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Summary 

Bottom ash (BA) constitutes the dominant solid residue of municipal solid waste incineration 

and millions of tonnes are annually produced, worldwide. Fresh BA contains highly reactive 

constituents which are metastable under environmental conditions. Their transformation has 

been referred to as the ageing of BA. It has long since been recognized that ageing reduces 

the reactivity of BA and therewith the leachability of critical trace metals. Carbonation is a key 

process in the aging and is initiated by the access of CO2. Passive ageing is commonly ap-

plied in many European countries prior to geotechnical utilization or landfilling of BA. Howev-

er, it requires a large quantity of space, time, and lacks any process control. Carbonation of 

BA may be accelerated by contacting the material with CO2-rich exhaust gas. Although this 

has long since been recognized, practical applications have remained beyond reach since 

reactor systems did not allow for the necessary throughput. Recent studies demonstrated 

that the material dynamics in rotating drum reactors favour the accelerated carbonation and 

that rotating drums may be suited for a process implementation at the industrial scale. Yet, 

knowledge regarding optimum drum operation for accelerated carbonation of BA is still 

scarce.  

This thesis aimed at delineating both the technical set-up and the operation parameters suit-

ed for process integration of accelerated carbonation at incinerator sites. This included the 

development of a screening technique to evaluate the progress of carbonation as well as a 

stepwise transfer of the reactor system from a jar test into a continuously fed rotating drum 

reactor system. Effects of rotation speed and reactor fill level on the solid’s motion were cin-

ematographically analysed. Carbonation performance was assessed by thermogravimetric 

analyses and the leaching behaviour of the treated BA. The BA used in this study was sam-

pled from a grate-type refuse derived fuel incinerator located in central Germany. Leachate 

values and particularly the high leachate concentrations of Pb characterized fresh BA as a 

hazardous waste. 

Laboratory results demonstrated the serviceability and reproducibility of the developed meth-

od for the monitoring and quantification of the CO2 uptake by BA in both static and dynamic 

reactor systems. The method is based on following the pressure drop in the gas phase in-

duced by the CO2 uptake of BA close to atmospheric pressure conditions.   

The monitoring method was next applied to evaluate carbonation kinetics and the influence 

of fundamental parameters (CO2 concentration, fill level, BA moisture) on accelerated car-

bonation of BA in a rotating drum batch reactor. Both the CO2 uptake rate and the final level 

of carbonation increased as the CO2 concentration was raised from 15 to 75 vol.-%. The op-

timum moisture content for the tested BA was found to be 21 wt.-%, which is roughly in the 

range of the typical moisture content of BA after temporary storage in a roofed pile. The fill 
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level was not a limiting factor for BA carbonation within the tested range (7 - 45 vol.-%). The 

latter could be explained by findings obtained by the study of the solids’ motion. The bed be-

haviour of BA strongly differed from that of standard materials and was more affected by fill 

level than by rotation speed. With increasing fill level, the bed motion changed from slipping 

to slumping thereby favouring the mixing process. Complementary logging of relative humidi-

ty and temperature showed constant moisture conditions and self-heating, induced by the 

exothermal carbonation reaction. A close relationship between CO2 uptake and reactor tem-

perature was confirmed by benchmarking a heat balance model against the carbonation en-

thalpy. Excellent agreement demonstrated that temperature monitoring may be an alternative 

way of evaluating the progress of carbonation.  

As a next step carbonation of BA was studied with a continuous feed of the reactant gas and 

the effects of specific CO2 supply, mixing tools, and reactor loadings on process performance 

were assessed. The reaction could be accelerated to around 100 minutes and was further 

enhanced by the use of mixing tools. Of the configurations tested, a perforated mixing cage 

performed best, even at fill levels of up to 50 %. This set-up was also least prone to the for-

mation of BA incrustations.  

Finally, a rotating drum reactor continuously fed with both, the reactant gas (60 L/min; 10 

vol.-% CO2) and the BA (9 - 18 kg/h), was developed and tested at varied BA residence 

times. Projected and experimental residence times were compared by mass balancing and 

by analysing the breakthrough curves of a tracer. Good agreement indicated adequate con-

trol of reactor loading and the BA feed rate. In one test, the gas was heated and humidified. 

Leachates and solid phase properties of the treated BA served to evaluate the carbonation 

performance. Overall, carbonation improved the leachate quality of BA as the leachate con-

centrations of critical trace metals (Pb, Zn, Cu) decreased by at least one order of magni-

tude. A residence time of 80 min was sufficient to reduce the BA leachability such as to char-

acterize the carbonated material as a non-hazardous waste. This would allow for a disposal 

on a class 1 landfill or alternatively for a geotechnical reuse in accordance with the draft of 

the German Ordinance on Secondary Construction Materials. Other than the amphoteric 

metals, oxyanions like Cr, Mo and V became more mobile upon carbonation. This side effect 

did not outweigh the benefits since oxyanion concentrations remained below the specific limit 

values. Therefore, the accelerated carbonation of BA provides a material that is both suited 

for the cost-effective disposal on a lower landfill class and for geotechnical applications. In 

view of relatively short residence times and stable process performance, the rotating drum 

reactor seems promising for a full-scale implementation of BA carbonation. 
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Zusammenfassung 

Rostaschen bilden den bedeutendsten festen Rückstand aus der Verbrennung von Restmüll 

und Ersatzbrennstoffen. Etablierte Entsorgungswege sind einerseits die Deponierung, ande-

rerseits die Verwertung als Ersatzbaustoff. Bedingt durch deren hohe Reaktivität durchlaufen 

Rostaschen während der Alterung eine Vielzahl von mineralogischen Phasenumwandlungs-

reaktionen. Besonders bedeutend ist die Carbonatisierung. Hierbei reagiert CO2 mit alkali-

schen Mineralphasen, wodurch die Auslaugbarkeit vieler kritischer Spurenmetalle deutlich 

verringert wird. Gängige Praxis ist in vielen europäischen Ländern daher eine mindestens 

dreimonatige Lagerung, bei der die Alterung unter Umgebungsbedingungen in einem Hauf-

werk stattfindet. Problematisch hierbei ist neben dem hohen Zeit- und Platzbedarf die 

schlechte Kontrollierbarkeit des Prozesses. Bei der beschleunigten Carbonatisierung werden 

die unter natürlichen Bedingungen ablaufenden Alterungsprozesse durch technische Maß-

nahmen gezielt verstärkt. Vorteile sind der Wegfall einer Lagerhaltung und die Verkürzung 

des Zeitraumes zwischen Ascheanfall und -entsorgung. Trotz langjähriger Forschung auf 

diesem Gebiet wurden bisher nur wenige Ansätze zur beschleunigten Carbonatisierung unter 

vollmaßstäblichen Bedingungen getestet. Jüngere Veröffentlichungen weisen darauf hin, 

dass eine Umsetzung der Carbonatisierung in rotierenden Trommelreaktoren vielverspre-

chend sein könnte; eine optimale Prozessauslegung fehlt jedoch bislang. 

Das Ziel dieser Arbeit war es einen Verfahrensansatz für die beschleunigte Carbonatisierung 

von Rostasche zu entwickeln, welcher eine Prozessintegration in ein reales Aschemanage-

ment erlaubt. Hierzu sollte zum einen die notwendige Reaktortechnik entwickelt sowie Reak-

tions- und Prozessbedingungen erprobt werden. Dies beinhaltete die Entwicklung eines 

Messsystems zur Erfassung der CO2-Aufnahme sowie die schrittweise Reaktorentwicklung 

vom einfachen Glasgefäß bis hin zu einem kontinuierlich betriebenen Drehrohreaktor. Der 

Einfluss der Drehgeschwindigkeit und des Reaktorfüllgrades auf die Materialbewegung wur-

de mittels Videoanalyse untersucht. Die Beurteilung der Carbonatisierungsleistung erfolgte 

thermogravimetrisch sowie anhand des Auslaugverhaltes der behandelten Rostasche. 

Die experimentellen Ergebnisse belegten die Eignung und Reproduzierbarkeit der entwickel-

ten Methode zur Quantifizierung der CO2-Aufnahme der Rostasche sowohl unter statischen 

als auch unter dynamischen Reaktionsbedingungen. Das Messsystem basiert auf einer 

Messung des systeminternen Druckabfalls, welcher aus der CO2-Aufnahme der Rostasche 

resultiert. Die Methode wurde weiterhin verwendet, um die Carbonatisierungskinetik und den 

Einfluss wesentlicher Betriebsparameter auf die beschleunigte Carbonatisierung von 

Rostasche in einem Drehrohreaktor zu untersuchen. Die CO2-Aufnahmerate sowie die inner-

halb von 2 h erzielte Gesamtaufnahme erhöhte sich durch Anhebung der CO2-Konzentration 

von 15 Vol.-% auf 75 Vol.-%. Die optimale Feuchte des Feststoffs lag bei ca. 21 Mass.-%, 
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was in etwa dem typischen Wassergehalt einer zwischengelagerten Rostasche entspricht. 

Der Reaktorfüllgrad war innerhalb des geprüften Wertebereichs (7 - 45 Vol.-%) kein limitie-

render Faktor. Letzteres konnte anhand des Bewegungsverhaltens der Rostasche im Dreh-

rohr erklärt werden. Mit zunehmendem Füllgrad änderte sich das Bewegungsmuster von 

‚slipping‘ zu ‚slumping‘, woraus eine erhöhte Mischleistung resultierte. Während der Carbo-

natisierung stellte sich im Reaktor eine konstante Gasfeuchte ein und aufgrund der Exother-

mie der Reaktion kam es zu einer Selbsterwärmung. Im Bilanzmodell zeigte sich entspre-

chend ein enger Zusammenhang zwischen der beobachteten Wärmefreisetzung und der 

aufgenommenen CO2 Menge. Die Reaktortemperatur wurde daher als ein möglicher Para-

meter zum Prozessmonitoring vorgeschlagen.  

Im Anschluss an die Versuche zur Carbonatisierung im Batch-Modus wurde eine Durch-

flussbegasung realisiert und der Einfluss der spezifischen CO2-Beschickung, von Misch-

werkzeugen und des Reaktorfüllgrads auf die Carbonatisierungsleistung untersucht. Die nö-

tige Reaktionszeit lag bei 100 Minuten und die Reaktion konnte durch den Einsatz von 

Mischwerkzeugen weiter forciert werden. Von den getesteten Mischwerkzeugen erwies sich 

ein perforierter Mischkorb als besonders günstig, da dieser einerseits die Durchmischung 

verbesserte, andererseits auch die geringste Anfälligkeit gegenüber Verkrustungsbildung 

zeigte. So konnte selbst bei hohen Füllständen (50 Vol.-%) noch eine gute Carbonatisierung 

erzielt werden.  

Als letzter Schritt wurde ein Drehrohrreaktor zur kontinuierlichen Beaufschlagung sowohl mit 

Reaktionsgas (3600 L/h; 10 Vol.-% CO2) als auch mit Rostasche (9 - 18 kg/h) konstruiert und 

getestet. Die vorgegebenen und experimentell ermittelten Verweilzeiten wurden basierend 

auf einer Massenbilanz und der Analyse des Tracerdurchbruchverhaltens verglichen und 

zeigten eine sehr gute Übereinstimmung. Entsprechend der Auslauguntersuchungen war 

eine Verweilzeit von 80 Min ausreichend, um eine deutliche Immobilisierung kritischer Spu-

renmetalle (Pb, Zn, Cu) zu erzielen. Insgesamt verbesserte sich das Auslaugverhalten so-

weit, dass die Zuordnungswerte der Deponieklasse I erfüllt wurden. Im Unterschied zu den 

genannten Metallen war für die Oxoanionenbildner (Cr, Mo, V) eine geringfügige Konzentra-

tionszunahme festzustellen. Diese stellte jedoch weder eine Einschränkung für die kosten-

günstigere Deponierung noch die ersatzbaustoffliche Verwertung der carbonatisierten 

Rostasche dar. Die hier gezeigten Ergebnisse zeigen erstmalig, dass und wie die Carbonati-

sierung von Rostasche in einem dynamischen Reaktor bei kontinuierlicher Feststoff- und 

Reaktionsgasaufgabe gelingt. Damit ist eine wesentliche Voraussetzung für die Integration in 

das Aschemanagement von Müllverbrennungsanlagen und Aufbereitungsanlagen gegeben.  
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1.1 Waste incineration and bottom ash generation 

Human activities have always been accompanied by the production of solid waste. Concomi-

tant with the establishment of larger settlements dump sites emerged and until now dumping 

or landfilling (as the technically controlled form of dumping) are the most common forms of 

waste management. In the past century, the amount of municipal solid waste (MSW) in-

creased by a factor of ten due to the exponential growth of population, improved living stand-

ards and increasing urbanisation (Karak et al., 2012). Growing piles of rubbish along with 

limited land capacities for dumping posed an ever enhanced problem to the waste manage-

ment of most municipalities. Moreover, increasing ecological awareness of the general public 

and growing environmental concerns forced waste management practice to change and 

brought up new treatment methods, e.g. bio-mechanical treatment, incineration and recy-

cling. The recent past showed that waste production is coupled to the wealth of societies but 

may also reach a limit (‘peak waste’) at a distinct level of affluence (Hoornweg et al., 2015). 

Unto that point municipal solid waste (MSW) generation can be expected to increase with 

increasing living standards. It was estimated that the total solid waste generation will reach 

27 billion tons per year by 2050 (Karak et al., 2012) and that the peak time might not be 

achieved within this century, unless more efforts are made to reduce population growth and 

material consumption rates (Hoornweg et al., 2013). Hence, the management of MSW repre-

sents a major economic and environmental issue throughout the world (Makarichi et al., 

2018).  

Current waste management practice substantially differs across the world. On the one hand 

dumping and controlled landfilling still predominates in developing countries and countries 

that are less affected by land scarcity (e.g. USA, Canada, Russia, and Australia). On the 

other hand, some countries (e.g. European countries) have strictly limited or even fully pro-

hibited landfilling of untreated MSW (Karak et al., 2012; Cucchiella et al., 2017; Seifert and 

Vehlow, 2017). Although those countries already achieved high rates in separation and recy-

cling the potentials are still not fully utilized due to the limited economic incentives (Zacho et 

al., 2018). Thus, a considerable quantity of MSW still has to be handled and in the last 20 

years waste incineration, possibly in conjunction with energy recovery, has become one of 

the key components of integrated waste management strategies (Chandler et al., 1997; Ma-

karichi et al., 2018). From the very beginning of waste incineration in the late 19th century the 

technology underwent an intensive development. Nowadays, MSW incineration is performed 

in waste-to-energy (WtE) plants with intensified energy recovery and air pollution control. The 

commonly applied technologies for MSW combustion are fluidized bed boilers and moving 

grate firing systems. The latter are used in the vast majority of incineration plants in Europe 

(Lombardi et al., 2015). As opposed to disposal incineration has significant benefits such as 
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 Immediate reduction of the volume and mass of MSW (70 - 90% by volume, about 

70% by mass); 

 Reduced transportation costs when building incinerators closer to the sources of 

MSW (municipalities, industry); 

 Efficient energy recovery (electric 0.2 – 0.3, thermal 0.8); 

 Control of emissions in view of legal limits (Karak et al., 2012; Allegrini et al., 2015; 

Dou et al., 2017).   

In Germany, about 16 million tons of MSW are treated in 69 WtE plants (Seifert and Vehlow, 

2017) and worldwide approximately 2,150 incinerations plants are in operation (Döing, 2017). 

Installation of incineration capacities is steadily increasing, especially in Asia (Döing, 2017; 

Makarichi et al., 2018). Asides incineration in WtE plants MSW is also used as a substitute 

fuel in thermal processes which are not primarily designed for waste treatment, e.g. cement 

kilns (Seifert and Vehlow, 2017). In some countries (e.g. Germany, Italy) there is an increas-

ing trend towards improving the energy recovery by processing MSW to refuse derived fuel 

(RDF) prior to incineration in order to increase its homogeneity and calorific value (Rocca et 

al., 2012; Dou et al., 2017).  

During incineration, the organic fraction of MSW is almost completely oxidized leaving inor-

ganic compounds and air pollution control residues as unavoidable by-products. The domi-

nant solid residue generated in MSW incinerators and WtE plants is bottom ash (BA) which 

amounts to between 15 and 30 % of the original input (Chimenos et al., 1999; Sabbas et al., 

2003; Caprai et al., 2019). Annually, about 18 million tonnes of BA are produced in Europe 

(CEWEP, 2017) and much more worldwide (Liu et al., 2015). Thus, incineration residues, in 

particular BA, have become a significant mass flux to be handled by integrated waste man-

agement systems. As incineration expands roughly at the pace of increasing MSW genera-

tion rates, also the BA quantity will increase further. As outlined in the following sections, BA 

is suited for geotechnical reuse and resource recovery as long as its environmental proper-

ties are carefully addressed or properly engineered.   

1.2 Characteristics of BA 

Bottom ash is a heterogeneous mixture mainly composed of fine materials (e.g. ash in the 

strict sense), melt components, small quantities of metallic components, synthetic ceramics 

and stones as well as traces of unburned organic matter (Chimenos et al., 1999; Speiser et 

al., 2000; Piantone et al., 2004; Wei et al., 2011; Williams, 2013). Figure 1.1 shows the aver-

age composition of BA. The specific proportion of the above components may vary depend-

ing on the incineration technology, incineration temperature and input materials (Pfrang-Stotz 

and Schneider, 1995; Fujimori et al., 2004; Song et al., 2004; Rendek et al., 2007; Saqib and 
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Bäckström, 2015). Typically, BA exhibits a broad particle size distribution with diameters 

ranging from powder (<0.063 mm) to coarse aggregates (>25 mm) (Inkaew et al., 2016; 

Chimenos et al., 1999). When the powder (<2 wt.-% Huber et al., 1996) and oversized grain 

(>2 or 63 mm) is excluded, BA conforms to a well-graded sand to gravel (Bendz et al., 2007; 

Costa et al., 2007; Lin et al., 2012; Tang et al., 2015; Le et al., 2018). Therefore, BA could 

potentially substitute natural aggregates in constructions and geotechnical applications (Lam 

et al., 2010). 

Part of BA heterogeneity is inherited from the waste (MSW and RDF) which itself is a hetero-

geneous fuel. The ash and melt components differ by morphology and particle size. The ash 

fraction comprises glass rubbings, inorganic and organic residues as well as soot and dust 

with a mean particle size between <0.002 mm and 2 mm (Brett et al., 2018). By contrast, 

melt components are porous, irregular shaped grains or aggregates with a particle size of > 2 

mm comprised of a siliceous matrix (glass) with newly formed mineral phases as a conse-

quence of high combustion temperatures (Bayuseno and Schmahl, 2010).  

From the physical perspective, BA can be considered a porous lightweight aggregate with 

specific surface areas ranging from 3 to 46 m2/g dry weight (Dou et al., 2017). Compared to 

natural aggregates, BA has a more angular geometry and higher surface roughness (Chan-

dler et al., 1997).  

Bottom ash is usually wet since the majority of incinerators employ a quenching step. De-

pending on ash characteristics and quenching procedures, the moisture contents of BA can 

vary considerably (Costa et al., 2007). This is reflected in the disparity of moisture levels re-

ported in the literature (5 - 25 wt.-% Tang et al., 2015; 3 - 15 wt.-% Heuss-Aßbichler et al., 

2010; 14 - 25 wt.-% Nørgaard et al., 2019). Also, the moisture is unevenly distributed across 

the particles size fractions. The highest moisture contents are found in the fine fraction (<0.1 

mm, 40 wt.-%) and the lowest in the coarse (>6 mm, 4 wt.-%) (Arickx et al., 2006). 

 
 
Figure 1.1. Average composition of bottom ash from municipal solid waste incineration according to 

(Knorr et al., 1999; Martens, 2011; Förstner, 2012).   
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Chemical properties 

Due to their different volatility the individual elements present in the waste partition between 

the gas phase (ending up in air-pollution control residues) and the BA during the incineration 

process. Thus, relative to the fuel input they may be either depleted or enriched in the BA 

(Chandler et al., 1997; Williams, 2013). Depletion is typically observed for Cl, Cd, and Hg 

while Cu, Zn and S are often enriched in BA (Seifert and Vehlow, 2017). In terms of the 

abundance of major elements (O, Si, Ca, Al, Cl, Na, K, S and Fe) BA is similar to basaltic 

and other geologic materials (Kirby and Rimstidt, 1993; Huber et al., 1996; Wiles, 1996; 

Chandler et al., 1997). This does, however, not hold for minor elements and trace metals 

since, e.g. Pb, Cu, Zn, Cr, Mo, Sb, and V as well as Cl and S, are enriched in BA compared 

to natural rocks (Wiles, 1996; Chimenos et al., 2000; Bayuseno and Schmahl, 2010; Lam et 

al., 2010; Wei et al., 2011;). A large share of the trace metals is incorporated into melt com-

ponents (glasses as well as oxide and silicate minerals) while other phases such as refracto-

ry components are of lesser significance (Wei et al., 2011). Several studies agree that the 

trace metals are concentrated in the finest particle fractions of BA (<2 mm) (Stegemann and 

Schneider, 1991; Chimenos et al., 1999). The enrichment of certain metals may be related to 

their melting behaviour as pure solids and the tendency to form smaller particle sizes (Chan-

dler et al., 1997). As will be discussed later, the enrichment and leachability of trace metals is 

of high relevance for the utilisation or disposal of BA.  

Morphologically, BA contains non-crystalline (amorphous) as well as crystalline to semi-

crystalline (mineral) constituents. The amorphous fraction amounts to between 34 and 76 

wt.-% of BA (Knorr et al., 1999; Bayuseno and Schmahl, 2010; Santos et al., 2013). It mostly 

consists of silicate-based glass phases (CaO-Al2O3-SiO2), which are formed during partial 

melting and the following quenching of BA (Wei et al., 2011). Typical mineral groups identi-

fied in BA are spinels, carbonates, sulfates, silicates, oxides and hydroxides (Williams, 

2013). Table 1.1 presents a literature overview of mineral phases identified by x-ray diffrac-

tion (XRD) of fresh and/or aged BA samples. To account for the fact that far more fresh BA 

samples have been investigated, the given frequency of identification is normalized to the 

total number of references for fresh and aged BA, respectively. It should be noted that the 

particle size fraction of samples used for analysis and the ageing conditions may vary among 

the underlying studies. The aim here is to provide an overview about the mineral diversity of 

BA and to pinpoint common mineral phases which are frequently identified in fresh and/or 

aged BA. While solid phases with high melting points (refractory minerals) are already con-

tained in the original MSW and pass the incineration process unaltered, some new phases 

are during the combustion (Zevenbergen and Comans, 1994; Pfrang-Stotz and Schneider, 

1995). Examples for the latter are melilite, magnetite and spinels, plagioclase feldspar, wol-

lastonite and lime (Eusden et al., 1999; Wei et al., 2011). 
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Table 1.1 Mineral phases in fresh and aged bottom ash samples identified in the literature (nfresh = 25; naged = 14) with scaled frequency of identification (- = not 
identified, + ≤ 25%, ++ = >25-50%, +++ = >50%). References: (Giordano et al., 1983; Kirby and Rimstidt, 1993; Knorr et al., 1999; Chimenos et al., 
2000; Speiser et al., 2000; Chimenos et al., 2003; Fernández Bertos et al., 2004; Polettini and Pomi, 2004; Ohtsubo et al., 2004; Piantone et al., 2004; 
You et al., 2006; Han et al., 2009; Baciocchi et al., 2010; Bayuseno and Schmahl, 2010; Lin et al., 2015; Saffarzadeh et al., 2011; Wei et al., 2011; 
Rocca et al., 2012; Santos et al., 2013; Um et al., 2013; Tang et al., 2015; Yang et al., 2014; Yao et al., 2015; Inkaew et al., 2016; Blanc et al., 2018). 

Mineral group / phase Chemical formula      Frequency Mineral group / phase Chemical formula Frequency 
Fresh Aged Fresh Aged 

Spinels    Hydroxides    
 Magnetite Fe3O4 + ++  Portlandite Ca(OH)2 +++ + 
 Hercynite FeAl2O4 + +  Friedel’s salt Ca2Al(OH)6(Cl,OH)·2H2O ++ + 
Carbonates     Hydrocalumite Ca2Al(OH)6[Cl1-x(OH)x]∙3H2O ++ + 
 Calcite CaCO3 +++ +++  Goethite α-FeO(OH) + + 
 Hydrotalcite Mg6Al2CO3(OH)16·4H2O + +  Aluminium hydroxide Al(OH)3 + + 
 Potash K2CO3 + + Silicates    
Sulfates     Gehlenite Ca2Al2SiO7 +++ ++ 
 Anhydrite CaSO4 +++ ++  Larnite Ca2SiO4 + - 
 Gypsum CaSO4∙2H2O + ++  Anorthite CaAl2Si2O8 ++ + 
 Ettringite Ca6Al2[(OH)12|(SO4)3]·26H2O ++ +  Wollastonite CaSiO3 + + 
 Thenardite Na2SO4 + -  Melilite (Ca,Na)2(Mg,Fe,Al)(Si,Al)2O7 + + 
 Barite BaSO4 + +  Kaolinite Al4[(OH)8|(Si4O)10] + + 
Oxides     Halloysite Al2Si2O5(OH)4 - + 
 Quartz SiO2 +++ +++  Forsterite Mg2SiO4 + + 
 Cristobalite SiO2 + +  Diopside MgCaSi2O6 + + 
 Corundum Al2O3 + +  Muscovite/Illite KAl2(AlSi3O10)(OH)2 + + 
 Hematite Fe2O3 ++ ++  Feldspar_Alkali (Na,K)Si3AlO8 + + 
 Wüstite FeO + + Zeolites    
 Lepidocrocite ᵞ-FeO(OH) - +  Gismondine CaAl2Si2O8·4(H2O) + + 
 Ferrous oxide Fe(II)O + +  Laumontite CaAl2Si4O12·4(H2O) + - 
 Rutile TiO2 + +  Boggsite Ca8Na3(Si,Al)960192∙70H2O + - 
 Lime CaO + - Others    
 Periclase MgO - +  Apatite Ca5(PO4)3(Cl,F,OH) + - 
 Cuprite Cu2O - +  Halite NaCl + + 
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Only a few studies have performed quantitative XRD analyses to identify the mineral com-

position. For fresh BA the following mineral phases were quantified as important constitu-

ents: quartz (9 - 57 wt.-%), calcite (0.5 - 27 wt.-%), anhydrite (0.3 - 15 wt.-%), portlandite 

(0 - 10 wt.-%), gehlenite, magnetite and hematite (all 0.4 - 6 wt.-%) (Knorr et al., 1999; 

Bayuseno and Schmahl, 2010; Santos et al., 2013). This is in qualitative agreement with 

high identification frequencies for same minerals reported in Table 1.1. 

As already pointed out, several trace metals are found in BA. Among the latter Pb, Zn, Cu 

and Cr usually dominate (Lam et al., 2010; Dou et al., 2017) and are environmentally rele-

vant in the context of landfilling or reutilization (Huber et al., 1998; Ecke and Aberg, 2006). 

However, the risk potential is not primarily determined by the total content of the individual 

contaminants but rather by their binding strengths and solubilities (Bruder-Hubscher et al., 

2002; Köster and Vehlow, 2002). Therefore, the mineralogical characteristics of the BA 

play an important role in the leaching behaviour of BA.  

Leaching behaviour  

Bottom ash is not generally considered as a hazardous waste according to the European 

Waste Catalogue, yet its leaching behaviour has been an issue of controversial discus-

sions for a long time (Chandler et al., 1997; Bilitewski and Härdtle, 2013). The leaching of 

trace metals is of particular importance since almost all regulations for the disposal or utili-

sation of BA are based on standardised leaching tests (Liu et al., 2015). The leaching of 

BA has been extensively examined in the literature, e.g. (Kim et al., 2002; Cornelis et al., 

2008; Hyks et al., 2009). Major components of BA leachates are typically derived from the 

salts of alkali and earth alkali elements. These give rise to high aqueous concentrations of 

Ca, Na and K together with a few bulk anions (e.g. Cl-, SO42-), all readily available in the 

leaching tests (Wiles, 1996; Dou et al., 2017). Several studies demonstrated that the pH is 

one of the main factors controlling the release of major elements (Astrup et al., 2006; 

Dijkstra et al., 2006; Dijkstra et al., 2008). This is due to the pH-dependent solubility of 

many minerals (Meima and Comans, 1997; Rocca et al., 2012). Fresh BA exhibits a pH in 

the range of 10 to 12.6 (Huber et al., 1998; Chimenos et al., 2000; Speiser et al., 2001; 

Polettini and Pomi, 2004; Dijkstra et al., 2006) and buffering in this range can be attributed 

mainly to the presence of Ca(OH)2 (Johnson et al., 1995; Chandler et al., 1997). 

In terms of the pH-dependent leaching the trace metals can be roughly divided into two 

groups: i) metals with amphoteric character which react either as acid or base, like Pb, Cu 

and Zn; and ii) oxyanion forming metals, e.g. Cr, V, Sb and Mo.  
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The leachability of amphoterics like Pb, Cu and Zn is mainly controlled by precipita-

tion/dissolution reactions (Zhang et al., 2008) and the following mineral phases have been 

suggested as mineral host phases: Pb(OH)2, PbCO3, ZnO, Zn(OH)2, CuO, Cu2O, 

Cu2(OH)2CO3 (Meima et al., 1999; Köster and Vehlow, 2002; Polettini and Pomi, 2004; 

Dijkstra et al., 2006; Saffarzadeh et al., 2011). Their solubility is high under both alkaline 

(pH >11) and acidic conditions (pH < 4) and relatively low in the weakly alkaline range (pH 

9 – 10) (Chimenos et al., 2000; Köster and Vehlow, 2002). In the leachates of fresh BA 

with a highly alkaline pH, amphoteric metals are usually present as free cations as well as 

hydroxo complexes and high concentrations are observed, in particular for Pb (Arickx et 

al., 2006; Seifert and Vehlow, 2017). This may cause the need to store BA on hazardous 

waste landfills but particularly hampers their geotechnical utilisation (Bayuseno and 

Schmahl, 2010).  

Heaps of BA represents an alkaline and oxidizing (Meima and Comans, 1997; Dijkstra et 

al., 2006) environment where redox-sensitive elements like Cr, Mo, Sb, and V are predom-

inantly present as chromate, molybdate, antimonate and vanadate, i.e. as oxyanions. Their 

concentration-vs.-pH characteristic differs greatly from that of the amphoteric metals. A 

leaching minimum is found at pH ≈ 12 and for some oxyanions a secondary minimum is 

found at pH <6 (Köster and Vehlow, 2002; Cornelis et al., 2008). Although the total con-

tents of oxyanion-forming elements are typically lower than those of amphoteric metals 

they are often readily available for leaching. This is due to the high solubility of the corre-

sponding host phases, e.g. Cu11(OH)14(CrO4), PbCrO4, Na2CrO4, CaMoO4 and 

(Zn,Cu)PbVO4(OH) (Zevenbergen and Comans, 1994; Chandler et al., 1997; Meima and 

Comans, 1999; Freyssinet et al., 2002; Piantone et al., 2004). Oxyanion leaching has been 

reported to be limited by sorption to Fe- and Al-(hydr)oxides (Kersten et al., 1997). Alt-

hough the sorption is weak in the pH range of fresh BA (Johnson et al., 1999), it may be-

come more important when the pH drops, i.e. during ageing of the material (see section 

1.4). The role of metalloids substitution for other anions in minerals like ettringite, calcite 

and hydrocalumite and its effects on the oxyanions leaching has been highlighted by sev-

eral researchers (Piantone et al., 2004; Cornelis et al., 2008).  

1.3 Utilisation of BA 

Bottom ash contains potentially valuable constituents (metals, glass) and bulk materials 

(aggregates and minerals) that may be recycled or used in geotechnical applications. In 

many countries the reuse of BA (“waste to materials”) is therefore preferred over landfilling 

(Liu et al., 2015; Dou et al., 2017).  
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From the geotechnical viewpoint, BA is a compactable material with high elasticity in the 

uncured state and good geotechnical properties (Chandler et al., 1997; Holm and Simon, 

2016). Furthermore, several investigations also identified BA as a pozzolanic material (Ab-

dulmatin et al., 2018; Shi et al., 2018). The reuse of BA as a secondary construction mate-

rial has long since been promoted. Applications comprise the use as road subbases and 

sound barriers on highways, wind barriers, parking lot and bike path groundings (Schreurs 

et al., 2000; Fujimori et al., 2004; Hjelmar et al., 2007; Alwast and Riemann, 2010; Lynn et 

al., 2017). Also, the use in landfill construction and land reclamation in coastal areas have 

been reported (Wiles, 1996). These applications involve the benefit of substituting geogen-

ic aggregates and thereby conserving natural resources (Brett et al., 2018).  

Other attempts for recycling and reuse of specific BA fractions include glass recycling 

(Barberio et al., 2010; del Valle-Zermeño et al., 2017), the use as an aggregate and/or 

cement substitute in mortar or concrete applications (Wiles, 1996; Bertolini et al., 2004; Al-

Rawas et al., 2005; Lam et al., 2010; Kuo et al., 2013; Keulen et al., 2016), or in bitumi-

nous pavements (Wiles, 1996). More exotic uses include the use as a sorbent for gas-

purification (Mostbauer et al., 2008; Mostbauer et al., 2014; del Valle-Zermeño et al., 2015) 

or raw material in the ceramic industry (Fujimori et al., 2004; Bourtsalas et al., 2015). 

However, in consideration of the huge amount of BA produced, only geotechnical reuse 

and the use as an aggregate in cement mortar and concrete provides the necessary vol-

ume to avoid BA landfilling (Santos et al., 2013).  

Prior to any reuse option, ferrous and non-ferrous metals should be separated from BA 

(Wiles, 1996; Xuan et al., 2018). Basic mechanic treatment methods include shredding for 

size reduction, ferrous and non-ferrous metal recovery by magnetic and eddy current sep-

aration, screening or windsifting to remove uncombusted material, and sometimes sensor 

based sorting (Chandler et al., 1997; Holm and Simon, 2016). Increasing raw material 

prices and a growing demand for non-ferrous metals have prompted German operators to 

intensify their efforts towards metal recovery (Vehlow and Seifert, 2012; Holm and Simon, 

2016). Enhanced metal recycling often requires a shredding of the mineral fraction, which 

in turn lowers the suitability for geotechnical reuse, leaving landfilling as the only remaining 

option (Quicker, 2017). 

Waste balances show that high BA utilisation rates are already achieved in some Europe-

an countries, e.g. > 90% in Denmark and the Netherlands, 80% in Germany and 70% in 

France (Dou et al., 2017), while in other countries (e.g. Austria, Belgium, Sweden) land-

filling is still the predominant disposal route due to the lack of suitable valorisation routes 

(Santos et al., 2013; Dou et al., 2017). For Germany, however, it should be noted that the 
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major share of utilized BA goes into landfill construction (Holm and Simon, 2016). This is, 

however, quite a dead-end-path in view of the presumably low number of newly built land-

fills and the decreasing number of active landfill sites (Rettenberger, 2017). Therefore, 

more efforts have to be devoted to the reuse of BA in geotechnical applications.  

For this purpose, engineering criteria and environmental performance guidelines have to 

be observed (Wiles, 1996), which can considerably vary between different countries (Liu et 

al., 2015). Indeed, due to länder-specific regulations in Germany the utilization rate exhib-

its high regional variability (Zwahr, 2005; Holm and Simon, 2016). Recently, a new Ger-

man ordinance has been drafted (ErsatzbaustoffV), which determines quality standards for 

secondary construction materials including BA. The pertinent legislative process is still in 

progress.  

Geotechnical reuse options for BA (as well as BA landfilling costs) depend on national 

guidelines especially regarding the leachability of trace elements (Liu et al., 2015). Reac-

tive compounds present in fresh BA like CaO, Ca(OH)2, and Al0 (see section 1.2) are one 

of the major reasons for the high leachability of critical trace elements (e.g. Pb, Cu, Zn). 

Therefore, decreasing reactivity by natural ageing is one of the most common approaches 

to improve the leaching behaviour of BA and will be outlined in detail in the following sec-

tion.  

1.4 Ageing processes 

It has long since been recognized that the ageing of BA is beneficial to its leaching behav-

iour (Wiles, 1996; Meima and Comans, 1999; Polettini and Pomi, 2004; Wei et al., 2011). 

Fresh BA contains highly reactive constituents (e.g. lime, anhydrite) which are metastable 

under environmental conditions (Bayuseno and Schmahl, 2010). Their transformation un-

der ambient conditions has been referred to as ageing of BA. The majority of ageing reac-

tions is driven by atmospheric agents (oxygen, carbon dioxide) and requires the presence 

of pore water (Costa et al., 2007). The ageing process includes dissolution/precipitation of 

salts, glass corrosion, oxidation, hydration, slaking of lime, carbonation, hardening and 

hydraulic cementation reactions, and neo-formation of clay-like minerals (Kirby and Rim-

stidt, 1993; Eighmy et al., 1994; Zevenbergen et al., 1996; Meima and Comans, 1997; 

Eusden et al., 1999; Wei et al., 2011; Wei et al., 2014).  

As pointed out in section 1.2, the mineralogy of BA is quite versatile for fresh BA and be-

comes even more complex when the material ages since secondary mineral phases 

emerge (e.g. calcite, Fe oxides quartz, sulphates and/or ettringite, hydrocalumite and cal-

cium-silicate-hydrates (C−S−H phases) (Piantone et al., 2004; Bayuseno and 
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Schmahl, 2010). To date, the understanding of the complex mineral alteration reactions 

induced by aging and weathering is still patchy (Costa et al., 2007; Bayuseno and 

Schmahl, 2010). However, the following processes are often outlined to be of particular 

importance: 

1. Oxidation of metallic Al/Fe  

2. Hydration of metal oxides 

3. Carbonation 

Freshly quenched BA contains metals in elemental form, mostly Fe0 (9 − 15 %) and 

Al0 (1 − 2 %) (Cornelis et al., 2008). Both metals have been reported to undergo corrosion 

both under anaerobic conditions (Hao et al., 2017) and under the aerobic conditions in-

duced by the access of atmospheric oxygen. Corrosion results in the formation of Fe- and 

Al-(hydr)oxides, which have been recognized as prominent sorbents for environmentally 

relevant trace metals (Meima and Comans, 1997; Todorovic and Ecke, 2006; Chaspoul et 

al., 2008; Oehmig et al., 2015).   

Hydration starts during the quenching process when BA comes into contact with water 

(Chimenos et al., 2000). Metal oxides of the alkali and earth-alkali element groups formed 

during the combustion react as bases and determine the alkalinity of BA. Calcium is one of 

the major elements of BA and CaO (lime) is an abundant mineral phase in unquenched BA 

(Inkaew et al., 2016). Thus, one of the most prominent hydration processes in BA is the 

hydration of CaO to Ca(OH)2 according to the following equation (1.1): 

Δ2 2
kJCaO H O Ca(OH)      ( H = -65 )

mol
       (Eq. 1.1) 

Portlandite (Ca(OH)2) is one of the most frequently identified alkaline mineral phases in 

freshly quenched BA (see Table 1.1). Its presence is an important prerequisite for the car-

bonation reaction which is considered as the most relevant aging process for BA (Meima 

and Comans, 1997; Arickx et al., 2006; Costa et al., 2007). 

Carbonation 

Carbonation is an irreversible gas/solid reaction and involves the absorption of 

atmospheric CO2 by an initially alkaline material. For the typically moist BA the reaction is 

mediated through the pore water. Bottom ash contains several alkaline compounds which 

are suitable for carbonation. For instance, olivine, feldspars, Ca-containing oxides and 

silicates (e.g. larnite and wollastonite, see Table 1.1) and C−S−H phases can react with 

CO2 and produce CaCO3 and a silica gel (Kirby and Rimstidt, 1993; Eusden et al., 1999; 

Fernández Bertos et al., 2004b; Pan, 2012). However, except the Ca-containing oxides 
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most of the mentioned compounds are only trace constituents. Due to the abundance of 

CaO in unquenched BA its hydroxide Ca(OH)2 is considered to be the main alkaline phase 

in fresh BA (Chimenos et al., 2000; Rendek et al., 2006) and the simplified carbonation 

reaction can be described according to equation (1.2):     

 

Δ2 2 3 2
kJCa(OH) CO CaCO H O,     ( H = -113 )

mol
    (Eq. 1.2) 

 

Figure 1.2 gives a schematic of the involved reaction steps. Initially, Ca(OH)2 dissolves 

and Ca2+ and OH− ions are released into the pore water with a rapid and strong increase of 

the pH (Pan, 2012). Due to the high pH of the pore water, carbonic acid evolved by the 

dissolution of atmospheric CO2 dissociates almost completely to form carbonate (CO32−) 

ions. The latter combine with the Ca2+ ions to CaCO3 which precipitates at pH above 9 

(Pan, 2012) forming a coating layer on the BA surface (Brett et al., 2018). For each car-

bonic acid ion two H+ ions are released into the pore water and combine with OH− (neutral-

isation), which results in a decrease of leachate pH to the circumneutral range (Wiles, 

1996). This reaction sequence will proceed as long as the reactants, CO2 and Ca(OH)2, 

are available in the pore water.  

 
Figure 1.2 Schematic of the carbona-

tion of portlandite 
{Ca(OH)2(s)} by CO2. At-
mospheric CO2(g) dissolves 
in the alkaline pore water to 
form carbonic acid (H2CO3), 
bicarbonate (HCO3−) and 
carbonate (CO32−). The lat-
ter combines with Ca2+(aq)
and finally precipitates as 
calcite {CaCO3(s)}. Adopted 
and modified from (Brett et 
al., 2018).  

 

Calcite is, by far, the most commonly precipitated mineral during carbonation and its con-

tent can increase by up to 18 wt.-% (Fléhoc et al., 2006). Carbonates are thermodynami-

cally stable under atmospheric conditions (Piantone et al., 2004). Generally, it would be a 
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very long process (probably thousands of years) to decrease the leachate pH to the acid 

range merely by the acid precipitation because of the high acid neutralization capacity of 

BA (Hirner et al., 2000; Johnson and Furrer, 2002). Therefore, carbonation of BA is con-

sidered suitable for CO2 storage under ambient conditions (Pan, 2012). However, com-

pared to the total CO2 emissions of a MSW incinerator plant the achievable CO2 uptake by 

BA carbonation is almost negligible (Santos et al., 2013). Thus, the main benefit of BA 

carbonation rests with the improvement of leachate quality caused by the mobility de-

crease of certain regulated metals (Fernández Bertos et al., 2004b; Costa et al., 2007; Wei 

et al., 2011). A number of studies have focused on this effect and several processes have 

so far been identified:  

a) Carbonation affects the solubility of different BA constituents due to pH decrease (Di 

Gianfilippo et al., 2016). This is especially the case for the amphoteric metals (Fernández 

Bertos et al., 2004a; Saffarzadeh et al., 2011; Wei et al., 2011), since leaching of Pb, Zn 

and Cu is generally high at the typical pH (>12) of fresh BA and is lowered when the pH 

decreases to values between 8 and 10 (Verbinnen et al., 2016). 

b) Metal immobilization may be driven by the alterations of BA mineralogy (Bertos et al., 

2004; van Gerven et al., 2004; Verbinnen et al., 2016). On the one hand carbonation my 

trigger the direct involvement of Pb, Zn, and Cu by the precipitation of sparingly soluble 

(hydroxy-) carbonates (e.g. ZnCO3 and Cu2CO3(OH)2 (Zhang et al., 2008) and PbCO3). 

The carbonates’ solubility depends on the involved cations and decreases in the order 

Mg2+ > Ca2+ > Zn2+ > Cd 2+ > Pb2+ (Salminen and Prausnitz, 2007), indicating that precipi-

tation of trace metals is favoured. On the other hand, the formation of solid solutions may 

also contribute to the metal binding properties of BA, since Pb, Zn and Cd may substitute 

for calcium (as cations) and As, Cr, Mo, Sb, and V for sulfate (as oxyanions) in mineral 

phases like gypsum, ettringite, and hydrocalumite (Bayuseno and Schmahl, 2010; Cornelis 

et al., 2008; Piantone et al., 2004).  

c) Carbonation also induces changes of the physical properties of BA (Chimenos et al., 

2005). On the one hand, CaCO3 was found to precipitate on the surface of BA particles 

forming a carbonate layer (coating), which may cover potential host phases of critical met-

als. This, so-called, physical containment may contribute to the benefits of BA carbonation 

(Um et al., 2013; Sakita and Nishimura, 2015). On the other hand, the formation of CaCO3 

in the microstructure of BA decreases porosity and increases tortuosity (Xuan et al., 2018), 

which in turn has beneficial effects on the retention of contaminants (Lange et al., 1996; 

Rendek et al., 2006). 
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d) The formation of secondary phases may also contribute to the immobilisation of oxyan-

ions by sorption and surface precipitation (Cornelis et al., 2008). The sorption potential for 

oxyanions in Al- and Fe(hydr)oxides is well documented in the literature (Essington, 2004; 

Karamalidis and Dzombak, 2011). Sorption of most oxyanions is typically weak in the pH 

range of fresh BA (Johnson et al., 1999), but increases towards neutral pH (Cornelis et al., 

2008) since most of the reactive minerals constitute variable charge surfaces. Thus, the 

pH decrease induced by carbonation may additionally enhance immobilisation by sorption 

(Meima and Comans, 1998). Furthermore, several secondary mineral phases, like calcite, 

can provide sorption sites for certain elements (Meima and Comans, 1999; Piantone et al., 

2004).   

The above-named processes associated with primary and secondary mineral reactions 

may overlap (Lin et al., 2015a). Irrespective of knowledge gaps regarding specific mecha-

nisms, the beneficial effect of ageing reactions, especially carbonation, is beyond doubt 

(Meima and Comans, 1997; Zevenbergen et al., 1996; Marzi et al., 1998; Chimenos et al., 

2005; van Gerven et al., 2005; Todorovic and Ecke, 2006; Gori et al., 2011; Saffarzadeh et 

al., 2011; Santos et al., 2013; Yin et al., 2017; Di Gianfilippo et al., 2018; Sormunen et al., 

2018).  

Current practice of BA ageing 

As outlined in the previous section, ageing reduces the BA reactivity and the mobility of 

BA-borne contaminants. Furthermore, ageing may also improve the geotechnical proper-

ties of BA, e.g. by increasing the compressive strength, modulus of elasticity and structural 

durability (Wiles, 1996; Fernández Bertos et al., 2004b; Chimenos et al., 2005;). Therefore, 

ageing is commonly applied in many European countries prior to geotechnical utilization or 

landfilling of BA (e.g. German LAGA-guideline from 1994). For passive ageing (pile age-

ing), BA is usually stored in open stockpiles of up to 5,000 tons (Blanc et al., 2018; 

Nørgaard et al., 2019) for periods between 1 and 3 months (Chimenos et al., 2003; Sab-

bas et al., 2003; Arickx et al., 2010; Gori et al., 2011). However, this timeframe may not be 

sufficient to meet regulatory limit values and ageing periods have been extended to about 

12 months in Denmark (Astrup, 2007). This, in turn, requires larger storage capacities 

which might not be available in densely populated areas (Lin et al., 2015a). 

Based on the experience gathered over the last decades, ageing should be performed 

under controlled conditions (Wiles, 1996; Palitzsch et al., 1999). Under natural conditions 

carbonation is quite slow (Costa et al., 2007) and often limited to the upper layers of BA 

piles (Freyssinet et al., 2002). Marzi et al. (1998) and Arickx et al. (2006) showed that after 

3 months of natural ageing only the upper 5 cm of a BA pile underwent significant carbona-
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tion as judged from the leachate pH and concentration of trace metals. Therefore, BA 

stockpiles should be periodically homogenized by turning, thereby also improving the ac-

cess of CO2 (Polettini and Pomi, 2004). For this purpose, machinery and manpower is re-

quired (Blanc et al., 2018). 

Depending on whether BA is stored in roofed or open-air stockpiles, specific water man-

agement requirements need to be observed. Generally, the storage should be performed 

on concrete floors including adequate facilities to collect drainage and run-off water for 

treatment (Wiles, 1996). On the other hand, wetting of the stockpiles may be required if the 

moisture content falls below a certain level (Wiles, 1996). Indeed, water contents tend to 

decrease during storage mainly due to exothermic ageing reactions (see equation 1.1 and 

1.2) (Chimenos et al., 2003; Nørgaard et al., 2019). Besides the risk of potential dust 

emissions, excessive drying may ultimately impede carbonation of BA. 

Overall, passive ageing requires large quantity of space, time and appropriate measures to 

control the process. Thus, as will be shown in detail in the next section, a number of re-

searchers have addressed the question of how the ageing of BA can be accelerated under 

controlled conditions.  

1.5 Accelerated carbonation 

The accelerated carbonation of alkaline materials, whether minerals or residues, is a con-

trolled enhancement of their natural ageing (Fernández Bertos et al., 2004b; Pan, 2012). 

For several decades, enhanced carbonation has been applied to the hardening and curing 

of cement and concrete systems (Klemm and Berger, 1972; Kashef-Haghighi and 

Ghoshal, 2013). More recently, it has gained attention in the context of carbon capture and 

storage as well as in the treatment of contaminated soil, hazardous waste, and alkaline 

residues (e.g. BA, fly ash and other air pollution control residues, steel-making slags, etc.) 

(Bodor et al., 2013). The approaches can be differentiated into the indirect and direct car-

bonation routes. Indirect carbonation takes place in several stages, typically including ex-

traction, reaction and extractants recycling (Bobicki et al., 2012). Since it is primarily ap-

plied in carbon capture and storage technologies, it will not be discussed here.  

Alkaline residues of high temperature processes (waste incineration, steel making etc.) are 

suited for direct carbonation in a single reaction step. Direct carbonation of these materials 

leads to a CO2 uptake by the solid and improves its leaching (Fernández Bertos et al., 

2004b; Lim et al., 2010). Based on the reaction environment direct carbonation can be 

further divided into dry, moist and aqueous applications (Bodor et al., 2013).  
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Dry carbonation is the direct gas-solid reaction of alkaline minerals with CO2 at tempera-

tures above 300 °C. It is applicable when high-temperature CO2 sources are available and 

when the material exhibits high levels of readily reactive calcium oxide or hydroxide com-

pounds (Costa et al., 2007). For BA, the former is typically not the case, leaving moist and 

aqueous accelerated carbonation as the most adequate approaches (Costa et al., 2007; 

Fernández Bertos et al., 2004b). Both comprise a heterogeneous gas-liquid-solid reaction 

and thus require the presence of liquid water. While in moist carbonation the CO2 is intro-

duced into the available pore water at low liquid to solid ratios (L/S <1), aqueous carbona-

tion handles slurries with L/S >2 (Pan, 2012; Bodor et al., 2013). Aqueous carbonation 

requires a subsequent liquid-solid separation, generates wastewater and thereby addition-

al treatments costs. This can be circumvented by moist carbonation where the aqueous 

phase is provided by the pore water, alone. Relying on the inherent moisture content of the 

residues, only a slight adaption of the water content would be necessary to obtain the op-

timal CO2-uptake. Since BA carries inherent moisture from the quenching step, moist car-

bonation is the favoured approach for this material (Costa et al., 2007).   

The most straight forward way to accelerate the naturally slow carbonation reaction is to 

increase the CO2 supply. This can be achieved by contacting BA with a CO2-rich reaction 

gas at ambient pressure or by using overpressures of up to 17 bar. The latter approach 

has been investigated in pressurized stainless steel vessels with a thin layer of BA ex-

posed to the reaction gas (Fernández Bertos et al., 2004a; Rendek et al., 2006; Baciocchi 

et al., 2010).  

For carbonation at ambient pressure reactor systems with a continuous gas supply have 

been implemented in climate chambers, incubators, and columns where BA is exposed to 

a CO2 rich reaction gas under flow-through conditions (van Gerven et al., 2005; Arickx et 

al., 2006; Nam et al., 2012; Um et al., 2013; Lin et al., 2015a; Sakita and Nishimura, 2015). 

Accelerated (moist) carbonation has proven successful to increase the chemical stability 

and improve leaching behaviour of BA within time frames ranging from minutes to hours. 

Yet a practical applicability of the above named systems remains beyond reach since 

static treatment do not allow for the necessary throughput. 

Current developments  

In recent years much research has focused on the principal carbonation mechanisms and 

controlling operating parameters, such as temperature, CO2 partial pressure, water con-

tent, residence time as well as particle size (Costa et al., 2007). Despite the progress 

made in this context, commercial applications are still out-of-sight due to technical limita-

tions and high costs (Fernández Bertos et al., 2004b). One of the major hurdles with re-
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gard to scale-up is the transfer the mostly static reactor systems studied so far to concepts 

applicable at the industrial scale. Marzi et al. (2004) were one of the first to explore the 

scale-up by loading 167 t of BA into a compost tunnel utilising its aeration system for CO2 

supply (synthetic reaction gas with 8 vol.-% CO2). Carbonation of BA was achieved within 

a few days and the leaching of Pb, Cu and Mo clearly decreased. However, problems re-

lated to pile ageing (see section 1.4) remained and thus the approach was not pursued 

further.  

To enhance carbonation efficiency, the penetration of CO2 into the porous system needs to 

be favoured (Freyssinet et al., 2002). One of the key variables to be optimized is therefore 

the material exchange between the solid, liquid and gaseous phases. Therefore, dynamic 

reactor systems have been suggested (Fernández Bertos et al., 2004a,b). Initial attempts 

to provide agitation of BA were reported by Palitzsch et al. (1999) who used a vibrating 

feeder as dynamic reaction system. The necessary treatment time could be shortened to 

10 minutes if pure CO2 was used as reaction gas, but carbonation was insufficient when 

the CO2 concentration was reduced to 10 vol.-%. Although the results were promising, 

some problems remained unsolved, e.g. the use of costly synthetic CO2, the requirement 

of a gastight reactor and the control of sufficiently long residence times on the vibrating 

feeder.  

Rotating drums have been suggested as an alternative reactor concept (Fernández Bertos 

et al., 2004b; Zingaretti et al., 2013). These simultaneously provide agitation and mixing 

(thereby enhancing the contact between BA and the reaction gas) and homogenize the 

solid with respect to moisture. Beyond BA, rotating drums have proven useful for the ac-

celerated carbonation of other alkaline residues like fly ash, biomass ash, steel slag, and 

paper ash (Gunning et al., 2009; Łączny et al., 2015; Librandi et al., 2017; Librandi et al., 

2019). Lombardi et al. (2016) studied the CO2 uptake from synthetic landfill gas by BA. 

Under batch conditions, they found higher CO2 uptake rates in their rotating drum reactor 

compared to static conditions.  

The findings published so far suggest that rotating drum reactors are promising for the 

implementation of accelerated carbonation at the industrial scale. However, several issues 

need to be considered: Until now the accelerated carbonation of BA was only tested under 

batch conditions. To integrate the process into the management of BA at the industrial 

scale the system should be ideally operated under flow-through conditions in terms of 

both, gas and BA. Using waste gas as the CO2 source for accelerated carbonation was 

suggested by Marzi et al. (2004) and Palitzsch et al. (1999). This would increase the eco-

nomic efficiency of the treatment process and also reduce, albeit slightly, the amount of 
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anthropogenic CO2 emissions. Several exhaust gases have been suggested including 

syngas from gasification processes (Zingaretti et al., 2014), biogas (Baciocchi et al., 2013; 

del Valle-Zermeño et al., 2015) and landfill gas (Mostbauer et al., 2014). Their CO2 con-

centration ranges from 5 to 70 vol.-%. One obvious option is to use the stack gas from 

waste incinerators (van Gerven et al., 2005; Nam et al., 2012). This normally contains 

around 10 vol.-% CO2 (Song et al., 2004; Costa et al., 2007) and is available in large quan-

tities at the origin of the BA. However, effects of gas temperature and moisture have not 

been extensively examined up to now.  

1.6 Scope of the thesis 

As previously outlined, accelerated carbonation under controlled conditions is a promising 

technology to reduce BA disposal costs while overcoming problems related to passive BA 

ageing. Although the scientific literature reveals substantial progress regarding carbonation 

conditions, the translation of the more fundamental findings into practicable processes is 

still sketchy. Recent studies demonstrated that the material dynamics in rotating drum re-

actors favour the accelerated carbonation. Yet, prior to the integration into the manage-

ment of BA, optimum drum operating conditions need to be identified.  

This thesis aimed at delineating both the technical set-up and the operation parame-
ters suited for process integration at incinerator sites. This included the develop-
ment of a screening technique to evaluate the progress of carbonation as well as a 
stepwise transfer of the reactor into a continuously fed system.  

Process integration requires that the treatment should ideally be synchronized to time-

scales of the BA generation at the incineration plant or to typical residence times during BA 

treatment (metal recovery, sieving, crushing). As outlined in Figure 1.3, typical residence 

times of those processes are within the range of minutes to hours, while the timeframe of 

passive ageing is far beyond (between several months and one year). Shortening the nec-

essary treatment time is therefore crucial for process integration.  

One of the key issues of reactor design is therefore the enhancement of BA exposure to 

the reactant gas by agitation and mixing. Contrary to the bed behaviour of dry standard 

materials, little is known about the motion of wet BA in rotating drums and its implications 

for accelerated carbonation. 

Depending on the patterns of bed motion, mixing tools may be required to speed up the 

carbonation process. These alter the geometry of the reactor interior and provide obstacles 

for the motion of BA induced by drum rotation. Adequate designs need to consider the 
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rheology of wet BA to prevent the formation of incrustations on the drum mantle and the 

mixing tools.   

Bed motion may also be affected by the reactor fill level and when a continuous reactor 

operation is aimed at, fill level is a critical design parameter itself. For a given feed rate 

(related to rate of BA generation) the fill level determines the BA residence time which in 

turn feeds back into the degree of carbonation when CO2-uptake is rate-limited. 

The carbonation of BA is known to reduce the leaching of amphoteric trace metals but may 

have the adverse side-effect of enhancing the mobility of oxyanions (see section 1.4). 

Therefore, process integration for a more economic disposal of BA requires an optimum 

degree of carbonation both with respect to its immobilizing and mobilizing effects.       

The objectives of this thesis are as follows: 

  

a)  Develop a monitoring system to evaluate the progress of carbonation 

 under static and dynamic conditions   

 b) Evaluate the benefits of mixing and agitation for the accelerated carbonation 

c) Study the bed behaviour of BA in rotating drum reactors 

d) Investigate the effect of process conditions and reactor design on carbonation 

 performance 

e)  Develop a continuous-fed operating reactor with adjustable BA residence time 
  

 
 Figure 1.3 Typical material residence times during incineration, ageing of bottom ash (BA), and 

BA treatment. 
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1.7 Research design and applied methods 

The BA used in this study was sampled from a grate-type refuse derived fuel incinerator 

located in central Germany. A total amount of about 2000 kg BA was used in the laborato-

ry experiments. The fresh BA was characterised by X-ray powder diffraction (XRD), X-ray 

fluorescence (XRF) spectroscopy, and thermogravimetric analysis (TGA). To evaluate the 

carbonation performance standard batch leaching tests were performed at a liquid-to-solid 

ratio of 10 L kg-1 prior and after carbonation treatment. The filtrates were analysed by in-

ductively coupled plasma–mass spectrometry regarding concentration of trace metals (Pb, 

Zn, Cu, Mo, Cr, V). The BA properties were screened over a period of three months. Re-

sults indicated that the material exhibits a pronounced temporal and spatial variability. In 

the research design this was considered using large samples of about 5 to 40 kg in the 

carbonation experiments. 

Chapter 2 reports on a novel method to monitor and evaluate the progress of carbonation 

in both static and dynamic reactor systems equipped with an automated CO2 supply at 

close to atmospheric pressure conditions. The method is based on following the pressure 

drop in the gas phase induced by the CO2-uptake of BA and was benchmarked against 

carbonate contents as measured by thermogravimetric analysis. To gather information 

about the moisture conditions inside the reactor system and self-heating induced by the 

exothermal carbonation reaction, the relative humidity and temperature were logged. The 

obtained high-resolution pressure curves were also used to analyse the kinetics of carbon-

ation. 

The effect of mixing on carbonation efficiency was studied in more detail in Chapter 3. 

Therefore, carbonation experiments were conducted with and without agitation of the BA in 

a rotating drum batch reactor. Since carbonation performance was superior under dynamic 

conditions, the influence of drum operation conditions was evaluated. Effects of rotation 

speed and reactor fill level on the solid’s motion were cinematographically analysed. In 

addition, the effects of CO2 concentration, fill level, and moisture on BA carbonation were 

investigated with respect to BA leachate properties. The CO2 uptake was quantified ac-

cording to the findings of Chapter 2. The self-heating described therein was considered in 

a heat-balance model that accounts for the exothermal carbonation reaction. 

The results summarized in Chapter 3 were obtained in a batch system. The CO2 supply 

was demand-driven by automated dosage at pre-defined set-points. However, thermal 

processes provide a continuous supply of CO2. Therefore, Chapter 4 presents results ob-

tained with a system where the BA was contacted with a synthetic exhaust gas in a rotat-

ing drum reactor under flow-through conditions. Different mixing tool designs and configu-
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rations were tested to enhance mixing while the specific CO2 supply and reactor loading 

were varied. Carbonation performance was assessed by thermogravimetric analyses and 

the leaching behaviour of the treated BA.  

As next step towards the implementation of the accelerated carbonation at an incinerator 

site a novel rotating drum reactor has been developed and tested as described in Chapter 

5. The design considered the findings of Chapters 2 to 4 and was extended to allow for the 

supply of a hot and humid reactant gas. The set-up used in Chapter 4 was extended. 

Asides the flow-through of the gas also the BA could be continuously fed employing ap-

propriate material dosage and discharge units. Electric balances were used to log the input 

and output mass flux for control of the residence time. Projected and experimental resi-

dence times were compared by mass balancing and by analysing the breakthrough curves 

of a tracer. Leachates and solid phase properties of the treated BA served to evaluate the 

carbonation performance. 

Finally, in Chapter 6, the most important results of the study are summarized and their 

implications are discussed in the light of a future implementation of the accelerated car-

bonation process. 
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2.1 Abstract 

Accelerated carbonation may be employed to improve the leaching behaviour and the ge-

otechnical properties of MSWI bottom ash (BA). Here we report on a novel method to mon-

itor and evaluate the progress of carbonation in both static and dynamic reactor systems. 

The method is based on following the pressure drop in the gas phase induced by the CO2-

uptake of BA and was benchmarked against carbonate contents as measured by thermo-

gravimetry. Laboratory results demonstrated the serviceability and reproducibility of the 

method. Complementary logging of relative humidity and temperature showed constant 

moisture conditions and self-heating induced by the exothermal carbonation reaction, re-

spectively. Under dynamic conditions BA carbonation was higher than in the static reactor. 

Consistently, the self-heating was more pronounced. After a reaction time of 120 minutes 

the pressure records indicated a CO2-uptake of 1.5 g CO2 /100 g BA (static tests) and of 

2.6 g CO2 /100 g BA (dynamic tests). The proposed method is suited to study carbonation 

processes at minimum analytical expense and integrates over the small-scale heterogenei-

ty of BA. 

Keywords: Bottom ash, alkaline waste, accelerated carbonation, carbon dioxide 
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2.2 Introduction 

Bottom ash (BA) is the dominant solid residue generated in municipal solid waste incinera-

tors and waste-to-energy plants. Worldwide, the installation of incineration capacities has 

increased (Santos et al., 2013) causing increasing quantities of BA. Disposal options for 

BA (landfilling or geotechnical reuse) depend on country-specific guidelines especially re-

garding the leachability of trace elements (Liu et al., 2015; Verbinnen et al., 2016).  

Fresh BA contains highly reactive constituents and their transformation under ambient 

conditions has been referred to as the ageing of BA. One of the most important ageing 

processes is carbonation by atmospheric carbon dioxide (CO2). Due to the presence of 

alkaline mineral phases (mainly Ca(OH)2; Rendek et al., 2006) the pore water of BA acts 

as a CO2-trap (Fernández Bertos et al., 2004b). The simplified carbonation reaction equa-

tion (2.1) shows that by CO2-uptake Ca(OH)2 is converted to CaCO3 and alkalinity is con-

sumed. 

 

Ca(OH)2 + CO2 → CaCO3 + H2O, H = -113 kJ/mol (Eq. 2.1) 

 

For a more detailed description of the reaction routes refer to Costa et al. (2007) and Pan 

(2012). Consumption of BA alkalinity by carbonation is beneficial since it reduces the 

leachability of amphoteric trace metals (Saffarzadeh et al., 2011) and thereby lowers dis-

posal costs. For Germany, cost savings between 10 € and 45 € per metric tonne of BA 

have been estimated after improving the leacheate characteristics by carbonation (our own 

unpublished data). Carbonation may also improve the geotechnical properties of BA, e.g. 

by increasing the compressive strength and modulus of elasticity (Chimenos et al., 2005; 

Fernández Bertos et al., 2004b).  

Under ambient conditions, carbonation is slow (Costa et al., 2007) and limited by the ac-

cess of CO2 requiring storage periods of up to several months (Astrup, 2007; Santos et al., 

2013). Therefore, considerable efforts have been made to accelerate CO2-uptake by in-

creasing the CO2 partial pressure under static and dynamic conditions. 

In static laboratory-scale reactors a thin layer of BA is contacted with the CO2 enriched gas 

phase without agitation of the solid. Such systems with flow-through supply of CO2 have 

frequently been described (Arickx et al.,2006; Lin et al.,2015; Sakita and Nishimura,2015; 

Nam et al.,2012; Um et al.,2013; van Gerven et al.,2005). As an alternative approach, 

pressurized stainless-steel vessels with discontinuous gas supply operated under CO2 
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partial pressures of 2∙102 kPa to 1.7∙103 kPa have been used by Baciocchi et al. (2010), 

Fernández Bertos et al. (2004a), Johnson (2000), and Rendek et al. (2006a).  

In view of industrial scale applications dynamic reactor systems, e.g. rotating drums, have 

been suggested (Fernández Bertos et al., 2004b; Zingaretti et al., 2013). These simultane-

ously provide agitation, exposure to the reaction gas, and mixing. Rotating drum reactors 

have been tested under flow-through conditions and showed superior CO2-uptake as com-

pared with static reactor systems (Lombardi et al., 2016).  

In practice, the management of BA ageing is solely based on whether or not leachate 

properties comply with legal values. A comprehensive and systematic development of ap-

propriate methods for the accelerated carbonation of BA including quality control for CO2-

uptake is lacking. As a prerequisite these require a time-resolved monitoring of the process 

capable of integrating over the heterogeneity of BA.    

In this study we tested the hypothesis that CO2-uptake of BA can adequately be deduced 

from the pressure drop observed in closed reactor systems. This would spare classical 

analyses and provide a better understanding of processes. In addition, pressure monitor-

ing integrates over the whole reactor loading which circumvents problems related to small-

scale variability of BA. Quantification of CO2-uptake from pressure data was first suggest-

ed by Sun et al. (2008) for air pollution control residues. However, their application was 

restricted to pressures >200 kPa. This is beyond practical conditions where exhaust gas 

from thermal processes is an available CO2 source. Here, we expanded the approach to 

atmospheric pressure conditions to monitor and evaluate the progress of carbonation. The 

method is based on following the pressure drop in the gas phase induced by the CO2-

uptake of BA. Suitability was tested both in a static reactor system with manual CO2-

dosage and a rotating drum reactor with automated CO2- supply. 

2.3 Material and methods 

2.3.1 Bottom ash sampling and characterisation 

Freshly quenched BA was obtained from a grate-type refuse derived fuel incinerator locat-

ed in central Germany. Annually, the incinerator handles 25,000 metric tons of sorted 

commercial waste residues providing 75,000 MWh to a district heating system. Total BA 

production amounts to 5,000 metric tons per year, approximately. The BA was sampled at 

the end of an apron conveyor which transports the material from the quenching tank to the 

collection containers. The sample was screened to remove the 11 mm oversize fraction 

(about 40%-wt. of the raw sample).  
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Table 2.1. Moisture content, loose bulk density, particle density and particle size distribution of 
fresh bottom ash. 

Water 
content 

Loose bulk 
density 

Particle 
density 

< 0.125 
mm 

0.125 - 1.00 
mm 

1.00 - 2.00 
mm 

2.00 - 4.00 
mm 

4.00 - 11.0 
mm 

% wt. kg/L kg/L % wt. 

15.2 1.14 2.78 18.7 35.8 17.9 16.8 10.8 

 

This considered findings by Lombardi et al. (2016) according to which the coarse material 

contributes little to the overall carbonation. Moisture content was determined gravimetrical-

ly after drying subsamples at 105 °C for 24 h (DIN EN 12880). The particle size-distribution 

was determined by sieving with stainless-steel screens (mesh size 0.125, 1, 2, and 4 mm) 

in conformity with DIN 18123. Substance density was obtained by pycnometry (EN 11508).  

The loose bulk density of the fresh BA was determined by weighing a graduated cylinder 

holding 100 mL of the material. Table 2.1 summarizes the results. These are consistent 

with values reported elsewhere (Chimenos et al., 2005; Costa et al., 2007). 

2.3.2 Reactor configuration  

Figure 2.1 shows the experimental set-up for the accelerated carbonation under static 

conditions. Experiments were conducted in glass reaction vessels with a void volume of 

1 L. Six vessels connected in series were equipped with piezoresistive pressure sensors 

(OxiTopTM, WTW, Weilheim, Germany) and sealed air-tightly.  

 
Figure 2.1 Set-up of the lab scale carbonation experiments under static conditions. (1) CO2 sup-

ply; (2) ball valve with flow rate display; (3) 3-way valve; (4) exhaust gas; (5) 2-way 
valve; (6) OxiTop pressure sensor; (7) temperature and relative humidity sensor; (8) 
reaction vessel; (9) sample rack. 
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The OxiTop respirometry system is commonly used to monitor biological aerobic activity in 

water, soil, or waste (Ilyas et al., 2014; Rendek et al., 2006b). In the classical set-up, CO2 

evolved by respiration is trapped in NaOH causing a pressure drop in the vessel, which is 

proportional to O2 consumption. In our set-up, the BA replaces the NaOH trap and the 

pressure course can be directly linked to the CO2-uptake, i.e. to the progress and extent of 

carbonation. 

For CO2-supply, the vessels were connected to a gas cylinder (CO2, N4.5). Throughout the 

experiment, we aimed at maintaining the differential pressure in the vessels between +7.5 

kPa to -7.5 kPa relative to atmospheric pressure by opening the corresponding manual 

valves. Tests under dynamic conditions were conducted in a rotating drum reactor (Fig. 

2.2) consisting of a PVC cylinder with a void volume of 71 L (internal diameter 0.3 m, 

length of 1 m). It was run on four rubber roller bearings attached to metal stand. Rotation 

was provided by tooth belt drive. The front-end covers of the reactor were fixed to the man-

tle by spring locks. This ensured fast opening and closure for reactor loading. 

 
Figure 2.2 Set-up of the laboratory-scale carbonation experiments under dynamic conditions. (1) 

CO2 gas cylinder; (2) 2-way magnetic valve; (3) relay (control unit); (4) slot for two pie-
zoresistive pressure sensors; (5) pressure gauges for positive and negative pressure; 
(6) magnetic switches; (7) rotating drum; (8) rotating joints at the inlet and outlet of the 
reactor; (9) wireless temperature and relative humidity sensor; (10) 3-way valve; (11) 
drive roller; (12) electric motor; (13) substructure. 
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The CO2-supply and the exhaust were attached to the front-end covers of the reactor via 

rotating joints. The supply-side was connected to a CO2 pressure cylinder. Contrary to the 

static carbonation system, CO2-dosage was automated using a relay-controlled magnetic 

valve connected to two magnetic switches. The lower and upper set-points for valve open-

ing (start of CO2-dosage) and closure (stop of CO2-dosage) were –7.5 kPa and +7.5 kPa 

relative to atmospheric pressure, respectively.  

The pressure course was logged at fixed intervals. Therefore, the dynamic reactor system 

was equipped with two separate piezoresistive pressure sensors operated in two logging 

periods of 0-30 minutes and 0-120 minutes (logging interval 10 seconds and 20 seconds, 

respectively). Temperature and relative humidity (RH) in the reaction vessels were record-

ed every minute using a wireless sensor (AREXX TSN-TH70E, RS Zwolle, The Nether-

lands) with tolerances of ± 1°C and ± 0.5 % RH. The difference between ambient and re-

actor temperature (T) served as an indicator of the self-heating induced by the carbona-

tion. 

2.3.3 Reactor preparation 

For both, the static and dynamic carbonation, leak tests were performed by applying a 

vacuum of -30 kPa and monitoring the pressure for at least 30 minutes. To improve air-

tightness, all rubber seals were greased. The vessels were purged with CO2 for 3 minutes 

employing volumetric flow rates of ~1 L/minute (static carbonation) and ~100 L/min (dy-

namic carbonation). Control measurements with a portable gas-analyser equipped with 

infrared sensors (Multitec ®540, SEWERIN, Gütersloh, Germany) confirmed that this purg-

ing time was sufficient to produce a pure CO2 atmosphere.  

For static carbonation, 110 g ± 0.5 g of the fresh BA were placed on sample racks (7 plains 

with an area of 7 cm x 7 cm) consisting of stainless-steel frames equipped with nylon fly-

screens (Fig. 2.1). Each plain received a BA layer of 1 cm thickness, approximately. Sub-

sequently, the racks were placed into the reaction vessels, which were immediately cov-

ered. For dynamic carbonation, reactor loading was carried out by removing the exhaust-

side front cover. A total of 8 kg of BA was placed into a PVC half-pipe of 1 m length. Under 

continued purging, the half pipe was inserted into the reactor and emptied by turning. The 

spring-lock system ensured that reactor loading could be performed within 1 minute. To 

compensate CO2 losses during loading the reactors were purged again for 2 minutes em-

ploying the above-named flow rates. After purging, the carbonation experiments were 

started.  
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2.3.4 Experiment design  

A total of six static and three dynamic carbonation tests were conducted under a 100% 

CO2 atmosphere. The dynamic reactor was operated under a constant rotation speed of 

1.5 rpm. Taking into account the loose bulk density of BA (1.1 kg/L, Table 2.1) both the 

static and the dynamic tests were conducted at a volume to mass ratio of 9 L/kg. The fill-

level (ratio of packed bed volume and void volume) for both reactors was 10%, approxi-

mately. All experiments were started at ambient temperature and terminated after 240 

(static tests) and 120 minutes (dynamic tests). This time-scale suffices practical applica-

tions and has been recognised as adequate in terms of reaction rates (Fernández Bertos 

et al., 2004a; Lin et al., 2015). Reactor pressure, temperature, and RH as well leachate 

properties of BA and CaCO3 contents were evaluated as dependent variables of the car-

bonation process. 

2.3.5 Calculation of CO2 uptake  

The molar CO2-uptake was determined by the pressure drop (Δpi = pi+1 – pi) between suc-

cessive readings according to the universal gas equation, see equation (2.2):    

2CO
1

Δn


 
  

 


z
i

i i

pV
R T

    (Eq.2. 2)

where Δn is the total molar quantity of CO2 taken up, z is the number of logging intervals, 

V is the void volume of the reactor (m3) corrected for the volume of the sample, T is the 

absolute temperature (K) of the gas phase and R is the universal gas constant (8.314 

J/(mol K)). Integration was performed separately for each CO2 dosage and uptake cycle 

ensuring positive values of Δp. 

The specific CO2-uptake (ζPressure, g CO2 /100 g BADM) was obtained as the ratio of the 

mass of CO2 (g), calculated by multiplying the molar CO2-uptake with the molar mass of 

CO2 (MCO2, 44.01 g/mol) and the reactor loading as dry mass of BA according to equa-

tion (2.3): 

2 2CO CO
Pressure

DM

n  M gζ 100
Reactor loading (g BA ) 100 g

   
   

 
  (Eq. 2.3)
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2.3.6 Analytical 

Thermogravimetric analysis (TGA) is commonly employed to quantify carbonates (Costa et 

al., 2007; Fernández Bertos et al., 2004a; Um et al., 2013) and Ca(OH)2 (Huntzinger et al., 

2009; Rocca et al., 2013) in solid samples. Here, TGA was used as a benchmark of the 

CO2-uptake as estimated from the pressure course. Therefore, approximately 20 g of BADM 

were ground in a planetary ball mill. The TGA was carried out using a thermobalance (TG 

209 F1, Netzsch, Selb, Germany). Samples (~40 mg) were heated in corundum crucibles 

to 900°C at 20 °C/minute under a nitrogen atmosphere. The weight loss (WL, g CO2/100 g 

BADM) due to carbonate decomposition was quantified according to equation (2.4): 

(480 - 800 °C)

DM

Δm  (g) gWL 100 
Sample mass (g BA ) 100 g

 
   

 
                       (Eq. 2.4) 

with m(480 - 800 °C) as the mass loss observed between 480 °C and 800 °C.  

The specific CO2-uptake based on TGA (ζTG, g CO2/100g BADM) was obtained from the 

difference in WL of fresh and carbonated samples according to equation (2.5): 

TG
WL carbonated BA  WL fresh BA

(1 WL carbonated BA)





   (Eq. 2.5) 

The Ca(OH)2 content of the solid can be determined for the mass loss (m(230 - 430 °C)) 

observed in the temperature window between 230 °C and 430 °C according to equa-

tion 2.6: 

2

2

Ca(OH)(230 - 430 °C)
2

H O

MΔm  (g) gCa(OH) 100 
Sample mass (g) 100 g M

  
          

 (Eq. 2.6) 

with MCa(OH)2 and MH2O as the molar mass of Ca(OH)2 (74.10 g/mol) and H2O (18.02 g/mol), 

respectively. Here, the Ca(OH)2 content of fresh BA served as a proxy for the CO2-uptake 

capacity and was quantified as 5.14 ± 0.53 g Ca(OH)2 / 100 g BADM (three-fold determina-

tion) which corresponds to a CO2-uptake capacity of 3.06 g CO2 / 100 g BADM). 

To evaluate the effect of carbonation on the leachability of BA, batch leaching tests were 

performed with fresh and carbonated samples at a liquid-to-solid ratio (L:S) of 10 accord-

ing to EN 12457-2. The pH and electrical conductivity of fresh BA leachates were 12.6 and 

11.60 mS/cm, respectively (n = 6). 
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2.4 Results and discussion 

2.4.1 Static carbonation tests 

The performance of the monitoring system was tested under static conditions in six exper-

imental runs with a reactor loading of 110 g fresh BA exposed to a 100% CO2 atmosphere. 

Complementary information about the reaction conditions was obtained by logging RH and 

temperature. 

Figure 2.3 shows the time courses of RH, temperature, differential pressure and specific 

CO2-uptake for a representative experimental run. The differential pressure followed a 

sawtooth pattern imposed by carbonation and its compensation by manual CO2-dosage. 

The CO2-uptake shows a steep initial increase (first 30 minutes) and then gradually levels 

off (Figure 2.3a). This is consistent with findings by Fernández Bertos et al. (2004a) and 

Um et al. (2013). After 120 minutes, a CO2-uptake of 1.50 g CO2/100 g BADM was attained 

which accounts for 86% of the final uptake (see Table 2.2). 

 

 
 
Figure 2.3 a) Differential pressure and CO2 uptake (ζPressure) and b) temperature and relative hu-

midity during static carbonation for a reactor loading of 0.11 kg (BA, bottom ash) and a 
100 % CO2 atmosphere. 
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Since carbonation is exothermic (cf. Eq. 2.1), self-heating of BA can be expected. Indeed, 

a temperature increase of up to 90 °C was reported for a BA mono landfill (Klein et al., 

2001). Our data show that carbonation was accompanied by an initial temperature in-

crease, which peaked at 24 °C after 20 minutes (Fig. 2.3b). 

With ongoing carbonation, the temperature progressively dropped and returned to ambient 

conditions after about 160 minutes. Since temperature is a variable in the universal gas 

equation, self-heating affects the CO2-uptake estimation. However, for the observed ΔT 

(3 - 4 °C) the effect is less than 1 % of the final CO2-uptake. Thus, it seems acceptable to 

assume isothermal conditions when temperature logging is not viable. 

Due to the use of moist BA (see Table 2.1) the RH increased rapidly (Fig. 2.3b) and con-

stant values of 78% ± 2% were attained after 10 minutes, approximately. Small dents in 

the humidity course are attributed to intermittent CO2-dosage whereby a small amount of 

dry gas was fed into the reactor.  

Table 2.2 summarizes the CO2-uptake of BA, the temperature increase and RH for the six 

experimental runs as well as pH and electrical conductivity determined in the leachates of 

the carbonated BA. Estimating the CO2-uptake from the pressure drop shows satisfactory 

reproducibility (standard deviation: 0.09 g CO2 / 100g BADM). As a benchmark for the cal-

culated CO2-uptake the increase in carbonate content was determined by TGA according 

to Eq. 5. It is apparent that the methods agree favourably. The leachate pH of carbonated 

BA was 12.2 compared to 12.6 in the leachates of the fresh BA (see Table 2.2). While 

some alkalinity was consumed pH is still buffered by Ca(OH)2 (Dou et al., 2017). This is 

consistent with a CO2-uptake in the order of 50% of carbonation capacity (cf. section 2.5). 

The electrical conductivity was considerably lowered compared to the fresh BA (5.6 mS/cm 

vs. 11.6 mS/cm), primarily due to neutralization of OH-. 

 

Table 2.2 Results of the static carbonation tests; CO2-uptake of BADM (dry matter) after 240 

minutes as obtained from the pressure course (ζPressure) and by thermogravimetric 

analysis (ζTG), temperature increase (ΔT), relative humidity (RH) as well as pH and 

electrical conductivity (EC) determined in batch leachates (n = 6). 

 Pressure  TG  ΔT RH pH EC 
 (g CO2 / 100 g BADM) (°C) (%) (-) (mS/cm) 

Arithmetic mean 1.90 1.88 3.7 82.1 12.2 5.51 

Standard deviation 0.09 0.18 0.3 0.7 0.1 0.34 
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2.4.2 Dynamic carbonation tests 

Previous studies indicated that carbonation of alkaline materials may be enhanced under 

dynamic reaction conditions (Fernández Bertos et al., 2004a; Jiang et al., 2009; Lombardi 

et al., 2016). Therefore, the monitoring system was adapted to a rotating drum reactor. 

Dynamic carbonation tests were performed with a reactor loading of 8 kg of fresh BA ex-

posed to a 100% CO2 atmosphere in four replications. Figure 2.4 shows the temperature, 

RH, differential pressure, and CO2-uptake for a representative run. Compared to the dura-

tion of the static tests (240 minutes) a shorter reaction time was chosen since most of the 

CO2-uptake was expected to take place in 120 minutes. 

The automated CO2-supply yielded a more uniform sawtooth pattern compared to the 

manual CO2-dosage. Under dynamic conditions self-heating (ΔT = 5 - 9 °C) was more pro-

nounced and CO2-uptake was higher (2.56 g CO2/100 g BADM). This suggests that the sol-

id’s motion exposed internal surfaces susceptible to the mass exchange between BA and 

CO2. 

 
 
Figure 2.4 a) Differential pressure and CO2 uptake (ζPressure) and b) temperature and relative hu-

midity during dynamic carbonation for a reactor loading of 8 kg (BA, bottom ash) and a 
100 % CO2 atmosphere.  
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Both the temperature and the CO2-uptake characteristic indicate that turnover could have 

been enhanced further by increasing the reaction time. Compared to static conditions the 

RH increase was slightly delayed owing to the specific material distribution within the reac-

tors (static: thin layers of BA distributed over the planes of a rack; dynamic: moving bed). 

However, the equilibrium values of RH compare favourably for the two systems.  

Table 2.3 summarizes the CO2-uptake of BA, the temperature increase, RH for the four 

experimental runs as well as pH and electrical conductivity determined in the leachates of 

the carbonated BA. Results largely substantiate the findings for the static application. Yet, 

the CO2-uptake as measured by TGA was higher than determined by the pressure drop 

and the data showed a stronger scatter. The first may be attributed to reactor preparation. 

As described in section 2.3, a purging time of two minutes is required to compensate CO2 

losses from the loading procedure. During purging, the CO2-uptake cannot be monitored. 

Therefore a small initial part of the carbonation passes unnoticed. The pressure course of 

the first ten minutes reveals three dosage events. Thus, purging time correspond to one 

CO2 dosage, approximately. Considering the total number of dosages (9-10) this accounts 

10 % of the total CO2-uptake. Uptake of CO2 during purging may be prevented by initially 

covering the BA with a thin layer of sand. Therewith BA exposure to CO2 would be post-

poned to the onset of reactor rotation after purging. The higher scatter of TGA data (stand-

ard deviation) may be an effect of sample heterogeneity. While estimation of CO2-uptake 

from the pressure drop integrates over the whole reactor loading, TGA relies on the analy-

sis of a small BA aliquot (sample mass: 20 g). 

The leachate pH of BA carbonated under dynamic conditions was 11.4 and about 1 pH 

unit below the pH of the fresh BA. The electrical conductivity dropped from 11.6 to 4.1. The 

more pronounced effect of carbonation on leachate quality compared to the static condi-

tions is in accordance with the higher carbonation turnover indicated by the CO2-uptake 

and T.  

Overall, also the results of the dynamic carbonation test suggest that our method is suited 

for the monitoring of accelerated carbonation, e.g. in processes studies aiming at opti-

mized operating conditions. Since rotating drums have been suggested for accelerated 

carbonation, the presented dynamic system might be useful to study the effect of operating 

conditions to gather valuable information prior to scale-up. 
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Table 2.3 Results of the dynamic carbonation tests; CO2-uptake of BADM (dry matter) after 120 

minutes as obtained from the pressure course (ζPressure) and by thermogravimetric analy-

sis (ζTG), temperature increase (ΔT), relative humidity (RH) as well as pH and electrical 

conductivity (EC) determined in batch leachates (n = 4). 

 ζPressure ζTG ΔT RH pH EC 
  (g CO2 / 100 g BADM) (°C) (%) (-) (mS/cm) 

Arithmetic mean 2.56 2.72 7.7 78 11.4 4.09 

Standard deviation 0.09 0.21 1.3 1.9 0.2 0.09 

 

2.4.3 Evaluation of carbonation kinetics 

Previous studies have shown that carbonation kinetics of BA (Nam et al., 2012; Um et al., 

2013) and air pollution control residues (Sun et al., 2008) can be adequately described by 

two solid-state kinetic models that were combined into Eq. (2.7) (Khawam and Flanagan, 

2006):  

1 – (1 – α)1/3)n  = kt (Eq. 2.7) 

with k as the rate constant, t as the reaction time, n as a (parametrizable) index of the rate 

determining step, and α as the conversion factor (carbonation turnover, α = 1 for full car-

bonation) according to Eq. (2.8). 

α = Ct/Ca(OH)2 (Eq. 2.8) 

with Ct as the specific molar amount of CO2 taken up by BA at time t (mol/100 g BADM) and 

Ca(OH)2 as the molar Ca(OH)2 content of fresh BA (mol Ca(OH)2/100g BADM). The latter 

was determined independently by TGA (see section 2.5).  

By adapting the exponent n in Eq. (2.7), two kinetic models can be defined. For n = 1, Eq 

2.7 represents a purely phase-boundary controlled reaction that applies to the initial stages 

of carbonation. For n = 2 Eq. 2.7 applies to a diffusion-limited reaction (Jander equation), 

where the rate-limiting step is diffusion through the growing layer of precipitated CaCO3. 

The conformity between experimental data and the kinetic model was expressed by the 

correlation coefficients (R2).  

Figure 2.5 shows the converted experimental data of the carbonation tests (i.e. ln(1- (1 –

 α)1/3) vs. ln(t). A relatively high R2 value indicates that the model successfully describes 

the kinetics of carbonation. Fits of Eq. 2.7 to the converted data suggest that the reaction 

is phase-boundary controlled during the initial stages of accelerated carbonation (ln(t) < 

3.6) irrespective of static or dynamic conditions. With ongoing turnover, carbonation be-
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comes controlled by diffusion through the product-layer. The transition between the two 

kinetic models is illustrated by the change of the slope for the plot of ln(1 - (1 - α)1/3) vs. 

ln(t) (Fig. 2.5). The change in slope seems to be less pronounced under dynamic reaction 

conditions. This indicates that rate limitations by diffusion through a growing layer of pre-

cipitated CaCO3 are less important when the solid is in motion (exposure of internal sur-

faces) corroborating the higher CO2-uptake.  

Figure 2.5 Evaluation of carbonation kinetics: ln(1-(1-α)1/3) versus ln(t) for static and dynamic car-
bonation (R2 = correlation coefficient). 
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2.5 Conclusions  

Here we reported on a fast and simple method to quantify the carbonation of BA under 

static and dynamic conditions based on a monitoring of the pressure in the reaction vessel. 

Results demonstrate the serviceability and reproducibility of the approach as compared to 

the analytical quantification of carbonates. In combination with static carbonation set-ups, 

the method may be suited for a routine assessment of the CO2-uptake capacities of BA 

and other alkaline materials. Specifically, the ability to follow the process online gives in-

sight into carbonation kinetics (e.g. as influenced by operating conditions) without the need 

to vary the reaction time in separate runs and at minimum analytical expense. Evaluation 

of carbonation capacities may be particularly useful in the context of taking accelerated 

carbonation to the industrial scale. As a prerequisite, however, the laboratory findings pre-

sented here need to be verified on a pilot-scale.  
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3.1 Abstract 

Accelerated carbonation is known to improve the leaching behaviour and geotechnical prop-

erties of waste incineration bottom ash (BA). Regarding process implementation on the in-

dustrial scale dynamic reactor configurations may be particularly suited since they enhance 

the mass exchange between gas and solid. Here we evaluated the influence of fundamental 

parameters on accelerated carbonation of BA in a rotating drum batch reactor equipped with 

an automated CO2 supply at close to atmospheric pressure conditions. Firstly, the effect of 

rotation speed and reactor fill level on the solids motion was studied. Secondly, the effects of 

CO2-concentration, fill level, and moisture on BA carbonation were investigated. Evaluation 

was based on the observed CO2 uptake, self-heating, and BA leachability. The bed behav-

iour of BA strongly differed from that of standard materials and was more affected by fill level 

than by rotation speed. The fill level was not a limiting factor for BA carbonation within the 

tested range (7-45 vol.-%). Both the CO2 uptake rate and the final level of carbonation in-

creased as the CO2-concentration was raised from 15 to 75 vol.-%. A close relationship be-

tween CO2 uptake and reactor temperature was confirmed by benchmarking a heat balance 

model against the carbonation enthalpy. Carbonated BA exhibited a strongly decreased mo-

bility of Pb and Zn as compared to fresh BA. The leaching behaviour of BA could be im-

proved such as to comply with the German landfill ordinance for non-hazardous waste. 

Keywords: Bottom ash, accelerated carbonation, carbon dioxide, rotating drum 
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3.2 Introduction 

Bottom ash (BA) is the dominant solid residue generated in municipal solid waste 

incinerators and waste-to-energy plants and amounts to between 20 and 30% of the original 

input (Sabbas et al., 2003). Fresh BA contains reactive alkaline constituents (mainly 

CaO/Ca(OH)2) and exhibits a high leachability of trace metals (e.g. Pb, Zn, Cu). Ageing 

reduces the mobility of the aforementioned contaminants in BA and is commonly applied 

prior to geotechnical utilization or landfilling of the material (Dou et al., 2017). One of the 

most important ageing processes is carbonation by atmospheric carbon dioxide (CO2), an 

irreversible gas/solid reaction mediated by pore water. Through this reaction Ca(OH)2 is 

converted to CaCO3 and alkalinity is consumed. Under ambient conditions carbonation is 

slow (Costa et al., 2007) and limited by the access of CO2 (Arickx et al., 2006). Therefore, BA 

is typically stored in open stockpiles for several months (Astrup, 2007; Dou et al., 2017; 

Santos et al., 2013), periodically turned, and potentially watered. In recent years, efforts have 

been made to circumvent storage requirements especially in densely populated areas (Lin et 

al., 2015b) by accelerating the carbonation of BA under controlled conditions. This may be 

achieved in static reactor systems by exposing the material to CO2 partial-pressures values 

of typically above 100 kPa (Baciocchi et al., 2010; Fernández Bertos et al., 2004a; Rendek et 

al., 2006) or passing CO2 rich gas streams over thin layers of BA in climate chamber systems 

at ambient pressure (Lin et al., 2015a; Nam et al., 2012; Um et al., 2013).  

As an alternative, dynamic reactor configurations, e.g. rotating drums, may be employed. In 

rotating drums the BA is mixed to improve the mass transfer between the gas and the solid 

(Fernández Bertos et al., 2004b; Zingaretti et al., 2013) yielding comparably higher CO2 

uptake rates (Brück et al., 2018; Lombardi et al., 2016). Beyond BA, rotating drums have 

proven useful for the accelerated carbonation of other alkaline residues like fly ash, biomass 

ash, and paper ash (Gunning et al., 2010; Łączny et al., 2015). Overall, the dynamic 

conditions prevailing in rotating drums seem favourable for the accelerated carbonation on 

the industrial scale. Yet, prior to the integration into the management of BA optimum drum 

operating conditions need to be identified.  

Knowledge of the bed behaviour of BA under drum operation is crucial for the reactor layout. 

The radial motion determines the degree of material mixing and the rate of heat and mass 

transfer both inside the material bed and between the bed surface and the headspace (Ding 

et al., 2001b). Contrary to the bed behaviour of dry standard materials little is known about 

the motion of wet BA in rotating drums and its implications for accelerated carbonation. 

Wetness of BA is a consequence of the quenching process applied at most waste 

incinerators and is, at the same time, a prerequisite for carbonation since the related 

reactions take place in the pore water (Costa et al., 2007). Excess moisture may, however, 

slow down carbonation due to the low diffusivity of CO2 in water (Arickx et al., 2006). For 
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freshly quenched BA, moisture contents of 20 to 46 wt.-% have been reported (Inkaew et al., 

2016). The actual value of the critical moisture content may depend on the grain size 

distribution of BA and the reaction conditions (Lin et al., 2015b). 

The exothermal carbonation reaction leads to a self-heating of BA (Hao et al., 2017). In 

principle, heating may feed-back into the rates of CO2 and Ca(OH)2-dissolution as well as 

carbonate precipitation (Costa et al., 2007; Pan, 2012). However, temperature effects on 

carbonation have so far only been investigated with external heating (Lin et al., 2015b; Nam 

et al., 2012; van Gerven et al., 2005) and a clear temperature optimum could not be 

identified.  

A series of CO2 sources have been suggested for the accelerated carbonation of BA 

including stack gas from waste incinerators (Nam et al., 2012; van Gerven et al., 2005), 

syngas from gasification processes (Zingaretti et al., 2014), biogas (Baciocchi et al., 2013; 

del Valle-Zermeño et al., 2015; Mostbauer et al., 2014) and landfill gas (Mostbauer et al., 

2014). Depending on origin, the CO2 concentration ranges from 5 to 70 vol.-%, yet a 

systematic study on the effect of CO2 concentration on the accelerated carbonation at 

atmospheric pressure is lacking.   

Most of the research has been devoted to individual aspects of accelerated carbonation un-

der static conditions. Here, we aimed at providing a systematic insight into the accelerated 

carbonation of BA in a rotating drum. Firstly, the BA bed behaviour was studied as function of 

the rotation speed and reactor fill level. Secondly, a series of accelerated carbonation tests 

were performed at near atmospheric pressure employing an automated CO2 supply. To iden-

tify optimum operating conditions the effects of reactor fill level, CO2 concentration, and BA 

moisture were investigated. The experiments were evaluated in terms of CO2 uptake by BA, 

self-heating, and leaching behaviour.  

3.3 Theory: Radial motion of solids in rotating drums  

Besides the rheological properties of the solid, the bed behaviour in rotating drums depends 

on rotation speed, drum diameter, fill level, and surface roughness of the drum (Liu et al., 

2005; Zhu et al., 2008). For unbaffeled drums, i.e. reactors without mixing tools, six basic 

radial motion patterns have been recognized (Boateng, 2015; Henein et al., 1983) and 

denoted as slipping, slumping, rolling, cascading, cataracting and centrifuging with transitions 

in between (Henein et al., 1983). Regarding industrial applications of rotating drum reactors 

(Ding et al., 2001b; Mellmann et al., 2004) only the first three patterns (see Figure 3.1) are 

deemed relevant.  
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Figure 3.1 Schematic of selected modes of radial bed motion in rotating drums. 

 
Slipping motion is likely to occur at slow rotation and at low friction between the solid and 

drum wall (Mellmann, 2001). Under these conditions the bulk material slips along the drum 

wall either permanently (‘sliding’) or alternatingly after exceeding a critical angle (‘surging’, 

see Figure 3.1). Since the solid bed moves essentially as a whole only little radial mixing 

happens. 

By increasing the rotation speed the bed motion will typically move from slipping to slumping. 

Thereby, the rotating drum wall periodically lifts the whole bed until a segment of the shear 

wedge becomes unstable and slides down the slope (Boateng, 2015). Under slumping 

conditions a fractional movement of the bed interior is achieved. This causes a radial mixing 

component as a combined effect of mixing of wedges and mixing within wedges (Metcalfe et 

al., 1995). 

If the rotation speed increases further a rolling flow regime develops. Rolling motion is 

characterized by continuous movement of a thin layer of solids over the inclined bed. Under 

these conditions mixing occurs in the so called ‘active layer’. Since the free surface is 

continuously renewed, mixing and heat exchange is expected to be more efficient in 

comparison to slumping or slipping flow (Boateng, 2015). However, contrary findings have 

also been reported (Ding et al., 2001a).  

Bottom ash is a heterogeneous mixture of particles with diameters ranging from powder to 

coarse aggregates (Inkaew et al., 2016). Differences in particle size, shape or density may 

cause segregation (Chou et al., 2010) when the material is dry. However, seggregation may 

be inhibited in presence of a water phase (Chou et al., 2010; Yang and Hsiau, 2005). Bottom 

ash is usually a wet system since the majority of incinerators employ a wet deslagging 

(quenching step). It is well known that the bed motion of granular material in rotating drums 

becomes very complicated even when just a small amount of liquid is added (Chou et al., 

2010; Nase et al., 2001). Water forms a liquid bridge between grains that increase cohesion 

forces which in turn affects the solid motion (Chou and Hsiau, 2011). 
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3.4 Material and methods 

3.4.1 Bottom ash sampling and characterisation 

The experiments were carried out over a time period of 10 weeks. For logistic reasons and to 

prevent BA ageing during long storage times the BA was collected at two different occasions. 

The material was obtained from a grate-type refuse derived fuel incinerator located in central 

Germany. For details of the plant refer to (Brück et al., 2018). Two samples comprising 200 

kg (BA sample 1) and 400 kg (BA sample 2) were taken from the roofed temporary storage 

pile. The BA was manually passed through an 11 mm sieve and the oversize grain was dis-

carded. This was done since the coarse fraction of BA (i) is rather uncritical in terms of con-

taminant leaching and (ii) contributes little to carbonation. The samples were stored in air-

tight clamping ring drums until used in the experiments. 

Moisture content was determined gravimetrically after drying subsamples at 105 °C for 24 h. 

The loose bulk density of the fresh BA was determined by weighing a graduated cylinder 

holding 100 mL of the material. The Ca(OH)2 content of the BA was determined by thermo-

gravimetric analysis (TGA) from the weight loss caused by decomposition of Ca(OH)2 be-

tween 380 °C and 480 °C employing a thermobalance [TG 209 F1, Netzsch, Selb, Germany]. 

Therefore, approximately 20 g of dry BA were ground in a planetary ball mill. Samples were 

heated in corundum crucibles to 900°C at 20 °C/minute under a nitrogen atmosphere. 

Table 3.1 summarizes BA properties. While the moisture content and bulk density were al-

most identical for both samples a higher Ca(OH)2 content was found for sample 2.   

 
Table 3.1 Properties of BA sample 1 and 2 (replications: n=5 for sample 1 and n=10 for sample 2).  

Sample Nr. (quantity) 
1 (200 kg) 2 (400 kg) 

Min Mean Max Min Mean Max 

Moisture (wt.-%) 13.3 15.3 17.9 13.5 14.7 17.3 

Loose bulk density (kg/L) 0.96 1.06 1.14 0.95 1.04 1.12 

Ca(OH)2 (wt.-%) 2.38 2.59 2.84 2.88 3.40 4.48 

 

3.4.2 Experimental setup  

The experiments were conducted in a rotating drum reactor (diameter: 0.3 m, length: 1.0 m) 

equipped with an automated CO2 supply system. To adjust the initial CO2 concentration the 

reactor was purged before (3 min), during (1 min) and after (2 min) reactor loading. To pro-

vide CO2 concentrations lower than 100 % compressed air and CO2 gas (N4.5) were mixed 

using a gas mixing station [Gmix HiTec Zang GmbH, Herzogenrath, Germany].  
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For reactor loading, the required amount of BA was filled into PVC half-pipes of 1 m length. 

Under continued purging the front end cover of the reactor was removed. The halfpipes were 

then inserted into the reactor and quickly emptied by turning. Thereafter, the reactor was 

closed and pressure logging was initiated. CO2 supply was automated using a relay-

controlled magnetic valve connected to two magnetic switches. The valve was connected to 

a CO2 pressure cylinder and the reactor was operated between pre-defined pressure set-

points (-7.5 kPa and +7.5 kPa relative to atmospheric pressure, respectively) by opening and 

closing CO2 supply. Carbonation of BA was quantified from the logged pressure course and 

specified as the CO2 uptake by 100 g dry matter of BA (BADM). For a detailed description 

refer to (Brück et al., 2018). 

Temperature and relative humidity inside the reactor as well as the ambient temperature 

were recorded every minute using wireless sensors [AREXX TSN-TH70E, RS Zwolle, The 

Netherlands] with tolerances of ± 1°C and ± 0.5 % RH. The self-heating of BA induced by the 

exothermic carbonation reaction was monitored by the differential temperature (T). The 

latter is defined as the difference between reactor temperature (Tin) and ambient temperature 

(Tamb). For comparisons among the experimental runs also the maximum differential temper-

ature (Tmax) was calculated as the difference between the maximum reactor temperature 

and Tamb. 

3.4.3 Characterization of the radial mixing of BA 

 Bed motion in rotating drums affects heat and mass transfer and follows characteristic pat-

terns depending on reactor operation (Mellmann, 2001). The bed behaviour was cinemato-

graphically analysed. Therefore the rear end of the reactor was equipped with a transparent 

acrylic glass plate and the bed motion was recorded with a video camera [Logitech c920 HD, 

resolution 1,920 x 1,080 pixels] while the reactor was completely encased and illuminated 

with three diffusor lamps. 

The bed behaviour was studied under varied rotation speed and fill level employing BA sam-

ple 1. A first test series was conducted with fill levels as aimed at in the accelerated carbona-

tion experiments (see section 3.4) applying seven different rotation rates between 0.4 to 8.0 

rpm. In a second test series specific rotation rates and fill levels were chosen to identify the 

transitions between types of solid motion. The solid motion was recorded for at least two 

minutes for each combination of reactor loading and rotation rate. The videos were visually 

analysed in terms of the mode of transversal bed motion (slipping, slumping, rolling, or transi-

tional). Prior to all runs the BA was replaced to circumvent changes of the rheological proper-

ties due to, e.g., granulation or crushing of BA aggregates. 
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3.4.4 Accelerated carbonation tests  

The accelerated carbonation of BA was studied under varied operation conditions with re-

spect to (i) reactor fill level under static (without rotation) and dynamic conditions (with rota-

tion), (ii) CO2 concentration and (iii) initial BA moisture. Table 3.2 gives a summary of the 

experimental conditions and operating parameters. A total reaction time of 120 minutes was 

chosen since this time scale has been recognized as adequate in terms of reaction rates 

(Brück et al., 2018; Fernández Bertos et al., 2004a; Lin et al., 2015a). Based on the findings 

of the bed behaviour study (see section 3.3) all carbonation experiments were conducted at 

a rotation speed of 1.2 rpm.  

The effect of the CO2 level on carbonation was tested with five concentrations of 15, 35, 55, 

75, and 100 vol.-% CO2 with a constant reactor loading of 8 kg BA. Considering the specific 

bulk density of the material this corresponded to a fill level of 11 vol.-%. 

In a further set of experiments the influence of the reactor fill level was studied with reactor 

loadings of 5, 8, 10, 15, 20, and 30 kg of BA. This corresponded to reactor fill levels of 7, 11, 

14, 21, 28, and 42 vol.-%, respectively. To pinpoint the effect of bed motion the tests were 

carried out under both static (without rotation) and dynamic conditions (with rotation) at a 

fixed CO2 concentration of 55 vol.-%. 

The effect of BA moisture on carbonation was tested under dynamic conditions. The initial 

moisture of BA was raised by adding water to give moisture contents of 15, 18, 21, 24, and 

27 wt.-%. Therefore, the BA was loaded into a concrete mixer and thoroughly mixed with the 

appropriate amount of water for 1 minute and soaked in a closed clamping ring drum for 

12 h. The mass of wet BA used in all experiments was adjusted such as to correspond to a 

uniform loading of 12.9 kg. The CO2 concentration was 55 vol.-%.  

Upon completion of experiments the BA was taken out of the reactor and manually homoge-

nized prior to conduction of leaching tests. 

 

Table 3.2 Experimental conditions of BA carbonation test series in a rotating drum. 

Parameter Test series 1 Test series 2 Test series 3 

CO2 concentration (vol.-%) 15, 35, 55, 75, 100 55 55 

Fill level (vol.-%) 11 7, 11, 14, 21, 28, 41 21 

Rotation speed (rpm) 1.2 0 and 1.2 1.2 

BA sample Nr. (-)*1 1 2 2 

BA moisture (wt.-%) 15 15 15, 18, 21, 24, 27 

*1 see also Table 3.1 
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3.4.5 Analytical methods  

Batch leaching tests were performed at a liquid-to-solid ratio (L:S) of 10 according to EN 

12457-2. Tests were run as duplicates for reactor loadings of up to 15 kg and as quadrupli-

cates for higher loadings. All leachates were immediately analysed for pH and electrical con-

ductivity (EC). The leachates were then passed through 0.45 µm membrane filter (cellulose 

acetate) and divided into two aliquots. One aliquot was analysed by ion chromatography 

[Metrohm 861 Advanced Compact IC with a Metrosep A Supp 5 column and a conductivity 

detector] for Cl- and SO42- as bulk anions. Hexavalent Cr was determined using the 1,5-

diphenyl-carbohydrazide method and the magenta-coloured complex was photometrically 

analysed at a wavelength of 550 nm. The other aliquot was acidified with nitric acid to pH < 2 

for element analysis. Zinc (Zn) and Lead (Pb) were determined by atomic absorption spec-

trometry [AAnalyst 100, Perkin Elmer]. 

3.4.6 Heat balance of BA carbonation  

Since carbonation is exothermic the temperature development inside the reactor should be 

closely related to the CO2 uptake of BA. Provided that carbonation of Ca(OH)2 (see reaction 

1) is the only reaction generating heat, the total heat (H) can be calculated by multiplying 

the standard enthalpy of the carbonation reaction (Hcarb,  Eq, 3.1) with the molar CO2 up-

take estimated from the pressure course. 

 

Ca(OH)2 + CO2 → CaCO3 + H2O, Hcarb = -113 kJ/mol (Eq. 3.1) 

 

As an alternative approach a simple model was developed to calculate the heat release on 

the basis of measured temperatures (reactor and environment), heat capacities, and heat 

transfer through the reactor wall.  

The reactor was assumed to be perfectly mixed (see Figure 3.2) implying thermal equilibrium 

between the gas phase, the wet BA, and the reactor wall. 

The model considers the heat stored in the entire reactor (including the wet BA) and the heat 

flux to the environment (Q̇, Eq. 3.2) driven by the gradient between internal temperature (Tin) 

and the ambient temperature (Tamb). 

 

ܳ̇ = ݇ ∙ ܣ ∙ ( ܶ − ܶ) (Eq. 3.2 

 

where A is the wall area (1,1 m²) and k the heat transfer coefficient (W∙m-2∙K-1).  
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Figure 3.2 Schematic of the heat balance model of the rotating drum reactor (abbreviations ex-

plained in the text).  
 

The heat release by carbonation (QCarb) is then defined as the stored heat and the integral of 

ܳ̇ over time according to Eq. 3.3. The prior was calculated using the total system mass (mtot), 

the mass-weighted heat capacity of the system (cp,tot), and initial (t = 0 min) and final temper-

atures (t = 120 min) observed in the experiments. The integral of ܳ̇ was obtained by numeri-

cal integration of Eq. 3.2 over the reaction time (see Figure S3.1).  

 

   
t = 120 min

carb tot p,tot in,t = 120 min in,t = 0min
t = 0 min

Q m c T T Q dt         (Eq. 3.3) 

 

All parameters of the model were independently determined. The reactor and the ambient 

temperatures (Tin and Tamb, respectively) were logged. The mass of dry BA (mBA,DM) and the 

corresponding mass of water (mH2O) were known for each test configuration. The mass of the 

reactor (mreactor = 17.6 kg) was determined by weighing. The total system mass mtot was ob-

tained as the sum of mBA,DM + mH2O + mreactor. The total heat capacity of the system cp,tot was 

calculated as the mass-weighted average of the heat capacities of BA (cp,BA,DM of 0.8 kJ*kg-

1*K-1 (Hao et al., 2017), water (cp,H2O of 4.18 kJ*kg-1*K-1) and the reactor material (PVC, 

cp,Reactor of 0.85 kJ*kg-1*K-1 Domininghaus et al., 2012). The heat capacity of the gas phase 

was neglected due to its low absolute value (mgas = <<1 kg and cp,gas=~0.85 kJ*kg-1*K-1). 

To determine k, a constant heat source was placed inside the reactor. The source was run 

with varying heating power (30 W, 65 W, 100 W) to provide a defined heat flux (ܳ̇) until Tin 

was constant. The resulting Tin at equilibrium was in the range of 32 - 42 °C. Based on dupli-

cate measurements for each heating power k was obtained by re-arranging equation (3.2) 

and averaged to kmean = 4.6 W*m-2*K-1 (standard deviation: 0.8 W*m-2*K-1). Using a constant k 

implies that there is no relevant variation of conditions with influence on k. This is justified 
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since the model does not consider internal heat transfer but only the heat flux to the envi-

ronment from a completely mixed thermally equilibrated system. The model (including the 

numerical value of k) was experimentally validated using a reference material. Therefore, 

defined amounts (8, 15, 23 kg) of quartz gravel were heated to 50°C and 70 °C in an oven for 

24 h and then immediately loaded into the reactor. Subsequently, reactor rotation was start-

ed (1.2 rpm) and Tin and Tamb were logged for 120 min. The heat input via the quartz gravel 

was then compared to the sum of stored heat and integral heat flux as calculated by the 

model yielding satisfactory agreement (see Figure S3.2).  

3.5 Results and discussion  

3.5.1 Bed behaviour of BA  

The bed behaviour of BA encoded in accordance with section 3.3 is shown in Figure 3.3. 

From the video analyses the bed motion of wet BA was predominantly identified as slipping 

or slumping. Additionally, slipping/slumping and slumping/rolling transitions were identified. 

Slipping predominated at fill levels below 18 vol.-% irrespective of rotation speed. A slip-

ping/slumping transition occurred at fill levels between 18 % and 21 % when rotation speed 

was below 6.5 rpm. At higher rotation speed (8 rpm), a direct transition between slipping and 

rolling was observed.   

For fill levels above 21 % slumping predominated, unless the rotation speed was higher than 

6 rpm where bed motion changed to the slumping/rolling transition. Note that no pure rolling 

was identified under the test conditions indicating that BA behaves like a highly cohesive 

material (Chou and Hsiau, 2011; Yang and Hsiau, 2005). Overall, the bed behaviour of BA 

contrasts that of standard materials like sand and gravel for which the onset of slump-

ing/rolling is typically found at rotation speeds below 2 rpm and at fill levels lower than 20 % 

(Henein et al., 1983; Mellmann, 2001).  

The videos were further analysed in terms of the slipping and slumping frequencies as a 

function of rotation speed and fill level (see Figure S3.3 and Figure S3.4). For comparison 

and to pinpoint the effect of moisture a dry BA sample was also studied. While the slumping 

frequency of dry BA was similar to gravel, wet BA showed less frequent slipping or slumping. 

Furthermore, axial segregation (alternating bandings of fine and coarse BA particles) was 

observed for dry BA after 30 rotations, approximately. For wet BA segregation did not occur 

and bed behaviour was less sensitive to rotation speed. These findings may explain the low 

significance of the rotation speed on CO2 removal performance of a rotating drum reactor 

reported by Lombardi et al. (2016). Overall, our findings suggest that the bed behaviour of 

wet BA is primarily controlled by the reactor fill level. Therefore a slow rotation speed of 1.2 

rpm was chosen for all accelerated carbonation experiments. 
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Figure 3.3 Bed behaviour of wet BA in a rotating drum reactor (diameter: 0.3 m, length: 1 m) as 

obtained by video analysis.  
 

3.5.2 CO2 uptake and self-heating of BA as affected by operating conditions  

Effect of CO2 concentration  

According to the law of mass action carbonation should be enhanced by increasing the CO2 

partial pressure. Here we evaluated the effect at five different CO2 concentrations (15, 35, 

55, 75 and 100 vol.-%). Figure 3.4 shows the observed time courses of CO2 uptake and T. 

Both the CO2 uptake rate and the final level of carbonation increased as the CO2 concentra-

tion increased from 15 to 75 vol.-%. For CO2 concentrations >15 vol.-% the carbonation in-

creased rapidly during the first 30 minutes and slowed down with ongoing reaction. The 

highest final CO2 uptake of 2.39 g CO2/100 g BADM was found at 75 vol.-% CO2 and no fur-

ther increase was found at 100 vol.-% CO2 in spite of a higher initial uptake rate. 

Hampered carbonation at high CO2 concentrations was also observed in static carbonation 

studies (Nam et al., 2012; Sun et al., 2008). The authors concluded that this was due to inhi-

bition of CO2 diffusion through carbonates precipitated on the BA surface. Under static condi-

tions, this effect occurred at CO2 concentrations >20 vol.-%. In our dynamic carbonation tests 

it was shifted >75 vol.-%. Since the bed motion causes friction among BA aggregates, sur-

faces are continuously renewed and diffusion through a growing layer of precipitated CaCO3 

seems less important. 
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Figure 3.4 Progress of BA carbonation at different CO2 concentrations as reflected by CO2 uptake 

(a) and self-heating (b) where T denotes the difference between reactor temperature 

and ambient temperature. Experiments were conducted at a reactor loading of 8 kg (fill 

level: 11 %) and a rotation speed of 1.2 rpm. 

 

Carbonation was accompanied by a temperature increase of 2 to 10 °C relative to ambient 

conditions. As expected from the thermodynamics of the carbonation reaction, T increased 

with CO2 uptake (see Figure 3.4b). At 15 vol.-% CO2 the temperature increased slowly during 

the first 80 minutes and then levelled off indicating lower but ongoing turnover. This contrasts 

the findings for higher CO2 concentrations where T peaked between 30 to 60 minutes and 

decreased again until the end of the experiment (120 minutes).  

To check whether self-heating was solely due to carbonation two control experiments were 

conducted. In the first, a pure N2 atmosphere was adjusted to inhibit carbonation as well as a 

potential aerobic biodegradation of unburnt matter. In the second, a pure O2 atmosphere was 

applied to account for self-heating by corrosion and/or aerobic biodegradation reactions. Un-

der neither condition a temperature increase was observed suggesting that self-heating was 

due to carbonation, only.  

Effect of Reactor Fill Level 

The fill level is crucial for a future development of the rotating drum reactor towards a contin-

uously fed system as it determines the BA residence time at a given throughput. Recently, 

Lombardi et al. (2016) tested the CO2 removal from a gas stream in a rotating drum using BA 

as an absorbent and found that performance was best at low fill levels. However, results from 

section 4.1 indicated that even at low rotation high fill levels may be beneficial for carbona-
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tion by promoting the transition from sliding to slumping bed motion. Therefore, we systemat-

ically tested the carbonation performance over a fill level range between 7 and 42 vol.-% ap-

plying rotation rates of 0 rpm (static conditions) and 1.2 rpm (dynamic conditions). Figure 

3.5a shows the corresponding specific CO2 uptakes after a reaction time of 120 minutes. 

Overall, higher CO2 uptakes were attained under dynamic conditions.  

Under static conditions the CO2 uptake linearly decreased with fill level, indicating that the 

access of CO2 may have been hampered by the increasing BA layer thickness. Under dy-

namic conditions, CO2 uptake was less limited. The highest CO2 uptakes were found for fill 

levels between 7 - 15 vol.-% (slipping bed motion) while turnover was somewhat reduced at 

fill levels exceeding 15 vol.-% (slumping bed motion). These findings contrast with results of 

Boateng (2015) and indicate that in our system the actual BA layer thickness is more deci-

sive for carbonation performance than the type of bed motion. A clear benefit of reactor rota-

tion is recognized from the results obtained at high fill levels since the differences of CO2 

uptake between the static and the dynamic system increased. Due to the solid’s motion in-

ternal surfaces susceptible to the mass exchange between BA and CO2 are exposed and 

limitations due to layer thickness are overcome.  

Figure 3.5b shows the Tmax values after 120 min of accelerated carbonation. In accordance 

with higher CO2-uptakes the values of Tmax were higher under dynamic than under static 

conditions. For the former Tmax showed a roughly linear increase with fill level due to the 

higher amount of BA available for carbonation. Under static conditions Tmax peaked at fill 

levels between 20 – 30 % and decreased for a fill level of 42 vol.-%.  

Since the automated CO2 dosage provides a quasi-infinite source of CO2 reaction turnover is 

limited by the amount of BA present in each experimental run. Thus, Tmax relates to the 

absolute CO2 uptake of the system rather that to the specific CO2 uptake per unit weight of 

BA. In our dynamic experiments the total CO2 uptake was roughly linear with reactor loading 

(as was Tmax) and increased from approximately 100 g CO2 at 7 % fill level to 550 g CO2 at 

42 % fill level (see Figure S3.5). Under static conditions, the absolute uptake levelled-off to 

approximately 250 g CO2 at fill levels of 21 % and above. 

Overall, under dynamic conditions reactor loading does not seem to be a limiting factor for 

BA carbonation. Although slightly reduced, carbonation performance was satisfactory even at 

fill levels above 20%. This is encouraging in terms of the treatment capacities of potential full-

scale applications. 
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Figure 3.5 Effect of reactor fill level on CO2 

uptake (a) and Tmax (b) under dy-

namic (1.2 rpm) and static condi-

tions (0 rpm) where Tmax is the 

maximum difference between reac-

tor temperature and ambient tem-

perature. Experiments were con-

ducted at a CO2 concentration of 

55 vol.-%. For classification of bed 

motion cf. Figure 3.3. 

 

Effect of BA Moisture 

The moisture content of BA is critical in that sufficient water must be present for carbonation 

to occur, but not as much as to fill pores and slow down the access of CO2. To identify a 

possible moisture optimum, water was added to the material to increase the moisture con-

tents from 15% to 18%, 21%, 24%, and 27%. Figure 3.6 shows the observed CO2 uptake 

along with the corresponding values of Tmax.  
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Figure 3.6 Effect of BA moisture on CO2 uptake and Tmax (maximum difference between reactor 

temperature and ambient temperature). Experiments were conducted at a reactor fill level 

of 21 %, a rotation speed of 1.2 rpm, and a CO2 concentration of 55 Vol.-%. 

 

As BA moisture was increased from its native value to 21%, the CO2 uptake and Tmax in-

creased slightly to 2.89 g CO2/100 g BADM and 13.2 °C, respectively. It appears that the addi-

tion of small amounts of water may enhance the carbonation under dynamic conditions. For 

moisture contents of 24% and above both the CO2 uptake and Tmax dropped sharply. 

These findings are consistent with results of Lin et al. (Lin et al., 2015b) and it is likely that 

excess intergranular water limited the diffusion of CO2 (Rendek et al., 2006).  

For the tested BA (1-3 days of storage in a roofed pile, grain size <10 mm) a moisture con-

tent of 20 wt.-% seems advisable for maximum CO2 uptake. However, water addition is not a 

perquisite given that the CO2 uptake was only slightly smaller for BA at its inherent moisture. 

On the other hand, excess water should be avoided underlining the benefit of a proper drain-

age after BA quenching.  

3.5.3 Heat balance 

As indicated in the previous sections the development of reactor temperature is closely relat-

ed to the carbonation reaction and may possibly serve as a process performance indicator. 

In this regard a heat-balance model was set up as described in section 3.6. Based on the 

measured temperatures the heat stored in the reactor as well as the integrated heat flux to 

the environment were calculated and combined to QCarb. This was compared to the theoreti-

cal reaction heat H, as obtained from the CO2 uptake using Eq. 1 (see Figure 3.7).  
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Figure 3.7 Comparison of BA self-heating 

under static and dynamic condi-

tions as derived from the reac-

tion enthalpy (H) and from the 

heat-balance model (QCarb). 

 

For the dynamic carbonation tests the slope of the regression line in Figure 3.7 is close to 

unity indicating excellent agreement between the heat balance and the reaction enthalpy. 

Therefore, the assumption of thermal equilibrium in a perfectly mixed system satisfactorily 

applies to the rotating drum reactor. Furthermore, the good agreement of H with QCarb con-

firms that carbonation was the dominant heat source underpinning the results obtained under 

pure O2 and N2 atmospheres (see section 4.2.1). 

Contrasting the findings for the rotating drum, under static conditions the values of QCarb were 

systematically lower than the values of H (slope of regression line = 0.8). Apparently, the 

unmixed solid was not in equilibrium with the gas phase and the model assumptions did not 

apply. 

Overall, the outlined close relation of both heat values, H and QCarb, may serve to evaluate 

the progress of carbonation. The reactor temperature may therefore be used as a monitoring 

parameter for the accelerated carbonation of BA in rotating drum batch reactors. 

3.5.4 Leaching behaviour of fresh and carbonated BA 

The leaching behaviour of BA determines the disposal options (landfilling or geotechnical 

reuse) depending on country-specific guidelines. To assess the effect of accelerated carbon-

ation on the mobility of BA constituents, batch leaching tests were performed with both the 

fresh and carbonated BA. Figure 3.8 shows the results including the German waste ac-

ceptance criteria (WAC) for landfill classes (LC) 0, 1, and 2, where applicable. 

The leachates largely support different performances of the static and dynamic carbonation 

systems. According to an independent two-sample t-test the differences were highly signifi-
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cant for pH, EC, and Zn (p < 0.001). The leachate pH (Figure 3.8a) decreased from 12.5 to 

11.7 and 12.1 for the dynamic and the static tests, respectively. This is attributed to the con-

sumption of alkalinity (mainly related to Ca(OH)2) by BA carbonation. Carbonation also 

caused a considerable reduction of EC (see Figure 3.8b) compared to the control indicating 

that the leachates were depleted in mobile charged constituents, most importantly in OH-. 

Both pH and EC decreased with increasing CO2 uptake (see Figures 3.4, 3.5, and 3.6). This 

also holds for the carbonation experiments conducted at varied CO2 concentration and mois-

ture (see Figure S3.6).  

Regarding trace metals, the leachability of Pb and Zn from BA is particularly relevant (Costa 

et al., 2007; Fernández Bertos et al., 2004a). Most frequently, a carbonation-induced immo-

bilisation has been reported (Arickx et al., 2006; Sakita and Nishimura, 2015) although mobi-

lising effects were also observed (Todorovic and Ecke, 2006; van Gerven et al., 2005). Our 

results show that for fresh BA the leachate concentration of Pb was way above the LC 2 

WAC while Zn exceeded the LC 0 WAC. Overall, the leachate values characterized fresh BA 

as a hazardous waste.  

In the carbonated BA, Zn and Pb were substantially immobilized since leachate concentra-

tions dropped by at least one order of magnitude compared to fresh BA. Chemically, contam-

inant immobilization may have been due to precipitation as (hydroxy-)carbonates (Fernández 

Bertos et al., 2004b) or to the pH-driven leachability decrease of Zn(OH)2 and Pb(OH)2 

(Chimenos et al., 2000)). In addition, leachability may have been decreased due to physical 

containment via formation of a carbonate layer on the surface of BA (Sakita and Nishimura, 

2015) or by enhanced adsorption of Pb and Zn (Chaspoul et al., 2008; Oehmig et al., 2015; 

Yao et al., 2012). The above-named processes are associated with primary and secondary 

mineral reactions and may overlap (Yin et al., 2017). 

In accordance with pH and EC, the immobilisation of Zn and Pb was more pronounced under 

dynamic conditions. Irrespective of the fill level, leachate concentrations were below WAC for 

LC 0 and LC 2, respectively, classifying the carbonated BA as a non-hazardous waste. Un-

der static conditions the leachate concentration of Zn and especially Pb increased with in-

creasing fill level which in turn is consistent with the reduced CO2 uptake.  

Several authors (Rendek et al., 2006; Um et al., 2013; van Gerven et al., 2005) have shown 

that also the leaching of the Cr(VI) oxoanion is affected by carbonation. In our experiments 

the concentration of Cr(VI) in the leachates of both the fresh and carbonated BA was below 

the detection limit of 50 µg/L which is equivalent to the LC 0 WAC.  
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Figure 3.8 Leachate properties of fresh BA and BA carbonated under dynamic (1.2 rpm) and 

static conditions (0 rpm). Experiments were performed in a rotating drum reactor at 

varied fill level and a CO2 concentration of 55 %. Error bars: Standard deviation for fill 

levels >20 % (n = 8 and n = 4 for fresh and carbonated BA, respectively); solid lines: 

German waste acceptance criteria for landfill class (LC) 0, 1, and 2; broken line: Limit 

of quantitation for Pb by AAS. For classification of bed motion cf. Figure 3.3.  
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Sulphate and chloride are two bulk anions in the BA leachate (Yin et al., 2017). The leacha-

bility of sulphate is virtually pH-independent when controlled by the solubility of gypsum, bar-

ite or monosulphate (Dijkstra et al., 2006; Rocca et al., 2012). Sulphate-substituted ettringite 

may however cause a pH-dependent leaching since at pH below 10.5 ettringite becomes 

unstable (Chrysochoou and Dermatas, 2006). The mean leachate concentration of sulphate 

for fresh BA was 683 mg/L (Standard deviation: ±87 mg/L).  

In carbonated samples, the sulphate concentration increased relative to fresh BA, especially 

when carbonation was performed under dynamic conditions where a stronger pH-drop was 

observed. This is in accordance with previous investigations (Bertos et al., 2004; Chimenos 

et al., 2000) where increased SO42--leaching was explained by the decomposition of ettringite 

(Fernández Bertos et al., 2004b; Polettini and Pomi, 2004). In our experiments despite the 

observed gain in sulphate concentrations of up to 300 mg/L the LC 1 WAC of 2000 mg/L was 

not exceeded. Therefore, carbonation-induced sulphate mobilization did not outweigh the 

beneficial effects observed for Zn and Pb. 

Leachate concentrations of chloride for fresh BA were in the range of 800 - 900 mg/L (below 

the LC 1 WAC of 1500 mg/L) and did not exhibit any clear tendency (data not shown).  

Overall, carbonation improved the leachate quality of BA (decrease in trace metal release, 

lower pH and EC). While the leachate values classify fresh BA as a hazardous waste car-

bonated BA complies with the WACs of non-hazardous waste. 

 

3.6 Conclusions 

Dynamic reactor systems may be suited for the accelerated carbonation of BA on the indus-

trial scale. This study aimed at two central aspects of BA carbonation in a rotating drum 

batch reactor: the bed behaviour and the influence of operating conditions on the carbonation 

performance as judged by CO2 uptake, temperature evolution and leachate quality.  

Slipping and slumping were identified as the dominant patterns of bed motion within the 

range of test conditions (fill level: 7 – 42 %, rotation speed: 0.4 – 8 rpm) and the bed behav-

iour of BA broadly differed from that of dry standard materials. The results from this study 

may be used to attain desired bed behaviour by selecting an appropriate combination of fill 

level and rotation speed.  

Regarding operating conditions of the rotating drum, the effects of fill level, CO2 concentra-

tion, and BA moisture on carbonation performance were tested. Compared to a static sys-

tem, CO2 uptake was superior under dynamic conditions even at fill levels exceeding 20 %. 

This is consistent with the improved mass transfer imposed by BA mixing.  
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Both the CO2 uptake rate and the final level of carbonation increased as the CO2 concentra-

tion was increased from 15 to 75 vol. %. A modest uptake inhibition was observed at 100 

vol.-% CO2, only. This suggests that under dynamic conditions a broad range of exhaust 

gases are suitable as a CO2 source for the carbonation process.  

The optimum moisture content for the tested BA (sieve fraction: <10 mm) is 21 wt.-%. This is 

roughly in the range of the native moisture content of BA after storage in a roofed pile for 1 to 

3 days. Excess moisture contents (>24 wt.-%), which can be found directly after the quench-

ing process, should be avoided. 

Due to the exothermal carbonation reaction a close relationship exists between CO2 uptake 

and the reactor temperature. This was confirmed by a heat balance model. Based on meas-

ured temperatures the heat content of the reactor and the flux to the environment were calcu-

lated and benchmarked against the reaction enthalpy. Under dynamic conditions excellent 

agreement was observed indicating that carbonation is, indeed, the most important heat-

generating reaction. Thus, temperature monitoring may be an alternative way of evaluating 

the carbonation performance in rotating drum batch reactors.  

Accelerated carbonation yielded a strong decrease of the leachability of Pb and Zn from BA 

but was not able to reduce leachate concentrations of chloride and sulphate. Under dynamic 

conditions the leaching behaviour of BA could be improved such as to comply with the Ger-

man waste acceptance criteria for landfilling the material as a non-hazardous waste. 
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3.9 Supplementary material 

3.9.1 Heat balance of BA carbonation 

 
Figure S3.1 Heat balance for a selected experimental run, temporal course of heat storage in the 

reactor, the heat loss to the environment, and the carbonation enthalpy (H). Experi-

ment conducted at a reactor fill level of 21 % (BA sample 2, moisture content 24 wt.-

%), a rotation speed of 1.2 rpm, and a CO2 concentration of 55 Vol.-%. 

 

 

Figure S3.2 Validation of the heat-balance model. Defined quantities of heated quartz gravel were 

filled into the reactor (heat input) and the cumulative heat loss was calculated from the 

measured temperatures (heat balance).  
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3.9.2 Solid motion of bottom ash 

For both the wet and dry bottom ash (BA) the slipping frequency increased with rotation 

speed (see Figure S3.3). The concave characteristic demonstrates that this effect is most 

pronounced at low rotation speeds. For wet BA a slipping motion was observed throughout. 

For dry BA a sliding motion was observed when rotation speed was above 4 rpm and slip-

ping frequency was higher than for wet BA. This suggests that moisture increased the friction 

between the BA bed and the drum wall. A similar effect was observed by Liu et al. (Liu et al., 

2013) who found that the mixing rate for wet particles was largely unaffected by the rotation 

speed.  

 

 
Figure S3.3 Slipping frequency of wet and dry 

BA as a function of rotation speed.  

 

Figure S3.4 shows the slumping frequencies for fresh and dry BA as compared to literature 

data for sand and gravel (Henein et al., 1983). For both, fresh and dry BA, the slumping fre-

quencies increased with increasing rotation speed. Higher slumping frequencies and a 

stronger dependence on the rotation speed were found for dry BA. The fill level had a minor 

impact on the slumping frequency. Even though BA comprises a heterogeneous mixture of 

powder like particles to coarse aggregates (e.g. gravel) the slumping frequency pattern of dry 

BA compares favourably to that of gravel.   



Chapter 3: Accelerated carbonation of waste incineration bottom ash in a rotating drum batch 
reactor 68 
 

 

 
Figure S3.4 Slumping frequency as a function of rotation speed for wet and dry BA compared to 

sand and gravel as extracted from Henein et al. (1983). 
 

3.9.3 Effect of reactor fill level 

 

 

Figure S3.5 Total CO2 uptake as a function of 

reactor fill level under dynamic (1.2 

rpm) and static conditions (0 rpm). 
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3.9.4 Leaching behaviour of fresh and carbonated BA 

 

 

Figure S3.6 Comparion of leachate pH and EC of fresh (diamonds) and carboanted (circles) BA as a 

function of CO2 concentration (a, b) and moisture content (c, d).  
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4.1 Abstract 

Bottom ashes (BA) constitute the dominant solid residue of municipal solid waste incinera-

tion. Ageing of BA over a period of several months is known to reduce the reactivity and 

leachability of critical trace metals via carbonation by atmospheric CO2. This process may be 

accelerated by contacting the material with CO2-rich exhaust gas in rotating drum reactors. In 

this study, we investigated carbonation of BA under dynamic conditions with continuous feed 

of the reactant gas. This is of particular interest for the integration of the process with the 

management of BA at incinerator sites. The effects of specific CO2 supply, mixing tools, and 

reactor loadings on process performance were assessed by the leaching behaviour of the 

treated BA. The experiments were performed in a rotating drum. Overall, carbonation im-

proved the leachate quality of BA. Leachate values characterized the reactor output as a 

non-hazardous waste when the specific CO2 supply was above 100 g CO2 per kg BA. The 

reaction could be accelerated to around 100 minutes and was enhanced by the use of mixing 

tools. Of the configurations tested, a perforated mixing cage performed best even at fill levels 

of up to 50 %. This set-up was also least prone to the formation of BA incrustations.  

Keywords: Incineration; CO2 capture; rotating drum; bottom ash; accelerated carbonation; 

leaching  
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4.2 Introduction 

It has long since been recognized that the ageing of bottom ash (BA) generated during mu-

nicipal solid waste incineration is beneficial to its leaching behaviour. Ageing takes place 

when this highly reactive alkaline and typically moist waste is in contact with the ambient air. 

Moisture contents of 15 to 25 wt.-% are due to the quenching applied at most waste incinera-

tors and provide the pore water necessary for the majority of ageing reactions (Costa et al., 

2007). During ageing, the access of oxygen promotes the formation of Fe- and Al-

(hydr)oxides as prominent adsorbents for environmentally relevant trace metals (Chaspoul et 

al., 2008; Oehmig et al., 2015). Concomitantly, the access of carbon dioxide (CO2) leads to 

the carbonation of the material. This denotes the process where Ca(OH)2 formed from CaO 

during quenching reacts with CO2 and converts to CaCO3. Thereby BA alkalinity is consumed 

and the pH drops, which in turn lowers the leachability of amphoteric trace metals like Pb, Zn 

and Cu (Saffarzadeh et al., 2011).  

On the one hand, the benefit of ageing-induced contaminant immobilisation rests with lower 

landfilling costs. This is due to the fact that the waste acceptance criteria specific to each 

landfill class are predominantly determined on a leachability basis. On the other hand, also 

reuse options of BA, e.g. as substitute aggregates in civil engineering are favoured by ageing 

(Xuan et al., 2018; Di Gianfilippo et al., 2018; Lynn et al., 2017). Therefore, a series of na-

tional guidelines in Europe demand that BA is aged over a period of 3 to 6 months prior to 

final disposal or reuse (Blanc et al., 2019; Nørgaard et al., 2019; Dou et al., 2017). 

Passive BA ageing over these timescales requires adequate storage installations at the in-

cinerator sites as well as machinery and manpower for periodic turning (Blanc et al., 2018). 

Thus, a number of researchers have addressed the question of how the ageing of BA and 

other alkaline waste materials (e.g. air pollution control residues) can be accelerated. Meth-

ods investigated to this end include static reactor systems where the material is exposed to 

CO2 partial pressures typically above 100 kPa (Baciocchi et al., 2010; Fernández Bertos et 

al., 2004a; Rendek et al., 2006) or where CO2-rich gas streams are passed over thin layers 

of the solid at ambient pressure (Sakita et al., 2015; Lin et al., 2015a; Um et al., 2013). 

Although the scientific literature reveals substantial progress in accelerated BA carbonation, 

to the best of our knowledge a full-scale implementation has not been documented. This 

would ideally include a thorough mixing of BA to promote the CO2 uptake from a CO2-rich 

exhaust gas stream and a reactor system ideally operated under flow-through conditions in 

terms of both, gas and BA. Such a system could be implemented in a rotating drum reactor 

with a throughput synchronized with the generation of BA (Fernández Bertos et al., 2004b; 

Zingaretti et al., 2013). Rotating drums simultaneously provide agitation and mixing. Thereby 

the mass transfer between the gas and the solid is enhanced and the CO2 uptake rate is in-
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creased (Brück et al., 2018b; Lombardi et al., 2016). The pattern of bed motion in rotating 

drums generally depends on the rheological properties of the solid, rotation speed, drum di-

ameter, fill level and surface roughness of the drum wall (Liu et al., 2005). So far only rotating 

drums without any mixing tools have been tested for CO2 uptake from the gas phase (Brück 

et al., 2018b; Łączny et al., 2015; Lombardi et al., 2016). However, several studies in other 

application fields indicated that mixing tools could improve the performance of rotating drums 

regarding the exchange between the solid and the gas (Fung and Mitchell, 1995; Jiang et al., 

2011). Therefore, mixing tool design and configuration should be considered with respect to 

accelerated carbonation. 

A series of exhaust gases have been successfully tested as CO2 sources for BA carbonation. 

One obvious option is to use incineration exhaust gas, which normally contains around 10% 

CO2 (Costa et al., 2007), since it is available in large quantities and generated at the same 

location as the BA. The amount of CO2 supplied per unit mass of BA should be adequate to 

achieve a proper CO2 uptake within a reasonable reaction time. In view of full-scale applica-

tions, the latter should be ideally below 2 h. The CO2-uptake levels reported for this reaction 

time frame range from 5 to 35 g CO2 per kg BA (Brück et al., 2018a; Lin et al., 2015b; Sakita 

and Nishimura, 2015; Um et al., 2013).  

Under flow through conditions, the specific CO2 supply is determined by the CO2 concentra-

tion in the reactant gas, its volumetric flow rate, the residence time of the BA in the reactor 

and the reactor loading. While CO2 concentration and flow rate are fixed depending on the 

source of the reactant gas, BA residence time and reactor loading are important process pa-

rameters for BA carbonation in a rotating drum. Residence time and reactor loading deter-

mine the reactor throughput (i.e. the feed rate of BA) and the corresponding values need to 

be identified prior to the full-scale implementation of enhanced BA carbonation.  

Three successive test series were conducted to identify the effects of (i) specific CO2 supply, 

(ii) mixing tool configuration, and (iii) reactor loading on accelerated carbonation. In the first 

series a broad range of specific CO2 supplies (5 to 210 g CO2/kg BA) was tested and evalu-

ated. In the second test series, five different mixing configurations were studied. These com-

prised four different designs, namely the plain drum, two arrangements of lifter plates, a mix-

ing shaft and a perforated mixing cage. In the third test series, the reactor loading was varied 

over a range of 8 to 40 kg. The effect of operating conditions on carbonation performance 

was assessed by the leaching behaviour of the treated BA in terms of hydrochemical param-

eters and regulated contaminants. 
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4.3 Material and methods 

4.3.1 Bottom ash sampling 

The BA was sampled at a grate-type refuse derived fuel incinerator located in central Ger-

many. For details of the plant refer to (Brück et al., 2018a). For logistic reasons and to cir-

cumvent long storage times the BA was collected at three distinct occasions. Samples of 

about 200 kg were taken from a roofed temporary storage pile. The BA was manually passed 

through an 11 mm sieve and the oversize grain was discarded. This was done since the 

coarse fraction of BA is rather uncritical in terms of contaminant leaching and contributes 

little to carbonation. The samples were stored in air-tight clamping ring drums for a maximum 

of 14 d before used in the experiments. 

4.3.2 Experimental setup 

The experiments were conducted in a rotating drum reactor (see Figure 4.1). The reactor 

was a polyvinyl chloride cylinder (diameter 0.3 m; length 1 m). It was mounted on six rubber 

rollers attached to metal stand and rotated by an electric motor at a rate of 2.5 rpm. The BA 

was agitated by the rotary motion and was exposed to an adjustable flux of synthetic exhaust 

gas. The gas was produced from pure CO2 (N4.5) and synthetic air employing a gas mixing 

station [Gmix, HighTec Zang, Herzogenrath, Germany]. Gas supply and exhaust tubes were 

connected to the reactor via rotating joints. The front-end covers of the reactor were fixed to 

the mantle by spring locks. This ensured fast opening and closure for reactor loading and 

sampling. In some experiments, the exhaust was passed through a flow-through cell to moni-

tor the gas temperature. Values were recorded every minute using a wireless sensor 

[AREXX TSN-TH70E, RS Zwolle, The Netherlands] with a tolerance of ± 1°C. 

 

Figure 4.1 Experimental set-up. (1) Gas cylinders; (2) gas mixing station; (3) end cover with rotat-
ing joint (4) wireless temperature sensor; (5) electric motor; (6) drive rollers; (7) track 
rollers; (8) substructure; (9) flow-through cell. 
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The mixing of BA influences the mass exchange between the solid and the gas phase and 

thereby affects the rate of BA carbonation (Brück et al., 2018a; Brück et al., 2018b). Varied 

sets of mixing tools were evaluated in terms of carbonation performance (see Figure 4.2). 

Mixing tool configuration (MTC) 1 consisted of an axial cross-shaped mixing shaft with 20 

perforated baffles. MTC 2 and 3 denote a configuration of 3 and 12 straight plates (width: 0.3 

m, length: 0.06 m), respectively. These served as lifters and were mounted perpendicularly 

on the inner drum wall. In the MTC 2 the three plates were spread along the length of the 

reactor with an offset of 90 degrees. In the MTC 3 the 12 plates were arranged in 3 x 4 

groups. MTC 4 denotes the plain drum. For MTC 5 a mixing cage (Length: 0.95 m, diameter: 

0.25 m) made out of a PVC pipe was used. A tumbling motion of the cage resulted from the 

fact that its diameter was lower than the reactor diameter. The cage was perforated by 18 

elongated gaps (0.4 x 0.05 m) to provide material lifting. 

To study the effect of the MTCs on the pattern of bed motion, the reactor was equipped with 

a transparent acrylic glass plate and the bed behaviour was cinematographically analysed as 

described in Brück et al. (2018b). For MTC 5 the mode of transversal bed motion (slipping, 

slumping, rolling, or transitional) was outlined in a bed behaviour diagram. 

 

 

Figure 4.2 Schematic of the mixing tool configurations (MTCs) 1 - 5 in longitudinal and cross-
sectional view. MTC 1: axial mixing shaft with 20 perforated baffles; MTC 2: 3 lifter plates 
(L = 30 cm, H = 6 cm); MTC 3: 12 lifter plates (L = 30 cm, H = 6 cm); MTC 4: plain drum; 
MTC 5: perforated mixing cage.  
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4.3.3 Accelerated carbonation tests 

The accelerated carbonation of BA under flow-through conditions was tested in three distinct 

sets of experiments. Table 4.1 summarizes the experimental conditions and operation pa-

rameters. Carbonation performance was evaluated in terms of the leaching behaviour of BA. 

Therefore, upon completion of experiments the BA was taken out of the reactor and manually 

homogenized prior to the conduction of leaching tests as described in section 2.4.  

The first set of experiments served to evaluate BA carbonation under systematic variation of 

(i) reactor loading (4, 6, 8 kg fresh BA), (ii) gas flow rate ( V ; 20, 40, 60 L/min) and (iii) reac-

tion time (tR; 20, 60, 100 min) in a total of 27 runs. The CO2 concentration (cCO2) of the syn-

thetic exhaust gas was adjusted to 6.7 vol.-%. This corresponds to the CO2 concentration of 

a gas-powered co-generation plant available at the site which in perspective may be used as 

a reactant gas source for a full scale application of the accelerated carbonation process. The 

variation of the parameter values (i)-(iii) yielded a specific CO2 supply (εCO2) in the range of 7 - 

210 g CO2/kg BA and was calculated according to equation 4.1: 
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 (Eq. 4.1)

 

where MCO2 is the molar mass of CO2 (44.01 g/mol), Vm is the molar volume of an ideal gas at 

25 °C (24.465 L/mol), and mBA is the dry mass of BA (kg) loaded into the reactor. Test series 

1 was conducted using MTC 1.  

In the second set of experiments the effect of different MTCs (see Figure 4.2) on carbonation 

was tested. Based on the findings of test series 1, the gas flow rate V , reactor loading mBA 

and reaction time tR were set to 60 L/min, 8 kg, and 100 minutes, respectively. This yielded a 

εCO2 of 100 g CO2/kg BA. 

In the third set of experiments the influence of the reactor loading on carbonation was stud-

ied. The experiments were conducted with reactor loadings ranging from 8 to 40 kg fresh BA, 

while the MTC and εCO2 were identical to test series 2. Considering the loose bulk density of 

the material (1.11 kg/L) the reactor loading corresponded to a fill level range of 10 to 50 vol.-

%. By adjusting the CO2 concentration in the reactant gas we maintained a constant εCO2 of 

100 g CO2/kg BA.  
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Table 4.1 Conditions of BA carbonation test series 1 to 3 conducted in a rotating drum reactor. 

Parameter Test series 1 Test series 2 Test series 3 

cCO2 (vol.-%) 6.7 6.7 6.7 - 33.5 

V  (L/min) 20/40/60 60 60 

Reactor loading (kg BA) 4/6/8 8 8/10/15/20/30/35/40 

Reaction time (min) 20/60/100 100 100 

εCO2 (g CO2/kg BA) 7 - 210 100 100 

Rotation speed (rpm) 2.5 2.5 2.5 

BA sample Nr. (-) 1 2 3 

Mixing tool configuration (-) MTC 1 MTC 1 - 5 MTC 5 

 

4.3.4 Analytical 

The moisture content of the BA was determined gravimetrically after drying subsamples at 

105 °C for 24 h. The loose bulk density was determined by weighing a graduated cylinder 

holding 100 mL of the material. The bulk chemical composition of the BA was measured by 

X-ray fluorescence (XRF) spectroscopy [Spectroscout ES, Spectro Analytical Instruments 

GmbH, Kleve, Germany] with a detection limit of ~0.01 wt.-%. Results are summarized in the 

supplementary material (Table S4.1). 

To evaluate the carbonation performance, batch leaching tests were performed at a liquid-to-

solid ratio (L:S) of 10 L kg-1. Therefore, 1 L of de-ionized water was added to a BA equivalent 

of 100 g of dry matter and agitated on an end-over-end shaker for 24 h according to EN 

12457-2. To assess the suitability of the carbonated BA for a geotechnical reuse, an up-

stream percolation test was performed in accordance with the draft of the German Ordinance 

on Secondary Construction Materials in conjunction with the standard method DIN 19528. 

The sample was taken from a selected run of test series 1 (loading: 8 kg, reaction time: 100 

min, volumetric flux: 40 L/min) and run against an uncarbonated control (fresh BA). The per-

colation tests were conducted in plexiglass columns with a void volume of 2 L at the pre-

scribed contact time of 5 h and observing the final L:S ratio of 2 L kg-1. A detailed description 

of the experimental conditions can be found in the supplement.  

All leachates were immediately analysed for pH and electrical conductivity (EC). The leacha-

tes were then passed through 0.45 µm membrane filter (cellulose acetate) and acidified with 

concentrated nitric acid (suprapur) to pH <2 for element analysis. The concentrations of Cu, 

Pb, Zn, Ba, V, Sb, Cr and Mo were measured by inductively coupled plasma–mass spec-

trometry [ICP-MS, X-Series II, Thermo Scientific: Dreieich, Germany]. Leachate aliquots of 
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the column percolation tests were analysed for Cl- and SO42- as bulk anions by ion chroma-

tography [Metrohm 861 Advanced Compact IC with a Metrosep A Supp 5 column and a con-

ductivity detector].  

The Ca(OH)2 and CaCO3 content of the BA was determined by thermogravimetric analysis 

(TGA) using a thermobalance [TG 209 F1, Netzsch, Selb, Germany]. Therefore, approxi-

mately 20 g of dry BA were ground in a planetary ball mill [Pulverisette 6, Fritsch GmbH, 

Idar-Oberstein, Germany]. Samples were heated in corundum crucibles to 900°C at 20 

°C/minute under a nitrogen atmosphere. The thermal decomposition of Ca(OH)2 to CaO and 

H2O as well as the decomposition of CaCO3 to CaO and CO2 yielded a specific weight loss in 

the temperature window between 380 °C to 480 °C and 480 °C to 900 °C, respectively. The 

specific weight loss was then used to calculate the content of Ca(OH)2 and CaCO3 of the 

sample. 

 

4.4 Results and discussion 

4.4.1 Effect of specific CO2 supply on carbonation performance 

To assess the effect of accelerated carbonation on the mobility of BA constituents, batch 

leaching tests were performed with both the fresh and carbonated BA. Figure 4.3 shows the 

leachate pH, EC and trace metal concentrations as a function of εCO2. The latter integrates all 

varied parameters of the experiment into a single variable (see Equation 1). 

Leachate pH and EC dropped markedly for εCO2 of up to 50 g CO2/kg BA, whereas further 

increases of εCO2 yielded less pronounced effects. The decrease in leachate pH is consistent 

with the consumption of BA alkalinity (mainly related to the dissolution of Ca(OH)2) by car-

bonation. The EC drop indicates that in addition the leachates were depleted in mobile 

charged constituents, most prominently in OH- and possibly in Ca2+ which is consumed in the 

carbonation reaction and precipitates as CaCO3. Carbonation of the treated BA was inde-

pendently confirmed by TGA, which indicated a consumption of Ca(OH)2 and a generation of 

CaCO3. 

The leachates of the fresh BA characterize the material as a hazardous waste. This is due to 

Pb concentrations way above the German waste acceptance criterion (WAC) for landfill class 

(LC) 2, whereas Cu and Zn exceeded the LC 1 and LC 0 WAC, respectively.  

In the carbonated BA, these amphoteric metals were substantially immobilized. This is con-

sistent with previous findings (Brück et al., 2018b; Chimenos et al., 2000; Fernández Bertos 

et al., 2004a; Wei et al., 2011). Leachates of the carbonated BA were depleted in Pb and Zn 

by up to two orders of magnitude and in Cu by at least one order of magnitude as compared 
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to fresh BA. For εCO2 in excess of 100 g CO2/kg BA the Pb concentrations in the leachates 

were below 200 µg/L, classifying the carbonated BA as a non-hazardous waste, altogether. 

Previous studies with BA from the same incinerator indicated a CO2 uptake between 20 and 

30 g CO2/ kg BA, which is also in accordance with findings reported by other authors (Ren-

dek et al., 2006; Sakita and Nishimura, 2015; Um et al., 2013). This carbonation level was 

also confirmed by the TGA performed with the sample carbonated at a reactor loading of 8 

kg, a volumetric gas flow of 40 L/min, and a reaction time of 100 min. The CO2 uptake of 21.4 

g CO2/kg BA as determined by TGA of the carbonated material is far lower than the specific 

CO2 supply to the reactor (100 g CO2/kg BA).  Thus, the CO2 mass transfer under flow-

through conditions was incomplete and residual CO2 remained in the exhaust. 

 

 

Figure 4.3 Leachate properties of fresh and carbonated BA as a function of specific CO2-supply. 
Experiments were performed at a CO2 concentration of 6.7 vol.-% in a rotating drum reac-
tor at varied reactor loadings, volumetric flow rates and reaction times (see Table 4.1). Er-
ror bars: Standard deviation for fresh BA (n = 6). EC = electric conductivity. 
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Under alkaline conditions, Cr, Mo, and V are predominantly present as chromate, molybdate 

and vanadate, i.e. as oxyanions. The concentration-vs.-εCO2 characteristic of these differed 

greatly from that of the amphoteric metals. Contrary to the latter, leachate concentrations of 

Cr, Mo and V were higher in the carbonated BA than in the fresh BA (see Figure 4.3). Car-

bonation-induced mobilisation was most pronounced for Cr and least pronounced for Mo.  

Despite the adverse effect of carbonation on the mobility of oxyanions the leachate concen-

trations of Cr and Mo remained below the German LC 1 WAC of 300 µg/L for both. No such 

comparison can be made for V since the German Landfill Ordinance does not include a per-

tinent WAC. Overall the mobilization of oxyanions did not outweigh the beneficial effects ob-

served for amphoteric metals. 

It is beyond the scope of this study to provide a mechanistic understanding of the immobiliz-

ing and mobilizing effects of BA carbonation. Yet it is evident, that the amphoteric trace met-

als show a concentration-vs.-εCO2 characteristic very similar to the development of pH. In-

deed, Wei et al. (Wei et al., 2011) concluded that the immobilization of amphoteric metals in 

carbonated BA is primarily due to the pH-drop. Coefficients of determination (R2) of Pb, Zn 

and Cu vs. pH are between 0.62 to 0.90 and largely support this (see Figure S4.1). In addi-

tion, physical containment by carbonates precipitated on the surface of BA aggregates may 

have contributed to lowered leachability (Sakita and Nishimura, 2015) and adsorption to new-

ly formed mineral phases may also be important (Dijkstra et al., 2006; Meima and Comans, 

1999; Yao et al., 2012). The mobility of the oxyanions has been described as primarily con-

trolled by dissolution/precipitation reactions (Cornelis et al., 2008) possibly in conjunction 

with sulphate substitution in ettringite or ettringite-like phases (Alam et al., 2019; Marchese 

and Genon, 2009). 

In view of a geotechnical reuse option of carbonated BA the leachability was complementari-

ly studied in the upstream percolation test described in the draft of the German Ordinance on 

Secondary Construction Materials. The leachate levels of the carbonated BA fully complied 

with the so-called material values of class 2 waste incinerator BA, allowing for their utilization 

as e.g. road basement material, backfilling. Such potential applications have been previously 

addressed by (del Valle-Zermeño et al., 2014; Le et al., 2018). For more detailed results, 

please refer to the supplement (see Table S4.1).  

Overall, carbonation improved the leachate quality of BA (decrease in amphoteric trace metal 

release, lower pH and EC). While the leachate values classified fresh BA as a hazardous 

waste, the carbonated BA complied with the WACs for the landfilling as a non-hazardous 

waste. Potentially it would also be suited for geotechnical reuse since it complies with the 

corresponding material values of the draft ordinance. When carbonation is performed under 
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flow through conditions, the specific CO2 supply should be 100 g CO2 / kg BA or higher, alt-

hough care should be taken in view of a carbonation-induced mobilization of oxyanions. 

4.4.2 Effect of mixing tools on carbonation performance 

We evaluated the effect of enhanced mixing on carbonation under five mixing tool configura-

tions (MTCs). Based on the results shown in section 3.1 the εCO2 was kept constant at 100 g 

CO2/kg BA (see Table 4.1). This value was sufficient to achieve the desired decrease in 

leachate pH and immobilisation of critical trace metals and avoided exceedingly high concen-

trations of oxyanions in the leachate. Again, carbonation performance at varied MTC was 

assessed by the leachate properties of carbonated vs. fresh BA as well as the Ca(OH)2-

content of the solid (see Figure 4.4).  

For MTC 3 and 4, the leachate pH and EC decreased only slightly compared to the fresh BA. 

Thus, only little portlandite was consumed which is in line with the relatively high Ca(OH)2 

content of the carbonated BA. In accordance with the slightly decreased leachate pH in the 

carbonated BA, concentrations of amphoteric trace metals were still high. While carbonation 

was sufficient to decrease leachate concentrations of and Zn and Cu below WAC for LC 0 

and LC 1 (0.4 mg/L and 0.5 mg/L), Pb leachate of the carbonated material were still above 

the LC2 WAC (1 mg/L). 

For MTCs 1, 2, and 5 the leachate pH and EC as well as Ca(OH)2 content notably decreased 

as compared to the control. Leachate pH values below 12 are in line with the consumption of 

Ca(OH)2 and a significant immobilisation of amphoteric trace metals. Here, Zn and Cu were 

both below WAC LC 0 and Pb below LC 1 WAC, again classifying the carbonated BA as a 

non-hazardous waste.  

Results in section 3.1 pointed to a carbonation-induced mobilization of oxyanions as a result 

of proceeding carbonation. This is confirmed by the results of test series 2 where leachate 

concentrations of oxyanions also increased relative to the control. Mobilisation was most sig-

nificant for V (up to 15 times higher) and lowest for Mo. For the latter rather no effect was 

observed for MTC 1-4, whereas MTC 5 gave leachate values two times higher than the con-

trol. As in test series 1, the leachate concentrations of Cr and Mo remained below the WAC 

for LC 1.  

Overall, the evaluation of the leaching behaviour showed that carbonation performance was 

affected by the MTC, indicating that adequate mixing is beneficial for accelerated carbona-

tion in a rotating drum reactor. Overall, MTC 1, 2 and 5 showed superior carbonation perfor-

mance than MTC 3 and 4.  
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Figure 4.4 Leachate properties and Ca(OH)2-contents of fresh and carbonated BA under varied mix-
ing tool configurations. Experiments were performed at a CO2 concentration of 6.7 vol.-% 
in a rotating drum reactor with a reactor loading of 8 kg BA, volumetric flow rate of 40 
L/min and a reaction time of 100 min yielding a specific CO2 supply of 100 g CO2 per kg 
BA (see Table 4.1). Error bars: Standard deviation for fresh BA (n = 6). 

 

Since carbonation is exothermic, self-heating of BA occurs. In a closed reactor system, we 

previously found a temperature increase of up to 14 °C (Brück et al., 2018b). A heat balance 

model revealed that the degree of self-heating correlates with carbonation intensity. Under 

the flow-through conditions applied here, the reactor is cooled by the continuous gas stream. 

To test whether still a self-heating is detectable, the exhaust gas temperature was monitored 

during the runs with MTC 2, 4, and 5 (see Figure 4.5). Indeed, compared to the closed reac-

tor system the self- heating was lower. Starting from virtually the same temperature at the 
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beginning of the experiment, the exhaust gas temperature increased during the first 50 min 

of the experiment. The achieved exhaust maximum gas temperature (Tmax) increased in the 

order MTC 4 (plain drum; Tmax = 22.8 °C), MTC 2 (three lifter plates; Tmax = 23.6 °C), MTC 5 

(mixing cage; Tmax = 24.4 °C). Final exhaust gas temperatures followed the same order. 

Thus, the observed self-heating is in line with the order of carbonation performance as 

judged by the leachate pH and EC as well as the Ca(OH)2 contents (see Figure 4.4). Tem-

peratures peaked earliest for MTC 5 and latest for MTC 4. Thus, the use of mixing tools not 

only enhanced total turnover (as indicated by peak temperatures and final temperatures) but 

also increased the rate of carbonation (as indicated by the corresponding times-to-peak). In 

view of residence times under full-scale conditions the latter finding is of particular im-

portance. 

Overall, the results of test series 2 indicate that adequately designed mixing tools enhance 

BA carbonation in rotating drums. This is due to a modified bed motion where inter-particle 

mixing is enhanced over free surface flow (Jiang et al., 2011).  

A possible draw-back of mixing tools is that they may promote the formation of BA incrusta-

tions which in turn would cause costs for periodic maintenance. This issue was addressed by 

the video analyses of bed motion and reactor inspections conducted after each run of test 

series 2. Bed motion in the plain drum represents the basic pattern, which was modified by 

the mixing tools. Therefore, in the following the results of MTC 4 will be discussed, first. 

For the plain drum (MTC 4) a slipping bed motion prevailed. This is in accordance with the 

bed behaviour characteristic shown in a previous study for the same BA and reactor (Brück 

et al., 2018b).  

In the plain drum, the bed slipped after exceeding a critical inclination due to reactor rotation. 

Since a slipping bed moves essentially as a whole, only little radial mixing happens (Boat-

eng, 2015). Thus, in absence of mixing tools, carbonation under flow-through conditions is 

rather restricted to the upper layer of the BA bed. Patchy incrustations remained on the reac-

tor mantle after a reaction time of 100 minutes and required moderate mechanical force for 

removal. 

A slipping bed motion also prevailed with three lifter plates mounted on the drum wall (MTC 

2) but the bed was periodically disturbed by plates’ passage. In consequence, material from 

the lower bed region was lifted and thrown back to the bed surface. This bed motion fa-

voured BA carbonation (as corroborated by the leachates and the self-heating, see Figure 

4.4 and 4.5). Incrustations were found both on the reactor mantle itself and the lifter plates, 

most prominently along the mantle contact path.  
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Figure 4.5 Time courses of reactor exhaust tempera-
ture during accelerated carbonation in a ro-
tating drum reactor for mixing tool configura-
tions (MTC) 2, 4 and 5. 

 

 

Increasing the number of plates to 12 arranged in 3 x 4 groups (MTC 3) did not favour car-

bonation over MTC 2 in terms of pH, EC, and Ca(OH)2. Indeed, MTC 3 performed worst of all 

mixing tool configurations. This was surprising since MTC 3 is commonly used in other appli-

cations of rotating drums (Bongo Njeng, A. S. et al., 2015; Kalamdhad et al., 2012; Mitchell et 

al., 2006). Therefore, poor performance of MTC 3 may be related to the rheological proper-

ties of wet BA. Specifically, we observed that slipping was almost entirely inhibited with MTC 

3. This may have promoted BA incrustations (see Figure S4.3). As a consequence, mixing 

was impaired, which in turn may have hampered CO2 access to the BA as compared to the 

use of only 3 lifter plates (MTC 2).  

Axially located mixing tools are known for their high mixing quality (Ottino and Lueptow, 

2008). This was confirmed by the satisfactory carbonation performance achieved with MTC 

1. During the experiments we observed that the passage of the perforated baffles evoked a 

high degree of agitation. No incrustations on the reactor mantle were observed. However, 

incrustations formed on the mixing shaft itself (see Figure S4.2). In practical applications 

these would require periodical cleaning to maintain the functionality.  

In contrast to MTC 1 - 3 the perforated mixing cage (MTC 5) does not comprise mounted 

plates or baffles. Carbonation was enhanced (strongest drop in pH, EC, and Ca(OH)2 con-

tents). As revealed by video analysis, this mixing tool yielded an alternating slip-

pling/slumping bed motion. Slumping prevailed when the cage rotated synchronously with 

the drum. Compared to slipping, slumping favours bed mixing (Lim et al., 2003; Metcalfe et 

al., 1995) and may therefore also enhance carbonation. Time by time the cage (and the BA) 

slipped along the reactor mantle against the direction of rotation (asynchronous rotation). 

This had a cleaning effect on the reactor mantle and incrustations observed after a reaction 

time of 100 minutes were minimal as compared to the other MTCs.  

Results of test series 2 suggest that MTC 1, 2 and 5 are suitable for the accelerated car-

bonation of BA in a rotating drum batch reactor operated under flow-through conditions. 
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Compared to the configuration without mixing tools, amphoteric metal levels in the leachate 

were decreased and safely met the WAC for LC1. With the perforated mixing cage (MTC 5) 

the reactor was least prone to formation of BA incrustations. Therefore, this configuration 

seems particularly suited. 

4.4.3 Effect of reactor loading on accelerated carbonation 

The reactor loading is crucial for a future development of the rotating drum reactor towards a 

full-scale application. This is due to the fact that the reactor loading in conjunction with the 

residence time determines the BA throughput. Therefore, in test series 3 we systematically 

tested the carbonation performance over a reactor loading between 8 and 40 kg correspond-

ing to fill levels of 10 to 50 vol.-%. For all experiments MTC 5 was used since it both en-

hanced carbonation and prevented formation of BA incrustations. Calling back to test se-

ries 1, a specific CO2 supply of 100 g CO2/kg BA was maintained by increasing the CO2 con-

centration of the feed proportionally to reactor loading (see Eq. 4.1 and Table 4.1). Figure 4.6 

shows the leachate pH, EC and concentration of trace metals as a function of reactor loading 

against the untreated control.  

Overall, accelerated carbonation achieved a significant improvement of the leachate quality 

across the entire range of reactor loadings. Increasing the reactor loading from 8 kg to 15 kg 

caused a pronounced drop in leachate pH, EC and concentration of amphoteric metals. For 

reactor loadings above 15 kg the carbonation effect remained roughly unchanged. This sug-

gests that high fill levels do not impair CO2 uptake as long as the CO2 supply is adapted.  

This effect may be due to the dependence of bed motion on the reactor loading. Figure 4.7a 

and b show the bed behaviour as a function of rotation speed and reactor loading as well as 

the slipping and slumping frequency. We previously reported that in the absence of mixing 

tools, the bed motion of BA changes from slipping to slumping when the reactor loading ex-

ceeds 15 kg, approximately. With the mixing cage, the transition from slipping to slumping 

was shifted to reactor loadings <8 kg and a broad field of transitional slipping/slumping bed 

motion was identified. Transitional slipping/slumping bed motion also dominated for the rota-

tion rate of 2.5 rpm used in the carbonation experiments. Pure slumping was observed for a 

reactor loading of 30 kg BA (see Figure 4.7a). 

Video analyses showed that the slipping frequency decreased with fill level while the slump-

ing frequency increased (see Figure 4.7b). Since a slumping bed motion generally yields a 

better mixing than slipping, the access of CO2 to the BA may be enhanced and carbonation 

performance should increase. This indicates that a rotating drum reactor equipped with an 

adequate mixing tool can be operated at fill levels of up to 50 vol.-%, provided that the specif-

ic CO2 supply is adjusted accordingly. Alongside an increase in CO2 concentration this could 

potentially be done by increasing the reaction time.  
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Figure 4.6 Leachate properties of fresh and carbonated BA at varied reactor loading and a specific 

CO2 supply of 100 g CO2/kg BA (see Table 4.1). Symbols: red triangle = fresh BA (error 
bars: Standard deviation for n = 6); circles = carbonated BA. 

 

Again, a mobilisation effect was observed for oxyanion forming elements, especially for Cr 

and V. In the experiments discussed in the previous sections the mobilisation effect was un-

critical in terms of compliance with the German WACs for the LC 1. At high fill levels, howev-

er, Cr leaching in the carbonated material may become critical as it partially exceeded 0.3 

mg/l. This is in line with the observed strong pH-drop. Obviously, the identification of a proper 

end point is crucial to achieve the desired immobilisation of critical amphoteric metals and at 

the same time prevent an excessive mobilisation of oxyanion forming elements. 
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Figure 4.7 (a) Bed behaviour of BA as a function of rotation speed and fill level; (b) slipping/slumping 
frequencies as a function of reactor loading at 2.5 rpm.  

 

4.5 Conclusions  

In this study a rotating drum reactor was successfully used for the accelerated carbonation of 

BA. For reactor loadings of up to 8 kg reaction times could be cut to 100 minutes employing 

a specific CO2 supply of 100 g CO2/kg BA. The treated material complied with the German 

WAC for class I landfills and was suited for geotechnical reuse. The concentration of critical 

trace metals - in particular Pb and Zn - dropped by up to two orders of magnitude. By con-

trast, a moderate mobilisation was observed for the oxyanions Cr, Mo and V. This, however, 

did not outweigh the beneficial effects observed for the amphoteric metals. Carbonation in a 

rotating drum reactor can be enhanced by the use of specific mixing tools. This is attributed 

to the modified bed motion and, hence, increased mixing rate. Particular attention should be 

paid to a possible formation of incrustations during long-term use. In this context, the use of a 

perforated mixing cage was quite encouraging and its design aspects should be considered 

in more detail.  

With the mixing cage, carbonation performance slightly increased with reactor loadings of up 

to 15 kg and remained stable for reactor loadings between 15 and 40 kg. This may have 

been due to the promotion of a slumping over a slipping bed behaviour.  

Overall, the rotating drum reactor concept appears promising for the full-scale treatment of 

BA in terms of high reactor loadings in combination with relatively short residence times. Yet, 

in a full-scale operation the reactor throughput would ideally have to be synchronized with 

the rate of BA generation. This issue is addressed in ongoing work.  
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4.8 Supplementary material 

4.8.1 Bottom ash characteristics 

Table S4.1 Physical properties and elemental composition of BA sample 1-3.  

 Sample 1 Sample 2 Sample 3 
Bulk density [kg/L] 1.06 (0.07) 1.04 (0.05) 1.05 (0.02) 
Moisture content [wt.-%] 23.8 (1.2) 23.7 (0.7) 21.4 (1.3) 
   
Major components [g/100 g]   
Ca 25.6 24.3 23.9 
Si 12.6 12.9 12.5 
Al 3.5 3.9 3.2 
S 3.8 2.9 4.2 
Fe 2.8 2.6 3.0 
Na 1.2 1.6 1.7 
Ti 1.2 1.4 1.5 
Mg 1.4 1.3 1.3 
Cl 1.7 1.3 1.3 
K 0.5 0.5 0.5 
Trace elements [mg/kg]   
Cu 3,902 2,596 2,190 
Zn 3,140 3,847 3,377 
Ba 3,713 3,506 3,173 
Pb 1,853 2,204 1,909 
Cr 833 692 669 
V 548 566 501 
Sb 133 119 115 
Mo 24 25 35 

      

4.8.2 Leachate concentrations vs. leachate pH 

Complementary to the representation of the leachate concentration as a function of the spe-

cific CO2 supply given in Figure 4.3 the leachate concentration (logarithmic scale) is here 

plotted against the leachate pH in Figure S4.1.    
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Figure S4.1 pH-dependent metal leaching from carbonated bottom ash. Nonlinear regression was 
performed by applying a single exponential function with two parameters (A,B). R2 = 
correlation coefficient. Probability values were <0.0001, throughout.  

 

4.8.3 Evaluation of BA carbonation with regard to its geotechnical reuse 

According to the draft of the German Ordinance on Secondary Construction Materials 

(OSCM) column leachates of BA need to comply with the so-called material values if a ge-

otechnical reuse is intended. The ordinance differentiates between class 1, 2 and 3 bottom 

ashes based on their leaching behaviour. The higher the leachate levels the more restricted 

is a geotechnical reuse of the waste (e. g. observation of a minimum distance to groundwa-

ter). To assess a possible reuse option comparative column leaching tests were performed 

for fresh and carbonated BA. Leaching tests were performed in accordance with the standard 

method DIN 19528 in plexiglass columns (height 30 cm, inner diameter 9 cm). The columns 

were gradually packed with approximately 3.2 kg of wet BA by applying a vibrating plate. A 

geotextile pre-filter was placed at the top and bottom of the packed beds. Before starting the 

test, the column was saturated with deionized water within 2 h. After the saturation phase, 

the pump was set to a flow rate of 225 mL/h to provide the prescribed contact time of 5 h. 

The samples were taken from the column effluent after the percolate mass was twice the 

mass of packed bed (L:S of 2 L kg-1).  

The leachate properties are shown in Table S4.1. The results largely support the batch 

leaching tests. In the carbonated column the pH and amphoteric metal (Pb, Zn, Cu) concen-
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trations were substantially lower compared to the untreated control. A slight mobilisation of 

oxyanion forming elements (Cr, V and Mo) was also observed. Overall, the accelerated car-

bonation gave column leachate concentrations that comply with the material values of class 

2 BA of the German OSCM. Thus, the output of the accelerated carbonation is suitable for 

high quality geotechnical reuse. 
 
Table S4.2 Results of column leaching tests for fresh and carbonated BA from test series 1 (reactor 

loading: 8 kg, CO2 concentration: 6.7 vol.-%, volumetric gas flow: 40 L/min, reaction 
time: 100 min) and material values of the German ordinance on secondary construction 
materials (draft). 

 Column leachate Material values 

Parameter Fresh BA Carbonated BA Class 1 Class 
2 Class 3 

pH (-) 12.4 11.4 7 - 13 7 - 13 7 - 13 

EC (mS/cm) 17.56 11.8 2.0 12.5 12.5 

Pb (mg/L) 5.05 0.04 n.r. n.r. n.r. 

Zn (mg/L) 0.52 0.01 n.r. n.r. n.r. 

Cu (mg/L) 0.20 0.01 ≤0.11 ≤1.0 ≤2.0 

Ba (mg/L) 0.70 0.32 n.r. n.r. n.r. 

Cr (µg/L) 2.0 26.0 ≤150 ≤460 ≤600 

Mo (µg/L) 270 340 ≤55 ≤400 ≤1000 

V (µg/L) 2.1 7.0 ≤55 ≤150 ≤200 

Chloride (mg/L) 3628 3614 ≤160 ≤5000 ≤5000 

Sul-
phate (mg/L) 216 273 ≤820 ≤3000 ≤3000 

 n.r. not regulated 
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4.8.4 Use of mixing tools for accelerated carbonation  

 

 

Figure S4.2 Mixing shaft (MTC1) as fixed in the 
rotating drum reactor (a) and dis-
mantling (b).  
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Figure S4.3 View into the rotating drum with 
MTCs 2 (a) and 3 (b) and 5 (c). 
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4.8.5 Thermogravimetric analyses 

The weight loss (m) during heating to 900 °C was divided into three temperature windows. 

Thereby m is ascribed to individual temperature-dependent processes: 

 

m1 (20 - 390 °C): release of free and weakly bound water (Gonzalez et al., 2017), 

e.g. from hydrocalumite (260 - 280 °C, Vieille et al., 2003) and 

gypsum (110 - 180 °C, Huntzinger et al., 2009),  

 

m2 (390 - 490 °C): decomposition of Ca(OH)2 (400 - 450 °C Galan et al., 2012; Rocca 

et al., 2013), 

 

m3 (490 - 750 °C): decomposition of carbonate (CaCO3) (Rocca et al., 2013). 

 

 

 

Figure S4.4 Thermogravimetric analysis of fresh and carbonated bottom ash (selected sample of 
test series 1). For the classification of the indicated mass losses (m1-3) see explana-
tion in the text. 
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Figure S4.5 Thermogravimetric analysis of fresh bottom ash.  For the classification of the indicated 
mass losses (m) see explanation in the text. 
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Figure S4.6 Thermogravimetric analysis of carbonated bottom ash under varied mixing tool config-
urations (MTC).  For the classification of the indicated mass losses (m) see explana-
tion in the text. 

 

References Supplementary Material 

Galan, I., Andrade, C., Castellote, M., 2012. Thermogravimetrical analysis for monitoring 
carbonation of cementitious materials. Journal of Thermal Analysis and Calorimetry 110, 
309–319. 10.1007/s10973-012-2466-4. 

Gonzalez, M.L., Blanc, D., Brauer, C. de, 2017. Multi-Analytical Approach and Geochemical 
Modeling for Mineral Trace Element Speciation in MSWI Bottom-Ash. Waste and Bio-
mass Valorization. 10.1007/s12649-017-0075-y. 

Huntzinger, D.N., Gierke, J.S., Kawatra, S.K., Eisele, T.C., Sutter, L.L., 2009. Carbon Diox-
ide Sequestration in Cement Kiln Dust through Mineral Carbonation. Environ. Sci. Tech-
nol. 43, 1986–1992. 10.1021/es802910z. 

OSCM, Verordnung über Anforderungen an den Einbau von mineralischen Ersatzbaustoffen 
in technische Bauwerke (Ersatzbaustoffverordnung – ErsatzbaustoffV) (a recent draft 
piece of legislation prepared by German government)  version of February 2017 

Rocca, S., van Zomeren, A., Costa, G., Dijkstra, J.J., Comans, R.N.J., Lombardi, F., 2013. 
Mechanisms contributing to the thermal analysis of waste incineration bottom ash and 



Chapter 4: Flow-through carbonation of waste incinerator bottom ash 100 
 

 

quantification of different carbon species. Waste Manag 33, 373–381. 
10.1016/j.wasman.2012.11.004. 

Vieille, L., Rousselot, I., Leroux, F., Besse, J.-P., Taviot-Guého, C., 2003. Hydrocalumite and 
Its Polymer Derivatives. 1. Reversible Thermal Behavior of Friedel's Salt: A Direct Obser-
vation by Means of High-Temperature in Situ Powder X-ray Diffraction. Chem. Mater. 15, 
4361–4368. 10.1021/cm031069j. 

  



  101 
 

 

 

Chapter 5  Continuous-feed carbonation of waste 
incinerator bottom ash in a rotating 
drum reactor 

 

Waste Management (2019) 99: 135−145  

 

Co-authors: Kristian Ufer, Tim Mansfeldt, Harald Weigand 

 

 

 

Formatting and orthography of the manuscript is adapted to the dis-

sertation style. 

 



Chapter 5: Continuous-feed carbonation of waste incinerator bottom ash in a rotating drum 
reactor 102 
 

 

5.1 Abstract 

Carbonation is a key process in the aging of waste incinerator bottom ash (BA). The reaction 

with CO2 decreases the BA alkalinity and lowers the leachability of amphoteric trace metals. 

Passive ageing over several months is usually performed in intermittently mixed BA heaps. 

Here we aimed at accelerating the process in a rotating drum reactor continuously fed with 

the BA and the reactant gas (10 vol.-% CO2, volumetric flow rate 60 L/min). In one test, the 

gas was heated and humidified. Since carbonation depends on the specific CO2-supply, ex-

periments were conducted at varied BA residence time (60, 80, and 100 min). Residence 

time was calculated by mass balancing and confirmed by the breakthrough time of two trac-

ers. Leachates and solid phase properties of the treated BA served to evaluate the carbona-

tion performance. The residence time of BA could be adequately controlled by the reactor 

loading and feed rate. A residence time of 80 min was sufficient to reduce the BA leachability 

such as to comply with the German regulatory standards for non-hazardous waste, whereas 

the untreated BA was hazardous waste. Decreased alkalinity was indicated by lower leach-

ate pH and Ca(OH)2 contents of the BA as compared to the input. Leachate concentrations 

of amphoteric trace metals (Pb, Zn, Cu) decreased by at least one order of magnitude while 

oxyanions became slightly more mobile upon carbonation. In view of relatively short resi-

dence times and stable process performance, the rotating drum reactor seems promising for 

a full-scale implementation of BA carbonation. 

 

Keywords: Waste incineration residue, accelerated carbonation, CO2 capture, rotating 

drum, ageing    
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5.2 Introduction 

The ageing of waste incinerator bottom ash (BA) is beneficial to its leaching behaviour. Age-

ing takes place when this highly reactive alkaline and typically moist waste is in contact with 

the ambient air. Access of oxygen causes the formation of Fe- and Al-(hydr)oxides as promi-

nent adsorbents for environmentally relevant trace metals (Chaspoul et al., 2008; Oehmig et 

al., 2015). Concomitant exposure to carbon dioxide (CO2) causes the conversion of Ca(OH)2 

to CaCO3. Thereby, BA alkalinity is consumed and the pH drops, which in turn lowers the 

leachability of amphoteric trace metals like Pb, Zn, and Cu (Arickx et al., 2010; Saffarzadeh 

et al., 2011).  

A series of national guidelines demand that BA is aged over a period of 3 to 6 months prior to 

landfilling or geotechnical utilization (Astrup, 2007; Dou et al., 2017; Gori et al., 2011; Holm 

and Simon, 2016; Santos et al., 2013). Passive ageing over these timescales requires ade-

quate storage installations at the incinerator sites as well as machinery and manpower for 

periodic turning (Blanc et al., 2018). Thus, a number of researchers have addressed the 

question of how the ageing of BA and other alkaline waste materials (e.g., air pollution con-

trol residues) can be accelerated. 

Approaches investigated to this end include static reactor systems where the material is ex-

posed to CO2 partial pressures typically above 100 kPa (Baciocchi et al., 2010; Fernández 

Bertos et al., 2004a; Rendek et al., 2006) or where CO2-rich gas streams are passed over 

thin layers of the solid at ambient pressure (Lin et al., 2015a; Nam et al., 2012; Um et al., 

2013). In view of practical applications, it may be advisable to implement the accelerated 

carbonation in rotating drum reactor systems (Fernández Bertos et al., 2004b; Zingaretti et 

al., 2013). These reactors simultaneously provide agitation and mixing of the material. 

Thereby, the mass transfer between the gas and the solid is enhanced (Tan and Chen, 

2006) and the CO2 uptake rate is increased (Brück et al., 2018b; Lombardi et al., 2016). 

Several gases have been tested as CO2 sources for BA carbonation. One obvious option is 

to use the incinerator exhaust. After passing through a heat exchanger the exhaust is typical-

ly hot (112 °C), moist (relative humidity, RH: 21 %) and contains around 10 vol.-% CO2 

(Arickx et al., 2006; Rendek et al., 2006), and it is available in large quantities at the same 

location where the BA is generated. However, the effects of gas properties such as tempera-

ture and moisture have not been extensively examined up to now. Under static conditions 

Arickx et al. (2006) found a decrease in carbonation efficiency due to the condensation of 

water vapour on the BA surface.  

So far, carbonation in rotating drums has only been tested under batch conditions (Brück et 

al., 2018b; Łączny et al., 2015; Librandi et al., 2017; Lombardi et al., 2016). In full scale ap-
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plications, continuously operated reactor systems may be preferable since, therewith, the 

treatment may be synchronized to the BA generation. Depending on the nature of the in-

volved reactions, the transition from batch to continuous processes can be challenging (Cal-

abrese and Pissavini, 2011). However, some specifics of BA carbonation may favour the 

implementation into a continuous process. These include the facts that carbonation is en-

hanced by mixing, that the reaction is exothermic (Brück et al., 2018b), and that carbonation 

kinetics of the Ca-oxide phases present in BA are rather fast (Brück et al., 2018a). Since 

carbonation may be accompanied by an undesirable mobilisation of oxyanions if CO2 uptake 

is excessively high (Costa et al., 2007, Brück et al., 2019) control of the BA residence time in 

a continuously fed system is deemed crucial.  

Here we investigated the use of a rotating drum reactor continuously fed with both the reac-

tant gas and the BA. The reactor design allowed for the supply of a hot and moist reactant 

gas. An adjustable slide at the reactor discharge served to control the reactor fill level while 

the feed rate was adjusted by a voltage-controlled feed screw. The BA residence time was 

obtained by mass balancing and compared to the residence time distribution as judged from 

tracer experiments. Carbonation performance was assessed by the BA leaching behaviour 

as well as the solid phase contents of Ca(OH)2 and CaCO3 of the treated BA. 

 

5.3 Materials and methods 

5.3.1 Bottom ash sampling  

The BA was sampled from a grate-type refuse derived fuel incinerator located in central 

Germany. For details of the plant refer to (Brück et al., 2018a). A sample of about 500 kg BA 

was taken from a roofed temporary storage pile. The material was manually passed through 

a 10 mm mesh size sieve and the oversize grain was discarded. This was done since the 

coarse fraction of BA (i) is rather uncritical in terms of contaminant leaching and (ii) contrib-

utes little to carbonation. The sample was stored in air-tight clamping ring drums before used 

in the experiments. Prior to each experiment, the appropriate amount of BA was filled into a 

concrete mixer and homogenized. From this, two samples were then taken to characterize 

the input of each experiment.  

5.3.2 Analytical methods 

The moisture of the BA was determined gravimetrically after drying sample aliquots at 105 °C 

for 24 h (EN 12880). The loose bulk density was determined by weighing a graduated cylin-

der holding 100 mL of the material.  
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For characterisation of the solid phase, approximately 20 g of dry BA were ground in a plane-

tary ball mill [Pulverisette 6, Fritsch GmbH, Idar-Oberstein, Germany]. The contents of 

Ca(OH)2 and CaCO3 were determined by thermogravimetric analysis (TGA) using a thermo-

balance [TG 209 F1, Netzsch, Selb, Germany]. Samples were heated in corundum crucibles 

to 900°C at 20 °C/minute under a nitrogen atmosphere. The contents of Ca(OH)2 and CaCO3 

were calculated from the weight loss in specific temperature ranges. The weight loss be-

tween 380 °C and 480 °C relates to the decomposition of hydrates and the concomitant re-

lease of water vapour, whereas the weight change between 480 °C and 900 °C is due to the 

decomposition of carbonates and the release of CO2. 

The total organic carbon content (TOC) was determined with a CNS analyser [Vario EL, El-

ementar, Langenselbold, Germany].  

The concentration of trace element, as well as major anions and cations was determined in 

aqueous batch leachates according to EN 12457-4 obtained at a liquid-to-solid ratio of 10 L 

kg-1. The suspensions were agitated for 24 h on an end-over-end shaker. All samples were 

immediately analysed for pH and electrical conductivity (EC). The leachates were then 

passed through 0.45 µm membrane filters (cellulose acetate) and divided into two aliquots. 

One aliquot was analysed for anions (Cl- and SO42-) and cations (Ca2+, Mg2+ and Na+) by ion 

chromatography [Metrohm 861 Advanced Compact IC with a Metrosep A Supp 5 column]. 

The other aliquot was acidified with nitric acid to pH <2 for the detection of Cu, Pb, Zn, Ba, V, 

Sb, Cr, and Mo by inductively coupled plasma–mass spectrometry [ICP-MS, X-Series II, 

Thermo Scientific, Dreieich, Germany].  

The bulk chemical composition of fresh BA samples was measured by X-ray fluorescence 

(XRF) spectroscopy [Spectroscout ES, Spectro Analytical Instruments GmbH, Kleve, Ger-

many] with a detection limit of ~0.01 wt.-%. The X-ray diffraction (XRD) patterns were rec-

orded using a PANalytical X’Pert PRO MPD Θ-Θ diffractometer (Cu-Kα radiation generated 

at 40 kV and 30 mA), equipped with a variable divergence slit (20 mm irradiated length), pri-

mary and secondary soller, Scientific X´Celerator detector (active length 0.59°), and a sam-

ple changer (sample diameter 28 mm). The samples were investigated from 2° to 85° 2Θ 

with a step size of 0.0167° for 2Θ and a total measuring time of 24 min. The back-loading 

technique was used for specimen preparation. Phase identification was conducted with ref-

erence to patterns in the PDF-2 database of the International Center for Diffraction Data 

(ICDD), released in 2009. 

To pinpoint possible carbonation-induced changes in the particle size distribution of the BA 

untreated and carbonated BA were subjected to particle size analysis. . Therefore, dry sam-

ple aliquots of 1 kg were passed through stainless steel mesh screens with openings of 1, 2, 

4, 8, and 10 mm. 
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5.3.3 Experimental Setup  

Reactor equipment. The experiments were conducted in a rotating drum reactor continu-

ously fed with both the reactant gas and the BA (see Figure 5.1). The drum was a thermally 

insulated stainless steel cylinder (diameter 0.3 m; length: 1.5 m) with a void volume of 106 L. 

It was run on four roller bearings attached to a substructure. Both front covers of the reactor 

were made of transparent polycarbonate and rigidly coupled to the substructure. A chain 

drive served to rotate the reactor against the front covers within gas-tight v-seal rings at 2.5 

rpm, throughout. To enhance mixing, the drum was equipped with three straight plates 

(width: 0.3 m, length: 0.06 m) mounted perpendicularly on the inner drum wall as described 

in Brück et al. (2019). 

Reactant gas. The gas was produced from pure CO2 (N4.5) and synthetic air employing a 

gas mixing station [Gmix, HighTec Zang, Herzogenrath, Germany]. For optional temperature 

adjustment, the gas could be led through a temperature-regulated heating tube with a WRW-

200 control unit [Winkler GmbH, Heidelberg, Germany]. This was used in combination with a 

humidifier unit consisting of a water-filled washing bottle and a heating device [Rettberg 

GmbH, Göttingen, Germany].  

 

 

Figure 5.1. Set-up of the carbonation plant.      
 Reactant gas (blue arrows): (1) Gas cylinders; (2) gas mixing station; (3) heating tube 

with temperature controller; (4) gas humidifier; (5,6) flow-through cell with wire-less tem-
perature and relative humidity sensors; (7) gas outlet. 
Bottom ash feeding system (red arrows): (8) hopper; (9) feed screw; (10) by-pass for 
tracer application; (11) electric scale; (12) adjustable slide as exit dam; (13) gas-solid 
separator; (14) electric scale with sampling vessel. 
Reactor equipment: (15) roller; (16) electric motor for reactor rotation; (17-19) lifter 
plates; (20) heating element; (21) insulation; (22) substructure. 
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At both, the gas inlet and outlet, the temperature (Tin and Tout) and relative humidity (RHin and 

RHout) were monitored. The values of both parameters were recorded every minute using 

wireless sensors [AREXX TSN-TH70E, RS Zwolle, The Netherlands] with tolerances of ± 

1°C and ± 0.5 % RH. In the experiment with the heated reactant gas, the reactor was addi-

tionally equipped with a 2000 W temperature-controlled heating element of 1.2 m length 

[Nüga, Georgensgmünd, Germany, control unit WRW-100, Winkler GmbH] to compensate a 

potential heat-loss over the reactor mantle. 

Bottom ash feeding system. The feeding system for BA was a combination of a hopper 

and an electrically driven feed screw. The hopper served for BA storage and was manually 

supplied with an adequate mass of BA prior to each experiment. The feed screw delivered 

the BA to a chute leading to the reactor inlet. According to preliminary tests, the input mass 

flow of BA was a linear function of the operating voltage (2 to 24 V, see Figure S5.1). An ad-

justable metal slide was installed at the discharge end of the reactor for fill level control. This 

served to slow down the BA discharge and thereby increase the fill level under continuous 

feed conditions depending on the position of the slide (Karra and Fuerstenau, 1977). The 

ejected BA was collected and the exhaust gas was led to a fume hood. 

Both the input and output mass flows (Ṁin and Ṁout, kg/min) were monitored. This was done 

by placing the feed unit as well as the collection vessel on electrical scales [DE 300K5DL 

and FCB30K1, Kern & Sohn, Balingen-Frommen, Germany] with resolutions of ± 0.005 kg 

and ± 0.001 kg, respectively. Weights were logged every minute and served to calculate the 

current reactor loading (MR, kg) as well as ṀIn and ṀOut. 

5.3.4 Experimental 

The accelerated carbonation of BA under continuous-feed conditions was tested in a total of 

five experimental runs. Table 5.1 summarizes the operation parameters. By applying a de-

fined mass flow rate (Ṁ, kg/min) and with a known MR, the residence time (τ, min) can be 

calculated according to Eq. 5.1  

 

τ RM = ,
M

 (Eq. 5.1) 

 

Under steady-state conditions (Ṁ = ṀIn = ṀOut, MR = const.) the residence time for each ex-

periment (τMB) was derived from the mass balance using the recorded MIn and MOut. Experi-

ment 1 was started with an empty reactor. All other experiments were started with a pre-filled 

reactor by adding MR. Prefilling served to shorten the time necessary to reach steady state 

conditions with respect to BA mass flow. Steady-state conditions were reached 30 minutes 
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after starting the feed, approximately. This was defined as equivalence of ṀIn and ṀOut with a 

tolerance of ± 0.01 kg/min over at least 10 min accepting a variation of MR of ± 0.25 kg. After 

attaining steady-state, the tracer was added to the BA feed and the gas supply was switched 

on. The reactor discharge was continuously collected in sealable vessels for allotted intervals 

(for a detailed description of the sampling procedure see section 5.3.5). Samples were ho-

mogenized and analysed as described in section 5.3.2.  

Experiments 2 to 4 served to specify the residence time distribution in tracer tests and to 

evaluate BA carbonation under systematic variation of τ by applying three targeted mass 

flows (see Table 5.1). The CO2 concentration was 10 vol.-% and the gas flow rate ( V ) was 

60 L/min.  

Experiment 5 included a step-change of the reactant gas properties. For the first 140 minutes 

(t/τ = 1.8) the reactant gas supply was identical to the one adopted in experiments 1 through 

4. Then, the input was switched to the conditioned gas with a temperature of 55 °C and a RH 

of 30 % and the experiment was continued for another 100 minutes. The values of tempera-

ture and relative humidity were chosen in close agreement with the exhaust of the combined 

heat and power (CHP) plant available at the site where a large-scale carbonation trial is 

planned. 

 

Table 5.1 Conditions of BA carbonation in a continuously fed rotating drum reactor.  

Parameter 
Experiment 

1 2 / 3 / 4 5 

Reactant gas properties    

 CO2 (vol.-%) 10 10 10 

 V  (L/min) 60 60 60 

 Temperature (°C) 20 - 22 20 - 22  55 

 Relative humidity (%) <10 <10 30 

Reactor settings    

 τ (min) f(Ṁ) 60 / 80 / 100 80 

 Fill level (vol.-%) f(Ṁ) 14 14 

 MR (kg) f(Ṁ) 15 15 

 Ṁ (kg/min) 0.30 0.25 / 0.19 / 0.15 0.19 

 Feed screw voltage (V) 13.1 11.1 / 8.8 / 7.2 8.8 
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5.3.5 Tracer experiments 

In a continuously fed system, the residence time of solid particles is not constant but follows 

a distribution. To quantify the residence time distribution, tracer experiments were performed. 

The tracers were pulse-injected in the by-pass behind the feeding screw after the reactor had 

reached steady-state conditions with respect to mass flow. Polystyrene (PS) balls with a di-

ameter between 2 and 5 mm and sodium chloride (NaCl) were used as particulate and con-

ductivity tracers, respectively. We anticipated that the PS balls would stick to the wet surface 

of the BA particles and be co-transported through the reactor. Preliminary tests indicated that 

a total of 600 PS balls provided a clear response signal at the reactor discharge. The use of 

PS balls as a tracer in carbonation experiments is new. Therefore, we decided to cross-

check results with a more commonly used tracer by adding 50 g of NaCl to the tracer batch. 

At the reactor discharge, samples were collected in allotted intervals by replacing the collec-

tion vessel. The sampling intervals were 2, 5 and, 10 min with the shortest interval located 

around the expected tracer breakthrough (t/τ = 1.0) to maximize the signal resolution. Ali-

quots of the discharge samples (50 g) were used for the determination of moisture. The dry 

material was preserved for the analysis of solid phase properties. Another 50 g aliquots were 

used in rapid leaching tests (RT) to determine the breakthrough behaviour of NaCl. There-

fore, the solid samples were filled into beakers and 500 ml of distilled water were added. The 

suspensions were then intensively stirred for 15 min. Subsequently the electric conductivity 

(referred to as ECRT in the following) was measured with a conductivity probe using the EC 

as a proxy for the NaCl concentration. Every second sample of the reactor discharge was 

subjected to a regular batch leaching test according to EN 12457-4. Both leachates (RT and 

regular batch test) were analysed in terms of the number of PS balls released to the super-

natant. All remaining sample material was also mixed with water and the upwelled PS balls 

were counted. 

The evolution of the PS tracer signal was used to derive the residence time distribution (E(t), 

E-curve). Since Ṁ was constant for each experiment, E(t) is given as the actual tracer signal 

N divided by the total tracer input using Eq. 5.2. 

 

i

0

N(Δt )E(t)  
N

  (Eq. 5.2) 

 

where N0 is the total number of PS balls injected. The cumulative residence time distribution 

function F(t) (=F-curve) was obtained by integrating E(t) over time (Eq. 5.3). 
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I

i i0
i=1

F(t) = E(t ) dt E(t ) dt


   (Eq. 5.3) 

 
where I is the total number of sampling intervals.  

The mean residence time (tm) is the first moment of the residence time distribution E(t) and 

was obtained graphically from the intersection of the F-curve with the horizontal line corre-

sponding to F(t)/N0 = 0.5 (centre of mass). The variance of the residence time (σ2) was cal-

culated using equation 4. It is the second moment of the E(t) function and a measure of its 

spread around tm (Bongo Njeng et al., 2014). 

 

 
I

22 2
m i m i0

i=1
σ  = (t t ) E(t) dt t t E(t ) dt


     (Eq. 5.4) 

 
The axial dispersion of the tracer in the rotating drum reactor was modelled using the values 

of tm and σ2, according to Eq. 5.5 (Sherritt et al., 2003). 

 
2

m

m m

Pe(t t)1 PeE(t) = exp
2 t t 4 t t

 
      

 (Eq. 5.5) 

 

where Pe is the dimensionless Péclet number obtained from the variance of the residence 

time (Pe = 2/σ²). 
 

5.4 Results and discussion 

5.4.1 Bottom ash characterisation 

All of the following data refer to the grain size fraction 0 - 11 mm. The BA sample used in the 

experiments had a mean moisture content of 17.3 wt.-% (±1.5 wt.-%) and a loose bulk densi-

ty of 1.0 kg/L (±0.05 wt.-%). Table 5.2 shows the elemental composition. The major compo-

nents of the BA were Ca and Si followed by Al, S, and Fe. Regarding trace elements, con-

siderable levels of Cu and Zn were found. This largely matches results reported previously 

for BA from municipal solid waste incinerators, e.g., (Wiles, 1996). The high Ca content of 

24.2 wt.-% is similar to data for BA from refuse-derived fuel incineration (Rocca et al., 2012). 

Especially the trace elements revealed considerably high standard deviations (for Cu: ±57.5 

%). This points to (small-scale) variability of the BA composition, which was addressed in the 
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experiments by using high reactor loadings of 15 kg (experiments 2 through 5). The mean 

TOC-value of 0.9 wt.-% (±0.2 wt.-%) indicates that the combustion was quite complete. 

Part of the Ca in the fresh BA was present as Ca(OH)2 as indicated independently by the 

TGA and XRD-results (see diffractogram Figure S5.2). According to TGA data, the average 

Ca(OH)2 content was 3.1 wt.-%; this suggests a considerable carbonation potential. Besides 

Ca(OH)2, mineral phases identified by XRD included quartz (SiO2), calcite (CaCO3; also con-

firmed by TGA), anhydrite (CaSO4) and gehlenite (Ca2Al2SiO7). This agrees with previous 

findings (Baciocchi et al., 2010; Inkaew et al., 2016; Yang et al., 2014). 

Hydrotalcite (Mg6Al2[(OH)16|CO3]4∙H2O) was also identified. This naturally occurring layered 

double hydroxide (Ohtsubo et al., 2004) is known for its potential role as an anion scavenger 

(Châtelet et al., 1996; Palmer et al., 2009). Trace levels of ettringite 

(Ca6Al2[(OH)12|(SO4)3]·26H2O), larnite (Ca2SiO4), cristobalite (SiO2) and magnesioferrite 

(Mg(Fe3+)2O4) were also identified by XRD.  

The leaching behaviour of selected solid phase components as assessed in batch leaching 

tests is summarized in Table 5.3. Leachability was calculated as the ratio of the released 

mass and the total content of the corresponding element. Batch leachates of the fresh BA 

were alkaline and rich in charged mobile constituents as indicated by the high EC.  

 

Table 5.2. Elemental composition of the BA (n = 5). Data are given as arithmetic mean ± standard 
deviation (s.d.).  

Major components Trace elements 

Mean (±s.d.) [g/100 g] Mean (±s.d.) [mg/kg] 

Ca 24.2 (1.0) Cu 5,170 (2,970) 

Si 12.9 (0.7) Zn 4,030 (932) 

Al 3.5 (0.3) Ba 3,850 (519) 

S 3.2 (0.7) Pb 1,650 (410) 

Fe 2.9 (0.2) Cr 807 (145) 

Na 1.6 (0.2) V 545 (51) 

Ti 1.4 (0.1) Sb 112 (13) 

Mg 1.3 (0.1) Mo 34 (13) 

Cl 1.3 (0.2)   

Corga 0.9 (0.2)   
a analyzed as TOC  
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High leachate pH and Ca concentrations agree with the identified Ca(OH)2 content. In addi-

tion, notable concentrations of Cl- and SO42- were found in the leachate. The high mobility of 

Cl- points to the presence of readily available alkali salts in BA (e.g. NaCl, CaCl2) (Hyks et al., 

2009; Wiles, 1996). Sulfate concentrations may in turn have been the result of ettringite and 

anhydrite dissolution (Dijkstra et al., 2006; Hyks et al., 2009; Rocca et al., 2012). Regarding 

trace elements, high leachate concentrations were found for Pb, Zn, and Cu. Among the am-

photeric trace metals Pb showed the highest leachability. The Pb leachate concentration was 

eight times higher than the German waste acceptance criterion (WAC) for landfill class (LC) 

2 (1.0 mg/L). Consequently, the fresh BA is classified as a hazardous waste. Zinc and Cu 

concentrations were both below LC 2 but exceeded LC 0 and 1, respectively.  

Under alkaline conditions, Cr, Mo, Sb and V are predominantly present as chromate, molyb-

date, antimonate, and vanadate, i.e. as oxyanions. A surprisingly high leachability of Mo was 

found for fresh BA. Molybdenum was also the only oxyanion-forming element exceeding the 

limit value for LC 0 (50 µg/L). No such comparison can be made for V since the German 

Landfill Ordinance does not include a pertinent WAC.   

 

Table 5.3. Leachate concentrations and leachability of major components and trace elements of the 
fresh BA; data as arithmetic mean ± standard deviation (s.d.). 

  Average concentration  
(±s.d.) 

Leachability a 
(%) 

pH (-) 12.7 (0.1) - 

EC (mS/cm) 9.4 (0.8) - 

Ca 
 

(mg/L) 1,330 (140) 5.5 

Na 
 

(mg/L) 116 (14) 7.3 

Mg 
 

(mg/L) 33 (1) 2.5 

S 
 

(mg/L) 200 (96) 2.1 

Cl 
 

(mg/L) 497 (67) 38 

Pb (µg/L) 8,300 (4,700) 5.0 

Zn (µg/L) 800 (217) 0.2 

Cu (µg/L) 558 (303) 0.1 

Ba (µg/L) 586 (213) 0.2 

Mo (µg/L) 74.4 (10.5) 25 

Cr (µg/L) 13.5 (4.9) 0.2 

V (µg/L) 5.7 (0.7) 0.1 

Sb (µg/L) 2.0 (1.5) 0.2 

a leachability = (leached mass of element/ total mass of element in the sample) ∙100 
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5.4.2 Control of BA residence time  

In experiment 1 the reactor was run with an open discharge. Under these conditions, the ex-

perimental residence time τMB was below 30 min (see Table 5.4). This value is too low for a 

sufficient degree of BA carbonation (Brück et al., 2019). Increasing the residence time to the 

range of 60 to 120 min would require a modification of either the reactor (e.g. size, discharge 

geometry) or a lower feed rate. The latter is disadvantageous in terms of throughput. There-

fore, we opted to use an adjustable slide at the reactor discharge in all further experiments. 

The residence times τ were 60, 80 and 100 min (Table 5.1). The mass balance yielded τMB 

values of 60.3 min, 80.2 min, and 102.0 min, respectively. This excellent agreement of τ and 

τMB indicates that at constant rotation speed the feed rate and MR could be adequately con-

trolled via the voltage vs. ṀIn characteristic and the position of the adjustable slide.  

In experiments 2, 3, and 4 the residence time distribution was assessed by analysing the 

breakthrough behaviour of two tracers, namely PS balls as a particulate tracer and NaCl as a 

conductivity tracer.     

Figure 5.2 shows the cumulative tracer signal for PS balls (F-curve, left) and the correspond-

ing residence time distribution (E-curve, right). The centres of mass of the F-curves {F(t) = 

0.5} are indicated by a dashed line. The obtained mean residence time (tm) agreed well with 

τMB for experiment 1, 3 and 4 whereas in experiment 2 the tracer breakthrough occurred 7.4 

min earlier than expected. Additional results obtained by the analysis of the residence time 

distribution are summarized in Table 5.4.  

The F-curves are largely symmetric and the corresponding centres of mass are in good 

agreement with τMB indicating that the PS balls behaved as an inert tracer. The maxima of 

the normalized tracer concentrations showed a recovery of more than 80%.  

 

Table 5.4 Results of the tracer experiments.  

  Experiment No. 

  1 2 3 4 

tm (min) 26.0 52.9 76.0 107.0 

tm/τexp (-) 1.00 0.88 0.95 1.05 

Ϭ2 (min²) 30.2 134.1 324.2 486.0 

Ϭ (min) 5.5 11.6 18.0 22.0 

Ϭ/tm (-) 0.21 0.22 0.24 0.21 
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Both the incomplete tracer recoveries and the partial deviation of tm and τexp may be due to 

the existence of dead zones, i.e. of inaccessible reactor space. Yet, considering that the 

movement of BA through the reactor has a chaotic component (mixing and/or segregation), 

the results of the tracer experiments are very satisfactory.  

 

 

Figure 5.2 Tracer response signals for experiment 1 through 4 given as F(t) and E(t) for the particle 
tracer (polystyrene) and evolution of the NaCl tracer represented as the leachate elec-
tric conductivity (ECRT). For F(t) and E(t) the red lines denote the experimental resi-
dence time (τMB) as derived from the mass balance. Blue solid lines along with the E(t) 
values are the results of the axial dispersion model (Eq. 5).   
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A relatively high spread around tm was observed. With decreasing Ṁ (i.e. with increasing τMB) 

the E-curves spread and flattened corresponding to increasing σ² values, while the relative 

variance of residence time (σ/tm) remained in a narrow range from 0.21 to 0.24 (see Table 

5.4). This is consistent with an increasing longitudinal dispersion (σ²) as a function of mean 

residence time. 

The evolution of the electrical conductivity (ECRT) is the result of two overlapping processes, 

i.e. the gradual decrease of EC caused by BA carbonation (see section 3.3) and the break-

through of the salt tracer. The tracer signal was expected to appear as a secondary maxi-

mum. This was the case in experiments 2 and 3. In experiment 4, no clear peak could be 

discerned, which is consistent with the high degree of dispersion. Indeed, in experiments 2 

and 3 the position of the secondary maxima compared favourably with the peak times of the 

PS tracer. This indicates that both tracers, despite their differing properties, were adequate to 

describe the axial transport behaviour of BA. 

 

3.3 Effect of residence time on carbonation performance  

During reactor start-up the reactant gas stream was switched off. It was only turned on after 

a steady state had been reached. Thus, the exposure time of BA to CO2 increased with ex-

periment duration until the reaction time  t = τMB. Kinetics of carbonation may therefore poten-

tially be reflected in the differences among experiments 2, 3, and 4 (variation of τMB) as well 

as within each experiment for reaction times t < τMB.  

To obtain a measure of the carbonation performance, the reactor discharge (carbonated BA) 

was sampled and subjected to batch leaching tests. Additionally, TG analyses on the solid 

samples were performed to gain insight into the evolution of CaCO3 and Ca(OH)2 contents. 

Since the residence time in experiment 1 (open discharge) was below the pursued range 

(60 - 120 min) carbonation performance was expectedly insufficient and will therefore not be 

discussed here (see Figure S5.3).   

Figure 5.3 shows the temporal evolution of the outlet gas properties as well as selected solu-

tion and solid phase properties for experiments 2 to 4. 

In all experiments, an initial temperature increase was observed with a peak at 24 °C after 

around 40 to 50 minutes. With prolonged carbonation the temperature gradually decreased 

but remained between 2 and 3 °C above ambient conditions. Overall, self-heating by the exo-

thermal carbonation reaction was far lower than observed for BA carbonation under batch 

conditions (Brück et al., 2018b). This is due to reactor cooling by the gas stream and by the 

continuous BA feed. Since the BA was moist, the RH of the outlet gas increased rapidly in all 
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experiments and nearly constant values of 94% ± 2% were attained after 25 minutes, ap-

proximately.  

Regarding leachate properties, similar temporal trends were obtained in experiments 2 

through 4. The leachate pH decreased from 12.7 (fresh BA) to 12.2, 12.0, and 11.7, for ex-

periment 2 to 4, respectively. This is attributed to the consumption of alkalinity (mainly related 

to Ca(OH)2) by BA carbonation (Brück et al., 2019; Marchese and Genon, 2009).   

 

 

Figure 5.3 Results of carbonation experiments 2 to 4 performed at different residence times deter-
mined by the mass flow. Evolution of temperature and relative humidity (RH) in the gas 
outlet as well as selected parameters determined in aqueous batch extracts and solid 
phase samples; vertical line: residence time (τMB) obtained by mass balance. Values at 
experimental time zero represent leachate values of the fresh BA. 
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The longer the residence time, the lower was the final pH. In either experiment, the pH de-

creased over time due to proceeding carbonation, indicating that residence time is, indeed, a 

critical factor for BA carbonation. A similar trend was observed for the leachate EC which 

dropped from around 10 mS/cm (fresh BA) to 4.6, 3.6, and 3.9 mS/cm, in experiments 2 to 4, 

respectively. Thus, the leachates became increasingly depleted in mobile charged constitu-

ents (most prominently Ca2+ and OH−) with increasing CO2 uptake. 

In parallel to the drop in pH and EC, the leachate concentration of amphoteric metals (Pb, 

Zn, Cu) decreased by at least one order of magnitude as compared to fresh BA. 

Immobilization of amphoteric trace metals is primarily attributed to the pH-drop induced by 

the carbonation reaction (Wei et al., 2011) and is consistent with previous findings by (Brück 

et al., 2018b; Chimenos et al., 2000; Fernández Bertos et al., 2004a; Wei et al., 2011). 

For fresh BA, the average leachate concentrations of Cu and Pb were above the German 

WAC for LC 0 and LC 2, respectively, classifying the material as a hazardous waste. At the 

end of experiment 2 the leachate concentration of Cu was below the limit values for LC 0 

(inert waste) but the Pb concentration still exceeded the WAC for LC 1. For experiment 3 the 

final leachate concentrations of Pb, Zn, and Cu were below LC 0. The same holds for exper-

iment 4 except for Pb which was slightly above LC 0. Overall, leaching behaviour for ampho-

teric metals largely improved upon carbonation.  

It is well known that the pH dependent leaching of oxyanions differs greatly from that of am-

photeric metals (Cornelis et al., 2008). This was also confirmed in our leaching tests. As an 

example Figure 5.3 shows the leachate values of Cr, Mo and V for the treated material and 

the fresh BA.  Antimony leaching was in the range of the values for V (< 10 µg/L) and is 

shown as a separate figure in the supplement section (Figure S5.4). Compared to the un-

treated material (time zero in Fig. 5.3) carbonation-induced mobilisation was highest for Cr 

and Sb and lowest for Mo and V.  

The enhanced mobility of oxyanions as a consequence of BA ageing has been attributed to 

dissolution (Johnson et al., 1999) and/or desorption processes (Piantone et al., 2004). Hy-

drotalcite and ettringite as potentially involved phases were identified in our XRD analysis 

(see section 5.4.1). Calcium antimonate and calcium molybdate have been suggested to 

control the dissolution-controlled leaching of Sb and Mo (Verbinnen et al., 2016; Simon and 

Holm, 2019). Carbonation could potentially promote their leaching by decreasing the Ca level 

in solution (Simon and Holm, 2019). Chromium, Mo and Sb may also be hosted by ettringite 

when they substitute sulphate in the crystal lattice (Marchese and Genon, 2009; van Gerven 

et al., 2005). In this case, carbonation may enhance oxyanion leaching by lowering the pH 

and thereby promote ettringite decomposition (Chrysochoou and Dermatas, 2006; Costa et 

al., 2007).  
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Hydrotalcite has been recognized as a potential sorbent for SO42- and CrO42- (Châtelet et al., 

1996; Lazaridis and Asouhidou, 2003) and could potentially release these elements into solu-

tion when the BA is aged due to the limited stability range of Hydrotalcite (Tamura et al., 

2006). Iron(hydr)oxides have frequently been recognized to impact oxyanion leaching (Mei-

ma and Comans, 1999). In our system, oxyanion sorption to iron(hydr)oxides may have been 

favoured by the carbonation-induced pH decrease (Cornelis et al., 2008). Yet, a net mobilisa-

tion was observed. 

It was beyond the scope of this study to elucidate the underlying - and most probably over-

lapping – processes of oxyanion mobilization. From the practical viewpoint, their enhanced 

leaching is clearly an adverse effect of BA carbonation. However, the leachate concentra-

tions of Cr and Mo remained below the German LC 1 WAC of 300 µg/L, throughout. The in-

complete carbonation and, hence, limited CO2 uptake may have prevented excessive leach-

ing of oxyanions and particularly that of Sb. Overall, the beneficial immobilization of ampho-

teric metals was not outweighed by the mobilization of oxyanions. 

Although the exhaust gas showed a higher RH than the input, the BA moisture content did 

not change in a clear manner and non-systematic variations are rather attributed to the het-

erogeneity of the material than to the treatment.  

The TGA results confirm the occurrence of the two basic carbonation reactions: (i) neutralisa-

tion of Ca(OH)2 by CO2 and (ii) formation of CaCO3. The increase in CaCO3 content corre-

sponded to CO2 uptakes between 3.7 to 4.9 wt.-%. The Ca(OH)2 contents decreased from 

2.5 wt.-% to 1.9, 0.9, and 0.7 wt.-% in experiments 2, 3, and 4, respectively. Thus, in none of 

the experiments Ca(OH)2 was fully converted to CaCO3.  

It should be noted that TGA was performed with ground material. This makes Ca(OH)2 con-

tained in the core of the grains analytically accessible. The batch leachates summarized in 

Figure 5.3 were performed with unground samples. This may explain why the pH decreased 

to values below 12 in experiment 4 in spite of detectable amounts Ca(OH)2. 

 

5.4.3 Effect of reactant gas properties on carbonation performance 

Results of the previous sections indicated that a mean residence time of 80 min (experiment 

3) was sufficient to achieve the desired immobilisation of critical trace metals (below the 

WAC for LC1). The conversion of fresh BA to a non-hazardous waste was achieved with a 

dry reactant gas at a temperature of 22 °C. However, the stack gas of most thermal process-

es can be expected to be moist and hot. 
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To simulate this under conditions feasible in a laboratory set-up, we tested the effect of the 

reactant gas properties on carbonation performance with a residence time τ of 80 min em-

ploying a preconditioned reactant gas with a temperature of 55 °C and a RH of 30%. Results 

are shown in Figure 5.4.  

 

Figure 5.4 Results of carbonation experiment 5 performed with a dry reactant gas at ambient tem-
perature (0 - 140 min) switched to a pre-heated humidified reactant gas (140 - 230 min; 
T = 50 °C, RH = 30 %). Evolution of gas properties and of selected parameters as deter-
mined in aqueous batch extracts and solid phase samples; vertical red line: residence 
time (τMB) as derived from the mass balance. 

 

The feed of the moist and hot reactant gas was initiated after 140 min. At this point carbona-

tion was at steady state with respect to leachate EC, pH, concentration of amphoteric metals, 

and conversion of Ca(OH)2 to CaCO3, while the leachate concentration of oxyanions was still 

increasing. Upon the step change of input gas quality Tin increased quickly to about 60 °C. 

With a slight delay, Tout increased to approximately 70 °C and finally, both temperatures sta-

bilized at around 55 °C. Synchronous to the increase of Tin, RHin increased to values of 

around 30%.  

Contrary to the increase of Tout, the RHout decreased. This can be explained by the tempera-

ture dependence of water vapour saturation. For the observed change of gas properties in 

the outlet gas, the absolute humidity increased by a factor of 3 to 4 (from 23 g/m³ to 83 g/m³). 
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Apparently, in our case the vapour uptake was limited by the evaporation from the wet BA, 

thereby explaining the decrease of RHout. 

As a result of the step change of the reactant gas properties, the moisture content of dis-

charged BA decreased by about 5 wt.-%. This is in line with a temperature-driven increase of 

moisture output via the reactant gas. A similar trend was observed by (Lin et al., 2015b) dur-

ing static carbonation experiments at a temperature of 50 °C. The authors concluded that, 

depending on the conditions, a loss or gain of moisture content during carbonation would 

have a significant impact on the carbonation efficiency on the industrial scale.Our results 

show that the increased temperature and humidity did not affect the carbonation perfor-

mance as judged by the BA content of CaCO3 and Ca(OH)2 as well as the leachate EC and 

concentration of Cu, Mo and V.  

A modest beneficial effect was observed for Pb and Zn since the leachate concentration de-

creased slightly as compared to the levels attained before the step change in reactant gas 

properties. This went along with a decrease of the leachate pH. Overall, carbonation was 

sufficient to decrease leachate concentrations of Zn and Cu below WAC for LC 0. For Pb the 

leachate concentration was below the WAC for LC 1 and dropped further below the WAC for 

LC 0 with the treatment at increased reactant gas temperature and moisture.  

Compared to experiments 2 to 4 (gas temperature 22 °C) the higher gas temperature en-

hanced the carbonation-induced mobilization of Cr. This is contrary to findings by van Ger-

ven et al. (2005) who found that Cr leaching was lowered by increasing the treatment tem-

perature from ambient to 50 °C. However, despite the slight mobilization observed for both 

elements here their concentrations were still far below the WAC for LC 1.  

From the findings in this section we conclude that the stack gas of a thermal process may be 

suited for the accelerated carbonation of BA as long as the initial moisture content of BA is 

within its optimum range (between 15 – 22 wt.-%, Brück et al., 2018b). However, it should be 

noted that the volumetric flow rate of the gas might be larger under real life conditions, which 

would probably enhance the observed drying effect. Therefore, particular attention should be 

given to the gas-to-solid ratio for carbonation (in this study: 200 - 400 L/kg). The latter may 

not just depend on the reactant gas properties (CO2 concentration, temperature, moisture) 

but also on the characteristics of the BA (alkalinity, moisture content).  

Along with the improvement of the leaching behaviour of waste incineration BA carbonation 

in the rotating drum reactor also initiated granulation of the BA. This is substantiated by the 

particle size distributions of the untreated and the carbonated BA (see Figure S5.5). The 

granulation effect increased slightly with residence time and virtually vanished at the elevated 

temperatures prevailing in experiment 5. A similar effect was observed for steel slag by (Lib-

randi et al., 2017). Overall, the rotating drum reactor provides an opportunity to combine car-
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bonation and granulation in a single treatment step to improve both the chemical and physi-

cal properties of BA. Obtaining a granulated product with a specific size-distribution could be 

beneficial in terms product handling and geotechnical reuse (Gunning et al., 2009). However, 

if a high temperature exhaust gas is used additional water might be required to support gran-

ulation. 

 

5.5 Conclusions  

In this study we reported on the accelerated carbonation of BA in a rotating drum reactor 

operated under continuous-feed of both the reactant gas and the BA.  

The use of a movable slide at the reactor discharge in conjunction with an adjustable feed 

rate of the solid allowed for a control of the BA residence time. Mass balance results agreed 

well with the first moment of the residence time distribution derived from tracer experiments. 

The reactor was supplied with reactant gas with 10 vol-% CO2 at a flow rate of 60 L/min. Un-

der these conditions a residence time of 80 min was enough to improve the BA leachate 

quality such as to comply with the regulatory standards for non-hazardous waste.  

With increasing residence time, the leachate pH and Ca(OH)2 content of the BA dropped. 

Leachate concentrations of amphoteric trace metals (Pb, Zn, Cu) decreased by at least one 

order of magnitude. Oxyanion forming elements (Cr, Mo, V and Sb), however, became more 

mobile upon carbonation. Thus, the degree of carbonation should be carefully chosen to min-

imize this side effect. To this end, control of the residence time is particularly useful. 

Increasing the temperature and moisture of the reactant gas to resemble properties of a typi-

cal CHP-plant induced a BA drying of about 5 wt.-% but only slightly affected the carbonation 

performance. This finding is encouraging since stack gas is one of the readily available CO2 

sources for accelerated carbonation. 

Overall, the rotating drum reactor concept appears promising for the full-scale implementa-

tion of BA carbonation in terms of relatively short residence times and stable performance. 

Yet, in a full-scale operation, the reactor throughput would ideally have to be synchronized 

with the rate of BA generation. This issue is addressed in ongoing work directed towards the 

operation of a continuously-fed pilot-scale reactor. 
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5.8 Supplementary material  

5.8.1 Preliminary tests 

 

 

Figure S5.1 Resulting mass flow (Ṁ) of BA as 
function of the operating voltage of 
the feed screw. 

5.8.2 X-ray diffraction 

 

Figure S5.2 Analysis of mineral components of the fresh bottom ash by X-ray diffraction. Main and 
minor components: quartz, calcite, portlandite, hydrotalcite and anhydrite. Trace com-
ponents: gehlenite, ettringite, larnite, cristobalite and sjogrenite.   
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5.8.3 Results of accelerated carbonation experiment 1 

 

Figure S5.3. Results of experiment 1 with open reactor outlet, mass flow rate: 0.30 kg/min, rotation 
speed: 2.5 rpm, CO2 concentration: 10 vol.-%, exhaust gas temperature (T): 21 °C and 
relative humidity (RH): <10 %. Tracer pulse was injected at time (t) = 70 min. 

 

5.8.4 Antimony leaching results for experiment 2 - 4 

 

Figure S5.4. Results of carbonation experiments 2 to 4 performed at different residence times deter-

mined by the mass flow. Evolution of Sb concentration in aqueous batch extracts; verti-

cal line: experimental residence time (τMB) obtained by mass balance. Values at experi-

mental time zero represent leachate values of the fresh BA. 
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5.8.5 Results of the sieve analysis 

Figure S5.5. The cumulative particle 
size distribution of the 
untreated BA and the 
carbonated BA of exper-
iment 1-5.   
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6.1 Discussion 

The current practice of BA ageing requires a large quantity of space, time and appropriate 

measures to control the process. A recent study by Blanc et al. (2018) indicated problems 

provoked by a lack of process control under industrial scale conditions. A promising ap-

proach to overcoming the problems is the accelerated carbonation of BA, which is a con-

trolled enhancement of the natural ageing. However, practical applicability of reactor systems 

for accelerated carbonation developed so far remains beyond reach since they do not allow 

for the necessary throughput.  

This thesis aimed at delineating both the technical set-up and the operation parameters suit-

ed for process integration of accelerated carbonation of BA at incinerator sites. This included 

the development of a screening technique (Chapter 2) to evaluate the progress of carbona-

tion as well as a stepwise transfer of the reactor into a continuously fed system (Chapter 3 to 

5). Table 6.1 summarizes the reactor concepts for accelerated carbonation developed and 

tested in this thesis. 

The major findings regarding the objectives a) to e) of this thesis will be discussed in the fol-

lowing.   

 

Table 6.1 Development steps and reactor concepts for accelerated carbonation of bottom ash (BA) 
developed and tested in this thesis.  

Reactor scheme Operating 
mode Reaction gas 

supply Corresponding 
chapter 

 

Batch Manual dosage 2 

 

Batch Automated dosage 2, 3 

 

Batch Flow-through 4 

 

Continuous Flow-through 5 
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Objective a) 

Develop a monitoring system to evaluate the progress of carbonation under static and 

dynamic conditions     

Two alternative approaches may be used to evaluate the effects of BA carbonation: 

i) changes in (batch or column) leachate characteristics like pH, concentration of major com-

ponents or critical trace metals and ii) alterations of the solid phase composition either by 

simply following the weight gain or by more sophisticated methods to resolve changes of 

specific mineral phases, e.g. by XRD or TGA, usually applied to small sample aliquots. While 

the analysis of leachates and the solid phase are usually time-consuming and require specif-

ic instrumentation, the gravimetric approach is error-prone, e.g. due to changes of the mois-

ture content of BA during accelerated carbonation (Lin et al., 2015b).   

An alternative approach was first applied in carbonation experiments conducted in pressur-

ized reactors (Sun et al., 2008). Since the CO2 consumption in a closed system is directly 

related to the carbonation reaction, the resulting pressure drop can be converted to the CO2 

quantity absorbed by the solid sample. However, applications described hitherto were re-

stricted to pressures >200 kPa, which is beyond practical conditions (Fernández Bertos et 

al., 2004b).  

Here, a simple method was developed and tested under static and dynamic conditions to 

quantify the CO2-uptake by the pressure drop at atmospheric pressure (see Figure 6.1). Re-

sults demonstrated the serviceability and reproducibility of the approach as compared to the 

analytical quantification of carbonates by TGA. The monitoring system renders classical 

analyses unnecessary and integrates over the whole reactor loading which circumvents 

problems related to the small-scale heterogeneity of BA. In combination with static carbona-

tion set-ups, the method may be suited for a routine assessment of the CO2 uptake capaci-

ties of BA and other alkaline materials, e.g. in the context of carbon capture and storage. 

This may be particularly useful in the context of taking accelerated carbonation to the full 

scale.  

The ability to follow carbonation online may contribute to a better process understanding. It 

could be shown that the experimental data was suited to quantify the carbonation kinetics at 

minimum analytical expense and without the need to vary the reaction time in separate runs.  

Additional information was obtained by monitoring the temperature and relative humidity of 

the gaseous phase during the CO2 uptake by BA. Due to the exothermic carbonation reaction 

the temperature increased by up to 10 °C.  
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Figure 6.1 Schematic of the automated monitoring method for accelerated carbonation at near at-
mospheric pressure; the CO2 uptake is quantified by integrating the pressure drop (p) 
over time and apllying the universal gas equation (eq. 2.2). 

 

The time course of self-heating matched with the CO2 uptake and based on measured tem-

peratures the heat content of the reactor and the flux to the environment were calculated and 

benchmarked against the reaction enthalpy. Excellent agreement demonstrated that, indeed, 

carbonation is the most important heat-generating reaction. Thus, temperature monitoring 

may be an alternative way of evaluating the carbonation performance.   

Results presented in chapter 3 showed that the monitoring system may also be used in dy-

namic reactor setups where the BA is mixed to enhance the CO2-uptake, e.g. in rotating 

drum reactors. Such systems are promising for practical applications, and fast and simple 

methods to follow the carbonation reaction are extremely useful to identify optimal operation 

conditions.   

 

Objective b) 

Evaluate the benefits of mixing and agitation for the accelerated carbonation  

The first indications of the beneficial effect of dynamic conditions on BA carbonation were 

given by (Palitzsch et al., 1999). Subsequently (Fernández Bertos et al., 2004a) showed that 

the reaction velocity was two to three times higher when the BA was continuously shaken. In 

this thesis, BA carbonation under dynamic conditions was systematically investigated. First, 

a static (packed bed) and a dynamic reactor type (rotating drum) were directly compared, 

using identical volume-to-mass ratios but different layer thicknesses (static: 1 cm, dynam-
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ic: 3 -12 cm) (Chapter 2). Higher CO2-uptake, self-heating and reaction velocities were found 

under dynamic conditions evoked by the rotation of the reactor.  

The effect of the turning motion was studied in more detail in Chapter 3, where static and 

dynamic experiments were performed in the same reactor with or without rotation. The com-

parison was made across a broad range of reactor fill levels 7 - 42 vol.-% to investigate the 

effect of the BA layer thickness on carbonation. Under static conditions, the carbonation per-

formance decreased with increasing fill level. In contrast, carbonation was superior under 

dynamic conditions even at fill levels exceeding 20 vol.-%. Under dynamic conditions the 

leaching behaviour of BA could be improved such as to comply with the German waste ac-

ceptance criteria for a landfilling of the material as a non-hazardous waste. 

Overall, mixing and agitation are beneficial for BA carbonation. Within the tested range of 

reactor loadings, the layer thickness does not seem to be a limiting factor for the carbonation 

of BA when the drum is rotated (see Figure 6.2).   

 

 
 
Figure 6.2 Illustration of the progress of BA carbonation in a static reactor (a) and a dynamic reac-

tor (b) over time (t).   
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Objective c) 

Study the bed behaviour of BA in rotating drum reactors  

Recently, dynamic reactors (e.g. granulators, rotating drums) have successfully been tested 

for the accelerated carbonation of moist BA, FA and steel slag (Łączny et al., 2015; Librandi 

et al., 2019; Librandi et al., 2017; Morone et al., 2014). However, very little is known about 

how the motion of these materials is affected by the operating conditions, like fill level and 

rotation speed of the reactor. The radial motion is crucial for the reactor layout since it deter-

mines the degree of material mixing and the rate of heat and mass transfer both inside the 

material bed and between the bed surface and the headspace (Ding et al., 2001). With re-

spect to objective (c) the effects of rotation speed, reactor fill level (chapter 3), and mixing 

tools (chapter 4) on the solids motion were studied. The bed behaviour of BA was tested 

both under moist and dry conditions and was compared to that of standard materials (sand 

and gravel).  

In the plain drum without mixing tools dry BA behaved similarly to gravel in terms of slumping 

frequency and tended to segregate (i.e. to form alternating bandings of fine and coarse BA 

particles) after 30 rotations, approximately. In contrast, moist BA showed less frequent slip-

ping or slumping and thereby a less dynamic behaviour than dry BA. This may be compen-

sated by an increased thickness of the flowing layer (Chou et al., 2011), whereby a larger 

amount of material participates in the mixing process. No segregation was observed for 

moist BA which is deemed beneficial for the carbonation process, since segregation hampers 

the mass transfer between the gas and the solid. Thus, moisture may not only be a prerequi-

site for the carbonation reaction but may also be beneficial to the rheological behaviour of BA 

in rotating drums.  

Video analyses revealed that over the range of tested rotation speeds and fill levels the bed 

motion of moist BA was predominantly characterized by slipping or slumping. Slipping oc-

curred at fill levels below 18 vol.-% irrespective of rotation speed while for fill levels >18 vol.-

% either a slumping or a transitional slumping/rolling bed motion were identified. Compared 

to standard materials, the onset of slumping/rolling was shifted towards higher fill levels and 

rotation speeds. Since slumping improves radial mixing, these results may be used to attain 

desired bed behaviour by a combination of fill level and rotation speed. With respect to the 

adjustment of BA residence times in a projected continuous feed operation, reactor fill level is 

a key parameter. The findings with respect to objective (c) show that fill levels of up to 42 

vol.-% are feasible (and even beneficial to substrate mixing) as long as the CO2-supply is not 

a limiting factor.   
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Besides the enhancing effect on mixing, the solid’s motion may also evoke particle granula-

tion (Librandi et al., 2017; Morone et al., 2014). Indeed, rotating drums are extensively used 

in many industries for granulation (Rodrigues et al., 2017; Wang and Cameron, 2002). Ob-

taining a granulated product with a specific size-distribution might be beneficial in terms 

product handling and geotechnical reuse (Gunning et al., 2009). As reported in Chapter 5, 

BA tended to granulate during carbonation without the addition of a binder (see Figure S5.4). 

Thus, the rotating drum reactor provides an opportunity to combine carbonation and granula-

tion in a single treatment step to improve both, the chemical and physical properties of BA.  

Objective d) 

Investigate the effect of process conditions and reactor design on carbonation per-

formance 

Rotating drums have long since been used in multiple engineering applications (Demagh et 

al., 2012). The following operation conditions have been identified as being of particular im-

portance: rotation speed and fill level of the drum, properties of the reactant material and 

gas, and the design of mixing tools. These aspects were studied in detail in chapters 3 and 4 

and findings are outlined in the following paragraphs.     

Rotation speed  

For processes comprising a gas-solid reaction, the rotation rate of the drum is, generally, 

deemed an important process variable (Stuart et al., 1999; Zhang et al., 2012) as it imposes 

a radial motion on the solid. However, Lombardi et al. (2016) recently tested the CO2 removal 

from a gas stream in a rotating drum using BA as an absorbent and found that the rotation 

speed had a low significance on the CO2 removal performance. This is in line with the find-

ings presented in chapter 3 where the bed behaviour of BA showed a low sensitivity to rota-

tion speed within the tested range (< 10 rpm). Since slow rotation is typically applied in indus-

trial applications (Pichtel, 2014; Specht and Becker, 2014) throughout this study the rotation 

speed was kept below 3 rpm for carbonation experiments.   

BA moisture 

Wetness of BA is a consequence of the quenching process applied at most waste incinera-

tors and is, at the same time, a prerequisite for carbonation since the related reactions take 

place in the pore water (Pan, 2012). Depending on ash characteristics and quenching proce-

dures the moisture contents of BA can vary considerably (Costa et al., 2007). In chapter 3, 

the optimum moisture content for the tested BA (sieve fraction: <10 mm) was found to be 

21 wt.-% as judged by the CO2 uptake. This is roughly in the range of the typical moisture 

content of BA after storage in a roofed pile for 1 to 3 days. Excess moisture (>24 wt.-%), 
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which can be found directly after the quenching process, caused a lower CO2 uptake and 

should therefore be avoided. 

CO2 concentration 

The use of waste gas streams as the CO2 source in accelerated carbonation has been sug-

gested by (Marzi et al., 2004). Depending on origin, their CO2 concentration ranges from 5 to 

70 vol.-%. However, a systematic study on the effect of CO2 concentration on the accelerat-

ed carbonation at atmospheric pressure is lacking. As demonstrated in Chapter 3 both the 

CO2 uptake rate and the final level of carbonation increased as the CO2 concentration was 

raised from 15 to 75 vol.-%. The latter is in accordance with the law of mass action. Howev-

er, a modest uptake inhibition was observed at 100 vol.-% CO2. Under static conditions, car-

bonation was hampered at CO2 concentrations exceeding 20 vol.-% (Nam et al., 2012; Sun 

et al., 2008). The authors concluded that this was due to inhibition of CO2 diffusion through 

carbonates precipitated on the BA surface and the formation of calcite coatings has been 

documented, repeatedly (Brett et al., 2018; Ruiz-Agudo et al., 2013; Sakita and Nishimura, 

2015). Under the dynamic test conditions used here, uptake inhibition was shifted to CO2 

concentrations of >75 vol.-% (see Figure 3.4). This may be attributed to the bed motion 

which causes friction among BA aggregates, whereby surfaces are continuously renewed 

and diffusion through a growing layer of precipitated CaCO3 becomes less important. Overall, 

the findings suggest that under dynamic conditions a broad range of exhaust gases are suit-

able as a CO2 source for the carbonation process. If available, the process can be accelerat-

ed by using CO2 rich waste streams.  

Reaction time 

As outlined in the introduction, short reaction times favour the integration of accelerated car-

bonation procedures into the management of BA incinerator sites (see Figure 1.2). Experi-

ments described in Chapter 3 were run in a closed reactor with an automated CO2 dosage 

system. Reaction times of 120 minutes were sufficient to achieve high CO2 uptakes and sig-

nificantly improve the leachate quality of BA. In chapter 4 the reaction time was focused in 

more detail under flow-through conditions. These are particularly relevant in view of a full-

scale implementation of the accelerated carbonation since most CO2 waste gas streams are 

generated continuously. Under the tested conditions, reaction times could be cut to 100 

minutes employing a specific CO2 supply of 100 g CO2/kg BA.  

Fill level 

In many applications of rotating drum reactors, the material bed only occupies a small part of 

the cross section and typical fill levels are between 10 to 20 vol.-% (Helmrich and Schügerl, 

1979; Specht and Becker, 2014). As outlined in chapter 3, the fill level is of outstanding im-

portance for the bed motion of BA. This is due to the fact that with increasing fill level the bed 
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motion changes from slipping to slumping thereby favouring the mixing process. Thus, dy-

namic BA carbonation is not hampered by high fill levels exceeding 20 vol.% (see Figure 

3.5). This is encouraging in terms of the treatment capacities in potential full-scale applica-

tions and may have been a consequence of the use of mixing tools (Chapter 4). Their bene-

ficial effects on carbonation will be discussed next.   

Reactor design: mixing tools 

Mixing tools have proven to promote heat transfer and mixing in rotating drums and manifold 

designs and configurations exist (e.g. straight lifter plates or baffles mounted on the inner 

drum wall, axially located mixing tools) (Lee and Choi, 2013; Marsh et al., 2000; Ottino and 

Lueptow, 2008). In Chapter 4, five different mixing tool configurations including the plain 

drum were studied with respect to their effect on carbonation. The results indicated that car-

bonation can be enhanced by different mixing tool configurations, namely three single plates, 

an axially located mixing tool and a mixing cage. Selection of tools should, however, also 

consider a possible formation of incrustations during long-term use since these would require 

periodical cleaning to maintain the functionality causing additional costs for maintenance. 

Except for the mixing cage, BA incrustations formed either on the reactor mantle or on the 

mixing tools themselves. Similar effects were also recognized during the carbonation of steel 

slag in a rotating drum equipped with plates (Figure 1 (b), Librandi et al., 2017). The perfo-

rated mixing cage largely prevented the formation of incrustations even at fill levels of up to 

50 %. In addition, it favoured a slumping over a slipping bed motion. Since, at present there 

are no references in the scientific literature regarding this type of mixing tool future research 

should focus on specific design aspects, like the number and geometry of the elongated 

gaps and the weight-to-diameter ratio. 

Objective e) 

 Develop a continuous-fed operating reactor with adjustable BA residence time     

So far, carbonation in rotating drums has only been tested under batch conditions (Łączny et 

al., 2015; Librandi et al., 2017 and 2019; Lombardi et al., 2016). In full scale applications, 

continuously operated reactor systems may be preferable since, therewith, the treatment 

may be synchronized to the BA generation (see Figure 1.3). Depending on the nature of the 

involved reactions the transition from batch to continuous processes can be challenging 

(Calabrese and Pissavini, 2011). However, some specifics of BA carbonation may favour the 

implementation into a continuous process. These include the facts that carbonation is fa-

voured by mixing (Chapters 2 and 3), is an exothermic reaction (Chapter 3) that follows rela-

tively fast kinetics (Chapter 2) and may be accompanied by an undesirable mobilisation of 

oxyanions if CO2 uptake is excessively high (Chapters 3 and 4). Taking advantage of the 
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above-named specifics in a continuously fed system requires that the residence time of BA is 

adequately controlled. 

Continuously operated rotating drums are commonly used for the processing of granular ma-

terials in the mineral, ceramic, cement, metallurgical, chemical, pharmaceutical, food, and 

waste treatment industries (Abouzeid and Fuerstenau, 2010; Abouzeid et al., 1974; Liu et al., 

2009; Sullivan et al., 1927). However, process design is mostly empirical (Sherritt et al., 

2003). Furthermore, wet granular materials have been seldomly addressed.  

Building on the knowledge gained from Chapters 2 to 4, a rotating drum reactor was devel-

oped for the operation under continuous-feed of both the reactant gas and the BA. Most im-

portantly, this required the integration of a dosage system for BA. The decisive factor in this 

respect was to keep the effective shear force low to avoid altering the rheological properties 

of BA. This was achieved with a voltage-controlled dosage screw (see Figure S5.1). Fur-

thermore, a movable slide was used at the reactor discharge to control the reactor hold up 

(resident mass of BA) following the observations by Karra and Fuerstenau (1977) and both 

the feed and the discharge unit were weighted for mass balancing purposes.    

The serviceability of these layout solutions were demonstrated by the excellent agreement of 

projected and experimentally verified BA residence times. Tracer breakthrough curves 

demonstrated that the longitudinal transport of BA agrees well with the axial dispersion mod-

el for non-segregating particulate material. The reactor was supplied with reactant gas with 

10 vol-% CO2 at a flow rate of 60 L/min. Under these conditions a residence time of about 

75 min was enough to improve the BA leachate quality such as to comply with the regulatory 

standards for non-hazardous waste. Regarding the immobilization of the amphoteric metals 

and the partial mobilization of oxyanions the results shown in Chapters 2 through 4 were 

confirmed under continuous feed conditions. Due to the effective control of residence time 

both effects can be balanced out.  

In view of the properties of real-world exhaust gases and their use for BA carbonation, Chap-

ter 5 included a run with a hot and moist reactant gas. Effects of this are largely unexplored 

in the scientific literature. Results demonstrated that using a hot and moist gas only slightly 

affected the carbonation performance. This finding is encouraging since most waste gas 

streams are typically moist and hot (e.g. stack gas from WtE plants, Tang et al., 2015). 

Overall, the rotating drum reactor concept appears promising for the full-scale implementa-

tion of BA carbonation in terms of relatively short residence times and stable performance. 

Yet, in a full-scale operation, the reactor throughput would ideally have to be synchronized 

with the rate of BA generation, requiring a reactor scale-up.  
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6.2 Conclusion and outlook 

The experimental work of this thesis was centred on the improvement of the leaching behav-

iour of waste incinerator bottom ash by accelerating its carbonation. As outlined in Chapter 1, 

accelerated carbonation is of economic and environmental interest when the time-scale of 

treatment can be synchronized to the rate of bottom ash generation. To this end, first, a sim-

ple and robust method to quantify the CO2 uptake was developed, second, the reactor sys-

tem was transferred from a static jar test to a rotating drum reactor, third, the mode of reactor 

operation was shifted batch to flow-though and, ultimately, to continuous-feed.  

The results obtained along this path unequivocally demonstrated that the accelerated car-

bonation of waste incinerator bottom ash can, indeed, be synchronized to its generation rate. 

The reaction could be accelerated to around 100 minutes. The leachate properties character-

ized the carbonated material as a non-hazardous waste. This is due to the fact that the mo-

bility of amphoteric metals (Pb, Cu, Zn) was reduced by up to three orders of magnitude. 

This would allow for a disposal on a class 1 landfill. In addition to landfilling the carbonated 

material was also studied under the perspective its geotechnical utilization. Based on the 

draft of the German Ordinance on Secondary Construction Materials, column and batch 

leaching test results show that carbonated bottom ash complies with the regulatory stand-

ards of a secondary construction material categorized as HMVA-1. For such materials a se-

ries of applications exist, including the use as road subbases, sound barriers, parking lot and 

bike path groundings. Therefore, the accelerated carbonation of bottom ash provides a mate-

rial that is both suited for the cost-effective disposal on a lower landfill class and for the po-

tential generation of revenues from if geotechnical use. These applications involve the bene-

fit of substituting geogenic aggregates and thereby conserving natural resources. 

Other than the amphoteric metals, oxyanions like Cr, Mo and V became more mobile upon 

carbonation. Although this side effect did not outweigh the benefits it would need to be con-

sidered in a full-scale application. This may be done in a multidimensional optimization where 

carbonation is not taken to the maximum CO2 uptake but balanced for a minimization of the 

side effect. To this end, control of bottom ash residence time in the reactor and the 

knowledge of the carbonation kinetics are mandatory. Both aspects have been extensively 

addressed in this thesis and can now contribute to promote accelerated carbonation of BA as 

an industrial process. 

It was beyond the scope of the work presented here to delineate the scale-up of the acceler-

ated carbonation process. Yet, in the meantime, a series of semi-full scale experiments have 

been conducted (see. Figure 6.3). Results of these corroborated the findings obtained from 

the laboratory test. Therefore, the implementation of the process is in sight as soon as the 

draft Ordinance on Secondary Construction Materials is approved.                 
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Figure 6.3 Semi-full scale reactor for continuous-fed carbonation of BA utilising the exhaust gas of a 

cogeneration plant (combined heat and power) as the CO2 source. 
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