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Abstract

Sequence learning in the serial reaction time task (SRTT) is considered a key
demonstration of learning that may proceed both implicitly or explicitly. However,
claims about the implicit or explicit nature of the acquired knowledge were frequently
based on identifying tasks with one of these two types of learning. The present studies
assume that probably no task is a pure measure of implicit or explicit learning; instead,
within each task, it is necessary to disentangle the contributions of both types of learning
by means of measurement models of task performance.

In the first two studies, we scrutinized a measurement model that has already been
used to dissociate implicit and explicit sequence knowledge: The process-dissociation
(PD) approach as applied to the generation task yields separate estimates of implicit
and explicit sequence knowledge that are derived from two variants of the same task.
It therefore avoids many problems of previous measurement approaches, and studies
utilizing this approach have yet provided the most convincing evidence in favor of
dissociable types of sequence knowledge. However, the PD approach comes with its own
set of critical assumptions. In two studies, we investigated the assumptions underlying
the PD approach and found that they are violated in applications to sequence learning.
Taking these limitations into account, studies that utilized the PD approach do not
provide firm evidence for two dissociable types of learning.

In a third study, we investigated the processes that are involved in the expression
of implicit and explicit sequence knowledge in the SRTT. We found that stimulus
encoding, response execution, and response selection mediated the expression of implicit
sequence knowledge. An involvement of response selection indicates that implicit
sequence learning is mediated by representations containing both stimulus and response
features. In contrast, the acquisition of explicit sequence knowledge resulted in a decision
bias towards regular responses, and other effects of sequence learning disappeared in
the course of training, indicating that participants switched from stimulus-based to
plan-based action control.
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Zusammenfassung

Sequenzlernen in der seriellen Wahlreaktionsaufgabe (SRTT) gilt als entscheidende
Demonstration von Lernen, das sowohl implizit als auch explizit ablaufen kann. Die
Annahme, dass Sequenzwissen entweder implizit oder explizit vorliegt, beruht jedoch
häufig auf der Gleichsetzung einer experimentellen Aufgabe mit einer dieser beiden
Arten von Lernen. Die vorliegenden Studien gehen davon aus, dass wahrscheinlich
keine Aufgabe ein reines Maß für implizites oder explizites Lernen ist; stattdessen ist es
innerhalb jeder Aufgabe erforderlich, die Beiträge beider Arten von Lernen mit Hilfe
von Messmodellen der Aufgabenbearbeitung zu trennen.

In den ersten beiden Studien untersuchten wir ein Messmodell, wie es bereits genutzt
wurde, um implizites und explizites Wissen zu dissoziieren: Die Prozessdissoziationsproze-
dur, wie sie auf die Generierungsaufgabe angewendet wird, liefert getrennte Schätzer
für implizites und explizites Sequenzwissen, die auf der Bearbeitung von zwei Varianten
ein und derselben Aufgabe beruhen. Sie vermeidet daher viele Probleme früherer Mes-
sansätze. Studien mit diesem Ansatz haben bisher die überzeugendsten Befunde für
dissoziierbare Arten von Sequenzwissen geliefert. Der PD-Ansatz beruht jedoch auf
eigenen kritischen Annahmen. In zwei Studien untersuchten wir die Annahmen, die
dem PD-Ansatz zugrunde liegen, und fanden Verletzungen dieser Annahmen. Unter
Berücksichtigung dieser Einschränkungen liefern Studien, die den PD-Ansatz verwenden,
keinen eindeutigen Nachweis für zwei dissoziierbare Formen von Lernen.

In einer dritten Studie untersuchten wir die Prozesse, die in der SRTT mit dem Erwerb
impliziten und expliziten Sequenzwissens einhergehen. Implizites Sequenzwissen ging
mit Veränderungen auf den Ebenen der Stimulusenkodierung, der Reaktionsausführung,
und der Reaktionsauswahl einher. Veränderungen auf der Ebene der Reaktionswauswahl
deuten darauf hin, dass implizitem Sequenzlernen Repräsentationen zugrunde liegen, die
sowohl Merkmale der Stimuli als auch der Reaktionen beinhalten. Im Gegensatz dazu ging
der Erwerb expliziten Sequenzwissens mit einer Antworttendenz in Richtung der regulären
Reaktion einher; andere Auswirkungen von Sequenzlernen verschwanden im Verlauf der
Aufgabe. Dieser Befund deutet darauf hin, dass der Erwerb expliziten Sequenzwissens mit
einem Wechsel von stimulusbasierter zu planbasierter Handlungssteuerung einhergeht.
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Chapter I

General Introduction

The lack of definitional and conceptual clarity in the study of the unconscious
stems from the implicit or explicit association of certain tasks with characteristics
of observers or rememberers such as intentionality or phenomenal awareness.
(Reingold & Merikle, 1990, p. 20)

Consider a jazz trumpet player practicing a new tune. While he may acquire a rich body
of knowledge about the tune that he can readily verbalize (e.g., the sequence of harmonic
changes), he will frequently be unable to verbally express knowledge about the coordinated
movements of lips, hand, and tongue that are required for generating a specific pitch, timbre,
or a melody. Rehearsing the tune with a band, he will adapt to many other sequential
regularities of his band mates’ playing: For instance, he may adapt to weaknesses in their
playing, such as his drummer playing too laid back, or his bass guitar player always forgetting
to play the last fermata. In many of these instances, he will likely remain unaware of his
behavioral changes; moreover, he will sometimes not even recognize that he adapted to
their playing. Capturing the intuition that learning may occur with our without awareness,
theories of human learning distinguish between two types of learning: Explicit learning that is
accompanied by awareness of its contents, and implicit learning that proceeds independently
of awareness (Abrahamse et al., 2010; Shanks & St. John, 1994).

Implicit learning has been demonstrated using the serial reaction time task (SRTT): In its
basic appearance, participants respond to stimuli presented at horizontally aligned locations
on a computer screen by pressing keyboard keys assigned to each location. Unbeknownst
to participants, locations of stimuli follow a regular sequence. With practice, participants
tend to respond faster to regular compared to nonregular stimuli. Critically, participants
are frequently not able to express any explicit knowledge of the sequence, which has been
interpreted as evidence that learning proceeded in the absence of awareness (Cohen, Ivry, &
Keele, 1990; Nissen & Bullemer, 1987).

Theories of Implicit and Explicit Sequence Learning

Based on the observation that sequence learning may proceed in the absence of awareness,
multiple theories of implicit and explicit sequence learning have been proposed. These
can be subdivided by their assumptions about the number of systems that are involved in
sequence learning: while multiple-systems accounts assume that independent knowledge
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bases subserve implicit vs. explicit learning, the single-system account assumes that a unitary
knowledge base subserves both implicit and explicit learning.

The multiple-systems view

Probably the most elaborate multiple-system account is the dual-system model by Keele,
Ivry, Mayr, Hazeltine, and Heuer (2003), which assumes that there are two independent
mechanisms involved in learning. A unidimensional system consists of a set of multiple
encapsulated modules, where each is restricted to a single dimension of stimulus or response
features. The authors already acknowledged that the term dimension is not well-defined
by the theory, noting that the term dimension may or may not be used interchangeably
with modality, even though modalities may be subdivided (e.g., visual stimuli into shape,
location or color). Learning in this system is considered to have three more properties:
(1) it occurs automatically and without attention, (2) because of the encapsulated nature
of the acquired representations, it is restricted to implicit knowledge, and (3) the input
to this system is uninterpreted information, and representations therefore contain only
uninterpreted information. A second, multidimensional system forms representations of
events from multiple dimensions; it therefore provides the ability to form much more complex
representations. Only information that is attended (i.e., that is part of the relevant task set)
and provides predictive value will be represented in this system – still, if these two criteria
are met, learning occurs automatically. Representations in this system substantially differ
from those of the unidimensional system: in order to allocate attention to an event (e.g., a
stimulus location), it has to be categorized – the input to this system is therefore categorized
information, and representations are also formed on this categorized input. Knowledge
in this system may be implicit or explicit, and both unidimensional or multidimensional
information may be learned.

The single-system view

A contrasting, single-system view was provided by Cleeremans and Jiménez (2002). This
account is rooted in connectionist models of cognition (e.g., Cleeremans & McClelland,
1991; Thomas & McClelland, 2008) and applies their basic principles to sequence learning:
According to this view, the cognitive system may be represented as a large set of processing
modules, each consisting of many simple processing units; processing is considered to be highly
parallel and distributed. Long-term knowledge is acquired by changes of the connectivity
between and within processing modules – current results of processing are captured by
transient patterns of activation within each module. Processing of each module is constantly
and continuously influenced by processing in other modules, depending on the activity of the
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other modules and connectivity between modules – as a consequence, processing is graded
and continuous. Information is exclusively represented by transient patterns of activation;
these representations vary by quality of representation (including factors such as strength,
stability in time, and distinctiveness) in a graded fashion. Learning occurs as a mandatory
effect of information processing that involves high-quality representations. Awareness is
correlated with quality of representation in an inverse U-shaped fashion: with increasing
representational quality, representations are more likely to become available to awareness
– with even higher representational quality, representations may again be less accessible
to awareness – representations may eventually have become automatic. The function of
awareness is to provide flexible control over behavior.

How explicit knowledge emerges

In recent years, Cleeremans and colleagues (Cleeremans, 2011; Cleeremans, Timmermans,
& Pasquali, 2007; Pasquali, Timmermans, & Cleeremans, 2010; Timmermans, Schilbach,
Pasquali, & Cleeremans, 2012) considerably extended this model by proposing a possible
mechanism for the emergence of explicit knowledge. Building on the distinction between
access consciousness and phenomenal consciousness (Block, 1995, 2007), Cleeremans and
colleagues noted that representations as conceptualized by Cleeremans and Jiménez (2002)
are only knowledge in the system, not for the system – it is therefore knowledge that
may enable access consciousness, but not the phenomenal experience of knowing that one
possesses knowledge of a specific content (i.e., phenomenal consciousness). Therefore, it is
assumed that, in addition to a first-order network such as the learning mechanism proposed
by Cleeremans and Jiménez (2002), a second-order network constantly observes the states
of the first-order network, and learns about the states of the first-order network. By
doing so, it develops metarepresentations, redescriptions of the first-order representations.
These metarepresentations inform an agent about its inner states or reproduce the first-
order network’s output. While this mechanism is compatible with higher-order theories
of consciousness (Dienes & Perner, 1999; Rosenthal, 1990), metarepresentations are still
conceptualized in the same way as first-order representations, that is, transient patterns of
activation – their very nature, therefore, is gradual.

Conversely, Frensch et al. (2003) proposed a multiple-systems account of the emergence of
explicit sequence knowledge (see also, Esser & Haider, 2017; Haider & Frensch, 2005, 2009;
Rünger & Frensch, 2008) that conceptualizes awareness as an all-or-none phenomenon: The
Unexpected-Event Hypothesis posits that, in an incidental learning situation, implicit learning
precedes explicit learning, and is mediated by strengthening of associations in encapsulated,
highly specialized modules. Such implicit learning results in behavioral changes, such as
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faster responding or feelings of fluency. It is assumed that individuals are able to detect such
changes; if such a change is not expected, an additional explicit learning mechanism (i.e.,
hypothesis testing to ascribe a cause to the unexpected event) is triggered. Such hypothesis
testing might or might not result in the detection of the regularity; if detected, the individual
has acquired explicit knowledge for the regularity in an all-or-none fashion.

The question whether explicit sequence knowledge emerges gradually or in an all-or-none
fashion directly points to the question whether awareness should be conceptualized as
a gradual or an all-or-none phenomenon. In recent years, it has been argued that the
all-or-none conceptualization of awareness, combined with empirical dissociative methods
(e.g., comparing a group of participants that could verbalize the sequence with a group
of participants who could not) and dichotomous thresholds of consciousness, might have
artifactually generated the distinction between implicit and explicit knowledge (Augusto,
2016, 2018). Consciousness should instead be conceptualized as a more complex phenomenon,
such as being multidimensional (Bayne, Hohwy, & Owen, 2016), and graded (Fazekas
& Overgaard, 2016). A third option has been proposed by Cleeremans and colleagues
(Anzulewicz et al., 2015; Windey & Cleeremans, 2015), who propose that consciousness may
be both graded and dichotomous.

The above-described theories reflect many of the debates that have emerged in the study
of implicit and explicit sequence learning: the role of attention (e.g., Shanks et al., 2005;
Rowland & Shanks, 2006), awareness, and representational code (for a review, see Abrahamse
et al., 2010). However, both the single-system and the multiple-systems accounts assume
that sequence learning may proceed both implicitly or explicitly. While explicit learning
is unanimously a real phenomenon, some authors argue that strong empirical support for
the very existence of implicit learning—learning that occurs both incidentally and without
awareness—has yet to be shown (e.g., Shanks, 2005) Their critique is largely founded
on methodological considerations that notoriously plague the study of implicit learning
and, more generally, the study of unconscious cognition – precisely, that a dissociation
of some performance measure such as the SRTT and some measure of awareness cannot
unambiguously interpreted as evidence for learning without awareness.

The Logic of Dissociation and the Need for Models of Task Performance

Studies aimed to demonstrate learning without awareness frequently adopted a simple
logic of dissociation (Augusto, 2018; Reingold & Merikle, 1990; Shanks & St. John, 1994):
Performance benefits in the SRTT were compared to a subsequently administered measure of
awareness. Learning without awareness is demonstrated if performance in the SRTT shows
sensitivity to the sequence, while there is no sensitivity to the sequence in the measure of
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awareness. In implicit sequence learning, multiple measures of awareness have been proposed,
including verbal reports (i.e., recall of the sequence), recognition, prediction, and generation
tests, and dissociations with RT advantages in the SRTT have been reported.

However, the logic of dissociation has been criticized for several interrelated reasons (Reingold
& Merikle, 1990; Shanks, 2005; Shanks & St. John, 1994): First, the measure of awareness
typically has to be administered after performing the SRTT; that is, SRTT and measure
of awareness differ with regard to immediacy (Newell & Shanks, 2014). Therefore, a
dissociation between both measures might indicate—instead of some sequence knowledge
being processed implicitly in the SRTT—that sequence knowledge was acquired explicitly,
but simply forgotten until the measure of awareness was administered.

Second, it has to be assumed that the information that mediates performance gains in the
SRTT is the same information that also drives performance in the measure of awareness (the
information criterion). If, instead, some related information facilitates performance on the
SRTT, but not the measure of awareness, this might artifactually indicate learning without
awareness. For instance, consider that a participant performing an SRTT explicitly learns
that there are no reversals (i.e., 2–3–2) or no trivially-obvious runs of locations (i.e., 1–2–3)
in the sequence. This knowledge might enable the participant to perform better on the
SRTT. Still, when asking the participant on a subsequent awareness test what transitions
he recognized, he might still not be able to produce an answer that is correct by the criteria
of the experimenter, and be classified as being unaware of the sequence. In other words, the
participant explicitly learns some information I∗ (the absence of some specific patterns in
the sequence) that is correlated to information I (specific transitions that are present in the
sequence); however, the measure of awareness is not constructed for capturing I∗.

Third, it has to be assumed that both measures are equally sensitive to the relevant
information (the sensitivity criterion); it amounts to the sometimes estranging assertion that
two different measures have exactly the same reliability. Fourth, it has to be assumed that the
measure of awareness exclusively measures only explicit, but no implicit sequence knowledge
(the exclusivity criterion). If, instead, implicit knowledge influenced the measure of awareness,
this resulted in biased estimates of explicit knowledge. Fifth, it has to be assumed that the
measure of awareness exhaustively measures all aspects of explicit knowledge that might
influence SRTT performance (the exhaustiveness criterion). If the assumption is violated,
explicit knowledge is underestimated.

Sixth, asserting that participants did not acquire explicit sequence knowledge is typically
based on comparing a participant’s or a group of participants’ performance on the measure
of awareness with some theoretically or empirically derived chance level by means of null-
hypothesis significance testing. The conclusion relies on accepting the null hypothesis that
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there is no deviation from chance performance. At-chance performance might therefore
be frequently explained by a lack of statistical power (power analyses for this type of
test are rarely reported in the sequence learning literature), or inadequate assumptions
about chance levels (see Chapter II). Bayesian statistics may provide a solution to this
null-sensitivity problem of awareness measures (Dienes, 2015); for instance, Rouder and
colleagues (Morey, Rouder, & Speckman, 2008; Rouder, Morey, Speckman, & Pratte, 2007)
provided an ingenious solution in subliminal priming.

Still, given the multitude of assumptions, it might be more fruitful to accept the possibility
that there is probably no measure that complies with all of them, and that all measures
may be sensitive to both implicit and explicit processes (Timmermans & Cleeremans, 2015).
Therefore, Reingold and Merikle (1988, see also, 1990) proposed an alternative to the logic
of dissociation that makes less assumptions: Performance on an indirect measure, where
instructions make no reference to the regularity, is compared with performance on a direct
measure, where instructions explicitly refer to the regularity. By asserting that the direct
measure is at least as sensitive to explicit knowledge as is the indirect measure, any knowledge
that remains undetected by the direct test, but is detected by the indirect measure, can
be assumed to be implicit. However, the authors already cautioned that both direct and
indirect measure must be matched on any other aspect than instructions to ensure that this
conclusion is warranted – otherwise, it would still be possible that both measures differ in
difficulty, demands, or contexts (Destrebecqz, Franco, Bertels, & Gaillard, 2015). Attempts
to use this approach in implicit sequence learning have been reported (e.g., Jiménez, Méndez,
& Cleeremans, 1996; Reed & Johnson, 1994; Stadler, 1989), but these few studies have been
criticized for methodological (Shanks & St. John, 1994) or statistical reasons (Shanks &
Perruchet, 2002). As noted by Reingold (2004) and Destrebecqz et al. (2015), the utility
of this approach is severely limited because direct and indirect measures have to be fully
comparable, a condition that is difficult to satisfy.

A notable exception to comparing performance between tasks is to to analyze performance on
one task with measurement models that allow for disentangling multiple processes that are
involved in task performance. For instance, Buchner et al. (1997b) developed a multinomial
processing tree (MPT) model of performance in the recognition task that was administered
after having participants perform the SRTT. The model assumes that recognition judgments
are driven by three underlying cognitive processes: recollection, familiarity, and guessing.
Using this model, the authors found that performance in the recognition task is driven by
all of these processes. Still, this finding did not provide unequivocal evidence for implicit
learning: as Shanks and Johnstone (1999) convincingly argued, fluency-based judgment
cannot be equated with an implicit learning mechanism at work, because fluency and its
detection can be easily assumed to be an expression of explicit sequence knowledge.
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Destrebecqz and Cleeremans (2001) applied the process-dissociation (PD) procedure (Jacoby,
1991) to the generation task. After training participants on an SRTT, participants were
instructed that stimuli had followed a regular sequence. They were then asked, under
inclusion instructions, to generate a sequence as similar as possible to the trained regularity;
subsequently, under exclusion instructions, participants were asked to generate a sequence
that is as dissimilar as possible. Assuming that only explicit knowledge is under a partici-
pant’s control, a comparison of inclusion and exclusion performance then yields estimates of
implicit and explicit sequence knowledge as expressed in this task: Differences between both
conditions can only be attributed to knowledge that is under participants control, and hence
explicit; if exclusion performance is above baseline, this is assumed to reflect knowledge
that is not under participants’ control, and hence implicit. Destrebecqz and Cleeremans
(2001) found substantial implicit sequence learning using this approach. Importantly, and
in contrast to the PD model by Buchner et al. (1997b), the model directly targets the
implicit/explicit distinction and provides separate estimates for both processes. Using this
PD approach, one does not rely on comparing performance in the SRTT with performance
on a measure of awareness; instead, performance is compared only within the PD generation
task. For these reasons, the PD approach has yet been the most evidential result in favor of
implicit sequence learning in the SRTT. However, the PD comes with its own set of critical
assumptions that might be violated; this issue will be extensively elaborated in Chapters II
and III.

The process-purity problem

More generally, the problem that dissociations between tasks cannot be interpreted as
dissociations between processes or systems is a direct consequence of the problem that
performance on a task can typically not be equated with a specific process. Instead, on a
given task, almost always multiple processes and cognitive operations are involved – in other
words, tasks are not process pure (e.g., Jacoby, 1991; Yonelinas & Jacoby, 2012).

To address this issue, in many areas of (cognitive) psychology, it has been proposed to
disentangle the contributions of these multiple processes to task performance by means of
(cognitive) measurement models. Such models have been successfully applied to a wide range
of tasks, including recognition memory, reasoning, perception, and attitude measurement
(Erdfelder et al., 2009). For instance, multinomial processing tree models (Batchelder &
Riefer, 1999; Erdfelder et al., 2009) are a class of measurement models for categorical data
that are specifically tailored to a given task. For each process that is considered to be involved
in task performance (e.g., in a recognition test: remembering a word, familiarity-based
“old” responses, and guessing “old”), the probability of its occurrence is estimated. The
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process-dissociation model of Destrebecqz and Cleeremans (2001) and the model by Buchner
et al. (1997b) can both be subsumed by this class of models. Other highly successful
models are signal-detection models (e.g., Wixted & Mickes, 2010), and models of speeded
choice such as the diffusion model (Ratcliff, 1978; Ratcliff, Smith, Brown, & McKoon, 2016;
Wagenmakers, 2009) or the linear ballistic accumulator (e.g., Donkin, Averell, Brown, &
Heathcote, 2009). Another interesting new approach are MPT models where not only the
probability of each process, but also the duration of each process is estimated (Klauer &
Kellen, 2018; see Heck & Erdfelder, 2016 for a similar approach).

An important property of such models is that they provide a means to link theory to data
(Rouder, Morey, & Wagenmakers, 2016); different theoretical viewpoints can be instantiated
as models, and models can be compared empirically. Moreover, assumptions about the
data-generating process are explicitly made, and model adequacy can be evaluated.

The need for hierarchical models

When analyzing experimental data, it is common practice to aggregate over participants,
items, or both, ignoring possible variability between participants and items. The unaccounted-
for variability is known to inflate Type I error in ANOVAs (Clark, 1973), but Wickens and
Keppel (1983) showed this is not a big concern in well-balanced designs using linear models.
Linear models are appropriate for a variety of domains, but are typically inadequate for
cognitive processes or tasks; instead, cognitive measurement models are typically nonlinear.
Combining a nonlinear model with substantial variability between participants or items
may lead to biased estimates and, hence, false conclusions regarding the studied processes.
For instance, nonlinear measurement models have been applied to the analysis of response
times that necessitate aggregation over participants, items, or both. From this line of
research stems the seminal power law of practice, which states that response times may be
described by a power function of practice trials. However, this is only true for response
times aggregated over participants; individual learning curves are better approximated by
an exponential function (Heathcote, Brown, & Mewhort, 2000). While, at first glance, it
may seem overly meticulous to draw on the distinction whether performance follows an
exponential or power law, such a distinction might have implications for distinguishing
between different theoretical viewpoints (see, e.g. Haider & Frensch, 2002; Logan, 1988,
1990, 1992). A possible solution might be to estimate individual functions, but a large
number of observations is necessary to test distributional properties (Rouder et al., 2005).

In many contexts, aggregation seems unavoidable: Consider, for instance, a recognition
test that follows an SRTT to assess explicit sequence knowledge. The quantity of interest
for such a task is the proportion of recognized items (i.e., transitions from the training
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sequence). For each participant-item combination, such a measure will produce only one
independent replicate; measuring the same participant-item pair multiple times would only
generate dependent replicates (which might cause more problems than it solves).

An increasingly popular alternative to aggregation is the use of hierarchical models. These
models account for participant and item variability by estimating separate parameters for
each participant-item combination. Assumptions about the distributions of these parameters
provide additional constraint on individual-level parameters, resulting in higher accuracy
for individual-level parameters (Efron & Morris, 1977; Katahira, 2016), and providing
population-level parameters that are the natural target of inference.

The problem that aggregation across participants, items, or both might lead to biased
parameter estimates (and inflated or deflated Type I error rates for tests of model fit) has
been highlighted in MPT modeling. As a remedy, hierarchical extensions of the models
have been proposed (Klauer, 2010; Rouder, Lu, Morey, Sun, & Speckman, 2008; Smith &
Batchelder, 2010).

In the following studies, we adopt a Bayesian instead of a frequentist framework for analyzing
hierarchical models. One reason is a pragmatic one – the hierarchical models used in the
following chapters have thousands of parameters, and estimation within a frequentist
framework might be intractable. Instead, within a Bayesian framework, model specification
and parameter estimation are straightforward, and general-purpose software solutions exist
for specifying and estimating these models (e.g. Stan, Carpenter et al., 2016; JAGS, Plummer,
2015). Moreover, inference on parameters is straightforward (e.g., Wagenmakers, Lodewyckx,
Kuriyal, & Grasman, 2010). A second reason is a philosophical one – Bayesian probability
provides a unified, logically consistent framework for defining, estimating, and comparing
models, and to provide evidence for or against theoretical viewpoints (cf., Rouder, Morey, &
Pratte, 2013). In the following section, we will briefly introduce frequentist and Bayesian
conceptualizations of probability, and show how beliefs are updated within a Bayesian
framework. Subsequently, we illustrate the utility of a hierarchical model. The presentation
closely follows Rouder and Lu (2005) and Rouder et al. (2013).

Bayesian basics

Within a frequentist framework, probability is conceptualized by the frequency of an event
that may happen or not. Consider a coin flip, where Y denotes the frequency of heads and
N denotes the number of times the coin is flipped. The probability of heads is then defined
by the proportion of times the coin showed heads when it was tossed arbitrarily often, i.e.,
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p = lim
N→∞

Y

N

With this conceptualization, the coin has a true probability of showing heads when it is
tossed; given a finite sample of coin tosses, it can be measured to an arbitrary precision by
increasing N .

A model of such an experiment contains an unknown parameter, the probability p, that is
estimated from data of N coin flips. The coin flip may be modeled as a binomial random
variable

Y ∼ Binomial(p,N)

Frequentists treat parameters as unknown fixed values that are estimated from data –
however, because a frequentist probability is only defined in the infinite-sample case, it
does not provide a strict rationale for estimation in the finite-sample case. Most frequently,
least-squares (LS) or maximum-likelihood (ML) methods are used to estimate parameters,
but these methods are not equivalent and may sometimes lead to different estimates; for
instance, the maximum-likelihood estimator of the variance is defined by σ̂2 = ∑(yi − ȳ)/N ,
while the least-squares estimator is defined by σ̂2 = ∑(yi − ȳ)/(N − 1).

In contrast to the frequentist conceptualization of probability, the Bayesian perspective
treats probabilities as statements of an observer’s subjective belief in the occurrence of an
event. Such a belief may be expressed in terms of a probability distribution, and rationally
updated in the light of data. The rule used for updating beliefs is Bayes’ rule.

Bayes’ Rule. Bayes’ rule may be written as

π(p|Y ) = Pr(Y |p)
Pr(Y ) π(p)

The quantity on the left-hand side π(p|Y ) is the posterior distribution, and represents the
probability distribution of p after observing data Y . The mean of this distribution, the
posterior mean, is typically a reasonable point estimator for p. The term π(p) is the prior
distribution, and can be viewed as the observer’s a-priori beliefs about the true value of p.

The term Pr(Y |p) serves two purposes in statistics: For any Y given a fixed parameter value
p, it is the probability mass (or probability density) function; for any p given a fixed value
of Y , it is the likelihood function. In this case, it is the likelihood function, and describes
the likelihood of any parameter p given a fixed value of Y . For the binomial model, the
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likelihood function is given by

Pr(Y |p) =
(
N

Y

)
pY (1− p)N−Y

The term Pr(Y ) is the probability distribution of the data conditional on the model. It is
given by

Pr(Y ) =
∫ 1

0
Pr(Y |p)π(p)dp

Fortunately, its evaluation is frequently not necessary; its purpose is to normalize π(p|Y ) so
that

∫ 1
0 π(p|Y )dp = 1. Because the value of Pr(Y ) does not depend on p, it is convenient to

write Bayes’ theorem only by those terms that depend on the parameter of interest and to
combine all other terms as a proportionality constant. It then takes the form

π(p|Y ) ∝ Pr(Y |p)π(p)

Rationally updating beliefs. To illustrate how beliefs can be updated using Bayes’ rule,
consider that an observer holds the a-priori belief that the true probability of the coin
showing heads may be anything in the interval [0, 1] with equal probability. Such a belief
may be expressed by specifying the prior distribution as a beta distribution

π(p) ∼ Beta(a, b)

with a = b = 1.

Such a belief may now be rationally updated after having observed some coin flips. The left
panel of Figure 1 shows the prior and the posterior distribution for having observed Y = 7
heads out of N = 10 coin tosses; the right panel shows the same prior, but the posterior for
observing observing Y = 21 heads out of N = 30 coin tosses.

In both cases, the density of the prior distribution is flat in the interval [0, 1]; the posterior
distribution is more narrow than the prior distribution, indicating that the observer has
considerably learned from observing the data. It can also be seen that the posterior on the
right panel is even more narrow than on the left panel, reflecting the fact that the rational
observer learned more from observing 30 coin tosses than from observing 10 coin tosses.
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Figure 1 . Left panel: Prior (dashed line) and posterior (solid line) density after observing
Y = 7 for N = 10. Right panel: Prior and posterior density after observing Y = 21 for
N = 30. Dotted vertical lines represent posterior means, intervals represent 95% credible
intervals.

A hierarchical extension. To develop a hierarchical model, we now turn to a more
psychologically interesting example. Consider a sample of participants performing a free-
recall task after having learned a list of words. Each participant i has a true probability
of recollecting a word pi, which is typically estimated by calculating p̂i = yi/Ni, where yi
denotes the number of recollected words and Ni denotes the number of words on the list.
The following section briefly describes how a minimal hierarchical model for this task can be
constructed, and illustrates how estimates from the hierarchical model are more accurate
than individually derived estimates.

It is not convenient to use the beta distribution for developing a hierarchical model. Therefore,
Rouder and Lu (2005), among many others, proposed to use a probit link together with a
normally distributed prior density on transformed parameters z. The left panel of Figure 2
shows the probit transform. The probit Φ−1 is the inverse cumulative distribution function
of the standard normal distribution

p = Φ(z)

Φ−1(p) = z.

Some of the charms of this link function are obvious from the right panel of Figure 2: Using
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Figure 2 . Left panel: Probit transform of probabilities p into z scores. Right panel: Resulting
prior densities for three different distributions of z.

a normally distributed prior density results in different shapes of prior densities for the
transformed values (i.e., probabilities pi); a standard-normal distribution of z results in a
flat prior for p. If the prior on z has σ > 1, the prior density is bimodal, if σ < 1, the prior
density is unimodal.

The number of words participant i recollected yi may then be modeled as binomial draws

yi|zi
iid∼ Binomial (Ni,Φ(zi))

where Ni is the number of trials participant i responded to and zi is a normally distributed
random variable drawn from a parent distribution. The parent distribution may be modeled
as

zi|µ, σ2 iid∼ Normal(µ, σ2)

Priors are needed for the parent distribution. A good choice for the prior on µ may be the
normal distribution

µ ∼ Normal(µ0, σ
2
0)

A suitable choice for the variance is an inverse-gamma distribution
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Table 1
True probabilities, simulated data, and parameter
estimates for a probability of success
Participant i pi yi p̂individual p̂hierarchical

1 .766 27 .670 .669
2 .775 34 .840 .817
3 .514 13 .330 .369
4 .732 25 .621 .627
5 .657 30 .743 .733
6 .608 24 .598 .605
7 .695 29 .719 .711
8 .454 22 .549 .562
9 .663 27 .670 .669
10 .682 24 .598 .604
11 .583 21 .524 .541
12 .688 25 .622 .627
13 .774 32 .791 .775
14 .502 19 .475 .498
15 .585 31 .767 .753
16 .776 29 .718 .711
17 .791 37 .913 .880
18 .447 15 .379 .412
19 .590 19 .476 .498
20 .624 24 .597 .604

RMSE .090 .079
MAD .075 .063

Note. RMSE denotes the root mean-squared error,
MAD denotes the mean average distance.

σ2 ∼ Inverse Gamma(a, b)

Values for µ0, σ2
0, a, and b are chosen before the analysis, and reflect the observer’s a-priori

beliefs about the plausible distribution of parameters.

To illustrate the usefulness of hierarchical estimation, consider the following example (adapted
from Rouder & Lu, 2005). Table 1 shows data from 20 participants performing 40 trials.
Each participant had a true probability of recollecting a word pi (drawn from a uniform
distribution with range [.4, .8]), and the number of recollected words yi was randomly chosen
from a binomial distribution. These data were analyzed both individually and with the
hierarchical model just specified.

As can be seen from Table 1, both the mean average distance MAD and the root mean-
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squared error RMSE are smaller for the hierarchical-model estimates, p̂hierarchical, than for
the individually derived estimates, p̂individual. The estimator p̂hierarchical is superior because
it shrinks extreme estimates toward the mean p̄; on average, these estimates are closer to
the true probabilities pi (Efron & Morris, 1977; Rouder & Lu, 2005).

Overview of the Present Studies

The present studies embrace the notion that probably no task is process pure, and dissocia-
tions between tasks do not provide evidence for dissociable processes or systems. To study
implicit and explicit sequence learning, it is therefore necessary to adopt a strategy that uses
(hierarchical) measurement models of task performance to disentangle the contributions of
implicit and explicit knowledge.

The PD approach as applied to sequence learning represents a simple measurement model of
performance in the generation task, and studies utilizing this PD approach have yet been
the most evidential result in favor of implicit sequence learning. However, the PD approach
comes with its own set of critical assumptions that may be violated; these assumptions
remained untested in the domain of (implicit) sequence learning. Therefore, in Chapters
II and III, we tested the assumptions underlying the PD approach as applied to sequence
learning. To foreshadow, we found substantial violations of the underlying assumptions,
questioning the validity of the conclusion that sequence learning may proceed in the absence
of awareness.

In Chapter IV, we propose a measurement model of SRTT performance that allows to
disentangle the processes that are involved in the expression of sequence knowledge in the
SRTT. While processes are rarely emphasized in the sequence learning literature (Schwarb
& Schumacher, 2012), we believe that investigating the processes involved in the expression
of learning in the SRTT may further our understanding of sequence learning in general. To
foreshadow, our diffusion-model analyses are indicative of a common representational basis
of stimulus and response features in implicit learning. Moreover, the acquisition of explicit
sequence knowledge was accompanied by a qualitative shift in task processing.
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Chapter II

Distorted Estimates of Implicit and
Explicit Learning in Applications of the
Process-Dissociation Procedure to the
SRT Task

We investigated potential biases affecting the validity of the process-dissociation (PD)
procedure when applied to sequence learning. Participants were or were not exposed to a
serial reaction time task (SRTT) with two types of pseudorandom materials. Afterwards,
participants worked on a free or cued generation task under inclusion and exclusion
instructions. Results showed that preexperimental response tendencies, nonassociative
learning of location frequencies, and the usage of cue locations introduced bias to PD
estimates. These biases may lead to erroneous conclusions regarding the presence of
implicit and explicit knowledge. Potential remedies for these problems are discussed.

Implicit learning refers to the ability to adapt to regularities inherent in the environment in
the absence of conscious awareness about the ongoing learning process itself or about the
outcome of what is learned. This ability is fundamental for human beings as it allows us to
act optimally in stable environments with relatively little effort.

One of the most frequently utilized paradigms in the field of implicit learning is the serial
reaction time task (SRTT) originating from Nissen and Bullemer (1987). In this standard
SRTT, participants respond to locations on the screen which are mapped to spatially
corresponding keys. Participants are instructed to press the appropriate response key
whenever an asterisk occurs at a certain screen location. Unbeknownst to the participants,
the locations of the asterisk follow a regular sequence. After several blocks of practice, the
sequence is replaced by either a new but also regular sequence, or by a random sequence.
In this transfer block, performance shows a decrement that disappears almost immediately
when the original regularity is reintroduced, reflecting learning of the regularity. Importantly,
participants are not able to explicate their acquired knowledge when asked to do so. Even
with more sensitive tests including the recently introduced wagering task (Dienes & Seth,
2010; Haider, Eichler, & Lange, 2011; Persaud, McLeod, & Cowey, 2007) or the process-
dissociation procedure (Destrebecqz & Cleeremans, 2001; Haider et al., 2011; Jacoby, 1991),
explicit knowledge of the sequence is rare. This dissociation between performance and
expressible knowledge is generally assumed to indicate implicit learning.
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A central defining feature of explicit knowledge is that it is controllable, whereas implicit
knowledge is thought not to be under conscious control. Destrebecqz and Cleeremans (2001)
utilized this distinction and applied the process-dissociation (PD) procedure to measure
sequence learning. In process dissociation, performance in two conditions of the same task is
contrasted: An inclusion condition, in which explicit and implicit knowledge both produce
the same response, and an exclusion condition in which explicit and implicit knowledge
produce opposing responses (for applications of the PD to sequence learning with the
recognition task see Buchner et al., 1997b; Buchner, Steffens, & Rothkegel, 1998).

In their application to sequence learning, Destrebecqz and Cleeremans (2001) used a
generation task: After SRTT training, participants are asked to generate a sequence of
responses that is either as similar as possible to the learned sequence (in the inclusion
condition), or a sequence as dissimilar as possible (exclusion condition). To the degree
that explicit knowledge is available, the proportion of generated responses that match the
learned sequence should differ between inclusion and exclusion. To the degree that implicit
knowledge is available, the proportion of matching responses in the exclusion condition
should be greater than a chance baseline or control condition. In one group (i.e., RSI = 0
ms), participants were better than chance in their ability to reproduce the regularity in the
sequence, even under exclusion instructions (i.e., performance under exclusion condition,
E, was above a chance baseline B, E > B), a finding that was interpreted as reflecting
sequence knowledge. However, performance under inclusion (I) and exclusion instructions
was identical (i.e., I = E), a finding that is interpreted as indicating the absence of explicit
knowledge and instead suggests that the sequence knowledge was fully implicit.1

The PD procedure is a simple and elegant way to disentangle controllable and uncontrollable
processes, which has been widely used across a wide range of research questions (Yonelinas
& Jacoby, 2012) and has the potential to address many open questions in the domain of
implicit learning and memory. However, some authors have raised concerns suggesting
that the assumptions underlying the PD may sometimes turn out to be overly simplified,
which, in turn, would threaten the validity of PD results (e.g., Buchner, Erdfelder, &
Vaterrodt-Plünnecke, 1995; Curran & Hintzman, 1995; Hirshman, 1998; Klauer, Dittrich,
Scholtes, & Voss, 2015; Rouder et al., 2008).

For instance, it has been argued that the automatic process may be confounded with extra-
experimental influences (Buchner et al., 1995; Rouder et al., 2008) or response tendencies
(Stahl & Degner, 2007). In sequence learning, for example, participants may bring pre-
experimental knowledge to the lab that interacts with task properties, or they may attempt to

1Note that the E > B pattern could not be replicated in other studies (Norman, Price, & Duff, 2006;
Wilkinson & Shanks, 2004) that, as a baseline, compared generation performance with that for a control
sequence instead of an a-priori fixed value.
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strategically generate non-regular or random sequences especially under exclusion conditions
(e.g., Boyer, Destrebecqz, & Cleeremans, 2005). These participants may be influenced by
their subjective theories about randomness, which may thereby affect generation performance,
and perhaps distort PD estimates of implicit and explicit knowledge.

The type of task may furthermore affect the validity of PD estimates. In applications to the
SRTT, discrepancies have been observed between free and cued versions of the generation
task (Destrebecqz & Cleeremans, 2001; Wilkinson & Shanks, 2004): Whereas Destrebecqz
and Cleeremans (2001), using free generation, have obtained evidence for implicit knowledge
(i.e., E > B), Wilkinson and Shanks (2004), using a cued generation task, report the
absence of implicit knowledge, with exclusion performance not distinguishable from baseline.
However, as argued by Fu, Dienes, and Fu (2010), the failure to replicate the E > B pattern
could be due to a lower sensitivity of the cued generation task.

Furthermore, different types of random control conditions have been used that differ with
regard to simple frequency information or other sequence-unrelated properties (Reed &
Johnson, 1994; Stadler, 1992). For instance, participants who are trained on randomly
selected permutations of a fixed-length sequence might learn that the entire set of response
positions is used up before any position is repeated (negative recency), whereas participants
confronted with fully random material during learning might learn that response positions
are independent (Boyer et al., 2005). Although this type of knowledge is unspecific and
sequence-unrelated, it may nevertheless affect performance in the generation task and distort
conclusion about sequence knowledge if not properly controlled for.

Goal of the present study

To gauge these threats to the validity of the PD in sequence learning, and to examine the
conditions under which PD can help to understand the processes underlying sequence learning,
we investigated the possiblity of differential effects of material (permuted vs. random), task
format (free vs. cued generation), and response tendencies on generation performance under
inclusion and exclusion conditions.

Simple frequency information and sequence-unrelated properties. Generation
performance may be contaminated by knowledge unrelated to the sequence such as the
frequency of repetitions and reversals (Reed & Johnson, 1994). Repetitions and reversals
are often not included into the regular sequence because they are considered especially
salient and prone to lead to explicit knowledge (Stadler, 1992). If participants (explicitly
or implicitly) pick up this absence of reversals in the learning phase, they may use this
knowledge in the generation task, for instance, to generate fewer reversals across both
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conditions, or even to generate fewer reversals in the inclusion than the exclusion task. In
other words, if the sequence does not contain reversals, then a generated sequence that
reflects this property of few reversals is scored as above-chance performance. The finding
that generation performance is above baseline will suggest the presence of implicit sequence
knowledge. If the strength of this effect furthermore differs between the inclusion and
exclusion instructions, it may artificially produce an I > E finding and lead to erroneous
conclusions suggesting the presence of explicit sequence knowledge.

Another type of sequence-unrelated information that may affect generation performance is
the frequency of response locations: When some responses are more frequent than others in
the learning phase – for instance, in mixed first-/second-order sequences – participants may
pick up this information (explicitly or implicitly) and use it in the generation task (Reed &
Johnson, 1994). More importantly, if the PD instruction – inclusion or exclusion – can affect
the expression of this knowledge, generation performance may be differentially affected,
results may be distorted or artifactual, and substantive conclusions might be erroneous.

The present study investigates the degree to which learning of such sequence-unspecific
properties (reversals, zero-order frequencies) may distort estimates of explicit and implicit
second-order sequence knowledge.

Free and cued generation tasks. In applications of the PD to sequence learning, two
variants of the generation task have been used: free generation (Destrebecqz & Cleeremans,
2001) and cued generation (Wilkinson & Shanks, 2004). In the free generation task,
participants are asked to generate a longer stretch of responses without interruption (e.g.,
96 trials in Destrebecqz & Cleeremans, 2001). In cued generation, on the other hand, on
each trial, a small sequence of stimuli and responses is given as a cue by the experimenter,
after which the participant is asked to generate the response that would occur next in
the sequence. The results obtained with both tasks have been found to diverge: Using
free generation task, Destrebecqz and Cleeremans (2001) reported evidence for implicit
knowledge (i.e., exclusion performance was above baseline). In contrast, Wilkinson and
Shanks (2004) could not replicate this E > B finding using a cued generation task. The
type of generation task may explain this discrepancy if cued generation artificially lowers (or
free generation artificially boosts) exclusion performance (but see Fu, Fu, & Dienes, 2008,
for a reward-based explanation). Alternatively, the failure to find E>B in cued generation
may be taken as evidence for the suboptimal sensitivity of the cued generation task. The
present study compares free and cued generation tasks and their ability to detect learning of
sequence-unspecific properties.

Response tendencies and subjective intuitions about randomness. In a control
condition of an SRTT study, sequence information is typically not available (e.g., Haider et
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al., 2011). Participants are nevertheless asked to generate transitions reflecting some ‘regular’
sequence under inclusion conditions, and to avoid generating such a ‘regular’ sequence under
exclusion conditions. In this situation, subjective notions of regularity and randomness are
likely used to generate what participants regard as more regular sequences under inclusion
conditions and less regular (or more random) sequences under exclusion conditions. If these
subjective notions deviate systematically from the researcher’s notion of randomness that
is used to determine the chance baseline, they may bias the pattern of results and distort
substantive conclusions. The present research addresses the question whether response
tendencies may bias generation performance, whether response tendencies are acquired
during the learning phase or reflect pre-experimental biases, and whether such a bias
differentially affects inclusion versus exclusion conditions.

Interactions between these factors. The factors discussed above may occur in com-
bination, with the effect of creating potentially more complex distorting influences on PD
estimates. For instance, on top of subjective notions of randomness, sequence-unspecific
properties of the training materials may be used to inform participants’ response tendencies
and perhaps lead to systematic differences between inclusion and exclusion. In addition,
response tendencies informed by frequency information may interact with variants of the
generation task. For instance, if participants have a tendency to avoid generating recent
response locations (Boyer et al., 2005), the simple frequency information about reversals or
high- versus low-frequency response location may differentially affect performance under
different generation task variants (free or cued). The present study explores such potential
interactive effects of simple frequency information, task format, and reponse tendencies.

The current study

In the present study, which is part of a project aiming at evaluating the validity of the PD
procedure in sequence learning, we were interested in the ability of the PD procedure to
signal the absence of (both implicit and explicit) sequence knowledge when such knowledge
is in fact absent. In addition, we wanted to identify appropriate control conditions to serve
as a baseline with which to compare experimental conditions.

We aimed at exploring effects of response tendencies, simple frequency information and
unspecific properties of the material, and task properties as well as their interactions. Focus
of the present study is their potential of distorting PD estimates of implicit and explicit
learning. The present study realized three different ‘control’ conditions without any sequence
information:

• a training phase with randomly drawn permutations of a second-order 8-item sequence,
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• a training phase with randomly drawn response locations (from a uniform distribution),
• a no-learning condition in which participants merely familiarized themselves with the

task.

Orthogonally, we implemented the two different versions of the generation task (free vs. cued).

We investigated whether inclusion and exclusion performance differed under the three control
conditions and in the free versus cued task variants. If the PD model yields valid measures of
implicit and explicit sequence knowledge, generation performance should be at chance level
in all conditions. If, however, simple frequency properties of learning materials also affects
generation performance, we would expect this to be reflected in the permuted condition
when compared to the random condition. To the degree that response tendencies lead to
deviations from chance level, this should be evident from the no-learning condition but
reflected in all three conditions.

Method

Design

The study realized a 3 (material: permuted vs. random vs. no-learning) × 2 (generation
task: free vs. cued generation) × 2 (PD instruction: inclusion vs. exclusion) × 2 (block order :
inclusion first vs. exclusion first) design with repeated measures on the instruction factor.

Participants

190 participants (143 women, with a mean age of 25 years, range 18-59 years) completed the
study (data from 8 participants could not be used due to a programming error, one participant
failed to follow instructions during SRTT). Most were undergraduates from University of
Cologne. Participants received either course credit or 7 Euro for their participation and
were randomly assigned to experimental conditions.

Materials

We used two different types of pseudo-random material:

• A permuted sequence was randomly generated for each participant anew by drawing
with replacement from the set of all possible permutations of a second-order 8-item
sequence. For a given participant, each sequence was construed by randomly selecting
two of the six locations to occur twice in the sequence. Per block, 18 permutations
were drawn from the set.
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• A random sequence was randomly generated for each participant anew by drawing
with replacement from a uniform distribution of six response locations.

In a third no-learning condition, participants performed 20 responses drawn randomly in
order to familiarize themselves with the task. They were instructed, prior to the generation
task, to imagine they had just worked on a learning phase and to generate the sequence
they may have encountered there.

In all conditions, the sequence adhered to the following (additional) restrictions: (1) there
were no direct repetitions of response locations, and (2) there were no response location
reversals (i.e., A-B-A). As a consequence of the random generation process, frequencies
of response locations, first-order transitions, and second-order transitions varied across
participants. To determine correct responses in the generation task, we computed an
individual criterion for each participant based on their individual transition frequencies.

Procedure

The experiment consisted of three consecutive parts: First, participants worked on a SRTT
(the training phase), followed by a generation task and a postexperimental interview. In
the learning phase, participants in the permuted and random conditions performed a SRTT
consisting of 6 blocks with 144 trials each (total of 864 responses). Participants in the
no-learning condition performed only 20 random trials to familiarize themselves with the
SRTT. SRTT and generation task were run on 17" CRT monitors with a screen resolution
of 1024px × 768px. The viewing distance was approximately 60cm. A horizontal sequence
of six white squares (56px × 56px) was presented on a grey screen. The distance between
squares was 112px. Each screen location corresponded to a key on a QWERTZ keyboard
(from left to right Y, X, C, B, N, M). Participants had to respond whenever a square’s
color changed from white to red by pressing the corresponding key. They were instructed to
place the left ring-, middle- and index fingers on the keys Y, X and C. The right index-,
middle- and ring fingers were to be placed on keys B, N and M. There was no time limit for
responses in the learning phase (nor in the generation phase). A warning beep indicated an
incorrect response. The response-stimulus interval (RSI) was 250 ms.

Following the SRTT phase, participants were told that stimulus locations during the SRTT
followed some underlying sequential structure (participants who were not exposed to the
SRTT phase were asked to imagine that they had experienced an SRTT in which locations
followed some underlying sequential structure). The generation instructions were presented
next, with order of inclusion vs. exclusion task counterbalanced across participants. Under
inclusion (exclusion) instructions, participants were told to generate a sequence that is as
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similar (dissimilar) as possible to the sequence from the learning phase. For both instructions,
participants were instructed to follow their intuition if they had no explicit knowledge about
the underlying sequence. Direct repetitions were explicitly discouraged and were followed by
a warning beep.

In the free generation task, after an initial sequence of three cue locations, participants
freely generated 120 consecutive response locations. Participant were instructed that three
squares would appear to which they had to respond; subsequently, question marks appeared
at all locations and participants’ key presses were reflected by the corresponding square’s
color changing to black. In the cued generation task, in each of 120 trials, 3 to 5 stimulus
locations (taken from learning materials) were presented as cues, and participants had to
respond with the corresponding key, in order to activate any sequence knowledge, after
which the next response location had to be generated by the participant. Participants were
instructed that a few squares would first appear to which they had to respond; subsequently,
the question marks appeared and participants were asked to freely choose the trial’s final
response location.

Upon completing the computerized task, participants were asked to complete a debriefing
questionnaire containing the following items: “Did you notice anything special during the
task? Please note everything that comes to mind.”, “One of the tasks mentioned a sequence
in which the squares lit up during the first part of the study. In one of the experimental
conditions, the squares did indeed follow a specific sequence. Do you think you were in
this condition or not?”, “How confident are you (in %)?”, “Can you describe the sequence
in detail?”. Subsequently, participants were asked to indicate, for each of the six response
keys, the next key in the sequence on a printed keyboard layout. Finally, participants were
thanked and debriefed.

Results

For all analyses, a significance criterion of α = .05 was used. If sphericity was violated in
repeated-measures ANOVAs, Greenhouse-Geiser-corrected degrees of freedom and p values
were used. The raw data (as well as additional supplemental materials) are available from
https://github.com/methexp/pdl1.2

https://github.com/methexp/pdl1
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Figure 3 . Left: Mean reaction times for permuted (solid line) and random material (dashed
line). Right: Mean reaction times for permuted material, split by high-frequency (filled
circles) vs. low-frequency locations (open circles). Error bars represent 95% within-subjects
CIs.

SRTT Training phase

The mean RTs obtained over training blocks are shown in the left panel of Figure 3, separately
for permuted and random material (in this and all following training-phase analyses, we
excluded RTs of the first trial of each block and of trials that resulted in an error). Analysing
RTs using a 2 (material: permuted vs. random) × 6 (block number) ANOVA revealed a
significant main effect of material, F (1, 117) = 5.62, MSE = 66, 693.00, p = .019, η̂2

G = .042,
with slower responses for random material than for permuted material, and a significant
main effect of block number, , reflecting practice effects. The factors material and block
number did not interact, , indicating that any knowledge was acquired already during the
first block.

For the group with permuted material, some locations were presented twice within each
pseudo-sequence. The right panel of Figure 3 shows the mean RTs for these two types
of stimuli. A 2 (frequency: high vs. low) × 6 (block number) ANOVA revealed a main
effect of frequency, F (1, 55) = 19.31, MSE = 7, 105.13, p < .001, η̂2

G = .030; high-frequency
responses were faster than low-frequency responses. The main effect of block number was
also significant, , but not the interaction, . These findings suggest that participants in the

2For all our analyses, we used R (Version 3.6.1; R Core Team, 2018) and the R-packages ibdreg (Version
0.2.5; Sinnwell & Schaid, 2013), knitr (Version 1.24; Xie, 2015), papaja (Version 0.1.0.9842; Aust & Barth,
2018), and rmarkdown (Version 1.15; Allaire et al., 2018).
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permuted condition acquired some form of simple response-location frequency knowledge
that benefitted their SRTT performance, and especially so for the more frequent responses.

Generation task

In the free generation condition, after an initial sequence of three cue trials, participants
freely generated 120 consecutive response locations. In the cued generation condition, in
each of 120 trials, three to five stimulus locations (taken from learning materials) were
presented as cues and participants had to respond with the corresponding key. For each of
the 120 trials, a response triplet consisted of the previous two locations as well as the location
of the current response (in the cued generation condition, the response triplet consisted
of the last two cue locations and the current response location; in the free generation
condition, the response triplet consisted of the previous two response locations as well as
the current response location; for the first two trials of each generation block, the locations
of the corresponding cue trials were used). We calculated the proportion of triplets that
were consistent with training sequences (see Appendix A).3 Figure 4 depicts the pattern of
correctly generated triplets as a function of generation task, material, and PD instruction.

Correctly generated second order transitions. The proportions of correctly generated
triplets were analysed using a 3 (material: permuted vs. random vs. no-learning) × 2
(generation task: free vs. cued) × 2 (PD instruction: inclusion vs. exclusion) × 2 (order :
inclusion first vs. exclusion first) ANOVA. It revealed a main effect of PD instruction,
F (1, 169) = 4.75, MSE = 0.00, p = .031, η̂2

G = .010, more correct triplets were generated
during inclusion than during exclusion blocks. This I > E pattern suggests the presence of
explicit knowledge, despite the absence of sequence information in the training material.

The ANOVA also revealed an interaction of material × generation task, F (2, 169) = 5.88,
MSE = 0.01, p = .003, η̂2

G = .042. Analysing only free generation using a 3 (material:
permuted vs. random vs. no-learning) × 2 (PD instruction: inclusion vs. exclusion) ×
2 (order : inclusion first vs. exclusion first) ANOVA revealed a main effect of material,
F (2, 83) = 6.72, MSE = 0.01, p = .002, η̂2

G = .076 (and again the main effect of PD
instruction, F (1, 83) = 4.13, MSE = 0.01, p = .045, η̂2

G = .024). Tukey’s HSDs revealed
a significant difference between permuted and random, p = .001, the difference between
permuted and no-learning group trended to be significant, p = .083, random and no-learning
groups did not differ from each other, p = .257. Analysing only cued generation revealed no

3Because we only used pseudo-random sequences in this study, we defined that, given the last two locations,
the location that was most frequently presented after these two locations during training as being the “correct”
response. For the no-learning condition, correct responses were computed on the basis of sequences identical
to those used in the random group.
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Figure 4 . Proportions of correctly generated triplets during PD generation task (chance
level = .2). Error bars represent 95% CIs.

effects, suggesting that the free generation task was more sensitive in picking up learning
effects on generation performance.

To summarize, there was a main effect of PD instruction as well as an effect of material
in the free-generation data; no effects were obtained in the cued-generation data. In the
process-dissociation logic, the effect of PD instruction suggests the presence of explicit
knowledge. In addition, the effect of material suggests the presence of implicit knowledge in
the permuted condition. Next, we will apply two different PD analysis stategies to these data
to investigate more formally whether, given the assumptions underlying the PD approach can
be upheld, the pattern is indeed indicative of the presence of explicit and implicit knowledge.

Ordinal PD. We first applied the ordinal PD approach (Hirshman, 2004). It proposes a
model-free analysis strategy of PD data by deriving four critical data patterns of inclusion
and exclusion performance changes across two conditions that imply differences in automatic
and controlled processes between the conditions. For instance, it can be concluded that
both the automatic and the controlled processes are stronger in one condition if inclusion
performance is greater in that condition but exclusion performance is comparable in both
conditions. Also, it can be concluded that the automatic process is greater in one condition
if both inclusion and exclusion performance are greater in that condition.

We screened the free-generation data for these data patterns by separately comparing
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inclusion and exclusion performance across conditions of the material factor. Inclusion
performance was affected by material, F (2, 83) = 5.42, MSE = 0.01, p = .006, η̂2

G = .116: it
was greater in the permuted than in both the no-learning group, F (1, 55) = 6.70, MSE = 0.01,
p = .012, η̂2

G = .109, and the random group, F (1, 53) = 11.65, MSE = 0.00, p = .001,
η̂2
G = .180; in the latter two, performance was comparable, F (1, 58) = 0.08, MSE = 0.01,
p = .777, η̂2

G = .001. Exclusion performance was also affected by material, F (2, 83) = 2.93,
MSE = 0.01, p = .059, η̂2

G = .066; specifically, it was greater in the permuted than the
random condition, F (1, 53) = 5.26, MSE = 0.01, p = .026, η̂2

G = .090, but did not differ
between the other two conditions (no-learning vs. permuted: F (1, 55) = 0.24, MSE = 0.01,
p = .628, η̂2

G = .004; no-learning vs. random: F (1, 58) = 3.53, MSE = 0.01, p = .065,
η̂2
G = .057).

Comparing the permuted and no-learning conditions, performance was greater in the per-
muted group under inclusion instructions but was identical in both groups under exclusion
instructions. This data pattern implies increased levels of both the automatic and the
controlled process in the permuted as compared to the no-learning condition.

Comparing the permuted and random conditions, performance was greater in the permuted
group under both inclusion and exclusion instructions. This data pattern implies an increase
in the automatic process in the permuted as compared to the random condition but no effect
on controlled process.

These results suggest that participants acquire some form of implicit knowledge from
permuted material that they can use to produce above-chance levels of correct triplets in
the free generation task. They also suggest that the permuted and random materials allow
participants to acquire some form of explicit knowledge which they can use to perform better
under inclusion than under exclusion conditions.

PD equations. The same interpretation was suggested when the PD equations were
used to obtain quantitative estimates of explicit and implicit knowledge. Based on the
opposition logic, correct performance under inclusion instructions can arise due to controlled
processes (C) or – should these fail – due to automatic processes (A), p(correct|inclusion) =
C + (1− C) ∗A. Under exclusion instructions, the controlled process leads to an incorrect
response, and correct performance is based only on automatic processes in the absence
of controlled processing, p(correct|exclusion) = (1 − C) ∗ A. Automatic and controlled
parameters could differ across experimental conditions, resulting in a total of 12 parameters
(i.e., separate sets of A and C for two generation task variants, multiplied by three levels
of the material factor). Parameters were estimated using the HMMTree software and the
MPTinR package (Singmann & Kellen, 2013; Stahl & Klauer, 2007). Parameter estimates
are given in Appendix B.
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Hypotheses are tested by imposing restrictions on parameters and evaluating whether these
restrictions significantly harm the model’s goodness of fit, in which case the associated
hypothesis cannot be upheld.4

To investigate the evidence for any form of learning, we analysed whether there was evidence
for explicit knowledge by testing whether controlled parameters could be restricted to zero.
This was not possible without substantially harming goodness of fit, ∆G2

(df=6) = 28.19, p <
.001. This is consistent with the above findings of an effect of PD instruction, as well as the
conclusions drawn from the ordinal PD approach about the presence of explicit knowledge. As
above, this effect was strongest in the free generation condition ∆G2

(df=3) = 23.55, p < .001;
it was clearly present in both the permuted (∆G2

(df=1) = 13.95, p < .001) and the random
material (∆G2

(df=1) = 9.60, p = .001). In the cued-generation condition, there was a much
weaker effect which was only marginally significant, ∆G2

(df=3) = 4.64, p = .074, and restricted
to the permuted material (∆G2

(df=1) = 2.03, p = .077) but absent for the random material
(∆G2

(df=1) = 0.00, p > .999).

Next we analysed whether there was evidence for implicit knowledge, first by testing whether
a restriction of A parameters to an a-priori chance level of .2 can be maintained. This was
clearly not the case, ∆G2

(df=6) = 172.68, p < .001. Even if only the no-learning condition
was considered, the A parameters were greater than the a-priori chance level, ∆G2

(df=2) =
74.26, p < .001, suggesting that participants had acquired substantial implicit knowledge.
The A parameters could also not be set equal across materials, ∆G2

(df=4) = 53.14, p < .001,
confirming the above findings that the amount of acquired implicit knowledge differed across
conditions. This was the case in the free-generation condition, ∆G2

(df=2) = 35.92, p < .001,
as well as in the cued-generation condition, ∆G2

(df=2) = 17.22, p < .001. However, the
patterns differed across conditions: In the free-generation task, implicit knowledge estimates
were ordered permuted > no-learning > random; in the cued-generation task, the order was
no-learning = random > permuted.

Taken together, when the PD equations were used to obtain estimates of explicit and implicit
knowledge from the present data, results suggest that participants acquired both implicit
and explicit knowledge in the control conditions. Whereas explicit knowledge was detected
only in the free-generation task, implicit knowledge was detected in both tasks (but patterns
differed between tasks).

4Restricting parameters to be equal across generation task (free vs. cued) harmed goodness of fit,
∆G2

(df=6) = 68.14, p < .001; therefore, the amount of controlled and/or automatic processes must be assumed
to differ across tasks. Similarly, parameters could not be equated across materials (no-learning, permuted,
random), ∆G2

(df=8) = 81.59, p < .001, implying effects of material.
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Interim summary

In three different control conditions, we computed the proportion of generated responses
that matched the learning materials to test for any effect of implicit or explicit knowledge
acquired from the learning phase. We obtained converging evidence from three different
approaches: (1) In ANOVAs, the proportions of correctly generated responses differed as a
function of material (this effect was restricted to the free generation task), as well as of PD
instruction. (2) The ordinal PD approach, when applied to the free generation data, yielded
evidence for greater implicit knowledge in the permuted than in the random and no-learning
groups. It also yielded evidence for explicit knowledge in the permuted condition (and,
by implication, in the random condition). (3) The PD equations yielded estimates of the
controlled process, reflecting explicit knowledge, that were significantly different from zero
for the free-generation data. They also yielded estimates of the automatic process, reflecting
implicit knowledge, that were above chance levels for 4 out of 6 experimental conditions.

Taken together, despite the fact that the material in the learning phase did not contain
any sequence information, the PD approach using generation tasks yielded ‘evidence’ for
both implicit and explicit knowledge. In the following sections, we will try to account for
these findings in terms of sequence-unrelated frequency properties, response tendencies, and
cueing artifacts.

Sequence-unrelated frequency properties

First, we analysed the proportion of reversals as well as the proportion of high- versus low-
frequency locations (as manipulated in the permuted condition) that participants generated
in both versions of the task.

Reversals. Figure 5 shows participants’ proportions of reversals (e.g., 1-3-1) generated
during inclusion and exclusion (where triplets that contained a repetition were excluded
from analyses). By chance, a reversal would be generated in 1 out of 5 cases.

We conducted a 3 (material: permuted, random, no-learning) × 2 (generation task: free
vs. cued) × 2 (PD instruction: inclusion vs. exclusion) × 2 (order : inclusion first vs. exclusion
first) ANOVA of the proportion of reversals. The ANOVA revealed a main effect of PD
instruction, F (1, 169) = 22.14, MSE = 0.01, p < .001, η̂2

G = .057: More reversals were
generated under exclusion than under inclusion instruction.

The ANOVA also revealed a main effect of material F (2, 169) = 3.75, MSE = 0.01, p = .025,
η̂2
G = .024, that was qualified by an interaction of material and generation task, : The effect
of material was restricted to the free-generation condition, F (2, 83) = 4.84, MSE = 0.01,
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Figure 5 . Proportions of reversals produced in generation task (chance level = .2). Error
bars represent 95% CIs.

p = .010, η̂2
G = .063; it was not found in the cued-generation condition, F (2, 86) = 1.70,

MSE = 0.01, p = .189, η̂2
G = .019. We further analysed the effect of material in the

free-generation condition using Tukey’s HSDs: The random group generated more reversals
than the other groups (no-learning group, p = .012, permuted group, p = .053), which did
not differ from each other, p = .897.

Finally, and perhaps most importantly, as apparent from Figure 5 the proportion of reversals
was below chance for all materials. This effect was most prominent in the no-learning
group which had the smallest proportion of reversals. The overall below-chance generation
proportions of reversals can therefore not be interpreted as an effect of training.

It is more likely that they reflect a response bias that participants bring into the lab (e.g.,
Boyer et al., 2005). If reversals represent a regular pattern, according to participants’
subjective theory of randomness, they should tend to avoid generating such regularities
when attempting to produce a random sequence. The finding that more reversals were
generated under exclusion conditions than under inclusion conditions would then reflect
participants’ attempt to generate a non-random sequence under exclusion conditions that is
most dissimilar to the random sequence from the training phase. This strategy may underlie
the I > E pattern of correct responses obtained above that would suggest the presence of
explicit knowledge: In cases where reversals occurred at chance levels in the sequence, the
tendency to avoid generating reversals would lead to an underestimation of (implicit and/or
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Figure 6 . Proportions of correctly generated triplets during PD generation task after
excluding reversals (chance level = .25). Error bars represent 95% CIs.

explicit) knowledge. In the present case, in which no reversals were encountered during
learning, suppressing reversals leads to overestimated implicit knowledge. If this tendency is
stronger under inclusion instructions than under exclusion instructions, as we have found
here, it may erroneously suggest that participants have acquired explicit knowledge. Thus,
the proportion of reversals that differed across PD instructions may be responsible for the
above findings.

Correct generation performance when excluding reversals. Reversal generation
proportions, whether reflective of extra-experimental response biases or not, may have
distorted the above PD analyses and erroneously suggested the presence of implicit and/or
explicit knowledge. We therefore repeated the above analyses after excluding reversals, to
investigate whether the above patterns of I > E and E > B hold also for the remaining
types of transitions. Figure 6 shows the proportion of correct generation responses after
removal of reversals.

After excluding reversals from analyses, an ANOVA revealed only a significant interaction of
material × generation task, F (2, 169) = 4.39, MSE = 0.01, p = .014, η̂2

G = .031, and a trend
towards a generation task by PD instruction interaction, F (1, 169) = 3.46, MSE = 0.01,
p = .065, η̂2

G = .008. Crucially, the main effect of PD instruction was no longer significant,
F (1, 169) = 0.42, MSE = 0.01, p = .519, η̂2

G = .001.
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As above, the effect of material was limited to the free-generation task, F (2, 83) = 4.53,
MSE = 0.01, p = .014, η̂2

G = .053, it was absent from the cued-generation task, F (2, 86) =
1.24, MSE = 0.01, p = .296, η̂2

G = .019. Tukey’s HSDs replicated the above finding that
the permuted group generated more correct responses than the random group, p = .001,
and tended to generate more correct responses than the no-learning group, p = .083. The
random and no-learning groups did not differ from each other, p = .257.

Excluding reversals eliminated the main effect of PD instruction, an effect that is typically
interpreted as evidence for explicit knowledge. This shows that conclusions drawn from
applications of PD to the SRTT can be distorted by response-tendency artifacts: Participants
appeared to possess explicit and controllable knowledge about the material but in fact merely
avoided generating reversals, especially under inclusion instructions.

High-frequency locations. Next, we investigated effects of the response location fre-
quency manipulation in the permuted condition. The above differences in correct generation
performance between permuted and the other two groups might be explained by the fact
that the permuted group was able to acquire knowledge about the unequally distributed
location frequencies: The permuted group was trained on 8-response sequences constructed
from six response locations, with two of the locations doubled. For a given participant, the
two selected locations remained constant throughout the training phase and were therefore
practiced more frequently than the other four response locations. This was reflected in
faster responses at high-frequency compared to low-frequency response locations (see above,
Figure 3).

In the absence of learning, one would expect one third (i.e., two out of six) of generated
responses to be high-frequency locations. If participants in the permuted condition acquired
and used knowledge to generate more high-frequency locations, this would increase their
chances of producing a correct triplet. This is because approximately two thirds of the
possible triplets end in a high-frequency location (in the permuted learning material, on
average, a high-frequency location was the correct response for approximately 22 out of 30
transitions). Thus, the probability of generating a correct triplet may have been inflated by
a tendency to generate an above-chance proportion of high-frequency locations.

The proportion with which high-frequency locations were generated is illustrated in Figure
7. We analyzed these proportions by way of a 2 (generation task: free vs. cued) × 2 (PD
instruction: inclusion vs. exclusion) × 2 (order : inclusion first vs. exclusion first) ANOVA.
Consistent with the above finding that participants responded faster to high-frequency
locations during training, we found evidence that participants learned to match the response
frequencies during generation: responses encountered more frequently during the SRTT were
also generated more frequently. Yet, this tendency was affected by the type of generation
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Figure 7 . Proportion of high-frequency locations during generation in the permuted material
condition (chance level = .33). Error bars represent 95% CIs.

task, F (1, 52) = 13.97, MSE = 0.01, p < .001, η̂2
G = .144: more high-frequency locations

were generated in the free generation than in the cued generation test. Additionally, there
was a trend towards an interaction of generation task and PD instruction, F (1, 52) = 3.04,
MSE = 0.01, p = .087, η̂2

G = .021.

For free generation, the proportion of high-frequency locations generated was above the
1/3 chance level in both the inclusion blocks, t(26) = 2.95, p = .007, d = 0.57, and in the
exclusion blocks, t(26) = 2.47, p = .020, d = 0.48. The proportion was below 1/3 for cued
generation in the inclusion blocks, t(28) = -2.58, p = .015, d = -0.48, bot not in the exclusion
blocks, t(28) = -0.84, p = .407, d = -0.16. The proportion of high-frequency locations in
cued generation may be influenced by cueing artifacts as illustrated below.

In free generation, there was a tendency to generate high-frequency response locations at
above-chance levels. As suggested above, this tendency might explain the above-chance
generation of correct triplets in the permuted condition that remained after excluding
reversals.
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Effect of elevated high-frequency location generation rates on correct generation
performance. To provide support for this interpretation, we investigated whether an
above-chance generation rate as observed in the permuted condition is necessary and sufficient
to account for this pattern. First, we corrected for the trend to generate more high-frequency
locations by equally weighing correct generations for each response location.

For the permuted group we calculated the proportions of correctly generated triplets (exclud-
ing repetitions and reversals) separately for triplets that were completed by a high-frequency
location and those completed by a low-frequency location. We then calculated the weighted
mean correct performance, with one third as a weight for the two high-frequency locations
and two thirds as the weight for low-frequency locations. Analyses of the equally-weighted
free-generation data no longer revealed any significant effects. Crucially, the effect of material
was no longer significant, F (2, 83) = 1.44, MSE = 0.01, p = .243, η̂2

G = .017. Perhaps
trivially so, all significant findings disappeared after we eliminated the greater weight of the
high-frequency locations in determining the proportion of correct triplets. This suggests that
the higher proportion of high-frequency locations was necessary to produce the above effect.

To test whether the only slightly above-chance generation of high-frequency responses was
sufficient to explain the above pattern of correctly generated triplets, we simulated data for
each participant based only on their average proportions of high-frequency and low-frequency
responses.5

For a participant’s simulated dataset, we then determined the proportions of correctly
generated triplets as above (i.e., based on the material in the learning phase, and after
excluding reversals). We conducted the same analysis as above on the simulated data for
the free-generation task. Importantly, the simulated data replicated the effect of material,
F (2, 87) = 49.64, MSE = 0.00, p < .001, η̂2

G = .447: Tukey’s HSDs revealed significant
differences between permuted and the other two groups, both ps < .001, and no difference
between random and no-learning group, p = .986.

The above results demonstrate that the slightly elevated generation rate of high-frequency
responses was necessary and sufficient to produce the performance advantage in the permuted-
material condition. They illustrate how sequence-unrelated frequency properties of the
training material may affect generation performance, and thereby, PD estimates of underlying
processes.

5All other information from their empirical distribution of response location frequencies as well as any
order information that may be present in participants’ generation responses was discarded: A high-frequency
(low-frequency) response location was simulated with the probability given by the participant’s rate of actually
generating a high-frequency (low-frequency) response in the generation task; within the set of high-frequency
(low-frequency) locations, each was generated with equal probability. Datasets were simulated by drawing
responses from this distribution (with replacement, but with the constraints that no direct repetitions were
allowed).
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Effects of generation task

Whereas the proportion of reversals as well as high-frequency locations affected performance
in free generation, similar influences were not observed on cued-generation data. This
suggests that the cued generation task may be less sensitive to subtle effects of learning. The
cued generation task has been criticized because the cues may contain information about
the sequence that may affect generation performance and distort estimates of learning. Here
we investigated potential effects of cues on generation responses that may occur even in
control conditions and in the absence of informational influence.

As cues, participants were presented with brief segments of response locations taken from
the learning phase. It is known that recent responses may be less likely to be generated
(e.g., Boyer et al., 2005). This bias may affect generation performance selectively in the
permuted condition. Because the permuted material contained high-frequency as well as
low-frequency response locations, the same was true for the cues presented to participants
in the permuted condition during the cued-generation task. As a consequence, the bias to
avoid recent locations would apply more strongly to high-frequency locations. This could
account for the above finding that high-frequency locations were generated at below-chance
levels in the cued generation task, and for the suppressed levels of correct performance in
the permuted condition in that task.

For the cued generation task, Figure 8 shows the proportion of response locations that
were also presented as a cue on their respective trial. With three to five cues presented on
each trial (and direct repetitions prohibited and excluded from analyses), chance level of
generating a location that had just been presented equalled 3/5 = .6.

A 3 (material: permuted, random, no-learning) × 2 (PD instruction: inclusion vs. exclusion)
× 2 (block order : inclusion first vs. exclusion first) ANOVA revealed a main effect of
material, F (2, 86) = 3.41, MSE = 0.03, p = .038, η̂2

G = .042. Tukey’s HSDs revealed a
significant difference between the permuted and no-learning groups, p = .026, all other
ps > .24. The ANOVA also revealed a main effect of PD instruction, F (1, 86) = 10.24,
MSE = 0.03, p = .002, η̂2

G = .051: more repetitions of cue locations were generated under
exclusion conditions. This effect was qualified by an interaction PD instruction × block order,
F (1, 86) = 6.06, MSE = 0.03, p = .016, η̂2

G = .031, which indicates that the effect of PD
instruction differed between participants who worked under inclusion instructions in the first
generation block and under exclusion instructions in the second block and those who received
the PD instructions in the reverse order. To further explore this interaction, we analysed
first and second blocks using separate ANOVAs, thus turning the PD instruction factor into
a between-subjects factor. In the first block, only the main effect of material turned out to
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Figure 8 . Proportions of locations generated in the cued generation task that were presented
as a cue on their respective trial, separately for the first and the second generation block
(chance level = .6). Error bars represent 95% CIs.

be significant, F (2, 86) = 3.67, MSE = 0.03, p = .030, η̂2
G = .079. In the second block, only

the main effect of PD instruction was significant, F (1, 86) = 10.91, MSE = 0.03, p = .001,
η̂2
G = .113.6

These results suggest three conclusions: First, the fact that the tendency to avoid generating
cued locations was also present in the no-learning condition suggests that it was not acquired
during the SRTT training but either reflects pre-experimental response tendencies, or,
alternatively, it may reflect a tendency of the cued generation task to bias generation
performance against repeating the cue locations.

Second, the cue-avoidance bias was influenced by the type of learning material in the first
but not the second block. This suggests that, while the cued generation task is sensitive
to effects of learning during the first block, this is no longer the case during the second
block. This finding further supports the notion that the cued generation format may affect
generation performance, and that over time this influence becomes stronger than the effects
of learning.

6This data pattern remained even after excluding reversals: Analysing only the first block, only the main
effect of material trended to be significant, F (2, 86) = 3.67, MSE = 0.03, p = .030, η̂2

G = .079. Analysing
only the second block revealed a main effect of PD instruction, F (1, 86) = 10.91, MSE = 0.03, p = .001,
η̂2

G = .113.



52 Distorted Estimates in Applications of the Process-Dissociation Procedure

Third, cue-avoidance bias was stronger under inclusion than under exclusion instructions in
the second block of the generation task. This suggests that participants can acquire response
strategies during the cued-generation task that help them produce different outcomes under
inclusion and exclusion instructions.

Whether or not this tendency leads to artificially elevated levels of correct responses largely
depends on the sequence material that is used. Common sequences (e.g., Fu et al., 2010,
2008; Wilkinson & Shanks, 2004) contain only one reversal within a four-position sequence
consisting of 12 triplets. Typically, only two locations are presented as cues on each trial
to avoid informative influences, and direct repetitions are not allowed. In this case, the
strategy to avoid generating a cue location would lead to a correct-performance rate of
approximately 46% (i.e., a .5 chance to generate a correct response for 11 out of 12 triplets
and a zero chance for the single reversal among the 12 triplets). This is rather high relative
to a chance-level baseline of .33 (c.f., Fu et al., 2010).

To summarise, in the cued generation task, participants avoid generating a response that had
been part of the cue sequence. This finding was independent of the type of training material,
and it occurred even for the no-learning grooup, suggesting that it is a training-independent
response tendency (i.e., a bias against generating locations present in the cue segment).

The findings further suggest that, in the permuted condition, this response strategy interacted
with cue properties to influence generation performance. Here, cue properties vary as a
function of the frequency manipulation in the permuted condition: Frequent locations are
more likely to be included in the cue, and are therefore more likely to be subject to the
avoidance bias; this can explain the reduction, in the permuted condition, of high-frequency
responses in the cued as compared to the free generation task.

Finally, the cue-avoidance bias differed across PD instructions: cued responses were generated
less frequently under inclusion than under exclusion instructions. Interestingly, this difference
emerged only in the second generation block, suggesting that the cued generation task allowed
participants to acquire a strategy of selectively generating more cue locations under exclusion
instructions: If participants perceived the learning material as random, they will aim at
generating a random sequence under inclusion instructions (i.e., generate a sequence similar
to that in the learning phase); under exclusion instructions, they will aim at generating a
sequence that does not conform to their subjective notion of randomness (i.e., generate a
sequence that is as dissimilar as possible to that in the learning phase). When generating
subjectively random sequences, participants typically produce more alternations and fewer
repetitions than would be expected by chance (e.g., Boyer et al., 2005). By attempting
to deviate from this subjectively experienced randomness they then generate more cue
locations.
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Taken together, the cued generation task was not only less sensitive to learning effects. It also
appears to induce – or interact unfavorably with – a bias to avoid recently generated response
locations. Both the below-chance generation of cue locations as well as its modulation by
PD instruction may distort findings and conclusions regarding the presence or absence of
explicit and implicit sequence knowledge.

Discussion

The present findings extend previous knowledge about the influence of pre-experimental
response biases, simple frequency information, task format, and their interaction on per-
formance in the generation task. First, it is known that zero-order frequency information
may affect generation performance (Reed & Johnson, 1994); here, we show that this effect
depends on the type of generation task. Second, it is known that, in cued generation, cues
that carry information about the sequence may affect generation performance (Fu et al.,
2010). We present first evidence that even in the absence of any sequence information,
cues may affect generation performance by way of their simple frequency properties and in
interaction with response tendencies. Third, it is known that participants may be biased
to avoid generating recent response locations (Boyer et al., 2005). Here, we demonstrated
that this bias may interact with properties of the learning material (zero-order frequencies,
proportion of reversals) and task format, and that it can differentially affect inclusion and
exclusion performance. These findings have important implications for the validity of the
process-dissociation procedure as applied to the generation task.

Process-dissociation results

The present study realized three different control conditions, using different types of pseudo-
random materials, in which participants could not learn any second-order regularity. Implicit
and explicit knowledge was assessed with the PD procedure, using two different generation
tasks. Despite the irregular learning materials, and independent of the type of analysis, the
results of a comparison between performance in the permuted and random conditions in the
free-generation task suggested the presence of implicit knowledge. Similarly, independent
of the type of analysis, the results also suggested the presence of explicit knowledge under
some conditions (i.e., due to the asymmetric generation of reversals under inclusion versus
exclusion instructions). Finally, the results erroneously underestimated knowledge in some
conditions: Although participants learned to distinguish between high- and low-frequency
locations, they expressed this knowledge in the free-generation condition but did not express
this knowledge in the cued-generation condition. These findings illustrate that unwanted
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influences can affect generation performance and may thereby artificially inflate or mask
estimates of implicit and explicit knowledge.

Taken together, the findings suggest that there are several problems with the PD approach
in its application to investigating the processes underlying sequence learning when effects of
extra-experimental influences on performance cannot be excluded. In those cases, baseline
performance may differ in inclusion and exclusion instructions and/or across experimental
conditions. Under those circumstances, the ordinal PD approach is no longer valid (Hirshman,
2004).7 In other words, given the possible influence of response tendencies and their
interaction with properties of the material, we cannot draw conclusions about the relative
contribution of implicit and explicit knowledge by simply comparing inclusion and exclusion
performance, be it directly (e.g., I > E), across experimental conditions (e.g., EA > EB), or
with a baseline (e.g., E > B). Instead, it is necessary to quantify the unwanted extraneous
influence and separate it from the experimental effects of interest. This can be done by
extending the basic PD design and model.

An extended PD model

In applications of the PD, exclusion performance is sometimes compared to an a-priori
chance level baseline. The present study has shown that the proportion of correctly generated
triplets may deviate from such an a-priori chance-level baseline, and may even differ across
inclusion and exclusion conditions, in the absence of both implicit and explicit sequence
knowledge. In other words, we found that response tendencies, alone or in interaction with
properties of the learning material, may affect generation performance, may cause deviations
from a-priori chance baselines, and may distort the PD model’s estimates of implicit and
explicit knowledge.

To accommodate this potential confound, first, it is necessary to use an empirical baseline.
One could extend the PD design and model, as applied to the generation task, by adding a
control condition along with separate response-tendency or nuisance parameters, as has been
done by Buchner and colleagues for the recollection task (Buchner et al., 1998, 1997b). In
the control condition, that is, in the absence of sequence knowledge, generation performance
will then reflect sequence-unspecific properties of the material as well as response tendencies.

7The ordinal PD approach assumes that baseline performance does not differ across conditions or tasks
(see Hirshman, 2004, p.559, section “Comparison of the Current Approach and the Process-Dissociation
Procedure” and Footnote 8). Such baseline differences may arise from different guessing or response bias,
and they invalidate the conclusions that can be drawn from the comparison of performance in conditions.
This is because the performance differences between conditions or tasks that are used to draw conclusions
about differences in automatic and/or controlled processes may instead reflect baseline differences due to
guessing or response bias.
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In the experimental condition, these same influences may affect generation performance over
and above the effects of learning higher-order sequence information. The nuisance parameter
can then be equated across the control and experimental conditions, capture the unwanted
influences, and separate them from the effects of implicit and explicit knowledge. In this
model, any differences in performance between the control and experimental conditions will
be reflected in estimates of implicit and/or explicit knowledge. Second, the problem that
response tendencies may differentially affect inclusion and exclusion performance can be
solved by using as separate baselines the performance of a control group in the inclusion
and exclusion conditions, and by introducing one nuisance parameter for each condition.
Such an extended model allows for the possibility that response tendencies affect generation
performance over and above explicit and implicit knowledge. Similar extensions for capturing
extraneous influences have been proposed and demonstrated as necessary and useful in
other domains to address similar response-tendency issues (e.g., pre-experimental familiarity,
Buchner et al., 1995; right-hand bias; Stahl & Degner, 2007).

The extended model’s equations deviate from the original equations (see introduction)
by including nuisance parameters that account for baseline performance (along the lines
suggested by Buchner et al., 1995, 1997b). Because baseline performance may be different
under inclusion and exclusion instructions, two different parameters Rinclusion and Rexclusion
are added to the model. The equations of the experimental conditions of the extended model
are: p(correct|inclusion, experimental) = C + (1 − C) ∗ A + (1 − C)(1 − A) ∗ Rinclusion,
and p(correct|exclusion, experimental) = (1−C) ∗A+ (1−C)(1−A) ∗Rexclusion. For the
empirical control or baseline condition, it would be assumed that only extra-experimental or
nuisance factors affect generation performance: p(correct|inclusion, control) = Rinclusion,
and p(correct|exclusion, control) = Rexclusion.

To illustrate, we applied this model to the permuted and random conditions in the free
generation task. Recall that both traditional approaches suggested the presence of explicit
and implicit knowledge in the permuted group, as well as the presence of explicit knowledge
in the random group. The extended model allows us to quantify the effect of training
with permuted material over a training phase with random material on controlled and
automatic processes. We used the random group as the empirical control condition; this
is equivalent to the assumption that whatever affects performance in the random group
can be subsumed as nuisance factors. Estimates of Rinclusion and Rexclusion therefore reflect
generation performance in the random group, Rinclusion = .251 and Rexclusion = .228.
Differences between the random and permuted condition are then reflected in the parameters
for controlled and automatic processes. Results of the extended model suggests that training
with permuted material affected the automatic process, A = .047,∆G2

(df=1) = 16.44, p < .001,
but did not affect the controlled process, C = .001,∆G2

(df=1) = 0.004, p = .95. The effect on
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the automatic process – implicit knowledge – reflects the location frequency effect, and it
is consistent with the finding that participants responded faster to high-frequency than to
low-frequency locations during SRTT training. The extended model indicates the absence of
an effect on explicit knowledge. The nuisance parameters capture the difference between
inclusion and exclusion performance in both the random and permuted group that was
interpreted as evidence for explicit knowledge in both the ordinal PD approach as well as in
the original model equations.

Note that the levels of generation performance in the control condition can serve as valid
baselines – and the controlled and automatic parameters can be valid estimates – only to
the degree that the processes captured by the nuisance parameters are independent from
explicit and implicit knowledge processes. In other words, the extended model requires
additional assumptions, namely that the processes underlying the parameters C and A are
independent from the nuisance processes (e.g., guessing, response bias) that are reflected in
the new parameters Rinclusion and Rexclusion. These assumptions are as of yet untested, and
future research is needed to supply empirical evidence as to whether these new independence
assumptions are met.

Free versus cued generation

In free generation, participants sometimes produce relatively sparse data, for instance, by
repeatedly generating a small subset of all possible transitions, thereby generating missing
data for the remaining transitions. With the cued generation task, researchers can control the
cues and thereby ensure that comparable (or at least considerable) numbers of observations
are obtained for each transition. This is an advantage especially when different types of
transitions and their properties are to be compared in a within-subject approach.

However, the present findings support previous warnings that the cued generation task must
be treated with caution because the choice of cues may influence generation performance (Fu
et al., 2010; Jiménez & Vázquez, 2005). In addition to previous findings regarding informative
cues, the present study provides an additional argument against the cued generation task:
The tendency to avoid generating locations that were presented as cues may systematically
bias generation performance, and may erroneously suggest the presence of both implicit and
explicit knowledge.

In light of these problems, we currently do not see an empirical way of obtaining an equal
number of observations for each transition in the generation task. This could imply that
attempts of modeling individual transitions as a within-participant factor will face additional
challenges. One way of avoiding artifacts resulting from a limited and biased selection of
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generated transitions is to use adequate weighting procedures. For instance, researchers
could compute correct-generation rates for each of the cells in the transition matrix and
estimate participants’ mean proportion of correctly generated transitions as a weighted
average.

Limitations and open questions

We briefly sketch open research questions posed by the additional independence assumptions,
discuss the current development of hierarchical multinomial modeling techniques, and note
the potential influence of additional unknown factors affecting performance in the generation
task.

On the independence assumptions underlying the extended model. As mentioned
above, the extended PD model assumes that response tendencies as modelled by Rinclusion
and Rexclusion are independent of controlled and automatic processes. If this assumption is
violated, parameter estimates are no longer valid measures of the underlying psychological
processes. This possiblity deserves to be taken seriously; in other domains, empirical
violations of independence between controlled and automatic processes have been obtained
(e.g., Rouder et al., 2008). The open question is whether response tendencies can be affected
by the same properties of the learning material that may also affect implicit and explicit
learning. There are some findings in the literature that at least suggest such an interaction
may well be possible. For instance, participants tended to show lag effects (reflecting
negative recency) in a permuted condition but not in a random condition (Boyer et al., 2005).
Here, the tendency to avoid generating recent locations interacted with properties of the
learning material. Perhaps more critically, the present results suggest that in the permuted
condition, the bias against generating cued locations was reduced whereas implicit knowledge
was enhanced (i.e., participants learned about the frequency with which certain response
locations occurred during training). If the response bias is reduced in a condition with
greater implicit knowledge, then the response bias estimates (i.e., the R parameters) obtained
from the control condition (where implicit knowledge is lower or entirely absent) will tend
to overestimate the response bias in that condition. The present finding may reflect effects
of other factors, but if such an interaction pattern between response tendency and implicit
knowledge can be substantiated, it would constitute evidence against the independence
assumption. In turn, this would require further elaborating and refining the extended PD
paradigm and model.

Data aggregation and hierarchical modeling. In our application of the PD model, we
aggregated the data across participants, as this has been the standard procedure in common
applications of PD and our aim was to illustrate potential problems with such applications.
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Our results demonstrate that the PD procedure, as commonly applied, yields erroneous
conclusions supporting the presence of implicit and/or explicit knowledge, even in the absence
of such knowledge. Note that such erroneous conclusions about the presence of an influence
on parameters are less likely when, instead of aggregating, individual data are analyzed using
hierarchical models. This is because data aggregation assumes parameter homogeneity across
participants, which is likely to be violated in most cases. As a consequence of aggregation
in the presence of heterogeneity, confidence intervals can be underestimated, and nominal
statistical error levels can be violated by statistical tests.8

This problem does not arise if hierarchical modeling techniques are used (e.g., Rouder et al.,
2008; Klauer, 2006, 2010) that account for the heterogeneity across participants (and items)
in their estimates of the parameters’ variability. Hierarchical models often draw a more
realistic picture of the variability of parameter estimates. In all cases in which parameters
must be assumed to vary across participants, they should be preferred to the traditional
approach of data aggregation.9

Characteristics of response tendencies. In the present study, we obtained evidence
that participants may use two types of response tendencies: First, they generated fewer
reversals than expected by chance. Second, in the cued generation task, they avoided
generating responses that were part of the cue segments. It is unclear whether these patterns
reflect the same bias (e.g., based on subjective notions of randomness) or whether they reflect
different response tendencies, and whether they reflect consciously applied strategies or
rather more implicit trends. In addition, results obtained with the extended model suggested
that, even in the absence of both implicit and explicit knowledge and after controlling for
the identified response tendencies, there are other unknown factors that allow participants to
perform better than chance, and even better under inclusion than under exclusion conditions.
Future research should address these questions in order to better understand their potential
for affecting generation performance.

8We applied the hierarchical Bayesian PD model proposed by Rouder et al. (2008) to the present data
in order to account for person and item variability. The resulting parameter estimates are available in the
supplemental material that can be obtained from https://github.com/methexp/pdl1. The results corroborated
the findings obtained with the traditional analyses reported above (i.e., C > 0, A > .2, and the ordering of A
estimates across conditions).

9The use and adoption of hierarchical modeling approaches is currently limited by the availability of
general-purpose software (but see, e.g., Matzke, Dolan, Batchelder, & Wagenmakers, 2013; Stahl & Klauer,
2007).

https://github.com/methexp/pdl1
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Conclusion

Broadly speaking, the process-dissociation approach is to create two (or more) experimental
conditions within a given experimental paradigm so that there is overlap with regard to
most but not all of the psychological processes that are relevant for performance. Combined
with measurement models such as the PD equations or more complex multinomial models,
this general approach has been extremely valuable and has been fruitful in a wide variety
of research areas and experimental paradigms (Erdfelder et al., 2009; Yonelinas & Jacoby,
2012). Whereas a simple and elegant design is generally preferable, the present findings
suggest that the application of process-dissociation methodology to the generation task may
require more differentiation of experimental design and measurement model.
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Chapter III

Assumptions of the Process-Dissociation
Procedure are Violated in Implicit
Sequence Learning

In implicit sequence learning, a process-dissociation (PD) approach has been proposed
to dissociate implicit and explicit learning processes. Applied to the popular generation
task, participants perform two different task versions: inclusion instructions require
generating the transitions that form the learned sequence; exclusion instructions require
generating transitions other than those of the learned sequence. Whereas accurate
performance under inclusion may be based on either implicit or explicit knowledge,
avoiding to generate learned transitions requires controllable explicit sequence knowledge.
The PD approach yields separate estimates of explicit and implicit knowledge that are
derived from the same task; it therefore avoids many problems of previous measurement
approaches. However, the PD approach rests on the critical assumption that the implicit
and explicit processes are invariant across inclusion and exclusion conditions. We tested
whether the invariance assumptions hold for the PD generation task. Across three
studies using first-order as well as second-order regularities, invariance of the controlled
process was found to be violated. In particular, despite extensive amounts of practice,
explicit knowledge was not exhaustively expressed in the exclusion condition. We discuss
the implications of these findings for the use of process-dissociation in assessing implicit
knowledge.

Riding a bicycle is an easy task, but most of us will be hard-pressed to describe in detail the
coordinated movements necessary for pedaling, keeping direction, and maintaining balance.
Capturing this intuition, theories of human learning commonly distinguish two types of
knowledge: Explicit learning that is accompanied by awareness of its contents, and implicit
learning that operates independently of awareness (Shanks & St. John, 1994).

Such implicit learning has been demonstrated using the Serial Reaction Time Task (SRTT,
Nissen & Bullemer, 1987), which has participants respond to stimuli presented at four
horizontal screen locations by pressing the key that corresponds to the stimulus location.
Unbeknownst to participants, the stimulus locations follow a regular sequence. With practice,
participants learn to respond faster on trials with regular stimulus-location transitions than
on irregular transitions. Critically, on a subsequent task, participants are often not able
to express explicit knowledge about the sequential structure (Cohen et al., 1990; Nissen &
Bullemer, 1987; Willingham, Nissen, & Bullemer, 1989).
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There has been a long-lasting debate whether or not this effect is evidence for implicit
learning, a question entwined with methodological considerations of how to properly measure
and separate the contributions of supposedly implicit and/or explicit learning systems to this
task (for a recent review, see Timmermans & Cleeremans, 2015). One of the most promising
methods has been the process-dissociation (PD) approach as applied to the free generation
task (Destrebecqz & Cleeremans, 2001); yet, its validity rests on a set of previously untested
assumptions. The present study assesses two of the crucial assumptions on which this
method is based.

Measuring implicit knowledge in the SRTT

In order to conclude that the learning effect in the SRTT (i.e., an RT advantage for regular
transitions) is based on implicit knowledge, dissociations from subsequent assessments of
explicit knowledge are typically sought. They depend on the assumptions that the explicit
task is as sensitive to explicit sequence knowledge as the SRTT (the absence of an explicit
effect may otherwise be due to lower reliability); and that it is also an exhaustive and
exclusive measure of explicit knowledge, such that performance on the explicit task reflects
all explicit but no implicit knowledge (Reingold & Merikle, 1990; Shanks & St. John,
1994). Multiple explicit-knowledge assessment tasks have been proposed, including verbal
reports (i.e., recall of the sequence), recognition, prediction, and generation tests. Yet, while
dissociations from RT advantages in the SRTT have been demonstrated in some studies,
these tests have also been criticized for not meeting the above criteria, or the reported
dissociations did not replicate (Shanks & Perruchet, 2002).

Contrary to the reported dissociations, studies utilizing recognition tests typically found
substantial associations of the RT advantage in the SRTT with explicit knowledge (Perruchet
& Amorim, 1992; Perruchet, Bigand, & Benoit-Gonin, 1997; Perruchet & Gallego, 1993). It
has been argued that these associations were found because the subsequently used recognition
task might not be exclusive to explicit but might also be driven by fluency-based processes.
To test this alternative explanation, Buchner and colleagues (Buchner et al., 1997a, 1998)
used the process-dissociation approach to disentangle (explicit) recollection and (implicit)
fluency in the recognition task, finding that recognition is in fact driven by both processes.
Still, Shanks and Johnstone (1999) argued that fluency-based recognition judgments cannot
be equated with implicit knowledge, leading them to conclude that there was no conclusive
evidence for implicit learning in the SRTT literature.

Given the interpretative problems of the recognition task, Destrebecqz and Cleeremans
(2001) introduced the process-dissociation approach to the free-generation task, a measure
that was considered to be the most sensitive to sequence learning (Perruchet & Amorim,



Measuring Implicit and Explicit Sequence Learning 63

1992). Participants were instructed, after finishing the SRTT, to generate a sequence that
is either similar (in the inclusion condition) or dissimilar (in the exclusion condition) to
that encountered during the SRTT. If participants can generate a similar sequence under
the inclusion instruction, they can be said to have acquired knowledge about the sequence;
yet, this knowledge may reflect both implicit and explicit knowledge because both may be
used to re-generate the learned sequence. However, only explicit knowledge is assumed to
be under participants’ control: When asked to generate a sequence that is dissimilar to
the learned sequence – that is, to exclude their explicit knowledge – participants can avoid
generating similar transitions only if their sequence knowledge is explicit. If, instead, their
sequence knowledge is implicit, they would still generate a sequence similar to the learned
sequence despite being instructed to do the opposite.

To selectively impair explicit knowledge, Destrebecqz and Cleeremans (2001) manipulated
the (presence versus absence of a) response-stimulus interval (RSI), speculating that a certain
minimal amount of preparation time would be necessary to acquire explicit knowledge during
the SRTT. In both an RSI and a no-RSI condition, performance in the free-generation task
was above a chance baseline, corroborating previous findings that the generation task is
sensitive to sequence knowledge. Critically, in the no-RSI condition, performance under
inclusion (I) was similar to performance under exclusion (E) instructions (i.e., I = E),
suggesting that participants had no control over their sequence knowledge, and that the
sequence knowledge in the no-RSI condition was fully implicit. (In addition, exclusion
performance was above baseline, i.e., E > B, indicating that participants in the no-RSI
condition were not able to withhold generating parts of the sequence they previously
had implicitly learned.) Conversely, in the RSI condition, a robust inclusion-exclusion
performance difference (i.e., I > E) indicated that participants were able to control their
sequence knowledge, suggesting that this knowledge is explicit.

Assumptions underlying the PD approach

These conclusions about the presence versus absence of explicit knowledge, based on com-
parisons of inclusion and exclusion performance, depend on two assumptions: First, explicit
knowledge must be assumed to be fully controllable (otherwise, the lack of an inclusion-
exclusion difference cannot be interpreted as the absence of explicit knowledge but may
instead reflect uncontrollable explicit knowledge). Put differently, conclusions drawn from the
PD approach are limited to controllable explicit knowledge and do not extend to knowledge
that may be explicit but not controllable (in the sense that it may be used to affect the
similarity of the generated sequence with the learned sequence). This is unproblematic
as long as the PD approach is used to investigate theories that hold controllability as a
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central tenet of explicit knowledge. Second, comparisons between inclusion and exclusion
task performance are only meaningful if both tasks are indeed comparable measures of
sequence knowledge.10 In other words, the processes underlying free-generation performance
are assumed to be invariant to the inclusion versus exclusion instructions. This assumption
is critical for the validity of the PD approach, but it has so far not been tested directly.

The PD generation task has been used repeatedly to investigate sequence learning, but
results were typically less clear-cut than those of the initial studies. First, most studies
found I > E, suggesting the presence of at least some amount of controllable (explicit)
knowledge even under no-RSI conditions (Wilkinson & Shanks, 2004). The debate focused
on the evidence for residual implicit knowledge under exclusion instructions: Some studies
replicated the E > B finding of Destrebecqz and Cleeremans (2001), and concluded that
SRTT learning is driven by implicit knowledge (e.g., Destrebecqz & Cleeremans, 2003; Fu
et al., 2008; Haider et al., 2011); other studies found only E = B, a pattern interpreted
as evidence that only explicit knowledge is acquired during the SRTT (e.g., Destrebecqz,
2004; Norman et al., 2006; Shanks et al., 2005; Wilkinson & Shanks, 2004). Wilkinson and
Shanks (2004) failed to replicate the E > B finding and speculated that this may come about
because participants attempt to refrain from generating regular sequences under exclusion
by resorting to various perseverative response strategies (i.e., by repeatedly generating
regular-looking runs such as 1−2−3−4). If participants indeed use different strategies under
the inclusion and exclusion instructions, this may violate the invariance assumption.

Moreover, in the presence of explicit knowledge, conclusions about the presence or absence of
implicit knowledge, based on comparing exclusion performance with a baseline (i.e., E > B

vs. E = B), depend on additional assumptions regarding the interplay between both types
of knowledge. If both types of knowledge may be involved, additional assumptions must be
met if one aims at comparing inclusion and exclusion performance across two experimental
conditions in order to draw conclusions about the relative contributions of explicit and
implicit of knowledge; the ordinal PD approach formulates such a set of assumptions
(Hirshman, 2004). Further assumptions are required for a parametric PD measurement
model that can provide quantitative estimates of the underlying latent cognitive processes,
for instance if the relative magnitude of the effect of a manipulation on explicit versus implicit
knowledge is the quantity of interest. We next discuss critical assumptions underlying these
two candidate methodological frameworks for the PD paradigm.

The ordinal PD approach. Analyzing their data by comparing inclusion and exclusion
performance with a baseline, Destrebecqz and Cleeremans (2001) adopted an analysis

10For instance, if inclusion and exclusion performance differ in their sensitivity to implicit knowledge, this
might lead to an artificial I > E finding suggestive of the presence of explicit knowledge.
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strategy that has been later formalized — with modifications — by Hirshman (2004) as the
ordinal-PD approach. Instead of providing quantitative estimates of implicit and explicit
knowledge, the ordinal-PD approach identified specific patterns of results that allow for
ordinal comparisons between two experimental conditions (i.e., conclusions about increasing
or decreasing amounts of explicit and/or implicit knowledge). In the light of the then-ongoing
controversy about the PD method, this has been critically acclaimed as a way around the
strong assumptions underlying the original (parametric) PD (Curran, 2001).

However, even this approach is based on assumptions that might be violated in a specific
application: First, it is assumed that baseline performance is the same under both inclusion
and exclusion instructions – an assumption that may be violated in sequence learning
(Stahl, Barth, & Haider, 2015). Perhaps more critically, the second basic assumption
of the ordinal-PD approach holds that both inclusion and exclusion performance are a
monotonically increasing function of implicit knowledge; and that inclusion performance
monotonically increases but exclusion performance monotonically decreases as a function of
explicit knowledge. The exclusion strategies suggested by Wilkinson and Shanks (2004) would,
however, imply that explicit knowledge does not necessarily inform exclusion performance:
If participants adopted a perseverative response strategy (instead of engaging in an effortful
search for their explicit knowledge, and attempting to implement this knowledge into a motor
pattern consistent with the exclusion instructions), they would still be able to suppress
their exclusion performance to baseline; however, they would not be able to suppress their
exclusion performance below baseline (i.e. E < B).11 The present Experiment 1 provides a
first empirical test of this basic assumption of the ordinal-PD approach as applied to the
free-generation task.12

The parametric PD model. The parametric PD model provides quantitative estimates
of the underlying processes but relies on stronger assumptions. This section introduces the
parametric PD model and its assumptions and then discusses its relation to the ordinal PD.

The PD model can be formalized as a set of equations describing inclusion (I) and exclusion
(E) performance as a function of the probabilities of controlled process, C, reflecting explicit

11Moreover, if response strategies are informed by fragmentary knowledge about the regularity, such
fragmentary knowledge might influence exclusion performance in any direction, depending on whether or not
the chosen strategy is consistent with what the researcher considers to be successful exclusion. This effect
might even outweigh performance changes due to the available explicit knowledge.

12Even though Destrebecqz and Cleeremans (2001) deviated from the ordinal PD as put forward by
Hirshman (2004), their conclusions still rest on the assumptions of the ordinal PD specified here. Moreover,
in order to interpret I −E differences, they implicitly assume that the same strictly monotonic function links
automatic and controlled processes with both inclusion and exclusion (whereas Hirshman allowed inclusion
and exclusion performance to be linked by different functions). This additional assumption remains untested,
yet.
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knowledge, and the automatic process, A, reflecting implicit knowledge, as follows:

I = C + (1− C) ∗A

and
E = (1− C) ∗A

These equations reflect the notions that (1) regular transitions generated under inclusion
can arise from either the controlled process (with probability C) or, given that it fails (with
probability 1 − C), from the automatic process A; and (2) regular transitions generated
under exclusion are solely due to the automatic process in the absence of the influence of the
controlled process, (1− C) ∗A. Solving these equations for C and A (or using parameter
estimation techniques for multinomial models) yields estimates of the contributions of the
controlled and automatic process.

The validity of the PD method and model has been the target of debate since its introduction
by Jacoby (1991; see, e.g., Buchner et al., 1995; Curran and Hintzman, 1995; Graf and
Komatsu, 1994). This is because the PD approach is not a theory-free measurement tool
but rests on a set of strong and possibly problematic assumptions. First and obviously, it
assumes the existence of two qualitatively different—controlled and automatic—processes,
and it aims to measure the magnitude of their respective contributions. It is, however, not
well-suited for comparing single- and dual-process models: To illustrate, Ratcliff, Van Zandt,
and McKoon (1995) found that data generated from a single-process model could produce a
data pattern that, when analyzed using the PD approach, appears to support the existence
– and differential contributions – of two qualitatively distinct processes. This implies that
empirical dissociations between the controlled and automatic estimates do not necessarily
imply the existence of two qualitatively different underlying processes.

Second, it is assumed that both processes operate independently; that is, on each trial, both
the explicit and the implicit process attempt to produce a candidate response in parallel,
without influencing each other.13 In particular, the response proposed by the automatic
process is assumed to be uninfluenced by whether the controlled process proposes the same or
a different candidate response. Relatedly, the model assumes that independence holds across
persons and items; when data are aggregated over (potentially heterogeneous) participants
and items, a violation can lead to biases in parameter estimates. There has been considerable
debate about the independence assumption in applications of the PD to episodic memory

13As an alternative to independence, a redundancy relation has been proposed such that the implicit
process always operates, whereas the explicit process operates only in a subset of cases (Joordens & Merikle,
1993). An empirical comparison of the independence and redundancy assumptions has, however, supported
independence (Joordens, Wilson, Spalek, & Paré, 2010).
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paradigms (Curran & Hintzman, 1995, 1997; Hintzman & Curran, 1997; Jacoby & Shrout,
1997). Evidence suggests that aggregation independence may often be violated; hierarchical
extension of the PD model have been proposed to address this problem (Rouder et al., 2008).

Third, and most important for the present study, it is assumed that both the controlled and
automatic processes are invariant across the inclusion and exclusion instructions. This is
reflected in the PD equations by the use of a single parameter C instead of separate parameters
for inclusion and exclusion; in other words, the PD equations represent a simplified model
that incorporates the invariance assumption C = CInclusion = CExclusion. Similarly, the PD
equations include only a single parameter A, reflecting the simplifying assumption that the
automatic process is invariant across inclusion and exclusion, A = AInclusion = AExclusion.
If the PD instruction affects those cognitive processes, the PD equations do no longer yield
valid estimates. Recently, the invariance assumption was indeed found to be violated for the
controlled process across three different paradigms (Klauer et al., 2015).14

To summarize, Wilkinson and Shanks (2004) speculated that participants might use perse-
verative response strategies especially in the exclusion condition of the PD generation task;
as a consequence, explicit knowledge would be less likely to affect exclusion performance. In
terms of the parametric PD model, this would translate into an invariance violation of the
controlled process with CI > CE . If the probability of controlled processes in exclusion CE is
negligible small, or if the invariance violation increases with increasing explicit knowledge, it
cannot be assumed that explicit knowledge reliably decreases with explicit knowledge; thus,
in terms of the ordinal-PD approach, an invariance violation of this kind would translate
into a violation of the monotonicity assumption. In contrast, if neither is the case (e.g., if
the invariance violation remains constant across different levels of explicit knowledge), the
monotonicity assumption may hold despite an invariance violation. It is therefore important
to test both the monotonicity and the invariance assumptions.

Overview of the present studies

The present study aimed at testing, in the free-generation task, the assumptions underlying
both the ordinal- and the parametric-PD methods. For this purpose, it was necessary to
extend the traditional PD design by manipulating both explicit knowledge (in Experiments
1-3) and implicit knowledge (in Experiments 2 & 3).

We manipulated explicit knowledge by explicitly informing participants, after the SRTT
14This assumption has not been tested earlier because the PD equations represent a saturated model: With

two data points (i.e., the proportion of correct responses under inclusion and exclusion conditions), only two
parameters (i.e., C and A) can be estimated. An extension of the design is needed to allow for estimating
separate parameters CInclusion and CExclusion, and/or AInclusion and AExclusion.



68 Assumptions of the Process-Dissociation Procedure are Violated

training phase, about a subset of the regular transitions (e.g., 1 out of 6) of the sequence. By
presenting information about the transitions after training we ensured that the manipulation
did not affect the amount of sequence knowledge acquired during training (i.e., we made
sure that participants did not use that information during the SRTT to strategically search
for more regular transitions). We manipulated implicit knowledge by varying the amount
of regularity present in the SRTT training sequence. For this purpose, we used materials
with a mere probabilistic regularity; such materials are typically assumed to produce robust
implicit knowledge but no explicit knowledge (Jiménez & Méndez, 1999; Jiménez et al.,
1996).

In a test of the monotonicity assumption underlying the ordinal PD approach, Experiment
1 explored the speculation that explicit knowledge remains underutilized in exclusion. To
foreshadow, we found that this was indeed the case and that the monotonicity assumption
was violated. Results suggested that this is because invariance of the controlled process is
violated.

In Experiments 2 and 3, we directly tested the invariance assumptions of the parametric PD
model, closely following the methodology used by Klauer et al. (2015): We fit an extended
process-dissociation modelM1 that allowed for testing the invariance assumption of both
the controlled and the automatic process. The model provided us with separate estimates
for these processes for both inclusion and exclusion tasks; and we used the differences
between these estimates to test the invariance assumption. This model relies on the auxiliary
assumptions that each experimental manipulation selectively influenced only one of both
processes; these assumptions are tested by goodness-of-fit tests proposed by Klauer (2010).
Moreover, in order to justify the auxiliary assumptions, we specified a standard process-
dissociation model M2 that does not enforce the auxiliary assumptions but enforces the
invariance assumption; model comparison techniques (DIC; Spiegelhalter, Best, Carlin, &
Van Der Linde, 2002) were then used to compare modelM1 and modelM2. If modelM1 is
favored over modelM2, this can be taken as evidence in favor of our auxiliary assumptions
over the invariance assumption. Finally, instead of aggregating data, we used hierarchical
Bayesian extensions of all models (cf., Klauer, 2010; Rouder & Lu, 2005; Rouder et al.,
2008).15

Experiment 1

A critical assumption of the ordinal-PD approach is that explicit knowledge monotonically
increases inclusion performance and monotonically decreases exclusion performance. If
(contrary to this assumption) explicit knowledge does not affect exclusion performance at

15This modeling approach controls for interindividual differences and circumvents aggregation artifacts.
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all, the ordinal PD approach may technically still be applied; however, the results would be
misleading if a difference in explicit (but not implicit) knowledge between two conditions led to
a difference in inclusion but not in exclusion performance. In this case, the ordinal PD would
suggest that the two conditions differ in explicit and implicit knowledge (Hirshman, 2004,
Data Pattern I). For the ordinal PD approach to yield valid results, exclusion performance
must decline with increasing explicit knowledge, and even fall below baseline when explicit
knowledge is sufficiently strong so as to counter the influence of implicit knowledge (this
would yield Hirshman’s Data Pattern IV, which indicates an increase in explicit knowledge
only). Therefore, a critical empirical test for the ordinal-PD approach is whether (and under
which conditions) participants are able to use explicit knowledge to suppress generation
below baseline levels under exclusion conditions. Our primary goal of Experiment 1 was to
test this assumption; therefore, while keeping implicit sequence constant at moderate levels
across conditions, we manipulated explicit knowledge by revealing parts of the sequence (i.e.,
explicit knowledge about 0, 1, or 2 transitions) to participants after finishing the SRTT.

A secondary goal of Experiment 1 was to manipulate the amount of practice participants
had with including and excluding their explicit knowledge: If, in a sequence learning study,
participants acquired explicit knowledge about a transition during the SRTT, they are
likely to encounter the same transition again during the remainder of the SRTT several
times: These additional exposures to the transition amount to an opportunity to practice
including the explicit knowledge (e.g., intentionally implementing it into a motor pattern).
This practice might be essential for the validity of the subsequent PD generation task.
Therefore, one might wonder if the explicit sequence knowledge that is acquired during
learning is comparable to explicit knowledge via instruction as implemented in our studies.
To ensure that the effects of our explicit-knowledge manipulation were comparable with
those of acquired knowledge, we amended the generation task by short generation-practice
blocks involving inclusion/exclusion instructions that preceded the main inclusion/exclusion
blocks. To explore the effects of practice, we manipulated whether a transition was revealed
prior to or after these practice blocks: Some transitions were revealed prior to practice,
and participants were instructed to implement a motor pattern including (or excluding) the
revealed transition. Other transitions were revealed only after practice; for these transitions
there was no opportunity to practice.

In five between-subjects conditions, we manipulated both the level of explicit sequence
knowledge (i.e., the number of revealed transitions) and–nested within that factor–the
amount of generation practice (i.e., whether a transition was revealed prior to or after
practice blocks):

1. In the Control group, no explicit knowledge was revealed to participants.
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2. In the No-Practice group, one transition was revealed immediately before the first
main generation block, but after the practice blocks that preceded the first generation
block. To avoid carry-over of practice effects from the first generation block, a different
non-practiced transition was revealed after the second set of practice blocks and
immediately preceding the second main generation block.

3. In the Unspecific-Practice group, one transition was revealed to participants after
practice, immediately before each main generation block (as in the No-Practice group).
In the third practice block before the exclusion task, participants were asked to inhibit
a specific response location (i.e., they were asked not to use the 5th location/N key).

4. In the Practice group, one transition was revealed to participants immediately before
the practice blocks. Participants were encouraged to include (exclude) the revealed
transition during generation-practice and in the main generation block.

5. In the Transfer group, information about two transitions was revealed; one of them was
non-practiced (as in the No-Practice group), the other one practiced (as in the Practice
group). The practiced transition was revealed before the first practice blocks. After
these practice blocks, the second (non-practiced) transition was revealed immediately
before the first generation block. The practiced transition was again named before
participants worked on the practice blocks of the second generation phase. After these
practice blocks, a second non-practiced transition was revealed immediately before the
second generation block.

This design allowed us to assess overall generation performance for different levels of explicit
knowledge. The monotonicity assumption states that with increasing levels of explicit
knowledge, the proportion of regular transitions generated under inclusion should increase,
while under exclusion it should decrease.

Beyond overall performance, we also analyzed data from specific transitions to test whether
explicit knowledge may not be exhaustively expressed during the generation task (and, in
particular, under exclusion instructions), and whether the level of its expression depends
on generation practice. Our design allowed us to assess generation performance for three
main transition types; (1) non-revealed transitions, (2) transitions that were revealed but
remained non-practiced, and (3) transitions that were revealed and practiced.16

A comparison of non-revealed with (revealed but) non-practiced transitions allows us to
16In the second generation block of the No-Practice, Unspecific-Practice, and Transfer groups, a fourth

transition type can be distinguished: Transitions that were revealed but non-practiced before the first
generation block. Because participants included (or excluded) these transitions in the previous (i.e., the first)
generation block, performance on these transitions should be more similar to practiced than to non-practiced
transitions in the second block.
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assess the degree to which participants can spontaneously (i.e., without practice) make use
of their explicit knowledge in the generation task. Comparing non-practiced with practiced
transitions allowed us to assess whether transition-specific generation practice could increase
the use of explicit knowledge. We also compared whether performance for revealed but
non-practiced transitions differs between the No-Practice and Transfer groups, as would
be expected if the effect of specific practice transfers to non-practiced explicit knowledge.
Finally, we explored whether unspecific inhibition practice affects performance for both
revealed but non-practiced and/or non-revealed transitions.

In sum, we hypothesized that possessing explicit knowledge may not be sufficient for its
expression in the generation task. Specifically, (a) explicit knowledge without practice
(No-Practice group) may fail to lead to below-baseline exclusion performance, and (b) this
may also hold for non-practiced transitions for participants who practiced another transition
(Transfer group). If the exclusion task is not sensitive to manipulations of explicit knowledge,
the ordinal PD would yield erroneous conclusions; it would also suggest that the invariance
assumption for explicit knowledge of the parametric PD might also be violated. We had no
clear hypothesis regarding the unspecific response-inhibition practice, but wanted to explore
whether it would be as effective as transition-specific exclusion practice in improving the
validity of the generation task as a measure of explicit knowledge.

Method

Design. The study realized a 5 (Explicit-knowledge-and-Practice: Control, No-Practice,
Unspecific-Practice, Practice, Transfer) × 2 (PD instruction: inclusion vs. exclusion) × 2
(Block order : inclusion first vs. exclusion first) design with repeated measures on the PD
instruction factor.

Participants. One hundred and forty-seven participants (113 women) aged between 17
and 55 years (M = 23.7 years) completed the study. Most were undergraduates from
Heinrich-Heine-Universität Düsseldorf. Participants were randomly assigned to experimental
conditions. They received either course credit or 3.50 Euro for their participation.17

Materials. A probabilistic sequence was generated from the first-order conditional sequence
2− 6− 5− 3− 4− 1. With a probability of .6, a stimulus location was followed by the next
location from this sequence; otherwise, another stimulus location was randomly chosen from
a uniform distribution. There were no direct repetitions of response locations.

17The present research used procedures that are exempt from mandatory formal ethical approval under
the ethical guidelines of the Deutsche Gesellschaft für Psychologie.
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Procedure. The experiment consisted of three consecutive parts: Participants first worked
on an SRTT (the acquisition task), followed by a generation task and, finally, a debriefing
phase. In the acquisition task, all participants performed an SRTT consisting of eight blocks
with 144 trials each (for a total of 1,152 responses). SRTT and generation task were run on
17" CRT monitors (with a screen resolution of 1,024 px× 768 px). The viewing distance was
approximately 60 cm. A horizontal sequence of six white squares (56 px) was presented on
a gray screen. The distance between squares was 112 px. Each screen location corresponded
to a key on a QWERTZ keyboard (from left to right Y, X, C, B, N, M). Participants had to
respond whenever a square’s color changed from white to red by pressing the corresponding
key. They were instructed to place the left ring-, middle- and index fingers on the keys Y, X
and C. The right index-, middle- and ring fingers were to be placed on keys B, N and M.
There was no time limit for responses in the learning phase (nor in the generation phase).
A warning beep indicated an incorrect response. The response-stimulus interval (RSI) was
250 ms; there were no pauses within a single learning block.

Following the SRTT phase, participants were told that stimulus locations during the SRTT
followed an underlying sequential structure (but were not informed about the exact sequence).
They were then asked to try to generate a short sequence of six locations that followed this
structure.

The generation task followed, consisting of two main generation blocks of 120 responses
that were each preceded by three generation-practice blocks of twelve responses. Before
entering practice blocks, one transition was revealed to participants in the Practice and
Transfer groups. After practice blocks, another transition was revealed to participants in the
No-Practice, Unspecific-Practice, and Transfer groups. Participants were told to memorize
those transitions and to use their knowledge in all following tasks.

The main inclusion block was preceded by three practice blocks that were all performed
under inclusion instructions. The main exclusion block was preceded by two practice
blocks that were performed under inclusion instructions and a third practice block that
was performed under exclusion instructions. The first two practice blocks (those that
always involved inclusion instructions) were aimed at allowing participants to integrate their
acquired sequence knowledge with just-revealed sequence information. The third block (that
involved either inclusion or exclusion instructions, depending on the instructions of the
subsequent main generation block) was aimed at allowing participants to familiarize with
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inclusion/exclusion instructions.18

In both main generation and generation-practice blocks, under inclusion (exclusion) in-
structions, participants were told to generate a sequence as similar (dissimilar) as possible
to the sequence from the acquisition task. Participants were instructed to follow their
intuition if they had no explicit knowledge about the underlying sequence. Participants
who had received information about transitions were instructed to include (exclude) the
revealed transitions. Question marks appeared at all locations and participants’ key presses
were reflected by the corresponding square’s color changing to red. Direct repetitions were
explicitly discouraged and were followed by a warning beep.

Upon completing the computerized task, participants were asked to complete a questionnaire
containing the following items (translated from German): (1) “One of the tasks mentioned
a sequence in which the squares lit up during the first part of the study. In one of the
experimental conditions, the squares did indeed follow a specific sequence. Do you think
you were in this condition or not?”, (2) “How confident are you (in %)?”, and (3) “Can you
describe the sequence in detail?”. Subsequently, participants were asked to indicate, for each
of the six response keys, the next key in the sequence on a printed keyboard layout and to
indicate how confident they were in this decision. Finally, participants were thanked and
debriefed.

Data analysis. All analyses were performed using the R software19 and Stan (Carpenter
et al., 2016). For analyses of reaction times during the acquisition task, we excluded the
first trial of each block as well as trials with errors, trials succeeding an error, reactions
faster than 50 ms and those slower than 1,000 ms. For analyses of error rates during the
acquisition task, we excluded the first trial of each block.

Generation task analyses were conducted with the first trial of each block as well as any
response repetitions excluded. During the generation task, participants generated 120
keypresses. We coded these data as 119 first-order conditional transitions (e.g., a 4-key
sequence 1−2−3−4 was coded as the three transitions 1−2, 2−3, and 3−4); we then
computed the frequency of transitions that were consistent (i.e., part of) or inconsistent
with (i.e., not part of) the training sequence. This scoring procedure follows the one used

18In Experiment 1, we held constant the number of generation-practice blocks involving inclusion/exclusion
instructions. We based the number of presented practice blocks on our observations in Experiment 2 (that
was conducted earlier): In Experiment 2, participants worked on practice blocks until they had consistently
included/excluded a revealed transition. Prior to main inclusion blocks, participants in Experiment 2 needed
M = 2.98,Md = 2 inclusion practice blocks. Prior to main exclusion blocks, participants in Experiment 2
needed M = 1.26,Md = 1 exclusion and M = 1.52,Md = 1 inclusion practice blocks. This suggests that the
choice of 3 practice blocks — 3 under inclusion instructions (for the inclusion block), or 2 under inclusion and
1 under exclusion instructions (for the exclusion block) — should be sufficient for the majority of participants.

19We used R (Version 3.6.1; R Core Team, 2018) and the R-packages afex (Version 0.24.1; Singmann,
Bolker, Westfall, & Aust, 2018), and papaja (Version 0.1.0.9842; Aust & Barth, 2018).
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in the studies of Destrebecqz and Cleeremans (2001) and Wilkinson and Shanks (2004).20

Response repetitions were excluded from analyses, as these were explicitly discouraged in
the instructions. For repeated-measures ANOVAs, Greenhouse-Geisser-corrected degrees of
freedom are reported.

Results

We first analyzed the performance data from the SRTT to determine whether sequence
knowledge had been acquired during the task. Next, we analyzed generation task performance
using an ordinal-PD approach (full descriptive statistics and additional model-based analyses
are reported in Appendices A and C). Finally, to test our predictions regarding the different
effects of practice, we analyzed generation performance for transitions about which explicit
knowledge had been revealed.

Acquisition task. If participants acquired knowledge about the regularity underlying
the sequence of key presses, we expect a performance advantage for regular over irregular
transitions, reflected in reduced RT and/or error rate. If this advantage is due to learning,
it is expected to increase over SRTT blocks.

Reaction times.

Figure 9 shows reaction times during acquisition. We conducted an 8 (Block number) ×
2 (FOC transition status: regular vs. irregular) repeated-measures ANOVA. There was a
main effect of block number, F (4.05, 591.75) = 80.42, MSE = 1, 658.05, p < .001, η̂2

G = .048,
with RT decreasing over blocks. There also was a main effect of FOC transitions status,
F (1, 146) = 716.67, MSE = 982.05, p < .001, η̂2

G = .062, reflecting faster responses to regular
than to irregular transitions. The interaction of block number and FOC transition status was
also significant, F (6.39, 933.34) = 45.89, MSE = 257.06, p < .001, η̂2

G = .007, reflecting the
finding that the RT advantage for regular transitions increased over blocks, which indicated
successful sequence learning.

Error rates.

Figure 10 shows error rates during acquisition. The pattern of findings was similar to
that obtained for RT. We conducted an 8 (Block number) × 2 (FOC transition status:

20This scoring procedure ignores sequential dependencies inherent in the free-generation data. For instance,
the frequency with which a specific location is generated determines how often a transition starting from
this location can be generated, and thereby, how well the knowledge available about this transition can be
estimated: To illustrate, if the starting point of a transition is never generated, it is not possible to learn
anything about the knowledge participants may have acquired about this transition. We believe this is not a
serious threat to the present analysis because participants generated the locations at comparable rates. Still,
other types of dependencies may yet turn out to be more problematic, and future research should consider
modeling entire generation sequences instead of individual transitions.
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Figure 9 . RTs during acquisition phase of Experiment 1, split by FOC transition status.
Error bars represent 95% within-subjects confidence intervals.

regular vs. irregular) repeated-measures ANOVA that revealed a main effect of block number,
F (6.29, 917.65) = 8.35, MSE = 9.42, p < .001, η̂2

G = .015, reflecting increasing error rates
over blocks; and a main effect of FOC transition status, F (1, 146) = 188.88, MSE = 11.92,
p < .001, η̂2

G = .066, reflecting an accuracy advantage (i.e., lower error rates) for regular
transitions. The interaction of block number and FOC transition status was also significant,
F (6.53, 953.88) = 7.36, MSE = 7.09, p < .001, η̂2

G = .011, reflecting an increase of the
accuracy advantage for regular (as compared to irregular) transitions over blocks, indicating
successful sequence learning.

Generation task. We first analyzed generation performance by applying standard ANOVA
techniques to the proportions of regular transitions generated in inclusion and exclusion
blocks. We then analyzed generation performance for those transitions that were revealed to
participants, testing our hypotheses about the effects of practice on generation performance.

Overall generation performance.

Figure 11 shows the overall generation performance. We conducted a 5 (Condition: Control
vs. No-Practice vs. Unspecific-Practice vs. Practice vs. Transfer) × 2 (Order : Inclusion first
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Figure 10 . Error rates during acquisition phase of Experiment 1, split by FOC transition
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vs. Exclusion first) × 2 (PD instruction: Inclusion vs. Exclusion) ANOVA that revealed
a main effect of PD instruction, F (1, 137) = 64.03, MSE = 176.93, p < .001, η̂2

G = .199,
participants generated more regular transitions in inclusion than exclusion blocks; and a
main effect of Explicit-knowledge-and-Practice, F (4, 137) = 13.81, MSE = 155.01, p < .001,
η̂2
G = .158, indicating a clear influence of our manipulation of explicit knowledge and on
generation performance. Moreover, the interaction of Explicit-knowledge-and-Practice and
PD instruction reached significance, F (4, 137) = 9.63, MSE = 176.93, p < .001, η̂2

G = .130,
indicating that the effect of Explicit-knowledge-and-Practice is qualified by PD instruction.
The interaction of PD instruction and block order also reached significance, F (1, 137) = 10.89,
MSE = 176.93, p = .001, η̂2

G = .041. To disentangle these interactions, we analyzed inclusion
and exclusion performance, separately.

Analyzing inclusion blocks, a 5 (Condition: Control vs. No-Practice vs. Unspecific-Practice
vs. Practice vs. Transfer) × 2 (Order : Inclusion first vs. Exclusion first) ANOVA revealed a
significant main effect of Explicit-knowledge-and-Practice, F (4, 137) = 17.74, MSE = 211.85,
p < .001, η̂2

G = .341, indicating that inclusion performance increased with the number of
revealed transitions; and a main effect of block order, F (1, 137) = 9.95, MSE = 211.85,
p = .002, η̂2

G = .068: participants generated more regular transitions if inclusion followed
exclusion; the interaction of Explicit-knowledge-and-Practice and block order did not reach
significance, F (4, 137) = 0.52, MSE = 211.85, p = .723, η̂2

G = .015.

Analyzing exclusion blocks, a 5 (Condition: Control vs. No-Practice vs. Unspecific-Practice
vs. Practice vs. Transfer) × 2 (Order : Inclusion first vs. Exclusion first) ANOVA revealed no
significant effects on exclusion performance (all ps ≥ .143). Specifically, increasing levels of
explicit knowledge did not reduce the level of regular transitions generated under exclusion
instructions.

Generation performance for revealed transitions.

To explore effects of practice, we analyzed generation performance for only those transitions
about which explicit knowledge was revealed (see Figure 12). A 5 (Condition: Control
vs. No-Practice vs. Unspecific-Practice vs. Practice vs. Transfer) × 2 (Order : Inclusion
first vs. Exclusion first) × 2 (PD instruction: Inclusion vs. Exclusion) ANOVA revealed
a nonsignificant main effect of Explicit-knowledge-and-Practice, F (3, 110) = 2.00, MSE =
660.29, p = .119, η̂2

G = .028, but a significant main effect of PD instruction, F (1, 110) =
243.88, MSE = 575.67, p < .001, η̂2

G = .508, and their significant interaction, F (3, 110) =
5.59, MSE = 575.67, p = .001, η̂2

G = .066. The main effect of PD instruction reflects the
clear influence of the PD instruction on the expression of explicit knowledge depicted in
Figure 12. It is present in all practice conditions but modulated by amount of knowledge
and type of practice (i.e., greater effects given specific practice): The effect was greatest in
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Figure 12 . Generation performance for revealed transitions in Experiment 1. Error bars
represent 95% confidence intervals. Horizontal lines represent chance baseline.

the Transfer group, t(29) = −14.84, p < .001, d = −2.71; somewhat smaller in the Practice
group, t(28) = −9.79, p < .001, d = −1.82; it was still smaller and comparable in the
No-practice group, t(28) = −5.25, p < .001, d = −0.97, and the Unspecific-practice group,
t(29) = −5.13, p < .001, d = −0.94.

We investigated this issue more closely in two sets of follow-up analyses. Whereas the above
findings suggest that practice improves the degree to which explicit knowledge is expressed
in the generation task, it does not elucidate the mechanism by which this occurs. One
mechanism by which practice may improve performance is by boosting the proportion of
regular transitions in inclusion blocks.

Inclusion performance for revealed transitions in the No-Practice and Practice groups was
analyzed as a function of practice (practiced vs. non-practiced) . Results showed no effect
of practice on inclusion performance, F (1, 56) = 0.21, MSE = 696.48, p = .652, η̂2

G = .004.
Similarly, when we compared inclusion performance for practiced vs. non-practiced transitions
in the Transfer group, there was no effect of practice, F (1, 29) = 1.19, MSE = 365.77,
p = .285, η̂2

G = .014. We conclude that practice did not affect inclusion performance for
revealed transitions.

Next, we analyzed whether practice improves suppressing the regular transition in the
exclusion task. We speculated that, without training, participants might not be able to
suppress their generation of regular transitions below baseline level in the exclusion task. We
compared generation performance for the revealed transitions between the No-Practice and
Practice groups (see Figure 13, left panel). The expected below-baseline performance was not
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Figure 13 . Exclusion performance for revealed transitions in Experiment 1. Left: Between-
subjects comparison between Practice and No-Practice groups. Right: Within-subjects
comparison in Transfer group. Horizontal lines represent chance baseline.

found when aggregating across both blocks: Whereas the direction of effects was as expected,
there was no deviation from chance, neither for the practice condition, t(28) = −0.79,
p = .219, d = −0.15, nor for the no-practice condition, t(28) = 1.60, p = .940, d = 0.30.
However, the pattern was present in the first block: Below-chance performance was found
for the practice condition, t(14) = −4.89, p < .001, d = −1.26, but not for the no-practice
condition, t(13) = 0.18, p = .569, d = 0.05.

To more directly establish a practice effect, we next turned to the data from the Transfer
group for a within-subjects comparison of practiced and non-practiced transitions. In doing
so, we also addressed the transfer hypothesis: If training on one transition transfers to other
transitions, we should find below-chance performance also for non-practiced transitions in the
Transfer group. This was confirmed: Generation performance was below baseline both for
practiced, t(29) = −9.60, p < .001, d = −1.75 and non-practiced transitions, t(29) = −2.04,
p = .025, d = −0.37, indicating transfer of exclusion practice from practiced to non-practiced
transitions (see Figure 13, right panel).21

21Analyzing only the first block revealed the same pattern of results: Generation performance was
below chance for practiced, t(14) = −5.42, p < .001, d = −1.40, as well as for non-practiced transitions,
t(14) = −4.56, p < .001, d = −1.18.
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Discussion

Participants in Experiment 1 acquired knowledge about the sequence, as expressed in RT and
accuracy advantages for regular transitions that increased over SRTT blocks. Participants
received different amounts of instructed explicit knowledge, and they were able to express
this knowledge in the inclusion task, as revealed by a main effect of Explicit-knowledge-and-
Practice on inclusion performance. Conversely, participants were not able to express their
knowledge in the exclusion task, as there was no effect of our explicit knowledge manipulation
on exclusion performance. This finding violates the monotonicity assumption.

Analyzing exclusion performance of only revealed transitions, performance differed across
groups (i.e., practice conditions), suggesting that explicit knowledge was indeed expressed
under exclusion instructions, and that specific exclusion practice was beneficial to imple-
menting these instructions. However, even with practice, inclusion performance did not
reach ceiling and exclusion performance did not reach floor levels, indicating that partic-
ipants were not able to exhaustively express their explicit knowledge of these transitions
in the generation task. This pattern of results is also in line with Wilkinson and Shanks’s
(2004) speculation that participants adopt perseverative response strategies especially under
exclusion instructions; these might be mildly informed by strong explicit knowledge (e.g., in
our Transfer group).

Importantly, the results showed no effect of practice on inclusion performance of revealed
transitions. Such an effect would be expected if explicit knowledge revealed to participants
after the end of the SRTT differed from explicit knowledge acquired by participants during the
SRTT (e.g., because in the latter case, during the remainder of the SRTT participants would
have repeated opportunities to practice including their explicit knowledge by intentionally
implementing it into a motor pattern). The absence of this effect corroborates the validity
of the present explicit-knowledge manipulation.

Furthermore, even if (after repeated opportunity to practice) participants were able to
refrain from generating some of the revealed transitions, this was not consistently reflected
in below-baseline overall generation performance. It can thus be concluded that increasing
amounts of explicit knowledge do not necessarily lead to fewer regular transitions being
generated; the monotonicity assumption of the ordinal PD is thus violated. As a consequence,
if the ordinal PD were applied to such data, a change in only explicit knowledge between two
conditions would thus be misinterpreted as reflecting changes in both implicit and explicit
knowledge.

In sum, Experiment 1 showed that, first, increasing amounts of explicit knowledge were
not reflected in decreasing levels of exclusion performance, showing that the monotonicity
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assumption underlying the ordinal PD approach is violated. Second, explicit knowledge can
nevertheless be used under exclusion instructions to decrease performance to below-baseline
levels (if not exhaustively, and only under specific practice conditions); thus, we can reject
the hypothesis that explicit knowledge does not affect exclusion performance at all.

Third, the usage of explicit knowledge in the generation task was higher under inclusion
than exclusion, suggesting a violation of invariance (i.e., CI > CE). Experiments 2 and 3
more directly tested this assumption.

Experiment 2

Experiment 2 applied the parametric PD model and tested the invariance assumption for
automatic and controlled processes using materials with first-order conditional regularities.
We implemented two different levels of implicit knowledge by presenting either random or
probabilistic sequences to participants during the SRTT. Orthogonally, we implemented two
different levels of explicit knowledge by experimentally inducing such knowledge: After the
SRTT, we informed one half of participants about one of the six transitions in the regular
sequence.

Method

Design. The study realized a 2 (Material: random vs. probabilistic) × 2 (Explicit knowl-
edge: no transition revealed vs. one transition revealed) × 2 (PD instruction: inclusion
vs. exclusion) × 2 (Block order : inclusion first vs. exclusion first) design with repeated
measures on the PD instruction factor.

Participants. One hundred and twenty-one participants (87 women) aged between 17 and
51 years (M = 23.7 years) completed the study. Most were undergraduates from University
of Cologne. Participants were randomly assigned to experimental conditions. They received
either course credit or 3.50 Euro for their participation.

Materials. We used two different types of material:

• A random sequence was randomly generated for each participant anew by drawing
with replacement from a uniform distribution of six response locations.

• A probabilistic sequence was generated similar to the sequence in Experiment 1.

In both materials there were no direct repetitions of response locations. In the random
group, there was no ‘regular’ sequence, and transition frequencies varied across persons. To
compute the dependent variable in the generation task (i.e., the proportion of rule-adhering
or regular transitions), we used the generating sequence for participants who worked on
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probabilistic material; for participants who worked on random material, we determined an
individual criterion for each participant. In order to calculate the individual criteria, we first
generated all possible sequences that follow the constraints that they are 6-item-sequences
that do not contain repetitions and contain all six response locations. Then, for each
participant, we calculated how many of the transitions that were presented during the
acquisition phase followed each of those 120 non-redundant 6-item-sequences. We then chose,
for each participant anew, the sequence that most frequently adhered to the transitions
presented during acquisition phase and took this 6-item-sequence to calculate the dependent
variable during the generation phase. Given probabilistic materials, this scoring leads to
the same results as using the generating sequence as a criterion. For the group that was
instructed about a regular transition, the criterion sequence always contained the revealed
transition.

Procedure. During an SRTT consisting of eight blocks with 144 trials each (for a total
of 1,152 responses), participants were trained on either random or probabilistic sequences.
After the SRTT, participants were informed about the underlying sequential structure of
stimulus locations and asked to generate a short sequence of six key presses that followed
this (unspecified) structure.

The generation task followed, with counterbalanced order of inclusion versus exclusion
blocks. Prior to the inclusion task, two generation-practice blocks involved inclusion
instructions; prior to the exclusion task, the first generation-practice block was performed
under inclusion instructions and the second generation-practice block was performed under
exclusion instructions. If participants who were explicitly informed about one transition
failed to include (exclude) the revealed transition in practice blocks, they were informed
that they did something wrong; the already revealed transition was again presented and
two additional practice blocks had to be performed (if a participant failed to include the
transition during the first practice block, they were immediately presented with the sequence
knowledge, again). This procedure was repeated until the revealed transition was successfully
included (excluded) in two consecutive practice blocks (in contrast to Experiment 1, where
the number of practice blocks was held constant). Upon completing the computerized task,
participants answered the same questionnaire as in Experiment 1.

Data analysis. For analyses of reaction times during the acquisition task, we excluded
the first trial of each block as well as trials with errors, trials succeeding an error, reactions
faster than 50 ms and those slower than 1,000 ms. For analyses of error rates during the
acquisition task, we excluded the first trial of each block.

Generation task analyses were conducted with the first trial of a block as well as any
response repetitions excluded. For the model-based analyses, we used hierarchical Bayesian
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extensions of the process-dissociation model (Klauer, 2010; Rouder & Lu, 2005; Rouder
et al., 2008). We estimated modelM1 that extended the traditional process-dissociation
model by allowing for a violation of the invariance assumption: Controlled and automatic
processes were allowed to vary as a function of instruction (inclusion vs. exclusion). The
first-level equations of this model were given by:

Iij = Cijm + (1− Cijm)Aijm, m = 1
Eij = (1− Cijm)Aijm, m = 2

where i indexes participants, j indexes transition type (i.e., revealed: j = 1; nonrevealed:
j = 2), and m indexes the PD instruction condition (inclusion: m = 1; exclusion: m = 2).

Parameters Cijm and Aijm are probabilities in the range between zero and one; following
previous work (e.g. Albert & Chib, 1993; Klauer et al., 2015; Rouder et al., 2008), we used
a probit function to link these probabilities to the second-level parameters as follows:

Cijm =

Φ(µ(C)
km + δ

(C)
im ) if j = 1 (item has been revealed)

0 if j = 2 (item has not been revealed)

and
Aijm = Φ(µ(A)

jkm + δ
(A)
ijm)

where Φ denotes the standard normal cumulative distribution function, µ(C)
km is the fixed

effect of material k (that participant i worked on during the SRTT) and PD instruction
condition m on controlled processes. δ(C)

im is the ith participant’s deviation from his or her
group’s mean.

Accordingly, µ(A)
jkm is the fixed effect of transition type j, material k, and PD instruction

condition m on automatic processes, and δ(A)
ijm is the ith participant’s deviation from the

corresponding mean. Priors on parameters are given in the Appendix D.

This specification imposes two auxiliary assumptions to the model: First, it is assumed that
controlled processes C are set to zero for nonrevealed transitions (i.e., C = 0 for j = 2),
in other words, we assumed that no explicit knowledge has been acquired during the SRT
phase. Second, it is assumed that automatic processes A do not vary as a function of the
between-subjects manipulation of explicit knowledge l (i.e., µ(A)

l=1 = µ
(A)
l=2). These assumptions

allowed us to relax and test the invariance assumption by obtaining separate estimates of
both C and A for the inclusion and exclusion conditions (note that a full model relaxing all
three assumptions cannot be estimated).
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To assess goodness of fit, we used posterior predictive model checks as proposed by Klauer
(2010): Statistic TA1 summarizes how well the model describes the individual category
counts for the eight categories (revealed vs. nonrevealed × regular vs. nonregular × inclusion
vs. exclusion). Statistic TB1 summarizes how well the model describes the covariations in
the data across participants.

Additionally, we also estimated a modelM2 that does not impose the auxiliary assumptions
but enforces the invariance assumptions (i.e., parameters were not allowed to vary as a
function of PD instruction condition m):

Iij = Cij + (1− Cij)Aij
Eij = (1− Cij)Aij

The second-level equations of modelM2 are then given by:

Cij = Φ(µ(C)
jkl + δ

(C)
ij )

and
Aij = Φ(µ(A)

jkl + δ
(A)
ij )

where i indexes participants, j indexes transition type, k indexes the learning material
that participant i worked on during the SRTT, and l indexes the manipulation of explicit
knowledge (i.e., whether or not a transition has been revealed to participant i). Note that,
given this model specification, separate parameters are estimated for each between-subjects
condition kl and each transition type j, while the invariance assumption is maintained (i.e.,
there is no index m for PD instruction in the model equations).

These two models were compared using the deviance information criterion DIC (Spiegelhalter
et al., 2002; Spiegelhalter, Best, Carlin, & van der Linde, 2014); the DIC is an extension of
AIC for Bayesian hierarchical models, and differences of 10 are considered to imply strong
evidence in favor of the model with the lower DIC value (Klauer et al., 2015). Therefore, if
modelM1 outperforms modelM2, it can be concluded that the auxiliary assumptions are
less problematic than the invariance assumptions.

Furthermore, model M1 yields separate estimates of controlled and automatic processes
for both inclusion and exclusion. The invariance assumption can be targeted directly by
calculating the posterior differences AI −AE and CI − CE : If the posterior distributions of
these differences include zero, it can be concluded that the respective invariance assumption
holds; if the posterior does not contain zero, it can be concluded that the respective invariance
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Figure 14 . RTs during acquisition phase of Experiment 2, split by material and FOC
transition status. Error bars represent 95% within-subjects confidence intervals.

assumption is violated.

Results

We first analyzed the performance data from the SRTT to determine whether sequence
knowledge had been acquired during the task. Next, we analyzed generation task performance
using hierarchical PD models (descriptive statistics and ordinal-PD analyses are reported in
Appendices A and B).

Acquisition task. If participants acquired knowledge about the (probabilistic) regularity
underlying the sequence of key presses, we expect a performance advantage for regular over
irregular transitions, reflected in reduced RT and/or error rate. If this advantage is due to
learning, it is expected to increase over SRTT blocks.

Reaction times.

Figure 14 shows reaction times during the SRTT. We conducted a 2 (Material: Random
vs. Probabilistic) × 8 (Block number) × 2 (FOC transition status: regular vs. irregular)
ANOVA that revealed a main effect of material, F (1, 119) = 8.11, MSE = 39, 617.25,
p = .005, η̂2

G = .055; a main effect of block number F (4.89, 582.06) = 33.35, MSE =
1, 032.91, p < .001, η̂2

G = .029; a main effect of FOC transition status, F (1, 119) = 125.46,
MSE = 714.88, p < .001, η̂2

G = .016; an interaction of material and FOC transition status,
F (1, 119) = 121.57, MSE = 714.88, p < .001, η̂2

G = .015; an interaction of block number
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Figure 15 . Error rates during acquisition phase of Experiment 2, split by material and FOC
transition status. Error bars represent 95% within-subjects confidence intervals.

and FOC transition status, F (6.32, 752.52) = 10.68, MSE = 197.96, p < .001, η̂2
G = .002;

and a three-way interaction between material, block number, and FOC transition status,
F (6.32, 752.52) = 5.70, MSE = 197.96, p < .001, η̂2

G = .001.

Separate ANOVAs for each material condition yielded, for random material, only a significant
main effect of block number, F (4.38, 258.47) = 13.09, MSE = 1, 276.78, p < .001, η̂2

G =
.026, with RTs decreasing over blocks (all other Fs < 1). For probabilistic material, in
contrast, we obtained main effects of block number, F (5.07, 304.28) = 22.09, MSE = 891.30,
p < .001, η̂2

G = .035; and of transition status, F (1, 60) = 182.32, MSE = 976.60, p <
.001, η̂2

G = .061 (i.e. responses to regular transitions were faster than those for irregular
transitions); importantly, we also obtained an interaction of block number and transition
status, F (5.93, 356.02) = 15.83, MSE = 194.03, p < .001, η̂2

G = .007, showing that the RT
difference between regular and irregular transitions increased over blocks, indicating learning
of the regularities inherent in the probabilistic material.

Error rates.

Figure 15 shows error rates during acquisition. We conducted a 2 (Material: Random
vs. Probabilistic) × 8 (Block number) × 2 (FOC transition status: regular vs. irregular)
ANOVA that revealed a main effect of block number, F (5.83, 693.83) = 6.06, MSE = 11.83,
p < .001, η̂2

G = .016, indicating that error rates increased over blocks, and a main effect of
FOC transition status, F (1, 119) = 38.19, MSE = 13.49, p < .001, η̂2

G = .019, indicating that
error rates were higher for nonregular transitions. The interaction of material and FOC
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transition status was also significant, F (1, 119) = 27.61, MSE = 13.49, p < .001, η̂2
G = .014,

reflecting the finding that the effect of the latter factor was limited to the probabilistic
material. The three-way interaction of material, block number, and FOC transition status
was however not significant, F (6.55, 778.97) = 1.84, MSE = 7.94, p = .082, η̂2

G = .004.

To disentangle these interactions, we analyzed both material groups separately. As for RT,
an ANOVA for the random material group revealed only a main effect of block number,
F (4.94, 291.45) = 2.50, MSE = 16.03, p = .031, η̂2

G = .013 (all other Fs < 1). The
probabilistic material group showed a main effect of block number F (5.73, 343.65) = 4.63,
MSE = 10.29, p < .001, η̂2

G = .022, and a main effect of FOC transition status, F (1, 60) =
62.50, MSE = 14.23, p < .001, η̂2

G = .070. Importantly, the interaction of block number
and FOC transition status was significant, F (5.9, 353.81) = 3.23, MSE = 7.85, p = .004,
η̂2
G = .012, indicating that the difference in error rates between regular and irregular

transitions increased across blocks, consistent with the learning effect obtained for reaction
times.

Generation task. In a second step, we investigated how learned knowledge was expressed
in the generation task. We analyzed generation performance by fitting two hierarchical
models,M1 andM2. M1 allows the automatic and controlled processes to vary between
inclusion and exclusion, but it assumes that participants acquired only implicit knowledge
during the SRTT, and that revealing explicit knowledge after the SRTT did not affect
implicit knowledge. M2 is a hierarchical extension of the classical PD model that enforces
the invariance assumption. We computed model fit statistics to test whether each model
could account for the means, TA1, and covariances, TB1, of the observed frequencies. We
compared both models using the DIC statistic that provides a combined assessment of
parsimony and goodness of fit and penalizes models for unnecessary complexity. Parameter
estimates from modelM1 were used to address the invariance assumptions, directly.

The model checks for modelM1 were satisfactory,

T observedA1 = 491.06, T expectedA1 = 469.94, p = .369,

T observedB1 = 9.05, T expectedB1 = 6.95, p = .366.

In contrast, the model checks for modelM2 revealed significant deviations of the model’s
predictions from the data,

T observedA1 = 1, 092.06, T expectedA1 = 473.88, p = .002,
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Figure 16 . Parameter estimates from Experiment 2. Error bars represent 95% confidence
intervals.

T observedB1 = 190.05, T expectedB1 = 6.93, p < .001.

Model M1 attained a DIC value of 25,293.45 and clearly outperformed model M2 that
attained a DIC value of 25,891.74, ∆DICM1−M2 = −598.29. This implies that the auxiliary
assumptions we introduced toM1 were much less problematic than the invariance assumption.
Moreover, the standard PD model enforcing the invariance assumption was not able to
account for the data.

Figure 16 shows the parameter estimates obtained from modelM1. Figure 17 shows that the
invariance assumption for the automatic process was violated with AI > AE , 95% CI [.01,
.03], and a Bayesian p < .001 (p = .360 for revealed transitions). The invariance assumption
for the controlled process was also violated with CI > CE , 95% CI [.08, .54], and a Bayesian
p = .003.

Robustness checks. Next we assessed whether these findings were sensitive to the as-
sumptions of our models. Despite the fact that the auxiliary assumptions could be upheld in
model comparison, and that the incorporating model was well able to account for the data,
it may nevertheless still be the case that violations have biased parameter estimates. Specifi-
cally, if participants had in fact acquired explicit knowledge about nonrevealed transitions
during learning, they may have used this knowledge to generate more regular transitions
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Figure 17 . Posterior differences between AI −AE and CI − CE in Experiment 2, plotted
for each participant (gray dots) with 95% credible intervals. Dashed lines represent the
posterior means of the differences between mean parameter estimates. Dotted lines represent
95% credible intervals.

under inclusion than exclusion. Because of our assumption that C = 0 for nonrevealed
transitions, this performance difference would have been reflected in greater estimates of
implicit knowledge under inclusion than exclusion, and might account for the observed
AI > AE pattern.

To assess this possibility, we used the questionnaire data to exclude any transitions that
participants reported in their explicit description of the sequence (while keeping the revealed
transitions); if the acquired explicit knowledge was indeed the cause of the invariance
violation, excluding the transitions for which knowledge was reported should make the
violation disappear. To the contrary, excluding all correctly reported transitions (9.04% of
cases) did not affect the pattern of results.22

We also tested the invariance assumption using a different modelM1R that extendedM1 by
relaxing the assumption that C = 0 for nonrevealed transitions (see Appendix C for details).
The invariance violation for the controlled process, CI > CE , replicated in the absence of the
assumption C = 0, demonstrating its robustness. However, the small invariance violation
for the automatic process was no longer evident inM1R.

22Of the reported (nonrevealed) transitions, only approximately 25.47% were indeed regular transitions.
After excluding all reported transitions regardless of whether they reflect correct knowledge or not (27.55%
of cases), the invariance violation was descriptively unchanged but no longer statistically significant, Bayesian
p = .221.
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Discussion

Based on the SRTT results, we can conclude that participants acquired sequence knowledge
during learning. In addition, explicit knowledge about one of the six transitions had a clear
effect on generation performance for that transition.

The extended process-dissociation model M1 revealed a violation of the invariance as-
sumptions for both the controlled process (i.e., CI > CE) and the automatic process (i.e.,
AI > AE). ModelM1 rested on two auxiliary assumptions: It was assumed that controlled
processes were not affected by learning material (i.e., no explicit knowledge was acquired from
the SRTT), and that automatic processes were not affected by the manipulation of explicit
knowledge (i.e., revealing a transition). Both assumptions found support in the current data
as they did not harm model fit. Moreover, model comparison by the DIC showed that model
M1 was a better account of the data than the standard process-dissociation modelM2 that
did not impose these assumptions but instead imposed the invariance assumption.

Invariance of the automatic process was significantly violated, but the magnitude of the
violation was small, and it disappeared entirely under a relaxed model (M1R; see Appendix
C). Given the small magnitude, and its lack of robustness to the modeling assumptions, the
invariance violation of A appears to be no serious threat to the validity of the PD at this
point.

In contrast, invariance of the controlled process was consistently found to be violated and
the violation was large in magnitude: Confirming the speculation that explicit knowledge is
not exhaustively used in exclusion, explicit knowledge was used to a greater degree under
inclusion than exclusion.

Experiment 3

The main goal of Experiment 3 was to replicate the previous findings and extend them to
second-order conditional (SOC) material.

A secondary goal was to explore whether different amounts of implicit knowledge are
acquired with mixed versus pure SOC material. Previous studies of the SRTT using a PD
generation task have employed 12-item-sequences of four response locations (e.g., SOC1 =
3−4−2−3−1−2−1−4−3−2−4−1; SOC2 = 3−4−1−2−4−3−1−4−2−1−3−2, Destrebecqz
& Cleeremans, 2001; Wilkinson & Shanks, 2004). Analyzing these sequences more closely, it
is evident that they did not only contain second order information (i.e., the last two locations
predict the next location), but they also incorporate lower-order information: First, direct
repetitions never occur; and reversals occur below chance (i.e., 1/12, whereas chance level
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would equal 1/3 given that repetitions are prohibited). Second, the last location of a triplet
L3 is not independent of the first location L1 (e.g., for SOC1, p(L3 = 2|L1 = 3) = 2/3). In
other words, in two out of three cases, the third location of a triplet can be predicted by
the first location of a triplet alone. It is plausible that participants are able to learn this
lower-order information, and that learning effects may not (only) be based on second-order
information (cf., Koch & Hoffmann, 2000a; Reed & Johnson, 1994). To investigate this
possibility, Experiment 3 implemented two types of probabilistic material: A mixed SOC
material that incorporated both second-order and first-order types of information, and
another pure SOC material that only followed a second-order regularity.

Method

Design. The study realized a 3 (Material: random, mixed SOC, pure SOC) × 2 (Explicit
knowledge: no transition revealed vs. two transitions revealed) × 2 (PD instruction: inclusion
vs. exclusion) × 2 (Block order : inclusion first vs. exclusion first) design with repeated
measures on the PD instruction factor.

Participants. One hundred and seventy-nine participants (120 women) aged between 18
and 58 years (M = 22.8 years) completed the study. Most were undergraduates from Heinrich-
Heine-Universität Düsseldorf. Data from 8 participants were excluded from generation task
analyses because they had received erroneous exclusion instructions. Participants were
randomly assigned to experimental conditions. They received either course credit or 3.50
Euro for their participation.

Materials. We implemented three different types of material:

• A random sequence was randomly generated for each participant anew by drawing
with replacement from a uniform distribution of six response locations.

• A mixed SOC sequence incorporated two types of information: First, the third location
of a triplet was conditional upon the first two locations. Second, within such regular
triplets, given a fixed first-position location, there was one highly probable third-
position location and two somewhat less probable third-position locations; the other
three response locations never occurred for this first-position location.

• A pure SOC sequence followed only the second-order regularity.

In both probabilistic materials (mixed and pure SOC), 87.5% of trials adhered to the second-
order regularity, which was individually and randomly selected for each participant anew.
In all conditions, the material adhered to the following (additional) restrictions: (1) there
were no direct repetitions of response locations, and (2) there were no response location
reversals (i.e., 1-2-1). To compute the dependent variable in the generation task (i.e., the
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number of rule-adhering triplets), for both probabilistic groups, we used the second-order
sequence that was used to generate each participant’s materials. For the random group,
there is no ‘regular’ sequence and we again computed an individual criterion sequence for
each participant. For convenience, we did not generate all possible second-order sequences
for these participants (as we did for first-order materials in Experiment 1), but chose to
use individual criterion sequences that were randomly generated similar to the pure SOC
material.

Procedure. The experimental procedure closely followed that of Experiment 1: In the
acquisition task, participants performed a SRTT consisting of eight blocks with 180 trials each
(for a total of 1,440 responses). The response-stimulus interval (RSI) was 0 ms. Following
the SRTT phase, participants were told that stimulus locations during the SRTT followed
some underlying sequential structure. They were then asked to try to generate a short
sequence of thirty locations that followed this structure.

The generation task followed, with inclusion versus exclusion block order counterbalanced.
We fixed the number of generation-practice blocks that preceded both inclusion and exclusion
task: Prior to the inclusion task, three practice blocks involved inclusion instructions; prior
to the exclusion task, the first and second practice block involved inclusion instructions, and
the third involved exclusion instructions. Before working on practice blocks, two transitions
were revealed to one half of the participants.

Upon completing the computerized task, participants were asked to complete a questionnaire
containing the following items: (1) “Did you notice anything special working on the task?
Please mention anything that comes to your mind.”, (2) “One of the tasks mentioned a
sequence in which the squares lit up during the first part of the study. In one of the
experimental conditions, the squares did indeed follow a specific sequence. Do you think
you were in this condition or not?”, (3) “How confident are you (in %)?”, (4) “Can you
describe the sequence in detail?”. Subsequently, participants were asked to indicate, for ten
first-order transitions, the next three keys in the sequence on a printed keyboard layout. The
first-order transitions were individually selected for each participant so that each participant
had the chance to express full explicit knowledge about the second-order regularity.

Data analysis. For analyses of reaction times during the acquisition task, we excluded
the first two trials of each block because the first two locations cannot be predicted, as well
as error trials, trials succeeding an error, reactions faster than 50 ms and slower than 1,000
ms. For analyses of error rates during the acquisition task, we excluded the first two trials
of each block.

Generation task analyses were conducted with the first two trials of a block as well as any
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Figure 18 . RTs during acquisition phase of Experiment 3, split by material and SOC
transition status. Error bars represent 95% within-subjects confidence intervals.

response repetitions and reversals excluded. Model-based analyses were conducted with
modelsM1 andM2 analogous to those used in Experiment 2 (see Appendix D for details).

Results

We first analyzed reaction times and error rates during the SRTT to determine whether
sequence knowledge had been acquired during the task. Next, we analyzed generation task
performance using hierarchical PD models (descriptive statistics and ordinal-PD analyses
are reported in Appendices A and B).

Acquisition task. If participants acquired sequence knowledge from probabilistic mate-
rials, we expect a performance advantage for regular over irregular transitions, reflected
in reduced RT and/or error rate. If this advantage is due to learning, it is expected to
increase over SRTT blocks. If participants are able to learn lower-order information that is
only present in mixed SOC material, the advantage is expected to be greater in mixed SOC
material compared to pure SOC. If participants are able to learn second-order information,
a performance advantage is to be expected not only in mixed SOC but also in pure SOC
material.

Reaction times.

Figure 18 shows reaction times during acquisition. We conducted a 3 (Material: random
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vs. pure SOC vs. mixed SOC) × 2 (Transition status: regular vs. irregular SOC) × 8 (Block
number) ANOVA with repeated measures on the last two factors that revealed a main
effect of block number, F (4.46, 780.51) = 41.53, MSE = 1, 515.93, p < .001, η̂2

G = .020,
reflecting decreasing RT over blocks; a main effect of transition status, F (1, 175) = 40.02,
MSE = 582.10, p < .001, η̂2

G = .002, reflecting an RT advantage for regular transitions; and
an interaction of block number and transition status, F (6.39, 1118.42) = 2.81, MSE = 439.60,
p = .009, η̂2

G = .001, reflecting the finding that the RT advantage for regular transitions
increased over block (i.e., the sequence learning effect). We also found an interaction of
material and transition status, F (2, 175) = 7.40, MSE = 582.10, p = .001, η̂2

G = .001,
reflecting the finding that the effect of transition status was absent in the random material
group, F (1, 58) = 0.44, MSE = 380.19, p = .510, η̂2

G = .000; trivially, no sequence knowledge
was learned from random material.

The three-way interaction was not significant, F (12.78, 1118.42) = 0.92, MSE = 439.60,
p = .535, η̂2

G = .000, suggesting that the sequence-learning effect did not differ across
material groups. We conducted separate analyses to probe for sequence-learning effects
in each material condition. Analyzing only the random material group revealed only a
main effect of block number, F (3.82, 221.55) = 15.74, MSE = 1, 484.04, p < .001, η̂2

G = .020
(all other ps > .05). In the pure SOC group, in contrast, a main effect of block number,
F (3.96, 229.51) = 12.04, MSE = 2, 038.65, p < .001, η̂2

G = .019, was accompanied by a main
effect of transition status, F (1, 58) = 28.48, MSE = 637.73, p < .001, η̂2

G = .004, and an
interaction of both factors, F (6.03, 349.61) = 2.47, MSE = 530.13, p = .023, η̂2

G = .002,
reflecting a sequence learning effect on RT.

In the mixed SOC group, we obtained only main effects of block number, F (4.91, 289.7) =
15.95, MSE = 1, 334.22, p < .001, η̂2

G = .024, and of transition status, F (1, 59) = 18.83,
MSE = 725.90, p < .001, η̂2

G = .003, but the interaction of block number and transition
status was not significant, F (5.74, 338.77) = 1.15, MSE = 571.40, p = .331, η̂2

G = .001. This
is despite the fact that the effect of transition status is also likely to be a result of sequence
learning, and it is of similar magnitude to that obtained in the pure SOC group. The notion
that both learning effects are similar was also supported by a joint analysis of the pure SOC
and mixed SOC groups: The two-way interaction between block number and transition
status was significant, F (6.14, 718.32) = 2.75, MSE = 527.50, p = .011, η̂2

G = .001, but the
three-way-interaction of material, block number, and transition status was not significant,
F (6.14, 718.32) = 0.87, MSE = 527.50, p = .521, η̂2

G = .000. Taken together, we interpret
these findings to show that the learning effect in the mixed SOC group was comparable
to that observed in the pure SOC group but too small to reach significance in a separate
analysis.
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Figure 19 . Error rates during acquisition phase of Experiment 3, split by material and SOC
transition status. Error bars represent 95% within-subjects confidence intervals.

Error rates.

Figure 19 shows error rates during acquisition. We conducted a 3 (Material: Random
vs. mixed SOC vs. pure SOC) × 8 (Block number) × 2 (SOC transition status: regular
vs. irregular) ANOVA with repeated measures on the last two factors that revealed a main
effect of block number, F (3.66, 644.87) = 3.78, MSE = 39.10, p = .006, η̂2

G = .008, reflecting
increasing error rates over blocks, and a main effect of transition status, F (1, 176) = 16.14,
MSE = 9.08, p < .001, η̂2

G = .002, reflecting an accuracy advantage for regular transitions.
The interaction of material and transition status was not significant, F (2, 176) = 2.66,
MSE = 9.08, p = .073, η̂2

G = .001,

Separate analyses yielded no significant effects in the random material group (all ps > .05).
Importantly, an effect of transition status was clearly absent from the random material group,
F (1, 58) = 0.62, MSE = 7.68, p = .433, η̂2

G = .000. In the mixed SOC group, a main effect
of block number was found, F (5.66, 334.01) = 2.96, MSE = 15.46, p = .009, η̂2

G = .017, along
with a main effect of transition status, F (1, 59) = 12.88, MSE = 11.29, p = .001, η̂2

G = .009,
reflecting higher error rates for irregular than for regular transitions. Finally, in the pure
SOC group, block number did not affect error rates, F (1.87, 110.6) = 1.72, MSE = 133.60,
p = .185, η̂2

G = .011; but a main effect of transition status was also found, F (1, 59) = 5.55,
MSE = 8.24, p = .022, η̂2

G = .001, reflecting higher error rates for irregular than regular
transitions.
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Taken together, error rates mirror RTs in that they also reflect a performance advantage for
regular transitions in the mixed and pure SOC groups that was not evident in the random
control group. Deviating from the RT result pattern, this advantage did not reliably increase
across blocks.

Generation task. We analyzed generation performance by fitting the two hierarchical
modelsM1 andM2 that we introduced above to the data from Experiment 3. For both
models, we computed model fit statistics to assess whether each model could account for the
data; we then compared both models using the DIC. Parameter estimates from modelM1

were then used to address the invariance assumptions directly.

The model checks for modelM1 were satisfactory,

T observedA1 = 692.77, T expectedA1 = 653.45, p = .291,

T observedB1 = 8.44, T expectedB1 = 6.04, p = .292.

In contrast, the model checks for modelM2 revealed significant deviations of the model’s
predictions from the data,

T observedA1 = 1, 077.52, T expectedA1 = 652.79, p = .003,

T observedB1 = 49.97, T expectedB1 = 6.06, p < .001.

ModelM1 attained a DIC value of 38,907.43 and outperformed modelM2 that attained a
DIC value of 39,210.66, ∆DICM1−M2 = −303.23. This implies that our auxiliary assump-
tions were less problematic than the invariance assumption. Moreover, the standard PD
model enforcing the invariance assumption was not able to account for the data.

Figure 20 shows the parameter estimates obtained from modelM1. Figure 21 shows that
the invariance assumption for controlled processes was again violated with CI > CE , 95%
CI [.27, .63], Bayesian p < .001. The invariance violation was also obtained with model
M1R, showing that it is robust to the specific modeling assumptions (see Appendix C). In
contrast to the results of Experiment 2, the invariance assumption for automatic processes
was not violated but could be upheld, 95% CI [-.01, .01], Bayesian p = .638 for non-revealed
transitions and 95% CI [-.10, .05], p = .763 for revealed transitions.
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Figure 21 . Posterior differences AI − AE and CI − CE in Experiment 3, plotted for each
participant (gray dots) with 95% credible intervals. Dashed lines represent the posterior
means of the differences between mean parameter estimates. Dotted lines represent 95%
credible intervals.



98 Assumptions of the Process-Dissociation Procedure are Violated

Discussion

Based on the SRTT results, we can conclude that participants acquired some (albeit weak)
sequence knowledge during learning. In addition, generation performance was clearly affected
by instructed explicit knowledge, as revealed by the clearly above-zero estimates of the C
parameters for revealed transitions.

An extended process-dissociation modelM1 revealed a violation of the invariance assumption
for controlled processes with CI > CE . The invariance assumption for automatic processes
could be upheld. Model M1 rested on two auxiliary assumptions: It was assumed that
controlled processes were not affected by learning material, and that automatic processes
were not affected by the manipulation of explicit knowledge. Both assumptions found support
in the current data as they did not harm model fit. Moreover, model selection strongly
favored modelM1 over a standard process-dissociation modelM2 that did not impose these
assumptions.

Regarding our secondary goal to explore whether different amounts of sequence knowledge
are acquired from mixed versus pure second-order conditional material, we did not find
evidence for a difference between these two types of material in the SRTT. This may well be
due to the overall low levels of acquired sequence knowledge in the present study. Clearly,
the present data are not strong enough to rule out such differences; this question requires
further study.

General Discussion

Summary of main findings

The process-dissociation approach as applied to sequence learning assumes either (1) that
automatic processes monotonically increase both inclusion and exclusion performance, while
controlled processes increase inclusion but decrease exclusion performance (if the ordinal
approach is used), or (2) that the controlled and automatic process are invariant under
inclusion and exclusion instructions (if the parametric model is used).

In three sequence-learning experiments, we tested whether the monotonicity and invariance
assumptions hold in the generation task. The results show a consistent pattern.

Monotonicity assumption. Increases in explicit knowledge across conditions consistently
increased overall inclusion performance, but were insufficient to reliably decrease overall
exclusion performance. Participants were largely unable to use their explicit knowledge to
suppress the proportion of regular transitions generated in the exclusion task to levels below
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baseline. Below-baseline generation levels for revealed transitions were robustly found only
for material with a first-order regularity, and only in participants who had explicit knowledge
about (at least) two transitions and engaged in generation-task practice specific to a given
to-be-excluded transition (Exp. 1, Transfer condition). In these participants, there was
even some evidence that below-chance exclusion performance transferred to non-practiced
explicit knowledge. However, transition-specific practice was (necessary but) not sufficient for
successful exclusion: Whereas participants without such practice (i.e., the No-Practice and
Unspecific-Practice conditions of Exp.1) failed to reach below-chance levels, participants with
practice also failed to attain below-chance levels under exclusion instructions if they worked
on the inclusion task first (i.e., Exp. 1, Practice condition). Taken together, these results
confirm Wilkinson and Shanks’s (2004) speculation that inclusion and exclusion strategies
may differ and that explicit knowledge is not exhaustively expressed in the generation
task’s exclusion condition, to the effect that increasing explicit knowledge does not result in
decreased generation of regular transitions under exclusion.

Invariance of the controlled process. The finding that explicit knowledge was less
likely to affect exclusion performance also suggests a violation of invariance. Experiments 2
and 3 showed that, indeed, the invariance assumption for explicit knowledge was consistently
violated, in first-order as well as second-order material, and despite extensive opportunity
for practice. In all cases, explicit knowledge was expressed to a greater degree under
inclusion than under exclusion instructions: Participants succeeded in generating the revealed
transition under inclusion conditions, but failed to consistently refrain from generating that
transition under exclusion conditions; specifically, under exclusion conditions, participants
typically generated the revealed transition at chance levels, instead of suppressing its
generation altogether as instructed.

Limitations and open questions

Before turning to the implications of the present findings, we discuss potential limitations
and identify open questions.

The invariance violation of the automatic process may reflect learned explicit
knowledge. In Experiment 2 that used first-order conditional material we found evidence
suggesting a violation of the invariance assumption for implicit knowledge; no such evidence
was however found for the second-order conditional material used in Experiment 3. If
interpreted in a standard PD framework, the inclusion-exclusion performance difference
resulting from this violation may lead to erroneous conclusions about the presence of explicit
knowledge (if such knowledge is indeed absent), or to overestimation of the contribution of
explicit knowledge. We believe these findings of an inclusion-exclusion difference in estimates
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of the automatic parameter should be interpreted with some caution, for at least three
reasons. First, the finding was inconsistent across studies, and there are multiple possible
causes of this inconsistency: The lack of a violation in Experiment 3 may be due to specific
properties of the material, or it may be due to the fact that sequence knowledge levels in
that study were too low for differences in its expression to be measurable.

Second, the violation was relatively small (i.e., the AI −AE difference ranged between .01
and .03 in Exp.2; and between .00 and .03 in Exp.1, see Appendix C). In the absence of
controlled influences, this would be equivalent to a difference between inclusion and exclusion
performance of approximately 2 percentage points — an effect barely noticeable under
typical conditions.

Third, it is unclear whether the observed invariance violation of parameter A reflects implicit
knowledge at all. Note that the parameter for the automatic process captures the sum of all
non-controlled influences on generation performance. In particular, it might reflect guessing
strategies, and these may differ under inclusion versus exclusion conditions (Stahl et al.,
2015). In other words, the above effect may reflect a violation of invariance of guessing
or response strategies instead of a violation of invariance of the automatic expression of
implicit knowledge. Taken together, we interpret the finding as too weak to conclude that
the invariance assumption is violated also for the automatic process.

Instead of being due to guessing, the inclusion-exclusion difference in estimates of the
automatic parameter may be due to explicit knowledge acquired during learning. Such an
effect, if present at all, is likely to be small given that (1) the material was probabilistic
and therefore difficult to learn explicitly; (2) the model incorporating the assumption
that no learned explicit knowledge was learned fitted the data well; and (3) the results
were unchanged when we excluded the data from transitions that participants (correctly)
reproduced during debriefing. However, we cannot exclude the possibility that small amounts
of explicit knowledge, obtained during the SRTT phase, may have distorted our model’s
parameter estimates. This interpretation could also account for the lack of such an effect
in Experiment 3 given that explicit knowledge was less likely to be learned from the more
complex second-order conditional material used in that study. If this were true, then
any differences between inclusion and exclusion that were attributed by the model to an
invariance violation of the implicit process may in fact have been a consequence of residual
explicit knowledge that was not reflected in our debriefing questionnaire (perhaps due to
participants’ conservative reporting criteria).

To further address this possibility, we conducted additional model analyses for Experiments
2 and 3 (reported in Appendix C) that aimed at estimating the amount of this residual
explicit knowledge; we still found a violation of invariance for the automatic process, but of
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different direction — a finding that we consider to be an artifact of the auxiliary modeling
assumptions. This limitation is another reason for caution in interpreting the above finding
as evidence for a violation of invariance of the automatic process. Note that it does not limit
the interpretation of our main finding of the invariance violation of the controlled process,
which was robust against changes in auxiliary assumptions.

The evidence for sequence learning was weak for SOC material in Experiment
3. As expected, second-order conditional material (Experiment 3) was more difficult to
learn than first-order conditional material (Experiments 1 & 2). This was reflected here in
the finding that (despite a 20% increase in learning trials) there was only weak evidence
for sequence learning in Experiment 3. Specifically, responses to regular transitions were
clearly faster and more accurate for both variants of the SOC materials, but the interaction
between regularity and training block, which is critical for unambiguously interpreting a
performance advantage for regular transitions as an effect of learning, was not significant.
Clearly, an even larger amount of SRTT training should be realized in future studies using
SOC materials. Yet, it is unlikely that the observed RT advantage for regular transitions
has any other causes than learning, given that it was absent from the random condition, and
that the effect could not be attributed to properties of specific transitions because regularity
of a transition was randomized for each participant anew. Nevertheless, because evidence
for (implicit) sequence learning was not beyond doubt, it is not warranted to interpret the
modeling results as stringent tests of the invariance assumption for the automatic process.

Explicit knowledge learned via instruction may be qualitatively different from
acquired explicit knowledge. The present study manipulated explicit knowledge via
instruction. Although it is an established method (e.g., Liefooghe, Wenke, & De Houwer,
2012) that has yielded important insights in other domains, one might argue that explicit
knowledge acquired via instruction is somehow qualitatively different from explicit knowledge
acquired during SRTT training, and that therefore the present results do not speak to the
question of interest regarding the invariance of the expression of acquired knowledge. We
believe our manipulation to be valid for the following reasons. First, the instructed explicit
knowledge communicated the same proposition about the sequence that participants would
have acquired during SRTT training (i.e., that a specific location was regularly followed by
another location). Second, we took precautions to avoid any inconsistency or conflict with
learned sequence knowledge: Transitions that were revealed to participants were part of
the regular sequence and therefore compatible with acquired (implicit or explicit) sequence
knowledge. Third, we allowed participants to integrate instructed and acquired knowledge
during the practice blocks before the generation task.

Given that the instructed and acquired propositions are identical, we would argue that
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qualitative differences between acquired and instructed knowledge are likely to involve non-
propositional forms of knowledge; such non-propositional knowledge is typically considered to
be implicit. Indeed, it is likely that strong implicit knowledge is a precondition for acquiring
explicit knowledge (Cleeremans & Jiménez, 2002; Haider & Frensch, 2009): Instructed and
acquired explicit knowledge are therefore likely to differ in the degree to which they are
correlated with implicit knowledge. If participants are better able to control acquired than
instructed explicit knowledge, this would then be due, paradoxically, to the presence of
acquired implicit knowledge. Finally, even if that was the case, note that this would not
salvage the PD method because a strong correlation between explicit and implicit knowledge
would violate the independence assumption, thereby posing another problem for its validity.

Boundary conditions of the process-dissociation approach may be violated. Ja-
coby and colleagues (Jacoby et al., 1997; Jacoby, Toth, & Yonelinas, 1993; Toth, Reingold,
& Jacoby, 1994) emphasized the importance of avoiding floor effects when applying the
process-dissociation approach. In the present studies, floor effects may be present if partici-
pants succeed in avoiding to generating any regular transitions under exclusion instructions.
In such cases, parameter estimates of controlled and automatic processes may be biased
and might have artifactually produced an invariance violation for controlled processes (i.e.,
CI > CE). We would argue this is not the case in our data for the following reasons:
First, generation performance in the present studies fails to show evidence for floor effects
(i.e., both low overall levels as well as reduced variability): Regarding overall levels, mean
performance in most conditions deviated no more than ±1SD from chance baseline (i.e.,
20% in Experiments 1 and 2, and 25% in Exp.3). Regarding variability, the cells with the
lowest overall performance (i.e., with the greatest risk of floor effects) showed variability
comparable to that exhibited by the other conditions. While we found below-chance exclusion
performance for revealed transitions in some conditions of our experiments (i.e., successful
exclusion of the revealed transitions), the invariance violation for controlled processes was
replicated not only in these conditions, but across all conditions that involved non-zero
explicit knowledge. Importantly, it also replicated in Experiment 3 that realized a higher
baseline level of 25%: In that study, revealed transitions were generated at rates of 25-30%
under exclusion conditions, rates that are clearly unconspicuous of reflecting floor effects.

Second, while Jacoby and colleagues warned about floor effects, they also described the
mechanism by which zero counts pose a threat to the validity of the estimation procedure,
and proposed means to deal with this problem: If individual participants’ data are analyzed
separately, floor effects might be accompanied by inflated levels of zero counts in the exclusion
condition (i.e., perfect exclusion) for some participants. The original PD equations would
then lead to an estimate of A = 0 for this participant; therefore, averaging over individual
A parameters would lead to an underestimation of the automatic parameter. As a means
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to circumvent this estimation problem, Toth et al. (1994) proposed complete pooling (i.e.,
aggregate analysis) of data. In our studies, we followed and extended this recommendation
by utilizing a Bayesian hierarchical multinomial model for estimating parameters; while
allowing for individual differences between parameter estimates, a participant’s parameter
estimate is not only affected by the data that are directly linked to this estimate, but also by
the higher-level distribution for this parameter; the influence of outlier values (such as zero
counts provided by some individuals) on the parameter estimates is thus minimized. Another
type of estimation bias may arise if our data contained otherwise inflated levels of zero
counts; this would suggest higher levels of control ability and lead to an overestimation of C
parameters for exclusion conditions. Such inflated levels of zero counts would therefore work
against our main invariance-violation finding that explicit knowledge remains underutilized
under exclusion conditions (i.e., CI > CE).

Finally, our conclusion that explicit knowledge remains underutilized under exclusion is
not only based on analyses of the parametric PD model (which are susceptible to biased
parameter estimates due to floor effects) but was consistently corroborated by the results
from ordinal-PD analyses that did not depend on estimates based on the parametric PD
equations: Across all three studies, we consistently found a violation of the monotonicity
assumption in the sense that explicit knowledge does not reliably decrease the proportion of
regular transitions in exclusion conditions (see Appendices A and B).

Implications

We will first discuss implications for the PD approach before we suggest ways to improve
measurement of sequence knowledge using the generation task. We conclude with a few
broader implications.

Validity of the PD method. The present findings show that participants fail to exhaus-
tively suppress generating regular transitions under exclusion instructions; this finding has
repercussions for both the ordinal- and parametric-PD approaches.

In the ordinal approach, given a single experimental condition, it is concluded that implicit
knowledge is present if exclusion performance is above a (chance or empirical) baseline; and
it is concluded that explicit knowledge is present if inclusion performance exceeds exclusion
performance. These conclusions depend on the assumption that a monotonically increasing
controlled process should lead to a monotonic increase of inclusion performance and at
the same time a monotonic decrease of exclusion performance. The present study shows,
however, that exclusion performance cannot be assumed to reliably decrease with increasing
explicit knowledge. This implies that the assumptions underlying the ordinal-PD approach
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are violated for the generation task as applied to sequence learning. In addition, we have
previously shown that another assumption of ordinal PD, namely that baseline performance
is identical in the inclusion and exclusion tasks, is also violated at least in some cases (Stahl
et al., 2015). Given that these two fundamental assumptions are violated, the analysis
approach adopted in the SRTT literature is also compromised.

The controlled process was found to operate less effectively under exclusion than inclusion
instructions; in terms of the parametric PD model, invariance for the controlled process was
violated with CI > CE . A model that nevertheless incorporates the invariance assumption
will likely fail to adequately account for the data, and will yield distorted estimates of
the automatic and controlled process. To illustrate, assume that the true values of the
parameters are CInclusion = .8, CExclusion = .4, and AInclusion = AExclusion = .25. This
yields the following generation proportions of regular transitions I = .8 + (1− .8) ∗ .25 = 0.85
and E = (1− .4) ∗ .25 = 0.15. When fitting a traditional PD model enforcing the invariance
assumption C = CInclusion = CExclusion to these data, we get C = .7 that lies somewhere
between the true values of C, and A = .5 which is a vast overestimation of the true A.
Importantly, note that if the true value of A = .25 represents chance level, applications of
the traditional PD method might lead to the erroneous conclusion that implicit knowledge
had been learned even if such knowledge was in fact entirely absent. In addition, if we are
interested in the amount of explicit knowledge learned from the SRTT training phase, it
might be argued that the higher estimate obtained from the inclusion condition might be a
more valid estimate of learned explicit knowledge; the inability to express this knowledge
under exclusion may be of secondary interest. By this argument, applying the traditional
PD method also yields an underestimation of explicit knowledge.

We therefore recommend against using the PD method unless separate estimates of CInclusion
and CExclusion can be obtained, for example as we have done in the present study. To do
so, an extension of the standard design is necessary; for instance, in the present study
we implemented two levels of an explicit-knowledge factor across which we equated the A
parameters; this allowed us to estimate separate C parameters for inclusion and exclusion.
Note that this strategy may not be broadly applicable in typical SRTT studies because of
the strong correlation between (acquired) C and A; the assumption that the level of implicit
knowledge is constant across two different levels of explicit knowledge will be warranted only
in special cases such as realized in the present studies (e.g., if explicit knowledge is revealed).

Generation task as a measure of sequence knowledge. The generation task has
been proposed as a useful and sensitive measure of implicit knowledge (Jiménez et al., 1996;
Perruchet & Amorim, 1992). Its sensitivity may be called into question by the finding that
RT effects obtained during the SRTT were often greater than implicit-knowledge effects
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in the generation task. In part, this may be attributed to the greater reliability of the RT
measure, as it relies on aggregation across a larger number of trials than does the generation
task. Another possible reason is that the generation task’s sensitivity as a measure of implicit
knowledge may be lower than previously thought. For instance, previous findings of implicit
knowledge using the generation task may have been overestimates of implicit knowledge due
to a violation of invariance for the controlled process with CI > CE . Note that most studies
used much easier-to-learn materials (with four instead of six locations); it is thus plausible
that participants acquired more explicit knowledge than they did in our experiments, and
that the overestimation bias was more severe in those studies.

Another possible reason for overestimating implicit knowledge is that the regularities in the
sequences implemented in previous research were such that the probability of reversals (e.g.,
1-2-1) was below chance. Given that participants spontaneously tend to generate reversals
at below-chance levels, this implies that they instead generate other regular transitions at
slightly above-chance levels even in the absence of any true sequence knowledge (Stahl et
al., 2015). As a consequence of this reversal-avoidance bias, implicit knowledge might be
overestimated if one uses chance baselines as a reference. This problem has been discussed
before (Destrebecqz & Cleeremans, 2003; Reed & Johnson, 1994; Shanks & Johnstone, 1999),
and was solved by comparing performance on the training sequence with performance on a
transfer sequence containing a similarly low proportion of reversals. This implies, however,
that the PD approach does not provide a measure of the absolute level of implicit or explicit
knowledge; instead, by relying on a comparison of performance across two sequences, it
yields a difference measure that is associated with reduced reliability. In addition, the
reversal-avoidance bias may not only mimic implicit knowledge; it may also mimic (or mask)
explicit knowledge if it interacted with the inclusion-exclusion instructions, perhaps via
different response strategies or criteria adopted under inclusion versus exclusion instructions.

Conclusion and Outlook

In light of the present findings suggesting limited validity of the PD generation task,
what can we conclude about explicit and implicit sequence knowledge from its previous
applications? Clearly, the violation of basic assumptions implies that PD results cannot
be unambiguously interpreted: Unless we have a better understanding of the processes
that drive generation performance, and the degree to which they operate under inclusion
versus exclusion instructions, comparisons between inclusion and exclusion performance
do not support conclusions about implicit and explicit knowledge. This also implies that
a reanalysis of previous findings (which is beyond the scope of the present article) would
probably provide limited insight. In this section we therefore take a different approach: We
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initially accept the conclusions reported in the literature about the contribution of implicit
and explicit knowledge at face value; consider the implications of these conclusions about
the presence of distortions arising from the invariance violation; and then discuss how the
initial conclusion should be corrected in light of these distortions. To recap, the invariance
violation results in overestimation of implicit knowledge and underestimation of explicit
knowledge. These distortions differentially affect the three patterns of results found in the
literature (i.e., evidence for only implicit knowledge, for only explicit knowledge, or both).

The first pattern, evidence for implicit but no explicit knowledge, was found in only two
studies (no-RSI condition, Destrebecqz & Cleeremans, 2001; and Exp.3, 6-blocks condition,
Fu et al., 2008). In these studies, however, explicit knowledge may nevertheless have been
acquired; the observed lack of significant evidence for explicit knowledge may instead reflect
the underestimation bias resulting from the invariance violation, perhaps combined with
relatively low statistical power (with N = 12 and N = 24 in the respective conditions).

Other attempts to replicate this finding were unsuccessful and instead produced the second,
opposite, pattern — evidence for explicit but no implicit knowledge (e.g., Wilkinson &
Shanks, 2004). In this case, the evidence for explicit knowledge suggests that the distortions
due to the invariance violation apply: Obtaining evidence for explicit knowledge despite
the underestimation bias implies that explicit knowledge was likely present. Obtaining no
evidence for implicit knowledge despite the likely presence of an overestimation bias supports
the absence of implicit knowledge (or, alternatively, it may reflect lack of statistical power).

The third pattern—evidence for both explicit and implicit knowledge—was reported in
several studies (e.g., Destrebecqz & Cleeremans, 2001, 2003; Jiménez, Vaquero, & Lupiáñez,
2006). The evidence for explicit knowledge suggests that the distortions resulting from the
invariance violation may have compromised the results: Again, the evidence for explicit
knowledge obtained despite the underestimation bias should probably be assumed to be
reliable; however, the evidence for implicit knowledge may be an artifact of the overestimation
bias and should be interpreted with caution.

Taken together, when considering the limitations discovered in our studies, the PD approach
to using the generation task as a measure of implicit and explicit sequence knowledge in the
SRTT has so far yielded few reliable conclusions. If anything, results support the presence
of explicit knowledge and call into question the interpretation of PD results as indicative of
implicit knowledge.

It might be possible to devise a version of the generation task that allows for the separation
of automatic and controlled processes but does not depend on exclusion of explicit knowledge
and does not induce different response criteria. For example, D’Angelo, Milliken, Jiménez,
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and Lupiáñez (2013) implemented such a generation task variant in artificial grammar
learning in which two different inclusion instructions were compared: After learning about
two different grammars, participants were asked, in the first (second) inclusion block to
generate exemplars from the first (second) grammar. Under certain assumptions, performance
differences between blocks can be interpreted as evidence for explicit controllable knowledge.
Exclusion failure and different criteria presumably do not matter in this task: Participants
were not instructed to exclude explicit knowledge, and it is plausible that the similarity
of instructions for both generation tasks also induced comparable response criteria. As
another example, in the domain of recognition memory, the PD procedure can be replaced
by a source-memory task in which, instead of including versus excluding items from one of
two study lists (A and B), participants are asked to indicate the source of the word (list
A or list B; Buchner et al., 1997a; Steffens, Buchner, Martensen, & Erdfelder, 2000; Yu
& Bellezza, 2000). Perhaps with a similar modification, an improved generation task may
prove a useful measure of sequence knowledge. Future research should also consider using
alternative methods of assessing implicit and explicit knowledge (for a recent overview, see
Timmermans & Cleeremans, 2015).

One of the great benefits of multinomial models such as the PD model is that they are
flexibly adaptable measurement models for studying latent cognitive processes using a wide
variety of experimental paradigms (Erdfelder et al., 2009). To validate a new model, it is
common to assess its goodness of fit, and to empirically demonstrate that its parameters
can be selectively manipulated and interpreted psychologically (i.e., parameter estimates
reflect targeted experimental manipulations in the predicted manner; Batchelder & Riefer,
1999). In many cases, however, simplifying assumptions need to be made; for instance, latent
processes are equated across two or more experimental conditions (e.g., a single controlled
process C is assumed to operate under inclusion and exclusion conditions). Whenever such
assumptions of invariance are made, we propose that they should also be tested empirically
as part of the model-validation effort when a new model is proposed, before it is used to
investigate substantive issues (for an example, see Brainerd, Reyna, & Mojardin, 1999).
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Chapter IV

Cognitive Processes in Implicit and
Explicit Sequence Learning: A
Diffusion-Model Analysis

Implicit sequence learning is frequently considered to be mediated by the formation
of simple associations between stimulus features, response features, or both. In recent
years, this view has been criticized as being overly simplistic, and more complex repre-
sentations have been proposed: Schumacher and Hazeltine (2016) proposed that stimuli,
responses, and task features are represented together in a hierarchically organized task
file. Eberhardt, Esser, and Haider (2017) proposed that features of stimuli and response
are represented together in abstract feature codes. Both of these newer accounts have
in common that they assume a common representational coding of both stimulus and
response features. To investigate the issue, it is helpful to consider the cognitive processes
involved in performing the SRTT: While stimulus encoding and response execution are
possibly mediated by simple associations between either stimuli or responses, response
selection necessarily relies on information about both. Therefore, an involvement of
response selection in implicit learning provided evidence for a common coding of stimulus
and response features.

In two SRTT experiments, we analyzed response times and accuracy with a drift-
diffusion model. We found that implicit sequence learning was expressed by multiple
processes, involving stimulus encoding, response selection, and response execution.
Importantly, we found a mediating role of response-selection processes in the expression
of sequence knowledge, indicating that the representations acquired in implicit sequence
learning necessarily contain information about both stimuli and responses. Explicit
sequence knowledge resulted in anticipatory responding that overruled other measurable
effects of learning. Implications for theories of implicit and explicit sequence learning
are discussed.

Implicit learning has been demonstrated using the Serial Reaction Time Task (SRTT, Nissen
& Bullemer, 1987), which has participants respond to stimuli presented at four horizontal
screen locations by pressing the key that corresponds to the stimulus location. Unbeknownst
to participants, the stimulus locations follow a regular sequence. With practice, participants
learn to respond faster on trials with regular stimulus-location transitions than on irregular
transitions. Critically, on subsequent tasks aimed at assessing the amount of acquired explicit
sequence knowledge, participants are often not able to express explicit knowledge about the
sequential structure. (Cohen et al., 1990; Nissen & Bullemer, 1987; Willingham et al., 1989).
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Early accounts try to explain learning by the formation of simple associations

An unresolved issue in the SRTT literature is what is learned in implicit sequence learning, i.e.,
what type of information is represented in the cognitive system that allows for performance
benefits in the SRTT (for a review, see Abrahamse et al., 2010). Early accounts assumed
that it is a single type of representation that is formed during learning, interpreting evidence
for one type of representation as evidence against the other. However, over almost three
decades of research on this topic, at least three different types of representations attained
strong empirical support in the literature: Response-based learning (i.e., R–R learning) has
been the dominant model of implicit sequence learning, and found considerable support
in the literature (e.g., Deroost & Soetens, 2006a; Nattkemper & Prinz, 1997; Willingham,
1999). It assumes that learning is the result of the formation of direct associations between
features of consecutive responses. However, also purely perceptual learning (i.e., S–S learning)
has been observed; it refers to the formation of associations between consecutive stimulus
features (e.g., Clegg, 2005; Howard, Mutter, & Howard, 1992; Mayr, 1996; Song, Howard, &
Howard, 2008). A third option, response-effect learning (i.e., R–S learning), refers to the
formation of associations between consecutive compounds of a response and a subsequent
stimulus (Hoffmann, Sebald, & Stöcker, 2001; Stöcker, Sebald, & Hoffmann, 2003; Ziessler
& Nattkemper, 2001).

A fourth option is learning at the response-selection stage, which received only equivocal
empirical support in the SRTT literature. It assumes that stimulus-response (S–R) asso-
ciations are formed between consecutive stimulus-response pairs. According to this view,
performing the SRTT basically involves selecting responses from a set of task-relevant S–R
pairs; multiple S–R pairs are concurrently maintained in memory across multiple trials,
where contingencies between activated pairs allow for the formation of associations between
these pairs. Important for the present study, it is assumed that response selection can only
be facilitated by representations that contain both stimulus and response features, which
typically implies that they contain both visual and motor components.

Processing stages were considered to be mappable to specific associations

These different types of associations have been frequently considered to be relatable to
the different processing stages (Donders, 1969; cf. Sternberg, 1969) that are involved in
performing the SRTT (Abrahamse et al., 2010; Schwarb & Schumacher, 2012). Consider a
participant performing a single trial of the SRTT: it is necessary to detect and encode a
stimulus, select a corresponding response, and execute the response.

Depending on what type of information is acquired and represented in the cognitive system,
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different processing stages should be affected by learning. Response-based learning, by pre-
activating response representations via R–R associations, is considered to facilitate response
execution on regular trials, while it potentially results in conflicts between actually chosen
and preactivated responses. Perceptual learning (by preactivating stimulus representations
via S–S associations) or response-effect learning (by preactivating stimulus representations
through bidirectional R–S associations) facilitates stimulus encoding on regular trials (and, in
the case of a sequence of stimulus locations, faster detection), but results in slower stimulus
encoding on nonregular trials. Learning at the response-selection stage, by preactivating
associated S–R pairs, results in faster response selection on regular trials, and possibly slower
response selection on nonregular trials.

Criticism of associationism

Common features of these accounts are (1) that they assume the formation of relatively
simple associations that preactivate a stimulus or a response in a feedforward fashion, and
(2) that the main distinguishing feature of different types of associations is whether they
contain stimulus features, response features, or both. Arguing that there exists evidence for
at least three of these types of representations (R–R, S–S, and R–S learning), Abrahamse et
al. (2010) integrated these accounts into a multi-level account of implicit sequence learning
that assumes that each of these three types of representation may be formed, a proposal
that also fits nicely with the multiple-systems model of sequence learning proposed by Keele
et al. (2003).

However, in recent years, alternatives to the formation of such simple associations have
been proposed. Hazeltine and Schumacher (2016; see also, Schumacher and Hazeltine, 2016)
argued that simple associations are not rich enough to explain the patterns of transfer and
flexibility that are observed in sequence learning. Schumacher and Hazeltine (2016) proposed
a different type of representation which they call a task file: a task file consists of a set of
hierarchical associations between stimulus features, response features, current task goals, and
drives. A central tenet of this account is that task files span across multiple representational
levels, including both stimulus and response features. The formed associations are considered
to be bidirectional and to become increasingly abstract. More directly targeted to implicit
learning, Eberhardt, Esser, and Haider (2017; see also, Haider, Esser, and Eberhardt, 2018;
Esser and Haider, n.d.) proposed to abandon the idea that representations in implicit
learning can be conceptualized as simple associations between stimulus or response features.
Instead, implicit learning might be represented by abstract feature codes that span across
stimulus, response , and task features, an idea borrowed from the Theory of Event Coding
(TEC, Hommel, Müsseler, Aschersleben, & Prinz, 2001). Both proposals have in common
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that features of stimuli and responses are always coded together in a common representational
code.

Taking these recent developments into account, it is evident that identifying learning at the
response-selection stage with simple S–R associations is overly simplistic: It is conceivable
that either a task file or an abstract feature code might subserve response-selection processes.
Still, asserting that both stimulus and response features are necessarily represented together
to subserve response selection, finding evidence for a mediating role of response selection
in implicit sequence learning may be considered evidential for a common coding. Studies
investigating the representational basis of implicit sequence learning typically employed an
opposite logic: Evidence against simple S–R associations has been interpreted as evidence
against a mediating role of response selection in implicit sequence learning. Bearing in mind
that this equating is possibly unwarranted, the next section will briefly review the findings
related to response-selection processes and S–R associations in implicit sequence learning.

Response-selection learning was equated with simple S–R associations

Studies that have been considered as being informative regarding the role of response
selection in implicit sequence learning may be subdivided into two general approaches. The
first approach investigated whether or not S–R associations underlie implicit learning; this
is typically achieved by changing the mapping of stimuli to responses between a training
and a transfer task. Asserting that learning at the response-selection stage is driven by S–R
associations, it is then possible to infer on a possible mediating role of response selection
processes. The second approach manipulated the difficulty of response selection more directly,
typically by using more or less demanding stimulus-response mappings or by creating dual-
task situations that arguably lead to interference at a central response-selection stage; if
implicit learning is moderated by these manipulations, it is also possible to infer on a
mediating role of response selection. We will briefly review the results from these two lines
of research, adding a few studies that used different approaches.

Early evidence favoring a role of S–R associations in implicit sequence learning was provided
by Willingham et al. (1989). In their Experiment 3, participants responded to stimulus
colors that were mapped to spatially arranged responses; for one group of participants,
stimuli were presented centrally on the screen and stimulus colors (and, hence, response
locations) followed a regular sequence. For another group of participants, stimulus colors
(and response locations) were randomly presented; however, the locations of stimuli—a
task-irrelevant stimulus feature—followed the same underlying regularity that stimulus colors
followed in the other group. On a subsequent transfer task, participants had to respond
to stimulus locations instead of color, and either stimulus or response locations followed
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the sequence participants were already exposed to during training. In contrast to their
predictions, they found no transfer of sequence knowledge in both groups, and speculated
that neither sequences of stimuli nor sequences of responses, but condition-action rules (i.e.,
S–R rules) had been learned, which could not be used after switching from stimulus colors
to stimulus locations in the transfer task.

Willingham, Nissen, and Bullemer (1999, Experiment 3) directly investigated the role of
S–R learning – however, their findings led them to the conclusion that S–R learning does
not mediate implicit sequence learning: They trained participants on an SRTT with an
incompatible S–R mapping (response locations were shifted one position to the right). During
a subsequent testing phase, participants were switched to a compatible S–R mapping, and
either the sequence of stimuli or the sequence of responses remained intact. They found
transfer of sequence knowledge if the response sequence, but not if the stimulus sequence
remained intact. They concluded that only response-based learning had happened; because
stimulus-response pairs changed from training to transfer, they also interpreted this finding
as evidence against learning of S–R associations. However, Schwarb and Schumacher (2010)
argued that this finding might still be consistent with the view that S–R associations were
learned: They argued that shifting responses one position to the right is a rather simple
transformation that has to be applied to S–R associations, and such a simple transformation
of the acquired S–R associations is sufficient to still use S–R knowledge during transfer.
Consistent with this reasoning, they replicated the original transfer effect of Willingham
(1999) using the original incompatible S–R mapping that allowed for a simple transformation;
importantly, using another incompatible S–R mapping, that would have required a far more
complex transformation, eliminated transfer of sequence knowledge.

Studies that followed the second approach of manipulating the difficulty of response selection
during the SRTT were at least in part motivated by a finding of Koch and Hoffmann
(2000b): In a study investigating the role of spatial information in sequence learning, they
orthogonally manipulated stimulus- and response sequences, which required to use either
compatible or incompatible stimulus-response (S–R) mappings. In their Experiment 3,
they found that incompatible S–R mappings had a beneficial effect on sequence learning.
Deroost and Soetens (2006b) argued that such manipulations of S–R compatibility have a
selective influence on response-selection processes: more demanding S–R mappings lead to a
more controlled response-selection process that benefits learning (cf., Kornblum, Hasbroucq,
& Osman, 1990). In their study, they indeed found better learning of a sequence when
participants performed the SRTT with an incompatible compared to a compatible S–R
mapping. In contrast, Hoffmann and Koch (1997) found that manipulating S–R compatibility
(high: four locations, low: four symbols in one location) only affected general RT levels, but
not learning scores. Moreover, Kinder, Rolfs, and Kliegl (2008) minimized the necessary



114 Cognitive Processes in Implicit and Explicit Sequence Learning

processing at the response-selection stage by using saccadic eye movements as responses to
stimulus locations. Assuming that saccadic eye movements are highly overlearned responses
to stimulus locations, there is not much to learn from a response-selection point of view; in
contrast, Kinder et al. (2008) found robust sequence learning even under such conditions,
and therefore concluded that learning at the response-selection stage is not necessary for
sequence learning.

Some studies that investigated the role of response selection used different approaches:
Schwarb and Schumacher (2009) compared the brain areas involved in sequence learning and
spatial response selection, finding that both rely on many of the same brain areas. Moreover,
Schumacher and Schwarb (2009) found that, under dual-task conditions, sequence learning
was disrupted if a secondary task involved selecting a response in parallel; in contrast,
sequence learning remained intact if the secondary task did not require selecting a response,
or if participants had enough time to serially perform both tasks.

Goschke (1998) demonstrated simultaneous learning of a stimulus and a response sequence.
Asserting that parallel processing of two independent sequences at one central processing
stage would likely lead to interference, this finding indicates that stimuli and response are
at least in part processed independently. Goschke (1998) concluded that learning at the
response-selection stage cannot be the only mechanism underlying implicit sequence learning.

Response selection might mediate explicit, but not implicit sequence learning

A possible way to reconcile these contradictory findings was proposed by Abrahamse et
al. (2010), who argued that learning at the response-selection stage may be limited to
explicit, but not implicit learning. Evidence pointing into this direction was reported by
Abrahamse (2010), who failed to replicate the learning advantage for incompatible S–R
mappings reported by Deroost and Soetens (2006b). In contrast to the original study that
employed a hybrid first-order conditional sequence, he used a probabilistic second-order
conditional sequence, stimulus material that is typically considered to produce robust implicit
knowledge but no explicit knowledge (Jiménez & Méndez, 1999; Jiménez et al., 1996). The
difference between both studies could thus be explained by an explicit learning mechanism
at work in the Deroost and Soetens (2006b) study, but not in the Abrahamse (2010) study.

Abrahamse et al. (2010) argued that this idea converges with findings from studies examining
the role of response-effect learning in sequence learning: Response-effect learning is considered
to be represented by bidirectional R–S associations (Koch, Keller, & Prinz, 2004), and
therefore also involves representations that contain both stimuli and responses. In these
studies, explicit sequence knowledge is typically very high, and participants who learn
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response effects typically show the highest learning scores (Ziessler & Nattkemper, 2001;
cf. Abrahamse et al., 2010). Recently, Esser and Haider (2018) found that response effects
benefited the acquisition of explicit sequence knowledge. Accordingly, these findings might be
interpreted as another indication that representations containing both stimuli and responses
benefit the acquisition of explicit sequence knowledge.

In contrast to this reasoning, other authors argued that response-selection processes play a
role in implicit sequence learning, but are overcome as soon as participants acquire explicit
sequence knowledge: In Experiment 2 of Koch (2007), participants responded to symbols
(instead of stimulus locations) that were presented either at compatible or incompatible screen
locations. Stimulus locations produced a Simon effect (i.e., slower responses for incompatible
compared to compatible locations), that diminished over the course of sequence learning in
sequenced compared to random blocks. Moreover, participants who were post-hoc classified
as having acquired explicit sequence knowledge showed a reduced Simon effect compared
to participants who had not acquired explicit sequence knowledge. In his Experiment 3,
instructing the sequence to participants prior to the SRTT almost completely eliminated
the Simon effect for sequenced materials, while it reappeared in a random block at the
end of training. Koch (2007) explained these findings as evidence that the acquisition (or
instruction) of explicit sequence knowledge caused a shift from stimulus-based to motor-based
action control — he concluded that “forming an explicit representation of the sequence can
reduce the influence of stimulus information on response selection”. Similar results were
reported by Tubau and López-Moliner (2004), who also observed a reduced Simon effect in
post-hoc classified explicit learners. In line with this reasoning, Haider et al. (2011) found
that participants who acquired explicit sequence knowledge showed an abrupt increase of
response speed during the SRTT; after such an increase in response speed, participants also
showed a reduced Stroop-congruency effect. They interpreted these findings as an indication
that the acquisition of explicit sequence knowledge induced a switch from stimulus-driven to
top-down processing.

Problems of assessing the role of response-selection processes. Studies manipu-
lating S–R compatibility to investigate the role of response selection in implicit sequence
learning all suffer from the same epistemological problem: manipulating S–R compatibility
might change the mode of processing during the SRTT, emphasizing response-selection
processes, and thereby bolstering the influence of these. Therefore, experimental designs
manipulating S–R compatibility might not be suitable to study the processes that are
typically involved in a standard SRTT (Clegg, 2005). Dual-task designs may suffer from
a similar problem, as it has been noted that participants tend to try to integrate both
tasks, thereby changing the involved processes and/or representations (the task integration
hypothesis, Schmidtke & Heuer, 1997; see also, Röttger, Haider, Zhao, & Gaschler, 2017).
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Figure 22 . The diffusion model. On each trial, the decision process (depicted as grey lines)
begins at a starting point that is determined by parameter β. The spread of the thresholds is
determined by parameter α. Evidence is accumulated in a random-walk fashion. Whenever
one of the two thresholds is reached, a decision is made. The average rate of evidence
accumulation is determined by parameter δ. The decision process is preceded by stimulus
encoding and succeeded by response execution, the duration of both processes is captured
by nondecision time τ . This basic diffusion model may be extended by response-execution
bias ξ and intertrial variabilites for each of the core parameters.

Voss et al. (2013b) addressed a similar problem in semantic and categorical priming: A
common strategy to investigate the underlying processes of both phenomena has been to
manipulate the task that has to be performed on the targets (e.g., pronunciation instead of
lexical-decision task). However, such manipulations of the task that are aimed at controlling
or eliminating the influence of specific processes might not only affect the processes they are
targeted at, but might also change the processes that are elicited by the stimuli. Therefore,
Voss et al. (2013b) proposed a new way of dissociating the effects of stimulus encoding,
response selection, and response execution by combining experimental manipulations with a
diffusion-model analysis. They found that semantic priming was largely driven by response-
selection processes, while categorical priming effects were driven by response competition
(i.e., response conflict or facilitation) at the response-execution stage.

In the present study, we apply this rationale to the SRTT. In the next section, we will
introduce the diffusion model, and show how it can be applied to the SRTT.

The Diffusion Model

The diffusion model (Ratcliff, 1978; Ratcliff & McKoon, 2008; see also Wagenmakers, 2009;
Voss et al., 2013a) is a model of the cognitive processes involved in simple decision tasks,
that has been applied to a wide array of applications in cognitive psychology. It disentangles
the decision process (i.e., response selection) from other nondecision processes like stimulus
encoding and response execution.
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Figure 22 illustrates the diffusion model with its core parameters. The diffusion model
assumes that during the decision process, evidence continuously accumulates until one of
two thresholds is reached. The average rate of evidence accumulation is the drift rate δ,
which is driven by the quality of information available from a stimulus. Decision caution is
captured by boundary separation α, the spread of the two thresholds that are reached by the
decision process. Decision tendencies are captured by bias parameter β, which is the starting
point of the decision process relative to both thresholds. Nondecisional processes, such as
stimulus encoding and response execution, are captured by nondecision time τ . Voss, Voss,
and Klauer (2010) extended the diffusion with an additional parameter, response-execution
bias ξ, that captures differences in response-execution times for responses that correspond to
the upper or the lower threshold: It can, for example, capture differences in execution time
for left or right hands (if one response is mapped to the left hand, the other response to the
right hand). Moreover, in a variety of experimental paradigms, response competition (i.e.,
response facilitation and/or conflict), resulting in different response-execution times for both
responses, are discussed as possible explanations for response-time effects; if such differences
are present in an experiment but are not accounted for, the default diffusion model is unable
to capture the differences adequately. Instead, incorporating response-execution bias into
the model allows for testing contrasting theoretical accounts of a phenomenon. Voss et al.
(2013b) used response-execution bias ξ to dissociate response conflict/response facilitation
from effects on response-selection, measured by changes in drift rate.

Applying the diffusion model to the SRTT

Importantly, nondecision time τ and response-execution bias ξ are conceptually distinct
from response-selection processes, which are mapped onto the diffusion process. If sequence
learning is indeed mediated by response-selection processes, it should be indicated by changes
in the parameters of the diffusion process (i.e., drift rate, bias, or boundary separation);
if, instead, sequence learning relies on noncentral processing stages (stimulus encoding or
response execution), learning should be indicated by changes in nondecision time τ and/or
response-execution bias ξ. If implicit sequence learning is response-based, responses that
adhere to the sequence regularity should be facilitated by reactivation of the rule-adhering
response; if a response is selected that does not adhere to the regularity, conflict with
the pre-activated (rule-adhering) response might occur. If implicit sequence learning is
stimulus-based, stimuli that adhere to the regularity should be encoded more easily; if a
stimulus is presented that does not adhere to the regularity, it should be encoded less easily.

An important difference between the priming studies of Voss et al. (2013b) and a typical
SRTT is that, in an SRTT, there are usually more than two response options. Therefore, it
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is necessary to use accuracy coding, with correct responses mapped to the upper threshold,
and error responses mapped to the lower threshold of the diffusion process. This allows us to
further distinguish the effects of regular vs. nonregular stimuli and of regular vs. nonregular
responses: If a stimulus is presented in a regular location, an upper-threshold (i.e., correct)
response is also regular, leading to response facilitation; a lower-threshold (i.e., error) response
is not regular, leading to response conflict. If, instead, a stimulus is presented in a nonregular
location, an upper-threshold (correct) response is also nonregular, thereby possibly leading
to response conflict; a lower-threshold (error) response that follows the regularity would
result in response facilitation, a lower-threshold response that does not follow the regularity
would result in response conflict. That is, conflict or facilitation at the response level
depends on whether the response that is chosen by the decision process is regular or not.
In contrast, conflict or facilitation at the level of stimulus encoding does not rely on the
response that is chosen by the decision process, but only depends on the stimulus. Therefore,
if accuracy coding with more than two response options is used, conflict/facilitation trials
vs. upper-/lower-threshold trials are deconfounded, and it is possible to disentangle effects
of stimulus encoding and response execution. As a result, an effect of stimulus regularity
indicates conflict/facilitation at stimulus encoding, while an effect of response regularity
indicates conflict/facilitation at response execution. These factors are implemented by
nondecision time being mapped onto stimulus regularity, and response-execution bias being
mapped onto response regularity. Note, however, that both factors are highly correlated
if participants commit relatively few errors; therefore, it may be difficult to distinguish
between the effects of these two factors, empirically.

Overview of the present studies. In the present study, we applied a diffusion model
analysis to the data of two SRTT experiments: In Experiment 1 (published in Barth, Stahl,
& Haider, 2018), we aimed at testing the hypothesis that learning at the response-selection
stage mediates implicit sequence learning. In addition, we aimed to assess possible additional
influences of stimulus-based and response-based learning, allowing for the possibility that
multiple processing stages are influenced by learning of the sequence. To exclude the possibil-
ity that the data were contaminated by explicit sequence knowledge, we assessed participants’
sequence awareness after the SRTT using a post-experimental interview. However, given
the criticism of such measures of sequence awareness, it may be imprudent to conclude that
participants did not acquire explicit sequence knowledge.

Therefore, in Experiment 2, we applied the same diffusion-model analysis to data from
another SRTT experiment where participants showed robust explicit sequence knowledge. If
the analyses of Experiments 1 and 2 showed qualitatively different patterns of results, it
may be warranted to conclude that participants had also acquired qualitatively different
types of sequence knowledge. However, if the patterns of results only differ by effect size,
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that would be an indication that the acquired sequence knowledge is qualitatively the same.
Moreover, if the acquisition of explicit sequence knowledge is indeed accompanied by a shift
from stimulus-based to plan-based action control as suggested by Koch (2007) and Haider et
al. (2011), this should reduce or eliminate effects on response selection.

Experiment 1

In Experiment 1, participants worked on an SRTT that employed a probabilistic sequence
of stimulus locations, stimulus material that is typically considered to generate robust
implicit, but no explicit knowledge. If learning at the stage of response selection mediates
this type of learning, this should be indicated by higher drift rates for regular compared
to nonregular transitions. Learning at noncentral processing stages should be indicated by
differences in nondecision time (for learning at the stage of stimulus encoding), or effects on
response-execution bias (for response competition attributable to learning).

Method

Design. The study realized an 8 (Block number) × 2 (FOC transition status: regular
vs. nonregular) design with repeated measures on both factors.

Participants. One hundred and forty-seven participants (113 women) aged between 17
and 55 years (M = 23.7 years) completed the study. Most were undergraduates from
Heinrich-Heine-Universität Düsseldorf. They received either course credit or 3.50 Euro for
their participation.23

Materials. A probabilistic sequence was generated from the first-order conditional (FOC )
sequence 2− 6− 5− 3− 4− 1. With a probability of .6, a stimulus location was followed by
the next location from this sequence; otherwise, another stimulus location was randomly
chosen from a uniform distribution. There were no direct repetitions of response locations.

Procedure. The experiment consisted of three consecutive parts: Participants first worked
on an SRTT, followed by a generation task and, finally, a debriefing phase. Participants
performed an SRTT consisting of eight blocks with 144 trials each (for a total of 1,152
responses). SRTT and generation task were run on 17" TFT monitors (with a screen
resolution of 1,024 px × 768 px). The viewing distance was approximately 60 cm. A
horizontal sequence of six white squares (56 px) was presented on a gray screen. The
distance between squares was 112 px. Each screen location corresponded to a key on a

23The present research used procedures that are exempt from mandatory formal ethical approval under
the ethical guidelines of the Deutsche Gesellschaft für Psychologie.
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QWERTZ keyboard (from left to right Y, X, C, B, N, M). Participants had to respond
whenever a square’s color changed from white to red by pressing the corresponding key.
They were instructed to place the left ring-, middle- and index fingers on the keys Y, X and
C. The right index-, middle- and ring fingers were to be placed on keys B, N and M. There
was no time limit for responses in the SRTT (nor in the generation task). A warning beep
indicated an incorrect response. The response-stimulus interval (RSI) was 250 ms; there
were no pauses within a single learning block.

Following the SRTT, participants were told that stimulus locations had followed an underlying
sequential structure (but were not informed about the exact sequence). They were then
asked to try to generate a short sequence of six locations that followed this structure. The
generation task followed, consisting of two generation blocks involving either inclusion or
exclusion instructions. Results from the generation task will not be analyzed here, but see
Barth, Stahl, and Haider (2018, Exp. 1), for details. Importantly, some participants received
additional explicit sequence knowledge during this phase of the study. Upon completing
the computerized task, participants were asked to complete a questionnaire containing the
following items (translated from German): (1) “One of the tasks mentioned a sequence
in which the squares lit up during the first part of the study. In one of the experimental
conditions, the squares did indeed follow a specific sequence. Do you think you were in this
condition or not?”, (2) “How confident are you (in %)?”, and (3) “Can you describe the
sequence in detail?”. Subsequently, participants were asked to indicate, for each of the six
response keys, the next key in the sequence on a printed keyboard layout and to indicate
how confident they were in this decision. Finally, participants were thanked and debriefed.

Data analysis. All analyses were performed using the R software24 and JAGS (Plummer,
2015). For repeated-measures ANOVAs, Greenhouse-Geisser-corrected degrees of freedom
are reported.

For the diffusion model analyses, reaction times tn and accuracy-coded responses yn (correct
responses were coded as upper threshold responses, incorrect responses were coded as lower
threshold response) on trial n were modeled as a function of a Wiener process,

(tn, yn) ∼Wiener (αijk, βijk, δn, τn)

where boundary separation α and decision bias β varied as a function of participant i, block
number j, and transition status k. Drift rate δn and nondecision time τn were estimated
trialwise.

24We used R (Version 3.6.1; R Core Team, 2018) and the R-packages afex (Version 0.24.1; Singmann et al.,
2018), papaja (Version 0.1.0.9842; Aust & Barth, 2018), and runjags (Version 2.0.4.4; Denwood, 2016).
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Boundary separation α of participant i for block j and FOC transition status k was modeled
by

αijk ∼ NI(′,∞)
(
µ

(α)
jk , σ

(α)
)

Decision bias β of participant i for block j and FOC transition status k was modeled by

Φ−1 (βijk) ∼ N
(
µ

(β)
jk , σ

(β)
)

where Φ−1 denotes the inverse of the standard normal cumulative distribution function (i.e.,
the probit).

Drift rate was estimated for each trial n, where

δn ∼ N (νijk, ηijk)

The intertrial variability of drift rate η was modeled by

ηijk ∼ Γ
(
µ

(η)
jk , σ

(η)
)

The average drift rate for participant i for block j and FOC transition status k was modeled
by

νijk ∼ N
(
µ

(ν)
jk , σ

(ν)
)

Nondecision time was estimated for each trial n,

τn ∼ NI(.1,.9) (θijk + bξij , χi)

, where b = 1 for response-conflict trials and b = −1 for response-facilitation trials. Note that,
given this implementation, for each participants i within each block j, four different means
of nondecision times are estimated: One for regular stimuli that were followed by a regular
response (i.e., encoding and response facilitation), one for regular stimuli that were followed
by a nonregular response (i.e., encoding facilitation, but response conflict), one for nonregular
stimuli followed by a nonregular response (i.e., encoding “conflict” and response conflict),
and one for nonregular stimuli followed by a regular response (i.e., encoding “conflict”, but
response facilitation).

The intertrial variability of nondecision time χ was given by

χi ∼ NI(0,∞)
(
µ(χ), σ(χ)

)
The stimulus-specific nondecision time for participant i, block j, and FOC transition status



122 Cognitive Processes in Implicit and Explicit Sequence Learning

k was given by
θijk ∼ N

(
µ

(θ)
jk , σ

(θ)
)

Response conflict ξ was modeled by

ξij ∼ N
(
µ

(ξ)
j , σ(ξ)

)

The main effect of FOC transition status is then given by ζ(α) = 1
J

∑J
j=1 ∆µ(α)

j .

To assess an interaction of block number and FOC transition status, we calculated linear
trends for the blockwise differences of parameter means

ψ(α) =

 J∑
j=1

cj

−1
J∑
j=1

cj(µ(α)
j,regular − µ

(α)
j,nonregular)

where c = (−7,−5,−3,−1, 1, 3, 5, 7).

For post-hoc comparisons, we also computed, within each of the learning blocks, the posterior
differences between the estimated condition means for regular compared to nonregular
transitions. If the posterior of these difference parameters does not contain zero, this can be
interpreted in favor of an effect of FOC transition status on the respective parameter.

Results

We first analyzed reaction times and error rates to determine whether sequence learning
occurred. We then assessed whether sequence knowledge remained implicit by analyzing the
forced-choice data from the postexperimental interview. Finally, we analyzed reaction times
and responses with a hierarchical Bayesian diffusion model.

Reaction times. Figure 23 shows reaction times from Experiment 1. We conducted a 8
(Block number) × 2 (FOC transition status: regular vs. nonregular) ANOVA that revealed a
main effect of block number, F (4.09, 597.64) = 63.23, MSE = 2, 655.75, p < .001, η̂2

G = .043,
RTs decreased over blocks; a main effect of FOC transition status, F (1, 146) = 629.78,
MSE = 1, 220.90, p < .001, η̂2

G = .047, RTs were shorter for regular compared to nonregular
transitions; and an interaction of block number and FOC transition status, F (6.48, 945.44) =
32.57, MSE = 345.99, p < .001, η̂2

G = .005, indicating learning of the sequence.

Error rates. Figure 23 shows error rates from Experiment 1. We conducted a 8 (Block
number) × 2 (FOC transition status: regular vs. nonregular) ANOVA that revealed a main
effect of block number, F (6.12, 894.24) = 10.17, MSE = 8.47, p < .001, η̂2

G = .018, error
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Figure 23 . Left panel: RTs from Experiment 1, split by block number and FOC transition
status. Right panel: Error rates from Experiment 1, split by block number and FOC transition
status. Error bars represent 95% within-subjects confidence intervals.

rates increased over blocks; a main effect of FOC transition status, F (1, 146) = 189.18,
MSE = 12.78, p < .001, η̂2

G = .078, more errors were committed for nonregular compared
to regular transitions; and an interaction of block number and FOC transition status,
F (6.63, 967.32) = 6.18, MSE = 7.10, p < .001, η̂2

G = .010, indicating learning of the
sequence.

Explicit sequence knowledge. To assess whether participants acquired explicit sequence
knowledge, we analyzed data from the postexperimental interview only of those participants
who did not receive further information on the sequence during the generation task: Chance
level for this task may be considered to be .25, because there were no direct repetitions in the
stimulus materials, all participants were discouraged to generate repetitions, and participants
tend to generate reversals at below-chance levels (Stahl et al., 2015). Participants chose
the correct location at chance levels, M = 0.26, 95% CI [0.20, ∞], t(28) = 0.34, p = .369
(one-sided). Therefore, we conclude that sequence knowledge remained largely implicit in
this experiment.

Diffusion-model analysis. Figure 24 shows parameter estimates from the diffusion
model.

Boundary separation α was unaffected by FOC transition status, neither the main-effect
contrast, ζ(α) = 0.03, 95%HDI[0.00, 0.05], p = .044, nor the interaction, ψ(α) = 0.00,
95%HDI[0.00, 0.01], p = .430, differed from zero. Decision bias β was unaffected by FOC
transition status, ζ(β) = 0.01, 95%HDI[0.00, 0.03], p = .140, ψ(β) = 0.00, 95%HDI[0.00, 0.00],
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Figure 24 . Parameter estimates from Experiment 1. Dots represent posterior means,
densities represent posterior densities. Bayesian p values indicate whether the posterior
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p = .312.

Drift rate ν varied as a function of FOC transition status, ζ(ν) = 0.49, 95%HDI[0.34, 0.62],
p < .001, but did not enter an interaction with block number, ψ(ν) = 0.02, 95%HDI[0.00, 0.04],
p = .109. Post-hoc analyses of blockwise differences showed increased drift rates for regular
compared to nonregular transitions for all except the first learning block;

Nondecision time θ was lower for regular compared to nonregular transitions, ζ(θ) = −9.67,
95%HDI[−14.49,−5.15], p < .001, indicating faster stimulus encoding for regular transitions,
and also entered an interaction with block number, ψ(θ) = −1.44, 95%HDI[−2.41,−0.38],
p = .006, indicating that this effect increased over learning blocks.

Response competition ξ was greater than zero, ζ(ξ) = 14.91, 95%HDI[11.22, 18.30], p < .001,
but did not enter an interaction, ψ(ξ) = 0.82, 95%HDI[0.15, 1.40], p = .020. Analyzed
separately for each block, response competition was always above zero descriptively, with
one-sided Bayesian p values varying around conventional levels such as .05.

Discussion

In Experiment 1, participants worked on an SRTT where stimuli followed a probabilistic
6-item sequence, stimulus material that is considered to produce implicit, bot not explicit
sequence knowledge. Separate analyses of response times and error rates provided evidence
for robust sequence learning. In a postexperimental interview, participants were not able
to recollect any explicit sequence knowledge above chance, indicating that the acquired
sequence knowledge remained implicit.

Analyzing response times and response identities jointly with a diffusion model, we found
that sequence learning was accompanied by changes in drift rate, nondecision time, and
response-execution bias, while boundary separation and decision bias remained unaffected.
Higher drift rates for regular compared to nonregular transitions indicate that response-
selection processes partially mediated sequence learning. These differences in drift rate were
already present during the second SRTT block. Above-zero response-execution bias indicates
that facilitation and/or conflict at the response-execution stage also mediated performance
effects in the present experiment. This effect also appeared early in training, and (with the
exception of the second block) was relatively constant across the whole training. Differences
in nondecision time between regular and nonregular stimuli increased over training. The
interpretation of this effect is not clear-cut: it might either indicate facilitation or conflict
at the processing-stage of stimulus encoding, or might be a spillover effect from response
competition (because we used effect coding for response-execution bias µ(ξ) and thus assumed
that response facilitation and conflict are of equal size).
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To summarize, Experiment 1 indicated that implicit sequence learning is mediated by
both response-selection processes, but also noncentral processes (stimulus encoding and/or
response execution). Both findings converge with the idea that it is not a single type
of association that is formed during implicit sequence learning, but that the acquired
representations contain information about both stimuli and responses.

Experiment 2

The aim of Experiment 2 was to explore qualitative changes in patterns of diffusion-model
parameters that are associated with the acquisition of explicit, compared to implicit, sequence
knowledge. For this purpose, we reanalyzed a data set that was originally collected for the
same project as Experiment 1; it remained unpublished, because participants had acquired
significant amounts of explicit sequence knowledge during the SRTT.

Method

Design. The study realized an 8 (Block number) × 2 (FOC transition status: regular
vs. nonregular) × 3 (material: sequenced, permuted, random) design with repeated measures
on the first two factors. Only results from the sequenced group will be reported here.

Participants. One hundred and forty-six participants (105 women) aged between 17 and
48 years (M = 24 years) completed the study. Most were undergraduates from University of
Cologne. Participants were randomly assigned to experimental conditions. They received
either course credit or 3.50 Euro for their participation.

Materials and Procedure. The experimental procedure was identical to the procedure
of Experiment 1, except for the following changes: Participants responded either to a random
sequence of stimulus locations, or to a mixed-deterministic sequence, where runs of 15
or 22 stimulus locations followed a deterministic 6-item first-order conditional sequence
(individually generated for each participant), that was interspersed with runs of pseudoran-
dom transitions. Similar to Experiment 1, approximately 60% of transitions followed the
deterministic sequence. There were neither direct repetitions nor reversals present in the
stimulus material. Stimuli were presented on 17" CRT monitors running at 100 Hz.

Results

We first analyzed reaction times and error rates to determine whether sequence learning
occurred. We then assessed whether participants showed explicit sequence knowledge in the
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Figure 25 . Left panel: RTs from Experiment 2, split by block number and FOC transition
status. Right panel: Error rates from Experiment 2, split by block number, FOC transition
status. Error bars represent 95% within-subjects confidence intervals.

forced-choice data of the postexperimental interview. Finally, we analyzed reaction times
and responses with a hierarchical Bayesian diffusion model.

Reaction times. Figure 25 shows reaction times from Experiment 2. An 8 (Block number)
× 2 (FOC transition status: regular vs. nonregular) ANOVA revealed a main effect of block
number, F (4.04, 194.09) = 4.82, MSE = 4, 171.31, p = .001, η̂2

G = .006, RTs decreased over
blocks; a main effect of FOC transition status, F (1, 48) = 144.32, MSE = 7, 368.31, p < .001,
η̂2
G = .073 RTs were shorter for regular compared to nonregular transitions; and an interaction

of block number and FOC transition status, F (6.19, 297.21) = 5.13, MSE = 603.89, p < .001,
η̂2
G = .001, indicating learning of the sequence.

Error rates. Figure 25 shows error rates from Experiment 2. We conducted an 8 (Block
number) × 2 (FOC transition status: regular vs. nonregular) ANOVA that revealed a main
effect of FOC transition status, F (1, 48) = 84.71, MSE = 25.94, p < .001, η̂2

G = .143,
participants committed less errors on regular compared to nonregular transitions; and an
interaction of block number and FOC transition status, F (5.55, 266.16) = 0.74, MSE =
10.19, p = .604, η̂2

G = .003, the effect of FOC transition status increased over blocks,
indicating learning of the sequence. The main effect of block number was not significant,
F (5.11, 245.16) = 1.10, MSE = 13.45, p = .359, η̂2

G = .006.

Explicit knowledge. To assess whether participants had acquired explicit sequence
knowledge during the SRTT, we analyzed data from the postexperimental interview only
of those participants who did not receive further information on the sequence during the
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generation task: Chance level for this task may be considered to be .25, because there
were neither direct repetitions nor reversals in the stimulus materials; all participants were
discouraged to generate repetitions, and participants tend to generate reversals at below-
chance levels (Stahl et al., 2015). Participants chose the correct location above chance
levels, M = 0.44, 95% CI [0.25, ∞], t(15) = 1.76, p = .049. Therefore, we conclude that
participants acquired at least some amounts of explicit sequence knowledge.

Diffusion-model analysis. Figure 26 shows parameter estimates from Experiment 2.

We calculated contrasts ζ for main effects and ψ for interactions as in Experiment 1.
Contrasts ζ indicated no main effects on boundary separation α, intertrial variability of drift
rate η, and nondecision time θ (all Bayesian ps ≥ .103).

We found a main effect on drift rate, ζ(ν) = 0.16, 95%HDI[0.01, 0.31], p = .027, indicating
faster response selection for regular transitions; however, post-hoc analyses of blockwise
differences revealed that this main effect was largely driven by an elevated drift rate for regular
transition during the first learning block; afterwards, the difference in drift rate disappeared.
We found no linear trend for the differences ‘ψ(ν) = −0.02, 95%HDI[−0.05, 0.01], p = .119.

A similar pattern was found for response-execution bias ξ: Overall, response-execution
bias was above zero, ζ(ξ) = 5.75, 95%HDI[1.41, 11.82], p = .016. This main effect was
qualified by an interaction of FOC transition status and block number, ψ(ξ) = −2.61,
95%HDI[−3.77,−1.38], p < .001. Inspecting the blockwise effects, it is obvious that main
effect and interaction are largely driven by a pronounced effect in the first block that
disappeared over training. As of the second block, response-execution bias was not different
from zero.

In contrast, we found a main effect on decision bias β, ζ(β) = 0.13, 95%HDI[0.11, 0.15],
p < .001, and also an interaction with block number, ψ(β) = 0.01, 95%HDI[0.01, 0.01],
p < .001. Post-hoc comparisons revealed that participants were strongly biased towards
regular responses as soon as during the second learning block (all Bayesian ps < .001).

Discussion

In Experiment 2, participants worked on an SRTT where stimuli followed a mixed-
deterministic 6-item sequence, stimulus material that is considered to more likely produce
explicit sequence knowledge, Separate analyses of response times and error rates provided
evidence for sequence learning. In a postexperimental interview, participants were able to
recollect explicit sequence knowledge above chance, indicating that participants acquired
some explicit knowledge about the underlying sequence.
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Analyzing response times and response identities jointly with a diffusion model, we found that
learning was expressed by an increasing decision bias towards regular responses. Moreover,
effects on nondecision time and drift rate that we observed in Experiment 1 were not observed,
or disappeared early in training. Both findings may indicate a shift from stimulus-based to
anticipatory responding, as suggested by Koch (2007). It is plausible that, in the presence
of an explicit sequence representation and predictable stimuli, the response-selection (i.e.,
diffusion) process starts even before the respective stimulus is presented. Such an earlier
starting point would likely translate into a decision bias as we observed in this study.

In addition to effects on decision bias, in the first learning block of Experiment 2, the
diffusion model indicated a strong response conflict of approximately 40 ms. While we did
not predict this result, it is in line with theories that assume that explicit sequence knowledge
emerges from conflicts between expected and actually performed behavior (the Unexpected-
Event Hypothesis, Haider & Frensch, 2009; Rünger & Frensch, 2008). The observed response
conflict disappeared after the fist block; moreover, learning at the response-selection stage (as
indicated by an effect on drift rate) could be observed in the first block, but also disappeared
thereafter. Both findings might be explained by Koch (2007)’s idea that explicit sequence
knowledge overrules the expression of implicit sequence learning, which would otherwise be
expressed by changes in drift rate and response competition.

General Discussion

We reanalyzed data from two SRTT experiments with a diffusion model. In both experiments,
performance data (reaction times and error rates) indicated robust learning of the sequences.
In Experiment 1, where participants worked on a probabilistic sequence, sequence knowledge
remained largely implicit, as indicated by at-chance generation performance in a postexper-
imental interview. In Experiment 2, where participants worked on a mixed-deterministic
sequence, participants acquired at least partial explicit sequence knowledge, as indicated by
above-chance generation performance in a postexperimental interview.

The diffusion-model analysis indicated that the expression of implicit sequence learning was
mediated by faster response selection, response competition and faster stimulus encoding.
This finding converges with the idea that both stimulus and response information is ac-
quired implicit sequence learning; crucially, a mediating role of response selection indicates
that stimulus and response features are not represented independently, but in a common
representational code.

In Experiment 2, explicit sequence knowledge was largely expressed by a decision bias
towards regular responses. Effects on stimulus encoding and response execution were absent
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or disappeared during the first few learning blocks. Before turning to the theoretical
implications of our findings, we first discuss potential limitations to our study.

Limitations

The diffusion model has been successfully applied to a wide variety of performance tasks in
psychology, and the validity of its parameters has been extensively tested in many paradigms
using experimental manipulations (e.g., Voss, Rothermund, & Voss, 2004; Boywitt & Rummel,
2012); moreover, its parameters could be successfully related to other behavioral (e.g., eye
tracking) and neurophysiological measures (EEG, fMRI, single-cell recordings) (for a review,
see Ratcliff et al., 2016).

Its success as a model of speeded response tasks makes it an excellent candidate model
for measuring SRTT performance and to disentangle decision processes from nondecisional
processes involved. The present study provides a first application of the diffusion model to
the SRTT; in order to show that its interpretation is valid in this paradigm, it needs to be
applied more frequently, and to be combined with experimental manipulations or related to
other measures. Alternative architectures (e.g., linear ballistic accumulators, Donkin et al.,
2009) are possible and should be considered; however, given the extant evidence in favor of
the diffusion model’s validity, and the availability of fitting procedures, we deem it to be a
good starting point for further investigation.

Performance data might not indicate differences in learning, but in the expres-
sion of knowledge. Frensch, Lin, and Buchner (1998) discussed the fundamental problem
that performance data from the SRTT cannot be interpreted directly as evidence for or
against effects on learning per se: It is always possible that a manipulation only affects the
expression, but not the acquisition, of sequence knowledge. This problem also applies to the
diffusion-model analyses presented in this study, and further work is needed to disentangle
the acquisition of sequence knowledge from its expression.

Qualitative differences might be based on predictability of next stimulus, not
implicit/explicit distinction. In Experiment 2, we used a deterministic instead of
a probabilistic sequence, and expected higher degrees of explicit sequence knowledge if
participants worked on deterministic materials. However, it is possible that qualitative
differences between the patterns of results in Experiments 1 and 1 cannot be attributed to the
distinction of implicit vs. explicit sequence knowledge: instead, the probabilistic materials
that we used in Experiment 1 might not have encouraged participants to anticipate the
next stimulus or response, because only 60% of trials were indeed regular. In contrast, the
mixed-deterministic materials in Experiment 2 might have encouraged a different strategy:
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While the rate of regular trials was approximately the same, arranging trials in runs of
multiple consecutive regular or nonregular trials provides participants with some additional
information: If participants are able to detect differences between runs of regular and
nonregular trials (e.g., by detecting changes of fluency), they might exploit that additional
information, and extract knowledge about “fluent” trials (e.g., “1–2”) and “non-fluent” trials
(e.g., “totally random”). If participants acquired such knowledge, this might have encouraged
anticipating consecutive stimuli and/or responses with regular runs. Haider et al. (2005)
already provided evidence that participants only apply such a strategy if the sequence
reliably predicts future events.

Processing stages might be organized in parallel. It has been argued that the
processing stages involved in sequence learning might be organized in parallel (Hazeltine &
Schumacher, 2016; Schumacher & Hazeltine, 2016; Verwey, 2003). If this is indeed the case,
the diffusion model might be unfit to describe these processes, especially if information is
shared or exchanged between processes. However, such a misfit between model assumptions
and the processes involved in task performance are likely to be detectable by further
model-validation efforts.

For sequentially presented stimuli, processing might start even before a stimu-
lus is presented. The diffusion model was originally developed for two-choice speeded
responses to single stimuli. Applying the diffusion model to sequentially presented stimuli,
it is possible that the diffusion process starts even before the stimulus on a given trial is
presented: Evidence accumulation could start, for instance, after the response of the last
trial was executed. This would result in a bias towards the rule-adhering response option (cf.,
Mulder, Wagenmakers, Ratcliff, Boekel, & Forstmann, 2012), but also in a change of drift
rate as soon as the stimulus of the current trial is encoded and starts informing the diffusion
process. This change of drift rate cannot be measured given the present implementation
as a single-step decision process; if one was interested in the drift rate before a stimulus
was presented, this would require an additional modification of the model with multiple
contiguous diffusion processes. However, this problem is not unique to our study, but also
applies to the study by Voss et al. (2013b), where primes and targets had a stimulus-onset
asynchrony (SOA) of 250 ms.

Implications

Early accounts of implicit sequence learning assumed that it is a single type of simple
association that is acquired in implicit learning; however, after more than 30 years of
research on the topic that provided equivocal or contradictory results, sometimes providing
evidence in favor of a specific type of representation, sometimes against such a representation,
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it is evident that such a position is untenable. Abrahamse et al. (2010) tried to reconcile
these findings by proposing a multi-level account of implicit sequence learning, assuming
that at least three types of associations may be formed; what type of representation may
depend on task set and attentional processes. Opposing views have been formulated by
Hazeltine and Schumacher (2016) and Eberhardt et al. (2017); both accounts assume that
the representations that are acquired in implicit sequence learning are more complex than
simple associations, and importantly, always contain information about both stimuli and
responses.

The present study investigated the processing stages that are involved in the expression
of implicit sequence learning, and found a mediating role of both peripheral (stimulus
encoding and response execution) and central (response-selection) processes. Because
response selection necessarily depends on both stimulus and response information, this
finding provides evidence that the representations acquired in implicit learning contain both
stimulus and response features. The experimental designs employed here do not allow us to
further distinguish between S–R associations, R–S associations, task files, or abstract feature
codes. However, combined with experimental manipulations, the diffusion model proposed
here may be used in future research to distinguish between these opposing views, which will
be elaborated below. Importantly, this is the first study to demonstrate a mediating role of
response selection that did not manipulate the difficulty of response selection by changing
S–R mappings or adding a secondary task to the SRTT — both manipulations that haven
been criticized for possibly changing the processes involved in performing the SRTT.

In addition to an involvement of response selection, we also found effects of learning on
stimulus encoding and response competition. At least two possible explanations for these
effects are plausible: These processes might simply be able to access the same representations
that underlie response-selection effects; alternatively, it is possible that these effects are
indeed mediated by simple R–R and S–S associations. Such independent (i.e., encapsulated)
learning mechanisms are compatible with both Abrahamse et al. (2010)’s multiple-level
view, and also the multiple-systems model proposed by Keele et al. (2003).

Explicit sequence knowledge was largely expressed by a decision bias towards regular
responses. This finding might be explained by a change from stimulus-based to plan-based
action control, as it has been suggested by Koch (2007) and Haider et al. (2011). Consider
a participant who acquired explicit sequence knowledge and also an intuition that some
consecutive trials are highly predictable, while other consecutive trials are not. It is plausible
that under such conditions, participants already prepare a decision for the regular response
option.

Interpreting the diffusion-model parameters verbatim, our results indicate that it is not a
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response that is prepared, which would be indicated by response-competition parameter
ξ; instead, a decision is prepared by adjusting the starting point of the decision process
towards the expected threshold. Therefore, this effect is best interpreted as a switch to
plan-based, not motor-based, action control.

Importantly, in Experiment 2, we did not find an involvement of drift rate, response execution
bias, or nondecision time in the expression of sequence knowledge. Still, this is in line with
Koch (2007), who suggested that the acquisition of explicit sequence knowledge overrules
the expression of implicit sequence knowledge. It is not clear whether participants did not
acquire implicit knowledge or did not express it.

In our study, we did not find evidence for Abrahamse et al. (2010)’s speculation that it
is possibly explicit, but not implicit, sequence learning that is mediated by learning at
the response-selection stage. In contrast, we found effects on response selection (indicated
by differences in drift rate) in Experiment 1, where participants acquired implicit, but
no robust explicit sequence knowledge. In Experiment 2, where we found evidence for
participants having acquired at least some explicit sequence knowledge, the effect on drift
rate disappeared after the first learning block.

A secondary finding of Experiment 2 was that an initially large effect of response competition
was apparent in the first training block, but disappeared over the course of learning. While we
did not anticipate this effect, we interpret this finding as evidence in favor of the Unexpected-
Event Hypothesis (Haider & Frensch, 2009; Rünger & Frensch, 2008), which states that
conflicts between predicted and actually performed behavior trigger the search for regularity
in stimulus materials, and thereby bolsters the acquisition of explicit sequence knowledge.

Outlook

The diffusion model introduced here may be combined with experimental manipulations to
further investigate the representational basis of implicit learning.

For instance, Goschke and Bolte (2012) showed concurrent learning of both a stimulus
and an uncorrelated response sequence, a finding that was interpreted as evidence against
an involvement of central processes in implicit learning, because it is plausible that such
uncorrelated sequences might cause interference at central processing stages. Combining
such concurrent learning with a diffusion-model analysis would be informative for at least
two reasons: First, it could be tested whether uncorrelated sequences indeed eliminate or
hamper the effect of learning at the response-selection stage. Second, if the parameters of
stimulus encoding (i.e., nondecision time θ) selectively varied with stimulus regularity, and
parameters of response competition (i.e., response-execution bias ξ) selectively varied with
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response regularity, this provided evidence for encapsulated learning at these noncentral
processing stages. If, instead, these noncentral processing stages varied as a function of both
sequences, this provided evidence for commonly coded representations that are also accessed
by these noncentral processes.

Another interesting finding was provided by Gaschler, Frensch, Cohen, and Wenke (2012),
who showed that, even under exactly the same learning conditions, the type of representation
that is acquired in an SRTT depends on what type of information participants are instructed
to respond to. If the representations that underlie learning effects at noncentral processing
stages are encapsulated and independent of instructed task set (as implied by multiple-
systems model by Keele et al., 2003), stimulus encoding and response competition should be
independent of instructed task set; if both processes were affected by task set, this would
again provide evidence for a common representation.

Conclusion

Recent theoretical work on implicit sequence learning proposes that stimulus and response
features are represented in a common representational code. To investigate the issue, it is
helpful to consider the cognitive processes involves in performing the SRTT: While stimulus
encoding and response-execution may be mediated by separate representations of stimulus and
response features, learning at the response-selection stage necessarily relies on representations
containing both stimulus and response features. Using a diffusion-model analysis, we were
able to disentangle the contributions of response selection, stimulus encoding, and response
competition in the expression of sequence learning without manipulating S–R mappings
or introducing a secondary task, both manipulations that have been criticized for their
unpredictable effects on task representation and the processes involved.

We found that the expression of implicit sequence learning is partially mediated by response-
selection processes, indicating that the representations acquired in implicit sequence learning
contain information about both stimuli and responses. In addition, we found indications
of implicit sequence learning at the processing stages of stimulus encoding and response
execution — whether these effects rely on the same representations as response selection
remains an open question.

The acquisition of explicit sequence knowledge was accompanied by indications of anticipatory
responding that eliminated observable effects on other possible processes. Whether or not
sequence learning at other processing stages does not occur in the presence of explicit sequence
knowledge or is simply not expressed in the performance data remains an unresolved issue.

Diffusion models have been successfully applied to a variety of cognitive tasks, and furthered
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the understanding of the processes that are involved in these tasks. The present study
introduced the diffusion model to the SRTT; combined with experimental manipulations, it
may prove a useful tool to disentangle the possibly multiple processes at work in sequence
learning, and to test new predictions from the theoretical frameworks discussed.
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Chapter V

General Discussion

Using measurement models of task performance, the present studies investigated two ques-
tions in the study of sequence learning: Is there evidence for sequence learning that proceeds
without awareness, and which processes mediate the expression of implicit and explicit
sequence knowledge in the SRTT?

In Chapter II and III, we tested the assumptions of the process-dissociation (PD) approach as
applied to the generation task. We found that the assumptions of equal baselines for inclusion
and exclusion task (Chapter II), the monotonicity assumption, and the invariance assumption
were violated (Chapter III). Each of these violations has the potential of overestimating
implicit, and underestimating explicit sequence knowledge.

In Chapter IV, we applied a diffusion model to task performance in the SRTT. We found
that the expression of implicit sequence learning was mediated by stimulus-encoding and
response-execution, but also response-selection processes. The latter finding is indicative
for a common coding of stimulus and response features in implicit sequence learning. In
contrast, explicit sequence knowledge was expressed by a decision bias towards the regular
response option, indicating that the acquisition of explicit sequence knowledge caused a shift
from stimulus-based to plan-based action control.

Implications for theories of sequence learning

Ever since its introduction by Nissen and Bullemer (1987), sequence learning in the SRTT
has been considered a key demonstration of learning that can occur incidentally and without
awareness. Claims about the implicit nature of the acquired knowledge were largely founded
on a simple logic of dissociation that contrasted performance gains in the SRTT with
subsequent measures of awareness. However, the logic of dissociation has been heavily
criticized, and, for the host of its problematic assumptions, is now considered insufficient for
providing evidence for learning that occurs in the absence of awareness.

Destrebecqz and Cleeremans (2001) introduced the process-dissociation procedure to the
generation task, and provided evidence for implicit sequence learning without relying on the
assumptions of the dissociation logic. Therefore, studies that applied the PD approach to the
generation task have been considered the most evidential result in favor of implicit sequence
learning. However, the PD approach comes with its own set of critical assumptions. The
experiments presented in Chapters II and III tested these assumptions, finding that they are
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violated in applications to sequence learning. Taking these violations of basic assumptions
into account, the evidence for implicit learning has to be reevaluated: If anything, the results
reported here support the presence of explicit knowledge and call into question the presence
of implicit knowledge. Given the problematic assumptions of other approaches relying on
the logic of dissociation, the field of implicit learning is still lacking unequivocal evidence for
purely implicit learning.

In Chapter IV, we found that the expression of implicit sequence knowledge is mediated
by both noncentral processes (stimulus encoding and response execution), but also central
response-selection processes. Early accounts of implicit sequence learning assumed that it
is mediated by the formation of a single type of simple associations between consecutive
stimulus features, response features, or both. An involvement of response-selection processes
in the expression of sequence is incompatible with accounts that assume that only R–R
associations, or only S–S associations are formed during implicit sequence learning. Instead,
it converges with recent ideas of Schumacher and Hazeltine (2016; see also, Hazeltine and
Schumacher, 2016) and Eberhardt et al. (2017; see also, Esser and Haider, n.d.; Haider et
al., 2018) who assume that implicit sequence learning is mediated by representations that
contain information about both stimulus and response features.

An involvement of noncentral processes in the expression of implicit sequence learning raises
the question whether these processes rely on the same commonly coded representations, or
depend on different representations that contain information of either stimulus features or
response features. Such independent coding would be in line with Keele et al. (2003)’s model
that assumes that implicit learning may proceed in highly encapsulated learning modules.
The acquisition of explicit sequence knowledge resulted in a shift from stimulus-based to
plan-based action control, converging with earlier findings (e.g., Koch, 2007; Tubau, Hommel,
& López-Moliner, 2007).

Methodological implications

In Chapters II and III, we found that the assumptions of the PD approach as applied to
sequence learning are violated. For the parametric PD model, we found that the invariance
assumption for controlled processes was violated with CInclusion > CExclusion, resulting in
an overestimation of implicit, and an underestimation of explicit sequence knowledge. In
addition, the monotonicity assumption of the ordinal-PD approach was also found to be
violated, where an increase in explicit knowledge did not necessarily result in a reduced
number of regular transitions generated under exclusion instructions, (i.e., C1 > C2 did not
imply E(C1) < E(C2)). Both violations have to the potential to cause an overestimation of
implicit sequence knowledge, and an underestimation of explicit sequence knowledge.
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Our results indicating limited validity of the PD approach and its assumptions might lead
one to conclude that measurement models such as the parametric PD model—because of the
host of their possibly violated assumptions—are more problematic than standard statistical
techniques such as linear models, and the adoption of standard techniques is to be preferred.
We consider this conclusion to be false, for the following reasons: In their original study,
Destrebecqz and Cleeremans (2001) adopted an analysis strategy that seemingly avoided
the problematic assumptions of the parametric PD approach that were already discussed,
for instance the independence assumption, by using linear models (i.e., ANOVA) to analyze
their data. This step has been applauded even by outspoken critics of the parametric PD
model (Curran, 2001). However, the entirety of the assumptions underlying the analysis
approach were never made explicit, and not put at a critical test. A possible explanation for
this is the high familiarity of psychologists with analysis strategies such as ANOVA, leading
to an illusion of depth of understanding (Ylikoski, 2009). In contrast, the introduction of PD
model immediately provoked a rich discussion on its assumptions and studies investigating
the identified issues (i.e., the independence assumption). This was only possible because
the PD model is relatively simple and precise, with the model being expressible in two
mathematical equations.

A common research strategy in the sequence learning literature has been to study implicit
and explicit learning in isolation, typically by realizing some experimental conditions that
make the emergence of explicit knowledge unlikely; the assumption that learning remained
implicit for some experimental conditions or a subgroup of participants was then justified by
assessing sequence awareness with a separate measure (e.g., verbal report, recognition, or
process dissociation). Taking into account both the criticism of other measures of awareness
and our findings of limited validity of the PD approach, it is conceivable that in at least
some of these experiments, participants may have acquired explicit sequence knowledge
that remained undetected. If explicit sequence knowledge also affected SRTT performance,
which we found in Chapter IV and was demonstrated by many others (e.g., Haider et al.,
2011), the conclusions of these experiments regarding properties of implicit learning may
be contaminated by more or less high amounts of acquired explicit knowledge. In order to
circumvent erroneous conclusions about characteristics of implicit learning, it is therefore
necessary to take into account the possibility that explicit sequence knowledge emerges in
the course of training – characteristics of explicit sequence knowledge could otherwise be
ascribed to implicit sequence knowledge.

In Chapter IV, we applied a diffusion-model analysis to the SRTT, and found that multiple
processes are involved in the expression of implicit and explicit sequence knowledge. Moreover,
we were able to test the prediction that stimulus and response features share a common
representational basis in implicit sequence learning. Therefore, we believe that future
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research should more frequently apply such analyses of SRTT performance to further our
understanding of both implicit and explicit sequence learning. In the next section, we will
provide an outlook on possible research strategies that encompass both implicit and explicit
sequence learning.

Outlook

Repetition priming and recognition have long been viewed as relying on distinct learning
mechanisms. Berry, Shanks, Speekenbrink, and Henson (2012) used formal models to
derive quantitative predictions from a single-system and two multiple-systems theories for
both phenomena. By doing so, they were able to provide compelling evidence against
one multiple-systems theory, and found that the single-system theory outperformed the
remaining multiple-systems theory quantitatively, which was attributable to its relative
parsimony. Such a modeling effort may also prove helpful in comparing the single-system
and the multiple-systems view in sequence learning. Starns, Ratcliff, and McKoon (2012)
criticized that Berry et al. (2012) used an ad-hoc link function between memory output and
performance (response times and accuracy); and proposed to use a sequential-sampling model
such as the diffusion model to link memory and performance. Taking into account our results
from Chapter IV that multiple processes are sensitive to the regularity, it is obvious that
using an ad-hoc link function would not be sufficient to capture the complex performance
changes observed in the SRTT. Instead, the diffusion model developed in Chapter IV may
be used as a link between a model representation of single- vs. multiple systems views and
performance data. For the single-systems view, candidate models implementing such a
sequential-sampling approach are the exemplar-based random-walk model (EBRW, Cohen
& Nosofsky, 2003; Nosofsky & Palmeri, 1997; Palmeri, 1997) or the predictive temporal
context model (pTCM, Shankar, Jagadisan, & Howard, 2009).

Haider et al. (2011) investigated whether explicit sequence knowledge in the SRTT emerges
in a gradual or an all-or-none fashion using an online measure of response times: Arguing
that the acquisition of explicit sequence knowledge should be accompanied by a rapid
(i.e., all-or-none) decrease in response times (i.e., an RT drop), they calculated, for each
participant and item, whether such RT drops occurred using a tailored algorithm. If a
participant exhibited RT drops for four (out of six possible) transitions, they were classified
as having shown RT drops. After the SRTT, participants who were classified as having
shown an RT drop exhibited significantly more explicit sequence knowledge as indicated by
performance on a process-dissociation generation task and post-decision wagering (Persaud et
al., 2007). Haider et al. (2011) concluded that the acquisition of explicit sequence knowledge
is accompanied by RT drops. RT drops could be successfully related to neuropsychological
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(EEG and fMRI) data (Rose, Haider, & Büchel, 2010; Wessel, Haider, & Rose, 2012) –
importantly, showing that RT drops are temporally preceded by changes in EEG data.
The diffusion model developed in Chapter IV opens up new possibilities for scrutinizing
and expanding upon this finding: First, a model assuming that sequence awareness is an
all-or-none phenomenon can be compared quantitatively and qualitatively to a competitor
model assuming a gradual emergence of awareness. Second, it could be tested whether RT
drops reflect the same phenomenon such as the anticipatory responding that we observed
in the diffusion-model analysis in Chapter IV (i.e., whether RT drops are correlated with
changes in decision bias).

Conclusion

Embracing the notion that probably no task is process pure, and almost always multiple
processes are involved in performing a task, the present studies utilized measurement models
to disentangle the contributions of multiple processes to task performance. In the first two
studies, we scrutinized the assumptions underlying the PD approach as applied to sequence
learning, and found that its assumptions are typically violated. Taking these violations
into account, earlier studies that used the PD approach and found indications of implicit
sequence learning have to be reevaluated; given the limited validity of the PD approach,
current results do not provide firm evidence for implicit sequence learning.

In a third study, we disentangled the processes involved in the expression of implicit and
explicit sequence knowledge in the SRTT. We found that the expression of implicit sequence
knowledge is mediated by noncentral processes (stimulus encoding and response execution),
but also central response selection. The finding of an involvement of response selection
indicates that the representations acquired in implicit sequence learning contain information
about both stimulus and response features. Explicit sequence learning was expressed by a
decision bias towards the regular response option, indicating that the acquisition of explicit
sequence knowledge caused a shift from stimulus-based to plan-based action control.

The prefacing quote by Reingold and Merikle (1990, p. 20) stated that “the lack of
definitional and conceptual clarity in the study of the unconscious stems from the implicit
or explicit association of certain tasks with characteristics of observers or rememberers such
as intentionality or phenomenal awareness”. Measurement models of task performance such
as those utilized in the present studies allow the researcher to refrain from identifying tasks
with processes by disentangling the contributions of multiple processes involved in task
performance. Therefore, their application will hopefully contribute to a further clarification
of definitions and concepts in implicit and explicit sequence learning.
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Appendix A
Performance Data and Parameter Estimates

This appendix provides the raw generation performance and additional model analyses for
the experiment reported in Chapter II.

Table A1
Proportion of correctly generated triples

Inclusion Exclusion
Material Generation task Order M 95% CI M 95% CI
No-learning Free Inclusion first .23 [.20, .27] .21 [.18, .25]

Exclusion first .22 [.17, .27] .24 [.19, .30]
Cued Inclusion first .22 [.17, .27] .22 [.17, .28]

Exclusion first .28 [.22, .34] .25 [.21, .28]
Permuted Free Inclusion first .29 [.26, .32] .23 [.18, .28]

Exclusion first .27 [.22, .31] .25 [.20, .29]
Cued Inclusion first .24 [.20, .28] .21 [.17, .25]

Exclusion first .19 [.13, .25] .20 [.16, .23]
Random Free Inclusion first .23 [.20, .25] .20 [.15, .26]

Exclusion first .21 [.18, .25] .18 [.15, .21]
Cued Inclusion first .23 [.19, .28] .24 [.18, .29]

Exclusion first .23 [.20, .26] .23 [.19, .26]
Note. CI = Confidence intervals

Table A2
Estimates of model parameters before or after reversals were removed

Full dataset After excluding reversals
Material Generation task A C A C

No-learning Free .23 [ .22, .24] .00 [-.02, .02] .24 [ .23, .26] .00 [-.02, .02]
Cued .24 [ .23, .25] .02 [ .00, .04] .27 [ .26, .28] .00 [-.02, .02]

Permuted Free .25 [ .24, .26] .04 [ .02, .06] .27 [ .26, .28] .03 [ .01, .06]
Cued .21 [ .20, .22] .01 [-.01, .03] .24 [ .23, .25] .00 [-.02, .02]

Random Free .20 [ .19, .21] .03 [ .01, .05] .23 [ .22, .24] .02 [ .00, .05]
Cued .23 [ .22, .24] .00 [-.02, .02] .26 [ .25, .27] .00 [-.02, .02]

Note. 95% confidence intervals are in parentheses.

Hierarchical-model analysis

We analysed our data using a modified version of Rouder, Lu, Morey, Sun, & Speckman
(2008)’s three-level hierarchical process-dissociation model.

The first level is the process-dissociation model:
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Table A3
Category counts

Inclusion Exclusion
Material Generation task Correct Incorrect Correct Incorrect
Full dataset
No-learning Free 851 2894 851 2875

Cued 886 2626 825 2675
Permuted Free 881 2285 755 2427

Cued 723 2584 673 2621
Random Free 777 2731 669 2824

Cued 879 2916 888 2914
After excluding reversals
No-learning Free 851 2671 851 2605

Cued 886 2452 825 2233
Permuted Free 881 2101 755 2127

Cued 723 2306 673 2112
Random Free 777 2360 669 2324

Cued 879 2642 888 2434

Iijk = Cijk + (1− Cijk)Aijk

and

Eijk = (1− Cijk)Aijk

where i and j index participants and items, and k indexes the experimental condition.
The parameters A and C represent probabilities that range between zero and one; they are
transformed via a probit link to the reals, where a and c denote the transformed parameters:

Aijk = Φ(aijk) and Cijk = Φ(cijk)

The second level is a main effects models on transformed parameters a and c:

cijk = α
(c)
i + β

(c)
j + µ

(c)
k

and

aijk = α
(a)
i + β

(a)
j + µ

(a)
k
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where α denotes participant effects, β denotes item effects, and µ denotes condition
effects that lead to conscious or unconscious contributions to task performance.

Participant and item effects are modeled as draws from bivariate normals whose
covariance matrices were estimated from the data:(

α
(c)
i

α
(a)
i

)
∼ N2(0,∑α), i = 1, · · · , I.

and(
β

(c)
i

β
(a)
i

)
∼ N2(0,∑β), j = 1, · · · , J.

This model was estimated within a Bayesian modeling framework using MCMC
sampling. For further detail, refer to Rouder et al. (2008).

Results. For each group, we sampled three chains of 50,000 iterations, discarding
the first 20,000 as burn-in. Mixing was monitored by R̂ which was below 1.02. Table A4
shows estimates of the posterior distribution of the grand-mean parameters µk of the model.
Table A5 shows the estimates equivalent to C and A from traditional analyses. As can be
seen, the results corroborated the findings obtained with the traditional analyses reported
above (i.e., C > 0, A > .2, and the ordering of A estimates across conditions).
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Table A5
Parameter estimates from the hierarchical PD model. Parameters A and C denote the
Bayesian equivalent to parameter estimates obtained from classical analyses.

Full dataset Reversals excluded
A C A C

No-learning Free .21 [.21, .22] .03 [.03, .04] .23 [.22, .24] .03 [.03, .04]
Cued .23 [.22, .24] .04 [.03, .05] .26 [.24, .27] .04 [.03, .05]

Permuted Free .25 [.23, .26] .03 [.03, .04] .27 [.26, .28] .03 [.02, .03]
Cued .20 [.19, .21] .04 [.03, .05] .23 [.22, .24] .04 [.03, .04]

Random Free .20 [.19, .21] .02 [.02, .03] .22 [.21, .23] .04 [.03, .04]
Cued .22 [.21, .23] .03 [.02, .03] .25 [.24, .26] .03 [.02, .04]

Note. 95% credible intervals are in parentheses.
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Appendix B
Generation performance

This appendix provides the raw generation performance for all experiments in Chapter III
in tables B1, B2, and B3.

Table B1
Mean percentage of regular transitions generated in Experiment 1, ex-
cluding repetitions. Standard deviations are given in parentheses.
Condition Inclusion Exclusion
Full dataset
Control 25.10 (11.74) 24.17 (7.02)
No-Practice 37.94 (16.26) 28.66 (13.39)
Unspecific-Practice 34.46 (14.14) 26.46 (15.02)
Practice 38.74 (13.08) 24.59 (9.34)
Transfer 56.16 (18.32) 26.51 (7.93)

Nonrevealed transitions
Control 25.10 (11.74) 24.17 (7.02)
No-Practice 29.20 (18.56) 31.90 (14.01)
Unspecific-Practice 30.38 (15.48) 29.34 (14.06)
Practice 29.63 (14.62) 26.81 (11.35)
Transfer 45.68 (24.66) 43.95 (17.03)

Revealed, but nonpracticed transitions
No-Practice 47.64 (39.71) 24.65 (31.82)
Unspecific-Practice 33.91 (32.58) 20.07 (26.96)
Transfer 59.65 (33.59) 16.72 (22.52)

Revealed-and-practiced transitions
Practice 75.65 (24.96) 15.63 (29.87)
Transfer 79.51 (21.81) 7.50 (7.13)
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Table B2
Mean percentage of regular transitions generated in Experiment 2, excluding repetitions.
Standard deviations are given in parentheses.

Random Probabilistic
Condition Inclusion Exclusion Inclusion Exclusion
Full dataset
No transition revealed 17.06 (8.64) 18.94 (10.99) 25.80 (19.20) 23.37 (10.16)
One transition revealed 30.00 (14.91) 15.26 (10.44) 41.56 (15.60) 22.38 (11.58)

Nonrevealed transitions
No transition revealed 17.06 (8.64) 18.94 (10.99) 25.80 (19.20) 23.37 (10.16)
One transition revealed 18.46 (17.67) 16.80 (11.47) 31.29 (17.49) 25.82 (14.26)

Revealed transitions
One transition revealed 79.37 (24.65) 8.74 (11.51) 86.75 (20.28) 6.77 (12.20)
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Appendix C
Additional ordinal-PD analyses

This appendix provides results of additional ordinal-PD analyses for Experiments 2 and 3 in
Chapter III.

Experiment 2

Figure C1 shows the overall generation performance. We conducted a 2 (Material:
Random vs. Probabilistic) × 2 (Condition: No transition revealed vs. One transition
revealed) × 2 (Order : Inclusion first vs. Exclusion first) × 2 (PD instruction: Inclusion
vs. Exclusion) ANOVA that revealed a main effect of PD instruction, F (1, 113) = 28.43,
MSE = 156.22, p < .001, η̂2

G = .109, participants generated more regular transitions in
inclusion than exclusion blocks; and a main effect of explicit knowledge, F (1, 113) = 13.00,
MSE = 164.96, p < .001, η̂2

G = .056, indicating a clear influence of the explicit knowledge
manipulation on generation performance. Moreover, we found a main effect of material,
F (1, 113) = 22.95, MSE = 164.96, p < .001, η̂2

G = .094, participants generated more regular
transitions if they had worked on regular material during the SRTT; the effect of block
order also trended to be significant, F (1, 113) = 3.57, MSE = 164.96, p = .062, η̂2

G = .016,
participants generated slightly more regular transitions if inclusion followed exclusion. These
main effects were qualified by two-way interactions of explicit knowledge and block order,
F (1, 113) = 10.31, MSE = 164.96, p = .002, η̂2

G = .045; and of explicit knowledge and PD
instruction, F (1, 113) = 26.64, MSE = 156.22, p < .001, η̂2

G = .103; moreover, the four-way
interaction of material, explicit knowledge, block order, and PD instruction was also found to
be significant, F (1, 113) = 5.42, MSE = 156.22, p = .022, η̂2

G = .023. To disentangle these
interactions, we analyzed inclusion and exclusion performance, separately.

Inclusion.

Analyzing the number of regular transitions generated in inclusion blocks, a 2 (Material:
Random vs. Probabilistic) × 2 (Condition: No transition revealed vs. One transition revealed)
× 2 (Order : Inclusion first vs. Exclusion first) ANOVA revealed a main effect of material,
F (1, 113) = 14.72, MSE = 207.66, p < .001, η̂2

G = .115, participants generated more regular
transitions if they had worked on probabilistic materials; and a main effect of explicit
knowledge, F (1, 113) = 29.57, MSE = 207.66, p < .001, η̂2

G = .207, indicating a clear
influence of our explicit-knowledge manipulation on inclusion performance. This effect was
qualified by a significant interaction of explicit knowledge and block order, F (1, 113) = 9.64,
MSE = 207.66, p = .002, η̂2

G = .079, indicating that participants used their explicit sequence
knowledge more extensively if inclusion followed exclusion (i.e., after we had represented the
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Figure C1 . Mean proportion of correct FOCs during the generation task of Experiment 2,
excluding repetitions. Error bars represent 95% confidence intervals.
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transition a second time).

Exclusion.

Analyzing the number of regular transitions generated in exclusion blocks, a 2 (Material:
Random vs. Probabilistic) × 2 (Condition: No transition revealed vs. One transition revealed)
× 2 (Order : Inclusion first vs. Exclusion first) ANOVA revealed a main effect of material
F (1, 113) = 8.87, MSE = 113.52, p = .004, η̂2

G = .073, participants generated more
regular transitions if they had worked on probabilistic materials during the SRTT. We also
found a significant three-way interaction of material, explicit knowledge, and block order,
F (1, 113) = 4.21, MSE = 113.52, p = .042, η̂2

G = .036: Exclusion performance was below
baseline only if exclusion followed inclusion and participants had worked on random material
during the SRTT (i.e., they only had knowledge about one single transition of the sequence
and had maximum practice in including/excluding this transition) – that is, if participants
had no sequence knowledge but the single transition that we had revealed to them and they
had already used this knowledge during the inclusion block, they were able to generate less
regular transitions than baseline during the following exclusion block. The monotonicity
assumption of the ordinal-PD approach is thus not violated in this single cell of the design.
It is, hoewever, violated if exclusion preceded inclusion, or if participants had worked on
probabilistic materials.

Experiment 3

Figure C2 shows the overall generation performance. A 3 (Material: Random vs. mixed
SOC vs. pure SOC) × 2 (Condition: No transition revealed vs. Two transitions revealed) ×
2 (Order : Inclusion first vs. Exclusion first) × 2 (PD instruction: Inclusion vs. Exclusion)
ANOVA revealed a main effect of PD instruction, F (1, 159) = 30.61, MSE = 94.53, p < .001,
η̂2
G = .087, participants generated more regular transitions in inclusion than exclusion blocks;

and a main effect of explicit knowledge, F (1, 159) = 25.01, MSE = 97.20, p < .001, η̂2
G = .074,

indicating a clear influence of the explicit knowledge manipulation on generation performance.
Moreover, the interaction of explicit knowledge and PD instruction reached significance,
F (1, 159) = 6.18, MSE = 94.53, p = .014, η̂2

G = .019, indicating that the effect of explicit
knowledge is qualified by PD instruction. The interaction of PD instruction and block order
almost reached significance, F (1, 159) = 3.04, MSE = 94.53, p = .083, η̂2

G = .009. To
disentangle these interactions, we analyzed inclusion and exclusion performance, separately.

Inclusion.

Analyzing the number of regular transitions generated in inclusion blocks, a 3 (Material:
Random vs. mixed SOC vs. pure SOC) × 2 (Condition: No transition revealed vs. Two
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Figure C2 . Mean proportion of correct SOCs during the generation task of Experiment 3,
excluding repetitions and reversals. Error bars represent 95% confidence intervals.

transitions revealed) × 2 (Order : Inclusion first vs. Exclusion first) ANOVA revealed a
significant main effect of explicit knowledge, F (1, 159) = 25.27, MSE = 106.81, p < .001,
η̂2
G = .137, indicating that our manipulation of explicit knowledge influenced inclusion
performance. The main effect of block order trended to be significant, F (1, 159) = 2.84,
MSE = 106.81, p = .094, η̂2

G = .018, which was qualified by an almost significant interaction
of explicit knowledge and block order, F (1, 159) = 3.70, MSE = 106.81, p = .056, η̂2

G = .023.
This pattern indicated that more regular transitions were generated if participants had
received explicit knowledge about two transitions and inclusion followed exclusion, i.e. the
explicit knowledge had been presented a second time (once prior to exclusion, once prior to
inclusion).

Exclusion.

Analyzing the number of regular transitions generated in exclusion blocks, a 3 (Material:
Random vs. mixed SOC vs. pure SOC) × 2 (Condition: No transition revealed vs. Two
transitions revealed) × 2 (Order : Inclusion first vs. Exclusion first) ANOVA revealed only
an almost significant main effect of explicit knowledge, F (1, 159) = 3.72, MSE = 84.92,
p = .056, η̂2

G = .023; revealing explicit knowledge about the sequence slightly increased the
proportion of regular transitions generated. This pattern, again, violates the core assumption
of the ordinal-PD approach that increasing amounts of explicit knowledge monotonically
decrease the proportion of regular transitions in exclusion blocks. Moreover, it also shows
that increasing explicit knowledge might produce a data pattern that is typically interpreted
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as evidence for increasing amounts of implicit knowldge.
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Appendix D
Additional model analyses

This appendix provides results of additional model analyses not included in the main text of
Chapter III.

Experiment 1, model M1

In Experiment 1, we fitted modelM1 and used posterior analyses to evaluate the
invariance assumption. We adapted the equations from Experiment 2 to the design of
Experiment 1 (which did not contain experimental groups with random material). In order
to accommodate for the more complex design, we used a model specification that allowed
for participant and item (i.e., transition) effects and their interactions by estimating fixed
effects for each transition type plus individual participants’ deviations from these effects.
The model equations of modelM1 are given by:

Cijm =

Φ(µ(C)
jlm + δ

(C)
ijm) if jε1, 2 (item has been revealed & practiced, revealed & non-practiced)

0 if j = 3 (item has not been revealed)

and
Aimt = Φ(µ(A)

mt + δ
(A)
imt)

where µ(C)
jlm is the fixed effect of transition type j (non-revealed, revealed & practiced, revealed

& non-practiced) in condition l and PD instruction condition m on controlled processes,
and δ(C)

ijm is the ith participant’s deviation from the corresponding mean. Accordingly, µ(A)
mt

is the fixed effect of PD instruction condition m and transition t on automatic processes,
and δ(A)

imt is the ith participant’s deviation from the corresponding mean.
Model M1 imposes two auxiliary assumptions: First, it assumed that no explicit

knowledge has been acquired during the SRT phase (i.e., C = 0 for non-revealed transitions).
Second, it assumed that revealing sequence knowledge did not affect automatic processes (i.e.,
A does not vary as a function of the between-subjects manipulation of explicit knowledge,
index l). Both auxiliary assumptions were tested by posterior predictive checks. In addition
to reporting TA1 and TB1 as in Experiments 2 and 3, we calculated additional model check
statistic TA2, which summarizes how well the model describes the item-wise category counts
(aggregated over participants), and TA3, which summarizes how well the model describes
the category counts per participant-item combination; finally, the additional statistic TB2

summarizes how well the model describes the variances and covariances introduced by items.
We also calculated the posterior differences CI − CE and AI −AE to more directly test the
invariance assumption.
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Figure D1 . Parameter estimates from Experiment 1, modelM1. Error bars represent 95%
confidence intervals.

Results. We analyzed generation performance by fittingM1 and computed model
fit statistics to assess whether each model can account for the data. Parameter estimates
from modelM1 were used to address the invariance assumptions, directly. The first trial of
a block as well as any response repetitions were excluded from all generation task analyses.

The model checks for modelM1 were satisfactory,

T observedA1 = 35.97, T expectedA1 = 33.96, p = .322,

T observedA2 = 0.05, T expectedA2 = 0.05, p = .480,

T observedA3 = 1, 763.79, T expectedA3 = 1, 720.63, p = .372,

T observedB1 = 5.31, T expectedB1 = 4.62, p = .457,

T observedB2 = 3, 852.65, T expectedB2 = 3, 393.90, p = .464.

Figure D1 shows the parameter estimates obtained from modelM1; while estimates
of the automatic process were only slightly above chance in both PD instruction conditions,
estimates of the controlled process differ strongly between PD instruction conditions.
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Figure D2 . Posterior differences between AI −AE and CI − CE in Experiment 1, plotted
for each participant (gray dots) with 95% credible intervals. Dashed lines represent the
posterior means of the differences between mean parameter estimates. Dotted lines represent
95% credible intervals.

Figure D2 shows that the invariance assumption for automatic processes was violated
with AI > AE , 95% CI [.00, .03], and Bayesian p = .008. For revealed and practiced
transitions, the invariance assumption was violated with CI > CE , 95% CI [.19, .63] and a
Bayesian p = .001. For revealed but non-practiced transitions, the invariance assumption
was violated with CI > CE , 95% CI [.03, .31] and a Bayesian p = .005.

Experiment 2, model M1R

To test whether our results are robust against changes in auxiliary assumptions, we
fitted another modelM1R with different auxiliary assumptions. Specifically, we dropped the
assumption that C = 0 for nonrevealed transitions and instead estimated explicit-knowledge
parameters for all transitions. Instead, we imposed ordinal restrictions (Knapp & Batchelder,
2004) as follows: In modelM1R, it is assumed that C parameters are greater under inclusion
than exclusion. We also fitted a parallel model with the reversed assumption, but estimation
of this model failed to converge.

The second-level equations of modelM1R are given by:

Cij1 = Cij,Inclusion = Φ(µ(C)
jk,Inclusion + δ

(C)
ij,Inclusion)

Cij2 = Cij,Exclusion = Φ(µ(C)
jk,Exclusion + δ

(C)
ij,Exclusion) ∗ Cij,Inclusion
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and

Aijm = Φ(µ(A)
jkm + δ

(A)
ijm)

µ
(C)
jkm is the fixed effect of material k (that participant i worked on during the SRTT),

transition type j (j = 1 if a transition has actually been revealed, j = 2 if not), and PD
instruction condition m on controlled processes. δ

(C)
ijm is the ith participant’s deviation

from the respective group mean. For participants who did not receive explicit knowledge
about a single transition, we assumed that all µ(C)

jk,Inclusion = µ
(C)
k,Inclusion and µ(C)

jk,Exclusion =
µ

(C)
k,Exclusion, i.e. we assumed that the grand mean of explicit knowledge did not vary as a

function of the transition that would have been revealed if participants were in another
condition. Accordingly, µ(A)

jkm is the fixed effect of transition type j (j = 1 for the transition
that was or would have been revealed, i.e. transition 2−6, j = 2 for all other transitions),
material k, and PD instruction condition m on automatic processes, and δ

(A)
ijm is the ith

participant’s deviation from the corresponding mean.
Note that this specification imposes two auxiliary assumptions to the model: First,

it is assumed that
∀ij(Cij,Inclusion ≥ Cij,Exclusion)

Second, it is assumed that automatic processes A do not vary as a function of the between-
subjects manipulation of explicit knowledge l (both assumptions were necessary so that the
model was identified; an alternative model imposing an order constraint CI < CE was also
not identified).

Results. The model checks for modelM1R were satisfactory,

T observedA1 = 484.60, T expectedA1 = 470.11, p = .409,

T observedB1 = 9.13, T expectedB1 = 6.88, p = .358.

and attained a DIC value of 25,294.53, a value comparable to our extended model M1

presented in the main text and clearly outperforming M2. This again implies that our
auxiliary assumptions introduced toM1R were much less problematic than the invariance
assumption.

Figure D3 shows the parameter estimates obtained from modelM1R. The pattern
of results mostly replicates the estimates from modelM1. The main difference was that C
parameters were slightly greater than zero for nonrevealed transitions (these were set to zero
for modelM1). This may suggest that some explicit knowledge may have been acquired
during the learning phase. Alternatively, it may also reflect a technical issue with the
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Figure D4 . Posterior differences between AI − AE and CI − CE in Experiment 2, model
M1R, plotted for each participant (gray dots) with 95% credible intervals. Dashed lines
represent the posterior means of the differences between mean parameter estimates. Dotted
lines represent 95% credible intervals.
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present family of models that biases estimates away from zero: Specifically, for nonrevealed
transitions, the inclusion-exclusion difference in C estimates should vary around zero, with
half below zero and half above zero; the auxiliary assumption however forces all of them
to be positive, which biases the corresponding C parameters. Either way, the effect is not
substantial, as suggested by the finding that modelM1, which assumes C = 0, achieved
an equally good fit. The C > 0 estimates also have a tradeoff effect on A parameters, with
lower estimates under inclusion and slightly higher estimates under exclusion. This biasing
effect eliminated (for revealed transitions) or even inverted (for nonrevealed transitions) the
invariance-violation effect found inM1.

Figure D4 shows the posterior differences obtained from modelM1R. Most impor-
tantly, the pattern of results shows that the invariance violation for controlled processes C
for revealed transitions (i.e., whenever substantial explicit knowledge is present) is robust to
the change in auxiliary assumptions.

Experiment 3, model M1R

For the data of Experiment 3, we additionally fitted modelM1R analogous toM1R

of Experiment 2.
Results. The model checks for modelM1R were satisfactory,

T observedA1 = 689.87, T expectedA1 = 657.24, p = .314,

T observedB1 = 8.94, T expectedB1 = 6.02, p = .263.

and attained a DIC value of 38,881.68, a value somewhat smaller than the DIC of our
extended modelM1 presented in the main text and clearly outperformingM2. This again
implies that our auxiliary assumptions introduced toM1R were much less problematic than
the invariance assumption.

Figure D5 shows the parameter estimates obtained from modelM1R. The pattern
of results mostly replicates the estimates from modelM1; with parameters for controlled
processes C being estimated close to zero for nonrevealed transitions.

Figure D6 shows the posterior differences obtained from modelM1R. The pattern
of results again demonstrates robustness of the invariance violation for controlled processes
C for revealed transitions (i.e., whenever substantial explicit knowledge was present). There
was again some indication of an invariance violation for automatic processes A; however,
the effect was very small and depended on the specific modeling assumptions.
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Figure D5 . Parameter estimates from Experiment 3, modelM1R. Error bars represent 95%
confidence intervals.
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Figure D6 . Posterior differences between AI − AE and CI − CE in Experiment 3, model
M1R, plotted for each participant (gray dots) with 95% credible intervals. Dashed lines
represent the posterior means of the differences between mean parameter estimates. Dotted
lines represent 95% credible intervals.
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Appendix E
Specification of priors

This section provides a complete specification of the models and priors used. Code (R/Stan)
is available at https://github.com/methexp/pdl2.

Experiment 1, model M1

Priors on fixed effects were

µ
(C)
jlm ∼ N(0, 1), j = {1, 2}; l = {1, 2};m = {1, 2}

µ
(A)
mt ∼ N(0, 1), t = {1, ..., 6};m = {1, 2}

where j indexes transition type (revealed & practiced vs. revealed & non-practiced), l
indexes practice condition (Control, No-practice, Unspecific-practice, Practice, Transfer), t
indexes specific items (i.e., transitions), and m indexes PD instruction (inclusion vs. exclu-
sion). Participant effects δ(A)

imt and δ
(C)
ijm can be written as vectors δi. For participants in the

Control group, these were modeled by

δi ∼ N12(0,Σl), i = 1, ..., I

For participants in the No-Practice, Unspecific-Practice, and Practice groups,

δi ∼ N14(0,Σl), i = 1, ..., I

For participants in the Transfer group

δi ∼ N16(0,Σl), i = 1, ..., I

The covariance matrices Σl were modeled separately and independently for each between-
subjects condition. Priors on these matrices were as described below for Experiment 2.

Experiment 2, model M1

Priors on fixed effects were

µ
(C)
km ∼N(0, 1), k = {1, 2};m = {1, 2}

µ
(A)
jkm ∼N(0, 1), j = {1, 2}; k = {1, 2};m = {1, 2}

where j indexes transition type (revealed vs. non-revealed), k indexes learning material
presented during the SRTT (random vs. probabilistic), and m indexes PD instruction
condition (inclusion vs. exclusion). For participants who did not receive explicit knowledge
about a single transition, we assumed that all Cijkm = 0. Therefore, participant effects

https://github.com/methexp/pdl2
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are only required for automatic processes (δ(A)
ijkm). In participants who received explicit

knowledge about one transition, two additional participant effects were needed to model
controlled processes for revealed transitions (δ(C)

ikm). We thus provide the specification of
participant effects for these two groups of participants separately.

Participants who did not receive explicit knowledge about one transition.

For participants who did not receive explicit knowledge about one transition, partici-
pant effects δ(A)

ijm can be written as vectors δi that were modeled as draws from a multivariate
normal

δi ∼ N4(0,Σkl), i = 1, ..., I

where k indexes the learning material that was presented to participant i and l indexes his
or her level of the explicit-knowledge factor. The covariance matrices Σkl were obtained
from the standard deviations of participant effects σkl and correlation matrices Ωkl

Σkl = Diag(σkl) Ωkl Diag(σkl), k = {1, 2}, l = {1, 2}

Each element σklp of the vectors of standard deviations σkl was drawn from independent
half-normal prior distributions.

σklp ∼ N(0, 1)I(0,∞), k = {1, 2}, l = {1, 2}

For the correlation matrices Ωk, we used LKJ priors with a scaling factor of 1 (Lewandowski,
Kurowicka, & Joe, 2009):

Ωkl ∼ LKJcorr(ν = 1), k = {1, 2}, l = {1, 2}

Participants who received explicit knowledge about one transition.
For participants who received explicit knowledge about one transition, participant

effects δ(A)
ijm and δ

(C)
im can be written as vectors δi that were modeled as draws from a

multivariate normal

δi ∼ N6(0,Σkl), i = 1, ..., I

where k indexes the learning material that was presented to participant i and l indexes his
or her level of the explicit-knowledge factor. The covariance matrices Σkl were specified as
above, with the only exception that six instead of four parameters were required.



186 Appendices

Experiment 2, model M2

Priors on fixed effects were

µ
(C)
jkl ∼N(0, 1), j = {1, 2}; k = {1, 2}; l = {1, 2}

µ
(A)
jkl ∼N(0, 1), j = {1, 2}; k = {1, 2}; l = {1, 2}

Participant effects δ(A)
ij and δ(C)

ij can be written as vectors δi that were modeled by

δi ∼ N4(0,Σkl), i = 1, ..., I

Priors for the covariance matrix Σkl were specified as above.

Experiment 2, model M1R

Priors on fixed effects were

µ
(C)
jkm ∼N(0, 1), j = {1, 2}; k = {1, 2};m = {1, 2}

µ
(A)
jkm ∼N(0, 1), j = {1, 2}; k = {1, 2};m = {1, 2}

where j indexes transition type (revealed vs. non-revealed), k indexes learning material
presented during the SRTT (random vs. probabilistic), and m indexes PD instruction
condition (inclusion vs. exclusion). Participant effects δ(A)

ijm and δ
(C)
ijm can be written as

vectors δi that were modeled as draws from a multivariate normal

δi ∼ N8(0,Σkl), i = 1, ..., I

where k indexes the learning material that was presented to participant i and l indexes
his or her level of the explicit-knowledge factor. Priors for the covariance matrix Σkl were
specified as above.

Experiment 3, models M1, M2, and M1R

For the model-based analyses, we used modelsM1,M2, andM1R analogous to those
used in Experiment 2.
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