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Kurzfassung
Die meisten Flüssigkeiten erstarren beim Abkühlen zu einem geordneten und kristalli-
nen Festkörper. Diese Festkörper weisen eine langreichweitige Ordnung auf, die mit
Streuexperimenten gemessen werden kann. Im Gegensatz dazu erstarren die sogenan-
nten Glasbildner in einen amorphen Festkörper, welcher keine langreichweitige Ordnung
besitzt und sich in Streuexperimenten nicht von einer Flüssigkeit unterscheidet. Mit der
Modenkopplungstheorie werden solche Flüssig-Glas Übergänge mit Hilfe von Dichtekor-
relatoren erklärt. Die Bewegungsgleichungen der Dichtekorrelatoren weisen für lange
Zeiten eine Bifurkation auf. Die Modenkopplung beschreibt mit diesen Bifurkationen
die Dynamik von glasbildenden Systemen.
Solche Bifurkationen erscheinen in verschiedensten Systemen wie z.B. in granularen
Medien oder in Spin-Modellen. Das Ziel dieser Arbeit ist die Analyse solcher Bifurka-
tionen in verschiedensten Systemen und die Anwendung der Modenkopplungstheorie,
um die Dynamik solcher Systeme zu erklären. Dazu wird unter anderem für den
Glasübergang in dissipativen granularen Medien mit Hilfe der Modenkopplungstheorie
eine geschlossene Bewegungsgleichung hergeleitet. Auch in sogenannten Spin-Modellen
mit eingeschränkter Dynamik (kinetically constraint models), wo die Dynamik haupt-
sächlich von der Nachbarschaft eines Spins bestimmt ist, treten Übergänge von einem
ergodischen Zustand in einen nicht-ergodischen auf. Solche Übergänge sind mit dem
Flüssig-Glas Übergang gleichzusetzen und generieren ebenfalls eine Bifurkation, die in
dieser Arbeit mit der Modenkopplungstheorie untersucht wird. Hier wird die mit der
Modenkopplung hergeleitete Dynamik mit Simulationen verglichen.





Abstract
Most liquids solidify into an ordered crystalline solid during cooling. These solids have
a long-range order which can be measured by scattering experiments. In contrast,
the so-called glass formers solidify into an amorphous solid, which does not have a
long-range order and does not differ from a liquid in scattering experiments. Mode
coupling theory is used to explain such liquid-glass transitions using density correlators.
The equations of motion of the density correlators show a bifurcation in the long time
limit. Mode coupling uses these bifurcations to describe the dynamics of glass-forming
systems.
Such bifurcations appear in various systems such as granular media or spin models.
The aim of this thesis is to analyze bifurcations in different systems and to apply mode
coupling theory to explain the dynamics of such systems. For the glass transition in
dissipative granular media a closed equation of motion is derived with the help of the
mode coupling theory. Also in kinetically constraint spin models, where the dynamics
are mainly determined by the neighborhood of a spin, transitions from an ergodic
state to non-ergodic one occur. Such transitions can be identified with the liquid-glass
transition and also generate a bifurcation, which is investigated in this thesis with the
mode coupling theory. Here, the dynamics derived from mode coupling theory are
compared with simulations.
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1 Motivation

The liquid-solid transition for crystals is well understood. Since a crystal solid has
long-range order, one obtains Bragg peaks in scattering experiments. In liquids the
structure factor is not sharp, so that the transition from a liquid to a solid state can
be measured from the static structure factor. But not all solids are crystals, with the
most prominent example being glasses. The physics behind glassy systems differs, to
handle glassy systems we first need a definition for a glass. In simple words and from a
physical point of view a glass is an amorphous solid. It can sustain static shear stress,
that is why we call them solids, but they do not have a spatial long-range order so they
are amorphous and not crystalline solids. If one only considers the static structure, it is
not clear whether the system is in a liquid or a glass state.
Since the static structure of glasses and liquids is similar, one needs dynamical mea-
surements to see the different nature of normal liquids and glass-forming liquids, which
are showing nontrivial behavior over many orders of magnitude in time. Therefore,
we will use dynamical variables to study the liquid-glass transition. An effective way
to analyze the dynamics is to use correlation functions. The theoretical framework of
correlation functions is well established, there are a lot of simulations around correlation
functions for different systems, and one can also measure them in experiments, e.g.,
dynamic lightscattering. In a liquid, where we use density autocorrelation functions,
the correlation function decays exponentially to zero. Here the relaxation time depends
sensitively on the control parameters and changes by orders of magnitude in time when
the system gets close to the transition point. At the liquid-glass transition the relaxation
time diverges which is an indication for an arrested system.
We will use the mode-coupling theory (MCT) for ideal glass transitions to capture
the glassy dynamics [1–3]. Mode-coupling theory deals with density-autocorrelation
functions, Φ~q(t) = 〈ρ∗~q(t)ρ~q(0)〉, here ~q denotes the wave vector, and describes its slow
dynamics close to the transition. The long time limit, t→∞, of Φ~q(t) is an indicator
for the state of the system. In a liquid, the autocorrelation function of the density
fluctuations will vanish independent of the wave vector, ΦLiq

~q (t→∞) = 0. In contrast
to the liquid state, the autocorrelation function in the glassy state converges to a finite
value, ΦGlass

~q (t→∞) = fq, where fq is the so-called glass form factor.
The equation of motion (EOM) for the density-autocorrelation function can be derived
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within the Mori-Zwanzig formalism

Φ̈~q(t) + νqΦ̇~q(t) + Ω2
qΦ~q(t) + Ω2

q

∫ t

0

dτm~q(t− τ)Φ̇~q(τ) = 0 ,

where νq is the characteristic frequency and Ωq is the microscopic frequency of the
system. Because of the memory kernel, mq(t), the EOM is not closed. In mode-coupling
theory the memory kernel is approximated as a function of the density autocorrelation
functions, mq(t) = Fq[Φk(t)], and within this approximation the equation of motion for
t→∞ yields a bifurcation equation.
In this thesis, the bifurcations will be classified according to Arnol’d [4]. The simplest
singularity is the fold bifurcation, where the long time limit changes discontinuously
by a smooth variation of only one control parameter. This sensitive dependence on
a control parameter and the drastic change of the long time limit can be identified
with the liquid-glass transition, where the long time limit of Φ(t) goes from zero, in the
liquid state, to a finite value, in the glass state.
To simplify the memory kernel the so-called schematic mode-coupling theory will be
used. The memory kernel will be expressed as a polynomial of the autocorrelation
function. With an asymptotic expansion of the equation of motion near the glass
transition one gets an analytical expression to describe the two step decay with power
laws [5]. One can thus calculate the exponents of the two step decay for a given memory
kernel. Schematic MCT can be used to match the exponents to some experimental or
simulation data in order to describe a microscopic theory with simple analytical models
and predict the liquid-glass transitions.
An ergodic to non-ergodic transition is also obtained in some spin models [6, 7]. In
1975, Edwards and Anderson introduced the so-called Edwards-Anderson parameter,
qEA, which gives the long time limit of the spin-autocorrelation function. For qEA 6= 0

there are, induced by couplings between the spins, some frozen spin clusters. A frozen
spin can not be flipped, which leads to the system being in a non ergodic state, like the
glassy state. On the other hand, for qEA = 0, there are no frozen spins and all the spins
can be flipped, just like in paramagnets, and the system is in a ergodic state.
In contrast to the spin models with interactions between the spins there are kinetically
constrained spin models. In such models the dynamics depends on the neighborhood of
a spin. A spin can be flipped, if the spin has at least more than f down-spin neighbors.
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Starting in non-equilibrium with an initial up-spin concentration and a non vanishing
temperature T 6= 0, the system relaxes to equilibrium. When the initial up-spin
concentration of such models is high enough, there will be some up-spin clusters in the
ground state of the system, otherwise all the up-spins will be flipped to down-spins.
Such models thus also have an ergodic to non-ergodic transition.
The aim of this thesis is to describe different systems with an ergodic to non-ergodic
transition through the use of a memory kernel. It is divided into two parts, the
introduction part and the application part. The first part will introduce theoretical
aspects which will be relevant later. I structured the first part into three sections:
In the first section I will motivate the mode-coupling theory and I will derive the basic
formulas. Starting from the correlation function I will derive the equation of motion
and discuss it for different systems, e.g., Newtonian or Brownian. After introducing the
mode-coupling approximation and getting the bifurcation equation, I will perform the
asymptotic expansion and discuss the different timescales of the correlation function.
This section will be finished after introducing the schematic mode-coupling theory and
a brief summary.
The second section is about glass transitions in granular media. Starting with the
collision rules in dissipative systems I introduce the Liouville dynamic which is relevant
for describing the microscopic dynamics of granular media. Here, we use the hard
core potential to get the Liouville operators for elastic and inelastic hard sphere
systems. With the explicit expression of the Liouville operators the memory kernel for
granular media will be calculated and the glass-liquid transition will be discussed. A
generalization of the memory kernel to binary mixtures will be presented.
The third section is about the Fredrickson-Andersen model (FA), which is a kinetically
constrained lattice model. I will show that the FA-model on the Bethe lattice exhibits
a bifurcation scenario, which I will identify with the mode-coupling bifurcations. With
those bifurcations the dynamics of the model will be generated and the power laws of
the decays will be calculated. I will also introduce a microscopic derivation of the spin
model, where all the variables, like system frequency and transition probability, will be
computed.
The second part of the thesis is the application part where I will use the theory which I
derived in the first part and use it for different applications. In the first section of the
second part I will talk about the Fredrickson-Andersen model, and here I will compare
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the theoretically calculated dynamics with simulations done by Sellitto [8]. In the last
two sections I will talk about schematic mode-coupling theory and its applications. In
the second section of the second part, I compare schematic MCT with hard sphere
data and try to match the microscopic model to a simple schematic model. In the last
section I fit the simulation data for the FA model with schematic MCT, and compare
the results with the theoretically calculated model.
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2 Mode Coupling Theory

The main result of mode coupling theory (MCT) is the description of the glass-transition
as a dynamic ergodic to non-ergodic transition. In liquids the particles can move nearly
without any restrictions, the density fluctuations become uncorrelated for long times,
which means that the system is in an ergodic state. In contrast to that, in glassy
systems, the particles are arrested in a cage formed by their neighbors: This is called
the cage-effect. Consequently, the density correlations are tending for long times to a
finite value, f , and the system reaches a non-ergodic state.
The MCT deals with density autocorrelation functions, whose long time limit are the
non-ergodicity parameters, f , which are a kind of order parameter, which does not
depend on any free energy function. It vanishes for liquid systems and goes to a finite
value in the glassy state.
We use the Mori-Zwanzig (MZ) formalism to get an exact equation for the density
correlation function. Here projection operators will be introduced to separate the
variables of interest from all the other variables and to derive the equation of motion
(EOM).
Within the MZ-formalism a memory kernel, m(t), appears in the EOM. Since the
memory kernel is not known exactly one can not find an exact solution for the density
correlation function. The mode coupling approximation (MCA) will be used to factorize
the memory kernel in terms of the correlation function of the density fluctuations. With
this approximation the Mori-Zwanzig derived EOM is not exact anymore but solvable
for a given MCT kernel.
In the microscopic regime the time evolution of the density autocorrelation function
is dominated by a power law, the critical decay, to a plateau. For glassy system the
correlation function stays at the plateau for a diverging time scale. For liquids the
correlation function has a second decay, following the von Schweidler law, from the
plateau to zero.
The long-time limit of the EOM generates a bifurcation equation. With such bifurcations
the MCT connects the critical decay with an exponent a and the von Schweidler decay
with an exponent b.
These bifurcation equations for glassy systems are a function of the non-ergodicity
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parameter, f , and the memory kernel:

f

1− f
= m[f ] .

Within the mode coupling approximation the memory kernel is a bilinear function of
the density correlation function, so the equation above is an algebraic one and the
bifurcations can be identified as glass-transition singularities.
A detailed derivation of the MCT is given in [9], this chapter just gives a general
overview of the mode coupling theory.

2.2 Observables of the System

To describe the macroscopic behavior of a system with N particles in a volume V , we
introduce two observables, the particle density ρ(~r) and the current density ~j(~r) :

ρ(~r) =
1√
N

N∑
j=1

δ(~r − ~rj) FT−−→ ρ(~q) =
1√
N

N∑
j=1

ei~q·~rj , (2.2.1)

~j(~r) =
1√
N

N∑
j=1

~vjδ(~r − ~rj) FT−−→
~j(~q) =

1√
N

N∑
j=1

~vjei~q·~rj . (2.2.2)

Here, the
√
N is the normalization and FT is the Fourier transformation with FT[f(~r)](~q) =∫

f(~r)e−i~q~rdDr.
The current ~j(~q) can be split into a longitudinal part jL(~q) = ê~q~j(~q), where ê~q = ~q/q

is the unit vector parallel to ~q, and a transverse part jT(~q) = êT~q
~j(~q), where êT~q is the

unit vector perpendicular to ~q. In contrast to the transverse current jT(~q), the longitu-
dinal part jL(~q) couples to the density fluctuation. This can be shown with the time
derivative of the density which is proportional to the longitudinal current, ρ̇(q) = qjL(~q).

The time evolution of an observable, A, is given by the Liouville equation

∂A(t)

∂t
= iLA(t) ⇒ A(t) = A(0) e−iLt , (2.2.3)
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with the Liouville operator L:

L = −i
∑
l

(
∂H

∂~pl

∂

∂~rl
− ∂H

∂~rl

∂

∂~pl

)
= {H, ·} , (2.2.4)

here H is the Hamiltonian of the system, ~p the momentum and {., .} are the Poisson
brackets. The Liouville operator applied to the observables yields

Lρ(~q, t) = qjL(~q, t) , (2.2.5)

LjL(~q, t) = −ê~q
∑
j

~̇vj(t)ei~q~rj(t) + q
∑
j

~v2
j (t)e

i~q~rj(t) . (2.2.6)

In MCT the EOM will be expressed in terms of density fluctuations, which are given by
correlation functions. An advantage of correlation functions is that one can determine
them experimentally. To describe such correlations mathematically, we introduce
canonical averages, 〈•〉, and define on the space of fluctuating dynamical variables the
so-called Kubo scalar product

〈A|B〉 := 〈δA∗δB〉 , (2.2.7)

where we define δA = A− 〈A〉 and the star denotes the complex conjugation.
With these averages we introduce for describing the dynamical structure of liquids the
density-autocorrelation function F (q, t) = 〈ρ(~q, 0)|ρ(~q, t)〉. For static structures one also
introduces the structure factor S(q) = 〈ρ(~q)|ρ(~q)〉, which can be calculated from the
interaction potential.
The correlation functions will be normalized by the static structure factor to normalized
density-autocorrelation functions [1]

φ(q, t) =
〈ρ(~q, 0)|ρ(~q, t)〉
〈ρ(~q)|ρ(~q)〉

. (2.2.8)

2.3 Mori-Zwanzig Formalism

As we know from Eq. (2.2.5), ρ̇(~q, t) = qjL(~q, t), the change of the density ρ(~q, t)

decreases for ~q → 0 and gets conserved at ~q = 0.
We introduce here the so-called Mori-Zwanzig projector P to separate the slow modes,
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q → 0, and the fast modes, so we get an exact reformulation of the Liouville equation
[10–12]. We also introduce the orthogonal projector Q = 1 − P for the fast modes.
Note, the significant identities P2 = P , P† = P ,Q2 = Q, Q† = Q and QP = PQ = 0.
Since we are interested in the glass transition, which can be described with the densities
and currents, we define the projector P as

P := |ρ(~q)〉 〈ρ(~q)|ρ(~q)〉−1 〈ρ(~q)|+ |jL(~q)〉 〈jL(~q)|jL(~q)〉−1 〈jL(~q)| , (2.3.1)

with the static structure factor 〈ρ(~q)|ρ(~q)〉 = S(q) and the velocity 〈jL(~q)|jL(~q)〉 = v2
0,

v0 =
√
kBT/m, as normalization.

With the Laplace transformation LT[f(t)](z) = i
∫∞

0
f(t)eiztdt one can rewrite the

density-autocorrelation function as

〈φ(~q, 0)|e−iLt|φ(~q, 0)〉 LT−−→ 〈φ(~q, 0)|(z − L)−1|φ(~q, 0)〉 . (2.3.2)

From appendix A we know

P 1

z − L
P =

[
z − PLP − PLQ(z −QLQ)−1QLP

]−1
. (2.3.3)

With the state vector, |a〉 = S(q)−1/2 |ρ(~q)〉 + (m/kBT )−1/2 |jL(~q)〉, the correlation
matrix reads

Φ(q, z)−1 = 〈a|z − PLP − PLQ(z −QLQ)−1QLP|a〉 , (2.3.4)

=

(
z −Ωρj(q)[1 + L(q)]

−Ωjρ(q) z − Ωjj(q)−M(q)

)
,

with the frequencies Ωρρ(q) ∝ 〈ρ(~q)|L|ρ(~q)〉 = 0, Ωρj(q) ∝ 〈ρ(~q)|L|jL(~q)〉, Ωjρ(q) ∝
〈jL(~q)|L|ρ(~q)〉 and Ωjj(q) ∝ 〈jL(~q)|L|jL(~q)〉 := iν(~q) and the two memory functions

M(q, z) =
m

kBT
〈jL(~q)|LQ(z −QLQ)−1QL|jL(~q)〉 , (2.3.5)

L(q, z) =
〈ρ(~q)|LQ(z −QLQ)−1QL|jL(~q)〉

〈ρ(~q)|L|jL(~q)〉
. (2.3.6)

The Matrix Φ(q, z) therefore is:
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Φ(q, z) = 1
z(z−Ωjj(q)−M(q))−Ω2[1+L(q)]

(
z − Ωjj(q)−M(q) Ωρj(q)[1 + L(q)]

Ωjρ(q) z

)
.

The density-autocorrelation function is given as a matrix element

φ(q) =
1

z − Ω(q)2[1+L(q)]
z−iν(q)−M(q)

. (2.3.7)

Note that QL |ρ(~q)〉 = q(1− P) |jL(~q)〉 = 0 so the memory function L(q) vanishes in
equilibrium and the frequencies Ωρj(q) = Ωjρ(q) = qv0/

√
S(q) are equal.

2.4 Mode Coupling Approximation

The Eq. (2.3.7) can be written in the time domain as

φ̈(q, t) + ν(q)φ̇(q, t) + Ω(q)2φ(q, t)

+ Ω(q)2

∫ t

0

dτm(q, t− τ)φ̇(q, τ)

+ Ω(q)2

∫ t

0

dτL(q, t− τ)φ(q, τ) = 0 , (2.4.1)

with the memory kernel m(q, t) = M(q, t)/Ω(q)2 and the initial conditions φ(q, 0) = 1

and φ̇(q, 0) = 0. One can show that Eq. (2.4.1) has exactly one analytical solution with
these conditions [13].
The Eq. (2.4.1) is exact but useless since we do not know the memory kernels. Here the
memory kernel M(q, t) ∝ 〈~F (~q)†|eitQLC|~F (~q)〉 is a correlation function of forces driven
by the projected operator QLQ.
The idea behind the mode coupling approximation (MCA) is to connect the memory
kernels with the density relaxations. Therefore we define a second projection operator

PMCT =
∑
~k<~p

|ρ(~k)ρ(~p)〉 〈ρ(~k)ρ(~p)|ρ(~k)ρ(~p)〉
−1
〈ρ(~k)ρ(~p)| (2.4.2)
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and get

M(q, t)MCT =
m

kBT
〈jL(~q)|LQPMCTe−iQLQtPMCTQL|jL(~q)〉

=
∑
~k<~p

m

kBT
V(~q,~k, ~p) 〈ρ(~k)ρ(~p)|e−iQLQt|ρ(~k)ρ(~p)〉W(~q,~k, ~p)

≈
∑
~k<~p

m

kBT
V(~q,~k, ~p) 〈ρ(~k)|e−iQLQt|ρ(~k)〉 ρ(~k) 〈ρ(~p)|e−iQLQt|ρ(~p)〉W(~q,~k, ~p)

=
∑
~k<~p

m

kBT
V(~q,~k, ~p)φ(k, t)φ(p, t)W(~q,~k, ~p) , (2.4.3)

with the vertices defined as V(~q,~k, ~p) = 〈jL(~q)|LQρ(~k)ρ(~p)〉S(k)−1 and W(~q,~k, ~p) =

〈ρ(~k)ρ(~p)|QLjL(~q)〉S(p)−1, which are equal in equilibrium. From the literature [14] the
left vertex is known analytically

V(~q,~k, ~p) =
m

kBT
δ~q,~k+~p

[
(q̂ · ~k)S(p) + (q̂ · ~p)S(k)− qS(3)(~k, ~p)S(q)−1

]
S(k)−1 . (2.4.4)

With the convolution approximation [15] S(3)(~k, ~p) ≈ S(~q)S(~k)S(~p) and the direct
correlation function, c(~q), which is related to the structure factor in the Ornstein-
Zernike relation [11], one can rewrite the vertex to

V(~q,~k, ~p) =
m

kBT
nδ~q,~k+~p

[
(q̂ · ~k)c(k) + (q̂ · ~p)c(p)

]
S(p) , (2.4.5)

where n = N/V is the particle density. Barrat et al. [14] show that the convolution
approximation does not affect much the MCT results. For hard spheres the change in
the critical point is only 2%.
The second memory kernel L(q, t) ≈ m

qkBT

∑
~k>~p U(~q,~k, ~p)W(~q,~k, ~p)φ(k, t)φ(p, t) van-

ishes because of the vertex U(~q,~k, ~p) = 〈ρ(~q)|LQρ(~k)ρ(~p)〉S(k)−1 = 0 due to parity.
Since real systems are not monodisperse, the EOM will be be derived for polydisperse
systems, too. In the simplest case, which is the binary mixture, all the physical quan-
tities will be decorated with greek indices for the species, e.g., the structure factor
S(q) which is a scalar in monodisperse systems becomes a matrix Sαβ(q). The particles
differ in their masses and diameter, in general they can differ in more quantities like
temperature. The different species have a different concentration, xα = Nα/N, where
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α denotes the species. The calculation for binary mixture is more involved, so the
longitudinal current correlation, which is in monodisperse case the thermal velocity, is
now given by 〈jL

α(~q)|jL
β (~q)〉 = δαβxαv

2
α.

In appendix B the calculation of the memory kernel via the MCA for binary mixtures
is shown.

2.5 The Density Correlation Function φ(t)

The EOM in equilibrium is a closed integro-differential equation of the form

φ̈(q, t) + ν(q)φ̇(q, t) + Ω(q)2φ(q, t) + Ω(q)2

∫ t

0

m(q, t− τ)φ̇(q, τ)dτ = 0 . (2.5.1)

At this point two special cases should be introduced:

• Brownian Equation of Motion [16, 17]
For colloids, where the particle have momentum transfers with the solvent, one
can ignore, for timescales which are larger than the microscopic timescale of the
solvent, the inertia term and Eq. (2.4.1) becomes

τ(q)φ̇(q, t) + φ(q, t) +

∫ t

0

m(q, t− τ)φ̇(q, τ)dτ = 0 . (2.5.2)

Here we only need the condition φ(q, 0) = 1 and we further define a microscopic
time scale τ(q) = S(q)/(D0q

2), with the short-time diffusion D0.
Note that the dynamics of Eq. (2.5.2) has no hydrodynamic interaction [18].

• Newtonian Equation of Motion [1, 2]
In contrast to the Brownian EOM we introduce here the Newtonian EOM, where
the inertia term gets relevant and we rewrite the Eq. (2.4.1) to

φ̈(q, t) + Ω(q)2φ(q, t) + Ω(q)2

∫ t

0

m(q, t− τ)φ̇(q, τ)dτ = 0 . (2.5.3)

Notice, the inertia term produces some oscillations for small time scales, therefore
it is also called the oscillating dynamics.
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To determine if the system goes into a liquid regime, or if it is in an arrested glassy state,
we introduce the glass-form factor fq, which is the long-time limit of the correlation
function

φ(q, t→∞) =

0, for a liquid ,

0 < fq ≤ 1, for a glass .
(2.5.4)

In literature one finds several names for fq such as Debye-Waller factor and Edwards-
Anderson order parameter [14]. From a physical point of view, the system relaxes to
a liquid state if the density correlations vanishes. This means that the particle can
escape the surrounding cage, which means fq = 0. When the correlations do not vanish
but reach a finite value, fq 6= 0 the particles are arrested in the cage made by the
surrounding particles, the system is then in the glass state.
For the long-time limit, where the correlation function changes slowly, one can neglect
the first derivative of the correlation function in the EOM. For the MCA we also
assume that the memory kernel is a bilinear function of the correlation functions,
m(q, t) = Fq[V, φ(k, t)] [1]. It can be shown that the EOM yields to the so-called
bifurcation equation

fq
1− fq

= Fq[V, fk] . (2.5.5)

The bifurcation equation (2.5.5) may have more than one solution, f̃q, but with the
maximum property [2] one can show that the glass form factor fq is given by

f̃q ≤ fq , for all q. (2.5.6)

One can see, that fq is independent of the microscopic details and only depends on the
coupling parameters V, the vertices. Of special interest is the glass form factor, f cq , at
the singularity, which is given by the critical coupling parameter Vc. At that point a
discontinuous jump occurs in the (f,V)-plane.
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2.6 Asymptotic Expansion

As already explained in the section above, the MCA assumes that the memory kernel
can be expanded as a polynomial of φ(t). For long times, t→∞, respectively, z → 0

in the Laplace domain, the frequencies are |(z + iν(q))/Ω(q)2| � |LT[Fq[V, φ(k, t)]](z)|
negligible, so Eq. (2.3.7) is [3]

φ(q, z)

1 + zφ(q, z)
= LT[Fq[V, φ(k, t)]](z) . (2.6.1)

Notice, Eq. (2.6.1) is scale invariant in time, so with a solution φ(q, t) the function
φy(q, t) = φ(q, t/y) is also a solution.
To eliminate the non-ergodicity pole, f c, we introduce the master function G(t) for the
analysis of the glass state according to

φ(q, t) = f cq +G(q, t) or zφ(q, z) = −f cq + zG(q, z) . (2.6.2)

For G(t) we know that |zG(t)| is small for z → 0 so we can assume |zG(t)/1−fc| � 1.
In addition to that, G(t)n+1 decreases faster than G(t)n so the ratio is also small for
z → 0.
With both assumptions above we can expand Eq. (2.6.1) in terms of G(t) [2]

−δ0

z
+ δ1G(z)

+ (1 + δ2)LT[G(t)2](z) + zG(z)2

+ (1 + δ3)LT[G(t)3](z) + γ3z
2G(z)3

+ (1 + δ4)LT[G(t)4](z) + γ4z
3G(z)4

+ ... = 0 . (2.6.3)

with

δk =
∂k∆Fq
∂fk

(1− f)3

k!
and γk =

1

(1− f)k−2
, (2.6.4)

and ∆Fq = fq/(1− fq)−Fq[V, φ(k, t)]. A detailed derivation is found in appendix C,
there we set φ(0) 6= 1 which is relevant for section 5.
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2.6.1 Bifurcation Singularities

The only solution in the liquid state of the bifurcation equation is fq = 0 and a non
zero value for glassy systems. With model dependent coupling parameters, V, such as
temperature and particle density one can change from a liquid to a glassy state. So
the non-ergodicity parameter jumps discontinuously at the critical point from zero to a
finite value. The phenomenon in which the solution of ∆Fq, which is a function of f ,
does no longer depends smoothly on the parameter but changes dramatically is called a
bifurcation.
In this thesis we will use the definition of V.I. Arnol’d to classify bifurcations [4, 19, 20].
In this sense we introduce Al-Singularities with

Al :
∂k∆F [V, f ]

∂fk

∣∣∣∣
f=fc

= 0 for k < l ,

∂k∆F [V, f ]

∂fk

∣∣∣∣
f=fc

6= 0 for k = l . (2.6.5)

Notice, we use q-independent variables to simplify the problem. A q-dependent derivation
can be found in [21]. For an A2-singularity at the critical point, also called Whitney
fold singularity, Eq. (2.6.3) can be written as

λLT[G(t)2](z) + zG(z)2

+ (1 + δ3)LT[G(t)3](z) + γ3z
2G(z)3

+ (1 + δ4)LT[G(t)4](z) + γ4z
3G(z)4

+ ... = 0 , (2.6.6)

with λ = 1 + δc2.
Further works on higher order singularities and glass-glass transitions can be found in
[22–26]. Since we are analyzing the glass-liquid transition we are mainly interested into
the A2-Singularities. The leading order contribution is dominated by the first line of
Eq. (2.6.6). In general we get

λLT[G(t)2](z) + zG(z)2 =
σ

z
. (2.6.7)
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Here, δ0 = σ is the distance parameter, which give us the information how far we are
from the critical point. For σ = 0, Eq. (2.6.7) can be solved with the ansatz G0(t) ∝ t−a.
The prefactor λ has to fulfill the condition

λ =
Γ(1− a)2

Γ(1− 2a)
, (2.6.8)

for 0 < a < 1/2 with the Euler Gamma-function Γ.
Furthermore, for non vanishing σ, the correlator G0(t) remains the same. The distance
parameter σ merely enters as a rescaled time t̂ = t/tσ, where tσ is the plateau crossing
time. So we have [3]

Gσ(t̂) = cσg±(t̂) , cσ =
√
|σ| , tσ = t0|σ|−

1
2a . (2.6.9)

Here g±(t̂) is the master function which is independent of σ but depends only on λ and
is the solution of

∓ẑ−1 + λLT[g±(t̂)2] + ẑg±(ẑ)2 = 0 . (2.6.10)

At the critical point, σ → 0, the prefactor cσ vanishes and the plateau crossing time, tσ,
diverges. So the time is scaled to G0(t̂) ∝ (t/t0)−a, where t0 is the microscopic time
scale.
On the glass side, σ > 0, in order to get an expression for the glass form factor, f 6= f c,
we introduce δf = f − f c as a solution for the long-time limit of Eq. (2.6.7)

δf 2 =
σ

1− λ
⇒ f = f c +

√
|σ|

1− λ
. (2.6.11)

So the correlator on the glass side is [3]

g+(t̂) =
1√

1− λ
+ 2
√

1− λg(t̂) , (2.6.12)

where g(t̂) fulfills the following equation

−g(ẑ) + λLT[g(t̂)2](ẑ) + ẑg(ẑ)2 = 0 . (2.6.13)
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On the liquid side, for negative σ, there is a decay away from the plateau, which is
governed by the von Schweidler law g−(t̂) ∝ −t̂b, with 0 < b ≤ 1. The exponent b can
also be expressed via λ

λ =
Γ(1 + b)2

Γ(1 + 2a)
. (2.6.14)

For the so-called α relaxation process [2, 17], where the correlation function has an
asymptotic relaxation to zero φ(t→ 0), the correlation function at leading order can be
written as

φ(t̃) = f c − h t̃b , (2.6.15)

with the time scale t̃ = t/tσ′ , tσ′ ∝ |σ|−γ and γ = 1/(2a) + 1/(2b) and the amplitude h.
In Fig. 2.6.1 one can see the dynamic of the correlation function for a liquid and glass.

Figure 2.6.1: Left: The correlation function φ(t) decays for a liquid to zero. The decay
to the plateau can be described by the critical law g(t) ∝ t̂−a and the decay from the
plateau with the von Schweidler law g(t̃) ∝ −t̃b. Right: One can see the critical decay
to the plateau and a non vanishing value for φ(t→∞) [27].

2.6.2 Schematic Models

Next to the general MCT, where we set the memory function to a functional of a
bilinear polynomial, there is a so-called schematic MCT. Here the memory function is a
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sum of different powers of the correlation function φ(t)

F [V, φ(t)] =
∑
n

vnφ(t)n . (2.6.16)

For long times, when the correlation function becomes the non-ergodicity parameter,
we put the schematic memory kernel into the bifurcation equation (2.5.5)

f

1− f
=
∑
n

vnf
n . (2.6.17)

For different kinds of schematic kernels one can solve this equation, where the critical
point can be calculated exactly. The simplest model, F1 = v1f , is a trivial one. For
F2 = v2f

2 a bifurcation occurs and will therefore be calculated here in detail to get an
intuition. From the bifurcation equation we directly get

f

1− f
= v2f

2 ⇒ f± =
1

2

(
1±

√
v2 − 4

v2

)
, (2.6.18)

with the critical values (f c, vc2) = (1/2, 4). The solution can be seen in Fig. 2.6.2. One
can see that the solution jumps at the critical point, which is a feature of the bifurcation.
From the maximum theorem, Eq. (2.5.6), the solution is unambiguous, f+. Now the
exponent parameter can be calculated

λ = 1 + (1− f c)3 ∂
2∆F [v2, f ]

∂f 2

∣∣∣∣
f=fc,v2=vc2

=
1

2
. (2.6.19)

With λ = 1/2 there is no stretching for α relaxation and therefore the model is not
realistic to describe glassy systems [1, 28].
We need one more parameter to vary the exponent parameter, therefore the two pa-
rameter model F12 = v1f + v2f

2 is the simplest case of interest. In this model an A2

singularity occurs and we can generate the dynamics of the system via Eq. (2.6.6). One
can find this model in several works [5, 29, 30]. In [31] the F12-model is discussed in
connection with the Pott’s model.
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Figure 2.6.2: The non-ergodicity parameter as a function of the control parameter v2.
For v2 < 4 the non-ergodicity parameter is always zero (red line on the x-axis), which
means that the system is in the liquid state. At the critical point (f c, vc2) = (1/2, 4) there
is a discontinuous jump from zero to the critical value, f c, which is a common behavior
of bifurcations. For v2 > 4 there are two different paths, which also can be seen in Eq.
(2.6.18). With the maximum theorem the blue line, f+, describes the glassy state.

In analogy to the calculation of the F2-model, we also start with the bifurcation
equation f c/(1− f c) = v1f

c + v2f
c2. In addition we also use the derivative with respect

to f , 1/(1− f c)2 = v1 + 2v2f
c as a second condition and get for the control parameters

vc1 = (1− 2f c)/(1− f c)2 and v2 = 1/(1− f c)2. For this model the exponent parameter
is not given as a single number anymore but is given by λ = 1 − f c. Rewriting the
control parameter as a function of λ one gets

vc1 =
2λ− 1

λ2
and vc2 =

1

λ2
. (2.6.20)

By plotting v1 as a function of v2, one can see the liquid-glass transition line shown in
Fig. 2.6.3. In contrast to the F2-model, the exponent parameter varies between 1 and
1
2
.

One can find higher order singularities like an A3-singularity in the F13 = v1f + v3f
3

model which is discussed in [32] and an A4-singularity which occurs for the F123 =

v1f + v2f
2 + v3f

3 model. A technical approach to the higher order singularities one
can find in [26].
The one component model can be extended into more component models like the
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Figure 2.6.3: The (v1, v2)-plane with the liquid-glass transition line. Along the line the
non-ergodicity parameter has its critical value, which is given by the control parameter,
and the exponent parameter, λ, can be calculated exactly. Under the transition line the
system is in the liquid state, while above the transition line a glassy state dominates.
The interval v2 ∈ {0, 1}, where v1 = 1, is constant is the so-called Type-A line.

Bosse-Krieger model where you have two correlators, φ1(t) and φ2(t) [33] :

m1 = v1φ1(t)2 + v2φ2(t)2 ,

m2 = v3φ1(t)φ2(t) , (2.6.21)

with the control parameters vn ≥ 0. In the Bosse-Krieger model a swallowtail-bifurcation
in Arnold’s definition appears. In the F12- and F13-model it is difficult to handle high
exponent parameters close to unity since a type-A line occurs. The advantage of the
Bosse-Krieger model is, that here a type-B line appears, which depends on f1. Since all
parameters can be calculated analytically one can fit all the parameters of microscopic
systems with the parameters of the schematic model to compare theoretical accuracy
[34].

Conclusion

The starting point for describing liquids and glassy systems is the normalized density
autocorrelation function, φq(t). Within the Mori-Zwanzig formalism one derives the
equation of motion for φq(t), which is exact. In the equation of motion a memory kernel,
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mq(t), occurs as a part of a convolution and since the memory kernel is not known the
equation is not closed. Here, I outlined the mode coupling approximation that expresses
the memory kernel as a bilinear functional of the density autocorrelation function. In
subsequent chapters I am going to apply the mode coupling approximation to close
equations of motion and to make them amenable to numerical solutions. In general this
kind of approximation can be used for a variety of systems with Brownian or Newtonian
dynamics like hard sphere systems, or some stochastic dynamics like some spin models.
In early works E. Frey and F. Schwabel used the mode coupling theory to describe the
critical dynamics of ferromagnets [35].
In this thesis I will use mode coupling theory to describe the glass transition in dissipative
systems like granular matter, and for the Fredrickson-Andersen model, which is a lattice
model for glassy dynamics.
In these sections I am going to introduce extensions of mode coupling theory: For the
hard sphere system I will fix the parameters of schematic mode coupling models to
reproduce the essential features of a fully microscopic solution. For the Fredrickson-
Andersen model the memory kernel is known exactly in the limit t → ∞ and I am
going to propose a mode coupling like extension to finite times.
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3 Microscopic Dynamics of Granular Matter

With a simple view on sand one can see all the difficulties of describing the interactions
of granular particles. The grains are not spherical, each of them has a different irregular
shape. Because of some off-center collisions, the particles rotate and dissipate different
amounts of energy. Nevertheless, granular systems are deterministic, one can describe
their dynamics with mechanical collisions of the particles and the effect of external
forces. Notice, the free streaming of the particles also affects the dynamics.
Now, we have to make some assumptions, which are justified for ideal systems of
granular matter:

• All the particles are spherical, so that they are described by their masses, m, and
their radii, a.

• The dissipation of the particles is equal and given by the coefficient of restitution,
ε ∈ [0, 1] [36]. The coefficient of restitution can expressed as:

ε =

∣∣∣∣ r̂12 · ~v ′12

r̂12 · ~v12

∣∣∣∣ (3.0.1)

where ~v12 = ~v1− ~v2 is the relative velocity, r̂12 = ~r12/|~r12| is the unit vector which
specifies the geometry of the collision and the prime denotes the velocity after
the collision.

In several studies [37–40] the effect of dissipation on granular media is shown. Systems
with dissipation do not conserve the kinetic energy of the particles, which breaks the
time reversal symmetry and renders the system out of equilibrium. With the restitution
coefficient one can control the dissipativity of the system, so for ε = 1, the elastic
limit, the kinetic energy is fully conserved and for ε = 0, the particles lose their kinetic
energy fully. A discussion on whether the coefficient of restitution can describe granular
dynamics with dissipation can be found in [41].
With the rules of momentum conservation and the kinetic energy of the particle before
and after the collision, with respect to ε, one expresses the postcollisional velocities as
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a function of the precollisional ones [41]

~v′1 = ~v1 −
m2

m1 +m2

(1 + ε)(~v12 · r̂12)r̂12 , (3.0.2)

~v′2 = ~v1 +
m1

m1 +m2

(1 + ε)(~v12 · r̂12)r̂12 . (3.0.3)

For rough spheres one has to extend Eq. (3.0.2) with the tangential restitution, which
describes the surface roughness [42].
One can define, in analogy to the temperature of a molecular gas, the granular kinetic
temperature, T = m 〈v2〉 /D, where D is the dimension, as a function of the average
square of the particle velocities. In dissipative systems, where the kinetic energy reduces
after a collision, a free cooling of a granular system can be observed. For a system which
remains homogeneous this effect is called the homogeneous cooling state [41]. The time
evolution of the temperature with an initial temperature, T0, is given by Haff’s law [36]

T (t) =
T0

(1 + t/τ0)2
, (3.0.4)

where τ0 ∝ D/(1− ε2) is the relaxation time scale for measuring the time as the number
of collisions.

3.1 Microscopic Dynamics

The particles’ interaction is deterministic, the postcollisional velocities of the particles
are given by the precollisional ones, which is shown above. For most of those systems one
can introduce a Hamiltonian to get the equation of motion. In general the Hamiltonian
is defined by

H =
~p 2

2m
+

1

2

N∑
i<j

V (~q) , (3.1.1)

with the positions ~q = (~r1, ..., ~rN), the momenta ~p = (~p1, ..., ~pN) of a system with N
interacting particles, and the interacting potential V .
A point in the phase space, Γ, is now given by the pair (~q, ~p). With the interaction
potential, V (~q) =

∑
i<j V (|~ri − ~rj|), the dynamics is given by the Hamilton equations
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~̇q = ∂H/∂~p and ~̇p = −∂H/∂~q, uniquely.
In section 2.2 we introduce the Liouville operator L for the time evolution of the
microscopic variables. With Eq. (2.2.4) and the Hamiltonian one can write the
Liouville-operator as

iL̂ = iL̂0 +
∑
i<j

iL̂′ij

= ~v · ∂
∂~r
− 1

m

∑
i<j

∂V (~rij)

∂~rij
·
(
∂

∂~vi
− ∂

∂~vj

)
. (3.1.2)

An ensemble average 〈A〉 for a time t should be introduced as an average over the
distribution ρ at time t = 0

〈A〉 =

∫
dΓρ(Γ, 0)A(Γ, t) . (3.1.3)

In analogy to quantum mechanics, we can transfer the time evolution from the Heisenberg
representation to the Schrödinger representation whilst we introduce the adjoint operator
L̄ [43]. So the Liouville equation for the distribution function is given by

∂ρ(Γ, t)

∂t
= −iL̄ρ(Γ, t) . (3.1.4)

The Eq. (3.1.4) is well defined but for most of the problems not useful since it can not
be solved explicitly.
One tool to rewrite the distribution function is the BBGKY-hierarchy [11].
The full phase space probability density is unnecessarily detailed for the description of a
system and only the behavior of a subset of particles is sufficient. So we integrate over
the irrelevant parameters and introduce the reduced phase space distribution function

fn(x1, ..., xn) =
N !

(N − n)!

∫
dxn+1...dxNfN(x1, ..., xN) . (3.1.5)

With the definition of the Liouville operator and Eq. (3.1.4) one gets(
∂

∂t
+

n∑
i=1

~vi
∂

∂~ri

)
fn +

n∑
i=1

∫
dxn+1iL̂′i,n+1fn+1 = 0 . (3.1.6)
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This identity is at the beginning not so useful, it expresses the unknown n-particle
distribution function , fn, in terms of the (n+ 1)-particle distribution function fn+1.
For n = 1 the single particle distribution, f1, is a function of the two particle distribution
f2. Here we assume, that the one particle distribution depends less on the higher
order functions of the hierarchy, and so we can truncate the hierarchy without severe
restrictions.
Further assumptions are (i) the collision time τc is much smaller than the mean time
τ between two collisions, which is realistic for systems with low density. So we are
only interested in collisions of two particles but not more. (ii) We use the so-called
molecular chaos assumption, which supposes that the correlation between two collisions
is negligible. It lets us factorize the two particle distribution function with respect
to the velocities. With these approximation, the Eq. (3.1.6) for n = 1 becomes the
Boltzmann equation [11](

∂

∂t
− ~v1

∂

∂~v1

)
f1 =

∫
ddv2

∫
dΩ

∂σ

∂Ω
v12 [f1(~v′1)f1(~v′2)− f1(~v1)f1(~v2)] (3.1.7)

with the scattering cross section σ and the solid angle Ω. With the Boltzmann equation
the hydrodynamic transport coefficients can be calculated [44]. In this thesis we will use
the YBG-relation (Yvon-Born-Green) [45] as a special case of the BBGKY hierarchy.
The YBG theorem for the pair correlation function g(r) is given by

∇1g(~r12) = −nβg(~r12)∇1V (~r12)− nβ
∫

dr3g3(~r1, ~r2, ~r3)∇1V (~r13) . (3.1.8)

The pair correlation function, g(r), is defined as

g(r12) =
V 2

Z

∫
d3r3...d3rNexp

(
−β
∑
i<j

V (rij)

)
, (3.1.9)

here Z =
∫
d3r1...d3rNexp

(
−β
∑

i<j V (rij)
)
is the partition function and β = 1/(kBT )

the inverse temperature.
So with the YBG theorem we write the pair correlation function for two particles,
g2(~r1, ~r2), as a function of the triplet correlation function, g3(~r1, ~r2, ~r3). A full derivation
of the YBG-relation for binary systems is given in appendix E.
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3.2 Hard Sphere Systems

Since the hard spheres have a simple potential, infinity at the contact point and zero
elsewhere, we will use the hard sphere potential to approximate the interaction between
granular media. First a we derive Liouville operator for the elastic case, where the energy
is conserved, and after that we introduce the coefficient of restitution for dissipative
systems, like the inelastic hard spheres.

3.2.1 Elastic Hard Spheres

The interaction potential V for hard sphere systems (HSS) is given by

V (r) =

0 if r > d

∞ if r ≤ d ,
(3.2.1)

where d is the diameter of the sphere, so at contact the interaction potential diverges.
So, for HSS the interaction part, iL′, of the Liouville operator is not defined due the
discontinuity. Nevertheless, the HSS is a deterministic system so that the velocities
after the collision can be described by the collision rules, a propagator U(t, t′) must
exist.
The free streaming, U0(t, 0) = exp(itL0), is independent on external forces. For the
hard core interaction we use the ansatz that we can write the instantaneous collisions
as the following recursive equation [46, 47]

U(t, 0) = U0(t, 0) +
∑
kl

∫ t

0

dτU(t, τ)iT +
kl U0(τ, 0) (3.2.2)

with the free streaming propagator U0(t, 0) = eiL0t and the binary collision operator
iT +
ij . Now, with expanding Eq. (3.2.2) to second order in time we get

U(t, 0) = 1 + itL̂0(0)− 1

2
t2L̂2

0(0)

+
∑
j<k

∫ t

0

dτ [1 + i(t− τ)L̂0(τ)]iT̂ +
jk (τ)[1 + iτ L̂0(0)]

+
∑
j,k,l,m

∫ t

0

dτ
∫ t

τ

dτ ′iT̂ +
jk (τ ′)iT̂ +

lm(τ) +O(t3) . (3.2.3)
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From the expansion one can show the relation L̂2 6= L̂L̂ [48]. This relation is important
to understand the propagator, eiLt, as a modified product

L̂2 = L̂2
0 +

∑
j<k

[L̂0T̂ +
jk + T̂ +

jk L̂0] +
∑
j,k,l,m

T̂ +
jk T̂

+
lm , (3.2.4)

where the summations are only over all disjoint particles. Notice, the interaction
operator L′ is given by the collision operator, T̂ +, which can be used forward and
backward in time, and is defined as [41]

iT̂ ±kl = −Θ(∓r̂kl · ~vkl)(r̂kl · ~vkl)δ(~rkl − d)(b̂±kl − 1) . (3.2.5)

Now, to understand the collision operator T̂ ±kl we look at its components. The Heaviside
function Θ(r̂ · ~v) selects the direction of the velocity before the collision and the
delta function δ(~r − d) assures that the collision takes place when two particle are in
contact. The operator b̂+ implements the collision rules with b̂+

ijf(v1, ..., vi, vj, ...) =

f(v1, ..., v
′
i, v
′
j, ...), so that (b̂+ − 1) gives the change of a variable x due to the collision.

Since the elastic HSS is in thermal equilibrium, the hermitian Liouville operator is
related to the time reversed operator and only differs in the direction of the time, which
is given by the theta function, L̂†

± = L̂∓. The adjoint of the free streaming operator can
be calculated with operator identities and is given by iL̂†

0 = iL̂0+
∑

k<l(r̂kl ·~vkl)δ(rkl−d).
For HSS systems in general we assume that we can factorize the distribution function,
ρ(Γ), into a product of a velocity distribution function ρv(Γ) and a spatial distribution
function ρr(Γ). For the velocity distribution function we assume a gaussian with

ρv(~v) ∝ e−
m~v2

2kBT . The spatial distribution function is a Boltzmann factor given by
ρr(~r) = limβV→∞ e−β

∑
k<l Θ(d−rkl) =

∏
k<l Θ(rkl − d). so we have

ρ(Γ) ∝
∏
k<l

Θ(rkl − d)e−
m~v2

2kBT . (3.2.6)

With the spatial distribution function, ρr(~r), we directly can calculate the YBG relation
for HSS. As we know that ∇1exp(−βU(r1i)) = r̂δ(r1i − d) the YBG relation is

∇1g(~r1, ~r2) = r̂12δ(r̂12 − d)g2(~r1, ~r2) + n

∫
dr3r̂13δ(r̂13 − d)g3(~r1, ~r2, ~r3) . (3.2.7)
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3.2.2 Inelastic Hard Spheres

For the dissipative inelastic HSS we also have a pseudo Liouville operator which is given
by

iL̂ = iL̂0 +
∑
j<k

iT̂ +
jk + iL̂D . (3.2.8)

Since the time reversal symmetry is broken for inelastic systems the collision operator,
T̂ +
jk , is only defined for one time direction. Here b̂+

jk is the operator for inelastic collisions.
The Liouville operator for the driving force, L̂D, which is necessary for the limit of
infinite driving frequency, can be written as [49]

〈L̂D〉ξ =
PD
m

∂2

∂~v2
i

, (3.2.9)

with the driving power PD and the gaussian random variable ξi(t), which has zero mean
〈~ξi(t)〉 = 0 and variance 〈~ξαi (t)~ξβj (t)〉 = δijδ

αβ.
Since nothing is known about the canonical distribution function for the driven inelastic
hard sphere fluids, we assume that we can factorize the distribution function (see [50]
for an analysis of the molecular chaos assumption), ρ(Γ) = ρv(~v)ρr(~r). According to
the elastic hard spheres we make the assumption that the velocity distribution function
is also a Gaussian.
The spatial distribution function for homogeneous and isotropic systems only depends
on the distance between the particles, ρr(~r) = ρr(~rij). So we assume [47, 51]

ρr(~rij) ∝
∏
i<j

Θ(rij − d)χ(rij) , (3.2.10)

with χ(r) as an unknown function. Furthermore, we will assume that the pair correlation
function of an elastic hard sphere system is approximately the same as for inelastic hard
sphere fluids. In [51] it is shown that the structure factor of an elastic hard sphere fluid
is not the same as for an inelastic hard sphere fluid. Nevertheless, we set χ(rij) = 1

and get the same spatial distribution function as for a fluid of elastic hard spheres
in thermal equilibrium. Note, that for systems out of equilibrium the adjoint pseudo
Liouville operator has to be calculated, which is possible with L̂†A = ρ(Γ)−1 ˆ̄Lρ(Γ)A.
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3.3 The Granular MCT

Now, the knowledge of the Liouville operator should be used to calculate the memory
kernel in Eq. (2.4.3) in section 2.4

M(q, t)MCT =
∑
~k<~p

m

kBT
V(~q,~k, ~p)φ(k, t)φ(p, t)W(~q,~k, ~p) . (3.3.1)

Here, we need to calculate the two vertices V and W to get an expression for the kernel.
After getting the memory kernel we will discuss the problems of the extension into
binary mixtures. Nevertheless, in appendix D is the calculation of the vertices for binary
mixtures under some simplifications.
The Liouville operator, which is introduced above, shall be recalled here again

L = L0 +
∑
j<k

T +
jk + LD . (3.3.2)

The three terms, the free streaming operator, L0, the interaction operator, T +
ij , and the

driving operator, LD are derived in the section above.

3.3.1 Calculation of the Vertex V

The left vertex is known from literature [14] and given in Eq. (2.4.4). Nevertheless, its
calculation should be motivated here:

V(~q,~k, ~p) = 〈jL(~q)|LQρ(~k)ρ(~p)〉 1

S(k)S(p)

=
[
〈jL(~q)|Lρ(~k)ρ(~p)〉 − 〈jL(~q)|LPρ(~k)ρ(~p)〉

] 1

S(k)S(p)
. (3.3.3)

In the first term, the Liouville operator acts on both of the densities and in the second
term only the |ρ(~q)〉 part of the projection operator gives a non-vanishing contribution:

V(~q,~k, ~p) =
[
(q̂ · ~k) 〈jL(~q)|jL(~k)ρ(~p)〉+ (q̂ · ~p) 〈jL(~q)|ρ(~k)jL(~p)〉

− 〈jL(~q)|Lρ(~q)〉 1

S(~q)
〈ρ(~q)|ρ(~k)ρ(~p)〉

] 1

S(k)S(p)
. (3.3.4)
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The brackets in the first line are given by 〈jL(~q)|jL(~k)ρ(~p)〉 = δ(~k+~p,~q)
V

kBT
m
S(p), a full

derivation is in appendix D. Since one knows the time derivative of the density, the
matrix element in the second line is easy to calculate, 〈jL(~q)|Lρ(~q)〉 = qv2. Last but
not least the last term is known in the literature as the triplet correlation function,
δ(~k+~p,~q)

V
S(3)(~k, ~p) = 〈ρ(~q)|ρ(~k)ρ(~p)〉. Only less is known about the triplet correlation

function, see e.g. the following reference for theoretical and some numerical works
[52, 53].
Here, we also introduce the direct correlation functions, nc(q) = 1 − S−1(q) and
S(3) = S(q)S(k)S(p)− n2c(3)(~k, ~p) so the vertex as a function of c is

V(~q,~k, ~p) =− δ(~k + ~p, ~q)

V

kBT

m
n
[
(q̂ · ~k)c(k) + (q̂ · ~p)c(p) + nc(3)(~k, ~p)

]
. (3.3.5)

The Kirkwood approximation [54, 55], c(3) = 0, which fails for large length scales but is
in a good agreement for smaller length scales [56], can be used to simplify the vertex.
This approximation can be seen as a maximization of an entropy functional [57]. Finally,
one has

V(~q,~k, ~p) =− δ(~k + ~p, ~q)

V

kBT

m
n
[
(q̂ · ~k)c(k) + (q̂ · ~p)c(p)

]
. (3.3.6)

Notice, in equilibrium the left and the right vertices are equal and the memory kernel
is given by

m(φ(t), q) =
kBT

m
n2
∑
~k+~p=~q

S(k)S(p)
[
(q̂ · ~k)c(k) + (q̂ · ~p)c(p)

]2

φ(k, t)φ(p, t) . (3.3.7)

3.3.2 Calculation of the Vertex W

Since dissipation plays a key role in granular systems, the left and the right vertices
differ by at least the restitution coefficient ε, which is a degree of the dissipativity of
the system.
A full calculation of the right vertex for monodisperse granular matter can be found in
[47, 51] and in appendix D a long detailed and very technical calculation for a binary
mixture.
Now, we want to motivate the calculation of the right vertex here. The explicit form of
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the right vertex is

W = 〈ρ(~k)ρ(~p)|QLjL(~q)〉 1

S(k)S(p)

=
[
〈ρ(~k)ρ(~p)|LjL(~q)〉 − 〈ρ(~k)ρ(~p)|PLjL(~q)〉

] 1

S(k)S(p)
. (3.3.8)

For the righthand term in the second line, one uses the definition of the projection
operator, P, and gets the triplet correlation function and a frequence Ω again. The
frequence is not easy to calculate like in section 3.3.1, where we have to apply the
Liouville-operator explicitly:

Ωρj ∝ 〈ρ(~q)|LjL(~q)〉 = 〈ρ(~q)|(L0 +
∑
ij

T +
ij + LD)jL(~q)〉 . (3.3.9)

Since the driving operator is proportional to the second derivative of the velocity,
LD ∝ ∂2

∂~v 2 , but the longitudinal current is only linear in ~v, it vanishes. The calculation
of the free streaming part is mostly given by the velocity average, which can be seen in
appendix F. So the only interesting term is the interacting one, T +

ij . Since none of the
particles are privileged, one can fix a particle and let it collide with the others. So the
sum over all particles becomes to a prefactor N(N − 1)/2.

〈ρ(~q)|
∑
ij

T +
ij j

L(~q)〉 =
N(N − 1)

2
〈ρ(~q)|Θ(r̂12 · ~v12)(r̂12 · ~v12)δ(r12 − d)(b̂+

12 − 1)jL(~q)〉 .

(3.3.10)

The collision operator, b+
12, used on the longitudinal current transforms the velocity to

the postcollisional one, where the coefficient of restitution, ε appears. The (r̂12 ·~v12)-term
can be calculated independently from the spatial part with the velocity average. After
respecting those facts one gets

〈ρ(~q)|
∑
ij

T +
ij j

L(~q)〉 =
(N − 1)

2

1 + ε

2

kBT

m
q̂ 〈r̂12δ(r12 − d)(ei~q~r2 − ei~q~r1)

∑
j

e−~i~q~r〉 .

(3.3.11)
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Now, the summation in the spatial average can be described by three cases,
∑

j e
−i~q~rj =

e−i~q~r1 +e−i~q~r2 +(N−2)e−i~q~r3 . With relabeling the integration variables, the four averages
can be collapsed to two terms:

〈r̂12δ(r12 − d)(ei~q~r2 − ei~q~r1)
∑
j

e−~i~q~r〉 =2 〈r̂12δ(r12 − d)e−i~q~r1ei~q~r2〉

+ 2(N − 2) 〈r̂12δ(r12 − d)e−i~q~r3ei~q~r2〉 . (3.3.12)

For the last term the YBG-relation will be used to rewrite the term as a function of
~r1 and ~r2. From the YBG-relation one gets the right hand side of the first line of Eq.
(3.3.12) and a term which depends on the structure factor. Now, with collecting all the
terms one gets

〈ρ(~k)ρ(~p)|PLjL(~q)〉
S(k)S(p)

=
δ(~k + ~p, ~q)

V

kBT

2m
q [(1− ε)S(q) + (1 + ε)] (3.3.13)

The calculation of the first term in Eq. (3.3.8), 〈ρ(~k)ρ(~p)|LjL(~q)〉, is from a theoretical
point of view equal to the calculation above, but because three different observables
are interacting with each other one has to do more steps in the calculations and use
the YBG-relation more than one time. A full derivation can be found in [47] and in
appendix D for binary mixtures:

〈ρ(~k)ρ(~p)|LjL(~q)〉 =
kBT

m

δ(~k + ~p, ~q)

V

[
1 + ε

2

(
(q̂ · ~p)S−1(~p) + (q̂ · ~k)S−1(~k)

)
+

1− ε
2

qS(~q)

]
.

(3.3.14)

Notice, in both equations, (3.3.13) and (3.3.14), we used the convolution-approximation.
Sum over all results and use the direct correlation function, c(~q), the right vertex
becomes

W = −1 + ε

2

δ(~k + ~p, ~q)

V

kBT

m
n
[
(q̂ · ~k)c(~k) + (q̂ · ~p)c(~p)

]
. (3.3.15)
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For the elastic limit of ε→ 1 the right and the left vertex are equal, V =W .
The memory kernel with dissipation is given by

m(φ(t), q) =
1 + ε

2

kBT

m
n2
∑
~k+~p=~q

S(k)S(p)
[
(q̂ · ~k)c(k) + (q̂ · ~p)c(p)

]2

φ(k, t)φ(p, t) .

(3.3.16)

Now, we go to the limit of continuous wave vectors, where the sum is replaced by an
integral

m(φ(t), q) = A(q, ε)
n

q2S(q)∫
d3kS(k)S(|~q − ~k|)

{
[q̂ · ~k]c(k) + [q̂ · (~q − ~k)]c(|~q − ~k|)

}2

φ(k, t)φ(|~q − ~k|, t) .

(3.3.17)

The prefactor A(q, ε) = [1 + (1− ε)S(q)/(1 + ε)]−1 > 0 guarantees that the memory
kernel remains positive definite. In the elastic case, ε = 1, the prefactor also equals unity.
Since the structure factor, S(q), exhibits some oscillations, the prefactor also oscillates
for ε < 1. In Fig. 3.3.1 one can see the behavior of the prefactor, it is dominated by the
Percus-Yevick structure factor [58]. One can see in Fig. 3.3.1 that A(q, ε) has a local

Figure 3.3.1: The prefactor, A(q, ε), as a function of the wave number qd for different
coefficients of restitution in 3D. The diameter is set to one, d = 1. In the elastic case,
ε = 1, the prefactor is a constant (green line). The deviation from the unity gets larger
for decreasing ε. The red curve is for ε = 0.5 and the blue one is for the total inelastic
case, where the coefficient vanishes, ε = 0.
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minimum at the first peak of the structure factor. The weakness of the memory kernel
or the cage effect is related to the dissipation, for increasing dissipation the memory
kernel decreases and the cage effect becomes weaker. To compare the inelastic case
with the elastic case, one has to go to higher densities. For increasing dissipation or
decreasing ε the critical density, where the liquid-glass transition takes place, increases.
This makes insofar sense as the memory kernel decreases for a given density with
increasing dissipation.

0 0.2 0.4 0.6 0.8 1
ε
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glass

fluid

0.74
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Figure 3.3.2: The critical packing fraction, ϕc, for different coefficients of restitution.
One can see a decreasing ϕc for decreasing dissipation [51].

With the granular mode coupling in this chapter it can be shown, that the mode
coupling theory can be used for systems out of the equilibrium, too.

3.3.3 Granular Mode Coupling Theory for Binary Mixtures

The memory kernel for a binary mixture is similar to the monodisperse case, a full
motivation is given in the PhD of A. Latz [59] and T. Voigtmann [60]. In appendix B
the memory kernel is derived as

Mαβ(~q) ≈ J−1
αβ 〈j

L
β (~q)|LQPMCTRPMCTQL|jL

α(~q)〉 ,

= J−1
αβ

∑
γ′δ′εψ,

~k>~p,~k′>~p′

Vβγδ(~q~k~p)Zγ
′δ′

εψ (~k′~p′, ~k ~p)Wε′ψ′α(~k′~p′~q) , (3.3.18)
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with

Vβγδ(~q~k~p) =
∑
γ′′δ′′
~k′′~p′′

〈jL
β (~q)|LQργ′′(~k′′)ρδ′′(~p′′)〉 gγ

′′δ′′

γδ (~k′′~p′′, ~k ~p) ,

Wε′ψ′α(~k′~p′~q) =
∑
ε′′ψ′′
~k′′~p′′

〈ρε′′(~k′′)ρψ′′(~p′′)LQ|jL
α(~q))〉 gε

′′ψ′′

ε′ψ′ (~k′′~p′′, ~k′ ~p′) ,

Zγ
′δ′

εψ (~k′~p′, ~k ~p) = 〈ργ′(~k′)ρδ′(~p′)|R|ρε(~k)ρψ(~p)〉 ,

≈ Φγ′ε(k, t)Φδ′ψ(p, t)δ~k~k′δ~p~p′ . (3.3.19)

Where the greek indices denote different species of particles and gαβα′β′(
~k ′~p ′, ~k~p) =

Sαα′(~k)Sββ′(~p)δ~k,~k ′δ~p,~p ′ is the normalization of the vertex. Now, one only has to calculate
the averages like in the section above and the memory kernel for binary mixture is
ready for some applications. The left vertex, V, can be calculated easily like in the
monodisperse case without further restrictions and is given by (full calculation in
appendix D):

Vβγδ(~q~k~p) = −δ(
~k + p, ~q)

V

kBTβ
mβ

n
[
(q̂ · ~k)cβγ(~k)δβδ + (q̂ · ~p)cβδ(~p)δβγ + qxβnc

(3)
βγδ(

~k ~p)
]
.

(3.3.20)

One can see that in the monodisperse limit, where the concentration x goes to one and
the indices disappear, the left vertex is equal to Eq. (3.3.6).
The calculation of the right vertex, W , is much more complicated than in the monodis-
perse case. Since we have to calculate the averages explicitly with the Liouville operator,
we have to know the impact of the different particles on the averages.
In general the different species of particles interact differently, which changes the coeffi-
cient of restitution for each species. The coefficient becomes a matrix, εαβ. The effect
of the temperature on the different particles is in general also varying. So particle α
has a thermal velocity of v2

α ∝ Tα.
The problem we get with different temperatures is that the spatial averages, which
we use inter alia for the YBG-relation, is depending on the interacting part of the
Hamiltonian, 〈...〉χ ∝ e−β

∑
ij V (rij), here χ denotes the spatial average. β is the inverse

temperature, and there is no analog definition for β for more than one temperature. So
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in our calculations we use two assumptions: 1) the coefficient of restitution is a constant
like in the monodisperse case and 2) the temperatures are equal for all particles. Under
those assumptions we can calculate the right vertex (a very technical derivation is given
in appendix D)

Wαβγ = −δ(
~k + ~p, ~q)

V

kBTγ
mγ

n
1 + ε

2

[
(q̂ · ~k)δγβcγα(~k) + (q̂ · ~p)δγαcγβ(~p) + qnxγc

(3)
γαβ(~k, ~p)

]
.

(3.3.21)

Here we have both limits: i) for ε = 1, the elastic limit, the right vertex equals the left
one and ii) for vanishing indices, the monodisperse limit, the right vertex equals Eq.
(3.3.15).
In analogy to the monodisperse case we will write the memory kernel as a function of
the prefactor A(~q, ε)

mαβ(~q) = Aεαβ(~q)
n2

q2V 2

1

δβαxβ

∑
γ,δ
ε′ψ′

∑
~k>~p

VβγδΦ(~k, t)γ,ε′Φ(~p, t)δ,ψ′Vε′ψ′α , (3.3.22)

where the prefactor is given by Aεαβ(~q) =
[
xαδαβ + 1−ε

1+ε
Sαβ(~q)

]−1.
The next step is to calculate the right vertex for different coefficients of restitution and
after that to generalize the YBG-relation to the BBGKY hierarchy [45, 61] to calculate
the spatial average for different temperatures.
Lebowitz solved the Ornstein-Zernike equation with the Percus-Yevick closure analyti-
cally [62]. For the analysis of binary mixtures we will use the Lebowitz structure factor
for the memory kernel, mα,β(~q), and for the dynamics of binary mixtures.

Conclusion

In this section I introduced the physics around granular matter. A particularity of
granular matter is that the dynamics is ruled by some dissipative interactions. The
degree of dissipation is given by the coefficient of restitution, ε ∈ [0, 1].
We used the Liouville operators to calculate the mode coupling memory kernel, mq(t),
of such systems analytically. Here we assume that the particles energy is given by their
translation and ignore the rotational energy. Since the calculation of mq(t) is done in
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the work of T. Kranz [47] we extend the theory for binary mixtures. Here I assumed
that the species‘ temperatures, Tα, are all equal and obtained the microscopic memory
kernel in this approximation.
The next steps in this section would be the numerical implementation of the theoretical
framework to get the density autocorrelation function for binary mixtures. The next
step is to generalize the theory by allowing for different species dependent temperatures,
Tα.
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4 Spin Glass Theory

The definition of a spin glass is an arbitrary distribution of spins on a lattice in which
a part of the spins are frozen. One way to realize such states is to have some bonds
with ferromagnetic interaction and some with antiferromagnetic interaction. So, for all
temperatures the spin orientation is not uniform in space and some of the spins become
frozen [63]. In Fig. 4.1.1 we have a square lattice with a ferromagnetic interaction with
the nearest neighbors and an antiferromagnetic interaction with the next to nearest
neighbors. For this system it is not possible to satisfy both kind of interactions. One
can see in the green circles that some spins can fulfill the interaction. But for the whole
lattice it is not possible to fulfill always all interactions at the same time. The spin in
the center is highly frustrated, on the one hand it needs to be a down-spin to satisfy
some of its interactions but on the other hand as a down-spin it will be in opposition
with the remaining interactions. The phenomenon of frustration is a feature of spin
glasses. The ground state of such systems is highly degenerate [6].

Figure 4.1.1: A square lattice with some up- and down-spins. Here the nearest neighbor
interaction is a ferromagnetic one (straight lines), and the next to nearest neighbor
interaction is antiferromagnetic (dotted line). In the green circles the spins are in a
happily connected environment, whereas the spins in the red circles are against the
given interaction.
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In 1975 Edwards and Andersen [64] introduced a model that features a spin glass phase.
The main idea of the Edwards-Anderson (EA) model is given by the Hamiltonian

H = −
∑
i 6=j

Jij(~Si · ~Sj)− h
∑
i

Szi , (4.1.1)

where ~Si is the spin on site i, Jij the interaction between the spins ~Si and ~Sj, and h
the external magnetic field. For a suitable distribution of the interactions, P [Jij], like
in Fig 4.1.1 the system is in highly frustrated. The distribution of the couplings, Jij, is
a gaussian with [63]

P [Jij] =
1

(2π∆2)1/2
exp

(
−
J2
ij

2∆2

)
, (4.1.2)

where ∆ is the variance.
The glassy phase does not have long-range order and therefore an order parameter which
is used in thermodynamics can not be used here [63]. So in the Edwards-Anderson model
we are interested into the dynamics. Frozen spins should not change their orientation
over time, this motivates the introduction of a spin autocorrelation function

q = lim
t→∞

〈〈
~S(0) · ~S(t)

〉
T

〉
C
. (4.1.3)

The inner bracket is the thermal average and the outer bracket the average over all bound
configurations [63]. If the spin orientation remains the same, the Edwards-Anderson
parameter will go to a finite value, q 6= 0. Otherwise, when the spins are not frozen but
changing their orientation the correlation function goes to zero. The Edwards-Anderson
parameter is the order parameter for spin glasses, in analogy to the non-ergodicity
parameter, f , in the mode coupling theory
In the same year Sherrington and Kirkpatrick used a mean-field theory to get an
exact solution of the infinite-range EA model [65, 66]. They assumed that every spin
σi ∈ {−1,+1} couples, independently of the distance between the spins, to all the other
spins equally. Notice, the definition σ for a spin will only used for Ising spins, which
means that the spin only has two possible states, up and down, for all the other spin
orientations the spin will defined as a vector, ~S. A generalization of the SK model is
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the p-spin model which describes the interaction of p spins

H = −
∑

1≤i1<...<ip≤N

Ji1,i2,...,ipσi1σi2 ...σip (4.1.4)

with the Ising spin σi (for p = 2 one gets the SK model) [67, 68].
In both models, the Edwards-Anderson model and the p-spin model (which also
includes the Sherrington-Kirkpatrick model), we need to evaluate the free energy
〈F 〉 = −kBT 〈lnZ{Jij}〉 [7]. For the calculation of the partition function one uses the
replica trick [6] which rewrites the logarithm of the partition function as a derivative of
the partition function, 〈lnZ〉 = limn→0∂n 〈Zn〉. Nevertheless, the calculation of 〈Zn〉 is
also problematic, one can approximate n being an integer and can rewrite the average
over the partition function as 〈Zn〉 =

∫
Dσ1...

∫
Dσn 〈exp(−βH(σ1, J)...− βH(σn, J))〉.

Solving of such integrals is not the topic of this thesis, for interested people I can suggest
to read the work of Castellani and Cavagna [69].
The difficulties of these models are calculating integrals to get the partition function
and calculate the free energy of the system. Inspired by the theory of liquids [70, 71] one
has introduced lattice models to analyze glass-forming liquids without any knowledge
about the partition function or free energy. One of the promising models are the kinetic
constrained models (KCM). Here the spins are not interacting which each other, Jij = 0,
and the dynamic of the system is only based on the neighborhood of a spin. Depending
on the model, the flipping of a spin is constrained and depends only on the nearest
neighbors. Two prominent models are the Kob-Andersen (KA) model [72] and the
Fredrickson-Andersen (FA) model which is the main part of this chapter and will be
explained in detail. So at this point I want to introduce the main idea of the KA model:
At the beginning the lattice is occupied with an initial probability, p, and particle can
only move if they fulfill some conditions. The first condition is intuitive, the particle
can only move, when the target site is empty. In addition the particle must have less
than f nearest neighbors before and after it moved. So the particle number is conserved.
In the work of Sellitto [73] the model shows some properties which it has in common
with real glass-forming systems.
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4.2 Fredrickson-Andersen Model

The other prominent kinetic constraint model is the Fredrickson-Andersen model [74],
in which features of glass-forming systems also occur [8, 75–77].
The FA model is a Ising like model [78] with non interacting up- and down-spins and
an external magnetic field which favors one spin direction [79, 80]. So the Hamiltonian
of the system is simple, H = h

∑
i σi, and h < 0 favors down spins. The dynamics is

constrained, each time step a chosen spin will be flipped with a rate ω(σi → −σi), only
when the number of nearest neighbor down-spins is larger or equal to the facilitation
parameter, f [74, 81]. The kinetic constraint is an analogy to the cage effect in super-
cooled liquids, where the neighbors of a particle form a cage so that the particle is
arrested between the neighbors till it finds a way to escape from the surrounding
particles.
If the up-spin concentration is equal to one, it is trivial to say, that none of the spins
will be flipped and the ground state remains the same. The opposite case, an up-spin
concentration of zero, is also trivial, since the systems favors down-spins the lattice will
be filled in the ground state with only down spins. Now, the question is, can we find
a non trivial initial up-spin concentration, pc < 1, for the emergence of some up-spin
clusters in the ground state. For f = 1 it is shown that the critical concentration
is always one, otherwise it is always possible to flip all up spins in each lattice in a
finite time to a down-spin [81, 82]. The critical up-spin concentration in hypercubic
lattices Zd is, independent of the facilitation parameter, also pc = 1 [81, 82]. On a
random graph, like the Bethe lattice, one can show that for 1 < f < k, where k is the
connectivity, a non trivial concentration pc < 1 exists [83, 84].
Motivated by the numerical result of Sellitto [8] we have the Bethe lattice decorated
with up-spins, with the concentration p, and down-spins, with 1− p. The Bethe lattice
is a regular tree graph with a fixed connectivity, k [85]. One can see in Fig. 4.2.1, that
the number of sites inside the lattice is smaller than the number of sites on the surface
of the lattice. The Bethe lattice also has no loops, so once you started walking from
one point, you will never reach this point again.
The bootstrap percolation [86–88] is the ground state, where T = 0, of the FA model
from an initial up-spin concentration, p. The probability for an up-spin in the ground
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Figure 4.2.1: The Bethe lattice with a coordination number z = 3 and a connectivity
k = 2. One can see that there are no closed loops, so once you started, let’s say, from
the blue site, you will never come back to this blue site again. The different colors mark
the different shells (the grey circles) around a chosen point.

state, q, is given implicitly as [86]

q = p

f−1∑
i=0

(
k

i

)
qk−i(1− q)i , (4.2.1)

with the initial up-spin concentration p. The Hamiltonian, H = −1
2

∑
i σi, is so simple

that the up spin concentration can be calculated explicitly

p =
e

1
2
β

e
1
2
β + e−

1
2
β

=
1

1 + e−β
, (4.2.2)

where β is the inverse temperature. The Eq. (4.2.1) can be illustrated as follows, for
an frozen up-spin in the groundstate one needs more than f up-spin neighbors. The
sum in the equation is over all down-spin neighbors. It starts at zero, which means you
only have up-spin neighbors, and goes till f − 1, where you also have less than f down
spin-neighbors and the spin is frozen. The binomial coefficient gives you all possible
configurations for your down-spin. So for i = 0, when all of your neighbors are up-spins
and are indistinguishable, the coefficient is equal to one, and for i = 1, one has only
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one down-spin and could put this down-spin to k sites and so on.
Since the numerical calculations [8, 77] are not in terms of a correlation function but a
persistence function, ψ(t), it should be introduced as an observable. The persistence
function is the fraction of the spins, which are never flipped till a time t. The long-time
limit, ψ∞ ≡ ψ(t→∞), so the fraction of the spins which are permanently frozen, can
be calculated with the probability of the spins in the ground state, q [77]

ψ∞ = p

f−1∑
i=0

(
k + 1

i

)
qk+1−i(1− q)i + (1− p)

f−1∑
i=0

(
k + 1

i

)
(pχk,f )

k+1−i(1− pχk,f )i ,

(4.2.3)

with χk,f =
∑f−2

i=0

(
k
i

)
qk−i(1− q)i. The first term gives the probability that an up-spin

is frozen, because its neighborhood don’t fulfill the conditions. The second term is the
probability that the down-spin becomes frozen after the down-spin neighbors of it gets
frozen.
Since the persistence function is an unusual observable in MCT, we are interested in
finding a spin correlation function, φ(t). The aim is to understand the microscopic
dynamics of the FA-model with the correlation function, φ(t). With Eq. (4.2.3) we
can compute from the spin autocorrelation function the persistence function and can
compare the numerical data with the theoretical calculation.

4.3 Equation of Motion for the FA-Model

The time evolution of a probability distribution function of Brownian motion, P ({σ}, t),
is given by the Fokker-Planck Eq. ([89])

∂P ({σ}, t)
∂t

=
∑
α

[ωα({−σ}α)P ({−σ}α, t)− ωα({σ}α)P ({σ}α, t)]

= ΩP ({σ}α, t) , (4.3.1)

where {σ} is a set of Ising spins and ωα is the the transition probability. We are
interested in a group of spins {σ}α which are flipped into {−σ}α with the transition
probability of ωα. The stochastic operator, Ω, can be expressed with the spinflip
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operator, Ŝα, as

Ω =
∑
α

(
Ŝα − 1

)
ωα({σ}α) . (4.3.2)

where the spinflip operator is defined as ŜαX({σ}α) = X({−σ}α) and the transition
probability ωα is given for the FA model as

ωα =
ω0

N

(
δ1,nα + δ0,nαe

−1/T
) [

1−Θ

(∑
j∈K

nj − k + f − 1

)]
. (4.3.3)

Here K denotes the set of children of site i. Since the time derivative of the equilibrium
distribution vanishes, ∂tPeq({σ}, t) = 0 , one can derive the detailed balance condition

ωα({−σ}α)Peq({−σ}α, t) = ωα({σ}α)Peq({σ}α, t) . (4.3.4)

With the detailed balance one can create a self-adjoint operator, Ĥ, for the time
evolution [90]

Ĥ = P−1/2
eq ({σ}α)ΩP 1/2

eq ({σ}α) ,

=
∑
α

ω1/2
α ({σ}α)(Ŝα − 1)ω1/2

α ({σ}α) . (4.3.5)

With the identity, Ŝα − 1 = −1
2

(
Ŝα − 1

)2

, one can write the self-adjoint operator, Ĥ,
as

Ĥ = −
∑
α

1√
2
ω1/2
α (Ŝα − 1)(Ŝα − 1)ω1/2

α

1√
2
,

= −
∑
α

Û †
αÛα ,

= −Û †Û . (4.3.6)

This representation of the self-adjoint Hamiltonian will be useful in the next section,
when we derive the Brownian of motion for the Fredrickson-Andersen model.
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4.3.1 Microscopic Dynamics of FA-Model

To get an EOM like 2.5.2 we need an appropriate variable for an autocorrelation function.
As we know both the initial and the end concentrations of the up-spins in the FA model
the following microscopic variable is suitable

ησi(t) = δ1,σi(t) , (4.3.7)

which is one for an up-spin on site i and zero for a down-spin.
Motivated by the bootstrap percolation a spin correlation function, φ(t), with the
long-time limit φ(t → ∞) = q in the non-ergodic phase is needed to describe the
microscopic behavior of the FA model. Such a correlation function is given by

φ(t) = 〈ηi(0)ηi(t)〉 , (4.3.8)

the brackets are an average over all initial spin configurations. The initial value,
φ(0) = p is not normalized to one but to the initial concentration of the up-spins, p.
Notice, the initial concentration p is a given up-spin concentration, so the systems is
at time t = 0 out of equilibrium and it relaxes to equilibrium. The probability q is
also not the equilibrium concentration of up-spins. It is only the fraction of the frozen
up-spins, ignoring the unfrozen up-spins which comes from thermal fluctuations. Since
the correlation between the unfrozen and frozen up-spins vanishes, we are not interested
in the equilibrium concentration.
The Fredrickson-Andersen model has an ergodic-nonergodic transition, which can be
described by the Mode-Coupling theory [1, 2, 28]. In both theories, correlation functions
will be used, the spin autocorrelation function for the FA model and the particle density
autocorrelation function in the MCT, to describe such transitions. Nevertheless, it
is not easy to match both theories, the Fredrickson-Andersen model has a stochastic
irreversible dynamics for spins, whereas, the MCT deals with deterministic reversible
dynamics for liquids. The extended mode coupling theory deals with second order
memory kernels, which is the memory function of the memory function, [91]. In analogy
to that first applications of the MCT on a spin model was with introducing a second
memory kernel [92]. However, the correlation functions resulting from this approximation
were unphysical. Kawasaki introduces the so-called irreducible memory function [90,
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93] instead of the second order memory kernel, which has the same mathematical
characteristic as the simplified MCT for liquids. The name - irreducible memory kernel
- is motivated by the language of diagrammatic quantum field theory, where the first
order memory kernel is not one-particle irreducible, whereas the irreducible memory
kernel is [90, 94]. Some applications of the irreducible memory kernel can be found in
the works of Pitts and Andersen [83, 95] and a diagrammatic derivation in [96]. Now,
here we want to motivate the irreducible memory kernel for the Fredrickson-Andersen
model.
Since we have two memory kernels the following projection operators will be used [90]

Pηi = |ηi(0)〉 〈ηi(0)| ,

P = Û |ηi(0)〉 〈ηi(0)|Û † · Û |ηi(0)〉−1 〈ηi(0)| Û † . (4.3.9)

In analogy to chapter 2 the correlation function, φ(t), will be transformed into the
Laplace domain

φ(z) = 〈ηi(0)|(z − Ĥ)−1|ηi(0)〉 . (4.3.10)

With the projection operator, Pη ,and the appendix A one gets

Pη(z − Ĥ)−1Pη =
[
z − PηĤPη − PηĤ(z −QηĤQη)ĤPη

]−1

,

= [z − Ω−Mη(z)]−1 . (4.3.11)

The Hamiltonian, H, can be rewritten with the second projection operator, P , to

Ĥ = −Û †(P +Q)Û = ĤP + ĤQ ,

ĤP = −Û †PÛ = Ĥ |η(0)〉Ω−1 〈η(0)| Ĥ ,

ĤQ = −Û †QÛ . (4.3.12)

To get an irreducible memory kernel the operator identity

1

z −QĤQ
=

1

z −QĤQQ
+

1

z −QĤQ
HP

1

z −QĤQQ
.
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will be used so that the memory kernel can be written as

Mη(z) = M irr
η (z) +Mη(z)Ω−1M irr

η (z) ,

⇒Mη(z) =
M irr

η (z)

1− Ω−1M irr
η (z)

,

with

M irr
η (z) = 〈η(0)|ĤQη

1

z −QηĤQQη
QηĤ|η(0)〉 .

With the irreducible memory kernel the correlation function, φ(z), is given as

φ(z) =
1

z − Ω− Ω2 mirr
η (z)

1−mirr
η (z)Ω

=
1

z − Ω
1−mirr

η (z)Ω

where mirr
η (z) = M irr

η (z)Ω−2 is the dimensionless irreducible memory-kernel.
In the time domain one gets the Brownian of motion:

φ̇(t) + Ωφ(t) + Ω

∫ t

0

dτmirr
η (t− τ)φ̇(τ) = 0 , (4.3.13)

with the frequency (calculation in appendix G)

Ωk,f = ω0p

(
1−

∑f−1
i=0

(
k
i

)
e−(k−i)β

(1 + e−β)k

)
⇒ Ω3,2 = ω0p

(
1− e−3β + 3e−2β

(1 + e−β)3

)
.

(4.3.14)

The system frequency, ω0, can be determined for small times,t→ 0. The convolution is
vanishing for t→ 0 and Eq. (4.3.13) becomes the easy solvable homogeneous differential
φ̇(t) + Ωφ(t) = 0 which is solved with the ansatz φ(t) ∝ exp(Ωt). Now, since the
frequency, Ω, is propotional to ω0, one can match ω0 for a given concentration p. The
frequency, Ω, and the initial up-spin concentration, p, have the same behavior. Both are
starting at one (here Ω is normalized by ω0) and they decay exponentially to a finite
value.
In this section we defined a correlation function for the up-spins, φ(t), and introduced
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Figure 4.3.1: Left side: For T → 0 the up spin concentration is p(0) = 1, so the Bethe
lattice only has up spins. For larger temperatures T →∞ the concentration converges
to p(T →∞) = 1/2. One also can see the critical temperature Tc for having up-spin
clusters.Right side: The frequency Ω, normalized by ω0, as a function of the temperature
(concentration). For decreasing temperature, the frequency goes to the normalized
system frequency, ω0. For increasing temperature the frequency decreases to a quarter
of its initial value.

the irreducible memory kernel, motivated from the works of Kawasaki, to get the
Brownian of motion for the Fredrickson-Andersen model. We also have an analytical
expression for the frequency, Ω. In the next section we try to connect the microscopic
dynamics of the correlation function, φ(t), with the long time limit of the persistence
function, ψ∞(t).

4.4 Bifurcation Scenario in the Spin Model

In section 4.2 we introduced in Eq. (4.2.1) the probability of up-spins in the ground
state, q, which is a function of the initial up-spin concentration, p. We also know that
there is a critical concentration pc < 1 where some up-spin clusters will survive in the
ground state. Below this concentration the probability of an up-spin is zero, q = 0, and
at the critical concentration there is an discontinuous jump from q = 0 to q = qc > 0.
In the work of Sellitto it is shown that above the critical concentration, p > pc, the
probability grows with the square root of the distance to the critical point, q ∝

√
ε,

where ε = (p− pc)/p is the separation parameter [77]. Now, this phenomenon should
be shown here for the simplest case (k, f)→ (3, 2), where Eq. (4.2.1) becomes

q = p(q3 + 3(1− q)q2) . (4.4.1)
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The solutions of this are

q = 0 and q± =
3

4
± 3

4

√
p− 8

9

p
. (4.4.2)

Since the probability can only be a real number, the radicand can not be negative. So
the condition for the critical concentration pc is a vanishing radicand at pc = 8/9. At
pc the critical probability of an up-spin in the ground state is given by qc = 3/4. So
q has the form q± = qc (1±

√
ε). From the two solutions, q+ and q−, we need the one

which fulfills the condition q(p = 1) = 1, which means that an fully occupied lattice
with up-spins is not affected from the percolation and so the ground state is occupied
with only up-spins, too. We are starting the Fredrickson-Andersen model with the
initial concentration, p, then some of the up-spins will be flipped into down-spins, so
the next stable state for the up-spins is given by q = 0 or q+. For p > pc the up-spin
concentration only decays to q+, so the only physical solution here is q+ and not zero,
although q = 0 is a mathematical solution of Eq. (4.2.1). So the solution of Eq. (4.2.1)
is q = 0 for p ∈ [0, 8/9) and q = (1 +

√
ε) for p ∈ [8/9, 1].

One can find the same behavior, in the persistence function, too. It is zero till the
critical concentration, here the persistence function and the correlation function have
the same critical up-spin concentration, and at the critical concentration both are
jumping to a finite value, qc or ψ∞c , and behave like

√
ε above pc.

In Fig. 4.4.1 one can see this behavior for both functions, this discontinuous change of
the function at a critical point is called bifurcation [4].
Now, we want to connect the Fredrickson-Andersen model with the mode coupling
theory. In section 4.3 we introduced the spin autocorrelation function in Eq. (4.3.8)
and the corresponding Brownian equation of motion in Eq. (4.3.13). In the long time
limit, t→∞ the spin autocorrelation function converges to the up-spin probability in
the ground state, φ(t→∞) = q. So the long time limit of the equation of motion turns
into to the bifurcation equation, which is derived in section 2.6. Here, we have for the
long time limit of the correlation function the following expression

m(t→∞) =
q

p− q
=
p(q3 + 3(1− q)q2)

p− q
. (4.4.3)
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Figure 4.4.1: Bifurcation scenario in FA model for the couple (f, k)→ (2, 3). The red
curve is the solution of Eq. 4.4.1. At a value of (pc, qc) = (8/9, 3/4) the probability of
up spins in the groundstate, q(p), jumps discontinuously from the solution q = 0 to the
solution q± = qc(1±

√
ε). The blue curve is the persistence function, ψ∞± (p), which is

given by Eq. 4.2.3. The discontinuous jump is at point (pc, ψ
∞
c ) = (8/9, 2757/4096). For

both functions a monotonic increasing up spin probability, so q+(p) and ψ+(p), is the
physical solution.

Here, the peculiarity of Eq.(4.4.3) should be emphasized, we have a memory kernel
without any approximations. We know the memory kernel for the long time limit
exactly.
Till now we only know the memory kernel for t→∞ without any approximations and
we are interested in the dynamics of the Fredrickson-Andersen model. There are many
possibilities to get the limit in Eq. (4.4.3). An intuitive way to do this is to say that
the q results from the spin autocorrelation function, φ(t), and replace all the q’s with it,
q → φ(t). Nevertheless, there are other completely monotonic functions [97, 98] like the
compositions, φ(f(t)), where f(t) is also a completly monotonic function, which have
the same long time limit as Eq. (4.4.3). Another problem is, that the memory kernel
m̃(φ(t)) could be a product between our known memory kernel and a factor, which goes
to one for t→∞ like m̃(φ(t)) = m(φ(t)) · exp( τ

t
). In this case exp( τ

t
) goes to one for

long times and m̃(φ(t→∞)) = m(φ(t→∞)). In this thesis we will conjecture that we
can replace the q intuitively with φ(t) and that the memory function is not a product
of more functions.
Why do we need this assumption? We are interested into the dynamics of the FA-model
and to describe the dynamics we use the language of the mode coupling theory, which
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gives us two exponents, a and b, for the decay of the correlation function. In Eq. (2.6.6)
one can see that the exponent parameter λ, which is related to the two exponents, can
only be calculated with the knowledge of the Laplace transformation of the master
function, G(t). In Eq. (2.6.6) we have φ(t) ∝ G(t), now if we change our correlation
function, φ(t) → φ(f(t)), or multiply and additional term to our memory kernel, we
need to rewrite the equation and get some prefactors, which are changing the definition
of our exponent parameter, λ.
We calculate λ for our assumption, q → φ(t): With Eq. (4.4.3) we have ∆F which is
defined in section 2.6.1. So we can calculate the different δk-terms of Eq. (2.6.6) and get
δ0 = 0 and δ1 = 0. The first non-vanishing term is δ2, which occurs at an A2-singularity,
with (see appendix C)

δ2 =
1

2!

∂2∆F [pc, q]

∂q2

∣∣∣∣
q=qc

(pc − qc)3

pc
= − 25

864
. (4.4.4)

Now, the exponent parameter, λ = 1 + δ2, can be calculated exactly to the value 839/864.
With the exponent parameter, we have the two exponents we need to describe the
dynamics, a = 0.121... and b = 0.147... .
For microscopic times t → 0 the correlation function goes to φ(t → 0) → p, as we
can see directly in Eq. (4.4.3) the memory kernel diverges, m(p, φ(t) → p) ∝ (p −
φ(t))−1. To regularize the memory kernel we rewrite the divergent term, (p− φ(t))−1 =

p−1
∑M

i (φ(t)/p)i, which is exact for M →∞ and can be interpreted as a resummation
of many-site interactions.
The same calculations can be done for different (f, k)-pairs to get A2 bifurcations with
different critical values, which can be seen in Fig. 4.4.2. In MCT the range of the
exponent parameter is λ ∈ [0.5, 1] [9] and we want to find out the upper and lower
limit in the FA model on the Bethe lattice. To calculate λ for any (f, k)-pair we need
the real roots of Eq. (4.2.1), which is a polynomial of the degree of k. After that we
have to find out, which of the real roots is belonging to the bifurcation. Here we use
the condition q(p = 1) = 1 to find out the critical value for a given (f, k)-couple. For
(3, 2) we made the calculations above, here we only have a polynomial of third order.
With the knowledge of the q = 0 solution, we can factorize q and get a polynomial of
second order which can be calculated easily. All of the three solutions are real functions
and we can describe the corresponding bifurcation. For a high connectivity, k, it is
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even problematic to get the roots with some numerics. I made the calculation for the
first 20 couples to get an intuition for the range of λ. In Fig. 4.4.2 one can see that λ
is decreasing for limk→∞(k − 1, k). At the moment I don’t know the limit. Based on
MCT I would speculate λ = 0.5 as the limit, but there is no reason why it should be.
The exponent parameter λ decreases very slowly even for the pair (99, 100) its value is
λ = 0.8432... . An increasing λ can be seen for limk→∞(fconst, k), where fconst is a fixed
facilitation parameter. It seems that λ converges here to one, which is an A3-singularity
in Arnold’s terminology. Since the decay at an A3 singularity is a logarithmic one, we
expect for λ→ 1 very slow decays. So to compare our theory with some simulations at
least we need 6 orders of magnitude in time to represent the relaxation to the plateau.

Figure 4.4.2: Left : The exponent parameter, λ, for different (f, k)-couple. One can see
an increasing exponent parameter, λ→ 1, for the limit limk→∞ (fconst, k). A decreasing
λ is given for the limit limk→∞ (k − 1, k). Right : Different bifurcation scenarios for
different (f, k)-couples. One can see a shrinking curvate from the (5, 10)-couple to the
(9, 10)-couple, which means a decreasing λ

From the geometrical point of view, the exponent parameter is the curvature of the
bifurcation. In Fig. 4.4.2 one can see the bifurcation for different (f, k)-pairs. In all
of the pairs the connectivity is fixed to k = 10. One can see that the critical initial
concentration of up-spins is decreasing for increasing facilitation parameter, f . This is
intuitive, for f = 5 you at least need only 5 down spin neighbors to flip a spin, and for
f = 9 you need 9 down spin neighbors. So the initial critical up spin concentration, pc,
must be bigger for f = 5 than for f = 9. The larger the initial up spin concentration
the higher the value of the exponent parameter, λ. In Tab. 4.4.1 one can see different
critical initial up spin concentrations, pc, the critical ground state probability, qc, and
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Table 4.4.1: Different (f, k)-couples and the corresponding parameters, pc, qc, and λ.
For a constant facilitation parameter, f , and a diverging connectivity, k → ∞, the
critical values , pc and qc, are going to one. A decreasing to zero of the critical values is
given for f = k − 1 and k →∞.

(f, k) pc qc λ

(2, 3) 8/9 3/4 839/864

(2, 4) 0.9493 0.8936 0.9868
(2, 5) 0.9710 0.9413 0.9925
(3, 4) 0.7249 0.5435 0.9395
(3, 5) 0.8349 0.7265 0.9668
(4, 5) 0.6025 0.4180 0.9203
(2, 20) 0.9987 0.9978 0.9987
(19, 20) 0.1641 0.0958 0.8583

the different exponent parameter, λ, for different pairs of (f, k).
In Tab. 4.4.1 one can see that the initial up-spin concentration is always higher than
the one in the groundstate, pc > qc. Since the Hamiltonian prefers down spins, the
up-spin concentration will never increase.
From the definition above we know that the long time limit of the persistence function,
ψ∞, is connected to the long-time limit of the correlation function, φ(t → ∞). Near
the plateau, ψ∞ we can expand the persistence function to

ψ(t ∼ tσ) ' ψ∞c +
∂ψ∞(q)

∂q

∣∣∣∣
q=qc

[φ(t)− qc] . (4.4.5)

As Eq. (4.4.5) shows, the correlation function, φ(t), is the only time depending term
of the persistence function. Therefore, the bifurcation and especially the exponent
parameter, λ, will be inherited. So the calculated exponents, a and b, remains the same.
We also know that for t→ 0 the convolution vanishes,

∫ t→0

0
m(t− τ)φ̇(τ)→ 0, so that

the EOM is solved by an exponential decay, ψ(t) ∼ e−t/τψ , in the microscopic time scale,
τψ. The decay from the plateau at a time scale τα ∼ tσ′ ∝ σ−γ is well described by
an exponential relaxation, ψ(t ∼ tσ′) ' e−t/τα [99]. So the persistence function is well
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known at all times and we can interpolate it to

ψ(t) = e−t/τψ +

[
ψ∞c +

∂ψ∞(q)

∂q

∣∣∣∣
q=qc

[φ(t)− qc]

]
(1− e−t/τψ)e−t/τα . (4.4.6)

Figure 4.4.3: The persistence function, ψ∞(t), for the FA-model on the Bethe lattice for
an initial up-spin concentration of p = 0.885 < 8/9 = pc. The dotted points are from
the simulations of Sellitto [8], and the straight blue curve is the persistence function,
ψ(t), which is defined in Eq. (4.4.6), here we used the regularized memory kernel and
cut at M = 23. The red curve is the correlation function, φ(t), one can see here that
the correlation function starts at p, φ(0) = p. According to Eq. (4.4.5), the correlation
function fits the persistence function very well near the plateau. The black curve is the
short time evolution, ψ(t) ∼ e−t/τψ , of the persistence function. Here the microscopic
timescale is ψτ = 88. The green curve is the ψ(t ∼ tσ′) ' e−t/τα relaxation, with the
relaxation time τα = 175000.

In Fig. 4.4.3 we see the simulation of Sellitto [8] and compare it with our theoretical
calculations. In chapter 5 we will discuss more results and we will also analyze some
problems of the simulations.
Nevertheless, we are using in Fig. 4.4.3 a regularized memory kernel, and we cut the
upper limit of the sum, M , at some point to avoid divergences. The summation limit,
M , is for a given (f, k)-couple and a given initial concentration p a fit parameter and
can not be extracted from the theory.
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Conclusion

The main idea of this chapter is to identity Eq. (4.2.1) as a bifurcation equation in
the sense of the mode coupling theory. With those bifurcations we derive in MCT the
dynamics of the system. Therefore, we only need the exponent parameter, λ. Now, for
the calculation of λ we assume that we can replace the ground state probability with
the correlation function, q = φ(t). We have to show that this assumption is the only
physically correct one.
When we compare our calculated exponent parameter, λ = 0.971, with the fitted one
from Sellitto, λs = 0.815, we see a large deviation. Notice, in MCT the range of the
exponent parameter is given by λ ∈ [0.5, 1]. There could be two reasons for that: First,
we calculated the exponent parameter at the critical point, whereas the simulation is
far away from the critical point and it is only for a finite lattice. So the fitted λs does
not reflects the FA-model on the Bethe lattice. The second reason could be a wrong
assumption q → φ(t), so that the dynamics is described with a much more complicated
F [φ(f(t))].
Nevertheless, in Fig. 4.4.3 we see a good agreement between the simulation and the
theoretical calculated persistence function.
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Abstract

The Fredrickson-Andersen (fa) model—a kinetically constrained lattice model—
displays an ergodic to non-ergodic transition with a slow two-step relaxation of
dynamical correlation functions close to the transition point. We derive an asymp-
totically exact solution for the dynamical occupation correlation function of the
fa model on the Bethe lattice by identifying an exact expression for its memory
kernel. The exact solution fulfills a scaling relation between critical exponents
and allows to calculate the exponents explicitly. In addition, we propose an
approximate dynamics that describes numerical data away from the critical point
over many decades in time.

Slow relaxation is not restricted to molecular fluids dominated by pairwise interactions.
On the contrary, systems abound where the effective dynamics is facilitated by the
number of neighbors in a favorable state exceeding a threshold. Dynamic facilitation
applies to opinion dynamics [1], voter models [2, 3], and infection spreading [4] but
has also been used to understand the low temperature phase of magnetic alloys [5, 6],
granular compaction [7], rigidity percolation [8], and the jamming transition [9, 10].
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Most prominently it lies at the heart of the dynamic facilitation picture [11–16] of the
glass transition [17–20]. The k-core decomposition of graphs [21, 22] yields a statistical
description of, e.g., social groups [21] and the brain [23]. K-core decomposition can be
framed as a dynamic facilitation problem [24] yielding, e.g., insight into the resilience
of social network data sets against de-anonymization [25].

A paradigmatic example of a kinetically constraint model [15, 26] implementing dynamic
facilitation is the Fredrickson-Andersen (fa) model which is defined on a lattice with
sites i = 1, . . . , N decorated with occupation numbers ni ∈ {0, 1}. The Hamiltonian
H = µ

∑
i ni is trivial and µ > 0 favors the empty lattice. A site i may, however,

only change its state if it has at least f empty nearest neighbors [12, 27]. Bootstrap
percolation [6, 28–30] is concerned with the ground state of the fa model that is
kinetically reachable from an initial condition with an occupation probability p. For
p = 1, clearly the occupation probability in the ground state q = 1, whereas for p ≈ 0

an empty ground state, q = 0, can be reached almost surely. The question arises, if
there is a nontrivial concentration, pc, for the emergence of an infinite occupied cluster
in the ground state, q > 0. For f = 1 and for arbitrary f on hypercubic lattices Zd it
has been shown that pc = 1 [27, 31]. Bootstrap percolation on the Bethe lattice and on
random graphs, however, feature a transition at a finite pc < 1 [6, 32, 33].

At finite temperatures T > 0 1 [34] we equip the fa model with transition rates that
satisfy detailed balance. Without constraints, the Hamiltonian H would entail an
equilibrium mean occupation 〈ni〉 = 1/(1 + e1/T ). This still holds under the constrained
dynamics as long as 〈ni〉 < pc, however, for 〈ni〉 > pc, the dynamics is restricted to the
sites that are not permanently constrained by the frozen percolating cluster [35]. For
〈ni〉 ↗ pc, numerical simulations of the fa model [36–39] show a two-step relaxation of
time-correlation functions, φ(t), with a fast relaxation to a plateau value, φ(t) ' q > 0,
followed by a second relaxation, φ(t) → 0, on a time scale that diverges towards pc.
A two-step relaxation with a divergent relaxation time is one of the experimental
fingerprints of the glass transition [17] and motivated the fa model as an effective
description of the glass transition. Close to the plateau, |φ(t)− q| � 1, the relaxation

1Temperature is measured in units of |µ|/kB
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Figure 5.1.1: Generic occupation correlation φ(t) (blue) of the oriented fa model
(ofa) close to the critical point, σ � 1, compared to the asymptotic scaling function
Gσ(t) ' φ(t)− qc [Eq. (5.1.8), red] and the critical laws t−a and −tb [Eq. (5.1.1), black].
The plateau qc (horizontal dashed line) is crossed, on a divergent timescale tσ ∼ σ−δ

and Gσ(t) provides a faithful description in a divergent time window τ0 � t� t′σ ∼ σ−γ

beyond the microscopic relaxation time τ0, followed by exponential relaxation on a
timescale τα ∼ t′σ. Inset: Section of the ofa for coordination k = 3, and facilitation
f = 2. Arrows denote the orientation, filled (open) vertices denote occupied (empty)
sites, and blue vertices are frozen while green may change. See Table 7.2.1 for values of
the critical exponents.

is generically well described by power laws [40],

φ(t)− q ∝

{
t−a for φ(t) > q,

−tb for φ(t) < q.
(5.1.1)

A complementary description of the glass transition, independent of the dynamic
facilitation picture, is provided by mode-coupling theory (mct) [41–43] which starts
from the formally exact equation of motion

τ0φ̇(t) + φ(t) +

∫ t

0

dt′m(t− t′)φ̇(t′) = 0, (5.1.2)

where the dot denotes the time derivative and τ−1
0 is the short time relaxation rate.

The eponymous mode-coupling approximation (mca) expresses the unknown memory
kernel m(t) by a polynomial in φ(t). Standard mct predicts a scaling relation,

Γ2(1− a)

Γ(1− 2a)
=

Γ2(1 + b)

Γ(1 + 2b)
, (5.1.3)
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Table 5.1.1: Critical exponents a, b, δ = 1/2a, γ = (1/2a) + (1/2b) and exponent
parameter λ characterizing the slow relaxation of the fa model for coordination k = 3
and facilitation f = 2 (see Fig. 5.1.1). Comparing the exact results derived here to fits
from simulation data.

Theory Simulation
Sellitto [38] de Candia et al.[39]

λ 839/864 0.815 0.79
a 0.121. . . 0.27 0.29
b 0.147. . . 0.45 0.50
δ 4.13. . . 1.85 1.72
γ 7.53. . . 2.96 2.72

between the exponents in Eq. (5.1.1) involving the Euler Gamma-function. mcas have
been attempted for the fa model [44–48] starting with Fredrickson and Andersen [12]
but were of limited success. In particular, mct for the fa model has a tendency
to predict spurious transitions [15]. Also other approaches did not capture the slow
relaxation [49].

Recent numerical evidence, however has shown that despite these reservations, the
scaling relation (5.1.3) seems to be verified in the fa model on the Bethe lattice modeled
as a random regular graph (rrg) [36–39, 50]. Proof for this surprising discovery is
highly desired [27, 51] but missing so far.

In this letter we derive an asymptotically exact solution of Eq. (5.1.2) for the fa model
on the Bethe lattice. We show that Eq. (5.1.1) constitutes the lowest order in a series
expansion of this solution and that the scaling relation (5.1.3) holds exactly. Encouraged
by these results we propose an approximate, regularized memory kernel valid for all
times. Comparing with numerical data far away from the critical point, we are able to
describe the two step relaxation of the fa model over many decades in time.

Model.—We consider the oriented fa model (ofa) with facilitation parameter f ≥ 2

on the Bethe lattice. To be precise, we define the Bethe lattice [52] as the infinite k-ary
rooted tree [53], 2 ≤ f < k. In line with Sellitto’s numerical work [36–38] we assume
Metropolis dynamics with transition rates w(ni → 1 − ni) = exp[(ni − 1)/T ]Cf(Ki).
Here Ki denotes the set of children of site i and Cf : Ki 7→ {0, 1} implements the kinetic
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constraint 2 [54] (cf. Fig. 5.1.1).

For simplicity we aim to describe the relaxation to equilibrium from a well defined
initial condition. Assume the initial ni(0) are drawn from a Bernoulli distribution with
p = 1/(1 + e−1/T ) > 1/2 3 [55]. To assure ergodicity, we limit our discussion to p < pc.

Percolation Transition.—Recall that the probability, q, that a site is occupied in the
ground state can be given implicitly as [6]

q = pQ(q) := p

f−1∑
i=0

(
k

i

)
qk−i(1− q)i. (5.1.4)

Note that as p > q, the largest real solution of Eq. (5.1.4) is physically relevant. Trivially,
q = 0 is always a solution of Eq. (5.1.4). The critical probability pc locates a bifurcation
to additional solutions. Generically, Eq. (5.1.4) displays a fold bifurcation (Arnold’s type
A2 [56]) with a finite qc ≡ q(pc) > 0 and close to the transition q(p > pc)− qc ∼

√
p− pc.

Equation of Motion.—We wish to describe the single site occupation correlation function

φ(t) = 〈ns(0)ns(t)〉, (5.1.5)

where ns denotes the occupation number of an arbitrary but fixed site s and the average
〈·〉 is taken with respect to the initial distribution. Note that φ(t) is normalized such
that φ(0) = p and φ(t→∞) = q.

For p < pc, the ofa is a Markov process obeying detailed balance. Hence standard
techniques allow to give the time evolution of the distribution function in terms of an
effective Hamiltonian H [57]. Applying a Mori projector, ns〉〈n2

s〉−1〈ns, and rewriting
the memory kernel in terms of its irreducible counterpart, m(t), yields Eq. (5.1.2) [58].
The rate τ−1

0 can be calculated explicitly 4 [59]. The memory kernel, however, is only
known formally.

Critical Dynamics.—It is instructive to rewrite Eq. (5.1.2) in the Laplace domain,

2Cf (Ki) = Θ
(
k − f + 1/2−

∑
j∈Ki

ni
)
, with the Heaviside step-function Θ(x).

3Think of this distribution as the unconstrained model’s equilibrium for µ < 0
4τ−10 = p− p(1− p)k

∑f−1
i=0

(
k
i

)
[p/(1− p)]i
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φ̂(z) = LT[φ](z) 5 [60]. For z � τ−1
0 one finds

zφ̂(z)

p+ zφ̂(z)
= zm̂(z). (5.1.6)

In particular q/(p− q) = m(t→∞). Comparing this with Eq. (5.1.4) we arrive at our
central result: Asymptotically the memory kernel of the ofa on the Bethe lattice is
given exactly as

m(t→∞) ≡ m(p, q) = pQ(q)/(p− q). (5.1.7)

Sufficiently close to the critical point, σ := (pc−p)/pc � 1, we expect a growing window
in time, centered around a diverging time scale tσ where φ(t) = qc +Gσ(t/tσ) such that
Gσ(t) is small, |Gσ(t/tσ)| � 1, and slowly varying, |ζĜσ(ζ)| � 1, where ζ := ztσ. To
this end we expand Eq. (5.1.6) around qc to lowest order in Gσ [42, 61],

λLT[G2
σ](ζ) + ζĜ2

σ(ζ) = −σ/ζpc, (5.1.8)

where λ := 1 + (pc− qc)3∂2
q∆m(pc, qc)/2pc < 1 6 [62]. As λ can be calculated exactly for

the ofa, the same holds for Gσ(t). Eq. (5.1.8) can be solved by standard numerical
techniques (cf. Fig. 5.1.1) but more information can be gained analytically.
At the critical point, σ ≡ 0, Eq. (5.1.8) is solved by G0(t) ∼ tx, provided λ =

Γ2(1 + x)/Γ(1 + 2x) [61]. Asymptotically, G0(t → ∞) ∼ t−a, the smallest negative
x ≡ −a < 0 will dominate. Away from the critical point, for finite σ, Gσ(t) =
√
σg(t) acquires a square-root dependence on σ. Eq. (5.1.8) still admits power law

solutions, g(t) ∼ tx, iff the left hand side dominates over the right hand side. For the
approach to the plateau, t→ tσ, g(t/tσ) ∼ (t/tσ)−a, as long as (t/tσ)2a � 1. Matching
Gσ↘0(t/tσ) = G0(t) for t → ∞, yields, tσ ∼ σ−δ, where δ := 1/2a [61]. For λ > 1/2

and times t > tσ, the decay away from the plateau is governed by the smallest positive
x ≡ b, g(t/tσ) ∼ −(t/tσ)b, as soon as g2(t/tσ)� 1, i.e., dependent on b < 1/2 (b > 1/2)
for times (t/tσ)2b � 1 (t/tσ � 1). For long times the validity of this law is limited
by the slowly varying condition, |ζĜσ(ζ)| ∼

√
σζ−b � 1, i.e., for times t� t′σ ∼ σ−γ,

where γ := (1/2a) + (1/2b) [61].
The above constitutes a precise statement of Eq. (5.1.1) for the ofa and proves that

5LT[φ](z) := i
∫∞
0
φ(t)eiztdt

6∆m(p, q) := m(p, q)− q/(p− q)
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the scaling relation (5.1.3) holds exactly. We summarize the (numerically) exact results
we obtain for the simplest model, k = 3 and f = 2 in Tab. 7.2.1.

Asymptotic Relaxation.— The asymptotic relaxation to zero, φ(t→∞)→ 0, on times
t/t′σ � 1 is governed by a scaling function, φ(t → ∞) = φ̃(t/t′σ) [61]. For the ofa

it has been shown that φ(t) ∝ exp(−t/τα) where τα ∼ σ−γ
′ and the exponent γ′ ≥ 2

could only be bounded from below [63]. In terms of the scaling function we find τα ∼ t′σ

and in particular the preceding analysis determines the exponent γ′ ≡ γ compatible
with the bound.

Persistence Function.—The persistence function ψ(t) yields the fraction of sites that
have not changed their state since t = 0. Its asymptotic value, ψ∞ = ψ(t→∞), does
not only include the persistently occupied sites but also a fraction of the empty sites
that are permanently frozen, ψ∞(q) = pQ(p) + (1− p)Q(p) = q/p. Close to the plateau,
ψc∞ = qc/pc, we can expand

ψ(t ∼ tσ) ' ψc∞ + ∂qψ∞(qc)[φ(t)− qc], (5.1.9)

i.e., ψ(t) ' ψc∞ +
√
σg(t)/pc. In particular, the persistence function is governed by the

same critical exponents and master function g(t) that apply to φ(t).

The FA Model on Random Regular Graphs.—It is known that bootstrap percolation
on the oriented and unoriented Bethe lattice of coordination k + 1 [53] as well as
on random (k + 1)-regular graphs [32] have the same critical concentration pc. Not
much is known regarding the dynamic equivalence. Here we conjecture that due to
the bifurcation dominating close to the critical point, the fact that the critical point
does not change translates to dynamic equivalence close to qc. For the unoriented
fa model the expression for the persistence function, ψ̃∞(q), is slightly more involved
[36]. Nevertheless, ∂qψ̃∞(qc) is finite and therefore Eq. (5.1.9) applies and ψ̃(t) is still
governed by the critical exponents and scaling function of the ofa.

Simulations [36–39, 64] of the fa model are conveniently being performed on rrgs
with a finite number of sites N . rrgs do not, however, admit an orientation. The
effective system size is given by the size of the largest embedded tree L = O(logkN)

[65] which grows with N but is still small even for N ' 224. Therefore the existing
numerical data is relatively far from the critical point. In addition the fa model is
known to display strong finite size effects [66] which, so far, have not been analyzed
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Figure 5.1.2: Persistence function ψ̃(t) of the unoriented fa model as a function of time
for coordination k = 3 and facilitation f = 2 at a number of temperatures T = 0.49,
0.5, 0.51, 0.52, 0.53, 0.55, 0.57, 0.6, above the critical temperature Tc = 1/ ln 8 =
0.480 . . . The dashed line indicates the asymptotic plateau value ψ̃c∞ = 2757

4096
= 0.673 . . .

[36]. Symbols are simulations from Ref. [38] while lines are the theoretical prediction,
Eq. (5.1.11). Inset: Corresponding theoretical occupation correlation functions φ(t),
Eqs. (5.1.2, 5.1.10). The dashed line indicates the plateau value qc = 3/4.

in detail for rrgs. As a consequence, the empirical critical exponents (Table 7.2.1)
are effective exponents and deviate from the analytical predictions. In the following
we propose a memory kernel that allows us to solve Eq. (5.1.2) for all times and for
appreciable distances σ from the critical point relevant to the numerical data.
Approximate Memory Kernel.—To close Eq. (5.1.2) we propose to approximate the
memory kernel by Eq. (5.1.7) for all times asm(t) ≈ m̃[φ(t)] ≡ m(p, φ(t)). Unfortunately
this is not viable as m̃[φ(t) → p] ∼ [p − φ(t)]−1 diverges for small times, φ(t →
0) → p. In order to regularize the memory kernel we assume the divergent term,
[p−φ(t)]−1 = p−1

∑M
i [φ(t)/p]i,M →∞, to be a resummation of many-site interactions.

On a finite lattice, the order of interactions should be finite, M < ∞. Therefore we
propose a regularized approximate memory kernel whose time-dependence is completely
determined by φ(t),

m(t) ≈ m[φ(t)] = Q(φ(t))
M∑
i=0

[φ(t)/p]i. (5.1.10)

With this Eq. (5.1.2) can be numerically solved for φ(t) by standard techniques [67].
Discussion.—Considering the occupation correlation function φ(t), Eq. (5.1.5), of the
ofa on the Bethe lattice, we have identified an explicit expression, Eq. (5.1.7), for the
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long time limit of its memory kernel. Expanding around the bifurcation at pc that signals
the ergodic to non-ergodic transition of the ofa, we find that close to the transition,
σ → 0, the time evolution of φ(t) around its plateau value qc is asymptotically exactly
given, φ(t) = qc +

√
σg(t), in terms of a one-parameter scaling function g(t) ≡ gλ(t),

Eq. (5.1.8). The exponent parameter λ ≡ λ(k, f) is known explicitly in terms of the
lattice coordination k and the facilitation parameter f . The properties of Eq. (5.1.8),
finally, imply Eq. (5.1.1) together with the scaling relation (5.1.3), for λ > 1/2, times
τ0 � t� t′σ ∼ σ−γ, and not too close to the plateau, |φ(t)− q| � σ.

The scaling function Gσ(t), however, goes beyond Eq. (5.1.1) as it provides a faithful
description of φ(t) for τ0 � t � t′σ, λ > 0, bounded only by the requirements
|Gσ(t)|, |ζĜσ(ζ)| � 1 (cf. Fig. 5.1.1). On the fast end this could be complemented by ever
more sophisticated short-time expansions. On the long-time end, φ(t→∞) ∼ e−t/τα ,
with a relaxation time τα ∼ σ−γ.

Considering the asymptotic dynamics only, we did not gain information about processes
on intermediate time scales. Could we have missed an additional process that will
always mask the bifurcation scenario? The answer is no: Any unidentified process must
occur on a time scale, τu, that remains finite as σ → 0. Otherwise it would contribute to
Eq. (5.1.4). Therefore we can always find a σ0 > 0 such that for σ < σ0, tσ ∼ σ−δ � τu

and we have a time window which is dominated by the bifurcation.

Given that close to the critical point the persistence function, ψ(t), is governed by the
same scaling function Gσ(t), Eq. (5.1.9) provides an asymptotically exact description of
the persistence function in a divergent time window before the asymptotic exponential
relaxation. The form of Eq. (5.1.1) and the scaling relation (5.1.3) equally apply to
ψ(t) with the qualifications given above. Thereby we confirm the empirical observation
of Sellitto [38] and de Candia et al. [39].

To close Eq. (5.1.2), we proposed a memory functional, Eq. (5.1.10), regularized by a
finite length scaleM we conjecture to be related to the system size. Formally, Eq. (5.1.10)
looks like a mca but let us stress that it was not derived by considering a (physically
motivated) coupling of modes, but ultimately from the bifurcation equation (5.1.4) of
the underlying bootstrap percolation.

To determine the persistence function of the unoriented fa model for all times, we use
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the knowledge gained so far and interpolate

ψ̃(t) = e−t/τψ +
{
ψ̃c∞ + ∂qψ̃∞(qc)[φ(t)− qc]

}
×
(
1− e−t/τψ

)
e−t/τα , (5.1.11)

where τ−1
ψ is the short time relaxation rate of ψ̃(t). We determine φ(t) by solving

Eq. (5.1.2) with the regularized memory kernel [Eq. (5.1.10)] and treat M as a fit
parameter 7 [68]. Fig. 5.1.2 shows excellent agreement between Eq. (5.1.11) and the
numerical data for all temperatures and over many decades in time.
The success of this approach, derived for the ofa on the Bethe lattice, in describing
simulations of the unoriented fa model on rrgs provides reasons to assume that the
similarity between the oriented and unoriented fa model extends beyond a common
critical point pc to a universal dynamics close to pc. It is, however, obvious, that
simulations much closer to the critical point are needed to challenge the conjectures
put forward here and to confirm the critical exponents.
While for sake of brevity we have only presented explicit results for the simplest case,
k = 3, f = 2, our approach holds for more general coordinations k > 3, and facilitation
parameters f ≥ 2 provided k > f . The consequences of a tunable λ(k, f) will be
discussed elsewhere, but let us note that for some combinations (k, f), λ < λ(3, 2). As
a result the exponents a, b increase which may be favorable for simulations.
The signature of a fold bifurcation, q−qc ∼

√
|σ|, with a finite critical qc > 0 is observed

as a hybrid phase transition in a variety of models [69–71]. A similar analysis to the
one introduced here could lead to new insights in those systems as well. Reconciling
mct and replica methods led to many new insights provided by the random first order
theory (rfot) [72]. A deeper analysis of the overlap between mct and dynamic
facilitation theory that has been started here and rfot and dynamic facilitation [73]
is likely to provide additional understanding of the glass transition.
In summary we have provided an asymptotically exact description of the slow relaxation
of the oriented Fredrickson-Andersen model on the Bethe lattice close to its critical
point, valid over a divergent window in time. We believe our method can be applied to
other time correlation functions of the fa and related kinetically constraint models
and can provide new insights into the phenomena which can be mapped onto these
models.

7Fitted M = 6–23 increase with σ → 0 as expected.
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82 6 HARD-SPHERE-SYSTEM AND SCHEMATIC MODEL

Fitting the Hard-Sphere System
with the schematic Model

The following chapter discusses the application of the schematic models to the Hard
Sphere Systems. It is composed in a self-contained way to also in part facilitate the
submission of that chapter as a research paper. We intend to submit the manuscript to
the Physical Review Series of the American Physical Society.

Abstract

The microscopic mode coupling equations of motion depend on an infinite
number of coupling constants, indexed by the wave number, q. Here we explore
how well the slow decay of the dynamical scattering function in a hard-sphere fluid
near the glass transition can be captured by established schematic models that
only depend on a small number of coupling constants. To this end we study the
F12-model and the Bosse-Krieger model, with and without coupling to a Sjögren
correlator

6.1 Introduction

In the field of glassy dynamics, large and complex data sets became available in
the last two decades due to progress both in experimental and computer simulation
techniques. Beyond seminal qualitative features such stretching, divergent time scales,
or time-temperature superposition, it was also possible to perform detailed quantitative
comparisons with theory. Especially for mode-coupling theory (MCT) [1] many data
fits are available in the literature [2–4]. This comparison to theory can typically be
done in three different ways:
(1) MCT is solved for a microscopic model and from the interaction potential the glassy
dynamics is derived [5]. This comparison on the microscopic level is the most demanding
and accurate test of the theory since all relevant parameters are fixed. Such tests are
done for data from computer simulation [6] or from colloidal suspensions [7–9] and
are mostly quite successful. However, such detailed comparison is not feasible if the
microscopic interactions are either not known or too complex to be calculated in detail.
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This is often the case for molecular glass formers. In this case, one can use asymptotic
expansions.

(2) Asymptotic expansions of MCT are derived close to the transition singularity and
for long times. Asymptotic expansions yield results like power laws for the divergence
of different time scales, power laws in the relaxation master functions, and scaling
properties of the correlation functions [10]. These asymptotic laws can then be applied
directly to study experimental data involving several fit parameters [11]. It is, however,
also known that deviations from the asymptotic results occur when the data are farther
from the transition point. In such a case pre-asymptotic corrections can be included
which increases the number of parameters [10].
(3) If not enough microscopic information is available for the system under investigation
and pre-asymptotic corrections are assumed to be large, another way to describe the
data is by means of schematic models. These models capture the essential mathematical
structures of MCT, provide the correct asymptotic limits and scaling laws, and in
addition incorporate pre-asymptotic corrections in a natural way without introducing
additional fit parameters. Such models have been applied to the description of data
frequently [12–15]. By their very nature, schematic models have a smaller complexity
than microscopic models and it is hence surprising that data fits by schematic models
often work well. However, a successful data fit by a schematic model alone might
occasionally imply a misrepresentation of the data: The fitted values of the parameters
may have unphysical or implausible values. On the other hand, the failure of a specific
schematic models to describe a set of data cannot by itself rule out the possibility of
a successful description by MCT: The microscopic model might just be incompatible
with that specific schematic model.
It is the goal of the present paper to resolve some of the ambiguities in working with
schematic models. We shall apply the schematic models to the popular hard sphere
system (HSS) and determine where the schematic model describes the HSS well and
poorly. The failure of the schematic model to describe specific data from the HSS or a
specific other microscopic model should caution the use of the schematic model in similar
situations. In situations where the schematic model describes the microscopic data well,
a schematic fit will carry more weight. All information available from the microscopic
calculations shall be used for the fit to reduce the freedom in the fitting procedure
as much as possible. Also, the influence of hopping effects is typically unknown in
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comparisons to data, and therefore deviations might be hopping effects.

6.2 Basic Equations and Asymptotic Expansions

In MCT one describes the structural dynamics of a system with N structureless particles
with the density autocorrelation function, φq(t) = 〈ρ~q(t)ρ~q(0)〉, where the wave number
depending density is given as ρ~q(t) = 1/

√
N
∑N

j=1 exp(i~q · ~rj(t)). The equations of
motion for the density autocorrelation function, derived within the Mori-Zwanzig
formalism [16] is given by

φ̈q(t) + τqφ̇q(t) + φq(t) +

∫ t

0

dt′ mq(t− t′)φ̇q(t′) = 0 , (6.2.1a)

with the microscopic timescale τq and the initial conditions φq(0) = 1 and ∂tφq(0) = 0.
The relaxation kernelmq(t) is expressed as a bilinear functional of the density correlators
[17]

mq(t) = Fq[V, φk(t)] , (6.2.1b)

with the functional

Fq[V, φ(t)k] =
1

2

∫
d3k

(2π)3
V~q,~k φ(t)kφ(t)|~q−~k| , (6.2.1c)

where the microscopic vertexV = mn
kBT

((q̂ ·~k)c(k)+(q̂ ·|~q−~k|)c(|~q−~k|))S(|~q−~k|), with the
Boltzmann constant kB, the structure factor S(|~q−~k|), and the direct correlation function
c(k), is determined by the interaction potential [46]. To discriminate between the liquid
phase and glassy state MCT uses the long-time limit of the density autocorrelation
function, φq(t→∞) = fq. A vanishing non-ergodicity parameter, fq = 0, means that
the correlations of density fluctuations disappear for long times and the system is in a
liquid state. For 0 < fq < 1 the system is in the ideal glass state, which is also shown
by Edwards and Anderson in an other context [18].
For schematic models, the dependence on the wave vector q is replaced by artificial but
simpler memory kernels that nevertheless capture the essential mathematical structure
of the theory. The full equations for both microscopic and schematic versions of the
theory can be solved numerically by established procedures [10, 19].
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The long-time limit of Eq. (6.2.1a) and (6.2.1b) leads to the bifurcation equation

fq
1− fq

= Fq[V, fk(t)] . (6.2.2)

With Eq. (6.2.1c) one can calculate a matrix Cqk with

Cqk =
∂Fq[V, f ]

∂fk
(1− fk)2. (6.2.3)

The elements of the matrix Cqk are non-negative and from the Frobenius-Perron
Theorem[20] we know, that the matrix has a nondegenerated maximum eigenvalue E.
If the eigenvalue is E < 1 the matrix can be inverted and the nonergodicity parameter
f varies with the control parameter. Therefore the glass-transition is characterized by
the condition

Ec = 1 . (6.2.4)

The right and left eigenvectors of Cc
qk, here the c denotes V = Vc which are the

parameters at the critical point, shall be denoted by e and ê with∑
k

Cc
qkek = eq ,

∑
q

êqC
c
qk = êk . (6.2.5)

We chose the convention
∑

q êqeq = 1 and
∑

k êk(1− f cq )e2
k = 1 to fix the vectors. With

the eigenvectors one can calculate the critical amplitude

hq = (1− f cq )2eq , (6.2.6)

and the exponent parameter λ [21]

λ =
∑
qkp

êqC
c
qkpekep (6.2.7)

with 0.5 ≤ λ ≤ 1. Note that Vc is a bifurcation point of Eq. (6.2.2). The fq are singular
functions of the distance parameter going to zero ε→ 0, with ε = (ϕ− ϕc)/ϕc. So in
MCT cusp bifurcations Al, l = 2, 3, ... in Arnold’s terminology [22] occur. The A2, also
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called Whitney fold bifurcation, occurs for an exponent parameter λ < 1, obtained by
varying a single control paramter [24].

6.2.1 Leading Order and Next-To-Leading Order Asymptotic Expansion

Here, the separation parameter, σ, shall be introduced as a gauged distance to the
critical point. It is related to the distance parameter, ε via σ = Cε, with a system
depending constant C. For HSS the parameter equals to C = 1.54 [10].
For λ < 1, there is a square root singularity in σ close to the glass transition point.
Therefore, the asympotitc expansion of the correlation function starts with a

√
σ in

lowest order

φq(t̂) = f cq + hq

[√
|σ|g(1)(t̂) + |σ|g(2)(t̂) +O(|σ|3/2)

]
. (6.2.8)

Here, the rescaled time is given by t̂ = t/tσ and tσ ∝ |σ|δ with δ = 1/(2a), is the plateau
crossing time. Note, for the critical decay, which means a vanishing separation, σ → 0,
the plateau crossing time diverges so that the timescale becomes

√
|σ|/tσ = t0, where

t0 is a microscopic time scale.
In leading order the master function g(1)(t̂) = g(t̂) obeys the β scaling equation [10]

−λg2(t̂) +
d
dt

∫ t̂

0

g(t̂− τ)g(τ)dτ = sgnσ . (6.2.9)

The correlator φq(t) exhibits a power-law decay, which is determined by the exponent
paramter λ and the two scalars f cq and hq which depends on the wave vector

φq(t) = f cq + hqGσ(t̂) . (6.2.10)

Here, Gσ(t̂) =
√
σg(t̂) is the β-correlator. Note, the β-correlator is depending on the

master function g+(t̂), in the glassy state (σ > 0), a master function for the liquid case
(σ < 0), g−(t̂), and at the critical point on gσ=0(t̂). For all of the three cases the solution
in leading order and for t0 � t� tσ is given by g(t̂) ∝ t̂−a. The anomalous exponent a
can be calculated from the exponent parameter λ with λ = Γ2(1− a)/Γ(1− 2a). For
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long times, t > tσ, one finds for a liquid the von Schweidler law

φq(t) = f cq − hq
(
t

t′σ

)b
, (6.2.11)

with the von Schweidler exponent b and the second critical time scale t′σ ∝ |σ|−γ, with
γ = (1/2a) + (1/2b). Both exponents a and b are connected by the exponent parameter
λ via

λ =
Γ2(1− a)

Γ(1− 2a)
=

Γ2(1 + b)

Γ(1 + 2b)
, (6.2.12)

here Γ denotes the Gamma function. For the HSS one gets a = 0.312 and b = 0.583

[10].
The leading order correction for the critical correlator is given by g(2)t̂) = [κ(x) +

Kq]g
2(t̂) + σK̂. The last term, σK̂, vanishes at the critical point so that the corrections

at the critical point are given by [10]

φq(t) = f cq + hq(t/t0)−a + [Kq + κ(a)](t/t0)−2a , (6.2.13)

and

φq(t) = f cq − hq(t/t′σ)b + [Kq + κ(−b)](t/t′σ)2b , (6.2.14)

with

Kq =
∑
p

Rqp

[∑
kl

Cc
pklekel − λ(1− f cp)e2

p

]
e−1
q ,

κ(x) =
ξΓ(1− 3x)− ζΓ3(1− x)

Γ(1− x)Γ(1− 2x)− λΓ(1− 3x)
. (6.2.15)

The calculation for Rqk, ξ and ζ as well as the values for Kq, κ(a) = −0.00165 and
κ(−b) = 0.569 for the HSS are found in earlier works [10].

6.3 F12 Model for HSS

We follow the strategy to match microscopic and schematic models in the asymptotic
regime. First, the exponent parameter λ shall be matched which for the HSS is



88 6 HARD-SPHERE-SYSTEM AND SCHEMATIC MODEL

λ = 0.735. We introduce the F12 model where λ varies between 0.5 and 1 with two
control parameters v1 and v2 [23]:

m(t) = v1φ(t) + v2φ
2(t) (6.3.1a)

In the F12 model an A2-bifurcation occurs and one can calculate the corresponding λ
via Eq. (6.2.7). The choice of a particular value for λ fixes all other parameters [17]:

f c = 1− λ, h = λ, (6.3.1b)

vc1 = (2λ− 1)/λ2, vc2 = 1/λ2 . (6.3.1c)

In particular, amplitude and plateau value are related and fixed by h = 1 − f = λ.
Hence, h(f) is represented by a single point in Fig. 6.3.1 where several such points are
shown for different values of λ as open circles. Possible relations between f and h only
match the values for the HSS for q ≈ 1 and q ≈ 10 and the wrong value λ ≈ 0.6.
In order to vary f independently, a second correlator is introduced

mA(t) = vAφ(t)φA(t) (6.3.2a)

and the plateau and amplitude for the second correlator are

f cA = 1− 1/(vAf
c), and hA = λ/(vAf

c 2) =
λ

vA(1− λ)2
(6.3.2b)

and therefore hA(fA) is represented by a line in Fig. 6.3.1,

hA(f cA) =
λ

1− λ
(1− f cA) . (6.3.2c)

Lines for different λ all go through (fq, hq) = (1, 0) with a slope varying with λ. For
setting λ = 0.735 we get hHSS

A (f cA) = 2.77(1− f cA)

Varying vA = 5, 15, 40, various values of fq can be matched, and the related hA is found
on that line given by cross, star, and plus symbol in Fig. 6.3.1. One can also see that
λ = 0.735, which belongs to the HSS, only occurs as a point in the F12-model and is
not in agreement with the HSS data. The wrong λ = 0.6 is on the data points of the
HSS, but it does not describes the dynamics well. Here one can also see, that for the
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HSS λ the schematic model only describes the HSS in the fq → 1 limit. The better
match for λ = 2/3 explains why smaller exponent parameters gave better fits in an
earlier work on HSS with the F12-model [15].
Treating HSS in Gaussian approximation,

f s,cq = e−q
2r2c , hsq = hMSDq

2e−q
2r2c , (6.3.3a)

where, f s,cq is the critical glass form factor of the incoherent correlators, one can derive
an analytical relation between hsq and f sq :

hsq(f
s
q ) = −hMSD

r2
c

f sq ln f sq , (6.3.3b)

which is for the HSS (Fig. 6.3.1 right panel)

hq(fq) = −2.083f sq ln f sq ; (6.3.3c)

The expression of the correction amplitude K for an one component model is given by
K = κ(x) [24] with

κ(x) =
1
2
Γ(1− x3)

λΓ(1− 3x)− Γ(1− x)Γ(1− 2x)
. (6.3.4)

For the second correlator which also has an analog expression for φa(t) one get for the
correction amplitude

Kcrit
A (fA) = KA(fA) + κ(a) , (6.3.5a)

KvS
A (fA) = KA(fA) + κ(−b) , (6.3.5b)

with
KA(fA) = [(1− fA + λ)(1− λ)− λ]/[fA(1− λ)] . (6.3.5c)

Here, we also use the Gaussian approximation to get the correction amplitude

Ks
q = KMSD −

hMSD

2r2
c

ln f sq = −1.23− 1.04 ln f sq . (6.3.6)



90 6 HARD-SPHERE-SYSTEM AND SCHEMATIC MODEL

In Fig. 6.3.2 one can see that the correction term Ks
q of the HSS has a inverse trend

than the correction term KA from the F12 model. One can see that the correction
amplitudes of both models has a opposite trend: The correction amplitude of the HSS
is decreasing for increasing f , whereas, the correction amplitude of the schematic model
increases. The correction amplitude without the second correlator is for all exponent
parameters nearly zero and therefore not ploted.

In Fig. 6.3.3 the correlation function φ(t) is shown for a HSS with a wave number
qd = 4.2 and the corresponding F12-model, with the exponent parameter λ = 0.735

and λ = 0.635. One can see, that the variation of only one parameter is not enough to
describe the HSS with a schematic model. The F12 model works best for large plateau
values f which in turn allows for the possibility of the beta-peak phenomenon [17].
Large plateau values have also been observed for the reorientational dynamics of a
linear molecule [25, 26], a single dumbbell [27, 28], and a liquid of dumbbells [29, 30].
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Figure 6.3.1: Left : The critical amplitude hq as a function of the glass form factor fq.
The open circles show the exponent parameter of the F12 model, λ. The lines are the
results of the second correlator, mA(t), which has a second variable, vA. Some different
values of vA are shown as a cross (5), star (15), and plus (40) symbol.
Right : The same physics but for the incoherent correlators of the HSS and its Gaussian
approximation which is given by Eq. (6.3.3c). The d is the diameter of the particles

Figure 6.3.2: The correction amplitudes of the HSS, Ks and the F12-model with the
second correlator, KA.
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Figure 6.3.3: Upper panel : The dot-dashed curves are the correlation function, φq(t),
of the HSS for the wave number q = 4.2 and the other two curves are the correlation
functions for the F12-model. The solid curves are for an exponent parameter of λ = 0.735,
which is the value for the HSS, and the dashed lines are for λ = 0.635, yielding the
correct long time limit, f c = 1 − λ = 0.365, at the expense of an altered exponent
parameter.. Different colors are for different separation, σ. The black curve is for the
critical value (ε = 0), the red curve is at ε = −0.001, the green curve is for a separation
of ε = −0.01 and the blue curve for ε = −0.1. The system constant is C = 0.4. Lower
panel: The same curve as above, here we use the second correlator, too. The coupling
parameter, va, is decreasing for increasing separation, ε.
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6.4 Bosse-Krieger Model for HSS

In this section the Bosse-Krieger model will be used as a two component model.
This is the simplest example for a generic swallowtail bifurcation [31] and is given by
the functionals [32]

m1 = v1φ
2
1(t) + v2φ

2
2(t) , (6.4.1)

m2 = v3φ1(t)φ2(t) , (6.4.2)

with the control-parameter vector, V = (v1, v2, v3), which has three components, vn ≥ 0.
For the long-time limit, φ(t→∞), one can rewrite the functionals, mi, with the Eq.
(6.2.1b) and (6.2.2) to

f1

1− f1

= v1f
2
1 + v2f

2
2 , (6.4.3)

f2

1− f2

= v3f1f2 . (6.4.4)

So, the nonergodicity parameter of the second correlator, f2, can be written as f2 =

1− 1/(v3f1). With the condition in Eq. (6.2.4) one can eliminate one more parameter
and express vc1 and vc2 as a function of v3 and f1. To simplify the notation, variables x
and y will be introduced as

vc3 = x, f c1 = y , (6.4.5)

and

vc1 =
3− (2 + x)y

2(1− y)2(2− xy)
, (6.4.6)

vc2 =
x2y(y2 − 2y3)

2(1− y)2(x2y2 − 3xy + 2)
. (6.4.7)

The critical parameters, vc1 and vc2, define the surface of bifurcation singularities of Eq.
(6.2.2) in the parameter space.
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The amplitudes, which can be calculate with Eq. (6.2.6), are

h1 =
(1− y)(2 + x2y2 − 2xy(1 + y))

2 + x− 6xy + 2xy2 + x2y2
, (6.4.8)

h2 =
(1− y)(2 + x2y2 − 2xy(1 + y))

xy2(2 + x− 6xy + 2xy2 + x2y2)
. (6.4.9)

From [33] we know the exponent parameter, λ = 1− µ2:

λ = 1− (3x2 + 6x)y3 − (x2 + 18x+ 9)y2 + (6x+ 18)y − 6

(2x2 + 4x)y3 − 12xy2 + (2x+ 4)y
. (6.4.10)

So, for hi(x, fi) there is only one free parameter, x, which can be fixed for a given
exponent parameter, λ. In Fig. (6.4.1) one can see h(x, y) for different fit parameter.
Since the nonergodicity parameter is quadratic in the leading order, the curves look
like parabola. The green crosses represent the value of λ = 0.735 and the orange plus
the value λ = 2/3, here v3 is fixed. Non of the exponent parameters are in agreement
with the HSS data. At least, in comparison with the one component mode, which gives
only one point in the (h, f)-plane, the two component model covers a small region.
Nevertheless, the Bosse-Krieger model alone describes the HSS not well enough.

Figure 6.4.1: Results for the Bosse-Krieger model compared to the coherent and
incoherent functions of the HSS. One can see that for different control parameter v3 we
match a small region of q-vectors. The HSS λ = 0.735, here shown as green crosses, as
well as λ = 2

3
, the orange crosses, are not in an agreement with the HSS data.

Therefore, to get more free parameter we define a Sjögren correlator for the BK model
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with:
mA(t) = vA[ηφ1(t) + (1− η)φ2(t)]φA(t) . (6.4.11a)

Here, vA is the coupling parameter, and η ∈ [0, 1] is a kind of concentration of the
correlation functions. For η = 1, the Sjögren correlator is a coupling between the
first correlation function, φ1(t), and φA. For the opposite case, η = 0, the correlation
function φ1(t) gets irrelevant and φA(t) couples only to φ2(t).
Here, the long-time limit of Eq. (6.4.11a) also generates a bifurcation with φA(t →
∞) = fA, and this nonergodicity parameter can be expressed with x and y via

fA = 1− 1

vA

[
ηy + (1− η)

(
1− 1

xy

)] . (6.4.11b)

In analogy to the F12-model we derive an amplitude, hA, for the Sjögren correlator with

hA(x, y, vA, η) = (6.4.11c)
x(1− y)(2 + x2y2 − 2xy(1 + y))(1 + (xy2 − 1)η)

va(2 + x− 6xy + 2xy2 + x2y2)(−1 + η + xy(1 + (y − 1)η))2
.

In Fig. 6.4.2 the results of the coherent and incoherent HSS will be compared with the
amplitude hA(x, fA, va, η).

Figure 6.4.2: Right: The coherent function of HSS and some chosen values of the
Bosse-Krieger model with the Sjögren correlator. One can see that the curves behave
parabolic, so one can cover with suitable parameters, v3, va, and η some regions of the
HSS data. Left: Here, we compare the Bosse-Krieger model with the Sjögren correlator
with the incoherent functions of the HSS.
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As well for the coherent as for the incoherent functions the with the Sjögren correlator
the data points of the HSS can be covered with suitable variables v3,vA, and η, fully.
The correction amplitudes of the BK model, K1 and K2, can be calculated with
Eq.(6.2.15). In Fig. 6.4.3 we compare the correction amplitudes from the BK model
with the amplitudes of the HSS. One can see that K1 and K2 differ from the corrections
of the HSS. Even the limits K1(fq → 0) = K2(fq → 0) = ∞ and K1(fq → ∞) =

K2(fq →∞) = 0 are incorrect.

Figure 6.4.3: Left: The correction amplitudes K1 and K2 for a fixed control parameter
v3 = 15. One can see that the HSS results and the amplitudes from the BK model are
not in agreement. The correction amplitudes are going to zero for f → 1. Right: The
correction amplitudes with the Sjögren correlator. For low fq the trend of the curves
are in good agreement. The values for the purple curve, K1

A are: v3 = 11, η = 0.7, and
va = 2 and the values of the green curve, K2

A, are: v3 = 15, η = 0.4, and va = 5.

The correction amplitude of the Sjögren correlator KA is also displayed in Fig. 6.4.3
(right side). The correction amplitudes have the same trend, for small fq and small
v3 the curves are quite parallel. With increasing va the correction amplitude starts to
oscillate.
To compare the dynamics of the HSS with the Bosse-Krieger model, we took two
different correlation functions, φq=4.2(t) and φq=7.0(t). The dynamics is shown in Fig.
6.4.4. In both plots we fixed the nonergodicity parameter of the second correlator, f2,
to the long time value of the hard sphere data. In the upper panel the value of x and
y are fixed by the condition that the exponent parameters of both systems should be
equal, λ = 0.735. Therefore, the nonergodicity parameter of the first correlator, f1,
deviates from the hard sphere data. In the lower panel I fixed the two parameters so
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that the nonergodicity parameter for both correlators are given by their value for the
HSS, y = f2. Here the exponent parameter is given by λ = 0.763.
One can see that the description of microscopic time is not in a good agreement for
both correlators.

Figure 6.4.4: The correlation functions of the HSS, φq=4.2(t) and φq=7.0(t), and for the
Bosse-Krieger model, φ1(t) and φ2(t). The solid lines are from the schematic model
and the dotted lines from the simulation of the HSS. Upper panels : Here the exponent
parameter of the Bosse-Krieger model is fixed to the HSS, λ = 0.735, which is given for
v3 = 14.7. Therefore, for q = 7.0 the nonergodicity parameter deviates from the HSS
result.
Lower panels: The parameter of the system, v3 = 18.18, is fixed to the nonergodicity
parameter of the HSS. Here the exponent parameter of the BK model is λ = 0.763.

6.5 Conclusion

In summary, we explored descriptions of the HSS with a schematic model of MCT. With
the one component F12-model we were able to fix one point on the (fq, hq)-plane for a
given λ. Since we want to cover more than one point we introduced the Sjögren correlator
which is comparable with the incoherent function, φs. With one more parameter we
obtained a line instead of a fixed point, Eq. (6.3.2c). But even with a line the agreement
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of the HSS results and the schematic models are only acceptable for fq → 1, which is
the trivial case, but at least helpful in light-scattering experiments.
With the Bosse-Krieger model, we tried to fit the HSS with a two component model. As
we have a h(f) ∝ f 2 relation for some chosen control parameter, we have a small regime
which can be matched with the BK model. After introducing the Sjögren correlator
for mixtures, Eq (6.4.11a), we get more parameters and can cover with these bigger
parts of the (fq, hq)-plane. The correction amplitudes of both schematic models fail to
describes the HSS and both models also have difficulties to characterize the dynamics
of the HSS on short time scales. The correlation functions of both models are not
describing the correlations of the HSS satisfactorily, even the Bosse-Krieger model has
not enough free parameter to fit the HSS faithfully. As we discussed in the beginning,
microscopic models—like the HSS—have an infinite number of parameters indexed by
the wave number q. The schematic models we used here do not have a sufficient number
of coupling parameters to describe such microscopic models. The next step is to use the
Sjögren correlator for the Bosse-Krieger model and compare the correlation functions.
With the Sjögren we could introduce two more parameters, η and va.
Nevertheless, one may use the schematic models to describe for a single wave numbers,
q, some of the behavior of the HSS like the critical decay or the von Schweidler decay.
The fits presented here, show that the conventional schematic models we tested are not
complex enough to capture the complete dynamics of a microscopic model like the HSS.
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Schematic Mode Coupling Theory and the
Fredrickson-Andersen Model

The following chapter discusses the application of the schematic models to the Fredrickson-
Andersen model. It is composed in a self-contained way to also in part facilitate the
submission of that chapter as a research paper. We intend to submit the manuscript to
the Physical Review Series of the American Physical Society.

Abstract

Kinetically constrained lattice models (KCM) will be used to describe glassy
behavior in a compact way. Many effects like stretched exponential relaxation,
self-diffusion, and dynamical heterogeneity can be shown in such models. The
Fredrickson-Anderson (FA) model, a KCM with facilitated dynamics, displays a
dynamical transition on the Bethe lattice, which is close to the predicted ones by
the mode coupling theory (MCT). The strategy of this present work is to use the
schematic MCT to characterize such transitions and find the similarities of both
theories, the FA model and the MCT.

7.1 Introduction

While cooling or pressing glass-forming liquids a two step relaxation occurs [1]. Depend-
ing on the temperature or pressure a stretching of the decay function over several orders
of magnitude in time t or frequence ω is to observed. The phenomenon of stretching in
time was firstly observed by Kohlrausch in dielectric relaxation [2]. Von Schweidler finds,
that the parts which are shifted over two or three decades in the dielectric loss spectra
in ω obey the power law χ′′(ω) ∝ (ωτ)−b with b < 1 [3]. Mode-coupling theory, which
is based on regular equations of motion for a set of autocorrelation functions, describes
the structural relaxation and the stretching of glass-forming liquid very well and is
consistent with the experimental measurements. So MCT predicts a critical spectrum
χ“(ω) ∝ ωa, with 0 < a < 0.5 which is confirmed in molten salt Ca(NO3)2KNO3 (CKN)
[4–6] or in associated liquid glycerol [7–9].
In MCT the dynamics of a glass forming liquid will be described by a correlation
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function of the density fluctuations, ρ~q, which in general depends on the wave vector, ~q.
The correlation function is given by φq(t) = 〈ρ∗~q(t)ρ~q〉 / 〈ρ∗~qρ~q〉, where the denominator is
the static structure factor, Sq = 〈ρ∗~qρ~q〉. With the Mori-Zwanzig formalism [10–13] and
considering colloidal particles, a Brownian equation of motion (EOM) can be derived.
The exact memory function, mq(t), which comes from the Mori-Zwanzig method, is
given by the fluctuating forces and can not be calculated exactly for a general potential.
To understand the concept of MCT, the memory function will be approximated by a
functional, Fq[V, φ], which is called schematic model. Although schematic models have
less complexity than the microscopic theory, they describe some phenomena surpris-
ingly well [14–17]. Furthermore, with the long time limit of the correlation function,
φq(t → ∞), MCT describes the bifurcative behavior during the glass-transition in
Arnold’s terminology [18]. So depending on the control parameter of the system, which
in microscopic models is typically the temperature , T , or the packing fraction, ϕ, the
correlation function, φ(t), goes in a glassy state to a finite value, φ(t→∞)→ f , where
f is the so-called non-ergodicity parameter, or to zero in the liquid state. With those
bifurcation equations, which occur for the long time limit of the correlation function,
MCT derives a power law, t−a, here a is the critical exponent, for the critical decay to
the plateau ,f , and obtains also the von Schweidler law, −tb, from the plateau to zero
for a liquid. So for a given memory kernel MCT predicts the dynamics for the system
and the glass transition.
Efficient models for analyzing glassy behavior are kinetically constrained models [19, 20],
especially the Fredrickson-Andersen model (FA) [21] with dynamic facilitation. In that
model the lattice with sites i = 1, ..., N is decorated with up- and down-spins and the
the Hamiltonian describes uncoupled Ising spins, σi ∈ {−1, 1}, in an external magnetic
field, H = µ

∑
i σi, which prefers down spins, µ > 0 [22, 23]. A spin on site i only flips

if it has at least fa down-spin neighbors [21, 24]. Here fa is the facilitation parameter
and is a number between zero and the lattice connectivity, k. The kinetic constraint
can be interpreted as the cage effect in glass forming liquids. A particle is arrested in a
cage formed by its surrounding neighbors and motion can only happen cooperatively.
The Fredrickson-Andersen model on the Bethe lattice is a candidate where a dynamical
transition, similar to the MCT, occurs [25–28]. Several phenomena which are predicted
by the MCT like the two step relaxation or a stretched exponential relaxation can
be observed on the Bethe lattice [29]. Since a fold bifurcation, an A2-singularity in
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Arnold’s terminology, occurs we want to describe the dynamics with MCT. The goal of
the paper is to find a schematic model which fits the simulation done by Sellitto [29].

7.2 Fredrickson-Andersen Model on the Bethe lattice

The Bethe lattice [30] is a regular graph with a fixed connectivity, k [31]. Now, consider
N Ising spins , σi ∈ {−1, 1}, on the sites i of the Bethe lattice. The spins don’t have any
coupling effect, J = 0, where J is the coupling constant, and therefore the Hamiltonian
is given by H = −1

2

∑N
i σi. The constrained dynamics, which is a Markov-process

of Glauber type, depends on two variables, the facilitation parameter fa, and the
connectivity k. Each time step a random spin will be chosen and iff this spin has fa or
more down-spin neighbors it will be flipped with a rate, ω = min{1, eβσi}, where β is
the inverse temperature.
We now introduce the Bootstrap percolation (BP) [32–35] which is concerned with
the ground state of the FA model. Here the temperature is T = 0, which means that
only up-spins can be flipped with a rate of ω = 1 to down-spins iff they fulfill the
condition. So starting with an initial up-spin concentration, p, we want to know if all
the up-spins will be flipped into down-spins or if some up-spin clusters will- because of
the constrainment- remain.
In different publications [24, 36] it is shown that independent of the facilitation parameter,
fa, in hypercubic lattices Zd the up-spins can only survive for p = 1. On the Bethe
lattice or other random graphs a transition occurs for 1 < fa < k [26, 27] and a finite
critical concentration pc < 1 [32, 37, 38]. The probability of an up-spin in the ground
state, q, is known exactly for the BP [28, 32] and is given as

q = pQ(q) := p

f−1∑
i=0

(
k

i

)
qk−i(1− q)i. (7.2.1)

Notice, the inital concentration, p, is always larger than the up-spin probability, q,
except for p ∈ {0, 1} where both are equal. The physically relevant solution of Eq.
(7.2.1) is the largest real one. A fold bifurcation, a type A2 in Arnold’s terminology,
occurs at the critical concentration qc ≡ q(pc) > 0.



7 FREDRICKSON-ANDERSEN MODEL AND SCHEMATIC MCT 105

7.2.1 Bifurcation Scenario in the FA Model

The easiest case, where a transition takes place, is given by the couple (fa, k) = (2, 3)

and Eq. (7.2.1) simplifies to

q = p
(
3(1− q)q2 + q3

)
, (7.2.2)

with the roots

q = 0

q± =
3

4
± 3

4

√
ε . (7.2.3)

Here, ε = p−pc
pc

is the separation parameter, which gives the distance to the critical
point. The critical point is at pc = 8/9 and the critical probability, ε = 0, is at qc = 3/4.
One also can see the square root singularity, q(p)− qc ∼

√
p− pc. Since we know, that

the groundstate probability of up-spins, q, is for p = 1 also one, the physically relevant
solution is q+ = qc + 3/4

√
ε. For initial concentrations below the critical one, p < pc the

solution is q = 0.
In Fig. 7.2.1 one can see the probability q depending on the concentration p of the
up spins for the easiest case. At the critical concentration, pc, there is a discontinuous
jump from p = 0 to p = 8/9.
Of special interest is the persistence function ψ(t), which gives the fraction of the spins
that have not changed their orientation since t = 0 [19, 28]. The long time limit, which
the persistence function reaches asymptotically, gives the fraction of the so called frozen
spins, which are never flipped. In analogy to the glass-theory, here we also have two
possibilities: (1) the initial concentration of up-spins is below the critical one, p < pc,
then the persistence function will have relaxation to zero, like the auto-correlation
function, φ(t), in MCT, or the concentration is high enough, p > pc, and some up-spin
clusters will remain and the persistence function will go to a finite value, f .
The decay from the plateau to zero is an exponential one, ψ(t) ∼ exp(−t/τα), where
τα ∼ ε−γ

′ , with the exponent γ′ ≥ 2, is the timescale of the α-relaxation time [39]. The
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p

P

Figure 7.2.1: The up-spin concentration of the ground state, q(p), as a function
of the initial up-spin concentration, p. Here the facilitation parameter is fa = 2
and the connectivity k = 3. One can see a discontinuous jump at the critical point
(pc, qc) = (8/9, 3/4). For p > pc there is a square root singularity, q(p > pc) ∼

√
ε.

long time limit of the critcal persistence function, ψc(t→∞) = ψc∞, is given as [28]

ψc∞(pc, qc) =pc

f−1∑
i=0

(
k + 1

i

)
qk+1−i
c (1− qc)i

+ (1− pc)
f−1∑
i=0

(
k + 1

i

)
(pcCk,f )

k+1−i(1− pcCk,f )i. (7.2.4)

which Ck,f =
∑f−2

i=0

(
k
i

)
qk−ic (1 − qc)i. For the standard case of f = 2 and k = 3 the

asymptotic plateau value is ψc∞ = 2757
4096
≈ 0.673096 . . . .

In Tab. (7.2.1) one can see some configurations of the Bethe lattice and all the
corresponding critical values. Here one should know that for getting the critical value
of a couple (f, k) one has to calculate the roots of a polynomial of order k and find the
right root which belongs to the condition q(p = 1) = 1, which make the calculations for
high polynomials difficult.

As well the bifurcation scenario as the two-step behavior of the persistence function
motivates us to compare the Fredrickson-Andersen model with the mode-coupling theory.
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Table 7.2.1: Here the critical parameter for different topological configuration of the
Bethe lattice are given. One can see, that for a fixed facilitation, fa, and increasing
connectivity, k →∞, the concentrations, pc and qc and therefore the critical plateau
value, ψc∞ are increasing to one. The temperatures, however, decreases. The opposite
happens for the case limk→∞(k − 1, k), where the critical concentrations are decreasing
and the temperature increases.

(fa, k) pc qc ψc∞

(2, 3) 8/9 3/4 2757/4096

(2, 4) 0.949. . . 0.894. . . 0.925. . .
(2, 5) 0.971. . . 0.941. . . 0.977. . .
(3, 4) 0.725. . . 0.544. . . 0.277. . .
(3, 5) 0.835. . . 0.727. . . 0.599. . .
(4, 5) 0.603. . . 0.418. . . 0.121. . .
(2, 20) 0.999. . . 0.998. . . 0.999. . .
(19, 20) 0.164. . . 0.096. . . 0.001. . .

7.3 Mode Coupling Theory

In the mode coupling theory the microscopic dynamics of N interacting particles will
be described by autocorrelation functions of the density fluctuations, ρ~q = 1√

N

∑N
j ei~q~rj ,

which are given by

φq(t)
〈ρ~q(t)|ρ~q〉
〈|ρ~q|2〉

. (7.3.1)

The brackets, 〈A|B〉 = 〈δA∗δB〉 and δA = A− 〈A〉, denotes canonical averages. The
time dependency of the density fluctuations, ρ~q(t), is given by the Lioville equation

ρ̇~q(t) = iLρ~q , (7.3.2)

as ρ~q(t) = ρ~q eiLt. Now, applying the Mori-Zwanzig formalism [10–13] for colloidal
particles the Brownian equation of motion is derived

τqφ̇q(t) + φq(t) +

∫ t

0

dτmq(t− t′)φ̇q(t′) = 0 (7.3.3)
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where τq is the microscopic time scale and mq(t) the memory kernel. With the initial
conditions, φq(0) = 1 and φ̇q(0) = 0, the equation of motion has only one analytical
solution [40].

Now we use the Laplace transformation - with the convention LT[φ](z) = i
∫∞

0
dt eiztφ(t)

- to bring the EOM in a compact form

φq(z) =
1

z + 1
τ+mq(z)

. (7.3.4)

7.3.1 Dynamics in the β-Regime

While in the liquid state the correlations vanishes for long times, φl
q(t → ∞) = 0,

for glassy systems it converges to a finite value, φg
q(t → ∞) = fq, the non-ergodicity

parameter. To have an analogy to a thermodynamical phase transition, the non-
ergodicity parameter can be seen as an order parameter. So to make any predictions
about the glass transition, we are interested in the long time limit. The microscopic
time scale is negligible for long times and Eq. (7.3.4) will be

φ(z)

1 + zφ(z)
= mq(z) . (7.3.5)

Now, we assume that the memory function can be written as a polynomial of the
correlation function, mq(t) = Fq[V, φk(t)], where V is a control parameter vector.
Then for glassy systems both the correlation function and the memory kernel exhibit
a non ergodicity pole for z going to zero, limz→0 zφq(z)→ −fq respectively zmq(z)→
Fq[V, fk]. So Eq. (7.3.4) is a bifurcation equation

fq
1− fq

= Fq[V, fk] . (7.3.6)

For a given functional, Fq[fk], Eq. (7.3.6) can have more than one analytical solution,
say f̃q, but with the maximum theorem [41, 42], the glass form factor, fq, is distinguished
by: f̃q ≤ fq,∀ q.

To eliminate the non ergodicity pole the correlation function, φ(t), will be expressed
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with a master function, Gσ(t), the glass form factor, fc, and an amplitude h = (1− fc)

φ(t) = fc + hGσ(t) and zφ(z) = −fc + zhGσ(t) . (7.3.7)

The master function can be factorized to Gσ(t) =
√
σg(t), where σ = Cε is the

separation multiplied by a system depending constant C and g(t), which is the solution
of the EOM.
With the transformation in Eq. (7.3.7) the non-ergodicity pole vanishes and |zG(z)| gets
small for small frequencies, so |zG(z)/(1−f)| is an useful small parameter to extend. The
master function Gn+1(t) decreases faster than Gn(t) to zero so that the ratio Gn+1(t)/Gn(t)

gets smaller for t→∞.
With both assumptions Eq. (7.3.5) can be expanded in terms of G(t) [43]:

− δ0

z
+ δ1hG(z)

+ (1 + δ2)h2LT[G(t)2] + zh2G(z)2

+ (γ3 + δ3)h3LT[G(t)3]− γ3z
2h3G(z)3

+ (γ4 + δ4)h4LT[G(t)4] + γ4z
3h4G(z)4

+ .... = 0 (7.3.8)

with the coefficients

γk =
1

(1− f)k−2
,

δk =
∂k∆F(V, f)

∂fk
(1− f)3

k!
,

∆F(V, f) = F(V, f)− f

1− f
. (7.3.9)

The order of G(t) is related to the typ of bifurcation of a given system. With the
derivatives of ∆F(V, f) one can calculate the generic singularities of type Al with

Al :
∂k∆F(V, f)

∂fk
= 0, for k < l,

∂k∆F(V, f)

∂fk
6= 0, for k = l. (7.3.10)
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In Fig. (7.2.1) one can deduce a square root singularity, which is an type A2 singularity
in Arnold’s definition, so that in our case the dynamics obeys in leading order to

λh2LT[G(t)2] + zh2G(z)2 =
σ

z
. (7.3.11)

Where λ := 1 + (1− f cq )3∂f2q ∆Fq[Vc, f c]/2 is called the exponent parameter. Here f cq is
the value at the critical point, Vc. The Eq. (7.3.11) can be solved numerically which
will be done later for some given memory kernels.
More interesting is the analytical solution, which can be done easily for the critical
value, σ = 0. Here, it can be solved by G0(t) ∼ tx , which fixes the exponent parameter,
λ = Γ2(1+x)/Γ(1+2x) [44]. The critical decay, which is the decay to the plateau, the master
function obeys the power law G0(t) ∼ t−a, where the critical exponent a is defined as the
smallest negative x ≡ −a < 0. For finite σ, the right-hand side of Eq. (7.3.11) does not
vanishes and the master function has a square root dependency on σ, Gσ(t̂) =

√
σg(t̂),

where t̂ = t/tσ with tσ ∝ |σ|δ is a rescaled time. tσ itself is the plateau crossing time,
and δ = 1/(2a) a scaling exponent [44]. In the liquid state there is a second decay after
crossing the plateau, t > tσ, which can be described with the von Schweidler law. Here,
the solution of Eq. (7.3.11) is g(t/tσ′) ∼ −(t/tσ′)

b, where tσ′ ∼ σ−γ with γ = 1/2a + 1/2b is
the time scale for the decay away from the plateau. The von Schweidler exponent, b, is
the smallest positive x.

7.3.2 Schematic Models for the FA-Model

The Eq. (7.3.3) is exact but useless since nothing is known about the memory kernel,
mq(t). Nevertheless, with some approximations one can show the main idea of the
MCT. Therefore the memory kernel will now approximated as

m[φ] = F [φ] ≈
N∑
i=1

vnφ
n(t) . (7.3.12)

The simplest form, F1[φ(t)] = v1φ(t), is a mathematically trivial form. The F2[φ(t)] =

v2φ
2(t) model generates a bifurcation, but there is no stretching in the α-relaxation

[45, 46]. With the F12-model, F12 = v1φ(t) + v2φ
2(t), we have the simplest form of a

polynomial to generate an A2 bifurcation with an α-relaxation [17]. Now, one can use
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the bifurcation equation, f c/(1− f c) = v1f
c + v2f

2c, and its derivative with respect to
f , 1/(1− f c)2 = v1 + 2v2f , to write the critical control parameters as a function of f c:
vc1 = (1− 2f c)/(1− f c)2 and vc2 = 1/(1− f c)2.
The exponent parameter, λ, is easy to calculate with the definition above and is given
by λ = 1− f c. So all the critical parameters of this F12-model are fixed by only one
parameter:

vc1 =
2λ− 1

λ2
and vc2 =

1

λ2
. (7.3.13)

To compare any experimental results or simulation data with the F12-model, one has
to find the exponent parameter, 0.5 < λ < 1. Since λ > 0.5 the critical plateau value,
f c = 1 − λ, is always below 1

2
. This makes describing some systems unphysical, like

the hard sphere system, where λ = 0.735 [9] but the critical plateau is not fixed to
f c = 0.265. Therefore, we introduce a second correlator, the so-called Sjögren correlator,
with the memory function

mA = vaφ(t)φA(t) . (7.3.14)

This can be seen as a single particle, φA(t), which couples to the density fluctuations,
φ(t). The coupling constant, vA, gives the system one more degree of freedom. Here,
we also can use the bifurcation equation for f cA, and get f cA = 1 − 1/(vcAf

c). Since
the Fredrickson-Andersen model generates an A2 bifurcation and is an one component
model, without any wave-vector dependency, the description of the F12-model could
help to understand the microscopics of the FA model.

7.4 Microscopic Dynamics of the FA-model

Here, the microscopic dynamics of one up-spin will be used to derive a correlation
function, φ(t), for up-spins. As microscopic variable we introduce ησi(t) = δ1,σi(t), which
is one when the spin on site i is an up-spin or zero for a down-spin. Now, we define the
correlation function as

φ(t) = 〈ησi(0)|ησi(t)〉 , (7.4.1)

with the long-time limit φ(t → ∞) = q. The normalization to q as the long time
limit is important, here q is in analogy to the non-ergodicity parameter f . Since the
correlation function is normalized to its long time value, t→∞, the value at t = 0 is
not normalized to one anymore, but to the inital up-spin concentration, φ(t = 0) = p.
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With the Fokker-Planck equation [47]

Ṗ ({σ}α, t) = ΩP ({σ}α, t) , (7.4.2)

where P is the probability distribution function and Ω a stochastic operator, one can
derive an Hamiltonian for the time evolution of the microscopic variable, ησi(t). The
stochastic operator for the spin system is given by [48]

Ω =
∑
α

(
Ŝα − 1

)
ωα({σ}α) , (7.4.3)

with the spin-operator, Ŝα, which flips a spin and the transition probability of the spin
α, ωα({σ}α). The Hamiltonian is given by

H = P−1/2
eq ({σ}α)ΩP 1/2

eq ({σ}α) (7.4.4)

where the index eq denotes the equilibrium state. With this Hamiltonian we define
projection operators and use the Mori-Zwanzig formalism to get the EOM like Eq.
(7.3.3) for a spin autocorrelation function, φ(t) [27, 49]. The microscopic time-scale, τ
can be calculate exactly for this model and is given by

τ = ω0p

(
1−

∑f−1
i=0

(
k
i

)
e−(k−i)β

(1 + e−β)k

)−1

. (7.4.5)

Since we fixed the long-time limit of our autocorrelation function to the probability of
up-spins in the ground state, φ(t→∞) = q, equation of motion becomes a bifurcation
equation with the inital value φ(0) = p

q

p− q
= p

f−1∑
i=0

(
k

i

)
qk−i(1− q)i. (7.4.6)

Here, we assume that Eq. (7.4.6) is the long-time limit of the EOM, which is based on
the correlation function, φ(t). Notice, there are more completely monotonous functions
with the same long time limit, like φ(log(t)) which also converges to q for t→∞. With
the conjecture that φ(t) generates the EOM we can derive the exponent parameter, λ,
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for the FA model with

λ = 1 +
(pc − qc)3

2pc

∂∆F [p, q]

∂q

∣∣∣∣
p=pc,q=qc

. (7.4.7)

Notice, because of the normalization, φ(0) = p, the prefactor here is (pc−qc)3/pc instead
of (1− f c)3 which is derived in section 7.3.1. For the standard case of (f, k)→ (2, 3)

the exponent parameter is λ = 839/864 ≈ 0.971.

7.5 The F12 Model and the FA Model

In this section we will fit the Fredrickson-Andersen model with the F12 model. Since
the exponent parameter, λ, fixes the control parameter we will also use the Sjögren
correlator and fit at least one parameter. We want to use two different exponent
parameters, λS = 0.815 from fitting Sellittos numerical data [29] and λK = 839/864 from
the calculation above.
The separation, σ, can be written explicitly for the F12-model as [17]

σ = [v̂1 + v̂2(1− λ)]λ(1− λ), v̂i = vci − vi . (7.5.1)

Since we know all the initial concentrations of the simulation data and the critical
concentration, pc = 8/9, the distance parameter, ε, can be calculated and we only
have to fit the system variable C to have the right separation, σ. With the separation
parameter and Eq. (7.5.1) we can get different paths in the (v1, v2)-plane, some of them
can be seen in Fig. (7.5.1).
Now, for the path v1 = const, we will fit the simulation data. In this case v2 is a
function of the separation and we only have to fit C:

v2 = vc2 −
Cε

λ(1− λ)2
. (7.5.2)

In Fig (7.5.2) and (7.5.3) one can see the simulation data and the results of the schematic
model (the other paths are in appendix H). For the fitted exponent parameter, λS,
the curves are in a better agreement than for the calculated one. Since the calculated
exponent parameter is close to λ = 1, which describes a higher order singularity, it
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Figure 7.5.1: Left: The (v1, v2)-plane of the F12-model, with the liquid-glass transition
line. Above the black straight line the system is in the glass state and below the line in
the liquid state. The red cross marks λS = 0.815. Right: Here one can see four different
paths for the fixed exponent parameter, λS. The horizontal path is at v1 = vc1 = const
and a varying v2, whereas the perpendicular path is at the opposite point, v2 = vc2 =
const and a varying v1. The other two paths are given by the straight line v1 = αv2,
where α is the slope. Here we use α = 0.1 and α = 1.

Figure 7.5.2: The simulation data [29] and the results of the F12-model with a fitted
exponent parameter, λS=0.815, for a fixed v1 = vc1 and variable v2. In the glass state,
below the critical temperature, T = 1/log(8), the temperatures are T = 0.42, 0.44, 0.45.
0.46, and 0.47. In the liquids states Sellitto simulated the temperatures T = 0.49,
0.5, 0.51, 0.52, 0.53, 0.55, 0.57, and 0.6 The black dashed line is the critical plateau,
ψc∞ = 2757

4096
and the dashed red line the decay at the critical point, σ = 0. Here, the value

of the coupling constant is fixed for all curves, vA(f cA, λ) = vA(2757
4096

, 0.815) = 16.54...
and the frequencies are fixed to one Ω = ΩA = 1.



7 FREDRICKSON-ANDERSEN MODEL AND SCHEMATIC MCT 115

Figure 7.5.3: Here we see the simulation data [29] and the results of the F12-model for
the calculated exponent parameter, λK = 839

864
, and for a fixed v2 = vc2 and variable v1.

The temperatures are the same as Fig. (7.5.2). The value of the coupling constant is
fixed for all curves, vA(f cA, λ) = vA(2757

4096
, 839

864
) = 105.719... and the frequencies are fixed

to one Ω = ΩA = 1.

was expected that the F12 will have some difficulties for such an λ. Therefore, in the
next section the Bosse-Krieger model will be used to fit the simulation data with the
calculated λK .
The evolution of the microscopic parameters are in Fig (7.5.4). Those microscopic
parameter are for the fitted exponent parameter λS, the trend for the calculated one,
λK is the same.

Figure 7.5.4: Different microscopic parameters as a function of v2 at a fixed v1 = vc1
and λS. The critical value, where the transition from glass to liquid happens is at
vc2 = 1/λ2 = 1.50551. The microscopic time scale is defined as τ = ν/Ω2, where Ω and
ν are frequencies. The frequency Ω and ΩA are fixed to one. One can see that all three
parameters are monotonic.
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7.6 Bosse-Krieger Model for the FA Model

The theoretically calculated exponent parameter, λK is close to one, which makes the
fitting with the F12-model difficult. In Fig (7.5.1) one can see the phase diagram of the
F12-model, at the horizontal line (v2 = 0, v1 = 1) → (v2 = 1, v1 = 1), which is called
type-A line, the exponent parameter is λ = 1. So for large λ all the paths like in Fig
(7.5.1) are close to the A-line and therefore close to the A3-singularity. This higher
order singularity, which is described by a logarithmic decay [52], can affect our chosen
path. To avoid this effect we want to use the Bosse-Krieger model, where we have a
type-B line, which can be shifted by f c1 .
The Bosse-Krieger (BK) model is a two-component model which was introduced to
describe symmetric molten salt [50, 51]. The two kernels of the model are given by

m1 = v1φ1(t)2 + v2φ2(t)2

m2 = v3φ1(t)φ2(t) (7.6.1)

where vi ≥ 0 are the control parameters. With the two conditions from the long-time
limit, f c1/(1− f c1) = v1f

c2
1 + v2f

c2
2 and f c2/(1− f c2) = v3f

c
1f

c
2 , one gets the critical control

parameter as a function of v3 = x and f c1 = y [52]

vc1 =
3− (2 + x)y

2(1− y)2(2− xy)
,

vc2 =
x2y(y2 − 2y3)

2(1− y)2(x2y2 − 3xy + 2)
. (7.6.2)

The exponent parameter is also a function of the two variables and is defined for x > 4

and 3
2+x
≤ y ≤ 1

2
as [52]

λ = 1− (3x2 + 6x)y3 − (x2 + 18x+ 9)y2 + (6x+ 18)y − 6

(2x2 + 4x)y3 − 12xy2 + (2x+ 4)y
. (7.6.3)

In this section we want to compare the simulation data with the Bosse-Krieger model
and we want a fixed exponent parameter, λK = 839

864
. In Fig. 7.6.1 one can see that for a

choosen value of v3, that the exponent parameter of Eq. (7.6.3) can reach the value of
λK two times, one time or never. For large v3 a higher order singularity occurs which
can be seen in Fig 7.6.1 as an open circle. To compare the simulation data with the
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Figure 7.6.1: Left: The (v1, v2)-phase diagram of the Bosse-Krieger model. The lines
are cuts through the bifurcation surface for some choosen control parameter v3. For
large control parameter, here shown by v3 = 45, an A3-singularity occurs, which is
marked by a circle. One also can see a crossing point for this transition line, here
marked by a diamond. At the value v∗3 = 23.2433.. the exponent parameter, λ, touches
the calculated λK once. Right: The exponent parameter λ as a function of the non-
ergodicity parameter f c1 for some fixed control parameter v3 = 15 (blue), 23.2433...
(orange), 45 (green). The straight red line is the value of the theoretical calculated
exponent parameter λK = 839

864
. The perpendicular lines are giving the range of f c1 with

3/2+v3 < f c1 < 1/2. One can see that for a choosen v3 both functions crosses two times
(green curve), one time (orange curve) or never (blue curve).
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Bosse-Krieger model, we fix the control parameter to v3 = 25. So it is far enough from
the A3-singularity which could affect our calculations, and it higher than v3 = 24.7...

where an A4 singularity [52] occurs which also could influence our results.
For v3 = 25, the exponent parameter crosses the λK-line twice, and since we are
generically interested in small control parameters v1, the lower f c1 is relevant.

Figure 7.6.2: The simulation data from Sellitto [29] and the Bosse-Krieger model
for a fixed exponent parameter λK = 839

864
. Here, ψ1 is the first and ψ2 the second

correlator. One can see that the second decay- von Schweidler law- is described with
the Bosse-Krieger model very well, but for the critical decay the deviations are large.

7.7 Conclusion

For the F12-model the best agreement between the simulation data and the schematic
model is given with the fitted exponent parameter λS = 0.815. The calculated exponent
parameter, λK = 839/864, is close to one, which makes the applications of the F12-
model difficult. For high λ the F12-model has a A-line which generates a higher order
singularity, and could affect the calculations with λK .
The Bosse-Krieger model itself can handle higher order singularities. There is a Type-B
line which can be shift with f c1 . So with a suitable control parameter v3 one should
avoid the effects of higher order singularities. But even here, the deviations between
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the simulation data and the Bosse-Krieger model is large. The Bosse-Krieger model
describes the von Schweidler law very well but it fails for the microscopic time scales.
One interpretation is that the simulation data are far away from the critical value, so
the simulations are not representing the real dynamics of the Fredrickson-Andersen
model on the Bethe lattice. Our calculations are at the critical point and we assume an
infinitely large lattice. The simulation data, on the other hand, are for finite lattice
where finite size effect could occur. Therefore, the fitted exponent parameter, λS,
exactly reproduces the dynamics of the simulation data, but this does not necessarily
have to be from the Fredrickson-Andersen model.
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A Projection-Operator

(z − L)(z − L)−1 = 1 |Add a (P +Q) = 1

(z − L)P(z − L)−1 + (z − L)Q(z − L)−1 = 1 |P · or Q · from left (A.1.1)

So we have the two following equations:

(PzP − PLP)(z − L)−1 + PLQ(z − L)−1 = P , (I)

(QzQ−QLQ)(z − L)−1 +QLP(z − L)−1 = Q . (II) (A.1.2)

Multiply (I) and (II) with P from right:

(z − PL)P(z − L)−1P + PLQ(z − L)−1P = P , (III)

(z −QLQ)Q(z − L)−1P +QLP(z − L)−1P = 0 . (IV) (A.1.3)

Insert equation (III) in (IV):

(z −QLQ)Q(z − L)−1P = −QLP(z − L)−1P |(z −QL)−1

⇒ Q(z − L)−1P = −(z −QLQ)−1QLP(z − L)−1P (A.1.4)

(z − PL)P(z − L)−1P + PLQQ(z − L)−1P = P

(z − PL)P(z − L)−1P − PLQ(z −QLQ)−1QLP(z − L)−1P = P

⇒ ((z − PL)P − PLQ(z −QLQ)−1QLP)(z − L)−1P = P (A.1.5)

So we get for P(z − L)−1P :

P(z − L)−1P =
[
z − PLP − PLQ(z −QLQ)−1QLP

]−1

= [z − Ω−M(z)]−1 (A.1.6)
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B MCT for Binary Mixture

Define the state vector |a(~q)〉 with

〈a(~q)| = S
−1/2
αβ 〈ρα(~q)|+ J

−1/2
αβ 〈jL

α(~q)| ,

|a(~q)〉 = S
−1/2
αβ |ρβ(~q)〉+ J

−1/2
αβ |jL

β (~q)〉 . (B.1.1)

In the Laplace-domain the correlation matrix is given as

Φαβ(q) = 〈a(~q)| 1

z − L
|a(~q)〉 (B.1.2)

We introduce within the Mori-Zwanzig formalism the projector P

P =
∑
αβ

|ρα(~q)〉S−1
αβ 〈ρβ(~q)|+

∑
αβ

|jL
α(~q)〉 J−1

αβ 〈j
L
β (~q)| . (B.1.3)

From Appendix A we know

P 1

z − L
P =

[
z − PLP − PLQ(z −QLQ)−1QLP

]−1
.

For the inverse correlation matrix one has

Φ−1
αβ(q) = 〈a(~q)|z − PLP − PLQ(z −QLQ)−1QLP|a(~q)〉 . (B.1.4)

Now we calculate all the matrix elements

• The frist term of B.1.4 (z-term):

〈a(~q)|z|a(~q)〉 = (S
−1/2
αβ 〈ρα(~q)|+ J

−1/2
αβ 〈jL

α(~q)|)z(S
−1/2
αβ |ρβ(~q)〉+ J

−1/2
αβ |jL

β (~q)〉)

= z(S−1
αβ 〈ρα(~q)|ρβ(~q)〉+ J−1

αβ 〈j
L
α(~q)|jL

β (~q)〉

+ S
−1/2
αβ J

−1/2
αβ (〈ρα(~q)|jL

β (~q)〉+ 〈jL
α(~q)|ρβ(~q)〉)) . (B.1.5)
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• The PLP-term:

〈a|PLP|a〉 =∑
αβ

〈a|(|ρα(~q)〉S−1
αβ 〈ρβ(~q)|+ |jL

α(~q)〉 J−1
αβ 〈j

L
β (~q)|)L(|ρα(~q)〉S−1

αβ 〈ρβ(~q)|+ |jL
α(~q)〉 J−1

αβ 〈j
L
β (~q)|)|a〉 ,

(B.1.6)

here we get the frequencies

Ωρρ(q) = S−1
αβ (q) 〈ρβ(~q)|L|ρα(~q)〉 = 0 ,

Ωjρ(q) = S
−1/2
αβ (q)J

−1/2
αβ 〈jL

β (~q)|L|ρα(~q)〉 ,

Ωρj(q) = S
−1/2
αβ (q)J

−1/2
αβ 〈ρβ(~q)|L|jL

α(~q)〉 ,

Ωjj(q) = J−1
αβ 〈j

L
β (~q)|L|jL

α(~q)〉 . (B.1.7)

• and the PLQ(z −QLQ)−1QLP-term:
because of the relation QLP |ρ(~q)〉 = 0 we only get two matrix elements

Kαβ(q) = S
−1/2
αβ (q)J

−1/2
αβ 〈ρβ(~q)|LQ(z −QLQ)−1QL|jL

α(~q)〉 ,

Mαβ(q) = J−1
αβ 〈j

L
β (~q)|LQ(z −QLQ)−1QL|jL

α(~q)〉 . (B.1.8)

with the definiton

Lαβ(q) =
Kαβ(q)

Ωρj(q)
=
〈ρβ(~q)|LQ(z −QLQ)−1QL|jL

α(~q)〉
〈ρβ(~q)|L|jL

α(~q)〉
,

Ω(q)2 = Ωρj(q)Ωjρ(q) (B.1.9)

we get

Φ
αβ

(q) = 1
z(z−Ωjj(q)−Mαβ(q))−Ω2(q)[1+Lαβ(q)]

(
z − Ωjj(q)−Mαβ(q) Ωρj(q)[1 + Lαβ(q)]

Ωjρ(q) z

)

The density density autocorrelation function is given as

φαβ(q) =
1

z − Ω2(q)[1+Lαβ(q)]

z−Ωjj(q)−Mαβ(q)

(B.1.10)
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Mode Coupling Approximation:
Introduce the second projector PMCT with

PMCT =
∑
αβα′β′

~k>~p,~k′>~p′

|ρα(~k)~ρβ(~p)〉 gα
′β′

αβ (~k ~p,~k′~p′) 〈ρα′(~k′)~ρβ′(~p′)| (B.1.11)

use the MCA for the resolvent R(z) = 1
z−QLQ as R(z) ≈ PMCTR(z)PMCT.

The memory kernel Lαβ(q) vanishes

Lαβ(q) ≈ 〈ρβ(~q)|LQPMCTRPMCTQL|jL
α(~q)〉

〈ρβ(~q)|L|jL
α(~q)〉

=
∑
αγα′γ′

~k>~p,~k′>~p′

∑
γβα′γ′

~k>~p,~k′>~p′

〈ρβ(~q)|LQρα(~k)~ργ(~p)〉 gα
′γ′

αγ 〈ρα′(~k′)~ργ′(~p′)Rργ(~k)~ρβ(~p)〉 gβ
′γ′

βγ 〈ργ′(~k′)~ρβ′(~p′)QL|jL
α(~q)〉

〈ρβ(~q)|L|jL
α(~q)〉

= 0

because 〈ρβ(~q)|LQρα(~k)~ργ(~p)〉 = 0

For Mαβ(q) we have

Mαβ(~q) ≈ J−1
αβ 〈j

L
β (~q)|LQPMCTRPMCTQL|jL

α(~q)〉

= J−1
αβ

∑
γ′δ′εψ,

~k>~p,~k′>~p′

Vβγδ(~q~k~p)Zγ
′δ′

εψ (~k′~p′, ~k ~p)Wε′ψ′α(~k′~p′~q) (B.1.12)

with

Vβγδ(~q~k~p) =
∑
γ′′δ′′
~k′′~p′′

〈jL
β (~q)|LQργ′′(~k′′)ρδ′′(~p′′)〉 gγ

′′δ′′

γδ (~k′′~p′′, ~k ~p) (B.1.13)

Wε′ψ′α(~k′~p′~q) =
∑
ε′′ψ′′
~k′′~p′′

〈ρε′′(~k′′)ρψ′′(~p′′)LQ|jL
α(~q))〉 gε

′′ψ′′

ε′ψ′ (~k′′~p′′, ~k′ ~p′) (B.1.14)

Zγ
′δ′

εψ (~k′~p′, ~k ~p) = 〈ργ′(~k′)ρδ′(~p′)|R|ρε(~k)ρψ(~p)〉

≈ 〈ργ′(~k′)|R|ρε(~k)〉 〈ρδ′(~p′)|R|ρψ(~p)〉

= Φγ′ε(k, t)Φδ′ψ(p, t)δ~k~k′δ~p~p′ (B.1.15)
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C Asymptotic Expansion

In this appendix I will derive the asymptotic expansion for φ(0) = p, which is relevant
for the calculation of the exponent parameter, λ, in the Fredrickson-Andersen model.
When we assume that the initial value of the correlation function φ(0) = φ0, with φ0 ≤ 1

the equation of motion (EOM) in the Laplace domain for t→∞ will be

φ(z)

φ0 + zφ(z)
= LT [F(φ(t))] (z) . (C.1.1)

We introduce some not yet specified real parameters f and function G(t) to rewrite

φ(t) = f +G(t) zφ(z) = −f + zG(z) , (C.1.2)

and use the following two assumptions∣∣∣∣ zG(z)

φ0 − f

∣∣∣∣� 1 ,∣∣∣∣LT[G(t)n+1](z)

LT[G(t)n](z)

∣∣∣∣� 1 . (C.1.3)

So we now expand the EOM in terms of G(t)

−f
z

+G(z)

φ0 − f + zG(z)
= LT[F(f +G(t))](z) . (C.1.4)

For the lhs we get

−f
z

+G(z)

φ0 − f + zG(z)
=

1

z

−f
φ0 − f

1

1 + zG(z)
φ0−f

+
1

z

zG(z)
φ0−f

1 + zG(z)
φ0−f

. (C.1.5)

Now we can use the first assumption with

1

1− x
≈ 1− x+ x2 − x3 +O(x4) (C.1.6)

x

1− x
≈ x− x2 + x3 − x4 +O(x5) (C.1.7)
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and get

1

z

−f
φ0 − f

1

1 + zG(z)
φ0−f

+
1

z

zG(z)
φ0−f

1 + zG(z)
φ0−f

=

1

z

−f
φ0 − f

(
1− zG(z)

φ0 − f
+

z2G2(z)

(φ0 − f)2
+O(G3(z))

)
+

1

z

(
zG(z)

φ0 − f
− z2G2(z)

(φ0 − f)2
+O(G3(z))

)
=

1

z

−f
φ0 − f

+G(z)

(
f

(φ0 − f)2
+

1

φ0 − f

)
− zG2(z)

(
f

(φ0 − f)3
+

1

(φ0 − f)2

)
+O(G3(z)) =

1

z

−f
φ0 − f

+G(z)
φ0

(φ0 − f)2
− zG2(z)

φ0

(φ0 − f)2
+O(G3(z)) | · (φ0 − f)3 =

− f(φ0 − f)2

z
+G(z)(φ0(φ0 − f))− zG2(z)φ0 +O(G3(t)) (C.1.8)

If we introduce γ̂k = φ0
(φ0−f)k−2 , we can rewrite the lhs as

1

z

−f
φ0 − f

1

1 + zG(z)
φ0−f

+
1

z

zG(z)
φ0−f

1 + zG(z)
φ0−f

=

− f(φ0 − f)2

z
+G(z)γ̂1 − zG2(z)γ̂2 +O(G3(z)) . (C.1.9)

Now we consider the rhs of the equation

(φ0 − f)3LT[F(f +G(t))](z) = (φ0 − f)3LT

F
f − f

φ0 − f︸ ︷︷ ︸
∆F

+
f

φ0 − f
+G(t)


 (z) ,

(C.1.10)

and expand in G(t)

(φ0 − f)3LT
[
F
(

∆F +
f

φ0 − f
+G(t)

)]
(z) =

(φ0 − f)3

( 1

0!

∂0∆F
∂f 0

+
1

0!

∂0 f
φ0−f

∂f 0

)
LT[G0(t)](z)︸ ︷︷ ︸

− 1
z

+

(
1

1!

∂1∆F
∂f 1

+
1

1!

∂1 f
φ0−f

∂f 1

)
G(z) +O(G2(t))


(C.1.11)
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We also can introduce (for k ≥ 1)

δ̂k =
(φ0 − f)3

k!

∂k∆F
∂fk

γ̂k =
(φ0 − f)3

k!

∂k f
φ0−f

∂fk
=

φ0

(φ0 − f)k−2
, (C.1.12)

so we have

− δ̂0

z
+ δ̂1

+ (γ̂2 + δ̂2)LT[G2(t)](z) + γ̂2zG
2(z)

+ (γ̂3 + δ̂3)LT[G3(t)](z) + γ̂3zG
3(z)

+ (γ̂4 + δ̂4)LT[G4(t)](z) + γ̂4zG
4(z) + ... = 0 . (C.1.13)

For the special case of an A2−bifurcation we have

λ̂LT[G2(t)](z) + zG2(z) = 0 , (C.1.14)

with λ̂ = 1 + δc2/γ
c
2.
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D Vertex Calculation for Binary Mixture

Calculation of the left vertex Vβγδ:

Vβγδ(~q~k~p) =
∑
γ′′δ′′
~k′′~p′′

〈jL
β (~q)|LQργ′′(~k′′)ρδ′′(~p′′)〉 gγ

′′δ′′

γδ (~k′′~p′′, ~k ~p) ,

=
∑
γ′′δ′′
~k′′~p′′

[
〈jL
β (~q)|Lργ′′(~k′′)ρδ′′(~p′′)〉 − 〈jL

β (~q)|LPργ′′(~k′′)ρδ′′(~p′′)〉
]
gγ
′′δ′′

γδ (~k′′~p′′, ~k ~p) ,

=
∑
γ′′δ′′
~k′′~p′′

[
(q̂ · ~k′′) 〈jL

β (~q)|jL
γ′′(
~k′′)ρδ′′(~p

′′)〉+ (q̂ · ~p′′) 〈jL
β (~q)|ργ′′(~k′′)jL

δ′′(~p
′′)〉

−
∑
φψ

〈jL
β (~q)|Lρφ(~q)〉S−1

φψ (~q) 〈ρψ(~q)|ργ′′(~k′′)ρδ′′(~p′′)〉
]
gγ
′′δ′′

γδ (~k′′~p′′, ~k ~p) ,

=
∑
γ′′δ′′
~k′′~p′′

δ(~k′′ + p′′, ~q)

V

[
kBTβ
mβ

(
(q̂ · ~k′′)δβγ′′Sβδ′′(p′′) + (q̂ · ~p′′)δβδ′′Sβγ′′(k′′)

)

−q
∑
φψ

JβφS
−1
φψ (~q)S

(3)
ψγ′′δ′′(k

′′, p′′)

]
gγ
′′δ′′

γδ (~k′′~p′′, ~k ~p) (D.1.1)

The calculation of the average 〈jL
β (~q)|jL

γ′′(
~k′′)ρδ′′(~p

′′)〉 is given as

〈jL
β (~q)|jL

γ′′(
~k′′)ρδ′′(~p

′′)〉 =

〈
1√
N

∑
l

(
q̂ · ~vβl

)
e−i~q~r

β
l

1√
N

∑
j

(
k̂′′ · ~vγ

′′

j

)
ei~k
′′~rγ
′′
j

1√
N

∑
m

ei~p
′′~rδ
′′
m

〉
,

= δβγ′′

〈
1√
N

∑
l

(
q̂ · ~vβl

)2

ei(~k
′′−~q)~rβl

1√
N

∑
m

ei~p
′′~rδ
′′
m

〉
,

= δβγ′′
kBTβ
mβ

〈
1√
N

∑
l

ei(~k
′′−~q)~rβl

1

N

∑
l

ei~p
′′rβl e−i~p

′′rβl
1√
N

∑
m

ei~p
′′~rδ
′′
m

〉
,

= Nδβγ′′
δ(~k′′ + ~p′′, ~q)

V

kBTβ
mβ

〈
1

N
√
N

∑
l

e−i~p
′′rβl

1√
N

∑
m

ei~p
′′~rδ
′′
m

〉
,

=
δ(~k′′ + ~p′′, ~q)

V

kBTβ
mβ

Sβδ′′(~p
′′)δβγ′′ (D.1.2)



132 D VERTEX CALCULATION FOR BINARY MIXTURE

Now, use the normalization gγ
′′δ′′

γδ (~k′′~p′′, ~k ~p) = S−1
γγ′′(

~k)S−1
δδ′′(~p)δ~k,~k′′δ~p,~p′′ and the the triple

correlation function S(3)
ψγ′′δ′′(

~k, ~p) =
∑

εση Sψε(~q)Sγ′′σ(~k)Sδ′′η(~p)
(
x−2
ε δεσδεη + n2c

(3)
εση(~k~p)

)
.

We also rewrite the structure factor in terms of the direct correlation function S−1
αβ (~q) =

δαβ
xα
− ncαβ(~q) and get the vertex

Vβγδ(~q~k~p) =
δ(~k + p, ~q)

V

kBTβ
mβ

[
(q̂ · ~k)δβδ

(
δβγ
xβ
− ncβγ(~k)

)
+ (q̂ · ~p)δβγ

(
δβδ
xβ
− ncβδ(~p)

)
−qxβ

(
x−2
β δβγδβδ + n2c

(3)
βγδ(

~k~p)
)]

. (D.1.3)

Now, we can simplify the left vertex to

Vβγδ(~q~k~p) =
δ(~k + p, ~q)

V

kBTβ
mβ

[
(q̂ · ~k)

δβγδβδ
xβ

+ (q̂ · ~p)δβγδβδ
xβ

+ (q̂ · ~q)δβγδβδ
xβ

− (q̂ · ~k)ncβγ(~k)δβδ − (q̂ · ~p)ncβδ(~p)δβγ −qxβn2c
(3)
βγδ(

~k ~p)
]
,

=
δ(~k + p, ~q)

V

kBTβ
mβ

δβγδβδ
xβ

q̂(~k + ~p− ~q)

− δ(~k + p, ~q)

V

kBTβ
mβ

n
[
(q̂ · ~k)cβγ(~k)δβδ + (q̂ · ~p)cβδ(~p)δβγ + qxβnc

(3)
βγδ(

~k ~p)
]
,

= −δ(
~k + p, ~q)

V

kBTβ
mβ

n
[
(q̂ · ~k)cβγ(~k)δβδ + (q̂ · ~p)cβδ(~p)δβγ + qxβnc

(3)
βγδ(

~k ~p)
]
.

(D.1.4)
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Calculation of the right vertex Wαβγ:
Since we need the Liouville operator explicitly for the right vertex, its calculation is
more complex than the left one. Here, I will show a short overview of the calculation.
Since it is very technical, I try to comment some parts.
The right vertex is given by:

Wαβγ =
∑
α′β′,
~k′~p′

〈ρα′(~k′)ρβ′(~p′)|QLjL
γ (~q)〉 gαβα′β′(~k

′~p′, ~k~p) ,

=
∑
α′β′,
~k′~p′

〈ρα′(~k′)ρβ′(~p′)|(1− P)LjL
γ (~q)〉 gαβα′β′(~k

′~p′, ~k~p) ,

=
∑
α′β′,
~k′~p′

[
〈ρα′(~k′)ρβ′(~p′)|LjL

γ (~q)〉 − 〈ρα′(~k′)ρβ′(~p′)|PLjL
γ (~q)〉

]
gαβα′β′(

~k′~p′, ~k~p)

(D.1.5)

First we calculte the second term of Eq. D.1.5,
∑

α′β′,
~k′~p′
〈ρα′(~k′)ρβ′(~p′)|PLjL

γ (~q)〉, with
the projection operator P :

P =
∑
αβ

|ρα(~q)〉S−1
αβ 〈ρβ(~q)|+

∑
αβ

|jL
α(~q)〉 J−1

αβ 〈j
L
β (~q)| . (D.1.6)

With the triplet correlation function as the average over three densities, the second
term gets∑

α′β′,
~k′~p′

〈ρα′(~k′)ρβ′(~p′)|PLjL
γ (~q)〉 gαβα′β′(~k

′~p′, ~k~p) =

∑
α′β′,
~k′~p′

∑
ψε

δ(~k′ + ~p′, ~q)

V
S

(3)
α′β′ψ(~k′, ~p′)S−1

ψε (~q) 〈ρε(~q)|LjL
γ (~q)〉 gαβα′β′(~k

′ ~p′, ~k~p) (D.1.7)

Now, we have to calculte the matrixelement Ωρj ∝ 〈ρε(~q)|LjL
γ (~q)〉:

〈ρε(~q)|LjL
γ (~q)〉 = 〈ρε(~q)|LjL

γ (~q)〉 = 〈ρε(~q)|(L0 +
∑
χ

∑
i,j

T χγij )jL
γ (~q)〉 . (D.1.8)
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The free streaming part is easy to calculte

〈ρε(~q)|L0j
L
γ (~q)〉 = (−i) 〈ρε(~q)|

1√
N

∑
l,k

∑
δ

~vδl (q̂ · ~v
γ
k)~∇lei~q~r

γ
k 〉 ,

= (−i) 〈ρε(~q)|
1√
N

∑
l,k

∑
δ

δl,kδδ,γ(q̂ · ~vγk)2q̂ i ~qei~q~r
γ
k 〉 ,

= 〈ρε(~q)|
1√
N

∑
k

ei~q~r
γ
k 〉 q

(
mγ

2πkBT

)3/2 ∫
dφ
∫

dθ
∫

dv v4 sin θ cos2 θe−
mγv

2

2kBT ,

= 〈ρε(~q)|
1√
N

∑
k

ei~q~r
γ
k 〉 q

(
mγ

2πkBT

)3/2
4π

3

∫
dv v4e−

mγv
2

2kBT ,

= 〈ρε(~q)|ργ(~q)〉 q
(

mγ

2πkBT

)3/2
4π

3
3

√
π

2

(
mγ

kBT

)−5/2

,

= Sεγ(~q)
kBT

mγ

q . (D.1.9)

Now, we need to calculate the interaction part of the Liouville operator〈
ρε(~q)|

∑
χ

∑
i,j

T χγij jL
γ (~q)

〉
=

〈
ρε(~q)|

(∑
χ 6=γ

Nχ∑
i

Nγ∑
j

T χγij +
∑
i>j

T γγij

)
jL
γ (~q)

〉
,

=

〈
ρε(~q)|

∑
χ 6=γ

Nχ∑
i

Nγ∑
j

T χγij jL
γ (~q)

〉
︸ ︷︷ ︸

I

+

〈
ρε(~q)|

∑
i>j

T γγij jL
γ (~q)

〉
︸ ︷︷ ︸

II

. (D.1.10)

The interaction part is seperated into two different summation, one where all the
particles are from the same species and a part where the species of the particles differ.
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Here, both averages will be calculate:〈
ρε(~q)|

∑
χ 6=γ

Nχ∑
i

Nγ∑
j

T χγij jL
γ (~q)

〉
=
∑
χ 6=γ

NχNγ

2

〈
ρε(~q)|T χγ11 j

L
γ (~q)

〉
,

=
∑
χ 6=γ

NχNγ

2

〈
ρε(~q)|(r̂χγ11 · ~v

χγ
11 )Θ(−r̂χγ11 · ~v

χγ
11 )δ(r̂χγ11 − d

χγ
11 )(bχγ11 − 1)jL

γ (~q)
〉
,

=
∑
χ 6=γ

NχNγ

N

mχ

mγ +mχ

1 + ε

2
q̂

〈∑
i

e−i~q~r
ε
i |(r̂χγ11 · ~v

χγ
11 )2r̂χγ11 Θ(−r̂χγ11 · ~v

χγ
11 )δ(r̂χγ11 − d

χγ
11 )ei~q~r

γ
1

〉
,

=
∑
χ 6=γ

NχNγNε

N

1 + ε

4

kBT

mγ

q̂
〈
r̂χγ11 δ(r̂

χγ
11 − d

χγ
11 )ei~q~r

γε
11

〉
. (D.1.11)

Here, we use the YBG-Relation for the spatial average and get〈
ρε(~q)|

∑
χ 6=γ

Nχ∑
i

Nγ∑
j

T χγij jL
γ (~q)

〉
=

− q

2

1 + ε

2

kBT

mγ

(Sγε(~q)− xγδγε)

− NγNε

2N

1 + ε

2

kBT

mγ

q̂
〈
r̂γε11δ(r̂

γε
11 − d)ei~q~r

γε
11

〉
+
N2
γNε

2N

1 + ε

2

kBT

mγ

q̂
〈
r̂γγ12 δ(r̂

γγ
12 − d)ei~q~r

γε
11

〉
. (D.1.12)

The calculation of the second part is equal and easier, and it becomes to〈
ρε(~q)|

∑
i>j

T γγij jL
γ (~q)

〉
=

− q

2

1 + ε

2

kBT

mγ

(Sγε(~q)− xγδγε)

+
NγNε

2N

1 + ε

2

kBT

mγ

q̂
〈
r̂εγ12δ(r̂

εγ
12 − d)ei~q~r

εγ
12

〉
−
N2
γNε

2N

1 + ε

2

kBT

mγ

q̂
〈
r̂γγ12 δ(r̂

γγ
12 − d)ei~q~r

γε
11

〉
(D.1.13)
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So the frequency matrix is

〈ρε(~q)|LjL
γ (~q)〉 =

kBT

2mγ

q [(1− ε)Sγε + (1 + ε)xγδγε] (D.1.14)

After using the normalization and the definition of the triplet correlation function the
first average of the vertex is calculated

∑
α′β′,
~k′~p′

∑
ψε

δ(~k′ + ~p′, ~q)

V
S

(3)
α′β′ψ(~k′, ~p′)S−1

ψε (~q) 〈ρε(~q)|LjL
γ (~q)〉 gαβα′β′(~k

′ ~p′, ~k~p) =

δ(~k + ~p, ~q)

V

kBT

2mγ

q
∑
ε

(
δεαδεβ
x2
ε

− n2c
(3)
εαβ(~k~p)

)
[(1− ε)Sγε + (1 + ε)xγδγε] . (D.1.15)

Now, we the three particle average,
∑

α′β′,
~k′~p′

〈
ρα′(~k

′)ρβ′(~p
′)|LjL

γ (~q)
〉
gα
′β′

αβ (~k′~p′, ~k~p), should

be calculate. The free streaming part, L0 is done fast

〈
ρα′(~k

′)ρβ′(~p
′)|L0j

L
γ (~q)

〉
= q

kBT

mγ

δ(~k′ + ~p′, ~q)

V
S

(3)
α′β′γ(

~k′~p′) . (D.1.16)

For the particle interaction, the interaction operator T will be divided into two term,
one where all particle are from the same species and one where the species of the
interacting particles differ. The χ 6= γ part is given by〈

ρα′(~k
′)ρβ′(~p

′)|
∑
χ 6=γ

Nχ∑
i

Nγ∑
j

T χγij jL
γ (~q)

〉
=

1

i

∑
χ

NχNγNα′Nβ′√
NN

1 + ε

4

kBT

mγ

q̂
〈
e−i~k

′~rα
′

1 e−i~p
′~rβ
′

1 r̂γχ11 δ(r̂
γχ
11 − d

γχ
11 )ei~q~r

γ
1

〉
(D.1.17)

The spatial average is explicitly given as〈
e−i~k

′~rα
′

1 e−i~p
′~rβ
′

1 r̂χγ11 δ(r̂
χγ
11 − d

χγ
11 )ei~q~r

γ
1

〉
=

1

V 4

∫
d3rγ1

∫
d3rα

′

1

∫
d3rβ

′

1 e−i~k
′~rα
′

1 e−i~p
′~rβ
′

1

[∫
d3rχ1 r̂

χγ
11 δ(r̂

χγ
11 − d

χγ
11 )g4(~rγ1 , ~r

χ
1 , ~r

α′

1 , ~r
β′

1 )

]
ei~q~r

γ
1 .

(D.1.18)
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For the term in the rectangular brackets we use the YBG-relation:∫
d3rχ1 r̂

χγ
11 δ(r̂

χγ
11 − d

χγ
11 )g4(~rγ1 , ~r

χ
1 , ~r

α′

1 , ~r
β′

1 ) =

−
(
r̂γα

′

11 δ(r̂
γα′

11 − d
γα′

11 ) + r̂γβ
′

11 δ(r̂
γβ′

11 − d
γβ′
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So put all the terms together and rewerite some of them as spatial averages the term
becomes to〈
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The same story for the χ = γ part〈
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So put both terms together we have〈
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This calculation was for the case, that the species α′, β′ and γ are all different. Now,
we have to respect all the different possibilities like α′ = β′ 6= γ. There are 6 different
combinations. Since we show the calculation for one case it is not necessary to write
down all the other calculations. I will give the result here for sum over all possibilities
and after some more YBG-relations〈
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In the next step a expression for the triplet correlation function S(3)
αβγ(

~k, ~p) should be
derived:
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After respecting all the combinations of l,m and n we get
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Now, rewriting all the ∇g3-terms with the S(3), the interacting part simplifies to〈
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The triple particle average is∑
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In the end with the use of the normalization, the convolution approximation for S(3)

and the direct correlation function for the structure factors we get the right vertex
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(D.1.28)

We have the following relation between both vertices:

Wαβγ =
1 + ε

2
Vαβγ (D.1.29)



E YBG-RELATION 141

E YBG-Relation

The pair correlation function g(~r) for binary systems is defined as:
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with the potential U , the inverse temperature β and the partition function Z.
Rewrite g(~r) and look at the derivative with respect to rα1
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Now we simplify the expression with the use of the special canonical distribution
function

∇α1
1 g(rα1

1 , rα2
2 ) = −β [∇α1

1 U(rα1α2
12 )] g(rα1

1 , rα2
2 )− βnα3

∫
d3rα3

3 ∇U(rα1α3
13 )g3(rα1

1 , rα2
2 , rα3

3 )

− β
∑
i 6=3

nαi

∫
d3rαi3 ∇U(rα1αi

13 )g3(rα1
1 , rα2

2 , rαi3 ) (E.1.3)

with nαi = Nαi/V .
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F Velocity Integration of Binary Mixture
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G Frequency Ω of the Spin Model

Here, the analytical calculation of the frequency Ω will be represent. We start with the
definition in eq. 4.3.11
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The average of the theta function is given as
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For k = 3 and f = 2 we have:〈
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H Different path for data fitting

In this appendix I want to show the data fit of the different paths in the F12-model
which can be seen in Fig. 7.5.1.
As a comparison I put the same figure as in chapter 7, here the first Fig. H.1.1. The
perpendicular path, v2 = vc2 and v1 varies is in Fig. H.1.2. In the respective inserts the
different paths are shown

Figure H.1.1: Fitting the simulation data for v1 = vc1

Figure H.1.2: Fitting the simulation data for v2 = vc2
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In the upcoming figures, Fig. H.1.3 and Fig H.1.4, I express one of the control parameter
as a function of the other one, v1 = αv2, where α is the slope of the line. For all the

Figure H.1.3: Fitting the simulation data for α = 0.1

Figure H.1.4: Fitting the simulation data for α = 1

paths we used the fitted exponent parameter, λS = 0.815, and one can see that the
simulation data are in a good agreement with the schematic model.
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