
Institute for Theoretical Physics
University of Cologne

Bachelor Thesis
The influence of backwards mutations on the number

of accessible paths in a fitness landscape

Written by
Mario Josupeit

Supervisor: Prof. Joachim Krug

Cologne, 21st of December 2015



2



Contents

1 Introduction 4
1.1 The goal of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 The concept of heredity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Hypercubes and accessible paths . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 The House of cards model . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 The Rough Mt. Fuji model . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.6 Number of paths on the hypercube . . . . . . . . . . . . . . . . . . . . . . 6
1.7 The implications for real organisms . . . . . . . . . . . . . . . . . . . . . . 8

2 Algorithms 9
2.1 Numerical analysis version . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 House of Cards variant . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Rough Mt. Fuji variant . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Empirical landscape analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Subcube analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Numerical results 12
3.1 Comparing results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.1 House-of-cards model with fixed start values . . . . . . . . . . . . . 12
3.1.2 Probability to have at least one open path . . . . . . . . . . . . . . 13

3.2 Directed vs arbitrary paths . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.1 Expected number of paths . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Rough Mt. Fuji expected values . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Empirical data analysis 24
4.1 O’Maille’s Terpene Synthase . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Franke’s Aspergillus Niger . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3 Analysis with the Rough Mt. Fuji model . . . . . . . . . . . . . . . . . . . 28

4.3.1 Rough Mt. Fuji Analysis of O’Mailles’s data . . . . . . . . . . . . . 29
4.3.2 Rough Mt. Fuji Analysis of Franke’s data . . . . . . . . . . . . . . . 31

5 Conclusion 34

Bibliography 36

3



1 Introduction

Ever since the days of Darwin people have pondered how evolution created all organisms
the way they are today. This idea can be taken further though as we are now trying to
understand how the same organisms will evolve in the future. Learning about how evolu-
tion works and what direction it will take is naturally one of the most interesting things a
person can think about since it is one of the few if not one of the only ways we can predict
a complicated future in simple scientific manners.

1.1 The goal of this thesis

This thesis will be about trying to find out which paths evolution took for some selected
small organisms and about the influence of backward mutations on a genetic landscape.
We will take a look at empirical data and also find features of the models that we use to
understand them. Therefore it is important to know about epistasis, which we will treat
here as the influence of one mutation on the effect of another. This definition is different
from a lot of other definitions that exist for this term (see also [1]).

1.2 The concept of heredity

Important in this context is the concept of genetic alleles. We will assume that the features
in question will be passed on to the next generation via alleles during asexual reproduction
which can be altered by mutation and also altered backwards into the original state. This
alteration replicates for example the expression or repression of genes which can lead to
the activation or inactivation of proteins and thus determines the features and abilities of
the organism.

1.3 Hypercubes and accessible paths

If we now consider an organism in a certain state, we can think of every feature or allele as
a binary digit also called locus with two values {0, 1}. If we are talking about L loci, every
genetically different individual is located somewhere on the {0, 1}L hypercube. In this case,
mutations are equivalent to moving from one point on the hypercube to another. Every
point of the hypercube can thereby be considered a vector ~p ∈{0, 1}L. For understanding
hypercubes see [2] and how they can be a model for a genetic landscape see [3].
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1.4 The House of cards model

These vectors can now be assigned a fitness value, which can be considered as the expected
number of offspring of one individual with respect to their environment. So if there are
two species with different fitness values in a population with constant size the population
will fix towards the one with the higher fitness. Fixing means for the organisms that the
whole population is replaced by the better adapted individuals, which are the ones who
produce more offspring and will eventually crowd out the other one. The time this process
takes is called fixation time and it is defined by Kimura in [4].

In nature mutations which are not null mutations are not frequent. These mutations change
the product the genes are coding for. So it is safe to assume that if we keep the size of
the population constant and also do not change the environmental conditions from when
we started we can assume a large time between mutations compared to the fixation time,
meaning the new and better species has already taken over the population by the time
the next mutation happens. The model describing this assumption is called the strong
selection weak mutation model (SSWM) as described by Gillespie [5].

If we consider multiple mutations that happen one after the other we can assume paths
on the hypercube with step length = 1 because we use the SSWM model and go from
points with lower fitness to points with higher fitness. In the end we will reach a local
or the global maximum, both of which are the best adapted version of the organism with
respect to the environmental conditions in its neighborhood. The neighborhood describes
all versions of the organism which are just one mutation away. If we started opposite of
the global maximum, the length of the paths to the global maximum will at least be equal
to the dimension L.

1.4 The House of cards model

For the numerical analysis of the paths in this thesis I will use the house-of-cards (HoC)
model introduced by Kingman [6]. This model treats the different genotypes as completely
independent which results in a hypercube that has random fitness values at each site and
a global maximum at the end point. This means here that the fitness values are uniformly
distributed ∈ (0, 1) and equal to 1 at the point (1, 1, . . . , 1). The start value can either
be fixed to a number x ∈ (0, 1) or random as well. The random number generator uses
a "Mersenne Twister"-algorithm to keep correlations between the random numbers to a
minimum and to have an acceptable calculation time.
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1.6 Number of paths on the hypercube

1.5 The Rough Mt. Fuji model

As we will see later it will be necessary to use a more general model for fitness landscapes
and do the same calculations with this one. We use the rough Mt. Fuji model, which
adds a gradient to the random numbers of the HoC model. This means, depending on the
distance from the origin to the sites on the hypercube we get fitness values given by:

f(~σ) = c|~0− ~σ|+ fHoC(~σ) (1.5.1)

This gives a landscape tunable with c. A larger value of c reduces ruggedness of the land-
scape and c = 0 gives a limit which is a landscape equal to a HoC one. For this model
mutations do not only have a random value for their outcome but also a gradually increas-
ing component so it is a intermediate model between a smooth and a random landscape.
This model was introduced by Aita in 2000 [12].

1.6 Number of paths on the hypercube

There are different kinds of paths on the hypercube. The directed paths take the shortest
route to the global maximum from its antipodal point. They are also called short or p=0.
Paths that take a longer route are called long paths or p>0. p is the number of reversions
along this path. A reversion undoes a previously taken step, it is a step "backwards" in
the direction of a previous one so to speak. If a reversion appears, the total length of the
path grows by two because this extra step makes the path to the end point one step longer,
which adds up to a contribution to the total length of 2. It is obvious that there are L!
directed paths, which means that p = 0, from (0, 0, . . . , 0) to (1, 1, . . . , 1) on the H2

L. "H2
L"

is the hypercube of dimension L and edge length 1. If one of these paths is accessible the
L values on the sites of this path have to be in ascending order. The probability to have
such a setup is 1

L! . This means that the expected number of accessible paths of length L
is E = 1 in all dimensions [8]. If there are fixed starting values, L − 1 values have to be
ordered in a certain way, with the probability to be larger than x being P (X > x) = 1−x.
x is the fixed value of the start point.

Ex =
(

L

L− 1

)
(1− x)L−1 = L(1− x)L−1 (1.6.2)
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1.6 Number of paths on the hypercube

We can see the threshold in x. If x is larger than ln(L)
L

the Ex will go to infinity for L
going to infinity, if x is smaller than this value, the expected value will go to 0 for the same
limit. Whenever we have backwards mutations, there will be more possible paths. The
total number of non-intersecting paths will be called aL,p here which can not be calculated
for all values of L and p, but which can be obtained by counting all the paths so to speak
by hand using brute force calculation. This means for a certain p and x, that:

Ex
p = aL,p

(1− x)L+2p−1

(L+ 2p− 1)! (1.6.3)

For all p combined one has to sum over p:

Ex =
∑
p≥0

aL,p
(1− x)L+2p−1

(L+ 2p− 1)! (1.6.4)

If one now wants to find how many paths there are with a random start value one has to
integrate over all x in (0, 1):

∫ 1

0
dxEx(Θ) =

[
−
∑
p≥0

aL,p
(1− x)L+2p

(L+ 2p)!

]x=1

x=0
=
∑
p≥0

aL,p

(L+ 2p)! (1.6.5)

For comparing the numerical curves to these analytical ones one can approximate the sum
by its terms up to the 2nd order because (L+ 2p− 1)!� aL,p for larger p. The coefficients
aL,p can be calculated up to second order in p with:

aL,0 = L! (1.6.6)

aL,1 = L!L(L− 1)(L− 2)
6 (1.6.7)

aL,2 = L! (L− 1)(L− 2)(5L4 + 3L3 + 34L2 − 264L+ 180)
360 (1.6.8)

These derivations have been done by Berestycki et al. [10]. The brute force calculated
values for L = 5 from the same paper are:

a5,0 = 5!, a5,1 = 5! · 10, a5,2 = 5! · 107, a5,3 = 5! · 1097, a5,4 = 5! · 9754, a5,5 = 5! · 72305,

a5,6 = 5! · 448536, a5,7 = 5! · 2243671, a5,8 = 5! · 8631118, a5,9 = 5! · 24044702,

a5,10 = 5! · 44617008, a5,11 = 5! · 48280086, a5,12 = 5! · 24000420, a5,13 = 5! · 3080792.
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1.7 The implications for real organisms

1.7 The implications for real organisms

To connect the theoretical results to real life experiments some of the fitness landscapes
also used in the paper by Szendro et al.[11] were put into the algorithm to figure out
which implications can be drawn here. Something that is interesting here is the number
of paths with respect to their length. The idea for this analysis came from the discussion
of Weinreich’s data [7] in the paper by De Pristo [9]. Its aim was the description of all
possible paths on an empirical landscape.

For the large landscapes we can also create substructures of the hypercubes given, which
are hypercubes of lower dimensions themselves. We will call them subcubes and analyze
them in terms of accessible paths. In this thesis we will also get ensembles of smaller
graphs contained in larger ones and obtain information about the larger one by looking at
the Subcubes, defined in 2.3, like Szendro et al. did in their paper.
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2 Algorithms

For the simulation there are different versions of the program. One version will generate
multiple hypercubes of a given dimension (section 2.1) with either the HoC model or the
Mt. Fuji model and the other will find paths on hypercubes of given data (section 2.2)
or find subcubes (defined in 1.7) and analyze them. The searching algorithm is mostly
the same in both cases. The latter version takes a hypercube of dimension L and creates
lower dimension subcubes which can then be analyzed to obtain an ensemble of hypercubes
which are indicative of ruggedness and other features of the hypercube of dimension L.

2.1 Numerical analysis version

2.1.1 House of Cards variant

The algorithm starts by generating 2L uniform random numbers drawn from (0, 1), which
are associated with the points on a hypercube.

Then the value at site (1, 1, . . . , 1) is associated with the value 1. It now proceeds by
comparing the fitness values of each site to the neighboring ones. If the value of the
neighboring site is higher, the direction the neighbor is in is written into an array associated
with the current site.

0

0.20.5 0.1

0.3 0.15
0.7

1

[r,g,b]

[g]
[r,g]

[g,b][r,b]

[b]

[r]

[]

Figure 2.1.1: The same H2
3 in two realizations. Left: with fitness values. Right: with

possible directions from each corner. The characters in the brackets are acronyms of the
possible "color-directions". ↖ or ↘ are blue, ↗ or ↙ are green, ↑ or ↓ are red.

This will transform the hypercube of fitness values into one of accessible directions. Now
the algorithm starts at (0, 0, . . . , 0) in the H2

L hypercube and recursively takes steps in the
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2.2 Empirical landscape analysis

allowed directions. This can be represented by a graph in a "tree" shape whose branches
describe the possible paths.

[r,g,b]

[b]

[b]

[b]

[r]

[r]

[r]

[r]

[g]

[g]

[r,b]

[g,b]

[r,g]

[r,b]

Recursion
depth 

0

1

2

3

4

5

6

7

Figure 2.1.2: "Tree" of accessible paths. Colored lines represent the paths to the colored
dots in the cube 2.1.1. As one can see, there are 4 paths with path length L, 2 with L+ 2
and 1 with L+ 4

The recursion depth is then equivalent to the length of the accessed path. If it reaches the
(1, 1, . . . , 1) point, it adds 1 to the number of paths with the length it currently has and
this way produces a distribution of path numbers sorted by length. In the example H2

3

this would be [4, 2, 1]

2.1.2 Rough Mt. Fuji variant

On top of the random values of the house of cards model, a linear function of the distance
to the origin is added to the fitness values as described before. This results in new fitness
values given by (1.5.1).

2.2 Empirical landscape analysis

For analyzing the empirical data, the algorithm reads out the given file, counts the lines (cl)
and creates a dictionary that assigns the given fitness values to their coordinates. It also
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2.3 Subcube analysis

finds the maximum of the H2
L hypercube where L is calculated as L = ln(cl)

ln(2) and saves it
as the end point. Then the cube is transformed like in section 2.1. It then starts opposite
to the end point of the hypercube and finds the distribution of paths with respect to their
length, just like in version 2.1.

2.3 Subcube analysis

Subcubes can be obtained by fixing n of the L lines of coordinates to either 1 or 0. This
means that one obtains sL,n.

sL,n = 2n

(
L

n

)
(2.3.1)

sL,n is the number of subcubes of dimension L − n from a hypercube of dimension L.
Then the ensemble of subcubes is put into a loop which calculates the distribution of path
numbers with respect to path length like in 2.1 and 2.2.
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3 Numerical results

In this chapter we take a look at the results of the program described in 2.1.

3.1 Comparing results

To correctly evaluate the results of the algorithm, it is necessary to compare some results
to existing ones. This does not only test whether or not the algorithm works as intended
but also gives insight into its limitations. If we use the algorithm described before in the
following calculations, lots of details are neglected but still calculated, meaning that espe-
cially with higher dimensions the process takes quite a long time. Therefore there are no
comparisons for dimensions larger than 15.

3.1.1 House-of-cards model with fixed start values

For evaluating the HoC model with fixed start values, we has to take into account that the
numerical results should usually be larger than the analytical ones since the sum in formula
(1.6.4) is approximated by the first three terms for all cases except for L = 3, where the sum
has 3 terms in total and L = 5 where all aL,p are given in section 1.6. All terms are positive
so the approximation should have a lower value than the numeric value. The numerical
results have been averaged over 104 hypercubes in each dimension. As an example these
are the results for dimensions L ∈ {3, 5, 7, 10} and start values x ∈ {0, 0.05, . . . , 0.4}:
As expected the curves in figure 3.1.1 closely match each other. The blue curve is most of
the time larger than the red one.
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3.1 Comparing results
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Figure 3.1.1: The numerical curve (blue) and the one calculated with the formula (red)
are plotted here with errors for the numerical results

3.1.2 Probability to have at least one open path

In the same paper by Berestycki et al. [10] they also calculate the probability that a
hypercube would have at least one path from the start to the end point, while looking at
different dimensions and also at different start values. As mentioned before, the algorithm
used for this thesis can unfortunately not produce results in all dimensions they calculated
because it collects a lot of detail information (e.g. all the paths) and the data volume
was too much to handle for the computer that was used. But it is possible to make a
comparison to their dimension ≤ 15 cases:
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3.2 Directed vs arbitrary paths

L = 30

L = 25

L = 20

L = 15

L = 10

L = 30L = 25L = 20
L = 15L = 10

0.30.250.20.150.10.050
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0.6
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1.0

L = 10

L = 15
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P

(∃
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Figure 3.1.2: Left: the calculated curves in the image taken from of Berestycki et al. [10]
Right: The curve calculated with this thesis’ algorithm, where the green curve is dimension
15 averaged over 1000 cubes and the red one is dimension 10 averaged over 104 cubes

As we can see the behavior for the 104 runs for dimension 10 is close to linear just like
in the graph on the left and the values do not deviate much from the other graph. The
curve for dimension 15 looks much more crooked due to it being only the data of 1000
hypercubes but its propagation and values are very similar to the curve in the other graph.
The crossing point between both is close to the same point in both graphs as well.

3.2 Directed vs arbitrary paths

As the title of this thesis suggests, finding out about the total number of accessible paths
to the fitness maximum is the main goal of this work. We can now take a look at either
the distribution of the number of accessible paths of each length or the expected number
of paths with regard to their dimension.

3.2.1 Expected number of paths

For these calculations, HoC-cubes with random start values were used. The number real-
izations in each dimensions was 5000.
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3.2 Directed vs arbitrary paths

4 6 8 10 12 14
0

1
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E
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Figure 3.2.3: The numerically calculated expectation values

As we can see the graph of the number of short paths (p = 0) which is supposed to be close
to 1 seems to be dented at the same dimensions as the graph of long (p > 0) and also all
paths (arbitrary p), since those are just the sum of short and long paths. This could mean
that the number of paths of different lengths are correlated. Therefore we will try to give
arguments for the normalization of the number of long/arbitrary paths by the number of
short paths. This would mean that we will divide the number of long and arbitrary paths
through the number of short paths to get smoother graphs.
To validate this normalization, it is important to figure out how strongly these values are
correlated. Therefore the correlation between long (p > 0) or arbitrary and short paths
(p = 0) was calculated. Here li/si/ti is the number of long/short/arbitrary paths normed
by their average of hypercube number i ∈ {1, . . . , 5000} and cl/ct is the correlation value
for the long/arbitrary paths. This should result in a measure for the likelihood of there
being a lot of one type of path, given that there are already a lot of another type.

cl = 〈(li − 〈li〉)(si − 〈si〉)〉√
〈(li − 〈li〉)2〉〈(si − 〈si〉)2〉

(3.2.1)
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3.2 Directed vs arbitrary paths

This results in the following graph of cl(L) and ct(L):

3 4 5 6 7 8 9 10
0.0

0.2

0.4

0.6

0.8

1.0

cl

ct

total

Dimension L

c l
,c

t

Figure 3.2.4: The graph shows cl in red and ct in green

Seeing that the correlation value is close to 1 for higher dimensions for the long paths and
close to 1 for the arbitrary ones in all dimensions, we can assume that these values are
correlated.
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3.2 Directed vs arbitrary paths

Another measure for correlation is to map the values on a XY graph. For some example
dimensions long path numbers plotted on the y-axis against short path numbers on the
x-axis look like this:
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Figure 3.2.5: For dimension 6 & 12 these graphs show the long paths plotted against the
number of short paths on a double logarithmic scale. The green line represents y = x.

ct plotted in the same way:
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Figure 3.2.6: For the same dimensions these graphs show the total number of accessible
paths plotted against the number of short paths on a double logarithmic scale.

In these graphs we can see that there are large bulks of points right next to the lines
marking x = y and much less in the upper left and lower right corner. From this image we
can assume that there is in fact correlation between the short and long/arbitrary paths
Knowing this, we can proceed as we suggested above by dividing the long and arbitrary
number of paths through the number of short paths:
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3.2 Directed vs arbitrary paths
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Figure 3.2.7: After dividing the number of long and total paths by the number of short
the graphs look much smoother.

We will use the expected values later to compare them to the experimental data.
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3.3 Rough Mt. Fuji expected values

3.3 Rough Mt. Fuji expected values

For later comparison we have to calculate the number of expected paths in the Mt. Fuji
model as well. In the following the graphs will be color coded depending on the c used.

c 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 . . .
color � � � � � � � � � � . . .

. . . 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

. . . � � � � � � � � �

First we vary the c in equation (1.5.1) on a range from 0.05 to 0.95. This gives for short
paths:

3 4 5 6 7 8
0
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12

log(L!)

ct

total

Dimension L

ln
(E

m
tf

(L
))

Figure 3.3.8: The graph shows the logarithm of the expected number of short paths for
5000 hypercubes for c ∈ {0.05, 0.1, . . . , 0.95} and each dimension L ∈ (3, 8).

The logarithm of the factorial of L, plotted in black, is the curve that is expected for a
linearly with distance from the origin increasing fitness landscape. In this kind of landscape
only short paths can exist, because c is larger than or equal to the maximal contribution
from the random component of the fitness value. This leads to a monotone landscape.
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3.3 Rough Mt. Fuji expected values
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Figure 3.3.9: The top graph shows the long paths and the bottom graph shows the total
paths
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3.3 Rough Mt. Fuji expected values

We can see in 3.3.9 that the amount of short paths grows for c going to 1, but for long and
arbitrary paths there is not such a simple behavior. In the case of long paths, the largest
curves are those with c between c = 0.5 to 0.55 in the observed dimensions. For the total
paths the c with the maximum number of paths gets smaller with larger dimensions from
c = 1 to 0.55. From our previous observations we can assume that this is true because of
the dominance of long over short paths which factors into this calculation and that this
shift causes the coefficient to vary that much for the total number of paths. We have to
take this different behavior into consideration when fitting to the empirical data afterward.
This means that if we now plot ln(Emtf (L)) against c we will receive the following graphs.
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Figure 3.3.10: The logarithm of the expected value of the short paths plotted against
the coefficients c. The maxima in each dimensions are marked with circles so that we can
take a look at their progression.
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3.3 Rough Mt. Fuji expected values
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Figure 3.3.11: The top graph shows the long paths and the bottom graph shows the total
paths marked in the same way as in figure 3.3.10.
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3.3 Rough Mt. Fuji expected values

Just as we expected from figures 3.3.8 and 3.3.9 we can see that the values in figure 3.3.10
are steadily increasing. The reason for this is is that the likelihood to have a lot of paths
is increasing with larger values for c. In the graph for long paths in figure 3.3.11 we can
see that we have a largest value between 0.5 and 0.55 which we also expected from the
other graphs. In the one for the total paths we can see that there is a shift towards the
value 0.5 for higher dimensions, converging towards the maxima of long paths. This makes
sense because the amount of longer paths grows much more quickly for these intermediate
values of c than the short ones.
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4 Empirical data analysis

To make the comparison between the numerical results and the empirical data, we first
collect the total number of accessible paths with respect to their length. This is important
because we can already see important aspects of the fitness landscape. For example, a
small amount of total paths means that there have to be a lot of paths which end in local
maxima and therefore we have a very rugged landscape. A large amount of short paths
and a low amount of paths with p > 0 means that the landscape is very smooth.

A list of these results is give here:

Name Dimension p=0 p>0 Source
Methylobacterium 4 24 0 [14]
extorquens - - - -
Escherichia coli 5 86 49 [15]
Dihydrofolate 4 16 0 [16]
reductase 4 10 6 [16]
β -lactamase 5 18 10 [7]
β -lactamase 5 70 24 [17]
Saccharomyces 6 10 9 [18]
cerevisiae - - - -
Aspergillus niger 8 0 0 [8]
Terpene synthase 9 2 2 [13]

Table 4.0.1: The list of paths calculated for the data used in [11]. The characteristics
considered are various ones. These different observed features lead to different fitness
landscapes.

We also have to obtain a statistically significant distribution to compare our landscapes’
expectation values for different dimensions obtained with the algorithm 2.2 to the expected
values calculated with [10] . The distribution is more significant with a large number of
subcubes, but those large numbers can be produced once one starts with a high dimen-
sional hypercube. For example, the data of the Terpene Synthase, taken from the paper
of O’Maille [13], which has 9 loci, can produce a lot of subcubes of lower dimensions. The
number is given by sL,n in (2.3). In this case there are 5376 subcubes of dimension 3, which
is sufficient to see which model can be applied here.
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4.1 O’Maille’s Terpene Synthase

4.1 O’Maille’s Terpene Synthase

Firstly we take a look at the number of paths on the 9 dimensional hypercube. The analysis
shows that there are 2 paths with length 9 and 2 with length 11. If we analyze the subcubes
though we get an expected value of paths per cube that is:
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Figure 4.1.1: In red we see the paths with p > 0 and in blue the ones with p = 0.

We can see that there are many more paths expected to be there at higher dimensions and
that the curve for longer paths dominates the other one if the number of dimensions grows
large. The lack of long paths in the dimension 9 hypercube is statistically not actually
relevant since it is only one "realization" of a hypercube of dimension 9. We can now
compare this to the expected number of paths we calculated for the HoC model earlier.
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4.1 O’Maille’s Terpene Synthase
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Figure 4.1.2: The graph of expected values by dimension. In red we see the paths with
p > 0 and in blue the ones with p = 0. The data displayed without errorbars is empirical,
the one with the errorbars is numerical.

As one can see, the HoC model gives a lower bound for the empirical data. This is not
very satisfying though since we wanted to have a match between the curves.
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4.2 Franke’s Aspergillus Niger

4.2 Franke’s Aspergillus Niger

As before we take a look at the hypercube but this time it only has 8 dimensions.
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Figure 4.2.3: In red we see the paths with p > 0 and in blue the ones with p = 0.

This time the curve of long paths does not grow as rapidly as the one of short paths and
the total number of paths is much smaller.
The House of Cards values in 4.2.4 are still a lower bound just like the data in figure 4.1.2.
To match some numerical curves to the data we need another model.
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4.3 Analysis with the Rough Mt. Fuji model
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Figure 4.2.4: In red we see the paths with p > 0 and in blue the ones with p = 0.

4.3 Analysis with the Rough Mt. Fuji model

We again calculate the expectation values for a large number of hypercubes, but now we
use a rough Mt. Fuji model instead of the HoC model. This way we can fit the curves to
match the empirical data much better.

Therefore we have to vary the constant c in (1.5.1) until we get a graph which matches
our data more closely. For evaluating this, we compute the mean squared deviation ml

for long paths and ms for short paths from the expected numbers of paths of the Mt. Fuji
model and the calculated number of paths for the empirical data

ml =

√√√√ 8∑
L=3

( log(Ermf (l))
log(Eemp(l)) − 1

)2
(4.3.1)

ms =

√√√√ 8∑
L=3

( log(Ermf (s))
log(Eemp(s)) − 1

)2
(4.3.2)

The smaller these coefficients are, the closer the curves will be to each other and thereby
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4.3 Analysis with the Rough Mt. Fuji model

we approximate the best fitting c from equation (1.5.1). We will start with an interval for c
that recreates the HoC model (at c = 0) and varies up to the smooth landscape (at c = 1).
Other values for c would not make sense in real organisms, because c > 1 landscapes are
equal in accessibility to the c = 1 case.

4.3.1 Rough Mt. Fuji Analysis of O’Mailles’s data

For the data from 4.1 we get these curves for ml and ms:

0.0 0.2 0.4 0.6 0.8 1.0
0

200

400

600

800

1000

1200

1400

ml

ms

coefficient c

m
ea

n
sq

ua
re

d
de

vi
at

io
n

Figure 4.3.5: We can see the values of c on the x-axis and ml and ms on the y-axis

The curve needs further analysis before we can determine a good coefficient c for which
both curves are minimal. So we "zoom in" and look at a small interval (c ∈ (0.04, 0.14))
from which we know that there are small values for both curves.
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4.3 Analysis with the Rough Mt. Fuji model
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Figure 4.3.6: In the upper graphic we can see the values of c on the x-axis and ml and
ms on the y-axis. In the lower graphic we see the resulting graph, if we use the coefficient
calculated with the upper one.
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4.3 Analysis with the Rough Mt. Fuji model

The valley is quite broad, but if one looks at the values one can see that there is a minimum
for c = 0.09 in both curves. We can take this c now to plot a function of the expected
values. These two curves match each other very well and it is quite certain that this graph
and thereby the accessible paths of the mutation landscape of this organism are very well
represented in the rough Mt. Fuji model with c = 0.09.

4.3.2 Rough Mt. Fuji Analysis of Franke’s data

For the data from section 4.2 we get these curves for ml and ms:
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Figure 4.3.7: We can see the values of c on the x-axis and ml and ms on the y-axis.

As we can see, the only interval in which both ml and ms are small is between 0 and 0.1.
At 1 ml is small but this is due to the fact that there can not be any long paths anymore
at this value for c since this would be a directed landscape. Plotting the area between 0
and 0.1 gives:
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4.3 Analysis with the Rough Mt. Fuji model
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Figure 4.3.8: We can see the values of c on the x-axis and ml and ms on the y-axis in
the upper graph. In the lower one we see the original data and the rMF curves with the
calculated coefficient.
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4.3 Analysis with the Rough Mt. Fuji model

This time we can easily spot the minimum at c = 0.08 for both graphs and again it is the
same for long and short paths. We can use it to plot a function of the expected values.
These two curves match each other as well and the paths on the mutation landscape of
this organism can be very well represented in the rough Mt. Fuji model with c = 0.08.

33



5 Conclusion

In this thesis it was shown that there is correlation between short and long paths in
the House of Cards model 3.2.4. This was motivated by trying to reduce deviations in the
expected number of paths. This correlation gets stronger for long paths with the dimension
of the hypercube.

For the first time we performed a numerical analysis of long paths in rough Mt. Fuji
landscapes and a qualitative analysis of the dependency of this on the rough mt. Fuji
coefficient c and dimension L. This was performed for long, short and arbitrary paths.
This lead to the result that there is a c at which there is a maximum of the expectation
value. In the case of the long paths this c is at c = 0.55 or 0.5. This is intuitive since a
very rugged and a very smooth landscape both does not produce many long paths. There
also exists such a c for the total accessible paths. This value of c shifts from c = 1, which
is the value for short paths, in small dimensions towards c = 0.55, which is the value for
long paths, for L→ 8.

The empirical data given by the mentioned papers has been evaluated in terms of accessible
paths on the whole hypercube and in two select cases in terms of their substructures. We
have compared these with the House of Cards model first in order to get a lower bound,
since the House of Cards landscapes should be more rugged than the empirical landscapes.

Because of this different behavior for the expectation values of short and long paths, we
were able to fit this model to the empirical data in more detail than we would be able to,
had we only considered the total number of paths. For the two landscapes which had data
of a dimension large enough to get a significant distribution we calculated the coefficients
c. In this context it is very remarkable that we get minima at the same values for the
coefficients c in both ml and ms and therefore can easily fit the rough Mt. Fuji model to
the functions of paths. In the paper by Szendro et al. [11] they also calculate a value which
describes ruggedness for both Franke’s and O’Maille’s data but they exclusively look at
subcubes of dimension 4. This could be a reason why according to the calculations in this
thesis the Aspergillus Niger landscape is slightly more rough than the Terpene Synthase
one.

The values being 0.08 in figure 4.3.8 and 0.09 in figure 4.3.6 means that these landscapes
are actually less similar to smooth landscapes than to the House of Cards landscapes,
which produce a lot of long paths with larger dimensions as we see in 3.2.7. This gives
rise to the assumption that even if the number of long paths is not large compared to
the number of short paths, as we can see in figure 4.0.1, numbers of accessible paths of
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mutation landscapes should be represented by a model that takes into account long paths
as well.
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