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Kurzzusammenfassung

Diese Dissertation besteht aus Forschungsarbeiten über indefinite Thetafunktionen,
Mock-Modulformen höherer Tiefe, Quanten-Modulformen höherer Tiefe und iterierte
Eichler-Integrale. Zunächst betrachten wir eine explizite indefinite Thetafunktion der
Signatur (1, 3), die im Gromov-Witten-Potential einer elliptischen Orbifaltigkeit auftritt,
und bestimmen ihre modulare Vervollständigung durch Methoden von Zwegers und
Alexandrov, Banerjee, Manschot und Pioline, woraus folgt, dass sie Mock-Modulformen
der Tiefe 3 sind. Weiter betrachten wir falsche Thetafunktionen höheren Ranges und
zeigen, dass ihre asymptotische Entwicklung an rationalen Punkten übereinstimmt mit
den Entwicklungen von iterierten Eichler-Integralen über definite Thetafunktionen. Die
modularen Eigenschaften der Eichler-Integrale implizieren Quanten-Modularität höherer
Tiefe für die falschen Thetafunktionen höheren Ranges. Außerdem zeigen wir, dass
eines der auftretenden Eichler-Integrale gleichzeitig der rein nicht-holomorphe Teil einer
indefiniten Thetareihe der Signatur (2, 2) ist. Darüber hinaus beweisen wir, dass diese
falschen Thetafunktionen unter der vollen Modulgruppe als vektorwertige Quanten-
Modulformen höheren Tiefe transformieren und verallgemeinern eine Gleichung zwischen
Eichler-Integralen und Mordell-Integralen zu einem zweidimensionalen Fall. Schließlich
geben wir q-Reihen an, die die anderen Komponenten der vektorwertigen Quanten-
Modulformen höherer Tiefe liefern sollten und zeigen dies in einem Fall.
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Abstract

This thesis consists of research articles on indefinite theta functions, higher depth
mock modular forms, higher depth quantum modular forms, and iterated Eichler integrals.
First, we study an explicit indefinite theta function of signature (1, 3) that occurs in
the Gromov-Witten theory of elliptic orbifolds and determine its modular completion,
showing that it is a mock modular form of depth 3 using methods of Zwegers and
Alexandrov, Banerjee, Manschot, and Pioline. We continue by studying higher rank false
theta functions and show that they have the same asymptotic behavior near rationals
as iterated Eichler integrals of theta functions. The modular behavior of the Eichler
integrals implies that the higher rank false theta functions are quantum modular forms of
higher depth. Additionally, one of the occurring Eichler integrals is essentially the purely
non-holomorphic part of an indefinite theta function of signature (2, 2). Furthermore, we
show that these false theta-functions actually satisfy higher depth vector-valued quantum
modular behavior. We also generalize a connection between Eichler integrals and Mordell
integrals to a two-dimensional case. Finally, we suggest q-series that should contribute
the other components of the higher depth vector-valued quantum modular forms and
show that they span a space that is essentially closed under modular transformation in a
special case.
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Chapter I

Introduction and Statement of
Objectives

This thesis consists mostly of the research articles [BKR,BKM1,BKM2,BKM3] that
deal with indefinite theta functions and several related objects. In this chapter, we
first recall the collected scientific context of these articles and then present their results,
restating parts of their introductions and repeating the central theorems.

I.1 Definitions and previous results

I.1.1 Modular forms and Jacobi forms of matrix index

Modular forms and more general objects that behave nicely under the action of the
modular group are fundamental objects in number theory. Their Fourier and Taylor
coefficients, expansions and asymptotics have an abundance of connections to other fields
in mathematics.

We begin by introducing some standard notation. Let H := {τ = u+ iv ∈ C; v > 0}
be the complex upper half plane and

Γ0(N) :=

{(
a b
c d

)
∈ SL2(Z);N |c

}
the congruence subgroup of level N of the modular group SL2(Z). It acts on τ ∈ H by
Möbius transformation

Mτ :=
aτ + b

cτ + d
for M =

(
a b
c d

)
∈ SL2(Z).

Definition I.1.1. We call a holomorphic function f : H → C modular form of weight
k ∈ Z for Γ0(N) ⊆ SL2(Z) with character χ (and write f ∈Mk(Γ, χ)) if

f(Mτ) = χ(d)(cτ + d)kf(τ) (I.1.1)

holds for M =
(
a b
c d

)
∈ Γ0(N) and f is bounded at all cusps Γ0(N) \ (Q ∪ {∞}) of

Γ0(N). Holomorphic functions satisfying (I.1.1) that may have poles at the cusps are

9



CHAPTER I. INTRODUCTION AND STATEMENT OF OBJECTIVES

called weakly holomorphic modular forms. We call modular forms cusp forms and write
f ∈ Sk(Γ, χ) if they vanish at all cusps.

Similarly one can define modular forms of half-integral weight k ∈ 1
2 + Z by replacing

the transformation law with

f(Mτ) = ε−2k
d

( c
d

)
χ(d)(cτ + d)kf(τ)

for M =
(
a b
c d

)
∈ Γ0(4N), where εd := i for d ≡ 3 (mod 4) and εd := 1 otherwise.

Furthermore, we consider multivariate functions C×H→ C, (z, τ) 7→ f(z; τ) called
Jacobi forms that satisfy modular transformation properties in τ , elliptic transformation
properties in the z-variable (i.e., a simple behavior under shifts by Z + τZ) and certain
growth conditions, such as the Jacobi theta function (ζ := e2πiz, q := e2πiτ , z ∈ C, τ ∈ H)

ϑ(z; τ) :=
∑

n∈ 1
2

+Z

eπinq
n2

2 ζn.

Since we are interested in generalizations in higher dimension, we refer to Eichler and
Zagier [EZ] for the theory of classical Jacobi forms. We define Jacobi forms of matrix
index as follows, where bold letters represent vectors throughout.

Definition I.1.2. Let L1, L2 ⊂ ZN be lattices, ν1 : Γ → S1 := {z ∈ C : |z| = 1}
a multiplier, ν2 : L1 × L2 → S1 a homomorphism with finite image, N ∈ N, and
A ∈ 1

4Z
N×N with AT = A and Aj,j ∈ 1

2Z for j ∈ {1, . . . , N}. We call a meromorphic
function g : CN×H→ C Jacobi form of matrix index A and weight k ∈ 1

2Z for Γ ⊂ SL2(Z)
with respect to L1 × L2 and ν1,ν2 if it satisfies the following transformation laws (for all
(z, τ) ∈ CN ×H):

1. For m ∈ L1, ` ∈ L2 we have

g (z +mτ + `; τ) = ν2(m, `)q−m
TAme−4πimTAzg(z; τ).

2. For M =
(
a b
c d

)
∈ Γ we have

g

(
z

cτ + d
;
aτ + b

cτ + d

)
= ν1(M) (cτ + d)k e

2πic
cτ+d

zTAzg(z; τ).

3. For some a > 0, we have

g(z; τ)e
− 4π

Im(τ)
Im(z)TAIm(z) ∈ O

(
eaIm(τ)

)
as Im(τ)→∞.

Other authors refer to equivalent concepts as Jacobi forms of lattice index, see for
example [Mo].
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CHAPTER I. INTRODUCTION AND STATEMENT OF OBJECTIVES

I.1.2 Definite theta functions

The definite theta function associated to a positive definite quadratic form given
as Q : ZN → Z,m 7→ 1

2m
TAm and corresponding bilinear form B(m,n) := mTAn is

defined as follows (z ∈ CN , τ ∈ H)

ΘQ(z; τ) :=
∑
n∈ZN

qQ(n)e2πiB(z,n). (I.1.2)

Schoeneberg showed in 1939 [Sc] that for even N , the function τ 7→ ΘQ,0(0; τ) is a
modular form of weight N

2 for some subgroup Γ0(N1) and character χQ, i.e., we have

ΘQ,0

(
0;
aτ + b

cτ + d

)
= (cτ + d)

N
2 χQ(d)ΘQ,0(0; τ) for M =

(
a b
c d

)
∈ Γ0(N1).

One can easily show that definite theta functions also satisfy elliptic properties. They
were the subject of influential research, for example by Eichler and Zagier, who developed
the theory of classical Jacobi forms and used them to prove the Saito-Kurokawa conjecture
[EZ,Z1].

I.1.3 Indefinite theta functions

Generalizing the study of theta functions to non-degenerate indefinite quadratic
forms presents some difficulties. To begin with, the series in (I.1.2) does not converge
for indefinite quadratic forms since arbitrarily large terms appear in the series since
|qQ(`n)e2πiB(z,`n)| → ∞ as ` → ∞ for n ∈ ZN with Q(n) < 0. We will not discuss
Siegel’s results on dealing with this issue [Si1], but instead focus on the approach initiated
by Zwegers in his doctoral thesis [Zw].

Convergent expressions can be obtained by restricting the summation to those lattice
points in a suitable cone on which the quadratic form is positive and growing (i.e., it
contains only finitely many lattice points with quadratic form below any fixed bound).
Explicitly for signature (r, 1), given two vectors c, c′ ∈ RN (N = r + 1) such that
Q(c), Q(c′), B(c, c′) < 0 one defines (z = x+ iy ∈ CN , τ = u+ iv ∈ H)

ΘQ,(c,c′)(z; τ) :=
∑
n∈ZN

(
sgn

(
B
(
c,n+

y

v

))
− sgn

(
B
(
c′,n+

y

v

)))
qQ(n)e2πiB(z,n).

(I.1.3)

Göttsche and Zagier first showed that holomorphic functions of this type are modular
only in special cases [GZ]. In his doctoral thesis, Zwegers described the modularity
properties of these indefinite theta functions of signature (r, 1) in general, showing that
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CHAPTER I. INTRODUCTION AND STATEMENT OF OBJECTIVES

they can be completed to a modular object of weight N
2 by adding an explicit real-

analytic correction term [Zw]. While this completed modular form is not holomorphic, it
is essentially a mock modular form, which are the holomorphic parts of harmonic Maass
forms. We call a function that transforms as a modular form of weight k harmonic Maass
forms if it is annihilated by the weight k hyperbolic Laplacian

∆k := −v2

(
∂2

∂u2
+

∂2

∂v2

)
+ ikv

(
∂

∂u
+ i

∂

∂v

)
and satisfies certain growth conditions (see [BFOR] for the theory and many applications
of harmonic Maass forms).

By rewriting the hyperbolic Laplacian as ∆k = −ξ2−k ◦ ξk with the shadow operator
ξk given for real-analytic f : H→ C as

ξk(f)(τ) := 2ivk
∂

∂τ
f(τ),

one can uniquely decompose a harmonic Maass form into an holomorphic part (called
mock modular form) and a non-holomorphic part (called the shadow of the mock modular
form). In other words, Zwegers showed that indefinite theta functions of signature (r, 1)
are essentially mock modular forms of weight N

2 .
Furthermore, Zwegers showed that the mysterious “mock theta functions” appearing

in Ramanujan’s final letter to Hardy, such as the function

f0(q) :=
∞∑
n=0

qn
2

(1 + q) · · · (1 + qn)
, (I.1.4)

fit in this framework.
Alexandrov, Banerjee, Manschot, and Pioline [ABMP] generalized Zwegers’ results to

quadratic forms of signature (r, 2) in 2016, with the main innovation being the generalized
error functions of the form

GLN (R)× RN → R, (M,x) 7→
∫
RN

e−π(x−y)T (x−y)
N∏
j=1

sgn((My)j)dy.

The name stems from the fact that for N = 1 this is essentially the well-known error
function erf(x) := 2√

π

∫ x
0 e
−t2dt, which occurred in the case of signature (r, 1) in [28]. An

important tool in their proof of the modular properties was Vignéras’ theorem in [Vi]
which states that appropriately converging indefinite theta functions of the form∑

n∈ZN
p
(
n
√
v
)
qQ(n)

12



CHAPTER I. INTRODUCTION AND STATEMENT OF OBJECTIVES

are modular forms of weight N
2 +λ ∈ 1

2Z if the function p : RN → R satisfies the Vignéras
differential equation(

xT
∂

∂x
− 1

4π

(
∂

∂x

)T
A−1 ∂

∂x

)
p(x) = λp(x),

∂

∂x
:=

(
∂

∂x1
, . . . ,

∂

∂xN

)T
.

Later in 2016, Nazaroglu [N] completed the proof for quadratic forms of arbitrary
indefinite signature using the approach of Alexandrov, Banerjee, Manschot, and Pioline
(although with somewhat restrictive conditions on the possible cones).

Related results on indefinite theta functions were also obtained by other authors.
Kudla showed that indefinite theta functions can be viewed as integrals of Kudla-Millson
theta series [Ku], Westerholt-Raum extended the approach to a more abstract geometric
setting [WR] and Funke and Kudla used Kudla’s approach to obtain general statements
on modular completions of indefinite theta functions using so-called simplicial cones [FK].

I.1.4 Construction of the completion of an indefinite theta function

We continue by describing Nazaroglu’s construction for the modular completion of
indefinite theta functions in some detail [N]. For an indefinite quadratic formQ of signature
(r, s), we require s pairs of vectors to generalize (c, c′) in I.1.3 and consider a product of
differences of such sgn-functions. Specifically, write C := (c1, . . . , cs, c

′
1, . . . , c

′
s) ∈ (RN )2s

and define the notation

cj,S :=

{
c′j if j ∈ S,
cj if j 6∈ S

for S ⊆ {1, . . . , s} to discuss the geometric conditions and to define the completion of the
indefinite theta function. The conditions on C generalize those mentioned before (I.1.3),
for example the spaces spanned by C(S) := (c1,S , . . . , cs,S) should be negative definite of
dimension s for S ⊆ {1, . . . , s}. The corresponding holomorphic theta function is

ΘQ,C(z; τ) :=
∑
n∈ZN

s∏
j=1

(
sgn (B(cj ,n))− sgn

(
B(c′j ,n)

))
e2πiB(z,n)qQ(n) (I.1.5)

=
∑
n∈ZN

∑
S⊆{1,...,s}

(−1)|S|

 s∏
j=1

sgn (B(cj,S ,n))

 e2πiB(z,n)qQ(n).

Then one can obtain a modular (but not holomorphic) theta function by replacing each
product of sign functions by a suitable generalized error function. Explicitly we let

Θ̂Q,C(z; τ) :=
∑
n∈ZN

∑
S⊆{1,...,s}

(−1)|S|Es

(
C(S);

√
2vn

)
e2πiB(z,n)qQ(n) (I.1.6)

13
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with

Es(C;x) :=

∫
span(C)

eπQ(πC(x)−y)
N∏
j=1

sgn(B(cj ,y))dy,

where C = (c1, . . . , cs) is a basis of an s-dimensional negative definite subspace of RN
with respect to Q and πC the orthogonal projection to span(C). Nazaroglu showed that
Θ̂Q,C transforms like a vector-valued Jacobi form of weight N

2 if the conditions on the
cone that ensure suitable convergence are satisfied [N, Theorem 4.1].

To show that the completed indefinite theta functions of signature (r, s) converge, it
is helpful to decompose the Es(C;x) into functions

Ms(C;x) :=

(
i

π

)s
det
(
CTAC

)−1
∫

span(C)−iπC(x)

e−πQ(w)−2πiB(x,w)∏s
j=1B(D,z)

dz,

where the columns of D ∈ RN×s form a dual basis of C in span(C). Nazaroglu showed
in [N, Proposition 3.15] that outside of a set with measure 0 we have

Es(C;x) =
∑

S⊆{1,...s}

M|S|(CS ,x)
∏
j 6∈S

sgn (B (π⊥CS (cj),x)) (I.1.7)

with CS := (cj1 , cj2 , . . . , cj|S|) (writing S = {j1, j2, . . . , j|S|} such that j1 < j2 < · · · < j|S|),
M0 := 1, and π⊥CS := idspan(C)−πCS the orthogonal projection onto the orthogonal
complement of span(CS) ⊆ span(C). Note that those terms with S = {} correspond to
the holomorphic part.

I.1.5 Eichler integrals and quantum modular forms

While derivatives of modular forms are not typically modular, differentiating a weight
2 − k ∈ −N modular form (k − 1) times returns a modular form of weight k, which is
evident by Bol’s identity (which states that the (k−1)-th power of the regular differential
coincides with a modularity-preserving differential operator, see [LeZa,Z3]). Thus it is
natural to consider, for a modular form f(τ) =

∑
m≥1 cf (m)qm of weight k, the Eichler

integral

f̃(τ) :=
∑
m≥1

cf (m)

mk−1
qm. (I.1.8)

It is called Eichler integral since up to constants it equals∫ i∞

τ
f(w)(w − τ)k−2dw. (I.1.9)

14
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While in general f̃ is not modular, its error of modularity

Rf (τ) := f̃(τ)− τk−2f̃

(
−1

τ

)
(I.1.10)

can be shown to be a polynomial of degree k − 2, the so called period polynomial of f .
Up to constants Rf equals ∫ i∞

0
f(w)(w − τ)k−2dw.

While we cannot take (k − 1) derivatives for half-integral weight k ∈ 1
2 + Z modular

forms, one can formally define the analogue of (I.1.8) in that case. Zagier first studied
this in the context of Kontsevich’s strange function

K(q) :=
∑
m≥0

(q; q)m,

where (a; q)m :=
∏m−1
j=0 (1− aqj) denotes the q-Pochhammer symbol for m ∈ N0 ∪ {∞}

[Z2,Z4]. The function K(q) does not converge on any open subset of C, but collapses
to a finite sum for roots of unity q. Zagier connected it with the weight 1

2 Dedekind eta

function η(τ) := q
1
24 (q; q)∞ =

∑
m≥1(12

m )q
m2

24 , where
( ·
·
)

denotes the extended Jacobi

symbol, and its Eichler integral η̃(τ) :=
∑

m≥1

(
12
m

)
mq

m2

24 . He showed that η̃(τ) converges

to K(e2πih
k ) in the limit τ → h

k ∈ Q and that η̃ has quantum modular properties. Zagier
defined quantum modular forms of weight k to be functions f : Q → C (Q ⊆ Q), such
that the error of modularity (M = ( a bc d ) ∈ SL2(Z))

f(τ)− (cτ + d)−kf(Mτ)

is in some sense “nice”, which is intentionally vague to capture different kinds of phenom-
ena (for example, one could require continuity or analyticity) [Z4]. Additional examples
appear in the study of limits of quantum invariants of 3-manifolds and knots [LaZa],
Kashaev invariants of torus knots/links [HK,HL], and partial theta functions [FOR].

I.1.6 Characters of vertex algebras, false theta functions, and quantum
modular forms

The characters of the atypical irreducible modules of the (1, p)-singlet vertex operator
algebra M1,s for 1 ≤ s ≤ p− 1, which were studied in [BM1,CM1,CMW], are essentially
the false theta functions

Fj,p(τ) :=
∑
m∈Z

sgn

(
m+

j

2p

)
q

(
m+ j

2p

)2
.

15
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They are called “false” theta since removing the sgn-factor would give classical theta
functions that are modular forms of weight 1

2 . They have also appeared in several other
papers on vertex algebras [AM,GR,KW]. While they are not modular, Bringmann and
Milas showed that the Fj,p are quantum modular forms of weight 1

2 by relating them to
the non-holomorphic Eichler integrals

F ∗j,p(τ) := −
√

2i

∫ i∞

−τ

fj,p(w)

(−i(w + τ))
1
2

dw,

where fj,p is the cuspidal theta function of weight 3
2

fj,p(τ) :=
∑
m∈Z

(
m+

j

2p

)
q

(
m+ j

2p

)2
.

Specifically, Fj,p(τ) agrees with F ∗j,p(τ) up to infinite order as τ → h
k in vertical limits

[BM1]. Bringmann and Milas showed that the error of modularity of F ∗j,p is a period

integral, which converges to an analytic function in the limit τ → h
k (except at one point),

providing quantum modularity of Fj,p. To determine modularity properties of F ∗j,p, note
that it is also the “purely non-holomorphic part” of a non-holomorphic theta function
corresponding to an indefinite quadratic form of signature (1, 1). Zwegers described their
modular behavior in his thesis [Zw, Section 2.2].

I.1.7 Mordell integrals and quantum modular forms

Integrals such as

h(z) = h(z; τ) :=

∫
R

cosh(2πzw)

cosh(πw)
eπiτw

2
dw (I.1.11)

were studied by many mathematicians including Kronecker, Lerch, Ramanujan, Riemann,
Siegel, and Mordell [M1, M2, Si2]. They are called Mordell integrals since Mordell
proved that a whole family of integrals reduces to (I.1.11) and they occur as the error of
modularity of Lerch sums of the shape

∑
n∈Z

q
n2+n

2 e2πinz1

1− e2πiz2qn
(z1, z2 ∈ C \ {0}).

Zwegers connected the Mordell integral with the theory of mock modular forms in
his groundbreaking thesis [Zw] by writing the integrals in (I.1.11) as Eichler integrals,
proving for a, b ∈ (−1

2 ,
1
2) that

h(aτ − b) = −q
a2

2 e−2πia(b+ 1
2)
∫ i∞

0

ga+ 1
2
,b+ 1

2
(w)√

−i(w + τ)
dw, (I.1.12)
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where ga,b is the weight 3
2 unary theta function defined by

ga,b(τ) :=
∑

n∈a+Z
nq

n2

2 e2πibn.

I.2 Statement of objectives

I.2.1 Indefinite theta functions arising in Gromov-Witten theory of
elliptic orbifolds

In the first project of this thesis presented in Chapter II, my advisor Kathrin Bring-
mann, Larry Rolen, and I study an indefinite theta function of signature (1, 3) that
appears in a Gromov-Witten potential of an elliptic orbifold and determined its modular
properties. Bringmann, Rolen, and Zwegers previously showed that some simpler parts
of this potential are modular, mock modular, or products of mock modular forms [BRZ1].
We complete this analysis and prove that the remaining function is a higher depth mock
modular form by explicitly constructing a modular completion by real-analytic functions.
In total, this should help to provide a fuller picture of the mirror-symmetric properties
of these orbifolds, which occur as natural geometric objects in Lagrangian Floer theory
and mirror symmetry. The role that modularity plays in these geometric applications
can be seen in [CHKL,CHL,LaZh], where other Gromov-Witten potentials containing
simpler automorphic forms were discussed. Note that the indefinite theta function we
studied could not have been treated purely by applying the results of [ABMP] or [N] due
to unique features naturally arising here.

Chapter III gives further details for the proof of Proposition II.5.2 that are not
mentioned in Chapter II.

I.2.2 Higher depth quantum modular forms, multiple Eichler integrals,
and sl3 false theta functions

Higher dimensional analogues of the false theta functions in Section I.1.6 appear in
the characters of the vertex algebra W 0(p)A2 (p ≥ 2). They were thoroughly studied
in [BM1, CM2] and showed up in [BM1] as constant terms of certain multivariable
Jacobi forms and as characters of the zero weight space of the corresponding Lie algebra
representation. For the simple Lie algebra sl3, the following higher rank false theta
functions appears

F (q) :=
∑

m1,m2≥1
m1≡m2 (mod 3)

min(m1,m2)q
p
3 (m2

1+m2
2+m1m2)−m1−m2+ 1

p (1− qm1) (1− qm2)
(
1− qm1+m2

)
.

17
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Chapter IV presents the following concepts and results from a joint project with Kathrin
Bringmann and Antun Milas. Following some ideas of Section I.1.6, we find that the
quantum modular properties of F (e2πiτ ) can be studied by relating it to the “purely
non-holomorphic” part of an indefinite theta function of signature (2, 2) after decomposing
it as

F (q) =
2

p
F1 (qp) + 2F2 (qp) . (I.2.1)

These “purely non-holomorphic” parts can be written as iterated non-holomorphic Eichler
integrals, taking for F1 the shape∫ i∞

−τ

∫ i∞

w1

f(w1, w2)√
−i(w1 + τ)

√
−i(w2 + τ)

dw2dw1

where f ∈ S 3
2
(Γ, χ1)⊗ S 3

2
(Γ, χ2). Using the modularity of f one obtains that the error

of modularity of the Eichler integral (and thus of the false theta function in the limit to
rational points) is simpler than the original function, but this does not give quantum
modularity in Zagier’s original sense. Instead, we call the resulting functions higher
depth quantum modular forms. In the simplest case, depth two quantum modular forms
of weight k ∈ 1

2Z satisfy the modular transformation property (M =
(
a b
c d

)
∈ SL2(Z))

f(τ)− (cτ + d)−kf(Mτ) ∈ Qκ(Γ)O(R) +O(R)

for some κ ∈ 1
2Z, where Qκ(Γ) is the space of quantum modular forms of weight κ and

O(R) the space of real analytic functions on R ⊂ R. In short, we proved the following
results.

Theorem I.2.1. For p ≥ 2, the higher rank false theta function F can be written as the
sum of two depth two quantum modular forms (with quantum set Q) of weight one and
two (Fj has weight j).

Theorem I.2.2. There exists an indefinite theta function of signature (2, 2) with “purely
non-holomorphic” part Θ(τ)E1(τ), where Θ is a theta function of signature (2, 0) and E1

is the Eichler integral related to F1.

I.2.3 Vector-valued higher depth quantum modular forms and higher
Mordell integrals

While Theorem I.2.1 describes quantum modular behavior under a congruence sub-
group, the vector valued transformation under the full modular group was interesting
from a vertex algebra standpoint. On one hand, it is expected that the S-transformation

18
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(with S := ( 0 −1
1 0 ) ∈ SL2(Z)) produces typical and atypical characters from a single atypi-

cal character. On the other hand, many important algebraic, analytic, and categorical
properties of rational vertex algebras are encoded by the entries of the S-matrix, so their
full asymptotic expansions should be relevant for irrational theories.

Chapter V presents the following results from a joint article with Kathrin Bringmann
and Antun Milas [BKM2].

Theorem I.2.3. The function F1 is a component of a vector-valued depth two quantum
modular form of weight one. The function F2 is a component of a vector-valued quantum
modular form of depth two and weight two.

Furthermore, we consider higher-dimensional Mordell integrals, proving the following
result.

Theorem I.2.4. If αj /∈ Z, then we have, with Q(w) := 3w2
1 + w2

2 + 3w1w2

−
√

3

∫ i∞

0

∫ i∞

w1

θ1 (α;w) + θ2 (α;w)√
−i (w1 + τ)

√
−i (w2 + τ)

dw2dw1

=

∫
R2

cot (πiw1 + πα1) cot (πiw2 + πα2) e2πiτQ(w)dw1dw2,

where the theta functions θ1 and θ2 are defined in (V.4.4) and (V.4.5).

We also prove such an equation when either α1 ∈ Z or α2 ∈ Z. Furthermore, we
prove a similar statement for the iterated Eichler integrals appearing for F2, which is
given in Theorem V.1.4.

I.2.4 Some examples of higher depth vector-valued quantum modular
forms

In light of Chapter V, a natural question that arises is what the other components of
the vector-valued forms are as q-series. To investigate this, we study the related series

Fs(q) :=
∑

m1,m2≥1
m1≡m2 (mod 3)

min(m1,m2)q
p
3

((
m1− s1p

)2
+
(
m2− s2p

)2
+
(
m1− s1p

)(
m2− s2p

))

×
(

1− qm1s1 − qm2s2 + qm1s1+(m1+m2)s2 + qm2s2+(m1+m2)s1 − q(m1+m2)(s1+s2)
)

for 1 ≤ s1, s2 ≤ p ∈ N (note that F(1,1) = F ). Chapter VI contains the following results
and is joint work with Kathrin Bringmann and Antun Milas.
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Theorem I.2.5. Decomposing Fs(q) = 1
pF1,s(q

p) + F2,s(q
p), the functions F1,s and F2,s

are quantum modular forms (with respect to some subgroup) of weights one and weights
two, respectively.

As done for F in Chapter IV, we prove this by showing that Fj,s(τ) asymptotically
agrees to infinite order with a certain Eichler integral Ej,s( τp ) defined in (VI.2.1) and
(VI.2.2) and studying their modular behavior.

In the special case p = 2, we obtain more specific results. While for p = 2 all F2,s

vanish (see Lemma VI.2.2), we obtain the following behavior under the full modular
group for the companions of F1,s.

Theorem I.2.6. For p = 2, the space spanned by E1,(1,1) and E1,(1,2) is essentially
invariant under modular transformations. By this we mean that the only terms appearing
in the modular transformations which do not lie in the space are simpler (see (VI.2.6)
and (VI.2.7) for the case of inversion).

Furthermore, we determine the asymptotic behavior of E1,s(it) as t→ 0+. To compute
the asymptotics, we apply the S-transformation τ 7→ − 1

τ and analyze the dominating
term, which is a well-known technique for vector-valued modular forms. It is used to
study quantum dimensions of modules of vertex algebras as their characters are often
invariant under SL2(Z). Because our functions transform with higher depth error terms,
their asymptotics are more difficult to analyze. In the body of the paper, we show that
it is enough to study the iterated Eichler integrals

E1,(1,1)(τ) := 4I(1,3)(τ) and E1,(1,2)(τ) := 2I(1,1)(τ) + 2I(1,5)(τ), (I.2.2)

where the theta integrals Ik are defined in (VI.2.3). We obtain the following.

Theorem I.2.7. We have, as t→ 0+,

E1,(1,1)(it) ∼
1

4
, E1,(1,2)(it) ∼

3

4
.
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Chapter II

Indefinite theta functions arising
in Gromov-Witten theory of
elliptic orbifolds

This chapter is based on a manuscript published in Cambridge Journal of Mathematics
(International Press of Boston, Inc.) and is joint work with Prof. Dr. Kathrin Bringmann
and Prof. Dr. Larry Rolen [BKR].

II.1 Introduction and statement of results

Cho, Hong, and Lau [4] described open Gromov-Witten potentials for elliptic orbifolds
(and homological mirror symmetry). Explicit expressions for these were computed by
Cho, Hong, Kim, and Lau [3]. Recently, Lau and Zhou [11] investigated the modularity
properties of some of these Gromov-Witten potentials. In the course of their work, they
showed that several of them are essentially modular forms, a fact which they show closely
related to their mirror-symmetric interpretation. More precisely, they considered the four
elliptic P1 orbifolds denoted by P1

a for a ∈ {(3, 3, 3), (2, 4, 4), (2, 3, 6), (2, 2, 2, 2)}. For these
choices of a, Cho, Hong, Kim, and Lau explicitly computed the open Gromov-Witten
potentials Wq(X,Y, Z) of P1

a, which are polynomials in the variables X,Y, Z. The reader
is also referred to [3, 5, 6] for related results, as well as to Sections 2 and 3 of [11] for the
definitions of the relevant geometric objects. These generating functions turn out to have
quite natural modularity properties, as Lau and Zhou proved in Theorem 1.1 of [11].

Theorem (Lau, Zhou). For a ∈ {(3, 3, 3), (2, 4, 4), (2, 2, 2, 2)}, the coefficients of
Wq(X,Y, Z) are essentially linear combinations of modular forms.

Such results are particularly useful as they allow one to extend the domain of these
potentials to global moduli spaces. In fact, this connection provides the geometric
intuition for why modular or at least near-modular, behavior may be expected (cf. [3]).
In the last case a = (2, 3, 6), the relevant functions fail to be combinations of ordinary
modular forms. However, it is natural to ask whether a suitably modified transformation
still holds.
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Question (Lau, Zhou). Can a simple description of the modular transformations of
Wq(X,Y, Z) be given for a = (2, 3, 6)?

The first steps towards addressing Lau and Zhou’s question were taken in [2], where
new generalizations of mock modular forms were defined and utilized. However, several
remaining pieces remained out of reach due to lack of theoretical structure for such series.
In the meantime, important new work of Alexandrov, Banerjee, Manschot, and Pioline [1]
has further explained and generalized the class of functions considered in [2], leading to
a new theory of non-holomorphic modular objects extending those considered in Zwegers’
seminal thesis [28]. The understanding of the structure of these non-holomorphic modular
forms was furthered by Kudla in [9], where he showed that they can be viewed as integrals
of Kudla-Millson theta series (cf. [10]). Further extensions to a general, geometric setting
were given by Westerholt-Raum in [23]. The authors have also been informed that
forthcoming work of Zagier and Zwegers will further fill in details of the general picture.

Here, we push things one step further by showing how to interpret the last pieces
of Lau and Zhou’s functions in terms of further classes of modular-type objects. As we
shall see, these cannot be accounted for by the means presented in [1] due to unique
features naturally arising in these functions which seem to deviate from the most basic
higher type indefinite theta functions. In particular, we solve this question by providing
“simpler” completion terms which combine with the coefficients of Wq to yield modular
objects. These are, in the language of Zagier and Zwegers, known as higher depth mock
modular forms, which are automorphic functions characterized and inductively defined
by the key property that their images under “lowering operators” essentially lie in lower
depth spaces (for example, in the case of classical “depth 1” mock modular forms, the
Maass lowering operator essentially yields a classical modular form).

Theorem II.1.1. The function cZ is a higher depth mock modular form.

Remark 1. The higher depth structure of cZ may be deduced from its “shadow”, the
computation of which is discussed in the proof of Lemma II.4.2 (cf. the remark after
Lemma II.2.3; the word “shadow” is justified since it is essentially the image under the
Brunier-Funke operator ξk for classical harmonic Maass forms).

The answer to Lau and Zhou’s original question about the modularity of cZ can
be directly read off of the transformation of the completed function in Theorem II.1.1.
Although we do not explicitly write it down here, the interested reader can see (II.4.5)
and the surrounding text for a discussion of how to determine it. After using explicit
representations due to Lau and Zhou, the key step in the proof of Theorem II.1.1 is to
understand how to complete a certain indefinite theta function of signature (3, 1) (see
(II.2.1) below). (Throughout, the second component denotes the number of negative
eigenvalues).
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The paper is organized as follows. In Section 2, we recall general indefinite theta
series due to Vignéras and in particular give examples in signatures (1, n) and (2, n). In
Section 3, we introduce the generalized error integrals which are our building blocks and
investigate some of their properties. In Section 4, we rewrite certain generating functions
in Gromov-Witten theory and start the investigation of their modularity properties.
Section 5 is then devoted to modularity properties of a certain indefinite theta function
of signature (3, 1).
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II.2 Indefinite theta functions

II.2.1 Results of Vignéras

Let B(n,m) := nTAm be a symmetric non-degenerate bilinear form on RN (N ∈ N)
which takes integral values on a lattice L ⊂ RN and set Q(n) := 1

2B(n, n). Further
let µ ∈ L′/L (where L′ is the dual lattice of L), λ ∈ Z, and a function p : RN → C.
Following Vignéras, we define the following indefinite theta function (τ = u + iv ∈ H,
z = x+ iy ∈ CN , q := e2πiτ )

Θµ,L,A,p,λ(z; τ) := Θµ(z; τ) := v−
λ
2

∑
n∈µ+L

p
(√

v
(
n+

y

v

))
q

1
2
nTAne2πiB(z,n). (II.2.1)

Vignéras [22] gave conditions under which the indefinite theta series are in fact modular.

Theorem II.2.1 (Vignéras). Assuming the notation above, suppose that p satisfies the
following conditions:

1. For any differential operator D of order 2 and only polynomial R of degree at most 2,
D(w)(p(w)eπQ(w)) and R(w)p(w)eπQ(w) belong to ∈ L2(RN ) ∩ L1(RN ).
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2. Defining the Euler and Laplace operators (w := (w1, . . . , wN )T , ∂w := ( ∂
∂w1

, . . . ∂
∂wN

)T )

E := wT∂w and ∆ = ∆A−1 := ∂TwA
−1∂w,

for some λ ∈ Z the Vignéras differential equation holds:(
E − 1

4π
∆

)
p = λp.

Then, assuming that Θµ is absolutely locally convergent, we have the following modular
transformations:

Θµ

(
z

τ
;−1

τ

)
=

(−iτ)λ+N
2√

|L′/L|
e
πi
2
B(A−1A∗,A−1A∗)

×
∑

ν∈L′/L

e−2πiB(µ,ν)+ 2πi
τ
Q(z)Θν(z; τ),

Θµ(z; τ + 1) = eπiB(µ+ 1
2
A−1A∗,µ+ 1

2
A−1A∗)Θµ(z; τ),

where A∗ := (A1,1, . . . , AN,N )T .

To simplify the calculations below, the following lemma allows us to restrict to
specific diagonal matrices. In particular, writing A = P−TDP−1 with P ∈ GLN (R) and
D := diag(1, . . . , 1,−1, . . . ,−1) (with uniquely determined signs), we easily obtain the
following.

Lemma II.2.2. Assume the notation above. If p̃(x) := p(Px) satisfies Vigneras’ differ-
ential equation for D, then Θµ,L,A,p,λ transforms like a vector-valued Jacobi form.

Remark 2. We frequently make use of the well-known fact that specializing the elliptic
variable of Jacobi forms to torsion points yields modular forms or related objects. (See
[7] for the classical one-dimensional case).

We next introduce a differential operator which, when applied to Vignéras’ theta
functions, often makes them simpler. Let

X− := −2iv2 ∂

∂τ
− 2iv

N∑
j=1

yj∂zj ,

be the (multivariable) Maass lowering operator which decreases the weight of a (non-
holomorphic) Jacobi form by 2. A direct calculation gives.
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Lemma II.2.3. We have

X− (Θµ,L,A,p,λ) = Θµ,L,A,pX ,λ

with

pX(x) :=

N∑
j=1

xj∂xj (p(x)) .

Remark 3. We let Θµ,L,A,p,λ be the holomorphic part of Θ (whenever this is well-defined
as we comment on later) and call it higher depth Jacobi form with shadow Θµ,L,A,pX ,λ.
Specializing to torsion points yields higher depth mock modular forms.

II.2.2 Examples of indefinite theta functions

Although Vignéras’ beautiful theorem has a simple statement, it is far from obvious
how one can find appropriate functions p such that the corresponding indefinite theta
function converges and which has a fixed, desired “holomorphic part”. In his celebrated
thesis [28], Zwegers succeeded in doing this for quadratic forms of signature (n, 1). In
this case, the usual error function

E(w) := 2

∫ w

0
e−πt

2
dt

plays a vital role. For comparison with functions we shall need later, note that, as
w → ±∞,

E(w) ∼ sgn(w). (II.2.2)

Moreover, we clearly find that
E′(w) = 2e−πw

2
.

Also note that E may be written as

E(w) =

∫
R

sgn(t)e−π(t−w)2dt.

To discuss Zwegers’ breakthrough, we now fix a quadratic form Q of signature (n, 1).
We must first discuss a few preliminary geometric considerations to describe the full
behavior. The set of vectors c ∈ RN with Q(c) < 0 splits into two connected components.
Two given vectors c1 and c2 lie in the same component if and only if B(c1, c2) < 0. We
fix one of the components and denote it CQ. Picking any vector c0 ∈ CQ, we then have

CQ =
{
c ∈ RN : Q(c) < 0, B(c, c0) < 0

}
.
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Then the cusps are those vectors in the following set:

SQ :=
{
c = (c1, c2, . . . , cN ) ∈ ZN : gcd(c1, c2, . . . , cN ) = 1, Q(c) = 0, B(c, c0) < 0

}
.

A compactification of CQ may be formed by taking the union CQ := CQ ∪ SQ. Defining
for any c ∈ CQ

R(c) :=

{
RN if c ∈ CQ,{
a ∈ RN : B(c, a) 6∈ Z

}
if c ∈ SQ,

we set

D(c) :=
{

(z, τ) ∈ CN ×H :
y

v
∈ R(c)

}
.

Zwegers’ indefinite theta functions, which transform as modular forms and which are
(almost always) non-holomorphic, are defined as follows. For (z, τ) ∈ D(c1) ∩D(c2), we
consider the theta function

θ(z; τ) :=
∑
n∈ZN

ρ
(
n+

y

v
; τ
)
qQ(n)e2πiB(z,n), where (II.2.3)

ρ(n; τ) = ρc1,c2Q (n; τ) := ρc1(n; τ)− ρc2(n; τ) with (II.2.4)

ρc(n; τ) :=

E
(
B(c,n)v

1
2√

−Q(c)

)
if c ∈ CQ,

sgn(B(c, n)) if c ∈ SQ.

Here and throughout we use the usual convention that for x ∈ R, sgn(0) := 0 and
sgn(x) = x/|x| for x ∈ R \ {0}. Note that the cuspidal case, c ∈ SQ, may be viewed as a
limiting case of the general situation (for example by (II.2.2)).

Zwegers showed that (II.2.3) indeed converges. This is far from obvious, since the
indefiniteness of Q implies that qQ(n) is unbounded for n ∈ ZN . In fact, as in our case,
this is one of the more subtle and substantive aspects of his proof of modularity. The
main reason for the interest in this theta function lies in the Jacobi transformation
properties of θ, which are described using the following auxiliary set:

D(c) := {(aτ + b, τ) : τ ∈ H, a, b ∈ Rr, B(c, a), B(c, b) 6∈ Z} .

Theorem II.2.4 (Zwegers). Assuming the notation above, the function θ satisfies the
following transformations:

1. For all λ ∈ ZN and µ ∈ A−1ZN , we have
(
e(x) := e2πix

)
θ(z + λτ + µ; τ) = q−Q(λ)e(−B(z, λ))θ(z; τ).
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2. We have

θ(z; τ + 1) = θ

(
z +

1

2
A−1A∗; τ

)
.

3. If (z, τ) ∈ D(c1) ∩ D(c2), then

θ

(
z

τ
;−1

τ

)
=

i(−iτ)
N
2√

−det(A)

∑
n∈A−1ZN/ZN

e

(
Q(z + nτ)

τ

)
θ(z + nτ ; τ).

In a pathbreaking paper, Alexandrov, Banerjee, Manschot, and Pioline [1] then
generalized Zwegers’ construction to quadratic forms of signature (n, 2). We do not state
their beautiful results as we do not require them for this paper. We only note in their
setting E got replaced by (α ∈ R)

E2(α;w1, w2) :=

∫
R2

sgn(t1) sgn(t2 + αt2)e−π(w1−t1)2−π(w2−t2)2dt1dt2.

We note for comparison that their notation slightly differs from ours. We have, as λ→∞,

E2(α;λw1, λw2) ∼ sgn(w1) sgn(w2 + αw2). (II.2.5)

Moreover (
∂2
w1

+ ∂2
w2

+ 2π (w1∂w1 + w2∂w2)
)
E2 (α;w1, w2) = 0, (II.2.6)

∂w2E2 (α;w1, w2) =
2√

1 + α2
e
−π(w2+αw1)

2

1+α2 E

(
αw2 − w1√

1 + α2

)
, and (II.2.7)

∂w1E2 (α;w1, w2) = 2e−πw
2
1E (w2) +

2α√
1 + α2

e
−π(w2+αw1)

2

1+α2 E

(
αw2 − w1√

1 + α2

)
. (II.2.8)

II.3 Generalized error integrals

In this section, we introduce higher-dimensional analogies of the error function,
following ideas of [1, 14].

II.3.1 Definitions and basic properties

The authors of [1] proposed a 3-dimensional analogue of E2, namely

E∗3(α1, α2, α3;w1, w2, w3)
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:=

∫
R

sgn(t1 + α1α2t2 + α2t3) sgn(t2 + α2α3t3 + α3t1)

× sgn(t3 + α3α1t1 + α1t2)e−π((w1−t1)2+(w2−t2)2+(w3−t3)2)dt1dt2dt3.

Here we define a modified version which is convenient for our explicit functions. After
finishing this article, Pioline pointed out to the authors that there is an explicit map
from the suggested higher dimensional E3 function of [1]; however, our function may also
offer some advantages as it seems easier to directly work with in at least some examples.

We define a generalized error function EN : R
N(N−1)

2 × RN → R by

EN (α;w) :=

∫
RN

sgn(t1) sgn(t2 + α1t1) (II.3.1)

× sgn(t3 + α2t1 + α3t2) · · · sgn
(
tN + . . .+ αN(N−1)

2

tN−1

)
e−π‖t−w‖

2
2dt,

where ‖a‖2 :=
√
aTa denotes the Euclidian norm. Note that we use ‖ · ‖2

for different dimensions, the meaning being clear from context. Higher-dimensional EN
collapse to lower-dimensional ones if certain αj are 0. For example,

E3(α, 0, 0;w) = E2(α;w1, w2)E(w3), (II.3.2)

E3(0, α, 0;w) = E(w2)E2(α;w1, w3). (II.3.3)

From now on, we restrict to N = 3, however most of our statements hold for general
N . The following lemma, which generalizes (II.2.2) and (II.2.5), describes the asymptotic
behavior of EN , which is crucial in the construction of the appropriate completions of
Lau and Zhou’s functions.

Lemma II.3.1. For any α = (α1, α2, α3), w = (w1, w2, w3) ∈ R3, we have, as λ→∞,

EN (α;λw) ∼ sgn (w1) sgn (w2 + α1w1) sgn (w3 + α2w1 + α3w2) .

Remark 4. Throughout the paper, we write EN (α;w) ∼ ∗ to mean that EN (α;λw) ∼ ∗
as λ→∞.

Proof of Lemma II.3.1. Changing variables yields

E3 (α;w1, w2, w3) =

∫
R3

e−πt
TMt sgn (t1 + w1) sgn (t2 + v2) sgn (t3 + v3) dt,

where t := (t1, t2, t3)T , v2 := w2 + α1w1, v3 := w3 + α2w1 + α3w2, and

M :=

1 + (α1α3 − α2)2 + α2
1 −α1 − α3(α1α3 − α2) α1α3 − α2

−α1 − α3(α1α3 − α2) α2
3 + 1 −α3

α1α3 − α2 −α3 1

 .
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Note that det(M) = 1 and that M is positive-definite.
Then consider the difference

E3(α;λw1, λw2, λw3)− sgn (w1) sgn (w2 + α1w1) sgn (w3 + α3w2 + α2w1)

=

∫
R3

e−πt
TMt

(
sgn (t1 + λv1) sgn (t2 + λv2) sgn (t3 + λv3)

− sgn (v1) sgn (v2) sgn (v3)
)
dt.

It is easily checked that the integrand vanishes whenever |tj | < λ|vj | for all j. Denote the
complement of the cube given by these three inequalities for t by B(λ). Outside of B(λ)
we bound the sum by 2 and obtain the following as an upper bound of the absolute value:

2

∫
B(λ)

e−πt
TMtdt.

Since M is positive-definite, this converges to 0 as λ → ∞ whenever vj 6= 0, proving
the statement in this case. If (at least) one vj vanishes, the integral expression for E3

vanishes which may be seen by changing tj 7→ −tj .

Certain sign-factors that occur throughout our investigation turn out to not quite
have the correct shape. For this, the following elementary lemma, whose proof we skip,
is useful.

Lemma II.3.2. For a, b, c ∈ R\{0} and λj ≥ 0 (j = 1, 2, 3), ε ∈ {±1}, we have (unless
(λ1, λ2) = (0, 0))

sgn(a) sgn(b) = −ε+ sgn(λ1a+ λ2εb)(ε sgn(a) + sgn(b)) (II.3.4)

and (unless (λ1, λ2, λ3) = (0, 0, 0))

sgn(a) sgn(b) sgn(c) + sgn(a) + sgn(b) + sgn(c)

= sgn(λ1a+ λ2b+ λ3c)(sgn(a) sgn(b) + sgn(a) sgn(c) + sgn(b) sgn(c) + 1).
(II.3.5)

Remark 5. Applying Lemma II.3.2 to E2(α;w) gives, for α 6= 0,

E2(α;w1, w2) = E(w1)E(w2)− sgn(α)E2

(
α−1;w2, w1

)
+ sgn(α).

In the “cuspidal case” considered below, we must allow certain values to be 0. To do so,
the following lemma turns out to be useful.
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Lemma II.3.3. For α1, α2, α3, w1, w2, w3, w4 ∈ R with α3, α1α3 − α2 6= 0, we have

E3(α;w1, w2, w3) := lim
T→∞

E3 (α1, Tα2, Tα3;w1, w2, Tw3)

= sgn(α3)E(w1) + δ sgn(α3)E

(
w2 + α1w1√

α2
1 + 1

)
− δE

(
w3 + α2w1 + α3w2√

α2
2 + α2

3

)

− sgn (α3w3)

(
1 + δE2 (α1;w1, w2) + δE2

(
α2α

−1
3 ;w1, α

−1
3 w3 + w2

)
+ δE2

(
α1α2 + α3

−α2 + α1α3
;
w2 + α1w1√

α2
1 + 1

,√
α2

1 + 1

−α2 + α1α3

(
w3 +

(α1α3 − α2)(α1w2 − w1)

α2
1 + 1

)))
,

where δ := sgn(α3(α2 − α1α3)).

Proof. We directly compute that

E3 (α1, Tα2, Tα3;w1, w2, Tw3)

T→∞−→
∫
R3

e−π‖t‖
2
2 sgn(t1 + w1) sgn(t2 + α1t1 + w2 + α1w1)

× sgn(α2t1 + α3t2 + w3 + α2w1 + α3w2)dt.

The integral over t3 may now be computed to be 1.
To determine the remaining two-dimensional integral, we use Lemma II.3.2, with

λ1 = |α2 − α1α3|, λ2 = |α3|, λ3 = 1, a = δ(t1 − w1), b = t2 + α1t1 + v2, and c =
sgn(−α3)α2t1 − |α3|t2 + sgn(−α3)v3, where v2 := w2 + α1w1, v3 := w3 + α2w1 + α3w2,
gives that the product of the signs equals (outside the zero set given by abc = 0)

sgn(α3)δ
(

sgn (δ (t1 + w1)) + sgn (t2 + α1t1 + v2)

+ sgn (sgn(−α3)α2t1 − |α3|t2 + sgn(−α3)v3)
)

− sgn(α3w3)
(

1 + sgn (δ (t1 + w1)) sgn (t2 + α1t1 + v2)

+ sgn (δ (t1 + w1)) sgn
(

sgn(−α3)α2t1 − |α3|t2 + sgn(−α3)v3

)
+ sgn (t2 + α1t1 + v2) sgn

(
sgn(−α3)α2t1 − |α3|t2 + sgn(−α3)v3

))
.

We compute all like integrals separately. The terms − sgn(α3w3) and sgn(α3) × sgn(t1 +
w1) directly give − sgn(w3α3) and sgn(α3)E(w1), respectively.
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To consider the contribution from sgn(α3)δ sgn(t2 +α1t1 +v2), we define the orthonor-

mal matrix M1 := (α2
1 + 1)−

1
2

(
α1 1
−1 α1

)
. Since M1 is orthogonal, ‖M1t‖2 = ‖t‖2. Thus,

the contribution from this term gives

δ sgn(α3)

∫
R2

e−π‖t‖
2
2 sgn

(
t1 +

(
α2

1 + 1
)− 1

2 v2

)
dt1dt2 = δ sgn(α3)E

(
v2√
α2

1 + 1

)
.

The contribution from −δ sgn(α2t1 +α3t2 + v3) is treated in exactly the same way, giving

−δE

(
v3√

α2
2 + α2

3

)
.

Next, we consider the product of two sgn-factors. The terms −δ sgn(α3w3) × sgn(t1 +
w1) sgn(t2 + α1t1 + v2) and −δ sgn(α3w3) sgn(t1 + w1) sgn(α2α

−1
3 t1 + t2 + α−1

3 v3) yield
the contributions −δ sgn(α3w3)E2(α1;w1, w2) and
−δ sgn(α3w3)E2(α2α

−1
3 ;w1, α

−1
3 v3 − α2α

−1
3 w1), respectively.

Finally

sgn (w3)

∫
R2

e−π‖t‖
2
2 sgn (t2 + α1t1 + v2) sgn (α2t1 + α3t2 + v3) dt

= sgn (w3)

∫
R2

e−π‖t‖
2
2 sgn

(
(M1t)1

√
α2

1 + 1 + v2

)
sgn (α2t1 + α3t2 + v3) dt

= sgn (w3)

∫
R2

e−π‖t‖
2
2 sgn

(
t1 +

(
α2

1 + 1
)− 1

2 v2

)
× sgn

(
α2

(
M−1t

)
1

+ α3

(
M−1t

)
2

+ v3

)
dt

= −δ sgn (α3w3)

× E2

(
α1α2 + α3

−α2 + α1α3
;

v2√
α2

1 + 1
,

√
α2

1 + 1

−α2 + α1α3

(
v3 −

α1α2 + α3

α2
1 + 1

v2

))
.

We next show that the function E3 satisfies a special differential equation.

Lemma II.3.4. We have

3∑
j=1

(
∂2
wj + 2wj∂wj

)
E3(α;w) = 0.
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Proof. We write

E3(α;w)

=

∫
R2

sgn (t1) e−π(t1−w1)2

×
∫
R2

sgn (t2) sgn (t3 + (α2 − α1α3) t1 + α3t2) e−π((t2−w2−α1t1)2+(t3−w3)2)dt

=

∫
R

sgn(t1)E2 (α3;w2 + α1t1, w3 + (α2 − α1α3) t1) e−π(t1−w1)2dt1.

Applying the operator on the left-hand-side gives∫
R

sgn(t1)
∂

∂t1

(
(−2πt1)e−π(t1−w1)2

)
E2 (α3;w2 + α1t1, w3 + (α2 − α1α3) t1) dt1

+

∫
R

sgn(t1)(−2πt1)e−π(t1−w1)2

×
(
α1E

(1,0)
2 (α3;w2 + α1t1, w3 + (α2 − α1α3) t1)

+ (α2 − α1α3)E
(0,1)
2 (α3;w2 + α1t1, w3 + (α2 − α1α3) t1)

)
dt1

= −2π

∫
R

sgn(t1)
∂

∂t1

(
t1e
−π(t1−w1)2E2 (α3;w2 + α1t1, w3 + (α2 − α1α3) t1)

)
dt1

= 0,

by (II.2.6) and the chain rule. This gives the claim.

Lemma II.3.5. We have

∂w3E3(α;w) =
2√

1 + α2
3

e
−
π(1+α23)
1+α22+α

2
3

(w3+α3w2+α2w1)2

× E2

 α2α3 − α1

(
α2

3 + 1
)√(

1 + α2
3

) (
1 + α2

2 + α2
3

) ;
(w2 + α3w2)α2 −

(
1 + α2

3

)
w1√

1 + α2
2 + α2

3

,
α3w3 − w2√

1 + α2
3

 ,

∂w2E3(α;w) =
2α1√
1 + α2

3

e
−
π(1+α23)
1+α22+α

2
3

(w3+α3w2+α2w1)2

× E2

 α2α3 − α1

(
α2

3 + 1
)√(

1 + α2
3

) (
1 + α2

2 + α2
3

) ;
(w2 + α3w2)α2 −

(
1 + α2

3

)
w1√

1 + α2
2 + α2

3

,
α3w3 − w2√

1 + α2
3


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+
2√

1 + α2
1

e−π(α1w1−w2)2E2

(
α2 − α1α3√

1 + α2
1

;
w1 − α1w2√

1 + α2
1

, w3

)
,

∂w1E3(α;w) =
2α1 (1 + α2 − α3)√

1 + α2
3

e
−
π(1+α23)
1+α22+α

2
3

(w3+α3w2+α2w1)2

× E2

 α2α3 − α1

(
α2

3 + 1
)√(

1 + α2
3

) (
1 + α2

2 + α2
3

) ;
(w2 + α3w2)α2 −

(
1 + α2

3

)
w1√

1 + α2
2 + α2

3

,
α3w3 − w2√

1 + α2
3


+

2 (α2 − α1α3)√
1 + α2

1

e−π(α1w1−w2)2E2

(
α2 − α1α3√

1 + α2
1

;
w1 − α1w2√

1 + α2
1

, w3

)
+ 2E2 (α2;w2, w3) e−πw

2
1 .

Proof. In the proof of Lemma II.3.4, we see that

E3(α;w) =

∫
R

sgn (t1) e−π(t1−w1)2E2 (α3;w2 + α1t1, w3 + (α2 − α1α3) t1) dt1.

We apply first (II.2.7) to get

∂w3E3(α;w)

=

∫
R

sgn (t1) e−π(t1−w1)2 2√
1 + α2

3

e
− π

1+α23
(w3+α2t1+α3w2)2

× E

(
α3 (w3 + (α2 − α1α3) t1)− (w2 + α1t1)√

1 + α2
3

)
dt1

=
2√

1 + α2
3

e
− (1+α23)π

1+α22+α
2
3

(w3+α3w2+α2w1)2

×
∫
R

sgn (t1) e
−π
(√

1+α2
2+α2

3t1+ 1√
1+α22+α

2
3

((w3+α3w2)α2−(1+α2
3)w1)

2

)

× E

((
α2α3 − α1α

2
3 − α1

)
t1 + α3w3 − w2√

1 + α2
3

)
dt1. (II.3.6)

Making the change of variables t1 7→ t1√
1+α2

2+α2
3

then gives the claim.

We next apply ∂w2 . By (II.2.8), we get

∂w2E3(α;w)
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=

∫
R

sgn(t1)e−π(t1−w1)2
(
α1∂w3 (E2 (α3;w2 + α1t1, w3 + (α2 − α1α3) t1))

+ 2e−π(w2+α1t1)2E (w3 + (α2 − α1α3) t1)
)
dt1.

The first summand is computed as above. The second term gives the claimed contribution
by simplifying and making the change of variables t1 7→ t1√

1+α2
1

. Finally we apply ∂w1 to

give, using integration by parts,

∂w1E3 (α;w) = 2E2 (α2;w2, w3) e−πw
2
1

+

∫
R

sgn (t1) e−π(t1−w1)2α1
∂

∂w2
(E2 (α2;w2 + α1t1, w3 + (α2 − α1α3) t1))

+ (α2 − α1α3)
∂

∂w3
(E2 (α2;w2 + α1t1, w3 + (α2 − α1α3) t1)) dt1.

From the above the result follows.

II.3.2 The function E3 as a building block

The theta functions of interest in Gromov-Witten theory are indefinite theta functions
in which the summation conditions may be written in terms of sgn-functions. The
following proposition shows how to turn their sgn-factors into functions satisfying Vignéras
differential equation.

Proposition II.3.6. For N ∈ N0, let A = P−T diag(IN ,−I3)P−1 ∈ MatN+3(R) be a
symmetric matrix of signature (N, 3), P ∈ GLN+3(R), and assume that a, b, c ∈ RN+3

generate a 3-dimensional space of signature (N+, N−) with respect to the bilinear form
〈·, ·〉 given by A−1. Then there exist d, e, f ∈ RN+3 and α1, α2, α3 ∈ R (determined
explicitly in Lemma II.3.7 below) such that the following are true.

1. For (N+, N−) = (0, 3) the map X 7→ E3(α1, α2, α3; dTPX, eTPX, fTPX satisfies
Vignéras’ differential equation for diag(IN ,−I3), and for all n ∈ RN+3, we have

E3

(
α1, α2, α3; dTn, eTn, fTn

)
∼ sgn

(
aTn

)
sgn

(
bTn

)
sgn

(
cTn

)
.

2. For (N+, N−) = (0, 2) the map X 7→ E3

(
α1, α2, α3; dTPX, eTPX, fTPX

)
satisfies

Vignéras’ differential equation for diag(IN ,−I3) and for all n ∈ RN+3, we have

E3

(
α1, α2, α3; dTn, eTn, fTn

)
∼ sgn

(
aTn

)
sgn

(
bTn

)
sgn

(
cTn

)
.

Before proving Proposition II.3.6, we require an auxiliary lemma.
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Lemma II.3.7. Assume that a, b, c ∈ RN+3 generate a 3-dimensional space of signa-
ture (0, 3) or (0, 2) with respect to a symmetric bilinear form 〈·, ·〉 of signature (N, 3)
on RN+3. Then there exist pairwise orthogonal vectors d, e, f ∈ RN+3\{0} and scalars
λ, µ, ν ∈ R\{0}, α1, α2, α3 ∈ R

d = λa, e+ α1d = µb, f + α2d+ α3e = νc (II.3.7)

such that squares of the norms of d, e, f are (−2,−2,−2) for signature (0, 3) and
(−2,−2, 0) for signature (0, 2), respectively. Explicitly, they can be defined (after permut-
ing a, b, c such that span{a, b} has signature (0, 2)) as

λ :=

√
−2

‖a‖2
, µ :=

√
−2‖a‖2

‖a‖2‖b‖2 − 〈a, b〉2
,

ρ := −‖c‖
2

2
+
〈a, c〉2

2‖a‖2
− 1

4
µ2

(
〈b, c〉 − 〈a, b〉〈a, c〉

‖a‖2

)2

, ν :=

{
|ρ|−

1
2 if ρ 6= 0,

1 if ρ = 0,

α1 := −〈a, b〉
2

λµ, α2 := −〈a, c〉
2

λν, α3 := −1

2
µν

(
〈b, c〉+

〈a, b〉〈a, c〉λ2

2

)
.

Furthermore, ρ ≥ 0 vanishes if and only if the signature is (0, 2).

Proof. Since by assumption a and b generate a negative-definite two-dimensional space,
we have ‖a‖2 < 0. The definition of λ directly yields that ‖d‖2 = −2. Because the space
spanned by a and b is negative-definite, we in particular have ‖a‖2‖b‖2 − 〈a, b〉2 > 0.
Therefore, µ is a well-defined positive number. We then compute, using that ‖d‖2 = −2
and the definition of µ,

〈d, e〉 = µ〈d, b〉+ 2α1 = λµ〈a, b〉 − 〈a, b〉λµ = 0,

‖e‖2 = 〈µb− α1d, e〉 = µ〈b, µb− α1λa〉

= µ2‖b‖2 − α1λµ〈a, b〉 = µ2

(
‖b‖2 +

1

2
〈a, b〉2λ2

)
= −2.

Then by the choices of α2 and α3, we obtain that f , as defined in (II.3.7), is orthogonal
to d and e, using 〈d, e〉 = 0:

〈d, f〉 = 〈d, νc− α2d− α3e〉 = ν〈d, c〉+ 2α2 = λν〈a, c〉 − λν〈a, c〉 = 0,

〈e, f〉 = 〈e, νc− α2d− α3e〉 = ν〈e, c〉+ 2α3

= ν〈µb− α1λa, c〉 − µν
(
〈b, c〉+

〈a, b〉〈a, c〉λ2

2

)
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=
〈a, b〉

2
λ2µν〈a, c〉 − µν 〈a, b〉〈a, c〉λ

2

2
= 0.

The above then yields
‖c‖2 = ν−2

(
‖f‖2 − 2α2

2 − 2α2
3

)
.

Finally we rewrite

ρ = −‖c‖
2

2
+
〈a, c〉2

2‖a‖2
+

1

4

2‖a‖2

‖a‖2‖b‖2 − 〈a, b〉2

(
〈b, c〉 − 〈a, b〉〈a, c〉

‖a‖2

)2

= −‖c‖
2

2
+
〈a, c〉2

2‖a‖2
− 1

4

(
−‖a‖

2‖b‖2 − 〈a, b〉2

2‖a‖2

)−1(
〈b, c〉 − 〈a, b〉〈a, c〉

‖a‖2

)2

= −‖c‖
2

2
− 〈a, c〉

2

4
λ2 − 1

4
µ2

(
〈b, c〉+

〈a, b〉〈a, c〉λ2

2

)2

.

Using the definition of ν then yields

‖f‖2 = ν2‖c‖2 + 2
〈a, c〉2

4
λ2ν2 +

1

2
µ2ν2

(
〈b, c〉+

〈a, b〉〈a, c〉λ2

2

)2

= −2ν2ρ =

{
0 if ρ = 0,

−2 sgn(ρ) if ρ 6= 0.

This shows that ρ vanishes if and only if span{d, e, f} = span{a, b, c} has signature (0, 2).
Since span{a, b, c} is negative semi-definite, ‖f‖2 ≤ 0 and thus ‖f‖2 ∈ {−2, 0}. Therefore

ν = ρ−
1
2 ≥ 0 if ρ 6= 0 such that ν agrees with the definition in the proposition.

We are now ready to prove Proposition II.3.6.

Proof of Proposition II.3.6. (1) We let d, e, f ∈ RN+3 and α1, α2, α3 ∈ R be as in Lemma
II.3.7. The definitions of α1, α2, α3, d, e, f , together with Lemma II.3.1, ensure that the
asymptotics hold. Lemma II.3.7 also implies that P Td, P T e, P T f are pairwise orthogonal
with squared norm −2 each (with respect to D−1 = D := diag(IN ,−I3)). Combining
this with Lemma II.3.4 and the chain rule then gives the claimed satisfaction of Vignéras’
differential equation.
(2) Lemma II.3.7 shows that v, w ∈ {d, e, f} satisfy

−2δv,w (1− δf,v) = 〈v, w〉 = vTA−1w = vTPD−1P Tw =
(
P T v

)T
DP Tw.

Therefore (P Td, P T e, P T f) forms an orthogonal basis with norms squared (−2,−2, 0)
with respect to D−1 = D. Note that there exists a subspace of signature (1, 3) with
orthogonal basis (d, e, f+, f−) such that f = f+ + f−. Setting (note that ‖f−‖ = ‖f+‖)
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wε :=
1√

2‖f+‖2ε
((1− ε)f+ + (1 + ε)f−) ,

we compute ||wε||2 = −2. Therefore (P Td, P T e, P Twε) is an orthogonal basis with norms
squared (−2,−2,−2) with respect to D. Just like the previous case, applying Lemma
II.3.4 and the chain rule shows that

X 7→ E3

(
α1,

1√
2‖f+‖2ε

α2,
1√

2‖f+‖2ε
α3; dTPX, eTPX,wTε PX

)
is a solution of Vigneras’ differential equation. The scalar factors for α2 and α3 ensure
that the function has the right asymtotic behaviour.

II.4 Lau and Zhou’s explicit Gromov-Witten potential and
simplifications for the proof of Theorem II.1.1

In this section, we explicitly recall the functions arising in Gromov-Witten theory,
which were studied by Lau and Zhou in [11], as well the explicit summation formulas for
them by Cho, Hong, Kim, and Lau [3], and we start the investigation of their modularity
properties. We assume throughout that a = (2, 3, 6) and study the function Wq(2, 3, 6)
defined in [11]. Namely, noting that in the notation of [11] we have q = q48

d , and writing
the resulting coefficients as functions of τ , by (3.29) of [11], Wq(2, 3, 6) can be expanded
as

Wq(2, 3, 6)

= q
1
8X2 − q

1
48XY Z + cY (τ)Y 3 + cZ(τ)Z6 + cY Z2(τ)Y 2Z2 + cY Z4(τ)Y Z4, (II.4.1)

where

cY (τ) := q
3
16

∑
n≥0

(−1)n+1(2n+ 1)q
n(n+1)

2 , (II.4.2)

cY Z2(τ) := q−
1
12

∑
n≥a≥0

(
(−1)n+a(6n− 2a+ 8)q

(n+2)(n+1)
2

−a(a+1)
2 (II.4.3)

+(2n+ 4)qn+an+1−a2
)
,

cY Z4(τ) := q−
17
48

∑
a,b≥0
n≥a+b

(−1)n+a+b(6n− 2a− 2b+ 7)q
(n+1)(n+2)

2
−a(a+1)

2
− b(b+1)

2 , (II.4.4)
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cZ(q) := q−
5
8

∑
(n,a,b,c)∈T1∪T2∪T3∪T6

(−1)n+a+b+c (6n− 2a− 2b− 2c+ 6)

η(n, a, b, c)
qA(n,a,b,c), (II.4.5)

where

A(n, a, b, c) :=

(
n+ 2

2

)
−
(
a+ 1

2

)
−
(
b+ 1

2

)
−
(
c+ 1

2

)
,

T6 := {(3a, a, a, a) : a ∈ N0} ,
T3 := {(3a+ k, a, a, a) : a ∈ N0, k ∈ N} ,
T2 := {(a+ b+ c, a, b, c) : a, b, c ∈ N0 such that a < min(b, c) or a = c < b} ,
T1 := {(a+ b+ c+ k, a, b, c) : k ∈ N, a, b, c ∈ N0

such that a < min(b, c) or a = c < b},
η(n, a, b, c) := j if (n, a, b, c) ∈ Tj .

Note that the authors in [3] and [11] have an extra condition “distinct” in T1. This turns
out to just be a typo.

In [2] modularity properties of cY , cY Z2, and cY Z4 were laid out and proven. We are
thus left to investigate the hardest piece cZ . The following lemma decomposes cZ into 3
simpler pieces.

Lemma II.4.1. We have

q
5
4 cZ(τ) = F1(τ)− F2(τ)− 2

3
F3(τ), where

F1(τ) :=

 ∑
a,b,c≥0
k>0

a<min(b,c)

−
∑
a,b,c<0
k≤0

a≥max(b,c)

 (−1)k(3k + 2a+ 2b+ 2c+ 3) (II.4.6)

× q
k2

2
+ 3k

2
+ab+ac+ak+bc+bk+ck+a+b+c+1,

F2(τ) :=
1

2

∑
a,b≥0

−
∑
a,b<0

 (6a+ 2b+ 3)q3a2+2ab+3a+b+2, (II.4.7)

F3(τ) :=
3

4

∑
a,k≥0

−
∑
a,k<0

 (−1)k (2a+ k + 1) q3a2+3ak+3a+ k2

2
+ 3k

2
+1. (II.4.8)
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Proof. Let

fj(τ) :=
1

j

∑
(n,a,b,c)∈Tj

g̃(n, a, b, c; τ),

g̃(n, a, b, c; τ) = (−1)n+a+b+c(6n− 2a− 2b− 2c+ 6)qA(n,a,b,c)

and g(k, a, b, c; τ) := g̃(a+ b+ c+ k, a, b, c; τ) and split

f1(τ) = f11(τ) + f12(τ), f2(τ) = f21(τ) + f22(τ)

with

f11(τ) :=
∑

a,b,c≥0,k>0
a<min(b,c)

g(k, a, b, c; τ), f12(τ) :=
∑

a,b,c≥0,k>0
c=a<b

g(k, a, b, c; τ),

f21(τ) :=
1

2

∑
a,b,c≥0,k=0
a<min(b,c)

g(k, a, b, c; τ), f22(τ) :=
1

2

∑
a,b,c≥0,k=0
c=a<b

g(k, a, b, c; τ).

Note that

g̃ (−n− 3,−a− 1,−b− 1,−c− 1) = g̃ (n, a, b, c) ,

g (−k,−a− 1,−b− 1,−c− 1) = g(k, a, b, c),

which we use repeatedly. We now compute

f1(τ) =
1

2

 ∑
a,b,c≥0,k>0
a<min(b,c)

−
∑

a,b,c,k<0
a>max(b,c)

 g(k, a, b, c; τ)

=
1

2

 ∑
a,b,c≥0,k>0
a<min(b,c)

−
∑

a,b,c<0,k≤0
a>max(b,c)

 g(k, a, b, c; τ)− f21(τ),

and similarly

f12(τ) + 2f22(τ)

=
∑

a,b,c≥0,k>0
c=a<b

g(k, a, b, c; τ) +
∑

a,b,c≥0,k=0
c=a<b

g(k, a, b, c; τ) =
∑

a,b,c≥0,k≥0
c=a<b

g(k, a, b, c; τ)

=
1

2

∑
a,b,c,k≥0
a=min(b,c)

g(k, a, b, c; τ)− 1

2

∑
a,b,c,k≥0
c=a=b

g(k, a, b, c; τ)
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= −1

2

∑
a,b,c<0,k≤0
a=max(b,c)

g(k, a, b, c; τ)− 3

2
f3(τ)− 6

2
f6(τ).

Therefore

f1(τ) + f2(τ) + f22(τ) +
3

2
f3(τ) + 3f6(τ)

= f11(τ) + f12(τ) + f21(τ) + 2f22(τ) +
3

2
f3(τ) + 3f6(τ)

=
1

2

 ∑
a,b,c≥0,k>0
a<min(b,c)

−
∑

a,b,c<0,k≤0
a>max(b,c)

 g(k, a, b, c; τ)− 1

2

∑
a,b,c<0,k≤0
a=max(b,c)

g(k, a, b, c; τ)

=
1

2

 ∑
a,b,c≥0,k>0
a<min(b,c)

−
∑

a,b,c<0,k≤0
a≥max(b,c)

 g(k, a, b, c; τ) = F1(τ).

For f22, we find that

f22(τ) =
1

2

∑
a,b,c≥0
c=a<b

g(0, a, b, c; τ) =
1

4

 ∑
a,b,c≥0
c=a<b

−
∑
a,b,c<0
c=a>b

 g(0, a, b, c; τ)

=
1

4

 ∑
a,b,c≥0
c=a≤b

−
∑
a,b,c<0
c=a>b

 g(0, a, b, c; τ)− 3

2
f6(τ).

Making the change of variables b 7→ b+ a, we obtain that the first sum equals

1

4

∑
a,b≥0

−
∑
a,b<0

 g(0, a, a+ b, a; τ)

=
1

4

∑
a,b≥0

−
∑
a,b<0

 (12a+ 4b+ 6)q3a2+2ab+3a+b+2 = F2(τ).

Finally, we compute

3f3(τ) + 3f6(τ)

=
∑

a=b=c≥0
k>0

g(k, a, b, c) +
1

2

∑
a=b=c≥0
k=0

g(k, a, b, c; τ)
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=
1

2

 ∑
a=b=c≥0
k>0

−
∑

a=b=c<0
k<0

 g(k, a, b, c; τ) +
1

2

∑
a=b=c>0
k=0

g(k, a, b, c; τ)

=
1

2

 ∑
a=b=c≥0
k≥0

−
∑

a=b=c<0
k<0

 g(k, a, b, c; τ)

=
1

2

∑
a,k≥0

−
∑
a,k<0

 (−1)k(12a+ 6k + 6)q3a2+3ak+3a+ k2

2
+ 3k

2
+1 = 4F3(τ).

Combining completes the proof.

Lemma II.4.2. The functions F2 and F3 have modular completions.

Proof. We view F2 as derivatives of indefinite theta series with additional Jacobi variables
(where ζj := e2πizj )

F2(z1, z2; τ) := ζ
3
2
2

∑
a,b≥0

−
∑
a,b<0

 (−1)aζa1 ζ
b
2q

3a(a+1)
2

+ab.

Then

F2(τ) =
q

1
2

4

[(
12ζ1

∂

∂ζ1
+ 4ζ2

∂

∂ζ2
+ 3

)
F2(z1, z2; τ)

]
ζ1=−1
ζ2=q

q 7→q2

.

Define

F̂2(z1, z2; τ) := F2(z1, z2; τ) +
i

2

2∑
k=0

ζk2ϑ(z1 + kτ ; 3τ)R(3z2 − z1 − kτ ; 3τ),

where (with z = x+ iy)

ϑ(z; τ) :=
∑

n∈ 1
2

+Z

e2πin(z+ 1
2)q

n2

2

= −iq
1
8 e−πiz

∏
n≥1

(1− qn)
(
1− e2πizqn−1

) (
1− e−2πizqn

)
,

R(z; τ) :=
∑

n∈ 1
2

+Z

(
sgn(n)− E

((
n+

y

v

)√
2v
))

(−1)n−
1
2 q−

n2

2 e−2πinz.
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Setting

F̂2(τ) :=
q

1
2

4

[(
12ζ,

∂

∂ζ1
+ 4ζ2

∂

∂ζ2
+ 3

)
F̂ (z1, z2; τ)

]
ζ1=1
ζ2=q

q 7→q2

we have F̂+
2 = F2. Using [14] we see that we have, for

(
a b
c d

)
∈ SL2(Z) and n1, n2,m1,m2 ∈

Z,

F̂2

(
z1

cτ + d
,

z2

cτ + d
;
aτ + b

cτ + d

)
= (cτ + d)e

πic(−3z22+2z1z2)
cτ+d F̂2 (z1, z2; τ) ,

F̂2 (z1 + n1τ +m1, z2 + n2τ +m2) = (−1)n1+m1ζ3n2−n1
2 ζ−n2

1 q
3n22
2
−n1n2F̂2 (z1, z2; τ) .

From this one can then derive the transformation law of F2(z1 + 1
2 , z2 + τ

2 ; τ). Taking the
appropriate derivatives with respect to z1 and z2 then gives additional terms involving
1, τ, τ2 which can be removed with the help of 1/v-terms (or using powers of the weight
2 Eisenstein series). This yields the modular completion. The shadow of F2(τ) can be
determined using (II.2.7) and (II.2.8) for F̂3 (z1, z2; τ) and then applying the appropriate
Jacobi derivatives.

We next turn to F3 and define the Jacobi version of F3

F3(z1, z2; τ) :=

∑
a,b≥0

−
∑
a,b<0

 ζa1 ζ
b
2q

3a2+ b2

2
+3ab.

Then

F3(τ) =
3q

4

[(
2ζ1

∂

∂ζ1
+ ζ2

∂

∂ζ2
+ 1

)
F3(z1, z2; τ)

]
ζ1=q

3

ζ2=−q
3
2

.

Writing

F3(z1, z2; τ) =
1

2

∑
a,b∈Z

(
sgn

(
a+

1

2

)
+ sgn

(
b+

1

2

))
ζa1 ζ

b
2q

1
2
Q(a,b)

with Q(a, b) := 6a2 + b2 + 6ab, we obtain the completion

F̂3(z1, z2; τ) :=
1

2

∑
a,b∈Z

(
E

(√
v

(√
6a+

1

2
+ y1

))
− E

(√
v

(
b+

1

2
+ y2

)))
× ζa1 ζb2q

1
2
Q(a,b).

The proof then follows as before.
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II.5 An indefinite theta function of signature (1, 3)

A key in understanding F1 is the following indefinite theta function

Θ(z; τ) := Θ0,Z4,A,p̂,0(z; τ),

where A :=

(
1 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

)
, and

p̂(`) := −E (`1)− E
(√

2`2

)
+ E (`3 − `1)E2

(
1√
3

; `1,
1√
3

(−`2 − `3 + 2`4)

)
+ E3

(
1√
3
,− 1√

2
,−
√

3

2
; `3 − `2,

1√
3

(−`2 − `3 + 2`4),

√
2

3
(`2 + `3 + `4)

)
+ sgn (`1 + `2 + `3)

×
(
E (`1)E (`3 − `2)− E2 (1; `1,−`1 − 2`2) + E2 (−1; `3 − `2, `2 + `3) + 1

)
+ sgn (`1 + `2 + `4)

×
(
E (`1)E (`4 − `2)− E2 (1; `1,−`1 − 2`2) + E2 (−1; `4 − `2, `2 + `4) + 1

)
.

Theorem II.5.1. The function Θ transforms like a vector-valued Jacobi form.

There are two main steps that have to be made: convergence and showing that p̂
satisfies Vignéras’ differential equation.

Proposition II.5.2. The theta series Θ0,Z4,A,p,0(z; τ), as well as its modular completion
Θ0,Z4,A,p̂,0(z; τ) converges absolutely and uniformly on compact subsets of {(z, τ) ∈ Cn×C :
B(cj ,

y
v ) 6∈ Z (j ∈ {0, 1, 2, 3})}. Here

p(`) :=
(

sgn
(
cT0 `
)

+ sgn
(
cT1 `
) )(

sgn
(
cT0 `
)

+ sgn
(
cT2 `
) )(

sgn
(
cT1 `
)

+ sgn
(
cT3 `
) )

= (sgn (`1) + sgn (`2)) (sgn (`2) + sgn (`3 − `2)) (sgn (`1) + sgn (`4 − `2))

with c0 := (0, 1, 0, 0)T , c1 := (1, 0, 0, 0)T , c2 := (0,−1, 1, 0)T and
c3 := (0,−1, 0, 1)T .

Proof. We begin by proving (absolute local uniform) convergence of the holomorphic theta
series Θ0,Z4,A,p,0, so that it suffices to additionally prove the convergence of Θ0,Z4,A,p̂−p,0 =
Θ0,Z4,A,p̂,0 −Θ0,Z4,A,p,0. We also note that for (z, τ) lying in the stated range, we have
B(cj , n+ y

v ) 6= 0 for all n ∈ Z.
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The proof of the convergence of the holomorphic theta function is a straightforward
generalization of the proof by Zwegers [28] and Alexandrov, Banerjee, Manschot, and
Pioline [1]. We rewrite(

sgn
(
cTk `
)

+ sgn
(
cTj `
) )

=
(

sgn
(
(A−1ck)

TA`
)

+ sgn
(
(A−1cj)

TA`
) )

in p and observe that∣∣∣qQ(n)ζAn
∣∣∣ = exp

(
− πvnTAn− 2πyTAn

)
= exp

(
−2πQ

(√
v
(
n+

y

v

)))
exp

(
2πQ(y)

v

)
,

so that∑
n∈µ+L

∣∣∣p(√v (n+
y

v

))
qQ(n)ζAn

∣∣∣ = e
2πQ(y)

v

∑
n∈µ+L

∣∣∣p(√v (n+
y

v

))∣∣∣ e−2πQ(
√
v(n+ y

v )).

Therefore we need to investigate∑
m∈Λ

p(m)e−2πQ(m)

for Λ some lattice. Note that B(cj ,m) = cTj Am = (Acj)
Tm. Since the sgn(cTj Am)

do not vanish, p(m) 6= 0 only if all sgn(cTj Am) are equal. Therefore we obtain
B(cj ,m)B(ck,m) > 0 for all j, k ∈ {0, 1, 2, 3} whenever p(m) 6= 0. The matrix

B(m,m) B(c0,m) B(c1,m) B(c2,m) B(c3,m)
B(c0,m) B(c0, c0) B(c0, c1) B(c0, c2) B(c0, c3)
B(c1,m) B(c0, c1) B(c1, c1) B(c1, c2) B(c1, c3)
B(c2,m) B(c0, c2) B(c1, c2) B(c2, c2) B(c2, c3)
B(c3,m) B(c0, c3) B(c1, c3) B(c2, c3) B(c3, c3)


has determinant zero. We refer to the bottom right 4× 4 block as G, which has negative
determinant. Both of these statements come from the fact that span{c0, c1, c2, c3} has
signature (1, 3). Furthermore, a Laplace expansion along the first column and then
another along the first row lets us write the determinant as

0 ≥ B(m,m) det(G)−
3∑

k=0

B(ck,m)2 det((Gp,q)p,q 6=k)

− 2
∑

0≤j<k≤3

(−1)k+jB(cj ,m)B(ck,m) det
(
(Gp,q)p 6=k,q 6=j

)
.
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Now note that det((Gp,q)p,q 6=k) ≤ 0 since the space span{cp; p 6= k} has signature (0, 3)
or (0, 2) and the sgn (det ((Gp,q)p 6=k,q 6=j)) = (−1)k+j+1 by direct calculation. Therefore,
whenever it is B(cj ,m)B(ck,m) ≥ 0 for all j, k ∈ {0, 1, 2, 3} we obtain

B(m,m) = det(G)−1

(
3∑

k=0

B(ck,m)2 det((Gp,q)p,q 6=k)

− 2
∑

0≤j<k≤3

B(cj ,m)B(ck,m)
∣∣det

(
(Gp,q)p 6=k,q 6=j

)∣∣)

= |det(G)|−1

(
3∑

k=0

B(ck,m)2|det((Gp,q)p,q 6=k)|

+ 2
∑

0≤j<k≤3

∣∣B(cj ,m)B(ck,m) det
(
(Gp,q)p 6=k,q 6=j

)∣∣)
=: K(m) ≥ 0.

If p(m) 6= 0, then at most two B(cj ,m) vanish, such that some terms in the second sum
do not vanish and the inequality is strict. Therefore, with p(m) ≤ 8, we obtain∑

m∈Λ

p(m)e−2πQ(m) ≤ 8
∑
m∈Λ

e−2πK(m).

Now since none of the determinants in the second sum of K(m) vanishes and the B(cj ,m)
do not vanish, we obtain for some constant c > 0 that

K(m) ≥ cmin(|B(cj ,m)|),

which yields exponential decay of e−2πK(m) as ‖m‖ → ∞ and thus the convergence
(uniform on compact sets with respect to translations of Λ) of∑

m∈Λ

p(m)e−2πQ(m) ≤ 8
∑
m∈Λ

e−2πK(m) <∞.

Next we treat the difference between the holomorphic part and the modular completion.
By multiplying out p and coupling the terms of p and p̂ appropriately, we get a sum of
series over terms which have either the shape−E3 (α;B(d1,m), B(d2,m), B(d3,m)) +

∏
j∈{0,1,2,3}\{`}

sgn(B(cj ,m))

 qQ(n)e2πiB(z,n),
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where d1, d2 + α1d1, d3 + α2d1 + α3d2 are the cj appearing in the product or the same
shape with E3 replaced by E3 or

(sgn(B(c`,m))− E(B(c`,m))) sgn(B(ck,m))2qQ(n)e2πiB(z,n)

for some (k, `) ∈ {(0, 1), (0, 3), (1, 0), (1, 2)}. In a similar fashion as in the proof of
Theroem 4.2 of [1], one can decompose each of these terms into a sum of integrals decaying

square-exponentially in some directions {cj1 , . . . , cjk} (i.e., it grows like e−π
∑
k B(cjk ,m)2

in additionto the general factor e−π2Q(m)). By combining the integrals of the same decay
from different terms, one obtains cancellation of the sign-terms whenever the integrals
times do not decay. This gives convergence of the the theta function. Further details
can also be found in the second author’s doctoral thesis [8]. Therefore the theta series
Θ0,Z4,A,p−p̂,0 and Θ0,Z4,A,p̂,0 converge.

We next turn to proving that Vignéras’ differential equation is satisfied in our situtaion.

Proposition II.5.3. The function ` 7→ p̂(P`) is a solution of Vignéras’ differential
equation with respect to D := diag(1,−1,−1,−1). It approximates p if `1, `2 6= 0.

Proof. Our approach is to split p(`) into various terms, which we treat separately using
Proposition II.3.6 and Lemma II.2.2. Multiplying the product of signs out, we obtain,
using that `1 and `2 do not vanish

sgn (`1) + sgn (`2) + sgn (`3 − `2)

+ sgn (`4 − `2) + sgn (`2) sgn (`3 − `2) sgn (`4 − `2)

+ sgn (`1) sgn (`2) sgn (`3 − `2) + sgn (`1) sgn (`2) sgn (`4 − `2)

+ sgn (`1) sgn (`3 − `2) sgn (`4 − `2) .

We first compute A−1 =

(−2 1 1 1
1 −1 0 0
1 0 −1 0
1 0 0 −1

)
.

The single sign factors are treated as in Zwegers’ thesis [28] (see the description in
Section II.2.2), yielding the following function

E (`1) + E
(√

2`2

)
+ E (`3 − `2) + E (`4 − `2)

∼ sgn (`1) + sgn (`2) + sgn (`3 − `2) + sgn (`4 − `2) ,

where each of the summands on the left satisfies Vignéras differential equation in
(`1, `2, `3, `4) with respect to diag(1,−I3) as can be verified directly. Thus we are left to
consider 3 sign factors.
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We start with sgn(`1) sgn(`3 − `2) sgn(`4 − `2) and set

v1 := (1, 0, 0, 0)T , v2 := (0,−1, 1, 0)T , v3 := (0,−1, 0, 1)T .

Then, with 〈a, b〉 = aTA−1b, we obtain

‖vj‖2 = −2, 〈v1, v2〉 = 〈v1, v3〉 = 0, 〈v2, v3〉 = −1.

This easily gives that the corresponding signature is (0, 3). We plug these into (II.3.7) to
obtain

λ = 1, µ = 1, ν =
2√
3
, α1 = 0, α2 = 0, α3 =

1√
3
,

d = v1, e = v2, f =
2√
3
v3 −

1√
3
w2.

Lemma II.3.1 then yields that

E3

(
0,

1√
3
, 0; `1, `3 − `2,

1√
3

(−`2 − `3 + 2`4)

)
∼ sgn(`1) sgn(`3 − `2) sgn(`4 − `2)

and X 7→ E3(0, 1√
3
, 0; vT1 P, v

T
2 XP, 3

− 1
2 (2vT3 −vT2 )P ). The claim then follows using (II.3.3).

We next turn to the case sgn(`2) sgn(`3 − `2) sgn(`4 − `2) and set

v1 := (0,−1, 1, 0)T , v2 := (0,−1, 0, 1)T , v3 := (0, 1, 0, 0)T .

Then

‖v1‖2 = ‖v2‖2 = −2, ‖v3‖2 = 〈v1, v2〉 = −1, 〈v1, v3〉 = 〈v2, v3〉 = 1.

We plug these into Lemma II.3.7 to obtain

λ = 1, µ =
2√
3
, ν =

√
6, α1 =

1√
3
, α2 = −

√
3

2
, α3 = − 1√

2
,

and

d = v1, e =
1√
3

(0,−1,−1, 2)T , f =

√
2

3
(0, 1, 1, 1)T .

Thus we obtain the completion

E3

(
1√
3
,−
√

3

2
,− 1√

2
; `3 − `2,

1√
3

(−`2 − `3 + 2`4),

√
2

3
(`2 + `3 + `4)

)
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∼ sgn(`2) sgn(`3 − `2) sgn(`4 − `2).

We now turn to the case sgn(`1) sgn(`2) sgn(`3 − `2) and set

v1 := (1, 0, 0, 0)T , v2 := (0,−1, 1, 0)T , v3 := (0, 1, 0, 0)T .

We compute

||v1||2 = ||v2||2 = −2, ||v3||2 = −1, 〈v1, v2〉 = 0, 〈v1, v3〉 = 〈v2, v3〉 = 1.

We plug these into the (II.3.7) to obtain

λ = 1, µ = 1, ν = 1, α1 = 0, α2 = −1

2
, α3 = −1

2
,

d = v1, e = v2, f =
1

2
(1, 1, 1, 0)T .

We use the second part of Proposition II.3.6 to obtain the differential equation for E3

and then use Lemma II.3.3 to obtain explicitely

− E (`1)− E (`3 − `2)− E
(√

2`2

)
+ sgn (`1 + `2 + `3)

× (E2 (0; `1, `3 − `2)− E2 (1; `1,−`1 − 2`2) + E2 (−1; `3 − `2, `2 + `3) + 1) .

In the same way, replacing `3 by `4 yields the completion for sgn(`1), sgn(`2), sgn(`4− `2)

− E (`1)− E (`4 − `2)− E
(√

2`2

)
+ sgn(`1 + `2 + `4)

×
(
E2 (0; `1, `4 − `2)− E2 (1; `1,−`1 − 2`2) + E2 (−1; `4 − `2, `2 + `4) + 1

)
.

Combining all terms then gives the claim.

Corollary II.5.4. The function F1 has a modular completion.

Proof. Define

F (z1, z2, z3, z4; τ) :=

 ∑
n2,n3,n4≥0

n1>0
n2<min(n3,n4)

−
∑

n2,n3,n4<0
n1≤0

n2≥max(n3,n4)


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× (−1)n1q
n21
2

+n1n2+n1n3+n1n4+n2n3+n2n4+n3n4e2πiB(z,n).

Noting e2πiB(z,n) = ζn1+n2+n3+n4
1 ζn1+n3+n4

2 ζn1+n2+n4
3 ζn1+n2+n3

4 , we obtain that F1 equals

lim
w→0+

[(
3 +

∂

2πi∂w

)
F
(
−w2τ, 2wτ + w2τ +

τ

2
, 2wτ +

τ

2
, 2wτ +

τ

2
; τ
)]

With z(w) := τ(−w2, 2w + w2 + 1
2 , 2w + 1

2 , 2w + 1
2) we write for w > 0 small enough

F (z(w); τ) =
∑
n∈Z4

1

8
p

(
n+

Im(z(w))

v

)
× (−1)n1q

n21
2

+n1n2+n1n3+n1n4+n2n3+n2n4+n3n4e2πiB(z(w),n),

since

p

(
n+

(
−w2, 2w + w2 +

1

2
, 2w +

1

2
, 2w +

1

2

)T)

=


8 if n1 > 0, n2 ≥ 0, n3 > n2, n4 > n2,

−8 if n1 ≤ 0, n2 < 0, n3 ≤ n2, n4 ≤ n2,

0 otherwise.

Since p(x) = p(
√
vx), we obtain

8F (z(w); τ) =
∑
n∈Z4

p

(
n+

Im(z(w))

v

)
(−1)n1q

1
2
nTAne2πiB(z,n)

=
∑
n∈Z4

p

(
n+

Im(z(w))

v

)
q

1
2
nTAne2πiB(z+A−1( 1

2
,0,0,0),n)

= Θ0

(
z(w) +

1

2
A−1(1, 0, 0, 0)T ; τ

)
.

By Lemma II.2.2 and Proposition II.5.3, Θ̂0 = Θ0,Z4,A,p̂,0 is the modular completion of
Θ0 = Θ0,Z4,A,p,0. Note that for w > 0 small enough, we have z(w) ∈ {(z, τ) ∈ Cn × C :
B(cj ,

y
v ) 6∈ Z (j ∈ {0, 1, 2, 3})} such that with Proposition II.5.2 and Proposition II.5.3,

1

8
lim
w→0+

[(
3 +

∂

2πi∂w

)
Θ̂0

(
z(w) +

1

2
A−1(1, 0, 0, 0)T ; τ

)]
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is the modular completion of

F1(τ) = lim
w→0+

[(
3 +

∂

2πi∂w

)
F (z(w); τ)

]
=

1

8
lim
w→0+

[(
3 +

∂

2πi∂w

)
Θ0

(
z(w) +

1

2
A−1(1, 0, 0, 0)T ; τ

)]
,

which proves the claim.
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Chapter III

Additional details for “Indefinite
theta functions arising in
Gromov-Witten Theory of elliptic
orbifolds”

In this chapter, we give some technical details for the interested reader that were
omitted in the proof of Proposition II.5.2 in [BKR] and Chapter II. Specifically, we show
that the completed indefinite theta function Θ0,Z4,A,p̂,0(z; τ) converges.

Note that there are two typos in the definition of p̂ in [BKR]. The second and third
argument of E3 are falsely exchanged and the

E (`3 − `1)E2

(
1√
3

; `1,
1√
3

(−`2 − `3 + 2`4)

)
should be

E (`1)E2

(
1√
3

; `3 − `2,
1√
3

(−`2 − `3 + 2`4)

)
,

which came from a typo in the proof of Proposition II.5.3. Therefore we have

p̂(`) =− E (`1)− E
(√

2`2

)
+ E (`1)E2

(
1√
3

; `3 − `2,
1√
3

(−`2 − `3 + 2`4)

)
+ E3

(
1√
3
,−
√

3

2
,− 1√

2
; `3 − `2,

1√
3

(−`2 − `3 + 2`4),

√
2

3
(`2 + `3 + `4)

)
+

∑
j∈{3,4}

sgn (`1 + `2 + `j)

×
(
E (`1)E (`j − `2)− E2 (1; `1,−`1 − 2`2) + E2 (−1; `j − `2, `2 + `j) + 1

)
.

Note that the convergence of the completed indefinite theta function actually requires that
the Jacobi variable is not contained in more hyperplanes than indicated in Proposition
II.5.2 (compare with Lemma III.1.1).
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III.1 Additional details for the proof of Proposition II.5.2

We will show the following.

Lemma III.1.1. The theta series Θ0,Z4,A,p̂,0(z; τ) converges absolutely and uniformly
on compact subsets of

{
(z, τ) ∈ C4 ×H : B

(
cj ,

y

v

)
6∈ Z (j ∈ {0, 1, 2, 3}), y2 + y3 + y4

v
,
3y1 − y2 − y3 − y4

v
6∈ Z

y2 + yk
v

,
y1 + y2 + yk

v
,
−y2 − y3 − y4 + 3yk

v
6∈ Z (k ∈ {3, 4})

}
.

Proof. We begin by decomposing all Ej functions appearing in p̂ into Mj-functions and
sgn-functions using the equations (that hold when none of the appearing arguments
containing wj vanish) E(w) = M(w) + sgn(w),

E2 (κ;w) = M2 (κ;w) + sgn (w2)M (w1)

+ sgn (w1 − κw2)M

(
w2 + κw1√

1 + κ2

)
+ sgn (w1) sgn (w2 + κw1) ,

(III.1.1)

which is given in IV.2.4, and

E3 (α;w) = M3 (α;w) + sgn(w1) sgn(w2 + α1w1) sgn(w3 + α2w1 + α3w2)

+M2(α1;w1, w2) sgn(w3) +M2

(
α2√

1 + α2
3

;w1,
w2α3 + w3√

1 + α2
3

)
sgn(w2 − α3w3)

+M2

(
κ;
w2 + α1w1√

1 + α2
1

,
w1(α2 − α1α3) + w2(α2

1α3 − α1α2) + w3(1 + α2
1)√

(α2 − α1α3)2 + (α2
1α3 − α1α2)2 + (1 + α2

1)2

)
× sgn (w1 − α1w2 + (α1α3 − α2)w3) +M(w1) sgn(w2) sgn(w3 + α3w2)

+M

(
w2 + α1w1√

1 + α2
1

)
sgn(w1 − α1w2) sgn

(
(w1 − α1w2)(α2 − α1α3) +

(
1 + α2

1

)
w3

)
+M

(
w3 + α2w1 + α3w2√

1 + α2
2 + α2

3

)
sgn

(
w1 − α2

w3 + α3w2

1 + α2
3

)
× sgn

(
w1

(
α1 − α2α3 + α1α

2
3

)
+ w2

(
1 + α2

2 − α1α2α3

)
− w3 (α1α2 + α3)

)
with

κ :=
(α1α2 + α3)

√
(α2 − α1α3)2 + (α2

1α3 − α1α2)2 + (1 + α2
1)2√

1 + α2
1

(
1 + α2

1 + α2
2 + α2

1α
2
3 − 2α1α2α3

) .
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One can verify the identity for E3 using Proposition 3.11 of [N] since E3((α1, α2, α3), w)

corresponds to Nazaroglus E3(
(

1 α1 α2
0 1 α3
0 0 1

)
;w).

Applying these identities for all functions in p̂, we obtain

p̂(`) =− E (`1)− E
(√

2`2

)
+ E (`1)E2

(
1√
3

; `3 − `2,
1√
3

(−`2 − `3 + 2`4)

)
+ E3

(
1√
3
,−
√

3

2
,− 1√

2
; `3 − `2,

1√
3

(−`2 − `3 + 2`4),

√
2

3
(`2 + `3 + `4)

)
+

∑
j∈{3,4}

sgn (`1 + `2 + `j)

×
(
E (`1)E (`j − `2)− E2 (1; `1,−`1 − 2`2) + E2 (−1; `j − `2, `2 + `j) + 1

)
=−M (`1)− sgn (`1)−M

(√
2`2

)
− sgn

(√
2`2

)
+ (M (`1) + sgn (`1))

×
(
M2

(
1√
3

; `3 − `2,
1√
3

(−`2 − `3 + 2`4)

)
+ sgn(−`2 − `3 + 2`4)M(`3 − `2)

+ sgn(−`2 + 2`3 − `4)M(`4 − `2) + sgn(`3 − `2) sgn(`4 − `2)
)

+M3

(
1√
3
,−
√

3

2
,− 1√

2
; `3 − `2,

1√
3

(−`2 − `3 + 2`4),

√
2

3
(`2 + `3 + `4)

)
+ sgn(`2) sgn(`3 − `2) sgn(`4 − `2)

+M2

(
1√
3

; `3 − `2,
1√
3

(−`2 − `3 + 2`4)

)
sgn(`2 + `3 + `4)

+M2(−1; `3 − `2, `2 + `3) sgn(`4) +M2(−1; `4 − `2, `2 + `4) sgn(`3)

+M(`3 − `2) sgn(2`4 − `2 − `3) sgn(`2 + `3)

+M(`4 − `2) sgn(2`3 − `2 − `4) sgn(`2 + `4) +M
(√

2`2

)
sgn(`3) sgn(`4)

+
∑

j∈{3,4}

sgn (`1 + `2 + `j)
(

1 + (M (`1) + sgn (`1)) (M (`j − `2) + sgn (`j − `2))

−M2 (1; `1,−`1 − 2`2)− sgn(−`1 − 2`2)M(`1)− sgn(`1 + `2)M
(
−
√

2`2

)
− sgn(`1) sgn(−`2) +M2 (−1; `j − `2, `2 + `j) + sgn(`2 + `j)M(`j − `2)

+ sgn(`j)M
(√

2`2

)
+ sgn(`j − `2) sgn(`2)

)
.

Now we group these terms such that we obtain a sum of multiple convergent series. The
terms consisting only of sgn-functions give the holomorphic part, which we show using
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the second part of Lemma II.3.2

− sgn (`1)− sgn (`2) + sgn (`1) sgn(`3 − `2) sgn(`4 − `2)

+ sgn (`3 − `2) sgn (`4 − `2) sgn (`2)

+
∑

j∈{3,4}

sgn (`1 + `2 + `j) (1+sgn (`1) sgn (`j − `2)−sgn(`1) sgn(`2)+sgn(`j − `2) sgn(`2))

= − sgn (`1)− sgn (`2) + sgn (`1) sgn(`3 − `2) sgn(`4 − `2)

+ sgn (`3 − `2) sgn (`4 − `2) sgn (`2)

+
∑

j∈{3,4}

(
sgn (`1) sgn(`2) sgn (`j − `2) + sgn (`1) + sgn(`2) + sgn (`j − `2)

)
= p(`).

The convergence of Θ0,Z4,A,p,0(z; τ) is shown in the proof of II.5.2 in Chapter II.
Next, the terms containing only M(`1) are (when none of the sgn-functions vanish)

M(`1)
(
− 1 + sgn(`3 − `2) sgn(`4 − `2)

+
∑

j∈{3,4}

sgn (`1 + `2 + `j) (sgn(`j − `2) + sgn(`1 + 2`2))︸ ︷︷ ︸
=1+sgn(`j−`2) sgn(`1+2`2)

)
= M(`1) (sgn (`1 + 2`2) + sgn(`3 − `2)) (sgn (`1 + 2`2) + sgn(`4 − `2))

= M(`1)×

{
(±4) if sgn(`1 + 2`2) = sgn(`3 − `2) = sgn(`4 − `2) = ±1,

0 otherwise.

To see that this contributes a convergent series, note that∣∣∣M (√
v
(
n1 +

y1

v

))
qQ(n)ζAn

∣∣∣ ≤ 2e−πv(n1+
y1
v )

2

e2π
Q(y)
v e−2πvQ(n+ y

v ) (III.1.2)

= 2e2π
Q(y)
v e−2πvQ1(n+ y

v )

with Q1(`) := 1
2`
T

(
2 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

)
` of signature (2, 2). Now

2Q1(`) = (`1 + `2)2+(`1 + 2`2)2+`22+2 (`1 + 2`2) (`3 − `2 + `4 − `2)+2 (`3 − `2) (`4 − `2)

is positive and growing when sgn(`1 + 2`2) = sgn(`3 − `2) = sgn(`4 − `2) = ±1 and
`3− `2, `4− `2 6= 0. Therefore these terms contribute a converging series. The terms with
only the factors M(

√
2`2), M(`3 − `2) or M(`4 − `2) can be treated in the same way.

Next, we consider the terms containing M2( 1√
3
; `3− `2, 1√

3
(−`2− `3 +2`4)) as a factor,

which are

M2

(
1√
3

; `3 − `2,
1√
3

(−`2 − `3 + 2`4)

)
(sgn(`1) + sgn(`2 + `3 + `4)) .
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Now we use |M2(α;x)| ≤ 2e−πx
T x as a special case of [N, Proposition 3.8] and obtain∣∣∣∣M2

(
1√
3

;
√
v

(
n3 − n2 +

y3 − y2

v

)
,

√
v√
3

(
2n4 − n2 − n3 +

2y4 − y2 − y3

v

))
qQ(n)ζAn

∣∣∣∣
≤ 2e

−πv
((

n3−n2+
y3−y2
v

)2
+ 1

3

(
2n4−n2−n3+

2y4−y2−y3
v

)2)
e2π

Q(y)
v e−2πvQ(n+ y

v )

= 2e2π
Q(y)
v e−2πvQ2(n+ y

v )

with Q2(`) := 1
6`
T

(
3 3 3 3
3 4 1 1
3 1 4 1
3 1 1 4

)
` of signature (3, 1), which is positive and growing when

(sgn(`1) + sgn(`2 + `3 + `4)) 6= 0. The other M2-terms and the product of two M -
functions can be treated the same way.

Finally, using |M3(α;x)| ≤ 3!e−πx
T x as a special case of [N, Proposition 3.8] we see

that the single M3 term is simply decaying fast enough such that∣∣∣∣∣∣M3

(
1√
3
,− 1√

2
,−
√

3

2
; `3 − `2,

1√
3

(−`2 − `3 + 2`4),

√
2

3
(`2 + `3 + `4)

)
`=n+ y

v

qQ(n)ζAn

∣∣∣∣∣∣
≤ 6e

−πv
(
n3−n2+

y3−y2
v

)2
+ 1

3

(
2n4−n2−n3+

2y4−y2−y3
v

)2
+ 1

3

(
n2+n3+n4+

y2+y3+y4
v

)2
× e2π

Q(y)
v e−2πvQ(n+ y

v )

= 6e2π
Q(y)
v e−2πvQ3(n+ y

v )

with Q3(`) := 1
2`
T

( 1 1 1 1
1 2 1 −1
1 1 2 −1
1 −1 −1 4

)
` of signature (3, 0), and requiring 3y1−y2−y3−y4 6∈ vZ

ensures that the series over these terms converges as well. The product of an M -function
with an M2-function can be handled the same way (this term gives a positive definite
quadratic form using the same bound for M3).
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Chapter IV

Higher depth quantum modular
forms, multiple Eichler integrals
and sl3 false theta functions

This chapter is based on a manuscript published in Research in the Mathematical
Sciences and is joint work with Prof. Dr. Kathrin Bringmann and Prof. Dr. Antun
Milas [BKM1].

The content of this chapter is reprinted by permission from RightsLink Permissions
Springer Nature Customer Service Centre GmbH: Springer Nature, Research in the
Mathematical Sciences, Higher depth quantum modular forms, multiple Eichler integrals
and sl3 false theta functions, Kathrin Bringmann, Jonas Kaszián, Antun Milas, c©
Springer Nature Switzerland AG 2019 (2019).

IV.1 Introduction and statement of results

In this paper, we study higher depth quantum modular forms which occur as rank
two false theta functions coming from characters of the vertex algebra W 0(p)A2 for p ≥ 2.
Via asymptotic expansions we relate these to double Eichler integrals which may be
viewed as purely non-holomorphic parts of indefinite theta functions.

Let us first recall the classical rank one case. Note that the derivative of a modular
form is typically not a modular form (only a so-called quasi-modular form). However,
thanks to Bol’s identity, differentiating a weight 2− k ∈ −N modular form k − 1 times
returns a modular form of weight k. Thus it is natural to consider holomorphic Eichler
integrals. That is, if f(τ) =

∑
m≥1 cf (m)qm (q := e2πiτ with τ ∈ H throughout) is a cusp

form of weight k, then set

f̃(τ) :=
∑
m≥1

cf (m)

mk−1
qm. (IV.1.1)
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CHAPTER IV. HIGHER DEPTH QUANTUM MODULAR FORMS

It easily follows, by Bol’s identity and the modularity of f , that the following function is
annihilated by differentiating k − 1 times

Rf (τ) := f̃(τ)− τk−2f̃

(
−1

τ

)
. (IV.1.2)

This yields that Rf is a polynomial of degree k− 2 (Rf is the so called period polynomial

of f). So in particular Rf is much simpler than the starting function f̃ . Note that f̃ may
also be written as an integral, namely, up to constants it equals∫ i∞

τ
f(w)(w − τ)k−2dw. (IV.1.3)

Similarly Rf has an integral representation, namely up to constants it equals∫ i∞

0
f(w)(w − τ)k−2dw.

A similar construction works for weakly holomorphic modular forms, i.e., those meromor-
phic modular forms that only have poles at the cusp i∞ and not in H. In this situation,
(IV.1.3) needs to be regularized since the integral does not converge. Moreover, there is
a “companion integral” (again regularized)∫ i∞

−τ
g(w)(w + τ)k−2dw, (IV.1.4)

where g is a certain weakly holomorphic modular form related to f in the sense that the
corresponding period polynomial, defined analogously to (IV.1.2), basically agrees with
Rf .

In contrast, for half-integral weight modular forms there is no half-derivative and
thus Bol’s identity does not apply. However, one can formally define the analogue of
(IV.1.1) for theta functions. This was first investigated by Zagier [26,27] in connection
to Kontsevich’s “strange” function

K(q) :=
∑
m≥0

(q; q)m,

where for m ∈ N0 ∪ {∞}, (a; q)m :=
∏m−1
j=0 (1 − aqj) denotes the usual q-Pochhammer

symbol. The function K(q) does not converge on any open subset of C, but converges as
a finite sum for q a root of unity. Zagier’s study of K depends on the identity∑

m≥0

(
η(τ)− q

1
24 (q; q)m

)
= η(τ)D (τ) +

1

2
η̃(τ), (IV.1.5)
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with η(τ) := q
1
24 (q; q)∞ =

∑
m≥1(12

m )q
m2

24 , D(τ) := −1
2 +

∑
m≥1

qm

1−qm and η̃(τ) :=∑
m≥1

(
12
m

)
mq

m2

24 , where
( ·
·
)

denotes the extended Jacobi symbol. The key observation
of Zagier is that in (IV.1.5), the functions η(τ) and η(τ)D(τ) vanish of infinite order as
τ → h

k ∈ Q. So at a root of unity ζ, K(ζ) is essentially the limiting value of the Eichler
integral of η, which Zagier showed has quantum modular properties. Roughly speaking,
Zagier defined “quantum modular forms” to be functions f : Q → C (Q ⊆ Q), such that
the error of modularity (M = ( a bc d ) ∈ SL2(Z))

f(τ)− (cτ + d)−kf(Mτ) (IV.1.6)

is “nice”. The definition is intentionally vague to include many examples; in this paper
we require (V.1.2) to be real-analytic. For example, f̃ (recall k ∈ Z in this case) is a
quantum modular form, since Rf is a polynomial and thus real-analytic. Additional
examples appear in the study of limits of quantum invariants of 3-manifolds and knots
[27], Kashaev invariants of torus knots/links [14,15], and partial theta functions [11].

Motivated in part by vertex operator algebra theory, further (but similar) examples
of quantum modular forms were investigated in the setup of characters of vertex algebra
modules in [4] and [9]. These examples are given by characters of Mr,s, the atypical
irreducible modules of the (1, p)-singlet algebra for p ≥ 2 [4,7]. For r = 1 and 1 ≤ s ≤ p−1,
they take the particularly nice shape

chM1,s(τ) =
Fp−s,p(pτ)

η(τ)
,

where

Fj,p(τ) :=
∑
m∈Z

sgn

(
m+

j

2p

)
q

(
m+ j

2p

)2

is a false theta function. The function Fj,p is called “false theta” since getting rid of the

sgn-factor yields the theta function
∑

m∈Z q
(m+ j

2p
)2

, which is a modular form of weight 1
2 .

The quantum modularity of Fj,p is now given by relating it to a non-holomorphic Eichler
integral, as in (IV.1.4). To be more precise, set (correcting a typographical error in [4])

F ∗j,p(τ) := −
√

2i

∫ i∞

−τ

fj,p(w)

(−i(w + τ))
1
2

dw,

where fj,p is the cuspidal theta function of weight 3
2

fj,p(τ) :=
∑
m∈Z

(
m+

j

2p

)
q

(
m+ j

2p

)2
.
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One can show that Fj,p(τ) agrees for τ = h
k with F ∗j,p(τ) up to infinite order [4]. Quantum

modularity then follows by the (mock) modular transformation of F ∗j,p which we recall in
Lemma IV.2.5 below. By “mock-modular”, we mean that the occurence of the extra term
rf, d

c
in Lemma IV.2.5 prevents the function from being modular. However, there exists a

“modular completion” in the sense that after multiplying it with a theta function, F ∗j,p is
the “purely non-holomorphic part” of a non-holomorphic theta function corresponding
to an indefinite quadratic form (of signature (1, 1)). Its modularity now can be proven
by using results of Zwegers [28, Section 2.2]. The functions τ 7→ Fj,p(pτ), especially for
p = 2, have appeared in several studies of vertex algebras from different standpoints
[3, 7, 12,13].

In this paper we investigate higher-dimensional analogues. For this we consider
certain q-series appearing in representation theory of vertex algebras and W -algebras.
They are sometimes called higher rank false theta functions and are thoroughly studied
in [4, 8]. They appear from extracting the constant term of certain multivariable Jacobi
forms [4]. The constant term can be interpreted as the character of the zero weight space
of the corresponding Lie algebra representation. In the case of the simple Lie algebra sl3,
the false theta function takes the following shape (p ∈ N, p ≥ 2)

F (q) :=
∑

m1,m2≥1
m1≡m2 (mod 3)

min(m1,m2)q
p
3 (m2

1+m2
2+m1m2)−m1−m2+ 1

p (1− qm1) (1− qm2)
(
1− qm1+m2

)
.

(IV.1.7)
Below we decompose this function as F (q) = 2

pF1(qp)+2F2(qp) with F1 and F2 defined in
(IV.3.1) and (IV.3.2), respectively. The function F1 and F2 turn out to have generalized
quantum modular properties. This connection goes via an analouge of (IV.1.1). For
instance, we show that F1 asymptotically agrees with an integral of the shape∫ i∞

−τ

∫ i∞

w1

f(w1, w2)√
−i(w1 + τ)

√
−i(w2 + τ)

dw2dw1

where f ∈ S 3
2
(χ1,Γ)⊗S 3

2
(χ2,Γ) (χj are multipliers and Γ ⊂ SL2(Z)). Modular properties

follow from the modularity of f which in turn gives quantum modular properties of
F1. The idea is that here the error of modularity (V.1.2) is less complicated than the
original function. We call the resulting functions higher depth quantum modular forms
(see Definition V.2.2 for a precise definition). Roughly speaking (see Definition V.2.2 for
a precise definition), depth two quantum modular forms of weight k ∈ 1

2Z satisfy, in the
simplest case, the modular transformation property (M =

(
a b
c d

)
∈ SL2(Z))

f(τ)− (cτ + d)−kf(Mτ) ∈ Qκ(Γ)O(R) +O(R)

for some κ ∈ 1
2Z, where Qκ(Γ) is the space of quantum modular forms of weight κ and

O(R) the space of real analytic functions on R ⊂ R. Clearly, we can construct examples
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of depth two simply by multiplying two (depth one) quantum modular forms. Non-trivial
examples arise from F (see Theorem IV.1.1 for precise statement).

Theorem IV.1.1. For p ≥ 2, the higher rank false theta function F can be written as
the sum of two depth two quantum modular forms (with quantum set Q) of weight one
and two.

It is worth noting that all of our examples of quantum modular forms, including
those studied in [4], have Q as quantum set. Even though this feature is rare, a possible
explanation is that vertex algebra characters are generally better behaved functions and
are expected to combine into vector-valued families under the full modular group. Thus
in our future work [4] we explore a vector-valued generalization of this theorem and its
consequences to representation theory.

Zwegers [28] found an important connection between the error term of the Eichler
integral (as in Lemma IV.2.5) and classical Mordell integrals. This result applied to the
case of F ∗j,p leads to an elegant expression for the error term as a Mordell integral∫

R
cot

(
πiw +

πj

2p

)
e2πipw2τdw.

In this work we encounter error terms for iterated (double) Eichler integrals, so it is
natural to attempt to extend Zwegers’ result to two dimensions. In [4] we solve this
problem in several special cases. In particular, we find that relevant integrals for the
weight one component E1 (cf. Lemma IV.5.2) take the form∫

R2

cot (πiw1 + πα1) cot (πiw2 + πα2) e2πi(3w2
1+3w1w2+w2

2)τdw1dw2,

for some scalars α1, α2. This is what we call a double Mordell integral. We next turn
to the modular completion of these Eichler integrals (see Propostiton IV.8.1 for a more
precise version). For theta functions associated to indefinite quadratic forms, the reader
is referred to [1, 17,20,23].

Theorem IV.1.2. There exists an indefinite theta function, defined via (IV.8.1), of
signature (2, 2) with “purely non-holomorphic” part Θ(τ)E1(τ) where Θ is a theta function
of signature (2, 0) and the Eichler integral E1 is defined in (IV.5.5).

The paper is organized as follows. In Section 2, we review basic results on special
functions, non-holomorphic Eichler integrals, and “double error” functions. We also recall
the notion of quantum modular forms and introduce higher depth quantum modular
forms. In Section 3, the sl3 higher rank false theta function F (q) = 2

pF1(qp) + 2F2(qp)
is introduced. In Section 4, we determine the asymptotic behavior of F1 and F2 at
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roots of unity. In Section 5, we introduce multiple Eichler integrals and prove modular
transformation formulas for the double Eichler integrals. We also study certain linear
combinations of double Eichler integrals associated to Fj . In Section 6, we express special
double Eichler integrals as pieces of indefinite theta series. Based on results in this section,
in Section 7, we prove the main result, Theorem 1.1, on the quantum modularity of F .
Section 8 deals with the completion of certain indefinite theta functions of signature (2, 2)
associated to the companions of Fj proving Theorem IV.1.2. We conclude in Section 9
with several questions.
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IV.2 Preliminaries

IV.2.1 Special functions

Define, for u ∈ R,

E(u) := 2

∫ u

0
e−πw

2
dw.

This function is essentially the error function and its derivative is E′(u) = 2e−πu
2
. We

have the representation

E(u) = sgn(u)

(
1− 1√

π
Γ

(
1

2
, πu2

))
, (IV.2.1)
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where Γ(α, u) :=
∫∞
u e−wwα−1dw is the incomplete gamma function and where for u ∈ R,

we set

sgn(u) :=


1 if u > 0,

−1 if u < 0,

0 if u = 0.

We also require the functional equation of the incomplete Γ-function with α = 1
2

Γ

(
1

2
, u

)
= −1

2
Γ

(
−1

2
, u

)
+

1√
u
e−u. (IV.2.2)

Moreover, for u 6= 0, set

M(u) :=
i

π

∫
R−iu

e−πw
2−2πiuw

w
dw.

We have
M(u) = E(u)− sgn(u).

Thus, by (IV.2.1)

M(u) = −sgn(u)√
π

Γ

(
1

2
, πu2

)
. (IV.2.3)

This implies that the following bound holds

|M(u)| ≤ 2e−πu
2
.

We next turn to two-dimensional analogues, following [1] (using slightly different
notation). Define E2 : R× R2 → R by (throughout we use bold letters for vectors and
denote their components using subscripts)

E2(κ;u) :=

∫
R2

sgn (w1) sgn (w2 + κw1) e−π((w1−u1)2+(w2−u2)2)dw1dw2.

Note that
E2(κ;−u) = E2(κ;u).

Moreover, also following [1], for u2, u1 − κu2 6= 0 we set

M2(κ;u) := − 1

π2

∫
R−iu2

∫
R−iu1

e−πw
2
1−πw2

2−2πi(u1w1+u2w2)

w2(w1 − κw2)
dw1dw2.
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Then we have

M2 (κ;u) = E2 (κ;u)− sgn (u2)M (u1)

− sgn (u1 − κu2)M

(
u2 + κu1√

1 + κ2

)
− sgn (u1) sgn (u2 + κu1) .

(IV.2.4)

Note that (IV.2.4) extends the definition of M2 to u2 = 0 or u1 = κu2. With x1 :=
u1 − κu2, x2 := u2, a direct calculation shows that

M2 (κ;u) = E2 (κ;x1 + κx2, x2) + sgn(x1) sgn(x2)

− sgn(x2)E(x1 + κx2)− sgn(x1)E

(
κx1√
1 + κ2

+
√

1 + κ2x2

)
.

We have the first partial derivatives

M
(0,1)
2 (κ;u) =

2√
1 + κ2

e
−π(u2+κu1)

2

1+κ2 M

(
u1 − κu2√

1 + κ2

)
, (IV.2.5)

M
(1,0)
2 (κ;u) = 2e−πu

2
1M(u2) +

2κ√
1 + κ2

e
−π(u2+κu1)

2

1+κ2 M

(
u1 − κu2√

1 + κ2

)
, (IV.2.6)

and the limiting behavior (cf. [1, Proposition 3.3, iii])

M2 (κ;λu) ∼ − e−πλ
2(u21+u22)

λ2π2u2(u1 − κu2)
(as λ→∞). (IV.2.7)

Lemma IV.2.1. For u3, u4 + κu3 6= 0, we have the following limits

lim
ε→0+

E2

(
εκ;u1, εu2 + ε−1u3

)
= sgn(u3)E(u1),

lim
ε→0+

E2

(
κ; εu1 + ε−1u3, εu2 + ε−1u4

)
= sgn(u3) sgn(u4 + κu3).

Proof. We only prove the first statement, the second follows analogously. We may
compute the limit inside the integral due to the convergence of the dominating integral∫
R2 e

−π(w2
1+w2

2)dw = 1 to obtain

lim
ε→0+

E2

(
εκ;u1, εu2 + ε−1u3

)
=

∫
R2

e−π(w
2
1+w2

2) sgn (w1 + u1) lim
ε→0+

sgn (u3 + ε (w2 + εκw1 + εu2 + εκu1)) dw2dw1

=

∫
R
e−πw

2
1 sgn (w1 + u1)

∫
R
e−πw

2
2 sgn (u3) dw2dw1 = sgn(u3)E(u1).

64



CHAPTER IV. HIGHER DEPTH QUANTUM MODULAR FORMS

IV.2.2 Euler-Maclaurin summation formula

We now state a special case of the Euler-Maclaurin summation formula. We only give
it in the two-dimensional case; the one-dimensional case can be concluded by viewing the
second variable as constant.

Let Bm(x) be the m-th Bernoulli polynomial defined by text

et−1 =:
∑

m≥0Bm(x) t
m

m! . We
also require

Bm(1− x) = (−1)mBm(x).

The Euler-Maclaurin summation formula implies that, for α ∈ R2, F : R2 → R a
C∞-function which has rapid decay, we have (generalizing a result of [25] to include shifts
by α)∑
n∈N2

0

F ((n+α)t) ∼ IF
t2
−
∑
n2≥0

Bn2+1(α2)

(n2 + 1)!

∫ ∞
0

F (0,n2)(x1, 0)dx1t
n2−1

−
∑
n1≥0

Bn1+1(α1)

(n1 + 1)!

∫ ∞
0

F (n1,0)(0, x2)dx2t
n1−1 +

∑
n1,n2≥0

Bn1+1(α1)

(n1 + 1)!

Bn2+1(α2)

(n2 + 1)!
F (n1,n2)(0, 0)tn1+n2 ,

(IV.2.8)

where IF :=
∫∞

0

∫∞
0 F (x)dx1dx2. Here by ∼ we mean that the difference between the

left- and the right-hand side is O(tN ) for any N ∈ N.

IV.2.3 Shimura’s theta functions

We require transformation laws of certain theta functions studied, for example, by
Shimura [11]. For ν ∈ {0, 1}, h ∈ Z, N,A ∈ N, with A|N , N |hA, define

Θν(A, h,N ; τ) :=
∑
m∈Z

m≡h (modN)

mνq
Am2

2N2 . (IV.2.9)

Recall the following modular transformation

Θν(A, h,N ;Mτ) = e

(
abAh2

2N2

)(
2Ac

d

)
ε−1
d (cτ + d)

1
2

+νΘν(A, ah,N ; τ) (IV.2.10)

for M =
(
a b
c d

)
∈ Γ0(2N) with 2|b. Here e(x) := e2πix, for odd d, εd = 1 or i, depending

on whether d ≡ 1 (mod 4) or d ≡ 3 (mod 4). Also note that if h1 ≡ h2 (modN), then
we have

Θν(A, h1, N ; τ) = Θν(A, h2, N ; τ), Θν(A,−h,N ; τ) = (−1)νΘν(A, h,N ; τ).
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IV.2.4 Indefinite theta functions

We begin by defining (possibly indefinite) theta functions.

Definition IV.2.2. Let A ∈ Mm(Z) be a non-singular symmetric m × m matrix,
P : Rm → C and a ∈ Qm. We define the associated theta function by (τ = u+ iv)

ΘA,P,a(τ) :=
∑

n∈a+Zm
P
(√
vn
)
q

1
2
nTAn.

The following theorem shows that under certain conditions ΘA,P,a is modular.

Theorem IV.2.3 (Vignéras, [22]). Suppose that A ∈Mm(Z) is non-singular and that P
satisfies the following conditions:

1. For any differential operator D of order two and any polynomial R of degree at most two,
we have that D(w)(P (w)eπQ(w)) and R(w)P (w)eπQ(w) belong to L2(Rm) ∩ L1(Rm).

2. For some λ ∈ Z the Vignéras differential equation holds:(
D − 1

4π
∆

)
P = λP.

Here we define the Euler and Laplace operators (w := (w1, . . . , wm), ∂w := ( ∂
∂w1

, . . . ∂
∂wm

)T )

D := w∂w and ∆ = ∆A−1 := ∂TwA
−1∂w.

Then, assuming that ΘA,P,a is absolutely locally convergent, ΘA,P,a is modular of weight
λ+ m

2 for some subgroup of SL2(Z).

IV.2.5 Quantum modular forms

We already motivated quantum modular forms in the introduction. The formal
definition is as follows [27].

Definition IV.2.4. A function f : Q → C (here Q ⊆ Q) is called a quantum modular
form of weight k ∈ 1

2Z and multiplier χ for a subgroup Γ of SL2(Z) and quantum set Q
if for M =

(
a b
c d

)
∈ Γ, the function

f(τ)− χ(M)−1(cτ + d)−kf(Mτ)

can be extended to an open subset of R and is real-analytic there. We denote the vector
space of such forms by Qk(Γ, χ).
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Remark 6. Zagier also considered strong quantum modular forms. Here one is looking at
asymptotic expansions instead of just values.

The introduction already gives examples of quantum modular forms. As mentioned
there, the functions Fj,p satisfy modular type transformations making them quantum
modular forms. More generally, for f ∈ Sk(Γ, χ), the space of cusp forms of weight k
transforming as

f(Mτ) = (cτ + d)kχ(M)f(τ)

for M =
(
a b
c d

)
∈ Γ ⊂ SL2(Z) and χ some multiplier, we set, for d

c ∈ Q,

If (τ) :=

∫ i∞

−τ

f(w)

(−i(w + τ))2−k dw, rf, d
c
(τ) :=

∫ i∞

d
c

f(w)

(−i(w + τ))2−k dw. (IV.2.11)

For weight k = 1
2 , we allow f ∈ M 1

2
(Γ, χ), the space of holomorphic modular forms

of weight 1
2 . To state the modularity properties of If , we let Γ∗ := PΓP−1, where

P :=
(−1 0

0 1

)
. The proof of the following lemma follows along the same lines as the proof

of Theorem IV.5.1 below.

Lemma IV.2.5. We have the transformation, for M ∈ Γ∗,

If (τ)− χ−1 (M∗) (cτ + d)k−2If (Mτ) = rf, d
c
(τ).

The function If is defined on H ∪ Q whereas rf, d
c

exists on all of R \ {−d
c} and is

real-analytic there. If f ∈ Sk(Γ, χ), then rf, d
c

exists on R.

IV.2.6 Higher Depth Quantum modular forms

We next turn to generalizations of quantum modular forms.

Definition IV.2.6. A function f : Q → C (Q ⊂ Q) is called a quantum modular form of
depth N ∈ N, weight k ∈ 1

2Z, multiplier χ, and quantum set Q for Γ if for M =
(
a b
c d

)
∈ Γ

f(τ)− χ(M)−1(cτ + d)−kf(Mτ) ∈
⊕
j

QNjκj (Γ, χj)O(R),

where j runs through a finite set, κj ∈ 1
2Z, Nj ∈ N with maxj(Nj) = N − 1, the χj are

characters, O(R) is the space of real-analytic functions on R ⊂ R which contains an open
subset of R, Q1

k(Γ, χ) := Qk(Γ, χ), Q0
k(Γ, χ) := 1, and QNk (Γ, χ) denotes the space of

quantum modular forms of weight k, depth N , multiplier χ for Γ.
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Remark 7. Again one can consider higher depth strong quantum modular forms by looking
at asymptotic expansions instead of values. The examples of this paper satisfiy this
stronger property.

Example IV.2.7. For f1 ∈ Q1
k1

(Γ1, χ1) and f2 ∈ Q1
k2

(Γ2, χ2), we have that f1f2 ∈
Q2
k1+k2

(Γ1 ∩ Γ2, χ1χ2).

IV.3 A rank two false theta function

We briefly recall a construction from [5,8,10]. For p ∈ N≥2, there is a vertex operator
algebra W (p)A2 associated to the simple Lie algebra sl3 (more precisely, to its root lattice
of type A2). The character formula of W (p)Q, where Q is any ADE root lattice, was
proposed in [10] (note that some arguments in [10] are not completely rigorous) and
further studied in [5, 8, 10]; see also [2]. Letting ζj := e2πizj , we have [5, 8]

η(τ)2ch[W (p)A2 ](τ,z) =
∑

m1,m2∈Z

q
p

((
m1− 1

p

)2
+
(
m2− 1

p

)2
−
(
m1− 1

p

)(
m2− 1

p

))
(
1− ζ−1

1

) (
1− ζ−1

2

) (
1− ζ−1

1 ζ−1
2

)
×
(
ζm1−1

1 ζm2−1
2 − ζ−m1+m2−1

1 ζm2−1
2 − ζm1−1

1 ζ−m2+m1−1
2

+ ζ−m2−1
1 ζ−m2+m1−1

2 + ζ−m1+m2−1
1 ζ−m1−1

2 − ζ−m2−1
1 ζ−m1−1

2

)
.

The six term expression in the numerator comes from the summation over the Weyl
group W of sl3 which is isomorphic to S3. Thanks to Weyl’s character formula, the
rational z-part is in fact a Laurent polynomial. There are two important operations on
this character:

(1) taking the limit z = (z1, z2)→ (0, 0), yielding a modular form [5];

(2) taking the constant term

ch[W 0(p)A2 ](τ) := CTζ1,ζ2ch[W (p)A2 ](τ,z),

which computes the character of another vertex algebra. It was shown in [5] that

ch[W 0(p)A2 ](τ) =
F (q)

η(τ)2
.

Note that formulas like η(τ)rank(Q)ch[W 0(p)Q](τ), where Q is any root lattice, are of
interest beyond vertex algebra theory [5,8]. The coefficients appearing in the q-expansion
are essentially dimensions of the zero weight spaces of finite-dimensional irreducible
representations of simple Lie algebras (for the recent progress in understanding these
numbers see [18]).
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Remark 8. Modular-type properties of regularized (or Jacobi) characters, in particular
ch[W 0(p)εA2

](τ), were investigated in [8] (see also [7]). There are two important differences
between the current work and [8]. In this paper, the value of the Jacobi parameter ε is
always zero whereas in [8] it is necessarily non-zero. Secondly, there seems to be no clear
connection between transformation formulas appearing in [8] and mock modular forms.
On the other hand, here we make this connection quite explicit by virtue of generalized
Eichler integrals (see Section 5).

Let n1 = m1 −m2, n2 = m2 in (IV.1.7) and then change n1 7→ 3n1. Then we have,
with F given in (IV.1.7),

1

2
F (q) = f1(q) + f2(q) + f3(q),

where, with Q(x) := 3x2
1 + 3x1x2 + x2

2, we define

f1(q) := q
1
p

∑∗

n1,n2≥0

n2q
pQ(n)

(
q−3n1−2n2 − q3n1+2n2

)
,

f2(q) := q
1
p

∑∗

n1,n2≥0

n2q
pQ(n)

(
qn2 − q−n2

)
,

f3(q) := q
1
p

∑∗

n1,n2≥0

n2q
pQ(n)

(
q3n1+n2 − q−3n1−n2

)
.

Here
∑∗ means that the n1 = 0 term is weighted by 1

2 . We then rewrite

f1(q) = −
∑

n1,n2≥0

(
n2 +

1

p

)
q
pQ
(
n1+1,n2+ 1

p

)
+

∑
n1,n2≥0

(
n2 + 1− 1

p

)
q
pQ
(
n1,n2+1− 1

p

)

+
1

p

∑
n1,n2≥0

q
pQ
(
n1+1,n2+ 1

p

)
+

1

p

∑
n1,n2≥0

q
pQ
(
n1,n2+1− 1

p

)
− 1

2

∑
m≥0

(
m+

1

p

)
q
p
(
m+ 1

p

)2

− 1

2

∑
m≥0

(
m+ 1− 1

p

)
q
p
(
m+1− 1

p

)2
+

1

2p

∑
m≥0

q
p
(
m+ 1

p

)2
− 1

2p

∑
m≥0

q
p
(
m+1− 1

p

)2
,

f2(q) =
∑

n1,n2≥0

(
n2 +

2

p

)
q
pQ
(
n1+1− 1

p
,n2+ 2

p

)
−

∑
n1,n2≥0

(
n2 + 1− 2

p

)
q
pQ
(
n1+ 1

p
,n2+1− 2

p

)

− 2

p

∑
n1,n2≥0

q
pQ
(
n1+1− 1

p
,n2+ 2

p

)
− 2

p

∑
n1,n2≥0

q
pQ
(
n1+ 1

p
,n2+1− 2

p

)

+
q

3
4p

2

∑
m≥1

mq
p
(
m− 1

2p

)2
+
q

3
4p

2

∑
m≥1

mq
p
(
m+ 1

2p

)2
,
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f3(q) =
∑

n1,n2≥0

(
n2 + 1− 1

p

)
q
pQ
(
n1+ 1

p
,n2+1− 1

p

)
−

∑
n1,n2≥0

(
n2 +

1

p

)
q
pQ
(
n1+1− 1

p
,n2+ 1

p

)

+
1

p

∑
n1,n2≥0

q
pQ
(
n1+ 1

p
,n2+1− 1

p

)
+

1

p

∑
n1,n2≥0

q
pQ
(
n1+1− 1

p
,n2+ 1

p

)

− q
3
4p

2

∑
m≥1

mq
p
(
m+ 1

2p

)2
− q

3
4p

2

∑
m≥1

mq
p
(
m− 1

2p

)2
.

We thus obtain

F (q) =
2

p
F1 (qp) + 2F2 (qp)

with

F1(q) :=
∑
α∈S

ε(α)
∑

n∈α+N2
0

qQ(n) +
1

2

∑
m∈Z

sgn

(
m+

1

p

)
q

(
m+ 1

p

)2
, (IV.3.1)

where

S :=

{(
1− 1

p
,

2

p

)
,

(
1

p
, 1− 2

p

)
,

(
1,

1

p

)(
0, 1− 1

p

)
,

(
1

p
, 1− 1

p

)
,

(
1− 1

p
,

1

p

)}
,

and for α
(
modZ2

)
, we set

ε(α) :=

{
−2 if α ∈

{(
1− 1

p ,
2
p

)
,
(

1
p , 1−

2
p

)}
,

1 otherwise.

Moreover

F2(q) :=
∑
α∈S

η(α)
∑

n∈α+N2
0

n2q
Q(n) − 1

2

∑
m∈Z

∣∣∣∣m+
1

p

∣∣∣∣ q(m+ 1
p

)2
, (IV.3.2)

where for α
(
modZ2

)
, we let

η(α) :=

{
1 if α ∈

{(
1− 1

p ,
2
p

)
,
(

0, 1− 1
p

)
,
(

1
p , 1−

1
p

)}
,

−1 otherwise.

IV.4 Asymptotic behavior of F1 and F2

In this section we determine the asymptotic behavior of F (e2πih
k
−t) (h, k ∈ Z with

k > 0 and gcd(h, k) = 1) as t→ 0+ and in particular show that the limit exists.
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IV.4.1 The function F1

We decompose
F1(q) = F1,1(q) + F1,2(q),

where

F1,1(q) :=
∑
α∈S

ε(α)
∑

n∈α+N2
0

qQ(n), F1,2(q) :=
1

2

∑
m∈ 1

p
+Z

sgn(m)qm
2
.

We first study the asymptotic behavior of F1,1, rewriting it in a shape in which we can

apply the Euler-Maclaurin formula (IV.2.8). For this, let n 7→ ` + nkpδ with n ∈ N2
0,

0 ≤ ` ≤ kp
δ − 1, where δ := gcd(h, p). Here by the inequality we mean that it should hold

componentwise. It is not hard to see that, with F1(x) := e−Q(x),

F1,1

(
e2πih

k
−t
)

=
∑
α∈S

ε(α)
∑

0≤`≤ kp
δ
−1

e2πih
k
Q(`+α)

∑
n∈ δ

kp
(`+α)+N2

0

F1

(
kp

δ

√
tn

)
.

The main term in (IV.2.8) is then

δ2

k2p2t
IF1

∑
α∈S

ε(α)
∑

0≤`≤ kp
δ
−1

e2πih
k
Q(`+α). (IV.4.1)

It is not hard to see that one may let ` run modulo kp
δ (again meant component-

wise). We write ` = N + kν with N running modulo k, ν modulo p
δ , and a ∈

{(−1, 2) , (1,−2) , (0, 1) , (0,−1) , (1,−1) , (−1, 1)} such that α− a
p ∈ Z2. We then com-

pute that the sum over ` in (IV.4.1) equals (since Q(a) = 1)

e
2πi h

p2k

∑
N (mod k)

e
2πih
pk (3(pN2

1 +2a1N1)+3(pN1N2+a2N1+a1N2)+pN2
2 +2a2N2)

×
∑

ν (mod p
δ )

e
2πih/δ
p/δ

((6a1+3a2)ν1+(2a2+3a1)ν2)
.

Since gcd(hδ ,
p
δ ) = 1, the inner sum vanishes unless p

δ | 3(2a1 + a2) and p
δ | (2a2 + 3a1). If

3|pδ , then in particular 3 | a2. This is however not satisfied for elements in S . If 3 - pδ ,
then we easily obtain that a1 ≡ a2 ≡ 0

(
mod p

δ

)
, implying that p

δ = 1. We are thus left
to show that (pδ = 1)∑
α∈S

ε (α)
∑

N (mod k)

e
2πih/δ
k (3(pN2

1 +2a1N1)+3(pN1N2+a2N1+a1N2)+pN2
2 +2a2N2) = 0. (IV.4.2)
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Changing N 7→N − ap, with p the inverse of p modulo k (note that p
δ = 1 implies that

gcd(p, k) = 1), the sum on N equals

e−
2πiph/δ

k

∑
N (mod k)

e
2πih
k
Q(N),

which is independent of a. Thus (IV.4.2) holds.
The second term in (IV.2.8) is

−
∑
α∈S

ε(α)
∑

0≤`≤ kp
δ
−1

e2πih
k
Q(`+α)

∑
n2≥0

Bn2+1

(
δ(`2+α2)

kp

)
(n2 + 1)!

∫ ∞
0
F (0,n2)

1 (x1, 0)dx1

(
kp
√
t

δ

)n2−1

.

(IV.4.3)
We claim that the contribution from those n2 which are even vanishes. This follows, once
we show that, for α ∈ S ,∑
0≤`≤ kp

δ
−1

(
e2πih

k
Q(`+α)B2n2+1

(
δ (`2 + α2)

kp

)
+e2πih

k
Q(`+1−α)B2n2+1

(
δ (`2 + 1− α2)

kp

))
=0.

This is seen to be true by the change of variables ` 7→ −`+ (−1 + kp
δ )1 for the second

term.
Arguing in the same way for the contribution from n2 odd, we obtain that (IV.4.3)

equals

−2
∑
α∈S ∗

ε(α)
∑

0≤`≤ kp
δ
−1

e2πih
k
Q(`+α)

∑
n2≥0

B2n2+2

(
δ(`2+α2)

kp

)
(2n2 + 2)!

∫ ∞
0
F (0,2n2+1)

1 (x1, 0)dx1

(
k2p2

δ2
t

)n2

,

where

S ∗ :=

{(
1− 1

p
,

2

p

)
,

(
0, 1− 1

p

)
,

(
1

p
, 1− 1

p

)}
.

The third term in (IV.2.8) is treated in the same way, yielding the contribution

−2
∑
α∈S ∗

ε(α)
∑

0≤`≤ kp
δ
−1

e2πih
k
Q(`+α)

∑
n1≥0

B2n1+2

(
δ(`1+α1)

kp

)
(2n1 + 2)!

∫ ∞
0
F (2n1+1,0)

1 (0, x2)dx2

(
k2p2

δ2
t

)n1

.

The final term in (IV.2.8) equals

72



CHAPTER IV. HIGHER DEPTH QUANTUM MODULAR FORMS

∑
α∈S

ε(α)
∑

0≤`≤ kp
δ
−1

e2πih
k
Q(`+α)

×
∑

n1,n2≥0

Bn1+1

(
δ(`1+α1)

kp

)
(n1 + 1)!

Bn2+1

(
δ(`2+α2)

kp

)
(n2 + 1)!

F (n1,n2)
1 (0, 0)

(
kp
√
t

δ

)n1+n2

.

Arguing in the same way as before this equals

2
∑
α∈S ∗

ε(α)
∑

0≤`≤ kp
δ
−1

e2πih
k
Q(`+α)

×
∑

n1,n2≥0
n1≡n2 (mod 2)

Bn1+1

(
δ(`1+α1)

kp

)
(n1 + 1)!

Bn2+1

(
δ(`2+α2)

kp

)
(n2 + 1)!

F (n1,n2)
1 (0, 0)

(
kp
√
t

δ

)n1+n2

.

The function F1,2 is treated similarly, yielding, with F2(x) := e−x
2
,

−
∑

0≤r≤ kp
δ
−1

e
2πih

k

(
r+ 1

p

)2 ∑
m≥0

B2m+1

(
δ
(
r+ 1

p

)
kp

)
(2m+ 1)!

F (2m)
2 (0)

(
k2p2

δ2
t

)m
.

IV.4.2 The function F2

Since the calculations are similar to those for F1, we skip some of the details. Decom-
pose

F2(q) = F2,1(q) + F2,2(q),

with

F2,1(q) :=
∑
α∈S

η(α)
∑

n∈α+N2
0

n2q
Q(n), F2,2(q) := −1

2

∑
m∈ 1

p
+Z

|m|qm2
.

We first study the asymptotic behavior of F2,1. Arguing as for F1,1, we have

F2

(
e2πih

k
−t
)

=
1√
t

∑
α∈S

η(α)
∑

0≤`≤ kp
δ
−1

e2πih
k
Q(`+α)

∑
n∈ δ

kp
(`+α)+N2

0

G1

(
kp

δ

√
tn

)
,

with G1(x) := x2F1(x). The Euler-Maclaurin main term is

1

t
3
2

(
δ

kp

)2

IG1
∑
α∈S

η(α)
∑

` (mod kp
δ )

e2πih
k
Q(`+α).
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As in Subsection IV.4.1, one can show that this vanishes.
The second term in the Euler-Maclaurin summation formula is

−2
∑
α∈S ∗

∑
0≤`≤ kp

δ
−1

e2πih
k
Q(`+α)

∑
n2≥1

B2n2+1

(
δ(`2+α2)

kp

)
(2n2 + 1)!

(IV.4.4)

×
∫ ∞

0
G(0,2n2)

1 (x1, 0)dx1

(
kp

δ

)2n2−1

tn2−1,

again pairing α and 1−α and using that G1(x1, 0) = 0.
In the same way we obtain that the third term in the Euler-Maclaurin summation

formula is

−2
∑
α∈S ∗

∑
0≤`≤ kp

δ
−1

e2πih
k
Q(`+α)

∑
n1≥0

B2n1+1

(
δ(`1+α1)

kp

)
(2n1 + 1)!

(IV.4.5)

×
∫ ∞

0
G(2n1,0)

1 (0, x2)dx2

(
kp

δ

)2n1−1

tn1−1.

The final term in Euler-Maclaurin evaluates as

2
∑
α∈S ∗

∑
0≤`≤ kp

δ
−1

e2πih
k
Q(`+α)

×
∑

n1,n2≥0
n1 6≡n2 (mod 2)

Bn1+1

(
δ(`1+α1)

kp

)
(n1 + 1)!

Bn2+1

(
δ(`2+α2)

kp

)
(n2 + 1)!

G(n1,n2)
1 (0, 0)

(
kp

δ

)n1+n2

t
n1+n2−1

2 ,

again pairing α with 1−α.
We next determine those terms of F2,1 that grow as t → 0+. Inspecting the terms

above we see that this comes from the n1 = 0 term of (IV.4.5) and is given by

− 2δ

kpt

∑
α∈S ∗

∑
0≤`≤ kp

δ
−1

B1

(
δ(`1 + α1)

kp

)
e2πih

k
Q(`+α)

∫ ∞
0
G1(0, x2)dx2. (IV.4.6)

Using that G1(0, x2) = x2e
−x22 =: G2(x2), we obtain that (IV.4.6) equals

− 2δ

kpt
IG2

∑
α∈S ∗

∑
0≤`≤ kp

δ
−1

B1

(
δ(`1 + α1)

kp

)
e2πih

k
Q(`+α).
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Turning to F2,2, its Euler-Maclaurin main term is

− δ

kpt
IG2

∑
r (mod kp

δ )

e
2πih

k

(
r+ 1

p

)2
. (IV.4.7)

Arguing as before, the second term in the Euler-Maclaurin summation formula equals

∑
0≤r≤ kp

δ
−1

e
2πih

k

(
r+ 1

p

)2 ∑
m≥0

B2m+2

(
δ(`+ 1

p
)

kp

)
(2m+ 2)!

G(2m+1)
2 (0)

(
kp

δ

)2m+1

tm.

To see that all terms that grow as t→ 0+ cancel, we need to prove that

∑
r (mod kp

δ )

e
2πih

k

(
r+ 1

p

)2
= −2

∑
α∈S ∗

∑
0≤`≤ kp

δ
−1

B1

(
δ(`1 + α1)

kp

)
e2πih

k
Q(`+α). (IV.4.8)

To show (IV.4.8), we first assume that p
δ 6∈ {1, 2}. Writing ` = N + kν, 0 ≤ N < k,

0 ≤ ν < p
δ and a = pα, we obtain that the sum on ` equals

e
2πi h

p2k
Q(a) ∑

0≤N<k

e
2πih
pk (3(pN2

1 +2a1N1)+3(pN1N2+a2N1+a1N2)+pN2
2 +2a2N2) (IV.4.9)

×
∑

0≤ν< p
δ

B1

δ
(
N1 + kν1 + a1

p

)
kp

 e
2πi

h/δ
p/δ

((6a1+3a2)ν1+(2a2+3a1)ν2)
.

The sum on ν2 vanishes unless p
δ |(2a2 + 3a1). It is not hard to see that (under the

assumption that p
δ 6∈ {1, 2}) this is not satisfied for elements in pS ∗.

We next assume that p
δ = 1. It is not hard to see that

e
2πih

k
Q
(
k−`1−1+1− 1

p
,`2+3`1+1+ 2

p

)
= e

2πih
k
Q
(
`1+ 1

p
,`2+1− 1

p

)
. (IV.4.10)

This then implies that the contribution of the first and third element in S ∗ cancel due to
a negative sign from the Bernoulli polynomial and we can shift the sum in `2 by integers.
Thus the right-hand side of (IV.4.8) becomes

− 2
∑

0≤`<k
B1

(
`1
k

)
e

2πih
k
Q
(
`1,`2+1− 1

p

)
. (IV.4.11)
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Now one can show that

e
2πih

k
Q
(
k−`1,`2+3`1+1− 1

p

)
= e

2πih
k
Q
(
`1,`2+1− 1

p

)
. (IV.4.12)

To finish the claim (IV.4.8), we assume, without loss of generality, that k is odd. We
split the sum in (IV.4.11), substitute (`1, `2) 7→ (k − `1, `2 + 3`1) in the second part and
use (IV.4.12) to obtain

−2
∑

0≤`<k
B1

(
`1
k

)
e

2πih
k
Q
(
`1,`2+1− 1

p

)

= −2

 ∑
0≤`1≤ 1

2
(k−1)

`2 (mod k)

+
∑

1
2

(k+1)≤`1<k
`2 (mod k)

B1

(
`1
k

)
e

2πih
k
Q
(
`1,`2+1− 1

p

)

= −2
∑

0≤`1≤ 1
2

(k−1)

`2 (mod k)

B1

(
`1
k

)
e

2πih
k
Q
(
`1,`2+1− 1

p

)
− 2

∑
0<`1≤ 1

2
(k−1)

`2 (mod k)

B1

(
1− `1

k

)
e

2πih
k
Q
(
`1,`2+1− 1

p

)

= −2B1(0)
∑

`2 (mod k)

e
2πih

k
Q
(

0,`2+1− 1
p

)
=

∑
`2 (mod k)

e
2πih

k

(
`2+1− 1

p

)2
.

The case p
δ = 2 is done similarly.

IV.5 Companions in the lower half plane

In this section we investigate multivariable Eichler integrals.

IV.5.1 Multiple Eichler integrals

Let fj ∈ Skj (Γ, χj); if kj = 1
2 we also allow fj ∈M 1

2
(Γ, χj). Define the double Eichler

integral

If1,f2(τ) :=

∫ i∞

−τ

∫ i∞

w1

f1(w1)f2(w2)

(−i(w1 + τ))2−k1(−i(w2 + τ))2−k2 dw2dw1,

and the multiple error of modularity

rf1,f2, dc
(τ) :=

∫ i∞

d
c

∫ d
c

w1

f1(w1)f2(w2)

(−i(w1 + τ))2−k1(−i(w2 + τ))2−k2 dw2dw1.
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Theorem IV.5.1. We have, for M =
(
a b
c d

)
∈ Γ∗,

If1,f2(τ)− χ−1
1 (M∗)χ−1

2 (M∗) (cτ + d)k1+k2−4If1,f2(Mτ) = rf1,f2, dc
(τ) + If1(τ)rf2, dc

(τ).

(IV.5.1)
Moreover rf1,f2, dc

∈ O(R\{−d
c}). If fj ∈ Skj (Γ, χj) (for j = 1, 2), then rf1,f2, dc

∈ O(R).

Proof of Theorem IV.5.1. For simplicity, we assume that 1
2 ≤ kj ≤ 2 and that f1, f2 are

cuspidal. The proof in the case that f1 or f2 are not cuspidal and of weight 1
2 is basically

the same; we then require the bound

fj

(
iwj +

d

c

)
� 1 + w

− 1
2

j .

A direct calculation gives that, for M ∈ Γ∗,

If1,f2(Mτ) = χ1 (M∗)χ2 (M∗) (cτ + d)4−k1−k2

×
∫ d

c

−τ

∫ d
c

w1

f1(w1)f2(w2)

(−i(w1 + τ))2−k1(−i(w2 + τ))2−k2 dw2dw1.

The transformation (IV.5.1) now follows by splitting∫ d
c

−τ

∫ d
c

w1

=

∫ i∞

−τ

∫ i∞

w1

+

∫ i∞

d
c

∫ w1

d
c

−
∫ i∞

−τ

∫ i∞

d
c

.

Using Lemma IV.2.5, we are left to show that rf1,f2, dc
is real-analytic on R which

follows once we prove that the following function is real-analytic∫ ∞
0

∫ w1

0

f1

(
iw1 + d

c

)
f2

(
iw2 + d

c

)(
w1 − i

(
τ + d

c

))2−k1 (
w2 − i

(
τ + d

c

))2−k2 dw2dw1. (IV.5.2)

We use that for wj ≥ 1

fj

(
iwj +

d

c

)
� e−ajwj aj ∈ R+, (IV.5.3)

and for 0 < wj ≤ 1 (the implied constant and bj may depend on c)

fj

(
iwj +

d

c

)
� w

−kj
j e

−
bj
wj bj ∈ R+. (IV.5.4)
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To show real-analycity of (IV.5.2) on R, we split it into 3 pieces. Firstly, set

I1 :=

∫ ∞
1

∫ w1

1

f1

(
iw1 + d

c

)
f2

(
iw2 + d

c

)(
w1 − i

(
τ + d

c

))2−k1 (
w2 − i

(
τ + d

c

))2−k2 dw2dw1.

Using (IV.5.3) and that w1 ≥ 1 easily gives the locally uniform bound

I1 �
∫ ∞

1

e−a1w1

w2−k1
1

dw1

∫ ∞
1

e−a2w2

w2−k2
2

dw2 � 1.

Next consider

I2 :=

∫ 1

0

∫ w1

0

f1

(
iw1 + d

c

)
f2

(
iw2 + d

c

)(
w1 − i

(
τ + d

c

))2−k1 (
w2 − i

(
τ + d

c

))2−k2 dw2dw1.

Using (IV.5.4) gives that

I2 �
∫ 1

0

e
− b1
w1

w2
1

dw1

∫ 1

0

e
− b2
w2

w2
2

dw2 � 1.

Finally, we set

I3 :=

∫ ∞
1

f1

(
iw1 + d

c

)(
w1 − i

(
τ + d

c

))2−k1 dw1

∫ 1

0

f2

(
iw2 + d

c

)(
w2 − i

(
τ + d

c

))2−k2 dw2.

Combining the above bounds gives again I3 � 1.

IV.5.2 Special multiple Eichler integrals of weight one

Define for α ∈ S ∗

E1,α(τ) := −
√

3

4

∫ i∞

−τ

∫ i∞

w1

θ1(α;w) + θ2(α;w)√
−i(w1 + τ)

√
−i(w2 + τ)

dw2dw1

with

θ1(α;w) :=
∑

n∈α+Z2

(2n1 + n2)n2e
3πi
2

(2n1+n2)2w1+
πin22w2

2 ,

θ2(α;w) :=
∑

n∈α+Z2

(3n1 + 2n2)n1e
πi
2

(3n1+2n2)2w1+
3πin21w2

2 .
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Moreover set

E1(τ) :=
∑
α∈S ∗

ε(α)E1,α(pτ), (IV.5.5)

Γp :=

{(
a b
c d

)
∈ Γ0(12p) : b ≡ 0 (mod 4p) , d ≡ ±1 (mod 2p)

}
.

Remark 9. Note that Γ∗p = Γp.

Remark 10. One can show that

E1(τ) = −
√

3

4p

∑
δ∈{0,1}

IΘ1(2p,1+pδ,2p; · ),Θ1(6p,3+3pδ,6p; · )(τ).

However, as this representation is not required for the remainder of the paper, we do not
provide a proof of this identity.

Proposition IV.5.2. We have, for M =
(
a b
c d

)
∈ Γp,

E1(τ)−
(
−3

d

)
(cτ + d)−1E1(Mτ) =

12∑
j=1

(
rfj ,gj , dc

(τ) + Ifj (τ)rgj , dc
(τ)
)
,

where fj , gj are cusp forms of weight 3
2 (with some multiplier).

Proof. To use Theorem IV.5.1, we write θj in terms of Shimura’s theta functions (IV.2.9).
For θ1, we set ν1 := 2n1 + n2, ν2 := n2. Then ν1 ∈ 2α1 + α2 + Z, ν2 ∈ α2 + Z, and
ν1 − ν2 ∈ 2α1 + 2Z and we obtain

θ1(α;w) =
∑

ν∈(2α1+α2,α2)+Z2

ν1−ν2∈2α1+2Z

ν1ν2e
3πiν21w1

2
+
πiν22w2

2

=
∑

%∈{0,1}

∑
ν1∈2α1+α2+%+2Z

ν1e
3πiν21w1

2

∑
ν2∈α2+%+2Z

ν2e
πiν22w2

2 .

Summing then easily gives

∑
α∈S ∗

ε (α) θ1(α;w) =
1

p2

∑
A∈A

ε1 (A)
∑

ν1≡A1 (mod 2p)

ν1e
3πiν21w1

2p2
∑

ν2≡A2 (mod 2p)

ν2e
πiν22w2

2p2

=
1

p2

∑
A∈A

ε1 (A) Θ1

(
2p,A1, 2p;

3w1

p

)
Θ1

(
2p,A2, 2p;

w2

p

)
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with

A :={(0, 2) , (p, p+ 2) , (p− 1, p− 1) , (−1,−1) , (p+ 1, p− 1) , (1,−1)},

ε1(A) :=ε

(
A1 −A2

2p
,
A2

p

)
.

For θ2, we proceed similarly. Set ν1 = 3n1 + 2n2, ν2 = n1. Then ν1 ∈ 3α1 + 2α2 + Z,
ν2 ∈ α1 + Z, and ν1 − 3ν2 ∈ 2α2 + 2Z and we obtain

θ2(α;w) =
∑

ν∈(3α1+2α2,α1)+Z2

ν1−3ν2∈2α2+2Z

ν1ν2e
πiν21w1

2
+

3πiν22w2
2

=
∑

%∈{0,1}

∑
ν1∈3α1+2α2+%+2Z

ν1e
πiν21w1

2

∑
ν2∈α1+%+2Z

ν2e
3πiν22w2

2 .

Summing gives∑
α∈S ∗

ε (α) θ2(α;w) =
1

p2

∑
B∈B

ε2 (B)
∑

ν1≡B1 (mod 2p)

ν1e
πiν21w1

2p2
∑

ν2≡B2 (mod 2p)

ν2e
3πiν22w2

2p2

=
1

p2

∑
B∈B

ε2 (B) Θ1

(
2p,B1, 2p;

w1

p

)
Θ1

(
2p,B2, 2p;

3w2

p

)
with

B :={(p+ 1, p− 1), (1,−1), (p+ 2, p), (2, 0), (1, 1), (p+ 1, p+ 1)} ,

ε2(B) :=ε

(
B2 − 3B1

2p
,
B1

p

)
.

Combining the above yields that

E1 (τ) = −
√

3

4p

∑
A∈A

ε1(A)

∫ i∞

−τ

∫ i∞

w1

Θ1(2p,A1, 2p; 3w1)Θ1 (2p,A2, 2p;w2)√
−i(w1 + τ)

√
−i(w2 + τ)

dw2dw1

−
√

3

4p

∑
B∈B

ε2 (B)

∫ i∞

−τ

∫ i∞

w1

Θ1 (2p,B1, 2p;w1) Θ1 (2p,B2, 2p; 3w2)√
−i(w1 + τ)

√
−i(w2 + τ)

dw2dw1.

For M ∈ Γp, we have, using (IV.2.9) and (IV.2.10),

Θ1 (2p,A, 2p; `Mτ) = ±
(
`pc

d

)
ε−1
d (cτ + d)

3
2 Θ1(2p,A, 2p; `τ).

Theorem IV.5.1 then finishes the claim using that ε2
d = (−1

d ).
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IV.5.3 Special multiple Eichler integrals of weight two

Define for α ∈ S ∗

E2,α(τ) :=

√
3

8π

∫ i∞

−τ

∫ i∞

w1

2θ3(α;w)− θ4(α;w)√
−i(w1 + τ)(−i(w2 + τ))

3
2

dw2dw1

+

√
3

8π

∫ i∞

−τ

∫ i∞

w1

θ5(α;w)

(−i(w1 + τ))
3
2

√
−i(w2 + τ)

dw2dw1

with

θ3(α;w) :=
∑

n∈α+Z2

(2n1 + n2)e
3πi
2

(2n1+n2)2w1+
πin22w2

2 ,

θ4(α;w) :=
∑

n∈α+Z2

(3n1 + 2n2)e
πi
2

(3n1+2n2)2w1+
3πin21w2

2 ,

θ5(α;w) :=
∑

n∈α+Z2

n1e
πi
2

(3n1+2n2)2w1+
3πin21w2

2 .

We then set
E2(τ) :=

∑
α∈S ∗

E2,α(pτ).

Remark 11. Similarly as for E1, one can simplify E2 as

E2(τ) = −
√

3

8π

∑
B∈B

IΘ1(2p,B1,2p; · ),Θ0(6p,3B2,6p; · )(τ).

This function again transforms as a depth two quantum modular.

Proposition IV.5.3. We have, for M ∈ Γp,

E2(τ)−
(

3

d

)
(cτ + d)−2E2(Mτ) =

18∑
j=1

(
rfj ,gj , dc

(τ) + Ifj (τ)rgj , dc
(τ)
)
,

where fj and gj are holomorphic modular forms of weight 1
2 or cusp forms of weight 3

2 .

Proof. As in the proof of Proposition IV.5.2, we obtain∑
α∈S ∗

n∈α+Z2

(2n1 + n2)e
3πi
2

(2n1+n2)2w1+
πin22w2

2
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=
1

p

∑
A∈A

Θ1

(
2p,A1, 2p;

3w1

p

)
Θ0

(
2p,A2, 2p;

w2

p

)
,

∑
α∈S ∗

n∈α+Z2

(3n1 + n2)e
πi
2

(3n1+2n2)2w1+
3πin21w2

2

=
1

p

∑
B∈B

Θ1

(
2p,B1, 2p;

w1

p

)
Θ0

(
2p,B2, 2p;

3w2

p

)
,

∑
α∈S ∗

n∈α+Z2

n1e
πi
2

(3n1+2n2)2w1+ 3πi
2
n2
1w2 =

1

p

∑
B∈B

Θ0

(
2p,B1, 2p;

w1

p

)
Θ1

(
2p,B2, 2p;

3w2

p

)
.

The claim now again follows from Theorem IV.5.1 using (IV.2.9) and (IV.2.10).

IV.5.4 More on double Eichler integrals

We have an obvious map Sk(Γ, χ)→ Q2−k(Γ
∗, χ∗), where χ∗(M) := χ(M∗), which

assigns to f ∈ Sk(Γ, χ) its Eichler integral If , defined in (IV.2.11). Clearly, we also have
a map from Sk(Γ, χ)⊗ Sk(Γ, χ), actually from its symmetric square, to (Q2−k(Γ

∗, χ∗))2,
by mapping f1 ⊗ f2 to If1If2 . The double Eichler integral construction If1,f2 gives rise
to a map

Λ2 (Sk(Γ, χ)) −→ Q2
4−2k

(
Γ∗, χ∗2

)/
(Q2−k (Γ∗, χ∗))2 ,

where Λ2(S2−k(Γ, χ)) is the second exterior power of S2−k(Γ, χ). To see this, it suffices
to observe the simplest shuffle relation for iterated integrals

If1,f2 + If2,f1 = If1If2 .

Remark 12. It is now straightforward to consider even more general iterated Eichler
integrals (r ∈ N):

If1,...,fr :=

∫ i∞

−τ

∫ i∞

wr−1

· · ·
∫ i∞

w2

r∏
j=1

fj(wj)

(−i(wj + τ))2−kj
dw1 · · · dwr,

where the fj are cusp forms of weight kj ≥ 1
2 (or possibly holomorphic forms for weight

1
2). We do not pursue their (mock/quantum) modular properties here – we will address
this in our future work [4] (see also Section 9 for related comments).

IV.6 Indefinite theta functions

We next realize the double Eichler integrals studied in Section 5 as pieces of indefinite
theta functions.
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IV.6.1 The function E1 as an indefinite theta function

The next lemma rewrites E1(τ) := E1( τp ) in a shape to which one can apply the
Euler-Maclaurin summation formula.

Lemma IV.6.1. We have

E1(τ) =
1

2

∑
α∈S ∗

ε(α)
∑

n∈α+Z2

M2

(√
3;
√
v
(

2
√

3n1 +
√

3n2, n2

))
q−Q(n).

Proof. The claim follows, once we prove that

M2

(√
3;
√

3v(2n1 + n2),
√
vn2

)
= −
√

3

2
(2n1 + n2)n2q

Q(n)

∫ i∞

−τ

e
3πi
2

(2n1+n2)2w1√
−i(w1 + τ)

∫ i∞

w1

e
πin22w2

2√
−i(w2 + τ)

dw2dw1

−
√

3

2
(3n1 + 2n2)n1q

Q(n)

∫ i∞

−τ

e
πi
2

(3n1+2n2)2w1√
−i(w1 + τ)

∫ i∞

w1

e
3πin21w2

2√
−i(w2 + τ)

dw2dw1.

(IV.6.1)

For simplicity we only show (IV.6.1) for n1 6= 0. Since, by (IV.2.7),

lim
λ→∞

M2(κ;λu1, λu2) = 0,

we obtain, using (IV.2.5) and (IV.2.6),

M2(κ;u1, u2) = −
∫ ∞

1

∂

∂w1
M2(κ;w1u1, w1u2)dw1

= −
∫ ∞

1

(
u1M

(1,0)
2 (κ;w1u1, w1u2) + u2M

(0,1)
2 (κ;w1u1, w1u2)

)
dw1

= −2

∫ ∞
1

(
u1e
−πu21w2

1M(u2w1) +
u2 + κu1√

1 + κ2
e
−π(u2+κu1)

2w2
1

1+κ2 M

(
w1
u1 − κu2√

1 + κ2

))
dw1

= −
∫ ∞

1

(
u1e
−πu21w1M (u2

√
w1) +

u2 + κu1√
1 + κ2

e
−π(u2+κu1)

2w1
1+κ2 M

(
√
w1
u1 − κu2√

1 + κ2

))
dw1√
w1

(IV.6.2)

=
i√
2

∫ i∞

−τ

(
u1√
v
e
πiu21w1

2v q
u21
4vM

(√
−i(w1 + τ)

2v
u2

)

+
u2 + κu1√
(1 + κ2)v

e
πi(u2+κu1)

2w1
2(1+κ2)v q

(u2+κu1)
2

4(1+κ2)v M

(√
−i(w1 + τ)

2

u1 − κu2√
(1 + κ2)v

))
dw1√

−i(w1 + τ)
.
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Now write for N ∈ R+

M

(√
−i(w1 + τ)

2
N

)
=
iN√

2
q
N2

4

∫ i∞

w1

e
πiN2w2

2
dw2√

−i(w2 + τ)
.

Plugging this into (IV.6.2) easily yields that

M2(κ;u1, u2) = − u1

2
√
v

u2√
v
q
u21
4v

+
u22
4v

∫ i∞

−τ

e
πiu21w1

2v√
−i(w1 + τ)

∫ i∞

w1

e
πiu22w2

2v√
−i(w2 + τ)

dw2dw1

− u2 + κu1

2
√

(1 + κ2)v

u1 − κu2√
(1 + κ2)v

q
(u2+κu1)

2

4(1+κ2)v
+

(u1−κu2)
2

4(1+κ2)v

×
∫ i∞

−τ

e
πi(u2+κu1)

2w1
2(1+κ2)v√
−i(w1 + τ)

∫ i∞

w1

e
πi(u1−κu2)

2w2
2(1+κ2)v√
−i(w2 + τ)

dw2dw1.

From this it is not hard to conclude (IV.6.1).

IV.6.2 The function E2 as an indefinite theta function

We next write E2(τ) := E2( τp ) as a piece of a derivative of an indefinite theta function,
having an extra Jacobi variable.

Lemma IV.6.2. We have

E2(τ) =
1

4πi

∑
α∈S ∗

∑
n∈α+Z2

×
[
∂

∂z

(
M2

(√
3;
√

3v(2n1 + n2),
√
v

(
n2 −

2Im(z)

v

))
e2πin2z

)]
z=0

q−Q(n).

Proof. We first compute

1

2πi

[
∂

∂z

(
M2

(√
3;
√

3v (2n1 + n2) ,
√
v

(
n2 −

2Im(z)

v

))
e2πin2z

)]
z=0

= n2M2

(√
3;
√

3v (2n1 + n2) ,
√
vn2

)
+

1

2π
√
v
e−π(3n1+2n2)2vM

(√
3vn1

)
.

(IV.6.3)

We show below that

n2M2

(√
3;
√

3v(2n1 + n2),
√
vn2

)
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= −
√

3

2π
(2n1 + n2)

∫ ∞
2v

e−
3π
2

(2n1+n2)2w1

√
w1

∫ ∞
w1

e−
πn22w2

2

w
3
2
2

dw2dw1 (IV.6.4)

+

√
3

4π
(3n1 + 2n2)

∫ ∞
2v

e−
π
2

(3n1+2n2)2w1

√
w1

∫ ∞
w1

e−
3πn21w2

2

w
3
2
2

dw2dw1

− 1

2π
√
v
e−π(3n1+2n2)2vM

(√
3vn1

)
−
√

3n1

4π

∫ ∞
2v

e−
π
2

(3n1+2n2)2w1

w
3
2
1

∫ ∞
w1

e−
3πn21w2

2

w
1
2
2

dw2dw1.

Since the third term cancels the second term on the right-hand side of (IV.6.3) this then
implies the claim, using that∫ ∞

2v

e−2πM2w1

w
1
2
1

∫ ∞
w1

e−2πN2w2

w
3
2
2

dw2dw1

= −qM2+N2

∫ i∞

−τ

e2πiM2w1

(−i(w1 + τ))
1
2

∫ i∞

w1

e2πiN2w2

(−i(w2 + τ))
3
2

dw2dw1,∫ ∞
2v

e−2πM2w1

w
3
2
1

∫ ∞
w1

e−2πN2w2

w
1
2
2

dw2dw1

= −qN2+M2

∫ i∞

−τ

e2πiM2w1

(−i(w1 + τ))
3
2

∫ i∞

w1

e2πiN2w2

(−i(w2 + τ))
1
2

dw2dw1.

To prove (IV.6.4), we again, for simplicity, restrict to n1 6= 0.
Plugging in (IV.6.2) yields

M2

(√
3;
√

3v(2n1 + n2),
√
vn2

)
= −

∫ ∞
1

(√
3v(2n1 + n2)e−3πv(2n1+n2)2w1M (

√
vw1n2)

+
√
v(3n1 + 2n2)e−πv(3n1+2n2)2w1M

(√
3vw1n1

)) dw1√
w1
. (IV.6.5)

Using (IV.2.3) and (IV.2.2) the first term in (IV.6.5) multiplied by n2 gives

−
√

3v

2
√
π
|n2|(2n1 + n2)

∫ ∞
1

e−3πv(2n1+n2)2w1Γ

(
−1

2
, πvn2

2w1

)
dw1√
w1

+

√
3

π
(2n1 + n2)

∫ ∞
1

e−4πvQ(n1,n2)w1
dw1

w1
. (IV.6.6)

For the second term in (IV.6.5), we split

n2 =
1

2
(3n1 + 2n2)− 3

2
n1. (IV.6.7)
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The n1-term contributes to n2M2 as

3

4

√
v

π
|n1|(3n1 + 2n2)

∫ ∞
1

e−πv(3n1+2n2)2w1Γ

(
−1

2
, 3πvn2

1w1

)
dw1√
w1

−
√

3

2π
(3n1 + 2n2)

∫ ∞
1

e−4πvQ(n1,n2)w1
dw1

w1
. (IV.6.8)

We next use that for N ∈ N0, M ∈ N∫ ∞
1

e−4πN2vw1Γ

(
−1

2
, 4πvM2w1

)
dw1√
w1

=
1

2
√
πv|M |

∫ ∞
2v

e−2πN2w1

√
w1

∫ ∞
w1

e−2πM2w2

w
3
2
2

dw2dw1.

We use this to rewrite the first terms in (IV.6.6) and (IV.6.8). The first term in (IV.6.6)
is the first term on the right-hand side of (IV.6.4). Similarly, since n1 6= 0, the first term
in (IV.6.8) equals the second term in (IV.6.4). Now we combine the second terms in
(IV.6.6) and (IV.6.8), to get

√
3n1

2π

∫ ∞
1

e−4πvQ(n)w1
dw1

w1
. (IV.6.9)

Next we compute the contribution from the first term in (IV.6.7),

−
√
v

2
(3n1 + 2n2)2

∫ ∞
1

e−πv(3n1+2n2)2w1M
(√

3vw1n1

) dw1√
w1

=
1

2π
√
v

∫ ∞
1

∂

∂w1

(
e−πv(3n1+2n2)2w1

)M (√
3vw1n1

)
√
w1

dw1.

Using integration by parts, this becomes

− 1

2π
√
v
e−πv(3n1+2n2)2M

(√
3vn1

)
−
√

3n1

2π

∫ ∞
1

e−4πvQ(n1,n2)w1
dw1

w1

+
1

4π
√
v

∫ ∞
1

e−πv(3n1+2n2)2w1
M
(√

3vw1n1

)
w

3
2
1

dw1. (IV.6.10)

The second term now cancels (IV.6.9) and the first term equals the third term in (IV.6.4).
To rewrite the final term in (IV.6.10), we use that for M,N ∈ Z with N 6= 0∫ ∞
1

e−4πvM2w1
M
(
2
√
vw1N

)
w

3
2
1

dw1 = −2
√
vN

∫ ∞
2v

e−2πM2w1

w
3
2
1

∫ ∞
w1

e−2πN2w2

w
1
2
2

dw2dw1.

Thus the last term in (IV.6.10) gives the final term in (IV.6.4).

86



CHAPTER IV. HIGHER DEPTH QUANTUM MODULAR FORMS

IV.7 Asymptotic behavior of multiple Eichler integrals and
proof of Theorem IV.1.1

In this section, we asymptotically relate Fj and Ej .

IV.7.1 Asymptotic behavior of E1

Write
F1

(
e2πih

k
−t
)
∼
∑
m≥0

ah,k(m)tm
(
t→ 0+

)
.

The goal of this subsection is to prove the following.

Theorem IV.7.1. We have, for h, k ∈ Z with k > 0 and gcd(h, k) = 1,

E1

(
h

k
+

it

2π

)
∼
∑
m≥0

a−h,k(m)(−t)m
(
t→ 0+

)
.

Proof. We use Lemma IV.6.1 and the fact that M2 is an even function, to rewrite

E1(τ) =
1

2

∑
α∈S

ε(α)
∑

n∈α+N2
0

M2

(√
3;
√
v
(

2
√

3n1 +
√

3n2, n2

))
q−Q(n)

+
1

2

∑
α∈S̃

ε̃(α)
∑

n∈α+N2
0

M2

(√
3;
√
v
(
−2
√

3n1 +
√

3n2, n2

))
q−Q(−n1,n2),

where

S̃ := {(1− α1, α2) : α ∈ S } , ε̃(α) := ε(1− α1, α2).

To apply the Euler-Maclaurin summation formula directly, we turn every sgn into sgn∗,
where sgn∗(x) := sgn(x) for x 6= 0 and sgn∗(0) := 1. To be more precise, we set

M∗2

(√
3;
√

3(2x1 + x2), x2

)
:= sgn∗(x1) sgn∗(x2) + E2

(√
3;
√

3(2x1 + x2), x2

)
− sgn∗(x2)E

(√
3(2x1 + x2)

)
− sgn∗(x1)E(3x1 + 2x2). (IV.7.1)

Using that

M2

(√
3;
√

3x2, x2

)
− lim
x1→0+

M∗2

(√
3;
√

3 (±2x1 + x2) , x2

)
= ±M(2x2), (IV.7.2)

we then split
E1(τ) = E∗1 (τ) +H1(τ)
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with

E∗1 (τ) :=
1

2

∑
α∈S

ε(α)
∑

n∈α+N2
0

M∗2

(√
3;
√
v
(

2
√

3n1 +
√

3n2, n2

))
q−Q(n)

+
1

2

∑
α∈S̃

ε̃(α)
∑

n∈α+N2
0

M∗2

(√
3;
√
v
(
−2
√

3n1 +
√

3n2, n2

))
q−Q(−n1,n2),

H1(τ) := −1

2

∑
m∈ 1

p
+N0

M
(
2
√
vm
)
q−m

2
+

1

2

∑
m∈1− 1

p
+N0

M
(
2
√
vm
)
q−m

2
.

Note that for n1 = 0 we take the limit n1 → 0 in the M∗2 -functions.
We proceed as in Subsection IV.4.1 to determine the asymptotic behavior of E∗1 and

H1. Firstly we rewrite

E∗1
(
h

k
+

it

2π

)
=
∑
α∈S

ε(α)
∑

0≤`≤ kp
δ
−1

e−2πih
k
Q(`+α)

∑
n∈ δ

kp
(`+α)+N2

0

F3

(
kp

δ

√
tn

)

+
∑
α∈S̃

ε̃(α)
∑

0≤`≤ kp
δ
−1

e−2πih
k
Q(−(`1+α1),`2+α2)

∑
n∈ δ

kp
(`+α)+N2

0

F̃3

(
kp

δ

√
tn

)
,

where

F3(x) :=
1

2
M∗2

(√
3;

1√
2π

(√
3 (2x1 + x2) , x2

))
eQ(x), F̃3(x) := F3(−x1, x2).

The contribution from the F3 term to the first term in (IV.2.8) is

δ2

k2p2t
IF3

∑
α∈S

ε(α)
∑

0≤`≤ kp
δ
−1

e−2πih
k
Q(`+α) = 0,

conjugating (IV.4.2). In the same way the main term coming from F̃3 is shown to vanish.
The contribution to the second term of Euler-Maclaurin is

− 2
∑
α∈S ∗

ε(α)
∑

0≤`≤ kp
δ
−1

e−2πih
k
Q(`+α)

∑
n2≥0

B2n2+2

(
δ(`2+α2)

kp

)
(2n2 + 2)!

×
∫ ∞

0

(
F (0,2n2+1)

3 (x1, 0) + F̃ (0,2n2+1)
3 (x1, 0)

)
dx1

(
k2p2t

δ2

)n2

.
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We now claim that∫ ∞
0

(
F (0,2n2+1)

3 (x1, 0) + F̃ (0,2n2+1)
3 (x1, 0)

)
dx1 = (−1)n2

∫ ∞
0
F (0,2n2+1)

1 (x1, 0)dx1.

(IV.7.3)
Firstly the right-hand side of (IV.7.3) equals[

∂2n2+1

∂x2n2+1
2

∫ ∞
0
F1(x1, x2)dx1

]
x2=0

=

[
∂2n2+1

∂x2n2+1
2

(
e−

x22
4

∫ ∞
0

e−3(x1+
x2
2 )

2

dx1

)]
x2=0

.

(IV.7.4)
Now the integral in (IV.7.4) evaluates as√

π

3

∫ ∞
√
3x2

2
√
π

e−πx
2
1dx1 =

√
π

2
√

3

(
1− E

(√
3x2

2
√
π

))
.

Thus (IV.7.4) becomes

√
π

2
√

3

[
∂2n2+1

∂x2n2+1
2

(
e−

x22
4

(
1− E

(√
3x2

2
√
π

)))]
x2=0

(IV.7.5)

= −
√
π

2
√

3

[
∂2n2+1

∂x2n2+1
2

(
e−

x22
4 E

(√
3x2

2
√
π

))]
x2=0

.

To compute the left-hand side of (IV.7.3), we decompose, according to (IV.7.1),

M∗2

(√
3,
√

3(2x1 + x2), x2

)
= sgn∗(x1) sgn∗(x2) + h1(x)− sgn∗(x2)h2(x)− sgn∗(x1)h3(x),

where

h1(x) := E2

(√
3;
√

3 (2x1 + x2) , x2

)
, h2(x) := E

(√
3 (2x1 + x2)

)
,

h3(x) := E (3x1 + 2x2) .

Setting

a0(x) := eQ(x), aj(x) := hj

(
1√
2π

(x)

)
eQ(x),

we then obtain

F (0,2n2+1)
3 (x1, 0) + F̃ (0,2n2+1)

3 (x1, 0)
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=
1

2

(
a

(0,2n2+1)
0 (x1, 0) + a

(0,2n2+1)
1 (x1, 0)− a(0,2n2+1)

2 (x1, 0)− a(0,2n2+1)
3 (x1, 0)

)
+

1

2

(
−a(0,2n2+1)

0 (−x1, 0) + a
(0,2n2+1)
1 (−x1, 0)− a(0,2n2+1)

2 (−x1, 0) + a
(0,2n2+1)
3 (−x1, 0)

)
= a

(0,2n2+1)
0 (x1, 0)− a(0,2n2+1)

2 (x1, 0),

using that a0 and a1 are even and a2 and a3 are odd. Plugging in the definition of a0

and a2, we need to consider

−

[
∂2n2+1

∂x2n2+1
2

(
ex

2
2

∫ ∞
0

e3x21+3x1x2M

(√
3

2π
(2x1 + x2)

)
dx1

)]
x2=0

. (IV.7.6)

Changing variables w :=
√

3
2π (2x1 + x2), the function in (IV.7.6) before differentiation is

−
√
π

6
e
x22
4

∫ ∞√
3
2π
x2

M(w)e
πw2

2 dw = −
√
π

6
e
x22
4

∫ ∞
0
M(w)e

πw2

2 dw −
∫ √

3
2π
x2

0
M(w)e

πw2

2 dw

.
The first integral vanishes upon differentiating an odd number of times and then setting
x2 = 0. In the second integral we decompose M(w) = E(w)− 1. The contribution of the
E-function vanishes, since E is an odd function. We are left with

−
√
π

6

 ∂2n2+1

∂x2n2+1
2

ex224 ∫
√

3
2π
x2

0
e
πw2

2 dw


x2=0

= −
√
π

6
i−2n2−1

 ∂2n2+1

∂x2n2+1
2

e−x224 ∫
√

3
2π
x2i

0
e
πw2

2 dw


x2=0

.

The integral equals

i
√

2

∫ √
3x2

2
√
π

0
e−πw

2
dw =

i√
2
E

(√
3x2

2
√
π

)
.

Thus we obtain

√
π

2
√

3
(−1)n2+1

[
∂2n2+1

∂x2n2+1
2

(
e−

x22
4 E

(√
3x2

2
√
π

))]
x2=0

,

as claimed, by comparing with (IV.7.5).
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In the same way one can show that the third term in Euler-Maclaurin equals

− 2
∑
α∈S ∗

ε(α)
∑

0≤`≤ kp
δ
−1

e−2πih
k
Q(`+α)

∑
n1≥0

×
B2n1+2

(
δ(`1+α1)

kp

)
(2n1 + 2)!

∫ ∞
0
F (2n1+1,0)

1 (0, x2)dx2

(
−k

2p2t

δ2

)n1

.

The contribution to the final term is, pairing as in Section 4

2
∑
α∈S ∗

ε(α)
∑

0≤`≤ kp
δ
−1

e−2πih
k
Q(`+α)

∑
n1,n2≥0

n1≡n2 (mod 2)

Bn1+1

(
δ(`1+α1)

kp

)
(n1 + 1)!

Bn2+1

(
δ(`2+α2)

kp

)
(n1 + 1)!

×
(
F (n)

3 (0)− (−1)n1F̃ (n)
3 (0)

)(kp√t
δ

)n1+n2

.

We next show that

F (n1,n2)
3 (0)− (−1)n1F̃ (n1,n2)

3 (0) = in1+n2F (n1,n2)
1 (0).

For this, we compute

F (n1,n2)
3 (0)− (−1)n1F̃ (n1,n2)

3 (0) = a
(n1,n2)
0 (0)− a(n1,n2)

3 (0).

Since a3(−x1,−x2) = −a3(x), we obtain

a
(n1,n2)
3 (0) = (−1)n1+n2+1a

(n1,n2)
3 (0).

Because in the sums of interest n1 ≡ n2 (mod 2), the contribution of a3 vanishes. As
claimed, we are left with

a
(n1,n2)
0 (0) = in1+n2

[
∂n1

∂xn1
1

∂n2

∂xn2
2

e−Q(x)

]
x=0

= in1+n2F (n)
1 (0).

Finally, the contribution from H1 gives, observing that the Euler-Maclaurin main
term vanishes,

∑
0≤r≤ kp

δ
−1

e
−2πih

k

(
r+ 1

p

)2 ∑
m≥0

B2m+1

(
δ
(
r+ 1

p

)
kp

)
(2m+ 1)!

F (2m)
4 (0)

(
k2p2

δ2
t

)m
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with F4(x) := M(
√

2
πx)ex

2
. The claim then follows, observing that

F (2m)
4 (0) = (−1)m+1

[
∂2m

∂x2m
e−x

2

]
x=0

= (−1)m+1F (2m)
2 (0).

IV.7.2 Asymptotics of E2

We write
F2

(
e2πih

k
−t
)
∼
∑
m≥0

bh,k(m)tm
(
t→ 0+

)
,

Theorem IV.7.2. We have, for h, k ∈ Z with k > 0 and gcd(h, k) = 1,

E2

(
h

k
+

it

2π

)
∼
∑
m≥0

b−h,k(m)(−t)m
(
t→ 0+

)
.

Proof. We write, using Lemma IV.6.2 and (IV.6.3)

E2(τ) = E2,1(τ) + E2,2(τ),

where

E2,1(τ) :=
1

2

∑
α∈S

η(α)
∑

n∈α+N2
0

n2M2

(√
3;
√

3v(2n1 + n2),
√
vn2

)
q−Q(n)

+
1

2

∑
α∈S̃

η̃(α)
∑

n∈α+N2
0

n2M2

(√
3;
√

3v(−2n1 + n2),
√
vn2

)
q−Q(−n1,n2),

E2,2(τ) :=
1

4π
√
v

∑
α∈S

η(α)
∑

n∈α+N2
0

e−π(3n1+2n2)2vM
(√

3vn1

)
q−Q(n)

+
1

4π
√
v

∑
α∈S̃

η̃(α)
∑

n∈α+N2
0

e−π(−3n1+2n2)2vM
(√

3vn1

)
q−Q(−n1,n2),

where η̃(α) := η(1− α1, α2). We then again use (IV.7.2), to split

E2,1(τ) = E∗2 (τ) +H2(τ),

where

E∗2 (τ) :=
1

2

∑
α∈S

η(α)
∑

n∈α+N2
0

n2M
∗
2

(√
3;
√

3v(2n1 + n2),
√
vn2

)
q−Q(n)
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+
1

2

∑
α∈S̃

η̃(α)
∑

n∈α+N2
0

n2M
∗
2

(√
3;
√

3v(−2n1 + n2),
√
vn2

)
q−Q(−n1,n2),

H2(τ) :=
1

2

∑
β∈
{

1
p
,1− 1

p

}
∑

m∈β+N0

mM
(
2
√
vm
)
q−m

2
.

Using that limx→0+ M
∗(±x) = ∓1, where we let M∗(x) := E(x)− sgn∗(x), we split

E2,2(τ) = E∗2,2(τ) +H3(τ),

where

E∗2,2(τ) :=
1

4π
√
v

∑
α∈S

η(α)
∑

n∈α+N2
0

e−π(3n1+2n2)2vM∗
(√

3vn1

)
q−Q(n)

+
1

4π
√
v

∑
α∈S̃

η̃(α)
∑

n∈α+N2
0

e−π(−3n1+2n2)2vM∗
(
−
√

3vn1

)
q−Q(−n1,n2),

H3(τ) :=
1

4π
√
v

∑
β∈
{

1
p
,1− 1

p

}
∑

m∈β+N0

e−4πm2vq−m
2
.

We first investigate asymptotic properties of E∗2 . Writing G3(x) := x2F3(x) and

G̃3(x) := G3(−x1, x2), we have

E∗2
(
h

k
+

it

2π

)
=

1√
t

∑
α∈S

η(α)
∑

0≤`≤ kp
δ
−1

e−2πih
k
Q(`+α)

∑
n∈ δ

kp
(`+α)+N2

0

G3

(
kp

δ

√
tn

)

+
1√
t

∑
α∈S̃

η̃(α)
∑

0≤`≤ kp
δ
−1

e−2πih
k
Q(−`1−α1,`2+α2)

∑
n∈ δ

kp
(`+α)+N2

0

G̃3

(
kp

δ

√
tn

)
.

The contribution from G3 to the Euler-Maclaurin main term is, as in Subsection IV.4.2,

δ2

k2p2t
3
2

IG3
∑
α∈S

η(α)
∑

0≤`≤ kp
δ
−1

e−2πih
k
Q(`+α) = 0.

In the same way we see that the contribution from G̃3 to the main term vanishes.
The contribution to the second term in Euler-Maclaurin is, as in Subsection IV.4.2,

−2
∑
α∈S ∗

∑
0≤`≤ kp

δ
−1

e−2πih
k
Q(`+α)

∑
n2≥1

B2n2+1

(
δ(`2+α2)

kp

)
(2n2 + 1)!
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×
∫ ∞

0

(
G(0,2n2)

3 (x1, 0) + G̃(0,2n2)
3 (x1, 0)

)
dx1

(
kp

δ

)2n2−1

tn2−1.

We claim that∫ ∞
0

(
G(0,2n2)

3 (x1, 0) + G̃(0,2n2)
3 (x1, 0)

)
dx1 = (−1)n2+1

∫ ∞
0
G(0,2n2)

1 (x1, 0)dx1. (IV.7.7)

Since we need to differentiate the x2-factor exactly once, we have

G(0,2n2)
3 (x1, 0) + G̃(0,2n2)

3 (x1, 0) = 2n2

(
F (0,2n2−1)

3 (x1, 0) + F̃ (0,2n1−1)
3 (x1, 0)

)
,

G(0,2n2)
1 (x1, 0) = 2n2F (0,2n2−1)

1 (x1, 0).

The claim (IV.7.7) then follows from (IV.7.3). This gives the correspondence to (IV.4.4).
The third term in Euler-Maclaurin is, in the same way,

−2
∑
α∈S ∗

∑
0≤`≤ kp

δ
−1

e−2πih
k
Q(`+α)

∑
n1≥0

B2n1+1

(
δ(`1+α1)

kp

)
(2n1 + 1)!

×
∫ ∞

0

(
G(2n1,0)

3 (0, x2)− G̃(2n1,0)
3 (0, x2)

)
dx2

(
kp

δ

)2n1−1

tn1−1.

To relate this to (IV.4.5) (skipping the n1 = 0 term in both cases), we compute that

G(2n1,0)
3 (0, x2)− G̃(2n1,0)

3 (0, x2) = x2

(
a

(2n1,0)
0 (0, x2)− a(2n1,0)

3 (0, x2)
)
.

Note that

a0(x)− a3(x) = −eQ(x)M∗

(√
1

2π
(3x1 + 2x2)

)
. (IV.7.8)

We next show that∫ ∞
0

x2

(
a

(2n1,0)
0 (0, x2)− a(2n1,0)

3 (0, x2)
)
dx2 (IV.7.9)

= (−1)n1+1

∫ ∞
0

x2

[
∂2n1

∂x2n1
1

(
e−x

2
2−3x1x2−3x21

)]
x1=0

dx2 +
1√
2

[
∂2n1

∂x2n1
1

e
3x21
4

]
x1=0

,

where the first terms on the right-hand side corresponds to (IV.4.5). We write it as

(−1)n1+1

[
∂2n1

∂x2n1
1

(
e−

3x21
4

∫ ∞
0

x2e
−
(
x2+

3x1
2

)2
dx2

)]
x1=0

.
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Now we let

f(x1)e
3x21
4 (−1)n1+1 :=

∫ ∞
3x1
2

(
x2 −

3x1

2

)
e−x

2
2dx2 =

1

2
e−

9x21
4 − 3x1

2

√
π

2

(
1− E

(
3x1

2
√
π

))
,

using integration by parts. We then compute (using n1 > 0)

f (2n1)(0) =
(−1)n1+1

2

[
∂2n1

∂x2n1
1

e−3x21

]
x1=0

+
(−1)n1+13

√
π

4

[
∂2n1

∂x2n1
1

(
x1e
− 3x21

4 E

(
3x1

2
√
π

))]
x1=0

.

(IV.7.10)
For the left-hand side of (IV.7.9) we use (IV.7.8) and consider

−

[
∂2n1

∂x2n1
1

(∫ ∞
0

x2M
∗
(

2x2 + 3x1√
2π

)
e3x21+3x1x2+x22dx2

)]
x1=0

.

Making the change of variables u = 2x2+3x1√
2π

, the integral before differentiation (including

the minus sign) becomes

−
√
π

2
e

3x21
4

1

2

∫ ∞
3x1√
2π

(√
2πu− 3x1

)
M∗(u)e

πu2

2 du. (IV.7.11)

Using integration by parts, the contribution from
√

2πu equals

1

2
e3x21

(
E

(
3x1√

2π

)
− 1

)
+

1√
2
e

3x21
4

(
1− E

(
3x1

2
√
π

))
.

Thus differentiating 2n1 times with respect to x1 and then setting x1 = 0 gives (using
that z 7→ E(z) is odd)

− 1

2

[
∂2n1

∂x2n1
1

e3x21

]
x1=0

+
1√
2

[
∂2n1

∂x2n1
1

e
3x21
4

]
x1=0

= −1

2
(−1)n1

[
∂2n1

∂x2n1
1

e−3x21

]
x1=0

+
1√
2

[
∂2n1

∂x2n1
1

e
3x21
4

]
x1=0

.

The first term matches the first term in (IV.7.10), the second term is the second term on
the right-hand side of (IV.7.9). For the second term in (IV.7.11), we split

3

2

√
π

2
e

3x21
4 x1

(∫ ∞
0

M∗(u)e
πu2

2 du−
∫ 3x1√

2π

0
E(u)e

πu2

2 du+

∫ 3x1√
2π

0
e
πu2

2 du

)
.
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Since we take an even number of derivatives only the last term survives, yielding the
contribution

3

2

√
π

2

[
∂2n1

∂x2n1
1

(
x1e

3x21
4

∫ 3x1√
2π

0
e
πu2

2 du

)]
x1=0

= −(−1)n1
3
√
π

4

[
∂2n1

∂x2n1
1

(
x1e
− 3x21

4 E

(
3x1

2
√
π

))]
x1=0

.

This is the second term in (IV.7.10), which implies (IV.7.9).
The left-over term from (IV.7.9) overall contributes as

−
√

2
∑
α∈S ∗

∑
0≤`≤ kp

δ
−1

e−2πih
k
Q(`+α)

∑
n1≥1

B2n1+1

(
δ(`1+α1)

kp

)
(2n1 + 1)!

[
∂2n1

∂x2n1
1

e
3x21
4

]
x1=0

(
kp

δ

)2n1−1

tn1−1.

The final term in Euler-Maclaurin is

2
∑
α∈S ∗

∑
0≤`≤ kp

δ
−1

e−2πih
k
Q(`+α)

∑
n1,n2≥0

n1 6≡n2 (mod 2)

Bn1+1

(
δ(`1+α1)

kp

)
(n1 + 1)!

Bn2+1

(
δ(`2+α2)

kp

)
(n2 + 1)!

×
(
G(n1,n2)

3 (0) + (−1)n1+1G̃(n1,n2)
3 (0)

)(kp
δ

)n1+n2

t
n1+n2−1

2 .

Then

G(n1,n2)
3 (0) + (−1)n1+1G̃(n1,n2)

3 (0) = in1+n2−1G(n1,n2)
1 (0)

gives the relation to (IV.4.7).
We next consider H2. We have, with G4(x) := xF4(x),

H2

(
h

k
+

it

2π

)
=

1

2
√
t

∑
β∈
{

1
p
,1− 1

p

}
∑

0≤r≤ kp
δ
−1

e−2πih
k

(r+β)2
∑

m∈ (r+β)δ
kp

+N0

G4

(
kp

δ

√
tm

)
.

The Euler-Maclaurin main term is

1

2
√
t

δ

kp
√
t
IG4

∑
β∈
{

1
p
,1− 1

p

}
∑

0≤r≤ kp
δ
−1

e−2πih
k

(r+β)2 =
δ

kpt
IG4

∑
r (mod kp

δ )

e
−2πih

k

(
r+ 1

p

)2
.
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The second term becomes

−
∑

0≤r≤ kp
δ
−1

e
−2πih

k

(
r+ 1

p

)2 ∑
m≥0

B2m+2

(
δ
(
r+ 1

p

)
kp

)
(2m+ 2)!

G(2m+1)
4 (0)

(
kp

δ

)2m+1

tm.

Then

G(2m+1)
4 (0) = (2m+ 1)F (2m)

4 (0) = (2m+ 1)(−1)m+1F (2m)
2 (0) = (−1)m+1G(2m+1)

2 (0).

gives the relation to (IV.4.9).
Finally, we consider E2,2. We first study E∗2,2 and write

E∗2,2
(
h

k
+

it

2π

)
=

1√
πt

∑
α∈S

η(α)
∑

0≤`≤ kp
δ
−1

e−2πih
k
Q(`+α)

∑
n∈ δ

kp
(`+α)+N2

0

G5

(
kp

δ

√
tn

)

+
1√
πt

∑
α∈S̃

η̃(α)
∑

0≤`≤ kp
δ
−1

e−2πih
k
Q(−`1−α1,`2+α2)

∑
n∈ δ

kp
(`+α)+N2

0

G̃5

(
kp

δ

√
tn

)
,

where

G5(x) :=
1

2
√

2
e−

3x21
2
−3x1x2−x22M∗

(√
3

2π
x1

)
, G̃5(x) := G5(−x1, x2).

As before the main term in Euler-Maclaurin vanishes. The second term equals

− 2√
πt

∑
α∈S ∗

∑
0≤`≤ kp

δ
−1

e−2πih
k
Q(`+α)

∑
n2≥0

B2n2+1

(
δ(`2+α2)

kp

)
(2n2 + 1)!

×
∫ ∞

0

(
G(0,2n2)

5 (x1, 0) + G̃(0,2n2)
5 (x1, 0)

)
dx1

(
kp

δ

)2n2−1

tn2− 1
2 .

It is however not hard to see that

G(0,2n2)
5 (x1, 0) + G̃(0,2n2)

5 (x1, 0) = 0.

The third term in Euler-Maclaurin is

− 2√
πt

∑
α∈S ∗

∑
0≤`≤ kp

δ
−1

e−2πih
k
Q(`+α)

∑
n1≥0

B2n1+1

(
δ(`1+α1)

kp

)
(2n1 + 1)!
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×
∫ ∞

0

(
G(2n1,0)

5 (0, x2)− G̃(2n1,0)
5 (0, x2)

)
dx2

(
kp

δ

)2n1−1

tn1− 1
2 .

Now

G(2n1,0)
5 (0, x2)− G̃(2n1,0)

5 (0, x2) = 2G(2n1,0)
5,1 (0, x2) ,

where G5,1(x) := − 1
2
√

2
e−

3x21
2
−3x1x2−x22 . We thus need to compute

2

∫ ∞
0
G(2n1,0)

5,1 (0, x2) dx2 = − 1√
2

[
∂2n1

∂x2n1
1

e
3x21
4

∫ ∞
0

e−(x2+ 3
2
x1)

2

dx2

]
x1=0

= −
√
π

2
√

2

[
∂2n1

∂x2n1
1

(
e

3x21
4

(
1− E

(
3x1

2
√
π

)))]
x1=0

= −
√
π

2
√

2

[
∂2n1

∂x2n1
1

e
3x21
4

]
x1=0

.

This term then contributes as

1√
2

∑
α∈S ∗

∑
0≤`≤ kp

δ
−1

e−2πih
k
Q(`+α)

∑
n1≥0

B2n1+1

(
δ(`1+α1)

kp

)
(2n1 + 1)!

[
∂2n1

∂x2n1
1

e
3x21
4

]
x1=0

(
kp

δ

)2n1−1

tn1−1.

(IV.7.12)
The final term in the Euler-Maclaurin summation formula is

2√
πt

∑
α∈S ∗

η(α)
∑

0≤`≤ kp
δ
−1

e−2πih
k
Q(`+α)

∑
n1,n2≥0

n1 6≡n2 (mod 2)

Bn+1

(
δ(`1+α1)

kp

)
(n1 + 1)!

Bn+2

(
δ(`2+α2)

kp

)
(n2 + 1)!

×
(
G(n1,n2)

5 (0) + (−1)n1+1G̃(n1,n2)
5 (0)

)(kp
δ

√
t

)n1+n2

.

It is easy to see that under the condition n1 6≡ n2 (mod 2) we have

G(n1,n2)
5 (0) + (−1)n1+1G̃(n1,n2)

5 (0) = 0.

Next, we consider

H3

(
h

k
+

it

2π

)
=

1

2
√

2πt

∑
β∈
{

1
p
,1− 1

p

}
∑

0≤r≤ kp
δ
−1

e−2πih
k

(r+β)2
∑

m∈ δ(r+β)
kp

+N0

F2

(
kp

δ

√
tm

)
.

The Euler-Maclaurin main term is

δ

2kpt
√

2π
IF2

∑
β∈
{

1
p
,1− 1

p

}
∑

r (mod kp
δ )

e−2πih
k

(r+β)2 =
δ

kpt
√

2π
IF2

∑
r (mod kp

δ )

e
−2πih

k

(
r+ 1

p

)2
.
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The final term is

1√
2πt

∑
0≤r≤ kp

δ
−1

e
−2πih

k

(
r+ 1

p

)2 ∑
m≥0

B2m+2

(
δ
(
r+ 1

p

)
kp

)
(2m+ 2)!

F (2m+1)
2 (0) = 0

since F2 is an even function.
Collecting all growing terms gives

δ

kpt

∑
r (mod kp

δ )

e
−2πih

k

(
r+ 1

p

)2 (
IG3(0,·)−G̃3(0,·) + IG4 +

1√
π
IG5(0,·)−G̃5(0,·) +

IF2√
2π

)
.

(IV.7.13)

We compute IF2 =
√
π

2 and, using integration by parts,

IG4 =

∫ ∞
0

xex
2
M∗

(√
2

π
x

)
dx = −M

∗(0)

2
−
√

2

π

∫ ∞
0

e−x
2
dx =

1

2
− 1√

2

by conjugating (IV.4.8). Moreover, (IV.7.9) gives

IG3(0,·)−G̃3(0,·) −
∫ ∞

0
x2e
−x22dx2 +

1√
2

=
1

2

[
e−x

2
2

]∞
0

+
1√
2

= −1

2
+

1√
2
,

IG5(0,·)−G̃5(0,·) = −
√
π

2
√

2
.

Thus the term inside the paranthesis in (IV.7.13) vanishes.
We are left to show that the contributions from (IV.7.8) and (IV.7.12) vanish. For

this it suffices to show that, for all n ∈ N,∑
α∈S ∗

∑
0≤`≤ kp

δ
−1

e−2πih
k
Q(`+α)B2n+1

(
δ (`1 + α1)

kp

)
= 0.

As in (IV.4.9) we get that this sum is zero for p
δ /∈ {1, 2}. Next we consider p

δ = 1.
We first combine the first and third element in S ∗. Using (IV.4.10) and

B2m+1(1− x) = −B2m+1(x) (IV.7.14)

gives that these cancel. Thus we need to show that∑
0≤`<k

B2n+1

(
`1
k

)
e
−2πih

k
Q
(
`1,`2+1− 1

p

)
= 0. (IV.7.15)
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We use (IV.4.11) and distinguish again whether k is even or odd. If k is odd we do the
same change of variables and use (IV.7.14) to obtain that (IV.7.15) equals

B2n+1(0)
∑

`2 (mod k)

e
−2πih

k

(
`2+1− 1

p

)2
= 0

since for m ≥ 3 odd, Bm(0) = 0.
If k is even, then we obtain

B2n+1(0)
∑

`2 (mod k)

e
−2πih

k

(
`2+1− 1

p

)2
+B2n+1

(
1

2

) ∑
`2 (mod k)

e
−2πih

k

(
`2+1− 1

p

)2
= 0

since for m odd Bm(1
2) = 0.

We next turn to the case p
δ = 2. Then only the second element survives and we want

∑
0≤`≤2k−1

B2n+1(0)e
−2πih

k

(
`1,`2+1− 1

p

)
= 0. (IV.7.16)

We obtain for the left-hand side of (IV.7.16)(
B2n+1(0) +B2n+1

(
1

2

)) ∑
`2 (mod k)

e
−2πih

k

(
`2+1− 1

p

)2
= 0.

This finally proves the theorem.

IV.7.3 Proof of Theorem IV.1.1

We are now ready to prove a refined version of Theorem IV.1.1.

Theorem IV.7.3.(1) The function F̂1 : Q → C defined by F̂1(hk ) := F1(e2πi ph
k ) is a

depth two quantum modular form of weight one for Γp with multiplier (−3
d ).

(2) The function F̂2 : Q → C defined by F̂2(hk ) := F2(e2πi ph
k ) is a depth two quantum

modular form of weight two for Γp with multiplier (3
d).

Proof. (1) We have, by Theorem IV.7.1,

F̂1

(
h

k

)
= lim

t→0+
F1

(
e2πi ph

k
−t
)

= ahp1, kp2
(0) = lim

t→0+
E1

(
−h
k

+
it

2π

)
,
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where p1 := p/ gcd(k, p), p2 := gcd(k, p). Proposition IV.5.2 then gives the claim.
(2) Theorem IV.7.2 gives

F̂2

(
h

k

)
= lim

t→0+
F2

(
e2πi ph

k
−t
)

= bhp1, kp2
(0) = lim

t→0+
E2

(
−h
k

+
it

2π

)
.

Proposition IV.5.3 then gives the claim.

Remark 13. For odd d, we have that (3
d) = (−3

d ) = 1 if and only if d ≡ 1 (mod 12) so
that both F1 and F2 can be viewed as quantum modular forms with the trivial character
under a suitable subgroup of Γp (e.g. the principal congruence subgroup Γ(12p)).

IV.8 Completed indefinite theta functions

In this section, we embed the double Eichler integrals in a modular context by viewing
them as “purely non-holomorphic” parts of indefinite theta series.

IV.8.1 Weight one

The functions E2 and M2 were introduced in [1], where they played a crucial role in
understanding modular indefinite theta functions of signature (j, 2) (j ∈ N0). We consider
the quadratic form Q1(n) := 1

2n
TA1n and the bilinear form B1(n,m) := nTA1m given

by A1 :=

(
6 3 6 3
3 2 3 2
6 3 0 0
3 2 0 0

)
, and define A0 := ( 6 3

3 2 ), P0(n) := M2(
√

3;
√

3 (2n1 + n2) , n2) and,

for n ∈ R4, set

P (n) := M2

(√
3;
√

3(2n3 + n4), n4

)
+ (sgn(2n3 + n4) + sgn(n1)) (sgn(3n3 + 2n4) + sgn(n2))

+ (sgn (n4) + sgn (n2))M1

(√
3(2n3 + n4)

)
+ (sgn (n3) + sgn (n1))M1 (3n3 + 2n4) .

Note that, for α ∈ S ∗,

2E1,α(τ) = Θ−A0,P0,α(τ).

We view this function as “purely non-holomorphic” part of the indefinite theta function

ΘA1,P,a(τ) =
∑

n∈a+Z4

P
(√
vn
)
qQ1(n), (IV.8.1)

where a ∈ 1
pA
−1
1 Z4 with (a3, a4) = (α1, α2). One can either employ Section 4.3 of [1] or

proceed directly (as we do here) to prove the following proposition.
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Proposition IV.8.1. Assume that a ∈ 1
pA
−1
1 Z4 with a1, a2 6∈ Z.

1. We have

ΘA1,P−,a(τ) = 2E1,(a3,a4)(τ)ΘA0,1,(a1−a3,a2−a4)(τ),

where
P−(n) := M2

(√
3;
√

3 (2n3 + n4) , n4

)
.

2. The functions ΘA1,P,a and Θ−A0,P0,(a3,a4) converge absolutely and locally uniformly.

3. The function τ 7→ ΘA1,P,a(pτ) transforms like a modular form of weight two for some
subgroup of SL2(Z) and some character.

Remark 14. When considering indefinite theta functions of signature (j, 2), one usually
obtains four M2-terms as the purely “non-holomorphic” part. The arguments of these
four M2-functions are dictated by the holomorphic part. The fact that (1, 0, 0, 0)T and
(0, 1, 0, 0)T (which correspond to n1 and n2 occuring in P ) have norm zero with respect
to A−1

1 causes the “missing” M2-terms to vanish. Therefore we refer to this situation as
a double null limit (see [1]).

Proof of Proposition IV.8.1. (1) Shifting (n1, n2, n3, n4) 7→ (n1 − n3, n2 − n4, n3, n4) on
the left hand side of the identity gives the claim.

(2) For Θ−A0,P0,(a3,a4) we employ the asymptotic given in (IV.2.7), to obtain

∣∣∣M2

(√
3;
√

3v (2n1 + n2) ,
√
vn2

)
q−

1
2
nTA0n

∣∣∣ ≤ e−π(3(2n1+n2)2+n2
2)v

π2n1n2
eπn

TA0nv

≤ c1e
−2πnTA0nveπn

TA0nv = c1e
−πnTA0nv

for some c1 ∈ R+ and (n1, n2) ∈ (a3, a4) + Z2 with n1, n2 6= 0. By plugging in the
definition, one can show that for some c2 ∈ R+ and n = (0, n2) ∈ (a3, a4) + Z2∣∣∣M2

(√
3;
√

3vn2,
√
vn2

)
q−

1
2
nTA0n

∣∣∣ ≤ c2e
−πnTA0nv

(and similarly for the case n2 = 0). Using that A0 is positive definite, we obtain, for some
c3 ∈ R+∑
n∈(a3,a4)+Z2

∣∣∣M2

(√
3;
√

3v (2n1 + n2) ,
√
vn2

)
q−

1
2
nTA0n

∣∣∣ ≤ c3

∑
n∈(a3,a4)+Z2

e−πn
TA0nv <∞,

implying the absolute and locally uniform convergence of Θ−A0,P0,(a3,a4). Combining this
with (1) and the convergence of the positive definite theta series ΘA1,1,(a1−a3,a2−a4), we
obtain absolute and locally uniform convergence of the M2-part of ΘA1,P,a.
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For the part containing only sign-terms∑
n∈a+Z4

(sgn(2n3 + n4) + sgn(n1)) (sgn(3n3 + 2n4) + sgn(n2)) qQ1(n), (IV.8.2)

we consider the determinant of ∆A1(n, b1, b2, b3, b4), where (∆M (v1, . . . ,v5))j,` :=

vTj Mv` and

(b1, b2, b3, b4) :=
1

3


0 0 1 0
0 0 0 3
2 −3 −1 0
−3 6 0 −3

 .

We compute the determinant det(∆A1(n, b1, b2, b3, b4)) via Laplace expansion to obtain

e−πvQ1(n) ≤ e−π(
15
16
B1(b1,n)2+ 2

9
B1(b2,n)2+B1(b1,n)B1(b3,n)+2B1(b2,n)B1(b4,n))v

≤ e−c4(B1(b1,n)2+B1(b2,n)2+|B1(b3,n)|+|B1(b4,n)|)v

with some c4 ∈ R+ for all n ∈ a+ Z4 which satisfy the condition

(sgn(2n3 + n4) + sgn(n1)) (sgn(3n3 + 2n4) + sgn(n2)) 6= 0.

Thus (IV.8.2) is dominated by∑
n∈a+Z4

∣∣∣(sgn(2n3 + n4) + sgn(n1)) (sgn(3n3 + 2n4) + sgn(n2)) e−πQ1(n)v
∣∣∣

≤ 4
∑

n∈a+Z4

e−c4(B1(b1,n)2+B1(b2,n)2+|B1(b3,n)|+|B1(b4,n)|)v <∞.

To deal with the contribution of the third and fourth summand of P one combines
the approaches of the two previous terms.

(3) We use Lemma IV.2.1 to rewrite P as a limit of E2-functions, namely

P (n) = lim
ε→0

P̂ε(n),

where

P̂ε(n) :=

(
E2

(
ε

3
;
√

3 (2n3 + n4) ,−ε
(
n1 + n3 +

n4√
3

)
+

3n2

ε
(
2
√

3− 3
))

+ E2

(
ε

2
; (3n3 + 2n4) ,

3n1

ε
(
2
√

3− 3
) − ε(n2 +

√
3n3 + n4

))
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+ E2

(√
3;
√

3 (2n3 + n4) , n4

)
+ E2

(
−
√

3;
n2

2ε
− ε

2
(n2 + 2n4) ,

√
3

2ε
(2n1 + n2)−

√
3

2
ε (2n1 + n2 + 4n3 + 2n4)

))
.

One can then verify that each occuring term E2(κ; bTn, cTn) satisfies the Vignéras
differential equation given in Theorem IV.2.3 with λ = 0 and A = A1. A straightforward
calculation shows that the Vignéras differential equation is satisfied for P̂ε with respect to
A1 if and only if it is satisfied for P̂ε,p(n) := P̂ε(

√
pn) with respect to pA1. Furthermore,

we have

ΘA1,P,a(pτ) = ΘpA1,Pp,a(τ) = lim
ε→0

Θ
pA1,P̂ε,p,a

(τ)

where Pp(n) := P (
√
pn). We can apply Theorem IV.2.3 to obtain weight 2 modularity

of Θ
pA1,P̂ε,p,a

since a ∈ (pA1)−1Z4. Now, taking the limit ε→ 0 proves the claim.

IV.8.2 Completion: weight two

Similarly as in the previous Section IV.8.1, the function E2 may be related to a
modular object of weight three. This connection becomes evident when writing E2 as a
Jacobi derivative as in Lemma IV.6.2. We leave the details to the reader.

IV.8.3 Lowering

The indefinite theta series considered in Subsection IV.8.1 are higher depth harmonic
Maass forms following Zagier-Zwegers. Roughly speaking, by this we mean that applying
the Maass lowering operator L := −2iv2 ∂

∂τ makes the function simpler. In particular, for
the iterated Eichler integral, we have

L (If1,f2(τ)) = 2k1vk1f1 (−τ) If2(τ).

Now vk1f1 (−τ) is vk1 times a conjugated modular form of weight k1 (so transforming of
weight −k1) and If2 , defined in (IV.2.11), is the non-holomorphic part of an harmonic
Maass form of weight 2− k2.

IV.9 Conclusion and further questions

We conclude here with several comments and research directions
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(1) We plan to more systematically study higher depth quantum modular forms and
to describe explicitly the quantum S-modular matrix of F (q). This requires a
modification of several arguments used here for F2(q) (note that we restricted
ourselves to Γp out of necessity). This result would allow us to make a more precise
connection between W (p)A2 and its irreducible modules. For one, we should be
able to associate an S-matrix to the set of atypical irreducible W (p)A2-characters,
in parallel to [8].

(2) Iterated (or multiple) Eichler integrals studied in Section 5 are of independent
interest. As in other theories dealing with iterated integrals (e.g. non-commutative
modular symbols, Chen’s integrals and multiple zeta-values) shuffle relations are
expected to play an important role. Another goal worth pursuing is to connect
iterated Eichler integrals of half-integral weights to Manin’s work [19].

(3) We plan to investigate the asymptotic of F (q) in terms of finite q-series evaluated
at root of unity. This requires certain hypergeometric type formulas for double
rank two false theta functions.

(4) In recent work [4] we found a new expression for the error of modularity appearing
in Propositions IV.5.2 and IV.5.3, at least if Mτ = − 1

τ . Our formulae involve what
we end up calling, “double Mordell” integrals. In the rank one case this connection
is well-understood [28, Theorem 1.16].

(5) Very recently, W. Yuasa [24] gave an explicit formula for the tail of (2, 2p)-torus
links associated to the sequence of colored Jones polynomials: Jnωj (K, q), n ∈ N,
where ωj , j = 1, 2 are the fundamental weights. We were able to identify the same
tail as a summand of F (q), up to the factor 1 − q (viz. extract the “diagonal”
m1 = m2 in formula (IV.1.7)). This raises the following question: Is it true that
F (q) is the tail of Jnρ(K, q), (n ∈ N) (here ρ = ω1 + ω2), up to a rational function
of q? For related computations of tails colored with sl3 representations see [13].
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Chapter V

Vector-valued higher depth
quantum modular forms and
higher Mordell integrals

This chapter is based on a manuscript published in Journal of Mathematical Analysis
and Applications and is joint work with Prof. Dr. Kathrin Bringmann and Prof. Dr.
Antun Milas [BKM2].

V.1 Introduction and statement of results

V.1.1 Mordell integrals and quantum modular forms

The Mordell integral is usually defined as a function of two variables

h(z) = h(z; τ) :=

∫
R

cosh(2πzw)

cosh(πw)
eπiτw

2
dw, (V.1.1)

where z ∈ C and τ ∈ H, the complex upper half-plane. Integrals of this form were studied
by many mathematicians including Kronecker, Lerch, Ramanujan, Riemann, Siegel, and
of course Mordell, who proved that a whole family of integrals reduces to (V.1.1). From
these works it is also known that (V.1.1) occurs as the “error of modularity” of Lerch
sums which have the shape (q := e2πiτ )

∑
n∈Z

e2πinz1q
n2+n

2

1− e2πiz2qn
(z1, z2 ∈ C \ {0}).

The Mordell integral plays an important role in the theory of mock modular forms as
shown by Zwegers in his remarkable thesis [20]. Zwegers wrote the integrals in (V.1.1) as
Eichler integrals. To be more precise, he showed that, for a, b ∈ (−1

2 ,
1
2) we have

h(aτ − b) = −e−2πia(b+ 1
2)q

a2

2

∫ i∞

0

ga+ 1
2
,b+ 1

2
(w)√

−i(w + τ)
dw, (V.1.2)
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where, for a, b ∈ R, ga,b is the weight 3
2 unary theta function defined by

ga,b(τ) :=
∑

n∈a+Z
ne2πibnq

n2

2 .

Zwegers then used (V.1.2) to find a completion of Lerch sums, by observing that the
error of modularity h(aτ − b) also appears from integrals which have −τ instead of 0 as
the lower integration boundary.

Starting with influential work of Zagier [18,19], many authors studied related con-
structions with Eichler integrals from the perspective of quantum modular forms. In all
of these examples the non-holomorphic part (or “companion”) is given as∫ i∞

−τ

f(w)

(−i(τ + w))
3
2

dw,

where f is a cuspidal theta function of weight 1
2 or 3

2 .
The main motivation for this paper is to extend this well-known connection between

Eichler and Mordell integrals to higher dimensions by using multiple integrals. We provide
several explicit examples of this connection in the context of higher depth quantum
modular forms introduced by the authors in [4] (see also [1]).

V.1.2 Vertex algebras and modular invariance of characters

Another, somewhat unrelated, motivation for this project comes from the study of
characters in non-rational conformal field theories, where the modularity (or lack thereof)
plays an important role.

There is already a growing body of research exploring the modularity of characters
beyond the rational vertex operator algebras [6–9, 16]. One general feature of these
irrational theories is that they admit typical modules (labelled by a continuous parameter)
and atypical modules (parametrized by a discrete set which is mostly infinite). When it
comes to modular transformation properties, the S-transformation (with S := ( 0 −1

1 0 ) ∈
SL2(Z)) of a character may produce both typical and atypical characters. So we expect
that

ch[M ]

(
−1

τ

)
=

∫
Ω
SM,νch[Mν ](τ)dν +

∑
j∈D

αM,jch[Mj ](τ), (V.1.3)

where ch[Mj ] are atypical and ch[Mν ] are typical characters. Note that the typical

characters often have the form ch[Mν ] = q
ν2

2

η(τ)m , where η(τ) := q
1
24
∏
n≥1(1 − qn) is

Dedekind’s η-function. Moreover Ω and D are domains parametrizing typicals and
atypicals representations, respectively. The reader should exercise caution here – in some
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examples formulas like (V.1.3) only exist as formal distributions [8]. Also, as divergent
integrals might appear, it is sometimes necessary to introduce additional variables (as in
[6]) to ensure convergence.

This type of generalized modularity is known to hold for characters of certain repre-

sentations of the affine Lie superalgebras ŝl(n|1) for N = 2 and N = 4 superconformal
algebras at admissible levels [13, 16]. In this work atypical characters transform as in
(V.1.3) such that the integral part is a Mordell-type integral, which is essentially a
consequence of Zwegers’ thesis [20].

In this paper we take a slightly different point of view. As many important (algebraic,
analytic and categorical) properties of rational vertex algebras are captured by the
entries of the S-matrix (e.g. quantum dimensions, fusion rules), we expect that the full
asymptotic expansion of characters and their quotients play a pivotal role for irrational
theories. More precisely, we believe that these higher coefficients in the asymptotics
determine the “fusion variety” via resummation and regularization. The latter was
introduced by Creutzig and the third author [6]. As shown in [3], considerations of
asymptotic expansion of characters naturally lead to quantum modular forms.

We now explain, with an example, how the concept of quantum modular forms can be
used to obtain (V.1.3). For this we consider the (1, p)-singlet algebra and its characters.
As explained in [6, 9], this vertex algebra admits typical and atypical representations.
The characters of atypical representations Mr,s are essentially false theta functions. To
be more precise, for 1 ≤ s ≤ p− 1 and r ∈ Z, we have

ch[Mr,s](τ) =
1

η(τ)

∑
n≥0

(
q

1
4p

(2pn−s−pr+2p)2 − q
1
4p

(2pn+s−pr+2p)2
)
.

Two of the authors have already proven in [3] that these characters are mixed quantum
modular forms, in the sense that Mr,s(τ) := η(τ)ch[Mr,s](τ) is a weight 1

2 quantum
modular form whose companion (expressed as an Eichler integral) agrees with the original
false theta function to all orders when expanding at roots of unity. This allows us
to transfer modularity questions for characters to better behaved companions M∗r,s as
illustrated in the following

Example V.1.1. For 1 ≤ s ≤ p− 1, we have

M∗1,s (τ)− 1√
−iτ

√
2

p

p−1∑
k=1

sin

(
πk(p− s)

p

)
M∗1,k

(
−1

τ

)
= i
√

2p · rfp−s,p(τ), (V.1.4)

where rjj,p is the theta integral defined in (V.3.2) for the theta function (V.3.1). Note
that rfj,p also has the following representation as Mordell integral

rfj,p(τ) = −
∫
R

cot

(
πiw +

πj

2p

)
e2πipw2τdw.
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As typical characters take the form e2πpiτx
2

η(τ) , the right-hand side of (V.1.4) can be viewed

as the contribution from typical representations as in (V.1.3). For ch[Mr,s] with r 6= 1 a
finite q-series has to be added to ch[M1,s] so that the above formula looks slightly more
complicated (cf. [3, 6]).

It is desirable to extend the modularity result in (V.1.4) to “higher rank” W -algebras,
where false theta functions of higher rank appear as characters [5]. It was already observed
earlier [7] that a regularization procedure can be used to derive a more complicated
version of (V.1.3) involving iterated integrals. As the theory of higher depth quantum
modular forms also involves multiple integrals [4], it is tempting to conjecture that these
characters combine into vector-valued higher depth quantum modular forms. In this
paper, we prove an analogue of (V.1.4) this for the simplest nontrivial example coming
from an sl3 false theta function F (q) which was studied recently in [4].

V.1.3 Quantum invariants of knots and 3-manifolds

As discussed above quantum modular forms are connected to various aspects of
number theory including Maass forms. But originally they appeared in the pioneering
work of Zagier (and Zagier-Lawrence) on unified quantum invariants of certain 3-manifolds
[18,19]. In a recent work of Gukov, Pei, Putrov, and Vafa [12], the authors proposed new
quantum invariants of certain 3–manifolds expressed as holomorphic q-series with integral
coefficients. These invariants are in many examples sums of ordinary quantum modular
forms. It is expected that more general 3-manifolds as well as SU(3) unified WRT
invariants exhibit a more complicated higher depth quantum modularity. Understanding
their error of modularity certainly requires a solid understanding of higher Mordell
integrals.

V.1.4 Statement of results

Define

F (q) :=
∑

m1,m2≥1
m1≡m2 (mod 3)

min(m1,m2)q
p
3 (m2

1+m2
2+m1m2)−m1−m2+ 1

p (1− qm1) (1− qm2)
(
1− qm1+m2

)
.

In [4] the authors decomposed this function as F (q) = 2
pF1(qp) + 2F2(qp) with F1 and

F2 defined in (V.4.1) and (V.4.2), respectively. The function F1 and F2 turn out to
have generalized quantum modular properties. This connection goes asymptotically via
two-dimensional Eichler integrals. For instance, we showed in [4] that F1 asymptotically
agrees with an integral of the shape∫ i∞

−τ

∫ i∞

w1

f(w1, w2)√
−i(w1 + τ)

√
−i(w2 + τ)

dw2dw1
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where f ∈ S 3
2
(χ1,Γ) ⊗ S 3

2
(χ2,Γ) (χj are certain multipliers and Γ ⊂ SL2(Z)). The

modular properties of these integrals follow from the modularity of f which in turn gives
quantum modular properties of F1. We call the resulting functions higher depth quantum
modular forms. Roughly speaking, depth two quantum modular forms satisfy, in the
simplest case, the modular transformation property with M =

(
a b
c d

)
∈ SL2(Z)

f(τ)− (cτ + d)−kf(Mτ) ∈ Qκ(Γ)O(R) +O(R), (V.1.5)

where Qκ(Γ) is the space of quantum modular forms of weight κ and O(R) the space of
real-analytic functions defined on R ⊂ R. Clearly, we can construct examples of depth
two simply by multiplying two (depth one) quantum modular forms. In this paper,
we prove a vector-valued version which refines (VI.1.2). Roughly speaking, f(Mτ) in
(VI.1.2) is replaced by

∑
1≤`≤N χj,`(M)f`(Mτ) (see Definition 2 for the notation).

Objects of similar nature - not invariant under the action of the relevant group but
instead they satisfy ”higher order” functional equations - have already appeared in the
literature. Higher-order modular forms constitute a natural extension of the notion of
classical modular form and can be constructed using iterated integrals [10,11]; see also
[15]. They also appear in connection to percolation theory in mathematical physics [14].

We prove.

Theorem V.1.2. The function F1 is a component of a vector-valued depth two quantum
modular form of weight one. The function F2 is a component of a vector-valued quantum
modular form of depth two and weight two.

We next consider higher-dimensional Mordell integrals. Set, for α ∈ R2,

H1,α(τ) := −
√

3

∫ i∞

0

∫ i∞

w1

θ1 (α;w) + θ2 (α;w)√
−i (w1 + τ)

√
−i (w2 + τ)

dw2dw1,

where the theta functions θ1 and θ2 are defined in (V.4.4) and (V.4.5), respectively and
where throughout the paper we write two-dimensional vectors in bold letters and their
components using subscript.

Remark 15. The function H1,α occurs (basically) as the holomorphic error of modularity
(see Proposition V.5.4). The remaining piece is itself already an Eichler integral.

Setting

Fα(x) :=
sinh(2πx)

cosh(2πx)− cos(2πα)
, Gα(x) :=

sin(2πα)

cosh(2πx)− cos(2πα)
,

we define

g1,α(w) :=


2Gα1(w1)Gα2(w2)− 2Fα1(w1)Fα2(w2) if α1, α2 /∈ Z,
−2F0(w1)Fα2(w2) + 2

πw1
Fα2

(
w2 + 3w1

2

)
if α1 ∈ Z, α2 /∈ Z,

−2Fα1(w1)F0(w2) + 2
πw2
Fα1

(
w1 + w2

2

)
if α1 /∈ Z, α2 ∈ Z.
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Theorem V.1.3. If α1, α2 are not both in Z, then we have, with Q(w) := 3w2
1 + w2

2 +
3w1w2

H1,α(τ) =

∫
R2

g1,α(w)e2πiτQ(w)dw1dw2.

In particular, if αj /∈ Z for j = 1, 2, then we have

H1,α(τ) =

∫
R2

cot (πiw1 + πα1) cot (πiw2 + πα2) e2πiτQ(w)dw1dw2.

Remark 16. Note that there is a related statement if α1, α2 ∈ Z; however for the purpose
of this paper it is not required.

Similarly, set

H2,α(τ) :=

√
3i

2π

∫ i∞

0

∫ i∞

w1

2θ3(α;w)− θ4(α;w)√
−i(w1 + τ)(−i(w2 + τ))

3
2

dw2dw1

+

√
3i

2π

∫ i∞

0

∫ i∞

w1

θ5(α;w)

(−i(w1 + τ))
3
2

√
−i(w2 + τ)

dw2dw1,

where θ3, θ4, and θ5 are theta functions defined in (V.4.8), (V.4.9), and (V.4.10), respec-
tively. The function H2,α occurs in Proposition V.5.4.

Define the function g2,α as follows:

g2,α(w) :=

{
−2iw2 (Gα1(w1)Fα2(w2) + Fα1(w1)Gα2(w2)) if α1 /∈ Z,
−2i

(
F0(w1)G∗α2

(w2)− 1
πw1
G∗α2

(
w2 + 3w1

2

))
if α1 ∈ Z,

where G∗α(x) := xGα(x).

Theorem V.1.4. We have

H2,α(τ) =

∫
R2

g2,α(w)e2πiτQ(w)dw1dw2.

V.1.5 Organization of the paper

The paper is organized as follows. In Section 2, we recall some basic facts on theta
functions, certain (generalized) error functions, quantum modular forms, and higher-
dimensional quantum modular forms. Section 3 describes the one-dimensional situation,
and Section 4 records our previous results in the two-dimensional case. In Section 5
we develop general vector-valued transformations which we then use for our specific
situation. In Section 6 we represent the two theta integrals H1,α and H2,α as double
Mordell integrals.
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V.2 Preliminaries

V.2.1 Theta function transformation

Define, for ν ∈ {0, 1}, h ∈ Z, N,A ∈ N with A|N and N |hA, the theta function
studied, for example, by Shimura [11]

Θν(A, h,N ; τ) :=
∑
m∈Z

m≡h (modN)

mνq
Am2

2N2 .

We have the transformation property

Θν (A, h,N ; τ) = (−i)ν(−iτ)−
1
2
−νA−

1
2

∑
k (modN)

Ak≡0 (modN)

e

(
Akh

N2

)
Θν

(
A, k,N ;−1

τ

)
.

(V.2.1)
Also note that if h1 ≡ h2 (modN)

Θν(A, h1, N ; τ) = Θν(A, h2, N ; τ),

Θν(A,−h,N ; τ) = (−1)νΘν(A, h,N ; τ), (V.2.2)

Θν(A,N − h, 2N ; τ) = (−1)νΘν(A,N + h, 2N ; τ).

V.2.2 Special functions

Following [20], define for u ∈ R

E(u) := 2

∫ u

0
e−πw

2
dw.
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We have the representation

E(u) = sgn(u)

(
1− 1√

π
Γ

(
1

2
, πu2

))
,

where Γ(α, u) :=
∫∞
u e−wwα−1dw is the incomplete gamma function and where for u ∈ R,

we let

sgn(u) :=


1 if u > 0,

−1 if u < 0,

0 if u = 0.

Moreover, for u 6= 0, set

M(u) :=
i

π

∫
R−iu

e−πw
2−2πiuw

w
dw.

We have
M(u) = E(u)− sgn(u).

We next turn to two-dimensional analogues, following [1], however using a slightly
different notation. Setting dw := dw1dw2, define E2 : R× R2 → R by

E2(κ;u) :=

∫
R2

sgn (w1) sgn (w2 + κw1) e−π((w1−u1)2+(w2−u2)2)dw.

Moreover for u2, u1 − κu2 6= 0:

M2(κ;u) := − 1

π2

∫
R−iu2

∫
R−iu1

e−πw
2
1−πw2

2−2πi(u1w1+u2w2)

w2(w1 − κw2)
dw. (V.2.3)

Then we have

M2 (κ;u) = E2 (κ;u)− sgn (u2)M (u1)

− sgn (u1 − κu2)M1

(
u2 + κu1√

1 + κ2

)
− sgn (u1) sgn (u2 + κu1) .

(V.2.4)

Note that (V.2.4) extends the definition of M2 to u2 = 0 or u1 = κu2.

V.2.3 Vector-valued quantum modular forms

We next recall vector-valued quantum modular forms for the modular group.
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Definition V.2.1. An N -tuple f = (f1, . . . , fN ) of functions fj : Q → C for 1 ≤
j ≤ N is called a vector-valued quantum modular form of weight k ∈ 1

2Z, multiplier
χ = (χj,`)1≤j,`≤N , if for all M =

(
a b
c d

)
∈ SL2(Z), the error of modularity

fj(τ)− (cτ + d)−k
∑

1≤`≤N
χj,`(M)f`(Mτ) (V.2.5)

can be extended to an open subset of R and is real-analytic there. We denote the vector
space of such forms by Qk(χ).

Remark 17. Since the matrices S :=
(

0 −1
1 0

)
and T := ( 1 1

0 1 ) generate SL2(Z), it is enough
to check (V.2.5) for these matrices.

V.2.4 Higher depth vector-valued quantum modular forms

We next introduce vector-valued higher depth quantum modular forms. Note that
higher depth quantum modular forms for subgroups of SL2(Z) were considered in [4].

Definition V.2.2. An N -tuple f = (f1, . . . , fN ) of functions fj : Q→ C with 1 ≤ j ≤ N
is called a vector-valued quantum modular form of depth P ∈ N, weight k ∈ 1

2Z, multiplier
χ = (χj,`)1≤j,`≤N , if for all M =

(
a b
c d

)
∈ SL2(Z), we havefj(τ)− (cτ + d)−k

∑
1≤`≤N

χ`,j(M)f`(Mτ)


1≤j≤N

∈
∑
m

QP−1
κm (χm)O(R),

where m runs through a finite set, κm ∈ 1
2Z, χm are rank N multipliers, O(R) is the space

of real-analytic functions on R ⊂ R which contains an open subset of R, Q1
k(χ) := Qk(χ),

Q0
k(χ) := 1, and QPk (χ) denotes the space of vector-valued forms of weight k, depth P ,

and multiplier χ.

V.3 The one-dimensional case

Recall the classical false theta functions (1 ≤ j ≤ p− 1, p ≥ 2),

Fj,p(τ) :=
∑
n∈Z

n≡j (mod 2p)

sgn(n)q
n2

4p .

The following theorem is shown in [3, 9] (note that here we renormalized in comparison
to [4])
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Theorem V.3.1. The functions Fj,p : H → C (1 ≤ j ≤ p − 1) form a vector-valued
quantum modular form.

Proof. (Sketch) Define the non-holomorphic Eichler integral

F ∗j,p(τ) :=
1√
π

∑
n∈Z

n≡j (mod 2p)

sgn(n)Γ

(
1

2
,
πn2v

p

)
q
−n

2

4p .

Note that Fj,p(it+ h
k ) and F ∗j,p(it− h

k ) agree asymptotically to infinite order. That is, if
we write

Fj,p

(
it+

h

k

)
∼
∑
m≥0

ah,k(m)tm
(
t→ 0+

)
,

then

F ∗j,p

(
it− h

k

)
∼
∑
m≥0

ah,k(m)(−t)m
(
t→ 0+

)
.

One may then show that
F ∗j,p(τ) = −i

√
2p · Ifj,p(τ),

where

fj,p(z) :=
1

2p

∑
n∈Z

n≡j (mod 2p)

nq
n2

4p (V.3.1)

and for a holomorphic modular form from f of weight k, the non-holomorphic Eichler
integral is

If (τ) :=

∫ i∞

−τ

f(w)

(−i(τ + w))2−k dw.

Using (V.2.1), one can prove that

fj,p (τ) =

√
2

p
(−iτ)−

3
2

p−1∑
k=1

sin

(
πkj

p

)
fk,p

(
−1

τ

)
,

correcting a sign-error in [9]. From this one may conclude that

F ∗j,p (τ)− 1√
−iτ

√
2

p

p−1∑
k=1

sin

(
πkj

p

)
F ∗k,p

(
−1

τ

)
= i
√

2p · rfj,p(τ),

where, for f a holomorphic modular form of weight k,

rf (τ) :=

∫ i∞

0

f(w)

(−i(w + τ))2−k dw. (V.3.2)

The claim now follows since rfj,p is real-analytic on R.
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The next lemma writes the “error to modularity” as an Eichler integral. Following
the approach of Zwegers [20] and using trigonometric identities, one finds the following.

Lemma V.3.2. We have

−i
√

2p · rfj,p(τ) =

∫
R

cot

(
πiw +

πj

2p

)
e2πipτw2

dw

= sin

(
πj

p

)
1

2

∫
R

e2πipτw2

sinh
(
πw + πij

2p

)
sinh

(
πw − πij

2p

)dw.
V.4 Previous results in the two-dimensional case

In this section, we recall the results from [4]. In that paper the following decomposition
was shown

F (q) =
2

p
F1 (qp) + 2F2 (qp)

with

F1(q) :=
∑
α∈S

ε(α)
∑

n∈α+N2
0

qQ(n) +
1

2

∑
m∈Z

sgn

(
m+

1

p

)
q

(
m+ 1

p

)2
, (V.4.1)

where

S :=

{(
1− 1

p
,

2

p

)
,

(
1

p
, 1− 2

p

)
,

(
1,

1

p

)(
0, 1− 1

p

)
,

(
1

p
, 1− 1

p

)
,

(
1− 1

p
,

1

p

)}
,

and for α
(
modZ2

)
, we set

ε(α) :=

{
−2 if α ∈

{(
1− 1

p ,
2
p

)
,
(

1
p , 1−

2
p

)}
,

1 otherwise.

Moreover

F2(q) :=
∑
α∈S

η(α)
∑

n∈α+N2
0

n2q
Q(n) − 1

2

∑
m∈Z

∣∣∣∣m+
1

p

∣∣∣∣ q(m+ 1
p

)2
, (V.4.2)

where for α
(
modZ2

)
, we let

η(α) :=

{
1 if α ∈

{(
1− 1

p ,
2
p

)
,
(

0, 1− 1
p

)
,
(

1
p , 1−

1
p

)}
,

−1 otherwise.

In [4] the following theorem was shown.
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Theorem V.4.1. For p ≥ 2, the functions F1 and F2 are quantum modular forms of
depth two with quantum set Q and of weight one and weight two, respectively.

Sketch of proof. Using the Euler-Maclaurin summation formula, it was shown in [4] that
the higher rank false theta functions asymptotically equal double Eichler integrals. To
be more precise, write

F1

(
e2πih

k
−t
)
∼
∑
m≥0

Ah,k(m)tm
(
t→ 0+

)
.

In [4], we proved that we have, for h, k ∈ Z with k > 0 and gcd(h, k) = 1,

E1

(
it

2π
− h

k

)
∼
∑
m≥0

Ah,k(m)(−t)m
(
t→ 0+

)
. (V.4.3)

Here the double Eichler integral E1 is given as follows: Define for α ∈ S ∗ := {(1− 1
p ,

2
p),

(0, 1− 1
p), (1

p , 1−
1
p)}

E1,α(τ) := −
√

3

4

∫ i∞

−τ

∫ i∞

w1

θ1(α;w) + θ2(α;w)√
−i(w1 + τ)

√
−i(w2 + τ)

dw2dw1

with

θ1(α;w) :=
∑

n∈α+Z2

(2n1 + n2)n2e
3πi
2

(2n1+n2)2w1+
πin22w2

2 , (V.4.4)

θ2(α;w) :=
∑

n∈α+Z2

(3n1 + 2n2)n1e
πi
2

(3n1+2n2)2w1+
3πin21w2

2 . (V.4.5)

Then set

E1(τ) :=
∑
α∈S ∗

ε(α)E1,α(pτ), E1(τ) := E1

(
τ

p

)
. (V.4.6)

The double Eichler integral E1 satisfies modular transformation properties. To be more
precise, we have, for M =

(
a b
c d

)
∈ Γp (some congruence subgroup of SL2(Z)),

E1(τ)−
(
−3

d

)
(cτ + d)−1E1(Mτ) =

2∑
j=1

(
rfj ,gj , dc

(τ) + Ifj (τ)rgj , dc
(τ)
)
,
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where
( ·
·
)

is the extended Jacobi symbol, fj , gj are cusp forms of weight 3
2 (with

some multiplier), and for holomorphic modular forms f1 and f2 of weights κ1 and κ2,
respectively, we set

rf1,f2, dc
(τ) :=

∫ i∞

d
c

∫ d
c

w1

f1(w1)f2(w2)

(−i(w1 + τ))2−κ1(−i(w2 + τ))2−κ2 dw2dw1,

rf1, dc
(τ) :=

∫ i∞

d
c

f1(w)

(−i(w + τ))2−κ1 dw.

The situation is similar for F2. To be more precise, writing

F2

(
e2πih

k
−t
)
∼
∑
m≥0

Bh,k(m)tm
(
t→ 0+

)
,

we proved in [4] that we have, for h, k ∈ Z with k > 0 and gcd(h, k) = 1,

E2

(
it

2π
− h

k

)
∼
∑
m≥0

Bh,k(m)(−t)m
(
t→ 0+

)
. (V.4.7)

Here the Eichler integral E2 is given as follows: Define for α ∈ S ∗

E2,α(τ) :=

√
3

8π

∫ i∞

−τ

∫ i∞

w1

2θ3(α;w)− θ4(α;w)√
−i(w1 + τ)(−i(w2 + τ))

3
2

dw2dw1

+

√
3

8π

∫ i∞

−τ

∫ i∞

w1

θ5(α;w)

(−i(w1 + τ))
3
2

√
−i(w2 + τ)

dw2dw1

with

θ3(α;w) :=
∑

n∈α+Z2

(2n1 + n2)e
3πi
2

(2n1+n2)2w1+
πin22w2

2 , (V.4.8)

θ4(α;w) :=
∑

n∈α+Z2

(3n1 + 2n2)e
πi
2

(3n1+2n2)2w1+
3πin21w2

2 , (V.4.9)

θ5(α;w) :=
∑

n∈α+Z2

n1e
πi
2

(3n1+2n2)2w1+
3πin21w2

2 . (V.4.10)

We then set

E2(τ) :=
∑
α∈S ∗

E2,α(pτ), E2(τ) := E2

(
τ

p

)
. (V.4.11)
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Again one can show transformations for E2. Namely for M ∈ Γp, one has

E2(τ)−
(

3

d

)
(cτ + d)−2E2(Mτ) =

4∑
j=1

(
rfj ,gj , dc

(τ) + Ifj (τ)rgj , dc
(τ)
)
,

where fj and gj are holomorphic modular forms of weight 1
2 or cusp forms of weight 3

2 ,
respectively.

V.5 Higher depth Vector-valued transformations

V.5.1 General double Eichler integrals

We first describe the general situation. For this assume that fj , g` (1 ≤ j ≤ N, 1 ≤
` ≤M) are components of vector-valued modular forms and in particular transform as
(with κ1, κ2 ∈ 1

2 + N0)

fj

(
−1

τ

)
= (−iτ)κ1

∑
1≤k≤N

χj,kfk(τ), g`

(
−1

τ

)
= (−iτ)κ2

∑
1≤m≤M

ψ`,mgm(τ). (V.5.1)

Following [4], define the double Eichler integral

Ifj ,g`(τ) :=

∫ i∞

−τ

∫ i∞

w1

fj(w1)g`(w2)

(−i(w1 + τ))2−κ1(−i(w2 + τ))2−κ2 dw2dw1.

Remark 18. Related, but different, iterated integrals were studied by Manin in his work
on non-commutative modular symbols [15].

We prove the following transformation.

Lemma V.5.1. We have the following two transformations

Ifj ,g`(τ)− Ifj |T,g`|T (τ + 1) = 0, (V.5.2)

Ifj ,g`(τ)− (−iτ)κ1+κ2−4
∑

1≤k≤N
1≤m≤M

χj,kψ`,mIfk,gm

(
−1

τ

)
(V.5.3)

=

∫ i∞

0

∫ i∞

w1

fj(w1)g`(w2)

(−i(w1 + τ))2−κ1(−i(w2 + τ))2−κ2 dw2dw1 + Ifj (τ)rg`(τ)− rfj (τ)rg`(τ),

where |κ denotes the usual weight k slash operator.
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Proof. The transformation (V.5.2) is clear. To show (V.5.3), we first compute, using
(V.5.1),

(−iτ)κ1+κ2−4
∑

1≤k≤N
1≤m≤M

χj,kψ`,mIfk,gm

(
−1

τ

)

=

∫ 0

−τ

∫ 0

w1

fj(w1)g`(w2)

(−i(w1 + τ))2−κ1(−i(w2 + τ))2−κ2 dw2dw1.

Employing the splitting∫ 0

−τ

∫ 0

w1

=

∫ i∞

−τ

∫ i∞

w1

+

∫ i∞

0

∫ i∞

0
−
∫ i∞

0

∫ i∞

w1

−
∫ i∞

−τ

∫ i∞

0

then directly gives the claim.

V.5.2 The function E1

We first rewrite E1. For this define, for k1, k2 ∈ Z with k1 ≡ k2 (mod 2),

Jk(τ) :=
∑

δ∈{0,1}

I(k1+δp,k2+3δp)(τ) with Ik(τ) := −
√

3

4p
IΘ1(2p,k1,2p;·),Θ1(6p,k2,6p,·)(τ),

rk(τ) :=

∫ i∞

0

∫ i∞

w1

Θ1(2p, k1, 2p;w1)Θ1(6p, k2, 6p;w2)√
−i(w1 + τ)

√
−i(w2 + τ)

dw2dw1.

We have the following transformation properties.

Proposition V.5.2. We have, for `1 ≡ `2 (mod 2),

J`(τ) = − 1√
3p(−iτ)

∑
k1 (mod p)
k2 (mod 6p)
k1≡k2 (mod 2)

ζk1`12p ζk2`26p Jk

(
−1

τ

)
−
√

3

4p

∑
δ∈{0,1}

r(k1+pδ,k2+3pδ)(τ)

−
√

3

4p

∑
δ∈{0,1}

(
IΘ1(2p,`1+pδ,2p; · )(τ)− rΘ1(2p,`1+pδ,2p; · )(τ)

)
rΘ1(6p,`2+3pδ,6p; · )(τ),

where ζj := e
2πi
j .

Proof. Using (V.2.1) gives

Θ1

(
2p, a, 2p;−1

τ

)
= −i(−iτ)

3
2 (2p)−

1
2

∑
k (mod 2p)

ζka2pΘ1(2p, k, 2p; τ), (V.5.4)
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Θ1

(
6p, a, 6p;−1

τ

)
= −i(−iτ)

3
2 (6p)−

1
2

∑
k (mod 6p)

ζka6pΘ1(6p, k, 6p; τ).

Thus by Lemma V.5.1, we obtain that J`(τ) equals

− 1

2
√

3p(−iτ)

∑
δ∈{0,1}

∑
k1 (mod 2p)
k2 (mod 6p)

ζ
k1(`1+pδ)
2p ζ

k2(`2+3pδ)
6p Ik

(
−1

τ

)
−
√

3

4p

∑
δ∈{0,1}

r(`1+pδ,`2+3pδ)(τ)

−
√

3

4p

∑
δ∈{0,1}

(
IΘ1(2p,`1+pδ,2p;·)(τ)− rΘ1(2p,`1+pδ,2p;·)(τ)

)
rΘ1(6p,`2+3pδ,6p;·)(τ).

To prove the proposition, we are left to simplify the first term. For this, we write∑
δ∈{0,1}

∑
k1 (mod 2p)
k2 (mod 6p)

(−1)δ(k1+k2)ζ`1k12p ζ`2k26p Ik

(
−1

τ

)
= 2

∑
k1 (mod 2p)
k2 (mod 6p)

k1≡k2 (mod 2)

ζ`1k12p ζ`2k26p Ik

(
−1

τ

)
.

Making the change of variables k1 7→ k1 + pδ, k2 7→ k2 + 3pδ yields that this equals

2
∑

k1 (mod p)
k2 (mod 6p)

k1≡k2 (mod 2)

∑
δ∈{0,1}

ζ
(k1+pδ)`1
2p ζ

(k2+3pδ)`2
6p I(k1+pδ,k2+3pδ)

(
−1

τ

)
= 2

∑
k1 (mod 2p)
k2 (mod 6p)

k1≡k2 (mod 2)

ζ`1k12p ζ`2k26p Jk

(
−1

τ

)
.

To find transformation properties to use for E1, we write it as a J-function.

Lemma V.5.3. We have

E1(τ) = J(1,3)(τ). (V.5.5)

Proof. As in the proof of Proposition 5.2 of [4] we see that∑
α∈S ∗

ε (α) θ1(α;w) =
1

p2

∑
A∈A

ε1 (A) Θ1

(
2p,A1, 2p;

3w1

p

)
Θ1

(
2p,A2, 2p;

w2

p

)
with

A :={(0, 2) , (p, p+ 2) , (p− 1, p− 1) , (−1,−1) , (p+ 1, p− 1) , (1,−1)},

ε1(A) :=ε

(
A1 −A2

2p
,
A2

p

)
.
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Using (V.2.2), it is not hard to prove that this sum vanishes.
Similarly∑
α∈S ∗

ε (α) θ2(α;w) =
1

p2

∑
B∈B

ε2 (B) Θ1

(
2p,B1, 2p;

w1

p

)
Θ1

(
2p,B2, 2p;

3w2

p

)
(V.5.6)

with

B :={(p+ 1, p− 1), (1,−1), (p+ 2, p), (2, 0), (1, 1), (p+ 1, p+ 1)} ,

ε2(B) :=ε

(
B2 − 3B1

2p
,
B1

p

)
.

Using again (V.2.2) and Θ1(2p, h, 2p; 3τ) = 1
3Θ1(6p, 3h, 6p; τ), one obtains that (V.5.6)

equals
1

p2

∑
δ∈{0,1}

Θ1

(
2p, 1 + δp, 2p;

w1

p

)
Θ1

(
6p, 3 + 3δp, 6p;

w2

p

)
.

This yields the claim by (V.4.6).

Proposition V.5.2 then implies the following transformation for E1.

Corollary V.5.4. We have

E1(τ) = − 1√
3p(−iτ)

∑
k1 (mod p)
k2 (mod 6p)
k1≡k2 (mod 2)

ζk1+k2
2p Jk

(
−1

τ

)
+

1

4

∑
α∈S ∗

ε(α)H1,α(τ)

−
√

3

4p

∑
δ∈{0,1}

(
IΘ1(2p,1+pδ,2p;.)(τ)− rΘ1(2p,1+pδ,2p;.)(τ)

)
rΘ1(6p,3+3pδ,6p;.)(τ).

Proof. We use Proposition V.5.2 with `1 = 1 and `2 = 3 and reversing the calculation
used to show (V.5.5), we obtain that the second term equals 1

4

∑
α∈S ∗ ε(α)H1,α(τ).

V.5.3 The function E2

We proceed in the same way as for E1. To rewrite E2, defined in (V.4.11), we set, for
k1 ≡ k2 (mod 2),

Kk(τ) := 2Jk(τ) + J( k1+k2
2

,
k2−3k1

2

)(τ),
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where (note that we changed the normalization in comparison to [4])

Jk(τ) :=
∑

δ∈{0,1}

I(k1+pδ,k2+3pδ)(τ), with Ik(τ) := −
√

3

8π
IΘ1(2p,k1,2p;·),Θ0(6p,k2,6p;·)(τ).

Moreover set

Rk(τ) :=

∫ i∞

0

∫ i∞

w1

Θ1(2p, k1, 2p;w1)Θ0(6p, k2, 6p;w2)√
−i(w1 + τ)(−i(w2 + τ))

3
2

dw2dw1.

We have the following transformation law for the function K`.

Proposition V.5.5. We have, for `1 ≡ `2 (mod 2),

K`(τ) =
i

2
√

3p

∑
k1 (mod p)
k2 (mod 6p)
k1≡k2 (mod 2)

ζk1`12p ζk2`26p Kk
(
−1

τ

)

−
√

3

8π

∑
δ∈{0,1}

(
2R(k1+pδ,k2+3pδ)(τ) +R( k1+k2

2
+pδ,

k2−3k1
2

+3pδ
)(τ)

)

−
√

3

8π

∑
δ∈{0,1}

(
2
(
IΘ1(2p,`1+pδ,2p;.)(τ)− rΘ1(2p,`1+pδ,2p;.)(τ)

)
rΘ0(6p,`2+3pδ,6p;.)(τ)

+

(
I

Θ1

(
2p,

`1+`2
2

+pδ,2p;.
)(τ)− r

Θ1

(
2p,

`1+`2
2

+pδ,2p;.
)(τ)

)
r

Θ0

(
6p,

`2−3`1
2

+3pδ,6p;.
)(τ)

)
.

Proof. Using (V.5.4) and

Θ0

(
6p, a, 6p;−1

τ

)
= (−iτ)

1
2

1√
6p

∑
k (mod 6p)

ζka6pΘ0(6p, k, 6p; τ),

Proposition V.5.7 gives that K`1,`2(τ) equals

∑
k1 (mod 2p)
k2 (mod 6p)

(
2ζ
k1(`1+pδ)
2p ζ

k2(`2+3pδ)
6p + 2ζ

k1
(
`1+`2

2
+pδ

)
2p ζ

k2
(
`2−3`1

2
+3pδ

)
6p

)
iIk
(
− 1
τ

)
16pπ(−iτ)2

−
√

3

8π

∑
δ∈{0,1}

(
2R(`1+pδ,`2+3pδ)(τ) +R( `1+`2

2
+pδ,

`2−3`1
2

+3pδ
)(τ)

)
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−
√

3

8π

∑
δ∈{0,1}

(
2
(
IΘ1(2p,`1+pδ,2p;.)(τ)− rΘ1(2p,`1+pδ,2p;.)(τ)

)
rΘ0(6p,`2+3pδ,6p;·)(τ)

+

(
I

Θ1

(
2p,

`1+`2
2

+pδ,2p;.
)(τ)− r

Θ1

(
2p,

`1+`2
2

+pδ,2p;.
)(τ)

)
rΘ0(6p,`2+3pδ,6p;·)(τ)

)
.

We are left to simplify the first term. As in the proof of Proposition 5.3 the sum on
k1, k2 equals

2
∑

k1 (mod p)
k2 (mod 6p)
k1≡k2 (mod 2)

(
2ζk1+k2

2p + ζk1p

)
Jk
(
−1

τ

)
.

In the contribution from the second term, we change k1 into k1+k2
2 and k2 into k2−3k1

2
giving the claim.

We next write E2 in terms of the K-functions.

Lemma V.5.6. We have
E2(τ) = K(1,3)(τ). (V.5.7)

Proposition 5.5 yields the following transformation for E2.

Corollary V.5.7. We have

E2(τ) =
i

8πp(−iτ)2

∑
k1 (mod p)
k2 (mod 6p)
k1≡k2 (mod 2)

ζk1+k2
2p Kk

(
−1

τ

)
+
i

4

∑
α∈S ∗

H2,α(τ)

−
√

3

8π

∑
δ∈{0,1}

(
2
(
IΘ1(2p,1+pδ,2p;·)(τ)− rΘ1(2p,1+pδ,2p;·)(τ)

)
rΘ0(6p,3+3pδ,6p;·)(τ)

−
(
IΘ1(2p,2+pδ,2p;·)(τ)− rΘ1(2p,1+pδ,2p;·)(τ)

)
rΘ0(6p,3pδ,6p;·)(τ)

)
.

Proof. The claim follows from Proposition V.5.5. Reversing the calculations required for
the proof of (V.5.7) yields that the second summand equals i

4

∑
α∈S ∗ H2,α(τ).

V.5.4 Proof Theorem V.1.2

We are now ready to prove a refined version of Theorem V.1.2.

Theorem V.5.8.(1) The function F̂1 : Q → C defined by F̂1(hk ) := F1(e2πi ph
k ) is a

component of a vector-valued quantum modular form of depth two and weight one.
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(2) The function F̂2 : Q→ C defined by F̂2(hk ) := F2(e2πi ph
k ) is a component of a vector-

valued quantum modular form of depth two and weight two.

Proof. (1) We have, by (V.4.3),

F̂1

(
h

k

)
= lim

t→0+
F1

(
e2πi ph

k
−t
)

= Ahp1, kp2
(0) = lim

t→0+
E1

(
it

2π
− h

k

)
,

where p1 := p/ gcd(k, p), p2 := gcd(k, p). Corollary V.5.4 and Proposition V.5.2 then
give the claim.

(2) The relation (V.4.7) gives

F̂2

(
h

k

)
= lim

t→0+
F2

(
e2πi ph

k
−t
)

= Bhp1, kp2
(0) = lim

t→0+
E2

(
it

2π
− h

k

)
.

Corollary 5.4 and Proposition V.5.5 then yields the claim.

V.6 Higher Mordell integrals

V.6.1 Proof of Theorem V.1.3

Proof of Theorem V.1.3. We first assume that αj 6∈ Z. Via analytic continuation, it is
enough to show the theorem for τ = iv. We first claim that

H1,α(iv) = 2 lim
r→∞

∑
n∈α+Z2

|nj−αj |≤r

M2

(√
3;

√
v

2

(√
3 (2n1 + n2) , n2

))
e2πQ(n)v. (V.6.1)

For this we write (which follows from shifting in (6.1) of [4] wj 7→ 2iwj − τ)

e4πQ(n)vM2

(√
3;
√

3v(2n1 + n2),
√
vn2

)
=
√

3 (2n1 + n2)n2

∫ ∞
0

e−3π(2n1+n2)2w1

√
w1 + v

∫ ∞
w1

e−πn
2
2w2

√
w2 + v

dw2dw1

+
√

3 (3n1 + 2n2)n1

∫ ∞
0

e−π(3n1+2n2)2w1

√
w1 + v

∫ ∞
w1

e−3πn2
1w2

√
w2 + v

dw2dw1.

Then we change v 7→ v
2 , sum over those n ∈ α + Z2 satisfying |nj − αj | ≤ r and let

r →∞. On the right-hand side we may use Lebesgue’s dominated convergence theorem
and can reorder the absolutely converging series inside the integral to obtain (V.6.1).
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To finish the proof, we rewrite (V.2.3), to obtain (assuming N2, N1 − κN2 6= 0)

M2

(
κ;
√
vN

)
= − 1

π2
e−πv(N

2
1 +N2

2 )
∫
R2

e−πvw
2
1−πvw2

2

(w2 − iN2) (w1 − κw2 − i (N1 − κN2))
dw.

(V.6.2)
Thus in particular (for n1, n2 6= 0)

M2

(√
3;

√
v

2

(√
3 (2n1 + n2) , n2

))

= − 1

π2
e−2πQ(n)v

∫
R2

e−
πvw2

1
2
−πvw

2
2

2

(w2 − in2)
(
w1 −

√
3w2 − 2

√
3in1

)dw
= − 1

π2
e−2πQ(n)v

∫
R2

e−
3πv(2w1+w2)

2

2
−πvw

2
2

2

(w2 − in2) (w1 − in1)
dw,

making the change of variables w1 7→ 2
√

3w1 +
√

3w2. This implies that

lim
r→∞

∑
n∈α+Z2

|nj−αj |≤r

M2

(√
3;

√
v

2

(√
3 (2n1 + n2) , n2

))
e2πQ(n)v

= − 1

π2
lim
r→∞

∑
n∈α+Z2

|nj−αj |≤r

∫
R2

e−2πvQ(w)

(w2 − in2) (w1 − in1)
dw. (V.6.3)

Using

π cot(πx) = lim
r→∞

r∑
k=−r

1

x+ k
,

we obtain that the sum over the integrand (without the exponential factor) is

− lim
r→∞

∑
n∈Z2

|nj |≤r

(
1

iw1 + α1 + n1

)(
1

iw2 + α2 + n2

)

= −π2 cot (π (iw1 + α1)) cot (π (iw2 + α2)) .

Using again Lebesgue’s theorem of dominated convergence, one can show that one can
interchange the limit and the integration in (V.6.3) to obtain

H1,α(τ) =

∫
R2

cot (πiw1 + πα1) cot (πiw2 + πα2) e2πiτQ(w)dw.
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Using

cot(x+ iy) = − sin(2x)

cos(2x)− cosh(2y)
+ i

sinh(2y)

cos(2x)− cosh(2y)
.

then yields,

H1,α(τ) = 2

∫
R2

(Gα1(w1)Gα2(w2)−Fα1(w1)Fα2(w2)) e2πiτQ(w)dw. (V.6.4)

This gives the claim of Theorem V.1.3 in this case.
We next turn to the case that αj ∈ Z for exactly one j ∈ {1, 2}. We only consider

the case α1 ∈ Z, since the case α2 ∈ Z goes analogously. Since the integrand in H1,α is
invariant under αj 7→ αj + 1, we may assume that α1 = 0. One directly sees from (V.6.4)
that in this case

H1,(0,α2)(τ) = −2 lim
α1→0

∫
R2

Fα1(w1)Fα2(w2)e2πiτQ(w)dw.

Using that F0(−w1) = −F0(w1), we obtain

H1,(0,α2)(τ) = −
∫
R2

F0(w1)Fα2(w2)e2πiτ(3w2
1+w2

2)
∑
±
±e±6πiτw1w2dw. (V.6.5)

Now write

F0(w1) =

(
F0(w1)− 1

πw1

)
+

1

πw1
.

The contribution of the first term to the integral now exists and gives, changing w1 7→ −w1

for the minus sign

−2

∫
R2

(
F0(w1)− 1

πw1

)
Fα2(w2)e2πiτQ(w)dw.

For the second term we write

Fα2(w2) =

(
Fα2(w2)−Fα2

(
w2 ±

3w1

2

))
+ Fα2

(
w2 ±

3w1

2

)
. (V.6.6)

The first term in (V.6.6) contributes to (V.6.5), changing w1 7→ −w1 for the minus sign

− 2

π

∫
R2

w−1
1

(
Fα2(w2)−Fα2

(
w2 +

3w1

2

))
e2πiτQ(w)dw.
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For the final term in (V.6.6) we use that 3w2
1 + w2

2 ± 3w1w2 = (w2 ± 3w1
2 )2 + 3

4w
2
1, to

obtain

− 1

π

∫
R

e
3πiτw2

1
2

w1

∫
R

∑
±
±Fα2

(
w2 ±

3w1

2

)
e

2πiτ
(
w2± 3w1

2

)2
dw2dw1.

The inner integral on w2 now vanishes, which may be seen by changing in the integral on
w2 for the minus sign w2 7→ w2 + 3w1. Combining, the theorem statement follows.

V.6.2 Proof of Theorem V.1.4

Proof of Theorem V.1.4. From (6.3) and (6.4) of [4], one obtains that

1

2πi

[
∂

∂z

(
M2

(√
3;
√

3v(2n1 + n2),
√
v

(
n2 −

2Im(z)

v

))
e2πin2z

)]
z=0

e4πvQ(n)

= −
√

3

2π
(2n1 + n2)

∫ ∞
0

e−
3π
2

(2n1+n2)2w1

√
w1 + 2v

∫ ∞
w1

e−
π
2
n2
2w2

(w2 + 2v)
3
2

dw2dw1

+

√
3

4π
(3n1 + 2n2)

∫ ∞
0

e−
π
2

(3n1+2n2)2w1

√
w1 + 2v

∫ ∞
w1

e−
3πn21w2

2

(w2 + 2v)
3
2

dw2dw1

−
√

3

4π
n1

∫ ∞
0

e−
π
2

(3n1+2n2)2w1

(w1 + 2v)
3
2

∫ ∞
w1

e−
3πn21w2

2

√
w2 + 2v

dw2dw1.

Then we sum over n ∈ α+Z2 satisfying |nj −αj | ≤ r and let r →∞. On the right hand
side we use Lebesgue’s dominated convergence theorem and can reorder the absolutely
converging series inside the integral to obtain

1

2πi
lim
r→∞

∑
n∈α+Z2

|nj−αj |≤r

[
∂

∂z

(
M2

(√
3;
√

3v(2n1 + n2),
√
v

(
n2 −

2Im(z)

v

))
e2πin2z

)]
z=0

× e4πvQ(n) =
1

2i
H2,α(2iv).

We now use (V.6.2) and change variables w1 7→ 2
√

3w1 +
√

3w2, to obtain

M2

(√
3;
√

3v(2n1 + n2),
√
v

(
n2 −

2Im(z)

v

))
e2πin2z

= − 1

π2
e
−πv

(
3(2n1+n2)2+

(
n2− 2Im(z)

v

)2)
+2πin2z
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×
∫
R2

e−πvw
2
1−πvw2

2(
w2 − i

(
n2 − 2Im(z)

v

))(
w1 −

√
3w2 − i

(
2
√

3n1 + 2
√

3 Im(z)
v

))dw
= − 1

π2
e
−πv

(
3(2n1+n2)2+

(
n2− 2Im(z)

v

)2)
+2πin2z

×
∫
R2

e−4πvQ(w)(
w2 − i

(
n2 − 2Im(z)

v

))(
w1 − i

(
n1 + Im(z)

v

))dw.
Thus [

∂

∂z
M2

(√
3;
√

3v(2n1 + n2),
√
v

(
n2 −

2Im(z)

v

))
e2πin2z

]
z=0

e4πvQ(n)

=
2

π

∫
R2

w2e
−4πvQ(w)

(w2 − in2) (w1 − in1)
dw.

Exactly as in the proof of Theorem V.1.3, we then obtain

lim
r→∞

∑
n∈α+Z2

|nj−αj |≤r

[
∂

∂z
M2

(√
3;
√

3v(2n1 + n2),
√
v

(
n2 −

2Im(z)

v

))
e2πin2z

]
z=0

e4πvQ(n)

=
π√
3

∫
R2

w2e
−4πvQ(w) cot (πiw2 + πα2) cot (πiw1 + πα1)dw.

Observing that on the right hand side the integral over the real part vanishes, gives

H2,α(τ) = −2i

∫
R2

w2 (Gα1(w1)Fα2(w2) + Fα1(w1)Gα2(w2)) e2πiτQ(w)dw.

The case α1 6∈ Z follows directly.
For α1 ∈ Z, we obtain

H2,α(τ) = −2i

∫
R2

F0(w1)G∗α2
(w2)e2πiτQ(w)dw.

Now the claim follows as in the proof of Theorem V.1.3.

V.7 Future work

Here we discuss a few future directions. We also announce a result that will appear
in full detail in our forthcoming work [5].
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V.7.1 Further examples of rank two false theta functions

In addition to the function F studied in [4], there are additional rank two false theta
functions studied by the first and third author in [5]. To be more precise, define, for
1 ≤ s1, s2 ≤ p

Fs1,s2(q) :=
∑

m1,m2≥1
m1≡m2 (mod 3)

min(m1,m2)q
p
3

((
m1− s1p

)2
+
(
m2− s2p

)2
+
(
m1− s1p

)(
m2− s2p

))

×
(

1− qm1s1 − qm2s2 + qm1s1+(m1+m2)s2 + qm2s2+(m1+m2)s1 − q(m1+m2)(s1+s2)
)
.

We will show in [5] that these series are also higher depth quantum modular forms with
quantum set Q. We believe that these series decompose into two vector-valued higher
depth quantum modular forms of weight one and two.

V.7.2 Example: two-dimensional vector-valued quantum modular forms
of depth two

The previous two-parametric family of rank two false theta functions Fs1,s2(q) takes a
particularly nice shape for p = 2. In this case it can be shown that the only contribution
comes from the weight one component and that only two false theta functions contribute.
Their companions are double Eichler integrals with a basis∫ i∞

−τ

∫ i∞

w1

η(w1)3η(3w2)3√
−i(w1 + τ)

√
−i(w2 + τ)

dw2dw1∫ i∞

−τ

∫ i∞

w1

η(w1)3η
(
w2
3

)3√
−i(w1 + τ)

√
−i(w2 + τ)

dw2dw1.

This gives a two-dimensional vector-valued quantum modular form of depth two and
weight one.
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Chapter VI

Some examples of higher depth
vector-valued quantum modular
forms

This chapter is based on a manuscript accepted for publication in the conference pro-
ceedings of the conference “Number Theory: Arithmetic, Diophantine and Transcendence”
at the Indian Institute of Technology in Ropar celebrating the 130th birth anniversary of
S. Ramanujan and is joint work with Prof. Dr. Kathrin Bringmann and Prof. Dr. Antun
Milas [BKM3].

VI.1 Introduction and statement of results

For p ∈ N, define the following sl3 false theta function

F (q) :=
∑

m1,m2≥1
m1≡m2 (mod 3)

min(m1,m2)q
p
3 (m2

1+m2
2+m1m2)−m1−m2+ 1

p (1− qm1) (1− qm2)
(
1− qm1+m2

)
.

This function was introduced in [3] as the numerator of the character of a certain W -
algebra associated to sl3. A more direct connection between the series and Lie theory
can be readily seen from its coefficient min(m1,m2) - the value of Kostant’s partition
function of sl3.

In [4] we decomposed F as

F (q) =
2

p
F1 (qp) + 2F2 (qp) , (VI.1.1)

where F1 and F2 are generalizations of quantum modular forms. Roughly speaking Zagier
[12] defined quantum modular forms to be function f : Q → C (Q ⊂ Q) such that the
“obstruction to modularity”

f(τ)− (cτ + d)−kf(Mτ) M =
(
a b
c d

)
∈ SL2(Z)
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is “nice”. One can show quantum modular properties of the Fj by using two-dimensional
Eichler integrals. For instance, as τ → h

k ∈ Q, F1 agrees with an integral of the shape
(q := e2πiτ ) ∫ i∞

−τ

∫ i∞

w1

f(w)√
−i(w1 + τ)

√
−i(w2 + τ)

dw2dw1,

where f ∈ S 3
2
(χ1,Γ)⊗S 3

2
(χ2,Γ) (χj are certain multipliers and Γ ⊂ SL2(Z)). Throughout

we write vectors in bold letters and their components with subscripts. The modular
properties of the integral in (VI.1.1) follow from the modularity of f which in turn gives
quantum modular properties of F1. We call the resulting functions higher depth quantum
modular forms. Roughly speaking, depth two quantum modular forms satisfy, in the
simplest case, the modular transformation property with M =

(
a b
c d

)
∈ SL2(Z)

f(τ)− (cτ + d)−kf(Mτ) ∈ Qκ(Γ)O(R) +O(R), (VI.1.2)

where Qκ(Γ) is the space of quantum modular forms of weight κ and O(R) the space
of real-analytic functions defined on R ⊂ R. In [5], we proved that F1 and F2 are
components of vector-valued quantum modular forms of depth two, generalizing (VI.1.2).

A natural question that arises is what the other components of the vector-valued
forms are as q-series. To investigate this, we define, for 1 ≤ s1, s2 ≤ p ∈ N,

Fs(q) :=
∑

m1,m2≥1
m1≡m2 (mod 3)

min(m1,m2)q
p
3

((
m1− s1p

)2
+
(
m2− s2p

)2
+
(
m1− s1p

)(
m2− s2p

))

×
(

1− qm1s1 − qm2s2 + qm1s1+(m1+m2)s2 + qm2s2+(m1+m2)s1 − q(m1+m2)(s1+s2)
)
.

Note that F(1,1)(q) = F (q). As discussed in [3] these series are in fact parametrized by
dominant integral weights (s1 − 1)ω1 + (s2 − 1)ω2 for sl3, where ωj are fundamental
weights (dual to simple roots α1 and α2).

We may decompose Fs as in (VI.1.1) (see Lemma VI.2.1). The corresponding functions
F1,s and F2,s are again generalized quantum modular forms. More precisely, we have.

Theorem VI.1.1. The functions F1,s and F2,s are depth two quantum modular forms
(with respect to some subgroup) of weights one and two, respectively.

To prove Theorem VI.1.1, we show that F1,s(τ) asymptotically agrees to infinite order
with a certain Eichler integral E1,s(

τ
p ) defined in (VI.2.1). Similarly, F2,s(τ) asymptotically

agrees with an Eichler integral E2,s(
τ
p ) given in (VI.2.2).

We next restrict to the special case p = 2. It turns out (see Lemma VI.2.2) that for
p = 2 all F2,s vanish. Thus we only need to consider F1,s.
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Theorem VI.1.2. For p = 2, the space spanned by E1,(1,1) and E1,(1,2) is essentially
invariant under modular transformations. By this we mean that the only terms appearing
in the modular transformations which do not lie in the space are simpler (see (VI.2.6)
and (VI.2.7) for the case of inversion).

Motivated by representation theory of the W -algebra W 0(p)A2 studied in [3,8], we
raise the following.

Conjecture. After multiplication with η2, the characters of W 0(p)A2 given in [3, Section
5] (which also includes the series Fs) combine into a vector-valued quantum modular
form of depth two.

The second goal of this paper is to determine the asymptotic behavior of E1,s(it) as
t→ 0+. It is well-known that asymptotic behaviors of vector-valued modular forms (as
t→ 0+) can be computed by applying the S-transformation τ 7→ − 1

τ , and then analyzing
the dominating term. This method is widely used for studying quantum dimensions of
modules of vertex algebras (and affine Lie algebras) as their characters often transform
invariantly under SL2(Z). In this paper we work with functions (coming also from
characters) that transform with higher depth error terms so their asymptotics are more
interesting and harder to analyze. We show that asymptotic behavior of double Eichler
integrals can be also analyzed by using a similar approach. We do this directly from the
integral representation of the error function. In the body of the paper, we show that it is
enough to study

E1,(1,1)(τ) := 4I(1,3)(τ) and E1,(1,2)(τ) := 2I(1,1)(τ) + 2I(1,5)(τ), (VI.1.3)

where the theta integrals Ik are defined in (VI.2.3). We prove the following.

Theorem VI.1.3. We have, as t→ 0+,

E1,(1,1)(it) ∼
1

4
, E1,(1,2)(it) ∼

3

4
.

Note that the asymptotics in Theorem VI.1.3 agree with the answer which one obtains
from [5] by using two-dimensional false theta functions.

Acknowledgements

The research of K.B. is supported by the Alfried Krupp Prize for Young University
Teachers of the Krupp foundation and the research leading to these results receives
funding from the European Research Council under the European Union’s Seventh
Framework Programme (FP/2007-2013) / ERC Grant agreement n. 335220 - AQSER.

137



CHAPTER VI. DEPTH 2 VECTOR-VALUED QUANTUM MODULAR FORMS

The research of J.K. is supported by the European Research Council under the European
Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant agreement n.
335220 - AQSER. The A.M. was partially supported by the NSF Grant DMS-1601070.

We thank Caner Nazaroglu for helping with numerical calculations and the referee
for many helpful comments.

VI.2 Proof of Theorem VI.1.1 and Theorem VI.1.2

To prove Theorem VI.1.1 and Theorem VI.1.2, we let

F1,s(q) :=
∑
α∈Ss

εs(α)
∑
n∈N2

0

qpQ(n+α),

where Q(x1, x2) := 3x2
1 + 3x1x2 + x2

2 and where

Ss :=

{(
s2 − s1

3p
, 1− s2

p

)
,

(
1− s2 − s1

3p
, 1− s1

p

)
,

(
2s1 + s2

3p
, 1− s1 + s2

p

)
,(

2s2 + s1

3p
, 1− s1 + s2

p

)
,

(
1− s1 + 2s2

3p
,
s2

p

)
,

(
1− s2 + 2s1

3p
,
s1

p

)
,(

2s1 + s2

3p
, 1− s1

p

)
,

(
2s2 + s1

3p
, 1− s2

p

)
,

(
1− s1 + 2s2

3p
,
s1 + s2

p

)
,(

1− s2 + 2s1

3p
,
s1 + s2

p

)
,

(
s2 − s1

3p
,
s1

p

)
,

(
1− s2 − s1

3p
,
s2

p

)}
,

εs(α) :=



s2 if α ∈
{(

s2−s1
3p , 1− s2

p

)
,
(

1− s1+2s2
3p , s2p

)
,(

2s2+s1
3p , 1− s2

p

)
,
(

1− s2−s1
3p , s2p

)}
,

s1 if α ∈
{(

1− s2−s1
3p , 1− s1

p

)
,
(

1− s2+2s1
3p , s1p

)
,(

2s1+s2
3p , 1− s1

p

)
,
(
s2−s1

3p , s1p

)}
,

−(s1 + s2) if α ∈
{(

2s1+s2
3p , 1− s1+s2

p

)
,
(

2s2+s1
3p , 1− s1+s2

p

)
,(

1− s1+2s2
3p , s1+s2

p

)
,
(

1− s2+2s1
3p , s1+s2

p

)}
and

F2,s(q) :=
∑
α∈Ss

ηs(α)
∑
n∈N2

0

(n2 + α2) qQ(n+α),
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where

ηs(α) :=



1 if α ∈
{(

s2−s1
3p , 1− s2

p

)
,
(

1− s2−s1
3p , 1− s1

p

)
,
(

2s1+s2
3p , 1− s1

p

)
,(

2s2+s1
3p , 1− s2

p

)
,
(

1− s1+2s2
3p , s1+s2

p

)
,
(

1− s2+2s1
3p , s1+s2

p

)}
,

−1 if α ∈
{(

2s1+s2
3p , 1− s1+s2

p

)
,
(

2s2+s1
3p , 1− s1+s2

p

)
,
(

1− s1+2s2
3p , s2p

)
,(

1− s2+2s1
3p , s1p

)
,
(
s2−s1

3p , s1p

)
,
(

1− s2−s1
3p , s2p

)}
.

Remark 19. We have
F(p,p)(q) = 1.

Thus we may throughout assume that s 6= (p, p).

Similarly as in the case s = (1, 1), a lengthy calculation gives.

Lemma VI.2.1. We have

Fs(q) =
1

p
F1,s (qp) + F2,s (qp) .

The following theorem states quantum modular properties of the functions F1,s and
F2,s, using the method of [4]. Let

E1,s(τ) :=
∑
α∈S ∗s

εs(α)E1,α(pτ), (VI.2.1)

where

S ∗
s :=

{(
s2 − s1

3p
, 1− s2

p

)
,

(
1− s2 − s1

3p
, 1− s1

p

)
,

(
2s1 + s2

3p
, 1− s1

p

)
,(

2s2 + s1

3p
, 1− s2

p

)
,

(
1− s1 + 2s2

3p
,
s1 + s2

p

)(
1− s2 + 2s1

3p
,
s1 + s2

p

)}
.

Moreover, the Eichler integrals E1,α are given as

E1,α(τ) := −
√

3

4

∫ i∞

−τ

∫ i∞

w1

θ1(α;w) + θ2(α;w)√
−i(w1 + τ)

√
−i(w2 + τ)

dw2dw1

with

θ1(α;w) :=
∑

n∈α+Z2

(2n1 + n2)n2e
3πi
2

(2n1+n2)2w1+
πin22w2

2 ,

139



CHAPTER VI. DEPTH 2 VECTOR-VALUED QUANTUM MODULAR FORMS

θ2(α;w) :=
∑

n∈α+Z2

(3n1 + 2n2)n1e
πi
2

(3n1+2n2)2w1+
3πin21w2

2 .

Finally let

E2,s(τ) :=
∑
α∈S ∗s

E2,α(pτ). (VI.2.2)

Here

E2,α(τ) :=

√
3

8π

∫ i∞

−τ

∫ i∞

w1

2θ3(α;w)− θ4(α;w)√
−i(w1 + τ)(−i(w2 + τ))

3
2

dw2dw1

+

√
3

8π

∫ i∞

−τ

∫ i∞

w1

θ5(α;w)

(−i(w1 + τ))
3
2

√
−i(w2 + τ)

dw2dw1

with

θ3(α;w) :=
∑

n∈α+Z2

(2n1 + n2)e
3πi
2

(2n1+n2)2w1+
πin22w2

2 ,

θ4(α;w) :=
∑

n∈α+Z2

(3n1 + 2n2)e
πi
2

(3n1+2n2)2w1+
3πin21w2

2 ,

θ5(α;w) :=
∑

n∈α+Z2

n1e
πi
2

(3n1+2n2)2w1+
3πin21w2

2 .

Furthermore define, for ν ∈ {0, 1}, h ∈ Z, N,A ∈ N with A|N and N |hA, the theta
function studied, for example, by Shimura [11]

Θν(A, h,N ; τ) :=
∑
m∈Z

m≡h (modN)

mνq
Am2

2N2 .

We are now ready to prove Theorem VI.1.1.

Proof of Theorem VI.1.1 (Sketch). We start with F1,s. Write

F1,s

(
e2πih

k
−t
)
∼
∑
m≥0

As,h,k(m)tm
(
t→ 0+

)
.

Using the Euler-Maclaurin summation formula (in the shape stated in (28) of [4]) one
can prove, following the proof of Theorem 7.1 of [4], that

E1,s

(
it

2π
− h

k

)
∼
∑
m≥0

As,h,k(m)(−t)m
(
t→ 0+

)
.
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Here

E1,s(τ) :=
1

2

∑
α∈S ∗s

εs(α)
∑

n∈α+Z2

M2

(√
3;
√
v
(

2
√

3n1 +
√

3n2, n2

))
q−Q(n),

where w ∈ R2 and κ ∈ R with w2, w1 − κw2 6= 0, we set

M2(κ;w) := − 1

π2

∫
R2−iw

e−πt
2
1−πt22−2πi(t1w1+t2w2)

t2(t2 − κt1)
dt1dt2.

In particular, E1,s agrees with F1,s on Q. Proceeding as in the proof of Lemma 6.1 of [4]
one can then show that

E1,s(τ) = E1,s

(
τ

p

)
.

To determine the transformation behaviour, we rewrite the theta functions in E1,s in
terms of Shimura theta functions to obtain, as in the proof of Proposition 5.2 of [4]

3pE1,s

(
τ

p

)
= (2s1+s2)J(s2,s2+2s1)(τ)+(2s2+s1)J(s1,s1+2s2)(τ)+(s2−s1)J(s1+s2,s1−s2)(τ),

where

Jk(τ) :=
∑

δ∈{0,1}

I(k1+δp,k2+3δp)(τ) with Ik(τ) := −
√

3

4p
IΘ1(2p,k1,2p;·),Θ1(6p,k2,6p,·)(τ).

(VI.2.3)

Here, for modular forms f and g of weights κ1 and κ2, respectively,

If,g(τ) :=

∫ i∞

−τ

∫ i∞

w1

f(w1)g(w2)

(−i(w1 + τ))2−κ1(−i(w2 + τ))2−κ2 dw2dw1.

Now the transformation properties follow as in the proof of Proposition 5.2 of [5].
For the function F2,s, we proceed in the same way. Writing

F2,s

(
e2πih

k
−t
)
∼
∑
m≥0

Bs,h,k(m)tm
(
t→ 0+

)
we may show in a similar manner as in the proof of Theorem 7.2 of [4], using the
Euler-Maclaurin summation formula, that

E2,s

(
it

2π
− h

k

)
∼
∑
m≥0

Bs,h,k(m)(−t)m.
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Here

E2(τ) =E2,s(τ) :=
1

4πi

∑
α∈S ∗s

∑
n∈α+Z2

×
[
∂

∂z

(
M2

(√
3;
√

3v(2n1 + n2),
√
v

(
n2 −

2Im(z)

v

))
e2πin2z

)]
z=0

q−Q(n).

Following the proof of Lemma 6.2 of [4], one may then prove that

E2,s(τ) = E2,s

(
τ

p

)
.

To finish the proof one may show that, proceeding as in the proof of Proposition 5.2 of
[4].

E2,s(τ) =
2

p

(
−J(s1+s2,s1−s2) (τ) + J(s2,2s1+s2) (τ) + J(s1,2s2+s1) (τ)

)
,

where

Jk(τ) :=
∑

δ∈{0,1}

I(k1+pδ,k2+3pδ)(τ), with Ik(τ) := −
√

3

8π
IΘ1(2p,k1,2p;·),Θ0(6p,k2,6p;·)(τ).

Again the transformation properties follow as in the proof of Proposition 5.5 of [5].

We now restrict to p = 2. The following lemma shows the vanishing of F2,s in this
case.

Lemma VI.2.2. For p = 2, the functions F2,s and E2,s vanish identically.

Proof. We start by proving that F2,s = 0. It is enough to consider s ∈ {(1, 1), (1, 2)}.
The claim for s = (1, 1) follows directly by plugging in the definition of F2,(1,1) and
canceling terms.

We next consider F2,(1,2). By definition

F2,(1,2)(q) =
∑

α∈S(1,2)

η(1,2)(α)
∑
n∈N2

0

(n2 + α2) qQ(n+α),

where

η(1,2)(α) =

{
1 if α ∈

{(
1
6 , 0
)
,
(

5
6 ,

1
2

)
,
(

2
3 ,

1
2

)
,
(

5
6 , 0
)
,
(

1
6 ,

3
2

)
,
(

1
3 ,

3
2

)}
,

−1 if α ∈
{(

2
3 ,−

1
2

)
,
(

5
6 ,−

1
2

)
,
(

1
6 , 1
)
,
(

1
3 ,

1
2

)
,
(

1
6 ,

1
2

)
,
(

5
6 , 1
)}
.
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Note that

Hα(q) :=
∑
n∈N2

0

(n2 + α2) qQ(n+α) −
∑
n∈N2

0

(n2 + α2 − 1) qQ(n+(α1,α2−1))

= (1− α2) q
1
4

(α2−1)2
∑

n∈α1+
α2−1

2
+N0

q3n2
.

Thus

F2,(1,2)(q) = −H( 1
6
,1)(q) +H( 5

6
, 1
2)(q) +H( 2

3
, 1
2)(q)−H( 5

6
,1)(q) +H( 1

6
, 3
2)(q) +H( 1

3
, 3
2)(q)

=
1

2
q

1
16

∑
n∈ 7

12
+N0

q3n2
+

1

2
q

1
16

∑
n∈ 5

12
+N0

q3n2 − 1

2
q

1
16

∑
n∈ 5

12
+N0

−1

2
q

1
16

∑
n∈ 7

12
+N0

q3n2
= 0.

To see that E2,s = 0, it is sufficient to prove

−J(s1+s2,s1−s2) + J(s2,2s1+s2) + J(s1,2s2+s1) = 0,

which is a straightforward computation with theta series.

We are now ready to prove Theorem VI.1.2.

Sketch of proof of Theorem VI.1.2. We write

E1,s(τ) = −
√

3

2

∫ i∞

−τ

∫ i∞

w1

∑
α∈S ∗s

ε(α) (θ1(α; 2w) + θ2(α; 2w))√
−i(w1 + τ)

√
−i(w2 + τ)

dw2dw1.

We next show the identities in (VI.1.3). We start with s = (1, 1). We use the theta
relation

1

2

∑
α∈S ∗

(1,1)

ε(α) (θ1(α; 2w) + θ2(α; 2w)) =
1

2
Θ1(4, 1, 4;w1)Θ1(12, 3, 12;w2). (VI.2.4)

Equation (VI.2.4) yields

E1,(1,1)(τ) = −
√

3

2

∫ i∞

−τ

∫ i∞

w1

Θ1(4, 1, 4;w1)Θ1(12, 3, 12;w2)√
−i(w1 + τ)

√
−i(w2 + τ)

dw2dw1 = 4I(1,3)(τ),

which is the first identity in (VI.1.3).
We next consider E1,(1,2) and use that∑
α∈S ∗

(1,2)

ε(α) (θ1(α; 2w) + θ2(α; 2w)) (VI.2.5)
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=
1

2
Θ1(4, 1, 4;w1) (Θ1(12, 1, 12;w2) + Θ1(12, 5, 12;w2)) .

Thus

E1,(1,2)(τ) = −
√

3

4

∫ i∞

−τ

∫ i∞

w1

Θ1(4, 1, 4;w1) (Θ1(12, 1, 12;w2) + Θ1(12, 5, 12;w2))√
−i(w1 + τ)

√
−i(w2 + τ)

dw2dw1

= 2(I(1,1)(τ) + I(1,5)(τ)),

which is the second identity in (VI.1.3).
We next use Lemma 5.1 of [5], to obtain

Ik(τ) = (−iτ)−1 1√
3

5∑
k=1

sin

(
πkk2

6

)
I(k1,k)

(
−1

τ

)
+ Ak(τ),

where Ak contributes the simpler terms mentioned in Theorem VI.1.2, and is explicitly
given by

Ak(τ) := −
√

3

8

∫ i∞

0

∫ i∞

w1

Θ1(4, k1, 4;w1)Θ1(12, k2, 12;w2)√
−i(w1 + τ)

√
−i(w2 + τ)

dw2dw1

−
√

3

8
IΘ1(4,k1,4;·)(τ)rΘ1(12,k2,12;·)(τ) +

√
3

8
rΘ1(4,k1,4;·)(τ)rΘ1(12,k2,12;·)(τ),

where, for f a holomorphic modular form of weight k,

rf (τ) :=

∫ i∞

0
f(w)(−i(w + τ))k−2dw.

In particular

E1,(1,1)(τ) =
1√

3(−iτ)

(
2E1,(1,2)

(
−1

τ

)
− E1,(1,1)

(
−1

τ

))
+ 4A(1,3)(τ),

E1,(1,2)(τ) =
1√

3(−iτ)

(
E1,(1,1)

(
−1

τ

)
+ E1,(1,2)

(
−1

τ

))
+ 2A(1,1)(τ) + 2A(1,5)(τ).

Inverting and reordering gives

E1,(1,1)

(
−1

τ

)
=− iτ√

3

(
2E1,(1,2)(τ)− E1,(1,1)(τ)

)
− 4iτ√

3

(
A(1,3)(τ)− A(1,1)(τ)− A(1,5)(τ)

)
,

(VI.2.6)

E1,(1,2)

(
−1

τ

)
=− iτ√

3

(
E1,(1,2)(τ) + E1,(1,1)(τ)

)
+

2iτ√
3

(
A(1,1)(τ) + A(1,5)(τ) + 2A(1,3)(τ)

)
.

(VI.2.7)
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The claim follows using that

E1,(1,1)(τ + 1) = −E1,(1,1)(τ), E1,(1,2)(τ + 1) = e−
πi
6 E1,(1,2)(τ).

VI.3 The asymptotic behavior of H1,α

To prove Theorem VI.1.3 we need to compute

Hα := lim
t→0+

H1,α

(
i
t

)
t

,

where, for α ∈ R2,

H1,α(τ) := −
√

3

∫ i∞

0

∫ i∞

w1

θ1 (α;w) + θ2 (α;w)√
−i (w1 + τ)

√
−i (w2 + τ)

dw2dw1.

Proposition VI.3.1. Assume that α1, α2 are not both in Z. We have

Hα =


2√
3

sin(2πα1) sin(2πα2)
(1−cos(2πα1))(1−cos(2πα2)) if α1, α2 6∈ Z,
2
√

3
1−cos(2πα2) if α1 ∈ Z, α2 6∈ Z,

2
(1−cos(2πα1))

√
3

if α1 6∈ Z, α2 ∈ Z.

Proof. We first rewrite H1,α(τ). By Theorem 1.2 of [5], we have

H1,α(τ) =

∫
R2

g1,α(w)e2πiτQ(w)dw1dw2.

Here we define

g1,α(w) :=


2Gα1(w1)Gα2(w2)− 2Fα1(w1)Fα2(w2) if α1, α2 /∈ Z,
−2F0(w1)Fα2(w2) + 2

πw1
Fα2

(
w2 + 3w1

2

)
if α1 ∈ Z, α2 /∈ Z,

−2Fα1(w1)F0(w2) + 2
πw2
Fα1

(
w1 + w2

2

)
if α1 /∈ Z, α2 ∈ Z,

setting

Fα(x) :=
sinh(2πx)

cosh(2πx)− cos(2πα)
, Gα(x) :=

sin(2πα)

cosh(2πx)− cos(2πα)
.

Applying the two-dimensional saddle point method gives that

Hα =
g1,α(0, 0)√

3
.

Explicitly computing g1,α(0, 0) yields the claim of Proposition VI.3.1.
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VI.4 Proof of Theorem VI.1.3.

Inverting (VI.2.6) and (VI.2.7) gives

E1,(1,1)(τ) =
1√

3(−iτ)

(
2E1,(1,2)

(
−1

τ

)
− E1,(1,1)

(
−1

τ

))
+

4√
3(−iτ)

(
A(1,3)

(
−1

τ

)
− A(1,1)

(
−1

τ

)
− A(1,5)

(
−1

τ

))
,

E1,(1,2)(τ) =
1√

3(−iτ)

(
E1,(1,2)

(
−1

τ

)
+ E1,(1,1)

(
−1

τ

))
− 2√

3(−iτ)

(
A(1,1)

(
−1

τ

)
+ A(1,5)

(
−1

τ

)
+ 2A(1,3)

(
−1

τ

))
.

We next rewrite the first summand of A(1,j), denoting it by B(1,j). For this, we again
use the theta relations (VI.2.4) and (VI.2.5). This yields

B(1,3)(τ) =
1

16

∑
α∈S ∗

(1,1)

ε(α)H1,α(2τ), B(1,1)(τ) + B(1,5)(τ) =
1

8

∑
α∈S ∗

(1,2)

ε(α)H1,α(2τ).

Thus

E1,(1,1)(τ) =
1√

3(−iτ)

(
2E1,(1,2)

(
−1

τ

)
− E1,(1,1)

(
−1

τ

))

+
1

2
√

3(−iτ)

1

2

∑
α∈S ∗

(1,1)

ε(α)H1,α

(
−2

τ

)
−

∑
α∈S ∗

(1,2)

ε(α)H1,α

(
−2

τ

)
− 1

2(−iτ)

(
IΘ1(4,1,4)

(
−1

τ

)
− rΘ1(4,1,4)

(
−1

τ

))

×
(
rΘ1(12,3,12)

(
−1

τ

)
− rΘ1(12,1,12)

(
−1

τ

)
− rΘ1(12,5,12)

(
−1

τ

))
,

E1,(1,2)(τ) =
1√

3(−iτ)

(
E1,(1,2)

(
−1

τ

)
+ E1,(1,1)

(
−1

τ

))

− 1

4
√

3(−iτ)

 ∑
α∈S ∗

(1,1)

ε(α)H1,α

(
−2

τ

)
+

∑
α∈S ∗

(1,2)

ε(α)H1,α

(
−2

τ

)
+

1

4(−iτ)

(
IΘ1(4,1,4,1)

(
−1

τ

)
− rΘ1(4,1,4)

(
−1

τ

)
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×
(

2rΘ1(12,3,12; · )

(
−1

τ

)
+ rΘ1(12,1,12; · )

(
−1

τ

)
+ rΘ1(12,5,12; · )

(
−1

τ

)))
.

Letting τ = it→ 0 yields

E1,(1,1)(it) ∼
1

8
√

3

 ∑
α∈S ∗

(1,1)

ε(α)Hα − 2
∑

α∈S ∗
(1,2)

ε(α)Hα

+
1

2
(h3 − h1 − h5), (VI.4.1)

E1,(1,2)(it) ∼ −
1

8
√

3

 ∑
α∈S ∗

(1,1)

ε(α)Hα +
∑

α∈S ∗
(1,2)

ε(α)Hα

− 1

4
(2h3 + h1 + h5),

(VI.4.2)

where

hj := lim
t→0

1

t
rΘ1(4,1,4; · )

(
i

t

)
rΘ1(12,j,12; · )

(
i

t

)
.

We have∑
α∈S ∗s

ε(α)Hα = s2H( s2−s1
6

,1− s2
2

) + s1H(1− s2−s1
6

,1− s1
2

) + s1H( 2s1+s2
6

,1− s1
2

)
+ s2H( 2s2+s1

6
,1− s2

2

) − (s1 + s2)H(
1− s1+2s2

6
,
s1+s2

2

) − (s1 + s2)H(
1− s2+2s1

6
,
s1+s2

2

).
In particular, using Proposition 1.1, we evaluate∑

α∈S ∗
(1,1)

ε(α)Hα =
2√
3
,

∑
α∈S ∗

(1,2)

ε(α)Hα =
16√

3
. (VI.4.3)

To compute limt→0 t
− 1

2 rΘ1(N,a,N ; · )(
i
t) we employ Lemma 3.2 of [5] to obtain

rΘ1(N,a,N ; · )

(
i

t

)
=
i
√
N

2
sin

(
2πa

N

)∫
R

e−
πN
t
x2

sinh
(
πx+ πia

N

)
sinh

(
πx− πia

N

)dx.
The saddle point method then yields that

rΘ1(N,a,N ; · )

(
i

t

)
= i
√
t cot

(πa
N

)
.

Thus

hj = cot

(
πj

12

)
.
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In particular

h1 = − cot
( π

12

)
, h3 = −1, h5 = − cot

(
5π

12

)
.

Plugging this and (VI.4.3) into (VI.4.1) and (VI.4.2) gives the claim.

VI.5 Simplification for p = 2

We first recall the one-dimensional situation for p = 2. There is a unique false theta
function ∑

n∈Z
sgn

(
n+

1

2

)
q2(n+ 1

4)
2

,

whose corresponding Eichler integral is (see [3])

F ∗1,2(τ) := −2i

∫ i∞

−τ̄

Θ1(4, 1, 4;w)√
−i(w + τ)

dw.

Noting that
Θ1(4, 1, 4; τ) = η(τ)3, (VI.5.1)

this integral transforms as a scalar-valued quantum modular form of weight 1
2 .

In the two-dimensional case, a similar ”higher depth” picture emerges. Observing
(VI.5.1) and

Θ1(12, 3, 12; τ) = 3η(3τ)3, Θ1(12, 1, 12; τ) + Θ1(12, 5, 12; τ) = 3η(3τ)3 + η
(τ

3

)3

we obtain that the space spanned by E1,(1,1)(τ) and E1,(1,2)(τ) is also spanned by∫ i∞

−τ

∫ i∞

w1

η(w1)3η(3w2)3√
−i(w1 + τ)

√
−i(w2 + τ)

dw2dw1, (VI.5.2)

∫ i∞

−τ

∫ i∞

w1

η(w1)3η
(
w2
3

)3√
−i(w1 + τ)

√
−i(w2 + τ)

dw2dw1.

The next result can be found in [10, Corollary 6.6] (it can be also derived by using
representation theory of ŝl3 as discussed in [2]).

Proposition VI.5.1. We have

η(τ)
∑
m,n∈Z

qm
2+n2−mn = 3η(3τ)3 + η

(τ
3

)3
, η(τ)q

1
3

∑
m,n∈Z

qm
2+n2−mn+n = 3η(3τ)3.
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According to [9],
∑

m,n∈Z q
m2+n2−mn and q

1
3
∑

m,n∈Z q
m2+n2−mn+n are numerators of

two characters of irreducible highest weight ŝl3-modules of level one. Therefore modular
properties of the double Eichler integrals in (VI.5.2), modulo correction factors, are
identical to modular transformation properties of the span of characters of the level
one simple affine vertex algebra of ŝl3. It would be interesting to understand a possible
connection from a purely representation theoretic perspective. This is closely related to a
conjecture of Creutzig and the third author [8] pertaining to quantum modular properties
of characters of W 0(p)A2 , representations of affine Lie algebras, and representations of
quantum groups at a root of unity (see also [1, 6, 7] for other appearances of this and
related vertex algebras).
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Chapter VII

Summary and Discussion

In this chapter, the results of this thesis are summarized and further related research
opportunities discussed.

VII.1 Indefinite theta functions arising in Gromov-Witten
theory of elliptic orbifolds

In Chapter II (combined with [BRZ1]) we showed that the coefficients of the open
Gromov-Witten potential Wq(X,Y, Z) of P1

(2,3,6) are essentially modular forms or mock
modular forms of depth up to 3. To accomplish that, we used the strategies and tools
devised in [Zw] and [ABMP] and built on them to describe the modularity properties of
an indefinite theta function of signature (1, 3). Chapter III we gave additional details for
the proof of Proposition II.5.2.

The generating functions appearing in this Gromov-Witten potential come up by
enumerating holomorphic discs on elliptic curves bounded by a set of Lagrangians, and
can be expressed combinatorially as a counting function of hexagons whose edges lie
on a certain set of lines, as shown by Cho, Hong, Kim, and Lau in [CHKL]. Similar
counting functions for other planar polygons appear in homological mirror symmetry and
are frequently related to theta functions [P1,P2,P3,P4,BHLW]. While the generating
functions studied here correspond to using fixed Lagrangians, it is also possible to
allow deformations of the Lagrangians as described in [P2]. It is expected that the
corresponding counting functions of planar convex polygons (which have up to 6 vertices)
will produce definite and indefinite theta functions with discontinuities (in the elliptic
variable) along hyperplanes, with the values of the jumps corresponding to the theta
functions for polygons with fewer vertices. This behavior has been verified for polygons
of up to 5 vertices [BKZ], but homological mirror symmetry suggests that more relations
between the generating functions should hold.

In regards to understanding indefinite theta functions in their own right, Nazaroglu
[N] showed how to complete indefinite theta functions of arbitrary signature, but the
proof of convergence relies on strict restrictions on the cone. It would be interesting
to optimize his proof and push for less restrictive conditions on the cones. The cones
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considered in [ABMP] and [N] are called cubical cones since their cross-sections are (affine
transforms of) hypercubes.

In contrast, other authors considered simplicial cones whose cross-sections are (affine
transforms of) simplices and used abstract geometric objects in their proofs. Kudla
showed that indefinite theta functions can be viewed as integrals of Kudla-Millson theta
series [Ku], and extended this project with Funke to obtain general statements on modular
completions of indefinite theta functions with simplicial cones, expressing the conditions
on the cone as some related geometric objects being in “good position” [FK].

At the same time, Westerholt-Raum used a more abstract geometric setting to obtain
results on the completions of indefinite theta function [WR]. However, some special cases
with “degeneracies” such as those in Chapter II do not seem to be covered by these
general statements.

While a lot of insight into the modular properties of indefinite theta functions has
been gained by now, another possible research topic are the differential properties of the
resulting completions. While some iterative structure in the appearing terms is evident,
it should be possible to find a suitable analogue of the connection between mock modular
forms and Maass forms for the mock modular forms of higher depth.

Once a proper structure is defined, one should study the dimensions of the spaces of
fixed weight and (some kind of) depth, whether they are generated by indefinite theta
functions, and what other kind of elements can be found.

VII.2 Higher depth quantum modular forms, multiple
Eichler integrals, and sl3 false theta functions

In Chapter IV we considered generating functions appearing as the character of the
0 weight space of the Lie algebra representation corresponding to the vertex algebra
W 0(p)A2 . We showed that the higher rank false theta functions appearing for the simple
Lie algebra sl3 is the sum of two depth two quantum modular forms and that a companion
on the lower half plane is closely related to the “purely non-holomorphic part” of an
indefinite theta function of signature (2, 2).

It would be interesting to generalize these results by considering the characters of 0
weight spaces of the Lie algebra representation corresponding to the lattices Ad, d ≥ 3
(which were given in [BM1]). One could try to compute explicit expressions for the
appearing false theta functions and find suitable companions on the lower half plane
to determine the modularity properties of these functions. This is interesting from
a representation theoretic standpoint because the vector-valued transformation under
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S =
(

0 −1
1 0

)
may produce typical and atypical characters in an identity of the shape

ch[M ]

(
−1

τ

)
=

∫
Ω
SM,νch[Mν ](τ)dν +

∑
j∈D

αM,jch[Mj ](τ),

where the ch[Mj ] are atypical characters and ch[Mν ] are typical characters and Ω and D
are domains parametrizing those types of characters, respectively [STT,KW].

Additionally, the S-transformation captures many important (algebraic, analytic, and
categorical) properties of rational vertex algebras such as quantum dimensions and fusion
rules and this could advance the understanding of modularity properties of characters
beyond the rational vertex operator algebras.

Closer inspection of the generating functions appearing for d ≥ 3 revealed some
combinatorial problems related to the appearing representations that would have to be
solved. Additionally, for a generalization to d ≥ 3, the proof equating the asymptotic
expansions has to be modified since growing terms appear that do not cancel completely
without further conditions (which they did for d = 2). This could also be interesting
independently of solving the combinatorial problem by considering suitable linear combi-
nations of partial theta functions for arbitrary positive definite quadratic forms of rank
d, which would give examples of quantum modular forms of depth d. Males performed
this analysis for the case of d = 2 in [Mal1].

Problem VII.2.1. Generalize the results of [BKM1] to the false theta functions of
rank at least 3 produced by characters of W -algebras described in [BM2]. Further find
companions for suitable linear combinations of partial theta functions for arbitrary positive
definite quadratic forms of rank at least 3.

Another possible connection is with colored Jones polynomials Jnωj (K, q), where ωj ,
j = 1, 2 are the fundamental weights. Yuasa gave an explicit formula for the tail of
(2, 2p)-torus links belonging to the sequence (Jnωj (K, q))n∈N [Yu]. Up to a factor 1− q,
the same tail appeared as a summand of F (q). Therefore one could try to show that
F (q) is the tail of Jnρ(K, q) up to a rational function in q. Related computations of tails
colored with sl3 representations can be found in [GV].

VII.3 Vector-valued higher depth quantum modular forms
and higher Mordell integrals

In Chapter V we analyzed further aspects of the functions introduced in Chapter
IV. Specifically, we showed that the quantum modular forms for subgroups of SL2(Z)
appearing there also satisfy vector-valued higher depth quantum modularity with respect
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to the full modular group. Furthermore, we investigated the iterated Eichler integrals
appearing in the companion and found a two-dimensional analogue of an identity between
Eichler integrals and Mordell integrals shown by Zwegers [Zw].

By carefully inspecting the second identity given in Theorem V.1.3, one can guess
such an identity for arbitrary positive definite quadratic forms of rank 2, and it suggests
a generalization to positive definite quadratic forms of arbitrary rank. To that end, note
that the theta functions in the Eichler integral come from the two ways of diagonalizing
the quadratic form by completing the square. A more general analysis for quadratic
forms of rank 2 using the same approach was performed by Males in the unpublished note
[Mal2], but the arbitrary rank case would be an interesting continuation of this research
that could shed light on higher dimensional analogues. The Eichler integral should have a
term for each possible way of diagonalizing the quadratic form by iteratively completing
the square, so we raise the following conjecture.

Conjecture VII.3.1. For α ∈ (R \ Z)m and a positive definite quadratic form Q of
rank m we have∫

Rm
e2πiτQ(w)

m∏
j=1

cot (πiwj + παj) dw

=

∫ i∞

0

∫ i∞

w1

· · ·
∫ i∞

wm−1

∑
k θk (α;w)∏m

j=1

√
−i (wj + τ)

dwm . . . dw1,

where the sum on the right hand side runs over the m! diagonalizations of Q obtained by
iteratively completing the square, and θk (α;w) is a theta function corresponding to the
k-th diagonalization.

Chapters IV, V, and VI contain multiple non-holomorphic iterated Eichler integrals
of specific theta functions and their companions on the upper half-plane. It would be
interesting to study them in their own right and to answer questions such as the following.

Problem VII.3.2. Can one find interesting companions on the upper complex half-plane
(in the sense of agreeing asymptotic expansions at the rational points) for non-holomorphic
Eichler integrals of a larger family of theta functions or other modular forms (instead of
just the few examples appearing in Chapters IV, V, and VI)?

Furthermore, one can draw inspiration from work by Brown [Bro], where he con-
structed a class of real-analytic modular forms as linear combinations of regularized
iterated holomorphic Eichler integrals of Eisenstein series (see also [Ma]).
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Problem VII.3.3. Can one find linear combinations of holomorphic and non-holomorphic
iterated Eichler integrals that are real-analytic modular forms?

The family of rank 2 partial theta functions appearing in Chapters IV, V, and VI are
Fourier coefficients of the Jacobi form of weight 0 and matrix index −1

2 ( 2 1
1 2 ) given by

ϑ (z1; 2τ)ϑ (z2; 2τ)ϑ (z1 + z2; 2τ)

ϑ (z1; τ)ϑ (z2; τ)ϑ (z1 + z2; τ)
.

Similar phenomena have been studied previously for Jacobi forms of index m ∈ Z
[BCR, BRZ2, EZ, Ol, Zw]. For example, Eichler and Zagier showed that the Fourier
coefficients of holomorphic Jacobi forms of index m ∈ Z give rise to vector valued
modular forms via their theta decomposition [EZ]. More recently, Bringmann, Rolen,
and Zwegers showed that the Fourier coefficients of negative index m ∈ −N meromorphic
Jacobi forms are built from partial theta functions [BRZ2, Theorem 1.4]. It would be
interesting to show similar properties for the coefficients of negative definite matrix index
Jacobi forms in general.

Problem VII.3.4. Can the coefficients of negative definite matrix index Jacobi forms
be expressed in terms of partial theta functions? Are they quantum modular forms of
higher depth?

VII.4 Some examples of higher depth vector-valued
quantum modular forms

Chapter V determined higher depth vector-valued quantum modular transformation
behavior, but left open whether the other components are naturally connected to the
q-series F (q) by a corresponding family of q-series. In Chapter VI we proved that the
family (Fs(q))1≤s1,s2≤p (that contains F (q) = F(1,1)(q)) consists of depth 2 vector-valued
quantum modular forms, but only showed for p = 2 that they form a closed space
under modular transformation. Notably, the other components Fs are connected from
a representation theoretic viewpoint, so from the example of p = 2 it is reasonable to
expect them to combine naturally in general.

Therefore, a straightforward continuation would be to generalize our result to arbitrary
p ≥ 2 as follows.

Conjecture VII.4.1. The functions Fs combine into a vector-valued quantum modular
form possibly after inclusion of additional characters (or functions).

Similarly, one could generalize the study of the asymptotic behavior that we did for
p = 2 to general p ≥ 2.
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