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Abstract 

Evaluative conditioning (EC) is concerned with the learning of likes and dislikes. In EC, neutral 

stimuli acquire evaluative characteristics through pairings with positive and negative stimuli. EC 

might be (partly) mediated by a primitive mental process that operates outside of our awareness 

and control. This process is often characterized as creating simple associations between mental 

representations of stimuli and is, therefore, often referred to as an associative process. 

Associative processes are, among other characteristics, often assumed to operate without 

awareness and assumed to not capture specific relations between stimuli. My thesis tests whether 

an associative process contributes to EC in three lines of research. In a first line of research, four 

experiments showed that awareness of the learning stimuli is necessary to obtain EC. A second 

line with four experiments showed that attribute conditioning, an effect similar to EC, is sensitive 

to specific relations between learning stimuli. Both findings are at odds with simple associations 

underlying the effect. Third, five experiments studied the generalization of EC. This line of 

research showed that whether acquired rules influence judgments of novel stimuli can depend on 

characteristics of the judgment task. An important implication from this is that neglect of 

propositional information does not necessarily indicate the working of associative processes.  

In sum, my research does not provide evidence for the contribution of an associative process to 

EC. Instead, I explain my findings in terms of a propositional or memory process and relate this 

explanation to contemporary single-process models of EC. 
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Introduction 

We are born with some basic skills and instincts for survival like breathing, swallowing 

and a need for bonding but the vast majority of skills that we need in everyday life have to be 

learned. Learning can be thought of as a means to optimally adapt to the environment in the 

course of one's life. De Houwer, Barnes-Holmes and Moors (2013) refer to this idea as 

ontogenetic adaptation. The concept of adaption draws on evolution theory which holds that 

organisms that are best adapted to the environment will survive. While this notion traditionally 

concerns phylogenetic adaptation, that is, the adaptation of a species over generations, learning 

can be thought as adaptation of an individual across its lifespan (Skinner, 1938, 1984). The 

ability to learn is therefore vital and it is important and interesting to study how humans learn. 

Psychological science is, next to others such as neuroscience, biology, philosophy and 

computational science, a central discipline in understanding human learning. Psychology is 

concerned with understanding the mind. Hence, its objects of study are often unobservable latent 

mental constructs, such as intelligence or feelings and it uses observable behavior as a proxy to 

infer working and characteristics of the mind.1 Because we do not know yet, how learning works 

on a cognitive level, I use a definition on the level of observable behavior: Learning is a change 

in behavior that is due to regularities in the environment (De Houwer et al., 2013).  

Within this definition, different types of learning can be characterized and differentiated 

based on the specific regularities that affect behavior. De Houwer and colleagues (2013) outlined 

three different types of learning: First, learning can be due to regularities of one stimulus (over 

time). The most prominent examples are habituation, where a stimulus has less and less influence 

                                                 
1This definition applies in particular to cognitive psychology. Other schools of thought have focused on 

describing and explaining behavior which is also often named as an aim of the psychological science. 
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on behavior as it appears again and again over time, or its counterpart, sensitization (Mazur, 

1994).  

Second, learning can be due to regularities between a behavior and a stimulus. This type 

of learning is referred to as operant conditioning (e.g., Thorndike, 1898). The basic idea is that a 

behavior that is spatiotemporally close to a pleasant, rewarding stimulus, will be repeated while 

behavior that is close to an aversive stimulus will be avoided.  

Third and central to this thesis, learning can be due to regularities between two stimuli. A 

very basic and important regularity between two stimuli is their co-occurrence in space and time. 

This type of learning can be referred to as associative learning because two stimuli are 

functionally associated (i.e., not associated in the sense that they are mentally connected) by their 

co-occurrence with each other and therefore have an effect on behavior (cf. Mitchell, De 

Houwer, & Lovibond, 2009). A vast part of learning research in psychology concerns associative 

learning. While the most prominent form of associative learning is indisputably classical 

conditioning, associative learning research has branched out in more narrow lines of research 

investigating certain paradigms, like for example, predictive learning and category learning. It is 

worth mentioning that the term associative learning is used inconsistently in the literature. 

Associative learning as described here refers to the effect that regularities between two stimuli 

have on behavior. Alternatively, it is used to describe a potential cognitive mechanism that 

mediates this behavioral effect; a primitive association formation mechanism (Mitchell et al., 

2009). The cognitive mechanisms underlying the effects described here will be addressed in 

Chapter 2 and while I aimed to be explicit about whether I refer to the effect or the cognitive 

mechanism thoughout the text, the further course of the thesis will mostly use the term 

“associative” to refer to an association formation mechanism. 
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For my thesis, it is important to point out another type of learning. The three types 

described above refer to changes in behavior with regard to stimuli that we have direct learning 

experience with.  In addition, changes in behavior can also come about without direct learning 

experience. That is, regularities in the environment regarding one stimulus can change behavior 

towards a different (perceptually similar or otherwise related) stimulus although the latter was 

not subject to any regularities. This learning phenomenon is referred to as generalization (e.g., 

Pearce, 1987; Spence, 1937). For sure, this is not an exhaustive list of types of learning. There 

are several other conceptualizations, for example, learning through observation (Bandura, 1977) 

or learning through insight (Köhler, 1925) that are not discussed in this thesis.  

The current thesis 

The focus of my thesis is learning by co-occurrence of two stimuli and learning via 

generalization. More specifically, I mainly studied evaluative conditioning (EC), that is, the co-

occurrence of an affective and a neutral stimulus, and its generalization. The behavior that is 

changed by this co-occurrence of affective and neutral stimuli is the evaluation of the neutral 

stimuli. Typically, the neutral stimulus assimilates to the affective stimulus. That is, if a neutral 

stimulus is paired with a positive stimulus it will be evaluated more positively afterwards. If it is 

paired with a negative stimulus, in contrast, it will be evaluated more negatively afterwards (De 

Houwer, Thomas, & Baeyens, 2001; Hofmann, De Houwer, Perugini, Baeyens, & Crombez, 

2010). Thus, EC can be considered “learning of likes and dislikes”. A similar paradigm I used in 

several studies is referred to as attribute conditioning (AC). In AC, specific attributes, like 

athleticism, are conditioned as opposed to a general evaluation as in EC (see Chapter 4 for 

details).  
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The current definition of learning is silent with regard to the mental mechanisms involved 

in learning, for the above outlined reason. It mainly allows for predicting how behavior will 

change given certain conditions in the environment (e.g., if a neutral stimulus co-occurs with a 

positive one it will be evaluated more positively). While predicting behavior is a powerful asset 

my thesis pursues a cognitive approach. I investigate how, by which mental processes, the 

observable changes in behavior come about. I focused on EC, because it has been argued to be 

mediated by different cognitive processes than most other types of learning discussed here. More 

specifically, it has been suggested that EC might be mediated by primitive processes that are, for 

example, not susceptible to conscious control. Chapter 1 will show that learning research has 

started out with the idea that learning is a primitive process. In the course of time, however, 

evidence for the contribution of higher-order reasoning accumulated. Until, recently, purely 

cognitive explanations of learning fully abandoned the idea of primitive processes (e.g., Mitchell 

et al., 2009). Thus, it is important and interesting to study the learning processes underlying EC, 

because it constitutes a potential domain where such primitive processes are at work, challenging 

purely cognitive views of learning. Chapter 2 will explain why EC is often assumed to be 

mediated by different processes than other types of learning and review theories of EC. Chapter 

3 and 4 will test predictions from those theories. Chapter 3 reports a series of studies on the role 

of awareness in EC. Chapter 4 reports studies on the effect of relational information between the 

co-occurring stimuli attribute conditioning. Chapter 5 reports research on the generalization of 

EC as a novel empirical framework to test the predictions from process theories. Chapter 6 

presents an integrated explanation of the findings from the three lines of research and discusses 

the implications for the broader question whether EC is, unlike most other forms of learning, 

mediated by a primitive learning mechanism. 
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Chapter 1: How do we learn? Single- versus dual-process theories in learning 

Theories that describe the mental process underlying learning, can be broadly categorized 

into those that assume that there is one way in which we learn. Opposing that view are dual-

process theories that assume that there are qualitatively different mechanisms (at least two) that 

can produce learning (Mitchell et al., 2009). Typically, single-process theorists nowadays 

conceptualize learning as the results of an elaborate, reasoning-based process. Dual-process 

theories usually assume an additional route to learning that operates without much reasoning and 

cognitive resources. The notion of such a very basic learning process is intriguing because it 

might influence our behavior without our awareness of it. The idea of dual processes is not only 

present in learning but pervades many topics in psychology (e.g., Evans, 2008). Depending on 

the field under investigation, these two processes have been termed differently, for example 

explicit versus implicit, reflective versus impulsive, heuristic versus systematic or rule-based 

versus similarity-based (e.g., Chaiken & Trope, 1999). The common distinction in all areas is 

that one learning mechanism is assumed to be subject to reasoning and to require more effortful 

processing than the second mechanism which is largely independent of resources, intent and 

effort.  

The notion of such a primitive mechanism is often argued to be based on learning 

research’s roots in behaviorism (cf. Shanks, 2010). Behaviorist learning theorists, pioneered by 

Thorndike (e.g, Thorndike, 1898) proposed a view of learning that focused on stimuli in the 

environment and observable responses to these stimuli. An example is the law of effect which 

was a milestone in behaviorism: If a response to a certain stimulus is rewarded, stimulus and 

response will be associated. Once the association was created, the stimulus would elicit the 

response with a higher probability than before (operant conditioning). Those (and only those) 
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stimulus-response associations were thought to determine behavior and cognitive processes were 

hardly considered. Behaviorism’s heyday was the early 20th century, which makes learning 

research one of the oldest disciplines in psychological science. Importantly, it existed before 

what is often referred to as the “cognitive revolution”: Around 1960, researchers became 

increasingly interested in the mental processes underlying behavior and behaviorism’s focus on 

stimulus-response relations was criticized, most prominently by Brewer (1974), and, hence, 

became less influential. Therefore, the view of learning as a phenomenon detached from 

cognitive processes like attention, memory and reasoning shifted towards a new, cognitive 

perspective on learning.  

This historical overview shows that the idea of learning as something primitive that needs 

no higher-order reasoning is as old as learning research itself. It is therefore not surprising that it 

reappeared in dual-process theories on learning. At least since the cognitive revolution, however, 

it is generally agreed upon that cognitive processes do contribute to human behavior to some 

extent (e.g., Shanks, 2010). Therefore, the process debate has mainly focused on the question 

whether an additional, primitive route exists or not. However, since from a philosophy of science 

perspective, the nonexistence of a second route can never be proven, the more appropriate 

question is whether it is necessary and useful to assume an additional mechanism. 

Learning research has to a large part been concerned with the phenomenon of classical 

conditioning which has, thus, been the origin of the single- versus dual-process controversy. I 

will now explain in more detail which processes have been argued to underlie it. I outline the 

Rescorla-Wagner model which formally describes the process of learning and has been a very 

influential model. Importantly for the topic of this thesis, the end of the next section will also 
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show why the processes underlying EC might be different from those underlying classical 

conditioning. 

Classical conditioning: phenomenon and process theories 

The phenomenon of classical conditioning traces back to the work of Ivan Pavlov. He 

discovered that when a stimulus (unconditioned stimulus, US) that immanently elicits a certain 

response (unconditioned response, UR) is contingently presented together with a second stimulus 

(conditioned stimulus, CS), the second stimulus will also come to elicit that (or a similar) 

response (conditioned response, CR). The well-known example of classical conditioning (which 

is also the original stimuli Pavlov discovered the phenomenon with) is a dog that salivates (UR) 

when it smells food (US). When the food is repeatedly announced by (i.e. contingently presented 

with) a bell ring (CS), the bell ring alone, after some time, causes the dog to salivate (CR). A 

very common variant of the paradigm that is often studied in humans is eyeblink conditioning: 

An air puff (US) applied to the eye reflexively causes a blink (UR). The air puff might be paired 

with a light or tone in some trials and that CS will subsequently elicit a blink (CR) on its own. 

Stimulus-stimulus versus stimulus-response learning. Pavlov believed that during 

conditioning, parts of the brain representing the US, UR and CS respectively are simultaneously 

active. He assumed an innate link between representations of the US and the UR and reasoned 

that, during conditioning, other links form that enable the CS to also elicit a similar response 

(Mazur, 2016; Figure 1). 

One possibility is that conditioning creates a link between CS and the response. This 

notion is referred to as a stimulus-response (S-R) link. Alternatively, a link between CS and US, 

referred to as stimulus-stimulus (S-S) link, could be established. In fact, the question whether S-

R or S-S learning underlies classical conditioning effects, has been one of the central research 
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topics in learning. S-R learning is in line with a behaviorist perspective because it refers to 

stimuli in the environment and observable behavior. S-S learning, on the other hand, implies that 

there are mental representations of two stimuli. Those representations become connected and 

thus the CS indirectly causes a similar response as the US. This notion, as opposed to S-R 

learning, which can basically do without the concept of mental representations, specifies 

cognitive processes to some extent and can thus be conceptualized as a more cognitive model of 

classical conditioning than S-R learning (Mitchell et al., 2009).  

 

 

 

 

Figure 1.Schematic figure of  Pavlov’s stimulus substitution theory: the elements of 

conditioning, that is, the unconditioned stimulus (US), the innate response to that stimulus and 

the conditioned stimulus (CS) are mentally represented. While US and response are inherently 

associated prior to conditioning, the CS becomes associated with the US (stimulus-stimulus link, 

S-S) and/or the response directly (stimulus-response link, S-R) during conditioning. Whether an 

S-S or an S-R link forms during conditioning, has been subject to theoretical debate. 

 

Several studies tested whether S-R or S-S learning underlies classical conditioning. A 

common approach in this line of research is US devaluation or revaluation. It’s core feature is to 

weaken the link between US and response after conditioning. An aversive auditory US could be 

devaluated, for example, by habituating participants to the sound. The rationale is that if direct S-

R (i.e. CS-response) links drive the classical conditioning effect, then it should be unaffected by 
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postconditioning changes in the US-response link. If conditioning effects are mediated via an S-S 

(i.e. CS-US) link, then the CS should only elicit the response to the extent that also the US elicits 

it. That is, conditioning effects should become less pronounced (devaluation) or even reversed 

(revaluation). Rescorla (1973) was the first to use US devaluation as a test of S-R versus S-S 

learning. He observed weaker effects of conditioning in rats that had undergone US devaluation 

as opposed to control rats. Later studies showed similar effects for human subjects in fear 

conditioning (Davey & McKenna, 1983; White & Davey, 1989). The repeated observation that 

the emergence, strength and direction of the CR depends on the postconditioning nature of the 

US-response association, has served as evidence for S-S rather than S-R learning in classical 

conditioning. Thus, it seems justified to assume an internal representation and connection of 

some kind of the two stimuli. Concerning the nature of that connection, it has traditionally been 

assumed that it corresponds to a simple association that connects the mental representations of 

CS and US. One very influential model that formalized the process of association formation is 

the Rescorla-Wagner model.2 Although, as we will see later on, the notion of simple associative 

links between CS and US has become subject to vigorous debate in more recent research, the 

model continues to be invoked in modern research on learning.  

The Rescorla-Wagner model and the blocking effect. The Rescorla-Wagner model 

(Rescorla & Wagner, 1972) assumes that every US has a certain maximum associative potential, 

that is, a certain extent to which it can be predicted by other stimuli, denoted λUS. During 

conditioning trials, a CS comes to be a predictor of the US, that is, it captures its associative 

potential to some extent. The predictive power of the CS for the US is denoted VCS. Central to 

                                                 
2 Some authors argued that the Rescorla-Wagner model is not necessarily a model of association formation 

but rather a functionally-descriptive model that is silent with regard to the nature of the mental representation and 

could thus, also be reconciled with an inferential perspective on learning (Mitchell, De Houwer, & Lovibond, 2009).  
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the Rescorla-Wagner idea is the concept of surprise: The amount of associative strength a certain 

CS acquires for a certain US in one trial (ΔVCS) depends upon how surprising the occurrence of 

the US given the CS is in that trial. Surprise is maximal in the first trial of conditioning; the pre-

trial expectation of the US following the CS is zero. Over the course of the trials, the occurrence 

of the US becomes less and less surprising (in a conditioning procedure where the US is always 

paired with the CS, i.e. contingency is 100%) and the amount of additional associative strength 

the CS acquires in each trial becomes less and less until it approximates the maximum 

associative potential of the US, that is VCS ≈ λUS. The full equation of the Rescorla-Wagner model 

is the following: 

ΔVCS(n) =  αCS × β
US

× (λUS(n) − Vall) 

It shows that the associative strength a CS acquires in a certain trial n is determined by 

the associative potential of the US at trial n that is still “unbound”, that is, not already captured 

by the same or different CSs in previous trials. Thus, the term λUS(n) − Vall represents the extent 

to which the occurrence of the US is surprising. α and β denote learning rates for CS and US 

respectively, that are constant across trials. 

The Rescorla-Wagner model has been very successful in predicting and explaining a 

variety of effects observed in classical conditioning but it became particularly influential because 

of its ability to explain blocking (Shanks, 2010). Blocking refers to the phenomenon that the 

conditioning of one CS with a US is impeded due to previous pairings of another CS with that 

US. More specifically, blocking is usually shown for components of compound stimuli: If CSA 

has previously been paired with the US, then subsequent pairings of the compound CSAB with 

the US will lead to little learning regarding CSB. That is, if participants are asked to judge the 

extent to which they expect the US to occur after CSB, expectations will be much lower when 
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they had previously seen CSA-US pairings than if they had not received such pretraining (Kamin, 

1969).  

The Rescorla-Wagner model explains blocking as follows: During CSA-US pairings in 

the first phase, CSA acquires a substantial part of the associative strength of the US. That is, if the 

pretraining phase is long enough, VCSA will eventually approximate λUS. Thus, there is little or no 

associative potential left to be subsequently associated with CSB (because VCSB cannot exceed 

λUS − Vall, which is very small after CSA-US pairings). CSA has become a near-perfect predictor 

of the US already, so there are no additional occurrences of the US “left to predict” by adding 

CSB to the compound. In other words, the occurrence of the US is no longer surprising after 

CSA-US pretraining and therefore, little learning takes place. 

While the phenomenon of blocking has indisputably been very important for the study of 

associative processes underlying learning there are two caveats:  First, the blocking effect is also 

conveniently explained in higher-order reasoning terms. A chain of causal reasoning underlying 

the blocking effect could be: “the US is as likely and strong after CSA occurred as when CSAB 

occurred. Thus, CSB does not predict anything above and beyond CSA and is therefore not a 

cause of the US.” (De Houwer, Beckers, & Glautier, 2002). There are many studies that support 

an inferential account of blocking (for an overview see, Shanks, 2010). Second, and importantly, 

a recent publication called its scope into question because the authors could not replicate the 

phenomenon of blocking in 15 experiments (Maes et al., 2016). 

Evidence for inferential processes underlying classical conditioning. Apart from the 

various lines of research aiming to explain blocking in terms of inferential reasoning reviewed by 

Shanks (2010), there have been a number of other approaches to show that classical conditioning 

is mediated by inferential processes.  
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First, it has repeatedly been shown that learning by instruction produces very similar 

results as learning by experience. Cook and Harris (1937), for example, have shown that merely 

instructing participants that a certain tone will be followed by a shock will lead to an increase in 

skin conductance (fear conditioning). It has been argued that it is implausible that verbal 

instructions, that are typically accompanied by elaborate, inferential reasoning, can result in 

primitive association formation (Mitchell et al., 2009; Shanks, 2010). 

Further, researchers have studied the role of awareness of the CS-US pairings and the 

effect of cognitive load in conditioning (for a review see Lovibond & Shanks, 2002 and Mitchell 

et al., 2009). The idea of both manipulations is that association formation processes require less 

cognitive resources than higher-order cognition. Therefore, an associative perspective on 

learning would predict that conditioning effects also emerge when little resources are available.  

Concerning awareness, research has repeatedly shown that awareness of the CS-US 

pairings during conditioning (measured via contingency memory in most of the cases) is a 

necessary precondition for classical conditioning effects to emerge (Dawson & Shell, 1985; 

Lovibond & Shanks, 2002). This is commonly interpreted as evidence for the contribution of 

cognitive processes in conditioning. The same conclusion is suggested by research studying 

classical conditioning’s sensitivity to load manipulations: Reduced attention to CS-US pairings 

has been shown to reduce learning (e.g. Dawson & Biferno, 1973). Also, Shanks and Darby 

(1998) showed that abstract rules influenced learning beyond the simple pairings of CS and US. 

This study will be discussed in more detail in Chapter 5.  

Evaluative conditioning and the Perruchet effect as evidence for primitive learning 

processes. While research has been rather consistent in pointing out the contribution of cognitive 

processes in learning, there are some findings that are not easily reconciled with this view. The 
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Perruchet effect and EC are two paradigms that continue to be mentioned as evidence that is 

compatible with an association formation perspective on learning and have therefore been a 

focus of interest (Lovibond & Shanks, 2002; Mitchell et al., 2009; Shanks, 2010). 

The Perruchet effect refers to the following observation: During reinforcements of a CS 

with an air puff US, Perruchet (1985) observed an eyeblink response to increase. When the CS 

was not followed by an air puff it decreased (extinction). Importantly, however, expectancy 

ratings of the US showed the opposite pattern: After a couple of reinforced trials, participants 

expected the US to a lesser extent in the subsequent trial than when the CS had not been 

followed by the US previously (“gambler’s fallacy”). The dissociation between the two 

dependent variables is striking because the automatic eyeblink reflex was strongest when 

participants cognitively considered the likelihood of the air puff to occur to be lowest. This 

shows that the eyeblink response was learned independent of the cognitive expectation of the air 

puff and thus attests to the contribution of a noncognitive learning mechanism that follows the 

rules of simple association formation as described by, for example, the Rescorla-Wagner model 

(note, however, that the explanation of the Perruchet effect has subsequently been subject to 

debate, e.g., Mitchell, Wardle, Lovibond, Weidemann, & Chang, 2010; cf. Perruchet, 2015, for 

an overview). 

The second phenomenon which is often brought forward as evidence for a noncognitive 

route to learning is EC (Lovibond & Shanks, 2002; Mitchell et al., 2009; Shanks, 2010). The 

literature on EC is much broader than that on the Perruchet effect and has thus, arguably, played 

a more central role in the study of learning processes. That is, EC can be understood as the single 

most important paradigm in justifying the assumption of a route to learning that is qualitatively 

different from learning based on cognitive reasoning. If there is convincing evidence for a 
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primitive way of learning in EC this would support dual-process theories of learning. More 

broadly, it would call into question the monopoly of controlled cognitive processes and 

contribute to an understanding of the human mind and behavior that acknowledges the role of 

primitive processes that might be outside of our awareness and control. 

I will now proceed to define EC in more detail and point out why it is considered more 

likely than other forms of learning, to be based on little-cognitive learning. Then, I will present 

theories on the processes underlying EC and describe my own empirical work that tests central 

predictions that follow from those theories. We will see that very similar aspects like those 

outlined in this subsection (awareness, cognitive load, propositional information) have played a 

central role in investigating the processes underlying EC.   



15 

 

Chapter 2: Evaluative conditioning 

Evaluative conditioning (EC) is concerned with the learning of evaluative characteristics 

via conditioning. On an effect level, it is defined as a change in the evaluation of an initially 

neutral stimulus (CS) after that stimulus was (repeatedly) paired with one or more positive or 

negative stimuli (US). A CS that was paired with a positive US will subsequently be evaluated 

more positively than a CS that was paired with a negative US (De Houwer, 2007). Although the 

first studies describing EC effects date from the 50s (e.g. Staats, Staats, & Heard, 1959) it is 

mainly recently that it has become a very popular research area (cf. Corneille & Stahl, 

2018).^This strong interest in EC might – apart from its theoretical importance for theories of 

learning explained in the previous chapter - partly be due to its vicinity to social psychological 

attitude research. Research on attitudes is very wide, ranging from measurement and functions of 

attitudes to their relation to behavior. EC can be located at the study of the formation of attitudes. 

Attitude researchers have come to agree that learning, especially associative learning (the effect 

of regularities between two stimuli, not the mechanism) plays a role in the formation of attitudes 

(Vogel & Wänke, 2016). Besides insights for attitude research and related areas like stereotype 

and prejudice research, EC has a high relevance for the understanding of phobias (i.e. clinical 

research), marketing and consumer research. EC is a robust phenomenon, as attested by multiple 

studies showing EC with a variety of stimuli and modalities (for a review see De Houwer, 

Thomas, & Baeyens, 2001), and is widely applicable.  

Experiments studying EC usually employ a learning phase in which CS and US are 

paired. EC effects have been shown with forward (i.e. the CS is followed by the US), backward 

(i.e. the US is followed by the CS) and simultaneous pairings of CS and US; they have been 

shown with only one single CS-US pairing (De Houwer et al., 2001; Hofmann et al., 2010) and 
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also both with a “one-to-one” CS-US assignment (i.e. a CS is paired with only one specific US) 

and “one-to-many” assignment (i.e. a CS can be paired with multiple different USs of the same 

valence, Stahl & Unkelbach, 2009). Hence, the EC effect seems to be rather stable across 

different procedural specificities.  

After a learning phase, evaluative characteristics of the CSs established during 

conditioning are usually measured with direct and/or indirect measures of liking. As direct 

measurement, usually rating scales are used; indirect measures can, for example, be based on 

affect misattribution (affective misattribution procedure, AMP, Payne, Cheng, Govorun, & 

Stewart, 2005) or reaction times (evaluative priming, Fazio, Jackson, Dunton, & Williams, 1995, 

implicit association test, IAT, Greenwald, McGhee, & Schwartz, 1998). While some researchers 

hold the view that direct and indirect measures capture different types of evaluation (e.g. explicit 

versus implicit attitudes) a more cautious assertion would be that indirect measures are less 

obtrusive and thus less prone to distortion on the part of the participants than direct ratings. They 

mostly also measure faster and hence more spontaneous responses towards the CSs. The 

distinction between direct and indirect measures has brought forward some interesting patterns of 

findings that have fueled theorizing in EC (e.g. dissociation between direct and indirect 

measures). Before I turn to those process theories of EC, I will review empirical findings that are 

considered unique to EC and have therefore fostered the idea that underlying EC might be 

processes different from other learning paradigms.  

Evidence distinguishing EC from classical conditioning  

Levey and Martin (1987) were among the first to describe EC and term it as such because 

of its procedural similarity to classical conditioning. Due to this similarity it is comprehensible 

that it was questioned  that EC is an independent phenomenon that qualitatively differs from 
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classical conditioning (e.g., Davey, 1994; Lipp & Purkis, 2005). However, at least four points are 

repeatedly being raised to distinguish EC from classical conditioning: first, its resistance to 

extinction, second and relatedly, its sensitivity to co-occurrences as opposed to contingencies of 

CS and US, third its affective nature and fourth its supposed independence of CS-US memory.  

Extinction, as a procedure, refers to the inclusion of CS alone trials in the learning 

phase - intermixed with CS-US trials or as an extinction block. In classical conditioning, the 

effect of extinction is a reduced CR. That is, if a tone-CS is not followed by an air puff for a 

sequence of trials, then the likelihood and magnitude of the eyeblink response will decrease (cf. 

Perruchet effect). Concerning EC effects, however, several studies observed that they are not or 

only very slightly decreased by extinction (Baeyens, Crombez, Hendrickx, & Eelen, 1995; 

Baeyens, Crombez, Van den Bergh, & Eelen, 1988; Baeyens, Eelen, van den Bergh, & Crombez, 

1989; Blechert, Michael, Williams, Purkis, & Wilhelm, 2008; De Houwer, Baeyens, 

Vansteenwegen, & Eelen, 2000; Díaz, Ruiz, & Baeyens, 2005). Researchers concluded that EC, 

in contrast to classical conditioning, does not involve expectancy learning. That is, if CS-US 

pairings in EC do not lead to an expectation of the US given the CS occurs, then this expectancy 

cannot be violated by the non-occurrence of the US in CS alone trials. In other words, the 

absence of the US is not surprising because participants never learned to expect the US in the 

first place. Importantly, more recent research has called EC’s resistance to extinction into 

question and provided alternative explanations for the findings listed here. They will be reviewed 

in the Discussion in Chapter 6. The point here is that the notion that EC does not constitute 

expectancy learning continues to be brought forward as a central argument why EC, unlike other 

forms of learning, could be mediated by primitive processes.  
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The notion of expectancy learning is also mirrored in the related debate about whether 

EC is dependent on CS-US contingencies or merely CS-US co-occurrence (contiguity). The 

former means that learning should be based on the probability of the US given the CS (i.e. 

contiguity) and the probability of the US given the CS was not present (i.e. US base rate). 

Contingency between CS and US can be formalized as P(US|CS) − P(US|¬CS) and indicates 

how good of a predictor the CS is for the US. While classical conditioning has repeatedly been 

shown to depend on CS-US contingency, a study by Baeyens, Hermans and Eelen (1993; see 

also Baeyens, Eelen, Crombez, & van den Bergh, 1992) has raised doubts whether the same is 

true for EC. Rather, EC seemed to be only driven by the contiguity, that is, the number of co-

occurrences of CS and US. This finding has given rise to association formation interpretations of 

EC as being based on a simple mechanism that merely (and likely unconsciously and 

unintentionally) registers the co-occurrence of CS and US. 

On a conceptual rather than an empirical level, it has repeatedly been argued that a 

differentiation of EC and classical conditioning might also be justified because EC is affective in 

nature (cf. Hütter, Sweldens, Stahl, Unkelbach, & Klauer, 2012). The affective “system” (i.e. 

part of human thought and behavior) is often contrasted with a cognitive system and is thus 

ascribed attributes like being primitive, and subject to intuition rather than conscious reasoning.  

Finally, there have been studies showing EC’s independence of memory for the CS-US 

pairings that tended to be interpreted as evidence that the processes underlying EC – unlike those 

underlying classical conditioning – are independent of awareness of the CS-US pairing (see De 

Houwer, Hendrickx, & Baeyens, 1997; Field, 2000). These findings have subsequently been 

subject to debate, however, and continue to do so. Hence, whether awareness of the CS-US 

pairings is necessary for EC to emerge is also a central focus of this thesis and the related 
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research and conceptual debate will be discussed in more detail in Chapter 3. Again, the point 

here is that the findings described in this section, lead researchers to develop modern theories of 

the processes underlying EC that differ from the theories of classical conditioning. The next 

section will show that early theories of EC aimed to explain it fully in terms of primitive 

processes. However, it was soon acknowledged that also higher-order processes contribute to EC 

and, hence, dual-process perspectives emerged. Recently, there are also purely cognitive or 

“propositional” accounts of EC and the contemporary debate mainly takes place between 

proponents of dual-process and those cognitive single-process accounts.3  

Process theories of EC 

The primitive versus more elaborate mental processes potentially underlying EC are 

commonly referred to as associative versus propositional processes. In parallel to the single- 

versus dual-process debate outlined in Chapter 1, contemporary single-process models of EC aim 

to account for the effect by a single propositional learning process while dual-process models of 

EC assume an additional associative process that is qualitatively distinct from the propositional 

route. Gawronski and Bodenhausen (2009, 2011) recently suggested a taxonomy to characterize 

associative and propositional processes: They differentiated between the operating conditions 

and the operating principles of the learning processes (see also Bargh, 1992). Operating 

conditions refer to the conditions under which processes operate; operating principles refer to the 

way processes work. The advantage of the taxonomy is that conditions under which and 

principles of how certain processes operate can be gathered across different specific theories of 

EC. It can thus be considered a rather theory-independent approach that allows for general 

                                                 
3 Recently, a functional perspective on EC emerged (e.g., De Houwer & Hughes, 2016; Hughes, De 

Houwer, & Barnes-Holmes, 2016) that is concerned less with the mental processes underlying it but focuses on its 

functional relation to other forms of attitude formation and change (e.g., persuasion). This approach is not directly 

relevant to the current thesis, however, because it pursues a cognitive approach. 
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conclusions about the characteristics of the learning processes in EC. Those general conclusions, 

in turn, can inform specific theories of EC – new theories can emerge and existing ones can be 

altered to better fit the empirical evidence. Furthermore, the taxonomy provides an apt structure 

along which I can present the empirical work I conducted.  

The conditions under which associative and propositional processes are considered to 

operate are commonly equated with the characteristics of (non-) automaticity which have been 

put forward by conceptual analyses of automaticity. Operating principles, on the other hand, 

have been suggested by different accounts of EC that make specific assumptions about how 

learning takes place. Table 1 summarizes the operating conditions and principles (by theory) that 

characterize associative and propositional processes respectively and the following sections will 

give a more detailed overview. 

Table 1. Operating conditions and operating principles (as implied by theories of evaluative 

conditioning) of associative and propositional processes in evaluative conditioning 

 
Associative process Propositional process 

O
p
er

at
in

g
 c

o
n
d
it

io
n
s 

Operates when participants are not aware of 

CS-US pairings 

Operates when participants are aware 

of CS-US pairings 

Operates when participants do not intent to 

learn about evaluative characteristics of the CS 

Operates when participants intent to 

learn about evaluative characteristics 

of the CS 

Operates when participants direct little 

attention to or have little cognitive resources 

available to encode CS-US pairings 

Operates when participants direct 

sufficient attention or have sufficient 

cognitive resources available to 

encode CS-US pairings 

Operates when encoding of CS-US pairings is 

outside of participant’s control 

Operates when participants can 

control (i.e., stop or alter) encoding of 

CS-US pairings 
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  Associative process Propositional process 
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Formation of an integrated 

representation of CS, US and evaluation; 

presentation of the CS activates that 

holistic representation and thus also 

activates the evaluation 

 

R
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al

 

ac
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u
n
t 

Formation of a referential association of 

CS and US that only depends on CS-US 

co-occurrence, CS presentation 

associatively activates US and 

corresponding affective attributes 
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t 

m
is
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n
 

ac
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u
n
t 

Affect elicited by US presentation is 

implicitly misattributed to 

simultaneously present CS, presentation 

of CS directly activates that affective 

response 
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p
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t 

Comparison of CS and US leads to  

categorization of CS as member of the same  

affective category as US through increased  

salience of US-congruent features of CS 

P
ro

p
o
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ti
o
n
al

 

ac
co

u
n
t 

 

Formation of statements about 

the relation between CS and 

US, upon CS presentation, the 

statement is retrieved and 

influences judgments 

A
P

E
 

(Formation and) activation of mental 

associations between CS and US 

Validation 

of activated information  
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Operating conditions of associative and propositional processes. Associative 

processes are usually assumed to operate under conditions of automaticity (e.g., Gawronski & 

Bodenhausen, 2011). In a comprehensive conceptual analysis, Moors and De Houwer (2006) 

pointed out that automaticity is unintentional and, more broadly, independent of goals, 

uncontrolled or uncontrollable and unconscious and therefore autonomous, purely stimulus- 

driven, efficient and fast. A summarized version of those features of automaticity is often used in 

the learning and attitude literature, referred to as the “four horsemen of automaticity” (Bargh, 

1994). Those are awareness, efficiency, intention and control. Applied to EC, they refer to a 

learning process that a) operates without or independent of participants’ awareness of the 

pairings of CS and US during conditioning, b) depends only to a small extent on cognitive 

resources (at least to a smaller extent than propositional processes) and takes places c) without 

participants’ intention to learn about evaluative characteristics of the CS and d) without 

participants being able to prevent that learning from happening. Propositional processes, on the 

other hand, are typically assumed to be at work when participants a) are aware of the CS-US 

pairings, b) have sufficient cognitive resources available to process them, c) intent to learn and d) 

are under control of learning (De Houwer, 2018). 

Operating principles of associative and propositional processes. As mentioned above, 

operating principles that characterize associative and propositional processes have been 

suggested by different theoretical accounts of EC (see, e.g. Hofmann et al., 2010, for an 

overview). The accounts can be roughly divided into single-process associative theories that 

explain EC only in terms of an associative learning process, single-process propositional theories 

that explain EC only in terms of propositional reasoning and dual-process theories that assume 

that both kinds of learning processes can contribute to EC effects.  
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Single-process associative theories of EC. Levey and Martin (1987) were among the first 

to describe EC effects. They paired CSs with idiosyncratically chosen postcard USs and 

observed an evaluative change in the CSs in the direction of the paired US. They later explained 

their finding in terms of an integrated representation of CS, paired US and their evaluation that 

forms during conditioning. Hence, if a certain CS is subsequently presented, it activates the CS-

US-evaluation conglomerate and the CS is evaluated in line with the US. In a narrow sense, this 

account, referred to as the holistic account of EC, is not an association formation one because it 

does not assume the formation of an association but rather a newly formed holistic representation 

of the elements involved in conditioning. It bears a lot of similarity to modern association 

formation theories, however, for example due to the assumed primitive nature of the process.  

One of the more modern association formation accounts is referred to as the referential 

account of EC: A large number of experiments on properties of EC - among them many findings 

described in this Chapter’s section “Evidence distinguishing EC from classical conditioning” - 

lead Baeyens and colleagues (e.g., Baeyens et al., 1992) to conclude that it is based on a simple 

learning mechanism that results in an association between CS and US. Unlike classical 

conditioning, the CS does not become a predictor of the US, however, and is not influenced by 

statistical contingency of CS and US but only the number of their co-occurrences. Similar to the 

holistic account, subsequent presentation of a CS is assumed to activate the corresponding US 

and its evaluation along the established association. Hence, the referential account constitutes a 

typical example of an S-S theory of learning. Note that, although this account describes two 

different routes to learning; one based on expectancies and another one based on mere references 

(or associations) of the CS to the US, it is not a dual-process theory in the current sense. It 

assumes that the expectancy type of learning underlies classical conditioning and that the 
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referential type of learning underlies EC. Thus, it aims to account for EC effects by one process 

only and can hence be understood as a single-process theory of EC. 

A recent explanation of EC describes the working of an associative process in terms of 

misattribution of affect (Jones, Fazio, & Olson, 2009; March, Olson, & Fazio, 2018). This 

framework is referred to as implicit affective misattribution account and is – in its core- a theory 

of S-R learning: During CS-US pairings, the affective response elicited by the US is implicitly 

(i.e. not consciously) misattributed to the CS, creating a direct link between CS and affective 

response. That is, participants are assumed to experience a positive or negative feeling that is 

actually caused by the US, but is falsely encoded as being caused by the CS because the US is, 

for example, less salient than the CS. Thus, in contrast to the holistic and the referential account, 

subsequent CS presentations will directly activate the associated affective response, bypassing 

the representation of the US.  

As pointed out earlier, by now evidence accumulated (e.g. reviewed in Chapter 3) and 

there is a general agreement that propositional, cognitive processes do contribute to evaluative 

learning. That is, single-processes associative theories all have difficulties accounting for the 

broad range of findings in EC research on their own (e.g. the empirical findings presented in this 

thesis). To fully account for evaluative learning via EC, they need to assume an additional, more 

cognitive route and, hence, become a dual-process model.  Thus, while their explanatory 

potential is limited, single-process associative theories are useful because they specify operating 

principles of associative processes in EC. The most influential single-process propositional 

theory by De Houwer (2009), on the other hand, genuinely claims to account for all findings 

concerning EC with one process. This account together with the conceptual categorization 

account will be discussed in the next subsection. 
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Single-process propositional theories of EC. The conceptual categorization account is an 

early explanation of EC effects that was put forward by Field and Davey (1999) as an alternative 

to traditional association formation accounts. It assumes that EC effects emerge because the CS 

is mentally categorized as belonging to the same affective category as the US during 

conditioning. They suggest that in the presence of the affective US, those features of the CS that 

are similar to the US become more salient and thus lead to a perception and encoding of the CS 

as similar to the US. The authors do not specify explicitly whether propositional reasoning is at 

the basis of this categorization process, therefore it cannot be classified as a propositional theory 

in a strict sense. But I listed it in this section because it is explicitly not an association formation 

theory. 

The propositional account put forward by De Houwer (2009) accounts for EC effects in 

terms of the formation and evaluation of propositions. Propositions are logical statements that 

can be (believed to be) true or false or something in between. This is commonly expressed by 

describing propositions as having “truth values”. The validity or truth of a certain proposition is 

evaluated by taking into account other propositional knowledge about the world, for example 

prior knowledge or inferential reasoning. Thus, all factors that affect whether a proposition is 

believed to be true or not should also affect EC (De Houwer, 2009). According to the 

propositional account, participants form a proposition about the relation between CS and US 

during conditioning, for example “CS and US co-occur”. Subsequently, when asked to evaluate 

the CS, participants draw on the established propositions. The proposition that “CS and US co-

occur” might translate into liking of the CS if the pre-existing proposition about the world that 

“similar stimuli tend to co-occur” is also taken into account (cf. Van Dessel, Hughes, & De 

Houwer, 2018). Hence, it might be inferred that “the CS has a similar valence as the US” (De 
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Houwer, 2018). Importantly, another, recent single-process perspective on EC underlines the 

contribution of memory-based processes to the effect (Gast, 2018; Stahl & Aust, 2018). This 

conceptualization will be discussed in Chapter 6 because it provides an explanatory framework 

for the empirical findings in this thesis.   

Dual-process theories of EC. The most influential dual-process model is referred to as 

the associative and propositional processes in evaluation (APE) model and was put forward by 

Gawronski and Bodenhausen (2006). As the name suggests it was originally mainly concerned 

with the processes operating during evaluations of CSs, not the processes operating during 

learning. Associative processes are, according to the model, those that draw solely on activated 

associations. Propositional processes go beyond that, because they are concerned with the 

validity (“truth value”) of the activated memory content. That is, associative processes happen 

first and are potentially followed by propositional processes that check the validity of the 

activated associations. For example, upon presentation of a CS in the judgment phase, the US it 

was previously paired with will be associatively activated and its evaluative connotation 

influences judgments. However, if the learning phase also included information on the validity of 

the CS-US association, for example, an instruction that CSs have the opposite valence of the USs 

they are paired with, the CS-US association might be discarded by propositional processes. 

Importantly, the model further proposes that associative processes are mainly reflected in 

indirect measures while direct measures reflect propositional processes. Hence, in the outlined 

example, an indirect evaluative measure might reflect the CS-US association (i.e., standard EC 

effect) while a direct measure reflects the instructed validity information (i.e., a reversed EC 

effect, cf. Rydell  & McConnell, 2006 for a similar model that proposes two separate cognitive 

systems).  
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Summary and predictions. Associative processes are generally assumed to operate 

under conditions of automaticity while propositional processes operate under conditions of non-

automaticity. Thus, if EC emerges from a learning phase that creates conditions of automaticity, 

this would be evidence that EC can emerge from associative processes. Chapter 3 presents 

empirical work that studies a prominent feature of automaticity namely awareness. My coauthors 

and I used a novel method, called Continuous Flash Suppression, with which we could present 

CSs to participants without their awareness. We tested in four experiments whether EC effects 

can emerge for CSs that participants were not aware of during conditioning.  

A further important difference is that associative processes, according to all theories that 

describe them, only produce and/or draw on a mental link (“reference” or “association”) of CS 

and US. Propositional processes produce/ draw on more informative statements that can, for 

example, specify the way in which CS and US are related. That is, associative processes cannot 

differentiate between a CS that causes a US and a CS that prevents a US. Thus, if EC effects do 

not reflect the specific relation between CS and US this would speak for a contribution of 

associative processes in EC. While EC’s sensitivity to the specific CS-US relation has been 

shown in numerous studies (cf. Chapter 4), Chapter 4 tests this prediction in a paradigm closely 

related to EC, namely attribute conditioning (AC). AC is concerned with attributes that are more 

specific than a mere positive or negative evaluation. In AC, the US is a stimulus that has a 

certain attribute, for example, is athletic. After CS-US pairings, the CS will also be judged to 

possess that attribute.  

Importantly, while AC is not affective in nature, it might also be mediated by primitive, 

associative processes for the following reasons: First, similar to EC, it has been shown that AC is 

not sensitive to extinction and blocking (Förderer & Unkelbach, 2015), suggesting that it is not a 
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form of expectancy learning. Second, research in a similar paradigm (spontaneous trait 

transference, Carlston & Skowronski 2005) suggests the operation of associative as opposed to 

deliberate processes (see Chapter 4’s General Discussion, for details).  

To study associative processes in AC, my coauthors and I tested in four experiments 

whether AC effects are sensitive to qualifiers that specify the relation of CS and US to be 

positive (i.e. they like each other) or negative (i.e. they dislike each other).  

Lastly, Chapter 5 describes a series of studies in a novel domain that might allow for new 

predictions regarding associative and propositional processes - the generalization of EC. We 

tested in five experiment whether and when liking of novel stimuli is influenced by their 

similarity to learned stimuli or influenced by acquired rules.  
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Chapter 3: Does evaluative conditioning depend on awareness? Evidence from a 

Continuous Flash Suppression Paradigm 

Abstract 

The role of awareness in evaluative learning has been thoroughly investigated with a variety of 

theoretical and methodological approaches. We investigated evaluative conditioning (EC) 

without awareness with an approach that conceptually provides optimal conditions for unaware 

learning - the Continuous Flash Suppression paradigm (CFS). In CFS, a stimulus presented to 

one eye can be rendered invisible for a prolonged duration by presenting a high-contrast dynamic 

pattern to the other eye. The suppressed stimulus is nevertheless processed. First, Experiment 3.1 

established EC effects in a pseudo-CFS setup without suppression. Experiment 3.2 then 

employed CFS to suppress conditioned stimuli (CSs) from awareness while the unconditioned 

stimuli (USs) were visible. While Experiment 3.1 and 3.2 used a between-participants 

manipulation of CS suppression, Experiments 3.3 and 3.4 both manipulated suppression 

within participants. We observed EC effects when CSs were not suppressed, but found no EC 

effects when the CS was suppressed from awareness. We relate our finding to previous research 

and discuss theoretical implications for EC. 
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Does evaluative conditioning depend on awareness? Evidence from a Continuous Flash 

Suppression Paradigm 

 

Likes and dislikes pervasively influence human cognition and behavior. In studying how likes 

and dislikes emerge, evaluative conditioning (EC) has played an important role. EC is the 

change in liking of initially neutral stimuli (conditioned stimuli, CSs) after pairings with liked or 

disliked stimuli (unconditioned stimuli, USs; De Houwer, 2007). Formation of likes and dislikes 

via EC has been shown in different domains, with a variety of stimuli and procedural variations. 

EC is highly robust, widely applicable, and based on a very simple paradigm, namely the co-

occurrence of two stimuli (see Hofmann, De Houwer, Perugini, Baeyens, & Crombez, 2010, for 

a metaanalytic review).  

Yet, despite a substantial amount of research, there is still a lively debate about the 

necessary and sufficient conditions under which the pairing of two stimuli leads to an EC effect. 

One major question has been whether awareness of the pairings is such a requirement; that is, 

whether EC may or may not occur without participant’s awareness of the CS-US pairings 

(Sweldens, Corneille, & Yzerbyt, 2014). Answering this question has important implications for 

theories of learning and beyond. For example, the distinction between dual- and single-process 

theories is present in many domains of psychology, such as persuasion (e.g., Kruglanski & 

Thompson, 1999; Petty & Cacioppo, 1986), person perception (e.g., Fiske & Neuberg, 1990), 

or reasoning (Sloman, 1996). For learning paradigms such as EC, dual-process theories 

distinguish between two qualitatively different kinds of learning - one that necessitates 

awareness and one that does not necessitate awareness (e.g., Gawronski & Bodenhausen, 2006, 
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2011). Single-process theories, on the other hand, assume only one learning mechanism that 

necessitates awareness (Lovibond & Shanks, 2002; Mitchell et al., 2009)  

EC is highly informative to distinguish between these theoretical approaches. Successful 

EC without awareness would strongly support dual-process theories. Failures to show EC 

without awareness would support single-process theories; because EC is such a robust effect 

rooted within such a simple paradigm (mere co-occurrence; Shanks, 2005), one may even 

interpret such failures as evidence against dual-process theories on a larger scale. If research fails 

to show basic learning effects without awareness, it is unlikely to find more complex effects 

without awareness (cf. Mausfeld, 2003). 

In the remainder of the introduction, we will review research on the role of awareness in 

EC and discuss its scope and intricacies. We organized it with regard to methodological 

approaches starting with the early correlational approaches and proceeding to experimental 

approaches. Then, we will present the aim and approach of our research.  

Correlational Approaches to Awareness of the CS-US Pairs. Initially, research 

investigating the role of awareness in EC adopted a correlational approach: Participants’ memory 

for the CS-US pairings was used as a proxy for awareness during conditioning and was 

correlated with the size of the EC effect on a person or stimulus level. This correlational 

approach yielded both evidence for EC without awareness (Olson & Fazio, 2001; Walther & 

Nagengast, 2006) and evidence against EC without awareness (Pleyers, Corneille, Luminet, & 

Yzerbyt, 2007; Stahl & Unkelbach, 2009; Stahl, Unkelbach, & Corneille, 2009). However, 

studies relying on memory for pairings cannot provide conclusive evidence for EC without 

awareness. An EC effect without “awareness” might be due to awareness during learning or 
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memory failure at test. Lack of memory for CS-US pairings after conditioning is no indicator of 

awareness for CS-US pairings during conditioning (Gawronski & Walther, 2012). 

A methodological advancement was the adaptation of Jacoby's (1991) process 

dissociation procedure to separately assess memory of the CS-US pairs and evaluations that do 

not depend on CS-US memory. This approach provided evidence for EC without awareness and 

fueled the single- versus dual-process debate in EC (Hütter & Sweldens, 2013; Hütter et al., 

2012). Yet, the process dissociation approach has similar 

limitations as the correlational approaches, as it also depends on memory for the pairings at the 

time of measurement, which is again a proxy for awareness during conditioning. Hence, EC in 

the absence of memory of the CS-US pairs could be because of forgetting as opposed to learning 

without awareness. 

Experimental Approaches to Manipulate Awareness of the CS-US Pairs. Given the 

discussed limitations, Gawronski and Walther (2012) encouraged experimentally manipulating 

awareness during conditioning. However, manipulating awareness is a methodological 

challenge; each approach possesses specific advantages and shortcomings. 

Here we shortly discuss the most frequent approaches along a taxonomy suggested by Dehaene, 

Changeux, Naccache, Sackur and Sergent (2006). The taxonomy outlines different states of 

consciousness based on bottom-up stimulus strength and top-down attention (Figure 2). While 

Dehaene and colleagues discuss consciousness rather than awareness, a distinction between 

awareness and consciousness seems to be inconsequential for the present purpose. The 

operational definition we will use in the following is that participants are aware of a stimulus or 

consciously perceive a stimulus when they can report its presence. 
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As the taxonomy shows, a stimulus presumably enters consciousness when it is 

perceptually strong and when attention is allocated to the stimulus. When bottom-up stimulus 

strength is weak or interrupted, the stimulus is considered to be subliminal. If top-down attention 

is allocated to subliminal stimuli, they may affect behavior, for example in priming tasks (e.g., 

Payne, Brown-Iannuzzi, & Loersch, 2016, for a recent demonstration). When stimulus strength is 

sufficiently strong but there is insufficient attention allocated to the stimulus, the stimulus is 

considered to be preconscious. Preconscious stimuli cannot be reported but have the potential to 

affect behavior. In the following, we accordingly use the term awareness to describe a state of 

reportability, which is equivalent to the “conscious” quadrant in the taxonomy by Dehaene and 

colleagues (2006). We now discuss the pertinent research that may fall into the remaining three 

quadrants. 

 

 

Figure 2. Four states of consciousness differing in bottom-up stimulus strength and top-down 

stimulus attention. Adapted from Dehaene et al. (2006). 
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Manipulating Stimulus Strength in EC. One method to reduce bottom-up stimulus 

strength and thereby awareness is a short stimulus presentation. The logic is straightforward: If 

stimuli (CSs or USs) are presented so briefly that participants cannot report seeing them, they 

cannot be aware of the CS-US pairings. A range of studies observed EC effects for subliminally 

presented USs. For example, De Houwer, Baeyens, and Eelen (1994, Experiment 1) presented 

positive and negative words (USs) for 28.5 ms after neutral words (CSs) and found a clear EC 

effect (for similar findings, cf. De Houwer, Hendrickx, & Baeyens, 1997; Rydell, McConnell, 

Mackie, & Strain, 2006). However, some of these studies were criticized for lack of 

methodological rigor (e.g., presentation times that allow stimulus perception) and other 

peculiarities (e.g., between-participants manipulation of valence, Pleyers, Corneille, Luminet, & 

Yzerbyt, 2007; Sweldens, Corneille, & Yzerbyt, 2014). Avoiding some of these shortcomings 

and peculiarities, Stahl, Haaf, and Corneille (2016) recently found no EC effects for subliminally 

presented CSs in a set of six studies with 27 experimental conditions.  

A general limitation to these studies is that the awareness manipulation relies on stimulus 

duration. Exposure duration impacts a multitude of processes that are necessary but not sufficient 

for awareness (e.g., Bar & Biederman, 1999; Moutoussis & Zeki, 2002; see Dehaene, Changeux, 

Naccache, Sackur, & Sergent, 2006, for an overview). Therefore, manipulating awareness via 

presentation times seems to be a nonoptimal approach. 

Manipulating Top-Down Attention in EC. Another method to manipulate awareness is 

depleting participants’ attentional resources during conditioning, for example, with a secondary 

task. This manipulation causes top-down attention to shift away from EC pairings while the 

stimuli themselves are sufficiently strong for perception. Implementations of this method 

obtained heterogeneous results. For example, Fulcher and Hammerl (2001; Experiment 1) 
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depleted participants’ resources by having them do math tasks presented via headphones. The 

control condition explicitly informed participants that stimuli are paired and they should “take 

note” of the pairings. They observed an EC effect in the load condition and a reversed EC effect 

in the control condition. 

Dedonder, Corneille, Yzerbyt, and Kuppens (2010) used an auditory two-back task. 

Participants wearing headphones had to press the spacebar each time they would hear a number 

identical to the one they heard two places before during the CS-US pairings. Participants in a 

control condition only listened to music via headphones during conditioning. The authors 

observed no EC effect in the two-back task condition, while the music condition showed a clear 

EC effect (for similar findings, cf. Pleyers, Corneille, Yzerbyt, & Luminet, 2009). Moreover, 

using the adaptation of the process dissociation procedure in the same paradigm, Mierop, Hütter, 

and Corneille (2017) observed resource depletion to decrease the EC effect.  

Depletion and load manipulations also raise theoretical concerns about the manipulation’s 

validity. For example, when attentional load is manipulated between participants, absence of EC 

under depletion conditions might be because of differential goals between conditions. Bearing in 

mind that EC is sensitive for a focus on valence (Gast & Rothermund, 2011b) it is plausible that 

a secondary task distracted participants’ attention from evaluative aspects of the presented 

stimuli, which might prevent EC effects independent of awareness concerns (Dedonder, 

Corneille, Bertinchamps, & Yzerbyt, 2014; Sweldens et al., 2014). Moreover, implementing 

them as a within-participants manipulation on a trial-by-trial basis might inflict task-switching 

costs which might interfere with or conceal an effect of CS-US pairings. 

Dedonder and colleagues (2014) applied another method to reduce awareness in EC by 

presenting CSs outside of the focal gaze. According to Figure 2’s taxonomy, such parafoveal 
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CSs are in a preconscious state because they are presented sufficiently strong but attention is 

focused elsewhere (foveally). They observed EC effects for CSs in the control condition that 

were presented foveally but not for CSs presented parafoveally. This approach, however, 

confounds the state of awareness with spatial CS-US proximity. As USs were always presented 

foveally, CSs in the control condition were located closer to the USs than CSs that were 

presented parafoveally. Therefore, the causal factor might be CS-US proximity (Jones et al., 

2009) rather than awareness of the CS-US pairings.  

In summary, a number of studies investigated the question whether EC can emerge 

without awareness of the CS-US pairs, but the findings diverge. Furthermore, the variety of 

methodological approaches and their specific shortcomings underline the difficulty of 

experimentally studying processes that are assumed to occur without awareness. 

In addition, the study of unaware processing faces a statistical problem: finding no EC 

effects without awareness is based on accepting null findings (e.g., absence of EC for 

subliminally presented CSs). Conventional statistical analyses forbid drawing conclusions in 

favor of the null hypothesis. Thus, conventional analyses cannot statistically substantiate null 

findings. Bayesian analyses offer a solution to this issue because they allow for the quantification 

of evidence for the null hypothesis and, hence, for the absence of EC effects without awareness. 

The Bayes approach has only recently gained popularity in psychological research and has 

therefore only been applied in one recent study on EC (Stahl et al., 2016).  

Building on the discussed research, the present research attempts to create ideal 

conditions for evaluative learning without awareness that avoids most of the methodological and 

statistical pitfalls. Please note that in the course of the debate outlined previously, the present 

research team has made arguments and presented empirical data for both EC only with 
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awareness (Stahl & Unkelbach, 2009; Stahl et al., 2009) and for EC without awareness (Hütter & 

Sweldens, 2013; Hütter et al., 2012). Thus, we did not favor any outcome a priori, although we 

considered an EC effect without awareness the more interesting case, because it would have 

more evidential value; a null result would not refute the possibility of EC without awareness, 

because it is logically impossible to proof the nonexistence of a potential empirical effect. 

However, we also believe that accumulating evidence for failures of EC without awareness 

makes the possibility more and more unlikely. 

Optimal Conditions for Unaware EC: Continuous Flash Suppression. Besides 

organizing the existing research, the taxonomy of Dehaene and colleagues (2006) provides some 

insights for optimal conditions under which EC without awareness might emerge. First, 

evaluative learning with stimuli of low bottom-up strength that are not attended seems a priori 

unlikely. From a functionalist perspective, one may ask why such a form of learning should exist 

at all and what the possible function may be. Second, evaluative learning with stimuli of low 

bottom-up strength that are sufficiently attended to have an a priori higher chance to yield 

effects, as stimuli have been shown to influence cognitive processes under these conditions (e.g., 

in semantic priming). Yet, as we have argued above, the typical manipulation of awareness via 

presentation time has a number of other problems. 

We believe the most promising approach is located within the third quadrant. To realize 

these conditions, under which a stimulus is sufficiently strong, but does not pass the awareness 

threshold, we employed the method of Continuous Flash Suppression (CFS). 

A typical CFS setup works as follows: A stationary stimulus carrying little visual 

information (e.g., black and white, low contrast) is presented to one eye, while the other eye 

perceives a flashing (i.e., rapidly changing) sequence of colored pixel masks (Tsuchiya & Koch, 
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2005). To present images to one eye and another image to the other, most experiments use 

stereoscopes (Figure 5). The visual system cannot merge the simultaneous conflicting input from 

both eyes into one coherent representation. Therefore, information from the eye receiving less 

informative input is usually suppressed from awareness.  Suppressed stimuli are assumed to be 

nevertheless encoded and processed (e.g., Tsuchiya & Koch, 2005; Yang, Brascamp, Kang, & 

Blake, 2014), but as long as visually more informative flashing stimuli are presented to the other 

eye participants are not aware of the suppressed stimuli in the sense that they cannot report 

seeing them.  

CFS is thereby a powerful method for suppression because it allows for long stimulus 

presentations (up to three minutes, Tsuchiya & Koch, 2005) without awareness of the stimulus. It 

was used effectively in numerous studies, for example to investigate visual aftereffects (e.g., 

Kanai, Tsuchiya, & Verstraten, 2006; Kaunitz, Fracasso, & Melcher, 2011), priming (e.g., 

Faivre, Berthet, & Kouider, 2012), fear conditioning (Raio, Carmel, Carrasco, & Phelps, 2012), 

and perceptual learning (Seitz, Kim, & Watanabe, 2009; for a review, see Yang et al., 2014). 

CFS is further ideal to study EC without awareness, because one may create pairing conditions 

that do not confound the state of awareness with stimulus exposure duration or stimulus 

proximity and allows for a within-participants manipulation of awareness. 

Present Research. The following experiments used CFS to investigate the possibility of 

EC without awareness. Our approach to awareness is experimental; we do not rely on subjective 

self-reports or post-pairing memory measures, but aim to manipulate participants’ awareness 

during learning. We mainly use measures of stimulus awareness as a manipulation check. 

Regarding the statistical considerations elaborated above, we used Bayesian analyses to obtain 

evidence for the nonexistence of an EC effect when necessary. There are three ways to 
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implement EC in a CFS setup; first, one might present the pairing of a CS and US to one eye and 

suppress the pairing with flashes to the other eye. Second, one might suppress the US and present 

the CS to the other eye, thereby preventing awareness of the pairing. And third, one might 

suppress the CS and present the US to the other eye, also preventing awareness of the pairing. 

We opted for the third option for three reasons. First, prior research has shown that high-

level affective information is not processed under CFS (Yang et al., 2014; Yang, Hong, & Blake, 

2010). Second, Stahl and colleagues (2016) argued that presenting USs without awareness as 

opposed to CSs is problematic in that “an absence of EC effect [. . .] may be attributed to a lack 

of affective reactions to the US, instead of a lack of learning per se” (Stahl et al., 2016, p. 1108). 

Research on CFS has also shown that affective stimuli can be suppressed only for shorter periods 

of time than nonaffective stimuli (e.g., Gayet, Paffen, Belopolsky, Theeuwes, & Van der 

Stigchel, 2016; Stein & Sterzer, 2012; Yang, Zald, & Blake, 2007). Tore, affective USs would 

interfere with suppression during learning. Third, USs are usually visually interesting 

stimuli and are therefore optimally suited to suppress awareness of the CSs. 

We aimed to suppress the CSs by presenting them as stationary, low contrast stimuli to 

one eye while flashing a sequence of US photos and colored pixel masks to the other eye. The 

rationale is that EC effects for suppressed CSs would provide evidence for evaluative learning 

without awareness, thereby supporting a dual-process account of EC and dual-process theories in 

general (Gawronski & Bodenhausen, 2006, 2011). 

EC procedures typically involve CS-US pairings that are easily perceived and processed 

by participants. Studying EC with CFS, however, requires presenting the US for very short 

durations only and interrupting their presentation with pixel masks. Please note that this problem 

arises for the aware, not the suppressed stimulus. Thus, the stimulus presentation alone, even 
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without the suppression manipulation, makes the stimuli more difficult to perceive. Therefore, 

Experiment 3.1 established the basic EC effect in a pseudo-CFS setup omitting the suppression. 

That is, the presentation omitted the stereoscopes and thereby avoided the competition for 

awareness. Experiment 3.2, 3.3, and 3.4 included suppression by using a stimulus presentation 

similar to Experiment 3.1 but presenting it dichoptically (i.e., CS and US flash were 

simultaneously presented to different eyes using stereoscopes). We used evaluative ratings of 

like and dislike as a direct measure and responses in the affective misattribution procedure 

(AMP; Cronbach’s alpha = 0.84–0.874; Payne et al., 2005) as a more indirect measure. 

We report all data exclusions (if any), all manipulations, and all measures in the experiments. We 

conducted three additional studies that are not described here: two preliminary experiments that 

aimed to show an EC effect in a pseudo-CFS paradigm without using suppression (like 

Experiment 3.1). Those experiments employed a “one-to-many” EC procedure (see Stahl & 

Unkelbach, 2009): one CS was paired with multiple USs. None of the experiments yielded an EC 

effect, and we thus did not further pursue the one-to-many EC approach. A further intermediate 

study aimed to manipulate suppression within participants on a trial-by-trial basis. This trial-by-

trial procedure impeded suppression, however, and was therefore discarded. Experiment 3.3 and 

3.4 nevertheless implement a within-manipulation of awareness using a block-wise design. 

                                                 
4 The Cronbach alpha values reported here were computed from the data from Experiment 3.2. We decided 

to use these data because a) in Experiment 3.2 we had only two within-participant conditions (no between-

participant condition), resulting in the maximum number of observations going into the reliability scores and 

because b) we obtained only two different alpha scores – one for the positively paired CSs and one for the 

negatively paired CSs - which made reporting on those scores more concise than reporting on eight or four different 

scores from Experiment 3.1, 3.3 or 3.4. Every CS was used eight times as a prime in the AMP. We aggregated those 

eight trials resulting in a score indicating the proportion of positive responses (ranging from 0 to 1) for every CS for 

every participant. We obtained eight proportions (for eight CSs) per participant. The four proportions of positively 

paired CS (four “items”) and the four proportions of negatively paired CS were submitted to two separate Cronbach 

alpha analyses. The Cronbach alpha scores reported here are in line with scores reported by the authors who first 

introduced the AMP (Payne et al., 2005b). 
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Experiment 3.1 

The aim of Experiment 3.1 was to identify stimulus presentation parameters within a CFS 

paradigm (i.e., unusual and interrupted stimulus presentations) that lead to reliable EC effects. 

Two additional studies (see last paragraph of Present Research) showed that one-to-many 

pairings impede EC effects under these conditions. Experiment 3.1 therefore used a “one-to-one” 

approach: Each CS was paired with a single unique US. In addition, we identified presentation 

time and focus on valence as two potential factors. We manipulated presentation duration of the 

pairings and whether participants classified US valence in every trial, because valence-related 

tasks have been shown to increase the focus on valence and, hence, the EC effect (Gast & 

Rothermund, 2011b). 

Method. 

Participants and design. One hundred twenty-two students participated (79 women, 43 

men, average age 23.24 years). We manipulated presentation time (400 ms vs. 2,000 ms; see 

Material and procedure paragraph) and valence classification (classify vs. do not classify US) 

between participants and US valence (positive vs. negative) within participants. We measured 

two dependent variables: evaluative ratings and proportion of “positive” responses in the AMP 

for every CS; the AMP has been a sensitive indirect measure of evaluations in our lab (e.g., 

Förderer & Unkelbach, 2013, 2015, 2016).  

A sensitivity analysis with G*Power (Faul, Erdfelder, Lang, & Buchner, 2007) showed 

that this sample allows detecting a small overall effect (d = 0.27) with a power of .85 and α = .05 

(two-tailed one-sample t test, see Results section). 

Material and procedure. We created a computer program to conduct the experiment with 

OpenSesame (Mathôt, Schreij, & Theeuwes, 2012). Upon arrival, experimenters seated 
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participants at PC work stations and started the program; up to six people participated in 

experimental sessions. After providing informed consent and general demographic information, 

participants rated 60 animal photos regarding their pleasantness (1 = very unpleasant to 9 = very 

pleasant), thereby calibrating participants to the rating scale and allowing idiosyncratic stimulus 

selection (see Unkelbach, Stahl, & Förderer, 2012). For each participant, the computer program 

selected the four photos rated most positively and the four photos rated most negatively as 

positive and negative USs, respectively. As CSs, we used eight pictures of gray geometric shapes 

(Appendix A). The program assigned CS-US pairs randomly and presented each pair 10 times, 

resulting in 80 conditioning trials. During a trial, the CS appeared on one side of the screen for 

400 ms (short presentation time) or 2,000 ms (long presentation time) while, on the other side of 

the screen, there was a rapidly changing sequence of the assigned US (75 ms short, 375 ms long) 

and a colored pixel mask (25 ms short, 125 ms long) repeated four times. Figure 3 illustrates this 

setup. The program counterbalanced arrangement of CS and US-flash on the left and right side of 

the screen to avoid systematic influences of interindividual dominance of one eye over the other. 

This counterbalancing is mainly important for subsequent experiments in which eyes compete 

for visual dominance. Participants all read the following instructions (translated from German): 

“We will now use pictures that you evaluated positively and negatively to investigate how they 

influence the processing of other stimuli. On one side of the screen, a fixation cross will be 

presented. Afterwards an animal picture and a colored pixel picture will be shown (very shortly) 

one after another on the same side, while on the other side of the screen a geometric shape will 

be visible. At the end of the experiment, we would like to examine how the animal photos 

interact with the perception of the geometric shapes. Therefore, we ask you to direct your gaze to 

the fixation cross and watch the pictures and shapes attentively, hereafter. If you do not have any 
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question, you can start the task with the space key.” “Very shortly” was only inserted for the 

short presentation times condition. Participants in the valence classification condition also 

indicated after every trial whether the US was positive or negative in a forced two-choice task. 

The program added the following sentence to their instructions: “You will be asked after every 

trial to classify the animal picture as positive or negative.” Participants in the other condition 

pressed space to continue to the next trial. 

 

 
 

Figure 3. Stimulus presentation combining CFS with EC: a grey shape (conditioned stimuli, CS, 

presentation time depends on the condition) is presented on one side of the screen while a rapidly 

changing sequence of an animal photo (unconditioned stimuli, US) and colored pixel masks is 

presented on the other side. This picture sequence constitutes the flash – a core element of CFS. 

Depending on the condition, participants then either classify the valence of the US or press space 

to get to the next trial. 

 

After conditioning, participants rated all CSs regarding their pleasantness on a Likert 

scale ranging from 1 = very unpleasant to 9 = very pleasant. After the rating, they completed the 

AMP (Payne et al., 2005), using the CSs as the potentially affective stimuli. A given AMP trial 

presented a CS for 75 ms, which was immediately replaced by a blank screen for 125 ms, 
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followed by a Chinese character (Kanji) for 100 ms, followed by a black-and-white mask. 

Participants indicated with a keypress whether they perceived the Kanji as pleasant or unpleasant 

in a forced two-choice task. The rationale is that participants misattribute the affective reaction 

caused by the CS to the Kanji. Therefore, higher liking of a CS that was paired with a positive 

US should result in a higher proportion of “positive” responses to Kanjis shown after that CS, 

and vice versa for a CS that was paired with a negative US. The program provided 10 training 

trials and then 64 critical trials (each CS presented eight times). Key assignment of the response 

categories “positive” and “negative” was counterbalanced. Upon completion, participants were 

debriefed, thanked, and paid.  

Results. 

Evaluative ratings. Figure 4’s upper half shows participants’ mean ratings of CSs paired 

with positive USs (CSs+) and of CSs paired with negative USs (CSs-) as a function of 

presentation time and valence classification. We computed participants’ mean rating differences 

of CSs+ and CSs- so that positive values indicate a standard EC effect and tested this difference 

against zero. We observed an overall significant EC effect, MDiff = 1.06, SD = 1.79, t(121) = 

6.58, p < .001, d = 0.60, 95% confidence interval (CI) [0.44, 0.74].5 

Next, we analyzed the EC effects in a presentation time (short vs. long) x valence 

classification (classify vs. do not classify US) ANOVA. This analysis yielded two main effects. 

First, as Figure 4 suggests, the valence classification task significantly reduced this EC effect; 

participants in the valence classification conditions showed a smaller EC effect (M = 0.46, SD = 

                                                 
5 The effect size d we report in all out experiments denominates Cohen’s dz which is computed with the 

formula Cohen’s 𝑑𝑧  =  
𝑀𝑑𝑖𝑓𝑓

√
∑(𝑋𝑑𝑖𝑓𝑓 − 𝑀𝑑𝑖𝑓𝑓)2

𝑁 − 1

 implemented in the function “cohensD()” in the R package “lsr” (Lakens, 

2013; Navarro, 2015). We bootstrapped 95% confidence intervals around dz with the R package “bootES” (Gerlanc 

& Kirby, 2015). 
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1.41) than participants who did not classify the USs, M = 1.65, SD = 1.93, F(1,118) = 14.82, p 

< .001, η2 = 0.12, 95%CI [0.03, 0.22]. Second, participants in the long presentation time 

conditions showed a stronger EC effect (M = 1.41, SD = 1.94) than participants in the short 

presentation time condition, M = 0.74, SD = 1.58, F(1, 118) = 4.97, p = .028 , η2 = 0.03, 95%CI 

[0, 0.13]. There was no interaction between valence classification and presentation time, F(1, 

118) = 0.79, p = .377, η2 = 0.01, 95%CI [0, 0.06].6 

AMP. Figure 4’s lower half shows participants’ mean proportion of “positive” responses 

in the AMP of CSs+ and CSs- as a function of presentation time and valence classification. We 

again computed mean differences in the proportion of “positive” responses towards CSs+ and 

CSs- so that positive values indicate a standard EC effect. We observed an overall EC effect, M 

= 0.05, SD = 0.19, t(121) = 2.91, p = .004, d = 0.26, 95%CI [0.07, 0.43]. In a presentation time 

(short vs. long) x valence classification (classify vs. do not classify US) ANOVA, we detected no 

significant main or interaction effects, all F < 3.1, all η2 < 0.03.7 Proportion of “positive” 

responses in the AMP and explicit ratings were correlated, r(120) = 0.44, p < .001. 

 

 

                                                 
6 Accordingly, testing the EC effect against zero within every condition separately, yielded an effect in the 

condition with long presentation times and valence classification (t(27) = 2.98, p = .006, d = 0.56, 95%CI [0.26, 

0.86]), with long presentation times and without valence classification (t(30) = 4.91, p < .001, d = 0.88, 95%CI 

[0.52, 1.21), and short presentation times without valence classification (t(30) = 4.58, p < .001, d = 0.82, 95%CI 

[0.48, 1.15]), but not in the condition with short presentation times and valence classification (t(31) = 0.23, p = .823, 

d = 0.04, 95%CI [-0.32, 0.41]). 
7 Looking at each condition separately, there was an EC effect only in the short presentation times without 

valence classification condition, t(30) = 2.77, p = .010, d = 0.50, 95%CI [0.14, 0.83], all other conditions: all ts < 

1.7, all ds < 0.4. 
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Figure 4. Evaluative ratings (upper figure, 1 = “very unpleasant”, 9 = “very pleasant”) and 

proportion of “positive” responses in the AMP of CSs that were paired with positive and 

negative USs as a function of presentation time of the CS-US pairs (short vs. long) and whether 

participants classified US valence in every trial. Error bars indicate the standard error of the 

mean; asterisks indicate significant EC effects.  

 

Discussion. We observed reliable EC effects for direct (d = 0.60) and indirect (d = 0.24) 

measures under the unusual stimulus presentation situation of the present pseudo-CFS setup. For 

explicit ratings, long presentation times and no valence classification task promoted EC effects. 

The positive effect of long presentation times on EC is in line with the literature (Hofmann et al., 



47 

 

2010). We did not expect the negative effect of the valence classification task on EC. However, 

this finding is in line with the general notion that secondary tasks tie up cognitive resources and 

therefore reduce effects associated with primary tasks (Pleyers et al., 2009). 

We decided to use the parameters of the short presentation times-no valence classification 

condition in Experiment 3.2. Although long presentation times were conducive of EC effects, we 

opted for short presentation times, because CFS works better with faster than slower flashes. 

This condition also yielded a strong EC effect in explicit ratings and was the only condition to 

produce a significant EC effect on the indirect evaluative measure. 

Experiment 3.2 

Experiment 3.2 investigated whether an EC effect would still be present when CSs were 

suppressed from awareness via CFS. Thus, participants viewed the CS-US pairings through 

stereoscopes, which presents the CS to one eye and the US to the other. In addition, we included 

an awareness measure at the end of the experiment to assess whether suppression was successful.  

Method. 

Participants and design. Sixty-eight students participated in Experiment 3.2 (46 female, 

22 male, average age: 22.47 years). This sample allows detecting a small effect (d = 0.37) with 

85% power and α = .05 for a two-tailed one-sample t-test (see results section). We manipulated 

valence of paired US (positive vs. negative) within participants and assessed two dependent 

variables: evaluative rating and proportion of positive classifications in the AMP for every CS. 

As a manipulation check, we measured recognition of suppressed stimuli in an “offline” (i.e., 

post evaluative ratings) awareness test. 

Material and procedure. Materials and procedure were highly similar to the short 

presentation times-no valence classification condition of Experiment 3.1, with two exceptions: 
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First, participants viewed stimulus presentation in the conditioning phase through stereoscopes to 

create dichoptic vision. We used ScreenScope mirror stereoscopes that comprise four mirror tiles 

arranged inside a viewer to split the visual field into two halves; the visual field of the left eye is 

restricted to the left side of the screen, and the visual field of the right eye is restricted to the 

right side of the screen (see Figure 5). This apparatus allows simultaneous presentation of 

different images to both eyes, which is necessary for CFS. The experimenters adjusted the 

stereoscopes for every participant individually before the experiment’s learning phase. They 

were removed after conditioning, so that participants completed the evaluative ratings and the 

AMP under normal viewing conditions. As participants no longer viewed CS and US 

simultaneously, the instructions were changed to the following: “We will now use pictures that 

you evaluated positively and negatively to investigate your perception of disrupted pictures. You 

will see a fixation cross on the screen and afterwards an animal picture and a colored pixel 

picture will be shown very shortly one after another. We ask you to direct your gaze to the 

fixation cross and watch the pictures attentively, hereafter.” 

Second, to assess whether suppression was successful, participants completed an 

awareness test of 80 trials after the ratings and the AMP, using again the mirror stereoscopes. 

The awareness test was highly similar to the conditioning procedure but used novel grey 

geometric shapes instead of the CSs. Instead of the USs, the program used eight animal photos 

that participants had rated most neutral in the rating phase at the beginning of the experiment. 

Thus, parallel to conditioning, the presentation in the awareness test also involved pairs of 

geometric shapes on the suppressed eye and a flash of pixel masks and animal photos on the 

unsuppressed eye; the stimulus timing was the same as during conditioning. 
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We implemented this post-experiment test with stimuli other than the CSs to rule out 

correct recognition of CSs due to an affective characteristics acquired without awareness that 

informs recognition judgments instead of genuine recognition due to processing with awareness 

during conditioning (“inference account”, Stahl et al., 2009). Before viewing the pairings in the 

awareness test, participants again donned the stereoscopic viewers and removed them afterwards. 

Then they were asked to recognize out of four answer options the geometric shape that had 

appeared in the awareness test. They completed 16 recognition trials, eight with the target stimuli 

(i.e., where one of the four answer options was correct) and eight with foils (i.e., where none of 

the four answer options was correct). Participants could also indicate that none of the shapes had 

appeared in the awareness test. 

 

 

 

Figure 5. Schematic figure of a stereoscopic viewer through which participants watched the 

stimulus presentation on the screen. The arrangement of the four mirrors (grey bars) limits the 

visual field of the left eye to the left half of the screen and equally for the right eye. 
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Results. 

Awareness manipulation check. In the majority of trials (M = 0.59, SD = 0.24) of the 

awareness test, participants indicated that they had seen none of the geometric shapes before. 

This was different from 0.5 which was the correct proportion of foil trials in the recognition task, 

t(67) = 3.15, p = .001, d = 0.38 95%CI [0.13, 0.63]. We then analyzed the remaining trials - 

those in which participant chose one of the four answer options. In these trials, participants, on 

average, performed on chance level (0.25), M = 0.24, SD = 0.22, t(62) = -0.51, p = .694, d = -

0.06, 95%CI [-0.35, 0.19]. Five participants indicated on all 80 trials that they had seen none of 

the geometric shapes before. Thus, they did not yield any data for the objective recognition test 

and were not regarded in this analysis, hence the reduced degrees of freedom. These data suggest 

that suppression was successful given the parameters of the experiment. 

 

 

Figure 6. Evaluative ratings (left figure, 1 = “very unpleasant”, 9 = “very pleasant”) and 

proportion of “positive” responses in the AMP of CSs that were paired with positive and 

negative USs when CSs were suppressed from awareness via CFS. Error bars indicate the 

standard error of the mean; asterisks indicate significant EC effects. 
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Ratings and AMP. Figure 6 shows participants’ mean evaluative ratings and mean 

proportion of “positive” responses in the AMP of CSs+ and CSs-. We conducted the same 

analyses as for Experiment 3.1. We observed no significant EC effect in the evaluative rating (M 

= 0.13, SD = 1.17, t(67) = 0.90, p = .373, d = 0.11, 95%CI [-0.13, 0.36]) or the proportion of 

“positive” responses, M =  0.00, SD =  0.12, t(67) = 0.24, p = .809, d = 0.03, 95%CI [-0.21, 

0.28]. We additionally computed Bayes Factors (BF01) which quantify the evidence for the null 

hypothesis relative to the alternative hypothesis (Rouder, Speckman, Sun, Morey, & Iverson, 

2009; Wagenmakers, 2007). We observed BF01 = 5.11 for the evaluative rating and BF01 = 7.30 

for the proportion of “positive” responses, which can be interpreted as substantial evidence 

against an EC effect in both dependent measures (Jeffreys, 1998).8 The correlation between 

AMP responses and explicit ratings did not differ significantly from zero, r(66) = 0.21, p = .085. 

Discussion. Experiment 3.2 showed that when CSs are suppressed from awareness via 

CFS, there is evidence against an EC effect. That is, the CSs did not show a standard EC effect 

and a Bayesian analysis indicated that the null-hypothesis is considerably more likely than the 

alternative hypothesis. From participants’ performance on the awareness test, we concluded that 

suppression was successful. That is, for the majority of suppressed stimuli participants indicated 

that they had not seen them before and when participants indicated that they did, their 

recognition performance was at chance level.  

Crucially, numerous studies show that processing of CFS-suppressed stimuli is not 

simply entirely abolished. Previous research using CFS showed effects of the suppressed stimuli 

                                                 
8 We used the function “ttestBF()” and from the R package “BayesFactor” (Morey & Rouder, 2015)  to 

compute Bayes factors in all experiments. We used the default medium prior that corresponds to an rscale parameter 

of √2 ÷ 2. This means that 50% of the true prior standardized effect sizes lie between −0.7071 and 0.7071. This 

prior has been identified as a “reasonable” default prior for psychological research because it covers common effect 

sizes and is computationally convenient (also for ANOVA designs; Rouder, Morey, Speckman, & Province, 2012). 
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on visual aftereffects (Tsuchiya & Koch, 2005), perceptual learning (e.g. Seitz et al., 2009), fear 

conditioning (Raio et al., 2012), or priming (e.g. Faivre et al., 2012). This demonstrates that 

stimuli suppressed via CFS are processed to an extent that should allow for EC. The findings so 

far support the following conclusion: Viewing CSs with awareness (Experiment 3.1) leads to an 

EC effect, even under nonoptimal presentation conditions, but viewing CSs without awareness 

(Experiment 3.2) does not. For sure, there is another factor besides awareness that systematically 

varies between Experiment 3.1 and 3.2, namely the use of stereoscopes. It might have distracted 

participants’ attention away from the CS-US pairs. Furthermore, while in Experiment 3.2, CS 

and US flash were presented at the same retinal location due to CFS, CS and US flash were 

viewed at an angle in Experiment 3.1. Lastly, we did not obtain a recognition measure for 

suppressed stimuli in Experiment 3.1. Therefore, the two experiments could not be compared 

with regard to recognition performance. Thus, Experiment 3.3 aimed to replicate Experiment 3.2 

and in addition, show an EC effect with stereoscopic vision without suppression. 

Furthermore, in Experiment 3.2, we obtained an awareness estimate for suppressed 

recognition stimuli other than the CSs to preclude the possibility that acquired valence is used as 

a cue in the recognition task in the absence of genuine recognition. This awareness test, however, 

only allowed us to draw conclusions about the success of suppression on a participant level. In 

order to analyze CS evaluations conditional on whether they were processed with or without 

awareness (i.e. stimulus-level; Pleyers et al., 2007), we opted for a measure of recognition of the 

CSs proper in Experiment 3.3.  

Experiment 3.3 

Experiment 3.3 manipulated suppression of CSs within participants. Both the CSs 

perceived with and without awareness were viewed through stereoscopic viewers and we 
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obtained awareness data for all CSs. This within-participants approach created experimental 

conditions that only differed with regard to the state of awareness of the CSs, thus enabling 

strong conclusions about the role of awareness in EC. 

Method. 

Participants and design. Seventy-six students participated in Experiment 3.3 (44 female, 

32 male, average age: 21.92 years). This sample allows detecting a small effect (d = 0.35) in 

every condition and a small difference between conditions (d = 0.35) with 85% power and α 

= .05 (two-tailed one-sample and paired t-test, see results section). We manipulated within 

participants, whether a CS was suppressed from awareness via CFS or not, and whether a CS 

was paired with a positive or negative US. Suppression was manipulated in a block-wise manner: 

In the first block, all CSs were suppressed from awareness; in the second block they were not. 

Block order was not counterbalanced, as a reversed order potentially prevents suppression. We 

assessed two dependent variables: evaluative rating and proportion of positive responses in the 

AMP for every CS. As a manipulation check, we measured recognition of suppressed and 

unsuppressed CSs. 

Material and procedure. We used 16 geometric shapes as CSs and eight positive and 

negative animal photos as USs. To reduce the experiment’s duration, we used ratings of the 

animal photos from Experiment 3.1 to determine positive USs and negative USs. We selected the 

photos that were rated most positively (M = 8.04, SD = 1.36) and negatively (M = 2.95, SD = 

2.01) as USs. As the prerating phase was dropped, the instructions did not mention positivity or 

negativity of the pictures anymore but were otherwise largely identical. The computer program 

randomly assigned CS-US pairs to each other and determined which CSs were to be suppressed 
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from awareness or not. The suppressed CSs were presented in grey color to make suppression 

more feasible while the unsuppressed CSs were presented in black color. 

Upon arrival, experimenters welcomed and seated participants at the lab computers. If 

participants gave informed consent, they donned the stereoscopic viewers and started with the 

first block of conditioning which consisted of 80 CS-US pairings. Different from Experiment 3.1 

and 2, we increased overall trial length to 2000 ms. A flash of US (100 ms) and pixel masks (100 

ms) was presented to one eye and was repeated ten times. The CS appeared on the other eye with 

a delay of 200 ms (after one flash) and was presented for 1800 ms.  

After the first block of conditioning, participants took off the stereoscopes and completed 

a recognition measure. They indicated in a forced multiple-choice task which of four geometric 

shapes had been presented during conditioning. In all eight trials, one of the four answer options 

had been presented as CS in the previous conditioning block. Thus, unlike in Experiment 3.2, 

there were no foil trials where no option was correct and consequently there was also no option 

to indicate that none of the shapes had been presented. The distractors were also grey geometric 

shapes. The program randomly determined the position of the target for every trial. After the 

recognition task, participants completed the evaluative ratings and the AMP, using the same 

parameters as in Experiments 3.1 and 3.2. 

For the second, unsuppressed block of conditioning, participants also wore stereoscopic 

viewers. Two minor modifications differentiated the second from the first block: CSs were 

presented in black instead of grey color (i.e., with higher contrast) and the program presented a 

flash of US photos and blank screens to the unsuppressed eye instead of pixel masks. The 

repeated time windows of 100 ms of blank screen were supposed make the CS visible. After the 

second block of conditioning, participants again completed the recognition task with the eight 
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unsuppressed CSs, the evaluative ratings, and the AMP. Upon completion, experimenters 

debriefed and rewarded participants. 

We opted for the changes in stimulus timing in comparison to Experiment 3.1 and 3.2 to 

make the emergence of an EC effect in the control condition (unsuppressed block) feasible: First 

of all, we increased trial length (and thereby, increased the number of repetitions of the flash). As 

a compromise between long presentation times that are desirable in the unsuppressed condition, 

and the effectiveness of suppression that is desirable in the suppressed condition, we delayed CS 

onset by 200 ms. Delayed (or gradual) onset of the suppressed stimulus is considered to be 

conducive of suppression (e.g., Sklar et al., 2012). Furthermore, we adapted the presentation 

times within the flash so that US and pixel masks /blank screen were both repeatedly shown for 

100 ms (as opposed to 75 ms for US and 25 ms for pixel masks in Experiment 3.1 and 3.2). We 

deemed this necessary to give the visual system enough time to register the CS stimulus on the 

other side of the screen in the unsuppressed condition. However, Experiment 3.4 will replicate 

Experiment 3.3 with the timing parameters of Experiment 3.2. 

Results. 

Recognition. Participants recognized suppressed CSs less often (M = 0.50, SD = 0.29) 

than CSs that were not suppressed from awareness (M = 0.81, SD = 0.23), t(75) = 8.38, p < .001, 

d = 0.96, 95%CI [0.65, 1.26]. However, both suppressed and unsuppressed CSs were recognized 

above the 0.25 chance threshold; suppressed: t(75) = 7.63, p < .001, d = 0.88, 95%CI [0.64, 

1.11], unsuppressed: t(75) = 21.09, p < .001, d = 2.42, 95%CI [1.82, 3.08]. 

Ratings. Figure 7’s left panel shows participants’ mean ratings of CSs+ and CSs- as a 

function of whether they were suppressed from awareness or not. We computed a paired sample 

t-test with EC effects as dependent variable and observed a larger EC effect for unsuppressed 
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CSs (M = 0.83, SD = 2.11) than for suppressed CSs, M = 0.11, SD = 1.29, t(75) = 2.63, p = .010 , 

d = 0.30, 95%CI [0.08, 0.50]. One-sample t-tests within each condition showed an EC effect for 

the unsuppressed CSs (t(75) = 3.42, p = .001, d = 0.39, 95%CI [0.13, 0.63] and no EC effect for 

the suppressed CSs, t(75) = 0.73, p = .467 d = 0.08, 95%CI [-0.15, 0.31]. In a Bayesian t-test, we 

observed BF01 = 6.12 for the suppressed CSs, which can be interpreted as substantial evidence 

against an EC effect (Jeffreys, 1998). 

 

 

Figure 7. Evaluative ratings (left figure, 1 = “very unpleasant”, 9 = “very pleasant”) and 

proportion of “positive” responses in the AMP of CSs that were paired with positive and 

negative USs as a function of whether CSs were suppressed from awareness via CFS or not. 

Error bars indicate the standard error of the mean; asterisks indicate significant EC effects. 

 

AMP. Figure 7’s right panel shows participants’ mean proportion of “positive” responses 

of CSs+ and CSs- as a function of whether they were suppressed from awareness or not. We 

computed a paired sample t-test with EC effect in the AMP as dependent variable and again 

observed a larger EC effect for unsuppressed CSs (M = 0.07, SD = 0.24) than for suppressed 

CSs, M = -0.02, SD = 0.13, t(75) = 2.78, p = .007, d = 0.32, 95%CI [0.08, 0.53]. We also ran 

one-sample t-tests within each condition, testing the EC effect in the AMP against zero. We 

observed an effect for the unsuppressed CSs (t(75) = 2.69, p = .009 , d = 0.31, 95%CI [0.05, 
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0.51]) and no EC effect for the suppressed CSs, t(75) = -1.20, p = .234,  d = -0.14, 95%CI [-0.35, 

0.09]. We observed BF01 = 3.98 in a Bayesian t-test, which can be interpreted as substantial 

evidence against an EC effect for suppressed CSs (Jeffreys, 1998). In the unsuppressed 

condition, AMP and rating responses correlated positively (r(74) = 0.57, p < .001), while in the 

suppressed condition they correlated negatively, r(74) = -0.27, p = .018. 

 

 

Figure 8. Evaluative ratings (upper figure, 1 = “very unpleasant”, 9 = “very pleasant”) and 

proportion of “positive” responses in the AMP of CSs that were paired with positive and 

negative USs as a function of whether CSs were suppressed from awareness via CFS or not and 

whether they were recognized correctly in a post-conditioning recognition test. Error bars 

indicate the standard error of the mean; asterisks indicate significant EC effects. 
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Analyses conditional on recognition. Different from Experiment 3.2, the recognition of 

suppressed CSs was not on chance level. Thus, we analyzed the data conditional on 

(un)successful recognition of the CSs (see Pleyers et al., 2007), supplementing the present 

experimental with a correlational approach (see Introduction). We thereby computed the mean 

evaluations based on the recognized and not recognized CSs in the suppressed and unsuppressed 

conditions. Figure 8 shows participants’ respective mean evaluations in rating (upper part) and 

AMP (lower part) of CSs+ and CSs-. We computed EC effects for CSs in all of those four 

conditions for both dependent variables separately and tested them against zero. First, we 

analyzed CSs that were (not) recognized “in line” with what we expected from the experimental 

manipulation. We observed an EC effect for CSs that were not suppressed and were therefore 

expectedly recognized correctly in the rating (M = 0.76, SD = 2.32), t(71) = 2.78, p = .007, d = 

0.33 95%CI [0.08, 0.56]) and the AMP, M = 0.07, SD = 0.25, t(71) = 2.42, p = .018, d = 0.29, 

95%CI [0.02, 0.50]. Furthermore, as expected, CSs that were suppressed and therefore not 

recognized did not show an EC effect in the rating (M = -0.19, SD = 1.67), t(57) = -0.87, p 

= .387, d = -0.12, 95%CI [-0.38, 0.15], BF01 = 4.85) or in the AMP, M = -0.01, SD = 0.20, t(57) 

= -0.52, p = .605, d = -0.07, 95%CI [-0.32, 0.20], BF01 = 6.12.  

Then, we analyzed CSs that were not “in line” with the manipulation. CSs that were not 

suppressed from awareness but were nevertheless not recognized did not yield an EC effect in 

the rating (M = 0.13, SD = 2.28), t(23) = 0.27, p = .791, d = 0.06, 95%CI [-0.37, 0.47], BF01 = 

4.51) nor the AMP, M = 0.10, SD = 0.31, t(23) = 1.51, p = .144, d = 0.31, 95%CI [-0.10, 0.61], 

BF01 = 1.72. And CSs that were suppressed but nevertheless recognized – arguably the most 

interesting analysis – did not show an EC effect in the rating (M = 0.29, SD = 2.40), t(55) = 0.92, 

http://www.dict.cc/englisch-deutsch/expectedly.html
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p = .363, d = 0.12, 95%CI [-0.16, 0.39], BF01 = 4.59) nor in the AMP, M = -0.02, SD = 0.18, 

t(55) = -0.99, p = .325, d = -0.13, 95%CI [-0.39, 0.13], BF01 = 4.29.9  

Discussion. Using a within-participants approach, Experiment 3.3 showed that EC effects 

do not emerge when CSs are suppressed from awareness. Suppressed CSs were recognized 

above chance, though. This could be due to insufficient suppression via CFS or processing to 

some extent of the recognized stimuli. As the US flash and CS had simultaneous stimulus offset, 

it is possible that participants saw afterimages of the CSs, for example. Either way, despite 

recognition above chance, suppressed CSs did not show an EC effect. A stimulus-level analysis 

showed that even those CSs that were recognized correctly despite suppression did not show EC 

effects (see also Stahl et al., 2016). These findings suggest that even relatively weak suppression 

abolishes EC. Note, however, that findings from these stimulus-level analyses should be 

interpreted with caution, because the number of observations in every condition differed strongly 

resulting in differential power to detect an effect. 

Experiment 3.3 employed a longer overall trial length and a different timing within the 

flash than Experiment 3.1 and 3.2, in order to make EC effects with unsuppressed CSs more 

feasible. One could argue, though, that these timing changes were somewhat arbitrary. 

Furthermore, the different color of presentation of suppressed and unsuppressed CSs (grey vs. 

black) could constitute a potential confound between the experimental blocks. Even though it is 

difficult to imagine why a difference in contrast should lead to the absence or presence of an EC 

effect, we opted to eliminate this confound in the next experiment. 

                                                 
9 However, suppressed but recognized CSs did not differ significantly from unsuppressed recognized CSs 

regarding the size of the EC effect in the rating (t(52) = -0.67, p = .509, d = -0.09, 95%CI [-0.37, 0.19], BF01 = 5.41) 

nor the AMP, t(52) = -1.71, p = .093, d = -0.24, 95%CI [-0.50, 0.06], BF01 = 1.72. 
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Experiment 3.4 

Experiment 3.4 aimed to replicate the findings obtained in Experiment 3.3, testing their 

robustness across different timing parameters. We again manipulated suppression of CSs within 

participants but used the timing parameters of Experiment 3.2 to enhance comparability. 

Furthermore, suppressed and unsuppressed CSs were both presented in black color as opposed to 

grey and black color in Experiment 3.3, ruling out a potential confound. 

Method. 

Participants and design. Ninety-one students participated in Experiment 3.4 (54 female, 

37 male, average age:  24.79 years). This sample allows detecting a small effect (d = 0.32) in 

every condition and a small difference between conditions (d = 0.32) with 85% power and α 

= .05 (two-tailed one-sample and paired t-test, see results section). Design and measure were 

identical to Experiment 3.3. 

Material and procedure. The material and procedure of Experiment 3.4 were very similar 

to the one used in Experiment 3.3 with two exceptions. First, the stimulus timing was the same 

we used in Experiment 3.1 in the short presentation time condition and in Experiment 3.2. The 

CS was presented for 400 ms while the flash on the other eye alternated four times between the 

assigned US (75 ms) and a mask (25 ms). Second, both suppressed and unsuppressed CSs were 

presented in black color. 

Results. 

Recognition. Suppressed CSs were recognized correctly less often (M = 0.53, SD = 0.29) 

than unsuppressed CSs (M = 0.76, SD = 0.23), t(90) = 7.25, p < .001, d = 0.76, 95%CI [0.53, 

0.98]. CSs that were not suppressed from awareness were recognized above chance (0.25 
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threshold, t(90) = 20.90, p < .001, d = 2.19, 95%CI [1.67, 2.77]) and so were CSs that were 

suppressed from awareness, t(90) = 9.35, p < .001, d = 0.98, 95%CI [0.76, 1.21]. 

Ratings. Figure 9’s left panel shows participants’ mean ratings of CSs+ and CSs- as a 

function of suppression. Replicating Experiment 3.3, we observed a larger EC effect for 

unsuppressed CSs (M = 1.20, SD = 2.01) than for suppressed CSs, M = 0.22, SD = 1.46, t(90) = 

3.86, p < .001, d = 0.40, 95%CI [0.20, 0.60]. Within each condition, we again observed EC 

effects for the unsuppressed CSs (t(90) = 5.20, p < .001, d = 0.55, 95%CI [0.36, 0.72] but not for 

the suppressed CSs, t(90) = 1.42, p = .159, d = 0.15, 95%CI [-0.06, 0.33]. We observed BF01 = 

3.28 in a Bayesian t-test for the suppressed CSs, which can be interpreted as substantial evidence 

against an EC effect (Jeffreys, 1998). We then pooled responses for suppressed CS from 

Experiment 3.3 and 3.4 and ran the same analyses to obtain a larger power to detect EC. 

Unchangedly, the EC effect was not significant, M = 0.17, SD = 1.38, t(166) = 1.57, p = . 119, d 

= 0.12, 95%CI [-0.03, 0.26], BF01 = 3.50. 

 

 

Figure 9. Evaluative ratings (left figure, 1 = “very unpleasant”, 9 = “very pleasant”) and 

proportion of “positive” responses in the AMP of CSs that were paired with positive and 

negative USs as a function of whether CSs were suppressed from awareness via CFS or not. 

Error bars indicate the standard error of the mean; asterisks indicate significant EC effects. 
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AMP. Figure 9’s right panel shows participants’ mean proportion of “positive” responses 

of CSs+ and CSs- as a function of suppression. A paired sample t-test with EC effect in the AMP 

as dependent variable showed a larger EC effect for unsuppressed CSs (M = 0.08, SD = 0.23) 

than for suppressed CSs, M = 0.03, SD = 0.15, t(90) = 2.19, p = .031, d = 0.23, 95%CI [0.04, 

0.39]. Subsequent one-sample t-tests compared the EC effect in the AMP against zero within 

each condition. We observed an EC effect for the unsuppressed CSs (t(90) = 3.52, p < .001, d = 

0.37, 95%CI [0.19, 0.51]) and no EC effect for the suppressed CSs, t(90) = 1.85, p = .068, d = 

0.19, 95%CI [-0.01, 0.38]. In a Bayesian t-test, we observed BF01 = 1.69, which can hardly 

differentiate between the null and the alternative hypothesis (Jeffreys, 1998). When we pooled 

AMP responses for suppressed CS from Experiment 3.3 and 3.4 to achieve greater power, the 

results were clearer: we observed substantial evidence against an EC effect, M = 0.01, SD = 0.14, 

t(166) = 0.68, p = . 500, d = 0.05, 95%CI [-0.10, 0.20], BF01 = 9.26. 

For unsuppressed CSs, the proportion of “positive” responses in the AMP and rating 

responses were correlated, r(89) = 0.52, p < .001. For suppressed CSs there was no such 

correlation, r(89) = 0.02, p = .872. 

Analyses conditional on recognition. As in Experiment 3.3, we additionally analyzed 

rating and AMP data conditional on recognition of the CS. Figure 10 shows participants’ mean 

evaluations in rating (upper half) and AMP (lower half) of CSs+ and CSs-. We used EC effects 

for CSs in all four conditions as dependent variables and tested them against zero. For CSs that 

were not suppressed and were therefore recognized correctly, we observed an EC effect in the 

rating (M = 1.35, SD = 2.17), t(86) = 5.79, p < .001, d = 0.62 95%CI [0.41, 0.81]) and in the 

AMP, M = 0.09, SD = 0.22, t(86) = 3.73, p < .001, d = 0.40, 95%CI [0.24, 0.53]. Concerning 

suppressed CSs that were, in line with the manipulation, not recognized, we did not observe an 
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EC effect in the rating (M = 0.24, SD = 2.11), t(65) = 0.93, p = .355, d = 0.12, 95%CI [-0.13, 

0.35], BF01 = 4.89) or in the AMP, M = -0.002, SD = 0.17, t(65) = -0.11, p = .909, d = -0.01, 

95%CI [-0.27, 0.23], BF01 = 7.36.  

 

Figure 10. Evaluative ratings (upper figure, 1 = “very unpleasant”, 9 = “very pleasant”) and 

proportion of “positive” responses in the AMP of CSs that were paired with positive and 

negative USs as a function of whether CSs were suppressed from awareness via CFS or not and 

whether they were recognized correctly in a post-conditioning recognition test. Error bars 

indicate the standard error of the mean; asterisks indicate significant EC effects. 
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Analyzing CSs that were not “in line” with the manipulation, we first observed that 

unsuppressed CSs that were nevertheless not recognized did not yield an EC effect in the rating 

(M = 0.44, SD = 2.54), t(33) = 1.01, p = .319, d = 0.17, 95%CI [-0.18, 0.49], BF01 = 3.40) nor the 

AMP, M = 0.04, SD = 0.32, t(33) = 0.81, p = .424, d = 0.14, 95%CI [-0.21, 0.46], BF01 = 4.02. 

Finally, suppressed CSs that were nevertheless recognized did not show an EC effect in the 

rating (M = 0.06, SD = 2.05), t(71) = 0.26, p = .796, d = 0.03, 95%CI [-0.21, 0.26], BF01 = 7.47) 

nor in the AMP, M = 0.03, SD = 0.18, t(71) = 1.23, p = .224, d = 0.15, 95%CI [-0.09, 0.37], BF01 

= 3.76.10 

In an effort to achieve greater power, we jointly analyzed data of suppressed but 

recognized CSs from Experiment 3.3 and 3.4. However, we observed no EC effect in the rating 

(M = 0.16, SD = 2.20, t(127) = 0.84, p = .401, d = 0.07, 95%CI [-0.10, 0.25], BF01 = 7.20) nor 

the AMP, M = 0.004, SD = 0.18, t(127) = 0.25, p = .802, d = 0.02, 95%CI [-0.16, 0.20], BF01 = 

9.87. 

Discussion. Experiment 3.4 replicated the findings from Experiment 3.3 using the 

stimulus timing of Experiments 3.1 and 3.2 and keeping the CSs color constant across 

experimental blocks. It shows that evaluative learning does not emerge when CSs are suppressed 

using the CFS paradigm. In line with Stahl and colleagues (2016), this conclusion holds both for 

CSs that were recognized and for CSs that were not recognized.  

General Discussion 

The question whether evaluative learning is possible without awareness is at the heart of a 

lively debate about single- vs. dual-process theories in psychology. We aimed to show evaluative 

                                                 
10 In contrast to Experiment 3.3, suppressed but recognized CSs differed significantly from unsuppressed 

recognized CSs regarding the size of the EC effect in the rating (t(68) = -4.24, p < .001, d = -0.51, 95%CI [-0.74, -

0.27]) and in the AMP, t(68) = -2.05, p = .044, d = -0.25, 95%CI [-0.44, -0.02]. 
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learning without awareness in EC. To create optimal conditions for EC effects without 

awareness, we presented CSs to participants using Continuous Flash Suppression. This technique 

keeps stimulus durations, locations, and fixations constant between suppressed and unsuppressed 

conditions and trials. In addition, there is substantial evidence for the influence of suppressed 

stimuli on cognition. Despite these, in our opinion, optimal conditions, we observed no evidence 

for EC effects for suppressed CSs. Therefore, our results do not support the existence of 

evaluative learning without awareness. 

Experiments 3.1 and 3.2 investigated EC in a CFS paradigm with and without 

suppression. Black-and-white CSs were presented on one side, flashes of pixel masks and US on 

the other side of the screen. In Experiment 3.1, participants simply viewed this stimulus 

presentation perceiving both CS and US with awareness. In Experiment 3.2, participants viewed 

the same stimulus presentation dichoptically; one eye saw the CS, the other eye saw the US 

flash. This dichoptic viewing made the CS and the US flash compete for visual awareness. 

Because the US flash carried more visual information than the stationary black-and-white CS, 

the CS was suppressed from awareness. Recognition performance of the suppressed CSs was at 

chance level and there was evidence against an EC effect in both, a direct and an indirect 

measure, whereas the unsuppressed CSs in Experiment 3.1 showed a strong EC effect. 

The interim conclusion from Experiment 3.1 and 3.2 was that suppressing CSs from 

awareness abolishes the EC effect. Alternatively, however, the use of stereoscopes accompanied 

by participants’ distraction from the stimulus presentation might account for the disappearance of 

the EC effect. Experiment 3.3 and 3.4 thus employed a within-participant manipulation of 

suppression via CFS, keeping the dichoptic viewing conditions constant. Results corroborated 

the conclusion that CSs that are suppressed from awareness via CFS do not produce an EC 
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effect. Furthermore, suppressed CSs were recognized correctly less often than unsuppressed CSs. 

Even those suppressed CSs that were nevertheless correctly recognized in a forced-choice task 

did not show an EC effect. However, omitting the suppression (i.e., the flash), we observed 

reliable EC effects, even when participants saw the CSs and USs via stereoscopes. 

The present results are therefore best explained by a single-process account of EC. Our 

findings are in line with two recent findings using subliminal and parafoveal presentation of CSs 

that also pointed out awareness as a necessary condition for EC (Dedonder et al., 2014; Stahl et 

al., 2016). Going beyond this research, the employed CFS methodology does not rely on 

stimulus exposure duration or spatial location to manipulate awareness. Both are considered 

problematic because they afford alternative explanations for a lack of unaware EC (Jones et al., 

2009). Second, CFS allows to meet criteria such as simultaneous presentation of CS and US, 

which have been identified as facilitating EC without awareness (Jones et al., 2009, see also 

Hütter & Sweldens, 2013a). Third, CFS can be classified as a method creating conditions of 

“preconscious” perception (s. Figure 2; Also Dehaene et al., 2006; but see Bahrami, Carmel, 

Walsh, Rees, & Lavie, 2008; Bahrami, Lavie, & Rees, 2007, for findings showing that the role of 

attention in CFS is more complex than simply being absent). Preconscious stimuli have a 

sufficient bottom-up strength but do not pass the awareness threshold and can therefore not be 

reported. They have been shown to elicit more intense cortical activation and to have more 

behavioral potential than subliminal stimuli (Dehaene et al., 2006). Hence, “preconscious” 

presentation of stimuli seemed like a highly promising avenue to show evaluative learning 

without awareness. Nevertheless, we failed to find evidence for evaluative learning without 

awareness across three experiments. 
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Limitations. Any potential conclusions from these results must assume that stimuli 

suppressed via CFS are processed to an extent that allows for evaluative conditioning. This 

crucial requirement is attested by numerous studies using CFS to study influences without 

awareness on behavior such as perceptual learning (e.g. Seitz et al., 2009) or priming (e.g. Faivre 

et al., 2012). Additional evidence comes from neuropsychological studies repeatedly showing 

that CFS-suppressed stimuli are processed in high-level brain areas (e.g., Jiang & He, 2006; 

Vizueta, Patrick, Jiang, Thomas, & He, 2012). Even if only very low-level features of suppressed 

stimuli are processed, as some studies suggest (Gray, Adams, Hedger, Newton, & Garner, 2013; 

Stein & Sterzer, 2011), there is no reason to preclude the hypothetical possibility of EC under 

suppression. The effective pairing would be a pairing of low-level CS features and a US which 

could result in a more positive or negative evaluation of the CS. Finally, our own recognition 

data from Experiments 3.3 and 3.4 suggest that participants encoded the CSs at least to some 

extent. 

One might also argue that suppressing USs instead of CSs from awareness would have 

been preferable. Affective information might be more relevant for the organism and might 

therefore be more readily processed without awareness. As outlined in the introduction, however, 

processing of affective stimulus properties seems to be abolished by CFS (Yang et al., 2010). If 

affect is processed, on the other hand, suppression is abolished (e.g., Gayet et al., 2016; Stein & 

Sterzer, 2012; Yang, Zald, & Blake, 2007). This would render it difficult to investigate EC 

effects when USs are suppressed.  

Another limitation of CFS is the difference in presentation modalities (black and white 

and stationary vs. colored and flashed); this might also limit the degree to which CS and US are 

processed in an associative and thus assimilative manner (Fiedler & Unkelbach, 2011; 
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Unkelbach & Fiedler, 2016). One possibility would consist in suppressing CS-US pairs, rather 

than either the CS or the US. However, the limitations discussed for the suppression of USs also 

apply to such a variant of the CFS paradigm.  

A further caveat is our use of a memory-based awareness measure after conditioning as 

opposed to an online measure of awareness. It has been pointed out that the former may be 

affected by forgetting and is therefore suboptimal to assess awareness of the CS during 

conditioning (Balas & Gawronski, 2012; Gawronski & Walther, 2012). Note that this does not 

fundamentally challenge our conclusions, though: We do not rely on measured awareness as an 

experimental variable because we straightforwardly manipulated awareness experimentally. 

Rather, our recognition measure of CSs served as a manipulation check. Beyond that, Hütter and 

colleagues (2012) showed that awareness measures administered after conditioning might not 

only reflect explicit memory of the conditioning stimuli. In the absence of memory, participants’ 

conditioned attitudes might also inform their recognition judgement in a way that stimuli that 

acquired valence are selected as the ones that were presented even in the absence of recognition. 

We precluded that possibility in Experiment 3.2 because we obtained an estimate for the 

visibility of CFS-suppressed stimuli from different stimuli than the CSs. Those stimuli 

underwent the same CFS procedure as CSs previously did, only they were paired with neutral 

instead of affective stimuli on the unsuppressed eye. The recognition data for these stimuli can 

therefore not be confounded with conditioned attitudes. In Experiment 3.3 and 3.4, in contrast, 

we assessed recognition of the CSs proper for the sake of analyses of CS evaluations conditional 

on whether they were recognized or not. In this measure, we assessed the proportion of 

recognized CSs. Experiment 3.3 and 3.4’s awareness measure thus concerns the identity of the 

CS rather than the US (valence) associated with the CS. Thereby we deviate from the typical 
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valence awareness measure used in EC research. However, as the recognition of the CS is a 

necessary precondition for the identification of the US, we chose the measure that is most 

informative with regard to the success of our manipulation. 

Finally, the central limitation of this work is the logical impossibility to prove the non-

existence of a phenomenon. Aware of this impossibility, the present efforts aimed to show EC 

without awareness. Yet, despite our best efforts, we might have failed to create the ideal 

conditions to obtain EC without awareness; or the effect might be so small that it was not 

possible to detect it given the present sample sizes. The accumulation of null findings (e.g., 

Dedonder et al., 2014; Stahl et al., 2016) might reduce the likelihood of learning without 

awareness; and one might then consider a single process approach more parsimonious, but 

ultimate proof will remain logically impossible. 

Implications and conclusion. Studying EC effects with CFS simulates how preference 

formation without awareness could happen in everyday life. Stimuli in our environment usually 

have a bottom-up strength that is sufficient for perception (e.g., billboards) but our attention is 

focused on something else (e.g., navigating traffic). Therefore, suppressing stimuli with CFS is a 

highly controlled, yet externally valid experimental analog of such situations. This analogue, 

however, does not support the formation of likes and dislikes without awareness in our 

experiments. Nevertheless, our findings neither imply that the acquisition process cannot be 

defined by other automaticity criteria, nor that the retrieval and usage of evaluations cannot 

operate in an automatic manner. For instance, the influence of evaluations on behavior may be 

controllable or uncontrollable, depending on the state of cognitive load. Our conclusion is thus 

both a strong and a cautious one: The accumulated scientific evidence at the present stage does 

not support an evaluative learning process that operates without awareness.  
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Chapter 4: The role of relational qualifiers in attribute conditioning: Does disliking an 

athletic person make you unathletic? 

Abstract 

In attribute conditioning (AC), stimuli (CSs) acquire attributes through mere pairings with other 

stimuli possessing that attribute (USs). If neutral “Neal” is paired with athletic “Wade”, 

participants judge Neal as more athletic compared to when Wade would be unathletic. Prior 

research suggests that a CS-US link mediates AC effects, but the link’s nature is unclear. The 

link may be merely referential or propositional. Building on evaluative conditioning research, we 

introduced relational qualifiers between CS and US to probe the link’s nature; concretely, CSs 

either liked or disliked USs. Four experiments (n = 811) showed a moderation of AC by this 

relation: When Neal disliked athletic Wade, he was judged as unathletic. This was partly due to 

(dis)liking signaling (dis)similarity between Neal and Wade. Thus, CS and US seem to be 

propositionally linked. We discuss other processes that might contribute to AC and the 

paradigm’s relation to spontaneous trait transference. 
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The role of relational qualifiers in attribute conditioning: 

Does disliking an athletic person make you unathletic? 

 

How do people, consumer goods, or stimuli in general acquire their attributes or traits? How 

does a brand become elegant, a cereal healthy, or a person athletic? One simple way how stimuli 

acquire attributes is Attribute Conditioning (AC; Förderer & Unkelbach, 2015): By merely 

pairing a stimulus with another stimulus possessing a certain attribute, the first stimulus acquires 

this attribute. For example, showing a neutral person (e.g., a picture of a face) together with 

another athletic person (e.g., a picture of a person playing soccer) makes participants’ assessment 

of the initially neutral person more athletic (Förderer & Unkelbach, 2011). In conditioning terms, 

the former is the conditioned stimulus, CS (i.e., neutral before the pairing), and the latter is the 

unconditioned stimulus, US (i.e., athletic before the pairing). While AC is well-established on an 

effect level (Staats & Staats, 1957; see Unkelbach & Högden, in press, for an overview), the 

mental processes underlying it are not clear yet (see Unkelbach & Förderer, 2018). In particular, 

Förderer and Unkelbach (2016) proposed that AC effects are due to a link between the CS and 

US’s mental representations (see below). However, they did not specify the nature of the link; 

for example, it may be a mere associative link (Gawronski & Bodenhausen, 2011) or a 

propositional link (Mitchell et al., 2009). The present research addresses the nature of this link by 

introducing semantic qualifiers of the CS-US relations; specifically, whether the CS likes or 

dislikes the US. In more colloquial terms, does disliking an athletic person make you unathletic? 

By answering this question, we constrain the potential processes that may underlie AC. 

In the remainder, we provide a short overview of AC research up to date, and in 

particular, how AC relates to Evaluative Conditioning (EC). Then, we delineate how relational 
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qualifiers may inform the processes underlying attribute conditioning. Finally, we present four 

experiments (total n = 811) investigating if and how relational qualifiers change CS assessments 

after pairing them with athletic or unathletic USs. 

AC effects and potential AC processes. AC is a reliable and versatile phenomenon 

(Unkelbach & Högden, in press; Unkelbach & Förderer, 2018). The effects are found on direct 

measures such as explicit ratings, and more indirect measures such as semantic priming or 

semantic misattribution (Förderer & Unkelbach, 2011). AC pairings have been shown to change 

people’s stimulus assessments of “speed” or “softness” (Kim, Allen, & Kardes, 1996), “size” 

(Olson, Kendrick, & Fazio, 2009; Exp. 2), or “humor”, “attractiveness”, “intelligence”, or 

“athleticism” (Förderer & Unkelbach, 2014). 

However, all these dimensions have evaluative connotations; “fast”, “funny”, or 

“athletic” are typically positive attributes. Thus, it is important to show that AC goes beyond 

creating overall positive or negative evaluations as in EC. In EC, people’s evaluation of a CS 

typically changes in the direction of the evaluation of a paired US (Gast, Gawronski, & De 

Houwer, 2012). Thus, AC effects may be generalized effects of conditioned valence on the 

provided rating dimension (i.e., “halo” effects; Gräf & Unkelbach, 2016; Nisbett & Wilson, 

1977). To differentiate AC effects from EC, Förderer and Unkelbach (2011) showed that AC 

effects are still present if one controls statistically for the evaluation of a given CS (see Förderer 

& Unkelbach, 2014; for an experimental approach). Thus, AC cannot be fully accounted for by 

general liking or disliking, but is a genuine phenomenon in its own right. 

Building on similar theorizing in EC research (Baeyens et al., 1992), Unkelbach and 

Förderer (2018) suggested a referential learning process that creates a link between CS and US. 

This link was experimentally tested by Förderer and Unkelbach (2016) in a revaluation paradigm 
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(e.g., Walther, Gawronski, Blank, & Langer, 2009). They paired CSs with athletic or unathletic 

USs. As expected, participants judged the CSs in accordance with the US attributes (i.e., athletic 

or unathletic), both on direct and indirect measures. Yet, after the pairings, the USs changed their 

attributes from athletic to unathletic (e.g., a runner becoming visibly chubby) and vice versa 

(e.g., a chubby person becoming visibly muscular and lifting weights). Without further pairings, 

this revaluation influenced CS assessments. That is, a CS that was paired with a formerly athletic 

US which had then turned unathletic was judged as less athletic than a CS that was paired with a 

formerly unathletic US which had turned athletic. This implies a CS-US link. Next, we address 

the potential nature of this link. 

Potential CS-US links. In EC, two candidates for CS-US links are associations and 

propositions (Gawronski & Bodenhausen, 2011). In their model of AC effects, Unkelbach and 

Förderer (2018) used the more general term referential links instead of associations because the 

latter are historically grounded in the idea of spreading activation: When the CS is “activated”, 

for example by presentation or recall, activation spreads along the links and activates the US, 

which in turn influences evaluations. However, spreading activation models face substantial 

theoretical challenges (Ratcliff & McKoon, 1981). Referential links can also be thought of from 

a distributed memory perspective (e.g., McClelland, McNaughton, & O’Reilly, 1995). This 

framework conceptualizes the CS-US link as a shared context of CS and US in memory as 

opposed to an association between the mental representations of CS and US (Gast, 2018; 

Unkelbach & Förderer, 2018). The relevant distinction between the two candidates is the same, 

though: Referential links are unqualified connections while propositional links carry meaning. 

They allow information about the CS-US link, they can be true or false, and they can be subject 

to logical reasoning (Mitchell et al., 2009). 
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One way to probe the nature of the CS-US link are relational qualifiers; that is, semantic 

qualifications of the link. In EC research, a number of such qualifiers have been introduced, such 

as CSs being friends versus enemies of USs (Fiedler & Unkelbach, 2011), CSs loving or hating 

USs (Förderer & Unkelbach, 2012), or CSs starting or stopping USs (Moran & Bar-Anan, 2013). 

If CS-US links are propositional, semantic qualifiers should influence EC effects, while mere 

referential links should be insensitive to such information (Hu, Gawronski, & Balas, 2017a). 

Numerous studies showed a moderation of EC by relational information (e.g., Moran & 

Bar-Anan, 2013; Unkelbach & Fiedler, 2016), with attenuation or complete reversals of EC 

effects given negative CS-US relations (e.g., “stops”, “hates”, “dislikes”). Thus, EC effects seem 

to involve propositional information. It is important to note though that data on relational 

qualifiers cannot distinguish between propositional models (e.g. Mitchell et al., 2009) and dual-

process models of both associations and propositions (e.g., Gawronski & Bodenhausen, 2018). 

Evidence for the presence of one process does not preclude the existence of another process. 

The explanation for such moderation by propositional information in EC is 

straightforward: Participants should dislike stimuli that are in a negative relation to stimuli they 

like and vice versa. Concretely, if an initially neutral person X (i.e., the CS) dislikes a friendly 

person (i.e., the US), person X becomes less likeable. For EC, liking and disliking are general 

evaluative relations and may, thus, inform evaluative judgements. For AC, the situation is more 

complex. If an initially neutral person Y (CS) dislikes an athletic person (US), person Y should 

not necessarily become unathletic; although one may argue that many attributes have evaluative 

implications, in principle, one may construe an orthogonal relation of specific attributes and 

evaluations; that is, one may like or dislike both athletic and unathletic people, without 

implications for one’s own perceived athleticism. 
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There are several ways a moderation by relational qualifiers may nevertheless come about 

for AC effects. We will use a negative relation (“dislikes”) as an example. First, attributes also 

have positive or negative connotations (e.g., being “athletic” is rather good than bad and being 

“unathletic” is rather bad than good). If Person Y dislikes another athletic person, Person Y is 

evaluated more negatively, which in turn makes Person Y unathletic (e,g,, “Person Y dislikes 

something good and is therefore bad; hence, Y is unathletic”). Thus, potential moderating 

influences of relational qualifiers might be a generalized halo effect (Nisbett & Wilson, 1977). 

Second, if participants observe person Y in a negative relation with an athletic person (e.g., a US 

person doing sports), participants might infer a negative relation between the CS and the activity 

(e.g., “Person Y does not like sports; hence, Y is unathletic”). And third, participants might 

construe a “dislike” relation as a dissimilarity relation (e.g., “Person Y is different from the 

person doing sports”), due to the subjective link of interpersonal attraction (i.e., “dislike”) and 

similarity (Alves, Koch, & Unkelbach, 2016; Berscheid, 1985). 

It is thus an intriguing theoretical and empirical question if and how relational qualifiers 

influence AC effects. In the following four experiments we tested whether and how relational 

qualifiers between CS and US influence AC. 

Overview of the experiments. We used athleticism as the target attribute, based on the 

materials by Förderer and Unkelbach (2016); that is, participants observed pairings of CSs with 

either athletic und unathletic USs and assessed CSs’ athleticism, both on direct and indirect 

measures. We used “like” versus “dislike” as relational qualifiers. 

Experiment 4.1 showed that relational qualifiers influence AC effects, using a direct 

rating measure. We also collected participants’ CS liking ratings and found that the relations’ 

influence did not depend on participants’ evaluations. Experiment 4.2 replicated the influence 
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using an indirect measure, a semantic variant of the affective misattribution procedure (AMP, 

Payne, Cheng, Govorun, & Stewart, 2005a). To preclude that participants infer a direct relation 

of CSs with the attribute (“CS dislikes sports”), Experiment 4.3 and 4.4 used a second-order 

conditioning procedure. That is, we conditioned athleticism to a CS_1 and then participants 

observed a positive or negative relation between CS_1 and CS_2; thus, the relevant CS_2 never 

occurred together with sports. Experiment 4.4 addressed whether participants interpret the 

like/dislike relation as CS-US similarity or dissimilarity and if this may account for the relational 

qualifiers’ influence on AC. 

We report 4 experiments out of 6 that we conducted in this research line. We conducted 

an additional study before Experiment 4.3 with the same parameters as Experiment 4.3. The 

difference was that we used twelve CS-US pairs like in Experiment 4.1 and 4.2. Although the 

results descriptively mirrored those reported for Experiment 4.3, we did not observe any 

significant effects when analyzing the main DV. We therefore ran the same study with a reduced 

number of pairings to reduce attention and memory load in participants and to shorten the 

duration of the online experiment. A pooled analysis of attribute ratings from the additional 

study and Experiment 4.3 showed the same pattern of findings as reported for the data of 

Experiment 4.3 alone. Another experiment was conducted between Experiment 4.3 and 4.4. 

Similar to Experiment 4.4, it aimed to test whether participants construe the like/dislike relation 

between CS and US as (dis)similarity. The experiment had a design flaw, though. The question 

probing if participants interpret (dis)liking as (dis)similarity used the same stimuli as those 

presented during conditioning. This confounds the potential similarity-liking interpretation with 

previous responses (i.e., participants who showed strong AC effects should also show a high 

similarity-liking relation, as the CS and US became subjectively more similar/dissimilar on the 
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athleticism dimension). The reported Experiment 4.4 avoids this problem. While the omitted 

experiment did not allow inferences regarding participants’ interpretation of the relation, it 

significantly replicated the influence of relational qualifiers on AC.   

For all reported experiments, we report how we determined our sample size, all data 

exclusions (if any), all manipulations, and all measures. In all experiments, we routinely asked 

participants in an open question what they thought the purpose of the study was. We did not 

analyze this data and do not report. We aimed to impede possible demand effects  by using an 

indirect measure in Experiment 4.2 and a second-order conditioning procedure in Experiment 4.3 

and 4. Further, we excluded participants who indicated to not have taken part seriously (none in 

Experiment 4.1, three in Experiment 4.2, two in Experiment 4.3, one in Experiment 4.4; see 

Aust, Diedenhofen, Ullrich, & Musch, 2013). 

Experiment 4.1: Relational qualifiers influence AC effects 

Experiment 4.1 tested whether a like/dislike relation between CS and US influences 

participants’ athleticism assessment in a rating measure in a standard AC paradigm. 

Method. 

Participants and design. One hundred and fourteen people participated in Experiment 4.1 

(mean age: 33.38 years, 48 female, 65 male, 1 unspecified). To determine our sample size, we 

took a priori into consideration the effect size of AC that we previously observed in our lab (e.g., 

Förderer & Unkelbach, 2011, 2016) and the effect size of relational qualifiers (e.g., Förderer & 

Unkelbach, 2012). We typically observe significant moderation of EC effects by relational 

qualifiers (i.e., the interaction) using a within-participants design with 40 to 60 participants in the 

laboratory. Assuming that the online data collection introduces more noise, we aimed for a 

sample of around 100 people to yield sufficient power to detect a potential effect of relations on 
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AC. We recruited participants on Amazon Mechanical Turk and they received a small monetary 

reward. 

We manipulated within participants whether CSs were paired with athletic or unathletic 

USs and whether CS and US liked or disliked each other. Participants assessed CS athleticism 

and evaluated CS likability on explicit rating scales.  

Procedure and material. We programmed an online experiment with SoSci Survey 

(Leiner, 2016). The program displayed information about the experiment and confidentiality of 

participants’ data and asked participants for their consent to participate. They stated their age and 

gender and proceeded to the instructions for the learning phase. The instructions informed them 

that they would see “photos and drawings of men who either like or dislike each other” and that 

they should watch the pictures attentively. The last sentence read “You will be asked about the 

pictures at the end of the experiment”. 

The learning phase paired 12 black-and-white photos of men (CSs) with six drawings of 

men performing athletic activities (USs; e.g., cycling, running) and six drawings of men 

performing unathletic activities (e.g., watching TV, eating on the couch). CS men and US men 

were both displayed with a random male name to facilitate differentiation between the CSs. 

Orthogonally, CSs were assigned to “like” or “dislike” the USs. The program randomly created 

fixed CS-US pairs (“one-to-one” procedure; see Stahl & Unkelbach, 2009) and presented each 

pair six times, resulting in 72 attribute conditioning trials. Figure 11 shows an example trial. For 

each trial, a CS appeared alone for 500 ms on the left of the screen, then the relation appeared on 

its right side. CS and relation were shown together for another 500 ms and then the US appeared 

on the right side of the screen. CS, relation, and US were shown together for three seconds. 

There was an inter trial interval of 500 ms. The presentation order was random.  
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Figure 11. Example trial of “Neal disliking Wade on a bicycle” from Experiment 4.1 and 4.2. 

The CS is shown alone for 500 ms, then the relation appears and they are shown together for 

another 500 ms and lastly, the US appears. All three elements are shown for 3 s. 

 

After conditioning, the program showed the instructions for the attribute ratings. 

Participants’ task was to “to indicate how athletic you think certain persons are”. During attribute 

ratings, the program showed a CS on the upper half of the screen and a continuous rating slider 

below, ranging from 1 (“unathletic”) to 101 (“athletic”, only the labels were visible to 

participants). All CSs were rated once, resulting in 12 attribute rating trials. CS presentation 

order was random. Next, the program asked participants to “indicate how much you like certain 

persons”. Liking ratings of all 12 CSs in random order followed, with similar presentation 

parameters as for attribute ratings except that the labels of the rating slider were “not at all” to 

“very much”.  

After liking ratings, the program asked participants to indicate with a slider whether they 

like to exercise (“not at all” to “very much”) and how athletic they are (“not at all athletic” to 

“very athletic”).11 Finally, participants were thanked and rewarded.  

                                                 
11 For all four experiments we ran regressions, with the categorical variables attribute and relation as 

predictors and either responses to the question whether they like to exercise or responses to the question how athletic 

they are as continuous predictors. As dependent variables we used attribute ratings and attribute ratings controlled 

for liking. In none of the analyses any of the two control variables had any effect. 
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Results. 

Attribute ratings. Figure 12 shows participants’ mean attribute ratings of CSs liking and 

disliking athletic and unathletic USs. We conducted a 2 (attribute: athletic vs. unathletic) x 2 

(relation: like vs. dislike) repeated measures ANOVA with athleticism ratings as dependent 

measure. Overall, participants rated CSs paired with athletic USs as more athletic (M = 51.18, 

SD = 10.37) than CS paired with unathletic USs (M = 48.36, SD = 9.76), F(1, 113) = 6.27, p 

= .014, 𝜂𝑝
2 = .05, 95% confidence interval (CI) [0.00, 0.15]. This attribute conditioning main 

effect was qualified by an interaction with relation, F(1, 113) = 8.80, p =.004, 𝜂𝑝
2 = 0.07, 

95%CI[0.01, 0.18]. The main effect of relation in the overall ANOVA was not significant, 

F(1,113) = 1.99, p = .161, 𝜂𝑝
2 = 0.02, 95%CI[0.00, 0.09]. Thus, the relational qualifiers 

significantly moderated the AC effect. 

 

 

Figure 12. Experiment 4.1: Attribute ratings of CSs that were paired with an athletic or 

unathletic US and that either liked or disliked the US. Error bars represent the standard error of 

the mean. 
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Liking ratings. We conducted the same ANOVA as described above with liking ratings 

as dependent measure. We observed a main effect of relation. Participants rated CSs liking USs 

as more likable (M = 52.44, SD = 14.28) than CSs disliking USs (M = 45.15, SD = 14.25), 

F(1,113) = 19.86, p < .001, 𝜂𝑝
2 = 0.15, 95%CI[0.05, 0.27]. This main effect of liking is a standard 

result for relational qualifiers (e.g., Fiedler & Unkelbach, 2011; Walther, Langer, Weil, & 

Komischke, 2011). No other effects were significant, all Fs < 1.00, all ps > .34, all 𝜂𝑝
2s < 0.01. 

Attribute ratings controlling for liking. To investigate if the interaction in attribute 

ratings might be due to “evaluative” variance (i.e., accounted for by liking of the CS), we 

conducted a multi-level regression analysis. We treated CS attribute ratings as the dependent 

variable and liking rating of the same CSs as predictor and included a random intercept for 

participants. We used the residuals of this analysis, which statistically correct for evaluations of a 

given CS, in the same ANOVA as described above (see Förderer & Unkelbach, 2011). We still 

observed an attribute main effect. Participants rated CSs paired with athletic USs as more athletic 

than CSs paired with unathletic USs, F(1, 113) = 6.80, p = .010, 𝜂𝑝
2 = 0.06, 95%CI[0.00, 0.15]. 

The attribute by relation interaction was also still present, F(1, 113) = 8.31, p = .005, 𝜂𝑝
2 = 0.07, 

95%CI[0.01, 0.17]. Thus, even when we statistically controlled for liking, the relational 

qualifiers significantly moderated the AC effect. 

Discussion. On an effect level, Experiment 4.1 showed that relational qualifiers influence 

AC effects. When CS and US “liked” each other, CSs paired with athletic USs were evaluated as 

more athletic than CSs paired with unathletic USs. When they “disliked” each other, this pattern 

was reversed as shown by the interaction.  

However, Experiment 4.1 raises two concerns. First, we observed the interaction on an 

explicit rating measure. A concern in pairing paradigms is that participants simply understand the 
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experiment’s purpose and control their responses accordingly; that is, they show “demand 

effects”. Therefore, we aimed to replicate the pattern with an indirect measure in Experiment 4.2. 

Second, as Figure 11 illustrates, participants might misunderstand the CS – likes/dislikes – US 

relation as the CS likes/dislikes the athletic activity. Experiments 4.3 and 4.4 will address this 

concern. 

Experiment 4.2: Relational qualifiers influence AC effects on an indirect measure 

Experiment 4.2 replicated Experiment 4.1 in a laboratory setting and included a semantic 

variant of the affective misattribution procedure (AMP; Payne et al., 2005) to ensure that AC 

effects and the relational qualifier influence are not due to demand effects. We called this the 

semantic misattribution procedure (SMP; Förderer & Unkelbach, 2011). Payne and colleagues 

developed the AMP to indirectly assess peoples’ affective reactions. In the AMP, participants see 

an affective picture flashed, immediately followed by a Chinese character (Kanji). Then they 

decide if the Kanji indicates something positive or negative. The idea is that participants 

misattribute their affective reaction caused by the affective picture (prime) to the Kanji (target). 

Instead of affective pictures, we used the CSs and asked participants if the Kanji represents a 

word with an athletic or nonathletic meaning. Assuming an AC effect proper rather than a 

demand effect, people should decide that a Kanji following an athletic CSs has an athletic 

meaning more often, compared to Kanji following a nonathletic CSs. The procedural details (see 

below) of this method make strategic behavior in the sense of demand effects unlikely. 

Method. 

Participants and design. We aimed for a similar sample size as in Experiment 4.1. One 

hundred and one students participated in Experiment 4.2 (mean age: 22.05 years, excluding two 
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participants who gave nonsensical age information, 56 female, 45 male). We recruited 

participants on campus and they participated for course credit or a small monetary reward.  

The design was highly similar to Experiment 4.1; the sole design difference was the 

inclusion of the semantic misattribution procedure as additional dependent variable.  

Procedure and material. We conducted the experiment in the laboratory. We 

programmed the experiment with Open Sesame (Mathôt et al., 2012). We used the same stimuli 

and setup as in the online study in Experiment 4.1. The procedural changes were as follows: We 

translated the instructions into German and changed the rating scales for attribute and liking 

ratings to a range from 1 to 9, with higher numbers indicated higher athleticism and likeability. 

The first measure we assessed after the learning phase was the semantic misattribution procedure 

(SMP; Förderer & Unkelbach, 2011, 2016). 

The program instructed participants about the procedure of a SMP trial and that their task 

was to evaluate the Kanji that is presented at the end of each trial. The cover story was to 

indicate whether they believed the Kanji’s meaning was rather athletic or unathletic. They were 

asked to respond spontaneously and to not be distracted by the preceding photos of men that 

were presented at the beginning of each trial. 

An SMP trial looked as follows: A fixation cross appeared in the center of the screen. 

After 300 ms, the CS replaced the cross. The CS stayed onscreen for 75 ms. Then, a blank screen 

followed for 125 ms, followed by a Kanji for 100 ms. A black-and-white pixel image masked the 

Kanji that was displayed until participants gave a response. Participants responded with the keys 

“A” and “L” on a German keyboard. We counterbalanced key assignment to the categories 

“athletic” and “unathletic”. Each CS appeared eight times, resulting in 96 SMP trials. 

Presentation order was random. 
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After the SMP, we measured attribute ratings, liking ratings, and how much participants 

like to exercise and how athletic they are themselves. 

Results. 

Semantic misattribution procedure. Figure 13’s upper panel shows the mean proportion 

of “athletic” responses in each condition. We submitted these to a 2 (attribute: athletic vs. 

unathletic) x 2 (relation: like vs. dislike) repeated measures ANOVA. We only observed an 

interaction, F(1,100) = 5.17, p = .025, 𝜂𝑝
2 = 0.05, 95%CI[0.00, 0.15]. No other effects were 

significant, all Fs < 1.43, all ps > .23, all 𝜂𝑝
2s < 0.02. 

Attribute ratings. Figure 13’s lower panel shows CSs’ attribute ratings as a function of 

paired US and CS-US relation. We analyzed the data with the same ANOVA as in Experiment 

4.1. Overall, we found a standard AC effect: Participants rated CSs paired with athletic USs as 

more athletic (M = 5.07, SD = 1.10) than CSs paired with unathletic USs (M = 4.70, SD = 1.06), 

F(1, 100) = 7.80, p = .006, 𝜂𝑝
2 = 0.07, 95%CI[0.01, 0.18]. This AC main effect was qualified by 

an interaction with relation, F(1, 100) = 6.36, p = .013, 𝜂𝑝
2 = 0.06, 95%CI[0.00, 0.17]. Different 

from Experiment 4.1, we also found a relation main effect. CSs that liked a US were evaluated as 

more athletic (M = 5.01, SD = 1.13), than CSs that disliked a US (M = 4.76, SD = 0.97), F(1,100) 

= 4.03, p = .047, 𝜂𝑝
2  = 0.04, 95%CI[0.00, 0.13].  

Liking ratings. We found an attribute main effect. Overall, CSs paired with athletic USs 

were rated as more likable (M = 5.09, SD = 1.05) than CSs paired with unathletic USs (M = 4.80, 

SD = 1.15), F(1,100) = 6.39, p = .013, 𝜂𝑝
2 = 0.06, 95%CI[0.00, 0.17]. There was also an 

interaction with relation, F(1,100) = 4.50, p = .036, 𝜂𝑝
2 = 0.04, 95%CI[0, 0.14]. CSs that liked 

athletic USs were rated more positively (M = 5.31, SD = 1.28) than those that liked unathletic 
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USs (M = 4.77, SD = 1.39). CSs disliking athletic USs were also rated slightly more positively 

(M = 4.86, SD = 1.42) than CSs disliking unathletic USs (M = 4.82, SD = 1.55). 

 

 

 

 

Figure 13. Experiment 4.2: Proportion of “athletic” responses in the semantic misattribution 

procedure (upper panel) and attribute ratings (lower panel) of CSs paired with an athletic or 

unathletic US and that either liked or disliked the US. Error bars represent the standard error of 

the mean. 
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Attribute ratings controlling for liking. Different from Experiment 4.1, the means of 

attribute and liking ratings corresponded. We thus conducted again a multi-level regression 

analysis predicting attribute ratings from liking ratings. Statistically, these residuals are corrected 

for variance in liking. The ANOVA of these residuals showed again a main effect of attribute. 

Participants rated CSs paired with athletic USs more athletic than CSs paired with unathletic 

USs, F(1,100) = 5.09, p = .026, 𝜂𝑝
2 = 0.05, 95%CI[0.00, 0.17]. Controlling for likeability 

variance, we again found the interaction with relation, F(1,100) = 4.63, p = .033, 𝜂𝑝
2 = 0.04, 

95%CI[0.00, 0.14]. The effect main effect of relation was no longer significant, F(1,100) = 2.75, 

p = .101, 𝜂𝑝
2 = 0.03, 95%CI[0.00, 0.04]. 

Discussion. Experiment 4.2 replicated Experiment 4.1. The CS-US relation moderated 

the AC effect and we also found this moderation effect on an indirect measure. As the interaction 

indicates, the AC effect was significantly different for CS that liked the US compared to CS that 

disliked the US. We observed this pattern on the proportion of “athletic” responses in the SMP, 

attribute ratings, and attribute ratings controlled for liking. 

Experiment 4.2’s SMP measure also increases the confidence that the results are not due 

to participants strategic responding (i.e., demand effects); on average, participants responded 

within 1018.59 ms (SD = 1383.27). Within that time, it seems unlikely that participants 

recognized the CS face, remembered the paired US, the CS-US relation, and that the experiment 

seems to require a response contingent on US attribute and CS-US relation, despite being 

instructed to ignore the CS face in the first place. And similar to Experiment 4.1, the residual 

analysis suggests that the relational qualifiers’ influence does not, at least not fully, depend on 

the evaluative connotation of the attribute (i.e., a CS disliking something good).  
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However, both Experiment 4.1 and 4.2’s learning phase highlights the anticipated 

possibility for the relational qualifier’s moderating influence (see Figure 11): We presented 

pictures of male faces (CSs) together with pictures of men engaging in athletic or unathletic 

activities (USs). In between the pictures the word “likes” or “dislikes” appeared. Thus, 

participants may infer “This CS dislikes this athletic activity”. Concretely, the setup in Figure 11 

might imply that “Neal dislikes cycling.” Experiment 4.3 will address this possibility. In 

addition, Experiments 4.3 and 4.4 substantially increase the sample size. 

Experiment 4.3: Relational qualifiers influence AC effects in a second-order conditioning 

procedure 

Experiment 4.3 tested if the relational qualifiers’ influence depends on the relation 

between CS and US (i.e., “Neal dislikes Wade”) or on the relation between the CS and the 

activity or the CS and the attribute (i.e., “Neal dislikes cycling” or “Neal dislikes athletic 

activities”). To this end, we separated CS-US pairings and presentation of the relational qualifier 

in a second-order conditioning procedure. First, we paired CS_1s with athletic and unathletic 

USs in a standard AC procedure without relational qualifiers. Second, we paired these CS_1s, 

which are now effectively novel USs, with CS_2s in a second conditioning phase. These pairings 

now included the relational qualifiers of “likes” and “dislikes”. Importantly, the relevant CSs 

were now the CS_2s, which were never presented with the athletic activity. Observing a 

relational qualifier influence in this second-order conditioning procedure would suggest that the 

effect is not due to a perceived relation of CS_2 with the activity or the attribute itself. 

Method. 

Participants and design. Two hundred ninety-four people were recruited on Amazon 

Mechanical Turk and participated for a small monetary reward (mean age: 37.56, 123 female, 
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169 male, 1 other, 1 unspecified). We increased the sample size substantially in comparison to 

Experiment 4.1 and 4.2 because we anticipated smaller second-order conditioning effects and we 

aimed to increase confidence in the observed effects.  

We manipulated whether CS_1s were paired with an athletic or unathletic USs and 

whether CS_2 and CS_1 liked or disliked each other within participants and measured 

athleticism and liking ratings of all CS_2s and only athleticism ratings of CS_1s. 

Procedure and material. The SoSci Survey (Leiner, 2016) online study was similar to 

Experiment 4.1 with the following changes: First, participants saw pairings of four photos of 

male faces (CS_1s) and four photos of men engaging in athletic or unathletic activities (e.g. 

playing soccer, reading a book, USs). That is, the overall number of pairings was reduced to four 

and the US drawings were replaced by photos. CS_1s were shown alone on the screen for 1 s, 

then the US appeared to its right and they were shown together for another 3 s. The intertrial 

interval was 500 ms. Figure 14’s upper panel shows an example trial. Every CS_1-US pair was 

shown six times resulting in 24 first-order conditioning trials. Then, as a manipulation check, we 

assessed attribute ratings of all CS_1s. Next, the second-order conditioning phase paired the four 

CS_1s with four CS_2s. In those pairings, the CS_2 either “liked” or “disliked” the CS_1. Figure 

14’s lower panel illustrates the second phase. CS_2s were presented alone for 1 s, then the 

relation appeared on its right side and they were shown together for another second. Finally, 

CS_1s appeared on the very right part of the screen and the three elements were shown together 

for 3 s. The intertrial interval was 500 ms. Finally, we assessed attribute ratings and liking rating 

of all CS_2s and the control questions at the end of the experiment. The order of presentation in 

the two conditioning phases and all measurement phases was random. 
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Figure 14. Example trials from Experiment 4.3. In the first conditioning phase CS_1s are paired 

with athletic or unathletic USs; in the second conditioning phase CS_2s are paired with CS_1s 

and the two stimuli are either connected by a “like” or “dislike” relation. 

 

Results.  

Manipulation check. We analyzed participants’ CS_1 attribute ratings after the first 

conditioning phase in a t-test. As expected, participants rated athletic-paired CS_1s as more 

athletic (M = 83.09, SD = 17.61) than unathletic-paired CS_1s (M = 30.18, SD = 20.39), t(293) = 

28.34, p < .001, dz = 1.65. 

Attribute ratings. Figure 15 shows attribute ratings of the CS_2s as a function of CS_1-

paired attribute (athletic vs. unathletic) and CS_2-CS_1 relation (like vs. dislike). The respective 

ANOVA showed only an interaction, F(1, 293) = 48.07, p < .001, 𝜂𝑝
2 = 0.14, 95%CI[0.07, 0.21]. 

The main effect of attribute was not significant (F(1, 293) = 1.55, p = .214, 𝜂𝑝
2 < 0.01, 

95%CI[0.00, 0.03]); the main effect of relation was also not significant. Descriptively, 

participants rated CS_2s liking CS_1s as more athletic (M = 52.87, SD = 28.17) than CS_2s 
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disliking CS_1s (M = 50.59, SD = 27.75), F(1, 293) = 3.07, p = .081, 𝜂𝑝
2 = 0.01, 95%CI[0.00, 

0.04]. 

Liking ratings. The liking ratings again showed a main effect of relation. Participants 

liked CS_2s liking CS_1s more (M = 53.91, SD = 22.12) than CS_2s disliking CS_1s (M = 

42.54, SD = 22.94), F(1,293) = 70.70, p < .001, 𝜂𝑝
2 = 0.22, 95%CI[0.12, 0.27]. No other effects 

were significant, all Fs < 0.14, all ps > .71, all 𝜂𝑝
2s < 0.01. 

 

 

 

Figure 15. Experiment 4.3: Attribute ratings of CS_2s that were paired with a CS_1 that had 

previously either been paired with an athletic or unathletic US. CS_2 and CS_1 either liked or 

disliked each other. Error bars represent the standard error of the mean. 

 

Attribute ratings controlling for liking. Similar to Experiment 4.1 and 4.2, we repeated 

the main analysis based on the residuals of the multi-level regression predicting attribute ratings 

from liking ratings. The respective ANOVA of the residuals replicated the interaction between 
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attribute and relation, F(1,293) = 48.20, p < .001, 𝜂𝑝
2 = 0.14, 95%CI[0.08, 0.21]. No other effects 

were significant, all Fs < 1.72, all ps > .19, all 𝜂𝑝
2s < 0.01. 

Discussion. Experiment 4.3 replicated the relational qualifiers’ influence on AC using a 

second-order conditioning setup. This setup has several methodological advantages. Foremost, 

the clear interaction suggests that the relational qualifiers exert their influence on the link 

between the paired stimuli, and not a potential link between the CS and the depicted activity or 

the relevant attribute (i.e., “Neal dislikes cycling”). Rather, the AC effect is moderated by the 

negative relation of CS and US, or here, between CS_2 and CS_1 (i.e., “Neal dislikes Wade”). 

This effect was also independent of CS_2 likeability; the effect sizes for the attribute ratings and 

the attribute ratings controlled for likeability were virtually identical. 

Experiments 4.1-3 thereby showed the moderating influence of relational qualifiers on 

AC effects, while precluding our first and second potential explanation. That is, the effect is not 

based on generalized liking and not based on participants inferring that the CSs (dis)like 

(un)athletic activities. Yet, it would be premature to conclude that the proposed CS-US link is 

therefore propositional in nature. This reasoning is valid for EC effects, but less straightforward 

for AC effects. As we have argued above, participants disliking a CS that dislikes something 

good is justified, as the evaluative responses align (i.e., participants are justified to dislike Neal if 

the setup shows “Neal dislikes cute puppies”, given they like puppies themselves). However, 

Neal disliking athletic Wade does not justify the rating that Neal is unathletic; a substantial 

number of additional assumptions would be necessary. For example, one might argue that a CS 

disliking someone athletic (“Neal dislikes athletic Wade”) makes the CS also less likeable and 

therefore less athletic. Yet, this explanation is ruled out by the previous experiments. 
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Alternatively, our third possibility, outlined in the introduction, might provide an 

explanation: Participants might interpret the relational qualifier in a “is similar” vs. “is 

dissimilar” fashion; in other words, participants might read “Neal dislikes Wade” as “Neal is 

unlike Wade” Experiment 4.4 therefore measured the degree to which participants interpret 

(dis-)liking as (dis-)similarity.  

Experiment 4.4: Does liking imply similarity? 

Experiment 4.4 replicated Experiment 4.3 and additionally measured to what extent 

participants interpret the like/dislike relation as implying similarity between CS and US (here: 

between CS_2 and CS_1) and analyzed this as a mediating variable. 

Method. 

Participants and design. We aimed for a similar sample size as in Experiment 4.3. Three 

hundred and two people participated in Experiment 4.4 (female: 156, male: 143, other: 1, 

unspecified: 2, mean age: 33.90 years). We recruited the sample on Amazon Mechanical Turk.  

The design was highly similar to Experiment 4.3, but included one additional measure: 

We measured the degree to which participants interpret the like/dislike relation as similarity 

between two stimuli. 

Procedure and material. The program and stimuli were similar to Experiment 4.3 with 

one exception. Before participants saw pairings of CS_1s and the USs (i.e., first-order 

conditioning phase), they indicated in two trials how similar they thought two men were that 

liked versus disliked each other. A similarity rating trial looked as follows: A black-and-white 

photo of a male face was shown alone for 1 sec, then the relation appeared to its right and they 

were shown together for another second. Then another photo of a male face appeared on the right 

and all three elements were shown for 3 sec before the question “How similar do you think the 
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two men above are?” appeared below. Participants indicated their similarity rating with a slider 

from “dissimilar” to “similar”. The stimuli were from the same pool as the CSs but were not used 

as CSs subsequently. Every relation was rated once, resulting in two similarity rating trials. 

Whether the like or dislike relation was rated first was determined randomly. Everything else 

was identical to Experiment 4.3. 

Results. 

Manipulation check. A t-test showed that participants rated CS_1s paired with athletic 

USs as more athletic (M = 81.62, SD = 15.70) than CS_1s paired with unathletic USs (M = 

33.15, SD = 19.28), t(301) = 28.28, p < .001, dz = 1.63. 

Attribute ratings. Figure 16 shows CS_2 attribute ratings as a function of CS_1-paired 

attribute (athletic vs. unathletic) and CS_2-CS_1 relation (like vs. dislike). The respective 

ANOVA showed an attribute main effect. Participants rated CS_2s paired with athletic-paired 

CS_ 1s as more athletic (M = 52.42, SD = 26.81) than CS_2s paired with unathletic-paired 

CS_1s (M = 46.70, SD = 25.22), F(1,301) = 15.26, p < .001, 𝜂𝑝
2 = 0.05, 95%CI[0.01, 0.10]. This 

main effect was qualified by an interaction with relation, F(1, 301) = 41.25, p < .001, 𝜂𝑝
2 = 0.12, 

95%CI[0.06, 0.19]. The main effect of relation in the ANOVA was not significant, F(1,301) = 

2.25, p = .135, 𝜂𝑝
2 < 0.01, 95%CI[0.00, 0.04]. 

Liking ratings. The same ANOVA for liking ratings showed the by now expected 

relation main effect. CS_2s that liked a CS_1 were rated as more positive (M = 51.48, SD = 

22.27) than CS_2s that disliked a CS_1 (M = 40.97, SD = 21.61), F(1, 301) = 66.22, p < .001, 𝜂𝑝
2 

= 0.18, 95%CI[0.11, 0.26]. No other effects were significant, all Fs < 2.05, all ps > .15, all 𝜂𝑝
2s 

< .01. 
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Figure 16. Experiment 4.4: Attribute ratings of CS_2s paired with a CS_1 that had previously 

either been paired with an athletic or unathletic US. CS_2 and CS_1 either liked or disliked each 

other. Error bars represent the standard error of the mean. 

 

Attribute ratings controlling for liking. We again predicted attribute ratings from liking 

ratings in a multi-level regression analysis. The ANOVA of these residuals still showed the same 

attribute main effect: Participants rated CS_2s paired with athletic-paired CS_1s as more athletic, 

F(1, 301) = 15.27, p < .001, 𝜂𝑝
2 = 0.05, 95%CI[0.01, 0.10]. We also found again the interaction 

with relation, F(1, 301) = 39.39, p < .001, 𝜂𝑝
2 = 0.12, 95%CI[0.06, 0.19]. The main effect of 

relation in the ANOVA was not significant, F(1, 301) = 0.15, p = .703, 𝜂𝑝
2 < 0.01, 95%CI[0.00, 

0.02]. 

Similarity ratings. As described, participants’ first two ratings indicated their perceived 

similarity of two targets that did not appear within the experiment. These ratings serve as an 

indicator to what extent they interpret a like/dislike relation as a similarity/dissimilarity relation. 

First, a t-test showed that participants saw two men as more similar (M = 48.97, SD = 27.37) 

when the first men liked the second man compared to when the first men disliked the second 
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men (M = 37.66, SD = 26.11), t(301) = 5.98, p < .001, d = 0.34. This suggests that, on average, 

participants interpreted the like/dislike relation as implying similarity respectively dissimilarity 

between the two stimuli. To test if this interpretation may explain the relational qualifiers’ 

influence on AC effects, we conducted a regression analysis predicting athleticism ratings from 

the categorical variables “attribute” and “relation” and the continuous variable “similarity”. That 

is, the athleticism rating of a given CS_2 was predicted by the attribute paired with the CS_1, the 

CS_2 was paired with, the relation between CS_2 and CS_1 and the similarity rating. 

Specifically, if a given CS_2 liked a CS_1, the similarity rating from the trial in which two men 

liked each other was used as a predictor. When a given CS_2 disliked a CS_1, the similarity 

rating from the trial in which two men disliked each other was used. 

Table 2 shows the beta weights for the predictors and their interactions. This analysis 

shows that both, the interaction of attribute and relation and the interaction of attribute and 

similarity contribute in predicting attribute ratings in the same direction. That is, if a given CS_2 

disliked a CS_1 that was paired with an athletic US, the interaction of attribute and perceived 

similarity between CS_2 and CS_1 could account for substantial variance in the athleticism 

ratings of CS_2. But the interaction of attribute and relation shows that the relational qualifier 

influences AC effects beyond a perceived similarity of CS_2 and CS_1. Given the regression 

approach, these effects are the unique and independent contributions of these interactions to the 

overall AC effect.  
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Table 2. Statistics of the regression analysis predicting attribute ratings from the dichotomous 

variables attribute (athletic vs. unathletic) and relation (like vs. dislike) and the continuous 

variable similarity. Asterisks indicate effects that are significant on the standard alpha level. 

Effect β t df p 

intercept 48.42 34.70 1200 < .001* 

attribute 0.87 0.63 1200 .532 

relation 0.69 0.49 1200 .623 

similarity 0.03 0.94 1200 .347 

attribute*relation -3.65 -2.62 1200 .009* 

attribute*similarity -0.08 -3.01 1200 .003* 

relation*similarity 0.004 0.15 1200 .879 

attribute*relation*similarity -0.03 -1.07 1200 .283 

 

 

Discussion. Experiment 4.4 replicated Experiment 4.3. Relational qualifiers significantly 

moderated the AC effect in a second-order conditioning setup and controlling for evaluative 

variance. Going beyond Experiment 4.3, we measured to what extent participants interpret the 

like/dislike relation as similarity/dissimilarity. This allowed testing our third potential 

explanation. On the level of means, we found evidence that participants interpreted the relation 

as similarity/dissimilarity. On the level of persons, this rating of the relation as 

similarity/dissimilarity, which was collected at the beginning of the experiment, significantly 

predicted a given CS_2’s athleticism rating, depending on its pairing with an athletic-paired or 

unathletic-paired CS_1. This supports a propositional nature of the CS_2 – CS_1 link, or more 

generally, the CS-US link. However, even controlling for this similarity interpretation, the 

like/dislike relation still predicted CS_2 athleticism ratings as a function of CS_1 athleticism 
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(i.e., athletic vs. unathletic). In other words, the interpretation of the relation does not fully 

explain the relational qualifiers’ influence. We will address possible further explanations in the 

General Discussion. 

General Discussion 

On an effect level, pairing an initially neutral stimulus (CS) with a stimulus possessing a 

specific attribute (US) changes observers’ rating of the neutral stimulus on this attribute. 

Concretely, if the initially neutral “Neal” appears together with athletic “Wade”, people rate Neal 

more athletic compared to when “Wade” would be unathletic. We termed this effect attribute 

conditioning (AC) to set it apart from evaluative conditioning (EC; Förderer & Unkelbach, 2015, 

2016; Unkelbach & Förderer, 2018). On a process level, Förderer and Unkelbach suggested that 

the AC effect is due to a link between the CS and the US; however, the nature of the link remains 

unspecified. It might be associative/referential, propositional, or both. 

To investigate the link’s nature, we used for the first time relational qualifiers in an AC 

paradigm. This strategy has been employed numerous times in EC research to investigate the 

nature of CS-US links (e.g., Hu et al., 2017). In EC, research on relational qualifiers showed that 

the mental representations of CS and US are propositionally related. We aimed to use this 

strategy to shed light on the role of propositional relations in AC. Concretely, we asked, how 

athletic do people rate Neal if he dislikes athletic Wade? As the example shows, the questions if 

and how relational qualifiers influence AC effects does not only inform mental process theories 

of AC but is also of applied interests.  

Our main question if relational qualifiers influence AC effects has a clear answer. Across 

four experiments, we always found an interaction of the US attribute and the CS-US relation 

(that is, the CS_2-CS_1 relation in Experiments 4.3 and 4.4). Across all experiments in the 
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series, we found the interaction five out of six times. Thus, athleticism ratings between athletic-

paired and unathletic-paired CSs differed significantly depending on whether the CS liked or 

disliked the US (or CS_1, to be precise, in Experiments 4.3 and 4.4). In addition, Experiment 4.2 

showed this interaction also on an indirect measure. The smallest effect size for the interaction 

we observed was 𝜂𝑝
2 = 0.04 in the attribute ratings controlling for liking in Experiment 4.2, the 

highest was 𝜂𝑝
2 = 0.14 in Experiment 4.4. Table 3 summarizes the effect sizes of the moderation 

in all experiments for all measures of athleticism. 

 

Table 3. Effect sizes (𝜂𝑝
2) and 95% confidence intervals for the interaction of attribute and 

relation (i.e., the size of the moderation effect) in all athleticism measures in all experiments.  

 Attribute ratings 
Attribute ratings 

controlling for liking 
Indirect measure 

Experiment 4.1 
0.07 

[0.01, 0.18] 
0.07 

[0.01, 0.17] 
 

Experiment 4.2 
0.06 

[0.00, 0.17] 
0.04 

[0.00, 0.14] 
0.05 

[0.00, 0.15] 

Experiment 4.3 
0.14 

[0.07, 0.21] 
0.14 

[0.08, 0.21] 
 

Experiment 4.4 
0.12 

[0.06, 0.19] 
0.12 

[0.06, 0.19] 
 

 

The strength of this influence is surprising. Although we used high-powered studies, the 

manipulations, in particular in Experiments 4.3 and 4.4 were rather subtle. To be precise, a given 

CS_1 was only together onscreen for 18 s in total with the US. The respective CS_2 was also 

only presented 18 s together with the relational qualifier and the CS_1. Given the full 

randomization of the trials and the ratings, the clear interaction pattern across four experiments 
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provides strong support for the existence of the effect. Thus, on an effect level, there is clear 

evidence for the relational qualifiers’ influence. 

The question on the process level has a more differentiated answer. We proposed three 

potential explanations. First, an evaluative connotation of the attribute, which would be in 

analogy to relational qualifiers in EC research. Second, an impression formation effect in which 

participants infer a like/dislike relation of the CS with the activity or the attribute itself. And 

third, an interpretation of the relation as a similarity relation, which would justify propositional 

influences of the relational qualifiers on AC effects. 

The first explanation received little support; particularly Experiments 4.3 and 4.4 showed 

almost no change in effect sizes when we controlled for participants’ evaluative variance in the 

attribute ratings. We investigated the second explanation by using a second-order conditioning 

procedure (Experiments 4.3 and 4.4). Thereby, the target CS never appeared together with the 

attribute or the activity, but only with another stimulus that we previously conditioned to athletic 

or unathletic. If the second explanation would be valid, this setup should substantially reduce the 

relational qualifiers’ influence. The opposite was the case. For the second order conditioning 

setup (Experiment 4.3 and 4.4), we observed numerically stronger effects in comparison to the 

direct pairings, in which target CS and the activity were presented together. The third 

explanation was partially supported in Experiment 4.4. Participants’ perceived similarity of 

stimuli (dis)liking each other influenced the AC effect on athleticism ratings. This predictive 

effect is indicative of a propositional nature of the CS-US link in AC. It shows that reasoning 

along the lines of “Neal dislikes athletic Wade. People who dislike each other are usually 

dissimilar. Therefore, Neal is unathletic.” contributes to the effect. However, a substantial 

variance part was still due to the effect of the relational qualifier on AC (s. Table 2). 
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Potential explanations for the residual effect. At this point, we may only speculate 

about the explanation for this remaining variance. One possibility is the triadic CS-predicate-US 

model suggested by Unkelbach and Fiedler (2016) for relational qualifiers in EC research. It 

explained reversal effects with a “functional predicate” that indicates the relation of CS and US. 

Importantly, this predicate is not propositional. It has, for example, been shown that animals who 

are unlikely to engage in propositional reasoning, are also sensitive to specific relations between 

CS and US. Flaherty and Rowan (1986) observed a phenomenon referred to as negative 

anticipatory contrast in rats. For negative anticipatory contrast, a liked CS (e.g., saccharine 

solution) is followed by an even more liked US (e.g., sugar solution). Afterwards the CS is 

preferred less, although the CS predicted the US and should, accordingly, be preferred more. 

This shows that the specific relation (e.g., X is better than Y) can affect conditioning in animals. 

Therefore, if animal learning may be sensitive to relational predicates it is not necessary to 

explain influences of relations between CS and US in propositional terms.  

Another, theoretically interesting possibility is that referential links may be excitatory or 

inhibitory (Wagner, 1981; Wheeler, Sherwood, & Holland, 2008). That is, the activation of a CS 

may foster (excitatory) or inhibit (inhibitory) the US representation. By default, referential links 

from stimulus pairings would then be excitatory (Wagner, 1981), resulting in the typical AC 

effect. Learning phases in which CS and US are negatively related, however, may create 

inhibitory links. In the present case, excitatory links in the “like” condition and inhibitory links 

in the “dislike” condition may then lead to relational qualifier influences which are not mediated 

by propositions about the CS-US relation. However, at present these considerations are 

speculative and further experiments will be necessary to determine the exact nature of the CS-US 
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link structure, besides participants perception of the like/dislike relation as an indicator of CS-US 

similarity or dissimilarity. 

Spontaneous trait transference as an alternative explanation. AC has procedural 

similarities with the spontaneous trait transference (STT) paradigm (Skowronski, Carlston, Mae, 

& Crawford, 1998). In STT, a communicator describes another persons’ behavior. The behavior 

implies a certain trait, for example, playing soccer implies that the target person is athletic. The 

trait is then not only ascribed to the target person exerting the behavior but also to the 

communicator. In STT, communicator and target person co-occur and the trait is implied. In AC, 

CS and US co-occur and the attribute is implied. Carlston and Skowronski (2005) showed that 

STT is unaffected by presentation time and that it is uncontrollable; that is, STT emerges even if 

participants are instructed not to apply the trait to the communicator. They concluded that STT is 

unlikely to be mediated by deliberate, “attributional” processes. Instead, they suggest that 

communicator and target are merely associated and that those associations influence subsequent 

judgments of the communicator. This explanation is highly similar to a referential link account 

of AC. Here, however, we show that relational qualifiers do moderate the AC effect, and that this 

moderation is partially due to participants’ interpretation of the CS-US relation. The present 

results thereby differentiate the phenomena both on a functional and a process level. It is an 

intriguing question though, if STT effects might not also be subject to the influence of relational 

qualifiers, which would then indicate a shared basis for AC and STT effects.  

Limitations and open questions. While the basic influence of the relational qualifiers on 

AC effects is intriguing, we must also concede several limitations that emerged because we 

remained within a single paradigm. Consequently, we have restrictions in terms of sampling CSs, 

USs, relations, and attributes. That is, we used a set of only 12 male CS in total, and 16 US (12 
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drawings in Experiment 4.1 and 4.2, and four photos in Experiment 4.3 and 4.4) in total. We 

used only one attribute, athleticism, and only one relational qualifier, namely likes and dislikes. 

In addition, we only controlled evaluative variance statistically, and not experimentally (see 

Förderer & Unkelbach, 2014, for an experimental approach). While we firmly believe that the 

observed effects are generalizable, it is a question for the future if one may observe the same 

pattern for, for example, female CSs that hate another intelligent female US. 

The patterns observed for liking ratings differed between Experiment 4.1, 4.3 and 4.4, 

that were conducted online with an US American sample and Experiment 4.2 that was conducted 

in the laboratory with a German student sample. Participants in online experiments consistently 

showed a main effect of relation, that is, they liked CSs that liked others and disliked those that 

disliked others; this effect was already reported by Fiedler and Unkelbach (2011). Participants in 

the laboratory experiment, in contrast, showed that same pattern for liking ratings as for attribute 

ratings: a main effect of attribute and an interaction. It might be that laboratory participants’ 

liking ratings were informed by the conditioned attribute because athleticism is considered 

positive. Our inferences, however, are unaffected by these differences, as the analysis of attribute 

ratings that control for liking precludes that attribute ratings were informed by conditioned 

liking.  

Conclusions. Relational qualifiers moderate attribute conditioning: participants indeed 

rated target persons disliking an athletic person as less athletic (and vice versa). Theoretically, 

the present experiments partially explain this effect because people seem to use liking as an 

indicator of similarity regarding attributes between persons. Practically, this implies that if 

someone dislikes Serena Williams or Dirk Nowitzki, the person will be perceived as unathletic 
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despite the fact that the person might dislike them for reasons that have nothing to do with 

athleticism. 
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Chapter 5: Similarity-based and rule-based generalization in the acquisition of attitudes 

via evaluative conditioning 

Abstract 

Generalization in learning means that learning with one particular stimulus influences 

responding to other novel stimuli. Such generalization effects have largely been overlooked 

within research on attitude acquisition via evaluative conditioning (i.e. EC effects). In five 

experiments, we investigated whether and when generalization of EC effects is based on 

similarity or on abstract rules. Experiments 5.1, 5.2a, 5.2b and 5.3 showed that participants who 

abstracted a rule during the learning phase used that rule for category judgments of novel stimuli. 

However, evaluative ratings of the same stimuli were unaffected by the learned rule but followed 

the similarity to learned stimuli. Experiment 5.4 showed that this similarity-based pattern of 

generalization is not specific to evaluative ratings. Rather, resemblance between judgment task 

and learning task seems to determine whether acquired rules are taken into account. We discuss 

how dual-process and single-process models of EC may account for the obtained generalization 

results. 
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Similarity-based and rule-based generalization in the acquisition of attitudes via 

evaluative conditioning 

 

Attitudes are a central construct within psychological research. From simple food choices (e.g. a 

salad vs. a hotdog) to complex voting decisions (e.g. Republicans vs. Democrats), attitudes play 

an important role in psychological theorizing (e.g. Ajzen, 1991; see Vogel & Wänke, 2016, for 

an overview). Evaluative conditioning (EC) is one paradigm that studies attitude acquisition and 

change in these domains. Functionally, EC is people’s change in evaluative responses towards 

previously neutral stimuli (CSs) after these stimuli co-occurred with a positive or negative 

stimulus (US; see De Houwer, 2007, for a theoretical overview). For example, people will 

evaluate a neutral face that co-occurred with a happy face more positively than a neutral face that 

co-occurred with an angry face. Such EC effects are found in many domains, including person 

perception (Hütter et al., 2012), advertising (Sweldens, Van Osselaer, & Janiszewski, 2010), or 

eating behavior (Baeyens, Vansteenwegen, De Houwer, & Crombez, 1996).  

Here, we investigate how EC effects generalize (see Pearce, 1987; Spence, 1937, for the 

concept of  generalization); that is, how does the changed evaluation of one stimulus (i.e. an EC 

effect) influence other, novel stimuli? Given the claimed far-reaching explanatory potential of 

EC, investigating how evaluations of individual persons translate into evaluations of groups or 

how preferences for a certain product become preferences for a whole brand seems a worthwhile 

topic (Hütter, Kutzner, & Fiedler, 2014). In the remainder, we introduce the distinction between 

similarity- based and rule-based generalization, review relevant research and proceed to explain 

our empirical approach. 
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Similarity-based and rule-based generalization. Generalizing from previous instances 

of learning is crucial to be able to behave adequately in novel situations. Generalization is often 

studied by testing stimuli that vary in their degree of similarity to the learned CS on a certain 

stimulus dimension (e.g. size). Experiments typically show that conditioned responses are 

stronger when generalization stimuli are similar to the CS (e.g. Pearce, 1987). Such similarity-

based generalization is manifest in responses towards novel stimuli that follow a similarity 

gradient and are unaffected by more complex propositions. However, responses towards novel 

stimuli may also be based on inference rules. Such rule-based generalization is manifest in 

responses that follow rules that can be instructed or learned by experience and require 

propositional knowledge.  

This distinction is not new in the literature. Boddez, Bennett, van Esch, and Beckers 

(2017), for example, showed both rule-based generalization and similarity-based generalization 

in fear conditioning. They tested novel stimuli varying in the shade of grey to the CS that was 

previously followed by a shock. In one condition they observed the typical pattern: A 

generalization gradient of responses that are maximal for the CS and decrease as similarity to the 

CS decreases. However, when participants were instructed that the more similar stimuli are to the 

CS the less likely they will be followed by a shock (i.e. reverse similarity relation), they 

observed a reversed generalization gradient (see also Wong & Lovibond, 2017). That is, in this 

condition, responses to the novel stimuli were based on the instructed rule. Interestingly, valence 

ratings of the generalization stimuli all followed the standard gradient shape. Thus, the instructed 

proposition was applied for shock expectancy ratings but not for judgments of liking of the 

generalization stimuli; in our terms, generalization of liking took place in a similarity-based 

manner. 
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The present research. We adapted a paradigm from category learning (Shanks & Darby, 

1998) to study the distinction between similarity-based and rule-based generalization in EC. 

While the original experiments only studied category learning, our study additionally included 

the typical elements of EC, pairings with positive or negative stimuli and a measure of liking: In 

a learning phase, participants saw pairings of individual stimuli and compounds of those stimuli 

(i.e. two individual stimuli were combined to form a compound) with positive or negative 

pictures. Crucially, the pairings followed a rule: Compound stimuli were paired with the opposite 

valence than their individual component stimuli. That is, if individual stimuli A and B were both 

paired with positive pictures, their compound AB was paired with a negative picture. 

Conversely, if stimuli C and D were paired with negative pictures, their compound CD was 

paired with a positive picture. The learning phase also included individual stimuli without their 

respective compound (i.e. individual stimuli E and F paired with positive pictures and individual 

stimuli G and H with negative pictures). Thus, the learning phase was at the same time a 

category learning and an EC setup.  

We classified participants as “rule learners” and “non-rule learners”, depending on 

whether they could verbalize the underlying rule. In a test phase, participants then responded 

towards individual and compound stimuli that they had encountered in the learning phase. 

Additionally, they responded to novel compound stimuli which had not appeared in the learning 

phase (e.g. EF), but whose individual component stimuli had (i.e. E and F).  

In the test phase, we obtained two measures: We asked participants (a) to categorize 

stimuli into a positive or a negative category and (b) to evaluate them. We aimed to replicate the 

finding by Shanks and Darby (1998) that rule learners generalize the rule they abstracted in the 

learning phase to novel stimuli, namely that two positives form one negative and two negatives 
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form one positive. Thus, rule learners should classify the compounds EF as negative and GH as 

positive. Non-rule learners, in contrast, should respond towards novel compound stimuli in a 

similarity-based manner; that is, based on their components’ pairing with positive or negative 

stimuli. Thus, non-rule learners should classify the compounds EF as positive and GH as 

negative, because its elements were both paired with positive and negative pictures, respectively. 

We tested these predictions in five experiments. 

Overview of the experiments. Experiment 5.1 tested generalization for categorization 

responses and evaluative ratings as a function of rule abstraction. Replicating Shanks and Darby 

(1998), categorization of generalization stimuli depended on participants’ rule abstraction. Yet, 

liking of generalization stimuli did not depend on rule abstraction but followed similarity-based 

generalization. However, the number of rule learners was very low. Subsequent experiments, 

therefore successfully manipulated factors that increased the number of rule learners. 

Additionally, Experiments 5.2a and 5.2b explored the role of responses and feedback during the 

learning phase. Experiment 5.3 instructed the relevant rule. Regardless, however, Experiments 

5.2a, 5.2b and 5.3 showed the same pattern as Experiment 5.1 – rule knowledge (if present) was 

used for categorizing but not for judgments of liking of novel stimuli. Experiment 5.4 then 

showed that this similarity-based generalization is not specific to liking but potentially a function 

of closeness of the generalization judgments to the learning task.  

We report only significant effects and null-effects when they are theoretically relevant. 

We conducted an additional preliminary study that was similar to Experiment 5.1, but did not 

probe rule knowledge that we do not report here. The results are redundant with Experiment 5.1. 

We excluded participants from the data sets who indicated at the end of the experiment that they 

had not taken part seriously (Aust et al., 2013). Apart from this, we did not exclude any data and 
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we report all manipulations and all measures in the studies. The data for all reported experiments 

is available at https://osf.io/x4cw9/?view_only=e2aa7d6c90fb4da1b3d19189cf71d1d5. 

Experiment 5.1 

Participants categorized stimuli as “mammals” (positive) or “reptiles” (negative). The 

learning phase paired target stimuli (CSs) with mammal or reptile pictures (USs). The task could 

be mastered by memorizing which stimuli co-occur with which pictures (non-rule learning) or by 

additionally abstracting the underlying pairing rule (rule learning). We investigated whether rule 

learners apply their rule knowledge when categorizing and evaluating novel compound stimuli. 

Method. 

Participants. Seventy-seven people (female: 63, male: 13, unspecified: 1; mean age: 

22.83 years, excluding two participants who gave nonsensical age information) recruited on 

campus participated for course credit or a small monetary reward. Experimental sessions  

included up to six people. A sensitivity analysis with G*Power (Faul et al., 2007) showed that 

this sample size allows detecting at least medium-sized effects for both categorization and liking 

judgments (f = 0.23) with a power of .85 and α = .05 (within-between interaction in an ANOVA, 

correlation among repeated measures: r = 0.1, sphericity assumed, see Results section).12 

Design. The design included 20 CSs: 16 individual stimuli (A to P) and four compound 

stimuli (AB, CD, EF, and GH). Eight individual CSs were paired with positive mammals. 

Participants should learn to categorize these CSs as mammals and like them. Eight individual 

CSs were paired with reptiles. Participants should learn to categorize these CSs as reptiles and 

                                                 
12 As we were unsure about what correlation among repeated measures to assume, we tested values 

between r=0.1 and r=0.5 in steps of 0.1. These analyses showed that we could potentially detect effects as small as 

f=0.17 (Experiment 5.1, 5.2a, 5.2b, and 5.4) and f=0.14 (Experiment 5.3). In the text, we report only the most 

conservative estimates. Note also, that the correlation among repeated measures and the resulting sensitivity will 

most likely be higher for the categorization DV than for the evaluation DV because concerning the former, we 

collected five responses per stimulus per participant and only one per stimulus per participant for the latter. 
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dislike them. Please note that the conjunction “and” does not imply causality. The four 

compound stimuli were paired with an animal of the other category (and opposite valence) than 

their components; for example, if A and B were paired with positive mammals, AB was paired 

with a negative reptile. 

Four additional compound stimuli IJ, KL, MN and OP did not appear during the learning 

phase but served as generalization stimuli in the test phase. Table 4 shows the full design. The 

underlying rule “a compound and its elements belong to opposite categories” makes IJ and MN 

negative reptiles (because I, J, M, N were paired with positive mammal stimuli; see Table 4). 

Conversely, the rule makes KL and OP positive mammals (because K, L, O, P were paired with 

negative reptile stimuli; see Table 4). The test phase measured participants’ categorization 

(mammal vs. reptile) and evaluation (positive to negative) for all individual and compound 

stimuli in two separate blocks. We counterbalanced the order of categorization and evaluation 

blocks. Between the learning and the test phase, we asked participants to verbalize the rule 

underlying the stimulus pairings in the learning phase to classify them as rule learners or non-

rule learners. 

Table 4. Learning phase design of Experiment 5.1 and 5.3. Stimuli A-P were individual 

conditioned stimuli (CSs) that were either paired with a positive mammal category (“pos”) or a 

negative reptile category (“neg”). The compounds AB-GH were paired with the opposite valence 

than their element stimuli. IJ-OP were not paired in the learning phase but served as 

generalization stimuli (GS). According to the rule underlying the other stimulus pairings, IJ and 

MN would belong to the negative, and KL and OP to the positive category. 

Individual CS A → pos 

B → pos 

C → neg 

D → neg 

E → pos 

F → pos 

G → neg 

H → neg 

Compound CS AB → neg CD → pos EF → neg GH → pos 

Individual CS I → pos 

J → pos 

K → neg 

L → neg 

M → pos 

N → pos 

O → neg 

P → neg 

Compound GS IJ? KL? MN? OP? 
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Material and procedure. Upon arrival, experimenters seated participants at individual 

cubicles with personal computers and started the experimental computer program (OpenSesame; 

Mathôt et al., 2012). The program randomly assigned 16 CSs to serve as stimuli A to P and thus 

whether it would be paired with a positive or negative US and whether it would also appear in a 

compound stimulus. We used geometric shapes with light yellow background as CSs (see 

Appendix B). Ten colored photos of clearly positive baby mammals and ten photos of clearly 

negative reptiles served as positive and negative USs.  

After consenting to participate, participants read a cover story. Their task would be to 

classify cellular samples of mammals and reptiles. These samples may consist of one or two cells 

(i.e. individual and compound stimuli). If a sample would not appear together with the picture of 

a mammal or a reptile, they would need to classify the sample. They received feedback on these 

classification responses.  

A learning trial started with a blank screen for 500 ms. Then, the CS appeared in the 

screen’s top half and after 1000 ms the US appeared below. CS and US were shown together for 

1500 ms. Every tenth trial, a CS appeared alone and participants classified the shape as a reptile 

or a mammal cellular sample. Contingent upon their response, the program showed a feedback 

screen with “Correct!” or “False!” at the top, the CS below and the US at the bottom for 2500 

ms. The 20 CS-US pairs (16 individual and four compound stimuli; see Table 4) were shown ten 

times each, resulting in 180 learning trials and 20 response trials. Within these constraints, 

stimulus presentation order was random.  

Next, participants answered an open-ended question regarding any regularities they may 

have noticed: “Did you notice a difference between cellular samples of mammals and reptiles? If 
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so, please describe the difference.” Then they proceeded to the test phase that consisted of a 

categorization and an evaluation block.   

A trial in the categorization block showed a blank screen for 500 ms. Then the program 

showed the question “reptile or mammal?” on the top, a CS below, and the answer keys denoting 

the mammal and reptile categories at the bottom of the screen. We counterbalanced the 

assignment of the keys (“a” and “l”) to the answer categories. Participants categorized all 24 

stimuli (20 CSs plus four generalization stimuli) five times resulting in 120 trials. 

A trial in the evaluation block also showed a blank screen for 500 ms; yet, then the 

program asked participants to “evaluate the shape with the number keys” on the top of the screen 

and showed the CS and the scale (1, very negative, to 9, very positive) below. Participants 

evaluated all 24 stimuli once.  

Stimulus presentation order within both blocks was random. Depending on the 

counterbalancing condition, participants completed the categorization or the evaluation block 

first. Upon completion of the test phase, experimenters thanked participants, informed them 

about the aim of the experiment and rewarded them. 

Results. Based on their responses to the open-ended question, we classified six 

participants as “rule learners” and 71 participants as “non-rule learners”. Appendix C details the 

classification procedure. The low number of rule learners is problematic but will be addressed in 

the following experiments which replicate Experiment 5.1’s effect pattern. Participants 

responded above chance in the learning phase and rule learners descriptively performed better 

than non-rule learners (see also Appendix C). 

Categorization. Figure 17’s left panel shows the mean proportion of “mammal” 

classifications of generalization stimuli as a function of learner type (rule vs. non-rule learner) 
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and the category according to the rule (mammal/positive vs. reptile/negative). The respective 2 

(learner type) × 2 (category according to the rule) mixed ANOVA showed a category main effect 

contrary to the rule: Participants categorized rule-wise “mammal” compounds less often as 

mammals (M = 0.29, SD = 0.46) than rule-wise “reptile” compounds (M = 0.48, SD = 0.50), 

F(1,75) = 4.12, p = .046, 𝜂𝑝
2 = .05. Importantly, this effect was qualified by an interaction with 

learner type, F(1,75) = 19.78, p < .001, 𝜂𝑝
2 = .21. Separate ANOVAs for each learner type 

showed that non-rule learners classified novel compound stimuli contrary to the rule but in line 

with the pairings of their individual component stimuli. They categorized “mammal” compounds 

(i.e. comprised of two reptile-paired stimuli) less often as mammals (M = 0.25, SD = 0.43) than 

“reptile” compounds (i.e. comprised of two mammal-paired stimuli; M = 0.51, SD = 0.50),  

F(1,70) = 17.78, p < .001, 𝜂𝑝
2 = .20. Rule learners, on the other hand, classified compounds in 

line with the rule: They categorized “mammal” compounds as mammals more often (M = 0.83, 

SD = 0.38) than “reptile” compounds (M = 0.12, SD = 0.32), F(1,5) = 49.97, p < .001, 𝜂𝑝
2 = .91. 

Evaluation. Figure 17’s right panel shows the mean evaluations of generalization stimuli. 

We used the same ANOVA as for the categorizations to analyze evaluations. Overall, 

participants evaluated compound generalization stimuli contrary to rule-based liking: 

Compounds consisting of two negatively paired stimuli and should –according to the rule – be 

evaluated positively, were evaluated more negatively (M = 4.20, SD = 2.16) than compounds 

consisting of two positively paired stimuli (M = 5.46, SD = 2.34), F(1,75) = 10.90 p = .001, 𝜂𝑝
2 

= .13. Crucially, both rule and non-rule learners showed this pattern; the interaction between 

category according to the rule and learner type was not significant, F(1,75) = 0.69, p = .410, 𝜂𝑝
2 

< .01. 
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Categorization of generalization stimuli Liking of generalization stimuli 

  
Figure 17. Data from Experiment 5.1: The left panel shows the proportion of ”mammal” 

categorization responses towards the four generalization stimuli, grouped by the correct category 

according to the rule as a function of learner type. Thus, high values for the mammal/positive 

category and low values for the reptile/negative category indicate good categorization 

performance. The right panel shows the evaluation of the generalization compound stimuli as a 

function of the correct category according to the rule and learner type. Error bars show the 

standard error of the mean. 

 

Comparing categorization and evaluation. Above, we observed a significant interaction 

between correct category and learner type for categorization but not for evaluation. As the 

difference between significant and nonsignificant is not necessarily significant (Gelman & Stern, 

2006), we z-standardized scores of both measures and submitted them to a 2 (learner type: rule 

vs. non-rule) x 2 (category according to the rule: mammal/positive vs. reptile/negative) x 2 

(measure: categorization vs. evaluation) mixed ANOVA. If the interaction between category and 

learner type differ between the measures, we expect a three-way interaction.  
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We observed a two-way interaction of category and learner type (F(1,75) = 6.08, p 

= .016, 𝜂𝑝
2 = .07), a two-way interaction of category and measure (F(1,75) = 27.18, p < .001, 𝜂𝑝

2 

= .27) and, most importantly, a three-way interaction of measure, category and learner type, 

F(1,75) = 34.05, p < .001, 𝜂𝑝
2 = .31. That is, categorization and evaluation significantly differed 

regarding the size of the interaction of category and learner type.  

Discussion. Participants who could verbalize the underlying rule after the learning phase 

used this rule to categorize novel compound stimuli in the test phase. Participants who did not 

correctly verbalize the rule categorized novel compound stimuli based on their components’ 

paired category. Experiment 5.1, thus, replicated the findings by Shanks and Darby (1998). 

This pattern, however, did not emerge for the evaluation of novel compounds. Both rule 

and non-rule learners showed similarity-based generalization, basing their judgments on the 

components’ paired valence. That is, even participants who understood that, according to the 

rule, a certain compound is a pleasant mammal stimulus (as attested by correct categorization), 

did not like it. Vice versa, even though they knew that a certain compound is supposed to be an 

aversive reptile stimulus, they nevertheless liked it. Importantly, this dissociation of measures 

did not occur for compounds that were paired in the learning phase. Appendix E reports detailed 

analyses of the responses for paired compounds and a comparison of paired and novel 

compounds. The conclusion is that in all experiments the observed pattern is specific for 

generalization. 

While this is initially interesting, Experiment 5.1 does not allow strong conclusions due 

to the low number of rule learners. The open-ended question at the end of the learning phase was 

potentially not sensitive enough to detect rule knowledge. Furthermore, the diverging pattern 

between categorization and evaluation responses at test might follow because participants gave 
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categorization but not liking responses during the learning phase. Potentially, participants’ focus 

was on category, not evaluative information and therefore rule knowledge was only applied to 

categorization. We aimed to follow up on those shortcomings in Experiment 5.2a and 5.2b. 

Experiment 5.2a and 5.2b 

Foremost, Experiment 5.2a and 5.2b conceptually replicated Experiment 5.1 but aimed to 

increase the number of rule learners with two changes. First, we made the question used to 

classify participants as rule or non-rule learners more sensitive to rule knowledge. Second, we 

decreased the number of stimuli to facilitate rule abstraction. In addition, participants not only 

categorized CSs on every tenth trial but also evaluated them. In Experiment 5.2a, participants 

received feedback for their categorization responses like in Experiment 5.1. In Experiment 5.2b, 

they did not receive feedback for any response during the learning phase.13 

Method. 

Participants and design. Eighty-one people (female: 57, male: 24, mean age: 22.04 

years) participated in Experiment 5.2a. Eighty people (female: 46, male: 33, unspecified: 1, mean 

age: 22.33 years) participated in Experiment 5.2b. Sensitivity was comparable to Experiment 5.1 

(see Footnote 9). The design was highly similar to Experiment 5.1, but used only ten CSs: eight 

individual stimuli (A to H) and two compound stimuli (AB, CD). Four individual CSs and one 

compound CS were paired with positive USs and four individual CSs and one compound with 

negative USs.  

Material and procedure. Experiment 5.2a and 5.2b’s procedure followed Experiment 5.1 

with two variations. In every tenth trial in the learning phase, the program asked participants to 

                                                 
13 Experiment 5.2b was conducted last in the present series of experiments, as a result of the revision 

process of this paper. 
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categorize the CS. In Experiment 5.2a, participants received feedback for their response like in 

Experiment 5.1. In Experiment 5.2b, they did not receive feedback. In both experiments they 

were then also asked to evaluate the stimulus. They should judge whether the CS rather elicited a 

positive or negative feeling and to respond spontaneously. In Experiment 5.2b, the US appeared 

only after both responses had been given.  

We changed the cover story to account for the liking judgments during the learning phase 

because “liking” of cellular samples is not meaningful. Instead, the cover story instructed 

participants that they had to learn an encrypted language with symbols that stand for mammals 

and reptiles.  

As we used only 10 CSs, the learning phase contained 100 trials. The test phase included 

only 12 stimuli (ten CSs plus two novel generalization stimuli). After the learning phase, 

participants had the opportunity to verbalize the rule in two open-ended questions: “Did you 

detect a pattern in the symbolic language? Did you notice anything that you could use for the 

classification and the evaluation? If so, please describe the difference.” And after that: “Did you 

notice something that you could use for the classification and evaluation of the symbols that 

consisted of two figures? If so, please describe it.”. 

Then, participants proceeded to the test phase. The categorization block of the test phase 

consisted of 60 trials (twelve stimuli with five responses each) and the evaluation block consisted 

of twelve trials. 

Results. 

Experiment 5.2a. We classified 18 participants as rule learners and 63 as non-rule 

learners. Appendix C again reports the details. In the learning phase, participants responded 
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above chance and rule learners descriptively performed better than non-rule learners (see 

Appendix C). 

Categorization. Figure 18’s left panel shows the mean proportion of “mammal” 

classifications of generalization stimuli as a function of learner type and category according to 

the rule. As the pattern suggests, Experiment 5.2a replicated Experiment 5.1 for participants’ 

categorization responses. The respective ANOVA only showed an interaction between learner 

type and category according to the rule, F(1,79) = 38.76, p < .001, 𝜂𝑝
2 = .33. Follow-up 

ANOVAs showed that non-rule learners categorized “mammal” stimuli less often as mammals 

(M = 0.19, SD = 0.40) than “reptile” stimuli (M = 0.63, SD = 0.48), F(1,62) = 45.45, p < .001, 𝜂𝑝
2 

= .42. That is, they based categorization of generalization stimuli on their elements’ categories. 

Rule learners, on the other hand, showed the opposite pattern. They categorized “mammal” 

symbols correctly as mammals more often (M = 0.70, SD = 0.46) than “reptile” symbols (M = 

0.22, SD = 0.42), F(1,17) = 9.48, p = .007, 𝜂𝑝
2 = .36. 

Evaluation. Figure 18’s right panel shows the mean evaluation of generalization stimuli 

as a function of learner type and category according to the rule. The respective ANOVA showed 

a category main effect contrary to the rule for evaluations. “Mammal“ stimuli were evaluated 

more negatively (M = 4.05, SD = 1.80) than “reptile” stimuli (M = 5.96, SD = 1.93), F(1,79) = 

25.63, p < .001, 𝜂𝑝
2 = .24. That is, participants’ evaluations followed the components’ paired 

valence. There was no interaction with learner type, F(1,79) = 0.06, p = .815, 𝜂𝑝
2 < .01. Thus, 

even rule learners who categorized generalization stimuli based on the rule, did not use that rule 

knowledge to evaluate them. 
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Categorization of generalization stimuli Liking of generalization stimuli 

  
Figure 18. Data from Experiment 5.2a: The left panel shows the proportion of ”mammal” 

categorization responses towards the generalization stimuli, grouped by the correct category 

according to the rule as a function of learner type. Thus, high values for the mammal/positive 

category and low values for the reptile/negative category indicate good categorization 

performance. The right panel shows the evaluation of the generalization compound stimuli as a 

function of the correct category according to the rule and learner type. Error bars show the 

standard error of the mean. 

 

Comparing categorization and evaluation. We again tested whether the difference 

between measures was significant in a 2 (learner type: rule vs. non-rule) x 2 (category according 

to the rule: mammal/positive vs. reptile/negative) x 2 (measure: categorization vs. evaluation) 

mixed ANOVA with z-standardized scores as dependent variable and observed the predicted 

three-way interaction of category, learner type and measure, F(1,79) = 34.77, p < .001, 𝜂𝑝
2 = .31. 

Thus, the categorization and evaluation measure differed with regard to the interaction of correct 

category and learner type. 

Experiment 5.2b. We classified 27 participants as rule-learners and 53 as non-rule 

learners. Participants responded above chance in the learning phase and rule learners performed 
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better than non-rule learners. Appendix C again presents the details for the classification and the 

performance in the learning phase. 

Categorization. Figure 19’s left panel shows the mean proportion of “mammal” 

classifications and evaluations of generalization stimuli as a function of learner type and 

category according to the rule. The respective ANOVA showed only an interaction between 

correct category and learner type, F(1,78) = 36.08, p < .001, 𝜂𝑝
2 = .32. Follow-up ANOVAs 

showed that rule learners categorized novel compounds in line with the rule. “Mammal” 

compounds were classified as mammals more often (M = 0.59, SD = 0.49) than “reptile” 

compounds (M = 0.24, SD = 0.43), F(1,26) = 6.54, p = .017, 𝜂𝑝
2 = .20. Non-rule learners, in 

contrast, classified “mammal” compounds as mammals less often (M = 0.19, SD = 0.39) than 

“reptile” compounds (M = 0.69, SD = 0.46), F(1,52) = 46.55, p < .001, 𝜂𝑝
2 = .47. 

Evaluation. Figure 19’s right panel shows the mean evaluation of generalization stimuli 

as a function of learner type and category according to the rule. The respective ANOVA showed 

only a main effect of correct category which was contrary to what would be expected from rule-

based generalization: “Mammal” compounds were evaluated more negatively (M = 4.39, SD = 

2.25) than “reptile” compounds (M = 5.60, SD =  2.21), F(1,78) = 5.82, p = .018, 𝜂𝑝
2 = .07. No 

other effects were significant, all Fs < 1.14, all ps > .29, all 𝜂𝑝
2s < .02. 

Comparing categorization and evaluation. As for Experiment 5.2a, the ANOVA with z-

standardized scores of both measures showed a three-way interaction with measure, F(1,78) = 

17.20, p < .001, 𝜂𝑝
2 = .18. Thus, categorization and evaluation differed with regard to the 

interaction of category and learner type. 
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Categorization of generalization stimuli Liking of generalization stimuli 

  
Figure 19. Data from Experiment 5.2b: The left panel shows the proportion of ”mammal” 

categorization responses towards the generalization stimuli, grouped by the correct category 

according to the rule as a function of learner type. Thus, high values for the mammal/positive 

category and low values for the reptile/negative category indicate good categorization 

performance. The right panel shows the evaluation of the generalization compound stimuli as a 

function of the correct category according to the rule and learner type. Error bars show the 

standard error of the mean. 

 

Discussion. Experiment 5.2a and 5.2b replicated Experiment 5.1 with an increased 

number of rule learners. Rule learners categorized generalization stimuli according to the rule, 

but did not apply that rule for the evaluation of the same stimuli. Furthermore, the non-use of the 

rule for liking judgments cannot be explained by a sole focus on category information in the 

learning phase. While in Experiment 5.1, participants only categorized CSs, Experiment 5.2a 

included both categorization and liking responses into the learning phase and replicated 

Experiment 5.1’s findings. Yet, learning about categorization was more explicit in the learning 

phase because participants received feedback for categorization but not for liking judgments. 

Thus, learning about evaluative properties of the CSs took place in an incidental manner in 

Experiment 5.2a. In Experiment 5.2b, no feedback was given for categorization responses in the 
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learning phase but we nevertheless replicated the pattern of rule-based generalization for 

categorization and similarity-based generalization for liking. Thus, explicit versus incidental 

learning can also not account for the findings. 

Experiment 5.3 

So far, the distinction between rule and non-rule learners was measured. Experiment 5.3 

directly manipulated rule availability by instructing participants regarding the underlying rule. 

The setup was very similar to the previous experiments. Yet, participants in one condition 

explicitly received the rule underlying pairings in the learning phase. 

Method. 

Participants and design. One-hundred eighteen people (female: 77, male: 41, mean age: 

22.48 years, excluding two participants who gave nonsensical age information) participated in 

Experiment 5.3. A sensitivity analysis showed that this sample allows detecting at least a small 

to medium-sized effect for both measures (f = 0.19) with a power of .85 and α = .05 (see 

previous experiments and Footnote 9). 

The design was the same as in Experiment 5.1 using 20 CSs and the cover story of 

cellular samples (see Table 4). Additionally, we manipulated whether participants explicitly 

received the rule in the instructions or not.14 To keep the experiments comparable, we still asked 

                                                 
14 Due to a programming error, the conditions were not equal in size and they were not fully 

counterbalanced: We manipulated rule instruction and counterbalanced the order of DVs and assignment of response 

keys, resulting in eight counterbalancing conditions. We instructed the rule to five instead of four of those 

conditions. Thus, 74 participants received the rule, 44 did not. Also, among participants who did not receive the rule, 

we lacked a condition in which participants first underwent the evaluation block and then the categorization block of 

the generalization phase and responded with the key “a” for the reptile and “l” for the mammal category. That exact 

cell was twice as big among participants who received the rule. We consider the lack of full counterbalancing of 

minor importance as analyses from Experiment 5.1, 5.2a and 5.2b have not shown any relevant effects of the two 

variables we counterbalanced. Further, accidentally increasing the rule instruction condition lead to a higher number 

of rule learners in the sample. We consider this rather unproblematic for two reasons: First, rule learners are the 

subgroup of interest and more central to our arguments than non-rule learners. Second, non-rule learners constituted 

the vast majority of the samples in Experiments 5.1, 5.2a and 5.2b which gave ample opportunity to draw inferences 

about them.  
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participants to verbalize the rule. In the rule instruction condition they were asked to write down 

the rule directly after the instruction, while participants in the no rule instruction condition were 

asked to write it down after the learning phase. 

Material and procedure. Stimuli and instructions were by and large the same as in 

Experiment 5.1. The rule was explicated in the following way in the rule instruction condition: 

“An experienced colleague gives you the following hint: When two cellular samples that consist 

of one cell (as depicted on the left) come from a mammal, then the cellular sample that contains 

both single cells together comes from a reptile. [example stimuli illustrating the rule were 

depicted]. The rule also applies the other way around: When two single cells come from a reptile, 

then the cellular sample that contains both single cells together comes from a mammal [example 

stimuli]. Do you understand the hint? If you have any questions, please contact the 

experimenters.” On the next page, participants were asked “To make sure that you internalized 

the colleague’s hint, please write down the aforementioned rule in the field below.”. That is, 

participants in the rule instruction condition, were asked to verbalize the rule directly after the 

instruction and therefore were not asked to verbalize it again after the learning phase. For 

participants in the no rule instruction condition, the procedure was the same as in Experiment 5.1 

(i.e., rule verbalization after the learning phase).  

Results. We classified 68 participants as rule learners (62 in the rule instruction 

condition, 6 in the no rule instruction condition); 50 were classified as non-rule learners (12 in 

the rule instruction condition, 38 in the no rule instruction condition). Participants’ performance 

in the learning phase was above chance and rule learners descriptively outperformed non-rule 

learners (see Appendix C for details). For consistency, we report analyses with the measured 

factor “learner type” as opposed to the manipulated factor “instruction”. Appendix D presents the 
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analyses with the manipulated factor “instruction”. The conclusions are the same, as in the rule 

instruction condition 83.78% of participants were able to correctly verbalize the rule, while only 

13.64% verbalized it in the no rule instruction condition. 

Categorization. Figure 20’s left panel again shows the categorization of generalization 

stimuli as a function of the learner type and category according to the rule. The respective 

ANOVA showed a main effect of category according to the rule. “Mammal” stimuli were more 

often classified as mammals (M = 0.58, SD = 0.49) than “reptile” stimuli  (M = 0.34, SD = 0.47), 

F(1,116) = 18.05, p < .001, 𝜂𝑝
2 = .13. This effect was qualified by an interaction with learner 

type, F(1,116) = 56.78, p < .001, 𝜂𝑝
2 = .33. Non-rule learners based their categorization of the 

novel compounds on their elements’ category: Participants classified “mammal” stimuli less 

often as mammals (M = 0.35, SD = 0.48) than “reptile” stimuli, (M = 0.50, SD = 0.50); a follow-

up ANOVA showed that this difference was not significant on the standard alpha level, F(1,49) 

= 3.62, p = .063, 𝜂𝑝
2 = .07. Rule learners showed the reversed pattern. They categorized 

“mammal” stimuli more often as mammals (M = 0.75, SD = 0.43) than “reptile” stimuli (M = 

0.23, SD = 0.42), F(1,67) = 104.56, p < .001, 𝜂𝑝
2 = .61. There was also a nonsignificant main 

effect of learner type, F(1,116) = 3.98, p = .051, 𝜂𝑝
2 = .03. Non-rule learners overall classified 

stimuli as mammals less often (M = 0.43, SD = 0.49) than rule learners (M = 0.49, SD = 0.50). 

Evaluation. Figure 20’s right panel shows the mean evaluation of generalization stimuli 

as a function of the learner type and category according to the rule. The respective ANOVA 

showed only a main effect of category for evaluations. Participants’ evaluative responses were in 

line with the paired valence of the compounds’ elements: Compounds consisting of two negative 

elements (and would, thus, rule-wise be positive) were evaluated more negatively (M = 4.56, SD 
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= 2.11) than compounds that consisted of two positive elements (M = 5.02, SD = 2.19), F(1,116) 

= 4.21, p = .042, 𝜂𝑝
2 = .04. 

Comparing categorization and evaluation. The analysis with z-standardized scores of 

both measures showed the predicted three-way interaction, F(1,116) = 20.02, p < .001, 𝜂𝑝
2 = .15. 

Thus the two-way interaction of correct category and learner type, which we report for 

categorization, differed from the interaction in liking. 

 

 

Categorization of generalization stimuli Liking of generalization stimuli 

  
Figure 20. Data from Experiment 5.3: The left panel shows the proportion of ”mammal” 

categorization responses towards the four generalization stimuli, grouped by the correct category 

according to the rule as a function of learner type. Thus, high values for the mammal/positive 

category and low values for the reptile/negative category indicate good categorization 

performance. The right panel shows the evaluation of the generalization compound stimuli as a 

function of the correct category according to the rule and learner type. Error bars show the 

standard error of the mean. 
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Discussion. Experiment 5.3 explicitly stated the underlying rule and thereby substantially 

increased the number of participants who could verbalize the rule. Still, Experiment 5.3 

replicated Experiments 5.1, 5.2a and 5.2b and shows that liking judgments of novel stimuli were 

not sensitive to rule knowledge, although category membership judgments of the same stimuli 

were.  

Factors that differed between the two dependent measures that might explain the use or 

non-use of an acquired rule at the test stage might, for example, be their dimensional (liking) 

versus categorical (categorization) nature. Experiment 5.4 investigated whether such extraneous 

factors influence the application of rule knowledge to evaluations. 

Experiment 5.4 

Experiment5. 4 investigated whether similarity-based generalization is specific to the 

difference between categorization and evaluation, or whether rule application may depend on 

other factors. For a strong test, Experiment 5.4 reversed the functional implementation of 

categorization and evaluation: We assessed evaluations categorically and categorizations by 

ratings; that is, participants categorized stimuli as positive or negative in the learning phase and 

in the test phase. Category information (i.e., mammal vs. reptile), which had not been relevant in 

the learning phase, was assessed via a rating measure in the test phase. Table 5 shows the 

generalization dimension (i.e., category vs. evaluative) and measurement type (i.e., categorical 

vs. ratings). This display illustrates that Experiments 5.1-3 may have confounded measurement 

with content dimension. Experiment 5.4 realizes the two missing cells in Table 5 and thereby de-

confounds measurement and content. Additionally, we assessed liking via dimensional ratings.  
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Table 5. Overview of dependent measures in all experiments 

  Type of measurement 

  Categorical Rating 

Type of 

information 

Category 

information 

Experiments 

5.1,5.2a,5.2b,5.3 
Experiment 5.4 

Evaluative 

information 
Experiment 5.4 

Experiments 

5.1,5.2a,5.2b,5.3,5.4 
 

 

Method. 

Participants and design. Seventy-nine people (female: 61, male: 18, mean age: 22.67 

years) participated. The design used Experiment 5.2a’s parameters and cover story. However, we 

administered as dependent measures a) a forced two-choice positive-negative categorization, b) a 

continuous “mammal – reptile” rating, subsequently referred to as category rating, and c) a 

continuous valence rating. We presented the measures in three separate blocks. We 

counterbalanced measurement order of a) and b); c) was always assessed last. 

Material and procedure. Material and procedure were highly similar to Experiment 5.2a: 

We used the cover story about the encrypted language and used a reduced number of CSs in the 

learning phase. Crucially, participants categorized the CSs as positive or negative in the learning 

phase. Accordingly, the labels “mammals and reptiles” were replaced with “positive and 

negative”. Thus, the USs remained the same as in previous experiments only their labels, and 

hence, the relevant categorization dimension, changed. Regarding the category ratings in the test 

phase, participants were asked to “[…] indicate whether you rather associate a symbol with a 

mammal or a reptile”. The valence rating was assessed as in Experiment 5.1-3.  
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Results. We classified 33 participants as rule learners and 46 as non-rule learners. 

Participants’ performance in the learning phase was above chance and rule learners performed 

descriptively better than non-rule learners (see Appendix C). 

Positive-negative categorization. Figure 21’s left panel shows the mean proportion of 

“positive” classifications generalization stimuli as a function of learner type and the category 

according to the rule. The respective ANOVA showed an overall effect of category according to 

the rule. Participants classified rule-wise “negative” stimuli more often as positive (M = 0.52, 

SD=0.50) than rule-wise ”positive” stimuli (M = 0.32, SD = 0.47), F(1,77) = 4.54, p = .36, 𝜂𝑝
2 

= .06. More relevant, an interaction with learner type showed that this main effect was mainly 

due to non-rule learners, F(1,77) = 19.14, p < .001, 𝜂𝑝
2 = .20. Follow-up ANOVAs showed that 

non-rule learners responded in the above described way (“negative”: M = 0.64, SD = 0.48; 

“positive”: M = 0.18, SD = 0.39), F(1,45) = 33.36, p < .001, 𝜂𝑝
2 = .43. Thus, non-rule learners 

responded towards novel compounds in line with their elements’ category and contrary to the 

rule.  

Rule learners, in contrast, descriptively responded in line with the rule. They 

classified ”positive” stimuli as positive more often (M = 0.52, SD = 0.50) than “negative” stimuli 

(M = 0.36, SD = 0.48); this difference was not significant, though, F(1,32) = 1.62, p = .213, 𝜂𝑝
2 

= .05. 
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Positive-negative 

categorization of 

generalization stimuli 

Valence rating (liking) of 

generalization stimuli 

Category rating of 

generalization stimuli 

 

   

closeness to the task in the learning phase 

 

Same information 

Same assessment 

Same information 

Different assessment 

Different information 

Different assessment 

 

Figure 21. Data from Experiment 5.4: The left panel shows positive-negative categorization (i.e., 

proportion of “positive” responses) towards the generalization stimuli, grouped by the correct 

category according to the rule as a function of learner type. High values for the mammal/positive 

category and low values for the reptile/negative category indicate good categorization 

performance. The middle panel shows the liking ratings and the right panel shows ratings of 

category membership of the generalization compound stimuli as a function of the correct 

category according to the rule and learner type. The three dependent measures are arranged by 

their degree of closeness to the task during learning (similar to dissimilar from left to right). 

Error bars show the standard error of the mean.   

 

Category rating. Figure 21’s right panel shows the category ratings of generalization 

stimuli. As these data show, participants’ rated generalization stimuli based on their elements’ 

paired category and thus contrary to the rule. Stimuli consisting of two mammal-paired elements 

(i.e., rule-wise “reptile” stimuli) were rated as more mammal-like (M = 5.56, SD = 2.98) than 

stimuli that consisted of two reptile-paired elements (i.e., rule-wise “mammal” stimuli; M = 4.04, 

SD = 2.76), F(1,77) = 7.50, p = .008, 𝜂𝑝
2 = .09. There was no interaction (F(1,77) = 0.55, p 

= .461, 𝜂𝑝
2 < .01) nor was there a main effect of learner type F(1,77) = 0.49, p = .488, 𝜂𝑝

2 < .01. 
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Valence rating. Figure 21’s middle panel shows the mean valence ratings of 

generalization stimuli. Similar to the category ratings, we observed a main effect of paired 

valence. Participants based their evaluations of the novel compounds on the paired valence of 

their elements as opposed to the valence prompted by the rule. Participants rated compounds of 

two positive elements more positively (M = 5.86, SD = 2.44) than compounds of two negative 

elements (M = 3.80, SD = 2.29), F(1,77) = 18.58, p < .001, 𝜂𝑝
2 = .19. We also observed an 

interaction of paired valence with learner type. As Figure 21’s middle panel shows, the effect of 

paired valence was more pronounced for non-rule learners. The liking difference between 

“positive” and “negative” compounds was Δpositive-negative = -2.87 compared to rule learners, 

Δpositive-negative = -0.94, F(1,77) = 4.77, p = .032, 𝜂𝑝
2 = .06. The learner type main effect was 

not significant, F(1,77) = 0.73, p = .396, 𝜂𝑝
2 < .01. 

Comparison of measures. To test whether the interaction between type of learner and 

correct category differed between measures, we z-standardized all three measures and ran a 2 

(learner type: rule vs. non-rule) x 2 (category according to the rule: mammal/positive vs. 

reptile/negative) x 3 (measure: positive-negative categorization vs. category rating vs. valence 

rating) mixed ANOVA. We observed the predicted three-way interaction of learner type, category 

and measure, F(1.95,150.08) = 5.57, p = .005, 𝜂𝑝
2 = .07, degrees of freedom were Greenhouse-

Geisser corrected. That is, the two-way interaction of learner type and category differed between 

the three measures, although the exact nature of this difference is not clear due to the three levels. 

To test between which measures the two-way interaction differs, we conducted three 

follow-up 2 x 2 x 2 ANOVAs. We observed the critical three-way interaction when comparing 

positive-negative categorization and category rating (F(1,77) = 9.86, p = .002, 𝜂𝑝
2 = .11) and when 
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comparing positive-negative categorization and valence rating (F(1,77) = 4.82, p = .031, 𝜂𝑝
2 = .06) 

but not when comparing category rating and valence rating, F(1,77) = 1.61, p = .209, 𝜂𝑝
2 = .20.  

Thus, the two-way interaction between correct category and learner type we observed for 

positive-negative categorization differs from both rating measures. Category rating and valence 

rating, however, do not differ significantly regarding the two-way interaction. 

Discussion. Experiment 5.4 showed that similarity-based generalization is not specific to 

liking judgments and rule-based generalization is not specific for category judgments. When 

participants could verbalize the rule, they applied that rule when categorizing novel compounds 

into the categories “positive” and “negative”. Importantly, they did not generalize the rule to the 

same extent when rating their liking or the degree to which a compound belongs to a mammal 

versus a reptile category. Instead, rule learners’ response pattern especially for the latter measure 

showed that they based their judgments on the category the compounds’ elements were 

associated with in the learning phase. That is, as in Experiments 5.1, 5.2a, 5.2b and 5.3, we 

observed a use of the learned rule for one measure and neglect of the rule for another. 

Importantly, the information dimension of the measure (i.e., evaluative versus category) does not 

determine whether rule knowledge is applied or not. That is, the non-use of rules is not specific 

to measures of liking.  

A possible plausible explanation might be that Experiment 5.4’s three measures can be 

conceptualized as ranging from very similar to dissimilar to the learning task. Figure 21 illustrates 

this similarity notion. The positive-negative categorization task was the same task as in the learning 

phase. The valence rating was only similar– it asked for the same information dimension 

(evaluative) but used a different measure (ratings as opposed to forced two-choice). The category 
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rating was dissimilar – it asked for a different information dimension (category membership) and 

used a different measure. 

The pattern suggests that the closer a generalization task is to the original learning task, the 

more likely propositional information acquired during learning will be applied in generalization: 

For positive-negative categorization we observed a clear interaction, indicating that rule learners 

showed rule-based generalization, whereas non-rule learners showed similarity-based 

generalization. For valence rating, we observed the pattern to be less pronounced. The interaction 

was smaller and both rule and non-rule learners showed similarity-based generalization (the former 

less clearly, though). For category ratings, we observed no interaction and thus clear similarity-

based generalization for both types of learner.  

General Discussion 

Five experiments tested whether attitudes by EC generalize in a rule-based or a similarity-

based manner. Similarity-based refers to responses towards novel stimuli that are only influenced 

by their similarity to learned stimuli. Rule-based generalization refers to responses that are 

influenced by acquired rules. Experiments 5.1, 5.2a, 5.2b and 5.3 showed that participants who 

acquired rule knowledge about stimulus relations (i.e., rule learners) applied this knowledge to 

categorical judgments of novel stimuli (i.e., rule-based generalization). Surprisingly, we observed 

liking judgments about those novel stimuli to be unaffected by learned rules. Rather, they were 

based on the feature similarity with the components of the novel stimuli (i.e., similarity-based 

generalization). However, Experiment 5.4 showed that similarity-based generalization is not 

specific to judgments of liking. Rather, the closeness of the generalization task to the learning task 

determined whether rule-based or similarity-based generalization occurred: The closer the 

generalization task was to the task during the learning phase, the more likely propositions acquired 
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during learning were used in the generalization task. Further, our findings suggest that similarity-

based generalization is the default mode of generalization which can, if certain conditions are met, 

be overridden by rule-based generalization. This notion is in line with the findings by Boddez and 

colleagues (2017) on similarity-based and rule-based generalization in fear conditioning. 

The observed pattern of generalization might provide insights regarding the underlying 

learning processes. Two candidate processes in EC are associative and propositional learning. 

With regards to EC, associative learning means that spatiotemporal contiguity links stimuli (CS 

and US) in memory. Presenting one stimulus again (i.e., the CS), thereby activates the linked 

stimulus (i.e., the US), which influences evaluative responses.  Propositional learning, on the other 

hand, means that statements about the relation of the co-occurring stimuli are stored in memory 

and retrieved upon presentation of one stimulus. These types of learning are assumed to be 

governed by different operating principles (activation of links versus validation of propositions; 

Gawronski & Bodenhausen, 2011). A purely associative perspective cannot account for the finding 

that category judgments of novel stimuli are sensitive to rule knowledge. Either, one has to assume 

an additional, propositional learning process that informs categorization and leads to rule-based 

generalization while liking is informed by the associative process that leads to similarity-based 

generalization. This conception would be in line with a dual-process perspective on the findings 

(Gawronski & Bodenhausen, 2006) but such an account has difficulties explaining the findings of 

Experiment 5.4 which showed that similarity-based generalization is not specific to liking. 

Furthermore, studies by Zanon, De Houwer and Gast (2012) suggest that rule-based generalization 

can emerge for implicit measures of liking. Although they did not assess whether participants 

abstracted the relevant rule in a very similar paradigm, they observed responses towards novel 

stimuli on three different implicit measures to be affected by the rule that governed pairings in the 
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learning phase. Alternatively, one abandons the associative perspective and explains the findings 

in terms of a propositional or memory-based learning process (De Houwer, 2018; Gast, 2018; Stahl 

& Aust, 2018). Such a view would locate the origin of the dissociating measures not at the level 

of learning process but at the judgment stage: participants hold different response strategies for 

different measures (cf. Aust, Haaf, & Stahl, in press). 

However, this analysis of theoretical accounts makes clear that, in their current state, 

theories of learning do not allow for clear predictions regarding generalization of learning in 

evaluative conditioning. An extension of scope is called for to account not only for responses 

towards paired but also towards novel stimuli.   

Regarding real-world implications, our findings suggest that rule knowledge acquired in a 

certain situation will not readily generalize to novel situations. This might be highly relevant, for 

example, for interventions be they clinical (e.g., cognitive treatment of phobias) or societal (e.g., 

measures to reduce stereotypes towards ethnic groups). Our data suggest that one measure to 

facilitate generalization of rule knowledge could be to make the learning situation as close as 

possible to real-life situations.   

Limitations and conclusion. The relevant rule that participants had to abstract in order to 

show rule-based generalization was rather abstract and specific to the paradigm. Therefore, 

participants might view the rule as very narrowly applicable. If the rule was more in line with real-

life propositions, its application might be less restricted. A more intuitive rule, would, for example 

be that two tasty foods mixed together can be awful, like pizza and pineapples. It is an interesting 

question, whether such a rule would be more widely applicable and would thus, for example, also 

be applied to liking judgments.  
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A promising future avenue could be to link generalization to operating conditions of 

learning processes. One could design a learning phase (or a test phase) which prompts, for 

example, automatic versus controlled processing and test whether similarity-based or rule-based 

generalization emerges. In fact, our finding that rule learners (descriptively) outperform non-rule 

learners in the learning phase speaks to the idea that different levels of attention or controlled 

processing during learning might lead to different pattern of generalization. Also, the findings of 

Experiment 5.2a and 5.2b suggest that intentionality is not a necessary condition for rule-based 

generalization to emerge. Thus, generalization might serve as a domain to gain insight about the 

processes operating at the learning stage. The present introduction of rule-based and similarity-

based generalization may serve as an empirical framework for testing predictions from 

prominent single- versus dual-process models of evaluative learning and attitude acquisition.  
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Chapter 6: Discussion 

In my dissertation, I aimed to investigate the mental processes underlying evaluative 

conditioning (EC). While the majority of learning effects is assumed to be mediated by elaborate 

mental processes, EC has repeatedly been identified as an effect that might be (partly) mediated 

by more primitive processes. Therefore, studying the processes underlying EC is essential to our 

understanding of learning: Is there only one way in which we learn (single-process theory) or are 

there qualitatively different ways of learning (dual-process theory)?  

While there is general agreement nowadays, that elaborate, “propositional” processes 

contribute to EC, research focuses on the question whether the assumption of a more primitive, 

“associative” process also contributing to EC, is justified. This associative process can be 

characterized in terms of operating conditions that refer to when the process operates and 

operating conditions that specify how a process operates.  

A central operating condition of associative processes, as identified by theories on 

automaticity, is awareness of the pairings of CS and US during conditioning. It was extensively 

studied and thus strongly shaped the debate about learning processes. Chapter 3 reports a series 

of studies on the role of awareness in EC: My colleagues and I manipulated awareness via a 

technique referred to as Continuous Flash Suppression (CFS). We presented CSs as stationary 

black and white images to one eye while a flash of colored pixel masks and US photos was 

shown to the other eye. This simultaneous conflicting input made the eyes compete for visual 

awareness, that is, only input from one eye could be consciously perceived. Since the CSs were 

much less visually informative, they were suppressed from awareness and participants performed 

worse at reporting them than they did for control stimuli. Across four experiments we observed 

awareness of the CS-US pairings to be a necessary condition for EC effects to emerge. This 
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observation is in line with a recent comprehensive investigation of subliminal EC (Stahl et al., 

2016) and other approaches to demonstrate unaware EC like parafoveal CS presentation  

(Dedonder et al., 2014). This shows that the processes that operate during EC depend on 

awareness.  

Regarding operating principles of associative processes, I studied a central principle that 

was put forward by (at least) two influential theories of EC, the referential account by Baeyens 

and colleagues (1992) and the APE model by Gawronski and Bodenhausen (2006). It states that 

associative processes do not incorporate propositional information about, for example, the 

relation between CS and US. My colleagues and I tested this prediction in an attribute 

conditioning (AC) paradigm which is similar to EC. In AC, CSs are paired with USs that have a 

certain attribute, for example athleticism. After CS-US pairings, the CS will also be ascribed that 

attribute. We introduced a positive or a negative relation between CS and US in the learning 

phase, that is, they liked or disliked each other. We observed in four experiments that AC effects 

were sensitive to those relations: A CS that liked an athletic US was rated as more athletic than a 

CS that liked an unathletic US. This effect was reversed, however, when CS and US disliked 

each other. This finding is in line with evidence from the EC paradigm that shows EC’s 

sensitivity to relations between CS and US (e.g. Fiedler & Unkelbach, 2011; Förderer & 

Unkelbach, 2012; Moran & Bar-Anan, 2013; Unkelbach & Fiedler, 2016).  

Importantly, however, there are studies that show different patterns of findings on direct 

and indirect measures of evaluation when relational information is introduced: Most 

prominently, Moran and Bar-Anan (2013) manipulated whether CSs started (i.e. positive 

relation) or ended (i.e. negative relation) US sounds. They observed that EC effects on a direct 

measure were sensitive to this relation but an indirect measure (IAT) was not. This and other 
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studies that show similar dissociations between direct and indirect measures (e.g., Gawronski, 

Balas, & Creighton, 2014; Hu, Gawronski, & Balas, 2017a, 2017b) have been explained with the 

existence of an associative process in EC that informs the indirect measures. Thus, these findings 

have been invoked as support for dual-process models (especially the APE model). 

The empirical studies reported in Chapter 5, however, show that dissociations between 

measures can be explained by other factors than two distinct learning processes: My colleagues 

and I studied similarity-based and rule-based generalization in EC. Similarity-based 

generalization means that responses to novel stimuli are based only on their feature similarity to 

learned CSs. Rule-based generalization means that responses to novel stimuli are based on rule 

knowledge. We observed a dissociation between a categorization measure and a liking measure 

in the first four experiments: Categorization of novel stimuli showed both types of generalization 

depending on whether participants abstracted the rule necessary for rule-based generalization. 

Liking, in contrast, showed only similarity-based generalization. Importantly, however, in the 

final experiment, we showed that it is plausible that this dissociation emerges because the two 

different measures encourage different response strategies. Specifically, we concluded that the 

closer a judgment task is to the task during learning, the more likely rules acquired during 

learning will be applied. Thus, the duality does not emerge at the level of learning processes but 

rather at the measurement level. Information provided by one single learning process can be used 

flexibly and can thus produce different pattern of results depending on what measures one uses. 

This provides an alternative explanation for the findings put forward to support the operating 

principles of associative processes suggested by the APE model.  

Bading, Stahl, and Rothermund (in press) provided a direct test of whether response 

strategies can account for use and non-use of propositional information on direct and indirect 
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measures, respectively. Specifically, they showed that the dissociation Moran and Bar-Anan 

observed in their influential paper from 2013, can be explained by specific response strategies 

for the indirect measure they used (IAT). When they altered the IAT to encourage different 

response strategies, it showed an effect of relational qualifiers and, thus, converged with the 

direct rating measure. 

Relatedly, Aust, Haaf, and Stahl (in press) studied dissociations between an US 

expectancy rating and a liking rating after extinction: While US expectancy ratings are reduced 

after CS alone trials, liking ratings were unaffected (e.g., Hermans, Crombez, Vansteenwegen, 

Baeyens, & Eelen, 2002). Aust and colleagues argued that expectancy ratings are by default 

momentary judgments, drawing on recent learning trials. Hence, they reflect recent CS alone 

trials while liking ratings – by default integrative judgments that summarize many more learning 

trials – do not reflect them (to the same extent). They showed that the dissociation can be 

reversed (i.e. liking ratings were sensitive to extinction but US expectancy was not) when 

judgment strategies reversed (i.e. momentary liking rating, integrative expectancy rating). These 

findings are important in two ways: First, together with the studies by Bading and colleagues (in 

press), they provide an alternative, single-process explanation for the dissociation between two 

measures like the studies reported by Moran and Bar-Anan (2013). And second, they show that 

the studies reporting no effect of extinction in EC are not necessarily evidence for a different 

learning process underlying EC but are readily explained by different judgment strategy of liking 

ratings (see also Lipp, Oughton, & LeLievre, 2003; Lipp & Purkis, 2006). That is, the central 

original argument why EC should be mediated by different processes than other forms of 

learning loses its appeal. 
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Thus, taken together, my empirical studies do not provide evidence that make it 

necessary to assume that an automatic, associative learning process is involved in EC. Rather, 

the findings, that awareness is necessary for EC to emerge, that AC is sensitive to relational 

information, and that generalization of EC can be sensitive to rule knowledge are adequately 

explained by a single process underlying EC. In that process, all information provided in the 

learning phase is registered to the extent that capacity is available and to the extent that it is 

perceived as relevant for the task, and is stores in memory. My empirical work does not allow to 

differentiate and I, therefore, do not commit to a specific idea of memory representation as 

propositions or a distributed associative network. At the judgment stage, all encoded information 

is retrieved (unless it was forgotten) to the extent that capacity is available. Depending on the 

judgment task, different pieces of information from the learning phase might be taken into 

account depending on what is considered relevant. Figure 22 visualizes this idea and locates the 

empirical findings of Chapter 3, 4 and 5 within this framework. 

 

 

Figure 22. Joint explanatory framework for the empirical findings of this thesis.  

 

The box on the very left contains information that might be present in a learning phase. 

This is co-occurrence information of CS and US and potentially their relation, instructed or 

deducted rules, context stimuli and others. The subsequent boxes could be described as “hurdles” 
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that can prevent certain pieces of information to influence evaluative judgment. First, a piece of 

information might not be registered by the learning process, for example because it was rendered 

invisible as in Chapter 3. Alternatively, it might not be considered relevant for the learning task 

and hence not be encoded. Then, it might not be retrieved at the judgment stage, for example 

because it was forgotten or because of capacity limitations. Even if it was encoded and retrieved 

it might not be taken into account for evaluative judgements, for example, because of task 

affordances. Chapter 4 and 5 show instances in which additional information to CS-US co-

occurrence (Chapter 4: relational information, Chapter 5: deducted rules) is encoded and 

retrieved and is taken into account (Chapter 4, Chapter 5, Experiment 5.4) or not (Chapter 5, 

Experiment 5.1,5.2 and 5.3).15  

 This explanation of my empirical findings is akin to a declarative memory model of EC, 

recently proposed by Gast (2018) and it is also in line with a memory-based judgment account of 

EC as proposed by Stahl and Aust (2018) and the propositional account of EC (De Houwer, 

2009, 2018). A central point of my explanation is that the information influencing evaluative 

judgments can vary in detail or quality because of the preceding “hurdles”. For example, time 

constraints in the measurement phase can lead to an imperfect retrieval of information. Hence, in 

an indirect measure which measures speeded responses, only information about CS-US co-

occurrence but not about their specific relation might be retrieved. An observed insensitivity of 

indirect measures to relational information might, thus, look like the results of associative 

processes although it is the results of a memory-based process with reduced quality of retrieval. 

The point is that instead of invoking the dichotomy of associative and propositional, I propose a 

                                                 
15 The figure is not exhaustive regarding the possible stages and processes in EC. It includes only 

concepts needed to explain the empirical findings of my thesis. Other conceptualizations have 

included a retention stage, for example (Gast, 2018).  
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continuum of varying quality. This is akin to the re-conceptualization of the automatic-controlled 

dichotomy as graded quality of representation by Moors (2016). Considering these aspects, I 

believe a single-process framework can go a long way in explaining findings in EC.  

Limitations and open questions 

My thesis mainly concerns one operating condition and one operating principle of 

associative processes in EC. As outlined in the introduction, however, many more conditions and 

principles have been put forward. Concerning operating conditions, some studies aimed to 

investigate whether EC effects can be observed under conditions of low attention, 

unintentionality and whether they can be uncontrolled. Studies aiming to show EC when 

participants’ attentional resources are taxed, for example by a secondary task, have been 

reviewed in Chapter 3. In sum, many of those studies face methodological problems that arise 

from a between-participants manipulation of depletion and therefore, conclusive evidence for EC 

under depletion conditions is still pending. Another line of research, however, has repeatedly 

shown that EC can emerge under incidental learning conditions. This effect pertains both to the 

operating conditions of efficiency and unintentionality. Olson & Fazio (2001) developed the 

surveillance paradigm, in which participants view a stream of different stimuli and are asked to 

respond upon the presentation of a particular target item. Interspersed in this stream of stimuli 

are CS-US pairs. Although participants are instructed that these are distractors, EC effects could 

repeatedly be demonstrated in this incidental paradigm (e.g. Jones, Olson, & Fazio, 2010; Olson 

& Fazio, 2001, 2002; Stahl & Heycke, 2016). Thus, there is evidence that EC can be obtained 

even when probably little attention is devoted to CS-US pairings and when participants do not 

intend to learn about the evaluative characteristics of the CS. Incidental EC is not fundamentally 

at odds with the explanation in Figure 22. The additional load from the unrelated stimuli and the 
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unrelated task should reduce the amount of CS-US pairs that are encoded or should reduce the 

quality of encoding. Accordingly, incidental EC effects should be smaller than those under 

intentional learning conditions which is in line with findings by Stahl and Heycke (2016). 

Finally, Hütter and Sweldens (2018) addressed the last operating condition of associative 

processes. They used the rationale of the process dissociation procedure described in Chapter 3 

to disentangle controllable and uncontrollable learning processes in EC. They instructed 

participants to either use (inclusion condition) or reverse (exclusion condition) the affective 

information of the US to form an impression of the CS. They showed that participants partly did 

not control (i.e. reverse) their evaluations of the CS. However, Stahl and Aust (2018) explained 

participants’ failure to reverse some of the USs’ valence in terms of capacity constraints at the 

learning stage which is compatible with the framework in Figure 22. 

Reviewing evidence for and against all operating principles that were not empirically 

targeted in this thesis would go beyond the scope of this section and has comprehensively been 

done elsewhere (e.g. Corneille & Stahl, 2018; De Houwer et al., 2001; Hofmann et al., 2010). It 

can be summarized as follows: The principles suggested by older single-process associative 

theories (e.g., holistic and referential account) are inconsistent with a large body of robust effects 

in the EC paradigm, for example, its sensitivity to propositional information discussed in Chapter 

4. The conceptual categorization account has been criticized among others by Baeyens and 

colleagues (1998) because it can hardly account for EC effects across modalities (Hofmann et al., 

2010) and US revaluation effects (Walther et al., 2009). The implicit misattribution principle 

receives support from some studies showing S-R learning in EC (Baeyens, Vanhouche, 

Crombez, & Eelen, 1998; Gast & Rothermund, 2011a). Corneille and Stahl (2018), however, 

argued that S-R learning does not necessarily have to be an associative process. The “response”, 



145 

 

that is, the USs’ valence, can be conceived of as information that is registered by a propositional 

or memory process and later influences liking judgments while the exact identity of the US 

might have been forgotten (cf. Stahl et al., 2009). Again, this conceptualization of S-R learning is 

compatible with the explanation in Figure 22. 

 Finally, the central limitation in all studies reported here is that it is logically impossible 

to prove the inexistence of an automatic, associative process. We aimed to address this issue in 

Chapter 3 by identifying optimal conditions for EC without awareness to occur, but nevertheless 

failed to show unaware EC. In Chapter 4 we studied AC as a variant of EC in which the 

application of a like/dislike relation is normatively questionable and hence a priori less likely 

(i.e., someone who dislikes an athletic person should not necessarily be unathletic). Still, we 

observed AC’s sensitivity to this relation. The first four experiments reported in Chapter 5 

showed similarity-based generalization of liking which is consistent with an associative view on 

EC. However, the final experiment showed that this pattern is adequately accounted for by 

judgment strategies at the measurement phase. Thus, while we cannot ultimately rule out the 

existence of an associative process, the present thesis shows that it is not necessary to assume 

such a process. “There is very little to be lost, and much to be gained, by the rejection of 

the dual-system approach” (Mitchell, Houwer, & Lovibond, 2009, p.185). 

Conclusion 

Summing up, while they might behave differently on a functional level, there is little 

compelling evidence that EC is mediated by primitive mechanisms of learning that are 

qualitatively different from the elaborate mechanisms underlying classical conditioning. 

Therefore, EC research, at the current state, is not a strong argument for the existence of a second 

route to learning in the broader debate on single versus dual processes in learning. Rather, the 



146 

 

vast majority of effects in EC research are adequately accounted for by a propositional single-

process account of EC and thus speak for a single process account of learning more broadly that 

is characterized by rather deliberate processing and reasoning.  
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Appendix A 

Eight CSs used in Experiment 3.1 
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Appendix B 

16 CSs used in Experiment 5.1 
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Appendix C 

Details regarding the coding of rule versus non-rule learners and analyses of participants’ 

performance in the learning phase in all experiments 

 

In all experiments, two independent coders classified participants’ responses in the open-

ended question after the learning phase. In Experiment 5.1, they disagreed in six cases, which 

were resolved by discussion. Only six participants were classified as having inferred the 

underlying rule (i.e., “rule learners”), while 71 participants did not correctly report the rule (i.e., 

“non-rule learners”). Overall, participants responded correctly in 13.87 (SD = 2.55) of the twenty 

trials, which is significantly different from a 10 correct responses guessing threshold, t(76) = 

13.31, p < .001, d = 1.52; thus, participants paid attention during the learning phase. 

To compare performance depending on the rule inference, we computed a Welch’s t-test 

(Delacre, Lakens, & Leys, 2017; Ruxton, 2006). Rule learners provided relatively more correct 

responses (M = 15.50, SD = 1.87) than non-rule learners (M = 13.73, SD = 2.56), although this 

difference was not significant on a standard alpha level, t(6.70) = 2.15, p = .070, standardized 

mean difference=0.79. The mean difference was standardized by the average standard deviation 

of the two groups. That is, 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 𝑚𝑒𝑎𝑛 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =  
𝑥1−𝑥2

𝑚𝑒𝑎𝑛 𝑆𝐷
 , and 𝑚𝑒𝑎𝑛 𝑆𝐷 =

 √
𝑆𝐷1

2+𝑆𝐷2
2

2
 (Bonett, 2008). 

In Experiment 5.2a, the coders disagreed in six cases which were resolved by a third 

coder. Eighteen participants were classified as rule learners; 63 were classified as non-rule 

learners. Overall, participants responded correctly on 7.72 (SD = 1.63) of the ten trials, which 

was better than the chance threshold of five, t(80) = 15.00, p < .001, d = 1.67. Although 

descriptively, rule learners performed better (M = 8.22, SD = 1.22) than non-rule learners (M = 
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7.57, SD = 1.71), this comparison did not reach significance, t(38.324) = 1.82, p = .077, 

standardized mean difference = 0.44.  

Concerning evaluation responses of the stimuli in the learning phase of Experiment 5.2a, 

we conducted a 2 (learner type: non-rule vs. rule learner; between participants) x 2 (paired 

valence: positive vs. negative; within participants) mixed ANOVA. We observed a standard EC 

effect: Participants evaluated CSs paired with positive USs more positively (M = 6.36, SD = 

1.82) than those paired with negative USs (M = 4.04, SD = 1.65), F(1,79) = 78.34, p < .001, 𝜂𝑝
2 

= .50. No other effects were significant, all Fs < 1.9, all ps > .17, all 𝜂𝑝
2s < .03. 

In Experiment 5.2b, the coders disagreed in six cases which were resolved by a third 

coder. Twenty-seven participants were classified as rule-learners; 53 were classified as non-rule 

learners. Overall, they responded correctly in 7.48 of the ten trials (SD = 1.59). This was better 

than chance level, t(79) = 13.92, p < .001, d = 1.56. Rule-learners performed better (M = 8.15, 

SD = 1.32) than non-rule learners (M = 7.13, SD = 1.62), t(62.60) = 3.01, p = .004, standardized 

mean difference = -0.69. 

A 2 (learner type: non-rule associative vs. rule learner; between participants) x 2 (paired 

valence: positive vs. negative; within participants) mixed ANOVA with participants’ liking 

judgments from the learning phase as dependent variable showed an EC effect. CSs paired with 

positive USs were evaluated as more positive (M = 6.12, SD = 1.93) than those paired with 

negative USs (M = 4.08, SD = 2.08), F(1,78) = 87.73, p < .001, 𝜂𝑝
2 = .53. There was also a non-

significant interaction with learner type, F(1,78) = 3.90, p = .052, 𝜂𝑝
2 = .05. The main effect of 

learner type was not significant, F(1,78) = 0.62, p = .434, 𝜂𝑝
2 < .01. 

In Experiment 5.3, the coders who coded participants’ responses on the open-ended 

questions agreed in all cases. Sixty-eight participants were classified as rule learners (62 in the 
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rule instruction condition and 6 in the no rule instruction condition); 50 were classified as non-

rule learners (12 in the rule instruction condition and 38 in the no rule instruction condition). 

Overall, participants responded correctly in 13.74 (SD = 2.65) of the 20 learning trials in which 

they provided categorization responses, which was different from guessing, t(117) = 15.31, p 

< .001, d = 1.41. Descriptively, participants classified as rule learners performed better (M = 

14.06, SD = 2.79) than those classified as non-rule learners (M = 13.30, SD = 2.42); this 

difference was not significant, though, t(112.76) = 1.58, p = .117, standardized mean difference 

= 0.29. 

In Experiment 5.4, the coders disagreed in four cases that were resolved by a third coder. 

Thirty-three participants were classified as rule learners; 46 as non-rule learners. Overall, 

participants correctly classified stimuli as positive or negative in 7.39 (SD = 1.40) of the ten 

response trials, which differed from the guessing threshold of five, t(78) = 15.19, p < .001, d = 

1.71. Furthermore, rule learners performed better (M = 7.85, SD = 1.44) than non-rule learners, 

(M = 7.07, SD = 1.29), t(64.31) = 2.49, p = .015, standardized mean difference = 0.57. 
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Appendix D 

Analyses data from Experiment 5.3 with manipulated factor “rule instruction” (rule 

instructed vs. not instructed) as opposed to the measured factor “learner type” (rule learners vs. 

non-rule learner) 

 

Learning phase. A t-test showed that participants who were instructed the rule 

descriptively performed slightly better (M = 13.92, SD = 2.76) than participants who were not 

instructed the rule (M = 13.43, SD = 2.46), t(98.725) = 0.99, p = .323, standardized mean 

difference = -0.19. 

Categorization. There was a main effect of category according to the rule. “Mammal” 

stimuli were more often classified as mammals (M = 0.58, SD = 0.49) than “reptile” stimuli (M = 

0.34, SD = 0.47), F(1,116) = 11.76, p = .001, 𝜂𝑝
2 = .09. This effect was qualified by an interaction 

with rule instruction, F(1,116) = 36.15, p < .001, 𝜂𝑝
2 = .24. Follow-up ANOVAs showed that 

participants that were not instructed the rule classified “mammal” stimuli less often as mammals 

(M = 0.38, SD = 0.48) than “reptile” stimuli (M = 0.50, SD = 0.50). This effect was not 

significant, though, F(1,43) = 2.05, p = .160, 𝜂𝑝
2 = .05. Participants who were instructed the rule 

showed the reversed pattern. They categorized novel compounds in line with the rule: Stimuli 

belonging to the mammal category were correctly classified as mammals more often (M = 0.71, 

SD = 0.46) than stimuli belonging to the reptile category (M = 0.25, SD = 0.43), F(1,73) = 72.61, 

p < .001, 𝜂𝑝
2 = .50. The main effect of rule instruction in the overall ANOVA was not significant, 

F(1,116) = 1.55, p = .215, 𝜂𝑝
2 = .01. 

Evaluation. We observed a main effect of category according to the rule for the 

evaluation of the novel stimuli. Participants’ liking was in line with the paired valence of the 



177 

 

compounds’ elements: “Positive” compounds (that consisted of two negative elements) were 

evaluated more negatively (M = 4.56, SD = 2.11) than “negative” compounds (that consisted of 

two positive elements; M = 5.02, SD = 2.19), F(1,116) = 4.14, p = .044, ηp
2  = .03. All other 

effects were not significant, all Fs < 0.95, all ps > .33, all ηp
2s < .01. 

Comparing categorization and evaluation. To test whether the categorization and 

evaluation differ regarding the size of the interaction between category and rule instruction, we 

z-standardized scores of both measures and submitted them to a 2 (rule instruction: yes vs. no) x 

2 (category according to the rule: mammal/positive vs. reptile/negative) x 2 (measure: 

categorization vs. evaluation) mixed ANOVA. We observed a two-way interaction of rule 

instruction and category (F(1,116) = 22.23, p < .001, 𝜂𝑝
2 = .16), a two-way interaction of measure 

and category (F(1,116) = 17.16, p < .001, 𝜂𝑝
2 = .13) and, most importantly, a three-way 

interaction showing that the measures differ regarding the two-way interaction of rule instruction 

and correct category, F(1,116) = 15.29, p < .001, 𝜂𝑝
2 = .12. All other effects: all Fs < 2.52, all ps  

>  .11, all 𝜂𝑝
2s < .03. 

 

 

 

 

 

 

 



178 

 

Appendix E 

Analyses of paired compounds 

 

To test whether the observed results are specific to generalization, we conducted the same 

analyses for compound stimuli that were paired in the learning phase. 

Experiment 5.1. 

Categorization. The ANOVA showed a category main effect: Mammal-paired stimuli 

were correctly categorized as mammals more often (M = 0.60, SD = 0.49) than reptile-paired 

stimuli (M = 0.31, SD = 0.46), F(1,75) = 34.62, p < .001, 𝜂𝑝
2 = .32. There was also an interaction 

between category and learner type, F(1,75) = 11.13, p = .001, 𝜂𝑝
2 = .13. Follow-up ANOVAs 

showed that both rule learners and non-rule learners correctly categorized the paired compounds 

(rule learners: mammal-paired: M = 0.92, SD = 0.28, reptile-paired: M = 0.05, SD = 0.22, F(1,5) 

= 307.27, p < .001, 𝜂𝑝
2 = .98; non-rule learners: mammal-paired: M = 0.58, SD = 0.49, reptile-

paired: M = 0.34, SD = 0.47, F(1,70) = 19.53, p < .001, 𝜂𝑝
2 = .22). Thus, in contrast to 

generalization compounds, both types of learner correctly classified the paired compounds. The 

main effect of learner type in the overall ANOVA was not significant, F(1,75) = 0.10, p = .755, 

𝜂𝑝
2 < .01. 

Evaluation. The ANOVA showed only a main effect of learner type. Rule users 

evaluated the compounds more positively (M = 6.29, SD = 2.20), than non-rule learners (M = 

5.21, SD = 2.32), F(1,75) = 4.67, p = .034, 𝜂𝑝
2 = .06. No other effects were significant, all Fs < 

0.84, all ps > .36, all 𝜂𝑝
2s < .02. For generalization stimuli, in contrast, we observed a main effect 

of category. The difference between paired and generalization compounds can be explained by 

the fact that for paired compounds there were two conflicting sources informing their liking 
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judgments. The elements’ pairings drove the evaluation into the opposite direction than the 

compound’s pairing. If, for example, A and B were paired with positive USs and AB with a 

negative USs, upon evaluation of AB, not only AB’s pairing will inform the judgment into a 

negative direction but A and B’s pairing will also influence the judgment into a positive direction 

(i.e., they cancel each other out). This can explain the absence of an effect of paired valence (i.e., 

EC effect). 

 

Categorization of paired compounds  Liking of paired compounds 

  
Figure A1. Data from Experiment 5.1: The left panel shows the proportion of ”mammal” 

categorization responses towards the paired compound stimuli, grouped by the paired category as 

a function of learner type. Thus, high values for the mammal/positive category and low values 

for the reptile/negative category indicate good categorization performance. The right panel 

shows the evaluation of the paired compound stimuli as a function of the paired category and 

learner type. Error bars show the standard error of the mean. 

 

Paired versus generalization compounds. While non-rule learners show the same pattern 

of responding in both measures, rule learners show different pattern of responding for 

categorization and evaluation. To test whether this observed dissociation in rule learners is 
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specific to generalization stimuli we pooled rule learners’ responses for paired and generalization 

compounds and included stimulus type as a factor into the ANOVA.  

A 2 (category according to the rule: mammal/positive vs. reptile/negative) x 2 (stimulus 

type: paired compound vs. generalization compound) mixed ANOVA for rule learners’ 

categorization responses showed only a main effect of correct category. “Mammal” compounds 

(i.e., among paired compounds, those that were paired with the mammal category in the learning 

phase, and among generalization stimuli, those that would rule-wise belong to the mammal 

category) were categorized as mammals more often (M = 0.88, SD = 0.33) than “reptile” 

compounds (M = 0.08, SD = 0.28), F(1,5) = 204.19, p < .001, 𝜂𝑝
2 = .98. The main effect of 

stimulus type was not significant (F(1,5) = 0.02, p = .905, 𝜂𝑝
2 < .01), and, more importantly, the 

interaction was also not significant, F(1,5) = 1.71, p = .248, 𝜂𝑝
2 = .25. Thus, both for paired and 

for generalization stimuli, rule learners categorized correctly.  

The same ANOVA with liking responses showed a main effect of stimulus type. Paired 

stimuli were evaluated more positively (M = 6.29, SD = 2.20) than generalization stimuli (M = 

4.83, SD = 2.37), F(1,5) = 12.63, p = .016, 𝜂𝑝
2 = .72. The interaction between correct category 

and stimulus type was not significant on a standard alpha level, F(1,5) = 5.11, p = .073, 𝜂𝑝
2 = .51.  

These analyses do not allow for strong conclusions whether the dissociation between 

categorization and liking judgements is specific to generalization. The low number of rule 

learners made it difficult to show that they use their rule knowledge (at least to a greater extent) 

for both measures within paired compounds. Experiments 5.2a and 5.2b, however, resolve this 

issue of statistical power and clearly show that our findings are specific for generalization. 
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Experiment 5.2a. 

Categorization. The ANOVA showed a main effect of category according to the rule. 

Mammal-paired compounds were correctly categorized as mammals more often (M = 0.61, SD =  

0.49) than reptile-paired compounds (M = 0.37, SD = 0.48), F(1,79) = 29.25, p < .001, 𝜂𝑝
2 = .27. 

We also observed an interaction between category and learner type, F(1,79) = 17.75, p < .001, 𝜂𝑝
2 

= .18. Follow-up ANOVAs showed that rule learners categorized correctly: Mammal-paired: M 

= 0.84, SD = 0.36, reptile-paired: M = 0.08, SD = 0.27, F(1,17) = 63.78 p < .001, 𝜂𝑝
2 = .79. Non-

rule learners descriptively also categorized paired compounds correctly (mammal-paired: M = 

0.55, SD = 0.50, reptile-paired: M = 0.45, SD = 0.50) but this difference was not significant, 

F(1,62) = 1.40, p = .241, 𝜂𝑝
2 = .02. Like in Experiment 5.1, this suggests that, both types of 

learner categorized paired compounds rather correctly. Generalization stimuli, in contrast, were 

clearly only categorized correctly by rule learners. The main effect of learner type in the overall 

ANOVA was not significant, F(1,79) = 0.45, p = .506, 𝜂𝑝
2 < .01. 

Evaluation. The ANOVA showed no significant effects, all Fs < 3.3, all ps > .07, all 𝜂𝑝
2s 

< .04. Like in Experiment 5.1, we believe, influence of the compound’s pairing and its elements’ 

pairings cancelled each other out.  

Paired versus generalization compounds. Analyzing rule learners’ categorization 

responses for paired and generalization stimuli, we observed a main effect of correct category. 

“Mammal” compounds were categorized as mammals more often (M = 0.77, SD = 0.42) than 

“reptile” compounds (M = 0.15, SD = 0.36), F(1,17) = 37.84, p < .001, 𝜂𝑝
2 = .69. The main effect 

of stimulus type was not significant (F(1,17) < 0.01, p > .999, 𝜂𝑝
2 < .01) and the interaction did 

also not reach significant, F(1,17) = 3.25, p = .089, 𝜂𝑝
2 = .16.  
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Categorization of paired compounds Liking of paired compounds 

  

 

Figure A2. Data from Experiment 5.2a: The left panel shows the proportion of ”mammal” 

categorization responses towards the paired compound stimuli, grouped by the paired category as 

a function of learner type. Thus, high values for the mammal/positive category and low values 

for the reptile/negative category indicate good categorization performance. The right panel 

shows the evaluation of the paired compound stimuli as a function of the paired category and 

learner type. Error bars show the standard error of the mean. 

 

The ANOVA for rule learners’ liking showed only an interaction between correct 

category and stimulus type, F(1,17) = 15.30, p = .001, 𝜂𝑝
2 = .47. A follow-up ANOVA for paired 

stimuli showed that they were evaluated “in line with the rule”. Rule learners evaluated 

positively paired compounds more positively (M = 5.11, SD = 1.97) than negatively paired 

compounds (M = 4.00, SD = 1.46), F(1,17) = 5.12, p = .037, 𝜂𝑝
2 = .23. Generalization stimuli, in 

contrast, were evaluated “contrary to the rule” (reported in the paper). No other effect in the 

overall ANOVA for liking were significant, all Fs < 0.99, ps > .33, 𝜂𝑝
2s < .06. 
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Thus, the use and non-use of rules when categorizing respectively evaluating novel 

generalization stimuli is not present for paired compounds. Rather, rules are applied for both 

measures. 

Experiment 5.2b. 

Categorization. There was a main effect of correct category in the ANOVA. Participants 

classified mammal-paired compounds as mammals more often (M = 0.68, SD = 0.47) than 

reptile-paired compounds (M = 0.31, SD = 0.46), F(1,78) = 38.41, p < .001, 𝜂𝑝
2 = .33. An 

interaction with learner type qualified this effect, F(1,78) = 9.25, p = .003, 𝜂𝑝
2 = .11. Follow-up 

ANOVAs for each learner type showed that both rule and non-rule learners showed the effect in 

the above described direction. The effect was less pronounced for the former, though; rule 

learners: F(1,26) = 44.08, p < .001, 𝜂𝑝
2 = .63, non-rule learners: F(1,52) = 6.50, p = .014, 𝜂𝑝

2 

= .11. Thus, like in previous experiments, both learner types classified paired compounds 

correctly, while generalization compounds were only categorized correctly by rule learners. The 

main effect of learner type was not significant in the overall ANOVA, F(1,78) < 0.01, p = .939, 

𝜂𝑝
2 < .01. 

Evaluation. The ANOVA showed only a main effect of correct category. Positively 

paired compounds were evaluated as more positive (M = 5.88, SD = 2.65) than negatively paired 

compounds (M = 4.36, SD = 2.47), F(1,78) = 12.96, p < .001, 𝜂𝑝
2 = .14. This constitutes a 

standard EC effect. Generalization compounds, in contrast, show the opposite pattern. No other 

effects were significant, all Fs < 1.98, all ps > .16, all 𝜂𝑝
2s < .03. 
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Categorization of paired compounds Liking of paired compounds 

  
 

Figure A3. Data from Experiment 5.2b: The left panel shows the proportion of ”mammal” 

categorization responses towards the paired compound stimuli, grouped by the paired category as 

a function of learner type. Thus, high values for the mammal/positive category and low values 

for the reptile/negative category indicate good categorization performance. The right panel 

shows the evaluation of the paired compound stimuli as a function of the paired category and 

learner type. Error bars show the standard error of the mean. 

 

Paired versus generalization compounds. We analyzed rule learners’ categorization 

responses of paired and generalization stimuli and observed a main effect of correct category. 

“Mammals” were categorized as mammals more often (M = 0.70, SD = 0.46) than “reptiles” (M 

= 0.20, SD = 0.40), F(1,26) = 21.67, p < .001, 𝜂𝑝
2 = .45. There was also an interaction with 

stimulus type, F(1,26) = 9.06, p = .005, 𝜂𝑝
2 = .26. Rule learners classified generalization stimuli 

correctly (reported in the paper) and, as a follow-up ANOVA showed, also paired compounds 

were classified correctly, (“mammals”: M = 0.82, SD = 0.38; “reptiles”: M = 0.17, SD = 0.38), 

F(1,26) = 44.08, p < .001, 𝜂𝑝
2 = .63. The main effect of stimulus type was not significant, F(1,26) 

= 3.32, p = .080, 𝜂𝑝
2 = .11. 
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The analysis for rule learners’ liking of paired and generalization compounds showed 

only an interaction between correct category and stimulus type, F(1,26) = 12.54, p = .002, 𝜂𝑝
2 

= .33. A follow-up ANOVA for paired stimuli showed that rule learners evaluated positively 

paired compounds more positive (M = 6.59, SD = 2.58) than negatively paired compounds (M = 

4.19, SD = 2.72), F(1,26) = 7.64, p = .010, 𝜂𝑝
2 = .23. This standard EC effect we observe for 

paired compounds is “in line with the rule”. For rule learners’ liking of generalization stimuli, 

however, it was reversed (reported in the paper). The main effects in the overall ANOVA were 

not significant, all Fs < 1.86, all ps > .18, all 𝜂𝑝
2s < .07. 

Thus, the observed dissociation for rule learners’ category and liking judgments is 

specific to generalization compounds because paired compounds show the same pattern (that 

follows the rule) for both measures.  

Experiment 5.3. 

Categorization. The ANOVA showed a category main effect. Mammal-paired 

compounds were categorized as mammals more often (M = 0.66, SD = 0.47) than reptile-paired 

ones (M = 0.27, SD = 0.45), F(1,116) = 85.76, p < .001, 𝜂𝑝
2 = .43. Again, there was an interaction 

between category and learner type, F(1,116) = 31.19, p < .001, 𝜂𝑝
2 = .21. Follow-up ANOVAs 

showed that both types of learner showed the above described pattern (rule learners: mammal-

paired: M = 0.76, SD = 0.43, reptile-paired: M = 0.19, SD = 0.39, F(1,67) = 142.83 p < .001, 𝜂𝑝
2 

= .68; non-rule learners: mammal-paired: M = 0.53, SD = 0.50, reptile-paired: M = 0.38, SD = 

0.49, F(1,49) = 5.22 p = .027, 𝜂𝑝
2 = .10). Like in Experiment 5.1, 5.2a and 5.2b, both learner 

types classified paired compounds correctly while generalization compounds were only 

categorized correctly by rule learners. The main effect of learner type in the overall ANOVA was 

not significant, F(1,116) = 0.50, p = .482, 𝜂𝑝
2 < .01. 
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Evaluation. There was a main effect of learner type in the ANOVA: Rule learners overall 

evaluated the compounds more positively (M = 5.12, SD = 2.18) than non-rule learners (M = 

4.65, SD = 2.30), F(1,116) = 4.07 p = .046, 𝜂𝑝
2 = .03. All other effects were nonsignificant, all Fs 

< 0.62, all ps > .43, all 𝜂𝑝
2s < .01. 

We explain the absence of an EC effect like in Experiment 5.1 and 5.2a: Compound’s 

and elements’ pairings cancelling each other out upon evaluation of the compounds. 

 

Categorization of paired compounds Liking of paired compounds 

  

Figure A4. Data from Experiment 5.3: The left panel shows the proportion of ”mammal” 

categorization responses towards the paired compound stimuli, grouped by the paired category as 

a function of learner type. Thus, high values for the mammal/positive category and low values 

for the reptile/negative category indicate good categorization performance. The right panel 

shows the evaluation of the paired compound stimuli as a function of the paired category and 

learner type. Error bars show the standard error of the mean. 
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Paired versus generalization compounds. The ANOVA for rule learners’ categorization 

of paired and generalization compounds showed a main effect of correct category. “Mammal” 

compounds were categorized as mammals more often (M = 0.76, SD = 0.43) than “reptile” 

compounds (M = 0.21, SD = 0.41), F(1,67) = 137.09, p < .001, 𝜂𝑝
2 = .67. The main effect of 

stimulus type was not significant (F(1,67) = 0.48, p = .490, 𝜂𝑝
2 < .01) and, more importantly, the 

interaction was also not significant, F(1,67) = 2.34, p = .131, 𝜂𝑝
2 = .03.  

The same analysis for liking yielded only a nonsignificant main effect of stimulus type. 

Rule learners tended to evaluate paired compounds more positively (M = 5.12, SD = 2.18) than 

generalization compounds (M = 4.81, SD = 2.19), F(1,67) = 3.00, p = .088, 𝜂𝑝
2 = .04. No other 

effects were significant, all Fs < 0.92, all ps > .34, all 𝜂𝑝
2s < .02. 

Although the findings are less clear-cut than in Experiments 5.2a and 5.2b, we can 

conclude the following: Jointly analyzing rule learners’ categorization of paired and 

generalization stimuli yields a main effect of category and no interaction which shows that both 

types of stimuli were categorized in line with the rule. For liking, in contrast, we do not even 

observe a main effect of category which is present, however, when analyzing generalization 

stimuli alone (reported in the paper). This might suggest that responses for paired stimuli do not 

follow the same pattern as responses for generalization stimuli. 

Experiment 5.4. 

Positive-negative categorization. We observed a main effect of category according to the 

rule in the ANOVA. Positively paired stimuli were classified as positive more often (M = 0.61, SD 

= 0.49) than negatively stimuli (M = 0.22, SD = 0.41), F(1,77) = 52.99, p < .001, 𝜂𝑝
2 = .41. Further, 

there was an interaction between category and learner type, F(1,77) = 19.63, p < .001, 𝜂𝑝
2 = .20. 

Follow-up ANOVAs showed that rule learners correctly categorized the stimuli, non-rule learners 



188 

 

descriptively also categorized correctly but this analysis was not significant (rule learners: positive: 

M = 0.79, SD = 0.41, negative: M = 0.09, SD = 0.29, F(1,32) = 101.58, p < .001, 𝜂𝑝
2 = .76; non-

rule learners: positive: M = 0.48, SD = 0.50, negative: M = 0.31, SD = 0.46, F(1,45) = 3.74, p 

= .059, 𝜂𝑝
2 = .08). The pattern shows that, for paired compounds, both types of learner categorized 

rather correctly. For generalization compounds, in contrast, none of the both learner types (rule 

learners at most) categorized correctly. The main effect of learner type was not significant in the 

overall ANOVA, F(1,77) = 0.64, p = .427, 𝜂𝑝
2 < .01. 

Category rating. The ANOVA showed a category main effect: Participants rated mammal-

paired compounds as more mammal-like (M = 5.18, SD = 3.14), than reptile-paired compounds 

(M = 4.18, SD = 2.96), F(1,77) = 5.14, p = .026, 𝜂𝑝
2 = .06. There was also an interaction between 

ategory and learner type, F(1,77) = 4.96, p = .029, 𝜂𝑝
2 = .06. Follow-up ANOVAs showed that rule 

learners rated the compounds in line with their paired category (mammal-paired: M = 5.84, SD = 

3.18, reptile-paired: M = 3.48, SD = 2.83), F(1,32) = 8.27 p = .007, 𝜂𝑝
2 = .21. Non-rule learners did 

not show an effect, F(1,45) = 10.26 p = .974, 𝜂𝑝
2 < .01. This shows that participants category ratings 

of paired compounds rather followed the compounds’ paired categories (and thus, the rule) than 

their elements’ paired category. That is, if it was an objective task they would have performed 

mostly “correctly”. Their judgments of generalization stimuli, in contrast, were “incorrect”, that 

is, not in line with the rule. The main effect of learner type was not significant in the overall 

ANOVA, F(1,77) < 0.01, p = .968, 𝜂𝑝
2 < .01. 

Valence rating. We found no significant effects in the ANOVA, all Fs < 2.23, all ps > .13, 

all 𝜂𝑝
2s < .03. Like Experiment 5.1, 5.2a and 5.3, we believe, when judging a paired compound, 

the conflicting influence of the compound’s pairing and its elements’ pairings cancel each other 

out and lead to the observed null effect. 
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Positive-negative categorization of paired 

compounds 

Valence rating (liking) of paired compounds 

  
Category rating of generalization stimuli  

 

 

Figure A5. Data from Experiment 5.4: The left panel shows positive-negative categorization 

(i.e., proportion of “positive” responses) towards the paired compound stimuli, grouped by the 

paired category as a function of learner type. High values for the mammal/positive category and 

low values for the reptile/negative category indicate good categorization performance. The 

middle panel shows the liking ratings and the right panel shows ratings of category membership 

of the paired compound stimuli as a function of the paired category and learner type. Error bars 

show the standard error of the mean. 
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Paired versus generalization compounds. The ANOVA analyzing rule learners’ positive-

negative categorization for paired and generalization compounds showed a main effect of correct 

category. “Positive” compounds (i.e., among paired compounds, those that were paired with the 

positive category in the learning phase, and among generalization stimuli, those that would rule-

wise belong to the positive category) were categorized as positive more often (M = 0.65, SD = 

0.48) than “negative” compounds (M = 0.22, SD = 0.42), F(1,32) = 26.90, p < .001, 𝜂𝑝
2 = .46. There 

was also an interaction between category and stimulus type, F(1,32) = 22.14, p < .001, 𝜂𝑝
2 = .41. 

A follow-up ANOVA for paired stimuli showed that rule learners categorized them correctly 

(“positive”: M = 0.79, SD = 0.41, “negative”: M = 0.09, SD = 0.29, F(1,32) = 101.58, p < .001, 𝜂𝑝
2 

= .76) just like generalization stimuli (reported in the paper). The main effect of stimulus type in 

the overall ANOVA was not significant, F(1,32) < 0.01, p = .942, 𝜂𝑝
2 < .01. 

The same analysis for category ratings showed only an interaction between correct 

category and stimulus type, F(1,32) = 13.01, p = .001, 𝜂𝑝
2 = .29. A follow-up ANOVA for paired 

stimuli showed that rule learners evaluated mammal-paired compounds as more mammal-like (M 

= 5.85, SD = 3.18) than reptile-paired compounds (M = 3.48, SD = 2.83), F(1,32) = 8.27, p = .007, 

𝜂𝑝
2 = .21. That is the opposite pattern as for generalization stimuli (reported in the paper). The other 

effects in the overall ANOVA were not significant, all Fs < 0.79, all ps > .38, all 𝜂𝑝
2s < .03. 

The ANOVA for valence ratings also only showed an interaction, F(1,32) = 4.71, p = .037, 

𝜂𝑝
2 = .13. For paired compounds, rule learners descriptively evaluated “in line with the rule” 

(positively-paired: M = 5.27, SD = 2.91, negatively-paired: M = 4.48, SD = 2.48); this effect was 

not significant, however, F(1,32) = 1.06, p = .311, 𝜂𝑝
2 = .03. Generalization stimuli, in contrast, are 

descriptively evaluated “contrary to the rule” (reported in the paper). All other effects in the overall 

ANOVA: all Fs < 0.35, all ps > .56, all 𝜂𝑝
2s < .02.  
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The clear dissociation between positive-negative categorization and category rating that 

we observed for generalization stimuli among rule learners is not present for paired compounds. 

Instead, rule learners’ responses on both measures are in line with the rule. The pattern for valence 

ratings is less clear-cut but the observed interaction shows that rule learners responded differently 

towards paired than towards generalization stimuli. 

Conclusions. Comparing categorization performance for paired versus generalization 

compounds in Experiment 5.1-3 shows that they substantially differ: While correct 

categorization of paired compounds is achieved both by rule and non-rule learners, only rule 

learners manage to correctly categorize novel generalization compounds. Positive-negative 

categorization and category ratings in Experiment 5.4 suggest very similar conclusions. 

Comparing liking judgments for paired and generalization compounds in Experiment 5.1-

4 also shows that they follow different patterns: Judgments of paired compounds are informed 

both by the compound’s pairing and its elements’ pairings in the learning phase which cancel 

each other out. Thus, there was no effect of paired category for paired compounds in most 

experiments (except for Experiment 5.2b). Judgments of generalization compounds, in contrast, 

are only informed by the elements’ pairings since the generalization compounds were not paired 

in the learning phase. Thus, liking of generalization compounds reflects their elements’ pairing 

in the learning phase.  

 

 

 


