
 Evolution of Platform-based Open Source Ecosystems 
  

 Fortieth International Conference on Information Systems, Munich 2019 1 

Evolution of Platform-based Open Source 
Ecosystems: Uncovering Socio-Technical 

Dynamics Using Digital Traces 
Short Paper 

 
Mario Müller 

University of Cologne  
Cologne, Germany 

mario.mueller@wiso.uni-koeln.de 
 

Phil Diegmann 
University of Cologne 

Cologne, Germany 
diegmann@wiso.uni-koeln.de 

 
Christoph Rosenkranz 

University of Cologne 
Cologne, Germany 

rosenkranz@wiso.uni-koeln.de 
 

Abstract 
Open source software is increasingly becoming platform-based, thereby evolving and 
depending on an ecosystem of third-party developers and their contributions in the 
form of modules. Thus, platform-based open source software ecosystems (POSSE) are 
structured based on social networks formed by the relationships between third-party 
developers as well as technical networks formed by dependencies between the modules 
extending the platform core. Despite the socio-technical nature, little is known about the 
interplay of the social and the technical networks, and its influence on the evolution of 
POSSE. In this short paper, we present our planned study to uncover the socio-technical 
dynamics of POSSE. By uncovering these dynamics and their effect on the evolution of 
POSSE, we aim to contribute to research on digital platforms and ecosystems through 
explaining their success and growth. 

Keywords: Open source, digital ecosystems, ecosystem dynamics, network analysis, 
data-driven approach 

Introduction 
Digital ecosystems are a growing source of innovation, where capabilities shift from within an 
organization to third-party developers (Parker et al. 2017; Yoo 2013; Yoo et al. 2010), which has led to an 
increasing research interest on the phenomenon of platform-based software ecosystems (Jacobides et al. 
2018). The success of open source software (OSS; Lerner and Tirole 2002) and the trend away from 
monolithic to platform-based software systems (Hanseth and Lyytinen 2010) have created large-scale 
software ecosystems, which we refer to as platform-based open source software ecosystems (POSSE). In 
this context, a platform is defined as “the extensible codebase of a software-based system that provides 
core functionality shared by the modules that interoperate with it and the interfaces through which they 
interoperate” (Tiwana et al. 2010). Accordingly, the platform and its entirety of complementary modules 
form the platform’s ecosystem (Tiwana et al. 2010). Hence, POSSE are digital ecosystems consisting of 
digital artifacts (Kallinikos et al. 2013) that are OSS modules (Eck and Uebernickel 2016). These modules 
interact with the digital ecosystem’s platform core through standardized interfaces and add functionality 
or value to the digital platform (de Reuver et al. 2018; Tiwana et al. 2010). This modular architecture of 
POSSE allows for the coordination of heterogeneous developers that contribute interdependent modules 



 Evolution of Platform-based Open Source Ecosystems 
  

 Fortieth International Conference on Information Systems, Munich 2019 2 

through an ecosystem (Jacobides et al. 2018) in which interoperability with the platform core is ensured 
through the usage of the platform’s interfaces (Tiwana 2015). Developers make use of existing modules 
through a process of recombination and remixing when building new modules, which they then 
contribute to the ecosystem. By doing so, two distinct types of networks emerge. First, this process 
generates a technical network of modules and their interdependencies, which are connected due to 
technical dependencies between modules in the ecosystem (MacCormack et al. 2006). Second, developers 
form a social network of actors and their relationships by contributing their skill and time (Roberts et al. 
2006) when creating new modules or adding code to existing modules of the ecosystem. In doing so, they 
might add new technical dependencies to existing modules, which affects the network of 
interdependencies, or form new social structures by creating new collaborations or forming teams (Hahn 
et al. 2008). Due to this, we view POSSE as socio-technical systems comprised of the social network of the 
participating developers and the technical network of interdependencies of its complementary modules. 
Previous research on the evolution of platform-based ecosystems has investigated module 
interdependencies and their effect on platform evolution, which showed that novel functionality relies on 
the introduction of new dependencies (Hukal 2017), and that the ecosystem coevolves with its modules 
(Um and Yoo 2016). These findings are closely related to studies that show how OSS is constructed and 
evolves through layering, whereby future development activities can build up on the current layer 
(Howison and Crowston 2014). However, current studies investigating the evolution and success of 
platform-based ecosystems mainly focus on the technical side of the ecosystem, even though the 
technology alone does not lead to innovation in such complex networks, which depend on diverse groups 
of actors with access to this technology and using it in innovative ways (Boland et al. 2007). In the context 
of OSS, for example, voluntary software developers form project teams that emerge based on the 
developers’ social networks (Hahn et al. 2008). The success of POSSE therefore is not only related to its 
technology, but also to “the project production process and the broader social environment in which 
developers work” (Singh et al. 2011, p. 814). 

Despite the importance of both social and technical interactions, the direction and consequence of 
changes (e.g., symbiosis and coevolution of modules, or knowledge exchange amongst developers) of 
social networks (i.e., social interactions of contributors) or technical networks (i.e., technical 
interdependencies of modules) in POSSE have yet to be uncovered. An enhanced understanding of the 
relationship between the technical and social networks, and how they influence each other’s structure, 
could explain the dynamics of ecosystem evolution and growth. This goes along with recent calls for 
rethinking the nature of socio-technical systems in information systems research, especially due to “novel 
arrangements emerging in the digital age” (Winter et al. 2014, p. 264), including phenomena such as 
digital platforms and OSS. For example, the aspect of complex forms of socio-technical encapsulation and 
overlapping systems or platforms is seen as a central aspect of contemporary socio-technical systems 
(Winter et al. 2014). Accordingly, we ask: 

“How do socio-technical dynamics in platform-based open source software ecosystems 
influence the ecosystem’s growth and evolution?” 

To answer our research question, we propose to conduct a study of three of the most popular front-end 
development frameworks (i.e., Angular, React, and Vue) and their respective POSSEs. In doing so, we 
respond to calls for data-driven approaches to investigate ecosystem dynamics (de Reuver et al. 2018). We 
aim to analyze both the technical and social networks of those ecosystems with digital trace data (Berente 
et al. 2019) gathered from the projects’ GitHub and npm repositories. For our analysis, we will primarily 
use network analysis techniques (i.e., cluster, temporal, and network motif analyses). This will help to 
uncover the underlying socio-technical dynamics leading to the evolution and growth of the digital 
ecosystems. 

These findings will contribute to theory and practice in two important ways. First, we propose and 
develop a socio-technical approach for analyzing evolutionary dynamics in POSSE. Second, we will 
advance our understanding of the growth and success of POSSE and identify important predictors. 
Having insight into how social and technical networks (i.e., collaborators and dependencies) are 
interconnected, reveals interdependencies and enables conclusions on who drives which aspects in the 
development and ultimately the evolution of POSSE. Combined, this research therefore benefits both 
research and practice related to POSSE and digital platform ecosystems in general. 



 Evolution of Platform-based Open Source Ecosystems 
  

 Fortieth International Conference on Information Systems, Munich 2019 3 

The remainder of this paper is organized as follows. First, we define and explain the concept of POSSE 
and the social and technical interdependencies in open source projects in general and in POSSE in 
particular. Second, the proposed research design is introduced including the description of our data 
collection and analysis. Third, we present our expected results as well as our roadmap until ICIS 2019. 
Fourth, we conclude with a discussion about potential challenges, risks, and our expected contributions. 

Theoretical Background 

Platform-based Open Source Software Ecosystems 

With modern software systems changing from a monolithic to a platform-based design (Hanseth and 
Lyytinen 2010), software is created “on top” of digital platforms, that is the “extensible codebase of a 
software-based system that provides core functionality shared by the modules that interoperate with it 
and the interfaces through which they interoperate” (Tiwana et al. 2010, p. 675). When the platform 
orchestrator opens the digital platform for third-party developers, it transitions to a software ecosystem 
(Bosch 2009), which consists of the digital platform, its interfaces, complementary modules, and the 
developers (Tiwana 2013). In software ecosystems, developers contribute their time, knowledge, and skill 
to increase the value of the ecosystem by participating in it through the contribution of modules (Roberts 
et al. 2006), which are “add-on software subsystem that connect to the platform to add functionality to 
the platform” (Tiwana et al. 2010, p. 676). In this scenario, the platform functions as a hub with the 
complementary modules as spokes connected through application programming interfaces (APIs) or 
other technical standards (Jacobides et al. 2018). This transformation is also evident in OSS, where the 
resulting platform-based open source software “incorporate principles from open source development as 
well as traditional engineering principles (e.g. modular system design)” (Cataldo and Herbsleb 2010, p. 
66). Accordingly, we define platform-based open source software ecosystems (POSSE) as “a collection of 
digital artifacts [i.e., modules] that coevolve through mutual interference, and the social actors related to 
these artifacts that are linked by a common interest” (Eck and Uebernickel 2016, p. 2). 
The modular system design affords coordinating large numbers of developers that contribute 
interdependent modules through an ecosystem (Jacobides et al. 2018) in which interoperability with the 
platform core is ensured through the usage of the platform’s interfaces (Tiwana 2015). Therefore, POSSE 
involve “a large and heterogeneous collection of stakeholders that need to collaborate effectively in order 
to produce successful outcomes” (Cataldo and Herbsleb 2010, p. 65). Hence, they strongly depend on the 
contributions of a number of third-party developers that build complementary modules, which add 
functionality to the digital ecosystem. By enabling contributions by external actors, digital ecosystems are 
seen as a growing source of innovation where capabilities shift to the outside of the organization (Parker 
et al. 2017; Yoo 2013; Yoo et al. 2010). This opens up POSSE for contributions from a wide range of 
developers and therefore raises the importance of understanding the dynamics between the social and 
technical aspects of the ecosystem. 

Socio-Technical Dynamics in Platform-based Open Source Ecosystems 

OSS projects rely heavily on the communities surrounding these projects – without the contributions of 
time and effort of highly motivated developers, OSS projects cannot exist (Roberts et al. 2006). In general, 
the success of the open source model has led to an increase in OSS projects and new ideas on how 
innovation should be managed (Singh et al. 2011). OSS projects do not always produce software targeted 
at end users, but at developers and this software is “designed to be reused and to provide functionality to 
other software projects” (Haefliger et al. 2008, p. 180). Boland et al. (2007) make the point that 
technology (e.g., software) per se does not herald innovation in complex networks. Rather, diverse groups 
of actors with access to the technology are those putting their capabilities to innovative uses. In the 
context of OSS, voluntary software developers form project teams that emerge based on the developers’ 
social networks (Hahn et al. 2008). The success of OSS projects therefore is not only related to technical 
characteristics, but also to “the project production process and the broader social environment in which 
developers work” (Singh et al. 2011, p. 814). OSS projects can therefore be seen as socio-technical systems. 
Adopting a socio-technical view on POSSE, we conceptualize the socio-technical dynamics in POSSE by 
taking various relations between the social actors (i.e., developers) and technical artifacts (i.e., platform 
and modules) into account. By taking the social and technical network into account, various interactions 



 Evolution of Platform-based Open Source Ecosystems 
  

 Fortieth International Conference on Information Systems, Munich 2019 4 

between actors and artifacts are feasible, and potentially influence the evolutionary dynamics of the 
ecosystem. Whereby the social network consists of actor-actor relations and the technical network of 
artifact-artifact relations, we also consider actor-artefact relations between both networks. The relations 
of our conceptual socio-technical model of POSSE are shown in Figure 1. In this study, we treat the 
platform (i.e., the codebase of Angular, React, or Vue) as a black box, hence, we do not investigate the 
internal structure and modules of the platform. The focus of this study is on the interdependencies of the 
modules contributed by third-party developers to the platform’s ecosystem. 

 

Figure 1. Conceptual Model of Socio-Technical Dynamics in POSSE 

 
In sum, POSSE are the intersection of effects relating to digital platforms, ecosystems, and OSS. This 
intersection, combined with the effects emerging from the intertwined relationship of social and technical 
aspects, are uncharted territory. By following the call of Winter et al. (2014) to rethink socio-technical 
systems based on digitally induced changes, we aim at revealing the combination of the underlying social 
and technical forces in POSSE. The conclusions drawn from our results, will help in structuring, 
managing, and growing POSSE, based on our identification of patterns and drivers in successful POSSE. 
Ultimately, our study will positively affect the success and popularity of POSSE. 

Preliminary Research Design 

Research Method & Study Description 

For this research project, we adopt a data-driven computational approach for theory development, 
following the recommendations for grounded theory methodology (Berente et al. 2019) and guidelines for 
qualitative research with digital trace data (Lindberg 2019). Here, we define digital trace data as “digital 
records of activities and events that involve information technologies” (Berente et al. 2019, p. 51). 



 Evolution of Platform-based Open Source Ecosystems 
  

 Fortieth International Conference on Information Systems, Munich 2019 5 

We selected the three ecosystems by following a theoretical sampling strategy. Looking for similar and 
established POSSE, we identified three suitable ecosystems: (1) Angular1 (https://angular.io/), (2) React 
(https://reactjs.org/), (3) and Vue (https://vuejs.org/). All ecosystems are currently among the most 
popular front-end-frameworks for web- or web-app-development (Stack Overflow 2019). Further, they 
are suitable as all three ecosystems share similarities: they are written in JavaScript or derivatives (i.e., 
TypeScript) and aim at providing a basis for web- or app-development. While their respective 
implementations might differ, the ecosystems also remain similar due to their shared intent (i.e., front-
end frameworks). Table 1 provides an overview of all three ecosystems. 

Table 1. Overview of Selected Ecosystems 

 Angular React Vue 
Initial Release September 2016 May 2013 February 2014 

Sponsor Google Facebook – 
Contributors 904 1,290 270 

Weekly Downloads (as of April 2019) 405,811 4,588,442 894,590 
Number of Modules in Ecosystem 14,241 40,225 12,393 

Data Collection 

To collect data on our three ecosystems, we utilize two main data sources: GitHub (https://github.com), 
which all three cases use as source code repository, and npm (https://npmjs.com), which all three cases 
use as release management and distribution tool. From GitHub, we are able to collect detailed 
information about the collaborators, codebase, and development process for each module. From npm, we 
are able to collect detailed information about the releases related to the respective ecosystem. To identify 
modules for each of the three ecosystems, we utilize the search API offered by the npm registry. We are 
able to identify every publicly available module for each of the ecosystems by searching for tags such as 
“angular”, “react”, or “vue”. Including variants, we are thereby able to identify all needed modules. As of 
August 2019, we have collected the data of 58,548 modules over all three ecosystems. Table 2 provides an 
overview of the collected data from npm. Combining the data from GitHub and npm, we are able to 
aggregate measures such as the number of modules available in an ecosystem, the lines of code affected by 
a release, the lines of code per contributor per release, or the lines of code per download per day, giving us 
a wide range of additional measures to interpret and explain the evolution and growth (cf. Lindberg 
2019). Including temporal data (e.g., quarterly downloads), we are able to set these measurements into 
context and investigate the ecosystem’s evolution and growth over time. 

Table 2. Excerpt of Collected Data per Module from npm 

Date Description 
Description Short description of modules purpose and functionality. 
Contributors List of contributors mentioned with their npm username. 
Versions History of releases, including all dependencies of each version, author, keywords, 

and release date. 
Dependencies List of module dependencies, including dependencies for development and 

required module version for each dependency. 
Keywords List of keywords, describing the package, it’s intended environment, and platforms. 

 
1 Note: Angular needs to be differentiated from AngularJS, as Angular has emerged from a complete rewrite of AngularJS. 



 Evolution of Platform-based Open Source Ecosystems 
  

 Fortieth International Conference on Information Systems, Munich 2019 6 

Data Analysis 

In a first step, based on the collected data on the social relationships as well as the technical dependencies 
of the modules, we are going to generate directed graphs for the subsequent network analysis. In the next 
step, we will create two separate networks for both the social and technical aspects of the ecosystems. For 
the social network, we will construct an actor-actor network based on the relationships of the ecosystem’s 
developers (i.e., shared contributions to modules and/or other social links based on GitHub follows). For 
the technical network, we will construct artefact-artefact networks representing the module 
dependencies. In addition, to take the socio-technical aspect into account, we will model the actor-artefact 
interconnections (i.e., the actor in the social network is linked to its artefacts in the technical network). 
Table 3 describes the operationalization of each edge type of the networks in line with our conceptual 
framework (see Figure 1). 

Table 3. Operationalization of Edge Types 

Edge Type Description Operationalization 
Actor-Actor Both actors contributed to a 

common module of the ecosystem. 
Both actors are listed as contributors 
in module’s metadata. 

Actor-Module Actor contributed to the specific 
module of the ecosystem. 

Actor is listed as a contributor in the 
specific module’s metadata. 

Actor-Platform Actor contributed to the platform’s 
core module. 

Actor is listed as a contributor in the 
platform’s core module metadata. 

Module-Module Module has the other module 
included as a technical dependency. 

Module is listed as a dependency in the 
other module’s metadata. 

Module-Platform Module has the platform core 
included as a technical dependency. 

Platform’s core module is listed as a 
dependency in the module’s metadata. 

 
In line with our research question, the main goal of the network analysis is to identify socio-technical 
dynamics in the ecosystems and explain the ecosystems’ evolution. To achieve this goal, we will apply 
multiple network analysis techniques: (1) cluster analysis, (2) temporal analysis, and (3) motif analysis. 
First, for our cluster analysis, we will use the Density-Based Spatial Clustering of Applications with 
Noise (DBSCAN) algorithm introduced by Ester et al. (1996), which identifies clusters of arbitrary shape, 
accounts for outliers in the data, and does not need a priori specification of the number of clusters. These 
clusters of actors or modules might provide insight into underlying similarities and the clusters’ evolution 
over time (e.g., different layers of modules or different use cases, such as middleware and front-end 
modules). Second, the temporal analysis of the networks and their clusters allows us to identify changes 
over time and potential key events that lead to changes in the networks. In doing so, we can analyze the 
patterns that led to the evolution and growth of the ecosystems and are able to identify effects on the 
micro (e.g., the movement of actors between and across modules) and the macro (e.g., the distribution 
and growth of module clusters) level (cf. Lindberg 2019). Third, the motif analysis identifies “recurring, 
significant patterns of interconnections” (Milo et al. 2002, p. 824). Thus, a network motif can be 
described as a repeating sub-graph in a network or across networks. By detecting network motifs, we aim 
to identify patterns that might hint at underlying dynamics between the modules (technical network) 
and/or the developers (social network) not accounted for in the cluster analysis. 

The results of the applied network analysis techniques will then be used to derive explanations for the 
evolution and growth of the ecosystem. In this specific context, we define growth as a combination of 
multiple indicators. First, we will utilize the number of downloads per module as an indicator for its 
popularity. Second, we will include the number of ecosystems actors (i.e., developers) as an indicator for 
the growth of the ecosystem (e.g., Setia et al. 2012). Utilizing this multi-indicator approach enables us to 
observe an ecosystem’s growth on multiple dimensions (cf. Lindberg 2019). Third, we analyze the rate at 
which modules are added to the ecosystem, which not only is an indicator for its growth, but also for the 
rate of innovation in the ecosystem (Parker et al. 2017). Fourth, to measure the evolution of a particular 
module, we will analyze the rate at which it is upgraded (Tiwana 2015). With the help of correlation 



 Evolution of Platform-based Open Source Ecosystems 
  

 Fortieth International Conference on Information Systems, Munich 2019 7 

analysis or regression analysis, we plan then on demonstrating which of the above-mentioned measures 
regarding social or technical networks predicts growth. Especially by including a temporal dimension, we 
are able to identify cause and effect more clearly (cf. Lindberg 2019). 

Expected Results 
Due to the exploratory nature of this study, we remain open to different results and different explanations 
(cf. Lindberg 2019). However, based on existing work, we have some prior assumptions of what we expect 
to see. First, we expect the developers’ social networks to affect the technical network of the ecosystem. 
We expect this to occur because developers bring their own technical experience and knowledge into the 
projects they are working on, which includes integrating modules they have used before in other projects. 
This means that if developers collaborate on different modules together, they might use the same 
dependencies across multiple modules. Hence, these choices made by one actor might create trajectories 
for the remaining actors (Boland et al. 2007). 

Proposition 1: The technical dependencies of a module are influenced by the social 
relations of participating actors. 

Second, we also expect technical network to have an effect on the social network. For instance, developers 
using a particular module might seek help from its developer, report a bug, or request additional 
functionality. This connection might lead to new social relations in the future. For example, both actors 
might collaborate on new modules, merge their existing modules due to similar functionalities, or form 
new clusters of actors. 

Proposition 2: The social relations of participating actors are influenced by the technical 
dependencies of contributed modules. 

Third, based on the shown interdependent relationship between social actors and technical dependencies, 
we expect to see a cyclical interaction between both networks. 

Proposition 3: The technical dependencies of a module and the social relations of 
associated actors form a cyclical interaction over time. 

Fourth, we expect the growth of the social network to correlate with the growth of the technical network, 
as a higher number of available modules increases the attractiveness of the ecosystem for developers 
(Parker et al. 2017). This is because more modules might increase reuse and the chance to find a suitable 
module for a problem at hand. 

Proposition 4: The growth of the social and technical networks is correlated. 

Fifth, even though the modules themselves are independent from the codebase of the platform core, they 
use functionality provided by other modules, which results in a dependency on the module it draws 
functionality from. Therefore, the introduction of a new module might lead to a new cluster of modules 
that are enabled by the newly provided functionality. This goes in line with recent studies that show that 
OSS is constructed and evolves through layers of changes on which future development activities can 
build on (Howison and Crowston 2014). According to this theory of superposition, a software layer only 
uses “what is already there” (Howison and Crowston 2014, p. 34). We believe that a similar mechanism is 
also observable in POSSE and explains its evolution. 

Proposition 5: The introduction of novel functionality provided by additional modules 
enables ecosystem evolution and generates module clusters depending on the additional 
modules. 

Expected Contribution 
This study proposes a data-driven approach to uncover socio-technical dynamics in POSSE. Thereby, we 
expect to contribute to the research on digital ecosystems as well as open source software as follows. 
Having insight into how social and technical networks are interconnected reveals interdependencies and 
allows for conclusions on who drives which aspects in the development, evolution, and growth of POSSE. 
Being able to explain why socio-technical dynamics lead to differences in growth and evolution enables 
actors (e.g., platform owner, developers) participating in such ecosystems to take corrective actions. In 



 Evolution of Platform-based Open Source Ecosystems 
  

 Fortieth International Conference on Information Systems, Munich 2019 8 

addition, we contribute to the growing stream of research analyzing digital platforms and their 
ecosystems by proposing a methodological approach for analyzing the socio-technical dynamics of these 
phenomena using digital trace data, responding to the call for more data-driven approaches to investigate 
ecosystem dynamics (de Reuver et al. 2018). Further, our research offers an avenue for future research to 
investigate the evolution of POSSE in more detail. Since firms are increasingly choosing “orchestration 
over production” when it comes to software code (Parker et al. 2017), we contribute to research on a 
growing phenomenon. Given the increasing shift towards open source models in software development 
and the benefits of platform-based architectures, insights on the factors influencing their success, 
evolvability, and ability to create innovative outcomes can help researchers and practitioners alike to 
increase the understanding of this phenomenon. 

Further Approach 
Until the International Conference on Information Systems in December 2019, we plan to accomplish 
multiple steps towards our final goal. First, we plan to have completed our data collection (i.e., have 
collected all data from GitHub and npm for all three ecosystems). This step includes cross referencing 
data across GitHub and npm (e.g., releases from npm and commits included in this commit from 
GitHub). As the data crawler has already been written, we expect this step to be completed around July 
2019. Second, we plan to create an internal research memo on initial observations from the collected data. 
This step is important to have a clearer understanding of the structure of the data and to prepare for 
detailed quantitative analysis. We expect this step to be completed by October 2019. Third, we plan on 
conducting a detailed quantitative analysis before December 2019, which contents have been laid out in 
the previous section. Thus, we aim to present preliminary results of the network analysis and provide first 
explanations for the influence of socio-technical dynamics on POSSE’s evolution. 

References 
Berente, N., Seidel, S., and Safadi, H. 2019. “Research Commentary—Data-Driven Computationally 

Intensive Theory Development,” Information Systems Research (30:1), pp. 50–64. 
Boland, R. J., Lyytinen, K., and Yoo, Y. 2007. “Wakes of Innovation in Project Networks: The Case of 

Digital 3-D Representations in Architecture, Engineering, and Construction,” Organization Science 
(18:4), pp. 631–647. 

Bosch, J. 2009. “From Software Product Lines to Software Ecosystems,” in Proceedings of the Thirteenth 
International Software Product Line Conference (SPLC), San Francisco, pp. 1–10. 

Cataldo, M., and Herbsleb, J. D. 2010. “Architecting in Software Ecosystems: Interface Translucence as an 
Enabler for Scalable Collaboration,” in Proceedings of the Fourth European Conference on Software 
Architecture, Copenhagen, Denmark, pp. 65–72. 

de Reuver, M., Sørensen, C., and Basole, R. C. 2018. “The Digital Platform: A Research Agenda,” Journal 
of Information Technology (33:2), pp. 124–135. 

Eck, A., and Uebernickel, F. 2016. “Reconstructing Open Source Software Ecosystems: Finding Structure 
in Digital Traces,” in Proceedings of the Thirty Seventh International Conference on Information 
Systems, Dublin, pp. 1–13. 

Ester, M., Kriegel, H.-P., Sander, J., and Xu, X. 1996. “A Density-Based Algorithm for Discovering 
Clusters in Large Spatial Databases with Noise,” in Proceedings of the Second International 
Conference on Knowledge Discovery and Data Mining, pp. 226–231. 

Haefliger, S., von Krogh, G., and Spaeth, S. 2008. “Code Reuse in Open Source Software,” Management 
Science (54:1), pp. 180–193. 

Hahn, J., Moon, J. Y., and Zhang, C. 2008. “Emergence of New Project Teams from Open Source Software 
Developer Networks: Impact of Prior Collaboration Ties,” Information Systems Research (19:3), pp. 
369–391. 

Hanseth, O., and Lyytinen, K. 2010. “Design Theory for Dynamic Complexity in Information 
Infrastructures: The Case of Building Internet,” Journal of Information Technology (25:1), pp. 1–19. 

Howison, J., and Crowston, K. 2014. “Collaboration Through Open Superposition: A Theory of the Open 
Source Way,” MIS Quarterly (38:1), pp. 29–50. 

Hukal, P. 2017. “On the Role of Module Interdependencies in Platform Evolution,” in Proceedings of the 
Thirty Eighth International Conference on Information Systems (ICIS), Seoul, pp. 1–11. 



 Evolution of Platform-based Open Source Ecosystems 
  

 Fortieth International Conference on Information Systems, Munich 2019 9 

Jacobides, M. G., Cennamo, C., and Gawer, A. 2018. “Towards a Theory of Ecosystems,” Strategic 
Management Journal (39:8), pp. 2255–2276. 

Kallinikos, J., Aaltonen, A., and Marton, A. 2013. “The Ambivalent Ontology of Digital Artifacts,” MIS 
Quarterly (37:2), pp. 357–370. 

Lerner, J., and Tirole, J. 2002. “Some Simple Economics of Open Source,” The Journal of Industrial 
Economics (50:2), pp. 197–234. 

Lindberg, A. 2019. “Developing Theory Through Integrating Human & Machine Pattern Recognition,” 
Journal of the Association for Information Systems. 

MacCormack, A., Rusnak, J., and Baldwin, C. Y. 2006. “Exploring the Structure of Complex Software 
Designs: An Empirical Study of Open Source and Proprietary Code,” Management Science (52:7), pp. 
1015–1030. 

Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., and Alon, U. 2002. “Network Motifs: 
Simple Building Blocks of Complex Networks,” Science (298:5594), pp. 824–827. 

Parker, G., Alstyne, M. V., and Jiang, X. 2017. “Platform Ecosystems: How Developers Invert the Firm,” 
MIS Quarterly (41:1), pp. 255–266. 

Roberts, J. A., Hann, I.-H., and Slaughter, S. A. 2006. “Understanding the Motivations, Participation, and 
Performance of Open Source Software Developers: A Longitudinal Study of the Apache Projects,” 
Management Science (52:7), pp. 984–999. 

Setia, P., Rajagopalan, B., Sambamurthy, V., and Calantone, R. 2012. “How Peripheral Developers 
Contribute to Open-Source Software Development,” Information Systems Research (23:1), pp. 144–
163. 

Singh, P. V., Tan, Y., and Mookerjee, V. 2011. “Network Effects: The Influence of Structural Capital on 
Open Source Project Success,” MIS Quarterly (35:4), pp. 813–829. 

Stack Overflow. 2019. Developer Survey 2019, https://insights.stackoverflow.com/survey/2019/. 
Tiwana, A. 2013. Platform Ecosystems: Aligning Architecture, Governance, and Strategy, Waltham, MA: 

Morgan Kaufmann. 
Tiwana, A. 2015. “Evolutionary Competition in Platform Ecosystems,” Information Systems Research 

(26:2), pp. 266–281. 
Tiwana, A., Konsynski, B., and Bush, A. A. 2010. “Research Commentary—Platform Evolution: 

Coevolution of Platform Architecture, Governance, and Environmental Dynamics,” Information 
Systems Research (21:4), pp. 675–687. 

Um, S., and Yoo, Y. 2016. “The Co-Evolution of Digital Ecosystems,” in Proceedings of the Thirty Seventh 
International Conference on Information Systems (ICIS), Dublin, pp. 1–15. 

Winter, S., Berente, N., Howison, J., and Butler, B. 2014. “Beyond the Organizational ‘Container’: 
Conceptualizing 21st Century Sociotechnical Work,” Information and Organization (24:4), pp. 250–
269. 

Yoo, Y. 2013. “The Tables Have Turned: How Can the Information Systems Field Contribute to 
Technology and Innovation Management Research?” Journal of the Association for Information 
Systems (14:5), pp. 227–236. 

Yoo, Y., Henfridsson, O., and Lyytinen, K. 2010. “Research Commentary—the New Organizing Logic of 
Digital Innovation: An Agenda for Information Systems Research,” Information Systems Research 
(21:4), pp. 724–735. 

 


