
 i 

 

Long-term Growth Arrest and Regrowth of Human Dermal 

Fibroblasts after 8-MOP plus UVA Treatment – Implications 

for Stress-Induced Premature Senescence and Replicative 

Cellular Senescence 

 

 

 

 

 

 

Inaugural – Dissertation 

zur 

Erlangung des Doktorgrades 

der Mathematisch-Naturwissenschaftlichen Fakultät 

der Universität zu Köln 

 

 

 

 

 
Vorgelegt von 

 

Wenjian Ma 

aus Shandong, China 

 

2003 



 ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Berichterstatter:  PD. Dr. Roswita Nischt  
Prof. Dr. Thomas Langer 
Prof. Dr. Reinhard Krämer  

  
Tag der mündlichen Prüfung: 21.05.2003 
  



 iii 

 

 

 

 

 

 

 

 

In my mother’s memory 
who passed away during my stay in Germany 

 
 



 iv 

CONTENTS 

1. INTRODUCTION .........................................................................................................1 

1.1. CELLULAR SENESCENCE .............................................................................................1 

1.1.1. Cellular lifespan: the Hayflick limit ........................................................................... 1 

1.1.2. Replicative senescence and telomeres ................................................................... 1 

1.1.2.1. Telomeres and their function ...................................................................................... 2 

1.1.2.2. The end replication problem ....................................................................................... 3 

1.1.2.3. Short telomeres cause replicative senescence ....................................................... 4 

1.1.2.4. Telomerase ................................................................................................................... 5 

1.1.3. Stress-induced premature senescence................................................................... 5 

1.1.3.1. DNA damage and genomic instability ....................................................................... 5 

1.1.3.2. Oncogene activation .................................................................................................... 6 

1.1.3.3. Oxidative stress ............................................................................................................ 7 

1.1.4. Senescent phenotypes and molecular pathways ................................................. 7 

1.1.5. Role of cellular senescence in cancer and aging ................................................. 9 

1.1.5.1. Implications for cancer................................................................................................. 9 

1.1.5.2. Implications for aging................................................................................................. 10 

1.2. PUVA-TREATED FIBROBLASTS AS A MODEL FOR STRESS-INDUCED 
PREMATURE CELLULAR SENESCENCE .......................................................................11 

1.2.1. Psoralen phototherapy............................................................................................... 11 

1.2.2. 8-MOP photochemistry and photobiology............................................................ 12 

1.2.3. PUVA-induced senescent-like growth arrest of fibroblasts............................. 13 

1.3. AIM OF THE STUDY .....................................................................................................14 

2 MATERIALS AND METHODS ...............................................................................15 

2.1. MATERIALS.................................................................................................................15 

2.1.1. Chemicals ...................................................................................................................... 15 

2.1.2. Cell culture material.................................................................................................... 15 

2.1.3. Cell strains, bacteria, vectors and plasmids ........................................................ 15 

2.1.4. Buffers ............................................................................................................................ 16 

2.2. METHODS ...................................................................................................................17 

2.2.1. Methods of cell biology.............................................................................................. 17 

2.2.1.1. Cell culture................................................................................................................... 17 

2.2.1.2. Freezing and thawing of fibroblasts......................................................................... 17 

2.2.1.3. Rho0  fibroblasts......................................................................................................... 17 



 v 

2.2.1.4. Generation of stably transfected cell line................................................................ 18 

2.2.1.5. Cell morphology.......................................................................................................... 18 

2.2.1.6. MTT assay................................................................................................................... 18 

2.2.1.7. Trypan blue dye exclusion assay............................................................................. 19 

2.2.1.8. PUVA treatment.......................................................................................................... 19 

2.2.1.9. β-galactosidase (β-Gal) Staining.............................................................................. 19 

2.2.1.10. Soft agar assay........................................................................................................... 20 

2.2.1.11. BrdU immunostaining ................................................................................................ 20 

2.2.1.12. Cell enucleation and fusion....................................................................................... 20 

2.2.2. Methods of molecular biology ................................................................................. 23 

2.2.2.1. Isolation of genomic DNA.......................................................................................... 23 

2.2.2.2. Telomere repeat analysis.......................................................................................... 24 

2.2.2.3. Single strand telomere DNA length determination ................................................ 24 

2.2.2.4. TRAP assay ................................................................................................................ 25 

2.2.2.5. Immunoblot.................................................................................................................. 25 

2.2.2.6. ELISA for MMP-1 expression ................................................................................... 26 

2.2.2.7. ELISA for p53 and p21Cip1 expression..................................................................... 27 

2.2.2.8. PCR Amplification ...................................................................................................... 27 

2.2.2.9. PCR products purification and sequence analysis................................................ 31 

2.2.3. Additional methods..................................................................................................... 32 

2.2.3.1. ROS measurements .................................................................................................. 32 

2.2.3.2. Supplementation of fibroblast culture with N-acetyl cystein and 
subsequent determination of intracellular ROS Levels ........................................ 32 

2.2.3.3. Measurement of the mitochondrial membrane potential ...................................... 32 

2.2.3.4. Measurement of mitochondrial biogenesis............................................................. 33 

2.2.3.5. ATP measurements ................................................................................................... 33 

2.2.3.6. Densitometry measurement...................................................................................... 33 

2.2.3.7. Statistics....................................................................................................................... 34 

3 RESULTS ...................................................................................................................35 

3.1. HUMAN DERMAL FIBROBLASTS ESCAPE FROM PUVA-INDUCED LONG-
TERM SENESCENCE-LIKE GROWTH ARREST ..............................................................35 

3.1.1. Regrowth of fibroblasts from PUVA-induced long-term 
senescence-like growth arrest................................................................................. 35 

3.1.2. Regrowth is not due to immortalization or transformation.............................. 38 

3.1.2.1. Regrowing fibroblasts post PUVA treatment do not show any 
telomerase activity, but a reduction in  telomere length with increasing 
CPD .............................................................................................................................. 38 



 vi 

3.1.2.2. Regrowth of fibroblasts post PUVA treatment is anchorage dependent ........... 40 

3.1.2.3. Regrowing fibroblasts post PUVA treatment reveal a decline in growth 
rates with increasing CPD......................................................................................... 40 

3.1.2.4. Senescence control genes, p53, p21Cip1 and p16INK4a do not reveal 
mutations in regrowing fibroblasts ........................................................................... 43 

3.2. PUVA-INDUCED PREMATURE SENESCENCE DOES NOT FULLY REFLECT 
REPLICATIVE CELLULAR SENESCENCE ......................................................................46 

3.2.1. Reversibility of senescence-associated markers in regrowing 
fibroblasts post PUVA treatment............................................................................. 46 

3.2.2. Activation of the senescence control pathways p21/p53 and 
p16/Rb in PUVA-induced growth arrest................................................................. 51 

3.2.3. PUVA treatment of fibroblasts with a null mutation in cell cycle 
controlling genes results in a similar growth arrest as in wild type 
human dermal fibroblasts ......................................................................................... 52 

3.3. PUVA TREATMENT OF HUMAN DERMAL FIBROBLASTS INCREASES THE 
GENERATION OF INTRACELLULAR REACTIVE OXYGEN SPECIES................................56 

3.3.1. Increase in the number of mitochondria and decrease in the 
relative mitochondrial transmembrane potential in PUVA-treated 
fibroblasts...................................................................................................................... 57 

3.3.2. Changes in ATP content  in PUVA-treated fibroblasts...................................... 61 

3.3.3. PUVA-treated Rho0 fibroblasts still have a high ROS level ............................. 63 

3.3.4. Inhibition of NADPH Oxidase does not abrogate the ROS increase 
in PUVA-treated mitochondria-competent fibroblasts, whereas 
ROS production is suppressed in PUVA-treated Rho0 fibroblasts ............... 65 

3.3.5. ROS contribute to the PUVA-induced senescence-like morphology ............ 66 

3.4. MOLECULAR MECHANISMS OF THE DECLINE IN THE OVERALL LIFE SPAN IN 
REGROWING FIBROBLASTS POST PUVA TREATMENT ..............................................70 

3.4.1. Fibroblasts regrowing post PUVA treatment reveal a decline in the 
overall life-span............................................................................................................ 70 

3.4.2. Fibroblasts regrowing post PUVA treatment reveal enhanced 
reduction in telomere lengths .................................................................................. 71 

3.4.3. Accumulation of single strand breaks  in telomere regions............................ 73 

3.4.4. Scavenging of reactive oxygen species by N-acetyl cystein 
rescues telomere length ............................................................................................ 76 

3.4.5. Partial restoration of the total life-span of PUVA-treated fibroblasts 
in the presence of N-acetyl cystein ........................................................................ 76 

3.4.6. Up-regulated expression of p16INK4a is maintained in regrowing 
fibroblasts post PUVA treatment............................................................................. 78 

3.5. CHARACTERIZATION OF MOLECULAR MECHANISMS INVOLVED IN THE 
INDUCTION OF GROWTH ARREST IN PUVA-TREATED FIBROBLASTS ........................79 

3.5.1. Short-term incubation with 8-MOP during UVA-irradiation does 
result in growth arrest while long-term preincubation with 8-MOP 
does not ......................................................................................................................... 79 



 vii 

3.5.2. The number of DNA interstrand crosslinks is not related to growth 
arrest............................................................................................................................... 80 

3.5.3. Characterization of the contribution of changes in the karyoplast 
and the cytoplast post PUVA treatment to PUVA-induced growth 
arrest............................................................................................................................... 82 

3.5.3.1. Rationale for  fusion of cytoplasts and karyoplasts............................................... 82 

3.5.3.2. Experimental design for the identification of fused fibroblasts ............................ 83 

3.5.3.3. Fusions of cytoplast/karyoplasts of  fibroblasts immediately or  at an 
early stage post PUVA with mock-treated karyoplasts/cytoplasts...................... 85 

3.5.3.4. Fusions of cytoplast/karyoplasts of  fibroblasts 2 weeks or 4 weeks 
post PUVA treatment with mock-treated karyoplasts/cytoplasts ........................ 86 

4 DISCUSSION.............................................................................................................92 

4.1. THE ESCAPE OF HUMAN DERMAL FIBROBLASTS FROM PUVA-INDUCED 
SENESCENCE-LIKE GROWTH ARREST IS NOT DUE TO IMMORTALIZATION OR 
TRANSFORMATION......................................................................................................92 

4.2. PUVA-INDUCED GROWTH ARREST REPRESENTS A PHENOCOPY OF 
SENESCENCE WITH ROS CONTRIBUTING TO SENESCENCE-LIKE 
PHENOTYPE CHANGES................................................................................................94 

4.2.1. Senescence features in PUVA-induced long-term growth arrest are 
reversible ....................................................................................................................... 95 

4.2.2. Senescence controlling genes are up-regulated in PUVA-treated 
fibroblasts in a sequential and interrelated manner .......................................... 96 

4.2.3. PUVA treatment leads to elevated ROS production which is related 
to mitochondria and NADPH oxidase .................................................................... 98 

4.2.4. Enhanced ROS concentration of reactive oxygen species is 
responsible for the enlarged morphology of fibroblasts but not for 
the enhanced expression of SA-ββββ-galactosidase after PUVA 
treatment...................................................................................................................... 102 

4.3. PUVA TREATMENT OF HUMAN DERMAL FIBROBLASTS LEADS TO AN EARLY 
ONSET OF REPLICATIVE SENESCENCE RELATED TO OXIDATIVE TELOMERE 
SHORTENING.............................................................................................................103 

4.4. INITIATION OF THE LONG-TERM GROWTH ARREST ...................................................111 

5 PERSPECTIVES .....................................................................................................115 

6 REFERENCES ........................................................................................................118 

ABBREVIATIONS ........................................................................................................132 

SUMMARY.....................................................................................................................133 

ZUSAMMENFASSUNG...............................................................................................135 

ACKNOWLEDGEMENT..............................................................................................136





 1 

1. Introduction 

 

1.1. Cellular senescence 

Cellular senescence is defined as an irreversible arrest of cell proliferation 

accompanied by changes in cell function and morphology. Senescent cells are 

viable and metabolically active for long periods of time, but are incapable of 

further division (Campisi et al. 1996). Historically, the senescent state has been 

associated with an intrinsically defined number of cell divisions in vitro. However, 

recently it has been shown that many extrinsic factors can prematurely induce a 

virtually indistinguishable senescent phenotype.  

 

1.1.1. Cellular lifespan: the Hayflick limit 

It had been generally believed that cells could proliferate indefinitely and that the 

maintenance of a cell culture was just a question of finding the right conditions 

(Hayflick 1998). This idea was radically changed in the early 1960s by Leonard 

Hayflick, who first described the finite life span in cultures of human diploid 

fibroblasts (HDFs) (Hayflick 1965; Hayflick and Moorhead 1961). Despite 

optimized culture conditions, HDFs can undergo 60-80 population doublings and 

thereafter every cell has stopped dividing. Since then, many types of normal 

somatic cells from humans, rodents, birds and several other species have been 

shown to have finite capacity for cell division (Campisi et al. 1996). This 

phenomenon, known as ‘Hayflick limit’, is termed ‘replicative senescence’. When 

this limit is reached, cells stop dividing and undergo an array of biochemical and 

morphological changes. Senescent cells may remain metabolically active for a 

long period of time, even though they have permanently ceased to proliferate 

(Campisi 1996; Goldstein 1990). 

 

1.1.2. Replicative senescence and telomeres 

Replicative senescence depends on the overall number of cell divisions and not 

on the time in culture. The molecular mechanisms that determine this intrinsic 

replicative senescence appear to be mainly controlled by the shortening of 

telomeres (Mathon and Lloyd 2001).  
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1.1.2.1. Telomeres and their function 

Telomeres are DNA-protein structures at the ends of linear chromosomes (Figure 

1).  In every organism studied, telomere DNA consists of long head-to-tail arrays 

of repeated DNA sequences. Mammalian telomeres, like all vertebrate telomeres, 

are tandem repeats of the sequence TTAGGG which is repeated many hundreds 

to thousands of times. The length varies greatly among species. While telomeres 

are 15 to 20 kb in the human germ line, they are ranging 30-50 kb in laboratory 

mice (Campisi et al. 2001). Most of the telomeric tract is double stranded DNA, 

but there are also short (50-200 base pairs) single stranded 3’ overhangs at both 

chromosome ends (Campisi et al. 2001; Makarov et al. 1997). The telomere end 

folds back on itself, forming a protective structure called “T-loop” to hide the 

vulnerable 3’ overhang (Mathon and Lloyd 2001). The T-loop is formed in 

association with or bound by proteins, such as TRF1, TRF2 and Ku (Broccoli et 

al. 1997; Chong et al. 1995; Hsu et al. 1999; Song et al. 2000). Besides 

maintaining the telomeric structure, many of these proteins were found to be 

involved in DNA repair processes (Campisi et al. 2001).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Structure of the telomeres. Each of the 46 linear human 
chromosomes has 2 telomeres. Telomeres are complex structures comprising 
the underlying DNA and associated proteins.  
 

 

Telomeres share some basic functions and characteristics in all organisms. First, 

they enable cells to distinguish a chromosome end from a double strand break 
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(DSB) in the genomic DNA. DSBs can activate the checkpoints in the cell cycle, 

which cause that cell to stop dividing until the DNA strand break is rejoined. Thus, 

without a distinctive telomere structure, chromosome ends are at risk for 

degradation, recombination or random fusion by cellular DNA repair systems 

(Campisi et al. 2001; van Steensel et al. 1998). Second, telomeres provide a way 

to replicate the chromosome completely including restoration of a simple terminal 

repeat of characteristic length. This replication is achieved by the unique reverse-

transcriptase-like enzyme telomerase or alternatively through recombination 

(Dubrana et al. 2001; Kass-Eisler and Greider 2000). Finally, telomeres control 

the positions of chromosomes within the nucleus (Dubrana et al. 2001). 

 

1.1.2.2. The end replication problem 

Eukaryotic organisms have much larger genomes compared to bacteria and 

viruses. Their DNA is divided into multiple linear chromosomes to keep the 

molecules at a manageable size. However, there is a major problem with the 

replication of the very ends of linear DNA during cell division known as ‘end-

replication problem’ (Blackburn 1991; Klapper et al. 2001; Zakian 1995). It is a 

consequence of two properties of the semiconservative DNA replication 

machinery: the ability of DNA polymerases to work only in the 5’ to 3’ direction, 

and their requirement for a nucleic acid primer. DNA replication starts at many 

different sites (origins of replication) along each chromosome and is carried out 

by DNA polymerases. DNA polymerases initiate DNA replication only at a primer 

molecule, which is a short piece of RNA. The RNA primer will be degraded when 

DNA synthesis is complete. While replication is bidirectional where replication 

proceeds in both the 3’ and 5’ direction from an origin of replication, DNA 

polymerases work unidirectional and polymerize exclusively in 5’ – 3’ direction 

(Figure 2). Therefore, replication of the ‘lagging strand’ will form short gaps 

between Okazaki fragments after RNA primer degradation. Gaps are filled by 

DNA polymerase except for the one at the very end of the chromosome. This 

results in the loss of 50-200 bp in the new synthesized DNA strand at the 5’ end, 

and forms 3’ overhangs in the mother strand. Interestingly, there is a 3’ overhang 

at both ends of mammalian chromosomes (Makarov et al. 1997). This finding 

suggests that a 5’ – 3’ exonuclease specifically trims back the completely 

synthesized telomere (Campisi et al. 2001). 
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Figure 2. The end replication problem (Modified from Campisi et al. 2001; 
Greider and Blackburn 1985).  
 

 

1.1.2.3. Short telomeres cause replicative senescence 

The link between the Hayflick limit and the end-replication problem was first 

proposed by Alexey Olovnikof, a Russian theoretical biologist (Shay and Wright 

2000). During successive cellular divisions the telomeres shorten progressively in 

normal human cells. When the telomeres erode from their maximum size of 10-

15 kb (in the germ line) to an average size of 4-6 kb, replicative senescence is 

reached with an irreversible growth arrest. The underlying mechanisms are 

incompletely understood (Campisi 2001a; Mathon and Lloyd 2001). In human 

fibroblasts, senescent cells can be induced to bypass replicative senescence by 

functional inactivation of the tumor suppressor proteins p53 and pRb (Shay et al. 

1991c). Continued proliferation of cells beyond the Hayflick limit leads to further 

shortening of telomeres, and cells eventually reach a second proliferative block, 

which is characterized by genomic instability associated with telomere disfunction 

and massive cell death, termed “crisis” (Maser and DePinho 2002; Wright and 

Shay 1992). The hypothesis that telomere shortening is responsible for a limit in 

the proliferation lifespan has been generally accepted. Stable expression of 

telomerase is sufficient to bypass both senescence and crisis, and to confer 

immortality (Bodnar et al. 1998; Ramirez et al. 2001; Vaziri and Benchimol 1998). 

Thus, telomere shortening in normal human cells acts as a “mitotic clock” that 

ultimately limits the proliferative capacity of cells (Harley et al. 1992; Wright and 

Shay 1992).  

���������	����
���	����
��
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1.1.2.4. Telomerase 

Continuously growing cells, such as germline and tumor cells, have to circumvent 

the end-replication problem. This is solved by the enzyme telomerase that adds 

telomeric sequences onto the chromosome ends (Greider and Blackburn 1985). 

Telomerase is a RNA-dependent DNA polymerase that adds single-stranded 

telomeric repeats to the end of the telomeric DNA. It consists of two essential 

components: one is a RNA subunit which serves as a template for the synthesis 

of telomeric DNA, the encoding gene in human is referred to as hTR (Feng et al. 

1995). The other is the catalytic protein (hTERT) with reverse transcriptase 

activity (Harrington et al. 1997; Lingner et al. 1997). Although hTR is highly 

expressed in all tissues regardless of telomerase activity, hTERT is – apart from 

some expression – repressed in somatic cells and upregulated in immortal cells 

suggesting that hTERT is the primary determinant for the enzyme activity (Avilion 

et al. 1996; Cong et al. 2002). Expression of telomerase is the major mechanism 

by which cancer cells stabilize their telomeres and, hence, avoid replicative 

senescence (Chiu and Harley 1997).  

 

1.1.3. Stress-induced premature senescence 

Recently, noxious stimuli with little or no impact on telomeres were shown to 

induce somatic cells to undergo growth arrest with a senescence phenotype. As 

these stimuli act before the replicative limit of a cell, this state of growth arrest 

has been termed premature senescence (Lloyd 2002). Stimuli that lead to 

premature senescence include DNA damage, genomic instability, oncogene 

upregulation and oxidative stress (Campisi 2001a).  

 

1.1.3.1. DNA damage and genomic instability 

The outcome of DNA damage is diverse. Acute effects from DNA damage trigger 

cell-cycle arrest or cell death. Long-term effects that resulted from mutations 

contribute to tumorigenesis (de Boer et al. 2002; Hoeijmakers 2001). Premature 

senescence can be induced by various types of DNA damage, with telomere 

dysfunction being the most efficient trigger. An early observation of DNA 

damage-induced senescence was the induction of a permanent and irreversible 

proliferation arrest in gamma irradiated human fibroblasts (Di Leonardo et al. 

1994). Further evidence for the causal role of DNA damage and genomic 
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instability in senescence comes from human diseases featured by deficiencies in 

DNA damage repair pathways. Cells obtained from ataxia telangiectasia (ATM) 

patients or individuals suffering from Werner’s and Bloom’s syndromes undergo 

senescence earlier than age-matched healthy individuals (Schulz et al. 1996; 

Shiloh et al. 1985). Telomere damage seems to induce senescence as implied 

by the recent finding that the knockout of two DNA damage repair enzymes with 

similar function led to different outcome. DNA-dependent protein kinase (DNA-

PK) and Ku86 are two proteins essential for the repair of DNA breaks through 

non-homologous end joining. Murine fibroblasts deficient in  the DNA-PK catalytic 

subunit (DNA-PKCs) do not undergo premature senescence, whereas deficiency 

in Ku86 leads to premature senescence (Goytisolo et al. 2001; Samper et al. 

2000). The dramatic differences in the induction of senescence between these 

two proteins with similar functions may be explained by the fact that Ku86 plays a 

specific role in the stabilization of telomeres (Serrano and Blasco 2001). In 

addition, disruption of TRF2 which is a critical protein involved in telomeric t-loop 

formation, causes immortal human tumor cells to die (Karlseder et al. 1999). 

Non-transformed cells, by contrast, undergo growth arrest with a senescent 

phenotype (van Steensel et al. 1998). Chromosomes that lack a protective 

telomeric structure are highly unstable, being subject to degradation, 

rearrangement and/or fusion, all of which could trigger the senescent program. 

Moreover, genomic instability, particularly in the absence of the senescence 

checkpoint and p53 function greatly increases the frequency of mutations (van 

Steensel et al. 1998). DNA damage and genomic instability might explain why 

mouse cells senesce after fewer doublings than human cells, despite having 

longer telomeres (Campisi 2001a). As has been reported, mouse and rat cells 

repair DNA damage far less efficiently than human cells and are much more 

sensitive to a variety of agents that produce oxidative stress (Hart and Setlow 

1974; Kapahi et al. 1999).  

 

1.1.3.2. Oncogene activation 

Primary cells can not be transformed by a single oncogene in vitro, such as Ras 

or Myc (Weinberg 1989). Cells in response to these oncogenic activations often 

exit the cell cycle (Ras) or die (Myc) (Mathon and Lloyd 2001). Although Ras 

signaling pathways are constitutively activated in a large proportion of human 
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tumors (Hanahan and Weinberg 2000), the overexpression of the Ras oncogene 

in primary cells instead leads to a senescence-like state (Serrano et al. 1997). 

Ras-induced premature senescence shares similar features with replicative 

senescence not only phenotypically but also in cell cycle control pathways. In 

human fibroblasts, both Ras-induced premature senescence and replicative 

senescence reveal an upregulation of the tumor suppressor p16INK4a which 

inactivates the D-type cyclins (Serrano and Blasco 2001).  

 

1.1.3.3. Oxidative stress 

Oxidative damage is another cellular stress that can induce senescence-like 

growth arrest. Culturing human fibroblasts in 2-3% oxygen results in 20-30% 

more population doublings compared to that under 20% oxygen (Balin et al. 1984; 

Chen et al. 1995b; Saito et al. 1995). Similarly, treatment of cultures of primary 

fibroblasts with non-lethal concentrations of hydrogen peroxide activates a rapid, 

senescence-like growth arrest (Chen and Ames 1994). The role of oxidants in 

cellular senescence was further underscored by the observation that Ras-

induced senescence is also mediated by ROS and can be abrogated by culturing 

cells under low oxygen tension or in the presence of antioxidants (Lee et al. 

1999). Oxidative stress is probably the most often used inducer of premature 

senescence and is likely to be the common denominator of the ‘stress-induced 

premature senescence’ (SIPS) (Toussaint et al. 2000c). Accumulation of cell 

damage as a result of oxidative damage to macromolecules is generally thought 

to play an important causal role in aging (Johnson et al. 1999). 

 

1.1.4. Senescent phenotypes and molecular pathways 

The universal characteristic of replicative senescence is a stable, irreversible loss 

of cell proliferative capacity (Campisi et al. 1996). Several phenotypic and 

biochemical changes are associated with replicative senescence and are used 

as markers to identify premature senescence. These changes include increased 

cell size which changes from a small, elongated or spindle-like shape in young 

cells to aged flattened cells with enlarged cytoplasm, expression of senescence 

associated β-galactosidase (SA-β-Gal), which is associated with an increased 

biogenesis of lysosomes. In addition, cellular senescence comprise an abrogated 

response to growth factors and other mitogens, a reduced membrane potential, a 
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decrease in respiration and energy metabolism, an increase in the duration of G1 

phase of the cell cycle and the upregulation of certain growth inhibitory genes, 

such as p16 and p21. Furthermore, distinct changes were found in cellular 

functions such as the adaption of matrix-degrading phenotype by senescent 

fibroblasts as well as an altered secretion pattern of steroid hormones by 

senescent adrenal cortical epithelial cells (Campisi 1997, 1998, 2000, 2001b; 

Campisi et al. 1996; Campisi et al. 2001). 

 

A number of regulatory proteins transduce senescence-inducing signals or 

mediate entrance of the cell into senescence, among which the most crucial are 

several tumor suppressors, such as p53 and p16INK4a (Figure 3). Although p53 

protein levels do not increase during replicative senescence, an increase in its 

activity in terms of DNA binding and transcriptional activity is observed (Atadja et 

al. 1995; Vaziri et al. 1997). p53 levels transiently increase in oxidative stress or 

oncogenic Ras-induced premature senescence (Chen et al. 1998; Dimri et al. 

2000; Serrano et al. 1997). A major cause of p53 upregulation or activation is 

related to the increase in the expression of p14ARF (p19ARF in mouse), a tumor 

suppressor encoded by the INK4a locus (Campisi 2001a). p14ARF could be 

induced by oncogenic Ras and DNA damage. p14ARF directly binds and 

sequesters MDM2, a protein that facilitates p53 degradation. Loss of MDM2 

function, in turn, results in the stabilization of p53 and activation of p53-mediated 

growth arrest (Bringold and Serrano 2000). Another cause for the increase in p53 

activity might be the promyelocytic leukemia (PML) tumor suppressor which can 

be induced by oncogenic Ras (Ferbeyre et al. 2000; Pearson et al. 2000). 

Activation of PML acetylates p53 and thus stimulates its activity (Pearson et al. 

2000). p53 induces the transcription of several genes responsible for the onset of 

senescence including the cyclin-dependent protein kinase (CDK) inhibitor p21, a 

well-recognized p53 target gene. Another pathway implicated in cellular 

senescence involves p16INK4a and Rb.  p16 is the second tumor suppressor 

encoded by the INK4a locus (Bringold and Serrano 2000; Lundberg et al. 2000). 

p16INK4a is involved both in replicative senescence and stress-induced premature 

senescence (Serrano and Blasco 2001). Upregulation of p16 is in part due to Ets, 

a transcription factor that stimulates p16 expression and accumulates in 

senescent cells (Campisi 2001a).  Ets activity is negatively regulated by the helix-
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loop-helix protein Id1 (Ohtani et al. 2001). It is not known how other senescence 

inducers stimulate Ets activity, or how Id1 is repressed in response to 

senescence-inducing signals. Nonetheless, these findings have identified p16 

expression as an important target for senescence-inducing signals (Campisi 

2001a). In human cells, p16/Rb appear to be the major factors controlling the cell 

cycle checkpoint in response to inadequate culture conditions and other kinds of 

stresses, whereas p14ARF/p53/p21 may initially have a more predominant role in 

human fibroblasts at their proliferative limits or in response to DNA damage. In 

each case, there are many overlapping roles for factors controlling these 

checkpoints of the cellular senescence (Wright and Shay 2001). 

 

 

 

 

 

 

 

 

 

Figure 3. Cellular senescence pathways (Adapted from Campisi 2001a; 
Lundberg et al. 2000). 
 

 

1.1.5. Role of cellular senescence in cancer and aging  

1.1.5.1. Implications for cancer 

One interpretation for the biological function of cellular senescence is that it 

serves as a mechanism for restricting cancer progression (Wright and Shay 

2001). Cancer is a complex condition involving a multi-faceted evolutionary 

process which occurs at the cellular level within organs and organisms. One 

hallmark of tumor cells is that they can proliferate indefinitely. The extended 

growth potential of cancer cells is critically dependent on the maintenance of 

functional telomeres. Most human malignant tumors express telomerase. Tumor 

cells that do not express telomerase stabilize their telomeres by a different 

mechanism – alternative lengthening of telomeres (ALT) (Bryan et al. 1997; Kim 
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et al. 1994). The expression of telomerase in nearly all malignancies suggests 

that overcoming the proliferative limits imposed by telomere shortening 

represents a key step in oncogenesis (Kim et al. 1994). Apart from replicative 

senescence, it has been speculated that premature senescence can also serve 

as a tumor-suppressing mechanism. Another hallmark that distinguishes cancer 

cells from primary cells is the loss of growth control, resulting from both gain-of-

function mutations in proto-oncogenes and loss-of-function mutations in tumor 

suppressors (Cong et al. 2002). The observation that many of the checkpoint 

control genes involved in premature senescence are oncogenes or tumor 

suppressors has been forwarded to argue that overcoming these proliferative 

checkpoints represents an important step in tumor development (Campisi 2001b; 

Mathon and Lloyd 2001).  

 

1.1.5.2. Implications for aging 

Aging is associated with a progressive decline in bodily functions, ultimately 

resulting in disease and death (Mathon and Lloyd 2001). The idea that cellular 

senescence reflects mechanisms also relevant for organismal aging is supported 

by several lines of evidence. First, limited inter-species comparisons showed an 

inverse correlation between species lifespan and the replicative life span of 

fibroblast cultures (Rohme 1981). Second, cells from patients with premature 

aging syndromes were observed to senesce after fewer doublings than age-

matched healthy individuals (Martin 1970). Third, cells expressing SA-β-

galactosidase are more prevalent in physiologically aged tissue than in young 

tissue (Campisi 2001b; Dimri et al. 1995). However, evidence for a role of 

replicative senescence in the aging process remains controversial, since the 

inverse correlation between donor age and the replicative ability of in vitro cell 

proliferation was not consistently observed in all studies (Cristofalo et al. 1998; 

Stanulis-Praeger 1987). 

 

Cellular senescence drives some of the dysfunctions associated with aging. 

Senescent cells remain metabolically active but cannot proliferate, and may 

rather be disruptive and destructive in the tissues in some instances. Senescent 

cells show changes in gene expression and secrete a number of proteins that 

contribute to degeneration of connective tissues seen in aging (Shelton et al. 
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1999). This senescence-associated secretory proteolytic phenotype is 

particularly striking in fibroblasts. Senescence of fibroblasts is accompanied by 

increased expression of matrix-degrading enzymes like collagenase and 

stromelysin (Campisi 1996; Kim et al. 2002). These enzymes could be potentially 

detrimental to the adjacent environment of the cell and, thus, could affect all 

other adjacent nonsenescent cells. In skin, for example, this could lead to a loss 

of integrity resulting in wrinkles and loss of elasticity commonly observed in skin 

aging (Smith and Pereira-Smith 1996). Though the factors released from 

senescent cells are incompletely characterized, and little is known on 

mechanisms responsible for their overexpression (Campisi 2001a), senescent 

fibroblasts have been shown to accumulate with age in skin biopsies (Dimri et al. 

1995).  

 

 

1.2. PUVA-treated fibroblasts as a model for stress-induced premature 

cellular senescence  

 

1.2.1. Psoralen phototherapy 

PUVA is a combination of psoralen (P) and long-wave ultraviolet radiation (UVA) 

that is widely used for the treatment of various skin disorders. Even though 

topical exposure to extracts, seeds and parts of plants (e.g. Ammi majus, 

Psoralea corylifolia) that contain natural psoralens and subsequent irradiation 

with sunlight as a remedy for the treatment of vitiligo has been used for 

thousands of years by ancient Arab and Indian healers, the modern era of its use 

began in Egypt in the mid-1940s when the active components 8-

methoxypsoralen (8-MOP), 5-methoxypsoralen (5-MOP) and 

isoamyleneoxypsoralen were isolated and chemically characterized (Lerner 

1988). PUVA treatment for psoriasis, by far the most prevalent use of PUVA, was 

developed clinically in 1970s at Harvard Medical School (Honigsmann 1986; 

Lerner 1988). Ten years later, photopheresis using 8-MOP was introduced for 

the treatment of T-cell lymphoma (Edelson et al. 1987; Gasparro et al. 1998).  

 

The combination of psoralen and UV irradiation results in beneficial therapeutic 

effects, which are not achieved by either of the single components alone. The 
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effectiveness of PUVA, as well as other kinds of phototherapy, provided 

treatment for a variety of different skin disorders besides psoriasis (Honig et al. 

1994; Honigsmann 2001). However, PUVA treatment also raises the potential 

risk of the development of skin cancer and possibly premature skin aging 

(Jacobson-Kram et al. 1982). A study by Stern et al. (1994) of 1380 patients 

showed a statistically significant increase in the incidence of squamous cell 

carcinoma (SCC) in PUVA patients (Stern and Laird 1994). Although PUVA is the 

most widely employed photochemotherapy treatment in dermatology, many of 

the biochemical and molecular events induced by PUVA have not yet been 

intensively characterized. 

 

1.2.2. 8-MOP photochemistry and photobiology 

8-methoxypsoralen, the most widely used psoralen derivative for PUVA 

treatment, is a naturally occurring aromatic tricyclic molecule (Figure 4). Its 

planar and extended aromatic structure enables it to intercalate with nucleic acid 

base pairs. Upon photoactivation three different types of psoralen-DNA 

photoadducts were formed including two kinds of monoaddition products, 3,4-

monoadducts and 4’5’-monoadducts, and one bi-adduct (psoralen-DNA 

interstrand crosslink (ICL)) (Gasparro 1988).  Psoralens react with DNA in three 

steps. First the psoralen intercalates into the DNA double strand in the absence 

of UV radiation. Upon UV irradiation, cyclobutane monoadducts with a pyrimidine 

base are formed. If the initial photoreaction occurs at a 5’-TpA site, the 4’5’-

monoadducts can absorb a second photon and undergo another cyclobutyl 

reaction with the adjacent thymine at the opposite strand resulting in the 

formation of a psoralen-DNA cross-link (Gasparro 1988; Gasparro et al. 1997). 

Because these DNA photoadducts are the most well-characterized psoralen 

photoadducts, most explanations of therapeutic efficacy have been based on the 

generation of DNA photoadducts, especially psoralen-DNA crosslink formation as 

the basis for the subsequent proliferation inhibitory or toxic effects (Schmitt et al. 

1995). However, there is scant direct evidence supporting the biological impact of 

the photoadduct. Psoralens have also been shown to undergo photoaddition 

reactions with other cellular components, such as proteins and lipids (Schmitt et 

al. 1995). In addition to direct modification of nearby biomolecules, the excited 8-

MOP can also react with molecular oxygen. The reactive oxygen species formed 
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by this reaction can directly lead to oxidative DNA damage or cause cell 

membrane damage by lipid peroxidation (Averbeck 1989; Gasparro et al. 1997).  

 

 

 

 

 

 

 

Figure 4. The chemical structure of 8-MOP. 

 

1.2.3. PUVA-induced senescent-like growth arrest of fibroblasts 

Previous work in our laboratory has shown that psoralen photoactivation 

promotes morphological and functional changes in fibroblasts in vitro reminiscent 

of replicative cellular senescence. A single non-toxic exposure of human dermal 

fibroblasts to PUVA with 50ng/ml 8-MOP and 90 kJ/m2 UVA resulted in a long-

term switch of mitotically active fibroblasts to growth-arrested fibroblasts without 

proliferative activity (Herrmann et al. 1998). In addition to arresting cell 

proliferation, PUVA treatment also induced a senescent-like phenotype with an 

enlarged phenotypic morphology, enhanced SA-β-Gal expression, and elevated 

expression of interstitial collagenase/matrix metalloproteinase-1 (MMP-1). 

Fibroblasts which had been subjected to PUVA treatment changed to a flattened 

and elongated phenotype at day 7 post treatment and revealed a substantial 

increase in size at day 14-21 after irradiation.  Similarly, SA-β-Gal positive 

fibroblasts were detected from day 7 post PUVA and at day 28 essentially all 

fibroblasts revealed de novo expression of SA-β-Gal. Furthermore, MMP-1 was 

induced following PUVA treatment. The induction of MMP-1 was prolonged within 

the growth arrest phase, while TIMP-1, the major inhibitor of MMP-1, was only 

slightly induced. The imbalance between matrix-degrading metalloproteinases 

and their inhibitors may lead to connective tissue damage, a hallmark of skin 

aging (West et al. 1989).  Interestingly, PUVA-treated fibroblasts could resume 

proliferation after a growth arrest period of about three months.  
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1.3. Aim of the study 

The aim of this study is a more detailed characterization and understanding of 

the molecular mechanisms involved in the initiation, maintenance and release 

from the PUVA-induced long-term senescence-like growth arrest with particular 

focus on the development of the senescent phenotype and factors influencing 

replicative senescence. In detail, the following questions were addressed: 

i) What are the molecular mechanisms underlying the initiation and 

maintenance of the long-term growth arrest as well as what mechanisms are 

involved and contribute to the development of senescent-like biochemical and 

morphological changes? 

ii) What molecular mechanisms determine the re-proliferation of PUVA-treated 

fibroblasts after the long-term growth arrest? Is it due to immortalization or 

transformation as a result of loss-of-function of tumor-suppressor genes 

controlling cellular senescence? Or does PUVA-induced long-term growth 

arrest represents a phenocopy of senescence, activated to serve a damage-

repairing function? 

 

Answers to these questions are of general relevance and may shed light to other 

premature senescence models with the identification of similarities and 

differences and potential identification of therapeutic strategies to prevent or treat 

aging and neoplastic conditions.   
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2 Materials and methods 

 

2.1. Materials 

 

2.1.1. Chemicals 

All analytical grade chemicals were purchased from Sigma-Aldrich (Deisenhofen), 

Molecular probes (MoBiTec, Goettingen), Merck (Darmstadt), USB (Amersham 

Life Sciences, Braunschweig), Merck (Darmstadt), Serva (Heidelberg), Bio-Rad 

(Munich), Pharmacia-Biotech (Freiburg); Radiochemicals were obtained from 

ICN (Eschwege). 

Molecular weight markers for proteins (Broad Range) were purchased from Bio-

Rad and DNA molecular weight standards from Roche (Mannheim) and New 

England Biolabs (Schwalbach). Antibodies were purchased from Santa-Cruz 

Biotechnology (Heidelberg). 

Restriction enzymes used were from Boehringer (Mannheim), New England 

Biolabs. 

Oligonucleotides were synthesized at MWG Biotech (Ebersberg).  

 

2.1.2. Cell culture material 

All plastic material for cell culture was from Greiner (Solingen). Cell culture 

medium and supplements were purchased from Gibco BRL (Eggenstein), and 

fetal calf serum (FCS) was from PAA Laboratories (Biochrom, Berlin). 

 

2.1.3. Cell strains, bacteria, vectors and plasmids 

The following cell strains had been used: two human dermal fibroblast strains, 

FF95 and FF-DA. The epithelial carcinoma cell line HeLa and the fibrosarcoma 

cell line HT1080. For transformation of plasmids the E. coli strain DH5 α (Gibco 

BRL, Eggestein) was used. The genotype is: F’, supE44, ∆lacU169 

(φ80lacZ∆M15), hsdR17, recA1, gyrA96, thi-1, relA1. The eukaryotic expression 

vector pEGFP-N1 was purchased from ClonTech Laboratories Inc. (Heidelberg). 
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2.1.4. Buffers 

PBS 

137 mM NaCl, 2.7 mM KCl, 8.4 mM Na2HPO4, 1.4 mM KH2PO4, 

pH7.4 

TBS 20 mM Tris, 137 mM NaCl, pH7.6 

TBS-T TBS, 0.1%(v/v) Tween 20 

20× SSC 3M NaCl, 0.3M Sodium citrate, pH7.0 

100× 

Denhards 2% ficoll, 2% polyvinylpyrrolidon, 2% BSA 

TBE 89 mM Tris base, 89 mM boric acid, 2 mM EDTA 

TSE 10 mM Tris, 150 mM NaCl, 10 mM EDTA 

TAE (10×) 2 M Tris, 5.7% (v/v) glacial acetic acid, 50 mM EDTA 

 

Protein extraction buffer 

50 mM Hepes (pH 7.4), 1% (v/v) Triton X-100, 50 mM NaCl, 100 mM NaF, 10 

mM EDTA, 10 mM Na3VO3, 0.1% (w/v) SDS; supplemented with a cocktail of 

protease inhibitors (Leupeptin 10 ng/ml, Aprotinin 10 µg/ml, Benzamidine and 

PMSF 2 mM). 

 

RIPA buffer  

50 mM Tris (pH 7.5), 5 mM NaCl, 1 mM EGTA, 1% Triton X-100, 50 mM NaF, 10 

mM Na3VO4, 1 mg/ml aprotinin, 1 mg/ml leupeptin, 1 mg/ml pepstatin A, 0.1 mM 

phenylmethylsulfonyl fluoride and 1 mM DTT 

 

Protein denaturing sample buffer (2×) 

0.5 M Tris-HCl, pH6.8, 10% glycine, 10% SDS, 0.1% Bromophenol. 
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2.2. Methods 

 

2.2.1. Methods of cell biology  

 

2.2.1.1. Cell culture 

Fibroblasts were established by outgrowth from foreskin of healthy human 

donors aged 3 to 6 years (Fleischmajer et al. 1981). Fibroblasts were maintained 

in Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% fetal 

calf serum (FCS). Fibroblasts were incubated in a humidified 5% CO2 - 95% air 

atmosphere at 37°C. For determination of growth rates and cumulative 

population doublings (CPDs), cells were counted at each transfer with a Fuchs-

Rosenthal haemocytometer. CPD was calculated according to the following 

equation: 

 

 

ai = Cell number per dish at the end of each passage. 

a0 = cell number seeded per dish at the beginning of each passage. 

 

2.2.1.2. Freezing and thawing of fibroblasts 

Subconfluent fibroblasts were trypsinized, resuspended in FCS (GIBCO BRL) 

supplemented with 10% DMSO (Sigma-Aldrich). Aliquots were placed in a 

freezing container filled with isopropanol and remained for 1-2 days at -80°C 

before storage in liquid nitrogen. For thawing frozen fibroblasts were quickly 

transferred from liquid nitrogen into a 37°C water bath, thawed, seeded on a 

Petri-dish at a density of 2×105~5×105 with subsequent change of medium one 

day later.  

 

2.2.1.3. Rho0  fibroblasts 

mtDNA depleted fibroblasts designated as Rho0 fibroblasts were prepared by 

treating human dermal fibroblasts with 0.1µg/ml ethidium bromide at 37°C for 7-

14 days in DMEM supplemented with 10% FCS, 110 µg/ml pyruvate, and 50 

µg/ml uridine. During cell growth, because mtDNA replication is inhibited, the 

initial number of mtDNA molecules present in these cells is decreased by a factor 

of two each time the cells divide. The depletion of mtDNA was confirmed by the 
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mitochondria transcription factor, mtTFA, which has been shown to correlate with 

mtDNA copy number (Shen and Bogenhagen 2001). Afterwards, Rho0 

fibroblasts were maintained in the same medium to ensure that mtDNA will not 

recover back.  

 

2.2.1.4. Generation of stably transfected cell line 

Fibroblasts (1×106) were seeded in a 10 cm diameter dishes 24 h before 

transfection. The plasmid (pEGFP-N1) containing GFP and neomycin resistant 

genes was transfected into skin fibroblasts using FuGENE 6 reagent according to 

the manufacturers’s instructions (ClonTech Laboratories Inc, Heidelberg). 

pEGFP-N1 (4 µg) and FuGENE reagent (24 µl) prediluted in 372 µl optimized 

MEM were mixed and incubated at room temperature for 45 min to allow the 

formation of DNA-lipid complexes. Fibroblasts were incubated with these 

complexes in serum free medium for 3-8 h at 37°C and 5% CO2. Thereafter, FCS 

was added to the cells without removing the transfection mixture. 24 h after 

transfection, cells were cultured in fresh selective medium containing 200 µg/ml 

geneticin (G418, Gibco BRL, Eggenstein, Germany). Selection was continued 

with changes of the medium every 3 days until colonies of cell become visible. 

Single clones were picked and expanded.  

 

2.2.1.5. Cell morphology 

In order to monitor fibroblast morphology at different time points after irradiation, 

fibroblasts were fixed using formaldehyde (3.7% in 1× PBS) for 10 min, washed 

briefly with 70% ethanol and stained with Coomassie Blue (0.05% in 20% 

methanol and 7.5% acetic acid) for at least 20-30 min (Bayreuther et al. 1988).  

 

2.2.1.6. MTT assay 

The cytotoxicity of reagents was determined by measurement of cell viability 

using MTT assay. This assay depends on the ability of mitochondrial 

dehydrogenases within viable cells to reduce MTT dye to a blue formazan 

product. The amount of the reduced dye is directly correlated to the number of 

viable cells. After treatment of fibroblasts with PUVA or chemicals, DMEM/10% 

FCS containing 0.5 mg/ml MTT (Sigma) was added to each dish. The cells were 
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incubated at 37°C for 1 h and then an equal amount of solubilization solution 

(0.04 N HCl in isopropyl alcohol) was added and mixed thoroughly to dissolve the 

crystals of MTT formazan. After all of the crystals were dissolved, the 

photoabsorption was measured at 540 nm was measure.  

 

2.2.1.7. Trypan blue dye exclusion assay 

Cell suspension in PBS was stained with 0.4% trypan blue (w/v, in PBS) for 5-15 

min at room temperature. The cells excluding or stained with the dye were 

counted using a haemocytometer. Membrane integrity was expressed as the 

percentage of cells that excluded the dye. 

 

2.2.1.8. PUVA treatment 

Crystalline 8-methoxypsoralen (8-MOP) was dissolved in DMSO at a 

concentration of 1 mg/ml and stored in the dark. A working solution of 8-MOP 

was prepared in DMEM or phosphate-buffered saline (PBS) immediately prior to 

use. For PUVA treatment, fibroblasts were pre-incubated with 50 ng/ml of 8-MOP 

and cultured in DMEM for 16-18 h. Thereafter the medium was changed to pre-

warmed PBS containing 8-MOP at a concentration of 50 ng/ml. Cells were 

irradiated at a dose of 90 kJ/m2 using a high intensity UVA source (UVASUN 

3000 equipped with the UVASUN safety filters, Mutzhas, Munich, Germany) 

emitting wavelengths in the 340-450 nm range. Fluencies were determined with a 

spectrum adapted UVA-ultraviolet meter (Dr. Hönle, Planegg, FRG). Under these 

non-toxic conditions of PUVA treatment > 85% of fibroblasts survived.  

 

2.2.1.9. β-galactosidase (β-Gal) Staining 

β-galactosidase staining was performed according to published method (Dimri et 

al. 1995). Cells were fixed in 2% formaldehyde/0.2% glutaraldehyde, rinsed with 

PBS, and stained in fresh senescence-associated β-galactosidase (SA-β-Gal) 

stain solution (1 mg/ml X-Gal, 40 mM citric acid/sodium phosphate/pH 6.0, 5 mM 

K3Fe[CN]6, 5 mM K4Fe[CN]6, 150 mM NaCl, 2 mM MgCl2) overnight at 37°C. To 

detect lysosomal β-Gal, staining was performed with citric acid/sodium 

phosphate at pH 4.0. 

 



 20 

2.2.1.10. Soft agar assay 

Fibroblasts regrowing post PUVA treatment and mock-treated (under a same 

experiment procedure but without psoralen and UVA irradiation) control 

fibroblasts were tested for anchorage independent growth in soft agar (Saitoh et 

al. 1999). 5x103 cells were suspended in 1.5 ml DMEM medium of 0.4% agar 

supplemented with 10% FCS and overlaid on 1.5 ml of a similarly prepared 0.8% 

agar-medium basal layer in 35 mm plastic tissue culture dishes. The epithelial 

carcinoma cell line HeLa and the fibrosarcoma cell line HT1080 (Rasheed et al. 

1974) served as positive controls. All cultures were incubated at 37°C in an 

humidified 5% CO2 95% air atmosphere. Thereafter colony formation was 

assessed and photographed at a magnification of x100. Three independent 

experiments were performed in triplicates. As no colony formation occurred in 

regrowing fibroblasts post PUVA treatment, numbers of single cells post PUVA 

treatment and the mock-treated control were calculated at different time points 

after seeding cells into soft agar. Data are expressed as the mean ± standard 

deviation of 10 randomly selected high power fields (x100 magnification). 

 

2.2.1.11. BrdU immunostaining 

BrdU incorporation was performed using an in situ proliferation kit (FLUOS, 

Roche, Mannheim). After PUVA treatment, cells were cultured in 35 mm plastic 

tissue culture dishes, and BrdU incorporation was determined at different time 

points post PUVA treatment. Fibroblasts were incubated with BrdU at a 

concentration of 10 µM for 10 to 14 hours, and subsequently stained with a 

fluorescence linked anti BrdU antibody. Microphotographs were taken with a 

CCD-camera attached to a fluorescence microscope (Nikon) at a magnification of 

×100. BrdU labelled nuclei as well as unlabelled and total nuclei were counted 

and calculated, repetitively, in 10 randomly selected high power fields (x100 

magnification). The results were expressed as percent BrdU positive cells of total 

cell number. 

 

2.2.1.12. Cell enucleation and fusion 

Reagents and solutions: Cytochalasin B was prepared as a 1 mg/ml solution in 

95 or 100% ethanol. Stored at -20°C, this solution is stable for more than 1 year. 
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Ficoll-400 is prepared as a 50% (w/w) solution in distilled water, dissolved by 

stirring overnight at room temperature and then sterilized by autoclaving. Fifty 

percent (w/v) solution of Polyethylene glycol 1000 (PEG) was prepared by first 

liquefying the PEG by briefly heating the Erlenmeyer flask in a microwave oven. 

The liquefied PEG is allowed to cool, and, before it solidifies, 8 ml DMEM and 2 

ml DMSO were added. The pH of the final solution was adjusted to pH 7.4 with 

10 N NaOH using the phenol red pH indicator dye (present in the DMEM) to 

visually estimate the pH of the solution. The exact pH of the solution has been 

found not to be critical for cell fusions. This PEG solution can be stored at 4°C up 

to 1 month. As the concentration of PEG is critical for successful cell fusions any 

evaporation that occurs during storage will adversely affect the results. Therefore, 

the PEG solution was kept in a tightly sealed container if not used immediately. If 

stored at 4°C, the PEG should be re-dissolved at 37°C prior to use. 

 

Ficoll gradient preparation: A discontinuous Ficoll gradient is prepared in a 14×89 

mm polypropylene ultracentrifuge tube. Two ml 25%, 2 ml 17%, 0.5 ml 16%, 

0.5ml 15% and 2 ml 12.5% Ficoll were prepared as shown in the following table 

and filled into tube in order. 

Final Ficoll 

Conc. (%) 

50% Ficoll  

Stock (ml) 

FCS free  

DMEM (ml) 

Cytochalasin 

B 

 [1 mg/ml] (µl) 

25 5 4.9 100 

17 3.4 6.5 100 

16 3.2 6.7 100 

15 3 6.9 100 

12.5 5 14.8 200 

 

Pipet exactly the stated volume of each concentration of Ficoll into polypropylene 

tube, mix thoroughly before pipetting since a gradient is formed in the stock. It is 

recommended that the interfaces of the Ficoll layers be marked on the outside of 

the centrifuge tube to facilitate their identification after centrifugation. The 

gradient is prepared at least 4 hr but less than 24 hr prior to use. The Ficoll 
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gradient was used 6-8 hours after preparation in the experiments. Keep at 37°C 

in CO2 incubator to maintain the temperature and the pH. 

Enucleation Procedure: Cells are trypsinized and collected by centrifugation. 

Resuspending in 3ml 12.5% ficoll with additional 30 µl cytochalasin B (final 

concentration is 20µg/ml). 1-3×107 cells are required. The cell suspension is 

layered on the gradient, incubated with cytochalasin B at room temperature for 

10 min before centrifugation. Centrifugation was performed with SW 41 swinging-

bucket ultracentrifuge rotor (Beckman Instruments Inc.). The rotor and centrifuge 

are prewarmed by prior centrifugation at 10,000 rpm for 2 hr. Centrifugation of 

the gradients is performed at 26,000 rpm for 1 hr at 29°C (The highest 

temperature provided. The cytoplasts and fragments of cytoplasts are found 

through the 12.5, 15, and 16% ficoll solution, collecting by a transfer pipette and 

diluting with 10-20 volumes of DMEM. The karyoplasts are collected from the 

pellet in the tube bottom. Wash with DMEM before collecting. 

 

 

 

 

 

 

 

 

 

 

 

 

Fusion of cytoplasts and karyoplasts: Mix the collected cytoplasts of normal cells 

and the karyoplasts of the PUVA-treated cells. For the fusion between the PUVA 

cytoplasts and mock-treated karyoplasts, treat cytoplasts with 20µg/ml Hoechst 

Ficoll 
gradient 

Cytochalasin B 
Centrifugation 

Debris 

Cytoplast 

Whole cell 

Karyoplast 
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33342 for 20-30 min in DMEM medium and wash once before mix. Centrifuge at 

1000-1100g for 5 min to pellet the cytoplasts and karyoplasts. Remove as much 

medium as possible with a pasteur pipette and add 200µl-500µl of fusion solution 

for exactly 1 min at room temperature. Quickly add 10 ml of complete growth 

medium, and centrifuge at 800g for 5 min. Decant the supernatant, gently 

resuspend fusion product using a Pasteur pipette and plate out in culture dishes 

at low density. Twenty four hours later, the medium is changed to remove the 

dead cytoplasts and other fragments. For the fusions between mock-treated 

cytoplasts and PUVA karyoplasts, the medium was discarded and new medium 

supplemented with 200µg/ml G418 was used for selection.  

 

 

 

 

 

 

2.2.2. Methods of molecular biology  

 

2.2.2.1. Isolation of genomic DNA 

Cell monolayers were trypsinized and washed with TSE. The pellets were 

thoroughly resuspended in 200-250 µl TSE. Two hundred-250 µl of TSE 

containing 0.4% SDS and 0.6-0.8 mg/ml proteinase K (final concentration 0.2% 

SDS and 0.3-0.4 mg/ml proteinase K) was added.  Incubation was carried out 

subsequently at 55°C overnight (at least 5-6 hours) or until no cellular debris is 

visible. An equal volume of phenol/chloroform/isoamyl alcohol (24:24:1) was 

added to the lysate, mixed by inversion and centrifuged for 10 min with 12600 g 

at 16°C. The upper aqueous phase containing genomic DNA was removed and 

mixed with an equal volume of chloroform. A further extraction was performed to 

remove any remaining phenol. The upper aqueous layer was then collected. Two 

to 3-fold volumes of pre-cooled ethanol were added and the solution was well 

mixed by inversion. DNA precipitates should be visible. Recovering DNA 

precipitates was carried out using a drawn out Pasteur pipet and with subsequent 

lifting the DNA out of the alcohol (spinning out). DNA was dipped into 70% EtOH 

PEG 
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and transferred to new Eppendorf tube. After briefly air drying the DNA was 

resuspended in TE. Isolated genomic DNA was stored at 4°C. 

 

2.2.2.2. Telomere repeat analysis 

Telomere length was analyzed using a commercially available assay 

(PharMingen, San Diego, USA). Isolated genomic DNA was digested with two 

frequently cutting restriction enzymes, RsaI and HinfI, which does not have a 

target sequence within the telomeric repeat (TTAGGG). The chromosomal DNA 

is therefore cut into small fragments except for the telomeres and subtelomeric 

regions (DNA adjacent to the telomere), which will be left intact and which 

together comprise the Terminal Restriction Fragments (TRF). Using multiple 

frequent cutters, it is assured that the chromosomal DNA is minimal in 

comparison to the DNA conferring the telomere length. The cleaved DNA is 

separated on a low percentage agarose gel and transferred for Southern blot 

analysis. Briefly, 1.5 µg of HinfI/RsaI-digested DNA of each sample was size-

fractionated by electrophoresis on 0.6% agarose gels in TAE buffer (0.04M Tris-

acetate, 0.001M EDTA, pH 8.0). After electrophoresis, blotting was carried out by 

alkaline transfer to a positively charged nylon membrane (Amersham Hybond-N+). 

Hybridization was carried out using a 51-mer biotinylated telomeric probe 

(TTAGGG)8-TTA, which was boiled for 5 min before being added to the 

hybridization buffer. Prehybridization was performed for 2 hours with subsequent 

hybridization overnight at 60°C. After washing and blocking unspecific binding, 

the membrane was probed with streptavidin-HRP (1:300) for 15 min at RT. The 

membranes were then washed with TBS-T again, incubated with North2South 

Luminol/Peroxide solution (PERBIO Science Deutschland, Bonn, Germany) for 

5-10 min and exposed to X-ray film. The TRF (terminal restriction fragments) 

length was estimated by comparing the position of the signal smear or calculated 

by positions relative to the molecular weight markers.  

 

2.2.2.3. Single strand telomere DNA length determination 

Genomic DNA isolated from growth-arrested fibroblasts at different time points 

post PUVA treatment as well as mock-treated control and regrowing fibroblasts 

were digested first with RsaI/HinfI (1U/µl) overnight at 37°C. After digestion, half 
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of the sample (20µl, 5µg DNA) was treated with alkaline buffer (0.4M NaOH, 4 

mM EDTA) for 5-10 min to separate DNA double strands, then subjected to 

electrophoresis and Southern blot as described above. The other half of the 

samples was used without denaturing as control for double-stranded telomere 

length determination. 

 

2.2.2.4. TRAP assay 

The TRAP assay was carried out according to published protocols (Blackburn 

1991; Greider and Blackburn 1985). Frozen samples or cell pellets from cell lines 

were homogenized in cold CHAPS lysis buffer. After a 30 min incubation period 

on ice, the homogenized lysates were centrifuged at 12,000 g for 30 min at 4°C 

and the supernatants were aliquoted and stored frozen at -80°C until use. The 

telomerase activity was determined by PCR. Briefly, 50 µl of TRAP reactions 

including cell extract, 0.1 µg TS forward primer (5'-AATCCGTCGAGCAGAGTT-

3'), 0.1 µg reverse primer (5'-GCGCGG(CTTACC)3CTAACC-3'), and 2.5 unit of 

Taq DNA polymerase were mixed. After 20 min incubation at 30°C for 

telomerase-mediated extension of the TS primer, the mixture was subjected to 

PCR amplification (94°C/30 sec, 58°C/30 sec, 72°C/15 sec for 35 cycles). The 

resulting PCR products were electrophoresed on a 14% polyacrylamide gel, and 

stained with SYBRTM green. Three independent experiments were carried out 

with similar results. 

 

2.2.2.5. Immunoblot 

Cells were treated with 0.4-0.6ml Ripa buffer and harvested by scraping. The cell 

pellet was sonicated and kept immediately on ice. Cell debris was clarified by 

centrifugation at 12000-14000g for 10-15 min and protein samples were stored at 

-80°C. Tween µg of total cell proteins were mixed with an equal volume of 2× 

protein denaturing sample buffer, boiled for 5 min and subsequently resolved by 

electrophoresis with 10%-20% (depends on protein molecular weight) 

polyacrylamide gels at 40mA for 40-60 min. The proteins were electro-blotted on 

nitrocellulose membrane as follows. Electro-transfer was preformed at 2.5 

mA/cm2 for 1 hour, using the transfer assembly as shown below. The 

membranes were blocked (RT, 1 hour) in TBS containing 0.05% Tween 20, 1% 

casein and 1% PVP. The membranes were then incubated in TBS containing 
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0.05% Tween 20, 0.5% casein, 0.5% PVP and 0.1% PEG-6000 with specific 

primary antibodies (at the appropriate dilution) overnight at 4°C. Thereafter 

membranes were washed two times with TBS containing 1% Tween-20 (TBS-T) 

and probed with HRP-conjugated secondary antibodies (1:2000) and HRP 

conjugated anti-biotin antibodies (1:3000) for 1 hour at RT. After incubation, the 

membranes were washed again with TBS-T and incubated with LumiGLO (New 

England Biolabs, Inc.) for 1 min at RT, wrapped in transparency foil and exposed 

to X-ray film. 

 

 

2.2.2.6. ELISA for MMP-1 expression  

A specific "sandwich" ELISA for MMP-1 was performed according to the 

manufacturer’s recommendations, (MMP-1 human ELISA system, Amersham 

Pharmacia Biotech, Freiburg) using precoated 96-well immunoplates, rabbit anti-

human MMP-1 antibodies and anti-rabbit horse-radish peroxidase substrate. 

3,3’,5,5’-tetramethylbensidine (TMB) was used as peroxidase substrate. 

Fibroblast monolayer cultures were incubated in FCS-free medium for 16 h, 

thereafter the supernatants were collected and MMP-1 concentrations were 

determined. Optical densities were read at 450 nm using a microtiter plate reader 

LP 400 (Sanofi Diagnostics Pasteur, Freiburg). Concentrations of MMP-1 were 

determined against standard curves using Graph Pad™ Software (San Diego, 

CA). 
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1 mm Filter rinsed with Anode-II Buffer 
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1 mm Filter rinsed with Cathode Buffer 
1 mm Filter rinsed with Cathode Buffer 
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Anode 
Buffer I 

30 mM Tris, 20% methanol, 
pH 10.4 
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25 mM Tris, 20% methanol, 
40 mM 6-aminohexanoic acid, 
pH not adjusted 
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2.2.2.7. ELISA for p53 and p21Cip1 expression 

p53 and p21Cip1 concentration were measured by sandwich ELISA 

immunoassays with p53 pan ELISA (Roche, Mannheim) and p21Cip1 ELISA 

(Oncogene, Cambridge, MA). Cell extracts were prepared by detergent lysis 

using Ripa buffer. The isolated proteins react first with biotin-labeled capture 

antibody which was pre-bound to the streptavidin-coated microtiter plate. The 

subsequent reaction with a peroxidase-labeled detection antibody forms a stable 

immuno-complex. After washing and peroxidase developing, p53/p21Cip1 

expression was determined by photometry at 450 nm. 

 

2.2.2.8. PCR Amplification 

The typical setup for 25µl reaction mixtures contains 100 ng genomic DNA, 200 

µM dNTPs, 1 µM primers (0.5 µM sense primer and 0.5 µM antisense primer), 

2.5 µl of 10× Taq DNA polymerase buffer (Amersham Biosciences Europe, 

Freiburg), Mg2+ concentrations ranging from 1.0 to 2.5 mM, and 2.5 units of Taq 

DNA polymerase (Perkin-Elmer, Heidelberg,Germany). Amplifications were 

performed in a thermal cycler under the following conditions: 94°C/3 min, 

94°C/0.5 min, 55 °C/1 min (subject to changes for different amplifications, 

ranging from 53-62°C), 72 °C/1 min, 30-35 cycles, 72 °C 10 min and then stored 

at 4°C. Hot start was utilized throughout all PCR reactions. Amplifications of PCR 

mixtures without template DNA served as negative controls. The PCR products 

(4 µl) were separated in an 1.5-2.0% agarose gel (80-120V for 1-2 hours), and 

then stained with ethidium bromide. PCR primers were designed based on the 

human DNA sequence. The following primer sets were used for PCR 

amplifications. 

 

• Human p53 (TP53) gene: It has 11 exons, as shown in table 1. The entire 

sequence was from NCBI GenBank with the accession number U94788. The 

numbering scheme of the NCBI GenBank was used. Due to the difficulty in 

sequencing DNA samples with a length longer than 1 kb, we subdivided the 

exon 11 into 2 regions, from nucleotides 500 to 1210 and 1200 to 1600. The 

products were designated as Exon 11-1 and Exon 11-2. 
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Table 1. Human p53 (TP53) gene exons and PCR products 

Exon Length and Location 
PCR product length and 

location 

1 107 bp, 843 - 949 220 bp, 801-1020 

2 102 bp, 11689 - 11790 229 bp, 11668-11896 

3 22 bp, 11906 - 11927 248 bp, 11774-12021 

4 279 bp, 12021 - 12299 402 bp, 11998-12399 

5 184 bp, 13055 - 13238 392 bp, 12922-13313 

6 213 bp, 13320 - 13432 186 bp, 13296-13481 

7 110 bp, 14000 - 14109 211bp, 13939-14149 

8 137 bp, 14452 - 14588 252 bp, 14360-14611 

9 74 bp, 14681 - 14754 254 bp, 14594-14847 

10 107 bp, 17572 - 17678 272 bp, 17540-17811 

11 1278bp, 18599 - 19876 1461 bp, 18523-19983 

11-1 617 bp, 18599-19215 752bp, 18481-19232 

11-2 690 bp, 19187-19876 800bp, 19187-19986 

 

Exon 1 Sense, 5’-ATG TGC TCA AGA CTG GCG-3’ 

Antisense, 5’-CGA GCT GAA AAT ACA CGG-3’  

Condition: AT, 52°C, 1.5mM Mg2+ 

 

Exon 2 Sense, 5’-TCC CCA CTT TTC CTC TTG-3’ 

Antisense, 5’-AAG AGC AGA AAG TCA GTC CC-3’  

Condition: AT, 60°C, 1.5mM Mg2+ 

 

Exon 3 Sense, 5’-TCA GAC CTA TGG AAA CTG TGA G-3’ 

Antisense, 5’-CTG TAG ATG GGT GAA AAG AGC-3’  

Condition: AT, 58°C, 1.5mM Mg2+ 

 

Exon 4 Sense, 5’-CTG CTC TTT TCA CCC ATC-3’ 

Antisense, 5’-AAG GGT GAA GAG GAA TCC-3’  

Condition: AT, 52°C, 2.5mM Mg2+ 



 29 

Exon 5 Sense, 5’-CAA CTC TCT CTA GCT CGC-3’ 

Antisense, 5’-GCA ATC AGT GAG GAA TCA-3’  

Condition: AT, 55°C, 1.5mM Mg2+ 

 

Exon 6 Sense, 5’-TGA TTC CTC ACT GAT TGC-3’ 

Antisense, 5’-ACA ACC ACC CTT AAC CCC-3’  

Condition: AT, 55°C, 1.5mM Mg2+ 

 

Exon 7 Sense, 5’-TGC TTG CCA CAG GTC TCC-3’ 

Antisense, 5’-CAC AGC AGG CCA GTG TGC-3’  

Condition: AT, 60°C, 1.0mM Mg2+ 

 

Exon 8 Sense, 5’-GTT GGG AGT AGA TGG AGC-3’ 

Antisense, 5’-CGC TTC TTG TCC TGC TTG-3’  

Condition: AT, 55°C, 1.5mM Mg2+ 

 

Exon 9 Sense, 5’-CAA GCA GGA CAA GAA GCG-3’ 

Antisense, 5’-CCC AAT TGC AGG TAA AAC-3’  

Condition: AT, 52°C, 1.5mM Mg2+ 

 

Exon 10 Sense, 5’-ATA CTT ACT TCT CCC CCT-3’ 

Antisense, 5’-CAA TGA GAT GGG GTC AGC-3’  

Condition: AT, 60°C, 1.5mM Mg2+ 

 

Exon 11 Sense, 5’-ATT GGT CAG GGA AAA GGG-3’ 

Antisense, 5’-CAC ACT CAT TGC AGA CTC-3’  

Condition: AT, 49°C, 1.5mM Mg2+, 400nM dNTP, extension time 

(72°C) increases to 2 min. 

 

Exon 11-1 Sense, 5’-TGA TTT GAA TTC CCG TTG TCC-3’ 

Antisense, 5’-AAC CCA CCA GCC AAC AGG-3’  

Condition: AT, 60°C, 1.5mM Mg2+ 
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Exon 11-2 Sense, 5’-TTG AGG GTG CCT GTT CCC-3’ 

Antisense, 5’-GTC CAC ACT CAT TGC AGA CTC AG-3’  

Condition: AT, 60°C, 1.5mM Mg2+ 

 

• Human p21cip1 gene: It has 4 exons, as shown in table 2. [the entire sequence 

was from GenBank, accession number Z85996, and  the numbering scheme 

was adopted] 

 

Table 2. Human p21cip1 gene exons and PCR products 

Exon Length and Location PCR product length and 

location 

1 73bp, 3226- 3298 159bp, 3171- 3328 

2 452bp, 8594- 9045 631bp, 8549- 9179 

3 196bp, 10247- 10442 290bp, 10221- 10510 

4 1370bp, 10456- 11825 1705bp, 10348- 12206 

 

Exon 1 Sense, 5’-GCG GGG CGG TTG TAT ATC-3’ 

Antisense, 5’-GGT CCC CTG TTG TCT GCC-3’ 

Condition: AT, 58°C, 1.5mM Mg2+ 

 

Exon 2 Sense, 5’-GTC TAA TCT CCG CCG TGA C-3’ 

Antisense, 5’-GGT TGC TTC CCC TCT CTG-3’ 

Condition: AT, 58°C, 1.5mM Mg2+ 

 

Exon 3 Sense, 5’-CCT GGC TGA CTT CTG CTG-3’ 

Antisense, 5’-GAA CCT CTC ATT CAA CCG C-3’ 

Condition: AT, 58°C, 1.0mM Mg2+ 

 

Exon 4 Sense, 5’-CCC GCT CTA CAT CTT CTG CC-3’ 

Antisense, 5’-CCA GTT GCT CCA TAA CCT TGC -3’ 

Condition: AT, 62°C, 1.5mM Mg2+ 
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• Human p16INK4a gene: It has 3 exons, as shown in table 3. [Sequence was 

from GenBank accession numbers U12818, U12819 and U12820. The entire 

sequence was the composite and  the numbering scheme was adopted as 

U12818-U12819-U12820 (1-340)-(341-925)-(926-1347)] 

 

Table 3. Human p16INK4a gene exons and PCR products 

Exon Length and Location PCR product length and 

location 

1 126bp, 129 - 254 272 bp, 66 - 338 

2 307bp, 491 - 797 453 bp, 414 - 866 

3 14bp, 1199 - 1212 172 bp, 1071 - 1243 

 

Exon 1 Sense, 5’-GGA GAG GGG GAG AGC AGG-3’ 

Antisense, 5’-GCT ACC TGA TTC CAA TTC CCC-3’ 

Condition: AT, 60°C, 1.0mM Mg2+ 

 

Exon 2 Sense, 5’-AGG GGG CTC TAC ACA AGC TTC-3’ 

Antisense, 5’-GTG CTG GAA AAT GAA TGC TCT G-3’ 

Condition: AT, 60°C, 1.5mM Mg2+ 

 

Exon 3 Sense, 5’-AGC CAT TGC GAG AAC TTT ATC C-3’ 

Antisense, 5’-CCC GAG GTT TCT CAG AGC C-3’ 

Condition: AT, 62°C, 1.5mM Mg2+ 

 

2.2.2.9. PCR products purification and sequence analysis 

PCR products were purified using the QIAquick PCR purification kit (QIAGEN, 

Hilden), and then sequenced on both DNA strands using the same primers for 

PCR. The sequence data were compared to the human genome sequence from 

GenBank. Sensitivity of the method was evaluated by employing 2 positive 

controls: a) a fibroblast cell line derived from Li-Fraumeni patients which contains 

a single base pair deletion in its p53 gene at exon 5 (codon 184, from GATA to 

GAA); b) a lung fibroblast cell line which reveals a deletion and insertion of 

neomycin and hygromycin in its p21cip1 gene. 
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2.2.3. Additional methods 

 

2.2.3.1. ROS measurements  

Levels of intracellular ROS were assessed by loading cells with 10 µg/ml of 

fluorescent ROS indicator 2’-7’ dichlorodihydrofluorescin diacetate (H2DCF-DA) 

(Molecular Probes, MoBiTec, Goettingen) for 20 min and with subsequent 

detection using a Zeiss laser scanning confocal microscope. H2DCF-DA is a 

nonpolar compound that is converted into a nonfluorescent polar derivative by 

cellular esterases after incorporation into cells. H2DCF is membrane 

impermeable and is rapidly oxidized to the highly fluorescent 2',7'-

dichlorofluorescein (DCF) in the presence of intracellular ROS (Frenkel and 

Gleichauf 1991). The excitation wavelength is 488 nm and emission wavelength 

is 521 nm. The resulting image is an artificial colour made by the computer 

program based on intensity of the emitted photons. To determine the involvement 

of NADPH oxidase, two NADPH oxidase inhibitors, diphenylene iodonium (DPI, 

Sigma, 10µM) or 4-(2-aminoethyl)-benzenesulfonyl fluoride (AEBSF, Sigma, 

100µM) were added to control or PUVA-treated fibroblasts for 2 hours before 

ROS detection. 

 

2.2.3.2. Supplementation of fibroblast culture with N-acetyl cystein and 

subsequent determination of intracellular ROS Levels 

Immediately after PUVA treatment, fibroblasts were maintained in DMEM/10% 

FCS containing 5 mM NAC. The medium was changed every three days to 

ensure an efficient antioxidant capacity. PUVA-treated fibroblasts were fed with 

NAC until they started to reproliferate. ROS levels in these NAC supplemented 

fibroblasts were determined by DCF staining at different time points post PUVA 

treatment. 

 

2.2.3.3. Measurement of the mitochondrial membrane potential 

To measure ∆Ψm, cells (1×106 cells/ml) were resuspended in 5 mg/ml solution of 

JC-9 (Molecular Probes, MoBiTec, Goettingen) in phosphate buffered saline at 

different time points post PUVA treatment (Salvioli et al. 1997). The dye exists as 

a monomer at low concentrations (emission, 530 nm, green fluorescence) but at 

higher concentrations forms J-aggregates (emission, 590 nm, red fluorescence). 



 33 

Because accumulation of the JC-9 dye is reversible, cells were maintained in a 

stable concentration of the dye throughout the time of measurement. After a 20 

min incubation period at 37 °C, cells were immediately analyzed by flow 

cytometry. Dead cells were excluded by forward and side scatter gating. Data 

were collected by analyzing an average population of 20,000 cells. JC-9 

aggregates were detectable in the propidium iodide channel (red fluorescence, 

emission at 590 nm), and JC-9 monomers were detectable in the fluorescein 

isothiocyanate channel (green fluorescence, emission at 527 nm) (Reers et al. 

1995). 

 

2.2.3.4. Measurement of mitochondrial biogenesis 

To stain mitochondria, cells were incubated in DMEM medium containing 25nM 

MitoTracker Red CMXRos (Molecular Probes, MoBiTec, Goettingen) for 30 min 

at 37°C. Cells were photographed using a 568-nm line of fluorescence excitation 

using a Zeiss laser scanning confocal microscope. 

 

2.2.3.5. ATP measurements 

ATP was measured by a bioluminescence assay (Kricka 1988) using an ATP 

determination kit (Merck Biosciences, Schwalbach). The assay is based on the 

requirement of luciferase for ATP to produce light (emission maximum ~560 nm 

at pH 7.8). Briefly, after PUVA treatment cells (~5×105) were resuspended in 

reaction buffer containing 1 mM DTT, 0.5 mM luciferin, and 12.5 µg/ml luciferase, 

gently mixed, and light production was monitored using a luminometer 

(Lumicount, Packard Instrument Co. Meriden, USA). ATP standard curves were 

run with different concentrations of ATP, and calculations were made against 

these curve. Cellular ATP levels were expressed both per cell and per total 

protein. 

 

2.2.3.6. Densitometry measurement 

The bands from Southern or Western blots were quantified with densitometry 

analysis using a computerized digital imaging system, Scanpac software (Alpha 

Innotech, San Leandro, CA). The intensity of each band or the distribution of 

DNA fragments was obtained by integrating the pixel values after subtracting the 

background. 
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2.2.3.7. Statistics 

Mean values standard errors was determined using the Microsoft Excel program. 

Student-t test was used to compare the differences between two groups and 

ANOVA test for comparing three or more groups. In all cases, the statistical 

significance of differences between the two variants was determined at the level 

of p < 0.05. All the data presented were from the average of at least three 

independent experiments. 
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3 Results 

 
3.1. Human dermal fibroblasts escape from PUVA-induced long-term 

senescence-like growth arrest 

As observed in our laboratory, a single PUVA treatment promotes morphological 

and functional changes in fibroblasts in vitro reminiscent of cellular senescence 

(Herrmann et al. 1998). In addition to long-term growth arrest, PUVA-treated 

fibroblasts showed an enlarged morphology, increased SA-β-Gal and MMP-1 

expression, markers which are often up-regulated in replicative-senescent cells 

(Bayreuther et al. 1988; Dimri et al. 1995; West et al. 1989). In contrast to the 

permanent growth arrest in replicative senescence PUVA-treated fibroblasts start 

to regrow after a three-month growth arrest post PUVA treatment. As growth 

arrest in replicative or premature senescence has earlier been claimed to be 

irreversible (Chen 2000; Dumont et al. 2000), it was the aim to further 

characterize the underlying mechanisms responsible for the escape of PUVA-

treated fibroblasts from the senescence-like state. 

 

3.1.1. Regrowth of fibroblasts from PUVA-induced long-term senescence-

like growth arrest 

After a single PUVA treatment, the growth-arrested fibroblasts gradually gained 

an enlarged phenotype. Figure 5A shows enlarged fibroblasts 28 days post 

PUVA treatment. At 90 to 110 days after PUVA treatment and the subsequent 

long-term growth arrest, multiple foci of small proliferating fibroblasts were 

observed in 4 independent experiments. Note the small spindle shaped, 

regrowing fibroblasts among the enlarged growth-arrested fibroblasts (Figure 5B). 

Figure 5C reveals the high magnification of the smaller regrowing fibroblasts 

adjacent to growth-arrested large fibroblasts. Concomitantly occurring foci were 

distributed throughout the dish. To further determine the time point of regrowth 

and to answer the question whether regrowing fibroblasts may result from rare 

fibroblasts which have never been growth-arrested instead of from concomitantly 

regrowing fibroblasts in multiple foci, BrdU incorporation was performed to 

monitor proliferation of PUVA-treated fibroblasts at different time points post 
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treatment. As shown in Figure 6, no positively stained nuclei were observed even 

at the  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 Regrowth of fibroblasts post PUVA treatment. (A) Growth-arrested 
fibroblasts showed a senescent-like morphology at day 28 after a combined 
treatment with 50ng/ml psoralen and 90 kJ/m2 UVA (magnification ×50). (B) and 
(C) Two independent foci of regrowing small fibroblasts occurred concomitantly 
between cells with enlarged cytoplasm at 90 to 110 days post PUVA treatment in 
the same dish (B, magnification ×20; C, magnification ×50). 

A 

B 
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Figure 6. BrdU incorporation at different time-points post PUVA treatment. 
BrdU incorporation was performed using the “in situ proliferation kit FLUOS” as 
described in detail in Materials and Methods. BrdU labeled nuclei as well as 
unlabelled and total nuclei were counted and calculated, respectively, in 10 
randomly selected high power fields (x100 magnification). After PUVA treatment, 
cells were seeded in 35 mm plastic dishes with a total cell number of 3x104 
cells/dish. (A) At 56 days post PUVA treatment no BrdU incorporation into nuclei 
was detected. (B) At 98 days post PUVA treatment many concomitantly occurring 
BrdU labeled nuclei were detected. (C) One week later at day 105 post PUVA 
treatment even more cells revealed BrdU incorporation in nuclei. (D) The results 
are summarized in the graph and BrdU incorporation at different time points post 
PUVA treatment were expressed as percent of BrdU positive cells of total cell 
number/high power field. Cells in ten power fields were counted and the data are 
shown as mean ± standard deviation. *p < 0.006 compared with cells 98 days 
post PUVA treatment (students t-test). 
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end of 8 weeks post treatment (Figure 6A). Fourteen weeks post treatment 

scattered foci-like cell proliferation could be observed (Figure 6B). These data 

indicate that regrowth occurred around day 100 post PUVA treatment. After initial 

appearance of reproliferating fibroblasts at multiple regions of the dish, it took 

only 8 days until the dish revealed predominantly small reproliferating fibroblasts 

(Figure 6C, D). Confluence was reached at day 10-12 after the appearance of 

reproliferating cell foci.  

 

3.1.2. Regrowth is not due to immortalization or transformation 

As cellular senescence has been proposed to be activated as a barrier against 

tumorigenesis, and senescence induced growth arrest is controlled by tumor 

suppressor genes such as p53 and p16INK4a (Campisi 2001a), we studied 

whether the regrowth of fibroblasts after PUVA treatment was due to loss-of-

function of these tumor suppressors and other related cellular senescence 

controlling genes. In this case, it was expected that the regrowing fibroblasts 

were most likely either immortalized or transformed. 

 

3.1.2.1. Regrowing fibroblasts post PUVA treatment do not show any telomerase 

activity, but a reduction in  telomere length with increasing CPD 

Immortalization and the overall proliferation capacity of human cells depend on 

the maintenance of telomere length (Blackburn 1991). Since expression of 

telomerase is the most common mechanism for immortalized or cancer cells to 

stabilize their telomeres, we determined the telomerase activity in regrowing 

fibroblasts post PUVA treatment. Figure 7 shows that no telomerase activity was 

determined either in fibroblasts regrowing post PUVA treatment or in mock-

treated (under a same experiment procedure but without psoralen and UVA 

irradiation) control fibroblasts. The epidermal cell line HaCaT (Figure 7 lane 2 

and 3) and the fibrosarcoma cell line HT1080 (Figure 7 lane 6 and 7) with a high 

telomerase activity served as positive controls. In line with this, a decrease in 

telomere length occurred in fibroblasts regrowing post PUVA treatment with 

increasing CPD. As shown in Figure 29 (see page 79), the terminal restriction 

fragments (TRF), as an indication of telomere length, was determined in 

regrowing fibroblasts post PUVA treatment and mock-treated control fibroblasts. 

Lane 3, 5, 7, 9 showed telomere length of regrowing fibroblasts at different CPDs. 
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It can be seen that with increasing CPD, the telomere length in regrowing 

fibroblasts decreased. Interestingly, a significantly shorter telomere length was 

observed in regrowing fibroblasts post PUVA treatment compared to mock-

treated control fibroblasts at exactly the same CPD. The underlying mechanism 

will be discussed later. Taken together, regrowing fibroblasts did not reveal any 

telomerase activity and their telomere lengths, in fact, erode with increasing CPD. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Telomerase activity does not differ in mock-treated control 
fibroblasts and in PUVA-treated fibroblasts during growth arrest and their 
regrowing phase. Telomerase activity was measured by the standard TRAP 
assay. Cell lyses and telomerase assay were performed using the TRAPeze kit. 
Fifty ng of total protein extract were used for each assay, each with or without 
RNase-inactivation. Products were separated in non-denaturing 10% 
polyacrylamide gels, visualized by autoradiography and photoimage scanning. 
Lane 1: Lyses buffer; Lane 2-11 represent the analysis of different cell lines 
without and with RNase-inactivation; lane 2, 3: HaCaT cells; lane 4,5: Mock-
treated control fibroblasts; lane 6,7: HT1080 (Fibrosarcoma cell line); lane 8,9: 
fibroblasts of the same strain as in lane 6,7 in their regrowing  phase post PUVA 
treatment; lane 10,11: PUVA-treated growth-arrested fibroblasts at 4 weeks post 
PUVA treatment; lane 12: 5 ng of total protein extract of HaCaT cells were used. 
 

1    2    3    4    5    6    7    8    9   1 0   1 1  1 2  

−   +   −   +   −   +   −   +   −   +   −   RNase 
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3.1.2.2. Regrowth of fibroblasts post PUVA treatment is anchorage dependent 

In a first attempt to study whether regrowing fibroblasts are transformed - a state 

which is characterized by anchorage independent growth (Saitoh et al. 1999) - 

fibroblast proliferation and colony formation were studied by means of the soft 

agar assay. For this purpose regrowing fibroblasts post PUVA treatment, mock-

treated control fibroblasts of the same strain at the same CPD and, as positive 

controls, two tumor cell lines (fibrosarcoma cell line HT1080, HeLa cell line) were 

placed into soft agar and cultured for 10 to 14 days. While the HeLa cell line and 

the fibrosarcoma cell line HT1080 formed numerous colonies confirming 

anchorage independent growth (Figure 8A, B), neither control fibroblasts nor 

fibroblasts with resumed growth post PUVA treatment formed any colony in the 

soft agar (Figure 8C, D). Following an extended observation period of 35 days, 

mock-treated control and regrowing fibroblasts did not form colonies, instead the 

number of cells gradually decreased and eventually disappeared (data not 

shown). Thus, the growth of regrowing fibroblasts was anchorage dependent. 

These data indicate that the regrowth of fibroblasts observed at days 100 to 130 

after a single PUVA treatment is not due to transformation.  

 

3.1.2.3. Regrowing fibroblasts post PUVA treatment reveal a decline in growth 

rates with increasing CPD 

To further confirm that regrowth of fibroblasts after PUVA treatment is not due to 

transformation and immortalization – as both states would show unlimited 

proliferation – the CPD was determined in regrowing fibroblasts and in mock-

treated fibroblasts of the same strain. Immortalized or transformed continuously 

dividing cells should show a constant and sustained linear increase in their CPD, 

while primary fibroblasts – due to the replicative senescence – are rather 

expected to reveal a saturation curve with increasing CPD. Fibroblasts in the 

regrowing phase post PUVA treatment and mock-treated fibroblasts with 

comparable CPD (~ 48) were passaged over a period of 5 months until the 

regrowing fibroblasts reached replicative senescence with no increase in cell 

numbers. Figure 9 reveals the CPD in regrowing fibroblasts and mock-treated 

control fibroblasts. The proliferation rate of regrowing fibroblasts decreased with 

time and reached a stationary phase (replicative senescence) after 90 day at a 

CPD of 62. By contrast, mock-treated control fibroblasts were still proliferating 
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even at 120 days at a CPD of 70. The observed CPD kinetics strongly indicates 

that regrowing fibroblasts post PUVA treatment were neither immortalized nor 

transformed. 

 

 

 

 

Figure 8. Fibroblasts regrowing post PUVA treatment do not show any 
anchorage independent growth in the soft agar assay. The epithelial 
carcinoma cell line Hela (A) and the fibrosarcoma cell line HT1080 (B) which 
served as positive controls, mock-treated fibroblasts (C) and fibroblasts of the 
same strain in their regrowing phase post PUVA treatment (D) were tested for 
anchorage independent growth in soft agar as detailed in Material and Methods. 
Briefly, 5x103 cells were suspended in 1.5 ml of 0.4% agar supplemented with 
10% FCS and overlaid on 1.5 ml of a 0.8% agar-medium basal layer in 35 mm 
plastic tissue culture dishes. All cultures were incubated at 37°C in a humidified 
5% CO2 - 95% air atmosphere without further feeding for 10 to 14 days. 
Thereafter, colony formation was assessed and photographed at x100 
magnification. Three independent experiments were performed in triplicates. 
 

A 
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Figure 9. Fibroblasts regrowing post PUVA do not show constant 
proliferation rates. Comparable cumulative population doublings (CPD) of 
mock-treated fibroblasts (CPD = 47.9) and fibroblasts of the same strain in their 
regrowing phase post PUVA treatment (CPD = 48.4) were chosen for 
comparison. At different time points thereafter, cell numbers were determined in 
triplicates for each experimental group and equal cell numbers (2x105) were 
transferred to a new tissue plate for further observation. The data represent 
cumulative population doublings (CPDs) determined in a secondary human 
dermal fibroblast cell line and are representative for two additional fibroblast cell 
lines from independent donors. Each data point represents the mean ± standard 
deviation of three independent counting. Experimental groups: (�) mock-treated 
control fibroblasts; (�) fibroblasts of the same strain in their initial regrowing 
phase post PUVA treatment. 
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3.1.2.4. Senescence control genes, p53, p21Cip1 and p16INK4a do not reveal 

mutations in regrowing fibroblasts 

Cellular senescence is mainly controlled by two major senescence controlling 

pathways, namely the p53/p21Cip1 and/or pRb/p16INK4a pathway (Lundberg et al. 

2000). Among the tumor suppressors genes, a p53 and p16INK4a loss-of-function 

occurs most commonly in mammalian cancers. To answer whether the escape of 

regrowing fibroblasts from PUVA-induced growth arrest is due to disruption of 

these important check-point genes, their integrity in nucleotide sequence was 

determined in regrowing fibroblasts post PUVA treatment, in growth-arrested 

fibroblasts and in mock-treated control fibroblasts. For this purpose, all exons of 

p53, p21Cip1 and p16INK4a genes from the three experimental groups of fibroblasts 

were amplified by PCR. The sequence of each exon was then analyzed and 

compared with the genomic DNA sequence from the gene bank of NCBI. No 

major mutation, deletion or modifications were found, neither in growth-arrested 

fibroblasts nor regrowing fibroblasts post PUVA in the 11 exons of p53, 4 exons 

of p21Cip1 and 3 exons of p16INK4a (data not shown). In order to evaluate the PCR 

amplification protocol for detection of major deletions and single point mutations, 

2 positive controls were employed. As shown in Figure 10-A and B, both a single 

point mutation in exon 5 of p53 from Li-Fraumeni (a disease related to loss of 

p53 function) cells and an 18-base deletion in exon 2 of p16INK4a from p16INK4a-

deficient fibroblasts could be detected.  

 

In summary, the data indicate that PUVA-induced senescence-like growth arrest 

is reversible in a large proportion of cells between days 90 and 120 post PUVA 

treatment. The finally returning growth capacity is not due to immortalization, 

transformation or loss of function of the senescence controlling genes p53, p21 

and p16. This leads to important question as to whether the growth arrest 

triggered in PUVA-induced premature senescence is identical to replicative 

senescence or rather a phenocopy thereof. 
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Figure 10-A. PCR amplification and sequence analysis can detect point 
mutations if they are present in all cells. Exon 5 of the p53 gene was amplified 
and sequenced using the genomic DNA template either from p53 deficient Li-
Fraumeni cells or from wild type human dermal fibroblasts. The primer sequence 
and experimental conditions were used as described in Materials and Methods.  

M    wt    -/- 

P53 exon5 (wt) 

P53 exon5 (-/-) 
Li-Fraumeni 
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Figure 10-B. PCR amplification and sequence analysis can detect a DNA 
deletion if it is present in all cells. The deletion in exon 2 of p16INK4a deficient 
lung fibroblasts was detected after sequence analysis. The primer sequence and 
experimental conditions were used as described in Materials and Methods. 

M         1       2       3         M 

M. 100bp DNA length marker 

1. PCR product: exon 2 of normal 
human dermal fibroblasts. 

2. PCR product: exon 2 of p16INK4a 
deficient cells. 

3. PCR product: exon 2 of 
regrowing fibroblasts post 
PUVA. 

Exon 2 of p16INK4a (WT) 
(part of the sequence) 

Exon 2 of p16INK4a (+/-) 
(part of the sequence) 

Deleted part 
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3.2. PUVA-induced premature senescence does not fully reflect replicative 

cellular senescence 

 

Growth arrest in replicative and stress-induced premature senescence has been 

claimed to be irreversible (Chen 2000; Dumont et al. 2000). As PUVA-induced 

growth arrest shares many features similar to other stress-induced premature 

senescence models as occurring in response to oxidative stress, DNA damage 

or oncogenic Ras, the question was addressed whether stress-induced 

premature senescence is identical to replicative senescence or rather a 

phenotypic and functional mimic of replicative senescence. In fact, the results of 

the previous section already indicate that PUVA-induced premature senescence 

is different from replicative senescence in that PUVA-treated fibroblasts regain 

their proliferation capacity after 1-3 month of growth arrest post PUVA treatment. 

In order to further characterize different features between stress-induced 

premature senescence and replicative senescence, the following questions were 

experimentally addressed: 

−−−− Are established senescent phenotypic and biochemical markers of cellular 

senescence reversible in PUVA-induced premature senescence? 

−−−− Is the PUVA-induced senescence-like growth arrest controlled by the same 

molecular pathways as in replicative senescence? 

−−−− Which mechanisms are involved and contribute to the senescence-like 

features? 

 

3.2.1. Reversibility of senescence-associated markers in regrowing 

fibroblasts post PUVA treatment 

In a first attempt to address the question whether fibroblasts which escape from 

growth arrest also lose senescence markers such as morphology and 

senescence associated β-galactosidase expression, these parameters were 

studied in PUVA-arrested and regrowing fibroblasts at different time points post 

PUVA treatment. After PUVA treatment growth-arrested fibroblasts revealed a 

substantial increase in cell size compared to mock-treated control fibroblasts with 

time after PUVA treatment (Figure 11A to Figure 11D). At 14-16 weeks post 

PUVA treatment, small regrowing fibroblasts were visible among  
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Figure 11. Cell morphology changes in growth-arrested fibroblasts at 
different time points post PUVA in regrowing fibroblasts and in mock-
treated control fibroblasts. Fibroblasts were fixed and stained with Coomassie 
blue as detailed in Materials and Methods and photographed at ×100 
magnification. A, mock-treated control fibroblasts; B-D, fibroblasts at 1, 2, 4 
weeks post PUVA treatment; E, 16 weeks post PUVA treatment; F, regrowing 
fibroblasts post PUVA treatment. 

E F 

D C 

A B 
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enlarged growth-arrested fibroblasts (Figure 11E). Regrowing fibroblasts did not 

show any difference in cell size compared to mock-treated control fibroblasts 

(Figure 11F).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. The induced expression of senescence-associated �-
galactosidase (SA-�-Gal) in PUVA-treated fibroblasts is lost in regrowing 
fibroblasts post PUVA. (A) Fibroblasts 21 days post PUVA; (B) At 98 days post 
PUVA, SA-�-Gal staining was lost in some cells (arrows) which morphologically 
represent the smaller regrowing cells, while still maintained in those enlarged 
growth-arrested cells. (C) No staining was observed in fully regrowing fibroblasts 
post PUVA treatment or (D) in mock-treated fibroblasts.  Fibroblasts were stained 
for SA-�-Gal and photographed at ×100 magnification. Three independent 
experiments have been performed with similar results. 
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Figure 13. The increased release of MMP-1 from human dermal fibroblasts 
upon a single PUVA treatment is no longer detectable in fibroblasts in their 
regrowing phase post PUVA treatment. Confluent fibroblasts were PUVA-
treated (50 ng/ml 8-MOP / 90 kJ/m² UVA) or mock-treated. Supernatants were 
collected from mock-treated fibroblasts(Control), at 14 days post PUVA 
treatment(PUVA), at 130 days post PUVA treatment in the regrowing phase of 
the same fibroblast strain (Regrowing) and at 110 days post PUVA treatment in 
the regrowing phase of another fibroblast strain (Regrowing 1). All supernatants 
were subjected to ELISA detection of MMP-1, as detailed in Materials and 
Methods. Three independent experiments were performed to determine specific 
MMP-1 protein concentrations. *p ≤ 0.0001 compared with PUVA-treated cells; #p 
= 0.32 compared with mock-treated cells (One way ANOVA). 
 

 

Reversal of changes in the enlarged cell morphology and growth arrest post 

PUVA treatment was also accompanied by the loss of biochemical markers of 

senescence. While all fibroblasts revealed SA-�-Gal expression at 4 weeks post 

PUVA treatment (Figure 12A) and SA-β-gal expression was sustained during > 2 

months of growth arrest, SA-�-Gal staining was lost at 98 days post PUVA 

treatment in some cells, which morphologically represent regrowing cells (Figure 
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12B). No SA-�-Gal expression was observed in regrowing fibroblasts post PUVA 

treatment (Figure 12C) and in mock-treated fibroblasts (Figure 12D).  

 

Besides morphological changes and SA-β-gal expression, another senescence-

associated marker, matrix-metalloprotease-1 (MMP-1) which was up-regulated 

after PUVA treatment, completely returned back in regrowing fibroblasts to levels 

of mock-treated control fibroblasts (Figure 13).  

 

 

 

Figure 14. Expression of p53 at different time points after PUVA treatment. 
p53 expression of fibroblasts at different time post PUVA treatment as well as 
mock-treated and regrowing fibroblasts was determined by an ELISA specific for 
p53, as described in Materials and Methods. The results were expressed as the 
mean of triplicates, three experiments were performed with similar results. 
Control represents values of p53 concentration in mock-treated fibroblasts. P-6h, 
P-12h represent values of p53 concentration at 6 hour and 12 hour post PUVA 
treatment. P-1d, P-2d represent values of p53 concentration at 1 day and 2 day 
post PUVA treatment. P-1w, P-2w and P-4w represent values of p53 
concentration at 1, 2 and 4 weeks post PUVA treatment. 
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3.2.2. Activation of the senescence control pathways p21/p53 and p16/Rb in 

PUVA-induced growth arrest 

As PUVA-induced growth arrest showed many senescence-like features, and it 

has earlier been shown that the terminal replicative growth arrest is controlled 

either by the p53/p21Cip1 or the pRb/p16INK4a pathway, the time-dependent 

expression of these important cell cycle control proteins was determined in 

PUVA-treated fibroblasts. p53 and p21Cip1 protein levels increased concomitantly 

at day 1 after PUVA treatment, and reached their maximum 2 days later (Figure 

14, Figure 15). Thereafter, both p53 and p21Cip1 protein amounts decreased with 

time and are almost back to levels of mock-treated control fibroblasts at 4 weeks 

post PUVA treatment.  

 

Figure 15. Expression of p21Cip1 at different time points after PUVA 
treatment. p21Cip1 expression of fibroblasts at different time post PUVA 
treatment as well as mock-treated and regrowing fibroblasts was determined by 
ELISA specific for p21Cip1, as described in Materials and Methods. The results 
were expressed as the mean of triplicates, three experiments were performed 
with similar results. Control represents values of p53 concentration in mock-
treated fibroblasts. P-6h, P-12h represent values of p21Cip1 concentration at 6 
hour and 12 hour post PUVA treatment. P-1d, P-2d represent values of p21Cip1 
concentration at 1 day and 2 day post PUVA treatment. P-1w, P-2w and P-4w 
represent values of p21Cip1 concentration at 1, 2 and 4 weeks post PUVA 
treatment. 
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However, as fibroblasts did not reproliferate at the end of 4 weeks post PUVA 

treatment, and continued to be arrested for another 2 months, there must be 

other mechanisms controlling the prolonged growth arrest stage. Similar to the 

decrease in p53 and p21Cip1, p16INK4a concentrations started to increase 1 week 

after PUVA treatment and remained elevated for up to 10 weeks post PUVA 

treatment (Figure 16). These data provide correlative evidence that p16INK4a 

might be involved in maintaining fibroblasts in this long-term growth arrest stage. 

 

 

 

 

 

 

Figure 16. Expression of p16INK4a at different time points after PUVA 
treatment. Lysates derived from PUVA-treated fibroblasts at different time points 
post PUVA treatment, mock-treated fibroblasts and regrowing fibroblasts post 
PUVA treatment were subjected to Western blot analysis for expression of the 
p16INK4a. Western blot was performed as described in Materials and Methods. P-
1d represents values of p16INK4a at 1 day post PUVA treatment. P-1w, P-2w, P-
4w, P-7w, P-11w represent values of p16INK4a at 1, 2, 4, 7, 10 weeks post PUVA 
treatment. 
 

 

3.2.3. PUVA treatment of fibroblasts with a null mutation in cell cycle 

controlling genes results in a similar growth arrest as in wild type 

human dermal fibroblasts 

To further address the question whether p16INK4a, p21Cip1 and p53 are causally 

involved in the growth arrest following PUVA treatment, the effect of PUVA 

treatment on human fibroblasts with homozygous deficiencies in these genes 

was studied in terms of their proliferation rate and cell phenotype. Following 

selection of non-cytotoxic conditions fibroblasts were incubated with 50 ng/ml 8-

MOP and irradiated with 10 - 90 kJ/m2 UVA. Growth rate and cell morphology 

were monitored over 28 days in p16INK4a, p21Cip1 and p53 deficient cells. 

Unexpectedly, p16INK4a, p21Cip1 and p53 deficient cells ceased proliferation and 

arrested with similar features compared to PUVA-treated wild type fibroblasts 

with functional p16INK4a, p21Cip1 and p53 genes (Figure 17). The lack in mitotic 
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activity was accompanied by prominent alterations in cell morphology similar to 

wild type fibroblasts. p16INK4a, p21Cip1 and p53 deficient fibroblasts, which had 

been subjected to combined 8-MOP/UVA treatment changed to an elongated 

and flattened phenotype at day 7 post PUVA treatment and revealed a 

substantial increase in size at day 28 (Figure 18). However, it was also obvious 

that p16INK4a, p21Cip1 and p53 deficient fibroblasts are more sensitive to PUVA-

induced toxic effects. When the same dose of PUVA (50ng/ml 8-MOP and 

90kJ/m2 UVA) is applied on fibroblasts deficient for cell cycle control genes as on 

wild type fibroblasts, a large proportion of deficient fibroblasts died after PUVA 

treatment, especially p53 deficient fibroblasts. The PUVA treatment that results in 

growth arrest without cytotoxic effect on p53 deficient fibroblasts is 50ng/ml 8-

MOP and 10kJ/m2 UVA. 

 

In summary, the data suggest that senescent markers of replicative senescence, 

such as cell enlargement and SA-β-gal expression, are reversible in PUVA-

treated fibroblasts. The senescence controlling genes p53, p21 and p16 were all 

upregulated after PUVA treatment, but after regrowth returned, apart from p16, 

back to the level of mock-treated control fibroblasts. However, these senescence 

controlling genes are not exclusively required for the long-term growth arrest. 

These data indicated that stress-induced premature senescence after PUVA 

treatment definitely differs from the irreversible growth arrest and permanent 

expression of distinct senescence-associated phenotypic and biochemical 

features.  
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Figure 17. PUVA treatment of p16INK4a, p21Cip1 or p53-deficient fibroblasts 
results in growth arrest. p16INK4a and p21Cip1 Fibroblasts were PUVA-treated 
with 50 ng/ml 8-MOP plus 45  kJ/m2 UVA, and p53-deficient fibroblasts were 
PUVA-treated with 50 ng/ml 8-MOP plus 10  kJ/m2 UVA. At different time points 
thereafter, cell numbers were determined in triplicates for each experimental 
group and equal cell numbers were plated for further culture. The data represent 
growth curves expressed as the increase in cumulative population doublings. A: 
p16INK4a deficient fibroblasts treated with PUVA or UVA irradiation only. B: p21Cip1 
deficient fibroblasts treated with PUVA or UVA irradiation only. C: p53 deficient 
fibroblasts treated with PUVA or UVA irradiation only. 
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Figure 18. Combined 8-MOP/UVA treatment of p16INK4a, p21Cip1 or p53 
deficient fibroblasts promotes the senescence-like phenotype. Fibroblasts 
were fixed and stained at day 28 after PUVA or UVA treatment, and 
photographed at 100X magnification. A,B: p16INK4a deficient fibroblasts irradiated 
with UVA (45 kJ/m2) or PUVA (50 ng/ml 8-MOP plus 45  kJ/m2 UVA). C, D: 
p21Cip1 deficient fibroblasts irradiated with UVA (45 kJ/m2) or PUVA (50 ng/ml 8-
MOP plus 45  kJ/m2 UVA). E,F: p53 deficient fibroblasts treated with UVA (10  
kJ/m2)  or PUVA (50 ng/ml 8-MOP plus 10  kJ/m2 UVA). 

p16-/- UVA p16-/- PUVA 

p21-/- UVA p21-/- PUVA 

p53-/- UVA p53-/- PUVA 
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3.3. PUVA treatment of human dermal fibroblasts increases the generation 

of intracellular reactive oxygen species 

In a first attempt to address the mechanisms by which PUVA-treated fibroblasts 

gained their senescence-like phenotypic and biochemical changes, it was studied 

whether reactive oxygen species (ROS) are produced at high concentrations and 

whether ROS play a role for the long-term senescence-like growth arrest. To 

determine ROS generation after PUVA treatment, fibroblasts were loaded with 

the peroxide-sensitive fluorophore 2’-7’ dichlorodihydrofluorescin diacetate 

(H2DCFDA). H2DCFDA is cell membrane permeable and can be deesterified to 

H2DCF by intracellular esterases located in the cell membrane (LeBel et al. 1992). 

The resulting H2DCF is membrane impermeable and  can  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 19. Increased ROS production in human dermal fibroblasts at 
different time points after PUVA treatment. ROS levels were determined by 
DCF staining in PUVA-treated fibroblasts, regrowing fibroblasts and mock-treated 
control fibroblasts, as described in Materials and Methods. A melanoma cell line 
(MV3) was included as positive control. Fluorescence intensity was recorded with 
a Zeiss laser scanning confocal microscope (×100 magnification). 
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be rapidly oxidized to the highly fluorescent 2',7'-dichlorofluorescein (DCF) in the 

presence of intracellular ROS and RNS (reactive nitrogen species), particularly 

H2O2 and Nitric oxide (NO). As shown in Figure 19, PUVA treatment resulted in a 

moderate 2-fold increase in DCF fluorescence intensity at 24h post PUVA 

treatment which time-dependently increased to 5-fold at 1 week and >20 fold 6 

weeks post PUVA treatment compared to mock-treated and regrowing fibroblasts. 

The DCF fluorescence intensity was not related to NO, since inhibition of NO 

production by specific NO inhibitors was not able to decrease the fluorescence. 

These results derived from experiments with inducible NO synthesis (iNOS) 

inhibitors, which controls the intracellular level of NO (Amin et al. 1999). Culture 

medium was supplemented with the iNOS inhibitor 1400w for one day in PUVA-

treated fibroblasts at different time points post treatment. Independent of all 

tested concentrations of the iNOS inhibitor 1400w, no decrease in DCF 

fluorescence was observed indicating that the increasing intensity of DCF 

fluorescence post PUVA treatment is not due to NO production, but rather to 

enhanced generation of ROS. 

 

3.3.1. Increase in the number of mitochondria and decrease in the relative 

mitochondrial transmembrane potential in PUVA-treated fibroblasts 

The mitochondrion is the main site of ROS production in mammalian cells. Both 

unbalanced mitochondria biogenesis and damages of the mitochondrial electron 

phosphorylation chain may lead to enhanced ROS generation. To study whether 

mitochondria are involved and contribute to the enhanced ROS production of 

PUVA-treated fibroblasts, mitochondrial proliferation and mitochondrial 

membrane integrity were determined after PUVA treatment. To measure 

changes in the number of mitochondria, fibroblasts were stained with the 

mitochondria-selective vital dye MitoTracker Red at different time points post 

PUVA treatment. MitoTracker probes are specifically sequestered in 

mitochondria where they react with thiols on proteins and peptides to form an 

aldehyde-fixable conjugate.  As shown in Figure 20, PUVA-treated fibroblasts 

showed a progressive increase in mitochondria mass with time after PUVA 

treatment, Figure 20 B and C represent PUVA-treated cells at 16 days and 7 

weeks post PUVA, respectively. Figure 20 A and D showed the number (mass) 

of mitochondria in mock-treated (A) and in regrowing fibroblasts (D).  
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Figure 20. The number of mitochondria per cell increases at different time 
points after PUVA treatment. Fibroblasts at different time post PUVA treatment, 
mock-treated and regrowing fibroblasts were stained for mitochondria using 
MitoTrack Red as described in Material and Methods. A: mock-treated fibroblasts; 
B and C: PUVA-treated fibroblasts at 16 days and 7 weeks post PUVA; D, 
regrowing fibroblasts. 
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To monitor the integrity of the mitochondrial membrane as a means for the 

functional integrity of the oxidative phosphorylation chain, the mitochondrial 

membrane potential (∆Ψm) was measured using a polarization-sensitive dye JC-

9. JC-9 is directed into mitochondria and exists in two interchangeable forms, 

either as a monomer (J-monomer) or as a dimer (J-aggregate). J-monomer leads 

to the emission of green fluorescence and J-aggregates to the emission of red 

fluorescence. In cells with intact mitochondrial membranes, JC-9 is driven into 

mitochondria due to a high ∆Ψm. Accumulation of JC-9 in negatively charged 

mitochondria forms J-aggregate and results in red fluorescence. When ∆Ψm 

decreases, JC-9 subsequently diffuses out of the mitochondria and leads to 

decrease in the intensity of red fluorescence. Since the green fluorescence is 

relatively constant due to potential-independent interactions of JC-9 monomer 

with the mitochondrial membrane, which is only related to the mitochondria 

number, changes in the ratio between J-aggregate (red fluorescence) and J-

monomer (green fluorescence) indicates ∆Ψm value changes (Reers et al. 1991; 

Smiley et al. 1991). In order to determine ∆Ψm changes, the same number of 

PUVA-treated fibroblasts at different time points post PUVA treatment was 

monitored for the intensity of green and red fluorescence by FACS analysis. As 

shown in Figure 21, JC-9 green fluorescence was greatly increased in PUVA-

treated fibroblasts 2 weeks (PUVA-2w) and 11 weeks (PUVA-11w) post PUVA 

treatment. The majority of fibroblasts at 2 or 11 weeks post PUVA treatment 

revealed a fluorescent value around 1000 while the fluorescent value of mock-

treated control fibroblasts was 30, indicating a 33-fold increase in the number of 

mitochondria. However, no similar increase in the red fluorescence was observed. 

The peak of the red fluorescence in fibroblasts at 2 weeks post PUVA treatment 

revealed a value of about 50, and in fibroblasts at 11 weeks post PUVA 

treatment the fluorescent value was 35. Compared to the value of 20 in mock-

treated fibroblasts, there was only a 1.8-2.5 fold increase in the intensity of red 

fluorescence. Thus, the red/green fluorescence ratio, which represents the ∆Ψm 

value, revealed a 4-fold decrease in PUVA-treated fibroblasts as calculated in 

Figure 22. These data indicate that the ∆Ψm is significantly decreased in PUVA-

treated fibroblasts. 



 60 

 
 
Figure 21. JC-9 fluorescent staining for PUVA-treated fibroblasts at 
different time post PUVA treatment. After incubation with JC-9, 1×106 cells/ml 
of PUVA-treated fibroblasts 4 days (PUVA-4d), 2 weeks (PUVA-2w) and 11 
weeks (PUVA-11w) post PUVA treatment, regrowing fibroblasts post PUVA 
treatment and mock-treated control fibroblasts were determined for red and 
green fluorescence by FACS, as described in Materials and Methods.  
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Figure 22. The ratio of J-aggregates/J-monomer decreases after PUVA 
treatment. After incubation with JC-9, 1×106 cells/ml of PUVA-treated fibroblasts 
4 days, 16 days, 4 weeks and 11 weeks post PUVA treatment, regrowing 
fibroblasts post PUVA treatment and mock-treated control fibroblasts were 
determined for red and green fluorescence by FACS, as described in Materials 
and Methods. The data are measured in triplicates and shown as mean ± 
standard deviation. 
 

 

3.3.2. Changes in ATP content  in PUVA-treated fibroblasts  

Depolarization of mitochondrial membrane potential should lead to reduced ATP 

production. ATP concentrations were measured in PUVA-treated fibroblasts at 

different time points post treatment, in regrowing and mock-treated control 

fibroblasts. PUVA-treated fibroblasts showed a dramatic increase in total ATP 

content per cell resulting in a 3-fold increase in ATP concentrations at 2 weeks 

and a 4.2-fold increase at 4 weeks post PUVA treatment compared to much 

lower ATP concentrations in regrowing and mock-treated fibroblasts (Figure 23). 

However, considering that PUVA-treated fibroblasts reveal a great increase in 
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cell size and mitochondria mass, the average ATP concentration per unit total 

protein was constant (Figure 23).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23. Changes in ATP concentrations at different time points post 
PUVA treatment. The ATP content was determined by a luminescent method as 
described in Materials and Methods. The upper panel showed ATP content per 
cell, the lower panel show ATP content as a ratio of total ATP per total protein 
content. Experiments were performed in triplicates and expressed as mean ± 
standard deviation. 
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3.3.3. PUVA-treated Rho0 fibroblasts still have a high ROS level 

To further investigate whether mitochondria are responsible for PUVA-induced 

ROS production, fibroblasts depleted in their mitochondrial DNA (mtDNA), 

designated as Rho0 fibroblasts, were generated using low concentrations of 

ethidium bromide. Low ethidium bromide concentrations lead to the depletion of 

the mtDNA resulting in the disruption of electron transport/oxidative 

phosphorylation (King and Attardi 1989). The number of mitochondria was 

decreased by a factor of two with each cell division since - due to lack of mtDNA 

- no new mitochondria were generated. The depletion of mtDNA was confirmed 

by the mitochondria transcription factor mtTFA, which plays a role in controlling 

mtDNA copy number and varies concomitantly with levels of mtDNA (Shen and 

Bogenhagen 2001). The mtTFA expression was completely suppressed 1 week 

after incubation of fibroblasts with ethidium bromide as shown by immunoblotting 

(Figure 24). To ensure that mtDNA would not recover, Rho0 fibroblasts were 

maintained in ethidium bromide-containing medium. Rho0 fibroblasts were then 

subjected to PUVA treatment and ROS levels were determined by DCF staining. 

As shown in Figure 25H and I, PUVA-treated Rho0 fibroblasts still revealed a 

high intensity of DCF fluorescence at 3 weeks and 6 weeks post treatment 

compared to mock-treated Rho0 fibroblasts (Figure 25G).  The overall 

unchanged DCF intensity indicates that other factors may contribute alone or in 

conjunction with mitochondrial dysfunction to the enhanced ROS concentration in 

PUVA-treated fibroblasts.  

 

 

 

 

 

 

 

Figure 24. The expression of the mitochondrial transcription factor mtTFA 
is suppressed after incubation of human dermal fibroblasts with ethidium 
bromide. Human dermal fibroblasts were incubated with ethidium bromide at a 
concentration of 0.1 µg/ml as described in Materials and Methods. One week 
after treatment, Rho0 fibroblasts as well as mock-treated control fibroblasts were 
studied for mtTFA expression by Western blot analysis.  
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Figure 25 The generation of reactive oxygen species after PUVA treatment 
of human dermal fibroblasts is due to both mitochondria and NADPH 
oxidase. Human dermal mitochondria competent or mitochondria incompetent 
fibroblasts were subjected to PUVA treatment. ROS generation was monitored at 
3 and 6 weeks post PUVA treatment in the presence and absence of the NADPH 
oxidase inhibitor AEBSF by loading fibroblasts of the differently treated 
experimental groups with 10 µg/ml of the fluorescent ROS-indicator H2DCF-DA 
as described in Material and Methods. Depletion of mitochondrial function was 
achieved by treating human dermal fibroblasts with 0.1 µg/ml ethidium bromide at 
37°C for 7 to 14 days. The depletion of mitochondria DNA was confirmed by a 
complete suppression of the expression of the mitochondrial transcription factor 
which correlate with the mitochondria number. A-F: mitochondria competent 
fibroblasts showing in A: mock-treated, B: PUVA-treated 3 weeks after PUVA 
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treatment. C:  PUVA-treated 6 weeks after PUVA treatment. D: mock-treated 
after incubation with the NADPH oxidase inhibitor AEBSF for 1 hour. E: PUVA-
treated 3 weeks after PUVA treatment after incubation with the NADPH oxidase 
inhibitor AEBSF for 1 hour. F: PUVA-treated 6 weeks after PUVA treatment after 
incubation with the NADPH oxidase inhibitor AEBSF for 1 hour. G-L: 
mitochondria in competent fibroblasts showing in G: mock-treated. H: PUVA-
treated 3 weeks after PUVA treatment. I:  PUVA-treated 6 weeks after PUVA 
treatment. J: mock-treated after incubation with the NADPH oxidase inhibitor 
AEBSF for 1 hour. K: PUVA-treated 3 weeks after PUVA treatment after 
incubation with the NADPH oxidase inhibitor AEBSF for 1 hour. L: PUVA-treated 
6 weeks after PUVA treatment after incubation with the NADPH oxidase inhibitor 
AEBSF for 1 hour.  
 

 

3.3.4. Inhibition of NADPH Oxidase does not abrogate the ROS increase in 

PUVA-treated mitochondria-competent fibroblasts, whereas ROS 

production is suppressed in PUVA-treated Rho0 fibroblasts  

Among other sources for ROS production, cyclooxygenase 2 (COX-2) and 

NADPH oxidase are involved. These two enzymes are not constitutively 

expressed in cells, but can be induced or activated under certain conditions 

(Finkel 1999). In the first attempt to study whether these enzymes are activated 

and may play a role in the high ROS production in PUVA-treated fibroblasts, 

specific inhibitors for each of the enzymes were employed. Although inhibition of 

COX-2 with the selective COX-2 inhibitor NS398 (Liu et al. 1998) post PUVA 

treatment did not reveal any decrease in ROS levels in fibroblasts at different 

time point post PUVA treatment (data not shown), inhibition of NADPH oxidase in 

PUVA-treated Rho0 fibroblasts almost completely blocked ROS production.  

 

In detail, the human NADPH oxidase consists of two membrane components and 

several cytosolic components, and is activated in case these cytosolic 

components translocate into the plasma membrane. Activated NADPH oxidase 

catalyzes the reaction:  

2O2 + NADPH → 2O2
• − + NADP+ + H+ 

Two NADPH oxidase inhibitors, 4-(2-aminoethyl)-benzenesulfonyl fluoride) 

(AEBSF) and diphenylene iodonium (DPI), were employed in this study. As 

shown in Figure 25D, E and F, AEBSF did not result in a decrease of ROS 

production in PUVA-treated fibroblasts at different time post PUVA treatment 

compared to PUVA-treated fibroblasts in the absence of AEBSF treatment 
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(Figure 25A, B and C). However, the intensity of DCF fluorescence of PUVA-

treated Rho0 fibroblasts at different time post treatment (as shown in Figure 25G, 

H and I) was almost completely abrogated in the presence of AEBSF in the 

culture (Figure 25J, K and L). The alternative inhibitor of the NADPH oxidase, 

DPI, showed similar results (data not shown). Trypan blue staining revealed a 

more than 85% exclusion rate after incubation with these inhibitors indicating that 

the used concentrations are not toxic to Rho0 fibroblasts. Moreover, PUVA-

treated Rho0 fibroblasts were incubated with corresponding concentrations of 

these inhibitors for up to 1 week or longer with no detectable increase in cell 

death as compared to that of without inhibitors. These results exclude the 

possibility that the decrease in ROS levels is due to cytotoxicity related cell death.  

 

3.3.5. ROS contribute to the PUVA-induced senescence-like morphology 

Under PUVA-induced long-term growth arrest fibroblasts showed senescence-

like features. To determine whether the increase in ROS levels after PUVA 

treatment was simply correlative or alternatively whether ROS may play a causal 

role in the initiation and maintenance of these senescence-like features, the role 

of enhanced ROS levels in the increase in SA-β-gal-positive cells and phenotypic 

changes was tested under conditions with reduced ROS levels. For this purpose, 

PUVA-treated fibroblasts were exposed to the antioxidant N-acetyl cysteine 

(NAC). NAC is a reduced glutathione (GSH) provider and a direct and efficient 

scavenger of hydroxyl, H2O2 and possibly other kinds of ROS (Staal et al. 1990). 

As shown in Figure 26, ROS levels of PUVA-treated fibroblasts incubated with 

NAC were substantially decreased compared to PUVA-treated fibroblasts without 

NAC. At different time points post PUVA treatment, NAC-supplemented (NAC(+)) 

and non-supplemented fibroblasts (NAC(-))  were examined for phenotypic 

changes and for SA-β-Gal expression. As shown in Figure 27, NAC(+) and 

NAC(-) fibroblasts showed a similar morphology at 2 days after PUVA treatment. 

At 1 week after PUVA treatment, NAC(-) fibroblasts changed to an elongated 

phenotype and revealed – as expected – a substantial increase in cytoplasmic 

size at 2 weeks after PUVA treatment, while phenotypic changes in NAC(+) 

fibroblasts were not apparent. Although a moderate enlargement could be seen 

in some NAC(+) fibroblasts at 4 weeks after PUVA treatment, overall these 

changes were neglectable when compared to the greatly enlarged NAC(-) 
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PUVA(1d) PUVA(1w) PUVA(4w) 

NAC-PUVA(1d) NAC-PUVA(1w) NAC-PUVA(4w) 

fibroblasts at the same time points suggesting that the high ROS production after 

PUVA treatment is involved and contributes to the phenotypic changes. SA-β-gal 

positive fibroblast numbers of NAC(+) dishes, on the contrary, did not show any 

difference compared to that of NAC(-) dishes at the same time points after PUVA 

treatment. As shown in Figure 28, at 1 week after PUVA treatment, the 

percentage of SA-β-gal positive fibroblasts increased with time and over 90% of 

fibroblasts were positive at the end of 4 weeks post PUVA treatment. This 

suggests that SA-β-gal expression represents a marker which is either not 

downstream of ROS or that the low levels of ROS maintained in NAC(+) 

fibroblasts are already sufficient to up-regulate SA-β-gal expression.  

 

Figure 26. Supplementation of human dermal fibroblasts with N-acetyl 
cystein (NAC) during the growth arrest stage post PUVA treatment leads to 
a decrease in ROS levels. Immediately after PUVA treatment, fibroblasts were 
maintained in culture medium containing 5 mM NAC. The medium was changed 
every three days to ensure an efficient antioxidant capacity. ROS levels in 
fibroblasts at different time points post PUVA treatment were determined by DCF 
at day 2 after NAC treatment. PUVA (1d) (1w) (4w) represents PUVA-treated 
fibroblasts at 1 day, 1 week and 4 weeks after PUVA treatment; NAC-PUVA (1d) 
(1w) (4w) represents PUVA-treated fibroblasts at 1 day, 1 week and 4 weeks 
after PUVA treatment which had been cultured in the presence of NAC. 
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Figure 27. Incubation with N-acetyl cystein prevented PUVA-treated 
fibroblasts from enlargement. After PUVA treatment fibroblasts were cultured 
in the presence (NAC(+)) or absence (NAC(-)) of NAC at a concentration of 5 
mM. The medium was changed every 3 days to ensure an efficient antioxidant 
capacity. Fibroblasts were fixed at 1 week (1w), 2 weeks (2w) and 4 weeks (4w) 
with Comassie blue. Photographs were taken at ×100 magnification. 

NAC(+)-2d NAC(-)-2d 

NAC(+)-1w NAC(-)-1w 
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NAC(-)-4w NAC(+)-4w 
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Figure 28. Senescence-associated ββββ-galactosidase expression in PUVA-
treated fibroblasts with or without N-acetyl cystein. After PUVA treatment 
fibroblasts were seeded in 35 mm plastic dishes at a density of 3×104 cells per 
dish in the presence (PUVA-NAC) or absence (PUVA) of 5 mM NAC. SA-β-gal 
positive as well as negative cells were counted and calculated in 10 randomly 
selected high power fields (x100 magnification) at 2 days (PUVA-2d), 4 days 
(PUVA-4d), 1 week (PUVA-1w), 2 weeks (PUVA-2w), 3 weeks (PUVA-3w) and 4 
weeks (PUVA-4w) after PUVA treatment. P > 0.6 for each of the group indicating 
that there is no significant difference in the β-galactosidase expression of PUVA-
treated fibroblasts with or without NAC (student t-test). 
 

 

 

 

In summary, PUVA treatment leads to an enhanced ROS production which 

contributes to the senescent-like phenotypes, at least cell enlargement can be 

abrogated by antioxidants. Both mitochondrial dysfunction and NADPH oxidase 

activation are likely to be involved in the enhanced ROS production in PUVA-

treated fibroblasts. 
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3.4. Molecular mechanisms of the decline in the overall life span in 

regrowing fibroblasts post PUVA treatment 

 

As shown in Figure 9, regrowing fibroblasts revealed a reduced total life span as 

judged by the much lower CPD at which the replicative senescence stage was 

reached. Studies into the detailed mechanism are of potential interest not only for 

the understanding of replicative cellular senescence and stress-induced 

premature senescence, but also for premature skin aging, which is observed 

after repetitive long-term PUVA treatment of patients. As an increasing level of 

ROS production was observed during the growth arrest stage, the herein 

described study was focused on the question whether oxidative stress is involved 

and contributes to the early onset of cellular replicative senescence. In case ROS 

play a role, identifying the underlying molecular targets which finally lead to 

replicative senescence is of interest. In particularly the following questions were 

addressed: In what fashion does oxidative stress interact, if at all, with other 

proposed determinants of cellular senescence such as telomere length? Is the 

premature senescence controlled by telomere erosion, by activation of telomere-

independent mechanisms or a combination of both? 

 

3.4.1. Fibroblasts regrowing post PUVA treatment reveal a decline in the 

overall life-span 

The population doublings (CPDs) of regrowing fibroblasts post PUVA treatment 

was measured and compared with that of non-PUVA-treated control fibroblasts. 

As shown in Figure 9, starting from CPD 48, regrowing and mock-treated control 

fibroblasts showed a similar growth rate for the first 10 PDs. Afterwards, the 

growth rate of regrowing fibroblasts was slowed down and reached the 

replicative senescence stage after 150 days where the CPD increasing rate was 

lower than 0.02 PD/week with a final CPD of 62. By contrast, even at a CPD of 

70 mock-treated control fibroblasts of the same strain did not show any sign of 

proliferation stop. Thus, even though PUVA-treated fibroblasts escape from the 

long-term growth arrest, they reveal a reduced life-span and reach the stage of 

replicative senescence much earlier after regrowth post PUVA treatment 

compared to mock-treated control fibroblasts.  
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3.4.2. Fibroblasts regrowing post PUVA treatment reveal enhanced 

reduction in telomere lengths 

As telomere length is thought to serve as a “mitoclock” for replicative senescence, 

cells stop dividing when a critical telomere length is reached. In a first attempt to 

study whether the reduced life span of regrowing fibroblasts is due to a PUVA-

induced telomere shortening, telomere length of regrowing fibroblasts post PUVA 

treatment was determined and compared with that of mock-treated control 

fibroblasts at the same CPD. For this purpose, fibroblasts of the same strain at 

an early passage (CPD = 18.6) were either PUVA-treated or frozen down for later 

use. After 13 weeks the PUVA-treated fibroblasts started to regrow. PUVA-

treated fibroblasts in their reproliferating stage as well as mock-treated control 

fibroblasts of the same strain at the same CPD were collected and cultured for 

further CPD determination. Genomic DNA was collected from regrowing and 

mock-treated control fibroblasts at comparable CPDs and subjected to telomere 

length measurement. Figure 29A shows the terminal restriction fragment (TRF) 

pattern. The mean telomere length was estimated by the size of the median of 

each band to the molecular weight markers. Lane 3, 5, 7, 9 represent the TRF 

patterns of regrowing fibroblasts at different CPDs (CPD 20.9, 28.4, 32.8 and 

39.8, respectively), and Lane 2, 4, 6, 8 represent TRF patterns of mock-treated 

control fibroblasts with comparable CPDs (20.2, 29.4, 32.6, 41). Compared to 

mock-treated control fibroblasts at comparable CPDs, the mean TRF lengths in 

regrowing fibroblasts are significantly decreased with a 1 to 2 kb reduction. Since 

the CPD of regrowing fibroblasts before PUVA treatment was 18.6, and no CPD 

increase occurred during the growth arrest stage after PUVA treatment, the 

difference in telomere length between regrowing and mock-treated control 

fibroblasts happened either during the growth arrest stage or during the first 2.3 

PDs of proliferation between initiation of regrowth and collection of genomic DNA. 

During their regrowing phase post PUVA treatment, regrowing fibroblasts 

showed a similar rate in telomere shortening compared to mock-treated control 

fibroblasts.  
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Figure 29 Regrowing fibroblasts post PUVA treatment showed a reduced 
telomere length compared to mock-treated fibroblasts at the same CPD. A, 
Terminal restriction fragment (TRF) analysis as an indication for telomere length 
was performed as indicated in Material and Methods. Briefly, genomic DNA was 
prepared from regrowing fibroblasts at different CPDs or from mock-treated 
fibroblasts and of the same strain at the same CPD. 1.5 µg of HinfI/RsaI-digested 
DNA of each sample was subjected to electrophoresis on 0.6% agarose gels 
followed by Southern blot hybridization using a 51-mer biotinylated telomeric 
probe and visualized by chemiluminescence. B represents the principle for this 
analysis, as described in Materials and Methods. 

B 

A 
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3.4.3. Accumulation of single strand breaks  in telomere regions 

In an attempt to investigate why the telomere lengths of regrowing fibroblasts are 

substantially reduced compared to mock-treated control fibroblasts, telomere 

lengths of growth-arrested fibroblasts at different time points post PUVA 

treatment were determined. The strategy allows to study whether the long-term 

growth arrest itself could damage telomeres and, thus, led to telomere length 

reduction. As shown in Figure 30 lane 2 through lane 7, growth-arrested 

fibroblasts at different time points post PUVA treatment did not show any 

difference in telomere lengths when compared to each other. In addition no 

reduction was observed when compared to mock-treated control fibroblasts. 

However, PUVA-treated fibroblasts in their regrowing stage showed significantly 

shorter telomere lengths when compared to mock-treated control fibroblasts at 

comparable CPDs. Regarding these results, it should be noted that the above 

detected telomeres are double-stranded. The constant double-stranded telomere 

length does not necessarily mean that the telomere is intact and not damaged. 

Possibly, single strand breaks (SSBs) were generated in telomere region during 

growth arrest stage which, if not repaired, would result in telomere loss during 

DNA replication and cell division after fibroblasts start to regrow. To analyze 

whether single strand breaks are formed in the telomere region, the terminal 

restriction fragments (TRF) of the same batches used for double-stranded 

telomere length determination were denatured before being subjected to 

electrophoresis. As shown in Figure 30 Lane 10 to 14, a clear reduction in the 

lengths of single-stranded telomeres of growth-arrested fibroblasts at different 

time points post PUVA treatment was found with time after PUVA treatment. In 

fibroblasts at 11 weeks post PUVA treatment, single-stranded telomere length 

was comparable to that of regrowing fibroblasts at an early passage (CPD 20.9), 

while their double-stranded telomere lengths were significantly different (Lane 6 

and 7). Thus, single strand DNA breaks did form in the telomere region and most 

likely are responsible for the significant telomere length reduction in regrowing 

fibroblasts post PUVA treatment. Notably in growth-arrested fibroblasts at 1 day 

post PUVA treatment, the mean of the single-stranded TRF length (Lane 10) is 

even increased when compared to that of mock-treated fibroblasts (Lane 9). This 

might suggest that psoralen-DNA interstrand cross-links were also formed in the 

telomere region. 
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Figure 30. Double-stranded telomere lengths are constant throughout the 
growth arrest stage post PUVA treatment while single-stranded telomere 
lengths are clearly decreasing with time. The same strain of fibroblasts (FF95, 
P9, CPD=22) were PUVA-treated as indicated in Materials and Methods and 
genomic DNA was collected at different time points post PUVA treatment. Ten µg 
DNA of each sample was digested first with HinfI/RsaI. Half of the sample (20µl, 
5µg DNA) was treated with alkaline buffer (0.4M NaOH, 4 mM EDTA) for 5-10 
min to separate DNA double strands, and subjected to electrophoresis and 
Southern blot analysis as described in Materials and Methods. The other half of 
the samples which had not been denatured allowed to study telomere length of 
double-strand DNA. 
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Figure 31. Supplementation with N-acetyl cystein (NAC) during the growth 
arrest stage after PUVA treatment protects telomeres from length reduction. 
NAC was supplemented during the growth arrest stage at a concentration of 5 
mM and the medium was changed every three days to ensure an efficient 
antioxidant capacity. Thereafter genomic DNA of regrowing PUVA-treated 
fibroblasts with NAC supplementation (PUVA-NAC(+)) and without NAC 
supplementation (PUVA-NAC(-)) were collected at comparable CPD. Telomere 
lengths (TRF) were determined as described in Materials and Methods. Briefly, 5 
µg of HinfI/RsaI-digested DNA of each sample was subjected to electrophoresis 
with 0.6% agarose gels followed by Southern blot hybridisation using a 51-mer 
biotinylated telomeric probe and visualized by chemiluminescence. 
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3.4.4. Scavenging of reactive oxygen species by N-acetyl cystein rescues 

telomere length 

Since ROS are produced in human dermal fibroblasts after PUVA treatment and 

increase with time, the question arises whether ROS are involved in and 

contribute to telomere length reduction. The causal role of ROS on telomere 

length reduction was investigated by scavenging ROS accumulation with N-

acetyl-L-cycteine (NAC) in PUVA-treated fibroblasts during the growth arrest 

stage. Thereafter telomere length of fibroblasts in their regrowing phase was 

compared to that of identically PUVA-treated fibroblasts without exposure to NAC. 

NAC is a reduced glutathione (GSH) provider and a direct scavenger of ROS 

(Staal et al. 1990). As shown in Figure 26, with continuous supplementation of 

NAC, ROS levels in PUVA-treated fibroblasts were evidently decreased 

compared with mock-treated control fibroblasts. However, even with the 

decreased ROS level, PUVA-treated fibroblasts did not start to regrow at an 

earlier time point post PUVA treatment when compared to PUVA-treated 

fibroblasts without NAC. To explore whether ROS are involved in telomere 

reduction mediated by PUVA treatment, in their regrowing phase genomic DNA 

from regrowing PUVA-treated fibroblasts which had been cultivated in the 

presence of NAC (PUVA-NAC(+)) and in the absence of NAC (PUVA-NAC(-)) 

were collected at comparable CPDs and telomere lengths were determined. As 

shown in Figure 31, lane 3, 5 and 7 represent the TRF of PUVA-NAC(+) 

fibroblasts. Compared to the TRF lengths of PUVA-NAC(-) fibroblasts (lane 2, 4 

and 6), the telomere lengths in PUVA-NAC(+) fibroblasts were visibly longer as 

judged by the median of the TRF lengths.   

 

3.4.5. Partial restoration of the total life-span of PUVA-treated fibroblasts in 

the presence of N-acetyl cystein 

Since telomere length in PUVA-NAC(+) fibroblasts was well protected compared 

to PUVA-NAC(-) fibroblasts, it was studied whether this would rescue the total life 

span, which had been shown to be substantially reduced in PUVA-treated 

fibroblasts in their regrowing phase (Figure 9). Therefore, total CPD of PUVA-

NAC(+) fibroblasts in their regrowing phase were determined before reaching the 

replicative stage and compared with PUVA-NAC(-) fibroblasts as well as with 

mock-treated control fibroblasts.  As shown in Figure 32, starting from CPD 21, 
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fibroblasts of the different experimental groups were cultured for over 300 days 

until reaching the replicative senescence stage where CPDs did not increase any 

more. Compared to PUVA-NAC(-) fibroblasts which reached replicative 

senescence at a CPD of 64.2, PUVA-NAC(+) fibroblasts showed 6 PDs more 

with a final CPD of 70. Compared to the total life-span of mock-treated fibroblasts 

with a total CPD of 73.9, the life-span of PUVA-NAC(+) fibroblasts was still not 

fully restored. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 32. N-acetyl cystein (NAC) supplementation during the PUVA-
induced growth arrest stage extended the life-span of PUVA-treated 
fibroblasts in their regrowing phase. Starting from the same CPD, mock-
treated control fibroblasts (triangle), regrowing fibroblasts which had been treated 
with NAC (open circle) during the growth arrest stage and regrowing fibroblasts 
without NAC treatment (square), were passaged for more than 9 months until 
reaching the replicative senescent stage with no  increases in population 
doubling. At each passage, cell numbers were determined in triplicates for each 
group and equal cell numbers (2×105) were transferred to a new tissue plate for 
further observation. Results were expressed as mean with standard deviation. 
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3.4.6. Up-regulated expression of p16INK4a is maintained in regrowing 

fibroblasts post PUVA treatment 

Beside telomere length reduction, an upregulated though low p16INK4a expression, 

which might be involved and contribute to the early onset of replicative 

senescence of PUVA-treated fibroblasts in there regrowing phase was observed. 

As shown before in Figure 16 (see page 57), p16INK4a expression was enhanced 

one week post PUVA treatment and maintained during the whole growth arrest 

stage. In contrast to p53 and p21Cip1, which were initially also upregulated after 

PUVA treatment but completely returned to base levels of mock-treated control 

fibroblasts in regrowing fibroblasts (Figure 14 and Figure 15), p16INK4a was still 

expressed at a higher level when compared to mock-treated control fibroblasts.  

 

In summary, the results show that even though PUVA-treated fibroblasts could 

escape from long-term growth arrest after PUVA treatment, a recollection of the 

PUVA-damage contribute to the earlier occurring replicative senescence state 

when compared to control fibroblasts. The reduced total life-span in PUVA-

treated fibroblasts is due to oxidative stress-induced telomere reduction as the 

abrogation of ROS production by the antioxidant NAC convincingly rescues 

telomere length reduction and partly restores total life-span of PUVA-treated 

fibroblasts in their regrowing phase comparable to that of mock-treated control 

fibroblasts.  
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3.5. Characterization of molecular mechanisms involved in the induction of 

growth arrest in PUVA-treated fibroblasts 

 

3.5.1. Short-term incubation with 8-MOP during UVA-irradiation does result 

in growth arrest while long-term preincubation with 8-MOP does not 

In accordance with the clinical PUVA regimen, where psoralen is ingested prior 

to UVA irradiation, the herein reported PUVA treatment of fibroblasts represents 

a two-step process as well. Fibroblasts are initially incubated with 8-MOP in the 

dark for 16 hours and thereafter cells were subjected to UVA irradiation in PBS 

containing the same concentration of 8-MOP. The irradiation time was 2-3 

minutes depending on the UVA intensity. It was observed that the long pre-

incubation of 8-MOP is not required for the induction of growth arrest. As shown 

in Table 4B, 16 hours pre-incubation with 8-MOP and subsequent UVA 

irradiation in PBS without 8-MOP (8-MOP-PRE) did not lead to growth arrest. By 

contrast, omitting the pre-incubation step, while fibroblasts were UVA irradiated 

for 3 minutes in PBS containing 8-MOP (8-MOP-UV) led to growth arrest. This 

result is intriguing since it was generally hypothesized that the proliferation 

inhibiting effect after PUVA treatment is due to psoralen-DNA interstrand 

crosslinks (ICLs). However, 3 minutes of 8-MOP incubation with fibroblasts 

during UVA irradiation may not be as sufficient to lead to the formation of 

interstrand DNA crosslinks as the long preincubation regimen with 8-MOP.  

 

 

 

Table 4 Different regimens in PUVA treatment procedure lead to different results 

A)  fibroblasts 
Pre-incubation  

In Medium with 8-MOP 
for 16 hrs 

UVA irradiation 

In PBS with 8-MOP 
for ~3 min 

Induction of 
Growth arrest 

Pre-incubation 

In Medium with 8-MOP 
for 16 hrs 

UVA irradiation 

In PBS without 8-
MOP for ~3min 

Continuation of 
Proliferation 

 

Without 

Pre-incubation 

UVA irradiation 

In PBS with 8-MOP 
for ~3min 

 

Induction of 
Growth arrest 

B)  fibroblasts 

C)  fibroblasts 
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3.5.2. The number of DNA interstrand crosslinks is not related to growth 

arrest 

We first determined the numbers of ICLs in 8-MOP-Pre and 8-MOP-UV cells. For 

this purpose, genomic DNA isolated from differently treated fibroblasts was 

digested first with certain restriction enzymes and then subjected to alkaline gel 

electrophoresis. As described in Material and Methods, this technique was used 

to determine and compare crosslink numbers by the degree of retardation of 

DNA fragments after electrophoresis. DNA double strands cannot be separated 

by alkaline denaturation if psoralen-DNA ICLs are present, and this will result in a 

retarded DNA fragment pattern after electrophoresis compared to DNA without 

ICLs. Figure 33B reveals the electrophoresis pattern of DNA from differently 

treated fibroblasts after combined restriction digestion with Hae II and Nde I. Both 

restriction enzymes are 6-base pair frequency cutters recognizing sequences 

within which psoralen-DNA ICL could be potentially formed. All DNA was isolated 

immediately after treatment. Lane 2 of Figure 33B shows DNA isolated from 

mock-treated fibroblasts serving as control to show the standard DNA pattern 

after restriction and denaturation. Lane 3 represents the DNA pattern of 

fibroblasts when 8-MOP was present both during pre-incubation and UVA 

irradiation. Compared to mock-treated fibroblasts (Lane 2), more of the large 

DNA fragments were found in lane 3 indicating a high amount of ICLs formed 

after PUVA treatment. Lane 4 represents the DNA fragments distribution of 

fibroblasts which had been preincubated with 8-MOP and UVA-irradiated in the 

absence of 8-MOP (8-MOP-PRE). A similar pattern as PUVA-treated fibroblasts 

where 8-MOP was present both in preincubation and UVA-irradiation step 

(PUVA-1h) suggesting that ICL amounts under both conditions are similar. Lane 

5 represents the DNA fragment pattern of fibroblasts which had been exposed to 

8-MOP only during UVA irradiation (8-MOP-UV), large DNA fragments were 

substantially less than those in lane 3 and lane 4 suggesting reduced ICL 

formation under this condition. A similar DNA fragment pattern was found when 

using a single restriction enzyme for digestion as shown in Figure 33C. This 

experiment clearly shows that PUVA-treated fibroblasts when 8-MOP is present 

only during the preincubation step (8-MOP-PRE) resulted in the same amounts 

of ICLs as that in PUVA-treated fibroblasts when 8-MOP is present in both steps 
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(PUVA-1h), while fibroblasts with 8-MOP present only during the UVA irradiation 

step (8-MOP-UV) had a substantially lower amount of ICLs.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 33. Determination of DNA interstrand crosslinks (ICL) and growth 
status of fibroblasts after different regimen of PUVA treatment. A, The 
growth curve of PUVA-treated fibroblasts with 8-MOP exclusively present during 
pre-incubation (8-MOP-PRE) or only during UVA irradiation (8-MOP-UV). B and 
C, ICL determination was performed by alkaline electrophoresis as described in 
Materials and Methods. Briefly, genomic DNA was isolated from mock-treated 
fibroblasts, PUVA-treated fibroblasts immediately after treatment (PUVA-1h), 8-
MOP-PRE fibroblasts and 8-MOP-UV fibroblasts immediately after treatment.  
Thereafter DNA was digested with Hae II and Nde I, or Hae II only and subjected 
to alkaline gel electrophoresis.  
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Taken together, fibroblasts with 8-MOP present only during UVA irradiation step 

(8-MOP-UV) were growth-arrested, while fibroblasts with 8-MOP present only 

during preincubation step (MOP-PRE) were still proliferating (Figure 33A). This 

observation contradicts the traditional view that DNA interstrand cross-links are 

the exclusive reason responsible for proliferation inhibiting effects of PUVA.  

 

3.5.3. Characterization of the contribution of changes in the karyoplast and 

the cytoplast post PUVA treatment to PUVA-induced growth arrest 

To further investigate what mechanism may initiate the long-term senescence-

like growth arrest after PUVA treatment with particular interest on whether it was 

exclusively due to DNA damage in the nucleus or whether other targets located 

in the cytoplast may be involved, cell fusion experiments were performed as 

follows: Cytoplasts (enucleated cells) of PUVA-treated fibroblasts were separated 

and fused with karyoplasts (minicells) of untreated primary fibroblasts. Vice versa 

the karyoplasts of PUVA-treated fibroblasts were fused to the cytoplasts of 

untreated primary fibroblasts. The behavior of these newly constructed 

fibroblasts should allow getting more insight in the targets of PUVA treatment 

(cytoplast or nucleus or both) responsible for the long-term growth arrest. 

 

3.5.3.1. Rationale for  fusion of cytoplasts and karyoplasts 

The development of efficient methods to enucleate mammalian cells in order to 

obtain cytoplasts and karyoplasts was the first step for cell fusion. Previous work 

of cytogeneticists had developed methods for enucleation of cells with 

cytochalasin B, an inhibitor of microfilament-assembly. The underlying 

mechanism is that the cytoskeleton of the cell can be altered with the formation 

of very soft cellular membranes. In addition cytochalasin B inhibits cytokinesis 

and, thus, the chromosomes are more compacted making it easier to remove the 

nucleus with only a minimal volume of cytoplasm (Shay 1987; Veomett 1982). 

High speed centrifugation with a Ficoll gradient was employed to facilitate 

enucleation and separation of different cellular components. Fusion of cytoplasts 

and karyoplasts was promoted by the addition of Polyethylene glycol (PEG) with 

a so far not fully clarified mechanism. 
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3.5.3.2. Experimental design for the identification of fused fibroblasts 

The techniques for isolation of cytoplasts and karyoplasts yield fractions which 

are contaminated considerably with non-enucleated cells. The use of these 

contaminated fractions for fusion may give rise to difficulties in the interpretation 

of the results. Thus, the development of appropriate selection markers is a critical 

step to isolate and interpret specific fusion. Here four selection markers were 

used: neomycin resistance, GFP expression, Hoechst 33342 and latex beads. 

The experimental design is shown in Figure 34. Fibroblasts stably transfected 

with the nucleus-encoded neomycin resistance gene and the GFP-expression 

gene were PUVA-treated and used as supplier for PUVA-cytoplasts and PUVA-

karyoplasts. Non-PUVA-treated fibroblasts were labeled with red-fluorescent 

latex beads which were located in the cytoplast region. Two different hybrids 

were generated:  

1. PUVA-cytoplasts fused with Mock-treated-karyoplasts 

2. PUVA-karyoplasts fused with Mock-treated-cytoplasts 

Although the separated karyoplasts were almost pure, the cytoplast fraction was 

hardly free of contaminated non-enucleated fibroblasts.  Thus, the following 

strategy was used as shown in Figure 34 and table 5. For fusion experiment 1: 

after enucleation, the PUVA-cytoplast fraction was stained first with Hoechst 

33342 before being fused with Mock-treated-karyoplasts. Hoechst 33342 is a cell 

membrane permeable DNA stain, which can be used for staining living cells in 

culture. This stain incorporates into DNA double strands and gives rise to blue 

fluorescence. After this procedure, all the contaminated non-enucleated 

fibroblasts were labeled, and could be identified by their blue-fluorescent nuclei. 

The intended fusions, thus, could be identified as non-fluorescent nuclei. The 

strategy for fusion experiment 2 is dependent on neomycin resistance, GFP 

expression, as well as the latex beads. Since PUVA-karyoplasts have the 

neomycin resistant gene, after fusing with Mock-treated-cytoplasts, fibroblasts 

are cultured in medium containing G418, thus all the contaminated non-

enucleated normal fibroblasts will be killed while correctly fused fibroblasts will 

survive. The correct fusions are further identified by green fluorescence due to 

the expression of the GFP gene located in PUVA-karyoplasts and red 

fluorescence of latex beads in Mock-treated-cytoplasts. 
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Figure 34. Scheme for selection and identification of fusions. Fibroblasts 
stably transfected with neomycin resistant gene (Neo(r)) and GFP (GFP(+)) gene 
were PUVA-treated. Non-PUVA-treated fibroblasts were labeled with red-
fluorescent latex beads which are located in the cytoplast region. Two different 
hybrids were generated: 1) PUVA-cytoplasts fused with Mock-treated-karyoplasts, 
2) PUVA-karyoplasts fused with Mock-treated-cytoplasts. For the first hybrids, 
the PUVA-cytoplast fraction was stained first with Hoechst 33342 after 
enucleation and before fusing with Mock-treated-karyoplasts to identify the 
contaminating non-enucleated PUVA-treated fibroblasts. The intended fusions 
could thus be identified as revealing non-fluorescent nuclei. For the second 
hybrid, separated PUVA-karyoplasts have neo(r) and GFP (+) genes. After fusing 
with Mock-treated-cytoplasts, fibroblasts are cultured in medium containing G418. 
Thus, all the contaminating non-enucleated normal fibroblasts will be killed, while 
fusions will be left. The correct fusions are further identified by green 
fluorescence due to the expression of GFP gene located in PUVA-karyoplasts 
and red fluorescence of latex beads in Mock-treated-cytoplasts. 
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Table 5 Selection and identification of fusions 

Fusion 

experiments 

Cell types after 

fusion GFP Neor 

Latex 

beads Hoechst 

KpCn  

(intended 

fusion) + + + n.u 

KnCn 

(Contamination) - - + n.u Kp × Cn 

 Kp, Cn Not stable 

KnCp 

(intended 

fusion) n.u n.u - - 

KpCp 

(Contamination) n.u n.u - + Kn × Cp 

 Kn, Cp Not stable 

 

Kp: PUVA-karyoplast; Kn: Normal-karyoplast; Cp: PUVA-cytoplast; Cn: Normal-
cytoplast.  KpCn and KnCp represent fusions with cytoplasts and karyoplasts being 
from different sources, while KnCn and KpCp represent non-enucleated whole 
cells contained in the cytoplast fraction. n.u: not used as a marker in this 
experiment. 
 

 

3.5.3.3. Fusions of cytoplast/karyoplasts of  fibroblasts immediately or  at an 

early stage post PUVA with mock-treated karyoplasts/cytoplasts 

We initially used fibroblasts immediately post PUVA treatment for the cell fusion 

experiments, as PUVA-induced damages will be repaired with time after PUVA 

treatment. After fusing with mock-treated karyoplasts or cytoplasts, a striking cell 

death was observed within the first 3 days with cells, including non-fused 

cytoplasts, being detached from bottom of culture dishes (data not shown). No 

fusions had been identified in fibroblasts which survived as detected by GFP 

fluorescence or Hoechst staining. A conclusive explanation might be that both 

cytoplasm and nuclear components are substantially damaged and can not 

survive the new stresses generated during fusion process. Based on these 

results, PUVA-treated fibroblasts at later time points after PUVA treatment were 
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used for fusion. Experiments with PUVA-treated fibroblasts taken within the first 

week after PUVA treatment (at day 1 or at 1 week after PUVA treatment) were 

studied without yielding stable fusions. Similar to the above results, substantial 

cell death occurred within the first 3 to 5 days after fusion. Thereafter, no cells 

could be positively recognized as intended fusions, neither by GFP fluorescence 

(for fusions of PUVA-karyoplasts and Mock-treated-cytoplasts) nor by Hoechst 

staining (for fusions of PUVA-cytoplasts and Mock-treated-karyoplasts). Fusions 

of PUVA-karyoplasts and Mock-treated-cytoplasts did not successfully occur as 

no cells were found to be green-fluorescent (GFP expression) even in the first 

three days after fusion when fibroblasts were still viable. For fusions of PUVA-

cytoplasts with Mock-treated-karyoplasts, there were some cells that did not 

show Hoechst-stained nuclei at the first day after fusion which might represent 

the intended fusions. However, no intended fusions were observed after 3 days.  

 

3.5.3.4. Fusions of cytoplast/karyoplasts of  fibroblasts 2 weeks or 4 weeks post 

PUVA treatment with mock-treated karyoplasts/cytoplasts 

Fibroblasts at 2 and 4 week post PUVA treatment were used for cell fusion 

experiments. The number of dead cells was reduced after fusion and stably 

fused cells were observed in fusions both between PUVA-karyoplasts and Mock-

treated-cytoplasts as well as between PUVA-cytoplasts and Mock-treated-

karyoplasts, respectively.  

 

For fusions between PUVA-karyoplasts and Mock-treated-cytoplasts, the 

successfully fused cells were identified by latex beads and GFP expression. 

Figure 35 shows changes of fusions with time after fusion using PUVA-treated 

fibroblasts 2 weeks post PUVA treatment. As shown in Figure 35A, green-

fluorescent cells with yellowish-red-fluorescent cytoplasmic latex beads, which 

represent intended fusions, could be observed 2-3 days after fusion. At the same 

time point, contaminated non-enucleated normal fibroblasts, which reveals 

cytoplasmic latex beads but had no green-fluorescence, were also observed in 

another region of the same dish (Figure 35C). These cells should be eliminated 

by G418 supplemented in medium due to lack of the neomycin resistance gene, 

though they may still be able to proliferate at the beginning. Fused cells appear 

morphologically to proliferate instead of being growth-arrested within the first 
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three days after fusion as green-fluorescent cells were cluster-like (Figure 35A 

and B). However, compared with those contaminated fibroblasts which revealed 

only red latex beads but no green fluorescence, the proliferation rate is lower as 

judged by the density of cell clusters (Figure 35B and D). Thereafter, numbers of 

dead cells increased with time, most probably due to the toxicity of G418 to the 

contaminating non-fused mock-treated fibroblasts. Fused fibroblasts are still 

stable at 7 days after fusion, and cell numbers didn’t show any increase or 

decrease (Figure 35E and F). This might suggest that cell proliferation was 

stopped. Fusions of PUVA-treated karyoplasts with mock-treated cytoplasts were 

not stable for a longer time. These fused cells died off gradually after 12-14 days 

(Figure 35G and H). When using PUVA-treated fibroblasts 4 weeks post PUVA 

treatment for cell fusion, a similar cellular changing process was observed: fused 

fibroblasts with GFP green fluorescence and cytoplasmic red latex beads could 

be identified 3 days after fusion. However, fused fibroblasts were still not stable, 

and died off at around 15-17 days after fusion, though they apparently live longer 

compared to fusions with PUVA-2w cytoplasts (12-14 days).  

 

 

 

 

Figure 35. Cell fusions between PUVA-karyoplasts from fibroblasts two 
weeks post PUVA treatment and Mock-treated-cytoplasts. A shows a power 
field of the Petri-dish with fused cells 3 days post fusion, where cells reveal green 
fluorescence and the yellowish-red fluorescence of latex beads indicating that a 
successful fusion between PUVA-karyoplasts and Mock-treated-cytoplasts has 
occurred. C shows another high power field of the same dish where cells reveal 
only latex beads without green fluorescence indicating that they are 
contaminating non-PUVA-treated fibroblasts.  E represents cell hybrids 7 days 
post fusion which reveal green fluorescence and yellowish-red fluorescence of 
latex beads. G represents cell hybrids 12 days post fusion which reveal green 
fluorescence and the yellowish-red fluorescence of latex beads. B, D, F, H are 
the phase contrast photographs taken of the same power fields as in A, C, E, G, 
respectively. Photographs were taken at a magnification of ×100. 
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For fusions between PUVA-cytoplasts and Mock-treated-karyoplasts, fused cells 

did not show any proliferation at 1 week after fusion. Figure 36A and B represent 

fusions between PUVA-cytoplasts at 2 weeks post PUVA treatment and Mock-
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treated-karyoplasts. All non-enucleated contaminations in the PUVA-cytoplast 

fraction are identified as pre-labeled with Hoechst 33342 before fusion as 

described above and, thus, reveal the bright blue nuclear fluorescence. The 

normal-karyoplast fraction was pure after separation. Figure 36A and B show 

cells 3 days post fusion. Part A represents an area where contaminated cells 

were found which reveal Hoechst-stained nuclei, and part B shows an area with 

mainly fused fibroblasts which do not reveal Hoechst-stained nuclei. Interestingly, 

the intended fusions of PUVA-cytoplasts with Mock-treated-karyoplasts did not 

reveal a growth arrest as long as found in PUVA-treated fibroblasts. When using 

PUVA-2w cytoplasts for fusions, re-proliferation of cells could be observed 26 

days after fusion, as shown in Fig 17 C and D. Re-proliferation of cells could be 

observed even earlier when using PUVA-4w cytoplasts, which took only 12 days, 

as shown in Figure 36 E and F. These results indicate that cytoplast changes 

could affect cell growth. However, PUVA-dependent cytoplast changes were 

temporal and shorter-termed compared to PUVA-treated fibroblasts suggesting 

that apart from cytoplasmic damage other additional mechanisms are 

responsible for the long-term growth arrest.  

 

 

 

 

Figure 36. Cell fusions between PUVA-cytoplasts and Mock-treated-
karyoplasts. Panel 1) represent fusions between Mock-treated-karyoplasts and 
PUVA-cytoplasts derived from PUVA-treated fibroblasts two weeks post PUVA 
treatment. A and B represent fibroblasts 3 days post fusion. A shows an area 
with contamination of non-enucleated PUVA-treated fibroblasts as indicated by 
the Hoechst stained nuclei. B shows mainly successful fusions between PUVA-
cytoplasts and Mock-treated-karyoplasts as only the cytoplastic fluorescence is 
evident with no Hoechst stained nuclei. C and D represent the same cells 26 
days post fusion, D was the phase contrast photograph of C. E and F were 
fusions using PUVA-cytoplasts from fibroblasts 4 weeks post PUVA; 12 days 
post fusion, many cells start to proliferate. Photographs were taken at a 
magnification of ×100. 
 

 



 90 

F E 

2) PUVA-cytoplasts (4 weeks post PUVA treatment) fused with Mock-treated-karyoplasts 
12 days after fusion 

A B 

C D 

3 days post 
fusion  

1) PUVA-cytoplasts (2 weeks post PUVA treatment) fused with Mock-treated-karyoplasts 

26 days post 
fusion  



 91 

In summary, herein it is shown that the number of psoralen-DNA interstrand 

crosslinks does not correlate with the long-term growth arrest. When 

reconstructing cells by fusing PUVA-cytoplasts with mock-treated karyoplasts, it 

is found that these cell hybrids start to regrow earlier after PUVA treatment. The 

reconstructed cells with PUVA-karyoplasts and non-PUVA-treated cytoplasts, 

however, can not survive for longer than 18 days, making it difficult to finally 

evaluate the overall effects of PUVA-induced nuclear damage for the 

maintenance of the growth arrest. 
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4 DISCUSSION 

 

4.1. The escape of human dermal fibroblasts from PUVA-induced 

senescence-like growth arrest is not due to immortalization or 

transformation 

The data shown in this thesis demonstrate that PUVA-induced long-term growth 

arrest, although with some functional and morphological changes reminiscent of 

cellular senescence, is reversible between day 90 to 120 post PUVA treatment. 

The capacity of PUVA-treated fibroblasts to regrow after long-term growth arrest 

is neither due to immortalization nor transformation. This finding further 

strengthens the view that PUVA-induced changes are indeed a transient 

phenocopy of senescence.  

 

Immortalization and transformation have been reported to be critical for regrowth 

of senescent cells. At least, introduction of oncogenic Ras with subsequently 

enhanced intracellular ROS levels provokes premature senescence in murine 

and human fibroblasts (Lee et al. 1999; Serrano et al. 1997). Additional 

inactivation of either p53 or p16INK4a in rodent cells and E1A in human cells 

reversed this Ras-induced growth arrest suggesting that prematurely enhanced 

senescence can be effectively reversed by disrupting important cell cycle 

regulating proteins. Regrowth of senescent cells has also been described in 

fibroblasts double-deficient for p53 and BRCA1, the latter being involved in the 

control of the G2 phase of the cell cycle. These fibroblasts adopt a senescent 

phenotype upon �-irradiation, however, following continued cultivation they form 

distinct proliferative foci, which according to the authors are most likely due to 

additional mutations (Shen et al. 1998). In this thesis several lines of evidence 

are provided that regrowth of long-term growth-arrested PUVA-treated human 

dermal fibroblasts is neither due to transformation nor immortalization.  

 

First, four independently tested regrowing fibroblast strains did not show 

anchorage-independent growth in the soft agar assay. By contrast, the 

transformed cell lines HT1080 and HeLa, which served as positive controls, 

formed growing colonies in the soft agar assay. Second, telomerase activity 

which is mainly responsible for the maintenance of the telomere length in 
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immortalized and transformed fibroblasts (Bryan et al. 1995; Kim et al. 1994), 

was not detected in regrowing fibroblasts post PUVA treatment. In accordance 

with this, telomere length of regrowing fibroblasts continuously shortens with 

increasing CPD. Third, in contrast to the unlimited growth of immortalized or 

transformed cells, regrowing fibroblasts in their proliferative phase post PUVA 

treatment revealed a continuous decline in their proliferation rates with time. In 

addition, p53, p21cip1 and p16INK4a genes, which were known to be the main 

players involved in both cellular senescence and other tumor suppressor 

mechanisms (e.g. apoptosis), did not show major mutations detectable by the 

applied PCR method in regrowing fibroblasts post PUVA. Thus, immortalization 

and transformation are not the reason for the resumed growth after PUVA-

induced long-term senescence-like growth arrest.  

 

Recently, the term stress-induced premature senescence (SIPS) has been 

introduced (Brack et al. 2000; Chen 2000; Toussaint et al. 2000b). Exposure of 

human fibroblasts to oxidative stress triggers a growth arrest state with 

appearance of several biomarkers for cellular senescence starting from 48 to 72 

h after exposure to the respective stressors (Chen 2000; Toussaint et al. 2000b). 

Both chronic and acute oxidative stress protocols have been used to induce 

SIPS: continuous chronic stresses such as hyperoxia for several weeks, or short 

repeated discontinuous subcytotoxic stresses, with H2O2 or tert-

butylhydroperoxide, followed by recovery periods of several days (Dumont et al. 

2001).  

 

Independent of the used protocols to induce oxidative stress, it was observed 

that there was no all-or-none response of cells, neither to chronic nor to acute 

oxidative stresses (Toussaint et al. 2000c). Under both protocols, senescent 

growth arrest occurred only in a certain fraction of cells though repeated 

stresses, with a stress every day or every two days, lead to an increased fraction 

of SIPS cells (Toussaint et al. 2000a). In the PUVA-treated fibroblasts, however, 

a more homogenous response of switching to a senescence-like long-term 

growth arrest was found. PUVA-treated fibroblasts without any exception 

revealed senescence-like features during the growth arrest stage, as evidenced 

by SA-β-gal expression with all fibroblasts being positive at 3-4 weeks post 
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PUVA treatment. No proliferating fibroblasts were found at least in the first 8 

weeks post PUVA treatment as determined by BrdU incorporation. These data 

indicate that resumed growth was not due to the escape of rare non-senescence-

like fibroblasts, which may have received no or less damage. However, the 

results do not necessarily mean that all treated fibroblasts recover from the 

growth-arrested stage at exactly the same time. Due to non-homogenous 

damages produced after PUVA in different fibroblasts and their expected 

different antioxidant and damage repair capacities, it is possible that some 

fibroblasts resumed growth earlier while others were still growth-arrested for an 

extended period. This prediction reflects exactly the data. The major finding, 

however, is that PUVA-induced senescence-like growth arrest is reversible and 

the earliest regrowth occurred at 90 days after PUVA treatment.  

 

In summary, the herein reported data indicate that the long-term growth arrest 

following a single PUVA treatment, although sharing senescent markers currently 

used for the identification of replicative cellular senescence, is not identical to 

replicative senescence since the senescence-like growth arrest is still reversible. 

The regrowth post PUVA treatment is neither due to immortalization nor to 

transformation as a result of loss-of-function of tumor-suppressor genes involved 

in cellular senescence, such as p53, p21 and p16. The onset of regrowth is also 

not due to an escape mechanism of rare non-senescence-like fibroblasts which 

received no or less damage.  

 

4.2. PUVA-induced growth arrest represents a phenocopy of senescence 

with ROS contributing to senescence-like phenotype changes 

The observation that PUVA-treated fibroblasts were growth-arrested for longer 

than 90-120 days with biomarkers widely used for the identification of premature 

senescence with final regrowth makes it mandatory for re-evaluation of 

previously reported premature senescence models. In particular it is necessary to 

reconsider whether those models for stress-induced premature senescence are 

identical to replicative senescence in terms of irreversibility or whether they 

represent rather a “stress-induced mimic” of replicative cellular senescence. 

Thus, the important question is addressed whether senescence-like mechanisms 
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could be initiated in a non-senescence state and what mechanisms are involved 

and contribute to senescence-like features. 

 

4.2.1. Senescence features in PUVA-induced long-term growth arrest are 

reversible 

Established biomarkers of replicative cellular senescence also positive in SIPS 

and other premature senescence models include terminal growth arrest (Chen 

and Ames 1994; von Zglinicki et al. 1995), enlarged cell morphology (Chen and 

Ames 1994; Dumont et al. 2000), senescence associated �-galactosidase 

(Dumont et al. 2000), matrix metalloproteinase-1 (MMP-1) (reviewed in Campisi 

2001b), accelerated shortening of telomere length (von Zglinicki et al. 1995), and 

lipofuscin accumulation (von Zglinicki et al. 1995). However, as these reported 

SIPS models have only been followed for several days or longest for a few 

weeks after the SIPS-inducing challenge, it is currently not clear whether the 

senescent-like growth arrest in these models is indeed irreversible as claimed by 

the authors.  

 

Here it was found that fibroblasts, which escaped from growth arrest, had gone 

through phenotypic changes including senescent cell morphology and expression 

of SA-β-Gal. Interestingly, both senescent markers were reversible, and growth 

recovery after PUVA treatment was coupled with loss of all these senescence-

like features. Besides morphological changes and SA-β-gal expression, another 

senescence-associated marker, matrix-metalloprotease-1(MMP-1), which was 

up-regulated for up to 90-110 days after PUVA treatment, also completely 

returned back to control levels in regrowing fibroblasts. The long-term induction 

of MMP-1, particularly if unbalanced by its inhibitor TIMP-1, will contribute to the 

degradation and disorganization of extracellular matrix proteins, like interstitial 

collagens and elastin, a hallmark in aging of the connective tissue (Kligman 

1969; Scharffetter-Kochanek et al. 2000; Schwartz et al. 1993). The evident 

switch from the enlarged and SA-β-gal positive state to non-enlarged proliferating 

fibroblasts with loss of SA-β-gal as well as MMP-1 expression indicated that 

those currently accepted and used senescent markers, indeed, are not restricted 

to replicative cellular senescence.  
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4.2.2. Senescence controlling genes are up-regulated in PUVA-treated 

fibroblasts in a sequential and interrelated manner 

To understand the mechanisms underlying PUVA-induced senescence-like 

growth arrest, the question is addressed whether it shares similar control 

pathways with mechanisms involved in replicative cellular senescence. 

Increasing evidence indicates that the molecular machinery that triggers and 

maintains the growth arrest of the senescent state is critically dependent on 

p53/p21Cip1 and Rb/p16INK4a function (Shay et al. 1991b). Specifically, both 

p16INK4a and p21Cip1 have been implicated in replicative cellular senescence 

(Brown et al. 1997; Noble et al. 1996). However, the manner in which it regulates 

the senescence machinery remains poorly understood. The data herein reveal 

that several cell cycle controlling proteins were upregulated in a sequential order. 

p53 and p21Cip1 seem to be involved in the initiation of the growth arrest, while 

p16INK4a is most likely engaged in maintaining the long-term growth arrest.  

 

p53 and p21Cip1 were concomitantly up-regulated after PUVA treatment. The 

tumor suppressor p53 is known to induce growth arrest or apoptosis in response 

to genotoxic stress. p53 levels transiently increase in oxidative stress or 

oncogenic Ras-induced premature senescence (Chen et al. 1998; Dimri et al. 

2000; Serrano et al. 1997). Induction of p53 has been also observed in 

replicative senescence. p53 DNA binding and transcriptional activity were found 

to be increased several fold, although an increase in p53 protein or mRNA 

expression was not detected in replicative senescence (Atadja et al. 1995; Vaziri 

et al. 1997). In vivo, increased expression of p53 protein was observed in PUVA-

treated skin sample (Hannuksela-Svahn et al. 1999; Zhao et al. 1999). One of 

the downstream target genes of p53 is p21Cip1. p21Cip1 is an universal inhibitor of 

cyclin-dependent kinases, which can mediate both G1 and G2 arrest (Chen et al. 

1995a; Harper et al. 1993; Macip et al. 2002). The importance of p21Cip1 and p53 

in replicative senescence in vitro has been demonstrated in experiments blocking 

p21Cip1 and p53 expression in senescent cells (Bond et al. 1994; Gire and 

Wynford-Thomas 1998; Ma et al. 1999). As one of the major signal pathways 

characterized in replicative senescence, however, p53/p21Cip1 are unlikely to be 

the only pathway activated and responsible for the long-term senescence-like 

growth arrest induced by PUVA. This conclusion is related to the observation that 
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expression of p53 and p21Cip1 after initial up-regulation for 4 weeks returned to 

base levels. Thus, for maintaining the long-term growth arrest lasting for 3 

months or even longer, other pathways have to be involved. One candidate could 

be p16INK4a, which was induced 1 week after PUVA treatment and maintained a 

high expression level during the three months growth arrest stage. It has been 

postulated that high expression of p21Cip1 may be necessary for the entry into the 

arrest state, whereas p16INK4a may be responsible for the maintenance of the 

senescent cell cycle arrest (Stein et al. 1999). The herein reported data are in 

good correlation to this model and the observations of other groups (Alcorta et al. 

1996).  

 

Although the expression of p16INK4a, p21Cip1 and p53 has been investigated in 

different experimentally induced SIPS-models like 5-bromodeoxyuridine 

(Michishita et al. 1999), hydroxyurea (Yeo et al. 2000), hydrogen peroxide (Chen 

et al. 1998; Chien et al. 2000), histone deacetylase inhibitors (Ogryzko et al. 

1996) or glucose-6-phosphate dehydrogenase deficiency (Ho et al. 2000), no 

uniform model for the role of these genes in the development of SIPS has been 

defined. Furthermore, the response pattern of these genes following PUVA 

treatment has not been addressed in detail although knowledge on its function is 

of great interest for PUVA therapy because of the high incidence of skin cancer 

limited to the histogenetic compartment of epidermal cells. Therefore, we were 

interested in the role of these tumor suppressor genes in the growth arrest 

following PUVA treatment in the non transforming compartment of the dermal 

fibroblasts. Unexpectedly, PUVA-treated fibroblasts with a null-mutation in either 

of the p53, p21Cip1 or p16INK4a genes were still growth-arrested with enlarged cell 

morphology. Thus, the cell growth regulators p53, p21Cip1 and p16INK4a are not 

exclusively required for the induction of PUVA-induced senescence-like growth 

arrest and may be replaced by each other and/or additional control genes. 

Recently,  a similar response of p53, p21Cip1 and p16INK4a deficient cell lines has 

been described for the induction of stress-induced replicative senescence by 5´-

bromodeoxyuridine (Michishita et al. 1999).  

 

In summary, the data show that several cell cycle control pathways are 

sequentially activated after PUVA treatment. Up-regulation of p53/p21Cip1 
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occurred 1-2 day after PUVA and possibly played a pivotal role for initiating the 

growth arrest, while p16INK4a might be involved in maintaining the long-term 

growth arrest. The exact pathways controlling PUVA-induced long-term growth 

arrest are far from being clear, and may involve several other pathways. As a 

study focusing on the senescence-like features in the long-term growth arrest, it 

was found that both of the two known pathways involved in cellular senescence, 

namely p53/p21Cip1 and pRb/p16INK4a, are also up-regulated after PUVA 

treatment.  

 

4.2.3. PUVA treatment leads to elevated ROS production which is related to 

mitochondria and NADPH oxidase 

Many studies suggest that ROS may play a pivotal role in the induction of 

replicative cellular senescence. For example, examination of cells in culture 

suggests that “older” cells at higher CPD have higher levels of ROS than 

“younger” cells at lower CPD (Hagen et al. 1997). When cells were treated with 

antioxidants or grown in conditions of low oxygen, their life span is distinctly 

prolonged (Chen et al. 1995b; Yuan et al. 1995). Treatment of primary fibroblasts 

with a sublethal concentration of H2O2 was shown to induce a state resembling 

replicative senescence (Chen et al. 1998). Moreover, ROS were involved in the 

oncogenic Ras-induced senescence program (Lee et al. 1999). Based on the 

previous evidence linking oxidative stress to aging, in this thesis the possibility 

was explored whether PUVA treatment induces the senescence-like growth 

arrest as well as phenotypic changes by altering the intracellular levels of ROS. 

The results indicate that PUVA treatment leads to an increase in intracellular 

ROS, the source of which appears to be both mitochondria and the NADPH 

oxidase. This conclusion is based on the finding that only depletion of functional 

mitochondria in conjunction with inhibition of NADPH oxidase leads to the 

suppression of the enhanced ROS levels after PUVA treatment. 

 

Under normal conditions the main source for ROS production are mitochondria. 

Mitochondria utilize over 90% of the oxygen consumed by mammalian cells, and 

up to 4% of this oxygen is transformed into ROS. It is generally accepted that 

defects in the respiratory-chain, which is located in the mitochondrial membrane, 

results in enhanced production of ROS and other free radicals. As an index for 
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mitochondrial membrane integrity, previous studies showed that reduced 

mitochondrial membrane potential (∆Ψ) led to increased generation of ROS 

(Zamzami et al. 1995). In line with this, our data show that ∆Ψ is significantly 

decreased 2 weeks after PUVA treatment and further decreased at later time 

points post PUVA treatment.   

 

Since ATP production is driven by ∆Ψ, lower ∆Ψ should lead to lower ATP 

production. However, this is not the case in PUVA-treated fibroblasts. With a 

decreasing ∆Ψ value, the ATP level of the PUVA-treated cells remained constant. 

Therefore, there must be an alternative mechanism to circumvent the energy loss. 

Interestingly, mitochondria still proliferate although cell proliferation is stopped 

after PUVA treatment. Thus the seemingly paradox results between constant 

ATP generation and a decrease in ∆Ψm may be explained by enhanced 

mitochondria proliferation. This means that proliferation of mitochondria may 

function as a compensatory response to restore an adequate mitochondrial 

function for ATP production. Since ∆Ψ decreased time-dependently after PUVA 

treatment, it is most likely though speculative that newly produced mitochondria 

at least in part still have defects in their electron chain, which would lead to more 

ROS production. In fact, an increase in intracellular ROS was observed time-

dependently after PUVA treatment. Alternatively, the following scenario may be 

responsible for the enhanced ROS generation: initially enhanced ROS levels or 

mitochondrial DNA damage contributes to the further mitochondrial damage and 

ROS leakage. The mitochondrial biogenesis occurring in parallel may finally 

overcome the number of severely damaged ROS-overproducing fibroblasts. 

According to this explanation ∆Ψ should be restored gradually to normal or 

almost normal levels at the time point when cells start to regrow. However, this 

has not been observed, as the ∆Ψ of PUVA-treated fibroblasts was not increased 

at 11 weeks post PUVA treatment compared to PUVA-treated fibroblasts 

analyzed 16 days and 4 weeks after PUVA treatment. One explanation could be 

that PUVA-induced damages and the subsequent repair in fibroblasts are 

heterogeneous. Thus, the determination of ∆Ψ value might be overwhelmed by 

those heavily damaged fibroblasts, though a subpopulation of fibroblasts already 

gained a high ratio of healthy mitochondria to damaged mitochondria. At least 
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regrowing fibroblasts revealed the same ∆Ψ value as mock-treated control 

fibroblasts.   

 

The molecular mechanisms involved in the control of mitochondria biogenesis 

are still poorly understood. It is a complex process that involves proliferation 

(increasing the number of mitochondria) and differentiation or maturation 

(increasing the activity of individual mitochondria) (Fernandez-Moreno et al. 

2000). Mitochondria biogenesis is controlled both by the nucleus genome and the 

mitochondria genome (Attardi and Schatz 1988). Thus, the integrity of both 

mtDNA and the genomic DNA encoding mitochondrial components are critical for 

cellular energy generation and maintenance of functional mitochondria. Due to 

effects of PUVA in generating DNA monoadducts or interstrand crosslinks, both 

genomic DNA and mtDNA are preferred targets. In addition, mitochondria are not 

equipped with a similarly efficient repair system like that in the nucleus, and DNA 

interstrand crosslinks in mitochondria are most likely maintained and not repaired 

(Cullinane and Bohr 1998). Thus, even though fibroblasts contain hundreds of 

mitochondria and each mitochondrion contains several copies of mtDNA, this 

might not be enough to guarantee that all the newly replicated mtDNA is identical 

and has no mutations or deletions. If new mitochondria have defects in the 

mtDNA, the enhanced ROS production will be hardly prevented. 

 

However, PUVA-induced ROS production was definitely not solely due to the 

uncontrolled ROS leakage from the defective mitochondria electron chain. In fact 

mitochondria depleted Rho0 fibroblasts still revealed enhanced ROS production 

after PUVA treatment, which may be related to NADPH oxidase. At least, Rho0 

fibroblasts in conjunction with inhibition of the NADPH oxidase reveal a complete 

abrogation of enhanced ROS generation 3 and 6 weeks after PUVA treatment. It 

is currently not clarified why mitochondria depletion or NADPH oxidase inhibition 

alone does not show any decrease in ROS levels after PUVA treatment. The 

herein reported data would be compatible with a concept that NADPH oxidase 

compensates for a lack of mitochondrial ROS production in Rho0 fibroblasts. In 

fact, preliminary data suggest that the expression of the fibroblast-related 

NADPH oxidase is enhanced in Rho0 PUVA-treated fibroblasts (data not shown). 

Although NADPH oxidase is classically regarded as a key enzyme of neutrophils, 
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where it is involved in the production of reactive oxygen species in defense 

against infections, recent studies demonstrate that virtually all eukaryotic cell 

types have a similar oxidase system. NADPH oxidase is a membrane associated 

multisubunit enzyme consisting of a plasma membrane-associated 

flavohemoprotein complex which comprises two subunits, gp91phox and 

p22phox, and several cytosolic components including p40phox, p47phox, 

p67phox, and the small GTPase Rac. Since functional assembly of NADPH 

oxidase requires translocation of those cytosolic proteins into the membrane, 

ROS production via NADPH oxidase in PUVA-treated Rho0 fibroblasts suggests 

that it may play an important physiological role instead of acting only as 

damaging reagents. 

 

The physiological role of NADPH oxidase related ROS production in non-

phagocytic cells is currently unclear. Previous studies have established an 

important role for ROS in cell proliferation and activation of growth-related 

signaling pathways. For example, ROS have been implicated in the mitogenic 

response to platelet-derived growth factor (PDGF) (Sundaresan et al. 1995), 

phenylephrine (Nishio and Watanabe 1997), thrombin (Patterson et al. 1999) and 

epidermal growth factor (EGF) (Bae et al. 1997). Moreover, the addition of 

exogenous ROS to vascular smooth muscle cells was reported to induce cell 

proliferation, while suppression of ROS resulted in increased apoptosis (Baas 

and Berk 1995; Brown et al. 1999; Tsai et al. 1996). There is also growing 

evidence that increased ROS production is functionally associated with the 

regulation of gene expression and the activation of many transcription factors, 

such as NFκB (Cominacini et al. 2000; Sulciner et al. 1996). Increased activation 

of NFκB, in turn, has been reported to increase cell survival (Baichwal and 

Baeuerle 1997). Interestingly, it was lately found that increased ROS production 

induced by oncogenic H-Ras could enhance the DNA repair capacity via the 

Ras/PI3K/Rac1/NADPH oxidase-dependent pathway (Cho et al. 2002). This 

finding provides first evidence that ROS, which are generally accepted as DNA 

damaging reagents, on the other hand also facilitate DNA repair. As promoters of 

many DNA repair genes contain redox sensitive transcription factor-binding sites, 

involvement of ROS in the regulation of DNA repair activity might occur through 

the activation of redox-sensitive transcription factors (Cho et al. 2002). PUVA 



 102 

treatment also leads to various DNA damages, however, so far it is not clear 

whether NADPH oxidase related ROS production also plays a role for facilitating 

DNA repair.   

 

Two key studies demonstrated that overexpression of NADPH oxidase in NIH 

3T3 cells leads to a proliferative phenotype (Irani et al. 1997; Suh et al. 1999). 

Interestingly, overexpression of Renox, an NADPH oxidase in kidney, in the 

same cell line was also found to lead to senescence (Geiszt et al. 2000). The 

latter finding may reflect a similar function of NADPH oxidase activation after 

exposure of fibroblasts to PUVA treatment. So far we have little knowledge on 

NADPH oxidase activation in PUVA-treated fibroblasts. It is unclear how the 

NADPH oxidase is activated. In addition, its exact role in PUVA-induced 

senescence-like growth arrest, and whether it drives cells at risk for 

tumorigenesis, remains poorly understood. To address these questions will be an 

interesting challenge for further studies.  

 

4.2.4. Enhanced ROS concentration of reactive oxygen species is 

responsible for the enlarged morphology of fibroblasts but not for the 

enhanced expression of SA-ββββ-galactosidase after PUVA treatment 

Based on the previous evidence linking oxidants to cellular senescence and 

aging, the possibility was explored in this study of whether the PUVA-induced 

senescence-like phenotypic changes may be causally related to the enhanced 

ROS levels in fibroblasts after PUVA treatment. The herein reported results 

suggest that PUVA-induced high ROS level is essential for the senescence-like 

phenotypic changes after PUVA treatment. In fact, PUVA-treated fibroblasts 

grown in the presence of the ROS-scavenging antioxidant N-acetyl cystein (NAC) 

are rescued from the PUVA-induced cytoplasmic enlargement. However, the 

long-term growth arrest after PUVA treatment was not affected. Reduced ROS 

level in the presence of NAC did not result in earlier regrowth after PUVA 

treatment. So far little is known which signal pathways ROS are engaged to 

change cell morphology. Possibly, it is due to its active role on cell proliferation 

and activation of growth-related signaling pathways such as mitogen-activated 

protein kinase (MAPK) and AKT pathways. In this regard, cell enlargement might 

also be related to the increasing number in mitochondria found after PUVA 
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treatment, as mitochondria proliferate in response to new metabolic requirements 

by the regulation of ATP levels or lipid metabolism. In fact, mitochondrial DNA 

depleted Rho0 fibroblasts show an elongated small phenotype and not the 

flattened, enlarged cell morphology post PUVA treatment (data not shown). In 

contrast to the active role of ROS in morphological changes of fibroblasts, 

scavenging ROS by NAC did not lead to any effect on the senescence-

associated β-galactosidase. This either suggests that SA-β-galactosidase is not 

downstream of ROS, or alternatively, that low levels of ROS maintained in NAC-

treated PUVA-fibroblasts are already sufficient to up-regulate SA-β-galactosidase.  

 

The PUVA-induced changes are a model particularly suited to study mechanisms 

of stress-induced premature senescence. Further investigations into the 

downstream signaling molecules following PUVA-induced ROS production and 

its linkage to the senescent phenotypic changes might provide important insights 

for senescence as well as new therapeutic strategies to combat aging. 

 

4.3. PUVA treatment of human dermal fibroblasts leads to an early onset of 

replicative senescence related to oxidative telomere shortening 

PUVA-treated fibroblasts, although escaping from the long-term growth arrest, 

seem to retain memory of the damaging PUVA effects. PUVA-treated fibroblasts 

cultured in their regrowing state reach the stationary phase at a much lower 

overall cumulative population doubling compared to mock-treated control 

fibroblasts. These data support the view that preceding damage affects a 

counting mechanism contributing to the overall limited proliferation potential of 

PUVA-treated fibroblasts.  

 

Telomere shortening is thought to serve as a “replicometer” (counting the finite 

number of cell divisions) and as a trigger of replicative senescence (Harley et al. 

1990; Harley and Villeponteau 1995). In the absence of telomerase, human 

telomeres shorten by 30-200 bp per population doubling (PD) (Harley et al. 

1990). After 50-100 PD, this process depletes the telomere reserve of primary 

human cells and results in replicative senescence. Therefore, in this thesis it was 

studied whether the reduced life-span is related to telomere length, which in 

addition to the end-replication problem is eroded by PUVA-induced telomere 
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damage. Onset of replicative senescence in vitro is mainly dependent on 

telomere length. Therefore, it is predicted that telomere shortening occurring in 

addition to the regular DNA replication will drive fibroblasts into senescence at a 

lower CPD. The results, indeed, indicate that ROS-induced telomere shortening 

represents the alternative mechanism responsible for the additional telomere 

shortening in PUVA-treated fibroblasts. Although the telomere length in PUVA-

treated fibroblasts seems to be constant during the growth arrest stage, a 

significant reduction in telomere length (~1-1.5 kb) is found in regrowing 

fibroblasts post PUVA treatment compared to mock-treated fibroblasts at exactly 

the same CPD. Clearly, this substantial difference is generated at the very 

beginning of regrowth, while thereafter regrowing fibroblasts showed a similar 

shortening rate in telomere length comparable to mock-treated control 

fibroblasts. After 2 weeks from the emergence of growth foci until newly growing 

fibroblasts reached confluence, and thereafter at different CPDs, genomic DNA 

for telomere length determination was collected. The question of how a more 

than 1-1.5 kb telomere reduction could occur within 1-2 weeks after regrowth of 

PUVA-treated fibroblasts was addressed. Under standard culture conditions, 

human dermal fibroblasts could divide at most 7-9 PD in 2 weeks, and the 

telomere reduction, thus, should be less than 500 bp. This is shown in Figure 29, 

where regrowing fibroblasts from CPD 20.9 to CPD 28.4 results in a small 

telomere decrease of <500 bp. Accordingly, the end-replication problem is 

apparently not sufficient to fully explain this reduction. No telomere length 

changes occurred during the growth arrest stage of fibroblasts after PUVA 

treatment, but definitely are observed after regrowth of fibroblasts within the first 

cycles of DNA replication. Thus, it is possible that single strand breaks were 

generated in the telomere region during the growth arrest stage which, if not 

repaired, might lead to telomere loss during DNA replication when separation of 

DNA double-strands occurred, as has previously been suggested in an other 

SIPS model (von Zglinicki et al. 2000). In addition, telomeres have long single-

stranded 3’ overhangs at both ends with an average of 130-210 bases being 

essential for the stabilization of the “telomeric t-loop” (Blackburn 2000; Campisi et 

al. 2001). It was suggested to be generated due to the end replication problem 

and possibly to the action of a C-strand-specific exonuclease, with a 5’ – 3’ 

exonuclease, which specifically trims back the completely synthesized telomere 
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ends to form a 3’ overhangs for the T-loop formation  (Makarov et al. 1997). 

Single strand breaks in this overhang and subsequent loss during DNA double 

strand separation and replication most likely drive telomere length reduction.  

Here it is reported that single strand breaks are formed and accumulate in the 

telomere region with time after PUVA treatment as determined by denaturing gel 

electrophoresis (Figure 30). A clear pattern of telomere reduction could be 

observed in denatured telomeres which gave strong support for the hypothesis 

that single strand breaks contribute to telomere reduction. Although the length of 

double-stranded telomeres is constant during the whole growth arrest period 

after PUVA treatment, the length of single stranded telomeres at 11 weeks post 

PUVA treatment is nearly identical to that of regrowing fibroblasts. This finding 

may indicate that separation of telomere double strands of growth-arrested 

fibroblasts results in telomere fragment loss. Thus, the two steps leading to 

telomere shortening, such as single strand breaks and telomere fragments loss, 

occur at different time post PUVA treatment. Single strand breaks are generated 

during the growth arrest stage, while telomere fragment loss most likely occurs 

during DNA replication and cell proliferation. Increased shortening of single-

stranded telomere during the growth arrest stage, in addition, indicates that 

single strand breaks in this region are not efficiently repaired. The reason and 

underlying mechanism of a potential telomeric DNA repair deficiency is not 

understood. Nevertheless, this finding might have far-reaching consequences. 

Accumulation of DNA damage and the inability of efficient DNA repair have been 

suggested as a causal factor in aging (Chen et al. 1995b; de Boer et al. 2002). 

As telomeres serve as a biological clock for cellular senescence, the herein 

reported data that single strand breaks of telomere are not repaired not only 

provide a reasonable explanation for accelerated telomeres shortening after 

PUVA treatment, but also imply a rationale for understanding DNA damage 

related cellular senescence and aging processes. 

 

There is increasing evidence suggesting that oxidative stress is causally involved 

in telomere erosion (Proctor and Kirkwood 2002; von Zglinicki 2000, 2002). 

Reduction in telomere length occurs five to ten times faster in fibroblasts 

subjected to chronic hyperoxia, a rather mild oxidative stress compared to mock-

treated fibroblasts (Vaziri et al. 1997; von Zglinicki et al. 1995). On the other 
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hand, the rate of telomere loss decreases by half if human dermal fibroblasts are 

treated with the spin trap α-phenyl-t-butyl-nitrone (PBN), a potent free radical 

scavenger (von Zglinicki et al. 2000). These data indicate that telomere 

shortening could be the result of oxidative stress. However, it has also been 

suggested that the accelerated telomere shortening under oxidative stress 

observed in the above reports might be an artifact resulting from the increased 

replicative demand on a subpopulation when a significant proportion of the cells 

are forced to drop out of the cell cycle by stress (Dumont et al. 2001; von 

Zglinicki 2002). In other words, if only a subpopulation of cells starts to regrow 

after PUVA treatment, while a significant proportion of the cells are still growth-

arrested, the small population of regrowing fibroblasts will have to divide many 

times until confluences with subsequent accelerated telomere shortening 

(Dumont et al. 2001). So far, there is no agreement on whether telomere 

shortening occurs due to oxidative damage or to proliferation of a small 

subpopulation after stress-induced premature senescence. PUVA treatment 

leads to a dramatic increase in ROS production during the growth arrest stage, 

as well as a significant telomere reduction in regrowing fibroblasts thereafter. In 

addition, scavenging ROS by N-acetyl cystein (NAC) could prevent telomere 

erosion and replicative senescence occurs at a later CPD in fibroblasts after 

PUVA treatment compared to simply PUVA-treated fibroblasts. In addition, 

compared to other SIPS-models with low concentrations of peroxide and its 

derivatives, where growth arrest was investigated only for several days or at 

most weeks, our long-term growth arrest model induced by PUVA has the 

definite advantage that its long-lasting oxidative stress results in a subsequent 

clearly visible loss of telomere length.  

 

Several lines of evidence support the notion that oxidative stress plays an 

important role in the accelerated decrease of telomere length in PUVA-treated 

fibroblasts. First, based on a simple mathematical analysis of the data, it can be 

shown that the significant telomere reduction following PUVA treatment can not 

be solely be explained by the fact that it is due to the repetitive division of a 

subpopulation of fibroblasts as has been explained above (Name it S-hypothesis 

for brief; “S” stands for subpopulation). Second, treatment with NAC, an 
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antioxidant, during the growth arrest period protected fibroblasts from telomere 

reduction as mentioned above. 

 

In the PUVA-induced growth arrest and regrowth model, the S-hypothesis could 

be mathematically described as follows. In the CPD calculation, it is proposed 

that regrowing fibroblasts derive from the total fibroblast population (2×105 cells) 

of growth-arrested fibroblasts instead of a subpopulation: 

 

 

 

Cr : CPD of growth resuming fibroblasts when reaching confluence in the dish. 

C0 : CPD of fibroblasts before PUVA treatment. 

 

However, the CPD calculated here might be not the real CPD of regrowing 

fibroblasts, since it may be that only a subpopulation of fibroblasts starts to 

proliferate, while others are still growth-arrested.  

 

To obtain the real CPD, it is mandatory to know the exact number of fibroblasts, 

which escaped from the growth arrest. However, this is difficult to determine. 

When considering the extreme case that only one fibroblast out of the 2×105 

growth-arrested fibroblasts escapes from growth arrest and finally divides 

multiple times so that it is responsible for the occurring confluence (~106 cells), 

the following equation would result:  

 

 

 

 

 

 

1 fibroblast  - ------- divide N times (N = PD) ---------- 106 fibroblasts (confluence in dish) 

N could be calculated by the equation: 1 ×××× 2N = 106 

N = Log 106 / Log2 ≈≈≈≈ 20 (PD) 

Thus, Cr = C0 +20 (PD) 

2××××105 fibroblasts ---------- divide N times (N = PD) ---------- 106 fibroblasts (confluence in 

dish) 

N could be calculated by the equation: (2××××105) ×××× 2N = 106 

N = Log [106 / (2××××105)] / Log2 ≈≈≈≈ 2.3 (PD) 

Thus, C  = C  +2.3 (PD) 
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As shown by the BrdU incorporation experiments the number of regrowing 

fibroblasts is definitely more than one and less than the total seeded fibroblast 

number within the dish. Accordingly, the real CPD of regrowing fibroblasts should 

fit into the following equation: 

 

 

Based on the assumption that no other factors than CPD contribute to telomere 

length, then the telomere length of regrowing fibroblasts should be: 

 

 

 

Tr (Cr): telomere length of regrowing fibroblasts, CPD = Cr. 

Tn (C0 + x): telomere length of mock-treated control fibroblasts, CPD = (C0 +x). 

 

According to the above equation, in any case the telomere length of regrowing 

fibroblasts at a certain CPD should be at least higher than that of mock-treated 

control fibroblasts at a CPD of 20 more in numerical value (Tn (C0 +20) ≤ Tr (Cr)). 

By contrast, as shown in Figure 29, the telomere length of regrowing fibroblasts 

with a CPD of 20.9 is still shorter than that of mock-treated control fibroblasts 

with a CPD of 41. Thus, the observed increase in telomere shortening rates after 

PUVA treatment is too large to be explained by the S-Hypothesis, suggesting 

other factors contributing to telomere reduction. 

 

In this thesis ROS have been identified as a major factor responsible for telomere 

shortening. NAC incubation during the growth arrest stage significantly protects 

PUVA-treated fibroblasts from telomere reduction (Figure 31). Thus, it is clear 

that the significant reduced telomere length of fibroblasts after PUVA treatment is 

at least in part related to the high level of ROS production. These data are in line 

with previous findings from the von Zglinicki’s group and confirm the idea that 

oxidative stress is an important determinant for telomere length (Saretzki and von 

Zglinicki 2002; von Zglinicki 2002). In addition, it is of clinical importance to know 

whether PUVA leads to significant ROS production and has profound effects on 

telomere length, since PUVA therapy is widely used for many skin disorders.  

C0 +2.3 ≤≤≤≤ Cr ≤≤≤≤ C0 +20 

Tn (C0 +20) ≤≤≤≤ Tr (Cr) ≤≤≤≤ Tn (C0 +2.3) 
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However, the data stem from in vitro experiments. Therefore, it has to be proven 

that the in vitro data hold true for the in vivo situations as well. Thus, increasing 

the antioxidative defense capacity in patients during and after PUVA treatment by 

antioxidants or other means possibly could be of advantage for patients to 

prevent premature aging, a major side effect of long-term PUVA treatment. 

 

So far it is hard to say whether the reduced total life span of PUVA-treated 

fibroblasts is exclusively controlled by oxidative telomere reduction. Although 

NAC treatment evidently reversed telomere reduction in PUVA-treated 

fibroblasts, the total life span is only in part restored (Figure 32).  Nevertheless, 

the fact that NAC-treated fibroblasts with a longer telomere length partly 

recovered their total life-span implies that oxidative telomere erosion plays a 

central role for the reduced life-span of PUVA-treated fibroblasts.  

 

Recently, it has been demonstrated that replicative cellular senescence in culture 

is not only induced by an intrinsic cell division counter mechanism (replicative 

senescence), but can also be induced by extrinsic factors such as culture 

conditions (premature senescence). Epithelial cells, for instance, seem to 

experience a telomere length-independent senescent cell cycle block via the pRb 

pathway (Kiyono et al. 1998). In this context the question was addressed whether 

an alternative pathway – in addition to telomere shortening – is activated and 

contributes to the early onset of senescence in regrowing fibroblasts after PUVA 

treatment.  

 

p53/p21Cip1 and/or p16INK4A/Rb are the two main pathways known to be involved 

in replicative senescence. Replicative senescence of human cells can be 

abrogated by suppression of both pathways. For instance, suppression of these 

pathways by SV40 large T antigen or the human papillomavirus E6 and E7 

oncogenes can fully suppress replicative senescence, leading to a cell population 

with an extended lifespan (Counter et al. 1992; Shay et al. 1991a). 

 

Herein it is shown that during PUVA-induced growth arrest, both p53/p21Cip1 and 

p16INK4A/pRb are up-regulated. Although p53 and p21Cip1 expression returned to 

the control level after fibroblasts regrow, p16INK4a is still expressed at a low while 
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up-regulated level. However, it is not clear whether p16INK4a is induced in 

response to short telomeres or rather serves as an alternative mechanism 

contributing to the early onset of senescence. Although it is widely assumed that 

critically shortened telomere ends can initiate a signaling cascade that eventually 

results in the upregulation of p21Cip1 and/or p16INK4a, it has also been shown that 

aging-related p16INK4a up-regulation could be induced under suboptimal culture 

conditions independent of telomere dynamics (Dickson et al. 2000; Kiyono et al. 

1998; Munro et al. 2001). In addition, introduction of hTERT into pre-senescent 

fibroblasts blocked the upregulation of p21Cip1 (Modestou et al. 2001) but the high 

level of p16INK4a was not reduced. Although a study from the Wright and Shay 

laboratory (Ramirez et al. 2001) found that p16INK4a was not induced and 

telomerase-mediated telomere maintenance is sufficient to generate cells with 

infinite replicative potential under optimal cell culture conditions. Nevertheless, 

these results suggest that p16INK4a can be induced both by certain culture 

conditions or other kinds of stresses as well as telomere shortening. 

Maintenance of up-regulated p16INK4a levels in regrowing fibroblasts after PUVA 

treatment definitely is not due to insufficient culture conditions since mock-treated 

control fibroblasts under the same conditions do not reveal enhanced p16INK4a 

expression. Thus, enhanced p16INK4a expression might be due to PUVA-induced 

damage or the high ROS production. However, it is unclear why p16INK4a level is 

maintained in the regrowing phase. 

 

In summary, replicative senescence in vitro is a complex and heterogeneous 

process. It may be dependent on the telomeric ‘clock’, the chronic exposure to 

various types of stresses, or a combination of both. The molecular pathways of 

senescence have begun to be unraveled, and their further characterization will 

undoubtedly provide a more complete picture. Using the PUVA-induced 

premature senescence as a model for stress-induced premature senescence, in 

this thesis the underlying mechanisms of the early onset of replicative 

senescence have been studied. Our data support the idea that telomere length is 

not only dependent on cell proliferation, but also on oxidative stress from 

endogenous origin which is undoubtedly involved and contributes to accelerated 

telomere reduction. In addition, maintenance of up-regulated p16INK4a expression 

might be an additional mechanism contributing to early onset of senescence. 
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However, a causal relationship cannot be concluded from the present data. The 

data might have profound clinical implications. They are the first data showing 

that PUVA treatment leads to early onset of senescence, which is related to 

oxidative telomere reduction and possibly to p16INK4a activation. In the clinical 

situation, senescence appears to be a relevant factor in determining treatment 

outcome and warrants further investigation, especially for PUVA and other kinds 

of chemotherapies, which induce DNA or other cellular damages. It is extremely 

important to investigate the cellular response after treatment, i.e., apoptosis or 

senescence. Such information could be of great value in choosing an appropriate 

photo-chemotherapeutic strategy and may explain some of the controversy 

concerning the clinical use of chemotherapies. 

 

4.4. Initiation of the long-term growth arrest 

The efficacy of PUVA treatment on many skin diseases is believed to be related 

to its proliferation inhibiting effects. However, the mechanism of how PUVA 

treatment initiates growth arrest in many different cell types is not completely 

understood. Since psoralens are known to intercalate within DNA in a dark 

reaction and form mono- and bifunctional adducts with pyrimidine bases following 

UVA irradiation (Song and Tapley 1979), it has been proposed that psoralen-

DNA interstrand crosslinks are responsible for the proliferation inhibition as it 

blocks DNA replication (Tokura et al. 1991). However, this is still rather 

speculative and lacks substantial evidence that, apart from crosslink formation 

other mechanisms are not involved. The results here indicate that PUVA-induced 

long-term growth arrest is unlikely to be due to psoralen-DNA interstrand 

crosslinks, at least under the conditions, which have been used for PUVA 

treatment. It is herein found that fibroblasts with more interstrand crosslinks 

(ICLs) were not necessarily growth-arrested as is the case for PUVA-treated 

fibroblasts where 8-MOP was present only during the pre-incubation step (8-

MOP-PRE), while cells with less ICLs could be growth-arrested as is the case for 

PUVA-treated fibroblasts without the 8-MOP pre-incubation step (8-MOP-UV).   

 

Herein it was therefore studied which additional factors are responsible for the 

long-term growth arrest. We first proposed that it might be due to PUVA-induced 

damage of cellular membrane or other cytoplasmic components. In fact, different 
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cellular components including DNA, proteins and lipids have been shown to be 

photo-modified by 8-MOP (Schmitt et al. 1995). Fractionated cellular components 

of the rat epidermis after treatment with 8-MOP and UVA showed that only 17% 

of the 8-MOP was bound to DNA, while 57% was bound to protein and 26% to 

lipids (Beijersbergen van Henegouwen et al. 1989). In addition, it was reported 

that a cell membrane receptor represent also a major target for psoralens (Laskin 

and Lee 1991; Yurkow and Laskin 1987). In this thesis by separation of the 

nuclei and cytoplasts of PUVA-treated fibroblasts and reconstructing new cell-

hybrids, which have either undamaged cytoplasts or undamaged nuclei, it was 

studied whether PUVA-induced changes in the cytoplast and/or nucleus play a 

key role for the initiation of the growth arrest. The results suggest that combined 

8-MOP and UVA irradiation leads to changes both in cytoplasts and nuclei. 

Reconstructed cells with PUVA-cytoplasts, although initially growth-arrested, 

revealed an overall shorter growth arrest. Compared to simply PUVA-treated 

fibroblasts with a growth arrest stage longer than three months, fusions of PUVA-

cytoplasts with mock-treated nuclei reveal growth arrest for only 20-26 days 

(PUVA-2w) and 8-12 days (PUVA-4w) after fusion, respectively. These data 

indicate that the damages or changes in cytoplasts induced by PUVA treatment 

could be repaired in a relatively short phase of 5-6 weeks. Unfortunately, fusions 

of PUVA-treated nuclei with mock-treated control cytoplasts reveal growth arrest 

for two weeks and thereafter all hybrids die. Thus, the experiments do not allow 

to fully estimating the overall contribution of PUVA-induced damages in 

karyoplasts. However, it is nevertheless highly interesting that PUVA-induced 

damages in the cytoplasts are able to initiate and maintain the growth arrest for 

26 days. The underlying mechanism is unknown. 

 

As discussed above, psoralen-DNA crosslinks, although formed after PUVA 

treatment, do not appear to be the key player responsible for the long-term 

growth arrest. However, this does not necessarily mean that other kinds of DNA 

damages were not involved and responsible for the growth arrest. Psoralens are 

multifunctional agents, forming two types of monoadducts and a diadduct (or 

crosslink) (Song and Tapley 1979). Although the number of interstrand crosslinks 

is obviously lower in PUVA-treated fibroblasts without pre-incubation of 8-MOP 

(8-MOP-UV) compared to PUVA-treated fibroblasts with pre-incubation where 8-
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MOP was not present during UVA irradiation (8-MOP-PRE), there is no evidence 

that DNA monoadducts were also lower in 8-MOP-UV fibroblasts. As to the two 

different procedures of PUVA treatment which generate different numbers of 

interstrand crosslinks, it is possible that 8-MOP-UV induces more psoralen-DNA 

monoadducts although treatment with 8-MOP is transitory compared with 8-

MOP-PRE. ICL formation is a three-step process (Figure 37) with 1) intercalation 

between DNA base pairs and formation of weak bands with the pyrimidine bases, 

2) the first four-center photocycloaddition reaction to form either of two 

cyclobutyltype monoadducts, 3,4-monoadduct or 4’,5’-monoadduct, 3) with 

absorption of a second UVA photon by the 4’,5’-monoadduct leads to a second 

four-center photocycloaddition at the pyrone end of the molecule and subsequent 

formation of a crosslink (Gasparro 1988). Although photoreaction is a fast step, 

intercalating into DNA double strand at sites suitable for crosslink formation (with 

adjacent pyrimidines in opposite strands) may not be as fast. Therefore, it is 

highly questionable whether within three minutes 8-MOP-UV could have enough 

time for intercalating into the right DNA sites. On the other hand, as can be seen 

from Figure 37, weak bonds formed between DNA and psoralen after 

intercalation occur in a dark reaction. Once psoralen has intercalated into a DNA 

double strand, it may not be easy to be washed out. For 8-MOP-PRE fibroblasts, 

although free 8-MOP was likely to be washed away shortly before/during the 3-

minute irradiation, intercalated 8-MOP is unlikely to be washed away, and these 

8-MOPs may be responsible for the total ICL formation.  
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Figure 37. Psoralen-DNA mono- or bi-adduct formation. Psoralens react with 
DNA in three steps. First the psoralen intercalates into the DNA double strand in 
the absence of UV radiation and form weak bonds with pyrimidine bases. Upon 
UV irradiation, cyclobutane monoadducts with a pyrimidine base are formed. If 
the initial photoreaction occurs at a 5’-TpA site, the 4’5’-monoadducts can absorb 
a second photon and undergo another cyclobutyl reaction with the adjacent 
thymine at the opposite strand resulting in the formation of a bi-adduct (psoralen-
DNA crosslink). 
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In fact, the question of which adduct(s) is (are) responsible for various biological 

effects of PUVA is an active field of investigation. Cross-link formation appears to 

be a relatively low yield reaction compared to monoadducts. Hyodo et al. showed 

that mouse FM3A cells treated with 8-MOP and UVA contained ~ 2 cross-links 

per 1 million base pairs (Hyodo et al. 1982). Under similar conditions, however, 

human lymphocytes were shown to contain 120 adducts per 1 million base pairs 

(Gasparro et al. 1985). Thus, only a small fraction of all adducts appears to be 

crosslinks. We have no direct evidence that more monoadducts were formed in 

8-MOP-UV cells. However, the total photoadducts could be calculated according 

to previously published data. It has been determined previously that photoadduct 

formation in 8-MOP/UVA-treated cells (human and murine) is independent of cell 

type. The number of photoadducts formed can be directly related to the 

combined dose of 8-MOP and UVA (Gasparro et al. 1997), which is a linear 

correlation between photoadduct number and the product of 8-MOP 

concentration in ng/ml and the UVA dose in J/cm2 (8-MOP concentrations over 

the range 10 – 20000 ng/ml and UVA dose over the range 1-10 J/cm2). There are 

about 4 adducts per million base pairs when the product of 8-MOP and UVA is 

100. Therefore, the photoadducts formed in the herein PUVA-treated fibroblasts 

system are about 18 adducts per million base pairs. 

 

In summary, our data suggest that PUVA-induced long-term growth arrest was 

not mainly related to psoralen-DNA interstrand crosslinks. While nuclei seem still 

the primary target, PUVA also induces changes in the cytoplast region, repair of 

which need about 5-6 weeks, which finally contribute to the initiation and initial 

maintenance of growth arrest.  

 

5 Perspectives 

The herein presented data indicate that PUVA-induced senescence-like growth 

arrest is reversible in a large proportion of cells. The finally returning growth 

capacity is not due to immortalization, transformation or loss of function of the 

senescence controlling genes p53, p21 and p16. These findings strengthen the 

view that PUVA-induced changes do not fully reflect replicative senescence, but 

rather represent a long-term transient phenocopy of senescence. PUVA 

treatment leads to enhanced ROS production which contributes to the 
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senescent-like phenotypes. Elevated ROS production seems related to both 

mitochondrial dysfunction and NADPH oxidase activation. PUVA-treated 

fibroblasts cultured in their regrowing state reach the stationary phase at a much 

lower overall cumulative population doubling compared to mock-treated control 

fibroblasts. The reduced total life-span in PUVA-treated fibroblasts is due to 

oxidative stress-induced telomere reduction as the abrogation of ROS production 

by the antioxidant NAC rescues telomere length reduction and partly restored 

total life-span of PUVA-treated fibroblasts. These data support the view that 

preceding damage affects a counting mechanism contributing to the overall 

limited proliferation potential of PUVA-treated fibroblasts.  

 

The model reported here is particularly suited to elucidate mechanisms 

underlying long-term senescence-like growth arrest, the related functional 

changes, and the release of cells thereof. In general, the following directions 

might be of interest for further studies: 

−−−− The characterization of the molecular mechanisms of enhanced ROS 

production as well as their active role involved in the long-term growth arrest 

which is largely unknown. The activation of NADPH oxidase after PUVA 

treatment might provide a hint on the signal pathways involved and should be 

further studied. 

−−−−  As a main source of ROS production, the role of mitochondria deserves 

further investigation. It has already been shown that the number of 

mitochondria increased after PUVA treatment. Thus, it would be interesting to 

know what mechanisms are underlying the biogenesis of mitochondria, the 

role of mitochondria in PUVA-induced growth arrest, as well as the 

relationship between mitochondria and the senescent phenotype. 

−−−− As to the mechanism on how PUVA treatment leads the long-term growth 

arrest, the herein reported data suggest that the formation of psoralen DNA 

interstrand crosslinks seems not to be the main reason. However, whether it 

is due to psoralen-DNA monoadducts or damages of other cellular 

components is so far unknown, and might be of interest for further 

investigation. 
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Answers to these questions will provide further insight into molecular 

mechanisms of stress-induced premature senescence and replicative 

senescence of fibroblasts in vitro which may have relevance for fibroblasts within 

the dermis in vivo. Definition of distinct molecular pathways may allow specific 

targeting for novel preventive and therapeutic strategies. 
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AEBSF 4-(2-aminoethyl)-benzenesulfonyl fluoride 

ATP  adenosine triphosphate  

bp   base pairs 

BSA   Bovine Serum Albumin 

cDNA  Complementary deoxyibonucleic acid 

CPD  cumulative population doubling 

DCF  dichlorodihydrofluorescin 
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HEPES 4-(2-hydroxyethyl)-1-piperazinethanesulfonic acid 

HRP  horseradish peroxidase 

ICL  interstrand crosslink 

Kb  kilo base 

kDa   kilo Dalton 

mRNA  messenger ribonucleic acid 
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ssDNA  single-stranded deoxyribonucleic acid 

wt  wild type 



 133 

Summary 

Following psoralen photoactivation (PUVA) human dermal fibroblasts undergo 

long-term growth arrest as well as morphological and functional changes 

reminiscent of cellular senescence. In the absence of molecular data what 

constitutes normal senescence, it has been difficult to decide whether these 

PUVA-induced changes reflect cellular senescence or rather a mimic thereof. By 

contrast to replicative senescence, PUVA-induced growth arrest was reversible. 

Ninety to 120 days post PUVA treatment, cells start to regrow. As cellular 

senescence has been proposed to serve as a barrier for tumorigenesis, the 

escape from senescence was studied in regard to immortalization and 

transformation. Regrowing fibroblasts did not show telomerase activity which is 

a main way to ensure immortalization. Anchorage-independent growth, a 

hallmark of transformation, was not detected. In addition, the senescence control 

genes p53, p16 and p21 did not show obvious mutations. Together with the 

observation that regrowing fibroblasts underwent replicative senescence, these 

results indicate that regrowing fibroblasts were neither immortalized nor 

transformed. 

PUVA-induced senescence features were reversible. Enlarged cell morphology, 

expression of senescence-associated (SA) β-galactosidase and matrix-

metalloprotease-1 were lost when fibroblasts resumed growth. Senescence 

control genes p53 and p21 were maintained for 1 month, whereas upregulation 

of p16 was maintained during the whole growth arrest. ROS levels were elevated 

increasingly after PUVA treatment with a maximum of 20-fold at six weeks post 

PUVA, which is both due to mitochondria and NADPH oxidase. Scavenging of 

ROS by the antioxidant N-acetyl cystein (NAC) prevented PUVA-treated 

fibroblasts from cytoplasmic enlargement but not from SA-β-galactosidase 

expression suggesting a role of ROS in the induction of phenotypical but not of 

functional senescent changes. 

Interestingly, PUVA-treated fibroblasts cultured in their regrowing state reach the 

stationary phase at a much lower cumulative population doubling than control 

fibroblasts. The reduced total life-span was due to oxidative stress induced 

telomere erosion as scavenging of ROS by NAC rescued cell from telomere 

erosion and partly restored the life-span. These data support the view that the 
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preceding damage affects a counting mechanism contributing to the overall 

proliferation potential. 

The initiation of the growth arrest was studied, and the amount of interstrand 

cross-links was not correlative. To further study whether damaged cytoplasts or 

damaged nuclear DNA are responsible for the growth arrest,  nuclei and 

cytoplasts of PUVA-treated fibroblasts were fused with control cytoplasts or 

nuclei to reconstruct hybrids with either undamaged cytoplasts or undamaged 

nuclei. Fused cells with PUVA-cytoplasts, although growth arrested, start to 

regrow earlier post-PUVA at about day 40. Fused cells with PUVA-karyoplasts 

did not adopt a flattened phenotype and die after 2 weeks. These data indicate 

that PUVA-induced changes in the cytoplasts contribute to growth arrest, but 

may not be exclusively, while the contribution of the nuclear damage after PUVA 

cannot be fully evaluated by these experiments. 

Collectively, these data suggest that PUVA-induced changes do not fully reflect 

replicative senescence but rather represent a long-term transient phenocopy. 

The model reported here is particularly suited to elucidating mechanisms 

underlying long-term senescence-like growth arrest and related functional 

changes. 
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Zusammenfassung 

Replikative Seneszenz bezeichnet das irreversible Ende der Teilungsfähigkeit 
somatischer Zellen. In der Dermatologie werden hyperproliferative 
Hauterkrankungen mit der Kombination aus oraler Aufnahme des 
Photosensibilisators 8-Methoxypsoralen (P) und Ultraviolett-A (UVA) Bestrahlung 
als PUVA-Therapie behandelt. Humane dermale Fibroblasten reagierten auf 
PUVA mit Verlust der Teilungsfähigkeit und morphologischen und funktionalen 
Kennzeichen einer seneszenten Zelle. Im Gegensatz zur unumkehrbaren 
replikativen Seneszenz wurde nach drei Monaten eine Wiederaufnahme der 
Proliferation beobachtet. Die vorliegende Arbeit beschäftigt sich mit den 
molekularen Mechanismen des PUVA-induzierten Arrestes und der 
Wiederaufnahme des Wachstums im Vergleich zur replikativen Seneszenz als 
Folge erschöpfter Teilungsfähigkeit.  
Ein Zusammenhang zwischen direkten und indirekten DNA-Schäden nach 
Psoralen-Photoaktivierung und dem Wachstumsarrest konnte experimentell nicht 
gezeigt werden. Zellhybride aus Zytoplasten PUVA-behandelter und 
Karyoplasten unbehandelter Fibroblasten arretierten nach wenigen Tagen für ein 
bis zwei Monate. Diese Ergebnisse weisen auf die Bedeutung von Schäden des 
Zytoplasmas und der Membranen hin. Vergrößertes Zellvolumen, Expression 
von Matrixmetalloproteinase-1, SA-beta-Galaktosidase und von p16, p21 und 
p53 als Zeichen der replikativen Seneszenz waren innerhalb der Arrestphase, 
nach der Wiederaufnahme der Proliferation jedoch nicht mehr nachweisbar. 
Wachstumsarretierte Fibroblasten steigerten die Produktion reaktiver 
Sauerstoffintermediate in den Mitochondrien oder durch NADPH-Oxidasen bis 
auf das 20-fache. Nach Reproliferation zeigten die Fibroblasten eine "molekulare 
Narbe" in Form einer verminderten Lebensspanne. Ursächlich war die 
Sauerstoffradikal-abhängige Telomeren-Erosion. N-Acetylzystein schützte als 
Antioxidans vor den morphologischen Veränderungen und zumindest teilweise 
vor der Reduktion der Lebensspanne. Da reproliferierende Fibroblasten weder 
Adhäsions-unabhängig wuchsen noch de novo Telomeraseaktivität zeigten, 
wurden Immortalisierung und neoplastische Transformation als Ursachen der 
Reproliferation ausgeschlossen.  
Eine PUVA-"Therapie" von Fibroblasten führt zu einem deutlich von der 
replikationsabhängigen zellulären Seneszenz unterscheidbaren 
Alterungsphänotyp. Diese Phänokopie der replikativen Seneszenz scheint 
geeignet, die Ursachen und Mechanismen der zellulären Seneszenz im 
molekularen Detail zu untersuchen.  
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