C16	C11	121.3(17)
C112	C17	C18	116.5(15)
C112	C17	Te1	124.8(13)
C18	C17	Te1	118.6(13)
F18	C18	C17	123.0(17)
F18	C18	C19	114.6(18)
C17	C18	C19	122.4(17)
F19	C19	C110	119.6(20)
F19	C19	C18	123.8(18)
C110	C19	C18 C19	116.6(19)
F110 F110	C110	C19 C111	120.8(23)
C19	C110 C110	C111 C111	116.8(22) 122.4(18)
C19 C112	C110 C111	F111	119.5(20)
C112 C112	C111	C110	119.3(20)
F111	C111	C110	122.3(20)
F112	C112	C110	117.7(17)
F112	C112	C17	118.4(16)
C111	C112	C17	123.9(16)
C21	Te2	C27	92.1(5)
C22	C21	C26	116.2(15)
C22	C21	Te2	122.3(12)
C26	C21	Te2	121.5(12)
C21	C22	F22	119.8(14)
C21	C22	C23	123.0(17)
F22	C22	C23	117.1(15)
C24	C23	F23	119.9(17)
C24	C23	C22	120.7(19)
F23	C23	C22	119.1(16)
F24	C24	C23	122.1(21)
F24	C24	C25	120.2(18)
C23	C24	C25	117.7(17)
F25	C25	C26	120.6(18)
F25	C25	C24	118.4(16)
C26	C25	C24	120.9(16)
F26	C26	C25	117.4(18)
F26	C26	C21	121.3(16)

Atom1	Atom2	Atom3	Winkel [°]
C25	C26	C21	121.2(16)
C212	C27	C28	118.0(15)
C212	C27	Te2	122.2(12)
C28	C27	Te2	119.8(12)
F28	C28	C29	115.4(15)
F28	C28	C27	122.8(15)
C29	C28	C27	121.6(16)
F29	C29	C28	123.4(16)
F29	C29	C210	118.6(17)
C28	C29	C210	118.0(16)
C211	C210	F210	118.8(18)
C211	C210	C29	121.9(17)
F210	C210	C29	119.3(17)
C210	C211	F211	123.0(16)
C210	C211	C212	117.5(16)
F211	C211	C212	119.5(16)
C27	C211	F212	120.6(17)
C27	C212 C212	C211	120.0(17)
F212	C212 C212	C211	116.5(16)
C37	Te3	C31	95.9(6)
C36	C31	C32	110.5(15)
C36	C31	Te3	125.6(14)
C32	C31	Te3	123.9(13)
C33	C32	F32	118.2(17)
C33	C32	C31	125.4(16)
F32	C32	C31	116.4(16)
F33	C33	C32	118.9(17)
F33	C33	C34	122.1(17)
C32	C33	C34	118.9(17)
F34	C34	C35	125.4(17)
F34	C34	C33	116.8(19)
C35	C34	C33	117.7(17)
C36	C35	F35	122.1(20)
C36	C35	C34	121.2(19)
F35	C35	C34	116.6(16)
C35	C36	F36	116.1(19)
C35	C36	C31	126.1(18)
F36	C36	C31	117.6(16)
C38	C37	C312	114.1(14)
C38	C37	Te3	123.6(13)
C312	C37	Te3	122.3(13)
F38	C38	C37	119.9(15)
F38	C38	C37	
			116.8(18)
C37	C38	C39	123.2(16)
F39	C39	C310	121.6(18)
F39	C39	C38	119.8(18)
C310	C39	C38	118.4(18)
C311	C310	C39	119.8(19)
C311	C310	F310	121.7(21)
C39	C310	F310	118.4(19)
C310	C311	C312	123.8(21)
C310	C311	F311	120.3(21)
C312	C311	F311	115.9(20)
F312	C312	C311	120.1(19)
F312	C312	C37	119.4(17)
C311	C312	C37	120.6(17)
-			\ ' /

5.6 Kristallstruktur von Bis(pentafluorphenyl)ditellur

Tab.: Te₂(C₆F₅)₂.Kristalldaten und Angaben zur Strukturbestimmung.

	$\mathrm{Te}_2(\mathrm{C}_6\mathrm{F}_5)_2$		
Summenformel	$C_{12}F_{10}Te_2$		
Molmasse (g mol ⁻¹)	589,32		
Gitterparameter a (pm)	1444,8(2)		
b (pm)	1444,8(2)		
c (pm)	3629,5(5)		
γ(°)	120		
Zellvolumen (nm³)	4,2014(9)		
Formeleinheiten	8		
Kristallsystem	hexagonal		
Raumgruppe	R -3		
Kristallform	Prisma		
Farbe	rot		
Messtemperatur (K)	170		
Absorptionskorrektur	numerisch		
$T_{\min/\max}$	0,4627 / 0,6469		
Messbereich $\theta_{\min/\max}$ (°)	2,77 / 28,12		
Indexbereich h _{min/max}	-18 / 18		
$k_{ m min/max}$	-18 / 19		
$ m l_{min/max}$	-47 / 47		
F(000)	4788		
Absorptionskoeffizient (mm ⁻¹)	4,108		
R _{int}	0,0491		
gemessene Reflexe	20899		
unabhängige Reflexe	3536		
beobachtete Reflexe	3168		
σ-Schranke	$[I > 2\sigma(I)]$		
S ₂ (beob./sämtl. Daten)	3,972 / 3,764		
R_1	0,1201 / 0,1270		
\overline{WR}_2 "	0,4332 / 0,4347		
Anzahl Parameter	217		
Δ /σ	-0,001		

Anmerkungen:

 F_{o} und F_{c} entsprechen den beobachteten und berechneten Strukturfaktoren.

 $Es \ gilt: \ R_{1} = \Sigma \mid |F_{o}| - |F_{c}| \mid / \Sigma \mid |F_{o}|, \ wR_{2} = [\ \Sigma \ w \ (\ |F_{o}|^{2} - |F_{c}|^{2}\)^{2} \ / \ \Sigma \ w \ (\ |F_{o}|^{2}\)^{2}\]^{1/2},$

 $S_2 = [\ \Sigma \ w \ (\ |F_o|^2 - |F_c|^2 \)^2 \ / \ (n-p) \]^{1/2}. \ Die \ minimierte \ Funktion \ ist \ w (\ |F_o|^2 - |F_c|^2 \)^2 \ mit \ dem$

Gewichtsschema $w = 1 / [\sigma^2 (F_o)^2 + (0.0458 \cdot P)^2 + 2.598 \cdot P]$ mit $P = (F_o^2 + 2F_c^2) / 3$.

Die sekundäre Extinktion wird über $F_c*=k~F_c~[1+0,001~\cdot~|F_c|^2~\lambda^3~/~sin(2\theta)]^{-1/4}$ berücksichtigt.

Nach der Isolierung von $Te_2(C_6F_5)_2$ durch Sublimation wurde es zur Reinigung aus Pentan umkristallisiert. Die dabei gebildeten Kristalle waren sehr groß und für die Röntgenstrukturbestimmung ungeeignet. Geeignete Kristalle wurden durch erneute Sublimation erhalten.

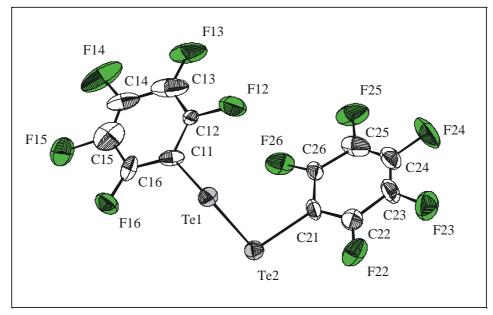


Abb.: Kristallstruktur von $Te_2(C_6F_5)_2$ (mit thermischen 50%-Ellipsoiden)

Tab.: $Te_2(C_6F_5)_2$, ausgewählte interatomare Abstände und Winkel

	Abstand [pm]		Winkel [°]
Te1-Te2	271,2(2)	C11-Te1-Te2	99,3(6)
Te1-C11	218(2)	Te1-Te2-C21	98,2(6)
Te2-C12	215(2)	C11-Te1-Te2-C21	93,38(97)

Tab.: Atomlagen und isotrope Auslenkungsparameter (Standardabweichung). Die äquvalenten isotropen thermischen Parameter U_{eq} [10^{-20} m 2] sind über $U_{eq} = 1/3$ $S_{ij}U_{ij}a_i^*a_j^*(a_i$ x a_j) berechnet worden

Atom	x/a	y/b	z/c	$ m U_{eq}$
Te1	0.17377(11)	0.07317(12)	0.61815(4)	0.0281(5)
C11	0.2902(17)	0.0194(23)	0.6209(6)	0.035(5)
C12	0.4016(16)	0.0991(14)	0.6243(5)	0.021(4)
F12	0.4286(12)	0.2057(13)	0.6254(4)	0.048(4)
C13	0.4767(20)	0.0761(32)	0.6278(7)	0.057(9)
F13	0.5790(13)	0.1442(17)	0.6306(6)	0.067(6)
C14	0.4449(21)	-0.0354(23)	0.6294(6)	0.037(6)
F14	0.5163(17)	-0.0743(23)	0.6296(5)	0.089(8)
C15	0.3436(31)	-0.1109(25)	0.6242(8)	0.053(8)
F15	0.3095(17)	-0.2217(14)	0.6242(6)	0.064(5)
C16	0.2640(17)	-0.0821(17)	0.6196(5)	0.025(4)
F16	0.1619(12)	-0.1640(11)	0.6181(4)	0.044(4)
Te2	0.17471(11)	0.10365(11)	0.54439(4)	0.0267(5)
C21	0.2928(20)	0.2707(15)	0.5430(6)	0.035(5)
C22	0.2672(20)	0.3521(18)	0.5395(6)	0.035(5)
F22	0.1622(13)	0.3257(13)	0.5403(4)	0.047(4)

Atom	x/a	y/b	z/c	$U_{\rm eq}$
C23	0.3374(24)	0.4580(18)	0.5415(8)	0.043(6)
F23	0.3062(17)	0.5311(15)	0.5386(6)	0.063(5)
C24	0.4466(20)	0.4874(17)	0.5406(7)	0.040(6)
F24	0.5163(16)	0.5897(12)	0.5424(4)	0.062(5)
C25	0.4740(21)	0.4139(22)	0.5437(7)	0.048(7)
F35	0.5802(12)	0.4404(16)	0.5436(5)	0.058(5)
C26	0.4018(20)	0.3042(14)	0.5452(5)	0.029(5)
F26	0.4339(13)	0.2349(15)	0.5460(5)	0.051(4)

 $Tab.: Anisotrope \ thermische \ Auslenkungsparameter \ (Standardabweichung) \ [10^{-20} \ m^2].$

Atom	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Te1	0.0314(9)	0.0291(8)	0.0252(8)	0.0007(5)	-0.0012(5)	0.0162(6)
C11	0.021(10)	0.060(15)	0.031(10)	-0.025(10)	-0.012(8)	0.026(11)
C12	0.021(9)	0.010(8)	0.031(9)	0.006(6)	-0.010(7)	0.008(7)
F12	0.029(7)	0.041(8)	0.049(8)	-0.007(7)	-0.028(6)	-0.002(6)
C13	0.021(12)	0.114(28)	0.042(13)	0.020(15)	0.002(10)	0.038(15)
F13	0.023(8)	0.077(13)	0.079(13)	0.012(10)	-0.015(8)	0.009(8)
C14	0.043(14)	0.066(17)	0.033(11)	0.011(10)	-0.009(9)	0.049(14)
F14	0.072(13)	0.185(27)	0.070(12)	0.004(14)	-0.014(10)	0.110(18)
C15	0.092(25)	0.045(16)	0.044(14)	0.007(12)	0.016(15)	0.050(18)
F15	0.073(13)	0.040(9)	0.088(13)	0.010(9)	-0.004(11)	0.035(9)
C16	0.024(10)	0.027(10)	0.027(9)	0.013(7)	0.005(7)	0.015(8)
F16	0.030(7)	0.025(7)	0.045(8)	0.002(6)	-0.001(6)	-0.011(6)
Te2	0.0290(8)	0.0252(8)	0.0260(8)	0.0000(5)	-0.0011(5)	0.0136(6)
C21	0.045(13)	0.002(8)	0.040(11)	0.012(7)	0.010(10)	-0.002(8)
C22	0.041(13)	0.025(11)	0.038(12)	-0.016(9)	-0.014(9)	0.017(10)
F22	0.046(9)	0.051(9)	0.064(9)	0.022(8)	0.025(8)	0.040(8)
C23	0.054(16)	0.017(10)	0.059(15)	-0.013(10)	0.001(12)	0.019(11)
F23	0.077(13)	0.048(10)	0.079(12)	-0.009(9)	-0.024(10)	0.043(10)
C24	0.034(12)	0.010(9)	0.052(14)	-0.012(9)	0.003(10)	-0.007(9)
F24	0.079(13)	0.019(7)	0.048(9)	0.012(6)	-0.005(8)	-0.006(8)
C25	0.035(13)	0.038(14)	0.033(11)	-0.004(10)	0.006(10)	-0.011(11)
F35	0.023(7)	0.068(12)	0.067(11)	0.010(9)	-0.001(7)	0.010(8)
C26	0.050(13)	0.002(7)	0.022(9)	-0.006(6)	0.014(8)	0.003(8)
F26	0.037(8)	0.064(11)	0.065(10)	-0.006(8)	0.003(7)	0.034(8)

Tab.: Bindungsabstände (Standardabweichung)

Atom1	Atom2	Abstand [pm]
Te1	C11	218,(2)
Te1	Te2	271,2(2)
C11	C16	132,(3)
C11	C12	144,(3)
C12	C13	129,(3)
C12	F12	139,(2)
C13	F13	131,(3)
C13	C14	144,(5)
C14	C15	133,(5)
C14	F14	140,(2)
C15	C16	141,(4)
C15	F15	142,(3)

Atom1	Atom2	Abstand [pm]
C16	F16	135,(2)
Te2	C21	215,(2)
C21	C26	140,(4)
C21	C22	140,(3)
C22	C23	135,(3)
C22	F22	137,(3)
C23	F23	134,(3)
C23	C24	141,(4)
C24	F24	131,(2)
C24	C25	131,(2)
C25	F35	138,(3)
C25	C26	140,(3)
C26	F26	130,(3)
C20	1.720	150,(5)

Tab.: Bindungswinkel (Standardabweichung)

Atom1	Atom2	Atom3	Winkel [°]
C11	Te1	Te2	99.3(6)
C16	C11	C12	118.4(19)
C16	C11	Te1	123.5(16)
C12	C11	Te1	118.1(17)
C13	C12	F12	118.5(24)
C13	C12	C11	123.3(24)
F12	C12	C11	118.1(18)
C12	C13	F13	126.4(35)
C12	C13	C14	117.0(26)
F13	C13	C14	116.6(25)
C15	C14	F14	113.7(26)
C15	C14	C13	121.1(20)
F14	C14	C13	124.2(25)
C14	C15	C16	120.0(24)
C14	C15	F15	122.8(27)
C16	C15	F15	117.2(30)
C11	C16	F16	123.6(19)
C11	C16	C15	119.9(23)
F16	C16	C15	116.1(22)
C21	Te2	Te1	98.2(6)
C26	C21	C22	116.0(18)
C26	C21	Te2	120.7(16)
C22	C21	Te2	123.3(19)
C23	C22	F22	114.6(21)
C23	C22	C21	125.5(24)
F22	C22	C21	119.0(21)
F23	C23	C22	121.9(26)
F23	C23	C24	121.6(23)
C22	C23	C24	115.7(22)
F24	C24	C25	122.4(26)
F24	C24	C23	116.8(24)
C25	C24	C23	119.8(21)
C24	C25	F35	121.2(23)
C24	C25	C26	124.5(27)
F35	C25	C26	114.2(29)
F26	C26	C25	121.6(25)
F26	C26	C21	120.6(18)
C25	C26	C21	117.6(23)

5.7 Reaktion von Tetrakis(dimethylamino)ethylen mit Bis(pentafluorphenyl)ditellur

	Ansatz	
$Te_2(C_6F_5)_2$	1,23 g	2,09 mmol
TDAE	0,42 g (0,48 ml)	2,10 mmol
Et_2O	10 ml	

Zu einer auf -78 °C gekühlten orangeroten Lösung von Te₂(C₆F₅)₂ in 5 ml Diethylether werden in einer Argonhose in einem starken Stickstoffgegenstrom 5 ml einer gelben, auf -78 °C gekühlten TDAE-Diethylether-Lösung zugegeben. Es entsteht sofort eine tiefblaue, fast schwarze Farbe. Bei einigen Ansätzen ist die Farbe dunkelgrün bis schwarz und metallisch glänzend. Nach fünf Minuten Rühren und Absetzen des Niederschlags wird die überstehende hellorange Lösung abpipettiert und einmal mit -78 °C kaltem Diethylether gewaschen. Die abpipettierte Lösung enhält fluorhaltige Verbindungen nur in sehr großer Verdünnung und im ¹⁹F-NMR-Spektrum werden nur die Signale von Te₂(C₆F₅)₂ und C₆F₅H sowie die Resonanz einer unbekannten Verbindung bei -78,3 ppm detektiert.

Der verbleibende Niederschlag, der mal braun, mal fast schwarz mit einem Stich ins Grüne oder Blaue ist, wird bei -78 °C kurz im Ölpumpenvakuum getrocknet. An Luft wird er sofort grauschwarz und löst sich nicht sichtbar in Aceton. Trotzdem lassen sich im ¹⁹F-NMR-Spektrum mehrere Signale mit einem sehr schlechten Signal-Rausch-Verhältnis beobachten. Neben den Resonanzen von Te₂(C₆F₅)₂ werden auch die von Te(C₆F₅)₂ sowie zweier weiterer Verbindungen detektiert. Das Signal bei -78,1 ppm ist vermutlich identisch mit dem in der überstehenden Lösung bei -78,3 ppm registrierten. Es tritt bei den Zersetzungen in Lösung ansonsten nicht mehr auf. Hingegen wird das bei -140,0 ppm detektierte Signal auch bei den meisten Zersetzungen in Lösung beobachtet.

Wird der verbliebenen Niederschlag in -78 °C kaltem Aceton oder Propionitril gelöst, so entsteht eine orange Lösung, in deren ¹⁹F-NMR-Spektrum nur die drei Signale einer C₆F₅-Gruppe detektiert werden und die der neuen, nicht gesicherten und daher in Anführungszeichen gesetzten Verbindung "[TDAE][TeC₆F₅]₂" zugeordnet werden. Nach zehn bis 15 Minuten bei -78 °C wird jedoch bereits die Bildung eines olivbraunen Niederschlags beobachtet, der schließlich grauschwarz wird. Im ¹⁹F-NMR-Spektrum werden daraufhin

zahlreiche weitere Signale im Bereich der C_6F_5 -Gruppe detektiert, die – bis auf eine Ausnahme – $Te_2(C_6F_5)_2$ und C_6F_5H zugeordnet werden können.

Wird eine NMR-Probe für ein bis zwei Minuten auf Raumtemperatur erwärmt und dann wieder bei -50 °C vermessen, so hat sich bereits ein Großteil des "[TDAE][TeC₆F₅]₂" unter Bildung von $Te_2(C_6F_5)_2$ und C_6F_5H zersetzt.

Zum Nachweis, daß bei der Zersetzung $Te_2(C_6F_5)_2$ und nicht $Te(C_6F_5)_2$ gebildet wird, wird einer NMR-Probe von "[TDAE][TeC₆F₅]₂" in Acetonitril, die sich bei -30 °C schon sofort nach dem Lösen zu zersetzen beginnt, erneut TDAE zugemischt. Daraufhin werden die $Te_2(C_6F_5)_2$ zugeordneten Signale im ¹⁹F-NMR-Spektrum nicht mehr beobachtet und die Intensität der "[TDAE][TeC₆F₅]₂" zugeordneten Signale hat sich verstärkt.

Tab.: ^{19}F -NMR-Spektrum des Niederschlags der Reaktion von TDAE mit Te $_2(C_6F_5)_2$ in Aceton bei $_70$ °C (Lock: Kapillare mit Aceton- $_6$ / CCl $_3F$)

δ [ppm]	Integral	Zuordnung
0,0	-	CCl₃F
-113,2	2,173	(F_0) ,,[TDAE][TeC ₆ F ₅] ₂ "
-139,7	0,012	(F_o) C_6F_5H
-155,1	0,007	(F_p) C_6F_5H
-157,4	1,000	(F_p) ,,[TDAE][TeC ₆ F ₅] ₂ "
-162,7	2,070	$(F_m) \ \ ,\!\! [TDAE][TeC_6F_5]_2" \ \ / \ \ (F_m) \ \ C_6F_5H$

Tab.: Massenspektrum des schwarzen Rückstands aus der Zersetzung von "[TDAE][TeC₀F₅]₂"

m/z	rel. Intensität	Zuordnung	m / z	rel. Intensität	Zuordnung
	[%]			[%]	
200	79,2	TDAE*+	85	30,8	$(CH_3)_2N-C=NCH_3^+$
185	58,3	TDAE(-CH ₃) ⁺	72	60,8	?
168	100,0	$C_6F_5H^{\bullet_+}$	58	20,0	$H_2C=N(CH_3)_2^+$
144	17,5	?	44	11,5	?
113	13,3	$((CH_3)_2N)_2C=CH^+$	oberhalb	von 300 °C:	
101	10,0	$((CH_3)_2N)_2CH^+$	256	100,0	$\mathrm{Te_2}^{\bullet_+}$
99	11,7	?	130	10,0	Te*+

[–] Es werden nur Fragmente mit einer relativen Intensität >10% aufgeführt.

6 Zusammenfassung

Im Rahmen der Untersuchungen an niedervalenten Perfluororganyltellur-Verbindungen ist es gelungen, neben der Darstellung neuer Perfluororganyltellur-Verbindungen eine Reihe neuer Erkenntnisse über bereits seit langem bekannte, aber unvollständig untersuchte Verbindungen zu gewinnen.

So konnte die Darstellung von Te(CF₃)₂ erfolgreich modifiziert werden. Der Einsatz von Kupferpulver ermöglicht die Trifluormethylierung von elementarem Tellur und den Verzicht auf TeCl₄, dessen Einsatz zu einer Vielzahl chlorierter Nebenprodukte führt.

Als CF₃-Quellen kommen CF₃I und Hg(CF₃)₂ zum Einsatz. Letzteres wurde bislang in mehrtägigen Druckreaktionen mit Tellur und Kupfer umgesetzt. Durch Erhöhung der Temperatur und des Kupferanteils gelang es, die Reaktionszeit auf zwei bis drei Stunden zu verkürzen und die Reaktion bei Normaldruck durchzuführen. Die einzigen Verunreinigungen, Te₂(CF₃)₂ und sublimiertes Hg(CF₃)₂, lassen sich leicht abtrennen, und Te(CF₃)₂ wird in sehr hoher Reinheit erhalten.

In einer zweiten Variante konnte die Eignung von CF₃I als CF₃-Gruppenüberträger auf Tellur gezeigt werden. Durch geeignete Wahl der Kühlfallentemperaturen gelingt die destillative Trennung von nicht umgesetztem CF₃I und Te(CF₃)₂ im dynamischen Vakuum.

Somit stellt das kommerziell erhältliche CF_3I gegenüber den bislang hauptsächlich verwendeten und aufgrund ihrer Toxizität und Umweltgefährdung in der Entsorgung sehr teuren Quecksilberverbindungen eine sehr interessante Alternative für die Darstellung von $Te(CF_3)_2$ dar.

Die erfolgreiche Reinigung von Te₂(CF₃)₂ durch Säulenchromatographie und anschließende fraktionierte Tieftemperatur-Vakuumdestillation ermöglichte die Aufnahme der IR- und Raman-Spektren der Reinsubstanz. Unterstützt durch Polarisations-Raman-Messungen sowie DFT-Berechnungen der Molekülstruktur und der 24 Grundschwingungen für Q-Symmetrie, gelingt die Zuordnung der beobachteten Banden.

Die Aufnahme hochaufgelöster 13 C-, 19 F- und 125 Te-NMR-Spektren von $Te_2(CF_3)_2$ ermöglicht die Simulation der Satellitenspektren der Isotopomere F_3C^{125} TeTeCF $_3$ im 19 F- und F_3C^{125} Te 125 T

und Spektren höherer Ordnung ergeben. Damit ist die sonst nur in unsymmetrischen Ditellur-Verbindungen zu messende ¹J(¹²⁵Te-¹²⁵Te)-Kopplung direkt bestimmbar.

Te₂(CF₃)₂ reagiert mit TDAE in einer quantitativen Reaktion zu dem ersten bekannten Trifluormethyltellurat(0). Das ionisch aufgebaute [TDAE][TeCF₃]₂ ist ein oranger, im kristallinen Zustand leuchtend orangeroter, temperatur-, luft- und feuchtigkeitsempfindlicher Feststoff. Er wird ¹H-, ¹³C-, ¹⁹F- und ¹²⁵Te-NMR- und IR-spektroskopisch sowie massenspektrometrisch charakterisiert. Im Raman-Laser erfolgt sofortige Zersetzung.

[TDAE][TeCF $_3$] $_2$ kristallisiert in einer orthorhombischen Elementarzelle mit den Gitterkonstanten a=1208,2 pm, b=1501,2 pm und c=2316,4 pm. Die Raumgruppe ist Pcab und Z=8.

Sein Potential als TeCF₃-Gruppenüberträger zeigt sich bei den Metathesereaktionen mit HgCl₂ und EtI zu Hg(TeCF₃)₂ und EtTeCF₃, die schon bei tiefen Temperaturen spontan ablaufen.

Parallel dazu wird auch $Hg(TeCF_3)_2$ in Metathesereaktionen mit SbI_3 und EtI auf seine Eignung als $TeCF_3$ -Gruppenüberträger überprüft. Die Umsetzungen mit SbI_3 führen auch bei tiefen Temperaturen immer zur Bildung von $Te_2(CF_3)_2$, so daß davon auszugehen ist, daß eine $TeCF_3$ -Übertragung stattfindet, die gebildeten $SbTeCF_3$ -Verbindungen aber unter $Te_2(CF_3)_2$ -Bildung zerfallen.

Mit EtI gelingt die Umsetzung zu EtTeCF₃, welches durch GC/MS nachgewiesen wird. Die ${}^4J({}^{19}F_{}^{-1}H)$ -Kopplung im EtTeCF₃ ist dabei so klein, daß sie nicht mehr aufgelöst wird und nur über den Vergleich der Linienbreite in protonenentkoppelten und nichtentkoppelten ${}^{19}F_{}^{-}NMR_{}^{-}Spektren nachgewiesen werden kann. EtTeCF₃ trifluormethyliert bei Belichtung das Lösungsmittel Toluol.$

Ein Vergleich der chemischen Verschiebungen im 77 Se- und 125 Te-NMR-Spektrum von homologen CF₃EX-Verbindungen (E = Se, Te; X = beliebiger Substituent) zeigt eine sehr gute Korrelation der Werte und es ergibt sich ein linearer Zusammenhang.

Auch die gegenseitige Auftragung der jeweiligen chemischen Verschiebung im

¹⁹F-NMR-Spektrum ergibt einen linearen Zusammenhang zwischen Selen- und
Tellur-Verbindungen, so daß eine vorsichtige Abschätzung der zu erwartenden chemischen
Verschiebung unbekannter Verbindungen möglich ist.

Erstmals konnten die Kristallstrukturen der seit vielen Jahren bekannten Tellur- Verbindungen $Te(C_6F_5)_2$ und $Te_2(C_6F_5)_2$ bestimmt werden. $Te(C_6F_5)_2$ kristallisiert in gelben Nadeln in einer monoklinen Elementarzelle mit Z=12, den Gitterparametern a=2277.9 pm, b=588.02 pm und c=2967.7 pm sowie den Winkeln $\alpha=\gamma=90^\circ$ und $\beta=91.81^\circ$. Es werden drei kristallographisch unabhängige Formeleinheiten gefunden. Die Raumgruppe ist $P2_1/c$.

 $Te_2(C_6F_5)_2$ kristallisiert in tiefroten Prismen in einer hexagonalen Zelle mit den Parametern a = b = 1444,8 pm, c = 3629,5 pm, $\gamma = 120^\circ$, Z = 8 und der Raumgruppe $R\overline{3}$.

Zu beiden Verbindungen erschienen Ende 2001, unabhängig von dieser Arbeit, Veröffentlichungen einer anderen Arbeitsgruppe [68,129]. Während die Ergebnisse bezüglich $Te_2(C_6F_5)_2$ übereinstimmen, werden für $Te(C_6F_5)_2$ unterschiedliche Strukturen gefunden.

Die Umsetzung von $Te_2(C_6F_5)_2$ mit TDAE führt zunächst glatt zu einer Verbindung, deren ^{19}F -NMR-Spektrum und Zersetzungsprodukte auf die Bildung von $[TDAE][TeC_6F_5]_2$ hindeuten. Aufgrund der extremen Temperatur-, Luft- und Feuchtigkeitsempfindlichkeit ist eine eindeutige Charakterisierung jedoch nicht möglich.

Mit der Darstellung von [TDAE][TeCF₃]₂ ist die Synthese eines vielversprechenden TeCF₃-Gruppenüberträgers gelungen, der im Gegensatz zu Hg(TeCF₃)₂ schon bei tiefen Temperaturen in der Lage ist, die TeCF₃-Gruppe auf Element- und Organylhalogenide zu übertragen.

7 Literatur

- [1] a) Römpp Chemie Lexikon, Hrsg. J. Falbe, 9. Aufl., **Band 1-6**, Thieme, Stuttgart, New York (1989 1992).
 - b) F. Wöhler, Liebigs Ann. Chem. **35** (1840) 111. (aus 1c)
 - c) K. J. Irgolic, in: Houben-Weyl, Methods of Organic Chemistry, ed. D. Klamann, 4th ed., **Volume E12b**, Thieme, Stuttgart (1990) XXXVII.
- [2] A. A. Banks, H. J. Emeléus, R. N. Haszeldine und V. Kerrigan, J. Chem. Soc. (1948) 2188.
- [3] H. J. Emeléus und R. N. Haszeldine, J. Chem. Soc. (1949) 2948.
- [4] H. J. Emeléus und R. N. Haszeldine, J. Chem. Soc. (1949) 2953.
- [5] D. J. Burton und Z.-Y. Yang, Tetrahedron **48** (1992) 189.
- [6] M. A. McClinton und D. A. McClinton, Tetrahedron 48 (1992) 6555.
- [7] a) G. K. S. Prakash und A. K. Yudin, Chem. Rev. **97** (1997) 757.
 - b) R. P. Singh und J. M. Shreeve, Tetrahedron **56** (2000) 7613.
- [8] G. A. Silvey und G. H. Cady, J. Am. Chem. Soc. **72** (1950) 3624.
- [9] G. A. R. Brandt, H. J. Emeléus und R. N. Haszeldine, J. Chem. Soc. (1952) 2198.
- [10] a) B. E. Smart, in: Chemistry of Organic Fluorine Compounds II, Ed. M. Hudlicky und A. E. Pavlath, ACS Monograph 187, ACS, Washington DC, (1995) 985.
 - b) B. E. Smart, J. Fluorine Chem. **109** (2001) 3.
- [11] R. Filler, in: Organofluorine Chemicals and their Industrial Applications, Ed. R. E. Banks, Ellis Horwood LTD., Chichester (1979) 123.
- [12] G. T. Newbold, in: Organofluorine Chemicals and their Industrial Applications, Ed. R. E. Banks, Ellis Horwood LTD., Chichester (1979) 169.
- [13] E. Kühle und E. Klauke, Angew. Chem. **89** (1977) 797.
- [14] J. W. Dale, H. J. Emeléus und R. N. Haszeldine, J. Chem. Soc. (1958) 2939.

- [15] a) Gmelins Handbuch der anorganischen Chemie,
 Perfluorhalogenorgano-Verbindungen der Hauptgruppenelemente, Syst.-Nr. 5,
 Bd. 9 (Teil I) u. Bd. 12 (Teil II), Springer Verlag, Heidelberg (1973).
 - b) Gmelin Handbook of Inorganic and Organometallic Chemistry, Perfluorohalogenoorgano Compounds of Main Group Elements, Syst. No. 5, 2nd Suppl. Vol. 1 (1994) and Vol. 2, Springer Verlag, Heidelberg (1995).
- [16] A. Haas, J. Fluorine Chem. **32** (1986) 415.
- [17] D. Naumann, Phosphorus Sulfur and Silicon **171** (2001) 113.
- [18] T. N. Bell, B. J. Pullmann und B. O. West, Austr. J. Chem. **16** (1963) 722.
- [19] H. L. Paige und J. Passmore, Inorg. Nucl. Chem. Lett. **9** (1973) 277.
- [20] S. Herberg und D. Naumann, Z. Anorg. Allg. Chem. **492** (1982) 95.
- [21] M. L. Denniston und D. R. Martin, J. Inorg. Nucl. Chem. **37** (1975) 1871.
- [22] R. J. Lagow, L. L. Gerchman, R. A. Jacob und J. A. Morrison,J. Am. Chem. Soc. 97 (1975) 518.
- [23] T. J. Juhlke, R. W. Braun, T. R. Bierschenk und R. J. Lagow,J. Am. Chem. Soc. 101 (1979) 3229.
- [24] M. Schmeisser, R. Walter und D. Naumann, Z. Anorg. Allg. Chem. 464 (1980) 233.
- [25] S. Herberg, Dissertation, Universität Dortmund (1981).
- [26] a) D. Naumann und S. Herberg, J. Fluorine Chem. **19** (1982) 205.
 - b) S. Herberg und D. Naumann, Z. Anorg. Allg. Chem. **494** (1982) 151.
- [27] a) D. Naumann, B. Wilkes und J. Kischkewitz, J. Fluorine Chem. 30 (1985) 73.
 - b) D. Naumann und J. Kischkewitz, J. Fluorine Chem. 46 (1990) 265.
 - c) D. Naumann und J. Kischkewitz, J. Fluorine Chem. 47 (1990) 283.
- [28] E. A. Ganja und J. A. Morrison, Inorg. Chem. **29** (1990) 33.
- [29] J. Kischkewitz, Dissertation, Universität Dortmund (1986).
- [30] J. Kischkewitz und D. Naumann, Z. Anorg. Allg. Chem. **547** (1987) 167.
- [31] S. Boye, Dissertation, Universität zu Köln (1996).

- [32] L. T. Specht, W. E. Hoke, S. Oguz, P. J. Lemonias, V. G. Kreismanis und R. Korenstein, Appl. Phys. Lett. **48** (1986) 417.
- [33] D. C. Harris, R. A. Nissan und K. T. Higa, Inorg. Chem. **26** (1987) 765.
- [34] C. R. Sprinkle und M. L. Steigerwald, J. Am. Chem. Soc. 109 (1987) 7200.
- [35] a) D. Maschewsky, in: Ullmanns Encyklopädie der technischen Chemie,4. Aufl., Band 22, VCH, Weinheim (1982) 447.
 - b) G. Knockaert, in: Ullmann's Encyclpedia of Industrial Chemistry, 5. Ed., **Volume A 26**, VCH, Weinheim (1995) 177.
 - c) L. Vriens und B. A. J. Jacobs, Philips Tech. Rev. **41** (1983) 313.
- [36] a) W. E. Hoke und P. J. Lemonias, Appl. Phys. Lett. **48** (1986) 1669.
 - b) D. W. Kisker, M. L. Steigerwald, T. Y. Kometani und K. S. Jeffers, Appl. Phys. Lett. **50** (1987) 1681.
 - c) J. J. Zinck, P. D. Brewer, J. E. Jensen, G. L. Olson und L. W. Tutt, Appl. Phys. Lett. **52** (1988) 1434.
 - d) W. E. Hoke, P. J. Lemonias und R. Korenstein, J. Mater. Res. 3 (1988) 329.
 - e) C. D. Stinespring und A. Freedman, Appl. Phys. Lett. 52 (1988) 1959.
 - f) S. J. C. Irvine, J. B. Mullin, J. Giess, J. S. Gough, A. Royle und G. Crimes, J. Crystal Growth **93** (1988) 732.
 - g) J. Pola, Z. Bastl, J. Subrt und A. Ouchi, Appl. Organomet. Chem. 14 (2000) 715.
- [37] D. C. Gordon, R. U. Kirss und D. W. Brown, Organometallics **11** (1992) 2947.
- [38] a) R. Venkatasubramanian, T. Colpitts, B. O'Quinn, S. Liu, N. El-Masry und M. Lamvik, Appl. Phys. Lett. **75** (1999) 1104.
 - b) R. Venkatasubramanian, E. Siivola, T. Colpitts und B. O'Quinn, Nature **413** (2001) 597.
- [39] Römpp Chemie Lexikon, Hrsg. J. Falbe, 9. Aufl., **Band 6**, Thieme, Stuttgart, New York (1992) 4485.
- [40] P. C. Srivastara, F. F. Knapp und G. W. Kabalka, Phosphorus Sulfur **38** (1988) 49.
- [41] R. Kasemann und D. Naumann, J. Fluorine Chem. **48** (1990) 207.

- [42] E. H. Man, D. D. Coffman und E. L. Muetterties, J. Am. Chem. Soc. 81 (1959) 3575.
- [43] L. M. Yagupolskii, N. V. Kondratenko und V. P. Sambur, Synthesis (1975) 721.
- [44] D. C. Remy, K. E. Rittle, C. A. Hunt und M. B. Freedman, J. Org. Chem. **41** (1976) 1644.
- [45] J. H. Clark, C. W. Jones, A. P. Kybett, M. A. McClinton, J. M. Miller, D. Bishop und R. J. Blade, J. Fluorine. Chem. **48** (1990) 249.
- [46] S. Munavalli, D. I. Rossman, D. K. Rohrbaugh, C. P. Ferguson und J. Szafraniec, J. Fluorine Chem. **59** (1992) 91.
- [47] a) S. J. Tavener, D. J. Adams und J. H. Clark, J. Fluorine Chem. **95** (1999) 171.
 - b) D. J. Adams, J. H. Clark, P. A. Heath, L. B. Hansen, V. C. Sanders und S. J. Tavener, J. Fluorine Chem. **101** (2000) 187.
- [48] D. J. Adams und J. H. Clark, J. Org. Chem. **65** (2000) 1456.
- [49] N. V. Kondratenko, A. A. Kolomeytsev, V. I. Popov und L. M. Yagupolskii, Synthesis (1985) 667.
- [50] A. Haas und H-U. Krächter, Chem. Ber. **121** (1988) 1833.
- [51] R. Feldhoff, A. Haas und M. Lieb, J. Flourine Chem. **67** (1994) 245.
- [52] A. Darmadi, A. Haas und M. Kaschani-Motlagh,Z. Anorg. Allg. Chem. 448 (1979) 35.
- [53] A. Damardi, A. Haas und B. Koch, Z. Naturforsch. **35b** (1980) 526.
- [54] R. Boese, A. Haas und C. Limberg, J. Chem. Soc., Dalton Trans. (1993) 2547.
- [55] W. Dukat, F. Gall, C. Meyer, D. Mootz, D. Naumann, G. Nowicki und K. Schulz, Z. Anorg. Allg. Chem. **622** (1996) 617.
- [56] A. Haas, H. Heuduk, C. Monsé und L. M. Yagupolskii, J. Fluorine Chem. **94** (1999) 195.
- [57] E. A. Ganja, C. D. Ontiveros und J. A. Morrison, Inorg. Chem. 27 (1988) 4535.
- [58] R. Kasemann, Dissertation, Universität Dortmund (1987).
- [59] R. Kasemann, C. Lichenheim, G. Nowicki und D. Naumann, Z. Anorg. Allg. Chem. **621** (1995) 213.

- [60] a) L. Tschugaeff und W. Chlopin, Chem. Ber. 47 (1914) 1274.
 - b) M. L. Bird und F. Challenger, J. Chem. Soc. (1939) 163.
- [61] W. Dukat, Dissertation, Universität Dortmund (1986).
- [62] F. Gall, Dissertation, Universität Dortmund (1989).
- [63] C. Lichenheim, Dissertation, Universität zu Köln (1993).
- [64] J. Beck, A. Haas, W. Herrendorf und H. Heuduk, J. Chem. Soc., Dalton Trans. (1996) 4463.
- [65] B. Hoge, persönliche Mitteilung.
- [66] a) Syntheses of Fluoroorganic Compounds, Ed. I. L. Knunyants und G. G. Yakobson, Springer-Verlag, Berlin, Heidelberg (1985).
 - b) W. A. Herrmann, G. Brauer, Synthetic Methods of Organometallic and Inorganic Chemistry, **Volume 5**: Copper, Silver, Gold, Zinc, Cadmium and Mercury, Georg Thieme Verlag, Stuttgart (1999).
 - c) I. L. Knunyants, Y. F. Kommisarov, B. L. Dyatkin und L. T. Lantseva, Izv. Akad. Nauk SSSR, Ser. Khim. 4 (1973) 943.
- [67] M. Nieswand, Diplomarbeit, Universität zu Köln (1994).
- [68] T. M. Klapötke, B. Krumm, P. Mayer, K. Polborn und O. P. Ruscitti, J. Fluorine Chem. **112** (2001) 207.
- [69] H. Pohl, Diplomarbeit, Universität zu Köln (1997).
- [70] K. Schulz, Diplomarbeit, Universität zu Köln (1990).
- [71] W. Gombler, J. Am. Chem. Soc. **104** (1982) 6616.
- [72] A. F. Holleman und N. Wiberg, Lehrbuch der Anorganischen Chemie, 101. Aufl., Walter de Gruyter, Berlin (1995).
- [73] P. Granger, S. Chapelle, W. R. McWhinnie und A. Al-Rubaie, J. Organometal. Chem. **220** (1981) 149.
- [74] a) R. J. Lagow, L. L. Gerchman und R. A. Jacob, US-Patent Nr. 3,954,585 vom 04.05.1976.
 - b) R. J. Lagow, L. L. Gerchman und R. A. Jacob, US-Patent Nr. 3,992,424 vom 16.11.1976.
- [75] W. H. Green und A. B. Harvey, J. Chem. Phys. **49** (1968) 3586.

- [76] K. Hamada und H. Morishita, Spectroscopy Letters 13 (1980) 185.
- [77] C. W. Sink und A. B. Harvey, J. Mol. Structure **4** (1969) 203.
- [78] C. J. Marsden, J. Fluorine Chem. **5** (1975) 401.
- [79] J. D. Odom, A. M. Boccanfuso, M. M. Bergana, T. S. Little und J. R. Durig, J. Mol. Structure **238** (1990) 159.
- [80] Gaussian 98, Revision A.9, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle und J. A. Pople, Gaussian, Inc., Pittsburgh PA, 1998.
- [81] C. J. Marsden und G. M. Sheldrick, J. Mol. Structure **10** (1971) 419.
- [82] C. Meyer, D. Mootz, B. Bäck und R. Minkwitz, Z. Naturforsch. **52b** (1997) 69.
- [83] H. J. M. Bowen, Trans. Faraday Soc. **50** (1954) 452.
- [84] a) J. Weidlein, U. Müller und K. Dehnicke, Schwingungsfrequenzen I, Hauptgruppenelemente, Thieme Verlag, Stuttgart (1981).
 - b) E. Maslowsky, Vibrational spectra of organometallic compounds, John Wiley & Sons, New York (1977).
- [85] K. V. Smith und J. S. Thayer, Inorg. Chem. **13** (1974) 3021.
- [86] W. R. McWhinnie und P. Thavornyurtikarn, J. Organomet. Chem. **35** (1972) 149.
- [87] N. Wiberg, Angew. Chem. **80** (1968) 809.
- [88] K. Kuwata und D. H. Geske, J. Am. Chem. Soc. **86** (1964) 2101.
- [89] D. M. Lemal und K. I. Kawano, J. Am. Chem. Soc. **84** (1962) 1761.
- [90] G. Pawelke, J. Fluorine Chem. **42** (1989) 4.
- [91] V. A. Petrov, Tetrahedron Letters **42** (2001) 3267.

- [92] S. Ait-Mohand, N. Takechi, M. Medebielle und W. R. Dolbier Jr., Org. Lett. **3** (2001) 4271.
- [93] A. Kolomeitsev, M. Médebielle, P. Kirsch, E. Lork und G.-V. Röschenthaler, J. Chem. Soc., Perkin Trans. 1 (2000) 2183.
- [94] a) A. C. Hillier, S.-Y. Liu, A. Sella und M. R. J. Elsegood, Angew. Chem. **111** (1999) 2918.
 - b) D. Witthaut, K. Kirschbaum, O. Conrad und D. M. Giolando, Organometallics **19** (2000) 5238.
- [95] W. B. Farnham, B. E. Smart, W. J. Middleton, J. C. Calabrese und D. A. Dixon, J. Am. Chem. Soc. 107 (1985) 4565.
- [96] R. Boese, A. Haas und C. Limberg, J. Chem. Soc., Chem. Commun. (1991) 1378.
- [97] W. Gombler, Spectrochim. Acta. **37A** (1981) 57.
- [98] W. Gombler, Z. Naturforsch. **36b** (1981) 535.
- [99] M. W. Briscoe, R. D. Chambers, S. J. Mullins, T. Nakamura, J. F. S. Vaughan und F. G. Drakesmith, J. Chem. Soc., Perkin Trans. 1 (1994) 3115.
- [100] N. Wiberg und J. W. Buchler, Z. Naturforsch. **19b** (1964) 5.
- [101] H. E. Winberg, J. R. Downing und D. D. Coffman,J. Am. Chem. Soc. 87 (1965) 2054.
- [102] W. P. Norris, Tetrahedron **28** (1972) 1965.
- [103] M. Hesse, H. Meier und B. Zeeh, Spektroskopische Methoden in der organischen Chemie, 6. Aufl., Thieme Verlag, Stuttgart (2002).
- [104] R. D. Chambers, W. K. Gray, G. Sandford und J. F. S. Vaughan, J. Fluorine Chem. 94 (1999) 213.
- [105] R. A. DeMarco, W. B. Fox, W. B. Moniz und S. A. Sojka, J. Magn. Res. 18 (1975) 522.
- [106] N. Wiberg und J. W. Buchler, Chem. Ber. **96** (1963) 3223.
- [107] A. S. Foust, J. Chem. Soc., Chem. Commun. (1979) 414.
- [108] a) P. J. Bonasia und J. Arnold, J. Chem. Soc., Chem. Commun. (1990) 1299.
 - b) P. J. Bonasia und J. Arnold, J. Organomet. Chem. **449** (1993) 147.

- [109] Y. Kawahara, S. Kato, T. Kanada, T. Murai und M. Ebihara, Bull. Chem. Soc. Jpn. **68** (1995) 3507.
- [110] a) J. Zhao, D. Adcock, W. T. Pennington und J. W. Kolis, Inorg. Chem. 29 (1990) 4358.
 - b) J. Zhao, J. W. Kolis und W. T. Pennington, Acta Cryst. C49 (1993) 1753.
- [111] H. Bock, K. Ruppert, K. Merzweiler, D. Fenske und H. Goesmann, Angew. Chem. **101** (1989) 1715.
- [112] K. Elbl-Weiser, C. Krieger und H. A. Staab, Angew. Chem. **102** (1990) 183.
- [113] H. Bock, H. Borrmann, Z. Havlas, H. Oberhammer, K. Ruppert und A. Simon, Angew. Chem. **103** (1991) 1733.
- [114] a) C. J. Marsden, L. S. Bartell und F. P. Diodati, J. Mol. Struct. 39 (1977) 253.b) W. Gase und J. E. Boggs, J. Mol. Struct. 116 (1984) 207.
- [115] A. Haas und K. W. Kempf, Tetrahedron **40** (1984) 4963.
- [116] a) A. Haas, Chem. Ztg. 106 (1982) 239.b) A. Haas, Pure Appl. Chem. 63 (1991) 1577.
- [117] R. G. Pearson, J. Am. Chem. Soc. **85** (1963) 3533.
- [118] H. C. E. McFarlane und W. McFarlane, J. Chem. Soc., Dalton Trans. (1973) 2416.
- [119] C. H. Dungan und J. R. van Wazer, Compilation of Reported ¹⁹F-NMR-Chemical Shifts, Wiley, New York (1970).
- [120] V. Gutmann, The Donor-Acceptor Approach to Molecular Interactions, Plenum Press, New York (1978).
- [121] S. Herberg, H. Lange und D. Naumann, J. Fluorine Chem. **35** (1987) 267.
- [122] D. Naumann und G. Klein, Z. anorg. allg. Chem. **550** (1987) 162.
- [123] S. Berger, S. Braun und H.-O. Kalinowski, NMR-Spektroskopie von Nichtmetallen, Band 4, ¹⁹F-NMR-Spektroskopie, Thieme Verlag, Stuttgart (1994).
- [124] W. Tyrra, persönliche Mitteilung.
- [125] S. C. Cohen, M. L. N. Reddy und A. G. Massey, J. Organomet. Chem. 11 (1968) 563.
- [126] G. B. Deacon und J. C. Parrott, J. Organomet. Chem. **22** (1970) 287.

- [127] W. R. McWhinnie und M. G. Patel, J. Chem. Soc., Dalton Trans. (1972) 199.
- [128] H. Suzuki, T. Nakamura, Synthesis (1992) 549.
- [129] T. M. Klapötke, B. Krumm, P. Mayer, K. Polborn und O. P. Ruscitti, Inorg. Chem. **40** (2001) 5169.
- [130] R. Minkwwitz, H. Preut und J. Sawatzki, Z. anorg. allg. Chem. **569** (1989) 158.
- [131] T. M. Klapötke, B. Krumm und K. Polborn, Eur. J. Inorg. Chem. (1999) 1359.
- [132] a) M. L. N. Reddy, M. R. Wiles und A. G. Massey, Nature 217 (1968) 740.
 - b) E. Kostiner, M. L. N. Reddy, D.S. Urch und A. G. Massey, J. Organometal. Chem. **15** (1968) 383.
- [133] R. Müller, persönliche Mitteilung.
- [134] C. M. Woodard, D. S. Brown, J. D. Lee und A. G. Massey, J. Organometal. Chem. **121** (1976) 333.
- [135] G. Llabres, O. Dideberg und L. Dupont, Acta Cryst. **B28** (1972) 2438.
- [136] R. L. Pruett, J. T. Barr, K. E. Rapp, C. T. Bahner, J. D. Gibson und R. H. Lafferty, J. Am. Chem. Soc. 72 (1950) 3646.
- [137] D. D. Perrin, W. L. F. Armarego und D. R. Perrin, Purification of Laboratory Chemicals, Pergamon Press, Oxford (1980).
- [138] A. D. Campbell und P. A. Dawson, Mikrochimica Acta, I (1983) 264.
- [139] H. H. Willard und P. Young, J. Am. Chem. Soc. **52** (1930) 554.

Ich versichere, daß ich die von mir vorgelegte Dissertation selbständig angefertigt, die benutzten Quellen und Hilfsmittel vollständig angegeben und die Stellen der Arbeit - einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken im Wortlaut oder dem Sinn nach entnommen sind, in jedem Einzelfall als Entlehnung kenntlich gemacht habe; daß diese Dissertation noch keiner anderen Fakultät oder Universität zur Prüfung vorgelegen hat; daß sie - abgesehen von unten angegebenen Teilpublikationen - noch nicht veröffentlicht worden ist sowie, daß ich eine solche Veröffentlichung vor Abschluß des Promotionsverfahrens nicht vornehmen werde. Die Bestimmungen dieser Promotions- ordnung sind mir bekannt. Die von mir vorgelegte Dissertation ist von Prof. Dr. D. Naumann betreut worden.

Teilpublikationen:

- B. Hoge, D. Naumann, H. Pohl und J. Shamir, J. Raman Spectros. 34(1) (2003) 33.
- W. Tyrra, D. Naumann, H. Pohl und I. Pantenburg, Z. Anorg. Allg. Chem.
 (zur Veröffentlichung angenommen).

Kurzzusammenfassung

Im Rahmen der Untersuchungen an niedervalenten Perfluororganyltellur-Verbindungen ist es gelungen, die Darstellung von Bis(trifluormethyl)tellur zu modifizieren.

Die erfolgreiche Reinigung von Bis(trifluormethyl)ditellur ermöglichte die Aufnahme der Schwingungsspektren und ihre durch DFT-Berechnungen gestützte Interpretation.

Hochaufgelöste NMR-Spektren von Bis(trifluormethyl)ditellur wurden gemessen und mit Hilfe einer Spektrensimulation ausgewertet.

Die Reaktion von Bis(trifluormethyl)ditellur mit TDAE führt zum Octamethyloxamidinium-bis(trifluormethyltellurat(0)), dem ersten Trifluormethyltellurat(0) überhaupt. Es kristallisiert in einer orthorhombischen Elementarzelle mit den Gitterkonstanten $a=1208,2\,\mathrm{pm}$, $b=1501,2\,\mathrm{pm}$ und $c=2316,4\,\mathrm{pm}$. Die Raumgruppe ist Pcab und Z=8.

Seine Eignung als Trifluormethyltellur-Gruppenüberträger wurde mit der von Bis-(trifluormethyltellur)quecksilber verglichen und dabei durch Metathesereaktion mit Iodethan Ethyltrifluormethyltellur dargestellt.

Die Kristallstrukturen der seit langem bekannten Verbindungen Bis(pentafluorphenyl)tellur und Bis(pentafluorphenyl)ditellur wurden bestimmt. Bis(pentafluorphenyl)tellur kristallisiert in einer monoklinen Elementarzelle mit Z=12, den Gitterparametern a=2277.9 pm, b=588.02 pm und c=2967.7 pm sowie den Winkeln $\alpha=\gamma=90^\circ$ und $\beta=91.81^\circ$. Die Raumgruppe ist $P2_1/c$.

Bis(pentafluorphenyl)ditellur kristallisiert in einer hexagonalen Zelle mit den Parametern a = b = 1444,8 pm, c = 3629,5 pm, $\gamma = 120^{\circ}$, Z = 8 und der Raumgruppe R-3.

Bei der Umsetzung von Bis(pentafluorphenyl)ditellur mit TDAE ergeben sich Hinweise auf Octamethyloxamidiniumbis(pentafluorphenyltellurat(0)).

Abstract

Within the scope of the investigations on perfluorinated organotellurium compounds of low valency the preparation of bis(trifluoromethyl)tellurium was successfully modified.

Purification of bis(trifluoromethyl)ditellurium allowed the measurement of the vibrational spectra and their computer based interpretation via DFT calculations. High resolution NMR spectra of bis(trifluoromethyl)ditellurium were measured and simulated as well.

The reaction of bis(trifluoromethyl)ditellurium with TDAE leads to octamethyl-oxamidiniumbis(trifluoromethyltellurate(0)), the first trifluoromethyltellurate(0) at all, which crystallizes in the orthorhombic space group Pcab with Z=8. The unit cell parameters are a=1208.2 pm, b=1501.2 pm und c=2316.4 pm.

Its ability to transfer the trifluoromethyltellurium group in comparison to bis(trifluoromethyltelluro)mercury was investigated and ethyltrifluoromethyltellurium was prepared by ligand exchange reaction with iodoethane.

The X-ray crystal structures of the two well known compounds bis(pentafluorophenyl)-tellurium and bis(pentafluorophenyl)ditellur were determined. Bis(pentafluorophenyl)-tellurium crystallizes in the monoclinic space group $P2_1/c$ with Z=12. The unit cell parameters are a=2277.9 pm, b=588.02 pm und c=2967.7 pm and the angles $\alpha=\gamma=90^\circ$ and $\beta=91.81^\circ$.

The space group of bis(pentafluorophenyl)ditellur is R-3 and the parameters of the hexagonic unit cell with Z=8 are a=b=1444.8 pm, c=3629.5 pm and $\gamma=120^{\circ}$.

From the reaction of bis(pentafluorophenyl)ditellur with TDAE octamethyloxamidiniumbis-(pentafluorophenyltellurate(0)) probably has been formed.

Lebenslauf

Persönliche Daten

Name: Herbert Pohl

Geburtsdatum: 24.12.1966

Geburtsort: Bochum

Familienstand: verheiratet (seit 1990)

zwei Töchter (drei und acht Jahre alt)

Schule

1973 – 1977 Besuch der Gemeinschafts-Grundschule Wesseling-Süd

1977 – 1986 Besuch des städtischen Gymnasiums Wesseling mit dem Abschluß

der allgemeinen Hochschulreife

Wehrdienst

07/1986 – 09/1987 Wehrdienst in Goslar und Bremervörde

Studium

10/1987	Immatrikulation im Fach Chemie an der Universität zu Köln
07/1992	Diplom-Chemiker Vorprüfung
12/1996	mündliche Diplom-Chemiker Hauptprüfung
01/1997 – 10/1997	Diplomarbeit am Institut für Anorganische Chemie der Universität zu Köln unter Leitung von Herrn Prof. Dr. D. Naumann
11/1997 – 11/2002	Dissertation am Institut für Anorganische Chemie der Universität zu Köln unter Leitung von Herrn Prof. Dr. D. Naumann