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Zusammenfassung

Die Kosmologie repr�asentiert heutzutage eines der sich am schnellsten entwickelnden
Teilgebiete der Physik. Hervorgerufen durch eine gro�e Zahl an neuen Beobachtungs-
daten wurden gro�e Fortschritte in Richtung eines kosmologischen Standardmodells ge-
macht [86]{[103]. Experimente von kosmologischem Interesse umfassen sowohl die Ver-
messung des kosmischen Mikrowellenhintergrunds (COBE, BOOMERANG, MAXIMA,
WMAP), die Beobachtung von Supernovae des Typs Ia (SCP, HIGH-z Search Team),
die Bestimmung der primordialen Elementh�au�gkeiten als auch die Vermessung der
gro�r�aumigen Verteilung leuchtender Materie im Universum (SDSS, 2dFGRS, XMM-
LSS). Diese Experimente erlauben es uns verschiedene kosmologische Modelle zu testen
und deren Parameterraum einzuschr�anken. In den sp�aten neunziger Jahren f�uhrte ins-
besondere die Messung der scheinbaren Helligkeiten von stark rotverschobenen Super-
novae des Typs Ia durch Perlmutter et al., Riess et al. und Schmidt et al. [121]{[126]
zu einer wahren Flut an neuen Arbeiten. Die mit diesen Arbeiten verkn�upfte Euphorie
hatte mehrere Gr�unde. Einerseits f�uhren die Messungen, falls man sie innerhalb des
Standardmodells der Kosmologie interpretiert, zu dem Schluss, dass sich das Universum
momentan in einer beschleunigten Phase der Expansion be�ndet. Andererseits scheint
innerhalb dieses Modells die Wiedereinf�uhrung der kosmologischen Konstante unver-
meidlich. Diese Konstante muss zudem mehr als 70% der kritischen Energiedichte zur
Gesamtenergiedichte des Universums beitragen, um die Supernova-Daten zu beschrei-
ben. Die Kosmologen wurden also von der Tatsache �uberrascht, dass unser Universum
von einer bisher nicht direkt nachgewiesenen Energieform dominiert zu sein scheint.
Heutzutage spricht man in diesem Kontext von der sogenannten dunklen Energie, in
Analogie zur dunklen Materie.

Aus theoretischer Sicht f�uhrten die beschriebenen Entdeckungen zu einem regelrech-
ten Erkl�arungsnotstand. Fragen in diesem Zusammenhang sind: Was ist die dunkle
Energie? Ist ein hoher Dunkelenergieanteil kompatibel mit den anderen kosmologischen
Tests? Gibt es kosmologische Modelle, die nicht auf einen hohen Dunkelenergiean-
teil angewiesen sind? Fragen dieser Art bringen uns zum Hauptanliegen dieser Arbeit,
n�amlich den Aufbau und Test alternativer kosmologischer Szenarien. Im Gegensatz zum
kosmologischen Standardmodell, welches auf der Allgemeinen Relativit�atstheorie (ART)
basiert [22, 23, 26], werden die hier vorgestellten kosmologischen Modelle im Rahmen der
sogenannten metrisch-aÆnen Gravitation (MAG) angesiedelt sein [44]. Bei der MAG
handelt es sich um die eichtheoretische Formulierung einer alternativen Gravitations-
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theorie, die im Gegensatz zur ART nicht auf eine pseudo-Riemann'sche Raumzeitstruk-
tur beschr�ankt ist. Innerhalb dieser Theorie treten neue geometrische Gr�o�en auf, die
Torsion und Nichtmetrizit�at, welche als zus�atzliche Feldst�arken analog zur Kr�ummung
im allgemein-relativistischen Fall fungieren. Im Gegensatz zur ART gibt es bisher nur
wenige Arbeiten zur Beobachtungslage von MAG-basierten kosmologischen Modellen.
Eines unserer Hauptziele ist daher die quantitative Bestimmung der Parameter solcher
Modelle mithilfe von aktuellen Beobachtungsdaten.

Im ersten Kapitel dieser Arbeit geben wir einen �Uberblick �uber das Standardmo-
dell der Kosmologie. Wir beginnen mit der Herleitung der Feldgleichungen und l�osen
diese in einigen Spezialf�allen. Dabei werden die wichtigsten kosmologischen Parameter
eingef�uhrt. Im Folgenden diskutieren wir zwei verschiedene kosmologische Tests, die
Relation zwischen Gr�o�enklasse und Rotverschiebung sowie die primordiale Synthese
von Helium. Insbesondere der Zusammenhang zwischen Helligkeit und Abstand eines
astrophysikalischen Objekts weist eine starke Abh�angigkeit von den Parametern des zu-
grundliegenden kosmologischen Modells auf. In Kombination mit den Supernova-Daten
ergibt sich daraus ein wichtiger Test der sp�aten Phase des Universums. Im Gegensatz
dazu �ndet die primordiale Nukleosynthese der leichten Elemente in den ersten Minu-
ten der kosmischen Evolution statt und dient damit als Test f�ur kosmologische Modelle
in der Fr�uhphase des Universums. Im Verlauf der Diskussion werden wir insbesondere
die Beziehung zwischen Test und zugrundeliegendem kosmologischen Modell herausar-
beiten sowie auf die momentane Beobachtungslage eingehen. Abschlie�end geben wir
einen allgemeinen �Uberblick �uber die wichtigsten Ereignisse innerhalb des kosmologi-
schen Standardmodells.

Im zweiten Kapitel f�uhren wir die Feldgleichungen der MAG sowie die darin ent-
haltenen geometrischen Objekte ein. Im Anschluss konzentrieren wir uns auf die Dis-
kussion von zwei interessanten Spezialf�allen der MAG. Zum einen handelt es sich dabei
um den von Obukhov et al. [74] entdeckten Triplett-Ansatz, in welchem die MAG-
Feldgleichungen �aquivalent zu denen der Einstein-Proca-Theorie sind. Zum anderen
repr�asentiert die sogenannte Weyl-Cartan-Raumzeit einen weiteren Spezialfall der me-
trisch-aÆnen Geometrie. In dieser verschwindet der gesamte spurfreie Anteil der Nicht-
metrizit�at, und der symmetrische Anteil der Kr�ummung reduziert sich auf den Spuran-
teil. Hierbei vereinfacht sich insbesondere die zweite MAG-Feldgleichung.

Nach diesen Vorbereitungen suchen wir im dritten Kapitel nach �uberlebensf�ahigen al-
ternativen kosmologischen Modellen im Kontext der MAG. Nach einer kurzen �Ubersicht
�uber das momentane Angebot an nicht-Standardszenarien pr�asentieren wir ein neues
Modell auf Basis der Weyl-Cartan-Raumzeit. Innerhalb des ersten Teils von Kapitel drei
leiten wir die Feldgleichungen dieses Modells her und suchen nach exakten L�osungen.
Anschlie�end arbeiten wir den Zusammenhang zwischen Gr�o�enklasse und Rotverschie-
bung aus und suchen auf nummerischem Weg nach den Modellparametern, die sich aus
der Anpassung dieser Relation an die Supernova-Daten ergeben. Diese Analysen f�uhren
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wir sowohl f�ur das kosmologische Standandardmodell als auch f�ur das Weyl-Cartan-
Szenario durch. Im Anschluss widmen wir uns einem interessanten Spezialfall unseres
neuen Modells und vergleichen diesen mit den Untersuchungen von zwei anderen Arbeits-
gruppen. Die Untersuchung der Supernova-Daten liefert dabei eine obere Schranke f�ur
den Beitrag der nicht-Riemann'schen Gr�o�en zur Gesamtenergiedichte des Universums.
Im weiteren Verlauf bestimmen wir den Anteil des primordial produzierten Heliums und
k�onnen damit den Parameterraum dieses Modellzweiges weiter einschr�anken.

Die komplizierte Struktur der Feldgleichungen macht Berechnungen sowohl inner-
halb der MAG als auch im Rahmen der ART zu einem zeitaufw�andigen Unterfangen.
Man ist daher auf die Verwendung von Computeralgebra-Systemen wie Reduce und
Maple angewiesen. Einen Teil der in dieser Arbeit verwendeten Routinen f�ur Reduce
haben wir daher im Anhang D zusammengetragen. Insbesondere die dort aufgef�uhrten
Implementationen zur Zerlegung der Kr�ummung, Torsion und Nichtmetrizit�at sowie
des Triplett-Lagrangians sind f�ur die Wiederverwendung in zuk�unftigen Programmen
geeignet.

Die Anh�ange A und B enthalten eine Zusammenfassung unserer Konventionen sowie
eine kurze Einf�uhrung in das �au�ere Kalk�ul [39]. Au�erdem geben wir dort die Werte
mehrerer Konstanten an die wir in unseren nummerischen Berechnungen verwendet
haben. Anhang C enth�alt die irreduziblen Zerlegungen der Kr�ummung, Torsion und
Nichtmetrizit�at gem�a� der in [44, 48] verwendeten Konventionen.
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Overview

Today cosmology appears to be one of the fastest growing �elds of physics. Triggered by
a wealth of new observational data, there has been a great leap forward to what is nowa-
days summarized under the name cosmological standard model [86]{[103]. Experiments
of cosmological interest range from measurements of the cosmic microwave background
(COBE, BOOMERANG, MAXIMA, WMAP), the observation of type Ia supernovae
(SCP, HIGH-z Search Team), the determination the light elements abundances, to sur-
veys mapping the large-scale distribution of luminous matter in the universe (SDSS,
2dFGRS, XMM-LSS). These experiments allow us to test di�erent cosmological models
and to put constraints on the parameters within these models. Especially the measure-
ments of the apparent magnitudes of several high redshift type Ia supernovae, published
by Perlmutter el al., Riess et al., and Schmidt et al. in the late nineties [121]{[126], led to
a ood of new works. The reason for this excitement was twofold. Firstly, these measure-
ments, if interpreted within the standard model, suggest that the universe is currently
undergoing an accelerated phase of expansion. Secondly, the data strongly suggest the
reintroduction of a cosmological constant that contributes more than 70% of the critical
density to the total energy density of the universe. To state it the other way round,
cosmologist were surprised by the fact that our universe seems to be dominated by some
unknown and up to this date undetected form of energy, which is nowadays commonly
called dark energy.

From a theoretical point of view these measurements raise several interesting ques-
tions: What is the nature of dark energy? Is a high amount of dark energy compatible
with the other cosmological tests? Are there cosmological models that do not require
dark energy? This brings us to the aim of this work, i.e., to build and test alternative
cosmological scenarios. In contrast to the cosmological standard model, which is based
on General Relativity (GR) [22, 23, 26], we try to construct viable models within the
realm of the so-called metric-aÆne theory of gravity (MAG) [44] that is no longer tied
to a pseudo-Riemannian spacetime structure. Within this theory there are new geomet-
rical quantities, namely torsion and nonmetricity that act as additional �eld strengths
similarly to the curvature in the general relativistic case. From an observational point
of view the status of MAG based cosmological models is rather vague. Hence one of the
main aims of this work is to obtain quantitative estimates for the parameters in such
models.

5



In the �rst chapter we provide an overview of the standard model of cosmology. We
derive the �eld equations and solve them for some special cases. Thereby we introduce
all of the important cosmological parameters. Especially, we thoroughly discuss two
di�erent cosmological tests, the so-called magnitude-redshift relation and the primor-
dial synthesis of helium. The connection between the luminosity and the distance of
astrophysical objects is closely related to several cosmological parameters and therefore
provides, in combination with the SN Ia data, a crucial cosmological test at late stages
of the universe. In contrast, the primordial synthesis of light elements is thought to take
place during the �rst minutes of the cosmic evolution and, accordingly, provides a test
bed for new scenarios in the early universe. We put special emphasis on the discussion of
the parameter dependency of these tests and sketch the current observational situation.
The chapter is rounded by a broad brushed overview of the main events which occurred
during the evolution of the universe within the standard picture.

The second chapter contains an overview of the �eld equations of MAG and the
geometric quantities therein. Within this rather general introduction, we provide more
details on two interesting special cases of MAG. The �rst one is the so-called triplet
ansatz by which, as was shown by Obukhov et al. in [74], the theory becomes e�ectively
equivalent to the Einstein-Proca theory. The second one is represented by the Weyl-
Cartan spacetime for which the traceless part of the nonmetricity vanishes and the
symmetric part of the curvature is reduced to its trace part. In particular, this constraint
simpli�es the structure of the second MAG �eld equation.

After these preparations, chapter three is devoted to the search for viable alternative
cosmological models within the framework of MAG. After a brief report on currently
available non-standard scenarios, we present a new cosmological model in Weyl-Cartan
spacetime. Within the �rst part of the chapter we derive the �eld equations of this model
and search for exact solutions. We then work out the magnitude-redshift relation within
this new setup. Subsequently, we perform a numerical analysis of the SN Ia data within
the cosmological standard model and the alternative scenario. Thereby, we constrain
the parameters within both models. Additionally, we investigate an interesting special
case of our model and compare it to the results of two other groups. We also perform
an analysis of the SN Ia data within this branch of the model and obtain a numerical
bound on the non-Riemannian contribution to the total density of the universe. The
comparison of this result to the primordial helium abundance, which we infer from a
semi-analytical nucleosynthesis calculation, enables us to put a very strong quantitative
limit on the model parameters.

Due to the complicated structure of the �eld equations, the search for solutions
in MAG as well as in GR is very time consuming. Hence we made extensive use of
the computer algebra systems Reduce and Maple. Some of the routines for Reduce

are displayed in appendix D. Especially the decomposition routines for the curvature,
torsion, and nonmetricity as well as the implementation of the triplet Lagrangian are
reusable in future calculations.

6
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In appendices A and B we summarize our conventions (including those of the calculus
of exterior di�erential forms) and the numerical values of several constants as used in the
numerical calculations of this work. Appendix C contains the irreducible decomposition
of the curvature, the torsion, and the nonmetricity (cf. [44, 48]).
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Chapter 1

Cosmology in General Relativity

1.1 Introduction

In the following sections we give a short survey of some topics which are nowadays
summarized under the term standard cosmological model. In section 1.2 we derive the
�eld equations of the FLRW model (Friedmann, Lemâ�tre, Robertson, and Walker) and
discuss some of its basic properties in 1.3. In sections 1.4{1.6 we review two cosmological
test, the magnitude-redshift relation and the primordial synthesis of helium which will
be used to test the non-standard models in chapter 3. Although we tried to keep this
work as self contained as possible, the reader might want to turn to one of the standard
textbooks on cosmology [1]{[5]. For a collection of inuential works in cosmology the
reader should consult [6]. Let us note that [19] contains a very individual assessment of
the cosmological standard model.

Without going into observational detail we mention here only two assumptions which
lead us to consider models of the FLRW type: (i) a global expansion and (ii) the
homogeneity and isotropy of space. The �rst assumption goes back to an observation of
Hubble [120], who found, by means of measuring the redshift and the luminosity of extra-
galactic nebulae, a linear relationship between the radial velocity v and the distance r
ascribed to the nebulae with respect to an earthbound observer. This relationship is
expressed in the famous Hubble law

v = H0 d, (1.1)

where H0 denotes the so-called Hubble constant. Let us stress that this law does not
single out a preferred observer in the universe as one might intuitively guess, cf. �gure 1.1.
The velocity v in the above formula arises from the original interpretation of the observed
redshift as Doppler shift. In the context of General Relativity (GR) this observation
can also be interpreted as a global expansion of the spacetime. We derive this result in
section 1.3. The notion redshift, associated with the global expansion, and the notion
Doppler shift, associated with the peculiar motion of stars, are often used synonymously
in astrophysical context. However they are completely di�erent physical e�ects, see [9]

9



10 CHAPTER 1. COSMOLOGY IN GENERAL RELATIVITY

for a review which stresses this di�erence and the discussion in [7]. In order to take care
of the �rst assumption (i), a cosmological model should incorporate something like a
global scale factor S(t), which describes the size of the universe. The second assumption
(ii) relies on the fact that matter seems to be distributed very homogeneously in the
universe at least in a statistical manner. These two assumptions motivate our ansatz
for the metric and the energy-momentum in the next section.

1.2 Field equations

In this section we derive the �eld equations of the FLRW model. The assumption
of homogeneity and isotropy leads to the so-called Robertson-Walker metric. Using
spherical coordinates (t; r; �; �) and the coframe

#0̂ = dt; #1̂ =
S(t)p
1� kr2 dr; #2̂ = S(t) r d�; #3̂ = S(t) r sin � d�; (1.2)

the line element is given by

ds2 = �#0̂ 
 #0̂ + #1̂ 
 #1̂ + #2̂ 
 #2̂ + #3̂ 
 #3̂: (1.3)

The function S(t) represents the cosmic scale factor, and k can be chosen, after an
appropriate rescaling of the coordinates, to be +1, �1, or 0 for spaces with constant
positive, negative, or zero spatial curvature, respectively. A straightforward calculation
yields the components of the Einstein 3-form G� :=

1
2
��� ^ ~R� , see also appendices A

and C (here and in the following we introduce the abbreviation � = @
@t
):

G0̂ = � 3

S2

�
_S2 + k

�
#1̂ ^ #2̂ ^ #3̂; (1.4)

G1̂ =
1

S2

�
2 �S S + _S2 + k

�
#0̂ ^ #2̂ ^ #3̂; (1.5)

G2̂ =
1

S2

�
�2 �S S � _S2 � k

�
#0̂ ^ #1̂ ^ #3̂; (1.6)

G3̂ =
1

S2

�
2 �S S + _S2 + k

�
#0̂ ^ #1̂ ^ #2̂: (1.7)

The only thing missing in order to set up the �eld equations is an appropriate matter
model. As motivated in the introduction we assume that energy and matter are smeared
out smoothly over the spacetime. Thus, we choose the energy-momentum 3-form of an
ideal uid with pressure p, energy-density �, and four-velocity u� 1, i.e.

�uid
� = ��� �

�; (1.8)

where

��� = (�+ p)u�u� + pg��: (1.9)

1In the comoving frame we have u� = Æ�
0̂
:
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Figure 1.1: The �gures above show a random distribution of 20 and 50 stars. The
green/blue lines denote the radial velocities with respect to the green/blue reference
star. In the initial con�gurations (in green) on the lhs we have chosen a radial velocity
distribution similar to the Hubble law, cf. eq. (1.1). On the rhs we calculated the radial
velocities from the lhs with respect to a new, arbitrarily chosen, reference star (marked
with the blue circle). As becomes clear by comparing the lhs with the rhs the Hubble
law does not single out a preferred observer in the universe. In contrast to what one
might intuitively guess. EGON2, hubble@flow@fig
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Now the Einstein �eld equation with cosmological constant,

��� ^ ~R� + 2��� = 2��uid
� ; (1.10)

yield the following set of �eld equations:

2

S2

�
�3 _S2 + ��S2 � 3k + �S2

�
= 0; (1.11)

2

S2

�
2 �SS + _S2 + �pS2 + k � �S2

�
= 0: (1.12)

We rewrite (1.11) and (1.12), 
_S

S

!2

+
k

S2
� �

3
=

�

3
�; (1.13)

2
�S

S
+

 
_S

S

!2

+
k

S2
� � = ��p; (1.14)

and recover the well known form of the so-called Friedmann equations, cf. [1]{[5]. Hence
the �eld equations (1.10) turn into a set of ordinary di�erential equations for the scale
factor S(t). The functions �; p and the parameters k; � depend on the model we decide
to consider. Note that � and p are related by an equation of state p = p(�); p = 1

3
� in

case of a radiation-dominated universe, e.g.

Epochs

During its evolution the universe goes through di�erent epochs, that are characterized by
the respective equation of state. The inspection of (1.13){(1.14) reveals that the solution
for the scale factor S(t) depends on the choice of this equation of state. In addition to
the �eld equations we have one Noether identity. In a Riemannian spacetime, cf. eq.
(2.9), this identity reads

~D�� = 0: (1.15)

Let us assume that the equation of state takes the form p (t) = w� (t), with w =const.
Using (1.2){(1.3), and (1.8), equation (1.15) turns into

_�S = �3 _S (�+ p)
p=w�) � = {wS

�3(1+w) � S�3(1+w); (1.16)

where {w is an integration constant. Thus, we found a relation between the energy
density and the scale factor, which depends on the constant w from the equation of
state. Substituting back (1.16) into (1.13) yields 

_S

S

!2

+
k

S2
� �

3
=
�

3
{wS

�3(1+w): (1.17)
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Special cases A frequently discussed case is the spatially at one with vanishing
cosmological constant. Ignoring all emerging constants in the solution for S(t), equation
(1.17) yields 

_S

S

!2

=
�

3
{wS

�3(1+w) �=k=0;{w=1; p=w�;w 6=�1) S � t
2

3(1+w) : (1.18)

Substituting this scaling behavior into (1.16) we have � � t�2 for all w 6= �1.
In case of a at vacuum dominated model with non-vanishing cosmological constant,

we can infer from (1.13) 
_S

S

!2

� �

3
= 0

k=�=0) S � e
p
�=3 t: (1.19)

Hence, for the special cases mentioned above we have the following scaling laws for the
cosmic scale factor: S � t2=3 matter dominated, S � pt radiation dominated, and

S � e
p
�=3 t vacuum dominated.

1.3 Properties

In this section we collect some of the characteristic properties and de�nitions related
to the FLRW model. We put special emphasis on their dependence on the underlying
gravity theory.

Critical density

In case of a at universe k = 0 the Hubble rate H := _S=S and the density � are
related via a unique function �c = �(H), which is often called the critical density. The
critical density is obtained via the �rst Friedmann equation (1.13); in case of a vanishing
cosmological constant we have2

H2 +
k

S2
=
�

3
� =

8�G

3
�

k=0) �c :=
3H2

8�G
: (1.20)

This quantity is called critical density because it distinguishes between open, at, or
closed universes

� =

�
H2 +

k

S2

�
3

8�G
) �k=�1 < �c < �k=1: (1.21)

2We make use of natural units (cf. app. B), i.e. ~ = c = 1. Thus, the gravitational coupling constant
becomes � = 8�G

c2
= 8�G.
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Thus, the critical density can be determined by measuring the current value of the
Hubble function. We introduce the dimensionless density parameter 
w as ratio of the
actual and the critical density


w =
�

�c
=

8�G

3H2
� =

�

3H2
�: (1.22)

We use w as an index since we did not specify the equation of state. In general dust,
radiation, etc. contribute to the energy density in (1.22). In case of a non-vanishing
cosmological constant � the �rst Friedmann equation can be written in terms of the
total density parameter 
total = 
w + 
� :=

�
3H2�+

�
3H2 , yielding

H2 +
k

S2
� �

3
=
�

3
� , 
total � 1 =

k

S2H2
: (1.23)

The value of the total density parameter distinguishes between the three possible ge-
ometries of the 3-dimensional subspace, i.e.


total

8<:
< 1
= 1
> 1

) k

8<:
< 0 open
= 0 at
> 0 closed

: (1.24)
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Figure 1.2: On the lhs we plotted the evolution of the scale factor for three di�er-
ent models, the notation is (
m0, 
�0). The plot has been arbitrarily normalised to
unity at tH = H�1

0 . Note that the three solutions correspond to the three di�erent
cases k = �1; 0; 1. On the rhs the matter-radiation equivalence redshift zeq is dis-
played. The parameter h enters due to the uncertainty in H0 = 100 h km

sMpc
. CLARA3,

fig@FLRW@lambda@k@0@solutions

Horizons

A fundamental question in cosmology concerns the size of causally related regions. Hence
one has to determine the maximal distance which light can travel during a given time.
In case this distance is �nite, there exists a so-called particle horizon.
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Particle horizon The distance travelled by an unimpeded photon, which was emitted
at r = 0 and reaches an observer at r, is given by

dH(t) :=

Z r

0

d~r
p
grr = S(t)

Z r

0

d~rp
1� k~r2 : (1.25)

Due to the spherical symmetry of the Roberston-Walker metric, we only need to take
into account the radial slice (d� = d� = 0), hence we arrive at

ds2 = �dt2 + S(t)2

1� kr2dr
2 = 0

)
Z t

0

d~t

S(~t)
=

Z r

0

d~rp
1� k~r2 ) dH(t) = S(t)

Z t

0

d~t

S(~t)
: (1.26)

Therefore this distance depends on the scale factor S: For the simple solution in (1.18)

we �nd, for w 6= �1, dH(t) � 3t(1+w)
1+3w

= 2
(1+3w)H

. In the case that the explicit solution

for S is not known, it is more comfortable to rewrite (1.26) in the following way

dH(t) = S(t)

Z S(t)

0

dS
�
~t
�

_S
�
~t
�
S
�
~t
� = S(t)

Z S(t)

0

dS
�
~t
�

H
�
~t
� : (1.27)

Event horizon If dH(t!1) remains �nite a given photon cannot travel into regions
beyond this distance; an event horizon emerges. The existence of such a horizon, as one
can imagine intuitively, depends on whether the universe is de- or accelerating. In fact
the night sky would look quite uninteresting in an ever accelerating universe, since it
will appear perfectly dark after a certain time.

Singularity

In order to investigate the question of whether the FLRW model exhibits any essential
singularities we inspect the curvature invariant

?
�
~R�� ^ ? ~R��

�
= � 6

S4

��
_S2 + k

�2
+
�
�SS
�2�

: (1.28)

Thus, the existence of a singularity depends on the solution for the cosmic scale factor
up to its second derivative. For the simple solution in (1.18) the invariant in equation
(1.28) diverges for arbitrary values of w and k if t tends to zero. Then we have a universe
which originates from an initial singularity. Since no one really expects that the simple
FLRW description is still valid at Planck scales such a statement seems to be of very
limited interest. Nevertheless there have been many attempts to construct models which
avoid the initial singularity. In [66], e.g., an additional scalar �eld is introduced leading
to a bouncing universe.
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Redshift

As announced in the introduction the cosmological standard model should lead to a
redshift of distant sources due to the global expansion. In order to establish a connection
between the cosmic scale factor and the spectral shift in the emission lines of a distant
source, a galaxy, e.g., we assume that the propagation of light can be treated as a
classical wave phenomenon. The Robertson-Walker line element yields

ds2 = 0
�=�=const)

Z t0

t1

dt

S(t)
=

Z r1

r0

drp
1� kr2 : (1.29)

where the light is emitted by a source at (t1; r1) and detected by an observer at (t0; r0).
Thus, we gained a relation between the coordinate distance and the time of travel. By
putting r0 = 0 we obtainZ r1

0

drp
1� kr2 = f(r1) =

Z t0

t1

dt

S(t)
: (1.30)

Shifting the time of the emission t1 ! t1+ Æt1 will result in a shift of the detection time,
i.e. t0 ! t0 + Æt0. Since the lhs of (1.30) does not depend on the time of emission or
detection we can inferZ t0

t1

dt

S(t)
=

Z t0+Æt0

t1+Æt1

dt

S(t)
,

Z t0+Æt0

t0

dt

S(t)
=

Z t1+Æt1

t1

dt

S(t)
(1.31)

Æt0;1 � t0;1 ! S(t) = const ) Æt0
S(t0)

=
Æt1
S(t1)

: (1.32)

Interpreting Æt0;1 as the times between two wavecrests at emission and at detection
respectively, and relating them to the wavelength Æt0;1 v �0;1, one obtains

�1
�0

=
S(t1)

S(t0)
: (1.33)

Using the common astronomical de�nition for the redshift

z :=
�0
�1
� 1! �

<0blueshifted
>0 redshifted ; (1.34)

we �nd the following relation between the scale factor and the redshift in a Robertson-
Walker spacetime:

1 + z =
S(t0)

S(t1)
: (1.35)

Hence, if the universe is expanding, distant sources exhibit a redshift. The derivation
presented above makes use of three crucial assumptions: (i) the propagation of light is
completely determined by the metric, (ii) the dispersion relation �� = c is valid at all
times, and (iii) the observed wavelengths are small compared to the size of the universe.
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Let us now derive an alternative form of the Friedmann equation. For that purpose
we make use of the expression for the redshift (1.35) and the relation between the scale
factor and the density (1.16). With 
k := � k

S2H2 equation (1.23) turns into


w + 
� + 
k = 1: (1.36)

For ordinary matter (w = 0), the Friedmann equation can now be rewritten as follows:

H2 =
�

3
�m � k

S2
+
�

3

(1:16)) H2 =
�{0

3S3
� k

S2
+
�

3

, H2 =
�

3
�m0

�
S0
S

�3

� k

S2
0

�
S0
S

�2

+
�

3

(1:35)) H2 = H2
0

�
�

3H2
0

�m0 (1 + z)3 � k

S2
0H

2
0

(1 + z)2 +
�

3H2
0

�
, H2 = H2

0

�

m0 (1 + z)3 + 
k0 (1 + z)2 + 
�0

�
(1:36)) H2 = H2

0

�
(1 + z)2 (1 + z 
m0) � z (2 + z) 
�0

�
: (1.37)

Relation (1.37) will play a crucial role in section 1.4.1, where we derive an expression
for the luminosity distance in the FLRW model.

Age

We rewrite the Hubble parameter in terms of the redshift as follows:

H =
d

dt
log

�
S

S0

�
=

d

dt
log

�
1

1 + z

�
= � 1

1 + z

dz

dt
(1.38)

(1:37)) dt

dz
= �H�1

0 (1 + z)�1
�
(1 + z)2 (1 + z 
m0) � z (2 + z) 
�0

�� 1
2 (1.39)

) t0 � t1 = H�1
0

Z z1

z0

(1 + z)�1
�
(1 + z)2 (1 + z 
m0) � z (2 + z) 
�0

�� 1
2 dz:

(1.40)

Thus, for a signal emitted at the big bang (t1 = 0) and detected at t0, we �nd the age of
the universe in terms of the redshift, the Hubble parameter, and the density parameters
as:

tage(z;H0;
m0;
�0) = H�1
0

Z 1

z

(1 + ~z)�1
�
(1 + ~z)2 (1 + ~z 
m0) � ~z (2 + ~z) 
�0

�� 1
2 d~z:

(1.41)
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Figure 1.3: Age function of the FLRW model in Hubble units for di�erent parameter
sets cf. eq. (1.41). The so-called Hubble time H�1

0 can be viewed as the basic timescale
of the universe. In the table on the rhs we calculated the age of the universe for some
speci�c parameter choices; see [8] for details on the observational procedures involved
in estimating H0. FLRW@ages@fig, CLARA6

1.4 Distance-redshift relations

In the next sections we basically focus on two di�erent tests, i.e. the magnitude-redshift
relation, and the synthesis of light elements, especially helium 4, in the early universe.
The reason to consider these two tests in detail is threefold. Firstly, they can be viewed
as tests of di�erent epochs of our universe. Secondly, their observational underpinning
is quite robust. Thirdly, they show strong dependence on the cosmological model. Ad-
mittedly most of these statements are also correct for other tests, like the ones involving
the cosmic microwave background and the formation of structure. But, as we will show
in the next sections, the two tests considered by us do not require much additional
phenomenology. The reader might object that the prerequisite of the validity of the
standard model of particle physics is far from being minimal. However particle physics
is very well tested in the laboratory at energies relevant for nucleosynthesis.

1.4.1 Luminosity distance

In order to assign a distance to objects one introduces the so-called luminosity distance.
This distance notion is based on the assumption that distant luminous objects appear
fainter to us than nearby ones. The astronomical de�nition reads

dluminosity :=

�
energy per time produced by source

energy per time per area detected by observer

� 1
2

=

�
luminosity

4� � ux

� 1
2

=

 
�L

4� �F

! 1
2

: (1.42)



1.4. DISTANCE-REDSHIFT RELATIONS 19

Hence, by measuring �F and with knowledge of �L (via a standard candle, a supernova,
e.g.) we are able to determine the distance dluminosity. Of course this distance de�nition
requires the knowledge of how much light is emitted by the source at least during a
speci�c time interval. Therefore, we either need an observer who measures the ux at
the point of emission in the rest frame of the standard candle or an appropriate model
of the source. Since we are talking about very distant objects, we have to rely on the
latter method which belongs to the realm of astrophysics. We will not discuss di�erent
star models in this work, for a discussion concerning type Ia supernovae the reader is
referred to [18, 143].

The question we have to ask ourselves is: How is the luminosity distance related to
the parameters of the FLRW model? Since energy is conserved the following equation
is supposed to hold

�L Æt1 Æ�1 = �F Æt0Æ�0A0: (1.43)

Here A0 denotes the area of the 2-sphere at the time of detection t = t0. The factors
Æt0;1, and Æ�0;1 take into account the di�erent length and time scales at emission and
detection due to global expansion. The distance dFLRW between an object at r = r1,
which emits light at t = t1; and an observer at r = r0 = 0, who detects the light at
t = t0, is given by

dFLRW = S(t0)r1 ) A0 = 4�d2FLRW = 4�S2(t0)r
2
1: (1.44)

Thus, with the help of equations (1.33){(1.35) the observed ux is given by

�F =
�L

4�S2(t0)r21

Æt1
Æt0

Æ�1
Æ�0

(1:33)+(1:35)
=

�L

4�S2(t0)r21
(1 + z)�2: (1.45)

Comparison with (1.42) yields

dluminosity = S(t0) r1 (1 + z) : (1.46)

Additionally one wants to replace r1 by the scale factor S. We make use of equation
(1.30) and obtain

f(r1) =

Z r1

0

drp
1� kr2 =

Z t0

t1

dt

S(t)
=

8<:
arcsin (r1) k = +1
r1 for k = 0
arcsinh(r1) k = �1

) r1 =

8>><>>:
sin
�R t0

t1
dt
S(t)

�
k = +1R t0

t1
dt
S(t)

for k = 0

sinh
�R t0

t1
dt
S(t)

�
k = �1

) dluminosity = S(t0) (1 + z)�

8>><>>:
sin
�R t0

t1
dt
S(t)

�
k = +1R t0

t1
dt
S(t)

for k = 0

sinh
�R t0

t1
dt
S(t)

�
k = �1

: (1.47)
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Thus, we are able to express r1 via the scale factor. In order to derive r1 explicitly we
need a solution of the Friedmann equations (1.13){(1.14). Note that we did not make use
of the �eld equations of the underlying gravity theory up to this point. This fact will be
crucial when we derive an expression for the luminosity distance within an cosmological
model which is not based on general relativity in section 3.6. As we will show in the
following subsection there is an elegant way to rewrite the luminosity distance in terms
of the density parameters, which makes use of the expression for the Hubble parameter
as derived in equation (1.37). At this point the �eld equations come into play.

Special case In case of a Friedmann model which contains only ordinary matter and
a contribution from the cosmological constant one can derive the following expression
for the luminosity distance. This expression will play a crucial role when we perform
�ts to the observational data of distant supernovae in section 3.7. Again we make use
of the Robertson-Walker line element, yielding

drp
1� kr2 =

dt

S

(1:35), S0p
1� kr2dr = (1 + z) dt

(1:39)) S0

Z r1

0

drp
1� kr2 = H�1

0

Z z1

0

dzq
(1 + z)2 (1 + z
m0)� z (2 + z) 
�0

) ��1[r1] = (H0S0)
�1
Z z1

0

dzq
(1 + z)2 (1 + z 
m0)� z (2 + z) 
�0

) dluminosity = S0 (1 + z) �

�
(H0S0)

�1
Z z

0

F [~z] d~z

�
: (1.48)

Where we made use of the following de�nitions

�[x] :=

8<:
sin (x) k = +1
x for k = 0
sinh(x) k = �1

(1.49)

and

F [~z] :=
�
(1 + ~z)2 (1 + ~z
m0)� ~z (2 + ~z) 
�0

�� 1
2 : (1.50)

By means of the de�nition of 
k we can rewrite equation (1.48) as follows:

dluminosity =
(1 + z)

H0

p
j
k0j

�

�p
j
k0j

Z z

0

F [~z] d~z

�
(1:36)
=

(1 + z)

H0

pj1� 
m0 � 
�0j
�

�p
j1� 
m0 � 
�0j

Z z

0

F [~z] d~z

�
: (1.51)

Thus, within a Friedmann model with ordinary matter and a cosmological constant the
luminosity distance turns out to be a function of the corresponding density parameters,
the Hubble constant, and the redshift, i.e. dluminosity = dluminosity (z;H0;
m0;
�0). This
is a remarkable result since dluminosity depends only on the present day values of the
model parameters and the redshift.
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Hubble�s law Another way to rewrite (1.46) is to expand the scale factor around
t = t0,

S(t) = S(t0) + _S(t0) (t� t0) + 1

2
�S(t0) (t� t0)2 +O((t� t0)3). (1.52)

With3

H0 :=
_S(t0)

S(t0)
; q0 := �

�S(t0)S(t0)
_S2(t0)

= �
�S(t0)

H2
0S(t0)

; (1.53)

equation (1.52) turns into

S(t)

S(t0)
= 1 +H0 (t� t0)� 1

2
q0H

2
0 (t� t0)2 +O((t� t0)3) (1.54)

(1:35)) z = H0 (t0 � t) +
�q0
2
+ 1
�
H2

0 (t0 � t)2 +O((t� t0)3), (1.55)

where we made use of another Taylor expansion in the last line4. Additionally, we can
expand the functions in equation (1.47) around small values of r1Z t0

t1

dt

S(t)
=

8<:
r1 +O(r31) k = +1
r1 for k = 0
r1 +O(r31) k = �1

(1:54)) r1 = S(t0)
�1
Z t0

t1

dt
h
1�H0 (t� t0) +

�q0
2
+ 1
�
H2

0 (t� t0)2 +O((t� t0)3)
i

) r1 = S(t0)
�1
�
(t0 � t1) + 1

2
H0 (t0 � t1)2 +O(H2

0 )

�
: (1.56)

Solving (1.55) for (t0 � t) �nally yields

(t0 � t) = H�1
0

h
z �

�
1 +

q0
2

�
z2 +O(H2

0 )
i

) r1 = (S(t0)H0)
�1
�
z � 1

2
(1 + q0) z

2 +O(H2
0 )

�
(1:46)) dluminosity = H�1

0 (1 + z)

�
z � 1

2
(1 + q0) z

2 +O(H2
0 )

�
) H0 dluminosity = z +

1

2
(1� q0) z2 +O(z3): (1.57)

Thus, in �rst order, we recover the linear Hubble law (1.1). The model parameter
q0 leads, if q0 6= 1, to a signi�cant deviation from the linear Hubble law at moderate
redshifts, cf. �gure 1.4. Thus, we have found a method to determine one parameter of the
cosmological model by measuring the luminosity-redshift relation. One can introduce

3q0 is called deceleration parameter, since it indicates whether the universe is accelerating (q0 6= 0)
or not (q0 = 0).

4 1
1+x�cx2 = 1� x+ (c+ 1)x2 +O(x3)
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additional parameters qi up to the desired level of accuracy, which enter the expansion
for S(t) in equation (1.52). Of course these parameters are in principle also determined
by measuring the luminosity-redshift relation.
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Figure 1.4: On the lhs row we plotted the deviation from the linear Hubble law re-
sulting from the Taylor series expansion of the scale factor S, cf. eq. (1.57). The only
model dependent parameter within this approximation is given by the deceleration fac-
tor q0. This approximated law is only valid up to small redshifts z. On the rhs we
plotted the magnitude-redshift relation, cf. eq. (1.63), in case of a model with ordi-
nary matter (w = 0) and a cosmological constant for a at (
total0 = 1) scenario.
CLARA4,FLRW@hubble@law@fig

Deceleration parameter There are several other ways to express the luminosity
distance via the �eld equations and the parameters of the FLRW model. From equation
(1.57) one can read o� that dluminosity = dluminosity(H0; z; q0). In the following we rewrite
q0 in terms of the density parameter. Substitution of (1.13) into (1.14) yields 

�S

S

!
= ��

6
(3p+ �) +

�

3

p=w�) q := �
�S

SH2
=

1

2

��

3H2
(1 + 3w)� �

3H2

(1:23); t=t0) q0 =
(1 + 3w)

2

w0 � 
�0: (1.58)

Thus, we obtain the luminosity distance (up to the second order) in terms of the den-
sity parameters, the Hubble constant, the redshift, and the constant which enters the
equation of state, i.e. dluminosity = dluminosity(H0; z;
w0;
�0; w). Another way to de-
rive the relation between the deceleration parameter and the density parameters in the
Friedmann equation is the following. Starting from the de�nition in (1.53) we obtain

q = �
�SS
_S2

=
d

dt
H�1 � 1

(1:38)
= � (1 + z)H

d

dz
H�1 � 1: (1.59)
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Substitution of the Hubble parameter from equation (1.37) yields

q =
1

2

(3z(1 + z) + 1 + z2) 
m0 � 2
�0

z (z + 1)2 
m0 � z (2 + z) 
�0 + (1 + z)2
: (1.60)

Setting z = 0 leads to same result for q0 as in equation (1.58).

Other notions of distance There exist several other distance notions besides the
luminosity distance. One of the most prominent examples is the Dyer-Roeder distance
cf. [154, 155, 156], where one introduces an additional parameter for the lumpiness of
the matter. Without going into detail we want to remind the reader that the correct
choice of the notion of distance in cosmology is still subject to discussions.

1.4.2 Magnitude-redshift relation

Due to historical reasons astrophysicists often use the so-called magnitude as unit for
the luminosity of a stellar object. The relation between the distance-redshift relation
and the so-called magnitude redshift relation, cf. [121, 123], is given by5

m(z;H0;
w0;
�0; w;M) := M + 5 log

�
dluminosity

length

�
+ 25

= M + 5 log (H0 dluminosity)� 5 log

�
H0

length

�
+ 25; (1.61)

where M represents the absolute bolometric magnitude of the observed star. By intro-
ducing a new constantM :=M�5 logH0+25 we are able to express the distance-redshift
relation in equation (1.61) in a compact way as magnitude-redshift relation

m(z;H0;
m0;
�0;M)

=M+ 5 log

 
(1 + z)pj1� 
m0 � 
�0j

�

�p
j1� 
m0 � 
�0j

Z z

0

F [~z] d~z

�!
: (1.62)

This relation is commonly used to extract cosmological parameters, as the density pa-
rameters associated with ordinary matter and the cosmological constant, by performing
�ts to data sets which were produced by the observation of standard candles, i.e. ob-
jects of known absolute magnitude. Equation (1.62) will be of use in later sections
where we perform �ts to a real data set, cf. section 3.7. Table 1.1 contains a collection
of all assumptions made during the derivation of the magnitude-redshift relation within
the cosmological standard model. Note that from a historical point of view the work
of Mattig [132] played an inuential role. Therein the magnitude-redshift relation for
vanishing cosmological constant is derived.

5Note that log denotes the logarithm to base 10, i.e. log(e) � 0:4342.
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Table 1.1: Assumptions made up to this point.

Ansatz/Assumption Equation

General Relativity as underlying gravity theory (1.10)

Metric is of Robertson-Walker type (i.e. homogeneity and isotropy) (1.2){(1.3)

Photons follow null curves (i.e. are determined by the metric) (1.29)

Observed wavelengths small compared to size of the universe (1.32)

Dispersion relation valid at all times, and peculiar movement

of the source neglectable (1.33)

Sources of known constant absolute magnitude (1.61)

Photons travel unimpeded between source and observer, i.e. no

gravitational potentials or dust between source and observer (1.2){(1.9)

In order to be complete we mention here the approximated version of the magnitude-
redshift relation in terms of the deceleration parameter as derived in equation (1.58)

m�M = 5 log

0BB@z + 1

2

0BB@1�(1 + 3w)

2

w0 + 
�0| {z }

�q0

1CCA z2 +O(z3)

1CCA : (1.63)

This result explains what is commonly known as the degeneracy of the magnitude-
redshift relation. Since only the linear combination of the density parameters enters in
(1.63).

Gravitational lensing Finally, let us remark that there might also be a systematic
change in the luminosity of SN Ia due to weak gravitational lensing. A discussion of
di�erent lensing models and their impact on the SN Ia luminosity can be found in
[149, 150, 151], e.g. We will not take care of systematic e�ects from lensing in this work.

1.5 Thermodynamics

Within the following section we will briey derive some very useful relations between
thermodynamical and cosmological quantities. From a historical point of view, cf. table
1.2, the theoretical developments concerning the thermodynamic history of the universe
laid the foundation of the hot big bang model. In 1963 Penzias and Wilson accidentally
discovered the cosmic microwave background. The CMB became one of the most im-
portant pillars in support of the big bang model, in which the universe cools down from
an early hot phase to the present temperature of about 2:7 K. In �gure 1.5 we depicted
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the spectrum observed by the FIRAS6 instrument aboard the COBE7 satellite which
was launched in 1989.

Temperature

In a homogeneous universe the distribution function of a speci�c particle species i does
not depend on the spatial coordinates, i.e. fi(x; q; t) = fi(q; t). Here q denotes the
momentum. The number density, energy density, and pressure of a particle species of
type i are de�ned by

ni : =
gi

(2�)3

Z
fi (qi; t) d

3qi; (1.64)

�i : =
gi

(2�)3

Z
Ei fi (qi; t) d

3qi; (1.65)

pi : =
gi

(2�)3

Z jqij2
3Ei

fi (qi; t) d
3qi; (1.66)

where gi is the spin degeneracy factor of the species and Ei =
p
m2
i + q2i . Since we

consider spatial homogeneous distribution functions d3qi ! q2i dqid
 = 4�q2i dqi. Hence
for an ideal Fermi or Bose gas the equilibrium energy density takes the form

�i =

Z 1

0

gi
2�2

�
e
Ei�%i
Ti � 1

��1
Ei q

2
i dqi: (1.67)

Here %i denotes the chemical potential, and the sign selects between Fermi or Bose
statistics. This relation for the energy density is only valid if the particles are in thermal
equilibrium. In the limit mi; %i � Ti the energy density is given by

�i =

Z 1

0

gi
2�2

h
e
qi
Ti � 1

i�1
q3i dqi

=

�
7
8
�2

30
gFiT

4
i for fermions

�2

30
gBiT

4
i for bosons

: (1.68)

Hence the total energy density of all species is given by

�total =
X
i

�i =

 
7

8

X
i=fermions

gFiT
4
i +

X
i=bosons

gBiT
4
i

!
�2

30
: (1.69)

In case all particle species have the same temperature we can infer

�total =
X
i

�i =

 
7

8

X
i=fermions

gFi +
X

i=bosons

gBi

!
�2

30
T 4: (1.70)

6
Far InfraRed Absolute Spectrophotometer.

7
COsmic Background Explorer.
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Table 1.3: Necessary assumptions for (1.72).

Ansatz/Assumption Equation

Species are in thermal equilibrium (1.67)

Temperature is high with respect to mi and %i (1.68)

Species interact with each other, i.e. have the same temperature (1.70)

TABLE@thermodynamic@assumptions, VIOLA4

Of course we can only assume that all species have the same temperature if their inter-
action rate �i is suÆciently high. The term in parenthesis, i.e. the e�ective number of
degrees of freedom, depends on the underlying model of particle physics. Let us assume
that this number depends only on the global temperature. Thus, with the de�nition

gtotal(T ) :=

 
7

8

X
i=fermions

gFi +
X

i=bosons

gBi

!
; (1.71)

the total energy density turns out to be

�total =
�2

30
gtotal(T )T

4: (1.72)

If the temperature is high enough, which is the case in the early radiation dominated
phase of the universe, the assumptions summarized in table 1.3 are ful�lled. Hence
(1.72) with an appropriate gtotal is applicable. By means of equation (1.16) we can
derive a relation between the scale factor and the temperature, thereby establishing a
link between thermodynamics and cosmology:

�total
(1:16)
=
X
w

{wS
�3(1+w) (1:71)

=
�2

30
gtotal(T )T

4: (1.73)

Hence we obtain the scaling behavior T � S�1 for a radiation dominated universe. If
we make use of the de�nition for the redshift from (1.35) we arrive at

T (z) � T0(1 + z): (1.74)

The use of the equilibrium formula in (1.67) seems to be justi�ed at least in case of
radiation. As depicted in the following �gures the deviation from the blackbody law is
of the order 10�5 K as measured by the FIRAS instrument aboard the COBE satellite.
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Figure 1.5: Blackbody spectrum at 2.726 K and results from COBE/FIRAS. Note that
actual errorbars on the lhs are smaller than the data points, which renders the CMB
one of the most perfect blackbodies we know. The datapoints in these plots are taken
from [174]. EGON6,CMBR@firas@fig

Expansion rate temperature relation In case of a vanishing cosmological constant
and zero spatial curvature we have the following relation between the Hubble function
and the total density (1.72)

H2 =
�

3
�total

(1:73)
=

�2

90
�gtotal(T )T

4: (1.75)

Hence the expansion rate scales as H � T 2:

Decoupling

Equation (1.64) allows us to calculate the number density of a given particle species in
the limit mi; %i � Ti, i.e.

ni =
gi
2�2

Z 1

0

h
e
qi
Ti � 1

i�1
q2i dqi

=

(
3
4
�(3)
�2
gFiT

3
i for fermions

�(3)
�2
gBiT

3
i for bosons

: (1.76)

Here � denotes the Riemannian zeta function, with �(3) � 1:202056903. Thus, the
number density of a relativistic particle species scales as n � T 3. Let us assume that
we have a general process of the form

A
�$ B; (1.77)

where � denotes the interaction rate. One may write the interaction rate in terms of
the number density n, the cross section � of the corresponding interaction type, and the
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mean velocity of the particles involved, i.e.

� = n� < v > : (1.78)

By means of (1.76) and (1.78), we can interrelate the temperature and the reaction rate.
For relativistic particles we have < v >= 1, and therefore

� � T 3� � HT� ! �

H
� T�: (1.79)

Here the cross section has to be determined by the underlying particle physics model8.
The relation in (1.79) establishes a link between di�erent regimes of physics, i.e. elemen-
tary particle physics, gravity, and thermodynamics. If the reaction rate drops below the
expansion rate, the interaction of the species in (1.77) becomes negligible and we call
them decoupled. Especially the question of when the neutrinos have decoupled from the
electron plasma plays are role for nucleosynthesis, which will be discussed in the next
section. Although it will be suÆcient for us to know that neutrinos have decoupled from
the plasma at temperatures below 2 MeV, one has to keep in mind that decoupling is a
non-equilibrium process which has, to certain extent, impact on nucleosynthesis [236].
For a detailed discussion of the decoupling temperature of the neutrinos and their role
in cosmology the reader is referred to [105].

In the non-relativistic limit Ti � mi the number density in (1.64) can be written as

ni :=
gi
2�2

Z 1

0

�
e
Ei�%i
Ti � 1

��1
q2i dqi '
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2�2
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e
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Ti q2i dqi
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2�2

e
�mi�%i

Ti

Z 1

0

e
� q2i
2miTi q2i dqi = gi

�
miTi
2�

� 3
2

e
�mi�%i

Ti : (1.80)

This relation holds for both, bosons and fermions.

1.6 Nucleosynthesis

In this section we review the standard big bang nucleosynthesis (BBN) scenario. Al-
though there have been several suggestions to extend the BBN scenario, we stick to the
simplest model, which is still in good agreement with observations.

The beginning of nucleosynthesis is characterized by the freeze out of the weak
interactions. Hence it is important to know the number density of protons and neutrons
at the beginning of nucleosynthesis. The onset of nucleosynthesis is commonly de�ned
by the time at which the temperature of the universe falls below the binding energy of
the lightest nuclei, cf. table 1.4. The number density of neutrons and protons is �xed
by the following processes

8Note that the cross section itself might depend on the temperature.
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Table 1.4: Nuclear binding energies. Every element heavier than helium is called metal.
The abundance of such elements is called metallicity.TABLE@binding@energies,HUGO6

Nuclei Binding energy [MeV] Nuclei Binding energy [MeV]
2H 2.22 8Be 56.49
3H 6.92 9Be 58.19
3He 7.72 10B 64.75
4He 28.29 11B 76.20
6Li 31.99 12C 92.16
7Li 39.24

n+ �e  ! p+ e�;

n+ e+  ! p+ ��e;

n  ! p+ e� + ��e: (1.81)

In the non-relativistic limit (1.80) the ratio of the neutron and proton number density
becomes

nn
np

=
gn
gp

�
mnTn
mpTp

� 3
2

e
�mn�%n

Tn
+
mp�%p
Tp : (1.82)

From the conservation of the chemical potential in the reactions in (1.81) we �nd

%n + %�e = %p + %e�
%�e ; %e��0) %n = %p: (1.83)

Hence, the equilibrium value of the neutron-to-proton ratio in (1.82) is given by

nn
np
� e�

mn�mp
T = e�

Q
T ; (1.84)

where Q := mn � mp � 1:29 MeV denotes the mass di�erence between neutron and
proton. The equilibrium formula in (1.84) remains valid as long as the reaction rate
for the �rst two processes in (1.81) exceeds the expansion rate. It becomes clear from
(1.84) that the neutron-to-proton ratio is approximately unity for temperatures well
above the mass di�erence. In case the reaction rate � drops below the expansion rate
H the neutron-to-proton ratio will freeze at the value corresponding to the decoupling
temperature TD, i.e. nn=np � exp(�Q=TD): According to our investigations in section
1.5 this temperature can be determined by calculating the reaction rates for the pro-
cesses in (1.81). Early quantitative estimates of the reaction rates can be found in
[190, 191, 213], for more recent estimates see [1, 237]. In the following sections we
present a thorough review of a method which allows us to track the neutron-to-proton
ratio in the expanding universe after the weak interaction ceased to keep neutrons and
protons in thermodynamical equilibrium. This semi-analytical derivation was developed
by Bernstein et al. in [193].
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Neutron-to-baryon ratio

We start with the de�nition of the ratio of the total number of neutrons to the total
number of baryons

Yn :=
nn

nn + np
: (1.85)

Let �np and �pn be the reaction rates of all weak processes which convert neutrons
into protons and vice versa. Of course these functions depend on the temperature, and
therefore on time. The rate equation for the time evolution of the neutron-to-baryon
ratio is assumed to be given by

dYn
dt

= �pn (1� Yn)� �npYn: (1.86)

This is a linear �rst-order di�erential equation. Rewriting (1.86) and de�ning two new
functions we obtain

_Yn = �pn � (�pn + �np)Yn , _Yn +AYn = B: (1.87)

The solution of equation (1.87) is given by [38]

Yn = e�
R t
t0
A(~t)d~t

�
Yn(t0) +

Z t

t0

B(~t)e
R ~t
t A(t̂)dt̂d~t

�
: (1.88)

Suppressing the time dependency of the rates, we end up with

Yn = e�
R t
t0
(�pn+�np)d~t

�
Yn(t0) +

Z t

t0

�pn e
R ~t
t
(�pn+�np)dt̂d~t

�
: (1.89)

Following the work of Bernstein et al. [193] we assume that this solution is well approx-
imated by

Yn �
Z t

0

d~t�pn e
R ~t
t (�pn+�np)dt̂ :=

Z t

0

d~t�pnC(t; ~t): (1.90)
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Note that d
d~t
C(t; ~t) = (�pn + �np) C(t; ~t). Partial integration yields

Yn =

Z t

0

d~t
�pn

�pn + �np

d

d~t
C(t; ~t)

=
�pn

�pn + �np
C(t; ~t)

����t
0

�
Z t

0

d~t C(t; ~t)
d

d~t

�
�pn

�pn + �np

�
(1.91)

=
�pn

�pn + �np
C(t; ~t)

����t
0

�
Z t

0

d~t
1

�pn + �np

dC(t; ~t)

d~t

d

d~t

�
�pn

�pn + �np

�
=

�pn
�pn + �np

C(t; ~t)

����t
0

� C(t; ~t)

�pn + �np

d

d~t

�
�pn

�pn + �np

�����t
0

+

Z t

0

d~tC(t; ~t)
d

d~t

�
1

�pn + �np

d

d~t

�
�pn

�pn + �np

��
t

�pn
�pn + �np

� 1

�pn + �np

d

dt

�
�pn

�pn + �np

�
+O

"�
d�

dt

�2

;
d2�

dt2

#
: (1.92)

In the last step we made use of the fact that the sum of the reaction rates is large
compared to the time variation of the rates. Hence we drop all second order terms
containing the time derivative of the reaction rates. In the succeeding sections we will
use

Yn =
�pn

�pn + �np
�
Z t

0

d~t C(t; ~t)
d

d~t

�
�pn

�pn + �np

�
; (1.93)

thereby neglecting the integrating factor in the �rst term. In order to determine the
neutron abundance in (1.93), we need to compute the reaction rates of the involved
processes. Following the work of Bernstein et al. we neglect the neutron decay, i.e. the
third reaction in eq. (1.81), in a �rst approximation.

Reaction rates

After Weinberg [24] the reaction rates for the �rst two processes in (1.81) are given by

�n�e!pe� = A

Z 1

0

dq�eq
2
�eqeEe(1� fe)f�e;

�ne+!p��e = A

Z 1

0

dqeq
2
eq�eE�e(1� f�e)fe: (1.94)

Here fe and f�e are the distribution functions of the electrons and electron neutrinos,
respectively, and A is an e�ective coupling constant. If we neglect the chemical potential,
the distribution functions entering (1.94) are given by

fe;�e =
1

e
Ee;�e
Te;�e + 1

: (1.95)
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Distribution functions The distribution functions in (1.95) are also solutions of the
collisionless Boltzmann equation in an expanding universe�

q�
@

@x�
� ���q

�q
@

@q�

�
f (x; q; t) = 0: (1.96)

In a homogeneous and isotropic space the distribution function becomes f(q; t) !
f(E; t): Hence, with q� = (E; qi), eq. (1.96) turns into�

E
@

@t
� �0�q

�q
@

@E

�
f (E; t) = 0: (1.97)

For the Robertson-Walker metric an a Riemannian spacetime the connection components
are displayed in E.3.1. Substituting these components into equation (1.97) yields 

E
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iqj
@
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f (E; t) = 0)

�
@
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�H E

@

@E

�
f (E; t) = 0: (1.98)

Note that this is an interesting result with respect to the non-Riemannian models which
we investigate in later chapters. Since the connection entering eq. (1.96) might di�er
from the Levi-Civita connection we can expect a change of eq. (1.98).

We derive a relationship between the reactions listed in (1.94) and the corresponding
backreactions, i.e.

�pe�!n�e = A

Z 1

q0

dqeq
2
eq�eE�e(1� f�e)fe;

�p��e!ne+ = A

Z 1
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dq�eq
2
�eqeEe (1� fe) f�e: (1.99)

From (1.95) we can infer that

1� fe;�e = e
Ee;�e
Te;�e fe;�e; (1.100)

hence
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= e�

�m
T �n�e!pe�: (1.101)
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Here we assumed that the electrons and the neutrinos have the same temperature9, i.e.
T = Te = T�e = T, and made use of the de�nition �m := Ee � E�e . Accordingly the
second reaction in (1.99) can be written as follows:

�p��e!ne+ = e�
�m
T �ne+!p��e: (1.102)

In case the temperature is low compared to the energy of the particles eq. (1.95) turns
into

fe;�e � e�
Ee;�e
T ! 1� fe;�e � 1: (1.103)

Hence the rate equations listed in (1.94) become

�n�e!pe�
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�ne+!p��e
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2
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�Ee
T : (1.104)

Energy conservation yields

mn + E�e = mp + Ee , Ee = Q + E�e: (1.105)

With the assumption that the electron mass is much smaller than the energies entering
eq. (1.104) the rate equations turn into
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; (1.106)

and

�ne+!p��e
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�
= �n�e!pe�: (1.107)

Hence the reaction rates turn out to be identical within this �rst approximation. Let
us now investigate the third reaction displayed in (1.81), i.e. the decay of the neutron.

9In general the temperature of the photons and the neutrinos might di�er due to annihilation of
electrons and positrons. Our �rst approximation for the rate is justi�ed by the fact that the neutron-to-
baryon ratio will reach its asymptotic value before there is a signi�cant deviation between the neutrino
and photon temperature.
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According to [24], the rate for this process is given by10
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The upper integration limit for this process is determined by the positiveness of the
neutrino energy, i.e. E�e = Q � Ee > 0 ) qe <

p
Q2 �m2

e. Of course the integral
above determines the decay rate of a free neutron ��1n!p��ee�

(Q;me; A) = � . This result
is consistent with that of Bernstein et al., cf. (2.25a) in [193]. For Q = 1:29 MeV and
me = 0:511 MeV we have ��1 = 0:01569024 � A Q5. In order to be compatible with
the notation of Bernstein et al. we introduce a new constant a := 4=0:01569024 � 255
which absorbs the numerical prefactor in the decay rate. Hence, we end up with

��1 =
4

a
AQ5: (1.108)

Additionally, we introduce the dimensionless temperature y := Q=T . With these de�-
nitions we can rewrite the total neutron-to-proton reaction rate as follows

�np := �n�e!pe� + �ne+!p��e

(1.106); (1.107)
= 4AT 5

�
y2 + 6y + 12

�
(1.108)
=

a

�y5
�
y2 + 6y + 12

�
: (1.109)

Hence, we obtained the total reaction rate in terms of the neutron lifetime and the
dimensionless temperature. This �rst approximation does not contain the free neutron
decay. In terms of the dimensionless temperature the relation between the forward and
backward reaction rates, cf. eq. (1.102), reads11

�pn = e�y�np; (1.110)

and the solution for the neutron abundance, i.e. (1.93), can be written as
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10In the last step we made use of arccosh
�
A
B

�
=arcsinh

�p
A2�B2

B

�
:

11Note that eq. (1.105) yields Q = �m:
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with
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In order to determine dt̂=dŷ in (1.112) we make use of eq. (1.16) which can be rewritten
in the following form
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we can rewrite eq. (1.112)
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Where we introduced a new constant12 b :=
q
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in the last step. Integration
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12In SI units the numerical value of b is given by
q

90 a2

Q4�2�2�gtotal

SI
= 0:7323p

gtotal

gtotal=
43
4= 0:2233: Which is

consistent with the result of Bernstein et al. Here we used � = 1013 s, a = 255 and the conversion
factors from appendix B.
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Table 1.5: Assumptions made in order to derive Yn.

Assumptions Equation number

Form of the rate equation (1.86)

Neglect chemical potential (1.95)

Energy conservation, species have the same temperature (1.101)

Temperature low compared to energies (1.103),(1.104)

in distribution functions

Electron mass neglected (1.106),(1.107)

Neutron decay neglected (1.109)

FLRW �eld equations valid, radiation dominated epoch (1.113)

TABLE@nuc@assumptions@y@n, KARL1

This solution is compatible with eqs. (2.33) and (2.37) of [193]. Finally, the neutron-to-
baryon ratio (1.111) becomes
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(1.118)

This function describes the evolution of the neutron-to-baryon ratio in terms of the
dimensionless temperature, the mass di�erence between neutron and proton, the mean
life time of the neutron, and the total number of degrees of freedom, i.e. Yn = Yn (y;Q;
�; gtotal). We depicted the neutron-to-baryon ratio and its dependence on the parameter
b in �gure 1.6. The asymptotic value of Yn is given by 0:149 for b = 0:251 and by 0:158
for b = 0:223, respectively. The assumptions that lead to (1.118) are collected in table
1.5.
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Figure 1.6: On the lhs the solution for the neutron-to-baryon ratio (1.118) is displayed.
Here Yeq denotes the equilibrium ratio which corresponds to the �rst term in eq. (1.118).
The correction to the equilibrium ratio in an expanding universe is given by the integral
in eq. (1.118) and is denoted by Ycorr. As one can see from the lhs this term becomes
important at higher values of y, i.e. at lower temperatures. On the rhs we sketched the
parameter dependence of Yn. The red curve corresponds to b = 0:223, which is also
displayed on the lhs. The parameter b depends on the several other model parameters
b = b(Q; �; gtotal).CLARA8,figure@6

Chemical potential In case of a chemical potential for the electron neutrino the
distribution function in (1.95) is given by

f�e;��e =
1

e
E�e;��e�%�e;��e

T + 1
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e
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T
�� + 1

: (1.119)

The relation between the reaction rates becomes

�pn = e�y���np: (1.120)

In contrast to the case without chemical potential, cf. eq. (1.110), the new quantity
� := %=T enters the prefactor. In the following we assume that � remains constant.
The solution for the neutron-to-baryon ratio from (1.93) becomes
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The integrating factor reads
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In order to derive the reaction rates we assume that the additional factor in the distribu-
tion function is small compared to the energies. Hence the electron neutrino distribution
function turns into

f�e � e�
E�e
T

+� ! 1� f�e � 1: (1.123)

Subsequently the reaction rate in (1.106) becomes
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�
: (1.124)

Therefore the total reaction rate can be written as
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The integrating factor (1.122) reads
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(1.126)

The neutron-to-baryon ratio (1.121) is given by
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In �gure 1.7 we plotted the neutron-to-baryon ratio Yn = Yn (y;Q; �; gtotal; �) for di�erent
values of the parameter �.
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Figure 1.7: On the lhs the neutron-to-baryon ratio from eq. (1.127) is displayed in case of
a non-vanishing chemical potential � of the electron neutrino. Again ~Yeq and ~Ycorr denote
the equilibrium ratio and the correction due to an expanding universe, corresponding to
the �rst and the second term in eq. (1.127). On the rhs we plotted ~Yn for �xed b and
varying �. The red curve corresponds to � = 0. The green curves correspond to negative
values of �, the blue ones to positive �. Hence the neutron population decreases for
positive values of chemical potential. CLARA9,figure@7

Neutron decay

So far we neglected the neutron decay (1.81) in the derivation of (1.118). However since
Yn does not vary much over the timescale of the neutron decay we assume that the
neutron-to-baryon ratio including the decay e�ect is given by

�Yn = e�
tc
� Yn: (1.128)

Where tc denotes the time at which the neutrons are captured in nuclei. Since deuterium
is the �rst element to be formed via the reaction N1 from table 1.6 on page 43, tc will
be determined by the time at which the temperature has dropped below the binding
energy of deuterium. In order to establish a relation between the capture time tc and
the capture temperature Tc we make use of (1.114):

1

T

dT

dt

GR, k=0
= �

r
�2

90
�gtotalT

2

, t� t1 =
Z 1

T

dT

r
90

�2�gtotal
T�3 =

r
45

2�2�gtotal
T�2: (1.129)

At times at which the neutron decay becomes relevant the neutrino temperature di�ers
from the photon temperature due to e+e� annihilation. Usually the relation between

photon and neutrino temperature is assumed to be T =
�
11
4

� 1
3 T�. We will derive this

result in section 3.11.1. A calculation which takes into account the heating of neutrinos
by e+e� annihilations due to their incomplete decoupling from the plasma is given in
[236].
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If we express the energy density �total =
�2

30
g�T

4
� +

�2

30
gT

4
 = �2

30
~gtotalT

4
� in (1.75) via

the neutrino temperature (with a ~gtotal which di�ers from the standard one), we end up
with

t =

r
45

2�2�~gtotal
T�2� + t1 =

r
45

2�2�~gtotal

�
11

4

� 2
3

T�2 + t1: (1.130)

Where ~gtotal = g�+g
�
11
4

�4
3 = 21

4
+2
�
11
4

� 4
3 � 12:955. In the following we assume that the

integration constant t1 is small. Bernstein et al. obtain a value of t1 � 2 s. This result
may be di�erent in a non-standard cosmological model. But as a �rst approximation
we will use the value of Bernstein et al. from here on. The relation in (1.130) and its
dependence on ~gtotal is displayed in �gure 1.8.

The number density of a particle species in the non-relativistic limit is given by
(1.80), hence we have

ni = gi

�
miTi
2�

� 3
2

e
�mi�%i

Ti : (1.131)

Assuming that neutrons, protons, and deuterium nuclei have the same temperature
Tn = Tp = TD we can infer from (1.131) that

nnnp
nD

=
gngp
gD

�
mnmpT

2�mD

� 3
2

e
�
(mn+mp�mD)�(%n+%p�%D)

T

%D=%n+%p
=

gngp
gD

�
mnmpT

2�mD

� 3
2

e
�
"D
T : (1.132)

In the last step we assumed that the di�erent components are in chemical equilibrium
and introduced "D := mn + mp � mD for the binding energy of deuterium, cf. table
1.4 on page 30. Commonly (1.132) is rewritten in terms of the abundance fractions
Xi :=

ni
nbaryons

and the baryon-to-photon ratio, which is de�ned by

� :=
nbaryons
n

(1.76)
=

�2

g�(3)

nbaryons
T 3

: (1.133)

Thus, we end up with13
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13Bernstein et al. use the approximation mD � 2mn which yields
XnXp
XD

�
p
�

12�(3)
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Figure 1.8: On the lhs we plotted the equilibrium fraction from eq. (1.134) for di�erent
values of the baryon-to-photon ratio � (mn = 939:5; mp = 938:2; mD = 1875:48 all
values in MeV). From the lhs it becomes clear that signi�cant amounts of deuterium are
formed if the temperature drops below the binding energy of deuterium. This behavior
is usually called the deuterium bottleneck, for a more detailed discussion see [192], e.g.
On the rhs we plotted the time temperature-relation from eq. (1.130). The red line
corresponds to the standard value of 12.995 for ~gtotal. figure@8,HUGO1

The dependence of the baryon-to-photon ratio on the abundance fraction is displayed
in �gure 1.8. Signi�cant amounts of deuterium are only formed at temperatures well
below the binding energy of deuterium. This is mainly due to the small value of �, i.e.
the high entropy of the universe. In order to estimate the temperature at which XD ' 1
we rewrite eq. (1.134) by using the formula for the neutron-to-baryon ratio (1.118), i.e.

XD =

r
18

�
� (3)

�
mnmp

mD

�� 3
2

� e
"D
T T

3
2Yn (1� Yn)

Yn(1)�
r

9

50 �
� (3)

�
mnmp

mD

�� 3
2

� e
"D
T T

3
2 : (1.135)

In the last line we substituted the asymptotic numerical value of Yn, which approximately
yields Yn (1� Yn) � 0:149� (1� 0:149) � 0:1. Note that it does not matter if we take
b = 0:223 or b = 0:251 in this �rst approximation since we use the rounded value for
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Table 1.6: Nuclear reactions used in BBN calculations.
Symbol Reaction

N1 p+ n  ! D+ 

N2 D + D  ! T + p

N3 D + n  ! T + 

N4 D + D  ! 3He + n

N5 D + p  ! 3He + 

N6 D + D  ! 4He + 

N7 T + p  ! 4He + 

N8 T + D  ! 4He + n

N9 T + T  ! 4He + 2n

N10 3He + n  ! T + p

N11 3He + n  ! 4He + 

N12 3He + D  ! 4He + p

N13 3He + T  ! 4He + p + n

Yn (1� Yn). Numerically we obtain XD ' 1 , Tc ' 0:1 MeV, which corresponds to
the time tc � 133 s. For a more detailed estimate of the capture time the reader is
referred to reference [193], and section 3.11.3 of this work, which contains a numerical
comparison of di�erent capture conditions.

Synthesis of 4He

As we have learned in the last section the nucleosynthesis chain begins with the for-
mation of deuterium, followed by the production of the other light elements via the
reactions listed in the table 1.6. More comprehensive reaction networks used in nu-
merical nucleosynthesis calculations can be found in [182, 183, 184, 185, 237]. In the
following we assume that almost all neutrons end up in 4He. Hence, we are able to infer
the primordial helium abundance from the neutron-to-baryon ratio, i.e.

Y4He := 4
n4He

nbaryon
=

2nn
np + nn

(1.128)
= 2�Yn: (1.136)

Bernstein et al. use the reaction rates for the reactions N1, N2, and N8, cf. table 1.6,
in order to estimate the capture temperature as Tc ' 0:086 MeV, which corresponds to
tc � 180 s. Substituting this value for tc into eq. (1.128) and using � = 886:7 s [84] for
the mean life time of the neutron, we end up with

Y4He = 2 e�
180
886:7Yn = 2� 0:816� 0:149 = 0:243: (1.137)

As we will see in the next section the above value lies well within the present obser-
vational bounds. The dependence of the helium abundance on various parameters is
depicted in �gure 1.9.
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Figure 1.9: On the upper lhs we plotted the dependence of the helium abundance on the
capture temperature (note that Tcapture � 0:086 MeV corresponds to t � 180 s). On the
upper rhs the helium abundance is plotted for di�erent values of the spin degeneracy
factor gtotal. From this plot it becomes clear that additional neutrino species lead to a
higher abundance of 4He. On the lower lhs we plotted the helium abundance for varying
neutron mean life time. Note that the experimental bound on � is much tighter than the
plotted range, i.e. � = 886:7� 1:9 s [84]. On the lower rhs we displayed the dependence
on the proton-neutron mass di�erence. figure@9,HUGO4

Observational situation

In table 1.7 we collected the observational bounds on the light element abundances.
This list is by no means exhaustive. One has to keep in mind that these measurements
are a delicate subject since they require deep insight into stellar nucleosynthesis and the
chemical evolution of galaxies. Hence, we have to rely on the combined observational
bounds suggested by the experts in this �eld collected in table 1.8.

In contrast to deuterium, elements from helium onwards can be produced in stars.
Accordingly, there has been a lively discussion in the literature whether the observed
helium abundance is really of primordial origin. In presence of heavier elements helium is
formed via the so-called CNO cycle, cf. [20], e.g., for a detailed discussion. Back in 1972
the work of Searle and Sargent [234] provisionally settled the ongoing debate when they
found a region of very low metallicity, which encompassed nearly the usual abundance
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of helium. Nevertheless there are still investigations concerning the primordial origin of
helium [233]. Most of these revolving around the amount of helium synthesized in stars,
and the applicability of methods, which allow us to extrapolate back to the time of zero
metallicity. If totally metal-free stars, so-called population III stars, could be found, one
would be able to study the composition of the pristine gas by means of these stars. The
recent discovery [232] of a low-mass halo star with a very low iron abundance suggests
that such types of stars still exist.

In contrast, no astrophysical site has survived, in which deuterium is produced. Since
deuterium is converted into 3He during pre-main sequence evolution there is only a net
destruction of deuterium during star formation. The process which is mainly responsible
for a conversion of deuterium into helium is one of the so-called pp chains, i.e.8<:

H + H �! D+ e++ �e
H + D �! 3He + 
3He + 3He �! 4He + H + H

: (1.138)

Since the deuterium abundance strongly depends on the baryon-to-photon ratio � it is
often called baryometer. From the cosmological point of view the deuterium measure-
ments played a crucial role in the determination of the baryonic mass density of the
universe. Only very recent CMB measurements [178, 235] via the WMAP14 satellite of-
fer a stronger constraint on �. Nevertheless nucleosynthesis represents a very important
cosmological test for the very end of the redshift scale.

Let us keep in mind the di�erent methods to measure the abundances listed in table
1.7. Deuterium is mainly observed in cool neutral gas (HI regions), 3He is studied in
hot ionized gas (HII), 4He is probed via emission of optical recombination lines in HII
regions, and 7Li via the absorption spectra of hot low-mass halo stars [185, 186, 187].
Especially the observation of high-redshift gas clouds of low-metallicity allows us to
study deuterium abundance in regions which are nearly primordial, cf. D2, D3, D7, and
D8 in table 1.7.

Computer programs and possible extensions of the standard scenario

In the last sections we reviewed a semi-analytical method for the calculation of the
helium abundance. Although we will stick to this method for the rest of this work
one should mention some of the computer programs, which were developed in order to
track all of the light element abundances during nucleosynthesis. In 1967 Wagoner et
al. were the �rst who implemented a reaction network, which allowed for the numerical
computation of the abundances, cf. [188, 189]. Kawano revised this code twice in 1988
[182] and 1992 [183]. The Kawano code and numerous modi�cations are still in use
nowadays. The most recent numerical estimate was provided by Lopez and Turner [237]
who build a new code from scratch. This code takes into account several higher order
e�ects and is supposed to estimate the 4He abundance with a theoretical uncertainty of
less than 0.1%.

14
WilkinsonMicrowave Anisotropy Probe.
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Table 1.8: Light element abundances from reviews.
nD
nH

n3He
nH

Y4He
n7Li
nH

Ref.

(2:52� 0:49)� 10�5 (1:48� 0:13)� 10�5 0:274� 0:016 [222]

[1:9; 3:3]� 10�5 [1:9; 18]� 10�5 [221]

� 3:2� 10�5 [220]

[2:9; 4]� 10�5; � 10�3 [0:228; 0:248] [1:2; 1:9]� 10�10 [187]

[1; 3]� 10�4

Since nucleosynthesis depends on very di�erent concepts of particle physics, ther-
modynamics, and the underlying gravity theory there seems to be no lack of room for
extensions. One, rather mild, extension of the standard paradigm is given by a change
of the expansion rate. This might be generated by an additional relativistic particle
species, corresponding to a change in the model of particle physics. Such a change would
enter through the energy density in (1.72). Moreover there might be also a change of
the expansion behavior due to a modi�cation of the �eld equations of the cosmological
model [194]{[202]. In case the �eld equations are similar to the Friedmann equations
one can use a changed expression for the energy density in order to describe a set of
changed �eld equations in an e�ective way. We will learn more about this possibility
in section 3.11. A more drastic change, which currently lies beyond the observational
scope, involves the time before nucleosynthesis and therefore also its initial conditions.
Especially modi�cations at the time of the QCD phase transition [106] may question
one of the basic assumptions of standard BBN, i.e. homogeneity. For an investigation
covering nucleosynthesis in a neutron-enriched region the reader is referred to [203].

1.7 History of the universe

On the basis of the cosmological standard model, one is able to establish a chronological
order of events, which took place during the evolution of the universe. Although we
discussed only two of the cosmological tests in detail, the magnitude-redshift relation
and the primordial production of 4He, we will draw a more complete picture of our
current understanding of the universe in this section. In �gure 1.10 we sketched some of
the events which took place during the evolution of the universe. From an observational
point of view there is no direct evidence for processes which occur during the �rst second.

One prominent example for a mechanism which has to be introduced if one wants
to salvage the FLRW description up to the earliest stages is ination [79, 80]. In order
to explain the observed homogeneity of the cosmic microwave background one has to
specify a mechanism, which enables di�erent patches of the universe to get in causal
contact before the time of decoupling. This is not the case if we assume that the
universe expanded with the rate of a radiation dominated FLRW model during its early
phase. The emergence of causally disconnected regions is caused by the existence of
particle horizons, cf. section 1.3. Ination, in its simplest version, solves this problem
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by introducing an additional scalar �eld. This �eld leads to a very rapid expansion
at early times such that small uniform regions become large enough to encompass the
observed universe, thereby yielding an explanation for the uniformness of the CMB.
Since there exists exhaustive literature on the inationary scenario and its successors
we will not discuss it in detail, cf. [11, 14, 15, 81, 82], e.g. Another interesting feature of
the inationary model is given by the fact that it provides an explanation for the small
uctuations in the CMB. These uctuations are thought to be generated by quantum
uctuations of the inaton �eld which are diluted to macroscopic scales during the
process of ination. Thereby they act as seeds for the potential wells in the primordial
plasma, which are one of the generators of CMB temperature uctuations. One might
judge the inationary scenario to be a rather speculative idea which expresses our lack of
knowledge about the early evolution of the universe. However it undoubtedly provides
a simple solution to several problems within the cosmological standard model. Hence
ination raises the bar for any competitor model, which of course also has to provide
an explanation for the density uctuations. Unless this is the case, no model will be on
par with the standard model.
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Figure 1.10: History of the universe.
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Let us come back to �gure 1.10 and the events which have a rather robust obser-
vational underpinning. The time after the formation of hadronic matter is believed to
be rather well understood. As we have discussed in detail in section 1.6 the synthesis
of light elements during the �rst minutes represents one of the main pillars of the hot
big bang model. The next main event takes place at the time at which the temperature
of the plasma is low enough to allow for the recombination of the elements. Hence the
photons are no longer scattered by free electrons and the universe looses its opaqueness.
The density uctuations of the primordial plasma are imprinted into the photon distri-
bution which is nowadays observed in form of the cosmic microwave background. Since
from this moment on the universe is no longer pervaded by a plasma one expects that
the energy density in the FLRW equation is dominated by the pressureless component.
In other words the universe has entered its matter dominated era. In the upcoming
rather long period, long in comparison to the amount of time which has elapsed till the
universe became matter dominated, the formation of structure takes place. We will not
touch questions of structure formation within this work, the reader is referred to the
textbooks [10, 11, 16]. Nevertheless one has to keep in mind that the evolution of den-
sity perturbations and their condensation into large-scale structures (LSS) is one of the
main topics of modern cosmology which is linked to many observations [75, 76, 77, 78].
Hence any attempt to build a competitive cosmological model will sooner or later lead
to investigations concerning the large scale distribution of matter. From a conceptual
point of view the cosmological tests linked to the CMB and LSS observations su�er a
little bit from their complexity, because they need a fair amount of extra phenomenol-
ogy. This sometimes makes it diÆcult to clearly segregate the e�ects caused by a change
in the underlying gravity theory.
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1.8 Dimensions

Table 1.9: Dimensions.
Quantities 1 Length

Geometrical quantities [ ~R��]; [g��] [#�]; [G�]

Matter quantities [��]
�1; [���]�

1
4

Coordinates [�]; [�]; [r] [t]

Constants [k]; [w] [�]
1
2 ; [�]�

1
2 ; [{w]

1
�4+3(1+w)

Functions [
w]; [
�]; [
total]; [S]; [�]�
1
4 ; [p]�

1
4 ; [H]�1;

[
k]; [
m]; [�]; [F ] [�c]
� 1
4 ; [dH ]; [�m0]

� 1
4

Miscellany [u�]; [z]; [q]; [m]; [M ]; [dluminosity]; [ �L]
� 1
2 ; [ �F ]�

1
4

[M]; [�] [A0]
1
2 ; [�]

1
2

Thermodynamics [fi]; [gi] [ni]
� 1
3 ; [�i]

� 1
4 ; [pi]

� 1
4 ;

[qi]
�1; [Ei]�1; [%i]�1; [Ti]�1

Nucleosynthesis [Yn]; [C]; [a]; [y]; [b]; [�] [Q]�1; [�np]�1; [�pn]�1

[ ~Yn]; [ �Yn]; [Xi]; [�]; [Y4He] [A]�1; [B]�1; [A] 14 ; [� ]; ["D]�1



Chapter 2

Metric-aÆne gauge theory

2.1 Introduction

This chapter gives a short overview of metric{aÆne gauge theory of gravity (MAG) and
its subcases. Due to the existence of several introductions dealing with this subject,
cf. [44, 46, 47], we will concentrate on summarizing the main results that are neces-
sary to understand the forthcoming chapter. In order to keep our introduction rather
concise, most of the mathematical concepts used in this chapter are summarized in the
appendices A and C.

2.2 MAG in general

In this section we will not be concerned with the question of how to formulate a theory of
gravity in a gauge theoretical manner, this was already done in [44, 46] and chapter one
of [49], but with the introduction of all necessary notions to set up the �eld equations.

In MAG we have the metric g��, the coframe #�, and the connection 1-form ���
(with values in the Lie algebra of the four-dimensional linear group GL(4; R)) as new
independent �eld variables. Here �; �; : : : = 0; 1; 2; 3 denote (anholonomic) frame indices.
Spacetime is described by a metric-aÆne geometry with the gravitational �eld strengths
nonmetricity Q�� := �Dg��, torsion T � := D#�, and curvature R�

� := d��
� � ��

 ^
�

�. A Lagrangian formalism for a matter �eld 	 minimally coupled to the gravitational
potentials g��, #

�, ��
� has been set up in [44]. Then the dynamics of this theory is

speci�ed by a total Lagrangian

L = VMAG(g��; #
�; Q��; T

�; R�
�) + Lmat(g��; #

�;	; D	): (2.1)

The variation of the action with respect to the independent gauge potentials leads to
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the �eld equations:

ÆLmat

Æ	
= 0; (2.2)

DM�� �m�� = ���; (2.3)

DH� � E� = ��; (2.4)

DH�
� � E�

� = ��
�: (2.5)

Equations (2.3) and (2.4) are the generalized Einstein equations with the symmet-
ric energy-momentum 4-form ��� and the canonical energy-momentum 3-form �� as
sources. Equation (2.5) is an additional �eld equation which takes into account other
aspects of matter, such as spin, shear and dilation currents, represented by the hyper-
momentum ��

�. We made use of the de�nitions of the gauge �eld excitations:

H� := �@VMAG

@T �
; H�

� := �@VMAG

@R�
�
; M�� := �2@VMAG

@Q��
: (2.6)

Moreover, we introduce the canonical energy-momentum, the metric stress-energy and
the hypermomentum current of the gauge �elds,

E� :=
@VMAG

@#�
; m�� := 2

@VMAG

@g��
; E�

� := �#� ^H� � g�M� ; (2.7)

and the canonical energy-momentum, the metric stress-energy and the hypermomentum
currents of the matter �elds,

�� :=
ÆLmat

Æ#�
; ��� := 2

ÆLmat

Æg��
; ��

� :=
ÆLmat

Æ���
: (2.8)

Provided the matter equations (2.2) are ful�lled, the following Noether identities hold:

D�� =
�
e�cT �

� ^ �� � 1

2
(e�cQ�) �

� + (e�cR�
) ^��

 ; (2.9)

D��
� = g��

� � #� ^ ��: (2.10)

By means of (2.9) and (2.10) it can be shown that the �eld equation (2.3) is redundant,
thus we only need to take into account (2.4) and (2.5).

As suggested in [45], the most general parity conserving quadratic Lagrangian ex-
pressed in terms of the irreducible pieces of the nonmetricity Q��, torsion T �, and
curvature R�� reads:
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VMAG =
1

2�

�
�a0R�� ^ ��� � 2�� + T � ^ ?

 
3X

I=1

aI
(I)T�

!

+ Q�� ^ ?

 
4X
I=1

bI
(I)Q��

!
+ b5

�
(3)Q� ^ #�

� ^ ?
�
(4)Q� ^ #�

�
+ 2

 
4X
I=2

cI
(I)Q��

!
^ #� ^ ?T �

�

� 1

2�
R�� ^ ?

� 6X
I=1

wI
(I)W�� +

5X
I=1

zI
(I)Z�� + w7#� ^

�
ec (5)W 

�

�
+ z6# ^

�
e�c (2)Z

�

�
+

9X
I=7

zI#� ^
�
ec (I�4)Z

�

��
: (2.11)

The corresponding lines can be characterized in the following way

VMAG = weak part

�
Einstein-Hilbert + cosmological term + quadratic torsion

+ quadratic nonmetricity

+ quadratic nonmetricity mixed with coframe

+ cross terms with nonmetricity and torsion

�
� strong part

�
quadratic curvature + terms mixed with coframe

�
: (2.12)

The constants entering (2.11) are the cosmological constant �, the weak and strong
coupling constant � and �, and the 28 dimensionless parameters

a0; : : : ; a3; b1; : : : ; b5; c2; : : : ; c4; w1; : : : ; w7; z1; : : : ; z9: (2.13)

This Lagrangian and the presently known exact solutions in MAG have been reviewed
in [45]. As compared to GR [25, 83], the number of known exact solutions in MAG is
relatively small. Important de�nitions of this section are summarized in table 2.1.

2.3 The triplet ansatz

In this section we briey discuss the results of Obukhov et al. [74]. Note that a similar
result for a less general Lagrangian was derived by Dereli et al. in [73]. Starting from
the most general gauge Lagrangian VMAG as given in the previous section, cf. eq. (2.11),
we will now investigate the special case with

w1; : : : ; w7 = 0; z1; : : : ; z3; z5; : : : ; z9 = 0; z4 6= 0: (2.14)
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Table 2.1: Summary of de�nitions made in section 2.2.

Potentials Field strengths Excitations Gauge currents

g�� Q�� := �Dg�� M�� := �2 @V
@Q��

m�� := 2 @V
@g��

#� T � := D#� H� := � @V
@T�

E� := @V
@#�

��
� R�

� :="D"��
� H�

� := � @V
@R��

E�
� :=

@V
@���

Thus, we consider a general weak part (i.e. we do not impose that one of the weak
coupling constants vanishes initially) but only a very constrained strong part of (2.11).
Written explicitly we are left with

VTriplet =
1

2�

�
�a0R�� ^ ��� � 2�� + T � ^ ?

 
3X

I=1

aI
(I)T�

!

+ Q�� ^ ?

 
4X
I=1

bI
(I)Q��

!
+ b5

�
(3)Q� ^ #�

� ^ ?
�
(4)Q� ^ #�

�
+ 2

 
4X
I=2

cI
(I)Q��

!
^ #� ^ ?T �

�
� z4
2�

R�� ^ ? (4)Z��: (2.15)

The corresponding lines can be characterized in the following way

VTriplet = weak part

�
Einstein-Hilbert + cosmological term + quadratic torsion

+ quadratic nonmetricity

+ quadratic nonmetricity mixed with coframe

+ cross terms with nonmetricity and torsion

�
� strong part

�
quadratic segmental curvature

�
: (2.16)

Thus, the only surviving strong gravity piece in VTriplet is given by the square of the
dilation part of the segmental curvature (4)Z�� :=

1
4
g��Z, cf. appendix C.1. In this case,

the result of Obukhov et al. [74] is the following: The curvature R�� may be e�ectively
considered to be Riemannian. Both torsion and nonmetricity may be represented by a
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single 1-form !:

Q = k0!; � = k1!; T = k2!; (2.17)

T � = (2)T � =
1

3
#� ^ T; (2.18)

Q�� = (3)Q�� +
(4)Q�� =

4

9

�
#(�e�)c�� 1

4
g���

�
+ g��Q: (2.19)

With the aid of the Riemannian curvature ~R�� (cf. appendix C.1), the �eld equation
(2.4) looks like the Einstein equation with an energy-momentum source that depends
on torsion and nonmetricity. Therefore, the �eld equation (2.5) turns into a system
of di�erential equations for torsion and nonmetricity alone. In the vacuum case, i.e.
vanishing energy-momentum �� and hypermomentum ��

� of matter, these di�erential
equations reduce to

a0
2
��� ^ ~R� + ��� = ��(!)

� ; (2.20)

d ?d! +m2 ?! = 0: (2.21)

The four constants m; k0; k1; and k2, which appear in (2.17) and (2.21), uniquely depend
on the parameters of the MAG Lagrangian (2.14)

k0 = 4 (a2 � 2a0)
�
b3 +

a0
8

�
� 3 (c3 + a0)

2 ;

k1 =
9

2
(a2 � 2a0) (b5 � a0)� 9 (c3 + a0) (c4 + a0) ;

k2 = 12
�
b3 +

a0
8

�
(c4 + a0)� 9

2
(b5 � a0) (c3 + a0) ;

m2 =
1

z4�

�
�4b4 + 3

2
a0 +

k1
2k0

(b5 � a0) + k2
k0

(c4 + a0)

�
: (2.22)

The energy-momentum source of the torsion and nonmetricity �
(!)
� which appears in

the e�ective Einstein equation (2.20) reads

�(!)
� =

z4k
2
0

2�
f(e�cd!) ^ ?d! � (e�c ?d!) ^ d!

+m2 [(e�c!) ^ ?! + (e�c ?!) ^ !]
	
: (2.23)

This energy-momentum is precisely the energy-momentum of a Proca 1-form, thus our
constrained Lagrangian (2.15), together with (2.20), and (2.21) is e�ectively equivalent
to an Einstein-Proca Lagrangian VEinstein-Proca = VEinstein-Hilbert + VProca, where

VProca = �1
2
d! ^ ?d! +

1

2
m2! ^ ?!: (2.24)

Consequently, the Einstein-Proca Lagrangian describes a spacetime with a massive 1-
form �eld !. As we can see from (2.24) the parameter m in (2.21) has the meaning of



56 CHAPTER 2. METRIC-AFFINE GAUGE THEORY

the mass parameter of the Proca 1-form !. If m vanishes the constrained MAG theory
is equivalent to the Einstein-Maxwell theory, as can be seen immediately by comparing
(2.23) with the energy-momentum of the Maxwell theory

�Max
� =

1

2
f(e�cdA) ^ ?dA� (e�c ?dA) ^ dAg ; (2.25)

where A denotes the electromagnetic potential 1-form. Inspection of (2.22) reveals that
m = 0 leads to an additional constraint among the coupling constants (cf. [49], eq.
(3.7)):

0 = �4b4 + 3

2
a0 +

k1
2k0

(b5 � a0) + k2
k0

(c4 + a0)

= 32b4a2b3 � 12a0a2b3 � 64b4a0b3 � 24b3c
2
4 � 48b3c4a0 � 32b4a

2
0

�24b4c23 + 9a2b5a0 � 6a2a
2
0 + 9a0c

2
3 � 48b4c3a0 + 4b4a2a0 � 24a20c4

+9a0b
2
5 �

9

2
a2b

2
5 � 3a0c

2
4 + 18c3c4b5 � 18c3c4a0 + 18c3a0b5 + 18a0c4b5: (2.26)

For the sake of completeness we display the explicit form of the excitations (cf. [74], p.
7772) derived from the triplet Lagrangian (2.15)

TripletH� = �@VTriplet
@T �

= �1
�

?

"
3X
I=1

aI
(I)T� +

 
4X
I=2

cI
(I)Q��

!
^ #�

#
; (2.27)

TripletH�
� = �@VTriplet

@R�
�

=
a0
2�
��� +

z4
�

?
�
(4)Z�

�

�
; (2.28)

TripletM�� = �2@VTriplet
@Q��

= �2
�

"
?

 
4X
I=1

bI
(I)Q��

!
+
b5
2

�
#(� ^ ?

�
Q ^ #�)�

�1
4
g�� ? (3Q+ �)

�
+ c2#

(� ^ ? (1)T �) + c3#
(� ^ ? (2)T �)

+
1

4
(c3 � c4) g�� ?T

�
; (2.29)

TripletE� = e�cVTriplet +
�
e�cT �

� ^ TripletH� + (e�cR�
) ^ TripletH�



+
1

2
(e�cQ�)

TripletM� ; (2.30)

TripletE�
� = �#� ^ TripletH� � TripletM�

�: (2.31)

Here we made use of the de�nitions Q := 1
4
Q�

�;� := #�e�c (Q�� �Qg��) ; T := e�cT �.

Further specialization In the following we con�ne ourselves to the casem = 0. Thus,
the �eld equations of MAG are given by (2.20) and (2.21). The energy-momentum of
the triplet is represented by the �rst part of (2.23). We observe that in case of a closed

triplet 1-form !, i.e. d! = 0, the energy-momentum of the triplet �eld �(!)
� vanishes.

Additionally, the second triplet �eld equation (2.21) is ful�lled identically. Thus, the
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only remaining �eld equation is (2.20), i.e. the �eld equation of General Relativity, which
in case of vacuum reads as follows (note that we are allowed to choose a0 = 1)

1

2
��� ^ ~R� + ��� = 0: (2.32)

Consequently, we �nd a solution of the triplet regime of MAG with closed ! if we
are able to solve (2.32). Of course, this means that every vacuum solution in general
relativity (note that we do not have to con�ne ourselves to the vacuum case) generates
a solution of what we will call the closed triplet ansatz. But what about the non-
Riemannian features like nonmetricity and torsion in our solution? As we mentioned
above, the energy-momentum �(!)

� of the triplet �eld vanishes if ! is closed. Thinking of
the classical Maxwell theory, a closed potential 1-form A immediately leads to vanishing
�elds strengths, because of F = dA. Consequently we may express the potential 1-form
A by �nding the corresponding 0-form � with A = d�.

As we can see from (2.18) and (2.19), a closed potential ! does not necessarily lead
to vanishing �eld strengths in the triplet regime of MAG. Expressing ! locally by means
of a 0-form  , we arrive at the following notions for torsion T � and nonmetricity Q��

T � =
k2
3
#� ^ d ; (2.33)

Q�� =
4k1
9

�
#(�e�)cd � 1

4
g�� d 

�
+ k0 g�� d : (2.34)

With ! = !�#
� = d the MAG connection, cf. appendix C.4, reduces to

��� = �
f g
�� +

2k1
9

�
#(�!�) � 1

4
g�� !

�
+
k0
2
g�� ! +

�
k1
3
� 2k2

3
� k0

�
#[�!�]: (2.35)

2.4 Weyl-Cartan spacetime

The Weyl-Cartan spacetime (Yn) is a special case of the metric-aÆne geometry in which
the tracefree part Q��% of the nonmetricity Q�� vanishes. Thus, the whole nonmetricity
is proportional to its trace part, i.e. the Weyl 1-form Q := 1

4
Q

,

Q�� = g�� Q =
1

4
g�� Q


: (2.36)

Therefore the MAG connection, cf. appendix C.4, may be represented as

��� = �
f g
�� � e[�cT�] +

1

2
(e�ce�cT)# + 1

2
g�� Q+

�
e[�cQ

�
#�]: (2.37)

Further specialization Now let us recall the de�nition of the material hypermomen-
tum ��� given in (2.8). With �%(��) := �(��) � 1

4
g���


 = �(��) � 1

4
g��� for the
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symmetric tracefree piece, we have:

��� = antisymmetric piece + symmetric tracefree piece + trace piece

= ��� +�%(��) +
1

4
g���

= spin current + shear current + dilation current. (2.38)

If we assume that the shear current in (2.38) vanishes the second MAG �eld equation
(2.5) decomposes into

dH�
� � E�

� = �; (2.39)

g(�DH

�) � E(��) � 1

4
g�� (dH


 � E

) = 0; (2.40)

g[�DH

�] � E[��] = ���; (2.41)

while the �rst �eld equation is still given by (2.4). Additionally, we can decompose the
second Noether identity (2.10) into

1

4
g�� d�+ #(� ^ ��) = ���; (2.42)

D��� +Q ^ ��� + #[� ^ ��] = 0: (2.43)

Substituting the Weyl 1-form and the hypermomentum into the �rst Noether identity
(2.9) yields

D�� =
�
e�cT �

� ^ �� � 1

2
(e�cQ) ��� +

�
e�cR[�]

� ^ �� + 1

4
(e�cR) ^�: (2.44)

Finally, we note that in a Yn spacetime the symmetric part of the curvature R(��) = Z�� ,
i.e. the strain curvature, reduces to its trace part

Z�� =
1

4
g��R =

1

4
g��R


 =

1

2
g�� dQ: (2.45)

In section 3.2 we will consider a cosmological model in the Weyl-Cartan spacetime.
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Q��% = 0

Q�� = 0

T� = 0Q�� = 0

T� = 0

Q�� = 0T� = 0

Figure 2.1: Schematic overview of di�erent spacetimes types.

2.5 Dimensions

Table 2.2: Dimensions.
Quantities 1 Length

Gauge potentials [g��]; [���] [#�]

Gauge �eldstrengths [Q��]; [R��]; [W��]; [Z��]; [ ~R��] [T �]

Gauge �eld excitations [M��]; [H�
�] [H�]

�1

Gauge �eld currents [E�
�]; [m

��] [E�]
�1

Matter currents [���]; [�
��]; [���] [��]

�1

Constants [�]; [a0:::3]; [b1:::5]; [c2:::4] [�]
1
2 ; [�]�

1
2

[w1:::7]; [z1:::9]; [k0:::2] [m]�1

Triplet potentials [!]; [Q]; [�]; [T ]

Miscellany [A]; [ ] [��]
1
3 ; [���]

1
2 ; [���]; [C�]
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Chapter 3

Cosmology in alternative gravity

theories

3.1 Introduction

In this chapter we present a new cosmological model in Weyl-Cartan spacetime. For
a classi�cation scheme of non-Riemannian spacetimes see �gure 2.1 on page 59. In
sections 3.2{3.5 we focus on the derivation and solution of the �eld equations. We
work out the magnitude-redshift relation in section 3.6 and perform �ts to a SN Ia data
set in section 3.7. In section 3.9 we discuss an interesting special case of the model
and its observational implications. Subsequently we make contact with the models
of two other groups in section 3.10 and constrain their parameters with the help of
the magnitude-redshift relation. In section 3.11 we discuss several issues related to
nucleosynthesis. Additionally, we constrain the model parameters by means of the
observed helium abundance. Finally, we draw our conclusion and give an outlook on
future goals in section 3.12.

Before we start with the discussion of a speci�c model let us briey comment on
some other alternative cosmological scenarios. The current spectrum of alternative
models ranges from ad hoc modi�cations of the Friedmann equation [141], FLRW type
models with matter creation [53], over models in higher dimensions [67] to models in
non-Riemannian spacetimes [59].

Especially models with extra dimensions received very much attention in the re-
cent literature. The idea that ordinary matter is con�ned to a submanifold, commonly
termed brane, which is embedded in a higher dimensional space, called bulk, has sev-
eral physical consequences. Some of these models are interesting from a cosmological
point of view because they allow to recover the usual Friedmann equation on the brane
enriched by high energy corrections, which lead to signi�cant deviations from the cosmo-
logical standard scenario in the early universe while preserving the well tested standard
scenario at low energies. This brings us to the countless number of models which intro-
duce a modi�cation of the �eld equations in a phenomenological way, mostly by adding
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additional terms in the Friedmann equation or by introducing additional �elds on the
Lagrangian level. One prominent example of these add-on's is ination, which provided
a solution of the horizon problem within the FLRW description in 1981. Most of these
add-on' s aim for a solution of speci�c cosmological problems. For example, to lower the
amount of the, up to now not directly detected, dark matter and dark energy which is
needed within the FLRW description in order to keep track with observations. There
have only been few attempts to study the observational impact of cosmological models
which require a non-Riemannian spacetime structure.

Some early investigations concerning the search for exact cosmological solutions in
an Einstein-Cartan and MAG framework can be found in [59]{[62]. A model involving
a Proca like �eld and its implications for an inationary era as well as its possible
consequences for galactic rotation curves was studied in [63]1. An interesting property
of this model is given by the avoidance of the initial singularity. Such a behavior was also
observed in several Einstein-Cartan scenarios, cf. [54, 59], e.g. Two other examples for
models within Riemann-Cartan spacetime are given in [55] and [56], wherein the authors
try to assess a limit on the spin-density perturbations from the observed temperature
uctuations of the CMB. Finally, we note that there exist several works in which the
relation between Weyl type theories and the inationary scenario is investigated, cf.
[57, 58].

3.2 A cosmological model in Weyl-Cartan spacetime

In [68] we considered the following gauge Lagrangian

V =
�

2�
R�

� ^ ��� +
6X
I=1

aI R�
� ^ ?(I)W �

� + bR�
� ^ ?(4)Z�

�: (3.1)

Here ��� := ? (#� ^ #�), (I)W ��, and (I)Z�� as given in appendix C. Since we are
interested in more general gauge Lagrangians (cf. equation (2.11) for a very general one
proposed in MAG), we are going to extend (3.1) by means of

V1 = cQ�� ^ ?(4)Q��: (3.2)

Hence, our new Lagrangian reads

V = Vold + V1

� Einstein-Hilbert + quadratic rotational curvature

+ quadratic strain curvature + quadratic nonmetricity. (3.3)

1Note that also the works [64] and [65] contain a discussion of the equations of motion in a non-
Riemannian space, albeit in a non-cosmological context. Another work [52], also in a non-cosmological
context, deals with possible observational implications of a MAG based model due to a non-minimal
coupling of torsion to the electromagnetic �eld.



3.2. A COSMOLOGICAL MODEL IN WEYL-CARTAN SPACETIME 63

In contrast to our old model [68], we included an explicit nonmetricity term in our
Lagrangian. Note that we have the arbitrary constants �; aI=1:::6; b; c; and the weak
coupling constant �. The Lagrangian in (3.3) represents a special case of (2.11), what
can easily be seen by performing the following substitutions for the constants in (2.11):

a0 ! ��; w1; : : : ; w6 ! �2�a1; : : : ;�2�a6; b4 ! c; z4 ! �2�b: (3.4)

Since a treatment of the full Lagrangian is computationally not feasible at the moment,
it is necessary to study successively the impact of additional terms in the Lagrangian.
Together with the quadratic rotational curvature and quadratic strain curvature terms,
which were already included in our old model [68], we now have an additional post-
Riemannian piece in form of a quadratic nonmetricity term. This generalizes the usual
Einstein-Hilbert Lagrangian commonly used in general relativistic cosmological models.
Note that the Lagrangian in (3.3) does not encompass a term with the cosmological
constant. However, as we will show in section 3.4, our ansatz gives rise to an additional
constant which, on the level of the �eld equations, will play the same role as the cos-
mological constant in the standard model. From (3.3) we can derive the gauge �eld
excitations (cf. section 2.2). They read

M�� = �4 c?(4)Q�� = �cg�� ?Q
; (3.5)

H� = 0; (3.6)

H�
� = � �

2�
��� � 2

6X
I=1

aI
?(I)W �

� � 2b?(4)Z�
�

= � �

2�
��� � 2

6X
I=1

aI
?(I)W �

� � b

2
Æ��

?R
: (3.7)

Hence the canonical energy-momentum of the gauge �elds is given by

E� = e�cV + (e�cR�
) ^H�

 +
�
e�cT �

� ^H� +
1

2
(e�cQ�) ^M�

= e�cV + (e�cR�
) ^H�

 +
1

2
(e�cQ�) ^M� : (3.8)

In contrast to [68] we now have a non-vanishing gauge hypermomentum

E�
� = �#� ^H� � g�M�

= 4 c g�
?(4)Q� = c Æ��

?Q�
�: (3.9)

The �eld equations turn into

�E� = ��; (3.10)

dH�
� � E�

� = �; (3.11)

g(�DH

�) � E(��) � 1

4
g�� (dH


 � E

) = �%(��); (3.12)

g[�DH

�] � E[��] = ���: (3.13)
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In eqs. (3.11){(3.13) we decomposed the second �eld equation into its trace, tracefree
symmetric, and antisymmetric part, cf. section 2.4. Due to the structure of (3.11) we
make the following ansatz for the dilation current:

��� =
1

4
g��� =

1

4
g�� (dH


 � E

) : (3.14)

Hence we con�ne ourselves to a medium with vanishing spin current and vanishing shear
current, i.e. ��� = �%(��) = 0. Thus, equations (3.12) and (3.13) turn into

�

2�
Q(�

 ^ �j�) � 2
6X
I=1

aI g(�D
?(I)W 

�) = 0; (3.15)

g[�DH

�] = 0: (3.16)

The derivation of (3.15) is sketched in appendix E.5. From (3.7), and (3.9) we can infer
that

��� = �1
4
g�� (2 b d

?R
 + 4c ?Q�

�) : (3.17)

In contrast to [68] the derivative of the dilation current does no longer vanish identically
due to the new structure of (3.11). Because we have not speci�ed a matter Lagrangian,
we have to take into account the Noether identities (cf. section 2.2 and section 2.4), i.e.

D�� =
�
e�cT �

� ^ �� � 1

2
(e�cQ) ��� + 1

4
(e�cR) ^�; (3.18)

��� =
1

4
g��d�+ #(� ^ ��); (3.19)

0 = #[� ^ ��]: (3.20)

We can rewrite eq. (3.19) by using (3.11)

��� = �1
4
g�� dE


 + #(� ^ ��): (3.21)

Equations (3.19){(3.20) represent the decomposed second Noether identity in case of a
vanishing spin and shear current. With (3.21) eq. (3.18) turns into

D�� =
�
e�cT �

�^��� 1

2
(e�cQ)#� ^��+ 1

8
(e�cQ) g�� dE

+
1

4
(e�cR)^�: (3.22)

Thus, we have to solve (3.10), (3.11), (3.15), (3.16), (3.18){(3.20) in order to obtain
a solution for our model proposed in (3.3). If we con�ne ourselves to a Weyl-Cartan
spacetime we can make use of (2.45), i.e. R

 � dQ, hence equation (3.17) turns into

��� = �1
4
g�� ( b d

?dQ
 + c g�

? (g�Q�
�)) : (3.23)

Thus, for such an ansatz the hypermomentum ��� depends on the nonmetricity and vice
versa. Note that the second term in (3.23) depends on the coupling constant of equation
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(3.5). Now let us specify the remaining quantities in our model. Equation (3.20) forces
the energy-momentum 3-form to be symmetric, thus we choose, with �� := ?#�,

�� = ��� �
� , with ��� = diag (�(t); pr(t); pt(t); pt(t)) . (3.24)

Subsequently we can calculate the metric stress-energy ��� from eq. (3.21)

��� = �1
4
g�� d (c g�

? (g�Q�
�)) + #(� ^

�
��) �


�
: (3.25)

Again we obtained a quantity which depends on the Weyl 1-form, i.e. the trace of the
nonmetricity. Since we want to compare our model to the cosmological standard model,
we use the Robertson-Walker line element as starting point for our calculations,

#0̂ = dt; #1̂ =
S(t)p
1� kr2dr; #2̂ = S(t)rd�; #3̂ = S(t)r sin �d�; (3.26)

with

ds2 = #0̂ 
 #0̂ � #1̂ 
 #1̂ � #2̂ 
 #2̂ � #3̂ 
 #3̂: (3.27)

As usual, S(t) denotes the cosmic scale factor and k = �1; 0; 1 determines whether the
spatial sections are of constant negative, vanishing or positive Riemannian curvature.
Following the model proposed in [68], we choose the torsion to be proportional to the
Weyl 1-form

T � =
1

2
Q ^ #�: (3.28)

Hence the torsion consists only of its vector piece (2)T �. The only thing missing in order
to setup the �eld equations is a proper ansatz for the Weyl 1-form Q. In [68] we were
able to derive Q from a proper ansatz for the potential of the hypermomentum �, the
so-called polarization 2-form P . Here we adopt a slightly di�erent point of view. Since
we are interested in the impact of di�erent choices of the non-Riemannian quantity Q
we will prescribe directly in the following. Besides of the fact that we gain direct control
of the post-Riemannian features of our model, we circumvent the question of which
type of matter generates the corresponding hypermomentum. Note that our ansatz in
equation (3.24) is in general not compatible with the energy-momentum obtained in
equation (3.28) of [50]. Since we do not prescribe a matter Lagrangian and use the
Noether identities as constraints on the matter variables, our approach could be termed
phenomenological as suggested in the �rst part of [50].

3.3 Field equations and Noether identities

In this section we derive the �eld equations and Noether identities resulting from a
speci�c choice of the 1-form Q, which controls nearly every feature of our model. We
start with a rather general form of Q, namely

Q =
�(t; r)

S(t)
#0̂; (3.29)
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where �(t; r) denotes an arbitrary function2 of the radial coordinate and the time coordi-
nate, and S(t) is the cosmic scale factor from (3.26). With the help of computeralgebra
we �nd that the �eld equations (3.10), (3.11), and (3.16) yield a set of four equations.
In order to compare these new �eld equations with the ones derived in [68] (cf. eqs.
(40)-(43) therein) we rewrite them as follows:

�

0@ _S
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1A21A
=
�

3

 
�� 4c

�
�

S

�2

+ b
�
1� kr2� �2;r
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; (3.30)

�

0@2 �S
S
+

 
_S

S

!2

+
k

S2

1A + (a4 + a6) �
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0@ _S
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+
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S2

1A21A
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S
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� b �1� kr2� �2;r
S4
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; (3.31)
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1A + (a4 + a6) �
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S
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�
0@ _S
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+
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pt � 4c

�
�

S

�2

+ b
�
1� kr2� �2;r

S4

!
; (3.32)

d

dt

0@ �S

S
+

 
_S

S

!2

+
k

S2

1A = 0: (3.33)

In eq. (3.33) we assumed a4 6= �a6. We will investigate a relaxation of this condition
later. Since we have not speci�ed a matter Lagrangian, we have to be careful with
the Noether identities (3.18)-(3.20). For our ansatz (3.29) we obtain two independent
equations

_SS3 (3�+ pr + 2pt) + _�S4 � 16 _ScS�2 + 2�;rt�;rb
�
1� kr2�� 8�;tcS

2� = 0;(3.34)

�;rr�;rbr
�
1� kr2�+ �2;rb

�
2� 3kr2

�
+ 4�;rcrS

2� + S4 (pt � pr) = 0:(3.35)

As one realizes immediately, the equations (3.30)-(3.33) are very similar to (40)-(43) of
[68]. There is only a change on the rhs, i.e. the matter side, of the above equations in
form of additional terms contributing to the pressure and energy density. The terms
proportional to �;r vanish if we make the same assumptions as in [68], i.e. �(t; r)! �(t).
Apart from this feature there is another, more subtle, change in (3.30)-(3.33), namely

2This function is not identical with the one used in equation (24) of [68]. It has a slightly di�erent
meaning, since we use it here directly in our ansatz for the nonmetricity.
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a term of the order �2 controlled by the new coupling constant c from eq. (3.2)3. The
Noether identities (3.34) and (3.35) can be transformed into

@

@t

�
�S4 + �2;rb

�
1� kr2�� 8c (S�)2

�
+ 4cS2@�

2

@t
=

1

4

dS4

dt
(�� pr � 2pt) ; (3.36)

pr � pt = 2cr

S2

@�2

@r
+

b

S4

�
r

2

�
1� kr2� @�2;r

@r
+
�
2� 3kr2

�
�2;r

�
: (3.37)

Hence we have more sophisticated relation between the radial and tangential stresses
than in equation (37) of [68].

Let us now extract some more information from the �eld equations. Addition of
(3.30) and (3.32) yields
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0@ �S

S
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S
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+
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S2

1A =
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�� 3pt + 8c

�
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S
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� 2b
�
1� kr2� �2;r

S4

!
: (3.38)

Subtracting (3.32) from (3.30) yields

2�
�S

S
+ 2� (a4 + a6)
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S2

1A21A
= ��

3
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S
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+ 4b
�
1� kr2� �2;r

S4
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: (3.39)

Combination of (3.33) and (3.38) leads to

0
(3.33)
= 2�

d

dt
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(3.38)
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� 2b
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1� kr2� �2;r

S4

!
: (3.40)

The trace of the energy-momentum is

� = �� pr � 2pt

(3.37)
= �� 3pt � 2cr

S2

@�2

@r
+

b

S4

�
r

2

�
1� kr2� @�2;r

@r
+
�
2� 3kr2

�
�2;r

�
: (3.41)

Since we encountered a system of coupled PDEs we will con�ne ourselves to a special
case in which the �eld equations turn into a set of coupled ODEs. Note that the above
situation is reminiscent of that encountered in anisotropic and inhomogeneous extensions
of the FLRW model.

3Formerly the term of the order �2 was controlled by the coupling constant b from the Lagrangian
in (3.1).
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For completeness we list the surviving curvature pieces in case of the ansatz (3.29)
below. Note that at this point it is easy to see that the symmetric tracefree part of the
second �eld equation is identically ful�lled in our model. Because the only surviving
member of the sum in equation (E.21) is the one for I = 4. Of course this part vanishes
due to the structure of (3.42).

(4)W �� =
�SS � _S2 � k

2S2
#� ^ #�; (3.42)

(6)W �� =
�SS + _S2 + k

2S2
#� ^ #�; (3.43)

(4)Z0̂0̂ = � (4)Z1̂1̂ = �(4)Z2̂2̂ = � (4)Z3̂3̂ = �
�;r
p�kr2 + 1

2S2
#0̂ ^ #1̂: (3.44)

3.4 Special case �(t; r)! �(t)

Let us investigate the interesting special case in which Q, cf. eq. (3.29), is given by a
closed 1-form, i.e.

Q =
�(t)

S(t)
#0̂: (3.45)

The �eld equations are now given by

�

0@ _S

S

!2

+
k

S2

1A� (a4 + a6) �

0@ �S

S

!2

�
0@ _S

S

!2

+
k

S2

1A21A
=
�

3

 
�� 4c

�
�

S

�2
!
; (3.46)
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1A = 0: (3.49)
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Thus, the function � contributes to the energy density and pressure in a similar way
as the function � in [68]. Note that there is no additional contribution from the strain
curvature in eqs. (3.46){(3.49), i.e. no term controlled by the coupling constant b from
our Lagrangian in eq. (3.1). This behavior is explained by the fact that the strain cur-
vature vanishes identically for closed 1-forms in a Weyl-Cartan spacetime. The Noether
identities read:

d

dt

�
�S4 � 8c (S�)2

�
+ 4cS2d�

2

dt
=

1

4

dS4

dt
(�� pr � 2pt) ; (3.50)

pr � pt = 0: (3.51)

In contrast to (3.37), eq. (3.51) forces the radial stress to equal the tangential stress.
Addition of (3.46) and (3.48) yields
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Subtracting (3.48) from (3.46), cf. eq. (3.39), yields
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Combination of (3.52) with the �eld equations leads to
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Thus, we obtained a conserved quantity similar to the one in equation (47) of [68]. The
�rst Noether identity (3.50) takes the form
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Before we proceed with the search for explicit solutions we collect the remaining �eld
equations:
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Note that the new constant � in (3.57) is de�ned via (3.58). Comparison of (3.58) with
the Friedmann equation (1.14) reveals that � plays the same role as the usual cosmo-
logical constant. Since we did not include this additional constant in our Lagrangian
right from the beginning, � might be termed induced cosmological constant. Now let
us exploit the fact that we are allowed to set the constant � = 0, which leads to an
additional constraint, i.e.

� = 3pr � 8c

�
�

S

�2

: (3.60)

Subsequently eq. (3.56) turns into

�

0@ _S

S

!2

+
k

S2

1A� (a4 + a6) �

0@ �S

S

!2

�
0@ _S

S

!2

+
k

S2

1A21A
= �

 
pr � 4c

�
�

S

�2
!
: (3.61)

The second Noether identity (3.59) reads
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S
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!
: (3.62)

We collect all assumptions made up to this point in table 3.4.
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Table 3.1: Model assumptions.

Ansatz/Assump. Resulting quantity/equation Equation

�� = ��� �
� A�ects the form of the �rst �eld eq. (3.10),(3.24)

��� = �%(��) = 0 A�ects the form of the second �eld eq. (3.16)

T � = 1
2
Q ^ #� A�ects the form of the connection (2.37),(3.28)

Q = �(t;r)
S(t)

#0̂ Controls non-Riemannian features/ (3.23),(3.29),(2.36),

A�ects the form of the �eld equations (3.30)-(3.35)

Q = �(t)
S(t)

#0̂ Controls non-Riemannian features/ (3.23),(3.45),(2.36),

Simpli�es �eld equations (3.46)-(3.51)

a4 6= �a6 A�ects the form of the second �eld eq. (3.33)

� = 0 Relation between � and pr (3.60)

� A�ects the form of the �eld equations (3.57)-(3.58)

TABLE@extweyl@model@assumptions ILSE6

3.5 Solutions

3.5.1 � 6= 0 solutions

We solve equation (3.58) for nonvanishing �. This equation does not depend on the rela-
tion between the energy density and pressure and therefore can be solved independently.
This ODE, after a substitution, turns into a Bernoulli ODE, which can be transformed
into a linear equation. We obtain two branches for the scale factor. They are given by

S = � 1p
2�

r
e�

p
2�t
�
2ke

p
2�t �

p
2�{1e2

p
2�t +

p
2�{2

�
; (3.63)

where {1, and {2 are constants. This solution for the scale factor is valid for all three
possible choices of k. Let us proceed by �xing the equation of state.

We start with the most simple ansatz, i.e. with the introduction of an additional
constant w into the equation of state, which parametrizes the ratio of the energy density
and the pressure:

w �(t) = pr(t): (3.64)

Substituting (3.64) into equation (3.60) yields

� = � 8c

1� 3w

�
�

S

�2

: (3.65)
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The other �eld equations are given by
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24c (1� w)
3w � 1

�
�

S

�2
 

_S

S
+

_�

�

!
= 0: (3.69)

Equation (3.69) has two non-trivial solution, i.e.

(i) � =
�

S
, with � = const, and (ii) w = 1. (3.70)

Solving the �eld equations (3.66)-(3.68) by taking into account the �rst solution in eq.
(3.70), we obtain constraints among the coupling constants which are summarized in
table 3.2 (note that every set of parameters on the rhs corresponds to a solution of
the �eld equations). These solutions are not very satisfactory since they either lead to
vanishing post-Riemannian quantities or, in case of � = c = 0, to a restriction on the
Lagrangian level.

Hence we switch to another ansatz for the equation of state, namely

w(t)�(t) = pr(t): (3.71)

Here we introduced an additional function which controls the relation between the energy
density and stresses in a dynamical way. Hence, equation (3.69) is now given by

� 24c

(3w � 1)2
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1 + 3w2 � 4w
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�
1 + 3w2 � 4w

�
+ _w

!
= 0: (3.72)

In case of an arbitrary choice of �, this equation is solved by

w =
S2�2{3 � 1

S2�2{3 � 3
: (3.73)

Substituting this solution for w into the remaining �eld equations yields additional
parameter constraints, summarized in table 3.3. As one realizes immediately none of



3.5. SOLUTIONS 73

Table 3.2: Ansatz � 6= 0; w = const.

� S Additional constraints

� = �
S

S from eq. (3.63) fa4 = a6 = c = � = 0g;
fa4 = a6 = � = 0; w = 1

3
g;

fa4 = a6 = � = 0; w = 1g;
fa4 = a6 = c = 0; w = 1

3
g,

fa4 = �a6;� = 0; w = constg

Table 3.3: Ansatz � 6= 0; w = w(t).

� S Additional constraints

� arbitrary, w = �2S2{3�1
�2S2{3�3 S from eq. (3.63) fa4 = �a6;� = 0g;

fa4 = �a6; � = 0; w = 1g;
fa4 = �a6; � = � = 0g

the solutions collected in table 3.3 is of use for us. They all lead to unrealistic or
forbidden restrictions among the coupling constants in our model. In the following
section we therefore switch to the case with vanishing induced cosmological constant �.

3.5.2 � = 0 solutions

Solving equation (3.68) for vanishing �, yields a solution for the scale factor which
depends on the constant k

k 6= 0 : S = �
r

1

k

�
{1 � k2 ({2 + t)2

�
; with {1;{2 = const, (3.74)

k = 0 : S = {1 or S = �
p
2{1 (t+ {2); with {1;{2 = const: (3.75)

Motivated by the results for the � 6= 0 case, we will directly start with the more general
equation of state as given in (3.71). The �eld equations are given by eqs. (3.66)-(3.69)
but with � = 0. Note that we do not �x the function �: Using computer algebra we �nd
several solutions which impose additional parameter constraints on our model. These
constraints are summarized in the second part of table 3.4.

Additionally, we investigated the case in which we prescribe the solution for the
function � as given in equation (3.70). Then the second Noether identity (3.72) yields:

_w = 0: (3.76)
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Table 3.4: Ansatz � = 0, w = w(t).

� S Add. constraints

� = �
S
; w = const k 6= 0; S from eq. (3.74) w = 4c�2�+{1�

4c�2�+3{1�

k = 0; S = const, cf. eq. (3.75) w = 1

k = 0; S from eq. (3.75) w =
4c�2�+{21�

4c�2�+3{21�

w = �2S2{3�1
�2S2{3�3 , � arbitrary k 6= 0; S from eq. (3.74) {3 = �4 c�

{1�

k = 0; S = const, cf. eq. (3.75) c = 0

k = 0; S from eq. (3.75) {3 = �4 c�
{21�

Thus, w has to be a constant which can be determined from the remaining �eld equations
after choosing the branch of S from equations (3.74)-(3.75). The additional parameter
constraints for this branch of the model are displayed in the �rst part of table 3.4. It
turns out that the parameter w, which controls the equation of state, is restricted by
the choice of a certain set of constants in our theory, cf. the rhs in the �rst part of table
3.4.

3.5.3 Summary

Let us pause here for a moment in order to recall what we have accomplished so far.
Starting from the new Lagrangian in (3.3) we successively derived the general form of
the �eld equations in section 3.2. In section 3.3 we worked out a rather complicated
set of �eld equations for a speci�c ansatz for the Weyl 1-form (3.29). In section 3.4 we
switched to a time dependent ansatz for the Weyl 1-form which yields a set of coupled
ordinary di�erential equations, reminiscent of the Friedmann equations, cf. section 1.2.
With these equations at hand we were able to generate a rather broad class of exact
solutions, which allow for a exible equation of state. The resulting constraints on
the parameters within our model are collected in tables 3.2{3.4. There seem to be no
reasonable solutions in case of a non-vanishing induced cosmological constant �. Of
course this statement is only correct as long as one does not allow for strong restrictions
on the Lagrangian level. We focus on the solutions with vanishing � in the following.

In �gure 3.1 we plotted the scale factor for all three possible values of k and for
di�erent values of the parameter {1. As becomes clear from the plot at the lower rhs,
we have three qualitatively di�erent solutions depending on the value of k. As in the
Friedmann case the collapsing scenario corresponds to a universe with positive spatial
curvature. In �gure 3.2 we plotted the function Q for the solution (3.70). This plot
shows that it is possible to construct models in which Q vanishes at late stages of the
universe. Thus, the non-Riemannian quantities die out with time in such a scenario.
This is a rather desirable feature, one would expect that the spacetime we are living in
nowadays is a Riemannian one. From an observational point of view this seems to be
true on local scales; at least all experiments carried out so far point to this direction



3.5. SOLUTIONS 75

[27, 28]. One possible exception is given by the recently observed anomalous acceleration
of the Pioneer spacecraft [159, 160]. Although we do not investigate this e�ect here,
we remind the reader that our model allows for both, Riemannian and non-Riemannian
features. If there is evidence for non-Riemannian structures at the present time, and
especially on local scales, we can implement this fact by modifying our ansatz in (3.29)
and (3.45), respectively.

In comparison to the usual FLRW model we still have three distinct cases for the
evolution of the scale factor, corresponding to the three di�erent choices of k. Since one
of our �eld equations (3.68) is very similar to the Friedmann equation we obtain the same
root type behavior for the scale factor as displayed in �gure 3.1. As becomes clear from
equation (3.63) an induced cosmological constant would lead to inationary solutions. In
contrast to our old model [68] we were not able to �nd meaningful parameter constraints
for this branch of the model. This drawback might be relaxed if one switches to another
ansatz for the Weyl 1-form Q. Most interestingly the non-Riemannian quantities lead
to a contribution to the total energy density of the universe as shown in (3.65). Thus,
the scaling behavior of the energy density is no longer determined by the evolution
of the scale factor alone. Instead, it additionally depends on our ansatz for the Weyl
1-form. We are going to exploit this fact in the following sections in which we derive
the magnitude-redshift relation. One should also keep in mind that an ansatz with a
position dependent Weyl 1-form might serve as an interesting source of the observed
inhomogeneities in the microwave background.

Recently there has been much interest in exotic equations of state in the literature
[108]-[119]. The equations of state considered in most of these works can be summarized
under the name uni�ed dark matter models (UDM), since they aim for a description
of the dark matter and dark energy by using a single uid. Such a uid changes its
character during the evolution of the universe, i.e. from a behavior similar to pressureless
matter to a cosmological constant like behavior and vice versa. A model which recently
has received much attention is the so-called Chaplygin gas, which has the equation of
state p = �A��; where A and � are constants. Such an equation of state was already
considered much earlier, cf. [107]. However, the availability of the supernova data and
the connection with some higher dimensional cosmological models [113] led to a renewed
interest in such an ansatz. Note that our ansatz in (3.71) also allows for Chaplygin like
equations of state. Nevertheless our model encompasses suÆciently many parameters.
Therefore we focus on the solutions found in sections 3.5.1 and 3.5.2 in the following.
Note that there also arose some criticism concerning Chaplygin gas models with respect
to the generation of oscillations in the matter power spectrum [119]. The main objection
is that the allowed parameter space of Chaplygin gas scenarios, when compared to the
results of the 2dF galaxy redshift survey [76], is con�ned to a region in which the models
are virtually equal to the usual FLRW model.
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3.6 Magnitude-redshift relation

In this section we derive the magnitude-redshift relation. Therefore we make use of
the �eld equations (3.57)-(3.58), (3.61)-(3.62), and the relation between energy-density
and pressure (3.60). In sections 1.4.1{1.4.2 we characterized the dependence of the
magnitude-redshift relation on the �eld equations. Since we also made use of the
Robertson-Walker metric in our new model we are allowed to use relation (1.38). Hence,
our next aim is to express the Hubble rate in terms of the density parameters. From
equation (3.58) we infer

H2 = ��
�S

S
� k

S2
: (3.77)
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In order to eliminate the second order term we make use of equation (3.57). Substituting
the solution for �S=S from this equation into (3.77) leads to

H2 =
(�2S2 � 2�k) � (a4 + a6)� �k + �S2pr � 4�c�2

(2�� (a4 + a6) + �)S2
(3.78)

=
H2

0

(2�� (a4 + a6) + �)

(
� (a4 + a6)

"
�2

H2
0

� 2�k

H2
0S

2
0

�
S0
S

�2
#

� �k

H2
0S

2
0

�
S0
S

�2

+
�pr
H2

0

� 4�c�2

H2
0S

2
0

�
S0
S

�2
)

(3.79)

(1:35)
=

H2
0

(2�� (a4 + a6) + �)

�
� (a4 + a6)

�
H2

0

2
�0 � 2�
k0 (1 + z)2

�
��
k0 (1 + z)2 +

kpr
H2

0

� 4�c�2

H2
0S

2
0

(1 + z)2
�
: (3.80)

Here we introduced the density parameters 
k :=
k

H2S2
and 
� := �

H2 . Subsequently, we
have to choose an equation of state and an appropriate ansatz for �: We choose p = w�
with w =const, cf. eq. (3.64), and use the solution for � obtained in equation (3.65),
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i.e. � = � 8c
1�3w

�
�
S

�2
:

H2 =
H2

0

(2�� (a4 + a6) + �)

�
� (a4 + a6)

�
H2

0

2
�0 � 2�
k0 (1 + z)2

�
��
k0 (1 + z)2 � 4�c�2

H2
0S

2
0

�
1� w
1� 3w

�
(1 + z)2

�
: (3.81)

Using the solution for � from equation (3.70), i.e. � = �=S with � =const, we have

H2 =
H2

0

(2�H2
0
�0 (a4 + a6) + �)

�
� (a4 + a6)

�
H2

0

2
�0 � 2H2

0
�0
k0 (1 + z)2
�

��
k0 (1 + z)2 � 4
�0 (1 + z)4
�
1� w
1 + 3w

��
; (3.82)

here we introduced the new density parameter 
�0 :=
�c�2

H2S4
in the last equation. This

density parameter clearly dominates at high redshifts due to its � z4 scaling behavior,
cf. the last term in (3.82).

Special case For a vanishing induced cosmological constant � = 0, equation (3.82)
turns into

H2 =
H2

0

�

�
4 (1 + z)4
�0

�
w � 1

1� 3w

�
� �
k0 (1 + z)2

�
: (3.83)

If we substitute this expression into equation (1.38) we can derive the luminosity distance
analogously to (1.48), i.e.

dluminosity (z;H0;
k0;
�0; �; w) =
(1 + z)

H0

pj
k0j �
"s
j
k0j
�

Z z

0

G [~z] d~z

#
: (3.84)

Here G [~z] :=
�
4 (1 + ~z)4
�0

�
w�1
1�3w

�� �
k0 (1 + ~z)2
�� 1

2 , and � is de�ned as in eq. (1.49).
Hence the magnitude-redshift relation, cf. eq. (1.61), is given by

m(z;H0;
�0;
k0; w;M; �) = M+ 5 log fH0 dluminosity(z;H0;
�0;
k0; �; w)g

= M+ 5 log

(
(1 + z)p
j
k0j

�

"s
j
k0j
�

Z z

0

G [~z] d~z

#)
:

(3.85)

In contrast to the FLRW model, see eq. (1.36), there is no simple relation between the
density parameters. Therefore, we cannot eliminate the density parameter 
k in the
equation for the magnitude. In case of a at model, equation (3.85) reduces to

m(z;
�0; w;M; �) =M+5 log

(
(1 + z)

�

"Z z

0

�
4 (1 + ~z)4
�0

�
w � 1

1� 3w

��� 1
2

d~z

#)
:

(3.86)
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Table 3.5: SN Ia data sets.
Symbol Number of SN Reference Comments

I 18 p. 571, [127, 121] Cal�an/Tololo survey

II 42 p. 570, [121] Supernova Cosmology Project

III 10 p. 1021, [126] High-z Supernova Search Team

IV 10 p. 1020, [126] Same as III but MLCS method

V 1 [125] Farthest SN Ia observed to date

VI 27 p. 1035, [126] Low-redshift MLCS/template

3.7 Numerical results

In this section we present the numerical results obtained by �tting the magnitude-
redshift relations (1.51) and (3.85) to a SN Ia data set. We start with a collection of the
available data sets. Parts and combinations of these sets were used by di�erent groups
to determine the cosmological parameters.

3.7.1 Data sets

In table 3.5 we collected the number of supernovae and the references which contain
the actual data. These data sets are not directly comparable. Perlmutter et al. [121]
provide the e�ective magnitude me�

B in the B band, while Riess et al. [126] use the so-
called distance modulus4 �. As shown by Wang [137] it is possible to �nd a relation
between these two data sets by comparing a sample of 18 supernovae published by both
groups. The de�nition of the magnitude given in equation (1.61) is compatible with the
de�nition used by Perlmutter et al., and related to the de�nition of Riess et al. via

m =M + � =M + 5 log dluminosity + 25 =M+ 5 logH0dluminosity: (3.87)

As shown in [137] we have to choose M = �19:33 � 0:25 in order to transform the
di�erent data sets into each other. This numerical value is obtained from the data
points which were measured by the MLCS method of Riess et al., cf. IV in table 3.5.
Note that there is an ongoing discussion about the applicability of certain measurement
methods and the resulting data sets, cf. [140] e.g. Since these experimental questions lie
beyond the scope of this work we have to rely on the data sets provided by the experts
in this �eld. In the following we make use of the data set of Wang which contains 92
data points. This set represents a compilation of the sets I, II, IV, and VI, cf. table 3.5,
from which some outliers were removed. The complete data set is displayed in table E.1
on page 145.

4Not to be confused with the energy-density in the �eld equations.
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Table 3.6: Grids used for minimization.
Parameters [Interval, Stepsize]

f
m0;
�0g f[�2 : : : 4; 0:01]; [�2 : : : 4; 0:01]g
f
k0;
�0; �; wg f[�2 : : : 4; 0:01]; [�1 : : : 1; 0:01]; 1; [�1 : : :0; 0:1]g

3.7.2 Fitting method

Since we aim for results comparable to the analysis of the combined data set by Wang
[137], we are going to minimize [35, 36, 37]5

�2 :=
92X
i=1

h
�theoryi (zi j parameters)� �measured

i

i2
�2� i + �2mz i

; (3.88)

in order to obtain the best-�t parameters within the FLRW and the Weyl-Cartan model.
Here �theoryi denotes the distance modulus at a certain redshift zi as de�ned in (3.87). It
can be calculated for a speci�c choice of the parameters entering the magnitude-redshift
relation, cf. eqs. (1.51) and (3.85). The error of the measured distance modulus �measured

i

is given by �� i. The dispersion in the distance modulus �mz due to the dispersion in
the galaxy redshift, �z, can be calculated iteratively from

�mz :=
5

ln 10

�
1

dluminosity

@dluminosity

@z

�
�z (3.89)

according to Wang, cf. equation (13) of [137]. In order to determine the minima of (3.88)
we perform a brute force calculation on the grids listed in table 3.6.

Note that there is an ongoing discussion about the appropriate �tting method in the
literature, cf. [136] e.g. Although the above �tting method might appear simple in the
eyes of most experimentalists, we subscribe to the point of view that any result which
cannot be revealed by a simple analysis of the data is inherently suspicious.

3.7.3 Best-�t parameters

In table 3.7 and table 3.8 we collected the best-�t parameters obtained by the method
described in the previous section. It should be remarked that we did not impose any
constraints on our parameters, like spatial atness, e.g., when performing our search. In
�gure 3.3 and �gure 3.4 we plotted the corresponding distance modulus versus redshift
relation together with the data set of Wang from appendix E.4. The �2-distributions
displayed in �gure 3.3 and �gure 3.4 correspond to the plane encompassing the best-�t
parameters found on our grid, i.e. F13 for the FLRW model and C2 for the Weyl-Cartan
model. In both �gures the 95:4% con�dence level corresponds to the outer boundary

5Not to be confused with the coupling constant � in the �eld equations.
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of the ellipse. In table 3.9 and table 3.10 we collected the results of several other
groups who performed a similar analysis within the FLRW as well as in non-standard
scenarios. These collections are by no means exhaustive, therefore we apologize for not
having mentioned all the works which are devoted to this subject.
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Figure 3.3: �2-distribution in the (
m0;
�0) plane and magnitude-redshift relation in
case of the standard model. On the top lhs the �2-distribution in the H0 = 65 plane is
shown which also contains the best-�t parameter set F13. On the top rhs we plotted
the distance modulus versus the redshift for the best-�t parameter set. The green dots
correspond to the experimental data for 92 type Ia SNe as contained in the data set of
Wang. In the two other �gures we plotted the distance modulus versus the redshift for
the other parameter sets in table 3.7. FRIDOLIN6, figure@1
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Table 3.7: Best-�t parameters (FLRW model). [H0] = km s�1Mpc�1.
Symbol H0 
m0 
�0 �2 �2� q0

F1 50 0.45 -2.00 401.04 4.50 2.22

F2 54 -0.60 -2.00 256.81 2.88 1.70

F3 55 -0.81 -2.00 230.86 2.59 1.59

F4 56 -1.00 -2.00 208.73 2.34 1.50

F5 57 -1.18 -2.00 190.31 2.13 1.41

F6 58 -1.34 -2.00 175.50 1.97 1.33

F7 59 -2.00 -2.00 188.04 2.11 1.00

F8 60 -1.15 -1.49 155.83 1.75 0.91

F9 61 -0.64 -0.79 148.80 1.67 0.47

F10 62 -1.14 -1.21 145.58 1.63 0.64

F11 63 1.02 1.29 142.53 1.60 -0.78

F12 64 3.10 3.35 233.03 2.61 -1.80

F13 65 0.63 1.10 134.54 1.51 -0.78

F14 66 0.80 1.40 134.91 1.51 -1.00

F15 67 0.92 1.63 137.02 1.53 -1.17

F16 68 0.99 1.80 140.98 1.58 -1.30

F17 69 1.04 1.94 146.84 1.64 -1.42

F18 70 1.07 2.05 154.66 1.73 -1.51

F19 72 1.06 2.17 176.32 1.98 -1.64

F20 73 1.04 2.20 190.23 2.13 -1.68

F21 74 1.02 2.23 206.18 2.31 -1.72

F22 75 0.98 2.23 224.21 2.51 -1.74

F23 76 0.95 2.24 244.30 2.74 -1.76

F24 77 0.91 2.23 266.47 2.99 -1.77

F25 78 0.87 2.22 290.71 3.26 -1.78

F26 79 3.05 3.68 733.20 8.23 -2.15

F27 80 0.13 1.45 374.68 4.20 -1.38
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Table 3.8: Best-�t parameters (Weyl-Cartan model). [H0] = km s�1Mpc�1.
Symbol H0 
k0 
�0 � w �2 �2� q0

C1 65 -1.07 0.05 1.00 -0.80 138.034 1.56 -0.109

C2 66 -1.03 0.05 1.00 -0.90 138.028 1.56 -0.110

C3 67 -1.01 0.03 1.00 -0.10 138.034 1.56 -0.111

C4 69 -0.95 0.04 1.00 -0.60 138.056 1.56 -0.106

C5 70 -0.92 0.04 1.00 -0.70 138.034 1.56 -0.105

C6 71 -0.90 0.03 1.00 -0.20 138.031 1.56 -0.111

C7 74 -0.83 0.04 1.00 -0.80 138.039 1.56 -0.113

C8 80 -0.71 0.03 1.00 -0.50 138.035 1.56 -0.112
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Figure 3.4: �2-distribution in the (
k0;
�0) plane and magnitude-redshift relation in
case of the Weyl-Cartan model. On the lhs the �2-distribution in the H0 = 66 plane is
shown, which contains the best-�t parameter set C2. On the rhs we plotted the distance
modulus versus the redshift for all parameter sets from table 3.8. Since all of these sets
�t the data very well the eight di�erent curves appear as a single line at the selected
resolution. FRIDOLIN4,figure@2

3.8 Summary

Fitting results

As we have shown in the previous section it is possible to describe the observational data
within both models. It is noteworthy that, without any additional constraints, a closed
FLRW model is favored by the data, as can be read o� from the best-�t parameters
F13 in table 3.7. In contrast, the best-�t solution within the Weyl-Cartan model, i.e.
set C2 in table 3.8, corresponds to an open universe. For the FLRW model our results
comply with the ones found by Wang in [137]. If one imposes the condition of spatial
atness, the best-�t parameters are given by (F28, 65, 0.29, 0.71, 135.26, 1.51, -0.56)
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Table 3.9: Best-�t parameters other groups (FLRW model).

Symbol Ref. Best-�t parameters Comment

S1 [124] f
m0 = �0:2; 
�0 = 0g
S2 [124] f
m0 = 0:4; 
�0 = 0:6g
P1 [121] f
m0 = 0:28; 
�0 = 0:72g
R1 [126] f
m0 = 0:24; 
�0 = 0:72g MLCS

R2 [126] f
m0 = 0:2; 
�0 = 0:8g Template

G1 [134] f
m0 = �0:1; 
�0 = 0g
G2 [134] f
m0 = 0:4; 
�0 = 0:6g MLCS

G3 [134] f
m0 = 0:3; 
�0 = 0:7g Template

V1 [130] f
m0 = 0:28; 
�0 = 0:72;M = 23:94g
V2 [130] f
m0 = 0:79; 
�0 = 1:41;M = 23:91g
V15 [129] f
m0 = 0:33; 
�0 = 0g 1997� included

W1 [137] fH0 = 65;
m0 = 0:7;
�0 = 1:2g Combined data set

[H0] = km s�1Mpc�1. FRIDOLIN7,tabelle@6

within in the FLRW model, and (C9, 69, 0, -0.28, 1, -0.5, 292.821, 3.32, 1) within the
Weyl-Cartan model6. Hence, as soon as we assume that the universe is at we are
not able to �nd parameters which �t the data within our new model, in contrast to
the FLRW model where the assumption of spatial atness worsens the �t only slightly.
Therefore we conclude that our model does not support a at universe, at least not
within the parameter intervals we considered here, cf. table 3.6. Note that the �t F28 is
compatible with the current cosmological concordance model which encompasses about
30% of matter and a dark energy contribution of about 70%.

Deceleration factor

The Hubble rate (3.83) enables us to derive the deceleration parameter within the Weyl-
Cartan model. With the help of (1.59) we �nd

q =
4
�0 (w � 1) (1 + z)2

4
�0 (w � 1) (1 + z)2 + �
k0 (3w � 1)
: (3.90)

Therefore the best-�t sets F13 and C2, together with (1.58) and (3.90), predict a universe
which presently undergoes an accelerating phase of expansion. In case of the Weyl-
Cartan model the current value of the deceleration parameter is roughly seven times
smaller than in the FLRW case. Figure 3.6 provides an overview of the sign of the
deceleration factor in the FLRW and in the Weyl-Cartan model. In case of the latter we

6Here we use the same notation as in table 3.7 and table 3.8.
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Table 3.10: Best-�t parameters other groups (non-standard models).

Symbol Ref. Best-�t parameters Comment

B1 [135] f
m0 = 0:3; 
Rigid0 = 0:7g Conformal model

V3 [130] f
m0 = 0:49; 
�0 = 0:51;M = 23:97g � � S�2

V4 [130] f
m0 = 1:86; 
�0 = 1:52;M = 23:95g � � S�2

V5 [130] f
m0 = 0:4; 
�0 = 0:6;M = 23:96g � � H2

V6 [130] f
m0 = 0:98; 
�0 = 1:53;M = 23:91g � � H2

V7 [130] f
m0 = 0:4; 
�0 = 0:6;M = 23:96g � � �

V8 [130] f
m0 = 1:62; 
�0 = 1:59;M = 23:93g � � �

V9 [128] f
m0 = 0:54; 
�0 = 0:46;M = 24:03g Variable �

V10 [128] f
m0 = 1:76; 
�0 = 1:34;M = 24:03g Variable �

V11 [129] f
m0 = 0:79; 
�0 = 1:41; w� = �1g Quintessence model

V12 [129] f
m0 = 0:65; 
�0 = 1:22; w� = �1g Quintess. model +1997�

V13 [129] f
m0 = 0:52; 
�0 = 0:48g � � H2 +1997�

V14 [129] f
m0 = 0:6; 
�0 = 0:4g � � S�2 +1997�

V16 [129] f
�0 = �0:358; zmax = 5g QSSC model

M1 [116] f
�M0 = 0:26; � = 0:43, H0 = 72g Chaplygin gas

T1 [139] fz1 = 0:08; HII
0 =H

I
0 = 0:87;
I0 = 0:3; Model with local void

HI
0 = 64;
II0 = 0:6; �II0 = 0:3g

[H0] = km s�1Mpc�1. FRIDOLIN8,tabelle@7

plotted the distribution in the parameter plane which contains the best-�t C2. Another
interesting conclusion can be drawn from the contour lines of the deceleration factor.
As displayed in the plot on the top lhs of �gure 3.5 the contour lines for a constant
deceleration factor within the (
m0;
�0) parameter plane of the FLRWmodel are nearly
perpendicular to the ones for constant 
k0. Hence, if we assume that we can measure 
k0
via an independent cosmological test, by studying the uctuations of the CMB [11, 21,
163, 164], e.g., then we are able to pin down the pair (
m0;
�0) via the intersection of the
con�dence intervals. The situation within the new model is similar that in the FLRW
case, i.e. the curves for constant q0 and 
k0 intersect each other at a non-zero angle.
Figure 3.5 contains plots for �ve di�erent choices of the equation of state parameter w.
As we can see from the plot at the bottom lhs only the choice w = 1 corresponds to
a degenerated situation. In this case the deceleration parameter vanishes according to
(3.90).
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Figure 3.5: Contour lines of the deceleration parameter q0 and the density parameter

k0 in the (
m0,
�0) and (
�0,
k0) plane, respectively. The �gure on the top left
corresponds to the standard model which contains only ordinary matter with w = 0
and a contribution from the cosmological constant. The other �gures belong to the
Weyl-Cartan model in case of di�erent choices of the equation of state parameter w and
a vanishing induced cosmological constant. Note that in case of w = 1 the whole red
grid belongs to q0 = 0. Since the analysis of the CMB data yields 
k0 and the supernova
data put a constraint on q0. EGON4,EXTWEYL@contours@fig
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Other groups

As we have shown in sections 1.4.2 and 3.6, the magnitude-redshift relation depends on
several assumptions. Especially its strong dependence on the underlying �eld equations
renders it a useful tool to discriminate between di�erent cosmological models. In tables
3.9 and 3.10 we collected the results of several other groups who used this relation within
the FLRW as well as in non-standard models. It becomes clear from table 3.9 that in
addition to the model dependence of the magnitude-redshift relation, the estimates for
the cosmological parameters strongly depend on the data set used for �tting. Especially
some of the early best-�t parameter sets, cf. S1 and G1 in table 3.9, e.g., correspond to
unphysical models. The situation for the non-standard models listed in 3.10 is similar.
As one infers from this table the parameters strongly depend on the underlying model
and data set. Although it seems to be possible to describe the supernova data equally
well within several of these scenarios, the main bene�t of the cosmological standard
model consists in its simplicity and its �t quality. Additionally, only a small number of
cosmological tests have been worked out for all of the alternative models. Any serious
competitor model has to pass the same cosmological tests as the FLRW model, cf.
[93, 94, 95, 96, 100, 101, 102, 103]. It is noteworthy that nearly all groups come to the
same result that a non-vanishing cosmological constant is inevitable for the description
of the supernova data within the FLRW model. This conclusion is supported by our
own results displayed in table 3.7.

Outlook

Let us sum up and present an outlook before we investigate an interesting subcase of
our model in the next section. In �gure 3.7 we plotted the distance modulus versus the
redshift up to z = 2. The upper curve on the lhs corresponds to the best-�t C2 within
the Weyl-Cartan model, the other curves belong to the FLRW model. We infer that the
supernovae at high redshift will appear dimmer within our model than in the FLRW
case. The data point at z = 1:7 corresponds to the farthest known supernova 1997�
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reported by Riess et al. in [125]. Despite its poor statistical signi�cance this supernova
seems to favor the best-�t FLRW model F13. Due to the large uncertainties we did not
include 1997� in our �tting procedure. Even the best-�t at model F28 seems not to
�t the data of 1997�. A possible magni�cation of 1997� by gravitational lensing was
discussed by M�ortsell et al. in [148]. It is too early to make a de�nite statement at this
point, one has to wait until more data at high redshift becomes available. As we can see
from the rhs in �gure 3.7, a survey at high redshifts, like SNAP [152, 153] e.g., should
enable us to discriminate between the models C2 and F13.

In addition to the magni�cation due to gravitational lensing there is also an ongoing
discussion about a possible dimming of the type Ia SNe via photon-axion oscillations,
cf. [144]-[147]. Although such a mixing does not remove the need for a dark energy
component it could in principle relax the bound on the equation of state of such a
component, which has to be very close to the one of the cosmological constant in the
standard model [131, 133, 138, 142].

One should clearly stress that our present model cannot be thought of as a serious
competitor of the FLRW model, at least not for late stages of the universe. Of course
the main objection is related to the material content, which is just a single component
uid with an equation of state similar to that of a cosmological constant. Another
objection is connected with the fact that our model is limited to a speci�c redshift
interval for certain parameter combinations. This becomes clear if one substitutes the
best-�t parameters from table 3.8 into the expression for the expansion rate into equation
(3.83). Since there seem to be no parameters which yield a positive expansion rate even
at intermediate redshifts one has to replace the model, or at least the simple equation
of state, guaranteeing compatibility with observations. Since this is not desirable we
investigate a promising modi�cation of the model in the next section.
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between both models grows with the redshift. FRIDOLIN5,figure@4
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3.9 Alternative approach

In the following we constrain our model to a certain parameter choice in the Lagrangian
(3.3) right from the beginning. As becomes clear from the set of �eld equations, cf. also
appendix E.2, the choice a4 = �a6 leads to a very simple set of equations. Equation
(3.49) is identically ful�lled and the rest of the �eld equations becomes equivalent to
eqs. (1.13)-(1.14). The �eld equations are now given by 

_S

S

!2

+
k

S2
=

�

3�

 
�� 4c

�
�

S

�2
!
; (3.91)

2
�S

S
+

 
_S

S

!2

+
k

S2
= ��

�

 
p� 4c

�
�

S

�2
!
: (3.92)

These are the ordinary Friedmann equations with an additional contribution to the
energy density on the rhs. The only change is due to the Noether identity, cf. eq. (3.50),
which is now given by

d

dt

�
�S4 � 8c (S�)2

�
+ 4cS2d�

2

dt
=

1

4

dS4

dt
(�� 3p) : (3.93)

We assume that the equation of state is of the form p = w� and the scaling behavior of
the energy density is the same as in the FLRW case, i.e. � � S�3(1+w). With this ansatz
equation (3.93) has two solutions

� � 0, and � =
�

S2
: (3.94)

The �rst solution leads to the standard FLRW scenario with vanishing cosmological
constant. The second solution is of greater interest since it leads to the Weyl 1-form

Q =
�

S3
dt; (3.95)

which tends to zero as the universe expands. Note the change in the scaling behavior of
� in contrast to the solution for a4 6= �a6:

Magnitude-redshift relation

The �eld equations in (3.91) and (3.92) are the usual Friedmann equations with an
additional contribution to the energy and pressure from the dilation current. Because
of this similarity we apply the procedure outlined in section 1.4 in order to derive the
magnitude-redshift relation for this model. Substituting the solution for � into the �eld
equations (3.91), (3.92), and de�ning & := �4�c

3�
we have

H2 +
k

S2
=

�

3�
�+ &

�2

S6
) 
k + 
w + 
� = 1: (3.96)
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Here we introduced the usual density parameters 
k = � k
H2S2

, 
w := �
3�H2�; and


� := & �2

S6H2 . In contrast to the model with a4 6= �a6 presented in section 3.4, we now
have a simple relation between the density parameters, similar to the FLRW model, cf.
equation (1.36). The Hubble rate is given in terms of the density parameters

H2 =
�

3�
�� k

S2
+ &

�2

S6

= H2
0

h

w0 (1 + z)3(1+w) + 
k0 (1 + z)2 + 
�0 (1 + z)6

i
(3:96)
= H2

0 (1 + z)2
�

w0

�
(1 + z)1+3w � 1

�
+ 
�0

�
(1 + z)4 � 1

�
+ 1
	
: (3.97)

The luminosity distance becomes

dluminosity = S0 (1 + z) �

�
(H0S0)

�1
Z z

0

F [~z] d~z

�
; (3.98)

with F [~z] := (1 + ~z)�1
�

w0

�
(1 + ~z)1+3w � 1

�
+ 
�0

�
(1 + ~z)4 � 1

�
+ 1
	� 1

2 and the func-
tion �[x] as de�ned in eq. (1.49). We end up with

dluminosity (z;H0;
w0;
�0; w)

=
(1 + z)

H0

pj1� 
w0 � 
�0j
�

�q
j1� 
w0 � 
�0j

Z z

0

F [~z] d~z

�
: (3.99)

The magnitude-redshift relation is given by the usual expression, i.e.

m (z;H0;
w0;
�0; w;M) =M + 5 log dluminosity (z;H0;
w0;
�0; w) + 25: (3.100)

Deceleration parameter

One can easily calculate the deceleration parameter (1.59) for this model from (3.97).
In case of a model which contains only ordinary matter with w = 0 and the additional
contribution from � the deceleration parameter becomes

q =

m0 (1 + z) + 4
�0 (1 + 4)4

2
�

�0

�
(1 + z)4 � 1

�
+ 
m0z + 1

� : (3.101)

Fitting method and results

Let us perform a �2-minimization as described in section 3.7.2. In order to speed up the
determination of the best-�t parameters of (3.100) we made use of the downhill simplex
method of Nelder and Mead [35, 40]. A test of our implementation of this method
can be found in appendix D. The con�dence contours for this model are displayed
on the upper lhs in �gure 3.10 for a �xed value of H0. In �gure 3.8 we plotted the
magnitude-redshift relation and the function (H=H0)

2 for the two best-�t models X1
and X2 from table 3.11. Note that both sets lead to a model which currently undergoes
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an accelerating phase of expansion. The overall best-�t model X1 is clearly unphysical
due to its negative value for 
m0. If we allow only for positive values of 
m0 we arrive
at the model X2, which slightly worsens the �t but still lies within the 95.4% con�dence
limit. As becomes clear from the plot on the lower rhs in �gure 3.8, the model X2 is only
valid up to a redshift of approximately zmax � 1:54: Since this limit is in disagreement
with the direct observation of high-redshifted objects, one has to discard the model.
We conclude that the SN Ia data seem to exclude a simple model which encompasses
only ordinary matter 
m0 and an additional contribution from the dilation current in
form of 
�0. This statement is only valid for the ansatz (3.45) for the Weyl 1-form,
because this assumption leads to the z6 scaling behavior of the 
�0 term in the equation
for the expansion rate (3.97). In order to describe the data one could introduce the
usual cosmological constant, which we did not include in our Lagrangian (3.3). The
introduction of this constant would result in an additional term in the expansion rate
which redshifts with z2. We will learn more about this possibility in section 3.10.2.
In the following we shortly present two non-Riemannian cosmological models, which
were proposed independently by two di�erent groups. These models will turn out to be
compatible with our one.
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2 for the overall best-�t X1 from table 3.11. In the lower row we displayed � and
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2 for the best-�t with positive 
m0, i.e. X2 from table 3.11. As becomes clear from
the picture at the lower rhs the maximum redshift for the model X2 is approximately
given by zmax � 1:54. FIG@muz@alt,KARL6



92 CHAPTER 3. COSMOLOGY IN ALTERNATIVE GRAVITY THEORIES

Table 3.11: Best-�t parameters for the Weyl-Cartan model with a4 = �a6. [H0] =
km s�1Mpc�1. KARL7,TABLE@triplet@best@zero

Symbol H0 
m0 
�0 �2 �2� q0

X1 65.07 -3.405 0.548 134.45 1.51 -0.606

X2 63.26 0.008 -0.024 139.04 1.56 -0.044

3.10 Other models

3.10.1 Triplet model of Obukhov et al.

In [74] Obukhov et al. considered a cosmological model within the triplet regime of
MAG, cf. section 2.3. In contrast to the vacuum case, which in general leads to the �eld
equations displayed in (2.20)-(2.21), they considered a dilation hyperuid model with
vanishing spin-current. In addition, only a constrained version of the Lagrangian (2.15)
was investigated, where7

� = 1; � = 0; a1; : : : ; a3 = 0; b1;2;3;5 = 0; c2; : : : ; c4 = 0: (3.102)

Using the usual Robertson-Walker line element, cf. eq. (1.3), the set of �eld equations,
cf. eqs. (9.8) and (9.9) in [74], is given by 

_S

S

!2

+
k

S2
=

�
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�
�+

�

48a0

�
1� 3a0
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 2

S6

�
; (3.103)
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�
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�
 2

S6

�
: (3.104)

Here a0 and b4 are the coupling constants of the triplet Lagrangian in (2.15) and  
denotes an integration constant which enters the Weyl 1-form8

Q = �� 
8b4

S�3dt: (3.105)

De�ning a new constant � := �2

144a0

�
1� 3a0

b4

�
we rewrite (3.103) according to

1 +
k

S2H2
=

�

3H2
�+ �

 2

H2S6
) 
k + 
w + 
 = 1: (3.106)

Here we introduced the density parameters 
k := � k
H2S2

, 
w := �
3H2�, 
 := �  2

H2S6
in

the last step. Note that the coupling constants in this model and the ones introduced
7Note that also in this model the usual cosmological constant is set to zero.
8Be aware that we changed some of the variable names from [74] in order to avoid confusion with

our notation.
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in section 3.9 have di�erent dimensions. Hence this model yields the same luminosity
distance and magnitude-redshift relation as our Weyl-Cartan model from section 3.9.
This is an interesting result since we derived exactly the same �eld equation from a very
di�erent approach. Of course all the numerical results from section 3.9 are also valid for
this model.

3.10.2 Weyl-Cartan model of Babourova et al.

Additionally, one can show that the �eld equations of the models discussed in the pre-
vious sections 3.9 and 3.10.1 are equivalent to the �eld equations recently found by
Babuorova and Frolov in [72]. One can simply transform their �eld equation (7.1) into
equation (3.103), by means of the following substitutions9:

a! S; " = "a
�3(1+) ! �; "v ! 0; �! �;  ! w;

�

4�2m4
! 3a0 � b4

48a0b4
; JN !  : (3.107)

Hence the results found in the previous sections are also valid for this model and place
a quantitative limit on the model parameters. The solution for the Weyl 1-form is the
same as in (3.105). Using the notation from (3.107), it is given by Q = � �

2�m2
JN
a3
dt. The

choice "v = 0 corresponds to a vanishing cosmological constant like in equation (3.103).
Babourova and Frolov explicitly allow for a cosmological constant. This corresponds to
an additional term ��=3 on the lhs of (3.103). Of course, such a term would alter the
result for the magnitude-redshift relation. De�ning the density parameter 
� :=

�
3H2 as

usual, the relation between the density parameters turns into 
k + 
w + 
 + 
� = 1.
Subsequently, equation (3.97) yields

H2 = H2
0 (1 + z)2

�

w0

�
(1 + z)1+3w � 1

�
+ 
 0

�
(1 + z)4 � 1

�
+ 
�0

�
(1 + z)�2 � 1

�
+ 1
	
;

(3.108)

and the luminosity distance becomes

dluminosity (z;H0;
w0;
 0;
�0; w)

=
(1 + z)

H0

pj1� 
w0 � 
 0 � 
�0j
�

�q
j1� 
w0 � 
 0 � 
�0j

Z z

0

F [~z] d~z

�
:

(3.109)

Here F [~z] := H=H0 with the H from equation (3.108). For ordinary matter with w = 0
the deceleration parameter is given by

q =

m (1 + z)3 + 4
 (1 + z)6 � 2
�

2
mz (1 + z)2 + 2 (1 + z)2 � 2
�z (2 + z) + 2
 z
P5

i=2 (1 + z)i
: (3.110)

In case the cosmological constant vanishes this result is compatible with (3.101). Hence
we end up with three equivalent models which were all derived independently by di�erent
authors.

9Note that �; �; and m are related to the coupling constants in the Lagrangian of Babourova et al.,
cf. eqs. (5.17) and (6.8) in [72].
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3.10.3 Numerical results

Table 3.12 summarizes the best-�ts found by us for a model which encompasses contri-
butions from ordinary matter 
m0, the triplet �eld 
 0, and an additional cosmological
constant 
�0. The overall best-�t L2 has a very low limiting redshift as depicted in
�gure 3.9. If we con�ne ourselves to positive values of 
 0 we arrive at the �t L1 which
has only a slightly higher �2 than L2. Note that the density parameters for ordinary
matter and the cosmological constant are very close to their values within the best-�t
F13 for the FLRW model from table 3.7. Also in this model the universe is presently
undergoing an accelerated phase of expansion with a deceleration factor which is of the
same order of magnitude as in the FLRW case. In �gure 3.10 we plotted the con�dence
regions for di�erent parameter plane slices containing the L1 �t. The contours on the
upper and lower rhs of �gure 3.10 allow us to place an upper bound on the density
parameter of the triplet �eld, i.e. 
 0 < 0:16.
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Figure 3.9: In the upper row we plotted the distance modulus � and the expansion rate
(H=H0)

2 for the best-�t with positive density parameters, i.e. L1 from table 3.12. In
the lower row we displayed � and (H=H0)

2 for the overall best-�t L2. As becomes clear
from the picture at the lower rhs the maximum redshift for the model L2 is approxi-
mately given by zmax � 0:97. Hence this model can be clearly excluded from further
considerations. FIG@muz@alt@lambda,KARL8

The �t L1 leads to an age of the universe of about 13:2 Gyrs. This is slightly lower
than the age of the universe in the FLRW model, which predicts 13.8 Gyrs in case of



3.11. NUCLEOSYNTHESIS 95

Table 3.12: Best-�t parameters for the Weyl-Cartan model with a4 = �a6 and an
additional cosmological constant. [H0] = km s�1Mpc�1. KARL9,TABLE@triplet@best

Symbol H0 
m0 
�0 
 0 �2 �2� q0

L1 65.31 0.653 1.168 0.001 134.48 1.52 -0.839

L2 65.22 1.365 1.362 -0.093 133.97 1.52 -0.865

F13 and 14.6 Gyrs for the at scenario F28, but still compatible with the age estimates
from nucleochronocosmology which range from 11 to 15 Gyrs [157, 158].
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Figure 3.10: In the above �gures we plotted the contour lines for parameter slices which
contain the best-�ts X2 and L1 from table 3.11 and table 3.12. The plot on the upper
lhs corresponds to the �t X2, the other plots belong to the model L1 which encom-
passes an additional contribution from the cosmological constant. The outer boundaries
correspond to the 95.4% con�dence level. FIG@triplet@contours@lambda,VIOLA1

3.11 Nucleosynthesis

In this section we work out the bounds from primordial nucleosynthesis on our Weyl-
Cartan model. We focus on the special case in which � = �(t). We are primarily
interested in the e�ects due to the modi�ed expansion rate of our new model. One
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might also investigate the question of whether there are observable e�ects caused by
modi�cations of the interface between the gravitational sector and the model of particle
physics, in other words, the coupling of the new geometrical quantities to di�erent
particle species. In fact such an e�ect on BBN was already estimated in [205] for a
model with torsion, which couples to the spin of particles. These estimates were based
on the cross-section calculations for a helicity ip of the neutrino performed in [204].
The main conclusion of [205] is that the production rate of ipped neutrinos is much
too low in order to a�ect nucleosynthesis in a signi�cant way. Since these calculations
were performed for a low-energy action from string theory it remains an open issue to
calculate these rates for a more general type of Lagrangian, like for the one in equation
(2.11). Of course such an investigation would require the knowledge of an Dirac-type
matter �eld equation in MAG, which is currently not available [51]. In the following we
solely concentrate on e�ects which are directly related to changes of the gravitational
�eld equations.

3.11.1 Temperature of neutrinos and photons

One crucial point in the derivation of the 4He abundance is the relation between the
photon and neutrino temperature, which indirectly inuences the capture time via the
time-temperature relation (1.130). Let us briey sketch the procedure which leads to
the di�erent temperatures of the neutrinos and the photons within the standard model
in order to asses if there is a modi�cation of this relation within the Weyl-Cartan
model. Note that the following derivation is only valid in equilibrium. However, the
decoupling of the neutrinos and the succeeding annihilation of the electrons is surely
not an equilibrium process. Hence the upcoming derivation should be viewed as a �rst
order estimate. In [236] it was shown that non-equilibrium e�ects lead to corrections of
the helium abundance at the 10�4 level, which surely do not a�ect our simple estimate
for Y4He. From the usual expression for the entropy S from thermodynamics, i.e.

dS (V; T ) = 1

T
[d (� (T )V ) + p (T ) dV ] =

1

T

�
V
@�

@T
dT + (�+ p) dV

�
(3.111)

we can infer, by comparing the coeÆcients with dS (V; T ) = @S
@T
dT + @S

@V
dV , that

@S
@V

=
�+ p

T
; and

@S
@T

=
V

T

@�

@T
: (3.112)

Since the partial derivatives commute we have

@2S
@V @T

=
@

@T

�
�+ p

T

�
=

@

@V

�
V

T

@�

@T

�
, @p

@T
=

1

T
(�+ p) : (3.113)

Substitution of (3.113) into eq. (3.111) yields

dS =
V

T
d (�+ p) ! S (V; T ) = V

T
[� (T ) + p (T )] : (3.114)
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Hence we obtain an expression for the entropy in terms of the pressure and the energy
density. Comparison of this result with the Noether identity of the FLRW model, i.e.
the equation on the lhs in (1.16), yields

_�S
GR
= �3 _S (�+ p) , S3dp

dt
=

d

dt

�
S3 (�+ p)

�
: (3.115)

Rewriting the expression for the pressure (3.113)

@p

@t
=
dT

dt

1

T
(�+ p) =

_T

T
(�+ p) ; (3.116)

and substituting this equation into the lhs of (3.115) we obtain

S3
_T

T
(�+ p) =

d

dt

�
S3 (�+ p)

� ) d

dt

�
S3

T
(�+ p)

�
= 0: (3.117)

Thus, we found a conserved quantity which, after comparison with eq. (3.114), could be
termed entropy provided we identify the volume V with S3. Let us de�ne the so-called
entropy density s := S=V . This density can be written in terms of the temperature by
using the expression for the energy density (1.68)

s :=
S
V

(3:114)
=

1

T
[�+ p]

p= 1
3
�

=
4

3T
�

(1:68)
=

2�2

45
T 3

 
7

8

X
i=fermions

gFi +
X

i=bosons

gBi

!
=

2�2

45
T 3gtotal (T ) : (3.118)

Equating of the conserved quantity sV before and after e+e� annihilation yields

(sV )jbefore = (sV )jafter ,
�
7

8
� 2� 2 + 2

�
T 3S3

��
before

= 2 T 3S3
��
after

,
�
11

4

� 1
3

TSjbefore = TSjafter : (3.119)

Since the neutrinos decouple from the plasma before electrons and positrons annihilate
they do not bene�t from the change in the entropy, i.e., the entropy for the neutrino
subsystem is conserved separately. Hence the temperature of the photons and neutrinos

di�er by the numerical factor in equation (3.119), which �nally leads to T =
�
11
4

� 1
3 T�.

Let us come back to the question posed at the beginning of this section, i.e. is the
relation between T and T� still valid within an alternative model? The general answer
to this question is no. The dependence on the underlying cosmological model is encoded
in the equation inferred from the Noether identity in eq. (3.115). As we have seen in
the previous sections on alternative models, the Noether identity is not necessarily of
the same form as in the FLRW model, cf. equations (3.34){(3.35), (3.59), and (3.93).
Hence one has to redo the above calculation for every non-standard model. Nevertheless
there is hope in case of the alternative Weyl-Cartan model with a4 = �a6 for which
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the Noether identity is given by (3.93). Using the solution for the function � = �=S2,
equation (3.93) can be transformed into

d

dt

�
�S4

�
=

1

4

dS4

dt
(�� 3p) , _�S = �3 _S (�+ p) ; (3.120)

which is identical with the FLRW result in equation (3.115). Hence for this special
choice of �, which is the one investigated by us in the preceding sections, the above
derivation for the relation between the temperatures of photons and neutrinos remains
valid.

3.11.2 Distribution functions

Let us recall that in a homogeneous and isotropic space, i.e. f (q; t)! f (E; t), and with
q� = (E; qi) the Boltzmann equation took the following form�

E
@

@t
� �0��q

�q�
@

@E

�
f (E; t) = 0: (3.121)

In contrast to (1.97) the connection in (3.121) is now given by the one for the Weyl-
Cartan model as displayed in appendix E.3.2. Hence equation (3.121) turns into�

E
@

@t
�
�
Hgijq

iqj +
�

2S
g��q

�q�
�

@

@E

�
f (E; t) = 0: (3.122)

Here the function � = �(t) is that from the special ansatz for the Weyl 1-form made in
(3.45). Hence, for a massless species we end up with�

@

@t
�HE @

@E
� �

S
E

@

@E

�
f (E; t) = 0: (3.123)

Of course the last term has to be small if we still want to use the distribution function
from section 1.5. From an observational point of view one has to keep in mind the FIRAS
result, which strictly limits the spectrum to a perfect blackbody, thereby placing a strong
bound on the contribution of the last term.

3.11.3 4He abundance

As we have shown in detail in section 1.6 the neutron-to-baryon ratio for vanishing
chemical potential is given by Yn(y;Q; �; gtotal) as displayed in equation (1.118): Taking

into account the neutron decay this ratio becomes �Yn = e�
tc
� Yn; cf. equation (1.128).

Hence, the main modi�cation due to an altered expansion rate can be ascribed to a
change of the capture time tc. In section 1.6 we have shown that the capture time is
determined by the temperature at which the neutrons are captured within deuterium.
We estimated the capture time to be of the order Tc � 0:1 MeV.
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In the following we assume that the universe has entered its radiation dominated
epoch, hence the easiest way to take care of a modi�ed expansion rate is to put limits
on the spin degeneracy factor gtotal in the equation for the expansion rate (1.114). A
change of this parameter corresponds to a correction of the expansion rate due to the
additional contribution from the dilation current to the energy density, cf. the rhs of
equation (3.96). In order to keep things as clear as possible we briey collect the crucial
steps in the estimation of the helium abundance:

1. Determine the asymptotic value of neutron-to-proton ratio without the decay cor-
rection of the neutron, i.e. calculate Yn(1; Q; �; gtotal) with the help of (1.118).

2. Derive the capture temperature Tc by estimating the onset of the deuterium for-
mation.

3. Use the estimate for the capture temperature to derive the corresponding capture
time tc (Tc; gtotal) with the help of (1.130).

4. Calculate the 4He abundance via (1.136), i.e. Y4He (gtotal; �; �;mn; mp; mD) =

2e�
tc(Tc; gtotal)

� Yn(1; Q; �; gtotal):

Before we calculate the helium abundance let us comment on the second point in
the above list, i.e. the estimation of the capture temperature Tc. In section 1.6 we
made use of the condition XD(�;mn; mp; mD; Yn(1)) � 1 in combination with equation
(1.135) to estimate the order of magnitude of Tc. Since this equation is based on the
equilibrium expressions for neutron, proton, and deuterium number densities it leads
to an underestimation of the capture temperature. Because the helium abundance is
very sensitive to the capture temperature this condition should serve only as a rough
estimate for Tc. In the following we will make use of the condition ~XD � 1 where ~XD is
given by10

~XD (T; �;mn; mp; mD) := 1:116� 1013 e�1:44 (
"D
T )

1
3

e
"D
T

�"D
T

�� 17
6

; (3.124)

which was derived by Bernstein et al. in eq. (3.40) of [193]. Figure 3.11 contains a
comparison of the two conditions for di�erent values of the baryon-to-photon ratio.

10We already made use of this condition in �gure 1.9.
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Figure 3.11: In the above �gures we plotted XD and ~XD for di�erent values of the
baryon-to-photon ratio �. It becomes clear from the lhs that the equilibrium condition
XD � 1 underestimates the capture temperature Tc. As explained in the text we will
stick to the condition ~XD � 1 which was derived by Bernstein et al. in [193]. The
corresponding plots of ~XD are displayed on the rhs for di�erent values of �. Note that
the red line in both plots corresponds to � = 5 � 10�10. FIG@NUC@triplet@capture,

VIOLA2

Now we have everything at hand in order to calculate the helium abundance by
means of the procedure described in 1-4. The results of this numerical calculation for
di�erent values of the baryon-to-photon ratio are displayed in �gure 3.12 together with
the experimental bounds from table 1.7 and table 1.8. Since the baryon-to-photon ratio
is mainly �xed by the deuterium abundance, which we do not calculate here, we are
going to use the rather broad interval [10�10; 10�9] for � in the following.
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Figure 3.12: On the upper lhs we plotted the dependence of the 4He abundance on
gtotal for di�erent values of baryon-to-photon ratio �. The upper line corresponds
to � = 10�9 the lower one to 10�10. The boxes correspond to the observational
limits from table 1.8. On the rhs we plotted Y4He and the, partially overlapping,
observational bounds Y1, Y2, Y3 from table 1.7. Note that the yellow region on
the lhs incorporates all of the regions on the rhs. FIG@TRIPLET@He4@and@g,VIOLA3,
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Table 3.13: 4He abundance limits on 
 . H0 = 100 h km s�1 Mpc�1.

Symbol � � 1010 ~gtotal;min ~gtotal;max 
b0h
2 
 0;minh

2 � 1010 
 0;maxh
2 � 1010

H1 1 10.41 13.17 0.003663 -0.380592 2.708923

H2 2 9.67 12.29 0.007327 -1.081847 1.542633

H3 3 9.27 11.81 0.010990 -1.384456 0.991569

H4 4 8.99 11.47 0.014653 -1.565664 0.640499

H5 5 8.79 11.21 0.018317 -1.675158 0.393149

H6 6 8.63 11.01 0.021980 -1.752351 0.214910

H7 7 8.49 10.85 0.025643 -1.815078 0.080313

H8 8 8.37 10.71 0.029306 -1.863647 -0.031321

H9 9 8.27 10.59 0.032970 -1.898440 -0.122480

H10 10 8.19 10.47 0.036633 -1.919856 -0.209984

Let us come back to the parameters of the triplet model. In order to estimate the
limit on 
 via the helium abundance we can make use of the di�erent expansion rates

within FLRW and the triplet model. With � :=
3�
�
 2

S6
and

H2
FLRW =

�2�

90
gtotalT

4 =
�

3
�r; (3.125)

H2
triplet =

�2�

90
~gtotalT

4 =
�

3
(�r + � ) ; (3.126)

we can derive the value of � from the upper limit on ~gtotal, i.e.

� ;BBN =
�2

30
T 4
BBN (~gtotal � gtotal) : (3.127)

Hence the present day value of the 
 density parameter is given by


 0 =
� 0
�c0

=
� ;BBN
�c0

�
T0
TBBN

�6

: (3.128)

Of course we need to know the actual temperature of the species which carry dilation
charges in order to obtain a numerical value for 
 0.

In table 3.13 we summarized the upper and lower bounds from observations on the
degeneracy factor ~gtotal for several values of the baryon-to-photon ratio within the range
[10�10; 10�9]. The numerical value of the baryonic density parameter 
b is �xed by the
choice of the baryon-to-photon ratio � via11


b0 :=
�b0
�c0

=
�

3H2
0

�mbnb0 =
�

3H2
0

�mbn0�: (3.129)

11Note that we used �mb = mn = 939:56 MeV for the mean baryon mass.
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Additionally, we calculated the bounds on 
 0 with the help of (3.127) and (3.128).
In the last step we assumed that the temperature T0 in (3.128) equals the photon
temperature measured by FIRAS and the temperature at nucleosynthesis is given by
the capture temperature estimated via (3.124). Hence, within our very broad range
for � the product of the dilation density parameter 
 0 and the parameter h, which
characterizes the uncertainty in the determination of the Hubble rate, is limited to


 0h
2 2 [�1:91; 2:70]� 10�10: (3.130)

3.11.4 Comparison with the precision estimate

Finally, let us compare our result with the �tting formula for the 4He abundance obtained
by Lopez and Turner in [237] on the basis of their numerical nucleosynthesis calculation.
The �tting formula for Y precision

4He (�; �) provided in equation (43) of [237] depends on two
parameters: (i) the neutron lifetime, and (ii) the baryon-to-photon ratio. It is valid
for three neutrino species and for � 2 [10�10; 10�9] and � 2 [880; 890] s. In �gure
3.13 we plotted their estimate together with our semi-analytical result within the usual
interval for the baryon-to-photon ratio. We assumed that there are only the three
standard neutrino species. The deviation of both estimates becomes smaller than 0:002
for intermediate values of �; see the rhs of �gure 3.13. Hence, the semi-analytical method
of Bernstein et al. seems to be still a good tool for estimating the primordial helium
abundance.
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Figure 3.13: On the lhs we plotted in blue the helium abundance calculated from the
�tting formula given by Lopez and Turner in eq. (43) of [237] for di�erent values of the
baryon-to-photon ratio �. Note that this �tting formula was derived from a numerical
code which takes into account several higher order e�ects, cf. [237] for details. The red
line corresponds to our semi-analytical calculation obtained by carrying out steps 1-4
from section 3.11. The green data points were generated by using the numerical code
of Kawano [182, 183]. On the rhs we plotted the absolute di�erence between the semi-

analytical and the precision estimate de�ned by �Y4He :=
���Y semi�analytical

4He � Y precision
4He

���.
FIG@He4@comparison,VIOLA6
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3.12 Summary

3.12.1 Combined constraints

Let us summarize our results concerning the alternative approach. On the theoretical
side we were able to show that our Weyl-Cartan model has an interesting special case,
which proved to be compatible with the models proposed by two other groups. The
simplest case, i.e. a model which encompasses only ordinary matter 
m and an additional
contribution from the density parameter 
� , associated with the Weyl 1-form, is only
compatible with the SN Ia data for negative values of the 
� parameter. Negative
values of 
� enforce us to specify a maximum redshift zmax at which the model has to be
replaced by another, yet unknown, one. Since the best-�t leads to a rather small limiting
redshift we switched to the case with an additional contribution from the cosmological
constant in form of 
�. Within this ansatz we are able to describe the SN Ia data
for positive 
 , thereby removing the problem of a limiting redshift. In turn the data
allow us to place an upper limit on the present day value of 
 which must not account
to more than 16% of the critical density. Since the new density parameter 
 scales
� z6, this upper limit is not likely to be reached since it would lead to a dilation
dominated phase at rather low-redshifts which would be in conict with several other
cosmological tests. Therefore we worked out the constraints on 
 at the other end of
the redshift scale by estimating its maximal contribution to the expansion rate at the
time of primordial nucleosynthesis. As we have guessed before, the observed helium
abundance puts very tight bounds on 
 0: Adopting our generous limit on �, we �nd
that the upper bound on 
 0 from nucleosynthesis lies approximately ten orders of
magnitude below the bound inferred from the SN Ia. Hence, if one assumes that the
model is valid from nucleosynthesis to our present epoch, the contribution from 
 0 to
the critical density lies even below the contribution from radiation [104]. Nevertheless
both tests are consistent with each other what makes our model a viable candidate at
both ends of the redshift scale accessible to current observations. To our knowledge this
is the �rst time that a MAG based cosmological model was constrained by �tting to real
data sets.

Possible extensions

Finally, let us note that the most pressing task concerning nucleosynthesis will be to
modify one of the available numerical codes, because the semi-analytical calculation
used by us does not place any constraints on the abundances of the other light elements.
Especially the abundance of deuterium is of importance due to its sensitivity to the
baryon-to-photon ratio. In our calculations we used the baryon-to-photon ratio as an
input parameter rather than a �t parameter. Of course this dilutes its role as an estima-
tor of the baryon density. In the view of recent CMB experiments nucleosynthesis is no
longer the strongest test of the baryon density. In particular the analysis of the skymap
measured by the WMAP satellite yields a very strong constraint on the combination

bh

2, cf. [178]. However, one has to check whether our result is compatible with the
production of the other light elements.
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3.12.2 The future

One of our main future goals will be to confront our model and other alternative scenarios
with recent CMB measurements [175]{[181]. As mentioned before, the calculation of the
CMB anisotropy spectrum depends on several mechanisms and input parameters. The
list of di�erent physical processes leading to temperature uctuations in the CMB is long
and ranges from intrinsic perturbations on the last-scattering surface to the scattering
of photons in gas clouds on their way to the observer. We will not discuss these e�ects
here, see [11, 163, 164], e.g., and the seminal works [161, 162]. In addition to the
physical e�ects leading to CMB anisotropies one also has to take great care of gauge
related questions [165, 166]. There exist several numerical codes for the calculation of
the anisotropy spectrum within di�erent gauges [167]{[170]. The precise determination
of cosmological parameters from the anisotropy spectrum at all length scales requires
the use of such codes [171, 172, 173]. Nevertheless it is possible to perform a simple
order of magnitude estimate for some parameters.

 �!

L

observer

surface of last-scattering

hot / cool gas

Figure 3.14: Schematic drawing of the last-scattering surface. An observer detects
di�erences in the CMB temperature by comparing the photons coming from di�erent
directions separated by an angle �. Di�erent angles correspond to di�erent scales on the
last-scattering surface and depend on the underlying cosmological model. Such kind of
di�erential measurements were performed by the DMR detector onboard of the COBE
satellite. ILSE3, CMBR@scattering@surface@fig

In �gure 3.14 we sketched the experimental setup for a CMB anisotropy measure-
ment. In principle one performs a statistical analysis of the di�erential measurement of
the photon temperature at di�erent angular scales. The angle � under which a given
length scale L on the surface of last-scattering appears to us nowadays can be inferred
from
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Figure 3.15: In the above plots we depicted the angle � subtended by the Hubble ra-
dius at last scattering for di�erent parameter combinations. The upper lhs corresponds
to the FLRW model, and on the upper rhs the angle is plotted for the alternative
Weyl-Cartan scenario. Note that we chose 
 0 according to the limit inferred from
nucleosynthesis. On the lower lhs we plotted the dependence of � on the recombination
redshift zrec for both models. On the lower rhs the dependence of � on 
 0 is dis-
played. The horizontal line in this plot corresponds to the angular scale of the acoustic
horizon as measured by WMAP. From the above plots it becomes clear that a contri-
bution from radiation of the order 10�5 does not signi�cantly alter the resulting angle.
LUDMILLA2,FIG@angle@horizon

� � L (1 + z)2

dluminosity
: (3.131)

The size of a causally connected region is approximately the Hubble length H�1. Hence
(3.131), together with our results for the luminosity distance, enables us to calculate
the angular scale of causally connected patches. The size of these regions is related to
a feature within the CMB anisotropy spectrum, the so-called �rst acoustic peak. The
position of the �rst peak depends on the scale of the sound horizon within the plasma at
the time of decoupling. Since the angular scale corresponding to the �rst peak location
has to be smaller than the angular scale of the Hubble horizon we can use it to place an
upper bound on the 
 0 density parameter of the Weyl-Cartan model. In �gure 3.15 we
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plotted the parameter dependence of � for the FLRW and the alternative Weyl-Cartan
model. The bound on 
 0 for a model with 
m0 = 0:3 and 
�0 = 0:7 can be read o�
from the plot at the lower rhs. Therein the horizontal line corresponds to the angular
scale of the acoustic horizon as measured by the WMAP satellite (note that we made use
of the relation � � �

`
). This scale translates into an upper bound 
 0 < 4� 10�10: For

the best-�t parameters 
m0 = 0:653 and 
�0 = 1:168 of the model L1 from table 3.12 we
obtain 
 0 < 10�8. Hence the CMB data puts a much more stringent constraint on the
dilation density parameter than the SN Ia data. The bound on 
 0 is compatible with
our estimate from nucleosynthesis, cf. table 3.13. Therefore the Weyl-Cartan model with
a4 = �a6 represents a viable alternative cosmological model. It would be interesting
to modify one of the existing numerical codes in order to calculate the full anisotropy
spectrum within this model.

3.13 Dimensions

Table 3.14: Dimensions.
Quantities 1 Length

Gauge potentials [g��]; [��
�] [#�]

Gauge �eld strengths [Q��]; [R��] [T �]

Gauge �eld excitations [M�� ]; [H�
�] [H�]

�1

Gauge �eld currents [E�
�]; [m

��] [E�]
�1

Matter currents [���]; [�
��]; [���] [��]

�1

Coordinates [�]; [�]; [r] [t]

Coupling constants [�]; [aI ]; [b]; [b4] [�]
1
2 ; [cI ]

� 1
2

Functions [�]; [�]; [
k]; [
�]; [
� ]; [�]�
1
4 ; [pr]

� 1
4 ; [pt]

� 1
4 ; [���]

� 1
4

[
w]; [G]; [�]; [F ]; [
�] [S]

Miscellany [z]; [q]; [m]; [M ]; [dluminosity]; [s]
� 1
3 ,[L]

[M]; [�]; [S]; [�]
Constants [k]; [w]; [&]; [ ] [�]�

1
4 ; [�]�

1
2 ; [{w]

1
�4+3(1+w) ;

[�]�
1
2 ; [�]

1
4

eq. (3.63) [{1]; [{2]

eq. (3.70) [�]

eq. (3.73) [{3]
� 1
2

eq. (3.74) [{1]
1
2 ; [{2]

eq. (3.75) [{1]; [{2]

eq. (3.94) [�]
1
2



Appendix A

Conventions and identities

A.1 Exterior calculus and the hodge dual

For two di�erential forms � 2 �p; � 2 �q; we de�ne the exterior multiplication as follows,

^ : �p � �q �! �p+q

� ^ � (v1; : : : ; vp+q) := (p+ q)!

p!q!
�(v[1; : : : ; vp) � �(vp+1; : : : ; vp+q])

alternatively
=

1

p!q!

X
�

sgn(�) � �(v�(1); : : : ; v�(p)) � �(v�(p+1); : : : ; v�(p+q));

which, in case of ! 2 �r; � 2 �p; a 2 R; yields the properties:
(�+ �) ^ � = � ^ � + � ^ �; (A.1)

(a�) ^ � = � ^ (a�) = a(� ^ �); (A.2)

(� ^ �) ^ ! = � ^ (� ^ !); (A.3)

� ^ � = (�1)pq� ^ �: (A.4)

For elements of the underlying vector space v 2 V we de�ne the interior multiplication
of a vector with a form � 2 �p; p > 0; 8 u1; : : : ; up�1 2 V as:

c : �p �! �p�1

vc�(u1; : : : ; up�1) := �(v; u1; : : : ; up�1):

For p = 0 we de�ne vc� := 0. For � 2 �p; � 2 �q; v; u 2 V; a 2 R ; the following
properties follow immediately:

vc(�+ �) = vc�+ vc�; (A.5)

(v + u)c� = vc�+ uc�; (A.6)

(av)c� = a(vc�); (A.7)

vcuc� = �ucvc�; (A.8)

vc(� ^ �) = (vc�) ^ � + (�1)p� ^ (vc�): (A.9)
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Note that for a frame e� dual to the coframe #�

e�c#� = #�(e�) = Æ��: (A.10)

If a metric g and a coframe are given, we de�ne

g = g�� #
� 
 #�; (A.11)

g��g� = Æ� : (A.12)

The generalized Kronecker-symbol shall be given by

Æ��:::��::: :=
n
sgn(�) if there exists a permutation � with�(��::: )=(��::: )
0 else ; (A.13)

and the components of the �-tensor by

��1:::�n := Æ1:::n�1:::�n ; (A.14)

��1:::�n := Æ�1:::�n1:::n : (A.15)

Hence, the indices of the �-tensor are not raised by a metric tensor. It follows

�12:::n = +1 ; �12:::n = +1 ; ��1:::�n�
�1:::�n := Æ�1:::�n�1:::�n

: (A.16)

Given a metric g, we de�ne the Hodge dual of a p-form � in n-dimensional space (p � n)
as

? : �p �! �n�p

?� :=

p
det(g)

(n� p)!p!�
�1:::�p��1:::�n#

�p+1 ^ � � � ^ #�n :

Let � and � be p-forms, a 2 R, n the dimension of the space, and 'ind' denote the
number of minus signs in the diagonal form of the metric, then the following identities
hold:

?(�+ �) = ?�+ ?�; (A.17)
?(a�) = a ?�; (A.18)
? ?� = (�1)p(n�p)+ind�; (A.19)

?� ^ � = ?� ^ �; (A.20)

e�c ?� = ? (� ^ #�) ; (A.21)
? (e�c�) = (�1)p�1#� ^ ?�; (A.22)

#� ^ (e�c�) = p�; (A.23)

e�c ?(#� ^ � � � ^ #�p) = ? (#�1 ^ � � � ^ #�p ^ #�) ; (A.24)

#� ^ ?(#�1 ^ � � � ^ #�p) =

pX
i=1

(�1)p�ig��i ?(#�1 ^ : : :

^#�i�1 ^ #�i+1 ^ � � � ^ #�p); (A.25)

e�c� = (�1)n(p+1)+ind ?(#� ^ ?�); (A.26)
?(e�c ?�) = (�1)(n+1)(p+1)+ind(� ^ #�): (A.27)
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In a 4-dimensional vector space V with volume 4-form � and metric g we may de�ne

�� = e�c�; ��� = e�c��; ��� = ec���; (A.28)

with the following properties:

�� = ?#�; (A.29)

��� = ?(#� ^ #�); (A.30)

��� = ?(#� ^ #� ^ #); (A.31)

eÆc��� = ���Æ =
?(#� ^ #� ^ # ^ #Æ): (A.32)

Alternatively, without a metric

��1 ::: �p = e�pce�p�1c:::e�1c
�
����#

� ^ # ^ #� ^ #�� : (A.33)

A.2 Identities

The �eld strengths nonmetricity Q��, torsion T
�, and curvature R�

� obey the following
Bianchi identities:

DQ�� = 2R(�
g�) ; (A.34)

DT � = R
� ^ # ; (A.35)

DR�
� = 0: (A.36)

In a 4-dimensional space with Q := 1
4
Q

 the covariant derivatives of the �-basis can be
written as:

D��1 = �2Q ^ ��1 + T � ^ ��1�; (A.37)

D��1�2 = �2Q ^ ��1�2 + T � ^ ��1�2�; (A.38)
...

D��1����4 = �2Q ^ ��1����4 : (A.39)
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Appendix B

Units and numbers

B.1 Units

In this work we make use of natural units, i.e. ~ = kB = c = 1. With this choice there
is only the unit length for di�erent physical quantities as depicted table B.1. The units
for the quantities introduced in each chapter are summarized in a table at the end of
the corresponding chapter (cf. section 1.8, p. 50, section 2.5, p. 59, and section 3.13, p.
106). The units of the operators which were introduced in appendix A can be read o�
from table B.2. In numerical calculations we always make use of the SI system of units,
if not stated otherwise within the text. The corresponding SI de�nitions for di�erent
physical quantities are summarized in table B.3.

Table B.1: Natural units .
[energy] [mass] [time] [length] [temperature]

length�1 length�1 length length length�1

Table B.2: Operators and natural units.

Operator 1 Length

hodge dual [ ?]
1

n�2p

(n dimension of the spacetime, p degree of the form)

exterior derivative [d]

inner product [c]
outer product [^]
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Table B.3: SI system of units.

Physical quantity Name Symbol
length meter m
mass kilogram kg
time second s
electric current ampere A
thermodynamic temperature kelvin K
amount of substance mole mol
luminous intensity candela cd
Derived units Comb. unit Basis units
frequency hertz Hz s�1

energy joule J kg m2 s�2

force newton N J m�1 kg m s�2

power watt W J s�1 kg m2 s�3

pressure pascal Pa J m�3 kg m�1 s�2

plane angle radian rad m m�1

solid angle steradian sr m2 m�2

electric charge coulomb C A s
electric potential volt V J s�1A�1 kg m2 s�3A�1

electric resistance ohm 
 J s�1A�2 kg m2 s�3A�2

electric capacity farad F J�1 s2 A2 kg�1 m�2 s4 A2

electric conductance siemens S J�1s A2 kg�1 m�2 s3 A2

magnetic ux weber Wb J A�1 kg m2 s�2 A�1

inductance henry H J A�2 kg m2 s�2 A�2

magnetic ux density tesla T J A�1m�2 kg s�2 A�1

luminous ux lumen lm cd sr cd
illuminance lux lx lm m�2 cd m�2

activity becquerel Bq s�1

absorbed dose gray Gr J kg�1 m2 s�2

dose equivalent sievert Sv J kg�1 m2 s�2

B.2 Constants

This section contains a collection of the numerical values of the constants used for nu-
merical calculations within this work. Table B.4 contains a collection of the fundamental
constants and their numerical value in SI units. Note that we rounded the last digit,
these values are compatible with [1] and, with exception of G, with [84, 85]. Note the
uncertainty in the last digit of G = 6:673(10) m3 kg�1 s�2 after [85]. Some authors make
use of cgs units, hence we quoted the numerical values for the fundamental constants in
table B.5. Table B.6 contains the numerical values of the Planck quantities in SI units.
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Since some authors use so-called reduced quantities with G ! 8�G, see [11] e.g., we
compiled their numerical values in table B.7. Table B.8 represents an useful collection
of conversion factors and mnemonics. Note that the choice of the gravitational coupling
constant depends on whether one chooses � to be a mass or energy density. In any case
the relation [��] =m�2 has to hold. Thus, for [�] =kg m�3, i.e. a mass density we choose
� from below. For [�] =kg m�1 s�2, i.e. a energy density we choose ~�.

Table B.4: Fundamental constants in SI units.

Fundamental constants Symbol SI value Unit SI Comb. unit
Planck�s constant h 6:6261� 10�34 m2 kg s�1 J s

~ 1:0546� 10�34 m2 kg s�1 J s
Speed of light c 2:9979� 108 m s�1

Boltzmann�s constant kB 1:3807� 10�23 m2 kg s�2 K�1 J K�1

Newton�s constant G 6:6720� 10�11 m3 kg�1s�2 N m2 kg�2

Electron charge e 1:6022� 10�19 A s C

Table B.5: Fundamental constants in cgs units.
Fundamental constants Symbol CGS value Unit cgs
Planck�s constant h 6:6261� 10�27 cm2g s�1

~ 1:0546� 10�27 cm2g s�1

Speed of light c 2:9979� 1010 cm s�1

Boltzmann�s constant kB 1:3807� 10�16 erg K�1

Newton�s constant G 6:6720� 10�8 cm3g�1s�2

Electron charge e 4:8032� 10�10 esu

Table B.6: Planck quantities.
Planck quantities Symbol/De�nition Numerical value SI Unit SI

Planck energy EPl :=
q

~c5

G
= 1:9564� 109 kg m2 s�2

Planck mass mPl :=
q

~c
G

= 2:1768� 10�8 kg

Planck length lPl :=
q

~G
c3

= 1:6160� 10�35 m

Planck time tPl :=
q

~G
c5

= 5:3904� 10�44 s

Planck density �Pl :=
c5

~G2 = 5:1580� 1096 kg m�3
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Table B.7: Reduced Planck quantities.

Reduced Planck quant. Symbol/De�nition Num. value SI Unit SI

Reduced Planck energy ~EPl :=
q

~c3

�
=
q

~c
~�

= 3:9024� 108 kg m2 s�2

Reduced Planck mass ~mPl :=
q

~

�c
=
q

~

~�c3
= 4:3421� 10�9 kg

Reduced Planck length ~lPl :=
q

~�
c
=
p
~~�c = 8:1015� 10�35 m

Reduced Planck time ~tPl :=
q

~�
c3
=
q

~~�
c

= 2:7023� 10�43 s

Reduced Planck density ~�Pl :=
c
~�2

= (c3~~�2)
�1

= 8:1659� 1093 kg m�3

Table B.8: Conversion factors, constants, and mnemonics.
Conversion factors Numerical value SI Unit SI Natural Unit
Energy 1:6021� 10�10 kg m2 s�2 GeV
Mass 1:7827� 10�27 kg GeV c�2

Length 1:9732� 10�16 m GeV�1
~ c

Time 6:5821� 10�25 s GeV�1
~

Temperature 1:1605� 1013 K GeV k�1B
Mnemonics 1 eV �
Mass 1:7827� 10�36 kg
Length 1:9732� 10�25 m
Time 6:5821� 10�34 s
Temperature 1:1605� 104 K
Non SI unit
1 eV 1:6022� 10�19 m2 kg s�2

1 pc 3:0856� 1016 m
1 ly= 1 pc

3:2615
9:4634� 1015 m

Constants
H0 :=100h km s�1Mpc�1 3:2399h� 10�18 s�1

�c0 :=3H
2
0=8�G 1:8779h2 � 10�26 kg m�3

� := 8�G
c2

1:8657� 10�26 m kg�1

~� := 8�G
c4

2:0759� 10�43 s2 m�1 kg�1

Numerical value Natural unit
H0 2:1325h� 10�42 GeV
�c0 8:0938h2 � 10�47 GeV4

mPl 1:2210� 1019 GeV
lPl 8:1895� 10�20 GeV�1

tPl 8:1895� 10�20 GeV�1

�Pl 2:2231� 1076 GeV4
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B.3 Elementary particles and electromagnetic spec-

trum

Table B.9: Elementary particles (leptons & quarks).

Charge [qe] 0 �1 2
3

�1
3

�e e u d

Mass < 3 eV 0:51 MeV 1:5� 4:5 MeV 5� 8:5 MeV

�� � c s

Mass < 0:19 MeV 105:65 MeV 1:0� 1:4 GeV 80� 155 MeV

�� � t b

Mass < 18:2 MeV 1:77 GeV 169:8� 188:5 GeV 4:0� 4:5 GeV

Table B.10: Electromagnetic spectrum.

Name Wavelengths [m] Frequency [Hz] Photon energy [eV]

Radio 103 � 0:3 105 � 109 10�10 � 10�6

Microwave 0:3� 10�3 109 � 3� 1011 10�6 � 10�3

Infrared far 10�3 � 3� 10�5 3� 1011 � 4� 1014 10�3 � 10�1

middle 3� 10�5 � 3� 10�6

near 3� 10�6 � 7:8� 10�7

Visible 7:8� 10�7 � 3:8� 10�7 4� 1014 � 8� 1014 10�1 � 10

Ultraviolet 3:8� 10�7 � 6� 10�10 8� 1014 � 5� 1017 10� 103

X-rays 10�9 � 6� 10�12 3� 1017 � 5� 1019 103 � 105

�rays 10�10 � 10�14 3� 1018 � 3� 1022 104 � 108



116 APPENDIX B. UNITS AND NUMBERS

T
ab
le
B
.11:
B
oson
s
an
d
H
ad
ron
s
(=
M
eson
s
+
B
aryon
s).

N
a
m
e

S
y
m
b
o
l

In
te
ra
ctio
n

M
a
ss

C
h
a
rg
e
[q
e ]

S
p
in

B
o
so
n
s

P
h
oton



electrom
agn
etic

<
2�
10 �
1
6
eV

<
5�
10 �
3
0

1

G
rav
iton

g

grav
itation
al

0

0

2

G
lu
on
s

g
i=
1
:::8

stron
g

n
.d
.

0

1

W
-B
oson

W
�

w
eak
(ch
arged
cu
rr.)

80:4
G
eV

�
1

1

Z
-B
oson

Z

w
eak
(n
eu
tral
cu
rr.)

91:1
G
eV

0

1

H
iggs

H
0

>
114:3
G
eV

H
�

>
71:5
G
eV

C
o
m
p
o
sitio
n

M
a
ss
[m
e ]

L
ife
tim
e
[s]

M
e
so
n
s

�
-M
eson

�
0

�u
�u;d
�d �

134:9
M
eV

264

0

0

8:4�
10 �
1
7

(q
i �q
j )

�
�

�u
�d;d
�u �

139:5
M
eV

273

�
1

0

2:60�
10 �
8

K
-M
eson

K
�

(u
�s;s
�u)

493:6
M
eV

967

�
1

0

1:23�
10 �
8

K
0

�d
�s;s
�d �

497:6
M
eV

974

0

0

0:89�
10 �
1
0

�
-M
eson

�

�u
�u;d
�d �

547:3
M
eV

1072

0

0

�-M
eson

�
0

�u
�d;d
�u;u
�u;d
�d �
769:3
M
eV

1468

0

1

� �

769:3
M
eV

1468

�
1

1

!
-M
eson

!
0

�u
�u;d
�d �

782:5
M
eV

1530

�
1

1

B
a
ry
o
n
s

P
roton

p

(u
u
d
)

938:27
M
eV

1836

�
1

12

>
1:6�
10
2
5
y
r

(q
i q
j q
k )

N
eu
tron

n

(u
d
d
)

939:56
M
eV

1839

0

12

885:7

�
-H
y
p
eron

�
0

(u
d
s)

1115:6
M
eV

2183

0

12

2:63�
10 �
1
0

�
-H
y
p
eron

�
+

(u
u
s)

1189:3
M
eV

2328

1

12

0:80�
10 �
1
0

�
0

(u
d
s)

1192:6
M
eV

2332

0

12

7:4�
10 �
2
0

�
�

(d
d
s)

1197:4
M
eV

2341

�
1

12

1:47�
10 �
1
0

�
-H
y
p
eron

�
0

(u
ss)

1314:8
M
eV

2566

0

12

2:90�
10 �
1
0

�
�

(d
ss)

1321:3
M
eV

2582

�
1

12

1:63�
10 �
1
0



Appendix C

Decompositions

C.1 Decomposing the curvature 2-form

Decomposition of the curvature 2-form R�
� into symmetric and antisymmetric part

yields

R�
� = W�

� + Z�
� = d��

� � ��
 ^ ��; (C.1)

where W�� = R[��] is called the rotational curvature and Z�� = R(��) strain curvature.
The irreducible decomposition (cf. [44, 48]) of the rotational curvature W��, reads

W�� = (1)W�� +
(2)W�� +

(3)W�� +
(4)W�� +

(5)W�� +
(6)W��

� weyl + paircom + pscalar + ricsymf + ricanti + scalar

� 10 + 9 + 1 + 9 + 6 + 1. (C.2)

Note that here and in the following the number of independent components corresponds
to spacetimes with dimension n = 4. We de�ne the contracted quantities by means of
the frame e�, coframe #

� and the hodge star ? as follows:

W � := e�cW ��; (C.3)

W := e�cW �; (C.4)

X� := ?(W �� ^ #�); (C.5)

X := e�cX�: (C.6)

Further decomposition leads to

	� := X� � 1

4
#� ^X � 1

2
e�c(#� ^X�); (C.7)

�� := W� � 1

4
W#� � 1

2
e�c(#� ^W�): (C.8)
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Using these de�nitions, the irreducible pieces of the rotational curvature W�� read

(1)W�� = W�� �
6X
I=2

(I)W��; (C.9)

(2)W�� = � ?(#[� ^ 	�]); (C.10)

(3)W�� = � 1

12
?(X ^ #� ^ #�); (C.11)

(4)W�� = �#[� ^ ��]; (C.12)

(5)W�� = �1
2
#[� ^ e�]c(# ^W); (C.13)

(6)W�� = � 1

12
W #� ^ #�: (C.14)

We now proceed by splitting up the strain curvature Z�� into its tracefree (or shear)
and trace (or dilation) part. After that we will perform an even �ner decomposition
into its irreducible pieces.

Z�� := Z��% +
1

4
g��Z; (C.15)

Z := Z�
�; Z�% := e�cZ��% ; (C.16)

� :=
1

2
(#� ^ Z�% ) ; Y� :=

?(Z��% ^#�); (C.17)

�� := Z�% �1
2
e�c(# ^ Z% ) ; �� := Y� � 1

2
e�c(# ^ Y): (C.18)

With these de�nitions the irreducible decomposition of Z�� may be written as

Z�� = (1)Z�� +
(2)Z�� +

(3)Z�� +
(4)Z�� +

(5)Z��

� zcurvone + zcurvtwo + zcurvthree + dilcurv + zcurvfive

� 30 + 9+ 6 + 6+ 9, (C.19)

where

(1)Z�� = Z�� �
5X
I=2

(I)Z��; (C.20)

(2)Z�� = �1
4
?
�
#(� ^ ��)

�
; (C.21)

(3)Z�� =
1

6

�
2#(� ^ (e�)c�)� g���

�
; (C.22)

(4)Z�� =
1

4
g��Z; (C.23)

(5)Z�� =
1

4
#(� ^ ��): (C.24)
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In Riemannian spaces (2)W�� = (3)W�� = (5)W�� = Z�� = 0 holds. In order to
distinguish the more general MAG from the Riemannian case, we denote the Riemannian
curvature 2-form by eR��, thus we arrive ateR�� = (1) eR�� + (4) eR�� + (6) eR��

� weyl + fourcurv + sixcurv (C.25)

� 10+ 9 + 1, (C.26)

where eR� = e�c eR�
�; (C.27)eR = e�c eR�; (C.28)eR�% = eR� � 1

4
eR#�; (C.29)

(4) eR�� = �#[� ^ eR�]% ; (C.30)

(6) eR�� = � 1

12
eR#� ^ #�; (C.31)

C�� = eR�� � (4) eR�� � (6) eR�� =
(1) eR��; (C.32)

+C�� =
1

2
(C�� + i ?C��): (C.33)

Here +C�� denotes the selfdual Weyl (or conformal) 2-form.

C.2 Decomposing the torsion 2-form

Decomposing the torsion 2-form into its three irreducible parts yields:

T � = (1)T � + (2)T � + (3)T �

� tentor + trator + axitor

� 16 + 4+ 4, (C.34)

where

(1)T � = T � � (2)T � � (3)T �; (C.35)

(2)T � =
1

3
#� ^ �e�cT �� ; (C.36)

(3)T � =
1

3
e�c �#� ^ T �� : (C.37)

C.3 Decomposing the nonmetricity 1-form

Decomposing the nonmetricity 1-form into its four irreducible parts yields:

Q�� = (1)Q�� +
(2)Q�� +

(3)Q�� +
(4)Q��

� trinom + binom + vecnom + conom

� 16+ 16 + 4 + 4. (C.38)
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Using the following de�nitions

Q :=
1

4
Q�

�; (C.39)

Q��% := Q�� �Qg��; (C.40)

�� := e�cQ��% ; (C.41)

� := ��#
�; (C.42)

�� := ?(Q��% ^#�); (C.43)

� := #� ^ ��; (C.44)


� := �� � 1

3
e�c�; (C.45)

we can explicitly write down the single parts:

(1)Q�� = Q�� �
4X
I=2

(I)Q��; (C.46)

(2)Q�� =
2

3
?
�
#(� ^ 
�)

�
; (C.47)

(3)Q�� =
4

9

�
#(���) � 1

4
g���

�
; (C.48)

(4)Q�� = g��Q: (C.49)

C.4 Decomposition of the linear connection

We display the linear connection ��� of MAG expressed in terms of the metric g��,
coframe #�, torsion T �, and nonmetricity Q��. As we will see in appendix D.1.1,
this representation becomes necessary if we start by making an ansatz for torsion and
nonmetricity and then subsequently compute all other geometric properties from ���
by machine. We start with the de�nition of the so called anholonomity 2-form

C� := d#�: (C.50)

As shown in section 3.10 of [44] the following equations hold

�(��) =
1

2
(dg�� +Q��); (C.51)

��� ^ #� = T� � C� := ��; (C.52)

��� = e[�c��] � 1

2
(e�ce�c�)# + �(��) +

�
e�c�(�) � e�c�(�)

�
#: (C.53)

This set of equations leads to the following expression for the connection:

��� =
1

2
dg�� +

�
e[�cdg�]

�
# + e[�cC�] � 1

2
(e�ce�cC)#

�e[�cT�] + 1

2
(e�ce�cT)# + 1

2
Q�� +

�
e[�cQ�]

�
# (C.54)

= �
fg
�� � e[�cT�] +

1

2
(e�ce�cT)# + 1

2
Q�� +

�
e[�cQ�]

�
# : (C.55)



Appendix D

Computer stu�

Throughout this work we made extensive use of the common computer algebra systems
Reduce 3.7 and Maple 5.1/7.0/8.0, cf. �gure D.1. In some special cases we also
used Mathematica 4.1 to perform cross-checks. For a general introduction into Reduce
and Mathematica see [30]{[34]. For the use of computer algebra systems in gravity see
[29, 42, 43], e.g. The documentation of the popular GRTensor II package can be found in
[41]. Due to limited space we display only some of the Reduce routines in this appendix.
However, all �les can be requested from the author via email (dp@thp.uni-koeln.de).

Figure D.1: Schematic drawing of the di�erent computer algebra systems used through-
out this thesis. The arrows symbolize the data exchange between the systems. When
searching for exact solutions one starts, in most cases, at the lower left corner of the
diagram performing several iterations clockwise.

Figure D.2 contains a test of our implementation of the downhill simplex method of
Nelder and Mead [35, 40]. We used this method in our search for the best-�t parameters
in section 3.9.
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Figure D.2: Test of the downhill simplex implementation of Nelder and Mead [35, 40].
On the top lhs a test function is plotted. The second row shows how an initial green
and red simplex fall into the minima after suÆciently many iterations. The top rhs
�gure shows the result for a random distribution of 100 simplices after 100 iterations
(all drawn in red).

D.1 General routines

D.1.1 Decomposition routines
%

% magdec

%

% Dirk Puetzfeld

%

% decomposition routines used in MAG cf. notation in

% Socorro et al. Comp. Phys. Comm. 115 gr-qc/9804068

% and Hehl et al. Phys. Rep. 1995 258 1+2.

%

% Last update: 2002-12-12 by dp

%

% List of the included routines:

%

% decomposeRotationalCurvature tested.

% decomposeStrainCurvature tested.

% decomposeTorsion tested.

% decomposeNonmetricity tested.

% checkStrainCurvature tested.

% checkRotationalCurvature tested.
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% checkTorsion tested.

% checkNonmetricity tested.

% displayStrainCurvature tested.

% displayRotationalCurvature tested.

% displayTorsion tested.

% displayNonmetricity tested.

%

let calculateConnectionCurvature=begin

write "calculating connection and curvature..."$

%

% Calculation of the connection and curvature

%

% needs: coframe o(a), frame e(a), metric g(a,b),

% torsion2(a) , nonmetricity nonmet1(a,b)

%

pform conn1(a,b)=1,{anhol2(a),curv2(a,b)}=2$

anhol2(a) := d o(a)$

conn1(-a,-b) := (1/2) * d g(-a,-b) +(1/2) * (e(-a) _| (d g(-b,-c)) - e(-b) _| (d g(-a,-c))) * o(c)

+ (1/2) * (e(-a) _| anhol2(-b) - e(-b)_| anhol2(-a))

- (1/2) * (e(-a) _| (e(-b) _| anhol2(-c))) * o(c)

-(1/2) * (e(-a) _| torsion2(-b) - e(-b) _| torsion2(-a))

+ (1/2) * (e(-a) _| (e(-b) _| torsion2(-c))) * o(c) + (1/2) * nonmet1(-a,-b)

+(1/2) * (e(-a) _| nonmet1(-b,-c) - e(-b) _| nonmet1(-a,-c)) * o(c)$

curv2(-a,b) := d conn1(-a,b) - conn1(-a,c) ^ conn1(-c,b)$

end$

let decomposeRotationalCurvature=begin

write "decomposing rotational curvature..."$

%

% Decomposition of the rotational curvature

%

% needs: coframe o(a), frame e(a), metric g(a,b), curv2(a,b)

%

pform {wzero,xzero}=0,

{wone1(a),xone1(a),psi1(a),phi1(a)}=1,

{w2(a,b),paircom2(a,b),pscalar2(a,b),ricsymf2(a,b),

ricanti2(a,b),scalar2(a,b),weyl2(a,b),sdweyl2(a,b)}=2$

w2(-a,-b) := (1/2) * (curv2(-a,-b) - curv2(-b,-a))$

wone1(a) := e(-b) _| w2(a,b)$

wzero := e(-b) _| wone1(b)$

xone1(a) := #(w2(b,a) ^ o(-b))$

xzero := e(-a) _| xone1(a)$

psi1(-a) := xone1(-a) - (1/4) * o(-a) ^ xzero - (1/2) * e(-a) _| (o(b) ^ xone1(-b))$

phi1(-a) := wone1(-a) - (1/4) * o(-a) * wzero - (1/2) * e(-a) _| (o(b) ^ wone1(-b))$

paircom2(-a,-b) := -(1/2) * #(o(-a) ^ psi1(-b) - o(-b) ^ psi1(-a))$

pscalar2(-a,-b) := -(1/12) * #(xzero ^ o(-a) ^ o(-b))$

ricsymf2(-a,-b) := -(1/2) * (o(-a) ^ phi1(-b) - o(-b) ^ phi1(-a))$

ricanti2(-a,-b) := -(1/4) * (o(-a) ^ (e(-b) _| (o(c) ^ wone1(-c)))- o(-b) ^ (e(-a) _| (o(c) ^ wone1(-c))))$

scalar2(-a,-b) := -(1/12) * wzero * o(-a) ^ o(-b)$

weyl2(-a,-b) := w2(-a,-b) - paircom2(-a,-b) - pscalar2(-a,-b) - ricsymf2(-a,-b)

- ricanti2(-a,-b) - scalar2(-a,-b)$

sdweyl2(-a,-b) := (1/2) * (weyl2(-a,-b) - i * #weyl2(-a,-b))$
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% clear wzero,xzero,wone1(a),xone1(a),psi1(a),phi1(a)$

end$

let decomposeStrainCurvature = begin

write "decomposing symmetric curvature..."$

%

% Decomposition of the strain curvature

%

% needs: coframe o(a), frame e(a), metric g(a,b), curv2(a,b)

%

pform {ztracef1(a),yy1(a),xi1(a),upsilon1(a)}=1,

{z2(a,b),ztracef2(a,b),delta2,zcurvone2(a,b),zcurvtwo2(a,b),

zcurvthree2(a,b),dilcurv2(a,b),zcurvfive2(a,b)}=2$

z2(-a,-b) := (1/2) * (curv2(-a,-b) + curv2(-b,-a))$

ztracef2(-a,-b) := z2(-a,-b) - (1/4) * g(-a,-b) * z2(-c,c)$

ztracef1(-a) := e(b) _| ztracef2(-a,-b)$

delta2 := (1/2) * o(a) ^ ztracef1(-a)$

yy1(-a) := #(ztracef2(-a,-b) ^ o(b))$

xi1(-a) := ztracef1(-a) - (1/2) * e(-a) _| (o(c) ^ ztracef1(-c))$

upsilon1(-a) := yy1(-a) - (1/2) * e(-a) _| (o(c) ^ yy1(-c))$

zcurvtwo2(-a,-b) := -(1/4) * #(o(-a) ^ upsilon1(-b) + o(-b) ^ upsilon1(-a))$

zcurvthree2(-a,-b) := -(1/6) * (2 * (o(-a) ^ (e(-b) _| delta2) + o(-b) ^ (e(-a) _| delta2)) - 2 * g(-a,-b) * delta2)$

dilcurv2(-a,-b) := (1/4) * g(-a,-b) * z2(-c,c)$

zcurvfive2(-a,-b) := (1/4) * (o(-a) ^ xi1(-b) + o(-b) ^ xi1(-a))$

zcurvone2(-a,-b) := z2(-a,-b) - zcurvtwo2(-a,-b) - zcurvthree2(-a,-b) - dilcurv2(-a,-b) - zcurvfive2(-a,-b)$

% clear ztracef1(a),yy1(a),xi1(a),upsilon1(a),ztracef2(a,b),delta2$

end$

let decomposeTorsion = begin

write "decomposing torsion..."$

%

% Decomposition of the torsion

%

% needs: coframe o(a), frame e(a), metric g(a,b), torsion2(a)

%

pform {tentor2(a),trator2(a),axitor2(a)}=2$

trator2(a) := (1/3) * o(a) ^ (e(-b) _| torsion2(b))$

axitor2(a) := (1/3) * e(a) _| (o(-b) ^ torsion2(b))$

tentor2(a) := torsion2(a) - trator2(a) - axitor2(a)$

end$

let decomposeNonmetricity = begin

write "decomposing nonmetricity..."$

%

% Decomposition of the nonmetricity

%

% needs: coframe o(a), frame e(a), metric g(a,b), nonmet1(a,b)

%

pform lamzero(a)=0,

{weylcovector1,nomtracefree1(a,b),lamone1,binom1(a,b),
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vecnom1(a,b),trinom1(a,b),conom1(a,b)}=1,

{thetatwo2(a),omega2(a)}=2,

thetathree3=3$

weylcovector1 := nonmet1(-c,c) / 4$

nomtracefree1(-a,-b) := nonmet1(-a,-b) - g(-a,-b) * weylcovector1$

lamzero(-a) := e(b) _| nomtracefree1(-a,-b)$

lamone1 := lamzero(-a) * o(a)$

thetatwo2(-a) := #(nomtracefree1(-a,-b) ^ o(b))$

thetathree3 := o(a) ^ thetatwo2(-a)$

omega2(-a) := thetatwo2(-a) - (1/3) * e(-a) _| thetathree3$

binom1(-a,-b) := (1/3) * #(o(-a) ^ omega2(-b) + o(-b) ^ omega2(-a))$

vecnom1(-a,-b) := (4/9) * ((o(-b) * lamzero(-a) + o(-a) * lamzero(-b)) /2 - g(-a,-b) * lamone1/4)$

conom1(-a,-b) := g(-a,-b) * weylcovector1$

trinom1(-a,-b) := nonmet1(-a,-b) - binom1(-a,-b) - vecnom1(-a,-b) - conom1(-a,-b)$

%clear lamzero(a),nomtracefree1(a,b),lamone1,thetatwo2(a),omega2(a),thetathree3=3$

end$

let checkStrainCurvature = begin

write "test if decomposition of the strain curvature works..."$

%

% Checks consistency of the strain curvature decomposition

%

% needs: z2(-a,-b), zcurvone2(-a,-b), zcurvtwo2(-a,-b),

% zcurvthree2(-a,-b), dilcurv2(-a,-b), zcurvfive2(-a,-b)

%

pform hilf1(a,b)=2$

hilf1(-a,-b) := z2(-a,-b) - zcurvone2(-a,-b) - zcurvtwo2(-a,-b) - zcurvthree2(-a,-b)

- dilcurv2(-a,-b) - zcurvfive2(-a,-b)$

hilf2:=0$

for zaehler1:=0:3 do <<

for zaehler2:=0:3 do <<

if hilf1(-zaehler1,-zaehler2) neq 0 then hilf2:=hilf2+1$

>>;

>>;

if hilf2 = 0 then write "decomposition ok..." else write "something is wrong..."$

clear hilf1,hilf2,zaehler1,zaehler2$

end$

let checkRotationalCurvature = begin

write "test if decomposition of the rotational curvature works:"$

%

% Checks consistency of the rotational curvature decomposition

%

% needs: w2(-a,-b), paircom2(-a,-b), pscalar2(-a,-b),

% ricsymf2(-a,-b), ricanti2(-a,-b), scalar2(-a,-b), weyl2(-a,-b)

%

pform hilf1(a,b)=2$

hilf1(-a,-b):=w2(-a,-b) - paircom2(-a,-b) - pscalar2(-a,-b) - ricsymf2(-a,-b)
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- ricanti2(-a,-b) - scalar2(-a,-b) - weyl2(-a,-b)$

hilf2:=0$

for zaehler1:=0:3 do <<

for zaehler2:=0:3 do <<

if hilf1(-zaehler1,-zaehler2) neq 0 then hilf2:=hilf2+1$

>>;

>>;

if hilf2 = 0 then write "decomposition ok..." else write "something is wrong..."$

clear hilf1,hilf2,zaehler1,zaehler2$

end$

let checkTorsion = begin

write "test if decomposition of the torsion works:"$

%

% Checks consistency of the torsion decomposition

%

% needs: torsion2(a), tentor2(a), trator2(a), axitor2(a)

%

pform hilf1(a)=2$

hilf1(a) := torsion2(a) - tentor2(a) - trator2(a) - axitor2(a)$

hilf2 := 0$

for zaehler1:=0:3 do <<

if hilf1(zaehler1) neq 0 then hilf2:=hilf2+1$

>>;

if hilf2 = 0 then write "decomposition ok..." else write "something is wrong..."$

clear hilf1,hilf2,zaehler1$

end$

let checkNonmetricity = begin

write "test if decomposition of the nonmetricity works:"$

%

% Checks consistency of the torsion decomposition

%

% needs: nonmet1(-a,-b), trinom1(-a,-b), binom1(-a,-b)

% vecnom1(-a,-b), conom1(-a,-b)

%

pform hilf1(a,b)=1$

hilf1(-a,-b) := nonmet1(-a,-b)- trinom1(-a,-b) - binom1(-a,-b) - vecnom1(-a,-b) - conom1(-a,-b)$

hilf2 := 0$

for zaehler1:=0:3 do <<

for zaehler2:=0:3 do <<

if hilf1(-zaehler1,-zaehler2) neq 0 then hilf2:=hilf2+1$

>>;

>>;

if hilf2 = 0 then write "decomposition ok..." else write "something is wrong..."$
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clear hilf1,hilf2,zaehler1,zaehler2$

end$

let displayStrainCurvature = begin

write "the irreducible pieces of the strain curvature read..."$

%

% Displays the irreducible pieces of the strain curvature

%

% needs: zcurvone2(-a,-b), zcurvtwo2(-a,-b), zcurvthree2(-a,-b),

% dilcurv2(-a,-b), zcurvfive2(-a,-b)

%

% recalculate pieces

zcurvone2(-a,-b)$

zcurvtwo2(-a,-b)$

zcurvthree2(-a,-b)$

dilcurv2(-a,-b)$

zcurvfive2(-a,-b)$

% display pieces

write "zcurvone2(-a,-b):"$ write zcurvone2(-a,-b)$

write "zcurvtwo2(-a,-b):"$ write zcurvtwo2(-a,-b)$

write "zcurvthree2(-a,-b):"$ write zcurvthree2(-a,-b)$

write "dilcurv2(-a,-b):"$ write dilcurv2(-a,-b)$

write "zcurvfive2(-a,-b):"$ write zcurvfive2(-a,-b)$

end$

let displayRotationalCurvature = begin

write "irreducible pieces of the rotational curvature"$

%

% Displays the irreducible pieces of the rotational curvature

%

%

% needs: paircom2(-a,-b), pscalar2(-a,-b), ricsymf2(-a,-b),

% ricanti2(-a,-b), scalar2(-a,-b), weyl2(-a,-b)

%

% recalculate pieces

paircom2(-a,-b)$

pscalar2(-a,-b)$

ricsymf2(-a,-b)$

ricanti2(-a,-b)$

scalar2(-a,-b)$

weyl2(-a,-b)$

% display pieces

write "paircom2:"$ write paircom2(-a,-b)$

write "pscalar2:"$ write pscalar2(-a,-b)$

write "ricsymf2:"$ write ricsymf2(-a,-b)$

write "ricanti2:"$ write ricanti2(-a,-b)$

write "scalar2:"$ write scalar2(-a,-b)$

write "weyl2:"$ write weyl2(-a,-b)$

end$
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let displayTorsion = begin

write "irreducible pieces of the torsion"$

%

% Displays irreducible pieces of the torsion

%

% needs: tentor2(a), trator2(a), axitor2(a)

%

% recalculate pieces

tentor2(a)$

trator2(a)$

axitor2(a)$

% display pieces

write "tentor2(a):"$ write tentor2(a)$

write "trator2(a):"$ write trator2(a)$

write "axitor2(a):"$ write axitor2(a)$

end$

let displayNonmetricity = begin

write "irreducible pieces of the nonmetricity"$

%

% Displays the irreducible pieces of the nonmetricity

%

% needs: trinom1(-a,-b), binom1(-a,-b), vecnom1(-a,-b), conom1(-a,-b)

%

% recalculate pieces

trinom1(-a,-b)$

binom1(-a,-b)$

vecnom1(-a,-b)$

conom1(-a,-b)$

% display pieces

write "trinom1(-a,-b)"$ write trinom1(-a,-b)$

write "binom1(-a,-b)"$ write binom1(-a,-b)$

write "vecnom1(-a,-b)"$ write vecnom1(-a,-b)$

write "conom1(-a,-b)"$ write conom1(-a,-b)$

end$

$end$

D.1.2 Noether identities
%

% General form of the Noether identities

%

% Dirk Puetzfeld

%

% needs: mhypermom3(a,b),menergy3(a),mstress4(a,b)

%

% Last update: 2002-12-12 by dp

%

let NoetherIdentities=begin



D.1. GENERAL ROUTINES 129

pform {nfirst4(a),nsecond4(a,b)}=4$

pform {Dmenergy4(a),Dmhypermom4(a,b)}=4$

Dmenergy4(-a) := d menergy3(-a) - conn1(-a,b) ^ menergy3(-b)$

Dmhypermom4(a,-b) := d mhypermom3(a,-b) + conn1(-c,a) ^ mhypermom3(c,-b) - conn1(-b,c) ^ mhypermom3(a,-c)$

nfirst4(-a) := Dmenergy4(-a) - (e(-a) _| torsion2(b)) ^ menergy3(-b) + (1/2) * (e(-a)

_| nonmet1(-b,-c)) * mstress4(b,c) - (e(-a) _| curv2(-b,c)) ^ mhypermom3(b,-c)$

nsecond4(a,-b) := Dmhypermom4(a,-b) - g(-b,-c) * mstress4(a,c) + o(a) ^ menergy3(-b)$

end$

let displayFieldEquations=begin

write "MAG field equations:"$

write "first:"$

write first3(-a)-menergy3(-a);

write "second:"$

write second3(-a,-b)-mhypermom3(-a,-b);

end$

let displayNoetherIdentities=begin

write "Noether identities:"$

write "nfirst:"$

write nfirst4(-a)$

write "nsecond:"$

write nsecond4(-a,-b)$

end$

$end$

D.1.3 Triplet ansatz in vacuum
% triplet_vacuum

%

% Dirk Puetzfeld

%

% Implements the triplet ansatz Lagrangian

% and calculates the gauge field excitation

% and the corresponding field equations

% for the vacuum case.

%

% last update: 2003-01-19 by dp

%

let TripletExcitationsLagrangian=begin

pform {htr2(a),hrot2(a,b)}=2,

{energy3(a),hypermom3(a,b),capm3(a,b)}=3,

{lagone4,lagtwo4,lagthree4,lagfour4,lagfive4,lagsix4,lag4}=4$

% strong represents the strong coupling constant

% kappa represents the weak coupling constant

htr2(-a) := -(1/kappa) * #(aa1 * tentor2(-a) + aa2 * trator2(-a) + aa3 * axitor2(-a)

+(cc2 * binom1(-a,-b) + cc3 * vecnom1(-a,-b) + cc4 * conom1(-a,-b)) ^ o(b))$

hrot2(a,-b) := (aa0/(2*kappa)) * eta2(a,-b) + (zz4/strong) * (# dilcurv2(a,-b))$

capm3(a,b) := -(2/kappa) * ( #(bb1 * trinom1(a,b) + bb2 * binom1(a,b)

+ bb3 * vecnom1(a,b) + bb4 * conom1(a,b)) + (1/4) *

bb5 * (o(a) ^ #(weylcovector1 ^ o(b)) + o(b) ^ #(weylcovector1 ^ o(a))

- (1/2) * g(a,b) * #(3 * weylcovector1 + lamone1))
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+ (1/2) * cc2 * (o(a) ^ # tentor2(b) + o(b) ^ # tentor2(a))

+ (1/2) * cc3 * (o(a) ^ # trator2(b) + o(b) ^ # trator2(a))

+ (1/4) * (cc3 - cc4) * g(a,b) * # (e(-c) _| torsion2(c)))$

lagone4 := (1 / (2*kappa)) * (-aa0 * curv2(a,b) ^ eta2(-a,-b) - 2 * lamda * eta4)$

lagtwo4 := (1 / (2*kappa)) * torsion2(a) ^ # (aa1 * tentor2(-a) + aa2 * trator2(-a) + aa3 * axitor2(-a))$

lagthree4 := (1 / kappa) * (cc2 * binom1(-a,-b) + cc3 * vecnom1(-a,-b)

+ cc4 * conom1(-a,-b)) ^ o(a) ^ # torsion2(b)$

lagfour4 := (1 / (2*kappa)) * nonmet1(-a,-b) ^ # (bb1 * trinom1(a,b) + bb2 * binom1(a,b)

+ bb3 * vecnom1(a,b) + bb4 * conom1(a,b)) $

lagfive4 :=-(zz4 / (2*strong)) * curv2(a,b) ^ (# dilcurv2(-a,-b))$

lagsix4 := (bb5 / (2*kappa)) * (vecnom1(-a,-c) ^ o(a) ^ #(conom1(b,c) ^ o(-b)))$

lag4 := lagone4 + lagtwo4 + lagthree4 + lagfour4 + lagfive4 + lagsix4$

write "m**2=0 equals:"$

32 * bb4 * aa2 * bb3 - 12 * aa0 * aa2 * bb3 - 64 * bb4 * aa0 * bb3 - 24 * bb3 * cc4**2

- 48 * bb3 * cc4 * aa0 - 32 * bb4 * aa0**2 - 24 * bb4 * cc3**2 + 9 * aa2 * bb5 * aa0

- 6 * aa2 * aa0**2 + 9 * aa0 * cc3**2 - 48 * bb4 * cc3 * aa0 + 4 * bb4 * aa2 * aa0

-24 * aa0**2 * cc4 + 9 * aa0 * bb5**2 - (9/2) * aa2 * bb5**2 - 3 * aa0 * cc4**2

+ 18 * cc3 * cc4 * bb5 - 18 * cc3 * cc4 * aa0 + 18 * cc3 * aa0 * bb5 +18 * aa0 * cc4 * bb5:=0;

end$

let FieldEquations=begin

pform {first3(a),second3(a,b),Dhtr3(a),Dhrot3(a,b)}=3$

Dhtr3(-a) := d htr2(-a) - conn1(-a,b) ^ htr2(-b)$

Dhrot3(a,-b) := d hrot2(a,-b) + conn1(-c,a) ^ hrot2(c,-b) - conn1(-b,c) ^ hrot2(a,-c)$

energy3(-a) := e(-a) _| lag4 + (e(-a) _| torsion2(b)) ^ htr2(-b) + (e(-a) _| curv2(-b,c)) ^ hrot2(b,-c)

+ (1/2) * (e(-a) _| nonmet1(-b,-c)) * capm3(b,c)$

hypermom3(a,-b) := -o(a) ^ htr2(-b) - capm3(a,-b)$

%

% note that maxenergy3 may vanish

%

%first3(-a):= Dhtr3(-a) - energy3(-a) - maxenergy3(-a)$

first3(-a):= Dhtr3(-a) - energy3(-a)$

second3(-a,-b):= Dhrot3(-a,-b) - hypermom3(-a,-b)$

end$

$end$

D.1.4 Extended Weyl-Cartan Lagrangian (V1 =
P4

I=1 cI
(I)Q�� ^

?Q��)
%

% Implements the Lagrangian of the extended Weyl-Cartan model

% and calculates the gauge field excitation and the corresponding

% field equations on the basis of the magdec decomposition.

%

% Dirk Puetzfeld

%

% Last update: 2002-12-12 by dp

%

let AddQuadNonmetricityExcitationsLagrangian=begin
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pform {htr2(a),hrot2(a,b)}=2,

{energy3(a),hypermom3(a,b),capm3(a,b)}=3,

{lagone4,lagtwo4,lagthree4,lagfour4,lagfive4,lagsix4,lag4}=4$

% strong represents the strong coupling constant

% kappa represents the weak coupling constant

htr2(-a) := 0$

hrot2(a,-b) := -(chi / (2*kappa)) * eta2(-b,a) - 2 * aa1 * (# weyl2(-b,a)) - 2 * aa2 * (# paircom2(-b,a))

- 2 * aa3 * (# pscalar2(-b,a)) - 2 * aa4 * (# ricsymf2(-b,a)) - 2 * aa5 * (# ricanti2(-b,a))

- 2 * aa6 * (# scalar2(-b,a)) - (bb/2) * g(a,-c) * g(c,-b) * (# curv2(-j,j))$

capm3(a,b) := -4 * cc * (# nonmet1(b,a))$

lagone4 := (chi /(2*kappa)) * curv2(-a,b) ^ eta2(-b,a)$

lagtwo4 := aa1 * weyl2(-a,b) ^ (# curv2(-b,a)) + aa2 * paircom2(-a,b) ^ (# curv2(-b,a))

+ aa3 * pscalar2(-a,b) ^ (# curv2(-b,a)) + aa4 * ricsymf2(-a,b) ^ (# curv2(-b,a))

+ aa5 * ricanti2(-a,b) ^ (# curv2(-b,a)) + aa6 * scalar2(-a,b) ^ (# curv2(-b,a))$

lagthree4 := (bb/2) * (curv2(-a,-b) ^ (# curv2(b,a)) + curv2(-b,-a) ^ (# curv2(b,a)))$

lagfour4 := cc * (nonmet1(-a,-b) ^ (# nonmet1(b,a)))$

lag4 := lagone4+lagtwo4+lagthree4+lagfour4$

%clear lagone4,lagtwo4,lagthree4,lagfour4,lagfive4,lagsix4$

end$

let FieldEquations=begin

pform {first3(a),second3(a,b),Dhtr3(a),Dhrot3(a,b)}=3$

Dhtr3(-a) := d htr2(-a) - conn1(-a,b) ^ htr2(-b)$

Dhrot3(a,-b) := d hrot2(a,-b) + conn1(-c,a) ^ hrot2(c,-b) - conn1(-b,c) ^ hrot2(a,-c)$

energy3(-a) := e(-a) _| lag4 + (e(-a) _| torsion2(b)) ^ htr2(-b) + (e(-a) _| curv2(-b,c)) ^ hrot2(b,-c)

+ (1/2) * (e(-a) _| nonmet1(-b,-c)) * capm3(b,c)$

hypermom3(a,-b) := -o(a) ^ htr2(-b) - g(-b,-c) * capm3(a,c)$

first3(-a) := Dhtr3(-a) - energy3(-a)$

second3(-a,-b) := Dhrot3(-a,-b) - hypermom3(-a,-b)$

end$

$end$

D.2 Cosmology

D.2.1 Standard model
%

% Standard cosmology with Robertson-Walker metric and ideal fluid

%

%

%

% last update: 2003-01-11 by dp

%

on gc; on ezgcd;

out "robertson_walker.reo";

showtime;

load_package excalc$

pform ss=0$
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fdomain ss=ss(t);

% Coordinates (t,r,theta,phi)

coframe o(0)=d t,

o(1)=ss * (1-kk * r**2)**(-1/2) * d r,

o(2)=ss * r * d theta,

o(3)=ss * r * sin(theta) * d phi

with

metric g= - o(0) * o(0) + o(1) * o(1) + o(2) * o(2) + o(3) * o(3)$

frame e$

on nero;

riemannconx chris1 $

chris1(-a,b) := chris1(b,-a)$

pform curv2(a,b)=2$

curv2(-a,b) := d chris1(-a,b) + chris1(-c,b) ^ chris1(-a,c)$

pform ricci1(a)=1$

pform rscalar=0$

ricci1(a) := e(-b) _| curv2(a,b)$

rscalar := e(-a) _| ricci1(a)$

pform tfricci1(a)=1$

pform {fourcurv2(a,b),sixcurv2(a,b),weylc2(a,b),sdweylc2(a,b),cotton2(a)}=2$

tfricci1(-a) := ricci1(-a) - (1/4) * rscalar * o(-a)$

fourcurv2(-a,-b) := - (1/2) * (o(-a) ^ tfricci1(-b) - o(-b) ^ tfricci1(-a))$

sixcurv2(-a,-b) := - (1/12) * rscalar * o(-a) ^ o(-b)$

weylc2(-a,-b) := curv2(-a,-b) - fourcurv2(-a,-b) - sixcurv2(-a,-b)$

sdweylc2(a,b) := (1/2) * (weylc2(a,b) + i * #weylc2(a,b))$

pform eta0(a,b,c,d)=0,eta1(a,b,c)=1,eta2(a,b)=2,eta3(a)=3,eta4=4$

eta4 := # 1 $

eta3(a) := e(a) _| eta4 $

eta2(a,b) := e(b) _| eta3(a) $

eta1(a,b,c) := e(c) _| eta2(a,b) $

eta0(a,b,c,d) := e(d) _| eta1(a,b,c) $

off nat$

pform fluidenergy3(-a)=3$

pform fluid_components0(-a,-b)=0$

pform {mue,pp}=0$

fdomain mue=mue(t),pp=pp(t)$

pform uu(a)=0$

uu(0):=1;uu(1):=0;uu(2):=0;uu(3):=0;

fluid_components0(a,b) := (mue+pp) * uu(a) * uu(b) + pp * g(a,b);

fluidenergy3(-a) := fluid_components0(-a,-b) * eta3(b);
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write "Einstein field equation with cosmological constant:"$

pform gleichung(-a)=3;

gleichung(-a) := eta1(-a,-b,-c) ^ curv2(b,c) + 2 * lamda * eta3(-a) - 2 * kappa *fluidenergy3(-a);

pform {nfirst4(a),Dmenergy4(a)}=4$

Dmenergy4(-a) := d fluidenergy3(-a) - chris1(-a,b) ^ fluidenergy3(-b)$

nfirst4(-a) := Dmenergy4(-a)$

write "First Noether identity:"$

nfirst4(-a);

write "Curvature invariant:"$

write (# (curv2(a,b) ^ (# curv2(-a,-b))))$

showtime;

shut "robertson_walker.reo";

end$

bye;

D.2.2 Extended Weyl-Cartan model
%

% A cosmological model in Weyl-Cartan spacetime

%

%

% Dirk Puetzfeld

%

% last update 2003-01-14 by dp

%

%

% In this file we perform some of the calculations for the

% Weyl-Cartan model presented in CQG 19 (2002) 3363-3280.

%

% Note in the Weyl-Cartan spacetime (Y4) the nonmetricity

% is related to the so called Weyl 1-form, i.e. only the

% trace part survives

%

% Additionally the symmetric part of the curvature turns

% out to be proportonial to the derivative of the Weyl 1-form.

%

% Note: Note that there are several switches an commented

% areas which have to selected. Be sure to select

% the correct branch for omega.

%

% Needs: magdec

% extweyl_lagrangian

%

showtime;

on gc; on ezgcd; on nero;

out "weyl_quad_nonmet.reo";

load_package excalc$
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pform ss=0$

fdomain ss=ss(t);

% Coordinates (t,r,theta,phi)

coframe o(0)=d t,

o(1)=(1 - kk * r**2)**(-1/2) * ss * d r,

o(2)=ss * r * d theta,

o(3)=ss * r * sin(theta) * d phi

with

metric g=o(0)*o(0) - o(1)*o(1) - o(2)*o(2) - o(3)*o(3)$

frame e$

write "components of the metric:"$

write g(-a,-b);

% Ansatz for omega entering the definition of torsion and nonmetricity

on nero;

pform omega1=1 $

% SWITCHES !

%

% ansatz_switch : 1 -> xi=xi(t,r)

% 2 -> xi=xi(t)

%

%

% simplifcation_switch : 1 -> simplifications belonging to ansatz 1

% 2 -> ppt:=ppr

%

% equation_of_state_switch : 1 -> vacuum ppr:=-mue

% 2 -> radiation ppr:=(1/3) * mue

% 3 -> matter ppr:=0

% 4 -> parametrized 1: ppr:=ww(t) * mue(t)

% with xif=iota/S ansatz

% 5 -> parametrized 2: ppr:=ww(t) * mue(t)

%

%

ansatz_switch := 2;

simplification_switch := 2;

equation_of_state_switch := 4;

write "Selecting explicit omega1:";

pform xif=0$

if ansatz_switch=1 then <<

write "Choosing domain of xi=xi(t,r)...";

fdomain xif=xif(t,r)$

>>;

if ansatz_switch=2 then <<

write "Choosing domain of xi=xi(t)...";

fdomain xif=xif(t)$

>>;

omega1 := (xif/ss) * o(0);

% Computation of the torsion and nonmetricity

pform torsion2(a)=2,nonmet1(a,b)=1$
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nonmet1(a,b) := g(a,b) * omega1$

torsion2(a) := (1/2) * omega1 ^ o(a)$

% Computation of the curvature and eta basis

pform eta0(a,b,c,d)=0,eta1(a,b,c)=1,eta2(a,b)=2,eta3(a)=3,eta4=4$

eta4 := # 1$

eta3(a) := e(a) _| eta4$

eta2(a,b) := e(b) _| eta3(a)$

eta1(a,b,c) := e(c) _| eta2(a,b)$

eta0(a,b,c,d) := e(d) _| eta1(a,b,c)$

pform menergy3(-a)=3$

pform fluid_components0(-a,-b)=0$

pform {mue,ppr,ppt}=0$

fdomain mue=mue(t),ppr=ppr(t),ppt=ppt(t)$

fluid_components0(0,0):=mue;fluid_components0(0,1):=0;fluid_components0(0,2):=0;fluid_components0(0,3):=0;

fluid_components0(1,0):=0;fluid_components0(1,1):=ppr;fluid_components0(1,2):=0;fluid_components0(1,3):=0;

fluid_components0(2,0):=0;fluid_components0(2,1):=0;fluid_components0(2,2):=ppt;fluid_components0(2,3):=0;

fluid_components0(3,0):=0;fluid_components0(3,1):=0;fluid_components0(3,2):=0;fluid_components0(3,3):=ppt;

menergy3(-a) := fluid_components0(-a,-b) * eta3(b);

in "magdec"$

calculateConnectionCurvature$

decomposeRotationalCurvature$

decomposeStrainCurvature$

decomposeTorsion$

decomposeNonmetricity$

checkStrainCurvature$

checkRotationalCurvature$

checkTorsion$

checkNonmetricity$

write "Geometrical quantities:";

off nat;

write ricsymf2(a,b);

write scalar2(a,b);

write dilcurv2(a,b);

displayStrainCurvature;

displayRotationalCurvature;

displayTorsion;

displayNonmetricity;

on nat;

write "Check if decomposition of the symmetric part of the curvature (strain curvature) equals d omega:"$

zcurvone2(-a,-b) + zcurvtwo2(-a,-b) + zcurvthree2(-a,-b) + dilcurv2(-a,-b)

+ zcurvfive2(-a,-b) - (1/2) * g(-a,-b) * d omega1;

in "extweyl_lagrangian"$

AddQuadNonmetricityExcitationsLagrangian$

FieldEquations$

pform mhypermom3(a,b)=3$
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write "Matter-hypermomentum calculated from nonmetricity:"$

off nat;

write mhypermom3(-a,-b) := -(1/4) * g(-a,-b) * (bb * (d (# (d nonmet1(c,-c))))

+ cc * g(-m,-n) * ( #(g(n,m) * nonmet1(c,-c))));

pform mstress4(a,b)=4$

write "Metric stress-energy:"$

write mstress4(-a,-b) := -(1/4) * g(-a,-b) * (d hypermom3(c,-c))

+ (1/2) * (o(-a) ^ menergy3(-b) + o(-b) ^ menergy3(-a))$

in "noether"$

NoetherIdentities$

off nero;on exp;off nat;

displayFieldEquations$

displayNoetherIdentities$

write "Connection 1-form:";

on nero;

write conn1(-a,-b);

write e(a) _| conn1(-b,-c);

write "Noether identity rewritten by Obukhov cf. gr-qc/9604047 eq. (52)";

riemannconx chris1 $

chris1(-a,b):=chris1(b,-a)$

pform nonriemconn1(-a,-b)=1$

nonriemconn1(-a,-b):=conn1(-a,-b) - chris1(-a,-b);

write "Non-Riemannian parts of eq. (52):";

pform nonriemnoetherlhs4(-a)=4$

nonriemnoetherlhs4(-a) := d (mhypermom3(b,c) * (e(-a) _| nonriemconn1(-b,-c)))

- chris1(-a,d) ^ (mhypermom3(b,c) * (e(-d) _| nonriemconn1(-b,-c)))

+ mhypermom3(b,c) ^ (e(-a) |_ nonriemconn1(-b,-c));

on nat;

write "Hodge dual of the cov. derivative of the hypermomentum (check hyperfluid relation)";

off nat;

pform dmhyper0(-a,-b)=0;

write dmhyper0(a,-b) := #(d mhypermom3(a,-b) + conn1(a,-c) ^ mhypermom3(c,-b));

write "Check if last term in (3.28) of Obukhov vanishes";

off nero;

write g(-c,-a) * dmhyper0(c,-b) - g(-c,-b) * dmhyper0(c,-a);
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write "Check mstress symmetry"$

write mstress4(-a,-b) - mstress4(-b,-a);

off nero;

if simplification_switch=2 then <<

write "Radial and tangential stresses are equal for xi=xi(t):";

ppt:=ppr;

if equation_of_state_switch=1 then <<

write "Vacuum equation of state:";

ppr := - mue;

write "Mue expressed via xi:";

write mue := - 2 * cc * (xif / ss)**2;

>>;

if equation_of_state_switch=2 then <<

write "Radiative equation of state:";

ppr := (1/3) * mue;

write "relation for xif from (1.60)):";

write 8 * cc * (xif / ss)**2 := 0;

>>;

if equation_of_state_switch=3 then <<

write "Matter dominated equation of state:";

ppr := 0;

write "Relation between mue and xif:";

write mue := -8 * cc * (xif / ss)**2;

>>;

if equation_of_state_switch=4 then <<

write "Parametrized equation of state:";

pform ww=0;

fdomain ww=ww(t);

ppr := ww * mue;

write "Relation between mue and xif:";

write mue := -8 * cc / (1 - 3 * ww) * (xif / ss)**2;

>>;

if equation_of_state_switch=5 then <<

write "Parametrized equation of state:";

pform ww=0;

fdomain ww=ww(t);

ppr := ww * mue;

write "Relation between mue and xif:";

write mue := -8 * cc / (1 - 3 * ww) * (xif / ss)**2;

>>;

on nero;

displayFieldEquations$

displayNoetherIdentities$

% Vacuum solution

if equation_of_state_switch=1 then <<

write "Noether identity yields relation between xi(t) and S(t):";

write xif := iota / ss;

>>;

if equation_of_state_switch=2 then <<

write "Noether identity yields relation between mue(t) and S(t):";

write mue := iota / ss**4;
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>>;

if equation_of_state_switch=3 then <<

write "Noether identity yields relation between xi(t) and S(t):";

write xif := iota / ss;

>>;

if equation_of_state_switch=4 then <<

write "Noether identity yields relation between xi(t) and S(t):";

write xif := iota / ss;

>>;

if equation_of_state_switch=5 then <<

write "Noether identity yields relation between ww(t), xi(t), and S(t):";

write ww:=(xif**2 * ss**2 * ccc3-1)/(xif**2 * ss**2 * ccc3 - 3);

>>;

displayFieldEquations$

displayNoetherIdentities$

on nat;

write "Curvature, torsion, and nonmetricity before insertion of an explicit solution for S(t):";

off nat;

displayStrainCurvature$

displayRotationalCurvature$

displayTorsion$

displayNonmetricity$

on nat;

write "Solution for scale factor S(t) (does not depend on equation of state!):";

off nat;

%

% SWITCH !

% Be sure to select kk in the appropriate way

%

%write kk:=0; write "k=0:";

write "kk<>0:";

write test_switch:=0;

if kk=0 then <<

write "Solution for k=0:";

%write ss:= ccc1 * (2 * (t + ccc2) / ccc1)**(1/2);

%write ss:=-ccc1 * (2 * (t + ccc2) / ccc1)**(1/2);

%write ss:= ccc1;

% Coupling constants concerning vacuum solution

if equation_of_state_switch=1 then <<

if test_switch=1 then <<

write "Test if direct selection of ccc1 leads to the same results:";

write ccc1 := (iota/chi) * (-2 * chi * cc * kappa)**(1/2);

%Solution for ccc1 holds for both signs

%write ccc1 := -(iota / chi) * (-2 * chi * cc * kappa)**(1/2);

>>;

>>;

% Coupling constants concerning radiative solution

if equation_of_state_switch=2 then <<

% Noether identity yields solution for xi(t)
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%write xif := ccc3 / (ccc2 + t); % + branch

%write xif := ccc3 / ss**2; % - branch

write xif :=-ccc3;

>>;

>>;

if kk neq 0 then <<

write "Solution for k<>0:";

%write ss :=-((-kk*(ccc2**2 * kk**2 - ccc1 + t**2 * kk**2 + 2 * t * kk**2 * ccc2))**(1/2))/kk;

write ss := ((-kk*(ccc2**2 * kk**2 - ccc1 + t**2 * kk**2 + 2 * t * kk**2 * ccc2))**(1/2))/kk;

% coupling constants concerning vacuum solution

if equation_of_state_switch=1 then <<

if test_switch=1 then <<

write "Test if direct selection of ccc1 leads to the same results:";

% Solution or ccc1 is valid for both signs

write ccc1 := -2 * cc * iota**2 * kappa / chi;

>>;

>>;

if equation_of_state_switch=2 then <<

write xif := ccc3 / (kk**2 * (ccc2 + t)**2 - ccc1); % + branch and - branch

>>;

>>;

displayFieldEquations$

displayNoetherIdentities$

if equation_of_state_switch=1 then <<

if kk=0 then <<

write "Choose ccc1 in order to fulfill the the field equations (for k=0):";

write ccc1:= (iota / chi) * (-2 * chi * cc * kappa)**(1/2);

>>;

if kk neq 0 then <<

write "Choose ccc1 in order to fulfill the the field equations (for k<>0):";

write ccc1:= -2 * cc * iota**2 * kappa / chi;

>>;

>>;

if equation_of_state_switch=2 then <<

if kk=0 then <<

write "Choose ccc1 in order to fulfill the the field equations (for k=0):";

write ccc3 :=0; write iota:=0; % for constant xi

>>;

if kk neq 0 then <<

write "Choose ccc1 and ccc3 in order to fulfill the the field equations (for k<>0):";

write ccc3 :=0; write ccc1 := (1/3) * (iota * kappa / chi); % + branch and - branch

>>;

>>;

if equation_of_state_switch=3 then <<

if kk=0 then <<

write "Choose ccc1 in order to fulfill the the field equations (for k=0):";

%write ccc1 := 2 * (-chi * cc * kappa)**(1/2) * (iota / chi); % + branch and - branch

%write ccc1 := -2 * (-chi * cc * kappa)**(1/2) * (iota / chi); % + branch and - branch

write cc := 0; % const branch

%write iota :=0; % const branch
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>>;

if kk neq 0 then <<

write "Choose ccc1 in order to fulfill the the field equations (for k<>0):";

write ccc1 := -4 * cc * iota**2 * kappa / chi; % + branch and - branch

>>;

>>;

if equation_of_state_switch=4 then <<

if kk=0 then <<

% Solution for S=const

%write solve((12 * cc * iota**2 * (ww - 1)) / (ccc1**4 * (3 * ww - 1))=0,ww);

%write ww := 1;

% Solution for S=+/- branch

write solve((3 * (4 * cc * iota**2 * kappa * ww - 4 * cc * iota**2 * kappa

+ 3 * ccc1**2 * chi * ww - ccc1**2 * chi)) / (4 * ccc1**2 * kappa * (3 * ccc2**2 * ww

- ccc2**2 + 6*ccc2*t*ww - 2*ccc2*t + 3*t**2*ww - t**2))=0,ww);

write ww := (4 * cc * iota**2 * kappa + ccc1**2 * chi) / (4 * cc * iota**2 * kappa + 3 * ccc1**2 * chi);

>>;

if kk neq 0 then <<

write "Choice for w(t) in order to fulfill first Noether identity:";

write solve(( -24 * @(ww,t) * cc * iota**2 * kk**2) / (9 * ccc1**2 * ww**2 - 6 * ccc1**2*ww + ccc1**2

-18 * ccc1 * ccc2**2 * kk**2 * ww**2 + 12 * ccc1 * ccc2**2 * kk**2 * ww

-2 * ccc1 * ccc2**2 * kk**2 - 36 * ccc1 * ccc2 * kk**2 * t * ww**2

+24 * ccc1 * ccc2 * kk**2 * t * ww - 4 * ccc1 * ccc2 * kk**2 * t

-18 * ccc1 * kk**2 * t**2 *ww**2 + 12 * ccc1 * kk**2 * t**2 * ww

-2 * ccc1 * kk**2 * t**2 + 9 * ccc2**4 * kk**4 * ww**2 - 6 * ccc2**4 * kk**4 * ww

+ ccc2**4 * kk**4 + 36 * ccc2**3 * kk**4 * t * ww**2 - 24 * ccc2**3 * kk**4 * t * ww

+ 4 * ccc2**3 * kk**4 * t + 54 * ccc2**2 * kk**4 * t**2 * ww**2

- 36 * ccc2**2 * kk**4 * t**2 * ww + 6 * ccc2**2 * kk**4 * t**2

+ 36 * ccc2 * kk**4 * t**3 * ww**2 - 24 * ccc2 * kk**4 * t**3 * ww

+ 4 * ccc2 * kk**4 * t**3 + 9 * kk**4 * t**4 * ww**2 - 6 * kk**4 * t**4 * ww

+ kk**4 * t**4)=0,ww);

write "Choice for w(t) in order to fulfill frist3(-0) field equation:";

write solve((3 * kk**2 * (4 * cc * iota**2 * kappa * ww - 4 * cc * iota**2 * kappa

+ 3 * ccc1 * chi * ww - ccc1 *chi)) / (kappa * (3 * ccc1**2 * ww - ccc1**2

- 6 * ccc1 * ccc2**2 * kk**2 * ww + 2 * ccc1 * ccc2**2 * kk**2

- 12 * ccc1 * ccc2 * kk**2 * t * ww + 4 * ccc1 * ccc2 * kk**2 * t

- 6 * ccc1 * kk**2 * t**2 * ww + 2 * ccc1 * kk**2 * t**2

+ 3 * ccc2**4 * kk**4 * ww - ccc2**4 * kk**4 + 12 * ccc2**3 * kk**4 * t * ww

- 4 * ccc2**3 * kk**4 * t + 18 * ccc2**2 * kk**4 * t**2 * ww

- 6 * ccc2**2 * kk**4 * t**2 + 12 * ccc2 * kk**4 * t**3 * ww

- 4 * ccc2 * kk**4 * t**3 + 3 * kk**4 * t**4 * ww - kk**4 * t**4))=0,ww);

write "Choice for w(t) in order to fulfill frist3(-1) field equation:";

write solve((kk**2 * (4 * cc * iota**2 * kappa * ww - 4 * cc * iota**2 * kappa

+ 3 * ccc1 * chi * ww - ccc1 * chi)) / (kappa * (3 * ccc1**2 * ww - ccc1**2

- 6 * ccc1 * ccc2**2 * kk**2 * ww + 2 * ccc1 * ccc2**2 * kk**2

- 12 * ccc1 * ccc2 * kk**2 * t * ww + 4 * ccc1 * ccc2 * kk**2 * t

- 6 * ccc1 * kk**2 * t**2 * ww + 2 * ccc1 * kk**2 * t**2 + 3 * ccc2**4 * kk**4 * ww

- ccc2**4 * kk**4 + 12 * ccc2**3 * kk**4 * t * ww - 4 * ccc2**3 * kk**4 * t

+ 18 * ccc2**2 * kk**4 * t**2 * ww - 6 * ccc2**2 * kk**4 * t**2

+ 12 * ccc2 * kk**4 * t**3 * ww - 4 * ccc2 * kk**4 * t**3 + 3 * kk**4 * t**4 * ww

- kk**4 * t**4))=0,ww);

% Solution for S=+/- branch

on nat;

write "Of course we make the following ansatz which fulfills all of the three conditions from above:";

off nat;

write ww := (4 * cc * iota**2 * kappa + ccc1 * chi) / (4 * cc * iota**2 * kappa + 3 * ccc1 * chi);

>>;

>>;
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if equation_of_state_switch=5 then <<

if kk=0 then <<

% Solution for S=const

% write cc := 0;

% Solution for S=+/- branch

write ccc3 := -4 * cc * kappa / (ccc1**2 * chi);

>>;

if kk neq 0 then <<

% Solution for S=+/- branch

write ccc3 := - 4 * cc * kappa / (ccc1 * chi);

>>;

>>;

>>; % End of branch concerning the ansatz xi=xi(t)

displayFieldEquations$

displayNoetherIdentities$

write "Final form of the function xi:"; write xif;

write "Final form of the energy-density now reads:"; write mue;

write "Final form of the matter quantities:";

write "mstress4(-a,-b)"; write mstress4(-a,-b);

write "mhypermom3(-a,-b)"; write mhypermom3(-a,-b);

write "menergy3(-a)"; write menergy3(-a);

write "Final form of the geometrical quantities:";

displayStrainCurvature;

displayRotationalCurvature;

displayTorsion;

displayNonmetricity;

write nonriemnoetherlhs4(-a);

showtime;

shut "weyl_quad_nonmet.reo";

out "field_xi_t_r_dt.reo";

write first3(-a)-menergy3(-a)$

write second3(-a,-b)-mhypermom3(-a,-b)$

shut "field_xi_t_r_dt.reo";

out "noether_xi_t_r_dt.reo";

write nfirst4(-a)$

write nsecond4(-a,-b)$

shut "noether_xi_t_r_dt.reo";

if ansatz_switch=1 then <<

out "curvature_torsion_nonmet_xi_t_r.reo";

on nero;

displayStrainCurvature$

displayRotationalCurvature$

displayTorsion$

displayNonmetricity$

shut "curvature_torsion_nonmet_xi_t_r.reo";

>>;

if ansatz_switch=2 then <<

out "curvature_torsion_nonmet_xi_t.reo";

on nero;

displayStrainCurvature$

displayRotationalCurvature$

displayTorsion$
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displayNonmetricity$

shut "curvature_torsion_nonmet_xi_t.reo";

>>;

end$

bye;



Appendix E

Miscellany

E.1 Field equations and Noether identities for � =

�(t; r) using computeralgebra

Field equations

�3 �S2a4�S
2 � 3 �S2a6�S

2 + 3 _S4a4� + 3 _S4a6�+ 6 _S2a4�k + 6 _S2a6�k + 3 _S2�S2

+�2;rb�kr
2 � �2;rb� + 3a4�k

2 + 3a6�k
2 + 4c�S2�2 + 3�kS2 � ��S4 = 0

(E.1)

� �S2a4�S
2 � �S2a6�S

2 � 2 �S�S3 + _S4a4�+ _S4a6� + 2 _S2a4�k + 2 _S2a6�k � _S2�S2

��2;rb�kr2 + �2;rb� + a4�k
2 + a6�k

2 + 4c�S2�2 � �kS2 � �prS4 = 0

(E.2)
�S2a4�S

2 + �S2a6�S
2 + 2 �S�S3 � _S4a4�� _S4a6�� 2 _S2a4�k � 2 _S2a6�k + _S2�S2

��2;rb�kr2 + �2;rb�� a4�k2 � a6�k2 � 4c�S2�2 + �kS2 + �ptS
4 = 0

(E.3)
...
Sa4S

2 +
...
Sa6S

2 + �S _Sa4S + �S _Sa6S � 2 _S3a4 � 2 _S3a6 � 2 _Sa4k � 2 _Sa6k = 0

(E.4)

Noether identities

_�S4 � 16 _ScS�2 + 3 _S�S3 + _SprS
3 + 2 _SptS

3 � 2�;rt�;rbkr
2 + 2�;rt�;rb� 8�;tcS

2� = 0

(E.5)

��;rr�;rbkr3 + �;rr�;rbr � 3�2;rbkr
2 + 2�2;rb + 4�;rcrS

2� � prS4 + ptS
4 = 0

(E.6)
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E.2 Field equations and Noether identities for � =

�(t) using computeralgebra

Field equations

0 = �3 �S2a4�S
2 � 3 �S2a6�S

2 + 3 _S4a4� + 3 _S4a6� + 6 _S2a4�k + 6 _S2a6�k

+3 _S2�S2 + 3a4�k
2 + 3a6�k

2 + 4c�S2�2 + 3�kS2 � ��S4 (E.7)

0 = � �S2a4�S
2 � �S2a6�S

2 � 2 �S�S3 + _S4a4�+ _S4a6�+ 2 _S2a4�k + 2 _S2a6�k

� _S2�S2 + a4�k
2 + a6�k

2 + 4c�S2�2 � �kS2 � �prS4 (E.8)

0 = �S2a4�S
2 + �S2a6�S

2 + 2�S�S3 � _S4a4�� _S4a6�� 2 _S2a4�k � 2 _S2a6�k

+ _S2�S2 � a4�k2 � a6�k2 � 4c�S2�2 + �kS2 + �ptS
4 (E.9)

0 =
...
Sa4S

2 +
...
Sa6S

2 + �S _Sa4S + �S _Sa6S � 2 _S3a4 � 2 _S3a6 � 2 _Sa4k � 2 _Sa6k (E.10)

Noether identities

0 = _�S3 � 16 _Sc�2 + 3 _S�S2 + _SprS
2 + 2 _SptS

2 � 8�;tcS� (E.11)

0 = �pr + pt (E.12)

E.3 Robertson-Walker metric

In the following we collect some basic results for the Robertson-Walker metric which are
used throughout the work. Coordinates are labeled from x� = (t; r; �; �) with signature
is (�;+;+;+).

E.3.1 Riemannian connection

Calculated with GrTensor II 1.79 (R4) (metric rwk) and Reduce 3.7:

�110 = �220 = �330 = ��101 = ��202 = ��303 = �
_S

S
;

�221 = �331 = ��212 = ��313 = �1
r
;

�011 =
S _S

kr2 � 1
; �111 = � kr

kr2 � 1
;

�022 = �S _Sr2; �033 = �S _Sr2 sin2 �;

�122 =
�
1� kr2� r; �133 = �1� kr2� r sin2 �;

�223 = ��232 = �cos �
sin �

; �233 = sin � cos �: (E.13)
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E.3.2 Weyl-Cartan connection

Calculated with Reduce 3.7 for the special case � ! �:

�000 =
�

2S
; �110 = �220 = �330 = ��101 = ��202 = ��303 = �

_S

S
;

�011 =
S
�
2 _S + �

�
2 (kr2 � 1)

; �111 = � kr

kr2 � 1
; �022 = �r

2S

2

�
2 _S + �

�
;

�122 = r
�
1� kr2� ; �221 = �331 = ��212 = ��313 = �1

r
;

�233 = cos � sin �; �323 =
cos �

sin �
;

�033 = �sin
2 � r2 S

2

�
2 _S + �

�
; �133 = sin2 � r

�
1� kr2� : (E.14)

E.4 SN Ia data set

In table E.1 we display the SN Ia set for �tting as provided by Y. Wang. Note that
�mz is calculated iteratively via (3.89). The displayed values for �mz correspond to the

standard FLRW model with
�

m0 = 0:3;
�0 = 0:7; H0 = 65 km

s Mpc

�
.

Table E.1: SN Ia data set for �tting.

SN name z �0 ��0 �z �mz
1996E 0.43 41.74 0.28 200.0 0.003998
1996H 0.62 42.98 0.17 200.0 0.002841
1996I 0.57 42.76 0.19 2500.0 0.038438
1996J 0.30 41.38 0.24 200.0 0.005570
1996K 0.38 41.63 0.20 2500.0 0.056023
1996U 0.43 42.55 0.25 200.0 0.003998
1997ce 0.44 41.95 0.17 2500.0 0.048929
1997cj 0.50 42.40 0.17 2500.0 0.043451
1997ck 0.97 44.39 0.30 200.0 0.001845
1995K 0.48 42.45 0.17 200.0 0.003611
1995ao 0.30 40.74 0.60 200.0 0.005570
1995ap 0.23 40.33 0.46 2500.0 0.088889
1996R 0.16 39.08 0.40 200.0 0.009948
1996T 0.24 40.68 0.43 200.0 0.006838
1997I 0.17 39.95 0.24 200.0 0.009403
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SN name z �0 ��0 �z �mz
1997ap 0.83 43.67 0.35 2500.0 0.026861
1992bo 0.018 34.72 0.16 200.0 0.081575
1992bc 0.020 34.87 0.11 200.0 0.073523
1992aq 0.101 38.41 0.15 200.0 0.015313
1992ae 0.075 37.80 0.17 200.0 0.020322
1992P 0.026 35.76 0.13 200.0 0.056798
1990af 0.050 36.53 0.15 200.0 0.030017
1994M 0.024 35.39 0.18 200.0 0.061445
1994S 0.016 34.27 0.12 200.0 0.091638
1994T 0.036 36.19 0.21 200.0 0.041306
1995D 0.008 33.01 0.13 200.0 0.182192
1995E 0.012 33.60 0.17 200.0 0.121825
1995ac 0.049 36.85 0.13 200.0 0.030610
1995ak 0.022 35.15 0.16 200.0 0.066935
1995bd 0.016 34.15 0.19 200.0 0.091638
1996C 0.028 35.98 0.20 200.0 0.052815
1996ab 0.124 39.01 0.13 200.0 0.012622
1992ag 0.026 35.37 0.23 200.0 0.056798
1992al 0.014 33.92 0.11 200.0 0.104576
1992bg 0.035 36.26 0.21 200.0 0.042457
1992bh 0.045 36.91 0.17 200.0 0.033244
1992bl 0.043 36.26 0.15 200.0 0.034744
1992bp 0.080 37.65 0.13 200.0 0.019108
1992br 0.087 38.21 0.19 200.0 0.017641
1992bs 0.064 37.61 0.14 200.0 0.023658
1993H 0.025 35.20 0.26 200.0 0.059029
1993O 0.052 37.03 0.12 200.0 0.028899
1993ag 0.050 36.80 0.17 200.0 0.030017
1994U 0.004 31.72 0.10 200.0 0.363282
1997bp 0.008 32.81 0.10 200.0 0.182192
1996V 0.025 35.35 0.17 200.0 0.059029
1994C 0.052 36.72 0.15 200.0 0.028899
1995M 0.053 37.12 0.15 200.0 0.028372
1995ae 0.068 37.58 0.21 200.0 0.022321
1994B 0.090 38.51 0.10 200.0 0.017082
1992bi 0.458 42.44 0.46 300.0 0.005657
1994F 0.354 41.71 0.33 300.0 0.007176
1994G 0.425 41.46 0.49 300.0 0.006063
1994H 0.374 41.05 0.22 300.0 0.006822
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SN name z �0 ��0 �z �mz
1994al 0.420 41.88 0.25 300.0 0.006130
1994am 0.372 41.59 0.20 300.0 0.006856
1994an 0.378 41.91 0.37 300.0 0.006755
1995aq 0.453 42.50 0.25 300.0 0.005715
1995ar 0.465 42.66 0.30 1500.0 0.027891
1995as 0.498 43.04 0.25 300.0 0.005234
1995at 0.655 42.60 0.21 300.0 0.004045
1995aw 0.400 41.69 0.19 9000.0 0.192365
1995ax 0.615 42.52 0.25 300.0 0.004294
1995ay 0.480 42.29 0.24 300.0 0.005416
1995az 0.450 41.84 0.23 300.0 0.005750
1995ba 0.388 41.98 0.20 300.0 0.006595
1996cf 0.570 42.60 0.22 3000.0 0.046126
1996cg 0.490 42.43 0.20 3000.0 0.053132
1996ci 0.495 42.16 0.19 300.0 0.005263
1996ck 0.656 42.90 0.28 300.0 0.004039
1996cl 0.828 43.98 0.54 300.0 0.003231
1996cm 0.450 42.50 0.23 3000.0 0.057505
1996cn 0.430 42.46 0.22 3000.0 0.059977
1997F 0.580 42.79 0.23 300.0 0.004538
1997G 0.763 43.80 0.53 300.0 0.003496
1997H 0.526 42.48 0.20 300.0 0.004973
1997J 0.619 43.13 0.28 300.0 0.004268
1997K 0.592 43.75 0.37 300.0 0.004451
1997L 0.550 42.84 0.25 3000.0 0.047698
1997N 0.180 39.76 0.17 300.0 0.013376
1997O 0.374 42.85 0.24 300.0 0.006822
1997P 0.472 42.44 0.19 300.0 0.005501
1997Q 0.430 41.90 0.18 3000.0 0.059977
1997R 0.657 43.16 0.23 300.0 0.004034
1997S 0.612 43.02 0.21 300.0 0.004314
1997ac 0.320 41.19 0.18 3000.0 0.078741
1997af 0.579 42.81 0.22 300.0 0.004545
1997ai 0.450 42.16 0.30 3000.0 0.057505
1997aj 0.581 42.42 0.22 300.0 0.004530
1997am 0.416 41.90 0.20 300.0 0.006184
1990O 0.030 35.59 0.20 600.0 0.148089
1993B 0.071 37.66 0.20 600.0 0.064248
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E.5 Symmetric tracefree part of the second �eld

equation

In this appendix we provide a short derivation of the symmetric tracefree part of the
second �eld equation as displayed in equation (3.15). Although we did not use this
explicit form of the second �eld equation in our CA programs, it might become handy
in future calculations. In the following we make use of the gauge �eld excitations (3.5){
(3.9), which were derived from our Lagrangian in (3.3). The symmetric part of the
second MAG �eld equation becomes

g(�DH

�) � g(�E

�)

= g(�D

 
� �

2�
��) � 2

6X
I=1

aI
?(I)W 

�) � b

2
?
�
Æ�)R

�
�

�!
� cg�� ?Q



(A.38)
=

�

2�
Q(�

 ^ �j�) � g(�D
 
2

6X
I=1

aI
?(I)W 

�) +
b

2
?
�
Æ�)R

�
�

�!
� cg�� ?Q



=
�

2�
Q(�

 ^ �j�) � b

2
g��d

?R
 � 2

6X
I=1

aI g(�D
?(I)W 

�) � cg�� ?Q
 :

(E.15)

The trace part is given by

dH
 � E

 = d
�
� �

2�
� � 2b ?R



�
� cg� ? (g�Q�

�)

= �2bd ?R
 � 4c ?Q

: (E.16)

Hence the symmetric tracefree part of the second �eld equation is given by

g(�DH

�) � g(�E

�) � 1

4
g��DH


 +

1

4
g��E




=
�

2�
Q(�

 ^ �j�) � 2

6X
I=1

aI g(�D
?(I)W 

�): (E.17)

In a Weyl-Cartan spacetime Q�� := 1
4
g��Q


 . Therefore the �rst term in the last

equation vanishes, yielding

�2
6X

I=1

aI g(�D
?(I)W 

�)
WC
= �% (��); (E.18)

where �% (��) := �(��)� 1
4
g���


 represents the shear current. Additionally, the a6 term

can be rewritten with the help of formula (A.38). With

(6)W�� := � 1

12
W #� ^ #�; (E.19)
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we obtain

g(�D
?(6)W 

�)
(A:38)
=

1

12
W Q(�

� ^ ��j�) WC
= 0: (E.20)

Hence in a Weyl-Cartan spacetime the a6 term drops from the sum in (E.21). Therefore
the symmetric tracefree part is given by

�2
5X

I=1

aI g(�D
?(I)W 

�)
WC
= �% (��): (E.21)
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