An Integer Programming Approach to
Exact and Fuzzy Symmetry Detection

Inaugural-Dissertation
zur
Erlangung des Doktorgrades
der Mathematisch-Naturwissenschaftlichen Fakultat

der Universitat zu Koln

vorgelegt von
Christoph Buchheim

aus Opladen

Koln 2003

Berichterstatter: Prof. Dr. Michael Jiinger
Prof. Dr. Ewald Speckenmeyer

Tag der miindlichen Priifung: 3. Juni 2003

Die Tatsachen gehéren alle nur
zur Aufgabe, nicht zur Lésung.

Ludwig Wittgenstein

Zusammenfassung

Das Ziel beim Automatischen Zeichnen von Graphen besteht in der Erzeugung von
schonen und iibersichtlichen Zeichnungen von Diagrammen, die abstrakt als Menge
von Objekten und deren Beziehungen untereinander gegeben sind. Zum Zwecke
der Automatisierung werden Diagramme als Graphen modelliert. Dariiber hinaus
werden formale Kriterien festgelegt, mit deren Hilfe die Qualitat einer Zeichnung
bewertet werden kann. Empirische Studien zeigen, dass ein wichtiges Kriterium
in der Darstellung von Symmetrie besteht. Wenn moglich, sollen die Zeichnungen
also symmetrisch sein. Es ist jedoch ein NP-schweres Problem, fiir einen abstrakt
gegebenen Graphen zu entscheiden, ob und wie er symmetrisch gezeichnet werden
kann. In dieser Arbeit wird ein Ansatz zur Symmetrieerkennung vorgestellt, der auf
Techniken der ganzzahligen Programmierung basiert. Mit diesem Ansatz konnen
fiir einen beliebigen Graphen Symmetrien sowie andere spezielle Automorphismen
bestimmt werden. Da die meisten Graphen aus praktischen Anwendungen jedoch
keine exakt symmetrische Zeichnung zulassen, wird zusatzlich eine Erweiterung der
Suche auf unscharfe Symmetrien betrachtet.

Danksagung

An dieser Stelle danke ich allen, die diese Arbeit direkt oder indirekt ermoglicht
haben. Das gilt vor allem fiir Prof. Michael Jiinger, der dies nicht nur durch seine
wissenschaftliche Anleitung getan hat, sondern auch durch sein persénliches Vorbild
und nicht zuletzt durch die Schaffung einer entspannten und zugleich anregenden
Arbeitsumgebung. Fiir diese sehr angenehme Atmosphare und fiir all die andere
Hilfe danke ich auch Michael Belling, Matthias Elf, Stefan Hachul, Thomas Lange,
Frauke Liers, Ursula Neugebauer und Merijam Percan.

Weiterhin danke ich den Kollegen von Caesar, vor allem Dr. Sebastian Leipert, der
mich auf die richtige Bahn gebracht hat. Mein Dank gilt auch Prof. Petra Mutzel
und ihren Mitarbeiterinnen und Mitarbeitern fiir die schone und produktive Zeit
in Wien, sowie Prof. Peter Eades und seiner Gruppe fiir drei spannende Monate in
Sydney. Insbesondere danke ich Dr. Seok-Hee Hong, von der ich viel gelernt habe.

Genauso dankbar bin ich allen, die mein Leben auflerhalb der Wissenschaft
lebenswert machen: Meinen Eltern, meiner Schwester und allen Freundinnen und

Freunden, die verhindert haben, dass ich mich zu sehr in meine Forschung vergrabe
und dabei den Uberblick verliere.

Am meisten danke ich Dr. Jana Kremer.

Abstract

The aim of Automatic Graph Drawing is to compute nice and well-readable layouts
of diagrams given abstractly as a set of entities and a set of relations between them.
For the sake of automation, diagrams are modeled by graphs. Moreover, formal
criteria are specified that measure the quality of such layouts. Empirical studies show
that one important criterion is the display of symmetry: if they exist, symmetric
layouts are preferred. However, it is an NP-hard problem to decide whether and
how an abstractly given graph can be drawn in a symmetrical way. We present an
approach for detecting symmetries based on integer programming techniques. This
approach can be used to find symmetries or different kinds of automorphisms for
general graphs. As most practical graphs do not admit any exact symmetry, we also
consider an extension for detecting fuzzy symmetries.

Acknowledgments

I wish to express my thanks to everyone who supported me in writing this thesis,
whether directly or indirectly. This applies in particular to Michael Jiinger, who
did this not only by his scientific advice but also by his personal example and not
least by providing a relaxed and stimulating working environment. For this most
pleasant atmosphere and for all the other help, [am also grateful to Michael Belling,
Matthias Elf, Stefan Hachul, Thomas Lange, Frauke Liers, Ursula Neugebauer, and
Merijam Percan.

Furthermore, I would like to thank the guys at Caesar, mainly Sebastian Leipert,
who put me on the right track. Many thanks also to Petra Mutzel and her staff for
the nice and fruitful time in Vienna, and to Peter Eades and his group for three
exciting months in Sydney. I am especially grateful to Seok-Hee Hong for learning
much from her.

I am just as indebted to everyone making my life outside the science world worth
living: to my parents, to my sister, and to all my friends who prevented me from
digging myself into the research too deep to keep the overview.

Most of all, I am thankful to Jana Kremer.

Contents

Introduction

1 Preliminaries
1.1 Graphs e
1.2 Isomorphisms of Graphs
1.3 Automorphisms of Graphs,
1.4 Symmetries of Graphso o oo
1.5 Branchand Cut o o

2 Detecting Automorphisms
2.1 The Integer Linear Program
2.2 Objective Functions oL
2.3 The Automorphism Polytope
24 Cutting Planeso oo
2.5 Separation e e
2.6 Primal Heuristics Lo
2.7 Branching and Enumeration o000
2.8 Fixing and Setting Variables. L.
2.9 Experimental Results

3 Detecting Rotations
3.1 The Integer Linear Program
3.2 The Rotation Polytope L.
3.3 Cutting Planes
3.4 Separation e
3.5 Fixing and Setting Variables.

15
20

23
24
25
26
26
28
29
30
31
31

4 Detecting Reflections

4.1 The Integer Linear Program
4.2 The Reflection Polytope

4.3 Cutting Planes
4.4 Separation

4.5 Primal Heuristics . . .

5 Detecting Symmetries

5.1 Reducing the Number of Potential Orders

5.2 Detecting the Second Symmetry

5.3 Experimental Results

6 Detecting Fuzzy Symmetries

6.1 The Integer Linear Programs

6.2 The Fuzzy Symmetry Polytopes

6.3 Cutting Planes
6.4 Separation

6.5 Primal Heuristics . . .

6.6 Branching and Enumeration

6.7 Fixing and Setting Variables. L.

6.8 Experimental Results
Conclusion

Bibliography

45
46
46
47
47
48

49
20
o1
52

57
o8
29
60
67
68
68
69
69

75

77

Introduction

The concept of symmetry is a central element in most attempts to understand and
formalize aesthetic perception. Greek philosophy connected symmetry to beauty
and perfection, or even divinity. More recent theories also emphasize the impor-
tance of symmetry; see e.g. George Birkhoff’s aesthetic measure [12] or Max Bense’s
information-theoretic aesthetics [9]. In these theories, the beauty of an object is
defined to be more or less proportional to its degree of symmetry and order.

In addition to its aesthetic relevance, symmetry is often preferred for practical
reasons. On one hand, it may be imposed by nature, as in architecture, where statics
requires symmetry to some extent. On the other hand, symmetric structures are rec-
ognized much easier and faster than asymmetric structures of the same complexity.
According to Gestalt theory, symmetric structures are preferred in case of ambiguity
because of their simplicity; see Fig. 1 for an example taken from [69].

gl

Figure 1: A simple example showing the preference of symmetry. In both
drawings, we do not know whether and how the two figures cover each other.
However, in the left hand drawing we see two squares, whereas in the right
hand drawing we see a square and a cross

For both its aesthetic and perceptual importance, symmetry plays a central role in
automatic graph drawing. In this research field, the aim is to develop algorithms
for creating nice and well-readable drawings of abstractly given graphs. Nodes are
represented by points in the plane and edges are represented by curves connecting
the corresponding nodes; see Fig. 2 for examples. The quality of a graph drawing can
be measured by many different—and usually conflicting—criteria, e.g., the number
of crossings of edges, the number of bends of edges, the required area.

) Introduction

One of the most important criteria in automatic graph drawing is the display of
symmetry, as emphasized by empirical studies [67]. We call a drawing of a graph G
symmetric if there exists a non-trivial isometry of the plane that fixes the drawing,
i.e., that maps nodes to nodes and curves to curves. Examples are given in Fig. 2(b)
and Fig. 2(c); these drawings are fixed under rotations of order six, i.e., under
rotations by 60 degrees.

Figure 2: Three drawings of the same abstract graph

It is a well-known result that every isometry of the plane is a composition of rota-
tions at a center point, reflections at an axis, and translations by a vector. Since
translations cannot fix a graph drawing, every symmetry is a compositions of rota-
tions and reflections. In fact, such compositions are rotations or reflections again, so
we derive that every symmetric graph drawing is fixed by a rotation or a reflection.
Fig. 2(b) and Fig. 2(c) are fixed by both rotational and reflectional symmetries.

As argued above, an algorithm for the problem of drawing a given abstract graph G
in a symmetrical way is desirable. Usually, this problem is divided into the following
two subproblems: first, find an abstract symmetry of GG. Such an abstract symme-
try does not determine the actual node positions but only the node permutation
induced by a symmetric drawing, i.e., which node is mapped to which other node
if the corresponding isometry of the plane is applied to the graph drawing. On one
hand, by fixing this node permutation, the number of possible drawings of G is
restricted significantly. On the other hand, even for a given abstract symmetry, we
still have many possible drawings; e.g., the two drawings in Fig 2(b) and 2(c) show
the same graph and display the same symmetries. Finding a good drawing of a given
symmetry is the second subproblem. Here we have to consider further aesthetic cri-
teria like crossing minimization; see Buchheim and Hong [17]. However, finding just
any drawing of G realizing a given abstract symmetry is a trivial problem. In the
following, we focus on the first subproblem, the problem of symmetry detection.

Introduction 3

In his PhD-thesis [53], Joseph Manning showed that the symmetry detection prob-
lem is NP-hard for general graphs. Furthermore, he devised linear time algorithms
for symmetry detection in trees and outerplanar graphs; see [55] and [56]. Finally,
he gives an algorithm for finding symmetries in embedded graphs. Building on this
work, Seok-Hee Hong and Peter Eades were able to find a linear time symmetry
detection algorithm for general planar graphs. For the triconnected case, Hong
et al. [42] show how an algorithm of Fontet [31] can be used to fix one of the
linearly many embeddings of G' so that the result for embedded graphs can be used.
The biconnected case is reduced to the triconnected case by using SPQR-trees [39].
Similarly, the one-connected case is reduced to the biconnected case by using block-
cut-trees [40]. Finally, the disconnected case is considered in [41].

Three significant differences between the approach of Manning and Hong et al.
on one hand and our approach on the other hand have to be pointed out. First,
Manning and Hong only search for planar symmetries, i.e., symmetries that can be
displayed by a planar drawing of G. However, even in planar graphs, there may be
a lot of non-planar symmetries. For example, all planar symmetries of the complete
graph on four nodes are reflections or rotations of order three, whereas we have a
non-planar rotation of order four; see Fig. 3. Second, Manning and Hong not only
search for a single symmetry but a maximum size group of symmetries that can be
displayed simultaneously by a single drawing of G. In our approach, we search for
a single symmetry of maximal order. Finally, in the reflection case, Manning and
Hong only allow disjoint unions of paths as fixed subgraphs. The reason is that these
subgraphs can be drawn on the reflection axis without overlapping edges. We drop
this restriction by allowing arbitrary fixed subgraphs.

Figure 3: Symmetric drawings of the complete graph on four nodes. The first
drawing is planar and fixed by a reflection, the second one is planar and fixed
by a rotation of order three. The last drawing shows a rotational symmetry of
order four that cannot be displayed by any planar drawing of the graph

The NP-completeness of the symmetry detection problem basically leaves three ways
to go on: to show P = NP, to develop heuristic algorithms, or to find exact algorithms
running in exponential time in general but fast enough in practice. Finding heuristic
algorithms is difficult, since the structure of the problem is hardly compatible with
greedy or similar strategies. In fact, changing a single edge in a symmetric graph

4 Introduction

usually results in an asymmetric graph. However, there are a few heuristic algo-
rithms trying to compute symmetric drawings: the spring embedder has a tendency
to display symmetries; see Eades and Lin [29]. A heuristic algorithm specifically
designed for symmetric graph drawing was devised by de Fraysseix [26].

The first exact symmetry detection algorithm for general graphs, based on the
branch & cut-technique, was proposed by Buchheim and Jiinger [18, 19]. The prob-
lem is modeled by an integer linear program (ILP) containing a binary variable
for each pair of nodes. This variable has value one if and only if the first node is
mapped to the second one by the represented node permutation. In other words,
the symmetric group of the node set of G is identified with a group of permuta-
tion matrices. In the basic ILP, the solutions correspond to automorphisms of G.
These are defined as node permutations preserving adjacency. Any linear objective
function can be combined with the automorphism ILP, allowing for example to find
automorphisms minimizing the number of fixed nodes. By assigning appropriate
objective function coefficients, we can also forbid to map a node to certain other
nodes. Both problems are NP-hard as shown by Lubiw [51]. We describe the auto-
morphism detection algorithm in Chapter 2.

Obviously, every symmetry of G is an automorphism of GG, but the converse is not
true. To detect symmetries, we further restrict the automorphism ILP to exclude
automorphisms that do not form symmetries. We do this separately for rotations of
a fixed order in Chapter 3 and for reflections in Chapter 4. For finding a symmetry of
maximum order, we can combine both cases. This is explained in Chapter 5, where
we also include runtime results. Our algorithm runs very fast for most graphs.

In the meantime, another exact algorithm for symmetry detection in general graphs
was presented by Abelson et al. [2]. This approach is based on a group theoretic char-
acterization of symmetries and uses the commercial algebra system Magma [52] to
find appropriate groups. This approach runs faster than the branch & cut-algorithm.
Nevertheless, our approach leaves much space for improvement.

However, the main advantage of the branch & cut-approach over the group-theoretic
method is its flexibility. Not only can we use arbitrary objective functions, we can
also extend or restrict the set of feasible solutions by adding new variables or linear
constraints to the ILP. An important extension is fuzzy symmetry detection. This is
motivated by the fact that most graphs do not admit any exact symmetry at all. By
changing the adjacency status of certain pairs of nodes, i.e., by deleting or creating
edges, every graph can be made symmetric. If a small number of modifications
suffices, it may still be useful to create a drawing displaying this fuzzy symmetry;
see Fig. 4 for examples. In Chapter 6, we present a modified branch & cut-approach
finding the closest graph to G' that admits a symmetry of a fixed order. Observe that
other algorithms like the group-theoretic approach or the spring embedder cannot
be adjusted to recognize fuzzy symmetries.

Introduction 3

In spite of the widespread conviction that fuzzy symmetry detection is much more
important than exact symmetry detection, earlier research on this problem is rare. As
far as we know, the only publication concerning this problem is by Chen et al. [23],
mainly containing negative complexity results. In fact, fuzzy symmetries are much
harder to determine than exact symmetries; this is true both theoretically and prac-
tically. Consequently, our runtime figures for the fuzzy approach cannot compete
with the figures for exact symmetry detection.

Figure 4: Some fuzzy symmetries

Before we can start with automorphism detection in Chapter 2, we have to fix some
notation concerning graphs and homomorphisms in Chapter 1. There, we also intro-
duce accurate definitions of the problems to be tackled and give more information
about their complexity status. A short description of the branch & cut-technique
is also included. In the conclusion, we give a summary of our results and discuss
possible extensions and future work.

Chapter 1

Preliminaries

On the following pages, we collect definitions and basic facts used throughout the
remaining chapters. We discuss problems and results established in the literature;
furthermore, we define some basic technical constructions used at several points in
the branch & cut-approach to be developed.

We first fix notation about graphs and their homomorphisms in Sect. 1.1. Then
we define the problems we are going to solve by branch & cut and give some back-
ground on their complexity status and related problems. These problems all ask for
special graph homomorphisms: in Sect. 1.2, we start with the notorious graph iso-
morphism problem. In Sect. 1.3, we consider general graph automorphisms, whereas
geometric automorphisms are discussed in Sect. 1.4. Finally, a brief description of
the branch & cut-technique is given in Sect. 1.5.

8 1 Preliminaries

1.1 Graphs

In general, we define a graph as a pair G = (V, ¢), where V is a finite set of nodes
and c is a coloring of V2, i.e., a map V? — N. For any coloring ¢ of V2, we define
a node-coloring ¢:V — N by ¢(i) = ¢(4,7). A coloring ¢’ is finer than a coloring ¢
if ¢ (i1, J1) = (42, jo) implies ¢(i1, j1) = c(ia, j2). For the sake of simplicity, we always
assume V = {1,...,n} in the following. Observe that the graph G = (V, ¢) is given
by its adjacency matrix Aq, where (Ag)i; = c(4,).

This definition of graphs is more general than many other common definitions:
A simple graph G = (V, E) can be viewed as a graph G = (V, ¢) by setting

0 ifi#jand (i,j)¢E
c(i,j)=< 1 ifi#jand (i,j) € E
2 ifi=j.

An undirected graph corresponds to a graph G = (V,¢) with c(i,j) = ¢(j,4) for
all 7,7 € V, ie., a graph with a symmetric adjacency matrix. For a multigraph,
we can define c¢(i,j) as the number of edges from i to j, if ¢ # j, and ¢(4,4) as the
number of loops of 7. Our class of graphs agrees with the class of directed multigraphs
that may contain loops (and multiloops). For technical reasons, we prefer to use the
definition given above.

If G = (V,e) and G' = (V',) are two graphs, a homomorphism G — G’ is a
map 7V — V' with ¢(i,5) < (n(i),n(j)) for all 4,5 € V. For simple graphs, this
means that each pair of adjacent nodes in G is either mapped to the same node or
to an adjacent pair of nodes in G'.

The graphs and their homomorphisms form a category. In this category, a
monomorphism is an injective homomorphism, an epimorphism is a surjective homo-
morphism, and an isomorphism is a bijective homomorphism. Two graphs G and G’
are called isomorphic if there is an isomorphism G — G’. An endomorphism of G
is a homomorphism G — G and an automorphism is an isomorphism G — G. The
trivial automorphism of GG is given by the identity map idy:V — V.

An (edge-induced) subgraph of G is a graph G’ = (V', ') together with a monomor-
phism G' — @, i.e., an injective map m: V' — V with (i,7) < e(n(i),7(5))
for i,j € V. If we even have ¢ (i,5) = c¢(n(i),n(j)) for all 4, j € V, the subgraph G’
is node-induced; this is equivalent to the fact that A is a submatrix of Ag.

The complete graph K, is the simple undirected graph on n nodes such that all
edges between different nodes are present, i.e., the graph with coloring

. 1 ifi#j
C(”):{Q ifii;'.

1.2 Isomorphisms of Graphs 9

Similarly, the edgeless graph E, is the graph on n nodes without edges, i.e., the
graph with coloring
o) 0 ifi#yg
oli,7) = { 2 ifi=7j.
Finally, the cycle graph C,, is given by V = {1,...,n} and the coloring

1 ifi=(jmodn)+1orj=(imodn)+1
ci,j)=4 2 ifi=j
0 otherwise.

1.2 Isomorphisms of Graphs

For both theoretical and practical reasons, the problem of deciding whether a given
pair of graphs is isomorphic has attracted much attention:

Given two graphs G and G’. Decide whether there exists an

(GI) isomorphism G — G'.

The complexity status of the graph isomorphism problem (GI) is unknown. No
polynomial time algorithm for the general case is known. On the other hand, (GI)
is not known to be NP-complete. Many researchers believe that the complexity
of (GI) is intermediate, i.e., neither polynomial nor NP-complete. Such problems
exist if P # NP, as shown by Ladner [49]. However, no such problem has been found
yet; graph isomorphism is one of the hottest candidates. Problems polynomial time
equivalent to (GI) are called isomorphism-complete.

In fact, (GI) is polynomial time solvable for large classes of graphs. For an overview,
see Read and Corneil [68]. Even for the general case, there are algorithms working
fast enough in practice, the most popular one being nauty by McKay [60].

1.3 Automorphisms of Graphs

As defined in Sect. 1.1, an automorphism of G is an isomorphism G — G. The
underlying map V — V is a permutation of V in this case. We gather notation
concerning permutations in Sect. 1.3.1. In Sect. 1.3.2, we define basic problems
related to graph automorphisms. Finally, we introduce some technical constructions
needed in the following chapters: the automorphism partitioning in Sect. 1.3.3, the
coloring graph in Sect. 1.3.4, and the orbit graphs in Sect. 1.3.5.

10 1 Preliminaries

1.3.1 Permutations

Let V be a finite set with |V| = n. A permutation of V' is a bijective map V — V.
The set of permutations forms a group under composition, the symmetric group Sy;
its neutral element is the identity idy. We may denote Sy by S, since the symmetric
groups of sets of the same cardinality are isomorphic. For n > 3, the group S, is
not Abelian. Any subgroup of S, is called a permutation group with domain V.
We have |S,| = n!. Nevertheless, every permutation group with domain V' can be
generated by |nlog,n| elements; see e.g. Hoffmann [38], Theorem 2.5.

The order of a permutation 7 is defined by ord(w) = |(7)|, where () is the cyclic
subgroup of S, generated by 7, i.e., the group {=° | e € Z}. We have ord(7) = 1 if
and only if 7 = idy. The set of fixed elements of 7 is Fix(7) = {i € V' | (i) = i}.

For any subgroup H of S,, the orbit of ¢ under H is orby(i) = {n(i) | # € H}.
For m € S,, the orbit of ¢ under 7 is the set orb, (i) = orb» (i) = {7¢(%) | e € Z}.
We have i € Fix(w) if and only if |orb, ()| = 1. An orbit consisting of a single fixed
node is called trivial.

Now let t € N. A permutation 7 of V defines a permutation of the ¢t-tuples V?, by
setting (i1, ...,%) = (7(i1),...,7(it)). The orbits of m; are called t-orbits of ;
the 2-orbits are called orbitals. We have Fix(m;) = Fix(7)*. We will denote m; by T,
too, since no confusion can arise. By this identification, a permutation group H with
domain V gives rise to an isomorphic permutation group H; with domain V.

A k-rotation is a permutation 7 of V such that |Fix(7)| < 1 and |orb, ()| = £ for
all i ¢ Fix(m). Every k-rotation has order £ if n > 2. A reflection is a permutation 7
of V such that 72 = idy.. Every non-trivial reflection has order 2. The identity idy is
both a 1-rotation and a reflection. Every 2-rotation is a reflection, but the converse
is not true, as reflections may fix more than one node.

There are two different methods of writing down a permutation. In the so-called
two-row table representation, the elements of V' are placed above their images. In the
cyclic representation, the orbits of the permutation are displayed one after another,
enclosed by brackets. Trivial orbits are omitted. For example, the two following
representations correspond to the same permutation:

(

More facts about finite permutation groups can be found in Wielandt [73] or, with
a view towards combinatorial structures, Biggs and White [10].

w W
A
S oo

) (15)(28674)

ot =
co Do
~N

1.3 Automorphisms of Graphs 11

1.3.2 Automorphisms

Let G = (V,c¢) be a graph. As defined in Sect. 1.1, an automorphism of G is an
isomorphism G — @, i.e., a permutation 7 of V such that c¢(i,5) = c(w (i), 7(4))
for 7,57 € V. The set of automorphisms of GG is denoted by Aut G. Obviously, the
set Aut G forms a group with respect to composition. More precisely, Aut G is a
subgroup of S, and hence a permutation group with domain V. The automorphism
group of the edgeless graph F,, and the complete graph K, is S,,. In fact, every finite
group is isomorphic to the automorphism group of some graph; this is even true for
strongly regular graphs; see Mendelsohn [61].

Some classes of graphs are defined by means of their automorphism group. To give
an example, a graph G is called transitive if the group Aut G is transitive, i.e., if for
every 1, j € V there is an automorphism 7 of G mapping i to j. For another example,
a Cayley graph over some finite group H is a graph G = (H,¢) such that H is a
subgroup of Aut G. More background on these classes of graphs is given by Godsil
and Royle [32].

In the following, we state complexity results related to automorphisms. Since most
of these results refer to simple graphs in the literature, we need the following

Lemma 1.1
For a given graph G = (V, ¢), one can construct a simple undirected graph G' without
loops in quadratic time such that Aut G = Aut G'.

Proof: As always, assume V = {1,...,n}. We may assume ¢(V?) C {1,...,n*},
otherwise we can recolor the graph without touching automorphisms. We start con-
structing G’ by taking over the nodes from V. For all (7, j) € V2, we add the following
graph c(i,j) times between i and j:

Clearly, every automorphism of GG induces an automorphism of G'. It is easy to verify
that we do not get additional automorphisms by this construction. O

This construction is even linear if G is considered a multigraph, i.e., if we assume
that ¢(7,j) edges between i and j are part of the input. Since simple graphs are
included in the general definition, we conclude that the problems discussed in the
following are polynomial time equivalent for every class of graphs between simple
undirected graphs and general graphs according to our definition. In particular,
complexity results given in the literature remain valid in our setup.

12 1 Preliminaries

Now consider the graph automorphism problem:

Given a graph G. Decide whether there exists a non-trivial

(AuT) automorphism of G.

As for (GI), the exact complexity of (AuT) is unresolved. No polynomial time
algorithm is known, but (AuT) is at most as hard as the graph isomorphism problem;
however, (AuUT) is not known to be isomorphism-complete. Problems polynomially
equivalent to (AuT) are called automorphism-complete. So we have the following
hierarchy of complexity classes:

P C automorphism-complete C isomorphism-complete C NP-complete .

Trying to compute the complete automorphism group of a graph in polynomial
time is a hopeless task, since it may contain up to n! elements. But Aut G can be
generated by |nlog, n| elements, so a natural question is whether one can compute
a set of generators in polynomial time. Unfortunately, the following two problems
are isomorphism-complete, as shown by Hoffmann [38]:

(AuTrG) Given a graph G. Compute a set of generators for Aut G.

(#Aut) Given a graph G. Compute the number of automorphisms of G.

The following problems are also related to (AUT):

Given a graph G and a node i of G. Decide whether there exists an

(AUTlR) automorphism 7 of G with 7T(’L) 7é 1.

Given a graph G = (V,¢) and a set R C V2. Decide whether there is

(Avr-R) automorphism 7 of G with 7 (i) # j for all (4,) € R.

(AUT,) Given a graph GG. Decide whether there exists an automorphism of G
0 without fixed nodes.

Given a graph G. Decide whether there exists an automorphism of GG
(Q—AUT(]) .
of order two without fixed nodes.

Lubiw [51] showed that the problem (AUT1R) is isomorphism-complete, whereas
the problems (AuT-R), (AUTy), and (2-AuTy) are NP-complete.

For alot of restricted graph classes, the problem (GI) and hence (AuT) and (AUTG)
can be solved in polynomial time, e.g., for planar graphs [43], graphs of bounded
degree [38], graphs of bounded eigenvalue multiplicity [3], partial k-trees [13], and
graphs of bounded average genus [24].

1.3 Automorphisms of Graphs 13

1.3.3 Automorphism Partitionings

When dealing with automorphisms of graphs or other combinatorial structures,
many algorithms can be improved significantly by applying labeling algorithms in
a preprocessing step. Fine labelings decrease the number of permutations that have
to be considered as automorphism candidates. For ¢ € N, a t-labeling of G = (V, ¢)
is defined as a coloring ¢’: V! — N such that for every m € Aut G and 41,...,5; € V
we have ¢/ (i1,...,4) = (n(i1),...,7(iy)). In other words, a t-labeling is a coloring
that does not decrease the automorphism group.

The finest possible t-labeling ¢; of G is called the t-automorphism partitioning of G.
For t = 1, the t-automorphism partitioning is the usual automorphism partitioning
of G. Unfortunately, the problem of computing the automorphism partitioning of a
graph is isomorphism-complete:

(PRT) Given a graph G. Compute the automorphism partitioning of G.

A simple proof of the isomorphism-completeness is given by Read and Corneil [68].
Nevertheless, there are polynomial time heuristics computing very fine labelings in
general; see for example Bastert [7]. Furthermore, there are exact algorithms running
fast in practice like nauty.

Next, let ¢ = 2. By definition, the given coloring ¢ of the graph G is a 2-labeling
of G. At many points of our algorithm, it is favorable to have a fine coloring c, since
this reduces the number of a priori possible automorphisms. Hence it is useful to
replace ¢ by a 2-labeling of GG as fine as possible, if not the 2-automorphism parti-
tioning. By definition of 2-labelings, this does not change the set of automorphisms
or symmetries of G. In our algorithm, we do this in a preprocessing step.

The t-automorphism partitioning can be computed from a given set of generators
of AutG in the following way: we use disjoint dynamic sets. First, we consider
all subsets of V* containing exactly one element. Next, for each of the generators 7
of Aut G and for all (i1, ...,%;) € V*, we merge the subset of V! containing (71, ...,)
with the subset containing (7(i1),...,7(%)). It is easy to see that the resulting
partitioning of V' is the t-automorphism partitioning of G. For fixed ¢, the runtime
of this algorithm is polynomial in the number of generators of the automorphism
group of G. In particular, we derive that (PRT) and the corresponding problems
for fixed t > 2 can be reduced to (AUTG) in polynomial time and are hence all
isomorphism-complete.

For the branch & cut-algorithms presented in the following chapters, we use nauty to
compute a set of generators of the group Aut G. From these generators, we determine
the 2-automorphism partitioning of G. This is all done in a preprocessing step.

14 1 Preliminaries

1.3.4 The Coloring Graph

For a graph G = (V,¢), we define its coloring graph as the simple undirected
graph G' = (V2 E') where ((i1,J1), (i2,J2)) € E' if and only if c(i1,%2) = c(j1, J2)-
Observe that G’ may have loops. We will use this graph at several points in our
algorithm. Its importance is emphasized by the following results:

Lemma 1.2
The maximal cardinality of a clique in G' is n. There is a one-to-one correspondence
between the cliques in G' of maximal cardinality and the set Aut G.

Proof: First observe that {(i,7) | i € V'} is a clique in G’ with cardinality 7. On the
other hand, we may assume that c(i,7) # c(j, k) for j # k (otherwise the coloring ¢
may be replaced by another one satisfying this condition), hence for every clique @
and every i € V we have |{j € V| (4,7) € @}| <1, so that

QI=) HieVI|@)eQ<n.

eV

For 7 € AutG, define Q, = {(i,7(¢)) | ¢ € V}. The set @, C V? induces a
clique of size n in G'. Conversely, for every clique @ in G’ with cardinality n and
every i € V, there is exactly one node j € V with (i,j) € Q. Analogously, for
every j € V| there is exactly one node i € V with (4,j) € Q. Hence @ defines
a node permutation g of G. For iy,iy € V, we have (i1, mg(41)), (42, mo(i2)) € @,
hence ¢(i1,42) = ¢(mg(i1), mg(i2)). Thus mg € Aut G. Obviously, the maps 7 — Qr
and () — m¢ are inverse, hence the result. O

Lemma 1.3

Let d:V? — R and M = max{d(i,j) | (i,j) € V?}. Define weights for the nodes
of G' by w(jy = nM + d(i,j). Then there is a one-to-one correspondence between
the cliques in G' of maximal weight and the automorphisms m of G maximizing the

sum . d(i, (7).

Proof: If () has maximal weight, it has maximal cardinality n by definition of the
weights, so every candidate clique () corresponds to an automorphism 7o by the
last proof. The maximal weight clique () is the one maximizing

D wig) = Y Wamgy = 1M + Y d(i, mg(3))
(1,5)€Q i€V eV
hence the result. O

Corollary 1.4
Let @) be an inclusion-maximal clique in G' with |Q| < n. Then for each m € Aut G,
there is a node (3, j) € Q with 7(i) # j.

1.4 Symmetries of Graphs 15

1.3.5 The Orbit Graphs

Let G = (V,¢) be a graph and d € N. Let G4 be the simple directed graph (V, E),
such that (z,j) € Eq if and only if ¢(7,) = d. For two nodes 7,7 € V, we call G ;)
the orbit graph of (i, 7). This is motivated by

Lemma 1.5
For m € Aut G, each orbit of 7 is a directed cycle in exactly one of the graphs G.

Proof: Let i € V and d = c(i,7(7)). We have c(i,7(7)) = c(7®(:), 7¢"*(3)) for
all e € Z, hence orb,(i) is a directed cycle in G. Since all orbit graphs are pairwise
edge-disjoint, the orbit graph containing orb, (i) is unique. O

1.4 Symmetries of Graphs

In this section, we define a class of automorphisms that plays an important role in
automatic graph drawing: we consider symmetries of a graph, i.e., automorphisms
that can be displayed in a two-dimensional drawing. A more precise definition is
given in Sect. 1.4.1. The problem of symmetry detection is considered in Sect. 1.4.2,
whereas the problem of drawing a given symmetry is discussed shortly in Sect. 1.4.3.

1.4.1 Symmetries

Let R? be the Euclidean plane. An isometry of R? is a bijective map ¢: R? — R?
preserving Euclidean distances; it is necessarily either a rotation, a reflection, or a
translation of the plane, or a composition of them; see Martin [59]. A rotation is
given by a single fixed point, its center, and a degree by which all points rotate
around the center. A reflection is given by a line of fixed points, its axis; all points
are reflected at this line. A translation is given by a vector v € R2, all points are
shifted by this vector.

A (straight line) drawing of a graph G = (V,¢) in the Euclidean plane is given by
an injective map D:V — R? assigning nodes to positions on the plane. A symmetry
of a drawing D is an isometry ¢ of R? such that ¢(D(V)) = D(V) and

c(D'(p1),D '(p2)) =c(D e(p1)), D (@(p2))) for all pi,ps € D(V),

i.e., the set of node positions is fixed under ¢ and every edge is mapped to an edge
of the same color. By the characterization of planar isometries mentioned above,
each symmetry of D must be a combination of reflections and rotations, since a

16 1 Preliminaries

translation cannot map the finite set D(V') to itself. In two dimensions, any such
combination is a reflection or a rotation again. Hence every symmetry of D is either
a reflection or a rotation. The set Sym D of all symmetries of D forms a group.

If D is any drawing of GG, we have a group homomorphism Rp:Sym D — AutG,
given by ¢ — D7lpD; recall that ¢oD(V) C D(V). If Rp(p) = 7, we say that ¢
induces m and that D displays w. The image of Rp, i.e., the set of automorphisms dis-
played by D, is a subgroup of Aut G and hence a permutation group. In general, Rp
is not surjective. There are even automorphisms of G that cannot be displayed by any
drawing of G. An example is given in Fig. 1.1. An automorphism 7 of G that can be
displayed by some drawing of G is called a geometric automorphism or a symmetry
of the graph GG. Automorphisms are sometimes called combinatorial symmetries to
distinguish them from geometric symmetries.

Figure 1.1: The automorphism given by the dashed arrows cannot be displayed
in the plane, because it has non-trivial orbits of different lengths. Thus it is
neither a rotation nor a reflection and hence no symmetry by Lemma, 1.6 below

The set Sym G of symmetries of G does not even form a group under composition;
see Fig. 1.2 for a counterexample. The same is true for the set RotyG of k-rotations
of G’ and the set Ref G of reflections of G—the composition of two reflections may
have any order between one and n.

Figure 1.2: The symmetries of F5 do not form a group: the composition of
the 5-rotations displayed in the first two drawings is neither a rotation nor a
reflection and hence no symmetry by Lemma 1.6 below

1.4 Symmetries of Graphs 17

The following results provide abstract criteria for deciding whether some given
automorphisms of G' can be displayed by a symmetric drawing of G:

Lemma 1.6 (Eades and Lin [29])
An automorphism is a symmetry if and only if it is a rotation or a reflection.

Lemma 1.7 (Eades and Lin [29])

A set of automorphisms can be displayed by a single drawing of G if and only if
it generates a subgroup of Aut G that is generated by a single symmetry or by a
rotation m; and a reflection my satisfying mom = m; L.

In general, a set of two or more symmetries of the same graph G cannot be displayed
by a single drawing; see Fig. 1.3 for an example.

Figure 1.3: Two symmetries of K4 that cannot be displayed simultaneously

1.4.2 Detecting Symmetries

As pointed out in the introduction, displaying symmetries is an important aim in
automatic graph drawing. In general, there are two different ways to tackle this
problem. Some algorithms have an implicit tendency to display symmetries but fail
to find them in general. A well-known example is the spring embedder; see Eades and
Lin [29] for a discussion of this method with respect to symmetry. Other heuristics
are based on algebraic graph theory; see e.g. de Fraysseix [26].

The second way for creating symmetric drawings is to search for symmetries ab-
stractly before computing a corresponding layout. In this approach, the problem of
detecting a non-trivial symmetry in an abstract graph has to be solved. Manning [54]
showed that the following problems concerning rotations are NP-complete:

Given a graph G. Decide whether there exists a non-trivial

R
(RoT) rotation of G.

18 1 Preliminaries

Given a graph G. Decide whether there exists a rotation of G
(ROT()) g
without fixed nodes.

Given a graph G. Decide whether there exists a rotation of G
(ROTl) .
with one fixed node.

For reflections, we cannot use Manning’s result, since his definition of an axial sym-
metry is not equivalent to our definition of a non-trivial reflection. However, finding
a reflection of G with the minimum number of fixed nodes is NP-hard. This fol-
lows from the NP-completeness of problem (2-AuTy), see Sect. 1.3.2, which is just
another formulation of

Given a graph G. Decide whether there exists a reflection of G
(REF) i
without fixed nodes.

If the number of fixed nodes is restricted only by requiring non-triviality, the problem
is at most isomorphism-complete:

Given a graph G. Decide whether there exists a non-trivial
(REF) :
reflection of G.

This follows from the isomorphism-completeness of the problem (#AuT) defined in
Sect. 1.3.2, since a non-trivial reflection is the same as an automorphism of order
two: by group-theoretic arguments, the group Aut G contains an element of order
two if and only if the number of automorphisms of G is even. Hence (REF) can be
reduced to the problem (#AuT). We do not know whether the converse is true as
well, i.e., whether the problem (REF) is isomorphism-complete.

Finally, consider the problem

(ROTA) leer.l a graph G on n nodes. Decide whether there exists a
rotation of G of order n.

A graph G for which (ROTA) is answered positively is called circulant. Equivalently,
a circulant graph is a Cayley graph over Z,. Hence (ROTA) is the problem of
recognizing circulant graphs. The complexity of this problem is unknown. However,
if n is prime, the problem (ROTA) is solvable in polynomial time by a result of
Muzychuk and Tinhofer [63, 64]. We conclude that (ROTy) is polynomial as well
if n is prime. In fact, the only candidate rotation order is n in this case.

In summary, detecting symmetries in general graphs is NP-hard. Nevertheless, for
planar graphs these symmetry problems can be solved in linear time if only planar
symmetries are allowed, i.e., symmetries that can be displayed by planar drawings.

1.4 Symmetries of Graphs 19

Manning [53] showed this for outerplanar and embedded graphs. The algorithm for
embedded graphs was generalized to triconnected planar graphs by Hong et al. [42].
Using SPQR-trees and block-cut-trees, the result was extended to biconnected and
one-connected planar graphs and finally to general planar graphs by Hong and Eades
[39, 40, 41]. In Chapter 5, we present a new approach for detecting symmetries based
on integer programming. This algorithm is exact and admits general graphs. Because
of the NP-hardness of the problem one cannot expect polynomial runtime. However,
the practical runtimes are reasonable for graphs on up to 50 nodes.

Recently, another method for symmetry detection in general graphs was presented by
Abelson et al. [2]. On one hand, the runtime results of this approach are significantly
better than ours. On the other hand, our approach is more flexible: we can use
arbitrary linear objective functions, see Chapters 2 to 5, and we can generalize our
approach to find fuzzy symmetries, see Chapter 6.

1.4.3 Drawing Symmetries

Once we have computed a symmetry m of G—abstractly given as a permutation of
nodes—we want to compute a nice drawing of G displaying 7. On one hand, the
restriction to drawings displaying 7 is strong. Most existing algorithms in automatic
graph drawing—see Kaufmann and Wagner [47] or Di Battista et al. [28] for an
overview—cannot deal with this problem. The only well-known algorithm that can
be adjusted in a trivial way is the spring embedder: theoretically, it suffices to
start with any drawing displaying 7, since every iteration works symmetrically and
hence preserves m. However, fast implementations usually do not work exactly and
hence not always symmetrically. This can easily be repaired after each iteration.
Algorithms computing orthogonal or nearly orthogonal drawings are inapt to draw
symmetries in general, since a symmetry of order £ with k£ # 2,4 cannot be displayed
in this style. The same is true for Sugiyama style layouts.

On the other hand, the restriction to drawings displaying 7 still allows to take
other aesthetics into account. The most important aesthetic criterion according to
Purchase [67] is crossing minimization. Buchheim and Hong [17] consider the prob-
lem of finding a drawing of a fixed symmetry 7 of a simple graph with a minimal
number of edge crossings. They show that this problem is NP-hard even under strong
restriction. Furthermore, they give an O(mlogm) algorithm that finds a crossing
minimal drawing of a symmetry with an orbit graph that is a path, where m is the
number of edges of G and the orbit graph of 7 arises from G by merging nodes
belonging to the same orbit under 7 and deleting multiple edges and loops. An-
other algorithm for drawing symmetries was presented by Carr and Kocay [22]; this
algorithm does not consider any aesthetic criterion explicitly. It searches for a long
cycle in G that can be drawn as a cycle in a symmetric drawing of 7. However, for
the nodes not belonging to the cycle, no algorithm is given.

20 1 Preliminaries

1.5 Branch and Cut

Concluding the preliminaries, we shortly describe the branch & cut-technique and
introduce the corresponding terminology. For more details and other applications,
see e.g. Jiinger and Naddef [44] or Jiinger and Thienel [45].

The first task in a branch & cut-approach is to model the problem being tackled as
an integer linear program (ILP). An ILP is a linear program (LP) with the addi-
tional constraint that all variables be integer. Solving ILPs is NP-hard in general. In
fact, for many well-known NP-hard problems an ILP-model is found easily. On the
other hand, LPs without integrality constraints can be solved in polynomial time by
Karmakar [46] and very fast in practice, e.g., by CPLEX [25]. This leads to the idea
of using LP-techniques for solving ILPs. For this, we consider the LP-relaxation of
the ILP, obtained by dropping all integrality constraints. If we are lucky, the optimal
solution of this relaxation is integer and thus also an optimal solution of the ILP.

In general, however, the optimal solution of the LP-relaxation will be fractional. For
ease of exposition, we only consider minimization problems in the following. Then
a fractional solution yields a lower bound on the optimal objective value of the ILP,
but does not yield a feasible solution. On the other hand, any feasible solution of
the ILP corresponds to an upper bound; the problem is solved to optimality as soon
as upper and lower bound coincide.

If the optimal solution of the LP-relaxation is fractional, we have to start the
cutting phase: a cutting plane is a linear inequality that is valid for all feasible solu-
tions of the ILP but not for the currently optimal fractional solution. In the cutting
phase, we try to find such inequalities by so-called separation algorithms in order
to add them to the LP-relaxation. The resulting LP has a new optimal solution;
if this solution is fractional again, we start another separation step. By Grotschel
et al. [35], the separation problem for a given ILP is polynomially equivalent to the
problem of minimizing a general linear objective function over this ILP. In practice,
only special classes of cutting planes are considered and separated.

The theoretical background for cutting planes and separation is as follows: we
consider the polytope P defined as the convex hull of all integer solutions of the
original ILP; we assume that this polytope is bounded. If we had a complete poly-
nomial description of P in terms of linear constraints, the problem could be solved
in polynomial time. Indeed, we could ignore the integrality constraints then.

In general, however, no such description exists. In the cutting phase, the polytope P
is enclosed more and more by new inequalities. By adding only constraints violated
by the current fractional solution, we hope that a small number of new constraints
suffices to get an integer solution.

1.5 Branch and Cut 21

Usually, the best cutting planes are inequalities inducing facets of the polytope P,
i.e., maximal faces of P with respect to inclusion. For this reason, branch & cut-
algorithms afford a good deal of problem-specific polyhedral investigation. Profound
knowledge of the polyhedral structure of P allows to determine useful classes of cut-
ting planes. After such a class has been found, the corresponding separation problem
has to be solved, at least heuristically. Notice that the cutting procedure also allows
to solve ILPs with an exponential number of constraints in the original formulation:
for non-feasible but integer solutions of the LP-relaxation, we can separate cutting
planes as well.

Figure 1.4: An example for the cutting phase: the linear objective function is
represented by the vector on top, the polytope defined by the LP-relaxation
is given by the shaded area, and the feasible solutions of the ILP are drawn as
filled dots. At first, the optimal LP-solution, marked by a square, is fractional.
After adding a facet-inducing inequality, the new LP-solution is still fractional.
Adding another linear inequality finally yields an integer optimal solution

In summary, the cutting phase consists of solving LPs and adding new constraints
alternately; see Fig. 1.4 for an illustration. However, we may end up with a fractional
solution for which we do not find any cutting plane. In this case, the branching phase
is invoked. After choosing a branching variable x with LP-value T, the problem is
divided into two subproblems: in the first, we add the constraint x < |Z|; in the
second, we add > |Z| + 1. The optimal solution of the original problem is the bet-
ter one of the optimal solutions of the two subproblems. Repeating the branching
process yields a branching tree of subproblems. The enumeration strategy deter-
mines in which order the tree is traversed as long as no optimal solution for the
original ILP is found.

If all variables in the ILP are binary, branching means setting a variable to zero in
the first subproblem and to one in the second subproblem. As soon as one or more
variables are set in some subproblem, it may be possible to set further variables by
logical implications. Sometimes it is possible to fix variables for the original ILP,

29 1 Preliminaries

i.e., for every subproblem in the branching tree, for example by reduced costs. This
may also allow fixing other variables by logical implications.

An important feature of the branch & cut-method is that usually only a small part
of the branching tree has to be traversed, because some subtrees can be pruned.
This is the case if the local lower bound in a subproblem is greater than the global
upper bound, i.e., if we already know some feasible solution that is better than all
solutions in this subproblem. We can skip the corresponding subtree then.

To find feasible solutions of the global ILP, we do not have to wait for integer
LP-solutions in general. Often a fractional LP-solution helps to find good feasible
solutions heuristically. This fractional solution may be close to an optimal feasible
solution of the ILP. Algorithms trying to derive feasible solutions of the ILP from
fractional LP-solutions are called primal heuristics.

Chapter 2

Detecting Automorphisms

Our first target is to investigate the problem of detecting not necessarily geometric
automorphisms. Note that there are practically fast algorithms finding not only a
single non-trivial automorphism but even a set of generators of Aut G for a given
graph G. The new approach presented in this chapter is not meant to be an algorithm
for finding any automorphism, but to find automorphisms that meet additional
requirements: first, by choosing an adequate linear objective function. For example,
we can minimize the number of fixed nodes and hence solve the problem (AuTy).
More generally, for any R C V2, we can minimize the number of pairs (i,j) € R
such that ¢ is mapped to j, thus solving the problems (AUT1R) and (AuT-R). Most
generally, we can assign a weight to each pair of nodes (7, j) determining how much
we would like to have node ¢ mapped to node j. We consider these problems in a
common integer programming approach designed to find automorphisms minimizing
an arbitrary linear objective function. The second way to restrict the set of desired
automorphisms is by adding new linear constraints to the ILP; we do this in the
following chapters in order to detect geometric automorphisms.

For designing the desired branch & cut-algorithm, the first step is to set up an integer
linear program describing the automorphisms of a given graph; see Sect. 2.1. Differ-
ent objective functions are proposed in Sect. 2.2. An important theoretical task is to
find out as much as possible about the structure of the corresponding automorphism
polytope. Basic properties of this polytope are examined in Sect. 2.3, while cutting
planes are discussed in Sect. 2.4. In Sect. 2.5, we deal with the separation problem
for automorphism polytopes. In Sect. 2.6, we present primal heuristics for finding
automorphisms. We discuss the branching and enumeration strategy in Sect. 2.7,
explain a fixing and setting rule in Sect. 2.8, and examine the practical performance
of the algorithm in Sect. 2.9.

23

24 2 Detecting Automorphisms

2.1 The Integer Linear Program

Let G = (V,¢) be a graph as defined in Sect. 1.1. Assume V = {1,...,n} and let 7
be a permutation of V. Then we define a real n x n-matrix M (7) by

(1 ifn() =
M(W)”_{ 0 otherwise,

yielding a monomorphism M of the group S,, of permutations of V' into the general
linear group GL,(R). In particular, we get an isomorphism between S, and its
image M (S,,). The matrices in M (S,,) are called permutation matrices and can be
characterized as the set of n x n-matrices X = (z;;) with z;; € {0,1} and

Z.’Eij:l foralli € V' and injzl forallje V. (2.1)

JjEV eV

For the desired ILP modeling automorphisms, we use a binary mapping variable x;;
for each pair (4, j) € V? and add the constraints (2.1). A value of one for the mapping
variable z;; is interpreted as mapping node % to node j. The equations on the left
hand side of (2.1) make sure that each node 7 is mapped to exactly one node j, so
that the variables induce a function V' — V. By the right hand side, this function
is bijective. In summary, we have modeled the permutations of V' up to now.

Next we have to translate the condition of 7 € S, being an automorphism of G into
a condition on the corresponding matrix M (7). For this, consider the adjacency
matrix Ag of G. We use the following Lemma:

Lemma 2.1
The permutation m of V' is an automorphism of G if and only if the matrix M ()
commutes with Ag, i.e., if M(m)Ag = AcM (7).

Proof: Let M = M(m). We have (Ag)i; = c(i,j). Now MAg = AgM if and only
if MAGM~"' = Ag if and only if ¢(7(:), 7(7)) = c(4,) for all 4,5 € V. 0

By Lemma 2.1, the automorphisms of G are singled out by adding the n? linear
constraints AcX = X Ag, where X = (z;;). Hence they correspond to the solutions
of the following ILP via M:

zi; € {0,1} foralli,jeV

Yev T = 1 foralli € V (2.2)
YoievTig = 1 forall j eV '
AgX = XA¢.

The number of variables in (2.2) is n?. If the nodes of the graph have different colors,
this number can often be reduced sharply: suppose that for two nodes 7,5 € V we

2.2 Objective Functions 25

have c(i) # ¢(j). No automorphism can map i to j then, hence z;; is zero for
any solution of (2.2). Consequently, we can omit this variable from the beginning.
Observe that a finer coloring ¢ of the graph allows to leave out more mapping
variables. Hence fine labelings or even the automorphism partitioning can improve
performance significantly; see Sect. 1.3.3.

2.2 Objective Functions

In Sect. 2.1, we did not introduce any objective function for the automorphism
ILP. In general, any linear function can be used. In the following, we propose some
objective functions for solving problems described in Sect. 1.3.2.

Assume that our aim is to minimize the objective function. In the general case, we
have a coefficient w;; € R for each mapping variable z;; and hence for each pair of
nodes (7, 7). The larger wj; is, the less preferred is mapping ¢ to j. More precisely,
we get an automorphism 7 € Aut G minimizing

Z Wij = Zwm(i) .

7(3)=j 5%

If all coefficients w;; are binary, we thus find an automorphism 7 such that the set
{i ev | Wir(i) = 1}

has minimal cardinality. In other words, we can solve the NP-complete problem
(AuT-R) by defining

o 1 if(i,j)ER
Y5 =9 0 otherwise.

As a consequence, the general optimization problem for the automorphism ILP is
NP-hard. The problem (AUT1R) is a special case of (AUT-R). Another special case
of (AuT1R) is (AUTy): for this problem, we can set

1 =
Yii =3 0 otherwise.

By this, we find an automorphism with the minimum number of fixed nodes. In
particular, the group AutG is trivial if and only if the resulting automorphism
is idy . Thus we can solve (AuT) as well.

26 2 Detecting Automorphisms

2.3 The Automorphism Polytope

We next examine the polytope corresponding to the automorphism ILP presented
in Sect. 2.1. The assignment polytope P(S,) C R"™™ is defined as the convex
hull of all permutation matrices, i.e., as the convex hull of M(S,), where M is
defined as in Sect. 2.1. This polytope is well studied. The matrices in P(S,) are
called doubly stochastic matrices. Birkhoff [11] showed that P(S,,) is just the set of
matrices X = (z;;) satisfying the equations (2.1) and

x;; >0 foralli,jeV . (2.3)

Hence we have a small and simple linear description of the polytope P(S,). The
dimension of P(S,) is (n — 1) and the number of its facets is n?. These and other
properties of P(S,,) are demonstrated by Balinski and Russakoff [6] and by Brualdi
and Gibson [14, 15, 16].

Now we define the automorphism polytope P(Aut G) C R**" of a graph G = (V¢)
as the subpolytope of P(S,) given as the convex hull of M(AutG). In particular,
we have P(Aut K,,) = P(S,). In general, the automorphism polytope is much less
examined and understood than the assignment polytope. The properties of P(Aut G)
strongly depend on the structure of the graph, not only on the number of nodes.
Even computing the dimension is at least as hard as the problem (AUT) defined in
Sect. 1.3.2. It ranges from (n—1)? for a complete or edgeless graph to zero for a graph
without non-trivial automorphisms. Thus, proving results about facets of P(Aut G)
in the classical way is hardly possible. Instead, we will describe this polytope in a
rather unusual way in Sect. 2.4.

2.4 Cutting Planes

After setting up the ILP, the most important task for designing a branch & cut-
algorithm is to find good cutting planes. More precisely, we have to find classes
of inequalities that are valid for each feasible solution of the ILP and that are as
tight as possible. Furthermore, we need separation algorithms to find out, at least
heuristically, whether some of these inequalities are violated by a fractional solution
of the LP-relaxation; these are examined in Sect. 2.5.

In Sect. 2.4.1, we present a class of constraints based on automorphism partitionings
of GG. This class induces a complete description of the automorphism polytope. Some
subclasses are examined in Sect. 2.4.2.

2.4 Cutting Planes 27

2.4.1 Homomorphism Constraints

As noted in Sect. 2.3, the structure of the automorphism polytope of G strongly
depends on the structure of G, making if difficult to prove results about facets in
the usual way. Nevertheless, using automorphism partitionings, we can describe the
automorphism polytope completely in the following way: fix ¢ € N and consider the
t-automorphism partitioning ¢; of G' defined in Sect. 1.3.3. Let I be a multiset of
node-pairs of GG, i.e., a finite set of node-pairs that may contain multiple elements.
Suppose that

Ct(ib SRR Zt) 7£ Ct(jl, s 7jt) for all subsets {(i17j1)7 SRR (Z'hjt)} of I) (24)

where the subsets of a multiset are defined in the obvious way. Then, by definition
of ¢;, the homomorphism constraint given by

H[,tl Z Tij S t—1 (25)

(i,4)el

is a valid inequality for the automorphism ILP (2.2). Observe that Hy, is still valid
if we replace ¢; by an arbitrary t-labeling of G in (2.4), but we do not necessarily
get all homomorphism constraints in this case.

For ¢t = 1, the constraint Hy, is equivalent to z;; < 0 for all (¢,j) € I. Hence all
inequalities Hy; are satisfied as soon as z;; = 0 for all ¢,j € V with ¢;(7) # ¢1(3).
These equations have been used in Sect. 2.1 to reduce the number of variables.

Theorem 2.2
In the affine subspace of nx n-matrices (z;;) given by .y xi; = 1 for alli € V', each
rational inequality valid for P(Aut G) is induced by a homomorphism constraint.

Proof: Let
H: Z Q5L 45 St— 1
(i,4)€V?
be any rational inequality valid for P(Aut G). We may assume ¢t € Z and a;; € Z
for i,j € V. For all (4,7) € V? with a;; < 0, we use Zj’eV z;j» = 1 to replace w;; by

1-— Z Tijr

J"eV\{i}

increasing the coefficient of each z; by —a;; > 0. After these replacements, all
coefficients on the left hand side are non-negative, hence we may assume a;; > 0 for
all 4,5 € V. Since M (idy) € P(AutG), we derive) ., a;; <t —1 and hence ¢ > 1.
Let I be the multiset of node-pairs containing the pair (7,j) exactly a;; times,
for all 4,5 € V. Since H is valid for P(Aut @), condition (2.4) holds for I and t.
Obviously, we have H = Hy,. O

28 2 Detecting Automorphisms

Corollary 2.3
The polytope P(Aut G) is completely described by the constraints (2.1) and (2.5).

2.4.2 Special Homomorphism Constraints

In practice, homomorphism constraints perform well even if ¢ is restricted to two.
To explain this, we give two examples of special constraints contained in the class
of inequalities Hj o.

First observe that the constraints A X = X Ag in (2.2) are constraints of type Hy
if G is a simple graph. Indeed, the inequality

n n
E ik Trj < E Tik Ok
k=1 k=1
is equivalent to
n n
E AikTrj + E (1 —agj)zix <1
k=1 k=1

using the constraints (2.1). In the latter inequality, all coefficients are binary for
simple graphs.

Next, let © € V and d € N. In the orbit graph G4 defined in Sect. 1.3.5, the in-degree
of 7 has to equal its out-degree by Lemma 1.5, i.e., we have the valid equation

c(g,i)=d c(i,k)=d

Using (2.1), the two inequalities given by (2.6) are equivalent to

Z Tji + Z T <1 and Z Tj; + Z Tip < 1.

c(j,i)=d c(i,k)#£d c(j,i)#d c(i,k)=d

These inequalities are easily seen to be homomorphism constraints.

2.5 Separation

Since the linear optimization problem over the automorphism polytope P(Aut G)
is NP-hard in general, the same is true for the corresponding general separation
problem by Grétschel et al. [35]. As all constraints are induced by homomorphism
constraints by Theorem 2.2, the separation problem for homomorphism constraints is
also NP-hard. In fact, the size of the t-automorphism partitioning of GG is exponential
in ¢, hence we cannot even compute the automorphism partitionings in polynomial
time for unbounded ¢.

2.6 Primal Heuristics 29

However, in practice, we noticed that for most test instances the restrictiontot = 1, 2
sufficed to prevent branching when searching for automorphisms; see the runtime
results in Sect. 2.9. Hence in our branch & cut-approach, we only use homomorphism
constraints of type Hy,; and Hys. As explained in Sect. 2.4, the constraint Hj; is
equivalent to z;; = 0 for all (¢,7) € I, so all inequalities H;; are satisfied as soon
as z;; = 0 for all 4, j € V with ¢;(¢) # ¢1(j). For ¢t = 2, the separation is performed
heuristically: consider the coloring graph G’ defined in Sect. 1.3.4. By (2.4), the
constraint Hy o is valid for P(Aut Q) if and only if I is an independent set in G'. We
do not know whether finding maximum weight independent sets in G’ is possible in
polynomial time. However, we can use any heuristic for the weighted independent set
problem to separate the constraints Hy, heuristically. The straightforward greedy
strategies we use in our implementation yield good results quickly in general.

2.6 Primal Heuristics

Finding automorphisms heuristically is difficult, since a local variation of the graph
usually changes the set of its automorphisms completely, so that straightforward
greedy heuristics do not work. Nevertheless, Lemma 1.2 of Sect. 1.3.4 helps to de-
velop a primal heuristic for finding automorphisms of G' by providing a link between
automorphisms of G and maximal cardinality cliques in the coloring graph G'. This
Lemma suggests to search for automorphisms of G' by searching for maximal car-
dinality cliques in G’'. In a branch & cut-approach, any primal heuristic should be
guided by the last LP-solution z;;. This solution can be taken into account easily:
we define weights for the nodes of G’ by w(; ;) = n + Z;; and search for maximum
weight cliques.

Doing this heuristically, we may end up with an inclusion-maximal clique @ in G’
that does not contain n nodes. This occurs in particular if we use greedy heuristics.
In this case, we can use Corollary 1.4 to derive the valid inequality

Z zij < Q] —1.

(1,4)€Q
If this inequality is violated, we add it as a cutting plane.

We also use the following very simple primal heuristic: we start with an undefined
function m and traverse the mapping variables by descending LP-value Z;;. For each
variable z;; visited, we check whether both (i) and 77'(j) are undefined. If so, we
set 7(i) = j. By this, we finally get a permutation 7 of V. If we are lucky, this
permutation is an automorphism of G. In practice, this method often yields good
primal solutions while requiring very little runtime.

30 2 Detecting Automorphisms

2.7 Branching and Enumeration

Our branching and enumeration strategy is very simple: we always branch at the
fractional variable with greatest value in the last LP-solution. The subproblem tack-
led next is the one containing the largest number of variables fixed or set to one.
Notice that setting a variable to one allows setting 2(n — 1) other variables to zero,
whereas setting a variable to zero does not determine other variables in general.
So our strategy prefers to set as many variables as possible in the hope of finding
feasible solutions quickly.

We also make use of the isomorphism pruning technique devised by Margot [57].
This method is able to decrease the number of subproblems to be solved in a
branch & cut-algorithm in case that the ILP model has a non-trivial symmetry group.
The symmetry group consists of all permutations of the set of variables that do not
change the ILP including the objective function. In general, the larger the symmetry
group of an ILP is, the more subproblems in the corresponding branching tree are
isomorphic. Since isomorphic subproblems have equal optimal solutions, we have to
consider only one of the isomorphic subproblems and can prune the others.

Coming back to our application, we assume that we use an objective function that
is fixed under the symmetry group of (2.2). For example, this is true for the number
of fixed nodes. Then it is easy to see that

Lemma 2.4
The symmetry group of (2.2) is isomorphic to Aut G.

Here, an automorphism 7 of GG acts on the set of variables by mapping x;; t0 Zr(i)x(j)-
By Lemma 2.4, applying isomorphism pruning is the more profitable for a graph G
the more automorphisms G admits. However, the drawback of this technique is that a
lot of group operations have to be performed in order to decide whether a subproblem
can be pruned. These are hard to implement and do not run in polynomial time in
general. For this reason, we use a weaker pruning criterion than the one given in [57].
Our criterion can be checked quickly if the 2-automorphism partitioning c, is given.
To explain it, assume that we use a ranked branching rule and a rank vector R as
in [57]. Then we have

Theorem 2.5

Let W be the set of variables currently set to one by branching decisions. Assume
that there exist i, j € V with R[z;;] < n? and ¢y(i,j) = c2(7, j') for some x5 € W.
Choose such i and j with R|z;;] minimal. Then the current subproblem can be
pruned if z;; ¢ W.

Proof: By definition of ¢y, there is an automorphism of G mapping i to ¢’ and j to j'.
By Lemma 2.4, this automorphism induces an automorphism 7 of (2.2) mapping z;;

2.8 Fixing and Setting Variables 31

to zy . Hence x;; is contained in 7 (W) \ W. By the minimality of R[z;;], it follows
that R(7m—(W)) is lexicographically strictly smaller than R(WW). Hence the current
subproblem can be pruned by [57]. O

Observe that the criterion of Theorem 2.5 can be verified easily in a runtime linear
in the number of variables, if the time needed for computing ¢, is ignored. In fact,
we only have to compute ¢y once for each instance and we compute it anyway for
separating homomorphism constraints; see Sect. 2.5.

2.8 Fixing and Setting Variables

Fixing or setting variables in a branch & cut-algorithm sometimes allows to fix or
set other variables by logical implications. Whenever a variable z;; is fixed (set)
to one in our application, we know that some other variable x;; may be one only
if c(i,7') = c(4,j') and c(7',%) = c(j,7). Otherwise, we can fix (set) z;; to zero.
Clearly, this remains true—and is more efficient in general—if we replace ¢ by the
possibly finer 2-automorphism partitioning c;.

2.9 Experimental Results

In the following, we present runtime results for our branch & cut-implementation of
automorphism detection for general graphs. In the experiments, we searched for an
automorphism with a minimal number of fixed nodes; this problem is NP-hard as
a generalization of the problem (AuUT,) defined in Sect. 1.3.2. When using other
objective functions, we obtained similar results in general.

For all our evaluations, we used an AMD 1400 MHz Athlon processor. Runtime
results are always given in CPU-seconds; we imposed a CPU-time limit of one hour.
Our implementation is based on ABACUS [1, 45] in combination with CPLEX [25].
The general branch & cut-parameters were set as follows: we neither restricted the
size of the branching tree nor the number of cutting phase iterations per subproblem.
The number of cutting planes added in a single iteration was bounded by 100.

2.9.1 The Algorithm

In a preprocessing step, we apply nauty [60] to replace the original coloring ¢ of
the input graph by its 2-automorphism partitioning c¢,. The initial ILP in the im-

32 2 Detecting Automorphisms

plemented branch & cut-algorithm models all node permutations, i.e., it consists of
mapping variables and the permutation constraints (2.1); variables are deleted as
described in Sect. 2.1.

Notice that we do not use the constraints AgX = X A of (2.2). Instead, we make
use of the homomorphism constraints (2.5) for ¢ = 2 in the cutting phases; see
Sect. 2.4. No other class of cutting planes is included in our implementation. During
separation, we add as many violated homomorphism constraints as we can find by
a simple greedy independent set heuristic; see Sect. 2.5. As mentioned above, the
general limit is 100 per cutting phase iteration, but this limit is rarely reached.

If branching is necessary, we use the branching and enumeration strategy described
in Sect. 2.7 and fix and set variables by the logical implications explained in Sect. 2.8.
Finally, we implemented both a primal heuristic based on a greedy maximal clique
heuristic and the simple algorithm given in Sect. 2.6.

2.9.2 Test Sets

For lack of benchmark data sets containing graphs with non-trivial automorphism
groups, we created random instances for evaluating our algorithm. This is delicate:
testing random graphs is not useful, since automorphisms are rare. Most graphs do
not have any non-trivial automorphism at all. In this case, the automorphism par-
titioning computed by nauty is trivial, so there is nothing left to do. But if the user
of our algorithm would not expect her graphs to have symmetries or automorphisms
with a reasonable probability, she probably would not use it.

Instead of using random graphs, we therefore created all instances in the following
way: for a given number n of nodes, we first chose some permutations g, 7, ..., 7T,
of V. ={1,...,n} according to a rule depending on the test set. Then we computed
the partition of V2 induced by these permutations, i.e., the orbitals of the permuta-
tion group generated by 7o, 1, . .., T,.. We joined the parts containing (7,) and (7, ?)
for all 7,7 € V in order to get an undirected graph. Finally, we flipped a coin for
each part: either we added an edge between all node-pairs in the part or between
none of them.

Observe that we did not explicitly forbid isomorphic pairs of graphs in our test sets.
However, the probability of creating such pairs is low except for very small instances.
Furthermore, we did not require connectedness.

For automorphism detection, we created two different test sets. Instances of the first
set aut were created using a single automorphism: given the number n of nodes, we
chose a permutation 7y of V randomly. Using this permutation, we produced a test
graph in the way just explained. For each n =1,...,100, we created 100 instances.

2.9 Experimental Results 33

We also created another test set aut+ containing instances with more automorphisms
than aut: we used three random permutations with |n/2| or more fixed nodes
each to create a test graph as explained above. Complete or edgeless graphs were
rejected. Again, we created 100 instances for n = 1,...,100. The resulting graphs
have large automorphism groups in general: we have |[Aut G| > |n/2]! for 99.9%
and |Aut G| > (n — 1)! for 6.8% of the graphs in aut+; the corresponding numbers
for aut are 10.6% and 4.6%.

2.9.3 Results

The results of applying our automorphism detection algorithm to the graphs in aut
are displayed in Table 2.1. Sorted by the number of nodes, we give the average and
maximal values for the following data: the runtime, the number of variables used in
the ILP, the number of subproblems created during the branch & cut-process (not
counting the root problem), and the number of LPs that had to be solved. Where not
all instances could be solved to optimality within the time limit of one CPU-hour,
we give the percentage of non-solved instances instead of the maximum runtime.
Observe that all other results given in the corresponding lines refer only to the
instances that could be solved within one hour.

Table 2.1: Results for automorphism detection in aut

runtime ##variables | #subprobs #LPs
n| avg max avg max | avg max | avg max
1-10 | 0.00 0.02 24.1 100 | 0.0 0] 1.2 9
11-20 | 0.01 1.10 | 135.2 400 | 0.0 21 18 66
21-30 | 0.03 0.48 | 343.6 900 | 0.0 10 | 2.3 66
31-40 | 0.06 0.75 | 646.4 1600 | 0.0 6| 2.7 34
41-50 | 0.12 1.11 | 1075.6 2500 | 0.0 6| 3.1 32
51-60 | 0.23 15.39 | 1587.4 3600 | 0.2 122 | 3.5 159
61-70 | 0.43 28.85 | 2229.1 4900 | 0.0 6| 3.8 89
71-80 | 0.59 28.48 | 2879.8 6400 | 0.0 16 | 3.9 83
81-90 | 3.15 1299.44 | 3686.3 7922 | 0.1 28 | 5.1 326
91-100 | 5.35 0.1% | 4586.9 9802 | 0.2 116 | 5.3 388

Table 2.1 shows that, on average, runtime is very short for up to 80 nodes and
reasonable for 81 to 100 nodes. However, the variance is high: while 999 instances
on 91 to 100 nodes needed 5.35 CPU-seconds on average, a single instance could not
be solved within an hour of CPU time. This wide range of performance is typical
for most of our experimental results.

34 2 Detecting Automorphisms

We also investigated the effect of computing the 2-automorphism partitioning c,
in a preprocessing step and found that this is crucial for the performance of our
algorithm: when switching off 2-automorphism partitioning, i.e., when applying our
algorithm to the original graph coloring c instead of cy, runtimes for aut grew
significantly. This is not surprising, since the performance of our algorithm depends
on fine labelings at many points, in particular for obtaining tight homomorphism
constraints. Nevertheless, when using the polynomial time labeling algorithm qweil
by Bastert [7], results were the same as with nauty, even though qweil does not
always find the 2-automorphism partitioning.

Most algorithms dealing with automorphisms of a graph need the more runtime the
more automorphisms the graph admits; see e.g. [2]. Therefore, we also applied our
algorithm to the test set aut+ containing graphs with large automorphism groups.
Runtimes for aut+ are displayed in Table 2.2.

Table 2.2: Results for automorphism detection in aut+

runtime #variables | #subprobs #LPs
n | avg max avg max | avg max | avg max
1-10 | 0.00 0.02 22.7 82 | 0.0 0| 1.0 1
11-20 | 0.01 0.03 | 171.2 362 | 0.0 0| 1.0 1
21-30 | 0.02 0.04 | 473.7 842 | 0.0 0] 1.0 1
31-40 | 0.04 0.09 | 938.4 1522 | 0.0 0] 1.0 2
41-50 | 0.09 0.16 | 1540.9 2214 | 0.0 0] 1.0 2
51-60 | 0.18 0.30 | 2301.0 3142 | 0.0 0] 1.0 1
61-70 | 0.30 0.74 | 3209.6 4494 | 0.0 21 1.0 4
71-80 | 0.47 0.79 | 4282.5 5782 | 0.0 0] 1.0 2
81-90 | 0.66 0.87 | 5502.9 6900 | 0.0 0] 1.0 1
91-100 | 0.95 1.26 | 6879.2 9033 | 0.0 0] 1.0 1

In spite of their large automorphism groups, the graphs in aut+ require less time
than those in aut; especially the maximum runtimes are much shorter. Here we see
the result of two counteracting effects: on one hand, the average number of variables
needed for graphs with a lot of automorphisms is larger, as a smaller automorphism
group implies a finer 2-automorphism partitioning which in turn allows to omit
more variables. On the other hand, the presence of more automorphisms implies
that solutions of the ILP are found more easily. The second effect seems to prevail.

In summary, our branch & cut-algorithm for detecting optimal automorphisms in
general graphs runs very fast in practice for most instances on up to 100 nodes, in
particular for graphs with a large automorphism group.

Chapter 3

Detecting Rotations

In the previous chapter, we explained how to detect general graph automorphisms
by a branch & cut-approach. In the following, we specialize in rotations of order k,
where k£ € {2,...,n} is fixed throughout this chapter. When proceeding from
automorphisms to rotations, the tools change significantly: as the automorphisms of
a graph form a group, dealing with automorphisms involves a lot of group-theory.
The group structure can often be exploited to improve algorithms dealing with au-
tomorphisms. Furthermore, the automorphism group of a graph is a well-studied
object. On the other hand, the rotations of a graph do not form a group in general.
Research on symmetries of abstract graphs is rare. The properties that distinguish
rotations from general automorphisms concern the lengths of the orbits, involving
divisibility arguments and hence elementary number theory.

In Sect. 3.1, we model the k-rotations of a given graph by extending the auto-
morphism ILP presented in Sect. 2.1. We can use any linear objective function in
combination with the rotation ILP. In Sect. 3.2, we consider the subpolytope of the
automorphism polytope induced by the k-rotations. Cutting planes of this polytope
are described in Sect. 3.3 and separation algorithms are proposed in Sect. 3.4. In
Sect. 3.5, we describe rules for fixing and setting variables. For experimental runtime
results, see Sect. 5.3.

35

36 3 Detecting Rotations

3.1 The Integer Linear Program

We adjust the automorphism ILP (2.2) presented in Sect. 2.1 to the problem of
detecting k-rotations instead of arbitrary automorphisms. Let 7 be an automorphism
of G given by variables z;;, i.e., let M(m) = (z;5).

The first condition for 7 to be a k-rotation is |orb,(i)| € {1,k} for all i € V. All
other orbit lengths are forbidden. In order to set up linear constraints to enforce this
property of m, we define a forbidden orbit of G as a circular list C = (iy,...,1,) of
pairwise distinct nodes in V' with k£ # p > 2. Let |C| = p and

p—1
x(c’) = intit+1 + xip'il .
t=1

Then the condition |orb,(z)| € {1, £} for all i € V' is equivalent to
z(C) < |C| =1 for all forbidden orbits C . (3.1)

Indeed, the constraint (3.1) implies that for every forbidden orbit C at least one
variable in z(C) is zero, so that C is not an orbit of 7.

To this point, we have ensured that all orbits of 7 have length k or 1. Any k-rotation
has to meet the additional condition |Fix(7)| < 1. We can express this by

Zﬂﬁz‘i <1, (3.2)
iev

as the sum on the left hand side equals the number of fixed nodes.

Combining (2.2), (3.1), and (3.2), an ILP describing k-rotations of G is

zi; € {0,1} foralli,jeV
ZjEV Tiy; = 1 foralli e V
Diev Ty = 1 forallj eV (3.3)
AgX = XAg '
v i <1
z(C) < |C]—1 for all forbidden orbits C .

The number of variables in (3.3) is n? as in (2.2); see Sect. 2.1. The same methods for
reducing this number apply here. In the remainder of this section, we develop criteria
for leaving out further variables that are valid only if the algorithm is restricted
to k-rotations.

First, we replace the inequality (3.2) by tighter constraints. If £ divides n, we may
set x; = 0 for all 7 € V, i.e., we may omit the variables z;;, since each non-trivial

3.1 The Integer Linear Program 37

orbit of a k-rotation has length k£ and every fixed node of a k-rotation = would
imply |Fix(7)| > k£ > 2, which is not allowed for k-rotations. Now assume that k
does not divide n. Then £ divides n — 1, since otherwise the problem is infeasible.
In this case, we can derive that exactly one node is fixed by any k-rotation 7 of G.
Hence we have), z;; = 1. Thus, we can always replace (3.2) by equations.

If k£ does not divide n, we can do more: for d € N, consider Py = {i € V' | ¢(¢) = d}.
Clearly, each set P, is fixed by any automorphism of G. Hence k divides | P| for all
but one d, and for all these d we can omit the variable x;; for all i € P,.

The following technique of deleting variables is more complicated, but very effective
in general. Let 4,5 € V and d = ¢(i,j). Consider the orbit graph G4 of (i, j); see
Sect. 1.3.5. By Lemma 1.5, the orbit of i under each automorphism = € AutG
with 7(i) = j is a directed cycle in G4. In particular, if there is no directed path
from j to 7 in G4 of length k¥ — 1, we have z;; = 0. Unfortunately, the problem
of deciding whether in a given directed graph there is a path of given length from
one given node to another is NP-complete, as the longest path problem is NP-hard.
Nevertheless, we can try to find necessary conditions for such a path to exist, and
leave out z;; if they do not hold. For example, if we relax the problem by allowing
multiple nodes in the paths, i.e., if we replace paths by walks, the problem becomes
polynomial time solvable. If we do not even find a walk of length £ — 1 from j to 1,
we surely have z;; = 0.

If £ > 3 and all objective function coefficients of the variables x;; with ¢ # j are
equal, we can also delete variables because of symmetry. Under these conditions,
assume that there is some feasible solution of (3.3) corresponding to a rotation .
Then we have equivalent solutions corresponding to 7€ for each e with 1 < e < k such
that ged(e, k) = 1. Thus, we can delete ¢(k) — 1 arbitrary variables z;; with ¢ # j
without losing all optimal solutions, where

ok)={ee{1,...,k} | ged(e, k) = 1}

is the Euler p-function: indeed, at least one of the ¢ (k) rotations ¢ remains feasible,
since no two of them share any variables with value one. This strategy for variable
deletion can be regarded as a way of destroying symmetry in the ILP. Decreasing
the number of isomorphic optimal solutions can decrease runtime significantly.

Using the techniques described above, we can often reduce the number of variables
in the rotation ILP even more than in the automorphism ILP (2.2). However, the
number of constraints increases significantly: we have an exponential number of
forbidden orbit constraints. Branch & cut can deal with this problem by not adding
all these constraints from the beginning but one after another in the cutting phase;
see Sect. 1.5. We need a separation algorithm in this case; see Sect. 3.4.

38 3 Detecting Rotations

3.2 The Rotation Polytope

All rotations are automorphisms, hence the k-rotation polytope P(Rot,G) is defined
in a natural way as the subpolytope of P(Aut @) spanned by all matrices M ()
for m € RotyG. In the following, we will concentrate on the special case where G is
the complete graph K,,. In fact, since

ROth =AutGnN ROtkKn s (34)

we have P(RotyG) C P(AutG) N P(RotxK,). If k divides n, the latter polytope
models all decompositions of the complete graph K, into node-disjoint directed
cycles of length k. If k divides n — 1, we get all decompositions of K, into (n—1)/k
node-disjoint directed cycles of length £ and one isolated node. In all other cases, the
polytope P(RotgK,) is empty. An important special case is k = n, where P(Roty K},)
coincides with the asymmetric traveling salesman polytope ATSP(n) on n nodes,
which is well-studied; see e.g. Grotschel and Padberg [36]. Some results for ATSP(n)
will be generalized to P(RotxK,) in the following. For ease of exposition, we will
identify a permutation 7 with the corresponding matrix M (7).

Lemma 3.1

Let k > 3 and let m be a permutation of V. If the length of each orbit of 7 is a
multiple of k except for at most one trivial orbit, then 7 is an affine combination
of k-rotations of K,,.

Proof: We may assume that (1,...,mk) is an orbit of © with m > 1. We show
that 7 is an affine combination of permutations that agree with 7 on all nodes
mk + 1,...,n but have the first orbit split into orbits of length k£ and (m — 1)k.
Repeating this process, we get the desired result.

For i € {1,2,3}, let m; equal 7 except that ¢ is mapped to (m — 1)k + ¢+ 1 and
(m —1)k+1 is mapped to i+ 1. Furthermore, let 7’ equal 7 except that ¢ is mapped
to (m—1)k+i+ 1 and (m — 1)k + 7 is mapped to i + 1 for all 7 € {1,2,3}. By
construction, we have

and the sum of coefficients on the right hand side is one. It is easily checked that
the permutations 7y, 7o, 73, and 7' each split up the set {1,..., mk} into one orbit
of length k, namely the one containing node 1, and one orbit of length (m—1)k. O

Theorem 3.2
Let k > 3 and k | n. Then P(RotK,) and P(Rot,K,) = ATSP(n) span the same
affine space. The dimension of P(RotyK,,) is n® —3n + 1.

3.2 The Rotation Polytope 39

Proof: The constraints (2.1) and z; = 0 for i € V form a complete system of
equations for ATSP(n). Since these equations are satisfied by all k-rotations of K,
as well, we get

aff P(RotxK,,) C aff ATSP(n) .
The converse follows from Lemma 3.1. Finally, the statement on the dimension
of P(RotK,) is a consequence of the respective result for the asymmetric traveling
salesman polytope [36]. O

Theorem 3.3
Let k >3 and k | (n—1). Then P(RotixK,) and P(Rot,_1K,) span the same affine
space. For n > 5, the dimension of P(Rot,K,,) is n? — 2n.

Proof: Let 7 € Rot,K,. Let 7’ be the restriction of 7 to V'\Fix(7). By Theorem 3.2,
the polytopes P(Rot; K1) and P(Rot,_1K,_1) span the same affine space. Thus 7’
is an affine combination of (n — 1)-rotations of V' \ Fix(n). Adding the trivial orbit
of 7 to each of these, we get 7 as an affine combination of (n — 1)-rotations of K.
Hence M (7) € aff P(Rot,_1K,) and thus

aff P(Rot,K,,) C aff P(Rot,_1K,) .
The converse follows from Lemma 3.1.
For the second statement, we may hence assume k£ = n— 1. The 2n constraints (2.1)

and), 2; = 1 form a system of independent equations for P(Rot,_1K,) after
one of the constraints in (2.1) is removed, hence

dim P(Rot,,_1K,,) <n*—2n.

For n > 5, this system is complete: we show this by constructing n? —2n+1 affinely
independent (n — 1)-rotations of K. First, we have (n — 1) — 3(n — 1) + 2 affinely
independent (n — 1)-rotations of V' \ {1} by Theorem 3.2, giving rise to the same
number of affinely independent (n — 1)-rotations of V' satisfying

.Tli:.Tﬂ:.T,’i:O foralleV\{l}

Using the dimensions corresponding to zy; and z; for ¢ € V \ {1,2}, we can
choose 2(n — 2) — 1 affinely independent (n — 1)-rotations of K, fixing 2. Then
we still have

T =291 =0 and z4;=0 forallie V\{1,2}

for all chosen rotations. Next, we choose a rotation fixing ¢« and neither mapping 1
to 2 nor 2 to 1, for each i € V'\{1, 2}. Finally, we add an arbitrary rotation mapping 1
to 2 and an arbitrary rotation mapping 2 to 1. In summary, we have gathered

n—1?-3n-1)+2+2n-2)—14+n—-2+2=n>-2n+1

affinely independent (n — 1)-rotations of K, as promised. O

40 3 Detecting Rotations

3.3 Cutting Planes

All equations and inequalities valid for P(Aut G) are still valid for P(Rot;G). In
particular, we can use homomorphism constraints (2.5) for rotation detection as
well; see Sect. 2.4. However, we need more cutting planes now to cut off the au-
tomorphisms of G that do not form k-rotations. It is hard to find facet-inducing
inequalities for the rotation polytope for general graphs, since even deciding whether
this polytope is empty is an NP-complete problem at least for some k; see prob-
lem (ROT) in Sect. 1.4. Instead, we will evaluate our cutting planes with respect
to the polytope P(RotzK,). For the remainder of this section, we assume that k
divides either n or n — 1, since P(Rot;K,) is empty otherwise.

Theorem 3.4
Let k > 4 and n > 5. Then for all i,j € V with i # j, the constraint x;; > 0 induces
a facet of P(RotxKy,).

Proof: First we show that we may assume £k = n or £k = n — 1. For this, it
suffices to modify the proof of Lemma 3.1 in such a way that, if 7(¢) # j for some
permutation 7 the orbit lengths of which are all multiples of k£ except for at most one
trivial orbit, then the constructed k-rotations neither map ¢ to j. Again, repeating
this process yields a collection of k-rotations that do not map 7 to j and that span
the same affine space as the rotations of order n or n — 1 not mapping 7 to j.

If there is an orbit of length greater than £ that does not contain both ¢ and j, we
can split up this orbit as in the proof of Lemma 3.1. Otherwise, we may assume that
(1,...,mk) is an orbit of # with m > 1 containing ¢ and j. Furthermore, we may
assume ¢ = 4. Since k > 4, the permutations 7, mo, 73, and 7’ constructed in the
Proof of Lemma 3.1 all agree with 7 on 4.

For £k = n, we have P(Rot,K,) = ATSP(n), hence the result follows from [36]
asn > 5. Solet k =n—1and assume 7,5 € V' \ {1,2}. If n > 6, we can use the
same technique as in the proof of Theorem 3.3: in this case, we can apply the result
for the case K = n to n — 1. We derive that the inequality z;; > 0 induces a facet
of P(Rot,_1K,_1). Thus we can choose (n —1)?> —3(n — 1) + 1 affinely independent
(n—1)-rotations of V'\ {1} not mapping i to j. Additionally, we get 3n— 5 rotations
as in the proof of Theorem 3.3; as n > 6, we may assume that none of them maps
to j. Hence we have constructed

(n—12-3n—-1)+1+3n—-5=n%>-2n

affinely independent (n — 1)-rotations of K, not mapping i to j, so that z;; > 0
induces a facet of P(Rot,_1K,). The case n =5 can be checked explicitly. O

3.3 Cutting Planes 41

In the following, we examine the forbidden cycle constraint (3.1) more closely. For
this, let C' = (iy,...,14,) be a circular list of distinct nodes with k& # p > 2 again.
If k£ does not divide p, we can improve (3.1) to

Z zij <p—1. (3.5)

1,J€C, i#]

Indeed, the sum on the left hand side is at most p by (2.1). If it is exactly p for some
permutation 7, then C is fixed under 7, but no single node of C' is fixed. Since k
does not divide p, some non-trivial orbit of 7 must have a length not equal to &,
so m is no k-rotation.

If additionally & divides n or k does not divide p — 1, we even have

Z zij <p—1 (3.6)

1,j€C

by similar reasoning. Observe that for £ = n the constraint (3.6) is the subtour
elimination constraint for the cut defined by C.

Theorem 3.5
Let n > 5 and k | n. Then the constraint (3.6) induces a facet of P(Rot,K,) if k
neither divides p nor p £+ 1.

Proof: The idea is the same as in the last proof: we have 2 < p < n—2, hence (3.6)
induces a facet of ATSP(n) by [36]. Consider a permutation = of V' with all orbit
lengths a multiple of k£ that satisfies (3.6) with equality. Then it suffices to show
that 7 is an affine combination of k-rotations satisfying (3.6) with equality.

Since 7 satisfies (3.6) with equality, there is exactly one pair (i,5) € C x (V' \ C)
with 7(i) = j and exactly one pair (4, j) € (V \ C) x C with 7(i) = j. In particular,

there is exactly one orbit (1, ..., mk) of 7w that is neither contained in C' nor contained
in V' '\ C. All other orbits can be split up as in the proof of Lemma 3.1 without
losing equality in (3.6). If m = 1, we are ready, so it remains to split up (1,...,mk)
for m > 1.

We may assume p < (m — 1)k, otherwise we can exchange C with V' \ C and argue
analogously. We have p < (m — 1)k — 2, since & neither divides p nor p £+ 1. Thus at
least k£ + 2 nodes of (1,..., mk) belong to V' \ C. Since 7 satisfies (3.6) with equality,
the nodes of V' \ C appear consecutively in (1,...,mk), hence we may assume that
the first three and the last £ — 1 nodes in this sequence belong to V' \ C. Using this
it is easy to verify that splitting up (1,...,mk) as in Lemma 3.1 again preserves
equality in (3.6). O

42 3 Detecting Rotations

Observe that Theorem 3.5 is not true in general if & divides p — 1 or p + 1. As an
example, let k = 3, n = 6, and p = 2 or p = 4. We have dim P(Rot3Ks) = 19
by Theorem 3.2, whereas it is readily checked that the number of 3-rotations of Kg
satisfying (3.6) with equality is only 16.

As a special case of (3.6), we have a valid inequality

it £ > 3 and 7 # j. In particular, the constraints z;; < 1 do not induce facets
of P(Rot,K,), in contrary to the constraints z;; > 0; see Theorem 3.4.

Corollary 3.6
Let n > 5 and k > 4 with k | n. Let i,j € V with i # j. Then the constraint (3.7)
induces a facet of P(Rot,K,).

If k divides n, it is easy to see that any valid inequality for ATSP(n) with a support
graph containing no more than £—1 nodes is also valid for P(Rot; K,). If additionally
we have £ > 3, then every k-rotation is an asymmetric assignment, hence every
odd CAT inequality [4] and every primitive source-destination inequality [5] is valid
for P(Rot,K,,) as well.

To conclude this section, observe that we have P(Rot;G) # P(Aut G) N P(Rot, K,,)
in general. In fact, even the dimensions of these polytopes may disagree, as the
following example shows: let C; denote the undirected cycle on four nodes. Then we
have a valid equation z;3 = 0 for P(Rot4C,), whereas the matrix

(M((13)(24)) + M((12)(34))) = , (M((1243)) + M ((1342)))

DN | —
N | —

is contained in both P(Aut C}y) and P(Rot,K4) but does not satisfy ;3 = 0.

3.4 Separation

In this section, we consider the separation problems corresponding to the classes
of cutting planes introduced in Sect. 3.1 and Sect. 3.3: the generalized subtour
elimination constraints (3.5) are examined in Sect. 3.4.1, the forbidden orbit con-
straints (3.1) are examined in Sect. 3.4.2.

3.5 Fixing and Setting Variables 43

3.4.1 Subtour Elimination Constraints

Using (2.1), it is easy to see that the subtour elimination constraint (3.5) examined
in Sect. 3.3 is equivalent to the inequality

Z l‘ij-I'inizl.

i€C, jgC ieC

To separate constraints of this type, we have to minimize the function f defined by

f(C) = Z .Z‘ij + Z.T“

i€C, j¢C ieC

over all subsets C of V' with a cardinality not divisible by k. Recall that (3.5) is not
valid if k£ divides |C|. It is easy to see that the function f is submodular and that
the feasible sets C' form a triple family. Hence we have a polynomial time separation
algorithm by Grotschel et al. [35]; faster algorithms are given by Goemans and
Ramakrishnan [33] and Benczir and Fiilop [8].

3.4.2 Forbidden Orbit Constraints

Since (3.5) is not valid if £ divides |C|, we need a separation algorithm for the
forbidden orbit constraints (3.1). These are separated heuristically. We first compute
a permutation 7 of V' that is close to the current fractional solution. For this, the
following very simple heuristic yields good results in general: as in Sect. 2.6, we
traverse the pairs (i,j) € V2 in descending order according to the current value
of z;; and set 7(¢) = j if and only if ¢ has no image and j has no preimage under 7
yet. Now we visit each orbit C' of 7 such that k # |C| > 2 and check whether the
corresponding orbit length constraint (3.1) is violated.

3.5 Fixing and Setting Variables

When searching for rotations of order k, we can extend our strategy for fixing or
setting variables: consider the simple directed graph given by the mapping variables
fixed (set) to one, i.e., the graph G; = (V, E4) with

E, ={(i,j) € V? | i +# j and m;; is fixed (set) to one} .

We may assume that G is a disjoint union of directed cycles of length £ and di-
rected paths of length at most k& — 1, since otherwise the fixed (set) variables imply
infeasibility. Let P, and P, be two path components in GG1; let ¢ be the last node

44 3 Detecting Rotations

of P; and j the first node of P,. Let p; be the number of edges in P, and py the
number of edges in P.

If P, = P, we can fix (set) the variable z;; to either zero or one: if p; = k — 1, the
node ¢ must be mapped to j, since otherwise any orbit containing P; would have
to contain at least k£ 4+ 1 nodes, which is not allowed for rotations of order k. Hence
we can fix (set) z;; to one. Otherwise, if p; # k — 1, we may not have z;; = 1,
since this would determine an orbit consisting of p; 4+ 1 nodes. In this case, we can
fix (set) x;; to zero. Finally, if P, # P, and p; + po, > k — 1, we can fix (set) z;; to
zero. Indeed, if 7 was mapped to j, we would get a path containing at least £ edges,
which is infeasible as argued above. In general, we observed that these fixing and
setting rules are very effective in practice.

Chapter 4

Detecting Reflections

In the previous chapter, we explained how to detect rotations of fixed order k£ using
the branch & cut-technique. For k£ > 3, these rotations are the only symmetries
of order k. For k = 2, we also have to consider reflections. Each 2-rotation is a
reflection, but the converse is not true since the number of fixed nodes is not bounded
for reflections. In this chapter, we present an integer programming approach for
reflection detection. In principle, we could use the same ILP as for rotations after
removing the constraint on the number of fixed nodes. However, the rotation ILP can
be simplified in the reflectional case, mainly because we can model the constraints
on the orbit lengths much easier now; we do not need the forbidden orbit constraints
for reflections.

The reflection ILP is presented in Sect. 4.1. The reflection polytope is examined
in Sect. 4.2; cutting planes for this polytope are considered in Sect. 4.3. Sect. 4.4
deals with the corresponding separation problem. Primal heuristics are considered
in Sect. 4.5. For experimental runtime results, see Sect. 5.3.

45

46 4 Detecting Reflections

4.1 The Integer Linear Program

Reflections of G are much easier to model than k-rotations for £ > 3. Instead of
using the forbidden orbit constraints (3.1) presented in Sect. 3.1, we just have to
ensure that the automorphism 7 to be represented satisfies 72 = idy, i.e., that in
our model we have

for all nodes 7,5 € V. In other words, we only need a single mapping variable for
each pair of nodes. Hence an ILP modeling reflections is given by

zij =z € {0,1} foralli,jeV, i<j
Ty = 1 forall: eV

jEV
dievTij = 1 forallj eV (4.2)
AGX = XAG .

Observe that all constraints in (4.2) are equations. The number of constraints in (4.2)
is quadratic, whereas the rotation ILP (3.3) contains an exponential number of
constraints.

4.2 The Reflection Polytope

The reflection polytope P(Ref G) of G is defined as the convex hull of all M ()
with 7 € Ref G. Analogously to (3.4), we have

Ref G = AutGNRef K, . (4.3)

We will examine the polytope P(Ref K,,) in the following. The reflections of K,
correspond bijectively to the permutations of K, with orbits of length one or two.
These in turn correspond bijectively to the matchings in K,,, where fixed nodes
correspond to unmatched nodes. Hence we have

Theorem 4.1
The polytope P(Ref K,,) is isomorphic to the matching polytope. The dimension
of P(Ref K,,) is (n* — n)/2.

The matching polytope is well examined. The first and ground-breaking investigation
was presented by Edmonds [30]. For more information, see Lovasz and Plummer [50]
or Schrijver [71].

4.3 Cutting Planes 47

4.3 Cutting Planes

The matching polytope is described completely by trivial constraints and blossom
constraints [30]. The trivial constraints correspond to constraints included in (2.1);
the blossom constraints translate to

Yo @ <0 -1 (4.4)
1,J€C, i£]

for all odd subsets C of V. The constraint (4.4) agrees with (3.5) for the case k = 2.
On the left hand side of (4.4) all variables appear pairwise: along with x;; we have z ;.
As z;; = z;; for 7 # j, an equivalent constraint is

> oz <(Cl-1)/2.

ij€C, i<j
Together, the constraints (2.1) and (4.4) describe P(Ref K,) completely. In fact, the

blossom constraints (4.4) induce facets of P(Ref K,,) if n > 4 [70].

However, observe that as for the rotation polytope we have
P(Ref G) # P(Aut G) N P(Ref K,,)

in general, so that not all valid inequalities for the reflection polytope of G are given
by valid inequalities for the automorphism polytope of G or valid inequalities for
the matching polytope of K,,. For example, if G is the directed cycle (1,2,3,4), we
have Ref G = {idy }, but the matrix

(M((1234)) + M((1432))) = o (M((12)(34)) + M((14)(23)))

N | =
N | =

is contained in both P(AutG) and P(Ref K4).

4.4 Separation

The blossom constraints (4.4) are special constraints of type (3.5) for £ = 2. Hence
they can be separated in polynomial time; see Sect. 3.4. In this case, separation is
equivalent to odd cut minimization. The first polynomial time algorithm for this
problem was given by Padberg and Rao [66].

48 4 Detecting Reflections

4.5 Primal Heuristics

We apply a maximum weight matching algorithm to the complete graph K, with
weights given by the current LP-solution. More precisely, the weight for (i, j) € V?
is defined as w;; = T;; + 7, for 4,57 € V, where 7;; is the current LP-value of the
variable z;;. The exact algorithm runs in O(n®logn) time. Additionally, we use a
simple heuristic: we traverse all node-pairs (4, 7) € V? in descending order according
to their weight w;;, and match ¢ with j if and only if both nodes have not been
matched to other nodes before.

Both methods yield matchings of K,, that do not necessarily induce reflections of G.
However, by the construction of the weights, the heuristic is guided by the current
LP-solution and hence tends to find matchings that correspond to reflections.

Chapter 5

Detecting Symmetries

Combining the rotation and reflection detection algorithms presented in the previous
chapters, we are able to detect optimal symmetries now. The optimal symmetry 7
of a graph G is the one maximizing ord(w) and, within the symmetries of maximal
order, the one minimizing |Fix(7)|. To find the optimal symmetry of G, we traverse
all potential orders £k = n,...,3 first, trying to find a rotation of order k£ by the
algorithm presented in Chapter 3. Observe that the number of fixed nodes is the
same for each k-rotation of GG, so that the first rotation we find is already optimal.
If we did not find any rotation for & > 3, we proceed with reflection detection
as described in Chapter 4. Here we minimize the number of fixed nodes by an
appropriate objective function. The best possible result is a rotation of order two,
the worst possible result is the trivial symmetry idy .

This algorithm could also be packed into a single ILP modeling all symmetries.
We did this earlier; see Buchheim and Jinger [19]. For several reasons, we now
prefer the approach presented here: the separate ILPs for each order k£ are much
simpler than the one for all orders. Furthermore, the polytopes for special orders
are easier to understand and closer to the automorphism polytope, since we do not
need additional variables here as we did in the other approach. Finally, experimental
results are much better for the new approach. These results show that in most cases
we only have to solve a single ILP anyway, since by theoretical considerations we
can omit many orders from the outset.

In Sect. 5.1, we explain how to reduce the number of potential orders, i.e., the
number of ILPs we have to solve. In Sect. 5.2, we consider the problem of finding a
second symmetry that can be displayed simultaneously with the first one. Finally, we
include an experimental evaluation of our approach for detecting optimal symmetries
in general graphs; see Sect. 5.3.

49

50 5 Detecting Symmetries

5.1 Reducing the Number of Potential Orders

The number of potential symmetry orders k£ and hence the number of ILPs to be
solved can often be reduced by using labelings again: let V2 = P, & ... ® P, be the
partitioning of V2 according to ¢ or some finer 2-labeling, e.g., the 2-automorphism
partitioning co. Assume that the pairs (¢,4) for i € V' are contained in Py 1 ®...®P,.
If £ > 3, we know that at most one node may be fixed. Hence the size of every single
part must be divisible by k, except for at most one part P, with [> s and size one
greater than a number divisible by k. If £ does not meet this condition, we can omit
the corresponding ILP. In summary, Algorithm 1 finds an optimal symmetry of G.

Algorithm 1: Optimal symmetry detection in a graph G on n nodes
foreach £ =n,...,3 do

let feasibleOrder = true;

let oneFixed = false;

foreach [=1,...,r do

if k£ does not divide |P;| then

if [< s or k does not divide (|F| — 1) then

| let feasibleOrder = false;

else
if oneFixed then
| let feasibleOrder = false;

else
| let oneFixed = true;

if feasibleOrder then
detect any rotation of order k in G;
if rotation detected then

| stop;

detect a reflection in G with a minimal number of fixed nodes;

Observe that these feasibility criteria include the condition that G' can only admit
a k-rotation if k£ either divides n or n — 1, so that the number of ILPs to solve is
bounded by the number of divisors of either n or n — 1. Let d(n) be the number of
divisors of n. By Hardy and Wright [37], we know that for each ¢ > 0 there is an
integer ny such that

d(n) < 20Fe)an/Inlnn for al] 5 > g

For ¢ = logy e — 1, we get d(n) + d(n — 1) € O(n'/"""). By Dirichlet, the average
number of divisors of all numbers from one to n is asymptotic to Inn up to a small
constant. Thus we have to solve O(Inn) ILPs on average.

5.2 Detecting the Second Symmetry 51

5.2 Detecting the Second Symmetry

If the optimal symmetry of G is a rotation, there may be a second symmetry that
can be displayed simultaneously; see Lemma 1.7. To find it, we use

Lemma 5.1

Let m be a rotation of G maximizing k = ord(m;). Then a symmetry my can be
displayed simultaneously with 7w, without being contained in () if and only if 7y is
a non-trivial reflection of G such that mom = 7rf17r2 and either k is odd or my # Wf/z.
Proof: We prove necessity first. By Lemma 1.7, we must have mom, = 7, 'my. By the
same Lemma, 7 is a reflection, since 7; has maximal order. It must be non-trivial
to avoid my € (my). If my ¢ (71) and k is even, we surely know my # Wf/ ?. To prove
sufficiency, we know that m; and 75 can be displayed simultaneously by Lemma, 1.7.
Now assume that m € (7). Let my = 7¢ with e < k. Since 72¢ = 72 = idy, we
have k | 2e and hence k£ = 2e. Thus k is even and m = w2, O
To find the second symmetry 7o, we apply the detection algorithm for reflections,
see Chapter 4, with additional restrictions mpm = 7 'm, and, if k& = ord(m) is
even, Ty # 7rlf/ 2 The first condition is equivalent to

Tri(i)g = Tim(j) foralli,jeV, (5.1)
the second condition is modeled by

Z. k/Z(Z.) S n—2. (52)

i,y
i€V

So we have the following ILP for finding the second symmetry:

Ty =z € {0,1} foralli,jeV,i<j

jev @iy = 1 foralli eV

iev®ig = 1 forallj eV

AcX = XAg (5.3)
L1 (i), Tim(j) foralli,jeV

n—2 ifkiseven.

IA I

i€V Lix}?)

Observe that this ILP may be infeasible; in this case, there is no second symmetry
that can be displayed along with 7; without being contained in (7).

If we find a second symmetry, the group generated by both symmetries is not nec-
essarily a symmetry group of G of maximal size. The algorithm of Abelson et al. [2]
is designed to find such a group. However, our main objective is to maximize the
order of the first symmetry instead of the size of the symmetry group.

52 5 Detecting Symmetries

5.3 Experimental Results

In this section, we report practical runtime results for symmetry detection in general
graphs. More precisely, we solve the NP-complete problem of finding the optimal
symmetry as described in Sect. 5.1. In particular, we do not use any specific objective
function for rotation detection, i.e., all objective function coefficients are zero. For
reflection detection, we minimize the number of fixed nodes.

Our branch & cut-implementation for rotation and reflection detection is based on
the implementation for automorphism detection evaluated in Sect. 2.9. The general
experimental framework is the same here.

5.3.1 The Algorithm

Again, we first compute the 2-automorphism partitioning of G using nauty. As for
automorphism detection, the branch & cut-algorithm starts with an ILP containing
mapping variables and the permutation constraints (2.1); variables are deleted as
described in Sect. 2.1. For rotation detection, we delete further variables and add
the fixed nodes constraint (3.2); for both, see Sect. 3.1. For reflection detection, the
variables z;; and z;; are identified for all 7, 7 € V; see Sect. 4.1.

In every cutting phase, we add as many violated homomorphism constraints (2.5)
for t = 2 as possible. Only if no such constraints are found, we proceed to the
separation of the different kinds of orbit length constraints: for rotation detection,
we separate subtour elimination constraints (3.5) and, if not successful, forbidden
orbit constraints (3.1); see Sect. 3.4. For reflection detection, we separate blossom
constraints (4.4) as explained in Sect. 4.4. We do not use any other class of cutting
planes in our implementation.

The branching and enumeration strategy is the same as described in Sect. 2.7. For ro-
tations, the fixing and setting of variables is extended by the rules given in Sect. 3.5.
For primal heuristics, see Sect. 2.6 and Sect. 4.5. For the sake of comparability, we
search for a single optimal symmetry without looking for a second symmetry as
proposed in Sect. 5.2.

5.3.2 Test Sets

We created a new test set sym containing symmetric graphs. For a given number n
of nodes, each instance in sym was determined as follows: first, we randomly chose a
feasible order, i.e., a non-negative integer k that either divides n or n — 1. Then we

5.3 Experimental Results 53

picked a feasible number of fixed nodes randomly, i.e., a non-negative integer f such
that £ divides n— f and f < 1 for k¥ > 3. Finally, we randomly chose a permutation
of V with f fixed elements and all other orbits of length k. Using this permutation,
we computed an instance as explained in Sect. 2.9.2. We created 100 instances for
each n =1,...,50 by this method. The collection sym is also used in [2].

To get harder instances, we also produced a set of highly symmetric graphs
called sym+ in the following way: we started with a random symmetry 7, chosen
as for sym and added transpositions m; of V as long as the partition of V2 induced
by (7, . .., m;) was non-trivial. Again, we created 100 instances forn = 1,...,50. The
resulting graphs have many automorphisms in general: we have |[Aut G| > |n/2]!
for 86.0% and |Aut G| > (n — 1)! for 20.2% of the graphs in sym+. For sym, the
corresponding figures are 14.4% and 8.8%.

By construction, many graphs in sym and sym+ admit symmetries of high order.
For comparison purposes, we also experimented with the test set aut introduced in
Sect. 2.9. In this set, the optimal symmetry order is one or two for most instances.

5.3.3 Results

The runtime results for sym are displayed in Table 5.1. Here we also state the number
of ILPs that had to be solved; the numbers of variables, subproblems, and LPs are
total numbers for all ILPs.

Table 5.1: Results for optimal symmetry detection in sym

runtime #ILPs | #variables | #subprobs #LPs
n| avg max | avg max| avg max |avg max | avg max
1-10 | 0.01 0.90 | 0.9 179 180 | 0.2 76| 1.8 159
11-20 | 0.02 3.14 | 1.0 102.0 380 | 0.3 92| 3.0 216
21-30 | 0.36 142.86 | 1.0 250.2 926 | 0.2 46 | 2.6 134
31-40 | 0.06 1.81] 1.0 458.8 1560 | 0.0 0| 1.9 20
41-50 | 0.12 4.75 | 1.0 675.6 2450 | 0.0 0 2.1 32

=N NN

Observe that on average both the number of subproblems and the number of LPs is
very low. Table 5.1 also shows that the number of generated subproblems as well as
the number of LPs to be solved surprisingly decrease for large graphs in sym. This is
due to the structure of these graphs: since only one symmetry was created explicitly,
it is likely—especially for large graphs—that the automorphism group of the graph
is generated by this symmetry alone. In this case, the automorphism partitioning
consists of the orbits of this symmetry and many variables can be deleted.

54 5 Detecting Symmetries

Nevertheless, there is a graph on 24 nodes that required 142.86 CPU-seconds,
46 subproblems, and 134 LPs. This graph is displayed in Fig. 5.1. Its number of
automorphisms is 768. The order of the optimal rotation is 24, i.e., the graph is
circulant and hence transitive. The total number of constraints added during the
branch & cut-process was 594; solving LPs consumed 99.1% of the total CPU-time.

7

)

i

SN
-
SR
&)
BEy
i
anz=
L

=

5

<
<
S

Al
7

X
iy
7
W5
8/

//

—
PN)
=Y
4

=
X
(B

‘
i
v
=)
’5’1‘\'
8>
s
K

'l@ !
R4
N
o
A
N
‘»
I?,L‘
=
N

X

///lgl\\\
&L=
Y -
[~
R\
(oF
g

N

e

&

%
54
.\:\’.
N\
/

e
i
K
X/
o

X

/‘

»

&
K
X

<

)
W4
RS
N
X
0

Figure 5.1: The hardest instance in sym. The drawing on the left hand side was
computed by a spring embedder without symmetry detection; for the drawing
on the right hand side, we used our algorithm in a preprocessing step

Recall that our algorithm for rotation detection terminates as soon as any feasible
solution is found. Hence the runtime for some instance graph strongly depends
on the performance of the primal heuristics on this instance. As the success of
primal heuristics is volatile in general, this may explain the wide range of runtimes
we observed for symmetry detection. We believe that also the hardness of symmetry
detection for the graph examined above is due to incidental failure of primal heuris-
tics rather than deep structural reasons.

We experimented a lot with separation order in the cutting phase, i.e., with differ-
ent rules whether or when to separate homomorphism constraints or orbit length
constraints. However, the runtime increased whenever we tried to separate the lat-
ter in every iteration of the cutting phase. One reason may be that the separation
algorithms for orbit length constraints require more time in practice than the fast
separation heuristics for homomorphism constraints. Moreover, they yield at most
one violated constraint per iteration. It turned out that the best strategy is to
separate orbit length constraints only if necessary to prevent branching.

Furthermore, we investigated whether we could improve the runtime results by
bounding the number of cutting planes added in a cutting phase iteration or the
number of iterations per subproblem. We could not.

5.3 Experimental Results 55

Next, we applied the branch & cut-algorithm for optimal symmetry detection to the
instances in sym+. The results are displayed in Table 5.2.

Table 5.2: Results for optimal symmetry detection in sym+

runtime #ILPs #variables #subprobs #LPs
n| avg max | avg max avg max | avg max | avg max
1-10 | 0.01 0.06 | 0.9 26.0 90 | 0.3 8 2.2 23
1120 | 0.64 345.41 | 1.0 193.5 380 | 17.8 10086 | 90.5 49731
21-30 | 5.74 0.7% | 1.0 551.5 2268 | 41.4 8340 | 287.3 90825
31-40 | 15.21 1.3% | 1.0 1103.6 1560 | 60.8 10822 | 379.8 71862
41-50 | 40.75 11.9% | 1.0 1802.0 2450 | 87.4 10542 | 564.6 52881

—_ =W =

Detecting symmetries for instances in sym+ needs much more time than for instances
in sym. In particular, the maximal numbers of subproblems and LPs are huge. This
may be due to the large automorphism groups of the graphs. Since automorphisms
do not form symmetries in general, the situation is different from automorphism
detection, where large automorphism groups leaded to better results; see Sect. 2.9.
To examine the impact of the number of automorphisms more closely, we split up
the runtime results for 40 < n < 50 by the size of Aut G in Table 5.3.

Table 5.3: Results for sym+ by the number of automorphisms for 40 < n < 50

range of runtime #variables #subprobs #LPs
|Aut G| avg max avg max | avg max avg max
[1,10!) 0.37 5.76 | 2030.1 2450 0.0 0 3.5 32

[101,20!) | 3.48 83.32 | 1925.7 2450 0.9 24 13.4 97
[201,301) | 4.11 1.9% | 1295.7 2352 | 18.9 68 51.5 151
[301,40!) | 63.66 13.0% | 1455.9 2450 | 211.6 10542 | 1258.6 52881
[401,50!) | 45.75 15.2% | 1952.7 2450 | 64.2 10432 | 468.9 47562

These figures reinforce our general impression that the hardest instances are those
with a large but not too large group of automorphisms: the average runtime, number
of subproblems, and number of LPs is higher for [Aut G| € [30!,40!) than for any
other size of Aut G. For larger automorphism groups, runtime is slightly shorter, but
still much longer than for instances with less than 30! automorphisms. Notice that
all instances with less than 20! automorphisms could be solved quickly.

We would like to emphasize the fact that we did not manage to create harder in-
stances than those in sym+. Whenever we produced instances in a different way or
with other parameters, they turned out to be easier to solve.

56 5 Detecting Symmetries

Finally, we applied the optimal symmetry detection algorithm to the graphs in aut;
see Table 5.4. Like those in sym, the graphs in aut were created using a single
automorphism, but since this automorphism is no symmetry in general, our algo-
rithm cannot benefit from this fact. Comparing these results with the corresponding
results for automorphism detection given in Table 2.1 of Sect. 2.9, we observe that
the restriction to geometric automorphisms increases runtime significantly. There-
fore, one way to future improvement will be to find more and better constraints
cutting off non-geometric automorphisms.

Table 5.4: Results for optimal symmetry detection in aut

runtime #ILPs #tvariables | #subprobs #LPs
n| avg max | avg max avg 1max | avg Imax | avg Imax
1-10 | 0.01 0.06 | 0.9 21.9 90| 0.1 6| 1.6 22
11-20 | 0.05 9.06 | 1.0 134.0 524 | 0.6 30| 4.1 116
21-30 | 1.71 613.03 | 1.0 349.0 1446 | 2.1 336 | 9.1 495
31-40 | 19.36 2734.61 | 1.0 664.4 3184 | 4.5 166 | 16.0 485
41-50 | 22.49 0.7% | 1.0 1084.5 2616 | 11.5 1952 | 31.3 2817

W = W N =

In summary, our branch & cut-algorithm for detecting symmetries in general graphs
works reasonably fast for random symmetric graphs on up to 50 nodes. However,
instances needing much more time than acceptable could be constructed. Notice
that the group-theoretic approach of Abelson et al. [2] runs significantly faster than
ours, but the gap is closing and there is still much room for future improvement.

Chapter 6

Detecting Fuzzy Symmetries

In the previous chapters, we have considered the problem of exact symmetry de-
tection. However, most graphs do not admit any symmetry. In order to make our
approach more flexible, we next consider the following more general problem: given
a simple graph G = (V, E) on n nodes and a positive integer & that either divides n
or n—1, find a simple graph G’ = (V, E') with a symmetry 7 of order £ such that G’
differs minimally from G, i.e., such that the symmetric difference £ /A E' has mini-
mal cardinality. In other words, we allow to delete and create a minimal number of
edges in GG to obtain a graph admitting a symmetry of order k. More generally, we
can assign a weight w;; to each pair (i, j) € V2 and minimize the total weight of all
node-pairs with different adjacency in G and G'. In particular, by assigning large
enough weights, we can forbid to delete or create certain edges. On the other hand,
zero weights can be assigned to node pairs the adjacency of which is irrelevant.

We restrict ourselves to undirected graphs without loops in this chapter. In Sect. 6.1,
we explain how to adjust the ILPs for rotation and reflection detection to allow
fuzziness. In Sect. 6.2, we define the corresponding polytopes. Cutting planes are con-
sidered in Sect. 6.3, the corresponding separation problems are examined in Sect. 6.4.
Primal heuristics are presented in Sect. 6.5, branching and enumeration are explained
in Sect. 6.6, and a rule for fixing and setting variables is given in Sect. 6.7. We discuss
experimental results in Sect. 6.8.

o7

58 6 Detecting Fuzzy Symmetries

6.1 The Integer Linear Programs

In the following, we adjust the ILPs for rotation and reflection detection presented
in Sect. 3.1 and Sect. 4.1 to allow fuzziness. More precisely, we will allow to delete
or create edges to find a symmetry. The new ILPs do not only model the symmetry
but also its underlying graph. For this, we introduce a new binary variable y;; called
edge variable for each unordered pair of nodes (4, j) € V2 with ¢ # j. The represented
graph contains an undirected edge between ¢ and j if and only if y;; = 1.

Since the graph G is not fixed any more, the constraints AgX = X Ag have to be
replaced; using the matrix (y;;) instead of Az would lead to quadratic constraints.
The constraints AgX = X Ag were used to force the permutation represented by
the mapping variables to be an automorphism of G. Instead, we use the constraints

iy 51 + Linja <2+ Yiriz T Yjigo (61)

for all 41,149, j1,J2 € V with 4, # iy and j; # jo. In both constraints, the left hand
side is at most two and the right hand side is at least one. If the left hand side equals
two, then 7; is mapped to 7; and i5 is mapped to jo. But if the right hand side of
one of the two constraints is one, then v;,;, # vj,j,, S0 that the edge (i1,is) may
not be mapped to (ji, j2). Consequently, the constraints (6.1) make sure that the
permutation represented by the mapping variables is an automorphism of the graph
given by the edge variables. Finally, we replace the permutation constraints (2.1) by
the weaker constraints

injgl foralli € V and injgl forallje V. (6.2)

jev eV
Thus the permutation corresponding to the mapping variables may be partially or
totally undefined. However, by adding a large negative value to all objective function
coefficients of mapping variables, every optimal solution will still correspond to a
well-defined rotation or reflection. We apply this modification of (2.1) mainly for
technical reasons; the resulting polytopes are much easier to investigate. Never-
theless, for reflections, the possibility of not mapping a node 7 to any node 5 € V
also has a useful interpretation as deleting node ¢ in G’. This does not work for
rotations unless we additionally require » ;i zij = >y ;i for all i € V.

In summary, we get the following ILP for fuzzy rotation detection:

z;; € {0,1} foralli,j €V
Yij = Yji € {0,1} foralli,j €V, i<j
jev Tij <1 forall: e V
ZiEV Ty < 1 forall j e V (63)
Tivjy + Tisgy < 2FEYiriy F Yjujy for all 41,49, 51,52 €V, i1 # 42, J1 7 J2
Diev i <1
z(C) < |C]-1 for all forbidden orbits C' .

6.2 The Fuzzy Symmetry Polytopes 59

In the reflection case, we have

Tiy; = Tj; € {O, 1} foralls,j €V, 1<y
Yij = Yji € {0, 1} foralle,j €V, i<y
jevTiy <1 foralli eV (6.4)
v <1 forall j eV
Tiqjy +xi2j2 S 2 ﬂ:?/m'z + Yjija for all 7;1,7;2,]'1,]-2 & V, 7;1 7é ig, jl 7é jg .

Observe that both ILPs do not depend on the structure of G' any more; they are
determined by the number of nodes of G. The information about edges of G is stored
in the objective function: we minimize the number of manipulations in the graph
that are necessary to get a symmetry of the required order, i.e., we minimize

D owit+ D, (—uy).
(1,§)EV2\E (i,J)EE
This objective function is readily adjusted to the problem of finding a modification
of G of minimal weight that is necessary to get a symmetry of the required order,
where every pair of nodes may have any weight. In particular, we can forbid deletion
or creation for every single pair of nodes by assigning a large enough weight to the
corresponding edge variable.

Independently, we can still assign arbitrary weights to the mapping variables.
For k = 2, we have to punish fixed nodes as for exact reflections, since otherwise
the graph G together with idy would form an optimal solution of (6.4). However,
the penalty for fixed nodes has to be attuned to the penalty for edge deletion or
creation in this case.

6.2 The Fuzzy Symmetry Polytopes

The polytopes corresponding to (6.3) and (6.4) differ significantly from the rotation
and reflection polytopes examined in Sect. 3.2 and Sect. 4.2. On one hand, they
are complicated by additional variables. On the other hand, they only depend on
the number n of nodes and the desired order k, but not on the structure of G.
Thus we may define the fuzzy symmetry polytope FSP(k,n) to be the polytope
corresponding to (6.3), if £ > 3, or the polytope corresponding to (6.4), if & = 2.

Theorem 6.1
The polytope FSP(k,n) is full-dimensional. Its dimension is 3n* — in for k > 3
and n? for k = 2.

Proof: For every mapping variable, the corresponding unit vector is a feasible
solution of (6.3) or (6.4). The same is true for unit vectors corresponding to edge
variables and for the zero vector. O

60 6 Detecting Fuzzy Symmetries

6.3 Cutting Planes

In the following, we investigate the polyhedral structure of the fuzzy symmetry
polytope FSP(k, n). First notice that every valid or facet-inducing constraint yields
three other valid or facet-inducing constraints by the following observations:

Lemma 6.2
If a constraint H is valid or facet-inducing for FSP(k,n), then the same is true after
replacing each variable y;; in H by 1 — y;;.

Lemma 6.3
If a constraint H is valid or facet-inducing for FSP(k,n), then the same is true after
replacing each variable x;; in H by zj;.

Both results follow from symmetry immediately. In the remainder of this section, we
will usually consider only one of the four constraints without explicitly mentioning
the other three.

For the following, denote the unit vector corresponding to z;; by e;; and the one

corresponding to y;; by e;;, for all 4,5 € V.

Theorem 6.4
All constraints z;; > 0, y;; > 0, and y;; < 1 induce facets of FSP(k,n).

Proof: The equation z;; = 0 is satisfied by each unit vector except for e;; and by
the zero vector. All these vectors belong to FSP(k, n). Hence z;; > 0 induces a facet
of FSP(k,n). For y;; > 0, we can argue analogously. The last statement follows from
Lemma, 6.2. 0

Whenever showing in the following that some inequality H induces a facet of the
polytope FSP(k,n), we show that every vector e;; and egj is a linear combination
of vectors in FSP(k,n) that satisfy H with equality. For ease of exposition, we call
a vector in FSP(k,n) feasible if it satisfies H with equality. If a vector is a linear
combination of feasible vectors, we shortly call it combinable. Thus H induces a
facet of FSP(k, n) if all unit vectors e;; and e;; are combinable; the converse is true

if the zero vector does not satisfy H with equality.

The polytopes FSP(2,n) and FSP(k, n) for £ > 3 differ significantly. Therefore, we
examine both cases separately: we deal with fuzzy rotations in Sect. 6.3.1 and fuzzy
reflections in Sect. 6.3.2.

6.3 Cutting Planes 61

6.3.1 Fuzzy Rotations

Throughout this section we assume k£ > 3. We start with investigating the fixed
nodes constraint (3.2):

Theorem 6.5
The constraint (3.2) induces a facet of FSP(k,n).

Proof: For i € V, the unit vector e; is feasible. Let 7,5 € V with ¢ # j. Choose
some i' € V' \ {7,7}. Then both e;; + e;» and e;; + ey are feasible, so that both e;;
and e;; are combinable. 0

Theorem 6.6
The constraints (6.2) induce facets of FSP(k,n).

Proof: By Lemma 6.3 and symmetry, it suffices to show the result for the single
inequality

Zﬂﬁlj <1. (6.5)

JjeEV

For all j € V, the vector ey, is feasible. For ¢ € V' \ {1} and j € V, define

v = 1 €t € if j ¢ {1,4}
" e;j +ei if j € {1,4}, where j' ¢ {1,i} .

In both cases, the vector v;; is feasible, showing that e;; is combinable. Hence all
unit vectors corresponding to mapping variables are combinable. Finally, if 7,57 € V
with i # j, the vector e}; + ey; is feasible, so that ej; is combinable, too. O

We continue with a review of the subtour elimination constraints (3.5) and (3.6).
Let C be a subset of V' containing p nodes.

Theorem 6.7
Let 2 < p < n—1 and assume that k does not divide p. If k divides p— 1, then (3.5)
induces a facet of FSP(k,n). Otherwise, (3.6) induces a facet of FSP(k,n).

Proof: For any FF C V2, let ep = Z(i,j)eF ei;. First notice that for every directed
path P we have ep € FSP(k,n). If P is a directed path on p nodes within C, then ep
satisfies both (3.5) and (3.6) with equality, hence ep is feasible. Furthermore, if F' is
a cycle on p nodes within C, then er is a linear combination of p vectors ep, where
each set P is a directed path on p nodes within C, resulting from the deletion of a
single edge in F'. Hence ep is combinable.

62 6 Detecting Fuzzy Symmetries

Let 4,5 € C.If i # j, choose a directed cycle F' on p nodes within C' containing (3, j)
and let P = F'\ {(¢,7)}. Then e;; = ep — ep is combinable. Next, assume ¢ = j.
If k| (p—1), let F be a node-disjoint union of (p—1)/k directed cycles within C'\ {i}
on k nodes each. Otherwise, let F' be a directed path on p — 1 nodes within C'\ {i}.
In the first case, the vector er + e; is feasible for (3.5); in the second case, it is
feasible for (3.6). Since ey is a sum of unit vectors e;; with i # j, the vector ep and
hence e;; is combinable as well.

Now let i € V\C or j € V\ C. Let P be a path on p nodes within C, starting
at jif j € C and ending at 7 if ¢ € C. Then both ep and ep + ¢;; are feasible, hence
the unit vector e;; is combinable. Up to now, we have combined all unit vectors
corresponding to mapping variables.

Finally, let 4,7 € V with ¢ # j. Let P be a path on p nodes within C, ending at ¢
if 2 € C. Then both ep and ep + e . are feasible, hence e . is combinable. O

Next, let W1 and W, be any two subsets of V. Let i1,io € V' \ (W1 UWs) with i1 # is.
Then we have the following valid inequality for FSP(k, n):

Z Tiyjy + Z Tije < 2= Yiriy + Z Yjgz - (6.6)

J1EW] J2EW2 J1EW1, j2€W?

Indeed, the left hand side is at most two by (6.2), while the right hand side is at
least one. If the left hand side is exactly two, we have z; ; = 1 for some j; € W;
and x;,;, = 1 for some j, € W,. Thus y;,;, = 1 implies y;,;, = 1, so that the right
hand side is at least two.

Theorem 6.8
The constraint (6.6) induces a facet of FSP(k,n) if and only if

(a) [Wi|# 0 and [Ws| # 0,
(b) |W2 \ W1| 7é 1 and |W1 \ WQ‘ 7& 1, and
(C) ‘Wl U W2| Z 2.

Proof: We assume 4; = 1 and i; = 2. First we show sufficiency. By (a) and (c),
we can choose nodes wy € Wi and wy € Wy with w; # ws. Furthermore, for
each j € Wy \ Wi, we can choose some j' € (W \ Wi)\ {j} by (b). For j € Wy \ W,
we define j’ analogously.

Now let 7,7 € V with 7 # j. We define

€1w; T €2uw, ifi=1, j=2
Wi; = e;j+eli+€2j+6112 ifiEWl, j e W,
e, it el + €y otherwise.

6.3 Cutting Planes 63

Furthermore, for any 7,5 € V, let

(

€1j+€,12 ifi=1, jeW;
€1j+€2jl+6112+e;'j/ iflzl,]E WZ\Wl
e1j + €ou, + €19 + €5, ifi=1, ¢ WL UW,
€2j+€’12 leZQ,]EWQ

,Uij_) €2j+€1jl+6112+€9j/ leZQ, j€W1\W2
€gj + €1w, + €1g + €y, i =2, j & WL UW,
€ij +61w1 +6’12 if 4 ¢ {1,2},] Q {1,’(1]1}
L €ij +62w2 +6'12 if 4 € {1’2}7 .7 € {lawl} .

It is verified easily that all vectors w;; and v;; are feasible. So it suffices to show that
all unit vectors are linear combinations of these vectors. First observe that

!
€lo = —(Wig — Viw, — Vow,)/2 -
Moreover, we have
_ ;e
ey; = v —ey if 7 € W; and
- hE
€2 = Ugj — €19 lf_] e W,.

Hence we get the remaining unit vectors corresponding to edge variables as follows:

e, = wi—ey;—ey—ely ifi€W, j€W,and
! — L _ ! :
€ = Wij — €1y — €19 otherwise.

Finally, we have

ej = vij— ey —e€p—er i jEWR\Wh,

€25 = U5 — €15 — 6’112 — e;-Ij, lf_] € W1 \ WQ ,

€1j = Vij — oy — 6/12 — 67102 lfj gWiuW,,

€2j = Uzj — €1w; — €1y — €y lf] g WU Wg ,

€ij = Uij — €1y — €y if i ¢ {1,2}, 7 ¢ {1,w}, and
€ij = Ui — €2y — 6’12 if ¢ € {1,2},] € {1,’[1)1} .

It remains to show the necessity of the conditions (a) to (c). First, let W, = 0.
Then (6.6) is improved by (6.2), i.e., the constraint (6.2) is strictly more powerful
than (6.6), so that (6.6) cannot induce a facet of FSP(k,n). Hence (a) is necessary.

Next, let Wy \ Wy = {i}. Adding i to W,, the left hand side of (6.6) gets a new
addend x,;, but the right hand side is not changed: the only possible new addend on
the right hand side is y;; for some j € W;\{i}. Since Wi\ W, = {3}, we have j € W,
hence y;; has already been part of the right hand side before adding ¢ to W,. Thus
adding i improves (6.6), so that (b) is necessary.

Finally, assume |[W; U W,| < 1. If W, = () or Wy, = (), we have a violation of
condition (a). Otherwise, we have W; = Wy = {i}. Then (6.6) is improved by (6.2)
again, so that (c) is necessary, t0o0. O

64 6 Detecting Fuzzy Symmetries

In the special case W; = Wy = {41, j2}, the constraint (6.6) and its counterpart
according to Lemma 6.2 emerge as
Ly 43 + Ly jo + Lisjr + Ligjo S 2+ Yivio T Yjija-
These constraints improve (6.1); both induce facets of FSP(k,n) by Theorem 6.8.
Next, let W CV and w € V \ W. Let 41,72 € V' \ (W U {w}) with ¢; # 5. Then
Z(ﬂﬁil]‘ + .7)“]) + 2$i1w + 2$igw S 3— Yiyria + Z Yjw (67)
JEW JEW
is a valid inequality for FSP(k, n). Indeed, the left hand side is at most three by (6.2),
while the right hand side is at least two. If the left hand side is equal to three, one of

the nodes 7; and 75 is mapped to w, while the other one is mapped to some j € W.
Hence y;,i, = Yjw, so that the right hand side is at least three.

Theorem 6.9
The constraint (6.7) induces a facet of FSP(k,n) if and only if |W| > 2.

Proof: We assume iy = 1 and i = 2 again. Let wy,wy, € W with w; # ws.
For i,7 € V with ¢ # j define
Clu; + €2wy + €19+ €4, fi=1,7=2
Wi = €;Uj+€1w+€2j+6’12 ifi=w, jeW
€y + 1w + €y otherwise.

For 7,5 € V define

[e1w + €y ifi=1 j=w
€1j+€2w 1f’L=1,_]EW
e1j + e + €y + €, ifi=1, j ¢ WU {w}
€ow + €], ifi=2 j=w

Vij = { € + ey ifi=2, €W

62j+elw+6112+€3'w lf’l:2,j€WU{w}
eij +61w —{—6’12 if 4 ¢ {1’2}5 .7¢ {1,11]}
i1 + oy + € ifig {1,2}, j=1

| €iw T €1, + €ouw, €+, ifig{1,2}, j=w.

All vectors w;; and v;; are feasible, hence again it suffices to show that they span
all dimensions. We have

!
€10 = (UJ12 — Warwo + 2Ulw + Voy — Viwy — v2w2)/3 3

hence we can combine

_ '
€lw = Viw — €19,
_ ;
€y = Voy — 612)
€15 = V15 — €y lf] € VV, and

€2; V2 — 1w lf] eWw.

6.3 Cutting Planes 65

For the unit vectors corresponding to edge variables, we have

€wj = Wuwj — €lw — €z — €y if j € W, and
€ = Wij — €y — €y otherwise.
Finally,
elj = Ui — €y — €y — €] if j g Wu{w},
€yj = Ugj — €1y — €1y — e;w if j ¢ Wu{w},
€ij = Vi — ey — €y ifi ¢ {1,2}, j ¢ {l,w},
€1 = Uy — €gy — €] ifi ¢ {1,2}, j=1, and
Ciw = UViw — €lw; — €2wy — 6’12 - e;mwz if 4 Q {17 2}7 J=w.

To show the necessity of |[W| > 2, assume W = {i}. Then (6.7) can be improved
t0 T1e + T1i + Tow + T2i < 2 = Y19 + Yiw, SINCE Ty + Loy, < 1 by (6.2). EW =0, we

can improve (6.7) to (6.2). O

6.3.2 Fuzzy Reflections

Next, we examine the polytope FSP(2,n) more closely. We start with the weak
permutation constraints (6.2):

Theorem 6.10
The constraints (6.2) induce facets of FSP(2,n).

Proof: It suffices to show the result for

Zﬂﬁlj <1. (6.8)

jeEV

For all j € V, the vector ey, is feasible. For i, j € V\{1}, the vector e;j+e;; is feasible,
showing that e;; is combinable. Finally, if 4, 7 € V' with 7 # j, the vector egj + e is
feasible, so that e;j is combinable, too. O

Theorem 6.11
Let C' be an odd subset of V with |C| > 3. Then the blossom constraint (4.4)
induces a facet of FSP(2,n).

Proof: This constraint induces a facet of the matching polytope by Schrijver [70].
By Theorem 4.1, all unit vectors e;; for 4, j € V with ¢ # j are combinable. For i = j,
choose pairwise distinct nodes iy, j1, . . ., i, jp € C'\{¢}, where p = (|C|—1)/2. Then
the vector e; + Y 7_, e;,j, is feasible, so that e; is combinable.

66 6 Detecting Fuzzy Symmetries

Finally, let 7,7 € V with ¢ # j. Whether 7 or j belong to C' or not, we can find a
reflection of K, that maps i to j and that satisfies (4.4) with equality; let v be the
corresponding feasible vector in FSP(2,n). Then e;; + v is feasible, too, so that e
is combinable. O

The constraint (6.6) is valid for fuzzy reflections as well. However, we can improve
it by adding z;,;, to the left hand side: if z;;, = 1, all other variables on the left
hand side must be zero. Hence we get

Liyiy + Z Liy 4 + Z Lisjs < 2— Yivio + Z Yjija - (69)

J1EW] J2EWS J1EWL, j2eW?

Theorem 6.12
The constraint (6.9) induces a facet of FSP(2,n) if and only if
(a) [Wi|# 0 and [Ws| # 0,
(b) ‘WZ\W]_' 7é 1 and |W1 \ WZ‘ 7é]., and
(C) ‘Wl U W2| Z 2.
Proof: The proof is similar to the one of Theorem 6.8. However, in the reflection

case we only have one unit vector e;; = ej; for each unordered pair (i,5) € V2. The
following cases in the definition of v;; have to be changed:

e1 + €l if {1,7} ={1,2}
Uz‘j = eij =+ €12 -+ 6’12 if Z,_] ¢ {1, 2}
Uy if ¢ € {172}7 .7 € {1a2} :

The remainder of the proof is completely analogous to the one of Theorem 6.8. O

By Theorem 6.12, the constraint (6.1) is improved by the facet-inducing constraints
Tiyiy + Liyja + Liyja + Lizgy + Liajo <2+ Yivio T Yjija -

Next, observe that (6.7) is true for fuzzy reflections as well. Again, we can improve
this constraint to

2%, + Z(‘rilj + xizj) +2%i 0 + 2%iyw < 3 — Yiyi, + Z Yjw - (610)
JEW JEW

Theorem 6.13
The constraint (6.10) induces a facet of FSP(2,n) if and only if |W| > 2.

Proof: Exactly the same redefinition as in the proof of Theorem 6.12 allows to
adjust the proof of Theorem 6.9. O

6.4 Separation 67

6.4 Separation

In the following, we consider the separation problems for the cutting planes presented
in Sect. 6.3. For the subtour elimination constraints (3.5) and (3.6), see Sect. 3.4.
For the blossom constraints (4.4), see Sect. 4.4. Constraints of type (6.6) and (6.9)
are examined in Sect. 6.4.1, constraints of type (6.7) and (6.10) in Sect. 6.4.2.

6.4.1 Constraints of Type (6.6) and (6.9)

We do not know whether the separation problem for constraints of type (6.6) or (6.9)
is NP-complete, but we conjecture that it is. We separate these constraints heuristi-
cally. The algorithm works greedily: we traverse all edge variables y;,;, in descending
order according to their current LP-value ¥, ; . For two given nodes 4; and i,, we
start with W, = W5 = () and traverse all mapping variables z;; with i € {i1,42}
in descending order. We add j to W; if + = 4; and if this increases the difference
between the left and the right hand side of (6.6) or (6.9), i.e., if

Tilj > Z gjjz :
J2EWa, (j2,§)EgW1xWa
Analogously, we add j to Wy if 1 = iy and
Tipj > > Yjjs -
J2EW1, (4,j2)EW1 X W2

For the resulting sets W and W,, we check whether (6.6) or (6.9) is violated by the
current LP-solution. The runtime of this separation heuristic is O(n*). In practice,
violated constraints are usually found very quickly.

6.4.2 Constraints of Type (6.7) and (6.10)

Separation for constraints of type (6.7) or (6.10) is straightforward:

Theorem 6.14
The separation problem for constraints of type (6.7) or (6.10) can be solved in a
runtime of O(n*).

Proof: Traverse all O(n?) combinations of 1,4y, w € V with iy # 1o and w & {31,172}
For a fixed combination, (6.7) or (6.10) is violated for some subset W C V' \{i1, io, w}
if and only if it is violated for

W:{] EV\{il,ig,’w}‘filj-l-fizj—ij ZO} .

This set can be determined in O(n) time. O

68 6 Detecting Fuzzy Symmetries

6.5 Primal Heuristics

The first type of primal heuristics used for fuzzy symmetry detection is based on the
primal heuristics for exact symmetry detection: in the first step, we use the latter
to find a symmetry 7 of K, that is close to the current LP-values of the mapping
variables. We use the methods presented in Sect. 2.6.

In the second step, we determine a graph that admits the symmetry 7= and that
differs from the current LP-values of the edge variables minimally. More precisely,
we determine a set £’ C V2 such that 7 is a symmetry of the graph G' = (V, E')

and such that
Z Yij + Z (1 -7,) (6.11)
(

(i,)EV2\E' Lj)EE!

is minimal, where ;; denotes the current LP-value of y;;. This can be done easily:
as the permutation of nodes is determined by m, the same is true for the orbitals
of m, i.e., the orbits of node-pairs. Since all orbitals are disjoint, the minimization
of (6.11) can be performed separately for each orbital of . For a single orbital, either
all edges or none have to be present in E’. The minimization is obtained by adding
all edges if and only if the average of all edge variable LP-values in this orbital is at
least 1/2.

We also use a primal heuristic working the other way around: we consider the
graph G = (V, E') that is as close as possible to the current edge variable LP-values,
i.e., we set

El = {(la]) € V2 | yzg > 1/2})

and compute a partially defined symmetry 7 as follows: we traverse all (i, j) € V2
by descending value of T;;. We set w(i) = j if and only if the partial definition
of 7 obtained so far does not violate (6.3) or (6.4). The result is not a well-defined
symmetry in general, but it yields an upper bound on the objective function value
of all feasible solutions and may hence be useful for pruning subproblems. This
heuristic works particularly well for reflection detection.

6.6 Branching and Enumeration

The branching and enumeration strategy for fuzzy symmetry detection is the same
as for automorphism detection; see Sect. 2.7. This is possible in spite of the newly
introduced edge variables, as we can always branch on mapping variables: if all
mapping variables assume integer values, the same follows for all edge variables,
since the only constraints bounding edge variables are the constraints of type (6.1).

6.7 Fixing and Setting Variables 69

Notice that isomorphism pruning for fuzzy symmetry detection is useless in general:
if edge variables corresponding to adjacent node pairs in G’ have different objective
function coefficients than those corresponding to non-adjacent node-pairs, then the
symmetry groups of the fuzzy symmetry ILPs are isomorphic to subgroups of Aut G,
which in turn will be trivial in general.

6.7 Fixing and Setting Variables

If enough mapping variables are fixed or set to one, it is possible to fix (set) edge
variables by logical implications. More precisely, as soon as the node-pairs (z,7) € V2
with z;; fixed (set) to one form one or more cycles of K,,, we can also fix (set) every
edge variable y;; such that both i’ and j' belong to any of these cycles. Indeed,
for each such ¢ and j', the orbital of (¢, j') is fixed (set) completely. Hence we can
determine the optimal value of all edge variables in this orbital by a similar reasoning
as in Sect. 6.5: we fix (set) all edge variables to one if the number of node-pairs in the
orbital that are adjacent in G is larger than the number of non-adjacent node-pairs;
otherwise, we fix (set) all edge variables to zero.

6.8 Experimental Results

The fuzzy symmetry detection approach we presented in this chapter is not fully
developed yet. It is necessary and certainly possible to improve it significantly by
future work. Nevertheless, we implemented a branch & cut-algorithm based on the
theoretic results obtained so far. In the evaluation, we searched for fuzzy reflections,
fuzzy rotations of order n, and fuzzy automorphisms. Every modification of the
graph was punished by an objective function coefficient of one. In the reflection
case, the same was true for fixed nodes, so that one edge modification was allowed
to prevent one fixed node. We also experimented with allowing to delete edges but
not to create them. The general evaluation framework is the same as in Sect. 2.9
and Sect. 5.3, except that we now restrict the number of cutting phase iterations
per subproblem to five. This restriction yielded the best results.

6.8.1 The Algorithm

To detect fuzzy symmetries, we cannot use automorphism partitionings any more, so
the preprocessing step using nauty is dropped. Our initial ILP contains all mapping
and edge variables as well as all weak permutation constraints (6.2); see Sect. 6.1.

70 6 Detecting Fuzzy Symmetries

In every iteration of the cutting phases, we add at most ten violated constraints.
Analogously to exact symmetry detection, we first separate fuzzy homomorphism
constraints of type (6.6) or (6.9) and, if not successful, of type (6.7) or (6.10). For
both separation problems, see Sect. 6.4. If no violated constraints are found, we try
to separate an orbit length constraint as for exact symmetry detection; see Sect. 5.3.

The branching and enumeration strategy is not changed; see Sect. 6.6. For fixing
and setting variables, we implemented the extension presented in Sect. 6.7. Primal
heuristics are used as explained in Sect. 6.5.

6.8.2 Test Sets

As we are not searching for exact symmetries any more, we can now use random
simple undirected graphs for our experiments. Each pair of different nodes in our
test instances is adjacent by a probability of 1/4. Observe however that random
graphs are hard instances for fuzzy symmetry detection, since in general a lot of
modifications are necessary to make them symmetric. For every number n of nodes,
we tested 100 graphs in each evaluation.

6.8.3 Results

Compared with our results for exact symmetry or automorphism detection, runtimes
for fuzzy symmetry detection are rather disappointing. The results for reflection
detection are displayed in Table 6.1. This time, we only have to solve a single ILP
per instance. The number of variables in this ILP is determined by n. Since we can
use our algorithm heuristically by stopping it at any time, we also list the CPU-time
needed to find an optimal solution—without knowing its optimality at this point.

Table 6.1: Results for fuzzy reflection detection

runtime opttime #subprobs #LPs
n avg max | avg max avg max avg ~ max
8 0.04 0.32 | 0.00 0 4.0 25 13.2 79
9 0.13 1.58 | 0.01 1 8.8 57 | 28.9 201
10 0.53 3.15| 0.04 2 20.7 95 68.8 317
11 2.01 14.46 | 0.43 5 48.4 263 | 160.9 894
121 11.92 75.08 | 1.86 49 | 167.5 931 | 567.8 3185

Table 6.1 shows that the runtime, the number of subproblems, and the number of
LPs increase sharply already for small graphs. However, the time needed to find the

6.8 Experimental Results 71

optimal solution is much shorter than the total runtime, i.e., we know the optimal
solution much earlier than the fact that it is optimal. We conclude that the primal
heuristics used in our algorithm work well, whereas the cutting planes and separation
algorithms must be improved in order to get a practically useful algorithm.

In fact, a lot of violated cutting planes were usually found and added without chang-
ing the objective value of the optimal LLP-solution, i.e., without increasing the local
lower bound on the optimal solution of the ILP. This motivated the restriction of
the number of cutting phase iterations per subproblem to five as mentioned above:
allowing more iterations often led to a very large number of iterations with a lot of
added constraints but without any improvement of the local lower bound. For the
same reason, we restricted the number of constraints added in a single iteration to
ten. On the other hand, using less than five iterations per subproblem or even switch-
ing off the cutting phases completely, i.e., running a pure branch & bound-algorithm,
also increased runtime.

The results displayed in Table 6.1 are much more homogeneous than those for exact
symmetry detection, i.e., the average and maximal figures do not differ as much.
This is even more evident if we split up the results by the optimal objective function
value, i.e., by the minimal number of modifications and fixed nodes; see Table 6.2.

Table 6.2: Results for fuzzy reflection detection, n = 12

obj | % of runtime opttime #subprobs #LPs
val | insts avg max | avg max avg max avg max
1 6 0.17 0.46 | 0.00 0 9.0 21 26.2 62
17 1.18 5.81 | 0.59 5 30.5 97 99.4 333
30 412 10.85| 1.03 8 75.0 155 249.0 489
33| 1344 24.32| 1.33 15| 192.6 311 660.5 1031
13| 40.72 60.22 | 7.77 49 | 511.0 791 | 1729.1 2526
1| 75.08 75.08 | 0.00 0] 931.0 931 | 3185.0 3185

Y T W N

These results reveal a strong connection between the hardness of an instance and its
distance from being reflectional symmetric. This is good news, as the fuzzy symmetry
detection algorithm is designed to draw nearly symmetric graphs.

Now consider the case & = n. Here, the problem is to modify the graph as little
as possible to make it circulant. The runtime results are displayed in Table 6.3.
We see that fuzzy rotation detection is even harder than fuzzy reflection detection:
runtimes are longer by a factor of more than 25 for n = 12. One reason may be the
smaller number of mapping variables in the fuzzy reflection ILP. When splitting up
the results of Table 6.3 by the number of necessary modifications, we obtained the

72 6 Detecting Fuzzy Symmetries

same general picture as in Table 6.2: runtime is the longer the more modifications
we have to perform to make the graph circulant.

Table 6.3: Results for fuzzy n-rotation detection

runtime opttime #subprobs #LPs
n avg max avg max avg max avg max
8 0.10 1.56 0.00 0 12.1 135 28.6 299
9 1.67 45.07 0.03 2 87.8 1239 232.6 3775
10 6.93 133.58 0.46 7 165.7 2251 541.4 8044
11 23.34 414.23 2.25 56 568.0 9867 | 1707.9 29759
12| 305.64 15.0% | 35.60 711 | 2616.1 16785 | 8692.9 56342

To find out more about the reasons for the long runtimes, we also experimented with
fuzzy automorphism detection. For this, we used the exact automorphism detection
approach presented in Chapter 2 with the modifications introduced in Sect. 6.1.
As for reflection detection, we assigned a penalty of one to each fixed node. The
algorithm works like fuzzy symmetry detection without separating any orbit length
constraints. The results are displayed in Table 6.4.

Table 6.4: Results for fuzzy automorphism detection

runtime opttime #subprobs #LPs
n avg max | avg max avg max avg max
8 0.14 2.22 | 0.01 1 9.7 85 30.9 298
9 1.75 1097 | 0.38 10 55.6 299 184.4 1001
10 740 93.28 | 2.30 47 | 1441 1397 489.0 5106
11 | 176.19 1.0% | 42.25 1129 | 1516.1 16613 | 5256.9 59074
12 | 600.12 15.0% | 89.15 1072 | 3461.8 16129 | 12283.6 57680

The runtimes for fuzzy automorphism detection are even worse than those for fuzzy
rotation detection. Thus, the relatively poor performance of the fuzzy symmetry
detection algorithm does not stem from the additional difficulty of symmetry de-
tection compared with automorphism detection, but from allowing fuzziness. An
important reason is the size of the LPs. We do not only have to deal with edge vari-
ables additionally, we also have much more mapping variables in general because
we cannot use automorphism partitionings to delete some of them. Moreover, our
classes of fuzzy homomorphism constraints seem to perform much worse than exact
homomorphism constraints.

6.8 Experimental Results 73

To investigate the effect of the number of variables more closely, we finally evaluated
a variant of the fuzzy reflection detection algorithm: we only allowed to delete edges
but not to create them. In the corresponding ILP, we only needed an edge variable
for each adjacent node-pair in the original graph. By construction of our test set, we
could thus save about 3/4 of the edge variables. Results are displayed in Table 6.5.

Table 6.5: Results for fuzzy reflection detection, deleting edges only

runtime opttime #subprobs #LPs

n avg max avg max avg ~ max avg max
8 0.02 0.14 0.00 3.1 15 9.0 38
9 0.05 0.24 0.00 5.9 29 17.5 59
10 0.10 0.35 0.00 8.6 33 24.0 70
11 0.35 1.53 0.05 16.7 53 48.7 156
12 0.84 4.39 0.06 28.8 111 85.0 327
13 4.68 20.13 1.23 1 85.5 273 260.3 846
14 8.19 26.94 1.22 8| 122.7 371 380.1 1112
15| 51.86 161.30 | 11.95 124 | 405.5 1149 | 1280.5 3623
16 | 79.16 219.41 | 10.05 107 | 554.9 1419 | 1791.2 4521

N OoO OO

These figures show that a smaller number of edge variables can decrease runtime
significantly. Compared with the results given in Table 6.1, we observed an improve-
ment of average runtime by a factor of more than 14 for n = 12.

In summary, our branch & cut-algorithm for fuzzy symmetry detection only works
for small graphs yet. Its performance is much better for nearly symmetric graphs
than for random graphs. We are optimistic that the runtimes can be improved by
future work, mainly by finding new classes of facets of the fuzzy symmetry polytopes.

Conclusion

We presented an integer programming approach for symmetry detection in general
graphs and reported experimental results for a branch & cut-implementation of this
approach. In terms of runtime, our approach cannot yet compete with the group-
theoretic approach presented recently by Abelson et al. [2]. However, our approach
is very flexible and allows arbitrary objective functions as well as restrictions by
additional linear constraints.

Furthermore, our results show that integer programming methods can be applied
successfully to problems related to group theory, in particular if group-theoretic
arguments are exploited and integrated cleverly. Such a hybrid approach is most
useful for problems on the borderline between group theory and combinatorial
optimization, e.g., if the group structure is combined with linear constraints or
objective functions.

As an example, we would like to point at a possible generalization of our algorithm
presented in Chapter 2. In fact, all the results given there are valid for arbitrary
permutation groups specified by a set of generators in place of the automorphism
group of a graph: we can still use the assignment polytope together with some kind of
homomorphism constraints then. Recall that these constraints are determined by the
automorphism partitionings of the graph, which in turn can be computed from a set
of generators of the automorphism group. It is easy to see that the same construction
works for arbitrary permutation groups and that the crucial Theorem 2.2 remains
valid. Separation and primal heuristics can be carried over without change. The only
part of the branch & cut-algorithm that has to be changed is the feasibility check
for integer solutions: if we do not have a problem-specific feasibility algorithm at
our disposal, we need a general membership test for permutation groups given by
generators. Such a test can be performed in polynomial time by Hoffmann [38]. In
summary, our approach can be regarded as a general method for linear optimization
over permutation groups given by group generators.

Unfortunately, the symmetries of a graph do not form a group with respect to
composition in general, and the same is true for rotations or reflections. So we cannot
use the permutation group approach for symmetry detection. Instead, we have to add

75

76 Conclusion

further constraints to the integer linear program modeling automorphisms, leading to
problems that are harder to solve than permutation group problems, as the runtime
results in Chapter 5 show.

Since most graphs do not admit any non-trivial symmetry at all, fuzzy symmetry
detection is a natural extension of exact symmetry detection. For Automatic Graph
Drawing, this extension is very important, since nearly symmetric drawings can still
reveal interesting structural properties of a graph. In Chapter 6, we presented an
integer programming approach to fuzzy symmetry detection. However, even though
we were able to discover large classes of cutting planes for the fuzzy symmetry
polytopes, we saw that the practical performance of our branch & cut-algorithm is
rather poor in general. In order to improve our approach, we have to identify more
cutting planes or generalize the classes already known. This is the most important
future challenge related to symmetry detection by branch & cut.

Finally, we come back to a problem that is closely related to reflection detection:
the graph isomorphism problem. In fact, this problem is a special case of reflec-
tion detection in the following way: we can join the two graphs being tested for
isomorphism and search for a reflection in the disjoint union. To avoid that nodes
within the same original graph are matched, we just have to assign large weights to
the corresponding mapping variables. By this, we are not only able to decide iso-
morphism but we can find an isomorphism minimizing any linear objective function.
Proceeding from exact to fuzzy reflection detection, the graph isomorphism model
becomes a model for the maximum common edge-induced subgraph problem: if we
allow edge deletion but forbid edge creation, a reflection with a minimal number of
deleted edges corresponds to a common subgraph with a maximal number of edges.
By allowing node deletion and forbidding both edge deletion and edge creation,
we can model the maximum node-induced common subgraph problem, too. Many
well-known NP-hard problems like maximum clique can be regarded as special cases
of the maximum edge-induced or node-induced common subgraph problem. More-
over, all weighted and fuzzy versions of these problems are special cases of the fuzzy
reflection problem. In summary, fuzzy symmetry detection is a very general task. In
view of this, its hardness is not surprising.

Bibliography

[1]
2]

3]

[4]

[5]

[6]

[7]

8]

[9]
[10]

[11]

[12]
[13]

ABACUS — A Branch-And-CUt System. www.informatik.uni-koeln.de/abacus.

David Abelson, Seok-Hee Hong, and Donald E. Taylor. A group-theoretic method for
drawing graphs symmetrically. In Goodrich and Kobourov [34], pages 86-97.

Laszlé Babai, Dima Yu. Grigoryev, and David M. Mount. Isomorphism of graphs
with bounded eigenvalue multiplicity. In STOC 1982, pages 310-324. ACM Press,
1982.

Egon Balas. The asymmetric assignment problem and some new facets of the traveling
salesman polytope on a directed graph. SIAM Journal on Discrete Mathematics, 2:
425-451, 1989.

Egon Balas and Matteo Fischetti. A lifting procedure for the asymmetric traveling
salesman polytope and a large class of new facets. Mathematical Programming, 58:
325-352, 1993.

Michel L. Balinski and Andrew Russakoff. On the assignment polytope. STAM Review,
16:516-525, 1974.

Oliver Bastert. New ideas for canonically computing graph algebras. Technical Report
TUM-M9803, Technische Universitdt Miinchen, Fakultat fur Mathematik, 1998.

Andrés A. Benczir and Ottilia Fulop. Fast algorithms for even/odd minimum cuts
and generalizations. In Mike Paterson, editor, ESA 2000, volume 1879 of Lecture
Notes in Computer Science, pages 88-99. Springer-Verlag, 2000.

Max Bense. Einfihrung in die informationstheoretische Asthetik. Rowohlt, 1969.

Norman L. Biggs and Arthur T. White. Permutation Groups and Combinatorial
Structures, volume 33 of London Mathematical Society Lecture Note Series. Cam-
bridge University Press, 1979.

Garrett Birkhoff. Tres observaciones sobre el algebra lineal. Revista Facultad de
Ciencias Fzxactas, Puras y Applicadas Universidad Nacional de Tucuman, Serie A
(Matematicas y Fisica Teoretica), 5:147-151, 1946.

George D. Birkhoff. Aesthetic Measure. Harvard University Press, 1933.
Hans L. Bodlaender. Polynomial algorithms for graph isomorphism and chromatic

index on partial k-trees. Journal of Algorithms, 11:631-643, 1990.

77

78

BIBLIOGRAPHY

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]

[27]

[28]

[29]

[30]

Richard A. Brualdi and Peter M. Gibson. Convex polyhedra of doubly stochastic
matrices I: Applications of the permanent function. Journal of Combinatorial Theory,
22(A):194-230, 1977.

Richard A. Brualdi and Peter M. Gibson. Convex polyhedra of doubly stochastic
matrices II: Graph of Q. Journal of Combinatorial Theory, 22(B):175-198, 1977.

Richard A. Brualdi and Peter M. Gibson. Convex polyhedra of doubly stochastic
matrices I11: Affine and combinatorial properties. Journal of Combinatorial Theory,
22(A):338-351, 1977.

Christoph Buchheim and Seok-Hee Hong. Crossing minimization for symmetries. In
Prosenjit Bose and Pat Morin, editors, ISAAC 2002, volume 2518 of Lecture Notes
in Computer Science, pages 563-574. Springer-Verlag, 2002.

Christoph Buchheim and Michael Junger. Detecting symmetries by branch & cut. To
appear in Mathematical Programming.

Christoph Buchheim and Michael Jiinger. Detecting symmetries by branch & cut. In
Mutzel et al. [62], pages 178-188.

Christoph Buchheim, Michael Jiinger, and Sebastian Leipert. A fast layout algorithm
for k-level graphs. In Marks [58], pages 229-240.

Christoph Buchheim, Michael Jiinger, and Sebastian Leipert. Improving Walker’s
algorithm to run in linear time. In Goodrich and Kobourov [34], pages 344-353.

Hamish Carr and William Kocay. An algorithm for drawing a graph symmetrically.
Bulletin of the ICA, 27:19-25, 1999.

Ho-Lin Chen, Hsueh-I. Lu, and Hsu-Chun Yen. On maximum symmetric subgraphs.
In Marks [58], pages 372-383.

Jianer Chen. A linear-time algorithm for isomorphism of graphs of bounded average
genus. SIAM Journal of Discrete Mathematics, 7:614—631, 1994.

CPLEX 7.0. www.ilog.com/products/cplex.

Hubert de Fraysseix. An heuristic for graph symmetry detection. In Kratochvil [48],
pages 276-285.

Giuseppe Di Battista, editor. Graph Drawing ’97, volume 1353 of Lecture Notes in
Computer Science, 1998. Springer-Verlag.

Giuseppe Di Battista, Peter Eades, and Roberto Tamassia. Algorithms for drawing
graphs: an annotated bibliography. Computational Geometry Theory & Applications,
4:235-282, 1994.

Peter Eades and Xuemin Lin. Spring algorithms and symmetry. Theoretical Computer
Science, 240(2):379-405, 2000.

Jack Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics, 17:
449-467, 1965.

BIBLIOGRAPHY 79

[31]

[32]
[33]
[34]
[35]

[36]

37)
[38]
39]
[40]
[41]
[42]
[43]

[44]

[45]

[46]

[47]

Max Fontet. A linear algorithm for testing isomorphism of planar graphs. In
S. Michaelson and Robin Milner, editors, ICALP 1976, pages 411-424. Edinburgh
University Press, 1976.

Chris D. Godsil and Gordon Royle. Algebraic Graph Theory. Graduate Texts in
Mathematics. Springer-Verlag, 2001.

Michel X. Goemans and V. S. Ramakrishnan. Minimizing submodular functions over
families of sets. Combinatorica, 15(4):499-513, 1995.

Michael T. Goodrich and Stephen G. Kobourov, editors. Graph Drawing 2002, volume
2528 of Lecture Notes in Computer Science, 2002. Springer-Verlag.

Martin Grotschel, Laszlé Lovasz, and Alexander Schrijver. Geometric Algorithms and
Combinatorial Optimization. Springer-Verlag, 1988.

Martin Grotschel and Manfred W. Padberg. Polyhedral theory. In Eugene L. Lawler,
Jan K. Lenstra, A. H. G. Rinnooy Kan, and David B. Shmoys, editors, The Traveling

Salesman Problem: A Guided Tour of Combinatorial Optimization, pages 251-305.
John Wiley & Sons, 1985.

Godfrey H. Hardy and Edward M. Wright. An introduction to the theory of numbers.
Clarendon Press, 1938.

Christoph M. Hoffmann. Group-Theoretic Algorithms and Graph Isomorphism, vol-
ume 136 of Lecture Notes in Computer Science. Springer-Verlag, 1982.

Seok-Hee Hong and Peter Eades. Drawing planar graphs symmetrically II: Bicon-
nected graphs. Technical Report CS-IVG-2001-01, University of Sydney, 2001.

Seok-Hee Hong and Peter Eades. Drawing planar graphs symmetrically I11: Onecon-
nected graphs. Technical Report CS-IVG-2001-02, University of Sydney, 2001.

Seok-Hee Hong and Peter Eades. Drawing planar graphs symmetrically IV: Discon-
nected graphs. Technical Report CS-IVG-2001-03, University of Sydney, 2001.

Seok-Hee Hong, Brendan McKay, and Peter Eades. Symmetric drawings of tricon-
nected planar graphs. In SODA 2002, pages 356-365, 2002.

John E. Hopcroft and J. K. Wong. Linear time algorithm for isomorphism of planar
graphs. In STOC 1974, pages 172-184. ACM Press, 1974.

Michael Jiunger and Denis Naddef, editors. Computational Combinatorial Optimiza-
tion — Optimal and Provably Near-Optimal Solutions, volume 2241 of Lecture Notes
in Computer Science. Springer-Verlag, 2001.

Michael Jiinger and Stefan Thienel. The ABACUS system for branch-and-cut-and-
price-algorithms in integer programming and combinatorial optimization. Software —
Practice & Ezperience, 30(11):1325-1352, 2000.

Narendra Karmakar. A new polynomial-time algorithm for linear programming. Com-
binatorica, 4(4):373-395, 1984.

Michael Kaufmann and Dorothea Wagner, editors. Drawing Graphs, volume 2025 of
Lecture Notes in Computer Science. Springer-Verlag, 2001.

80

BIBLIOGRAPHY

[48]

[49]

[50]

[51]

[52]
[53]

[54]

[55]

[56]

[57]
[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

Jan Kratochvil, editor. Graph Drawing ’99, volume 1731 of Lecture Notes in Computer
Science, 1999. Springer-Verlag.

Richard E. Ladner. On the structure of polynomial time reducibility. Journal of the
ACM, 22:155-171, 1975.

Laszlé Lovasz and Michael D. Plummer. Matching Theory, volume 29 of Annals of
Discrete Mathematics. North Holland, 1986.

Anna Lubiw. Some NP-complete problems similar to graph isomorphism. SIAM
Journal on Computing, 10(1):11-21, 1981.

Magma Computational Algebra System. magma.maths.usyd.edu.au/magnma.

Joseph Manning. Geometric Symmetry in Graphs. PhD thesis, Purdue University,
1990.

Joseph Manning. Computational complexity of geometric symmetry detection in
graphs. In Naveed A. Sherwani, Elise de Doncker, and John A. Kapenga, editors,
The First Great Lakes Computer Science Conference, volume 507 of Lecture Notes in
Computer Science, pages 1-7. Springer-Verlag, 1991.

Joseph Manning and Mikhail J. Atallah. Fast detection and display of symmetry in
trees. Congressus Numerantium, 64:159-169, 1988.

Joseph Manning and Mikhail J. Atallah. Fast detection and display of symmetry in
outerplanar graphs. Discrete Applied Mathematics, 39(1):13-35, 1992.

Francois Margot. Exploiting orbits in symmetric ILP. Preprint.

Joe Marks, editor. Graph Drawing 2000, volume 1984 of Lecture Notes in Computer
Science, 2001. Springer-Verlag.

George E. Martin. Transformation Geometry — An Introduction to Symmetry.
Springer-Verlag, 1982.

Brendan D. McKay. nauty user’s guide (version 1.5). Technical Report TR-CS-90-02,
Computer Science Department, Australian National University, 1990.

E. Mendelsohn. Every (finite) group is the group of automorphisms of a (finite)
strongly regular graph. Ars Combinatoria, 6:75-86, 1978.

Petra Mutzel, Michael Jinger, and Sebastian Leipert, editors. Graph Drawing 2001,
volume 2265 of Lecture Notes in Computer Science, 2001. Springer-Verlag.

Mikhail E. Muzychuk and Gottfried Tinhofer. Recognizing circulant graphs of prime
order in polynomial time. Technical Report TUM-M9703, Technische Universitit
Miinchen, Fakultit fiir Mathematik, 1997.

Mikhail E. Muzychuk and Gottfried Tinhofer. Recognizing circulant graphs in poly-
nomial time: An application of association schemes. Electronic Journal of Combina-
torics, 8(1), 2001.

Stephen North, editor. Graph Drawing 96, volume 1190 of Lecture Notes in Computer
Science, 1996. Springer-Verlag.

BIBLIOGRAPHY 81

[66]
[67]
[68]
[69]
[70]
[71]
[72]

[73]

Manfred Padberg and M. Rao. Odd minimum cut-sets and b-matchings. Mathematics
of Operations Research, 7:67-80, 1982.

Helen Purchase. Which aesthetic has the greatest effect on human understanding?
In Di Battista [27], pages 248-261.

Ronald C. Read and Derek G. Corneil. The graph isomorphism disease. Journal of
Graph Theory, 1:339-363, 1977.

Remko Scha and Rens Bod. Computationele esthetica. Informatie en Informatie-
beleid, 11(1):54-63, 1993.

Alexander Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons,
1986.

Alexander Schrijver. Combinatorial Optimization - Polyhedra and Efficiency.
Springer-Verlag, 2003.

Sue H. Whitesides, editor. Graph Drawing ’98, volume 1547 of Lecture Notes in
Computer Science, 1998. Springer-Verlag.

Helmut Wielandt. Finite Permutation Groups. Academic Press, 1964.

Erklarung

Ich versichere, dass ich die von mir vorgelegte Dissertation selbststandig angefertigt,
die benutzten Quellen und Hilfsmittel vollstindig angegeben und die Stellen der
Arbeit — einschliefilich Tabellen, Karten und Abbildungen —, die anderen Werken im
Wortlaut oder dem Sinn nach entnommen sind, in jedem Einzelfall als Entlehnung
kenntlich gemacht habe; dass diese Dissertation noch keiner anderen Fakultat oder
Universitat zur Priifung vorgelegen hat; dass sie — abgesehen von unten angegebenen
Teilpublikationen — noch nicht veroffentlicht worden ist sowie, dass ich eine solche
Veroffentlichung vor Abschluss des Promotionsverfahrens nicht vornehmen werde.
Die Bestimmungen der Promotionsordnung sind mir bekannt. Die von mir vorgelegte
Dissertation ist von Prof. Dr. Michael Jiinger betreut worden.

Ko6ln, 02.04.2003

Teilpublikationen

Christoph Buchheim and Michael Jiinger. Detecting symmetries by branch & cut.
To appear in Mathematical Programming.

Christoph Buchheim and Michael Jiinger. Detecting symmetries by branch & cut.
In Petra Mutzel, Michael Jiinger, and Sebastian Leipert, editors, GD 2001, volume
2265 of Lecture Notes in Computer Science, pages 178-188. Springer-Verlag, 2001.

